Sample records for tank farm equipment

  1. Treatment options for tank farms long-length contaminated equipment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Josephson, W.S.

    1995-10-16

    This study evaluated a variety of treatment and disposal technologies for mixed waste (MW) meeting the following criteria: 1. Single-Shell and Double-Shell Tank System (tank farms) equipment and other debris; 2. length greater than 12 feet; and contaminated with listed MW from the tank farms. This waste stream, commonly referred to as tank farms long-length contaminated equipment (LLCE), poses a unique and costly set of challenges during all phases of the waste management lifecycle.

  2. ICPP tank farm closure study. Volume 2: Engineering design files

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1998-02-01

    Volume 2 contains the following topical sections: Tank farm heel flushing/pH adjustment; Grouting experiments for immobilization of tank farm heel; Savannah River high level waste tank 20 closure; Tank farm closure information; Clean closure of tank farm; Remediation issues; Remote demolition techniques; Decision concerning EIS for debris treatment facility; CERCLA/RCRA issues; Area of contamination determination; Containment building of debris treatment facility; Double containment issues; Characterization costs; Packaging and disposal options for the waste resulting from the total removal of the tank farm; Take-off calculations for the total removal of soils and structures at the tank farm; Vessel off-gas systems; Jet-groutedmore » polymer and subsurface walls; Exposure calculations for total removal of tank farm; Recommended instrumentation during retrieval operations; High level waste tank concrete encasement evaluation; Recommended heavy equipment and sizing equipment for total removal activities; Tank buoyancy constraints; Grout and concrete formulas for tank heel solidification; Tank heel pH requirements; Tank cooling water; Evaluation of conservatism of vehicle loading on vaults; Typical vault dimensions and approximately tank and vault void volumes; Radiological concerns for temporary vessel off-gas system; Flushing calculations for tank heels; Grout lift depth analysis; Decontamination solution for waste transfer piping; Grout lift determination for filling tank and vault voids; sprung structure vendor data; Grout flow properties through a 2--4 inch pipe; Tank farm load limitations; NRC low level waste grout; Project data sheet calculations; Dose rates for tank farm closure tasks; Exposure and shielding calculations for grout lines; TFF radionuclide release rates; Documentation of the clean closure of a system with listed waste discharge; and Documentation of the ORNL method of radionuclide concentrations in tanks.« less

  3. TANKS 18 AND 19-F EQUIPMENT GROUT FILL MATERIAL EVALUATION AND RECOMMENDATIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stefanko, D.; Langton, C.

    The United States Department of Energy (US DOE) intends to remove Tanks 18-F and 19-F at the Savannah River Site (SRS) from service. The high-level waste (HLW) tanks have been isolated from the F-area Tank Farm (FTF) facilities and will be filled with cementitious grout for the purpose of: (1) physically stabilizing the empty volumes in the tanks, (2) limiting/eliminating vertical pathways from the surface to residual waste on the bottom of the tanks, (3) providing an intruder barrier, and (4) providing an alkaline, chemical reducing environment within the closure boundary to limit solubility of residual radionuclides. Bulk waste andmore » heel waste removal equipment will remain in Tanks 18-F and 19-F when the tanks are closed. This equipment includes: mixer pumps, transfer pumps, transfer jets, equipment support masts, sampling masts and dip tube assemblies. The current Tank 18-F and 19-F closure strategy is to grout the internal void spaces in this equipment to eliminate fast vertical pathways and slow water infiltration to the residual material on the tank floor. This report documents the results of laboratory testing performed to identify a grout formulation for filling the abandoned equipment in Tanks 18-F and 19-F. The objective of this work was to formulate a flowable grout for filling internal voids of equipment that will remain in Tanks 18-F and 19-F during the final closures. This work was requested by V. A. Chander, Tank Farm Closure Engineering, in HLW-TTR-2011-008. The scope for this task is provided in the Task Technical and Quality Assurance Plan (TTQAP), SRNL-RP-2011-00587. The specific objectives of this task were to: (1) Prepare and evaluate the SRR cooling coil grout identified in WSRC-STI-2008-00298 per the TTR for this work. The cooling coil grout is a mixture of BASF MasterFlow{reg_sign} 816 cable grout (67.67 wt. %), Grade 100 ground granulated blast furnace slag (7.52 wt. %) and water (24.81 wt. %); (2) Identify equipment grout placement

  4. Evaluation of 241-AZ tank farm supporting phase 1 privatization waste feed delivery

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    CARLSON, A.B.

    1998-11-19

    This evaluation is one in a series of evaluations determining the process needs and assessing the adequacy of existing and planned equipment in meeting those needs at various double-shell tank farms in support of Phase 1 privatization. A number of tank-to-tank transfers and waste preparation activities are needed to process and feed waste to the private contractor in support of Phase 1 privatization. The scope of this evaluation is limited to process needs associated with 241-AZ tank farm during the Phase 1 privatization.

  5. 241-AW Tank Farm Construction Extent of Condition Review for Tank Integrity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barnes, Travis J.; Gunter, Jason R.; Reeploeg, Gretchen E.

    2013-11-19

    This report provides the results of an extent of condition construction history review for the 241-AW tank farm. The construction history of the 241-AW tank farm has been reviewed to identify issues similar to those experienced during tank AY-102 construction. Those issues and others impacting integrity are discussed based on information found in available construction records, using tank AY-102 as the comparison benchmark. In the 241-AW tank farm, the fourth double-shell tank farm constructed, similar issues as those with tank 241-AY-102 construction occured. The overall extent of similary and affect on 241-AW tank farm integrity is described herein.

  6. 241-AP Tank Farm Construction Extent of Condition Review for Tank Integrity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barnes, Travis J.; Gunter, Jason R.; Reeploeg, Gretchen E.

    2014-04-04

    This report provides the results of an extent of condition construction history review for the 241-AP tank farm. The construction history of the 241-AP tank farm has been reviewed to identify issues similar to those experienced during tank AY-102 construction. Those issues and others impacting integrity are discussed based on information found in available construction records, using tank AY-102 as the comparison benchmark. In the 241-AP tank farm, the sixth double-shell tank farm constructed, tank bottom flatness, refractory material quality, post-weld stress relieving, and primary tank bottom weld rejection were improved.

  7. 241-AZ Tank Farm Construction Extent of Condition Review for Tank Integrity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barnes, Travis J.; Boomer, Kayle D.; Gunter, Jason R.

    2013-07-30

    This report provides the results of an extent of condition construction history review for tanks 241-AZ-101 and 241-AZ-102. The construction history of the 241-AZ tank farm has been reviewed to identify issues similar to those experienced during tank AY-102 construction. Those issues and others impacting integrity are discussed based on information found in available construction records, using tank AY-102 as the comparison benchmark. In the 241-AZ tank farm, the second DST farm constructed, both refractory quality and tank and liner fabrication were improved.

  8. Safety evaluation for packaging transportation of equipment for tank 241-C-106 waste sluicing system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Calmus, D.B.

    1994-08-25

    A Waste Sluicing System (WSS) is scheduled for installation in nd waste storage tank 241-C-106 (106-C). The WSS will transfer high rating sludge from single shell tank 106-C to double shell waste tank 241-AY-102 (102-AY). Prior to installation of the WSS, a heel pump and a transfer pump will be removed from tank 106-C and an agitator pump will be removed from tank 102-AY. Special flexible receivers will be used to contain the pumps during removal from the tanks. After equipment removal, the flexible receivers will be placed in separate containers (packagings). The packaging and contents (packages) will be transferredmore » from the Tank Farms to the Central Waste Complex (CWC) for interim storage and then to T Plant for evaluation and processing for final disposition. Two sizes of packagings will be provided for transferring the equipment from the Tank Farms to the interim storage facility. The packagings will be designated as the WSSP-1 and WSSP-2 packagings throughout the remainder of this Safety Evaluation for Packaging (SEP). The WSSP-1 packagings will transport the heel and transfer pumps from 106-C and the WSSP-2 packaging will transport the agitator pump from 102-AY. The WSSP-1 and WSSP-2 packagings are similar except for the length.« less

  9. Single-Shell Tanks Leak Integrity Elements/ SX Farm Leak Causes and Locations - 12127

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Girardot, Crystal; Harlow, Don; Venetz, Theodore

    2012-07-01

    Washington River Protection Solutions, LLC (WRPS) developed an enhanced single-shell tank (SST) integrity project in 2009. An expert panel on SST integrity was created to provide recommendations supporting the development of the project. One primary recommendation was to expand the leak assessment reports (substitute report or LD-1) to include leak causes and locations. The recommendation has been included in the M-045-91F Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement) as one of four targets relating to SST leak integrity. The 241-SX Farm (SX Farm) tanks with leak losses were addressed on an individual tank basis as part of LD-1.more » Currently, 8 out of 23 SSTs that have been reported to having a liner leak are located in SX Farm. This percentage was the highest compared to other tank farms which is why SX Farm was analyzed first. The SX Farm is comprised of fifteen SSTs built 1953-1954. The tanks are arranged in rows of three tanks each, forming a cascade. Each of the SX Farm tanks has a nominal 1-million-gal storage capacity. Of the fifteen tanks in SX Farm, an assessment reported leak losses for the following tanks: 241-SX-107, 241-SX-108, 241-SX-109, 241-SX- 111, 241-SX-112, 241-SX-113, 241-SX-114 and 241-SX-115. The method used to identify leak location consisted of reviewing in-tank and ex-tank leak detection information. This provided the basic data identifying where and when the first leaks were detected. In-tank leak detection consisted of liquid level measurement that can be augmented with photographs which can provide an indication of the vertical leak location on the sidewall. Ex-tank leak detection for the leaking tanks consisted of soil radiation data from laterals and dry-wells near the tank. The in-tank and ex-tank leak detection can provide an indication of the possible leak location radially around and under the tank. Potential leak causes were determined using in-tank and ex-tank information that is not directly

  10. SINGLE-SHELL TANKS LEAK INTEGRITY ELEMENTS/SX FARM LEAK CAUSES AND LOCATIONS - 12127

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    VENETZ TJ; WASHENFELDER D; JOHNSON J

    2012-01-25

    Washington River Protection Solutions, LLC (WRPS) developed an enhanced single-shell tank (SST) integrity project in 2009. An expert panel on SST integrity was created to provide recommendations supporting the development of the project. One primary recommendation was to expand the leak assessment reports (substitute report or LD-1) to include leak causes and locations. The recommendation has been included in the M-045-9IF Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement) as one of four targets relating to SST leak integrity. The 241-SX Farm (SX Farm) tanks with leak losses were addressed on an individual tank basis as part of LD-1.more » Currently, 8 out of 23 SSTs that have been reported to having a liner leak are located in SX Farm. This percentage was the highest compared to other tank farms which is why SX Farm was analyzed first. The SX Farm is comprised of fifteen SSTs built 1953-1954. The tanks are arranged in rows of three tanks each, forming a cascade. Each of the SX Farm tanks has a nominal I-million-gal storage capacity. Of the fifteen tanks in SX Farm, an assessment reported leak losses for the following tanks: 241-SX-107, 241-SX-108, 241-SX-109, 241-SX-111, 241-SX-112, 241-SX-113, 241-SX-114 and 241-SX-115. The method used to identify leak location consisted of reviewing in-tank and ex-tank leak detection information. This provided the basic data identifying where and when the first leaks were detected. In-tank leak detection consisted of liquid level measurement that can be augmented with photographs which can provide an indication of the vertical leak location on the sidewall. Ex-tank leak detection for the leaking tanks consisted of soil radiation data from laterals and drywells near the tank. The in-tank and ex-tank leak detection can provide an indication of the possible leak location radially around and under the tank. Potential leak causes were determined using in-tank and ex-tank information that is not directly

  11. Toxic chemical considerations for tank farm releases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Van Keuren, J.C.; Davis, J.S., Westinghouse Hanford

    1996-08-01

    This topical report contains technical information used to determine the accident consequences of releases of toxic chemical and gases for the Tank Farm Final Safety Analysis report (FSAR).It does not provide results for specific accident scenarios but does provide information for use in those calculations including chemicals to be considered, chemical concentrations, chemical limits and a method of summing the fractional contributions of each chemical. Tank farm composites evaluated were liquids and solids for double shell tanks, single shell tanks, all solids,all liquids, headspace gases, and 241-C-106 solids. Emergency response planning guidelines (ERPGs) were used as the limits.Where ERPGs weremore » not available for the chemicals of interest, surrogate ERPGs were developed. Revision 2 includes updated sample data, an executive summary, and some editorial revisions.« less

  12. Supporting document for the historical tank content estimate for AY-tank farm

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brevick, C H; Stroup, J L; Funk, J. W.

    1997-03-12

    This Supporting Document provides historical in-depth characterization information on AY-Tank Farm, such as historical waste transfer and level data, tank physical information, temperature plots, liquid observation well plots, chemical analyte and radionuclide inventories for the Historical Tank Content Estimate Report for the Southeast Quadrant of the Hanford 200 Areas.

  13. Tank vapor mitigation requirements for Hanford Tank Farms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rakestraw, L.D.

    1994-11-15

    Westinghouse Hanford Company has contracted Los Alamos Technical Associates to listing of vapors and aerosols that are or may be emitted from the High Level Waste (HLW) tanks at Hanford. Mitigation requirements under Federal and State law, as well as DOE Orders, are included in the listing. The lists will be used to support permitting activities relative to tank farm ventilation system up-grades. This task is designated Task 108 under MJB-SWV-312057 and is an extension of efforts begun under Task 53 of Purchase Order MPB-SVV-03291 5 for Mechanical Engineering Support. The results of that task, which covered only thirty-nine tanks,more » are repeated here to provide a single source document for vapor mitigation requirements for all 177 HLW tanks.« less

  14. Supporting document for the historical tank content estimate for AX-tank farm

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brevick, C.H., Westinghouse Hanford

    This Supporting Document provides historical in-depth characterization information on AX-Tank Farm, such as historical waste transfer and level data, tank physical information,temperature plots, liquid observation well plots, chemical analyte and radionuclide inventories for the Historical Tank Content Estimate Report for the northeast quadrant of the Hanford 200 East Area.

  15. DETAIL, CONTROL BOOTH, RP1 TANK FARM Edwards Air Force ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    DETAIL, CONTROL BOOTH, RP1 TANK FARM - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Combined Fuel Storage Tank Farm, Test Area 1-120, north end of Jupiter Boulevard, Boron, Kern County, CA

  16. ESP`s Tank 42 washwater transfer to the 241-F/H tank farms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aponte, C.I.; Lee, E.D.

    1997-12-01

    As a result of the separation of the High-Level Liquid Waste Department into three separate organizations (formerly there were two) (Concentration, Storage, and Transfer (CST), Waste Pre-Treatment (WPT) and Waste Disposition (WD)) process interface controls were required. One of these controls is implementing the Waste the waste between CST and WPT. At present, CST`s Waste Acceptance Criteria is undergoing revision and WPT has not prepared the required Waste Compliance Plan (WCP). The Waste Pre-Treatment organization is making preparations for transferring spent washwater in Tank 42 to Tank 43 and/or Tank 22. The washwater transfer is expected to complete the washingmore » steps for preparing ESP batch 1B sludge. This report is intended to perform the function of a Waste Compliance Plan for the proposed transfer. Previously, transfers between the Tank Farm and ITP/ESP were controlled by requirements outlined in the Tank Farm`s Technical Standards and ITP/ESP`s Process Requirements. Additionally, these controls are implemented primarily in operating procedure 241-FH-7TSQ and ITP Operations Manual SW16.1-SOP-WTS-1 which will be completed prior to performing the waste transfers.« less

  17. Tank Closure Progress at the Department of Energy's Idaho National Engineering Laboratory Tank Farm Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Quigley, K.D.; Butterworth, St.W.; Lockie, K.A.

    2008-07-01

    Significant progress has been made at the U.S. Department of Energy (DOE) Idaho National Laboratory (INL) to empty, clean and close radioactive liquid waste storage tanks at the Idaho Nuclear Technology and Engineering Center (INTEC) Tank Farm Facility (TFF). The TFF includes eleven 1,135.6-kL (300,000-gal) underground stainless steel storage tanks and four smaller, 113.5-kL (30,000-gal) stainless steel tanks, along with tank vaults, interconnecting piping, and ancillary equipment. The TFF tanks have historically been used to store a variety of radioactive liquid waste, including wastes associated with past spent nuclear fuel reprocessing. Although four of the large storage tanks remain inmore » use for waste storage, the other seven 1,135.6-kL (300,000-gal) tanks and the four 113.5-kL (30,000-gal) tanks have been emptied of waste, cleaned and filled with grout. A water spray cleaning system was developed and deployed to clean internal tank surfaces and remove remaining tank wastes. The cleaning system was effective in removing all but a very small volume of solid residual waste particles. Recent issuance of an Amended Record of Decision (ROD) in accordance with the National Environmental Policy Act, and a Waste Determination complying with Section 3116 of the Ronald W. Reagan National Defense Authorization Act (NDAA) for Fiscal Year 2005, has allowed commencement of grouting activities on the cleaned tanks. The first three 113.5-kL (30,000-gal) tanks were grouted in the Fall of 2006 and the fourth tank and the seven 1,135.6-kL (300,000-gal) tanks were filled with grout in 2007 to provide long-term stability. It is currently planned that associated tank valve boxes and interconnecting piping, will be stabilized with grout as early as 2008. (authors)« less

  18. Credit BG. View looks south southeast toward tank farm, Rogers ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Credit BG. View looks south southeast toward tank farm, Rogers Dry Lake is in the background. Each cylindrical tank is labeled for jet fuel grade JP5. Two 2,000 gallon capacity rectangular tanks in midground are fabricated of concrete for storing hydrocarbons; they were constructed in 1993. Structure at extreme right of view is Building 4515, Jet Fuel Testing Laboratory - Edwards Air Force Base, North Base, Aircraft Fuel Tank Farm, Northeast of A Street, Boron, Kern County, CA

  19. Hanford Single Shell Tank Leak Causes and Locations - 241-TX Farm

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Girardot, C. L.; Harlow, D> G.

    This document identifies 241-TX Tank Farm (TX Farm) leak causes and locations for the 100 series leaking tanks (241-TX-107 and 241-TX-114) identified in RPP-RPT-50870, Rev. 0, Hanford 241-TX Farm Leak Inventory Assessment Report. This document satisfies the TX Farm portion of the target (T04) in the Hanford Federal Facility Agreement and Consent Order milestone M-045-91F.

  20. TANK VAPOR CHEMICALS OF POTENTIAL CONCERN & EXISTING DIRECT READING INSTRUMENTION & PERSONAL PROTECTIVE EQUIPMENT CONSIDERATIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    BUTLER, N.K.

    2004-11-01

    This document takes the newly released Industrial Hygiene Chemical Vapor Technical Basis (RPP-22491) and evaluates the chemicals of potential concern (COPC) identified for selected implementation actions by the industrial hygiene organization. This document is not intended as a hazard analysis with recommended controls for all tank farm activities. Not all of the chemicals listed are present in all tanks; therefore, hazard analyses can and should be tailored as appropriate. Detection of each chemical by current industrial hygiene non-specific instrumentation in use at the tank farms is evaluated. Information gaps are identified and recommendations are made to resolve these needs. Ofmore » the 52 COPC, 34 can be detected with existing instrumentation. Three additional chemicals could be detected with a photoionization detector (PID) equipped with a different lamp. Discussion with specific instrument manufacturers is warranted. Consideration should be given to having the SapphIRe XL customized for tank farm applications. Other instruments, sampling or modeling techniques should be evaluated to estimate concentrations of chemicals not detected by direct reading instruments. In addition, relative instrument response needs to be factored in to action levels used for direct reading instruments. These action levels should be correlated to exposures to the COPC and corresponding occupational exposure limits (OELs). The minimum respiratory protection for each of the COPC is evaluated against current options. Recommendations are made for respiratory protection based on each chemical. Until exposures are sufficiently quantified and analyzed, the current use of supplied air respiratory protection is appropriate and protective for the COPC. Use of supplied air respiratory protection should be evaluated once a detailed exposure assessment for the COPC is completed. The established tank farm OELs should be documented in the TFC-PLN-34. For chemicals without an established tank

  1. AN EVALUATION OF HANFORD SITE TANK FARM SUBSURFACE CONTAMINATION FY2007

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    MANN, F.M.

    2007-07-10

    The Tank Farm Vadose Zone (TFVZ) Project conducts activities to characterize and analyze the long-term environmental and human health impacts from tank waste releases to the vadose zone. The project also implements interim measures to mitigate impacts, and plans the remediation of waste releases from tank farms and associated facilities. The scope of this document is to report data needs that are important to estimating long-term human health and environmental risks. The scope does not include technologies needed to remediate contaminated soils and facilities, technologies needed to close tank farms, or management and regulatory decisions that will impact remediation andmore » closure. This document is an update of ''A Summary and Evaluation of Hanford Site Tank Farm Subsurface Contamination''. That 1998 document summarized knowledge of subsurface contamination beneath the tank farms at the time. It included a preliminary conceptual model for migration of tank wastes through the vadose zone and an assessment of data and analysis gaps needed to update the conceptual model. This document provides a status of the data and analysis gaps previously defined and discussion of the gaps and needs that currently exist to support the stated mission of the TFVZ Project. The first data-gaps document provided the basis for TFVZ Project activities over the previous eight years. Fourteen of the nineteen knowledge gaps identified in the previous document have been investigated to the point that the project defines the current status as acceptable. In the process of filling these gaps, significant accomplishments were made in field work and characterization, laboratory investigations, modeling, and implementation of interim measures. The current data gaps are organized in groups that reflect Components of the tank farm vadose zone conceptual model: inventory, release, recharge, geohydrology, geochemistry, and modeling. The inventory and release components address residual wastes

  2. Monitoring of Emissions From a Refinery Tank Farm Using a Combination of Optical Remote Sensing Techniques

    NASA Astrophysics Data System (ADS)

    Polidori, A.; Tisopulos, L.; Pikelnaya, O.; Mellqvist, J.; Samuelsson, J.; Marianne, E.; Robinson, R. A.; Innocenti, F.; Finlayson, A.; Hashmonay, R.

    2016-12-01

    Despite great advances in reducing air pollution, the South Coast Air Basin (SCAB) still faces challenges to attain federal health standards for air quality. Refineries are large sources of ozone precursors and, hence contribute to the air quality problems of the region. Additionally, petrochemical facilities are also sources of other hazardous air pollutants (HAP) that adversely affect human health, for example aromatic hydrocarbons. In order to assure safe operation, decrease air pollution and minimize population exposure to HAP the South Coast Air Quality Management District (SCAQMD) has a number of regulations for petrochemical facilities. However, significant uncertainties still exist in emission estimates and traditional monitoring techniques often do not allow for real-time emission monitoring. In the fall of 2015 the SCAQMD, Fluxsense Inc., the National Physical Laboratory (NPL), and Atmosfir Optics Ltd. conducted a measurement study to characterize and quantify gaseous emissions from the tank farm of one of the largest oil refineries in the SCAB. Fluxsense used a vehicle equipped with Solar Occultation Flux (SOF), Differential Optical Absorption Spectroscopy (DOAS), and Extractive Fourier Transform Infrared (FTIR) spectroscopy instruments. Concurrently, NPL operated their Differential Absorption Lidar (DIAL) system. Both research groups quantified emissions from the entire tank farm and identified fugitive emission sources within the farm. At the same time, Atmosfir operated an Open Path FTIR (OP-FTIR) spectrometer along the fenceline of the tank farm. During this presentation we will discuss the results of the emission measurements from the tank farm of the petrochemical facility. Emission rates resulting from measurements by different ORS methods will be compared and discussed in detail.

  3. Tank Closure Progress at the Department of Energy's Idaho National Engineering Laboratory Tank Farm Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lockie, K.A.; Suttora, L.C.; Quigley, K.D.

    2007-07-01

    Significant progress has been made at the U.S. Department of Energy (DOE) Idaho National Laboratory (INL) to clean and close emptied radioactive liquid waste storage tanks at the Idaho Nuclear Technology and Engineering Center (INTEC) Tank Farm Facility (TFF). The TFF includes eleven 1,135.6-kL (300,000-gal) underground stainless steel storage tanks and four smaller, 113.5-kL (30,000-gal) stainless steel tanks, along with tank vaults, interconnecting piping, and ancillary equipment. The TFF tanks have historically been used to store a variety of radioactive liquid waste, including wastes associated with past spent nuclear fuel reprocessing. Although four of the large storage tanks remain inmore » use for waste storage, the other seven 1,135.6-kL (300,000-gal) tanks and the four 113.5-kL (30,000-gal) tanks have been emptied of waste and cleaned in preparation of final closure. A water spray cleaning system was developed and deployed to clean internal tank surfaces and remove remaining tank wastes. The cleaning system was effective in removing all but a very small volume of solid residual waste particles. Recent issuance of an Amended Record of Decision (ROD) in accordance with the National Environmental Policy Act, and a Waste Determination complying with Section 3116 of the Ronald W. Reagan National Defense Authorization Act (NDAA) for Fiscal Year 2005, has allowed commencement of grouting activities on the cleaned tanks. In November 2006, three of the 113.5-kL (30,000-gal) tanks were filled with grout to provide long-term stability. It is currently planned that all seven cleaned 1,135.6-kL (300,000-gal) tanks, as well as the four 113.5-kL (30,000-gal) tanks and all associated tank vaults and interconnecting piping, will be stabilized with grout as early as 2008. (authors)« less

  4. Hanford Single-Shell Tank Leak Causes and Locations - 241-BY and 241-TY Farm

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Girardot, Crystal L.; Harlow, Donald G.

    This document identifies 241-BY Tank Farm (BY Farm) and 241-TY Tank Farm (TY Farm) lead causes and locations for the 100 series leaking tanks (241-BY-103, 241-TY-103, 241-TY-104, 241-TY-105 and 241-TY-106) identified in RPP-RPT-43704, Hanford BY Farm Leak Assessments Report, and in RPP-RPT-42296, Hanford TY Farm Leak Assessments Report. This document satisfies the BY and TY Farm portion of the target (T04) in the Hanford Federal Facility Agreement and Consent Order milestone M-045-91F.

  5. Configuration Management Plan for the Tank Farm Contractor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    WEIR, W.R.

    The Configuration Management Plan for the Tank Farm Contractor describes configuration management the contractor uses to manage and integrate its technical baseline with the programmatic and functional operations to perform work. The Configuration Management Plan for the Tank Farm Contractor supports the management of the project baseline by providing the mechanisms to identify, document, and control the technical characteristics of the products, processes, and structures, systems, and components (SSC). This plan is one of the tools used to identify and provide controls for the technical baseline of the Tank Farm Contractor (TFC). The configuration management plan is listed in themore » management process documents for TFC as depicted in Attachment 1, TFC Document Structure. The configuration management plan is an integrated approach for control of technical, schedule, cost, and administrative processes necessary to manage the mission of the TFC. Configuration management encompasses the five functional elements of: (1) configuration management administration, (2) configuration identification, (3) configuration status accounting, (4) change control, and (5 ) configuration management assessments.« less

  6. Farm Equipment Mechanic. Occupational Analyses Series.

    ERIC Educational Resources Information Center

    Ross, Douglas

    This analysis covers tasks performed by a farm equipment mechanic, an occupational title some provinces and territories of Canada have also identified as agricultural machinery technician, agricultural mechanic, and farm equipment service technician. A guide to analysis discusses development, structure, and validation method; scope of the…

  7. Characteristics of crashes with farm equipment that increase potential for injury.

    PubMed

    Peek-Asa, Corinne; Sprince, Nancy L; Whitten, Paul S; Falb, Scott R; Madsen, Murray D; Zwerling, Craig

    2007-01-01

    Crash fatality and injury rates are higher on rural roadways than other roadway types. Although slow-moving farm vehicles and equipment are risk factors on rural roads, little is known about the characteristics of crashes with farm vehicles/equipment. To describe crashes and injuries for the drivers of farm vehicles/equipment and non-farm vehicles involved in an injury crash. Passengers are not included in this analysis. Injury crashes were included that involved a farm vehicle/equipment and at least one non-farm vehicle reported in Iowa Department of Transportation crash data from 1995 to 2004. Odds ratios were calculated through logistic regression to identify increased odds for injury among drivers of non-farm vehicles and farm vehicles/equipment. We examined frequently occurring crash characteristics to identify crash scenarios leading to the highest odds for injury. Non-farm vehicle drivers were 5.23 times more likely to be injured than farm vehicle/equipment drivers (95% CI = 4.12-6.46). The absence of restraint use was a significant predictor of injury for both farm vehicle/equipment drivers (OR = 2.85; 95% CI = 1.14-7.13) and non-farm vehicle drivers (OR = 2.53; 95% CI = 1.54-4.15). Crash characteristics increasing the odds of injury for non-farm vehicle drivers included speeding, passing the farm vehicle/equipment, driving on a county road, having a frontal impact collision, and crashing in darkness. Ejection was the strongest predictor of injury for the farm vehicle/equipment driver. Non-farm vehicle drivers were much more likely to be injured than farm vehicle/equipment drivers, suggesting that farm vehicle/equipment crash prevention should be a priority for all rural road users. Prevention strategies that reduce motor vehicle speed, assist in safe passing, increase seat belt use, and increase conspicuousness of the farm vehicle/equipment are suggested.

  8. 4. Contextual view of EPA Farm showing radwaste tank, facing ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. Contextual view of EPA Farm showing rad-waste tank, facing south-southeast. - Nevada Test Site, Environmental Protection Agency Farm, Area 15, Yucca Flat, 10-2 Road near Circle Road, Mercury, Nye County, NV

  9. Electrical Resistivity Imaging Below Nuclear Waste Tank Farms at the Hanford Site

    NASA Astrophysics Data System (ADS)

    Rucker, D. F.; Levitt, M. T.

    2006-12-01

    The Hanford Site, a Department of Energy nuclear processing facility in eastern Washington, contains a complex series of radiological liquid waste disposal and storage facilities. The primary method of interim storage is the use of large single-shelled steel tanks with capacities of up to 3790 m3 (1 million gallons). The tanks are organized below ground into tank farms, with about 12 tanks per farm. The liquid waste within the tanks is primarily comprised of inorganic salts with minor constituents of heavy metals and radiological metals. The electrical properties of the radiological waste are significantly different to that of the surrounding engineered fill and native geologic formations. Over the past 60 years since the earliest tanks have been in use, many have been known to leak. An electrical resistivity survey was conducted within a tank farm to map the extent of the plumes resulting from historic leaks. Traditional surface-based electrical resistivity surveys resulted in unusable data due to the significant subsurface infrastructure that included a network of delivery pipes, wells, fences, and electrical discharge sources . HGI adapted the resistivity technique to include the site infrastructure as transceivers to augment data density and geometry. The results show a distribution of low resistivity values within the farm in areas that match known historic leak sites. The addition of site infrastructure as sensors demonstrates that the electrical resistivity technique can be used in highly industrial sites.

  10. Case Study in Corporate Memory Recovery: Hanford Tank Farms Miscellaneous Underground Waste Storage Tanks - 15344

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Washenfelder, D. J.; Johnson, J. M.; Turknett, J. C.

    In addition to managing the 177 underground waste storage tanks containing 212,000 m3 (56 million gal) of radioactive waste at the U. S. Department of Energy’s Hanford Site 200 Area Tank Farms, Washington River Protection Solutions LLC is responsible for managing numerous small catch tanks and special surveillance facilities. These are collectively known as “MUSTs” - Miscellaneous Underground Storage Tanks. The MUSTs typically collected drainage and flushes during waste transfer system piping changes; special surveillance facilities supported Tank Farm processes including post-World War II uranium recovery and later fission product recovery from tank wastes. Most were removed from service followingmore » deactivation of the single-shell tank system in 1980 and stabilized by pumping the remaining liquids from them. The MUSTs were isolated by blanking connecting transfer lines and adding weatherproofing to prevent rainwater entry. Over the next 30 years MUST operating records were dispersed into large electronic databases or transferred to the National Archives Regional Center in Seattle, Washington. During 2014 an effort to reacquire the historical bases for the MUSTs’ published waste volumes was undertaken. Corporate Memory Recovery from a variety of record sources allowed waste volumes to be initially determined for 21 MUSTs, and waste volumes to be adjusted for 37 others. Precursors and symptoms of Corporate Memory Loss were identified in the context of MUST records recovery.« less

  11. Farming in a fish tank.

    PubMed

    Youth, H

    1992-01-01

    Water, fish, and vegetables are all things that most developing countries do not have enough of. There is a method of food production called aquaculture that integrates fish and vegetable growing and conserves and purifies water at the same time. A working system that grows vegetables and fish for regional supermarkets in Massachusetts is a gravity fed system. At the top of the system is a 3,000 gallon fish rearing tank that measures 12 feet in diameter. Water trickles out of the tank and fish wastes are captured which can be composted and used in farm fields. The water goes into a bio filter that contains bacteria which convert harmful ammonia generated from fish waste into beneficial nitrate. Then the water flows into 100 foot long hydroponic tanks where lettuce grows. A 1/6 horsepower pump return the purified water to the fish tank and completes the cycle. The key to success is maintaining a balance between the fish nutrients and waste and the plants nutrients and waste. The system is estimated to produce 35,000 heads of lettuce and 2 tons of fish annually which translates into $23,500. The system could be adapted to developing countries with several modifications to reduce the start up cost.

  12. Radiological Source Terms for Tank Farms Safety Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    COWLEY, W.L.

    2000-06-27

    This document provides Unit Liter Dose factors, atmospheric dispersion coefficients, breathing rates and instructions for using and customizing these factors for use in calculating radiological doses for accident analyses in the Hanford Tank Farms.

  13. Investigation of thermolytic hydrogen generation rate of tank farm simulated and actual waste

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martino, C.; Newell, D.; Woodham, W.

    To support resolution of Potential Inadequacies in the Safety Analysis for the Savannah River Site (SRS) Tank Farm, Savannah River National Laboratory conducted research to determine the thermolytic hydrogen generation rate (HGR) with simulated and actual waste. Gas chromatography methods were developed and used with air-purged flow systems to quantify hydrogen generation from heated simulated and actual waste at rates applicable to the Tank Farm Documented Safety Analysis (DSA). Initial simulant tests with a simple salt solution plus sodium glycolate demonstrated the behavior of the test apparatus by replicating known HGR kinetics. Additional simulant tests with the simple salt solutionmore » excluding organics apart from contaminants provided measurement of the detection and quantification limits for the apparatus with respect to hydrogen generation. Testing included a measurement of HGR on actual SRS tank waste from Tank 38. A final series of measurements examined HGR for a simulant with the most common SRS Tank Farm organics at temperatures up to 140 °C. The following conclusions result from this testing.« less

  14. ACTUAL WASTE TESTING OF GYCOLATE IMPACTS ON THE SRS TANK FARM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martino, C.

    2014-05-28

    Glycolic acid is being studied as a replacement for formic acid in the Defense Waste Processing Facility (DWPF) feed preparation process. After implementation, the recycle stream from DWPF back to the high-level waste Tank Farm will contain soluble sodium glycolate. Most of the potential impacts of glycolate in the Tank Farm were addressed via a literature review and simulant testing, but several outstanding issues remained. This report documents the actual-waste tests to determine the impacts of glycolate on storage and evaporation of Savannah River Site high-level waste. The objectives of this study are to address the following: Determine the extentmore » to which sludge constituents (Pu, U, Fe, etc.) dissolve (the solubility of sludge constituents) in the glycolate-containing 2H-evaporator feed. Determine the impact of glycolate on the sorption of fissile (Pu, U, etc.) components onto sodium aluminosilicate solids. The first objective was accomplished through actual-waste testing using Tank 43H and 38H supernatant and Tank 51H sludge at Tank Farm storage conditions. The second objective was accomplished by contacting actual 2H-evaporator scale with the products from the testing for the first objective. There is no anticipated impact of up to 10 g/L of glycolate in DWPF recycle to the Tank Farm on tank waste component solubilities as investigated in this test. Most components were not influenced by glycolate during solubility tests, including major components such as aluminum, sodium, and most salt anions. There was potentially a slight increase in soluble iron with added glycolate, but the soluble iron concentration remained so low (on the order of 10 mg/L) as to not impact the iron to fissile ratio in sludge. Uranium and plutonium appear to have been supersaturated in 2H-evaporator feed solution mixture used for this testing. As a result, there was a reduction of soluble uranium and plutonium as a function of time. The change in soluble uranium concentration

  15. ICPP tank farm closure study. Volume 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Spaulding, B.C.; Gavalya, R.A.; Dahlmeir, M.M.

    1998-02-01

    The disposition of INEEL radioactive wastes is now under a Settlement Agreement between the DOE and the State of Idaho. The Settlement Agreement requires that existing liquid sodium bearing waste (SBW), and other liquid waste inventories be treated by December 31, 2012. This agreement also requires that all HLW, including calcined waste, be disposed or made road ready to ship from the INEEL by 2035. Sodium bearing waste (SBW) is produced from decontamination operations and HLW from reprocessing of SNF. SBW and HLW are radioactive and hazardous mixed waste; the radioactive constituents are regulated by DOE and the hazardous constituentsmore » are regulated by the Resource Conservation and Recovery Act (RCRA). Calcined waste, a dry granular material, is produced in the New Waste Calcining Facility (NWCF). Two primary waste tank storage locations exist at the ICPP: Tank Farm Facility (TFF) and the Calcined Solids Storage Facility (CSSF). The TFF has the following underground storage tanks: four 18,400-gallon tanks (WM 100-102, WL 101); four 30,000-gallon tanks (WM 103-106); and eleven 300,000+ gallon tanks. This includes nine 300,000-gallon tanks (WM 182-190) and two 318,000 gallon tanks (WM 180-181). This study analyzes the closure and subsequent use of the eleven 300,000+ gallon tanks. The 18,400 and 30,000-gallon tanks were not included in the work scope and will be closed as a separate activity. This study was conducted to support the HLW Environmental Impact Statement (EIS) waste separations options and addresses closure of the 300,000-gallon liquid waste storage tanks and subsequent tank void uses. A figure provides a diagram estimating how the TFF could be used as part of the separations options. Other possible TFF uses are also discussed in this study.« less

  16. Characteristics of Crashes with Farm Equipment that Increase Potential for Injury

    ERIC Educational Resources Information Center

    Peek-Asa, Corinne; Sprince, Nancy L.; Whitten, Paul S.; Falb, Scott R.; Madsen, Murray D.; Zwerling, Craig

    2007-01-01

    Context: Crash fatality and injury rates are higher on rural roadways than other roadway types. Although slow-moving farm vehicles and equipment are risk factors on rural roads, little is known about the characteristics of crashes with farm vehicles/equipment. Purpose: To describe crashes and injuries for the drivers of farm vehicles/equipment and…

  17. Final Environmental Assessment for the Transfer of the Mukilteo Tank Farm Property Snohomish County, Washington

    DTIC Science & Technology

    2012-10-01

    Criterion D for its ability to contribute to the understanding of human prehistory , as it contains data classes useful for addressing important...chapter 3, does not adequately describe the prehistory use of the Tank Farm properties. The Mukilteo Tank Farm is located at a site that was previously

  18. 2005 Annual Operations Report for INTEC Operable Unit 3-13, Group 1, Tank Farm Interim Action

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    D. Shanklin

    2006-07-19

    This annual operations report describes the requirements followed and activities conducted to inspect, monitor, and maintain the items installed during performance of the Waste Area Group 3, Operable Unit 3-13, Group 1, Tank Farm Interim Action, at the Idaho Nuclear Technology and Engineering Center. This report describes inspection and monitoring activities fro the surface-sealed areas within the tank farm, concrete-lined ditches and culverts in and around the tank farm, the lift station, and the lined evaporation pond. These activities are intended to assure that the interim action is functioning adequately to meet the objectives stated in the Operable Unit 3-13,more » Record of Decision for the Group 1, Tank Farm Interim Action, (DOE/ID-10660) and as amended by the agreement to resolve dispute, which was effective in February 2003.« less

  19. In-tank precipitation facility (ITP) and H-Tank Farm (HTF) geotechnical report, WSRC-TR-95-0057, Revision 0, Volume 5

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    A geotechnical study has been completed in H-Area for the In-Tank Precipitation Facility (ITP) and the balance of the H-Area Tank Farm (HTF) at the Savannah River Site (SRS) in South Carolina. The study consisted of subsurface field exploration, field and laboratory testing, and engineering analyses. The purpose of these investigations is to evaluate the overall stability of the H-Area tanks under static and dynamic conditions. The objectives of the study are to define the site-specific geological conditions at ITP and HTF, obtain engineering properties for the assessment of the stability of the native soils and embankment under static andmore » dynamic loads (i.e., slope stability, liquefaction potential, and potential settlements), and derive properties for soil-structure interaction studies. This document (Volume 5) contains the laboratory test results for the In-Tank Precipitation Facility (ITP) and H-Tank Farm (HTF) Geotechnical Report.« less

  20. 2006 Annual Operations Report for INTEC Operable Unit 3-13, Group 1, Tank Farm Interim Action

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    D. E. Shanklin

    2007-02-14

    This annual operations report describes the requirements followed and activities conducted to inspect, monitor, and maintain the items installed during performance of the Waste Area Group 3, Operable Unit 3-13, Group 1, Tank Farm Interim Action, at the Idaho Nuclear Technology and Engineering Center. This report covers the time period from January 1 through December 31, 2006, and describes inspection and monitoring activities for the surface-sealed areas within the tank farm, concrete-lined ditches and culverts in and around the tank farm, the lift station, and the lined evaporation pond. These activities are intended to assure that the interim action ismore » functioning adequately to meet the objectives stated in the Operable Unit 3-13, Record of Decision for the Group 1, Tank Farm Interim Action (DOE/ID-10660) as described in the Group 1 Remedial Design/Remedial Action Work Plan (DOE/ID-10772).« less

  1. SLUDGE BATCH 7B QUALIFICATION ACTIVITIES WITH SRS TANK FARM SLUDGE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pareizs, J.; Click, D.; Lambert, D.

    2011-11-16

    Waste Solidification Engineering (WSE) has requested that characterization and a radioactive demonstration of the next batch of sludge slurry - Sludge Batch 7b (SB7b) - be completed in the Shielded Cells Facility of the Savannah River National Laboratory (SRNL) via a Technical Task Request (TTR). This characterization and demonstration, or sludge batch qualification process, is required prior to transfer of the sludge from Tank 51 to the Defense Waste Processing Facility (DWPF) feed tank (Tank 40). The current WSE practice is to prepare sludge batches in Tank 51 by transferring sludge from other tanks. Discharges of nuclear materials from Hmore » Canyon are often added to Tank 51 during sludge batch preparation. The sludge is washed and transferred to Tank 40, the current DWPF feed tank. Prior to transfer of Tank 51 to Tank 40, SRNL typically simulates the Tank Farm and DWPF processes with a Tank 51 sample (referred to as the qualification sample). With the tight schedule constraints for SB7b and the potential need for caustic addition to allow for an acceptable glass processing window, the qualification for SB7b was approached differently than past batches. For SB7b, SRNL prepared a Tank 51 and a Tank 40 sample for qualification. SRNL did not receive the qualification sample from Tank 51 nor did it simulate all of the Tank Farm washing and decanting operations. Instead, SRNL prepared a Tank 51 SB7b sample from samples of Tank 7 and Tank 51, along with a wash solution to adjust the supernatant composition to the final SB7b Tank 51 Tank Farm projections. SRNL then prepared a sample to represent SB7b in Tank 40 by combining portions of the SRNL-prepared Tank 51 SB7b sample and a Tank 40 Sludge Batch 7a (SB7a) sample. The blended sample was 71% Tank 40 (SB7a) and 29% Tank 7/Tank 51 on an insoluble solids basis. This sample is referred to as the SB7b Qualification Sample. The blend represented the highest projected Tank 40 heel (as of May 25, 2011), and thus, the

  2. 9. Fuel tanks engine piping yard equipment details, sheet 94 ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    9. Fuel tanks engine piping yard equipment details, sheet 94 of 130 - Naval Air Station Fallon, Fuel Tanks, 800 Complex, off Carson Road near intersection of Pasture & Berney Roads, Fallon, Churchill County, NV

  3. F-Tank Farm Performance Assessment Updates through the Special Analysis Process at Savannah River Site - 12169

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Layton, Mark H.

    2012-07-01

    The F-Area Tank Farm (FTF) is owned by the U.S. Department of Energy and operated by Savannah River Remediation, LLC (SRR), Liquid Waste Operations contractor at DOE's Savannah River Site (SRS). The FTF is in the north-central portion of the SRS and occupies approximately 22 acres within F-Area. The FTF is an active radioactive waste storage facility consisting of 22 carbon steel waste tanks and ancillary equipment such as transfer lines, evaporators and pump tanks. An FTF Performance Assessment (PA) was prepared to support the eventual closure of the FTF underground radioactive waste tanks and ancillary equipment. The PA providesmore » the technical basis and results to be used in subsequent documents to demonstrate compliance with the pertinent requirements identified below for final closure of FTF. The FTank Farm is subject to a state industrial waste water permit and Federal Facility Agreement. Closure documentation will include an F-Tank Farm Closure Plan and tank-specific closure modules utilizing information from the performance assessment. For this reason, the State of South Carolina and the Environmental Protection Agency must be involved in the performance assessment review process. The residual material remaining after tank cleaning is also subject to reclassification prior to closure via a waste determination pursuant to Section 3116 of the Ronald W. Reagan National Defense Authorization Act of Fiscal Year 2005. The projected waste tank inventories in the FTF PA provide reasonably bounding FTF inventory projections while taking into account uncertainties in the effectiveness of future tank cleaning technologies. As waste is removed from the FTF waste tanks, the residual contaminants will be sampled and the remaining residual inventory is characterized. In this manner, tank specific data for the tank inventories at closure will be available to supplement the waste tank inventory projections currently used in the FTF PA. For FTF, the new tank specific

  4. Crashes involving farm tractors and other farm vehicles/equipment in North Carolina 1995-1999

    DOT National Transportation Integrated Search

    2000-04-01

    Tables and figures are shown to depict a statistical representation of crashes involving farm tractors and other farm vehicles or equipment, in North Carolina. Information displayed includes crash frequency, crashes by county, accident severity, type...

  5. SY Tank Farm ventilation isolation option risk assessment report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Powers, T.B.; Morales, S.D.

    The safety of the 241-SY Tank Farm ventilation system has been under extensive scrutiny due to safety concerns associated with tank 101-SY. Hydrogen and other gases are generated and trapped in the waste below the liquid surface. Periodically, these gases are released into the dome space and vented through the exhaust system. This attention to the ventilation system has resulted in the development of several alternative ventilation system designs. The ventilation system provides the primary means of mitigation of accidents associated with flammable gases. This report provides an assessment of various alternatives ventilation system designs.

  6. 35. INTERIOR VIEW OF EQUIPMENT HOUSE, SUBMARINE ESCAPE TRAINING TANK, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    35. INTERIOR VIEW OF EQUIPMENT HOUSE, SUBMARINE ESCAPE TRAINING TANK, PRIOR TO ENLARGEMENT OF ROOM AND INSTALLATION OF TRIPLE-LOCK RECOMPRESSION CHAMBER IN 1957 - U.S. Naval Submarine Base, New London Submarine Escape Training Tank, Albacore & Darter Roads, Groton, New London County, CT

  7. View along road at "tank farm." From left to right: ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View along road at "tank farm." From left to right: T18, T10, T8, T5, with new rain shed (Building No. 241) in background. - Hawaii Volcanoes National Park Water Collection System, Hawaii Volcanoes National Park, Volcano, Hawaii County, HI

  8. 78 FR 13712 - U.S. Nuclear Regulatory Commission Planned Monitoring Activities for F-Area Tank Farm at the...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-28

    ... Monitoring Activities for F-Area Tank Farm at the Savannah River Site, Revision 0 AGENCY: Nuclear Regulatory... carrying out its responsibilities for monitoring DOE's waste disposal activities at the F-Area Tank Farm at... the availability of ``U.S. Nuclear Regulatory Commission Plan for Monitoring Disposal Actions Taken by...

  9. 109. OVERALL VIEW OF NORTH PLANT, WITH DICHLORO TANK FARM ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    109. OVERALL VIEW OF NORTH PLANT, WITH DICHLORO TANK FARM IN LEFT CENT FOREGROUND AND ASSEMBLY PLANT/WAREHOUSE (BUILDING 1601/1606/1701) BEHIND. VIEW TO NORTHEAST. - Rocky Mountain Arsenal, Bounded by Ninety-sixth Avenue & Fifty-sixth Avenue, Buckley Road, Quebec Street & Colorado Highway 2, Commerce City, Adams County, CO

  10. Assessment of aircraft crash frequency for the Hanford site 200 Area tank farms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    OBERG, B.D.

    2003-03-22

    Two factors, the near-airport crash frequency and the non-airport crash frequency, enter into the estimate of the annual aircraft crash frequency at a facility. The near-airport activities, Le., takeoffs and landings from any of the airports in a 23-statute-mile (smi) (20-nautical-mile, [nmi]) radius of the facilities, do not significantly contribute to the annual aircraft crash frequency for the 200 Area tank farms. However, using the methods of DOE-STD-3014-96, the total frequency of an aircraft crash for the 200 Area tank farms, all from non-airport operations, is calculated to be 7.10E-6/yr. Thus, DOE-STD-3014-96 requires a consequence analysis for aircraft crash. Thismore » total frequency consists of contributions from general aviation, helicopter activities, commercial air carriers and air taxis, and from large and small military aircraft. The major contribution to this total is from general aviation with a frequency of 6.77E-6/yr. All other types of aircraft have less than 1E-6/yr crash frequencies. The two individual aboveground facilities were in the realm of 1E-7/yr crash frequencies: 204-AR Waste Unloading Facility at 1.56E-7, and 242-T Evaporator at 8.62E-8. DOE-STD-3009-94, ''Preparation Guide for U.S. Department of Energy Nonreactor Nuclear Facility Documented Safety Analyses'', states that external events, such as aircraft crashes, are referred to as design basis accidents (DBA) and analyzed as such: ''if frequency of occurrence is estimated to exceed 10{sup -6}/yr conservatively calculated'' DOE-STD-3014-96 considers its method for estimating aircraft crash frequency as being conservative. Therefore, DOE-STD-3009-94 requires DBA analysis of an aircraft crash into the 200 Area tank farms. DOE-STD-3009-94 also states that beyond-DBAs are not evaluated for external events. Thus, it requires only a DBA analysis of the effects of an aircraft crash into the 200 Area tank farms. There are two attributes of an aircraft crash into a Hanford waste storage

  11. Risk factors associated with bulk tank standard plate count, bulk tank coliform count, and the presence of Staphylococcus aureus on organic and conventional dairy farms in the United States.

    PubMed

    Cicconi-Hogan, K M; Gamroth, M; Richert, R; Ruegg, P L; Stiglbauer, K E; Schukken, Y H

    2013-01-01

    The purpose of this study was to assess the association of bulk tank milk standard plate counts, bulk tank coliform counts (CC), and the presence of Staphylococcus aureus in bulk tank milk with various management and farm characteristics on organic and conventional dairy farms throughout New York, Wisconsin, and Oregon. Data from size-matched organic farms (n=192), conventional nongrazing farms (n=64), and conventional grazing farms (n=36) were collected at a single visit for each farm. Of the 292 farms visited, 290 bulk tank milk samples were collected. Statistical models were created using data from all herds in the study, as well as exclusively for the organic subset of herds. Because of incomplete data, 267 of 290 herds were analyzed for total herd modeling, and 173 of 190 organic herds were analyzed for the organic herd modeling. Overall, more bulk tanks from organic farms had Staph. aureus cultured from them (62% of organic herds, 42% conventional nongrazing herds, and 43% of conventional grazing herds), whereas fewer organic herds had a high CC, defined as ≥50 cfu/mL, than conventional farms in the study. A high standard plate count (×1,000 cfu/mL) was associated with decreased body condition score of adult cows and decreased milk production in both models. Several variables were significant only in the model created using all herds or only in organic herds. The presence of Staph. aureus in the bulk tank milk was associated with fewer people treating mastitis, increased age of housing, and a higher percentage of cows with 3 or fewer teats in both the organic and total herd models. The Staph. aureus total herd model also showed a relationship with fewer first-lactation animals, higher hock scores, and less use of automatic takeoffs at milking. High bulk tank CC was related to feeding a total mixed ration and using natural service in nonlactating heifers in both models. Overall, attentive management and use of outside resources were useful with regard to CC

  12. Functions and requirements for tank farm restoration and safe operations, Project W-314. Revision 3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garrison, R.C.

    1995-02-01

    This Functions and Requirements document (FRD) establishes the basic performance criteria for Project W-314, in accordance with the guidance outlined in the letter from R.W. Brown, RL, to President, WHC, ``Tank Waste Remediation System (TWRS) Project Documentation Methodology,`` 94-PRJ-018, dated 3/18/94. The FRD replaces the Functional Design Criteria (FDC) as the project technical baseline documentation. Project W-314 will improve the reliability of safety related systems, minimize onsite health and safety hazards, and support waste retrieval and disposal activities by restoring and/or upgrading existing Tank Farm facilities and systems. The scope of Project W-314 encompasses the necessary restoration upgrades of themore » Tank Farms` instrumentation, ventilation, electrical distribution, and waste transfer systems.« less

  13. RECOMMENDATIONS FOR SAMPLING OF TANK 19 IN F TANK FARM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harris, S.; Shine, G.

    2009-12-14

    Representative sampling is required for characterization of the residual material in Tank 19 prior to operational closure. Tank 19 is a Type IV underground waste storage tank located in the F-Tank Farm. It is a cylindrical-shaped, carbon steel tank with a diameter of 85 feet, a height of 34.25 feet, and a working capacity of 1.3 million gallons. Tank 19 was placed in service in 1961 and initially received a small amount of low heat waste from Tank 17. It then served as an evaporator concentrate (saltcake) receiver from February 1962 to September 1976. Tank 19 also received the spentmore » zeolite ion exchange media from a cesium removal column that once operated in the Northeast riser of the tank to remove cesium from the evaporator overheads. Recent mechanical cleaning of the tank removed all mounds of material. Anticipating a low level of solids in the residual waste, Huff and Thaxton [2009] developed a plan to sample the waste during the final clean-up process while it would still be resident in sufficient quantities to support analytical determinations in four quadrants of the tank. Execution of the plan produced fewer solids than expected to support analytical determinations in all four quadrants. Huff and Thaxton [2009] then restructured the plan to characterize the residual separately in the North and the South regions: two 'hemispheres.' This document provides sampling recommendations to complete the characterization of the residual material on the tank bottom following the guidance in Huff and Thaxton [2009] to split the tank floor into a North and a South hemisphere. The number of samples is determined from a modification of the formula previously published in Edwards [2001] and the sample characterization data for previous sampling of Tank 19 described by Oji [2009]. The uncertainty is quantified by an upper 95% confidence limit (UCL95%) on each analyte's mean concentration in Tank 19. The procedure computes the uncertainty in analyte concentration as

  14. Injury risks for on-road farm equipment and horse and buggy crashes in Pennsylvania: 2010-2013.

    PubMed

    Gorucu, Serap; Murphy, Dennis J; Kassab, Cathy

    2017-04-03

    The purpose of this study was to investigate characteristics associated with farm equipment and horse and buggy roadway crashes in relation to person, incident, and injury characteristics to identify appropriate points for injury incident prevention. Information on crashes occurring on public roads during the years 2010-2013 was obtained from the Pennsylvania Department of Transportation (PennDOT) and analyzed. There were 344 farm equipment and 246 horse and buggy crashes during the 4-year study period. These crashes involved 666 and 504 vehicles and 780 and 838 people, respectively. In incidents with farm equipment, the non-farm equipment drivers had an almost 2 times greater injury risk than farm equipment operators. Horse and buggy crashes were almost 3 times more injurious to the horse and buggy drivers than the drivers of the other vehicles. The average crash rate for farm equipment was 198.4 crashes per 100,000 farm population and for horse and buggy the crash rate was calculated as 89.4 crashes per 100,000 Amish population per year. This study suggests that road safety and public health programs should focus not only on farm equipment operators and horse and buggy drivers but on other motorists sharing the roadway with them.

  15. The Gunite and Associated Tanks Remediation Project Tank Waste Retrieval Performance and Lessons Learned, vol. 1 [of 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lewis, BE

    2003-10-07

    The Gunite and Associated Tanks (GAAT) Remediation Project was the first of its kind performed in the United States. Robotics and remotely operated equipment were used to successfully transfer almost 94,000 gal of remote-handled transuranic sludge containing over 81,000 Ci of radioactive contamination from nine large underground storage tanks at the Oak Ridge National Laboratory (ORNL). The sludge was transferred with over 439,000 gal of radioactive waste supernatant and {approx}420,500 gal of fresh water that was used in sluicing operations. The GAATs are located in a high-traffic area of ORNL near a main thoroughfare. A phased and integrated approach tomore » waste retrieval operations was used for the GAAT Remediation Project. The project promoted safety by obtaining experience from low-risk operations in the North Tank Farm before moving to higher-risk operations in the South Tank Farm. This approach allowed project personnel to become familiar with the tanks and waste, as well as the equipment, processes, procedures, and operations required to perform successful waste retrieval. By using an integrated approach to tank waste retrieval and tank waste management, the project was completed years ahead of the original baseline schedule, which resulted in avoiding millions of dollars in associated costs. This report is organized in two volumes. Volume 1 provides information on the various phases of the GAAT Remediation Project. It also describes the different types of equipment and how they were used. The emphasis of Volume 1 is on the description of the tank waste retrieval performance and the lessons learned during the GAAT Remediation Project. Volume 2 provides the appendixes for the report, which include the following information: (A) Background Information for the Gunite and Associated Tanks Operable Unit; (B) Annotated Bibliography; (C) Comprehensive Listing of the Sample Analysis Data from the GAAT Remediation Project; (D) GAAT Equipment Matrix; and (E

  16. V-TECS Guide for Farm Equipment Mechanic.

    ERIC Educational Resources Information Center

    McClimon, Hugh P.; And Others

    This curriculum guide for a vocational agriculture course in farm equipment mechanics addresses the three domains of learning (psychomotor, cognitive, and affective) while providing job-relevant tasks and suggestions for specific classroom activities for each identified task. This guide provides performance objectives for the following 13 tasks:…

  17. The effects of roadway characteristics on farm equipment crashes: A GIS approach

    NASA Astrophysics Data System (ADS)

    Greenan, Mitchell Joseph

    Tractors and other self-propelled farm equipment, such as combines, sprayers, and towed grain carts, are often used on public roadways as the primary means for traveling from homestead to homestead or from homestead to a distributer. Increased roadway exposure has led to a growing concern for crashes involving farm equipment on the public roadway. A handful of studies exist examining public roadway crashes involving farm equipment using crash data, but none thus far have evaluated road segment data to identify road-specific risk factors. The objective of this study is to identify if roadway characteristics (traffic density, speed limit, road type, surface type, road width, and shoulder width) affect the risk of a crash involving farm equipment on Iowa public roadways. A retrospective cohort study of Iowa roads was conducted to identify the types of roads that are at an increased risk of having a farm-equipment crash on them. Crash data from the Iowa Department of Transportation (to identify crashes) were spatial linked to Iowa roadway data using Geographic Information Systems (GIS). Logistic regression was used to calculate ORs and 95% CL. Out of 319,705 road segments in Iowa, 0.4% segments (n=1,337) had a farm equipment crash from 2005-2011. The odds of having a farm equipment crash were significantly higher for road segments with increased traffic density and speed limit. Roads with an average daily traffic volume of at least 1,251 vehicles were at a 5.53 times greater odds of having a crash than roads with a daily traffic volume between 0-30 vehicles. (CI: 3.90-7.83). Roads with a posted speed limit between 50mph and 60mph were at a 4.88 times greater odds of having a crash than roads with a posted speed limit of 30mph or less. (CI: 3.85-6.20). Specific roadway characteristics such as roadway and shoulder width were also associated with the risk of a crash. For every 5 foot increase in road width, the odds for a crash decreased by 6 percent (CI: 0.89-0.99) and

  18. Phytoestrogens and Their Metabolites in Bulk-Tank Milk: Effects of Farm Management and Season

    PubMed Central

    Adler, Steffen A.; Purup, Stig; Hansen-Møller, Jens; Thuen, Erling; Steinshamn, Håvard

    2015-01-01

    Phytoestrogens have structures similar to endogenous steroids and may induce or inhibit the response of hormone receptors. The objectives of the present study were to compare the effects of long-term vs. short-term grassland management in organic and conventional dairy production systems, compare organic and conventional production systems and assess seasonal variation on phytoestrogen concentrations in bulk-tank milk. The concentrations of phytoestrogens were analyzed in bulk-tank milk sampled three times in two subsequent years from 28 dairy farms: Fourteen organic (ORG) dairy farms with either short-term or long-term grassland management were paired with 14 conventional (CON) farms with respect to grassland management. Grassland management varied in terms of time since establishment. Short-term grassland management (SG) was defined as establishment or reseeding every fourth year or more often, and long-term grassland management (LG) was defined as less frequent establishment or reseeding. The proportion of red clover (Trifolium pretense L.) in the herbage was positively correlated with milk concentrations of the mammalian isoflavone equol. Therefore, organically produced bulk-tank milk contained more equol than conventionally produced milk, and milk from ORG-SG farms had more equol than milk from ORG-LG farms. Milk produced during the indoor-feeding periods had more equol than milk produced during the outdoor feeding period, because pastures contained less red clover than fields intended for silage production. Organically produced milk had also higher concentrations of the mammalian lignan enterolactone, but in contrast to equol, concentrations increased in the outdoor-feeding periods compared to the indoor-feeding periods. There were no indications of fertility problems on ORG-SG farms who had the highest red clover proportions in the herbage. This study shows that production system, grassland management, and season affect milk concentrations of phytoestrogens

  19. Development of occupational exposure limits for the Hanford tank farms.

    PubMed

    Still, Kenneth R; Gardner, Donald E; Snyder, Robert; Anderson, Thomas J; Honeyman, James O; Timchalk, Charles

    2010-04-01

    Production of plutonium for the United States' nuclear weapons program from the 1940s to the 1980s generated 53 million gallons of radioactive chemical waste, which is stored in 177 underground tanks at the Hanford site in southeastern Washington State. Recent attempts to begin the retrieval and treatment of these wastes require moving the waste to more modern tanks and result in potential exposure of the workers to unfamiliar odors emanating from headspace in the tanks. Given the unknown risks involved, workers were placed on supplied air respiratory protection. CH2MHILL, the managers of the Hanford site tank farms, asked an Independent Toxicology Panel (ITP) to assist them in issues relating to an industrial hygiene and risk assessment problem. The ITP was called upon to help determine the risk of exposure to vapors from the tanks, and in general develop a strategy for solution of the problem. This paper presents the methods used to determine the chemicals of potential concern (COPCs) and the resultant development of screening values and Acceptable Occupational Exposure Limits (AOELs) for these COPCs. A total of 1826 chemicals were inventoried and evaluated. Over 1500 chemicals were identified in the waste tanks headspaces and more than 600 of these were assigned screening values; 72 of these compounds were recommended for AOEL development. Included in this list of 72 were 57 COPCs identified by the ITP and of these 47 were subsequently assigned AOELs. An exhaustive exposure assessment strategy was developed by the CH2MHILL industrial hygiene department to evaluate these COPCs.

  20. Farm Equipment Leasing. A New Financial Strategy. Staff Report No. AGES870302.

    ERIC Educational Resources Information Center

    Serletis, William S.

    For farmers with high debt/asset ratios, leasing is an attractive option for securing the use of farm machinery. Under the current tax laws, financial leasing carries lower after-tax costs than loan purchasing. By size, farms with more than $500,000 in sales had the highest proportion of U.S. expenditures for farm equipment leasing. By region, the…

  1. 91. REFRIGERANT CONDENSER TANKS IN NORTHEAST CORNER OF MECHANICAL EQUIPMENT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    91. REFRIGERANT CONDENSER TANKS IN NORTHEAST CORNER OF MECHANICAL EQUIPMENT ROOM (101), LSB (BLDG. 770). PREFILTERS AND PRESSURE CONTROLS IN CENTER OF PHOTOGRAPH. - Vandenberg Air Force Base, Space Launch Complex 3, Launch Pad 3 West, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  2. Extended-spectrum β-lactamase producing Enterobacteriaceae in bulk tank milk from German dairy farms.

    PubMed

    Odenthal, Sabrina; Akineden, Ömer; Usleber, Ewald

    2016-12-05

    Although the dairy farm environment is a known source of extended-spectrum β-lactamase (ESBL)-producing bacteria, surveillance data on ESBL in the milk production chain are still scarce. This study aimed at estimating the dimensions of the problem for public health and animal welfare by surveying ESBL-producing Enterobacteriaceae in raw bulk tank milk in Germany. Samples from 866 dairy farms, comprising about 1% of the total number of dairy farms in Germany, were first screened for presence of cefotaxime-resistant bacteria by selective enrichment. Suspect colonies were identified phenotypically and further characterized by biochemical and molecular methods, including analysis of resistance genes and clonal diversity in ESBL-producing isolates. Bulk tank milk from 82 (9.5%) farms yielded Enterobacteriaceae with confirmed ESBL-production. The most frequent ESBL-producing species was Escherichia coli (75.6%), followed by Citrobacter spp. (9.6%), Enterobacter cloacae (6.1%), and Klebsiella oxytoca (3.7%), a few isolates belonged to other species within the genera Hafnia, Raoutella and Serratia. The majority of isolates (95.1%) harbored the β-lactamase blaCTX-M gene, which has gained increased importance among ESBL-producing strains worldwide; the CTX-M group 1 was found to be the dominating (88.4%) phylogenetic group. All ESBL-positive Escherichia coli isolates were clonally heterogeneous, as determined by pulsed-field gel electrophoresis. The results from this survey demonstrate that ESBL-producing bacteria are distributed widely in the dairy farm environment in Germany. Therefore, raw milk is a potential source of exposure for the consumer, which is of increasing importance considering the trend of farmer-to-consumer direct marketing. Furthermore, dairy farm staff have an increased likelihood of exposure to ESBL-producing bacteria. Finally, ESBL-producing bacteria may also be transferred via waste milk to calves, thus further spreading antibiotic resistance in the

  3. Development of Occupational Exposure Limits for the Hanford Tank Farms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Still, Kenneth; Gardner, Donald; Snyder, Robert

    Production of plutonium for the United States’ nuclear weapons program from the 1940’s to the 1980’s generated 53 million gallons of radioactive chemical waste, which is storedin 177 underground tanks at the Hanford Site in southeastern W 18 ashington State. Recent 19 attempts to begin the retrieval and treatment of these wastes require moving the waste to 20 more modern tanks results in potential exposure of the workers to unfamiliar odors 21 emanating from headspace in the tanks. Given the unknown risks involved, workers 22 were placed on supplied air respiratory protection. CH2M HILL, the managers of the 23 Hanfordmore » Site Tank Farms, asked an Independent Toxicology Panel (ITP) to assist them in issues relating to an Industrial Hygiene and risk assessment problem. The ITP was called upon to help determine the risk of exposure to vapors from the tanks, and in general develop a strategy for solution of the problem. This paper presents the methods used to determine the chemicals of potential concern (COPC) and the resultant development of screening values and Acceptable Occupational Exposure Limits (AOELs) for these COPCs. A total of 1,826 chemicals were inventoried and evaluated. Over 1,500 chemicals were identified in the waste tanks headspaces and more than 600 of these were assigned screening values; 72 of these compounds were recommended for AOEL development. Included in this list of 72 were 57 COPCs identified by the ITP and of these 47 were subsequently assigned AOELs. An exhaustive exposure assessment strategy was developed by the CH2M HILL industrial hygiene department to evaluate these COPCs.« less

  4. Identification of dairy farm management practices associated with the presence of psychrotolerant sporeformers in bulk tank milk.

    PubMed

    Masiello, S N; Martin, N H; Watters, R D; Galton, D M; Schukken, Y H; Wiedmann, M; Boor, K J

    2014-07-01

    Some strains of sporeforming bacteria (e.g., Bacillus spp. and Paenibacillus spp.) can survive pasteurization and subsequently grow at refrigeration temperatures, causing pasteurized fluid milk spoilage. To identify farm management practices associated with different levels of sporeformers in raw milk, a bulk tank sample was obtained from and a management and herd health questionnaire was administered to 99 New York State dairy farms. Milk samples were spore pasteurized [80°C (176°F) for 12 min] and subsequently analyzed for most-probable number and for sporeformer counts on the initial day of spore pasteurization (SP), and after refrigerated storage (6°C) at 7, 14, and 21 d after SP. Management practices were analyzed for association with sporeformer counts and bulk tank somatic cell counts. Sixty-two farms had high sporeformer growth (≥3 log cfu/mL at any day after SP), with an average sporeformer count of 5.20 ± 1.41 mean log10 cfu/mL at 21 d after SP. Thirty-seven farms had low sporeformer numbers (<3 log cfu/mL for all days after SP), with an average sporeformer count of 0.75 ± 0.94 mean log10 cfu/mL at 21 d after SP. Farms with >25% of cows with dirty udders in the milking parlor were 3.15 times more likely to be in the high category than farms with ≤10% of milking cows with dirty udders. Farms with <200 cows were 3.61 times more likely to be in the high category than farms with ≥200 cows. Management practices significantly associated with increased bulk tank somatic cell count were a lack of use of the California mastitis test at freshening and >25% of cows with dirty udders observed in the milking parlor. Changes in management practices associated with cow cleanliness may directly ensure longer shelf life and higher quality of pasteurized fluid milk. Copyright © 2014 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  5. Project W-320, tank 241-C-106 sluicing acceptance for beneficial use

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    BAILEY, J.W.

    The purpose of this document is to identify the Project W-320 Chiller Documentation required to be turned over from the Projects Organization to Tank Farm Operations as part of the acceptance of the new equipment for beneficial use.

  6. Inadvertent Intruder Calculatios for F Tank Farm

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koffman, L

    2005-09-12

    Savannah River National Laboratory (SRNL) has been providing radiological performance assessment analysis for Savannah River Site (SRS) solid waste disposal facilities (McDowell-Boyer 2000). The performance assessment considers numerous potential exposure pathways that could occur in the future. One set of exposure scenarios, known as inadvertent intruder analysis, considers the impact on hypothetical individuals who are assumed to inadvertently intrude onto the waste disposal site. An Automated Intruder Analysis application was developed by SRNL (Koffman 2004) that simplifies the inadvertent intruder analysis into a routine, automated calculation. Based on SRNL's experience, personnel from Planning Integration & Technology of Closure Business Unitmore » asked SRNL to assist with inadvertent intruder calculations for F Tank Farm to support the development of the Tank Closure Waste Determination Document. Meetings were held to discuss the scenarios to be calculated and the assumptions to be used in the calculations. As a result of the meetings, SRNL was asked to perform four scenario calculations. Two of the scenarios are the same as those calculated by the Automated Intruder Analysis application and these can be calculated directly by providing appropriate inputs. The other two scenarios involve use of groundwater by the intruder and the Automated Intruder Analysis application was adapted to perform these calculations. The four calculations to be performed are: (1) A post-drilling scenario in which the drilling penetrates a transfer line. (2) A calculation of internal exposure due to drinking water from a well located near a waste tank. (3) A post-drilling calculation in which waste is introduced by irrigation of the garden with water from a well located near a waste tank. (4) A resident scenario where a house is built above transfer lines. Note that calculations 1 and 4 use sources from the waste inventory in the transfer line (given in Table 1) whereas

  7. Impacts of glycolate and formate radiolysis and thermolysis on hydrogen generation rate calculations for the Savannah River Site tank farm

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crawford, C. L.; King, W. D.

    Savannah River Remediation (SRR) personnel requested that the Savannah River National Laboratory (SRNL) evaluate available data and determine its applicability to defining the impact of planned glycolate anion additions to Savannah River Site (SRS) High Level Waste (HLW) on Tank Farm flammability (primarily with regard to H 2 production). Flammability evaluations of formate anion, which is already present in SRS waste, were also needed. This report describes the impacts of glycolate and formate radiolysis and thermolysis on Hydrogen Generation Rate (HGR) calculations for the SRS Tank Farm.

  8. Optimization of rotating equipment in offshore wind farm

    NASA Astrophysics Data System (ADS)

    Okunade, O. A.

    2014-07-01

    The paper considered the improvement of rotating equipment in a wind farm, and how these could maximise the farm power capacity. It aimed to increase capacity of electricity generation through a renewable source in UK and contribute to 15 per cent energy- consumption target, set by EU on electricity through renewable sources by 2020. With reference to a case study in UK offshore wind farm, the paper analysed the critique of the farm, as a design basis for its optimization. It considered power production as design situation, load cases and constraints, in order to reflect characteristics and behaviour of a standard design. The scope, which considered parts that were directly involved in power generation, covered rotor blades and the impacts of gearbox and generator to power generation. The scope did not however cover support structures like tower design. The approaches of detail data analysis of the blade at typical wind load conditions, were supported by data from acceptable design standards, relevant authorities and professional bodies. The findings in proposed model design showed at least over 3 per cent improvement on the existing electricity generation. It also indicated overall effects on climate change.

  9. Herd characteristics and management practices associated with bulk tank milk quality of dairy herds in southeastern Brazil.

    PubMed

    Cortinhas, Cristina Simões; Botaro, Bruno Garcia; de Macedo, Susana Nori; Dos Santos, Marcos Veiga

    2018-04-30

    This study identified the association of management practices and herd characteristics with milk quality of bulk tanks in southeastern, Brazil. Milk samples were collected weekly during 8 weeks from 63 dairy herds. Bulk tanks were evaluated for total bacteria (TBC), preliminary incubation (PIC), pasteurization (PC), coliform (CC), and somatic cell counts (SCC). Associations found were type of milking system utilized in the farm with TBC, PIC, and SCC; the use of gloves for milking with TBC and PIC; sanitation of milking equipment prior to milking with PC and CC; strip cup testing of cows with PC; teat washing prior to milking with SCC; pre-milking teat disinfection with TBC and CC; post-dipping with TBC and SCC; and the alkaline-acid washing procedure of milking equipment with PIC and PC. The regression analysis explained the variation of bulk tank PC (- 0.47 log cfu/mL) due to the adoption of strip cup test (P = 0.036) and, by 0.366 log cfu/mL due to alkaline and acid washing of milking equipment (P = 0.036). Herringbone milking systems adopted on farms represented a change of - 0.11 log cfu/mL on the log SCC (P = 0.048). Findings may provide a guideline to prioritize efforts aimed at improving milk quality at the farm level in Brazil.

  10. CEMENTITIOUS GROUT FOR CLOSING SRS HIGH LEVEL WASTE TANKS - #12315

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Langton, C.; Burns, H.; Stefanko, D.

    2012-01-10

    In 1997, the first two United States Department of Energy (US DOE) high level waste tanks (Tanks 17-F and 20-F: Type IV, single shell tanks) were taken out of service (permanently closed) at the Savannah River Site (SRS). In 2012, the DOE plans to remove from service two additional Savannah River Site (SRS) Type IV high-level waste tanks, Tanks 18-F and 19-F. These tanks were constructed in the late 1950's and received low-heat waste and do not contain cooling coils. Operational closure of Tanks 18-F and 19-F is intended to be consistent with the applicable requirements of the Resource Conservationmore » and Recovery Act (RCRA) and the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) and will be performed in accordance with South Carolina Department of Health and Environmental Control (SCDHEC). The closure will physically stabilize two 4.92E+04 cubic meter (1.3 E+06 gallon) carbon steel tanks and isolate and stabilize any residual contaminants left in the tanks. The closure will also fill, physically stabilize and isolate ancillary equipment abandoned in the tanks. A Performance Assessment (PA) has been developed to assess the long-term fate and transport of residual contamination in the environment resulting from the operational closure of the F-Area Tank Farm (FTF) waste tanks. Next generation flowable, zero-bleed cementitious grouts were designed, tested, and specified for closing Tanks 18-F and 19-F and for filling the abandoned equipment. Fill requirements were developed for both the tank and equipment grouts. All grout formulations were required to be alkaline with a pH of 12.4 and chemically reduction potential (Eh) of -200 to -400 to stabilize selected potential contaminants of concern. This was achieved by including Portland cement and Grade 100 slag in the mixes, respectively. Ingredients and proportions of cementitious reagents were selected and adjusted, respectively, to support the mass placement strategy developed by

  11. Alternatives generation and analysis for double-shell tank primary ventilation systems emissions control and monitoring

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    SEDERBURG, J.P.

    1999-09-30

    This AGA addresses the question: ''What equipment upgrades, operational changes, and/or other actions are required relative to the DST tanks farms' ventilation systems to support retrieval, staging (including feed sampling), and delivery of tank waste to the Phase I private contractor?'' Issues and options for the various components within the ventilation subsystem affect each other. Recommended design requirements are presented and the preferred alternatives are detailed.

  12. STATE-OF-THE-ART PROCEDURES AND EQUIPMENT FOR INTERNAL INSPECTION AND UPGRADING OF UNDERGROUND STORAGE TANKS

    EPA Science Inventory

    This report supplements the previous State-of-the-Art Procedures and Equipment for Internal Inspection of Underground Storage Tanks published in 1991 by the EPA. The present report updates and provides descriptions of additional tank inspection technologies, specifically, noninva...

  13. High-level waste tank farm set point document

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anthony, J.A. III

    1995-01-15

    Setpoints for nuclear safety-related instrumentation are required for actions determined by the design authorization basis. Minimum requirements need to be established for assuring that setpoints are established and held within specified limits. This document establishes the controlling methodology for changing setpoints of all classifications. The instrumentation under consideration involve the transfer, storage, and volume reduction of radioactive liquid waste in the F- and H-Area High-Level Radioactive Waste Tank Farms. The setpoint document will encompass the PROCESS AREA listed in the Safety Analysis Report (SAR) (DPSTSA-200-10 Sup 18) which includes the diversion box HDB-8 facility. In addition to the PROCESS AREASmore » listed in the SAR, Building 299-H and the Effluent Transfer Facility (ETF) are also included in the scope.« less

  14. TANK FARM CLOSURE - A NEW TWIST ON REGULATORY STRATEGIES FOR CLOSURE OF WASTE TANK RESIDUALS FOLLOWING NUREG

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    LEHMAN LL

    2008-01-23

    Waste from a number of single-shell tanks (SST) at the U.S. Department of Energy's (DOE) Hanford Site has been retrieved by CH2M HILL Hanford Group to fulfill the requirements of the 'Hanford Federal Facility Agreement and Consent Order (HFFACO) [1]. Laboratory analyses of the Hanford tank residual wastes have provided concentration data which will be used to determine waste classification and disposal options for tank residuals. The closure of tank farm facilities remains one of the most challenging activities faced by the DOE. This is due in part to the complicated regulatory structures that have developed. These regulatory structures aremore » different at each of the DOE sites, making it difficult to apply lessons learned from one site to the next. During the past two years with the passage of the Section 3116 of the 'Ronald Reagan Defense Authorization Act of 2005' (NDAA) [2] some standardization has emerged for Savannah River Site and the Idaho National Laboratory tank residuals. Recently, with the issuance of 'NRC Staff Guidance for Activities Related to US. Department of Energy Waste Determinations' (NUREG-1854) [3] more explicit options may be considered for Hanford tank residuals than are presently available under DOE Orders. NUREG-1854, issued in August 2007, contains several key pieces of information that if utilized by the DOE in the tank closure process, could simplify waste classification and streamline the NRC review process by providing information to the NRC in their preferred format. Other provisions of this NUREG allow different methods to be applied in determining when waste retrieval is complete by incorporating actual project costs and health risks into the calculation of 'technically and economically practical'. Additionally, the NUREG requires a strong understanding of the uncertainties of the analyses, which given the desire of some NRC/DOE staff may increase the likelihood of using probabilistic approaches to uncertainty analysis. The

  15. Treatment of ichthyophthiriasis after malachite green. I. Concrete tanks at salmonid farms.

    PubMed

    Rintamäki-Kinnunen, Päivi; Rahkonen, Mika; Mannermaa-Keränen, Anna-Liisa; Suomalainen, Lotta-Riina; Mykrä, Heikki; Valtonen, E Tellervo

    2005-04-06

    Since the use of malachite green was banned in many European countries, new alternative treatments have been tested to prevent white spot disease caused by Ichthyophthirius multifiliis. We tested formalin, potassium permanganate (KMnO4), chloramine-T, hydrogen peroxide (H2O2) and Per Aqua or Desirox alone or in combinations of 2 chemicals, one of which was always formalin, in 50 m2 concrete tanks at 2 farms producing salmon Salmo salar smolt in 2001 and 2002. Both Per Aqua and Desirox are combinations of peracetic acid, acetic acid and hydrogen peroxide. The alternative chemicals or their combinations can be used successfully to lower the parasite burden to such a level that no high mortality occurs during the first 4 wk after the start of an infection. This period of time allows the fish to develop immunity against these ciliates, and treatments can be reduced and stopped in due course. I. multifiliis decreased in number 3 to 4 wk after the beginning of the infection in all the treatments. Large differences in parasite burden and mortality occurred among the replicates in all except the Desirox-formalin tanks, which means that they are not as reliable as the malachite green-formalin used previously. It was also evident that the chemicals and their concentrations must be planned carefully to suit the conditions on each farm.

  16. 46 CFR 153.488 - Design and equipment for tanks carrying high melting point NLSs: Category B.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... HAZARDOUS MATERIALS Design and Equipment Design and Equipment for Pollution Control § 153.488 Design and... 46 Shipping 5 2010-10-01 2010-10-01 false Design and equipment for tanks carrying high melting point NLSs: Category B. 153.488 Section 153.488 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY...

  17. 46 CFR 153.488 - Design and equipment for tanks carrying high melting point NLSs: Category B.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... HAZARDOUS MATERIALS Design and Equipment Design and Equipment for Pollution Control § 153.488 Design and... 46 Shipping 5 2014-10-01 2014-10-01 false Design and equipment for tanks carrying high melting point NLSs: Category B. 153.488 Section 153.488 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY...

  18. 46 CFR 153.488 - Design and equipment for tanks carrying high melting point NLSs: Category B.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... HAZARDOUS MATERIALS Design and Equipment Design and Equipment for Pollution Control § 153.488 Design and... 46 Shipping 5 2013-10-01 2013-10-01 false Design and equipment for tanks carrying high melting point NLSs: Category B. 153.488 Section 153.488 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY...

  19. 46 CFR 153.488 - Design and equipment for tanks carrying high melting point NLSs: Category B.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... HAZARDOUS MATERIALS Design and Equipment Design and Equipment for Pollution Control § 153.488 Design and... 46 Shipping 5 2012-10-01 2012-10-01 false Design and equipment for tanks carrying high melting point NLSs: Category B. 153.488 Section 153.488 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY...

  20. 46 CFR 153.488 - Design and equipment for tanks carrying high melting point NLSs: Category B.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... HAZARDOUS MATERIALS Design and Equipment Design and Equipment for Pollution Control § 153.488 Design and... 46 Shipping 5 2011-10-01 2011-10-01 false Design and equipment for tanks carrying high melting point NLSs: Category B. 153.488 Section 153.488 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY...

  1. Longitudinal assessment of dairy farm management practices associated with the presence of psychrotolerant Bacillales spores in bulk tank milk on 10 New York State dairy farms.

    PubMed

    Masiello, S N; Kent, D; Martin, N H; Schukken, Y H; Wiedmann, M; Boor, K J

    2017-11-01

    The ability of certain spore-forming bacteria in the order Bacillales (e.g., Bacillus spp., Paenibacillus spp.) to survive pasteurization in spore form and grow at refrigeration temperatures results in product spoilage and limits the shelf life of high temperature, short time (HTST)-pasteurized fluid milk. To facilitate development of strategies to minimize contamination of raw milk with psychrotolerant Bacillales spores, we conducted a longitudinal study of 10 New York State dairy farms, which included yearlong monthly assessments of the frequency and levels of bulk tank raw milk psychrotolerant spore contamination, along with administration of questionnaires to identify farm management practices associated with psychrotolerant spore presence over time. Milk samples were first spore pasteurized (80°C for 12 min) and then analyzed for sporeformer counts on the initial day of spore pasteurization (SP), and after refrigerated storage (6°C) for 7, 14, and 21 d after SP. Overall, 41% of samples showed sporeformer counts of >20,000 cfu/mL at d 21, with Bacillus and Paenibacillus spp. being predominant causes of high sporeformer counts. Statistical analyses identified 3 management factors (more frequent cleaning of the bulk tank area, the use of a skid steer to scrape the housing area, and segregating problem cows during milking) that were all associated with lower probabilities of d-21 Bacillales spore detection in SP-treated bulk tank raw milk. Our data emphasize that appropriate on-farm measures to improve overall cleanliness and cow hygiene will reduce the probability of psychrotolerant Bacillales spore contamination of bulk tank raw milk, allowing for consistent production of raw milk with reduced psychrotolerant spore counts, which will facilitate production of HTST-pasteurized milk with extended refrigerated shelf life. Copyright © 2017 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  2. Personal Protective Equipment Use and Safety Behaviors among Farm Adolescents: Gender Differences and Predictors of Work Practices

    ERIC Educational Resources Information Center

    Reed, Deborah B.; Browning, Steven R.; Westneat, Susan C.; Kidd, Pamela S.

    2006-01-01

    Context: Children on farms perform work that places them at risk for acute and chronic negative health outcomes. Despite strategies for preventing and reducing the risk of disease and injury, children's use of personal protective equipment and safety equipped farm machinery has generally remained unreported. Purpose: This paper reports the use of…

  3. CHEMICAL DIFFERENCES BETWEEN SLUDGE SOLIDS AT THE F AND H AREA TANK FARMS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reboul, S.

    2012-08-29

    The primary source of waste solids received into the F Area Tank Farm (FTF) was from PUREX processing performed to recover uranium and plutonium from irradiated depleted uranium targets. In contrast, two primary sources of waste solids were received into the H Area Tank Farm (HTF): a) waste from PUREX processing; and b) waste from H-modified (HM) processing performed to recover uranium and neptunium from burned enriched uranium fuel. Due to the differences between the irradiated depleted uranium targets and the burned enriched uranium fuel, the average compositions of the F and H Area wastes are markedly different from onemore » another. Both F and H Area wastes contain significant amounts of iron and aluminum compounds. However, because the iron content of PUREX waste is higher than that of HM waste, and the aluminum content of PUREX waste is lower than that of HM waste, the iron to aluminum ratios of typical FTF waste solids are appreciably higher than those of typical HTF waste solids. Other constituents present at significantly higher concentrations in the typical FTF waste solids include uranium, nickel, ruthenium, zinc, silver, cobalt and copper. In contrast, constituents present at significantly higher concentrations in the typical HTF waste solids include mercury, thorium, oxalate, and radionuclides U-233, U-234, U-235, U-236, Pu-238, Pu-242, Cm-244, and Cm-245. Because of the higher concentrations of Pu-238 in HTF, the long-term concentrations of Th-230 and Ra-226 (from Pu-238 decay) will also be higher in HTF. The uranium and plutonium distributions of the average FTF waste were found to be consistent with depleted uranium and weapons grade plutonium, respectively (U-235 comprised 0.3 wt% of the FTF uranium, and Pu-240 comprised 6 wt% of the FTF plutonium). In contrast, at HTF, U-235 comprised 5 wt% of the uranium, and Pu-240 comprised 17 wt% of the plutonium, consistent with enriched uranium and high burn-up plutonium. X-ray diffraction analyses of

  4. Evaluating Contaminant Flux from the Vadose Zone to the Groundwater in the Hanford Central Plateau. SX Tank Farms Case Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Truex, Michael J.; Oostrom, Martinus; Last, George V.

    At the DOE Hanford Site, contaminants were discharged to the subsurface through engineered waste sites in the Hanford Central Plateau. Additional waste was released through waste storage tank leaks. Much of the contaminant inventory is still present within the unsaturated vadose zone sediments. The nature and extent of future groundwater contaminant plumes and the growth or decline of current groundwater plumes beneath the Hanford Central Plateau are a function of the contaminant flux from the vadose zone to the groundwater. In general, contaminant transport is slow through the vadose zone and it is difficult to directly measure contaminant flux inmore » the vadose zone. Predictive analysis, supported by site characterization and monitoring data, was applied using a structured, systems-based approach to estimate the future contaminant flux to groundwater in support of remediation decisions for the vadose zone and groundwater (Truex and Carroll 2013). The SX Tank Farm was used as a case study because of the existing contaminant inventory in the vadose zone, observations of elevated moisture content in portions of the vadose zone, presence of a limited-extent groundwater plume, and the relatively large amount and wide variety of data available for the site. Although the SX Tank Farm case study is most representative of conditions at tank farm sites, the study has elements that are also relevant to other types of disposal sites in the Hanford Central Plateau.« less

  5. Polymeric hydrogen diffusion barrier, high-pressure storage tank so equipped, method of fabricating a storage tank and method of preventing hydrogen diffusion

    DOEpatents

    Lessing, Paul A [Idaho Falls, ID

    2008-07-22

    An electrochemically active hydrogen diffusion barrier which comprises an anode layer, a cathode layer, and an intermediate electrolyte layer, which is conductive to protons and substantially impermeable to hydrogen. A catalytic metal present in or adjacent to the anode layer catalyzes an electrochemical reaction that converts any hydrogen that diffuses through the electrolyte layer to protons and electrons. The protons and electrons are transported to the cathode layer and reacted to form hydrogen. The hydrogen diffusion barrier is applied to a polymeric substrate used in a storage tank to store hydrogen under high pressure. A storage tank equipped with the electrochemically active hydrogen diffusion barrier, a method of fabricating the storage tank, and a method of preventing hydrogen from diffusing out of a storage tank are also disclosed.

  6. Polymeric hydrogen diffusion barrier, high-pressure storage tank so equipped, method of fabricating a storage tank and method of preventing hydrogen diffusion

    DOEpatents

    Lessing, Paul A.

    2004-09-07

    An electrochemically active hydrogen diffusion barrier which comprises an anode layer, a cathode layer, and an intermediate electrolyte layer, which is conductive to protons and substantially impermeable to hydrogen. A catalytic metal present in or adjacent to the anode layer catalyzes an electrochemical reaction that converts any hydrogen that diffuses through the electrolyte layer to protons and electrons. The protons and electrons are transported to the cathode layer and reacted to form hydrogen. The hydrogen diffusion barrier is applied to a polymeric substrate used in a storage tank to store hydrogen under high pressure. A storage tank equipped with the electrochemically active hydrogen diffusion barrier, a method of fabricating the storage tank, and a method of preventing hydrogen from diffusing out of a storage tank are also disclosed.

  7. Technical Review of Retrieval and Closure Plans for the INEEL INTEC Tank Farm Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bamberger, Judith A; Burks, Barry L; Quigley, Keith D

    2001-09-28

    The purpose of this report is to document the conclusions of a technical review of retrieval and closure plans for the Idaho National Energy and Environmental Laboratory (INEEL) Idaho Nuclear Technology and Engineering Center (INTEC) Tank Farm Facility. In addition to reviewing retrieval and closure plans for these tanks, the review process served as an information exchange mechanism so that staff in the INEEL High Level Waste (HLW) Program could become more familiar with retrieval and closure approaches that have been completed or are planned for underground storage tanks at the Oak Ridge National Laboratory (ORNL) and Hanford sites. Thismore » review focused not only on evaluation of the technical feasibility and appropriateness of the approach selected by INEEL but also on technology gaps that could be addressed through utilization of technologies or performance data available at other DOE sites and in the private sector. The reviewers, Judith Bamberger of Pacific Northwest National Laboratory (PNNL) and Dr. Barry Burks of The Providence Group Applied Technology, have extensive experience in the development and application of tank waste retrieval technologies for nuclear waste remediation.« less

  8. Engineering report single-shell tank farms interim measures to limit infiltration through the vadose zone

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    HAASS, C.C.

    1999-10-14

    Identifies, evaluates and recommends interim measures for reducing or eliminating water sources and preferential pathways within the vadose zone of the single-shell tank farms. Features studied: surface water infiltration and leaking water lines that provide recharge moisture, and wells that could provide pathways for contaminant migration. An extensive data base, maps, recommended mitigations, and rough order of magnitude costs are included.

  9. SURFACE GEOPHYSICAL EXPLORATION OF SX TANK FARM AT THE HANFORD SITE RESULTS OF BACKGROUND CHARACTERIZATION WITH MAGNETICS AND ELECTROMAGNETICS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    MYERS DA; RUCKER D; LEVIT M

    This report presents the results of the background characterization of the cribs and trenches surrounding the SX tank farm prepared by HydroGEOPHYSICS Inc, Columbia Energy & Environmental Services Inc and Washington River Protection Solutions.

  10. Management, nutrition, and lactation performance are related to bulk tank milk de novo fatty acid concentration on northeastern US dairy farms.

    PubMed

    Woolpert, M E; Dann, H M; Cotanch, K W; Melilli, C; Chase, L E; Grant, R J; Barbano, D M

    2016-10-01

    This study investigated the relationship of management practices, dietary characteristics, milk composition, and lactation performance with de novo fatty acid (FA) concentration in bulk tank milk from commercial dairy farms with Holstein, Jersey, and mixed-breed cows. It was hypothesized that farms with higher de novo milk FA concentrations would more commonly use management and nutrition practices known to optimize ruminal conditions that enhance de novo synthesis of milk FA. Farms (n=44) located in Vermont and northeastern New York were selected based on a history of high de novo (HDN; 26.18±0.94g/100g of FA; mean ± standard deviation) or low de novo (LDN; 24.19±1.22g/100g of FA) FA in bulk tank milk. Management practices were assessed during one visit to each farm in March or April, 2014. Total mixed ration samples were collected and analyzed for chemical composition using near infrared spectroscopy. We found no differences in days in milk at the farm level. Yield of milk fat, true protein, and de novo FA per cow per day were higher for HDN versus LDN farms. The HDN farms had lower freestall stocking density (cows/stall) than LDN farms. Additionally, tiestall feeding frequency was higher for HDN than LDN farms. No differences between HDN and LDN farms were detected for dietary dry matter, crude protein, neutral detergent fiber, starch, or percentage of forage in the diet. However, dietary ether extract was lower for HDN than LDN farms. This research indicates that overcrowded freestalls, reduced feeding frequency, and greater dietary ether extract content are associated with lower de novo FA synthesis and reduced milk fat and true protein yields on commercial dairy farms. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  11. Lighting and marking policies are associated with reduced farm equipment-related crash rates: a policy analysis of nine Midwestern US states

    PubMed Central

    Ramirez, Marizen; Bedford, Ronald; Wu, Hongqian; Harland, Karisa; Cavanaugh, Joseph E; Peek-Asa, Corinne

    2016-01-01

    Objective To evaluate the effectiveness of roadway policies for lighting and marking of farm equipment in reducing crashes in Illinois, Iowa, Kansas, Minnesota, Missouri, Nebraska, North Dakota, South Dakota and Wisconsin. Methods In this ecological study, state policies on lighting and marking of farm equipment were scored for compliance with standards of the American Society of Agricultural and Biological Engineers (ASABE). Using generalized estimating equations negative binomial models, we estimated the relationships between lighting and marking scores, and farm equipment crash rates, per 100 000 farm operations. Results A total of 7083 crashes involving farm equipment was reported from 2005 to 2010 in the Upper Midwest and Great Plains. As the state lighting and marking score increased by 5 units, crash rates reduced by 17% (rate ratio=0.83; 95% CI 0.78 to 0.88). Lighting-only (rate ratio=0.48; 95% CI 0.45 to 0.51) and marking-only policies (rate ratio=0.89; 95% CI 0.83 to 0.96) were each associated with reduced crash rates. Conclusions Aligning lighting and marking policies with ASABE standards may effectively reduce crash rates involving farm equipment. PMID:27405602

  12. Configuration management plan for waste tank farms and the 242-A evaporator of tank waste remediation system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Laney, T.

    The configuration management architecture presented in this Configuration Management Plan is based on the functional model established by DOE-STD-1073-93, ``Guide for Operational Configuration Management Program.`` The DOE Standard defines the configuration management program by the five basic program elements of ``program management,`` ``design requirements,`` ``document control,`` ``change control,`` and ``assessments,`` and the two adjunct recovery programs of ``design reconstitution,`` and ``material condition and aging management.`` The CM model of five elements and two adjunct programs strengthen the necessary technical and administrative control to establish and maintain a consistent technical relationship among the requirements, physical configuration, and documentation. Although the DOEmore » Standard was originally developed for the operational phase of nuclear facilities, this plan has the flexibility to be adapted and applied to all life-cycle phases of both nuclear and non-nuclear facilities. The configuration management criteria presented in this plan endorses the DOE Standard and has been tailored specifically to address the technical relationship of requirements, physical configuration, and documentation during the full life cycle of the Waste Tank Farms and 242-A Evaporator of Tank Waste Remediation System.« less

  13. Comparison of bulk-tank standard plate count and somatic cell count for Wisconsin dairy farms in three size categories.

    PubMed

    Ingham, S C; Hu, Y; Ané, C

    2011-08-01

    The objective of this study was to evaluate possible claims by advocates of small-scale dairy farming that milk from smaller Wisconsin farms is of higher quality than milk from larger Wisconsin farms. Reported bulk tank standard plate count (SPC) and somatic cell count (SCC) test results for Wisconsin dairy farms were obtained for February to December, 2008. Farms were sorted into 3 size categories using available size-tracking criteria: small (≤118 cows; 12,866 farms), large (119-713 cattle; 1,565 farms), and confined animal feeding operations (≥714 cattle; 160 farms). Group means were calculated (group=farm size category) for the farms' minimum, median, mean, 90th percentile, and maximum SPC and SCC. Statistical analysis showed that group means for median, mean, 90th percentile, and maximum SPC and SCC were almost always significantly higher for the small farm category than for the large farm and confined animal feeding operations farm categories. With SPC and SCC as quality criteria and the 3 farm size categories of ≤118, 119 to 713, and ≥714 cattle, the claim of Wisconsin smaller farms producing higher quality milk than Wisconsin larger farms cannot be supported. Copyright © 2011 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  14. Development of in-structure design spectra for dome mounted equipment on underground waste storage tanks at the Hanford Site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Julyk, L.J.

    1995-09-01

    In-structure response spectra for dome mounted equipment on underground waste storage tanks at the Hanford Site are developed on the basis of recent soil-structure-interaction analyses. Recommended design spectra are provided for various locations on the tank dome.

  15. High-level waste storage tank farms/242-A evaporator Standards/Requirements Identification Document (S/RID), Volume 7. Revision 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burt, D.L.

    1994-04-01

    The High-Level Waste Storage Tank Farms/242-A Evaporator Standards/Requirements Identification Document (S/RID) is contained in multiple volumes. This document (Volume 7) presents the standards and requirements for the following sections: Occupational Safety and Health, and Environmental Protection.

  16. Tank 241-C-112 vapor sampling and analysis tank characterization report. Revision 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huckaby, J.L.

    1995-05-31

    Tank 241-C-112 headspace gas and vapor samples were collected and analyzed to help determine the potential risks to tank farm workers due to fugitive emissions from the tank. The drivers and objectives of waste tank headspace sampling and analysis are discussed in {open_quotes}Program Plan for the Resolution of Tank Vapor Issues.{close_quotes} Tank 241-C-112 was vapor sampled in accordance with {open_quotes}Data Quality Objectives for Generic In-Tank Health and Safety Issue Resolution.{close_quotes}

  17. Propane tank explosion (2 deaths, 7 injuries) at Herrig Brothers Feather Creek Farm, Albert City, Iowa, April 9, 1998. Investigation report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1999-09-01

    This report explains the explosion/BLEVE that took place on April 9, 1998, at the Herrig Brothers Feather Creek Farm, located in Albert City, Iowa. Two volunteer fire fighters were killed and seven other emergency response personnel were injured. Safety issues covered in the report include protection of propane storage tanks and piping, state regulatory oversight of such installations, and fire fighter response to propane storage tank fires.

  18. Tank farms pump critical characteristic and specification guide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Titzler, P.A.

    The Design Authority group for Tank Farms, in conjunction with the Construction Projects organization, have recognized that there is a need to provide consistency in the procurement and testing of pumps and to assure that known critical attributes and features are included with each pump order as well as to reduce potential confusion by pump suppliers. As a result, a panel of pump experts representing Lockheed Martin Hanford Company (LMHC), Fluor Daniel Northwest (FDNW), Numatec Hanford Corporation (NHC), SGN Eurisys Services Corporation (SESC), and ARES Corporation has been assembled to prepare a guide for pump specifications. This document contains themore » consensus listing of critical characteristics and procurement recommendations of the panel. It is intended to be used as a guide for future pump procurement activities. If followed, it will help reduce cleanup costs at the Hanford Site and promote prompt approval of pumping system designs and procurement specifications. Alternate criteria may be specified on a case by case basis if deviation from the requirements contained herein is merited due to special circumstances.« less

  19. Lighting and marking policies are associated with reduced farm equipment-related crash rates: a policy analysis of nine Midwestern US states.

    PubMed

    Ramirez, Marizen; Bedford, Ronald; Wu, Hongqian; Harland, Karisa; Cavanaugh, Joseph E; Peek-Asa, Corinne

    2016-09-01

    To evaluate the effectiveness of roadway policies for lighting and marking of farm equipment in reducing crashes in Illinois, Iowa, Kansas, Minnesota, Missouri, Nebraska, North Dakota, South Dakota and Wisconsin. In this ecological study, state policies on lighting and marking of farm equipment were scored for compliance with standards of the American Society of Agricultural and Biological Engineers (ASABE). Using generalized estimating equations negative binomial models, we estimated the relationships between lighting and marking scores, and farm equipment crash rates, per 100 000 farm operations. A total of 7083 crashes involving farm equipment was reported from 2005 to 2010 in the Upper Midwest and Great Plains. As the state lighting and marking score increased by 5 units, crash rates reduced by 17% (rate ratio=0.83; 95% CI 0.78 to 0.88). Lighting-only (rate ratio=0.48; 95% CI 0.45 to 0.51) and marking-only policies (rate ratio=0.89; 95% CI 0.83 to 0.96) were each associated with reduced crash rates. Aligning lighting and marking policies with ASABE standards may effectively reduce crash rates involving farm equipment. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  20. 27 CFR 25.35 - Tanks.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Tanks. 25.35 Section 25.35... TREASURY LIQUORS BEER Construction and Equipment Equipment § 25.35 Tanks. Each stationary tank, vat, cask... contents of tanks or containers in lieu of providing each tank or container with a measuring device. (Sec...

  1. 27 CFR 25.35 - Tanks.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2013-04-01 2013-04-01 false Tanks. 25.35 Section 25.35... TREASURY ALCOHOL BEER Construction and Equipment Equipment § 25.35 Tanks. Each stationary tank, vat, cask... contents of tanks or containers in lieu of providing each tank or container with a measuring device. (Sec...

  2. Testing of Alternative Abrasives for Water-Jet Cutting at C Tank Farm

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krogstad, Eirik J.

    2013-08-01

    Legacy waste from defense-related activities at the Hanford Site has predominantly been stored in underground tanks, some of which have leaked; others may be at risk to do so. The U.S. Department of Energy’s goal is to empty the tanks and transform their contents into more stable waste forms. To do so requires breaking up, and creating a slurry from, solid wastes in the bottoms of the tanks. A technology developed for this purpose is the Mobile Arm Retrieval System. This system is being used at some of the older single shell tanks at C tank farm. As originally planned,more » access ports for the Mobile Arm Retrieval System were to be cut using a high- pressure water-jet cutter. However, water alone was found to be insufficient to allow effective cutting of the steel-reinforced tank lids, especially when cutting the steel reinforcing bar (“rebar”). The abrasive added in cutting the hole in Tank C-107 was garnet, a complex natural aluminosilicate. The hardness of garnet (Mohs hardness ranging from H 6.5 to 7.5) exceeds that of solids currently in the tanks, and was regarded to be a threat to Hanford Waste Treatment and Immobilization Plant systems. Olivine, an iron-magnesium silicate that is nearly as hard as garnet (H 6.5 to 7), has been proposed as an alternative to garnet. Pacific Northwest National Laboratory proposed to test pyrite (FeS2), whose hardness is slightly less (H 6 to 6.5) for 1) cutting effectiveness, and 2) propensity to dissolve (or disintegrate by chemical reaction) in chemical conditions similar to those of tank waste solutions. Cutting experiments were conducted using an air abrader system and a National Institute of Standards and Technology Standard Reference Material (SRM 1767 Low Alloy Steel), which was used as a surrogate for rebar. The cutting efficacy of pyrite was compared with that of garnet and olivine in identical size fractions. Garnet was found to be most effective in removing steel from the target; olivine and pyrite were

  3. 33 CFR 157.15 - Slop tanks in tank vessels.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 2 2011-07-01 2011-07-01 false Slop tanks in tank vessels. 157... (CONTINUED) POLLUTION RULES FOR THE PROTECTION OF THE MARINE ENVIRONMENT RELATING TO TANK VESSELS CARRYING OIL IN BULK Design, Equipment, and Installation § 157.15 Slop tanks in tank vessels. (a) Number. A...

  4. 33 CFR 157.15 - Slop tanks in tank vessels.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 2 2013-07-01 2013-07-01 false Slop tanks in tank vessels. 157... (CONTINUED) POLLUTION RULES FOR THE PROTECTION OF THE MARINE ENVIRONMENT RELATING TO TANK VESSELS CARRYING OIL IN BULK Design, Equipment, and Installation § 157.15 Slop tanks in tank vessels. (a) Number. A...

  5. 33 CFR 157.15 - Slop tanks in tank vessels.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 2 2012-07-01 2012-07-01 false Slop tanks in tank vessels. 157... (CONTINUED) POLLUTION RULES FOR THE PROTECTION OF THE MARINE ENVIRONMENT RELATING TO TANK VESSELS CARRYING OIL IN BULK Design, Equipment, and Installation § 157.15 Slop tanks in tank vessels. (a) Number. A...

  6. 33 CFR 157.15 - Slop tanks in tank vessels.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 2 2014-07-01 2014-07-01 false Slop tanks in tank vessels. 157... (CONTINUED) POLLUTION RULES FOR THE PROTECTION OF THE MARINE ENVIRONMENT RELATING TO TANK VESSELS CARRYING OIL IN BULK Design, Equipment, and Installation § 157.15 Slop tanks in tank vessels. (a) Number. A...

  7. RECOMMENDATIONS FOR SAMPLING OF TANK 18 IN F TANK FARM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shine, G.

    2009-12-14

    Representative sampling is required for characterization of the residual floor material in Tank 18 prior to operational closure. Tank 18 is an 85-foot diameter, 34-foot high carbon steel tank with nominal operating volume of 1,300,000 gallons. It is a Type IV tank, and has been in service storing radioactive materials since 1959. Recent mechanical cleaning of the tank removed all mounds of material. Anticipating a low level of solids in the residual material, Huff and Thaxton [2009] developed a plan to sample the material during the final clean-up process while it would still be resident in sufficient quantities to supportmore » analytical determinations in four quadrants of the tank. Execution of the plan produced fewer solids than expected to support analytical determinations in all four quadrants. Huff and Thaxton [2009] then restructured the plan to characterize the residual floor material separately in the North and the South regions: two 'hemispheres.' This document provides sampling recommendations to complete the characterization of the residual material on the tank bottom following the guidance in Huff and Thaxton [2009] to split the tank floor into a North and a South hemisphere. The number of samples is determined from a modification of the formula previously published in Edwards [2001] and the sample characterization data for previous sampling of Tank 18 described by Oji [2009]. The uncertainty is quantified by an upper 95% confidence limit (UCL95%) on each analyte's mean concentration in Tank 18. The procedure computes the uncertainty in analyte concentration as a function of the number of samples, and the final number of samples is determined when the reduction in the uncertainty from an additional sample no longer has a practical impact on results. The characterization of the full suite of analytes in the North hemisphere is currently supported by a single Mantis rover sample obtained from a compact region near the center riser. A floor scrape

  8. Collaboration, Automation, and Information Management at Hanford High Level Radioactive Waste (HLW) Tank Farms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aurah, Mirwaise Y.; Roberts, Mark A.

    Washington River Protection Solutions (WRPS), operator of High Level Radioactive Waste (HLW) Tank Farms at the Hanford Site, is taking an over 20-year leap in technology, replacing systems that were monitored with clipboards and obsolete computer systems, as well as solving major operations and maintenance hurdles in the area of process automation and information management. While WRPS is fully compliant with procedures and regulations, the current systems are not integrated and do not share data efficiently, hampering how information is obtained and managed.

  9. A Comparison of Certain Knowledges in Agriculture Needed by Workers in Farming, in Grain Elevator Businesses, and in Agricultural Equipment Businesses.

    ERIC Educational Resources Information Center

    Fiscus, Keith Eugene

    Questionnaires to determine the vocational and technical education needed by prospective workers in farming and in grain elevator and agricultural equipment businesses were administered to 20 workers in each of the jobs of (1) farm manager, (2) grain elevator manager, operator, salesman, and deliveryman, and (3) agricultural equipment manager,…

  10. EVALUATION OF THE IMPACT OF THE DEFENSE WASTE PROCESSING FACILITY (DWPF) LABORATORY GERMANIUM OXIDE USE ON RECYCLE TRANSFERS TO THE H-TANK FARM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jantzen, C.; Laurinat, J.

    2011-08-15

    When processing High Level Waste (HLW) glass, the Defense Waste Processing Facility (DWPF) cannot wait until the melt or waste glass has been made to assess its acceptability, since by then no further changes to the glass composition and acceptability are possible. Therefore, the acceptability decision is made on the upstream feed stream, rather than on the downstream melt or glass product. This strategy is known as 'feed forward statistical process control.' The DWPF depends on chemical analysis of the feed streams from the Sludge Receipt and Adjustment Tank (SRAT) and the Slurry Mix Evaporator (SME) where the frit plusmore » adjusted sludge from the SRAT are mixed. The SME is the last vessel in which any chemical adjustments or frit additions can be made. Once the analyses of the SME product are deemed acceptable, the SME product is transferred to the Melter Feed Tank (MFT) and onto the melter. The SRAT and SME analyses have been analyzed by the DWPF laboratory using a 'Cold Chemical' method but this dissolution did not adequately dissolve all the elemental components. A new dissolution method which fuses the SRAT or SME product with cesium nitrate (CsNO{sub 3}), germanium (IV) oxide (GeO{sub 2}) and cesium carbonate (Cs{sub 2}CO{sub 3}) into a cesium germanate glass at 1050 C in platinum crucibles has been developed. Once the germanium glass is formed in that fusion, it is readily dissolved by concentrated nitric acid (about 1M) to solubilize all the elements in the SRAT and/or SME product for elemental analysis. When the chemical analyses are completed the acidic cesium-germanate solution is transferred from the DWPF analytic laboratory to the Recycle Collection Tank (RCT) where the pH is increased to {approx}12 M to be released back to the tank farm and the 2H evaporator. Therefore, about 2.5 kg/yr of GeO{sub 2}/year will be diluted into 1.4 million gallons of recycle. This 2.5 kg/yr of GeO{sub 2} may increase to 4 kg/yr when improvements are implemented to

  11. 46 CFR 153.250 - Double-bottom and deep tanks as cargo tanks.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 5 2011-10-01 2011-10-01 false Double-bottom and deep tanks as cargo tanks. 153.250... Equipment Cargo Tanks § 153.250 Double-bottom and deep tanks as cargo tanks. Except in those cases in which Commandant (CG-522) specifically approves another arrangement, such as a double-bottom or deep tank as a...

  12. 46 CFR 153.250 - Double-bottom and deep tanks as cargo tanks.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 5 2013-10-01 2013-10-01 false Double-bottom and deep tanks as cargo tanks. 153.250... Equipment Cargo Tanks § 153.250 Double-bottom and deep tanks as cargo tanks. Except in those cases in which Commandant (CG-ENG) specifically approves another arrangement, such as a double-bottom or deep tank as a...

  13. 46 CFR 153.250 - Double-bottom and deep tanks as cargo tanks.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Double-bottom and deep tanks as cargo tanks. 153.250... Equipment Cargo Tanks § 153.250 Double-bottom and deep tanks as cargo tanks. Except in those cases in which Commandant (CG-522) specifically approves another arrangement, such as a double-bottom or deep tank as a...

  14. 46 CFR 153.250 - Double-bottom and deep tanks as cargo tanks.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 5 2014-10-01 2014-10-01 false Double-bottom and deep tanks as cargo tanks. 153.250... Equipment Cargo Tanks § 153.250 Double-bottom and deep tanks as cargo tanks. Except in those cases in which Commandant (CG-ENG) specifically approves another arrangement, such as a double-bottom or deep tank as a...

  15. 46 CFR 153.250 - Double-bottom and deep tanks as cargo tanks.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 5 2012-10-01 2012-10-01 false Double-bottom and deep tanks as cargo tanks. 153.250... Equipment Cargo Tanks § 153.250 Double-bottom and deep tanks as cargo tanks. Except in those cases in which Commandant (CG-ENG) specifically approves another arrangement, such as a double-bottom or deep tank as a...

  16. RP1 (KEROSENE) STORAGE TANKS ON HILLSIDE EAST OF TEST STAND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    RP1 (KEROSENE) STORAGE TANKS ON HILLSIDE EAST OF TEST STAND 1-B. THIS TANK FARM SERVES BOTH TEST STANDS 1-A AND 1-B - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Combined Fuel Storage Tank Farm, Test Area 1-120, north end of Jupiter Boulevard, Boron, Kern County, CA

  17. Environmental Assessment for the Closure of the High-Level Waste Tanks in F- & H-Areas at the Savannah River Site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    N /A

    1996-07-31

    This Environmental Assessment (EA) has been prepared by the Department of Energy (DOE) to assess the potential environmental impacts associated with the closure of 51 high-level radioactive waste tanks and tank farm ancillary equipment (including transfer lines, evaporators, filters, pumps, etc) at the Savannah River Site (SRS) located near Aiken, South Carolina. The waste tanks are located in the F- and H-Areas of SRS and vary in capacity from 2,839,059 liters (750,000 gallons) to 4,921,035 liters (1,300,000 gallons). These in-ground tanks are surrounded by soil to provide shielding. The F- and H-Area High-Level Waste Tanks are operated under the authoritymore » of Industrial Wastewater Permits No.17,424-IW; No.14520, and No.14338 issued by the South Carolina Department of Health and Environmental Control (SCDHEC). In accordance with the Permit requirements, DOE has prepared a Closure Plan (DOE, 1996) and submitted it to SCDHEC for approval. The Closure Plan identifies all applicable or relevant and appropriate regulations, statutes, and DOE Orders for closing systems operated under the Industrial Wastewater Permits. When approved by SCDHEC, the Closure Plan will present the regulatory process for closing all of the F- and H-Area High Level Waste Tanks. The Closure Plan establishes performance objectives or criteria to be met prior to closing any tank, group of tanks, or ancillary tank farm equipment. The proposed action is to remove the residual wastes from the tanks and to fill the tanks with a material to prevent future collapse and bind up residual waste, to lower human health risks, and to increase safety in and around the tanks. If required, an engineered cap consisting of clay, backfill (soil), and vegetation as the final layer to prevent erosion would be applied over the tanks. The selection of tank system closure method will be evaluated against the following Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) criteria

  18. 27 CFR 25.35 - Tanks.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... TREASURY LIQUORS BEER Construction and Equipment Equipment § 25.35 Tanks. Each stationary tank, vat, cask or other container used, or intended for use, as a receptacle for wort, beer or concentrate produced from beer shall: (a) Be durably marked with a serial number and capacity; and (b) Be equipped with a...

  19. 27 CFR 25.35 - Tanks.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... TREASURY ALCOHOL BEER Construction and Equipment Equipment § 25.35 Tanks. Each stationary tank, vat, cask or other container used, or intended for use, as a receptacle for wort, beer or concentrate produced from beer shall: (a) Be durably marked with a serial number and capacity; and (b) Be equipped with a...

  20. 27 CFR 25.35 - Tanks.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... TREASURY LIQUORS BEER Construction and Equipment Equipment § 25.35 Tanks. Each stationary tank, vat, cask or other container used, or intended for use, as a receptacle for wort, beer or concentrate produced from beer shall: (a) Be durably marked with a serial number and capacity; and (b) Be equipped with a...

  1. 33 CFR 183.518 - Fuel tank openings.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 2 2012-07-01 2012-07-01 false Fuel tank openings. 183.518...) BOATING SAFETY BOATS AND ASSOCIATED EQUIPMENT Fuel Systems Equipment Standards § 183.518 Fuel tank openings. Each opening into the fuel tank must be at or above the topmost surface of the tank. ...

  2. 33 CFR 183.518 - Fuel tank openings.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Fuel tank openings. 183.518...) BOATING SAFETY BOATS AND ASSOCIATED EQUIPMENT Fuel Systems Equipment Standards § 183.518 Fuel tank openings. Each opening into the fuel tank must be at or above the topmost surface of the tank. ...

  3. HANFORD DOUBLE SHELL TANK (DST) THERMAL & SEISMIC PROJECT BUCKLING EVALUATION METHODS & RESULTS FOR THE PRIMARY TANKS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    MACKEY, T.C.

    2006-03-17

    This report documents a detailed buckling evaluation of the primary tanks in the Hanford double shell waste tanks. The analysis is part of a comprehensive structural review for the Double-Shell Tank Integrity Project. This work also provides information on tank integrity that specifically responds to concerns raise by the Office of Environment, Safety, and Health (ES&H) Oversight (EH-22) during a review (in April and May 2001) of work being performed on the double-shell tank farms, and the operation of the aging waste facility (AWF) primary tank ventilation system.

  4. 46 CFR 32.65-30 - Tank vessels with independent tanks-TB/ALL.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 1 2012-10-01 2012-10-01 false Tank vessels with independent tanks-TB/ALL. 32.65-30 Section 32.65-30 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS SPECIAL EQUIPMENT, MACHINERY, AND HULL REQUIREMENTS Hull Requirements for Tank Vessels Constructed On or After November 10...

  5. 46 CFR 32.65-30 - Tank vessels with independent tanks-TB/ALL.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 1 2011-10-01 2011-10-01 false Tank vessels with independent tanks-TB/ALL. 32.65-30 Section 32.65-30 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS SPECIAL EQUIPMENT, MACHINERY, AND HULL REQUIREMENTS Hull Requirements for Tank Vessels Constructed On or After November 10...

  6. 46 CFR 32.65-30 - Tank vessels with independent tanks-TB/ALL.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 1 2014-10-01 2014-10-01 false Tank vessels with independent tanks-TB/ALL. 32.65-30 Section 32.65-30 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS SPECIAL EQUIPMENT, MACHINERY, AND HULL REQUIREMENTS Hull Requirements for Tank Vessels Constructed On or After November 10...

  7. 46 CFR 32.65-30 - Tank vessels with independent tanks-TB/ALL.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 1 2013-10-01 2013-10-01 false Tank vessels with independent tanks-TB/ALL. 32.65-30 Section 32.65-30 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS SPECIAL EQUIPMENT, MACHINERY, AND HULL REQUIREMENTS Hull Requirements for Tank Vessels Constructed On or After November 10...

  8. 40 CFR 265.1085 - Standards: Tanks.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... controls shall use one of the following tanks: (1) A fixed-roof tank equipped with an internal floating... equipped with an external floating roof in accordance with the requirements specified in paragraph (f) of... controls air pollutant emissions from a tank using a fixed-roof with an internal floating roof shall meet...

  9. 33 CFR 183.510 - Fuel tanks.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 2 2013-07-01 2013-07-01 false Fuel tanks. 183.510 Section 183... SAFETY BOATS AND ASSOCIATED EQUIPMENT Fuel Systems Equipment Standards § 183.510 Fuel tanks. (a) Each fuel tank in a boat must have been tested by its manufacturer under § 183.580 and not leak when...

  10. 33 CFR 183.510 - Fuel tanks.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Fuel tanks. 183.510 Section 183... SAFETY BOATS AND ASSOCIATED EQUIPMENT Fuel Systems Equipment Standards § 183.510 Fuel tanks. (a) Each fuel tank in a boat must have been tested by its manufacturer under § 183.580 and not leak when...

  11. 33 CFR 183.510 - Fuel tanks.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 2 2011-07-01 2011-07-01 false Fuel tanks. 183.510 Section 183... SAFETY BOATS AND ASSOCIATED EQUIPMENT Fuel Systems Equipment Standards § 183.510 Fuel tanks. (a) Each fuel tank in a boat must have been tested by its manufacturer under § 183.580 and not leak when...

  12. 40 CFR 63.685 - Standards: Tanks.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... in paragraph (c)(2)(i) of this section when a tank is used as an interim transfer point to transfer... fixed-roof tank equipped with an internal floating roof in accordance with the requirements specified in paragraph (e) of this section; (2) A tank equipped with an external floating roof in accordance with the...

  13. Vapor characterization of Tank 241-C-103

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huckaby, J.L.; Story, M.S.

    The Westinghouse Hanford Company Tank Vapor Issue Resolution Program has developed, in cooperation with Northwest Instrument Systems, Inc., Oak Ridge National Laboratory, Oregon Graduate Institute of Science and Technology, Pacific Northwest Laboratory, and Sandia National Laboratory, the equipment and expertise to characterize gases and vapors in the high-level radioactive waste storage tanks at the Hanford Site in south central Washington State. This capability has been demonstrated by the characterization of the tank 241-C-103 headspace. This tank headspace is the first, and for many reasons is expected to be the most problematic, that will be characterized (Osborne 1992). Results from themore » most recent and comprehensive sampling event, sample job 7B, are presented for the purpose of providing scientific bases for resolution of vapor issues associated with tank 241-C-103. This report is based on the work of Clauss et al. 1994, Jenkins et al. 1994, Ligotke et al. 1994, Mahon et al. 1994, and Rasmussen and Einfeld 1994. No attempt has been made in this report to evaluate the implications of the data presented, such as the potential impact of headspace gases and vapors to tank farm workers health. That and other issues will be addressed elsewhere. Key to the resolution of worker health issues is the quantitation of compounds of toxicological concern. The Toxicology Review Panel, a panel of Pacific Northwest Laboratory experts in various areas, of toxicology, has chosen 19 previously identified compounds as being of potential toxicological concern. During sample job 7B, the sampling and analytical methodology was validated for this preliminary list of compounds of toxicological concern. Validation was performed according to guidance provided by the Tank Vapor Conference Committee, a group of analytical chemists from academic institutions and national laboratories assembled and commissioned by the Tank Vapor Issue Resolution Program.« less

  14. TANK 21 AND TANK 24 BLEND AND FEED STUDY: BLENDING TIMES, SETTLING TIMES, AND TRANSFERS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, S.; Leishear, R.; Poirier, M.

    2012-05-31

    The Salt Disposition Integration (SDI) portfolio of projects provides the infrastructure within existing Liquid Waste facilities to support the startup and long term operation of the Salt Waste Processing Facility (SWPF). Within SDI, the Blend and Feed Project will equip existing waste tanks in the Tank Farms to serve as Blend Tanks where salt solutions of up to 1.2 million gallons will be blended in 1.3 million gallon tanks and qualified for use as feedstock for SWPF. In particular, Tanks 21 and 24 are planned to be used for blending and transferring to the SDI feed tank. These tanks weremore » evaluated here to determine blending times, to determine a range of settling times for disturbed sludge, and to determine that the SWPF Waste Acceptance Criteria that less than 1200 mg/liter of solids will be entrained in salt solutions during transfers from the Tank 21 and Tank 24 will be met. Overall conclusions for Tank 21 and Tank 24 operations include: (1) Experimental correction factors were applied to CFD (computational fluid dynamics) models to establish blending times between approximately two and five hours. As shown in Phase 2 research, blending times may be as much as ten times greater, or more, if lighter fluids are added to heavier fluids (i.e., water added to salt solution). As the densities of two salt solutions converge this effect may be minimized, but additional confirmatory research was not performed. (2) At the current sludge levels and the presently planned operating heights of the transfer pumps, solids entrainment will be less than 1200 mg/liter, assuming a conservative, slow settling sludge simulant. (3) Based on theoretical calculations, particles in the density range of 2.5 to 5.0 g/mL must be greater than 2-4 {micro}m in diameter to ensure they settle adequately in 30-60 days to meet the SWPF feed criterion (<1200 mg/l). (4) Experimental tests with sludge batch 6 simulant and field turbidity data from a recent Tank 21 mixing evolution suggest

  15. Getting Down to Business: Farm Equipment Repair, Module 2. [Student Guide]. Entrepreneurship Training Components.

    ERIC Educational Resources Information Center

    McBain, Susan

    This module on owning and operating a farm equipment repair business is one of 36 in a series on entrepreneurship. The introduction tells the student what topics will be covered and suggests other modules to read in related occupations. Each unit includes student goals, a case study, and a discussion of the unit subject matter. Learning…

  16. Farm Equipment Mechanic. Apprenticeship Training Standards = Mecanicien de machines agricoles. Normes de formation en apprentissage.

    ERIC Educational Resources Information Center

    Ontario Ministry of Skills Development, Toronto.

    These training standards for farm equipment mechanics are intended to be used by apprentice/trainees, instructors, and companies in Ontario, Canada, as a blueprint for training or as a prerequisite for accreditation/certification. The training standards identify skills required for this occupation and its related training program. They are…

  17. 33 CFR 183.520 - Fuel tank vent systems.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 2 2012-07-01 2012-07-01 false Fuel tank vent systems. 183.520...) BOATING SAFETY BOATS AND ASSOCIATED EQUIPMENT Fuel Systems Equipment Standards § 183.520 Fuel tank vent systems. (a) Each fuel tank must have a vent system that prevents pressure in the tank from exceeding 80...

  18. 33 CFR 183.520 - Fuel tank vent systems.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Fuel tank vent systems. 183.520...) BOATING SAFETY BOATS AND ASSOCIATED EQUIPMENT Fuel Systems Equipment Standards § 183.520 Fuel tank vent systems. (a) Each fuel tank must have a vent system that prevents pressure in the tank from exceeding 80...

  19. 33 CFR 183.514 - Fuel tanks: Labels.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 2 2012-07-01 2012-07-01 false Fuel tanks: Labels. 183.514...) BOATING SAFETY BOATS AND ASSOCIATED EQUIPMENT Fuel Systems Equipment Standards § 183.514 Fuel tanks: Labels. (a) Each fuel tank must have a label that meets the requirements of paragraphs (b) through (d) of...

  20. 33 CFR 183.514 - Fuel tanks: Labels.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Fuel tanks: Labels. 183.514...) BOATING SAFETY BOATS AND ASSOCIATED EQUIPMENT Fuel Systems Equipment Standards § 183.514 Fuel tanks: Labels. (a) Each fuel tank must have a label that meets the requirements of paragraphs (b) through (d) of...

  1. Tank 241-AX-104 upper vadose zone cone penetrometer demonstration sampling and analysis plan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    FIELD, J.G.

    1999-02-02

    This sampling and analysis plan (SAP) is the primary document describing field and laboratory activities and requirements for the tank 241-AX-104 upper vadose zone cone penetrometer (CP) demonstration. It is written in accordance with Hanford Tank Initiative Tank 241-AX-104 Upper Vadose Zone Demonstration Data Quality Objective (Banning 1999). This technology demonstration, to be conducted at tank 241-AX-104, is being performed by the Hanford Tanks Initiative (HTI) Project as a part of Tank Waste Remediation System (TWRS) Retrieval Program (EM-30) and the Office of Science and Technology (EM-50) Tanks Focus Area. Sample results obtained as part of this demonstration will providemore » additional information for subsequent revisions to the Retrieval Performance Evaluation (RPE) report (Jacobs 1998). The RPE Report is the result of an evaluation of a single tank farm (AX Tank Farm) used as the basis for demonstrating a methodology for developing the data and analyses necessary to support making tank waste retrieval decisions within the context of tank farm closure requirements. The RPE includes a study of vadose zone contaminant transport mechanisms, including analysis of projected tank leak characteristics, hydrogeologic characteristics of tank farm soils, and the observed distribution of contaminants in the vadose zone in the tank farms. With limited characterization information available, large uncertainties exist as to the nature and extent of contaminants that may exist in the upper vadose zone in the AX Tank Farm. Traditionally, data has been collected from soils in the vadose zone through the installation of boreholes and wells. Soil samples are collected as the bore hole is advanced and samples are screened on site and/or sent to a laboratory for analysis. Some in-situ geophysical methods of contaminant analysis can be used to evaluate radionuclide levels in the soils adjacent to an existing borehole. However, geophysical methods require compensation for

  2. Coxiella burnetii in bulk tank milk samples from dairy goat and dairy sheep farms in The Netherlands in 2008.

    PubMed

    van den Brom, R; van Engelen, E; Luttikholt, S; Moll, L; van Maanen, K; Vellema, P

    2012-03-24

    In 2007, a human Q fever epidemic started, mainly in the south eastern part of The Netherlands with a suspected indirect relation to dairy goats, and, to a lesser degree, to dairy sheep. This article describes the Q fever prevalences in Dutch dairy goat and dairy sheep bulk tank milk (BTM) samples, using a real-time (RT) PCR and ELISA. Results of BTM PCR and ELISA were compared with the serological status of individual animals, and correlations with a history of Q fever abortion were determined. When compared with ELISA results, the optimal cut-off value for the RT-PCR was 100 bacteria/ml. In 2008, there were 392 farms with more than 200 dairy goats, of which 292 submitted a BTM sample. Of these samples, 96 (32.9 per cent) were PCR positive and 87 (29.8 per cent) were ELISA positive. All farms with a history of Q fever abortion (n=17) were ELISA positive, 16 out of 17 were also PCR positive. BTM PCR or ELISA positive farms had significantly higher within-herd seroprevalences than BTM negative farms. In the south eastern provinces, the area where the human Q fever outbreak started in 2007, a significantly larger proportion of the BTM samples was PCR and ELISA positive compared to the rest of The Netherlands. None of the BTM samples from dairy sheep farms (n=16) were PCR positive but three of these farms were ELISA positive. The higher percentage of BTM positive farms in the area where the human Q fever outbreak started, supports the suspected relation between human cases and infected dairy goat farms.

  3. Anthropometric study of farm workers on Java Island, Indonesia, and its implications for the design of farm tools and equipment.

    PubMed

    Syuaib, M Faiz

    2015-11-01

    Anthropometric data are a prerequisite for designing agricultural tools and equipment that enable workers to achieve better performance and productivity while providing better safety and comfort. A set of thirty anthropometric dimensions was collected from a total sample of 371 male and female farm-workers from three different regions (west, central and east) of Java Island, Indonesia. The mean stature is 162.0 cm and 152.5 cm, the sitting height is 82.9 cm and 77.4 cm, and the body weight is 57.1 kg and 52.3 kg for male and female subjects, respectively. The index of relative sitting height (RSH) was 0.51 on average for both male and female subjects. Significant differences are found in most of the anthropometric dimensions between gender and regional data groups as well. Compared with groups of people from several other countries, the anthropometric dimensions of Indonesian people are quite similar to Indian people, but are relatively smaller than Filipino, Chinese, Japanese, British, and American people. An attempt was conducted to illustrate the use of this anthropometric database and ergonomic considerations in refining the design of traditional tools and equipment commonly in use for rice farming operations. Copyright © 2015 Elsevier Ltd and The Ergonomics Society. All rights reserved.

  4. Thermal performance of an integrated collector storage solar water heater (ICSSWH) with a storage tank equipped with radial fins of rectangular profile

    NASA Astrophysics Data System (ADS)

    Chaabane, Monia; Mhiri, Hatem; Bournot, Philippe

    2013-01-01

    The thermal behavior of an integrated collector storage solar water heater (ICSSWH) is numerically studied using the package Fluent 6.3. Based on the good agreement between the numerical results and the experimental data of Chaouachi and Gabsi (Renew Energy Revue 9(2):75-82, 2006), an attempt to improve this solar system operating was made by equipping the storage tank with radial fins of rectangular profile. A second 3D CFD model was developed and a series of numerical simulations were conducted for various SWH designs which differ in the depth of this extended surface for heat exchange. As the modified surface presents a higher characteristic length for convective heat transfer from the storage tank to the water, the fins equipped storage tank based SWH is determined to have a higher water temperature and a reduced thermal losses coefficient during the day-time period. Regarding the night operating of this water heater, the results suggest that the modified system presents higher thermal losses.

  5. 46 CFR 154.439 - Tank design.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Tank design. 154.439 Section 154.439 Shipping COAST... SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES Design, Construction and Equipment Independent Tank Type A § 154.439 Tank design. An independent tank type A must meet the deep tank standard of the...

  6. 46 CFR 154.439 - Tank design.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 5 2011-10-01 2011-10-01 false Tank design. 154.439 Section 154.439 Shipping COAST... SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES Design, Construction and Equipment Independent Tank Type A § 154.439 Tank design. An independent tank type A must meet the deep tank standard of the...

  7. 33 CFR 183.510 - Fuel tanks.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 2 2014-07-01 2014-07-01 false Fuel tanks. 183.510 Section 183.510 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) BOATING SAFETY BOATS AND ASSOCIATED EQUIPMENT Fuel Systems Equipment Standards § 183.510 Fuel tanks. (a) Each...

  8. 33 CFR 183.510 - Fuel tanks.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 2 2012-07-01 2012-07-01 false Fuel tanks. 183.510 Section 183.510 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) BOATING SAFETY BOATS AND ASSOCIATED EQUIPMENT Fuel Systems Equipment Standards § 183.510 Fuel tanks. (a) Each...

  9. 46 CFR 153.266 - Tank linings.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 5 2012-10-01 2012-10-01 false Tank linings. 153.266 Section 153.266 Shipping COAST... LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Design and Equipment Cargo Tanks § 153.266 Tank linings. A tank lining must be: (a) At least as elastic as the tank material; and (b) Applied or...

  10. 46 CFR 153.266 - Tank linings.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Tank linings. 153.266 Section 153.266 Shipping COAST... LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Design and Equipment Cargo Tanks § 153.266 Tank linings. A tank lining must be: (a) At least as elastic as the tank material; and (b) Applied or...

  11. 46 CFR 153.266 - Tank linings.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 5 2013-10-01 2013-10-01 false Tank linings. 153.266 Section 153.266 Shipping COAST... LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Design and Equipment Cargo Tanks § 153.266 Tank linings. A tank lining must be: (a) At least as elastic as the tank material; and (b) Applied or...

  12. 46 CFR 153.266 - Tank linings.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 5 2014-10-01 2014-10-01 false Tank linings. 153.266 Section 153.266 Shipping COAST... LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Design and Equipment Cargo Tanks § 153.266 Tank linings. A tank lining must be: (a) At least as elastic as the tank material; and (b) Applied or...

  13. 46 CFR 153.266 - Tank linings.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 5 2011-10-01 2011-10-01 false Tank linings. 153.266 Section 153.266 Shipping COAST... LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Design and Equipment Cargo Tanks § 153.266 Tank linings. A tank lining must be: (a) At least as elastic as the tank material; and (b) Applied or...

  14. OFFICE AND INSTRUMENT ROOM SOUTH OF THE WEST TANK ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    OFFICE AND INSTRUMENT ROOM SOUTH OF THE WEST TANK - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Liquid Oxygen & Nitrogen Storage Tank Farm, Intersection of Altair & Jupiter Boulevards, Boron, Kern County, CA

  15. 49 CFR 229.217 - Fuel tank.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 4 2013-10-01 2013-10-01 false Fuel tank. 229.217 Section 229.217 Transportation... TRANSPORTATION RAILROAD LOCOMOTIVE SAFETY STANDARDS Locomotive Crashworthiness Design Requirements § 229.217 Fuel tank. (a) External fuel tanks. Locomotives equipped with external fuel tanks shall, at a minimum...

  16. 49 CFR 229.217 - Fuel tank.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 4 2011-10-01 2011-10-01 false Fuel tank. 229.217 Section 229.217 Transportation... TRANSPORTATION RAILROAD LOCOMOTIVE SAFETY STANDARDS Locomotive Crashworthiness Design Requirements § 229.217 Fuel tank. (a) External fuel tanks. Locomotives equipped with external fuel tanks shall, at a minimum...

  17. 49 CFR 229.217 - Fuel tank.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 4 2014-10-01 2014-10-01 false Fuel tank. 229.217 Section 229.217 Transportation... TRANSPORTATION RAILROAD LOCOMOTIVE SAFETY STANDARDS Locomotive Crashworthiness Design Requirements § 229.217 Fuel tank. (a) External fuel tanks. Locomotives equipped with external fuel tanks shall, at a minimum...

  18. 49 CFR 229.217 - Fuel tank.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 4 2012-10-01 2012-10-01 false Fuel tank. 229.217 Section 229.217 Transportation... TRANSPORTATION RAILROAD LOCOMOTIVE SAFETY STANDARDS Locomotive Crashworthiness Design Requirements § 229.217 Fuel tank. (a) External fuel tanks. Locomotives equipped with external fuel tanks shall, at a minimum...

  19. Dewatering Treatment Scale-up Testing Results of Hanford Tank Wastes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tedeschi, A.R.; May, T.H.; Bryan, W.E.

    2008-07-01

    This report documents CH2M HILL Hanford Group Inc. (CH2M HILL) 2007 dryer testing results in Richland, WA at the AMEC Nuclear Ltd., GeoMelt Division (AMEC) Horn Rapids Test Site. It provides a discussion of scope and results to qualify the dryer system as a viable unit-operation in the continuing evaluation of the bulk vitrification process. A 10,000 liter (L) dryer/mixer was tested for supplemental treatment of Hanford tank low activity wastes, drying and mixing a simulated non-radioactive salt solution with glass forming minerals. Testing validated the full scale equipment for producing dried product similar to smaller scale tests, and qualifiedmore » the dryer system for a subsequent integrated dryer/vitrification test using the same simulant and glass formers. The dryer system is planned for installation at the Hanford tank farms to dry/mix radioactive waste for final treatment evaluation of the supplemental bulk vitrification process. (authors)« less

  20. 46 CFR 154.446 - Tank design.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Tank design. 154.446 Section 154.446 Shipping COAST... SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES Design, Construction and Equipment Independent Tank Type B § 154.446 Tank design. An independent tank type B must meet the calculations under § 154...

  1. 46 CFR 154.446 - Tank design.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 5 2011-10-01 2011-10-01 false Tank design. 154.446 Section 154.446 Shipping COAST... SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES Design, Construction and Equipment Independent Tank Type B § 154.446 Tank design. An independent tank type B must meet the calculations under § 154...

  2. 49 CFR 238.223 - Locomotive fuel tanks.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 4 2012-10-01 2012-10-01 false Locomotive fuel tanks. 238.223 Section 238.223... Equipment § 238.223 Locomotive fuel tanks. Locomotive fuel tanks shall comply with either the following or....21: (a) External fuel tanks. External locomotive fuel tanks shall comply with the requirements...

  3. 49 CFR 238.223 - Locomotive fuel tanks.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 4 2011-10-01 2011-10-01 false Locomotive fuel tanks. 238.223 Section 238.223... Equipment § 238.223 Locomotive fuel tanks. Locomotive fuel tanks shall comply with either the following or....21: (a) External fuel tanks. External locomotive fuel tanks shall comply with the requirements...

  4. Testing and recommended practices to improve nurse tank safety, phase I.

    DOT National Transportation Integrated Search

    2013-10-01

    This research project studied causes and possible remediation inspection strategies to prevent failures for anhydrous ammonia (NH3) nurse tanks. Nurse tanks are steel tanks used to transport NH3 locally over public roadways and farm fields. Many of t...

  5. Testing and Recommended Practices to Improve Nurse Tank Safety, Phase I

    DOT National Transportation Integrated Search

    2013-10-01

    This research project studied causes and possible remediation inspection strategies to prevent failures for anhydrous ammonia (NH3) nurse tanks. Nurse tanks are steel tanks used to transport NH3 locally over public roadways and farm fields. Many of t...

  6. 27 CFR 19.273 - Tanks.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... TREASURY LIQUORS DISTILLED SPIRITS PLANTS Construction, Equipment and Security § 19.273 Tanks. (a) General... safety devices shall be constructed to prevent extraction of spirits or wines. (b) Scale tanks. (1) Beams...

  7. Hanford Double-Shell Tank Extent-of-Condition Construction Review

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Venetz, Theodore J.; Johnson, Jeremy M.; Gunter, Jason R.

    2013-11-14

    During routine visual inspections of Hanford double-shell waste tank 241-AY-102 (AY-102), anomalies were identified on the annulus floor which resulted in further evaluations. Following a formal leak assessment in October 2012, Washington River Protection Solutions, LLC (WRPS) determined that the primary tank of AY-102 was leaking. The formal leak assessment, documented in RPP-ASMT-53793,Tank 241-AY-102 Leak Assessment Report, identified first-of-a-kind construction difficulties and trial-and-error repairs as major contributing factors to tank failure. To determine if improvements in double-shell tank (DST) construction occurred after construction of tank AY-102, a detailed review and evaluation of historical construction records were performed for the firstmore » three DST tank farms constructed, which included tanks 241-AY-101, 241-AZ-101, 241-AZ-102, 241-SY-101, 241-SY-102, and 241-SY-103. The review for these six tanks involved research and review of dozens of boxes of historical project documentation. These reviews form a basis to better understand the current condition of the three oldest Hanford DST farms. They provide a basis for changes to the current tank inspection program and also provide valuable insight into future tank use decisions. If new tanks are constructed in the future, these reviews provide valuable "lessons-learned" information about expected difficulties as well as construction practices and techniques that are likely to be successful.« less

  8. 49 CFR 230.115 - Feed water tanks.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 4 2011-10-01 2011-10-01 false Feed water tanks. 230.115 Section 230.115... Tenders Steam Locomotive Tanks § 230.115 Feed water tanks. (a) General provisions. Tanks shall be... water. Feed water tanks shall be equipped with a device that permits the measurement of the quantity of...

  9. 49 CFR 173.10 - Tank car shipments.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 2 2012-10-01 2012-10-01 false Tank car shipments. 173.10 Section 173.10... SHIPMENTS AND PACKAGINGS General § 173.10 Tank car shipments. (a) Tank cars containing any 2.1 material... facilities which have been equipped for piping the liquid from tank cars to permanent storage tanks of...

  10. 49 CFR 173.10 - Tank car shipments.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 2 2011-10-01 2011-10-01 false Tank car shipments. 173.10 Section 173.10... SHIPMENTS AND PACKAGINGS General § 173.10 Tank car shipments. (a) Tank cars containing any 2.1 material... facilities which have been equipped for piping the liquid from tank cars to permanent storage tanks of...

  11. 49 CFR 173.10 - Tank car shipments.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 2 2013-10-01 2013-10-01 false Tank car shipments. 173.10 Section 173.10... SHIPMENTS AND PACKAGINGS General § 173.10 Tank car shipments. (a) Tank cars containing any 2.1 material... facilities which have been equipped for piping the liquid from tank cars to permanent storage tanks of...

  12. 49 CFR 173.10 - Tank car shipments.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 2 2014-10-01 2014-10-01 false Tank car shipments. 173.10 Section 173.10... SHIPMENTS AND PACKAGINGS General § 173.10 Tank car shipments. (a) Tank cars containing any 2.1 material... facilities which have been equipped for piping the liquid from tank cars to permanent storage tanks of...

  13. 49 CFR 173.10 - Tank car shipments.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Tank car shipments. 173.10 Section 173.10... SHIPMENTS AND PACKAGINGS General § 173.10 Tank car shipments. (a) Tank cars containing any 2.1 material... facilities which have been equipped for piping the liquid from tank cars to permanent storage tanks of...

  14. 49 CFR 230.115 - Feed water tanks.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 4 2012-10-01 2012-10-01 false Feed water tanks. 230.115 Section 230.115... Tenders Steam Locomotive Tanks § 230.115 Feed water tanks. (a) General provisions. Tanks shall be... water. Feed water tanks shall be equipped with a device that permits the measurement of the quantity of...

  15. 49 CFR 230.115 - Feed water tanks.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 4 2014-10-01 2014-10-01 false Feed water tanks. 230.115 Section 230.115... Tenders Steam Locomotive Tanks § 230.115 Feed water tanks. (a) General provisions. Tanks shall be... water. Feed water tanks shall be equipped with a device that permits the measurement of the quantity of...

  16. 49 CFR 230.115 - Feed water tanks.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 4 2013-10-01 2013-10-01 false Feed water tanks. 230.115 Section 230.115... Tenders Steam Locomotive Tanks § 230.115 Feed water tanks. (a) General provisions. Tanks shall be... water. Feed water tanks shall be equipped with a device that permits the measurement of the quantity of...

  17. 49 CFR 230.116 - Oil tanks.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 4 2011-10-01 2011-10-01 false Oil tanks. 230.116 Section 230.116 Transportation... Locomotive Tanks § 230.116 Oil tanks. The oil tanks on oil burning steam locomotives shall be maintained free from leaks. The oil supply pipe shall be equipped with a safety cut-off device that: (a) Is located...

  18. 49 CFR 230.116 - Oil tanks.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 4 2012-10-01 2012-10-01 false Oil tanks. 230.116 Section 230.116 Transportation... Locomotive Tanks § 230.116 Oil tanks. The oil tanks on oil burning steam locomotives shall be maintained free from leaks. The oil supply pipe shall be equipped with a safety cut-off device that: (a) Is located...

  19. 49 CFR 230.116 - Oil tanks.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 4 2013-10-01 2013-10-01 false Oil tanks. 230.116 Section 230.116 Transportation... Locomotive Tanks § 230.116 Oil tanks. The oil tanks on oil burning steam locomotives shall be maintained free from leaks. The oil supply pipe shall be equipped with a safety cut-off device that: (a) Is located...

  20. 49 CFR 230.116 - Oil tanks.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 4 2014-10-01 2014-10-01 false Oil tanks. 230.116 Section 230.116 Transportation... Locomotive Tanks § 230.116 Oil tanks. The oil tanks on oil burning steam locomotives shall be maintained free from leaks. The oil supply pipe shall be equipped with a safety cut-off device that: (a) Is located...

  1. Implementing an Integrated Commitment Management System at the Savannah River Site Tank Farms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blanchard, A.

    1999-06-16

    Recently, the Savannah River Site Tank Farms have been transitioning from pre-1990 Authorization Basis requirements to new 5480.22/.23 requirements. Implementation of the new Authorization Basis has resulted in more detailed requirements, a completely new set of implementing procedures, and the expectation of even more disciplined operations. Key to the success of this implementation has been the development of an Integrated Commitment Management System (ICMS) by Westinghouse Safety Management Solutions. The ICMS has two elements: the Authorization Commitment Matrix (ACM), and a Procedure Consistency Review methodology. The Authorization Commitment Matrix is a linking database, which ties requirements and implementing documents together.more » The associated Procedure Consistency Review process ensures that the procedures to be credited in the ACM do in fact correctly and completely meet all intended commitments. This Integrated Commitment Management System helps Westinghouse Safety Management Solutions and the facility operations and engineering organizations take ownership in the implementation of the requirements that have been developed.« less

  2. Public health significance of antimicrobial-resistant gram-negative bacteria in raw bulk tank milk.

    PubMed

    Straley, B A; Donaldson, S C; Hedge, N V; Sawant, A A; Srinivasan, V; Oliver, S P; Jayarao, B M

    2006-01-01

    The dairy farm environment and animals on the farm serve as important reservoirs of pathogenic and commensal bacteria that could potentially gain access to milk in the bulk tank via several pathways. Pathogenic gram-negative bacteria can gain access to bulk tank milk from infected mammary glands, contaminated udders and milking machines, and/or from the dairy farm environment. Contaminated raw milk when consumed by humans or fed to animals on the farm can result in gastroenteric infections in humans and animals and also provide an opportunity for organisms to colonize the farm environment. This scenario becomes much more complicated when pathogenic bacteria such as Salmonella, Shiga toxin-producing Escherichia coli, and commensal gram-negative enteric bacteria encode for antimicrobial resistance determinants. In recent years, the role of commensal bacteria as reservoirs of genetic determinants for antimicrobial resistance has come under closer scrutiny. Commensal bacteria in bulk tank milk can be a significant reservoir of antimicrobial determinants. Raw milk consumption can result in exposure to antimicrobial-resistant commensal gram-negative bacteria. This paper examines the prevalence and role of commensal gram-negative enteric bacteria in bulk tank milk and their public health significance.

  3. A Wind Tunnel Investigation to Determine Dominant Forebody Strake Design Characteristics for an F-15 Equipped with Conformal Fuel Tanks.

    DTIC Science & Technology

    1983-12-01

    LONSlZTUDNAL STABILITY DATA FOR Nl F-15 WITH ONLY CFTJ! AND AMl F-13 WITH CFTS AND FIB STRAKES. ., 0-34 -... .4r * CL 1.4. .2 .2 .4 .6 .8 1 1.2 1.4 CO CM...CONFORMAL FUEL TANKS THESIS "AFIT/GAE/AA/83D-7 Terry A. DuncanCaptain USAF DT C SELECTE ca JAN 18 1984 DEPARTMENT OF THE AIR FORCE S AIR UNIVERSITY E AIR...DETERMINE DOMINANT FOREBODY STRAKE DESIGN CHARACTERISTICS FOR AN F-15 EQUIPPED WITH CONFORMAL FUEL TANKS THESIS AFITIGAE/AA/83D-7 Terry A. Duncan

  4. SOUTH SIDE OF TANKS. LOADING DOCK, WITH FIRST AID STATION ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    SOUTH SIDE OF TANKS. LOADING DOCK, WITH FIRST AID STATION IN LEFT FOREGROUND - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Liquid Oxygen & Nitrogen Storage Tank Farm, Intersection of Altair & Jupiter Boulevards, Boron, Kern County, CA

  5. 46 CFR 195.11-30 - Portable tanks.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 7 2014-10-01 2014-10-01 false Portable tanks. 195.11-30 Section 195.11-30 Shipping... AND MISCELLANEOUS SYSTEMS AND EQUIPMENT Portable Vans and Tanks § 195.11-30 Portable tanks. (a) All portable tanks, whether hazardous or nonhazardous commodities, shall be loaded and stowed in accordance...

  6. 46 CFR 195.11-30 - Portable tanks.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 7 2013-10-01 2013-10-01 false Portable tanks. 195.11-30 Section 195.11-30 Shipping... AND MISCELLANEOUS SYSTEMS AND EQUIPMENT Portable Vans and Tanks § 195.11-30 Portable tanks. (a) All portable tanks, whether hazardous or nonhazardous commodities, shall be loaded and stowed in accordance...

  7. 33 CFR 155.810 - Tank vessel security.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Tank vessel security. 155.810..., Procedures, Equipment, and Records § 155.810 Tank vessel security. Operators of tank vessels carrying more oil cargo residue than normal in any cargo tank must assign a surveillance person or persons...

  8. 46 CFR 195.11-30 - Portable tanks.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Portable tanks. 195.11-30 Section 195.11-30 Shipping... AND MISCELLANEOUS SYSTEMS AND EQUIPMENT Portable Vans and Tanks § 195.11-30 Portable tanks. (a) All portable tanks, whether hazardous or nonhazardous commodities, shall be loaded and stowed in accordance...

  9. 46 CFR 195.11-30 - Portable tanks.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 7 2011-10-01 2011-10-01 false Portable tanks. 195.11-30 Section 195.11-30 Shipping... AND MISCELLANEOUS SYSTEMS AND EQUIPMENT Portable Vans and Tanks § 195.11-30 Portable tanks. (a) All portable tanks, whether hazardous or nonhazardous commodities, shall be loaded and stowed in accordance...

  10. 46 CFR 195.11-30 - Portable tanks.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 7 2012-10-01 2012-10-01 false Portable tanks. 195.11-30 Section 195.11-30 Shipping... AND MISCELLANEOUS SYSTEMS AND EQUIPMENT Portable Vans and Tanks § 195.11-30 Portable tanks. (a) All portable tanks, whether hazardous or nonhazardous commodities, shall be loaded and stowed in accordance...

  11. 33 CFR 155.810 - Tank vessel security.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 2 2012-07-01 2012-07-01 false Tank vessel security. 155.810..., Procedures, Equipment, and Records § 155.810 Tank vessel security. Operators of tank vessels carrying more oil cargo residue than normal in any cargo tank must assign a surveillance person or persons...

  12. Estimating Residual Solids Volume In Underground Storage Tanks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clark, Jason L.; Worthy, S. Jason; Martin, Bruce A.

    2014-01-08

    The Savannah River Site liquid waste system consists of multiple facilities to safely receive and store legacy radioactive waste, treat, and permanently dispose waste. The large underground storage tanks and associated equipment, known as the 'tank farms', include a complex interconnected transfer system which includes underground transfer pipelines and ancillary equipment to direct the flow of waste. The waste in the tanks is present in three forms: supernatant, sludge, and salt. The supernatant is a multi-component aqueous mixture, while sludge is a gel-like substance which consists of insoluble solids and entrapped supernatant. The waste from these tanks is retrieved andmore » treated as sludge or salt. The high level (radioactive) fraction of the waste is vitrified into a glass waste form, while the low-level waste is immobilized in a cementitious grout waste form called saltstone. Once the waste is retrieved and processed, the tanks are closed via removing the bulk of the waste, chemical cleaning, heel removal, stabilizing remaining residuals with tailored grout formulations and severing/sealing external penetrations. The comprehensive liquid waste disposition system, currently managed by Savannah River Remediation, consists of 1) safe storage and retrieval of the waste as it is prepared for permanent disposition; (2) definition of the waste processing techniques utilized to separate the high-level waste fraction/low-level waste fraction; (3) disposition of LLW in saltstone; (4) disposition of the HLW in glass; and (5) closure state of the facilities, including tanks. This paper focuses on determining the effectiveness of waste removal campaigns through monitoring the volume of residual solids in the waste tanks. Volume estimates of the residual solids are performed by creating a map of the residual solids on the waste tank bottom using video and still digital images. The map is then used to calculate the volume of solids remaining in the waste tank. The

  13. 33 CFR 157.134 - Cargo tank drainage.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 2 2012-07-01 2012-07-01 false Cargo tank drainage. 157.134...) POLLUTION RULES FOR THE PROTECTION OF THE MARINE ENVIRONMENT RELATING TO TANK VESSELS CARRYING OIL IN BULK Crude Oil Washing (COW) System on Tank Vessels Design, Equipment, and Installation § 157.134 Cargo tank...

  14. 33 CFR 157.134 - Cargo tank drainage.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Cargo tank drainage. 157.134...) POLLUTION RULES FOR THE PROTECTION OF THE MARINE ENVIRONMENT RELATING TO TANK VESSELS CARRYING OIL IN BULK Crude Oil Washing (COW) System on Tank Vessels Design, Equipment, and Installation § 157.134 Cargo tank...

  15. 7 CFR 58.131 - Equipment and facilities.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... with 3-A Sanitary Standards for Stainless Steel Automotive Milk and Milk Products Transportation Tanks... be stainless steel and so constructed that it will not buckle, sag or prevent complete drainage. All... under sanitary conditions from farm bulk tanks through stainless steel piping or approved tubing. The...

  16. 7 CFR 58.131 - Equipment and facilities.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... with 3-A Sanitary Standards for Stainless Steel Automotive Milk and Milk Products Transportation Tanks... be stainless steel and so constructed that it will not buckle, sag or prevent complete drainage. All... under sanitary conditions from farm bulk tanks through stainless steel piping or approved tubing. The...

  17. 7 CFR 58.131 - Equipment and facilities.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... with 3-A Sanitary Standards for Stainless Steel Automotive Milk and Milk Products Transportation Tanks... be stainless steel and so constructed that it will not buckle, sag or prevent complete drainage. All... under sanitary conditions from farm bulk tanks through stainless steel piping or approved tubing. The...

  18. 7 CFR 58.131 - Equipment and facilities.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... with 3-A Sanitary Standards for Stainless Steel Automotive Milk and Milk Products Transportation Tanks... be stainless steel and so constructed that it will not buckle, sag or prevent complete drainage. All... under sanitary conditions from farm bulk tanks through stainless steel piping or approved tubing. The...

  19. 7 CFR 58.131 - Equipment and facilities.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... with 3-A Sanitary Standards for Stainless Steel Automotive Milk and Milk Products Transportation Tanks... be stainless steel and so constructed that it will not buckle, sag or prevent complete drainage. All... under sanitary conditions from farm bulk tanks through stainless steel piping or approved tubing. The...

  20. Farm Safety Practices and Farm Size in New South Wales.

    PubMed

    Bailey, Jannine; Dutton, Tegan; Payne, Kristy; Wilson, Ross; Brew, Bronwyn K

    2017-01-01

    There is some evidence to suggest that safety on small-area farms may not be high priority due to economic constraints and lack of knowledge. This has important ramifications for injury and economic burden. The objective of this research was to conduct a pilot study to investigate whether small- to medium-area farms implement fewer safety practices than large-area farms. Farmers were recruited from farm safety training days, field days, and produce stores in rural New South Wales (NSW), Australia. Small- and medium-area farms less than 500 ha (1235 acres) in size were aggregated for analysis and compared with large-area farms (≥500 ha) for survey items, including safety equipment owned and used, safety practices protecting children, barriers to improving safety, and causes of injury. Overall, small/medium-area farms were found to own less safety equipment and to employ less safety practices than large-area farms. In particular, fewer tractors were fitted with rollover protection structures, there was less signage, less hearing protection, and fewer machinery guides. Injury rates were slightly less for small/medium-area farms, particularly involving vehicles. Small- and medium-area farmers were more likely to report lack of skills as barriers to making safety improvements. This pilot study found some evidence that small/medium-area farms implement fewer safety practices than large-area farms. A larger study is warranted to investigate this further, with particular focus on barriers and ways to overcome them. This could have important ramifications for government policies supporting struggling farmers on small/medium-area farms.

  1. NORTH SIDES OF LIQUID OXYGEN TANKS. Looking southwest along railroad ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    NORTH SIDES OF LIQUID OXYGEN TANKS. Looking southwest along railroad track to AF Plant 72 - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Liquid Oxygen & Nitrogen Storage Tank Farm, Intersection of Altair & Jupiter Boulevards, Boron, Kern County, CA

  2. 46 CFR 153.281 - Piping to independent tanks.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Piping to independent tanks. 153.281 Section 153.281... Systems and Cargo Handling Equipment § 153.281 Piping to independent tanks. Piping for an independent cargo tank must penetrate the tank only through that part of the tank or dome extending above the...

  3. 46 CFR 153.281 - Piping to independent tanks.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 5 2012-10-01 2012-10-01 false Piping to independent tanks. 153.281 Section 153.281... Systems and Cargo Handling Equipment § 153.281 Piping to independent tanks. Piping for an independent cargo tank must penetrate the tank only through that part of the tank or dome extending above the...

  4. 30 CFR 57.13011 - Air receiver tanks.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Air receiver tanks. 57.13011 Section 57.13011... Boilers § 57.13011 Air receiver tanks. Air receiver tanks shall be equipped with one or more automatic... exceeding the maximum allowable working pressure in a receiver tank by not more than 10 percent. Air...

  5. 30 CFR 56.13011 - Air receiver tanks.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Air receiver tanks. 56.13011 Section 56.13011... § 56.13011 Air receiver tanks. Air receiver tanks shall be equipped with one or more automatic pressure... the maximum allowable working pressure in a receiver tank by not more than 10 percent. Air receiver...

  6. 46 CFR 153.251 - Independent cargo tanks.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 5 2012-10-01 2012-10-01 false Independent cargo tanks. 153.251 Section 153.251... CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Design and Equipment Cargo Tanks § 153.251 Independent cargo tanks. All independent cargo tank must meet § 38.05-10 (a)(1), (b), (d), and...

  7. 46 CFR 153.251 - Independent cargo tanks.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Independent cargo tanks. 153.251 Section 153.251... CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Design and Equipment Cargo Tanks § 153.251 Independent cargo tanks. All independent cargo tank must meet § 38.05-10 (a)(1), (b), (d), and...

  8. 30 CFR 57.13011 - Air receiver tanks.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Air receiver tanks. 57.13011 Section 57.13011... Boilers § 57.13011 Air receiver tanks. Air receiver tanks shall be equipped with one or more automatic... exceeding the maximum allowable working pressure in a receiver tank by not more than 10 percent. Air...

  9. Reduction of point contamination sources of pesticide from a vineyard farm.

    PubMed

    Fait, Gabriella; Nicelli, Marco; Fragoulis, George; Trevisan, Marco; Capri, Ettore

    2007-05-01

    Although plant protection products are already regulated in Europe under Directive 91/414/EEC, there is increasing concern about the pollution of ground and surface water caused by point sources of pesticides, such as tank filling, spillages, faulty equipment, washing, waste disposal, and direct contamination. One tool for the reduction of pesticide point source contamination is a biological system where chemicals are bound and biologically degraded. This paper presents an offset lined system where wastewaters containing pesticide residues leach through a biomix. A pump system is provided to pump the water onto the surface of the biomix and allow it to drain under gravity, keeping the biomix wet. The analysis of residues of nine pesticides in the water, biomix, and sediment inside the tank showed the biobed to function well, with a water decontamination greater than 90%. The use of this system mitigated the potential for pollution (pesticide concentrations higher than 0.1 microg/L) of 1 km of the river system surrounding the farm.

  10. 49 CFR 229.97 - Grounding fuel tanks.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 4 2012-10-01 2012-10-01 false Grounding fuel tanks. 229.97 Section 229.97 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION... Equipment § 229.97 Grounding fuel tanks. Fuel tanks and related piping shall be electrically grounded. ...

  11. 49 CFR 229.97 - Grounding fuel tanks.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 4 2011-10-01 2011-10-01 false Grounding fuel tanks. 229.97 Section 229.97 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION... Equipment § 229.97 Grounding fuel tanks. Fuel tanks and related piping shall be electrically grounded. ...

  12. 49 CFR 229.97 - Grounding fuel tanks.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Grounding fuel tanks. 229.97 Section 229.97 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION... Equipment § 229.97 Grounding fuel tanks. Fuel tanks and related piping shall be electrically grounded. ...

  13. 46 CFR 154.439 - Tank design.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 5 2013-10-01 2013-10-01 false Tank design. 154.439 Section 154.439 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SAFETY STANDARDS FOR SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES Design, Construction and Equipment Independent Tank Type A § 154.439 Tank design. An independent...

  14. 46 CFR 154.439 - Tank design.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 5 2014-10-01 2014-10-01 false Tank design. 154.439 Section 154.439 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SAFETY STANDARDS FOR SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES Design, Construction and Equipment Independent Tank Type A § 154.439 Tank design. An independent...

  15. 46 CFR 154.446 - Tank design.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 5 2013-10-01 2013-10-01 false Tank design. 154.446 Section 154.446 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SAFETY STANDARDS FOR SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES Design, Construction and Equipment Independent Tank Type B § 154.446 Tank design. An independent...

  16. 46 CFR 154.446 - Tank design.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 5 2014-10-01 2014-10-01 false Tank design. 154.446 Section 154.446 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SAFETY STANDARDS FOR SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES Design, Construction and Equipment Independent Tank Type B § 154.446 Tank design. An independent...

  17. 46 CFR 154.439 - Tank design.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 5 2012-10-01 2012-10-01 false Tank design. 154.439 Section 154.439 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SAFETY STANDARDS FOR SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES Design, Construction and Equipment Independent Tank Type A § 154.439 Tank design. An independent...

  18. 46 CFR 154.446 - Tank design.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 5 2012-10-01 2012-10-01 false Tank design. 154.446 Section 154.446 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SAFETY STANDARDS FOR SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES Design, Construction and Equipment Independent Tank Type B § 154.446 Tank design. An independent...

  19. Test Report for Permanganate and Cold Strontium Strike for Tank 241-AN-102

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Duncan, James B.; Huber, Heinz J.; Smalley, Colleen S.

    Tanks 241-AN-102 and 241-AN-107 supernatants contain soluble Sr-90 and transuranic elements that require removal prior to vitrification to comply with the Waste Treatment and Immobilization Plant immobilized low-activity waste specification (WTP Contract, DE-AC27-01RV 14136, Specification 2.2.2.8, "Radionuclide Concentration Limitations") and the U.S. Nuclear Regulatory Commission provisional agreement on waste incidental to reprocessing (letter, Paperiello, C. J., "Classification of Hanford Low-Activity Tank Waste Fraction"). These two tanks have high concentrations of organics and organic complexants and are referred to as complexant concentrate tanks. A precipitation process using sodium permanganate (NaMnO{sub 4}) and strontium nitrate (Sr(NO{sub 3}){sub 2}) was developed and testedmore » with tank waste samples to precipitate Sr-90 and transuranic elements from the supernate (PNWD-3141, Optimization of Sr/TRU Removal Conditions with Samples of AN-102 Tank Waste). Testing documented in this report was conducted to further evaluate the use of the strontium nitrate/sodium permanganate process in tank farms with a retention time of up to 12 months. Previous testing was focused on developing a process for deployment in the ultrafiltration vessels in the Waste Treatment and Immobilization Plant. This environment is different from tank farms in two important ways: the waste is diluted in the Waste Treatment and Immobilization Plant to ~5.5 M sodium, whereas the supernate in the tank farms is ~9 M Na. Secondly, while the Waste Treatment and Immobilization Plant allows for a maximum treatment time of hours to days, the in-tank farms treatment of tanks 241-AN102 and 241-AN-107 will result in a retention time of months (perhaps up to12 months) before processing. A comparative compilation of separation processes for Sr/transuranics has been published as RPP-RPT-48340, Evaluation of Alternative Strontium and Transuranic Separation Processes. This report also listed the

  20. Progress in Hanford's Double-Shell Tank Integrity Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bryson, D.C.; Washenfelder, D.J.; Boomer, K.D.

    2008-07-01

    The U.S. Department of Energy's Office of River Protection has an extensive integrity assessment program for the Hanford Site Double-Shell Tank System. The DOE Orders and environmental protection regulations provide the guidelines for the activities used to inspect and maintain 28 double-shell tanks (DSTs), the waste evaporator, and ancillary equipment that compose this system. This program has been reviewed by oversight and regulatory bodies and found to comply with the established guidelines. The basis for the DOE Order 435.1-1 for tank integrity comes from the Tank Structural Integrity Panel led by Brookhaven National Laboratory during the late 1990's. These guidelinesmore » established criteria for performing Non-Destructive Examination (NDE), for acceptance of the NDE results, for waste chemistry control, and for monitoring the tanks. The environmental regulations mirror these requirements and allow for the tank integrity program to provide compliant storage of the tanks. Both sets of requirements provide additional guidance for the protection of ancillary equipment. CH2M HILL uses two methods of NDE: visual inspection and Ultrasonic Testing (UT). The visual inspection program examines the primary tank and secondary liner of the DST. The primary tank is examined both on the interior surface above the waste in the tank and on the exterior surface facing the annulus of the DST. The interior surface of the tank liner is examined at the same time as the outer surface of the primary tank. The UT program examines representative areas of the primary tank and secondary liner by deploying equipment in the annulus of the tank. Both programs have led to the development of new equipment for remote inspection of the tanks. Compact camera and enhanced lighting systems have been designed and deployed through narrow access ports (called risers) into the tanks. The UT program has designed two generations of crawlers and equipment for deployment through risers into the

  1. 241-AY Double Shell Tanks (DST) Integrity Assessment Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    JENSEN, C.E.

    1999-09-21

    This report presents the results of the integrity assessment of the 241-AY double-shell tank farm facility located in the 200 East Area of the Hanford Site. The assessment included the design evaluation and integrity examinations of the tanks and concluded that the facility is adequately designed, is compatible with the waste, and is fit for use. Recommendations including subsequent examinations. are made to ensure the continued safe operation of the tanks.

  2. 33 CFR 157.124 - COW tank washing machines.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false COW tank washing machines. 157... OIL IN BULK Crude Oil Washing (COW) System on Tank Vessels Design, Equipment, and Installation § 157.124 COW tank washing machines. (a) COW machines must be permanently mounted in each cargo tank. (b...

  3. High-level waste storage tank farms/242-A evaporator standards/requirements identification document (S/RID), Vol. 7

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1994-04-01

    This Requirements Identification Document (RID) describes an Occupational Health and Safety Program as defined through the Relevant DOE Orders, regulations, industry codes/standards, industry guidance documents and, as appropriate, good industry practice. The definition of an Occupational Health and Safety Program as specified by this document is intended to address Defense Nuclear Facilities Safety Board Recommendations 90-2 and 91-1, which call for the strengthening of DOE complex activities through the identification and application of relevant standards which supplement or exceed requirements mandated by DOE Orders. This RID applies to the activities, personnel, structures, systems, components, and programs involved in maintaining themore » facility and executing the mission of the High-Level Waste Storage Tank Farms.« less

  4. 46 CFR 154.235 - Cargo tank location.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 5 2013-10-01 2013-10-01 false Cargo tank location. 154.235 Section 154.235 Shipping... FOR SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES Design, Construction and Equipment Ship Survival Capability and Cargo Tank Location § 154.235 Cargo tank location. (a) For type IG hulls, cargo...

  5. 46 CFR 154.235 - Cargo tank location.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 5 2012-10-01 2012-10-01 false Cargo tank location. 154.235 Section 154.235 Shipping... FOR SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES Design, Construction and Equipment Ship Survival Capability and Cargo Tank Location § 154.235 Cargo tank location. (a) For type IG hulls, cargo...

  6. 46 CFR 154.235 - Cargo tank location.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 5 2014-10-01 2014-10-01 false Cargo tank location. 154.235 Section 154.235 Shipping... FOR SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES Design, Construction and Equipment Ship Survival Capability and Cargo Tank Location § 154.235 Cargo tank location. (a) For type IG hulls, cargo...

  7. 33 CFR 157.17 - Oil residue (sludge) tank.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Oil residue (sludge) tank. 157.17...) POLLUTION RULES FOR THE PROTECTION OF THE MARINE ENVIRONMENT RELATING TO TANK VESSELS CARRYING OIL IN BULK Design, Equipment, and Installation § 157.17 Oil residue (sludge) tank. (a) A tank vessel of 400 gross...

  8. 33 CFR 157.17 - Oil residue (sludge) tank.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 2 2011-07-01 2011-07-01 false Oil residue (sludge) tank. 157.17...) POLLUTION RULES FOR THE PROTECTION OF THE MARINE ENVIRONMENT RELATING TO TANK VESSELS CARRYING OIL IN BULK Design, Equipment, and Installation § 157.17 Oil residue (sludge) tank. (a) A tank vessel of 400 gross...

  9. 33 CFR 157.17 - Oil residue (sludge) tank.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 2 2012-07-01 2012-07-01 false Oil residue (sludge) tank. 157.17...) POLLUTION RULES FOR THE PROTECTION OF THE MARINE ENVIRONMENT RELATING TO TANK VESSELS CARRYING OIL IN BULK Design, Equipment, and Installation § 157.17 Oil residue (sludge) tank. (a) A tank vessel of 400 gross...

  10. 33 CFR 157.17 - Oil residue (sludge) tank.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 2 2014-07-01 2014-07-01 false Oil residue (sludge) tank. 157.17...) POLLUTION RULES FOR THE PROTECTION OF THE MARINE ENVIRONMENT RELATING TO TANK VESSELS CARRYING OIL IN BULK Design, Equipment, and Installation § 157.17 Oil residue (sludge) tank. (a) A tank vessel of 400 gross...

  11. 33 CFR 157.17 - Oil residue (sludge) tank.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 2 2013-07-01 2013-07-01 false Oil residue (sludge) tank. 157.17...) POLLUTION RULES FOR THE PROTECTION OF THE MARINE ENVIRONMENT RELATING TO TANK VESSELS CARRYING OIL IN BULK Design, Equipment, and Installation § 157.17 Oil residue (sludge) tank. (a) A tank vessel of 400 gross...

  12. Characterization of the SRNL-Washed tank 51 sludge batch 9 qualification sample

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pareizs, J. M.

    2016-01-01

    Savannah River National Laboratory (SRNL) personnel have been requested to qualify the next sludge batch (Sludge Batch 9 – SB9) for processing at the Defense Waste Processing Facility (DWPF). To accomplish this task, Savannah River Remediation (SRR) sent SRNL a 3-L sample of Tank 51H slurry to be characterized, washed, and then used in a lab-scale demonstration of the DWPF flowsheet (after combining with Tank 40H sludge). SRNL has washed the Tank 51H sample per the Tank Farm washing strategy as of October 20, 2015. A part of the qualification process is extensive radionuclide and chemical characterization of the SRNL-washedmore » Tank 51H slurry. This report documents the chemical characterization of the washed slurry; radiological characterization is in progress and will be documented in a separate report. The analytical results of this characterization are comparable to the Tank Farm projections. Therefore, it is recommended that SRNL use this washed slurry for the ongoing SB9 qualification activities.« less

  13. 33 CFR 183.550 - Fuel tanks: Installation.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 2 2012-07-01 2012-07-01 false Fuel tanks: Installation. 183.550...) BOATING SAFETY BOATS AND ASSOCIATED EQUIPMENT Fuel Systems Manufacturer Requirements § 183.550 Fuel tanks: Installation. (a) Each fuel tank must not be integral with any boat structure or mounted on an engine. (b) Each...

  14. 33 CFR 155.815 - Tank vessel integrity.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 2 2012-07-01 2012-07-01 false Tank vessel integrity. 155.815..., Procedures, Equipment, and Records § 155.815 Tank vessel integrity. (a) Except as provided in paragraph (b) of this section, a tank vessel underway or at anchor must have all closure mechanisms on the...

  15. 33 CFR 155.815 - Tank vessel integrity.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Tank vessel integrity. 155.815..., Procedures, Equipment, and Records § 155.815 Tank vessel integrity. (a) Except as provided in paragraph (b) of this section, a tank vessel underway or at anchor must have all closure mechanisms on the...

  16. 30 CFR 56.13011 - Air receiver tanks.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Air receiver tanks. 56.13011 Section 56.13011... SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Compressed Air and Boilers § 56.13011 Air receiver tanks. Air receiver tanks shall be equipped with one or more automatic pressure...

  17. 30 CFR 56.13011 - Air receiver tanks.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Air receiver tanks. 56.13011 Section 56.13011... SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Compressed Air and Boilers § 56.13011 Air receiver tanks. Air receiver tanks shall be equipped with one or more automatic pressure...

  18. 30 CFR 57.13011 - Air receiver tanks.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Air receiver tanks. 57.13011 Section 57.13011... SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Compressed Air and Boilers § 57.13011 Air receiver tanks. Air receiver tanks shall be equipped with one or more automatic...

  19. 30 CFR 56.13011 - Air receiver tanks.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Air receiver tanks. 56.13011 Section 56.13011... SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Compressed Air and Boilers § 56.13011 Air receiver tanks. Air receiver tanks shall be equipped with one or more automatic pressure...

  20. 30 CFR 57.13011 - Air receiver tanks.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Air receiver tanks. 57.13011 Section 57.13011... SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Compressed Air and Boilers § 57.13011 Air receiver tanks. Air receiver tanks shall be equipped with one or more automatic...

  1. Opposed Bellows Would Expel Contents Of Tank

    NASA Technical Reports Server (NTRS)

    Whitaker, Willie

    1994-01-01

    Proposed storage tank contains two pairs of opposed bellows used to expel its contents. Storage and expulsion volumes of tank same as those of older version of tank equipped with single bellows. Four bellows offer greater stability. Applications include automobile cooling systems and gasoline-powered tools like chain saws and leaf blowers.

  2. 33 CFR 183.550 - Fuel tanks: Installation.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Fuel tanks: Installation. 183.550...) BOATING SAFETY BOATS AND ASSOCIATED EQUIPMENT Fuel Systems Manufacturer Requirements § 183.550 Fuel tanks: Installation. (a) Each fuel tank must not be integral with any boat structure or mounted on an engine. (b) Each...

  3. 30 CFR 56.13011 - Air receiver tanks.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Compressed Air and Boilers § 56.13011 Air receiver tanks. Air receiver tanks shall be equipped with one or more automatic pressure... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Air receiver tanks. 56.13011 Section 56.13011...

  4. 30 CFR 57.13011 - Air receiver tanks.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Compressed Air and Boilers § 57.13011 Air receiver tanks. Air receiver tanks shall be equipped with one or more automatic... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Air receiver tanks. 57.13011 Section 57.13011...

  5. 33 CFR 157.132 - Cargo tanks: Hydrocarbon vapor emissions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... CARRYING OIL IN BULK Crude Oil Washing (COW) System on Tank Vessels Design, Equipment, and Installation § 157.132 Cargo tanks: Hydrocarbon vapor emissions. Each tank vessel having a COW system under § 157.10a...

  6. 46 CFR 153.254 - Cargo tank access.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Design and Equipment Cargo Tanks... vapor space described in § 153.354. (b) An access through a vertical cargo tank surface must be at least...

  7. 46 CFR 153.254 - Cargo tank access.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Design and Equipment Cargo Tanks... vapor space described in § 153.354. (b) An access through a vertical cargo tank surface must be at least...

  8. 46 CFR 153.254 - Cargo tank access.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Design and Equipment Cargo Tanks... vapor space described in § 153.354. (b) An access through a vertical cargo tank surface must be at least...

  9. 46 CFR 153.254 - Cargo tank access.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Design and Equipment Cargo Tanks... vapor space described in § 153.354. (b) An access through a vertical cargo tank surface must be at least...

  10. 33 CFR 157.170 - COW equipment: Removal.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false COW equipment: Removal. 157.170... Crude Oil Washing (COW) System on Tank Vessels Cow Operations § 157.170 COW equipment: Removal. (a) Whenever a deck mounted COW machine is removed from the tank, the master shall ensure that: (1) The supply...

  11. 49 CFR 179.400-13 - Support system for inner tank.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... FOR TANK CARS Specification for Cryogenic Liquid Tank Car Tanks and Seamless Steel Tanks (Classes DOT... magnitudes and directions when the inner tank is fully loaded and the car is equipped with a conventional... electrically, by either the support system, piping, or a separate electrical connection of approved design. ...

  12. 14 CFR 121.316 - Fuel tanks.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Fuel tanks. 121.316 Section 121.316 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) AIR CARRIERS..., FLAG, AND SUPPLEMENTAL OPERATIONS Instrument and Equipment Requirements § 121.316 Fuel tanks. Each...

  13. 14 CFR 121.316 - Fuel tanks.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Fuel tanks. 121.316 Section 121.316 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) AIR CARRIERS..., FLAG, AND SUPPLEMENTAL OPERATIONS Instrument and Equipment Requirements § 121.316 Fuel tanks. Each...

  14. 14 CFR 121.316 - Fuel tanks.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Fuel tanks. 121.316 Section 121.316 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) AIR CARRIERS..., FLAG, AND SUPPLEMENTAL OPERATIONS Instrument and Equipment Requirements § 121.316 Fuel tanks. Each...

  15. 14 CFR 121.316 - Fuel tanks.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Fuel tanks. 121.316 Section 121.316 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) AIR CARRIERS..., FLAG, AND SUPPLEMENTAL OPERATIONS Instrument and Equipment Requirements § 121.316 Fuel tanks. Each...

  16. 14 CFR 121.316 - Fuel tanks.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Fuel tanks. 121.316 Section 121.316 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) AIR CARRIERS..., FLAG, AND SUPPLEMENTAL OPERATIONS Instrument and Equipment Requirements § 121.316 Fuel tanks. Each...

  17. Implications of PCR and ELISA results on the routes of bulk-tank contamination with Mycobacterium avium ssp. paratuberculosis.

    PubMed

    Beaver, A; Cazer, C L; Ruegg, P L; Gröhn, Y T; Schukken, Y H

    2016-02-01

    Mycobacterium avium ssp. paratuberculosis (MAP), the etiologic agent of Johne's disease in dairy cattle, may enter the bulk tank via environmental contamination or direct excretion into milk. Traditionally, diagnostics to identify MAP in milk target either MAP antibodies (by ELISA) or the organism itself (by culture or PCR). High ELISA titers may be directly associated with excretion of MAP into milk but only indirectly linked to environmental contamination of the bulk tank. Patterns of bulk-milk ELISA and bulk-milk PCR results could therefore provide insight into the routes of contamination and level of infection or environmental burden. Coupled with questionnaire responses pertaining to management, the results of these diagnostic tests could reveal correlations with herd characteristics or on-farm practices that distinguish herds with high and low environmental bulk-tank MAP contamination. A questionnaire on hygiene, management, and Johne's specific parameters was administered to 292 dairy farms in New York, Oregon, and Wisconsin. Bulk-tank samples were collected from each farm for evaluation by real-time PCR and ELISA. Before DNA extraction and testing of the unknown samples, bulk-milk template preparation was optimized with respect to parameters such as MAP fractionation patterns and lysis. Two regression models were developed to explore the relationships among bulk-tank PCR, ELISA, environmental predictors, and herd characteristics. First, ELISA optical density (OD) was designated as the outcome in a linear regression model. Second, the log odds of being PCR positive in the bulk tank were modeled using binary logistic regression with penalized maximum likelihood. The proportion of PCR-positive bulk tanks was highest for New York and for organic farms, providing a clue as to the geographical patterns of MAP-positive bulk-tank samples and relationship to production type. Bulk-milk PCR positivity was also higher for large relative to small herds. The models

  18. Full scale tank car coupler impact tests

    DOT National Transportation Integrated Search

    2003-11-15

    Full scale tests were performed to investigate various : aspects of tank car behavior during coupler impacts. A tank car : was equipped with 37 accelerometers and an instrumented : coupler. Two series of full scale coupler impact tests, : comprising ...

  19. Chlorine tank car puncture resistance evaluation

    DOT National Transportation Integrated Search

    1992-07-01

    Experimental studies have been conducted to evaluate the relative puncture resistance of DOT 105A500W (chlorine) tank cars and DOT 112J340W (propane) tank cars equipped with 1/2-inch steel head shields. These studies included a series of full- and 1/...

  20. 38 CFR 21.126 - Farm cooperative course.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... rehabilitation services. The areas in which proficiency is to be established include: (1) Planning; (2) Producing; (3) Marketing; (4) Maintaining farm equipment; (5) Conserving farm resources; (6) Financing the farm...

  1. INSTRUCTION IN FARM MECHANICS, SUGGESTIONS FOR DEVELOPING TRAINING PROGRAMS IN FARM MECHANICS IN VOCATIONAL AGRICULTURE.

    ERIC Educational Resources Information Center

    HOLLENBERG, A.H.; JOHNSON, E.J.

    THE PURPOSE OF THE PROGRAM GUIDE IS TO ASSIST TEACHERS IN TRAINING YOUNG FARMERS AND FARM WORKERS IN THE SELECTION, OPERATION, UTILIZATION, AND MAINTENANCE OF FARM TOOLS, MACHINERY, AND MECHANICAL EQUIPMENT. DESIGNED BY NATIONAL AGRICULTURAL EDUCATION SPECIALISTS, THE DOCUMENT INCLUDES CHAPTERS ON THE CHANGING FARM, SETTING UP PROGRAMS, FARM…

  2. 33 CFR 157.124 - COW tank washing machines.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 2 2012-07-01 2012-07-01 false COW tank washing machines. 157... (CONTINUED) POLLUTION RULES FOR THE PROTECTION OF THE MARINE ENVIRONMENT RELATING TO TANK VESSELS CARRYING OIL IN BULK Crude Oil Washing (COW) System on Tank Vessels Design, Equipment, and Installation § 157...

  3. 49 CFR 179.400-13 - Support system for inner tank.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... CARS Specification for Cryogenic Liquid Tank Car Tanks and Seamless Steel Tanks (Classes DOT-113 and... directions when the inner tank is fully loaded and the car is equipped with a conventional draft gear... the support system, piping, or a separate electrical connection of approved design. ...

  4. 49 CFR 179.400-13 - Support system for inner tank.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... CARS Specification for Cryogenic Liquid Tank Car Tanks and Seamless Steel Tanks (Classes DOT-113 and... directions when the inner tank is fully loaded and the car is equipped with a conventional draft gear... the support system, piping, or a separate electrical connection of approved design. ...

  5. 49 CFR 179.400-13 - Support system for inner tank.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... CARS Specification for Cryogenic Liquid Tank Car Tanks and Seamless Steel Tanks (Classes DOT-113 and... directions when the inner tank is fully loaded and the car is equipped with a conventional draft gear... the support system, piping, or a separate electrical connection of approved design. ...

  6. 49 CFR 179.400-13 - Support system for inner tank.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... CARS Specification for Cryogenic Liquid Tank Car Tanks and Seamless Steel Tanks (Classes DOT-113 and... directions when the inner tank is fully loaded and the car is equipped with a conventional draft gear... the support system, piping, or a separate electrical connection of approved design. ...

  7. TANKS 18 AND 19-F STRUCTURAL FLOWABLE GROUT FILL MATERIAL EVALUATION AND RECOMMENDATIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stefanko, D.; Langton, C.

    2011-11-01

    fill mix design. (4) Prepare samples for hydraulic property measurements for comparison to the values in the F and H- Tank Farm Performance Assessments (PAs). (5) Identify a grout mix for the Tanks 18-F and 19-F Grout Procurement Specification [Forty, 2011 a, b, c]. Results for two flowable zero bleed structural fill concepts containing 3/8 inch gravel (70070 Series and LP-8 Series) and a sand only mix (SO Series) are provided in this report. Tank Farm Engineering and SRNL Project Management selected the 70070 mix as the base case for inclusion in Revision 0 of the Tanks 18-F and 19-F grout procurement specification [Forty 2011 a] and requested admixture recommendations and property confirmation for this formulation [Forty, 2011 b]. Lower cementitious paste mixes were formulated because the 70070 mix is over designed with respect to strength and generates more heat from hydration reactions than is desirable for mass pour application. Work was also initiated on a modification of the recommended mix which included shrinkage compensation to mitigate fast pathways caused by shrinkage cracking and poor physical bonding to the tank and ancillary equipment. Testing of this option was postponed to FY12.« less

  8. 40 CFR 264.1084 - Standards: Tanks.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... internal floating roof in accordance with the requirements specified in paragraph (e) of this section; (2) A tank equipped with an external floating roof in accordance with the requirements specified in... operator who controls air pollutant emissions from a tank using a fixed roof with an internal floating roof...

  9. Results for the DWPF Slurry Mix Evaporator Condensate Tank, Off Gas Condensate Tank, And Recycle Collection Tank Samples

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    TERRI, FELLINGER

    2004-12-21

    The Defense Waste Processing Facility, DWPF, currently generates approximately 1.4 million gallons of recycle water per year during Sludge-Only operations. DWPF has minimized condensate generation to 1.4 million gallons by not operating the Steam Atomized Scrubbers, SASs, for the melter off gas system. By not operating the SASs, DWPF has reduced the total volume by approximately 800,000 gallons of condensate per year. Currently, the recycle stream is sent to back to the Tank Farm and processed through the 2H Evaporator system. To alleviate the load on the 2H Evaporator system, an acid evaporator design is being considered as an alternatemore » processing and/or concentration method for the DWPF recycle stream. In order to support this alternate processing option, the DWPF has requested that the chemical and radionuclide compositions of the Off Gas Condensate Tank, OGCT, Slurry Mix Evaporator Condensate Tank, SMECT, Recycle Collection Tank, RCT, and the Decontamination Waste Treatment Tank, DWTT, be determined as a part of the process development work for the acid evaporator design. Samples have been retrieved from the OGCT, RCT, and SMECT and have been sent to the Savannah River National Laboratory, SRNL for this characterization. The DWTT samples have been recently shipped to SRNL. The results for the DWTT samples will be issued at later date.« less

  10. Optimally achieving milk bulk tank somatic cell count thresholds.

    PubMed

    Troendle, Jason A; Tauer, Loren W; Gröhn, Yrjo T

    2017-01-01

    High somatic cell count in milk leads to reduced shelf life in fluid milk and lower processed yields in manufactured dairy products. As a result, farmers are often penalized for high bulk tank somatic cell count or paid a premium for low bulk tank somatic cell count. Many countries also require all milk from a farm to be lower than a specified regulated somatic cell count. Thus, farms often cull cows that have high somatic cell count to meet somatic cell count thresholds. Rather than naïvely cull the highest somatic cell count cows, a mathematical programming model was developed that determines the cows to be culled from the herd by maximizing the net present value of the herd, subject to meeting any specified bulk tank somatic cell count level. The model was applied to test-day cows on 2 New York State dairy farms. Results showed that the net present value of the herd was increased by using the model to meet the somatic cell count restriction compared with naïvely culling the highest somatic cell count cows. Implementation of the model would be straightforward in dairy management decision software. Copyright © 2017 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  11. Farm accidents and injuries among farm families and workers. A pilot study.

    PubMed

    Cummings, P H

    1991-09-01

    Farm accident facts traditionally have been difficult to collect because of the wide array of farm family and non-family involvement in farming practices. Areas commonly involved in farm related accidents include farm machinery, tractor overturns, farm animals, farm trucks, hand and power tools, household items, chemicals, and garden equipment. Two purposes of this descriptive study were to examine, over a 1 year period, the demographic features and types, severity, and mechanisms of injury among farm families and their workers in a representative county in South Carolina, and to develop a two part mail-out questionnaire for data collection relative to farm work related accidents. The researcher concluded that farm accidents are sparsely researched; that traditional data collection methods are difficult, expensive, and time consuming; and that mail-out questionnaires are not a very effective method of collecting data relative to farm accidents, since farmers proved very reluctant to report accidents.

  12. 30 CFR 36.50 - Tests of fuel tank.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Tests of fuel tank. 36.50 Section 36.50 Mineral... MINING PRODUCTS APPROVAL REQUIREMENTS FOR PERMISSIBLE MOBILE DIESEL-POWERED TRANSPORTATION EQUIPMENT Test Requirements § 36.50 Tests of fuel tank. The fuel tank shall be inspected and tested to determine whether: (a...

  13. 30 CFR 36.50 - Tests of fuel tank.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Tests of fuel tank. 36.50 Section 36.50 Mineral... MINING PRODUCTS APPROVAL REQUIREMENTS FOR PERMISSIBLE MOBILE DIESEL-POWERED TRANSPORTATION EQUIPMENT Test Requirements § 36.50 Tests of fuel tank. The fuel tank shall be inspected and tested to determine whether: (a...

  14. 30 CFR 36.50 - Tests of fuel tank.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Tests of fuel tank. 36.50 Section 36.50 Mineral... MINING PRODUCTS APPROVAL REQUIREMENTS FOR PERMISSIBLE MOBILE DIESEL-POWERED TRANSPORTATION EQUIPMENT Test Requirements § 36.50 Tests of fuel tank. The fuel tank shall be inspected and tested to determine whether: (a...

  15. 30 CFR 36.50 - Tests of fuel tank.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Tests of fuel tank. 36.50 Section 36.50 Mineral... MINING PRODUCTS APPROVAL REQUIREMENTS FOR PERMISSIBLE MOBILE DIESEL-POWERED TRANSPORTATION EQUIPMENT Test Requirements § 36.50 Tests of fuel tank. The fuel tank shall be inspected and tested to determine whether: (a...

  16. 30 CFR 36.50 - Tests of fuel tank.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Tests of fuel tank. 36.50 Section 36.50 Mineral... MINING PRODUCTS APPROVAL REQUIREMENTS FOR PERMISSIBLE MOBILE DIESEL-POWERED TRANSPORTATION EQUIPMENT Test Requirements § 36.50 Tests of fuel tank. The fuel tank shall be inspected and tested to determine whether: (a...

  17. 46 CFR 154.427 - Membrane tank system design.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 5 2014-10-01 2014-10-01 false Membrane tank system design. 154.427 Section 154.427 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SAFETY STANDARDS FOR SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES Design, Construction and Equipment Membrane Tanks § 154.427 Membrane tank system...

  18. 46 CFR 154.427 - Membrane tank system design.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 5 2012-10-01 2012-10-01 false Membrane tank system design. 154.427 Section 154.427 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SAFETY STANDARDS FOR SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES Design, Construction and Equipment Membrane Tanks § 154.427 Membrane tank system...

  19. 46 CFR 154.427 - Membrane tank system design.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 5 2013-10-01 2013-10-01 false Membrane tank system design. 154.427 Section 154.427 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SAFETY STANDARDS FOR SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES Design, Construction and Equipment Membrane Tanks § 154.427 Membrane tank system...

  20. 46 CFR 153.256 - Trunks, domes, and openings of cargo tanks.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Equipment Cargo Tanks § 153.256 Trunks, domes, and openings of cargo tanks. (a) The hatch of a cargo tank... uppermost part of the tank, extending above the weatherdeck; (2) Its hatch at the top of the trunk or dome...

  1. 46 CFR 153.256 - Trunks, domes, and openings of cargo tanks.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Equipment Cargo Tanks § 153.256 Trunks, domes, and openings of cargo tanks. (a) The hatch of a cargo tank... uppermost part of the tank, extending above the weatherdeck; (2) Its hatch at the top of the trunk or dome...

  2. 46 CFR 153.256 - Trunks, domes, and openings of cargo tanks.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... Equipment Cargo Tanks § 153.256 Trunks, domes, and openings of cargo tanks. (a) The hatch of a cargo tank... uppermost part of the tank, extending above the weatherdeck; (2) Its hatch at the top of the trunk or dome...

  3. 46 CFR 153.256 - Trunks, domes, and openings of cargo tanks.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... Equipment Cargo Tanks § 153.256 Trunks, domes, and openings of cargo tanks. (a) The hatch of a cargo tank... uppermost part of the tank, extending above the weatherdeck; (2) Its hatch at the top of the trunk or dome...

  4. 46 CFR 153.256 - Trunks, domes, and openings of cargo tanks.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... Equipment Cargo Tanks § 153.256 Trunks, domes, and openings of cargo tanks. (a) The hatch of a cargo tank... uppermost part of the tank, extending above the weatherdeck; (2) Its hatch at the top of the trunk or dome...

  5. Analysis of potential risks from the bacterial communities associated with air-contact surfaces from tilapia (Oreochromis niloticus) fish farming.

    PubMed

    Grande Burgos, Maria Jose; Romero, Jose Luis; Pérez Pulido, Rubén; Cobo Molinos, Antonio; Gálvez, Antonio; Lucas, Rosario

    2018-01-01

    Tilapia farming is a promising growing sector in aquaculture. Yet, there are limited studies on microbiological risks associated to tilapia farms. The aim of the present study was to analyse the bacterial communities from solid surfaces in contact with air in a tilapia farm in order to evaluate the presence of bacteria potentially toxinogenic or pathogenic to humans or animals. Samples from a local tilapia farm (tank wall, aerator, water outlets, sink and floor) were analyzed by high throughput sequencing technology. Sequences were assigned to operational taxonomic units (OTUs). Proteobacteria was the main phylum represented in most samples (except for one). Cyanobacteria were a relevant phylum in the inner wall from the fattening tank and the wet floor by the pre-fattening tank. Bacteroidetes were the second phylum in relative abundance for samples from the larval rearing tank and the pre-fattening tank and one sample from the fattening tank. Fusobacteria showed highest relative abundances in samples from the larval rearing tank and pre-fattening tank. Other phyla (Verrucomicrobia, Actinobacteria, Firmicutes, Planktomycetes, Acidobacteria, Chloroflexi, Chlorobi, Gemmatiomonadetes or Fibrobacters) had lower relative abundances. A large fraction of the reads (ranging from 43.67% to 72.25%) were assigned to uncultured bacteria. Genus Acinetobacter (mainly A. calcoaceticus/baumanni) was the predominant OTU in the aerator of the fattening tank and also in the nearby sink on the floor. The genera Cetobacterium and Bacteroides showed highest relative abundances in the samples from the larval rearing tank and the pre-fattening tank. Genera including fish pathogens (Fusobacterium, Aeromonas) were only detected at low relative abundances. Potential human pathogens other than Acinetobacter were either not detected or had very low relative abundances (< 0.01%). The results of the study suggest that the main risk factors to be monitored in tilapia farm are putative human

  6. 40 CFR 264.1084 - Standards: Tanks.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... effects of outdoor exposure to wind, moisture, and sunlight; and the operating practices used for the tank... contact with the liquid and its vapor managed in the tank; the effects of outdoor exposure to wind...) The owner or operator shall inspect and monitor the air emission control equipment in accordance with...

  7. 40 CFR 264.1084 - Standards: Tanks.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... effects of outdoor exposure to wind, moisture, and sunlight; and the operating practices used for the tank... contact with the liquid and its vapor managed in the tank; the effects of outdoor exposure to wind...) The owner or operator shall inspect and monitor the air emission control equipment in accordance with...

  8. 40 CFR 264.1084 - Standards: Tanks.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... effects of outdoor exposure to wind, moisture, and sunlight; and the operating practices used for the tank... contact with the liquid and its vapor managed in the tank; the effects of outdoor exposure to wind...) The owner or operator shall inspect and monitor the air emission control equipment in accordance with...

  9. 40 CFR 264.1084 - Standards: Tanks.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... effects of outdoor exposure to wind, moisture, and sunlight; and the operating practices used for the tank... contact with the liquid and its vapor managed in the tank; the effects of outdoor exposure to wind...) The owner or operator shall inspect and monitor the air emission control equipment in accordance with...

  10. Suggested techniques, equipment, and standards for the testing of hand insecticide-spraying equipment

    PubMed Central

    Hall, Lawrence B.

    1955-01-01

    The new demands placed upon application equipment by the introduction of modern insecticides have revealed the deficiencies of this equipment when required for continuous use on a large scale. If adequate equipment is to be produced, specifications must be based not only on basic materials tests but also on “use” tests, in which the conditions of field use are simulated. The author outlines suggested techniques to be followed and standards to be adopted in testing the performance of compression sprayers and allied equipment, with reference to the following features: compression-sprayer tank fatigue; tank impact; pump resistance to bursting; pump resistance to collapse; pump friction; cut-off valve durability; constant-pressure valves; cut-off valve actuation; hose flexure; hose tension and bursting-pressure; hose friction; gaskets, valve faces, and similar non-metallic parts; nozzle-orifice erosion; and nozzle pattern. ImagesFIG. 1FIG. 14FIG. 20 PMID:14364189

  11. Investigation of Tank 241-AN-101 Floating Solids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kraft, Douglas P.; Meznarich, H. K.

    Tank 241-AN-101 is the receiver tank for retrieval of several C-Farms waste tanks, including Tanks 241-C-102 and 241-C-111. Tank 241 C 111 received first-cycle decontamination waste from the bismuth phosphate process and Plutonium and Uranium Extraction cladding waste, as well as hydraulic fluid. Three grab samples, 1AN-16-01, 1AN-16-01A, and 1AN-16-01B, were collected at the surface of Tank 241-AN-101 on April 25, 2016, after Tank 241-C-111 retrieval was completed. Floating solids were observed in the three grab samples in the 11A hot cell after the samples were received at the 222-S Laboratory. Routine chemical analyses, solid phase characterization on the floatingmore » and settled solids, semivolatile organic analysis mainly on the aqueous phase for identification of degradation products of hydraulic fluids were performed. Investigation of the floating solids is reported.« less

  12. 49 CFR 195.430 - Firefighting equipment.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 3 2011-10-01 2011-10-01 false Firefighting equipment. 195.430 Section 195.430... PIPELINE Operation and Maintenance § 195.430 Firefighting equipment. Each operator shall maintain adequate firefighting equipment at each pump station and breakout tank area. The equipment must be— (a) In proper...

  13. 33 CFR 183.564 - Fuel tank fill system.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 2 2012-07-01 2012-07-01 false Fuel tank fill system. 183.564...) BOATING SAFETY BOATS AND ASSOCIATED EQUIPMENT Fuel Systems Manufacturer Requirements § 183.564 Fuel tank... floating position. (b) Each hose in the tank fill system must be secured to a pipe, spud, or hose fitting...

  14. Tanks 18 And 19-F Structural Flowable Grout Fill Material Evaluation And Recommendations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Langton, C. A.; Stefanko, D. B.

    2013-04-23

    design. 4) Prepare samples for hydraulic property measurements for comparison to the values in the F and H- Tank Farm Performance Assessments (PAs). 5) Identify a grout mix for the Tanks 18-F and 19-F Grout Procurement Specification [Forty, 2011 a, b, c]. Results for two flowable zero bleed structural fill concepts containing 3/8 inch gravel (70070 Series and LP#8 Series) and a sand only mix (SO Series) are provided in this report. Tank Farm Engineering and SRNL Project Management selected the 70070 mix as the base case for inclusion in Revision 0 of the Tanks 18-F and 19-F grout procurement specification [Forty 2011 a] and requested admixture recommendations and property confirmation for this formulation [Forty, 2011 b]. Lower cementitious paste mixes were formulated because the 70070 mix is over designed with respect to strength and generates more heat from hydration reactions than is desirable for mass pour application. Work was also initiated on a modification of the recommended mix which included shrinkage compensation to mitigate fast pathways caused by shrinkage cracking and poor physical bonding to the tank and ancillary equipment. Testing of this option was postponed to FY12. Mix, LP#8-16 is recommended for inclusion in the specification for furnishing and delivering tank closure grout for Tanks 18-F and 19-F [Forty, 2011 c]. A shrinkage compensating variation of this mix, LP#16C, has not been fully developed and characterized at this time.« less

  15. Geochemical Processes Data Package for the Vadose Zone in the Single-Shell Tank Waste Management Areas at the Hanford Site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cantrell, Kirk J.; Zachara, John M.; Dresel, P. Evan

    This data package discusses the geochemistry of vadose zone sediments beneath the single-shell tank farms at the U.S. Department of Energy’s (DOE’s) Hanford Site. The purpose of the report is to provide a review of the most recent and relevant geochemical process information available for the vadose zone beneath the single-shell tank farms and the Integrated Disposal Facility. Two companion reports to this one were recently published which discuss the geology of the farms (Reidel and Chamness 2007) and groundwater flow and contamination beneath the farms (Horton 2007).

  16. 4. View of Clovelley Farm tenant house, back side (east) ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. View of Clovelley Farm tenant house, back side (east) area of two room addition. Note dark metal heating oil tank against rear wall and silver maple trees to shade house from south and east. - Clovelley Farm Tenant House, 4958 Paris Road (east side), Paris, Bourbon County, KY

  17. Risk based inspection for atmospheric storage tank

    NASA Astrophysics Data System (ADS)

    Nugroho, Agus; Haryadi, Gunawan Dwi; Ismail, Rifky; Kim, Seon Jin

    2016-04-01

    Corrosion is an attack that occurs on a metallic material as a result of environment's reaction.Thus, it causes atmospheric storage tank's leakage, material loss, environmental pollution, equipment failure and affects the age of process equipment then finally financial damage. Corrosion risk measurement becomesa vital part of Asset Management at the plant for operating any aging asset.This paper provides six case studies dealing with high speed diesel atmospheric storage tank parts at a power plant. A summary of the basic principles and procedures of corrosion risk analysis and RBI applicable to the Process Industries were discussed prior to the study. Semi quantitative method based onAPI 58I Base-Resource Document was employed. The risk associated with corrosion on the equipment in terms of its likelihood and its consequences were discussed. The corrosion risk analysis outcome used to formulate Risk Based Inspection (RBI) method that should be a part of the atmospheric storage tank operation at the plant. RBI gives more concern to inspection resources which are mostly on `High Risk' and `Medium Risk' criteria and less on `Low Risk' shell. Risk categories of the evaluated equipment were illustrated through case study analysis outcome.

  18. uFarm: a smart farm management system based on RFID

    NASA Astrophysics Data System (ADS)

    Kim, Hyoungsuk; Lee, Moonsup; Jung, Jonghyuk; Lee, Hyunwook; Kim, Taehyoun

    2007-12-01

    Recently, the livestock industry in Korea has been threatened by many challenges such as low productivity due to labor intensiveness, global competition compelled by the Free Trade Agreement (FTA), and emerging animal disease issues such as BSE or foot-and-mouth. In this paper, we propose a smart farm management system, called uFarm, which would come up with such challenges by automating farm management. First, we automate labor-intensive jobs using equipments based on sensors and actuators. The automation subsystem can be controlled by remote user through wireless network. Second, we provide real-time traceability of information on farm animals using the radio-frequency identification (RFID) method and embedded data server with network connectivity.

  19. 46 CFR 154.188 - Membrane tank: Inner hull steel.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Membrane tank: Inner hull steel. 154.188 Section 154.188... STANDARDS FOR SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES Design, Construction and Equipment Hull Structure § 154.188 Membrane tank: Inner hull steel. For a vessel with membrane tanks, the inner hull...

  20. 14 CFR 25.1453 - Protection of oxygen equipment from rupture.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Protection of oxygen equipment from rupture. 25.1453 Section 25.1453 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... § 25.1453 Protection of oxygen equipment from rupture. Oxygen pressure tanks, and lines between tanks...

  1. 14 CFR 25.1453 - Protection of oxygen equipment from rupture.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Protection of oxygen equipment from rupture. 25.1453 Section 25.1453 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... § 25.1453 Protection of oxygen equipment from rupture. Oxygen pressure tanks, and lines between tanks...

  2. 14 CFR 25.1453 - Protection of oxygen equipment from rupture.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Protection of oxygen equipment from rupture. 25.1453 Section 25.1453 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... § 25.1453 Protection of oxygen equipment from rupture. Oxygen pressure tanks, and lines between tanks...

  3. 14 CFR 25.1453 - Protection of oxygen equipment from rupture.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Protection of oxygen equipment from rupture. 25.1453 Section 25.1453 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... § 25.1453 Protection of oxygen equipment from rupture. Oxygen pressure tanks, and lines between tanks...

  4. 14 CFR 25.1453 - Protection of oxygen equipment from rupture.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Protection of oxygen equipment from rupture. 25.1453 Section 25.1453 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... § 25.1453 Protection of oxygen equipment from rupture. Oxygen pressure tanks, and lines between tanks...

  5. 33 CFR 157.10a - Segregated ballast tanks, crude oil washing systems, and dedicated clean ballast tanks for...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... tanks with a total capacity to meet the draft and trim requirements in paragraph (d) of this section; or...) Segregated ballast tanks with a total capacity to meet the draft and trim requirements in paragraph (d) of... trim requirements in paragraph (d) of this section and that meet the design and equipment requirements...

  6. 33 CFR 157.10a - Segregated ballast tanks, crude oil washing systems, and dedicated clean ballast tanks for...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... tanks with a total capacity to meet the draft and trim requirements in paragraph (d) of this section; or...) Segregated ballast tanks with a total capacity to meet the draft and trim requirements in paragraph (d) of... trim requirements in paragraph (d) of this section and that meet the design and equipment requirements...

  7. 46 CFR 154.195 - Aluminum cargo tank: Steel enclosure.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... Equipment Hull Structure § 154.195 Aluminum cargo tank: Steel enclosure. (a) An aluminum cargo tank and its dome must be enclosed by the vessel's hull structure or a separate steel cover. (b) The steel cover for... 46 Shipping 5 2012-10-01 2012-10-01 false Aluminum cargo tank: Steel enclosure. 154.195 Section...

  8. 46 CFR 154.195 - Aluminum cargo tank: Steel enclosure.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... Equipment Hull Structure § 154.195 Aluminum cargo tank: Steel enclosure. (a) An aluminum cargo tank and its dome must be enclosed by the vessel's hull structure or a separate steel cover. (b) The steel cover for... 46 Shipping 5 2013-10-01 2013-10-01 false Aluminum cargo tank: Steel enclosure. 154.195 Section...

  9. 46 CFR 154.195 - Aluminum cargo tank: Steel enclosure.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Equipment Hull Structure § 154.195 Aluminum cargo tank: Steel enclosure. (a) An aluminum cargo tank and its dome must be enclosed by the vessel's hull structure or a separate steel cover. (b) The steel cover for... 46 Shipping 5 2010-10-01 2010-10-01 false Aluminum cargo tank: Steel enclosure. 154.195 Section...

  10. 46 CFR 154.195 - Aluminum cargo tank: Steel enclosure.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... Equipment Hull Structure § 154.195 Aluminum cargo tank: Steel enclosure. (a) An aluminum cargo tank and its dome must be enclosed by the vessel's hull structure or a separate steel cover. (b) The steel cover for... 46 Shipping 5 2014-10-01 2014-10-01 false Aluminum cargo tank: Steel enclosure. 154.195 Section...

  11. 46 CFR 154.195 - Aluminum cargo tank: Steel enclosure.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Equipment Hull Structure § 154.195 Aluminum cargo tank: Steel enclosure. (a) An aluminum cargo tank and its dome must be enclosed by the vessel's hull structure or a separate steel cover. (b) The steel cover for... 46 Shipping 5 2011-10-01 2011-10-01 false Aluminum cargo tank: Steel enclosure. 154.195 Section...

  12. 46 CFR 32.75-10 - Cargo tanks-TB/ALL.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 1 2010-10-01 2010-10-01 false Cargo tanks-TB/ALL. 32.75-10 Section 32.75-10 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS SPECIAL EQUIPMENT, MACHINERY, AND HULL... Cargo tanks—TB/ALL. Cargo tanks shall be independent of the wood hull, shall be made of steel or iron...

  13. 46 CFR 32.75-10 - Cargo tanks-TB/ALL.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 1 2012-10-01 2012-10-01 false Cargo tanks-TB/ALL. 32.75-10 Section 32.75-10 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS SPECIAL EQUIPMENT, MACHINERY, AND HULL... Cargo tanks—TB/ALL. Cargo tanks shall be independent of the wood hull, shall be made of steel or iron...

  14. 46 CFR 32.75-10 - Cargo tanks-TB/ALL.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 1 2011-10-01 2011-10-01 false Cargo tanks-TB/ALL. 32.75-10 Section 32.75-10 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS SPECIAL EQUIPMENT, MACHINERY, AND HULL... Cargo tanks—TB/ALL. Cargo tanks shall be independent of the wood hull, shall be made of steel or iron...

  15. Experimental evaluation of LPG tank explosion hazards.

    PubMed

    Stawczyk, Jan

    2003-01-31

    Liquefied-pressure gases (LPG) are transported and stored in the liquid phase in closed tanks under sufficiently high pressure. In the case of an accident, an abrupt tank unsealing may release enormous quantity of evaporating gas and energy that has a destructive effect on the tank and its surroundings. In this paper, experiments with explosions of small LPG tanks are described. The data acquisition equipment applied in the tests provided a chance to learn dynamics of the process and determine hazard factors. The tests enabled a determination of temperature and pressure at which tanks containing LPG disrupt. The results enable a reconstruction of consecutive phases of the explosion and identification of hazards resulting from damage of the tanks. An explanation of the tank unsealing process with fluid parameters above critical point is given.

  16. 40 CFR 265.191 - Assessment of existing tank system's integrity.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...); and (5) Results of a leak test, internal inspection, or other tank integrity examination such that: (i) For non-enterable underground tanks, this assessment must consist of a leak test that is capable of... water table effects, (ii) For other than non-enterable underground tanks and for ancillary equipment...

  17. Data Quality Objectives for Tank Farms Waste Compatibility Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    BANNING, D.L.

    1999-07-02

    There are 177 waste storage tanks containing over 210,000 m{sup 3} (55 million gal) of mixed waste at the Hanford Site. The River Protection Project (RPP) has adopted the data quality objective (DQO) process used by the U.S. Environmental Protection Agency (EPA) (EPA 1994a) and implemented by RPP internal procedure (Banning 1999a) to identify the information and data needed to address safety issues. This DQO document is based on several documents that provide the technical basis for inputs and decision/action levels used to develop the decision rules that evaluate the transfer of wastes. A number of these documents are presentlymore » in the process of being revised. This document will need to be revised if there are changes to the technical criteria in these supporting documents. This DQO process supports various documents, such as sampling and analysis plans and double-shell tank (DST) waste analysis plans. This document identifies the type, quality, and quantity of data needed to determine whether transfer of supernatant can be performed safely. The requirements in this document are designed to prevent the mixing of incompatible waste as defined in Washington Administrative Code (WAC) 173-303-040. Waste transfers which meet the requirements contained in this document and the Double-Shell Tank Waste Analysis Plan (Mulkey 1998) are considered to be compatible, and prevent the mixing of incompatible waste.« less

  18. HANFORD DOUBLE SHELL TANK THERMAL AND SEISMIC PROJECT SEISMIC ANALYSIS IN SUPPORT OF INCREASED LIQUID LEVEL IN 241-AP TANK FARMS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    TC MACKEY; FG ABATT; MW RINKER

    2009-01-14

    The essential difference between Revision 1 and the original issue of this report is in the spring constants used to model the anchor bolt response for the anchor bolts that tie the steel dome of the primary tank to the concrete tank dome. Consequently, focus was placed on the changes in the anchor bolt responses, and a full reevaluation of all tank components was judged to be unnecessary. To confirm this judgement, primary tank stresses from the revised analysis of the BES-BEC case are compared to the original analysis and it was verified that the changes are small, as expected.

  19. Hanford Double-Shell Tank Extent-of-Condition Review - 15498

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, J. M.; Baide, D. D.; Barnes, T. J.

    2014-11-19

    During routine visual inspections of Hanford double-shell waste tank 241-AY-102 (AY-102), anomalies were identified on the annulus floor which resulted in further evaluations. Following a formal leak assessment in October 2012, Washington River Protection Solutions, LLC (WRPS) determined that the primary tank of AY-102 was leaking. A formal leak assessment, documented in RPP-ASMT-53793, Tank 241-AY-102 Leak Assessment Report, identified first-of-a-kind construction difficulties and trial-and-error repairs as major contributing factors to tank failure.1 To determine if improvements in double-shell tank (DST) construction occurred after construction of tank AY-102, a detailed review and evaluation of historical construction records was performed for Hanford’smore » remaining twenty-seven DSTs. Review involved research of 241 boxes of historical project documentation to better understand the condition of the Hanford DST farms, noting similarities in construction difficulties/issues to tank AY-102. Information gathered provides valuable insight regarding construction difficulties, future tank operations decisions, and guidance of the current tank inspection program. Should new waste storage tanks be constructed in the future, these reviews also provide valuable lessons-learned.« less

  20. ANNUAL RADIOACTIVE WASTE TANK INSPECTION PROGRAM 2009

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    West, B.; Waltz, R.

    2010-06-21

    Aqueous radioactive wastes from Savannah River Site (SRS) separations and vitrification processes are contained in large underground carbon steel tanks. Inspections made during 2009 to evaluate these vessels and other waste handling facilities along with evaluations based on data from previous inspections are the subject of this report. The 2009 inspection program revealed that the structural integrity and waste confinement capability of the Savannah River Site waste tanks were maintained. All inspections scheduled per LWO-LWE-2008-00423, HLW Tank Farm Inspection Plan for 2009, were completed. All Ultrasonic measurements (UT) performed in 2009 met the requirements of C-ESG-00006, In-Service Inspection Program formore » High Level Waste Tanks, Rev. 1, and WSRC-TR-2002-00061, Rev.4. UT inspections were performed on Tank 29 and the findings are documented in SRNL-STI-2009-00559, Tank Inspection NDE Results for Fiscal Year 2009, Waste Tank 29. Post chemical cleaning UT measurements were made in Tank 6 and the results are documented in SRNL-STI-2009-00560, Tank Inspection NDE Results Tank 6, Including Summary of Waste Removal Support Activities in Tanks 5 and 6. A total of 6669 photographs were made and 1276 visual and video inspections were performed during 2009. Twenty-Two new leaksites were identified in 2009. The locations of these leaksites are documented in C-ESR-G-00003, SRS High Level Waste Tank Leaksite Information, Rev.4. Fifteen leaksites at Tank 5 were documented during tank wall/annulus cleaning activities. Five leaksites at Tank 6 were documented during tank wall/annulus cleaning activities. Two new leaksites were identified at Tank 19 during waste removal activities. Previously documented leaksites were reactivated at Tanks 5 and 12 during waste removal activities. Also, a very small amount of additional leakage from a previously identified leaksite at Tank 14 was observed.« less

  1. 46 CFR 32.75-15 - Electric bonding and grounding for tanks-TB/ALL.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... EQUIPMENT, MACHINERY, AND HULL REQUIREMENTS Hull Requirements for Wood Hull Tank Vessels Constructed Prior... cargo tanks in wood hull tank vessels shall be electrically bonded together with stranded copper cable...

  2. 46 CFR 32.75-15 - Electric bonding and grounding for tanks-TB/ALL.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... EQUIPMENT, MACHINERY, AND HULL REQUIREMENTS Hull Requirements for Wood Hull Tank Vessels Constructed Prior... cargo tanks in wood hull tank vessels shall be electrically bonded together with stranded copper cable...

  3. SURFACE GEOPHYSICAL EXPLORATION OF B & BX & BY TANK FARMS AT THE HANFORD SITE RESULTS OF BACKGROUND CHARACTERIZATION WITH MAGNETICS AND ELECTROMAGNETICS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    MYERS DA

    This report documents the results of preliminary surface geophysical exploration activities performed between October and December 2006 at the B, BX, and BY tank farms (B Complex). The B Complex is located in the 200 East Area of the U. S. Department of Energy's Hanford Site in Washington State. The objective of the preliminary investigation was to collect background characterization information with magnetic gradiometry and electromagnetic induction to understand the spatial distribution of metallic objects that could potentially interfere with the results from high resolution resistivity survey. Results of the background characterization show there are several areas located around themore » site with large metallic subsurface debris or metallic infrastructure.« less

  4. ANNUAL RADIOACTIVE WASTE TANK INSPECTION PROGRAM 2010

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    West, B.; Waltz, R.

    Aqueous radioactive wastes from Savannah River Site (SRS) separations and vitrification processes are contained in large underground carbon steel tanks. Inspections made during 2010 to evaluate these vessels and other waste handling facilities along with evaluations based on data from previous inspections are the subject of this report. The 2010 inspection program revealed that the structural integrity and waste confinement capability of the Savannah River Site waste tanks were maintained. All inspections scheduled per SRR-LWE-2009-00138, HLW Tank Farm Inspection Plan for 2010, were completed. Ultrasonic measurements (UT) performed in 2010 met the requirements of C-ESG-00006, In-Service Inspection Program for Highmore » Level Waste Tanks, Rev. 3, and WSRC-TR-2002-00061, Rev.6. UT inspections were performed on Tanks 30, 31 and 32 and the findings are documented in SRNL-STI-2010-00533, Tank Inspection NDE Results for Fiscal Year 2010, Waste Tanks 30, 31 and 32. A total of 5824 photographs were made and 1087 visual and video inspections were performed during 2010. Ten new leaksites at Tank 5 were identified in 2010. The locations of these leaksites are documented in C-ESR-G-00003, SRS High Level Waste Tank Leaksite Information, Rev.5. Ten leaksites at Tank 5 were documented during tank wall/annulus cleaning activities. None of these new leaksites resulted in a release to the environment. The leaksites were documented during wall cleaning activities and the waste nodules associated with the leaksites were washed away. Previously documented leaksites were reactivated at Tank 12 during waste removal activities.« less

  5. 46 CFR 153.208 - Ballast equipment.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Design and Equipment General Vessel... engine room or accommodation space. (b) Piping used only to fill a dedicated ballast tank adjacent to a cargo tank may enter an engine room or accommodation space if the piping has a valve or valving...

  6. 46 CFR 153.208 - Ballast equipment.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Design and Equipment General Vessel... engine room or accommodation space. (b) Piping used only to fill a dedicated ballast tank adjacent to a cargo tank may enter an engine room or accommodation space if the piping has a valve or valving...

  7. 46 CFR 153.208 - Ballast equipment.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Design and Equipment General Vessel... engine room or accommodation space. (b) Piping used only to fill a dedicated ballast tank adjacent to a cargo tank may enter an engine room or accommodation space if the piping has a valve or valving...

  8. ANNUAL RADIOACTIVE WASTE TANK INSPECTION PROGRAM - 2011

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    West, B.; Waltz, R.

    2012-06-21

    Aqueous radioactive wastes from Savannah River Site (SRS) separations and vitrification processes are contained in large underground carbon steel tanks. Inspections made during 2011 to evaluate these vessels and other waste handling facilities along with evaluations based on data from previous inspections are the subject of this report. The 2011 inspection program revealed that the structural integrity and waste confinement capability of the Savannah River Site waste tanks were maintained. All inspections scheduled per SRR-LWE-2011-00026, HLW Tank Farm Inspection Plan for 2011, were completed. Ultrasonic measurements (UT) performed in 2011 met the requirements of C-ESR-G-00006, In-Service Inspection Program for Highmore » Level Waste Tanks, Rev. 3, and WSRC-TR-2002-00061, Rev.6. UT inspections were performed on Tanks 25, 26 and 34 and the findings are documented in SRNL-STI-2011-00495, Tank Inspection NDE Results for Fiscal Year 2011, Waste Tanks 25, 26, 34 and 41. A total of 5813 photographs were made and 835 visual and video inspections were performed during 2011. A potential leaksite was discovered at Tank 4 during routine annual inspections performed in 2011. The new crack, which is above the allowable fill level, resulted in no release to the environment or tank annulus. The location of the crack is documented in C-ESR-G-00003, SRS High Level Waste Tank Leaksite Information, Rev.6.« less

  9. 40 CFR 280.43 - Methods of release detection for tanks.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... two consecutive stick readings at both the beginning and ending of the period; (3) The equipment used... UNDERGROUND STORAGE TANKS (UST) Release Detection § 280.43 Methods of release detection for tanks. Each method... of the tank is made to the nearest one-eighth of an inch at least once a month. Note: Practices...

  10. 40 CFR 280.43 - Methods of release detection for tanks.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... two consecutive stick readings at both the beginning and ending of the period; (3) The equipment used... UNDERGROUND STORAGE TANKS (UST) Release Detection § 280.43 Methods of release detection for tanks. Each method... of the tank is made to the nearest one-eighth of an inch at least once a month. Note: Practices...

  11. 7 CFR 58.416 - Cheese vats, tanks and drain tables.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 3 2011-01-01 2011-01-01 false Cheese vats, tanks and drain tables. 58.416 Section 58... Service 1 Equipment and Utensils § 58.416 Cheese vats, tanks and drain tables. (a) The vats, tanks and drain tables used for making cheese should be of metal construction with adequate jacket capacity for...

  12. 7 CFR 58.416 - Cheese vats, tanks and drain tables.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 3 2010-01-01 2010-01-01 false Cheese vats, tanks and drain tables. 58.416 Section 58... Service 1 Equipment and Utensils § 58.416 Cheese vats, tanks and drain tables. (a) The vats, tanks and drain tables used for making cheese should be of metal construction with adequate jacket capacity for...

  13. Implementation of Recommendations from the One System Comparative Evaluation of the Hanford Tank Farms and Waste Treatment Plant Safety Bases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garrett, Richard L.; Niemi, Belinda J.; Paik, Ingle K.

    2013-11-07

    A Comparative Evaluation was conducted for One System Integrated Project Team to compare the safety bases for the Hanford Waste Treatment and Immobilization Plant Project (WTP) and Tank Operations Contract (TOC) (i.e., Tank Farms) by an Expert Review Team. The evaluation had an overarching purpose to facilitate effective integration between WTP and TOC safety bases. It was to provide One System management with an objective evaluation of identified differences in safety basis process requirements, guidance, direction, procedures, and products (including safety controls, key safety basis inputs and assumptions, and consequence calculation methodologies) between WTP and TOC. The evaluation identified 25more » recommendations (Opportunities for Integration). The resolution of these recommendations resulted in 16 implementation plans. The completion of these implementation plans will help ensure consistent safety bases for WTP and TOC along with consistent safety basis processes. procedures, and analyses. and should increase the likelihood of a successful startup of the WTP. This early integration will result in long-term cost savings and significant operational improvements. In addition, the implementation plans lead to the development of eight new safety analysis methodologies that can be used at other U.S. Department of Energy (US DOE) complex sites where URS Corporation is involved.« less

  14. 31. Fourth floor, looking south at former milkstorage tank room, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    31. Fourth floor, looking south at former milk-storage tank room, spiral stair in right hand corner - Sheffield Farms Milk Plant, 1075 Webster Avenue (southwest corner of 166th Street), Bronx, Bronx County, NY

  15. Experimental Determination and Thermodynamic Modeling of Electrical Conductivity of SRS Waste Tank Supernate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pike, J.; Reboul, S.

    2015-06-01

    SRS High Level Waste Tank Farm personnel rely on conductivity probes for detection of incipient overflow conditions in waste tanks. Minimal information is available concerning the sensitivity that must be achieved such that that liquid detection is assured. Overly sensitive electronics results in numerous nuisance alarms for these safety-related instruments. In order to determine the minimum sensitivity required of the probe, Tank Farm Engineering personnel need adequate conductivity data to improve the existing designs. Little or no measurements of liquid waste conductivity exist; however, the liquid phase of the waste consists of inorganic electrolytes for which the conductivity may bemore » calculated. Savannah River Remediation (SRR) Tank Farm Facility Engineering requested SRNL to determine the conductivity of the supernate resident in SRS waste Tank 40 experimentally as well as computationally. In addition, SRNL was requested to develop a correlation, if possible, that would be generally applicable to liquid waste resident in SRS waste tanks. A waste sample from Tank 40 was analyzed for composition and electrical conductivity as shown in Table 4-6, Table 4-7, and Table 4-9. The conductivity for undiluted Tank 40 sample was 0.087 S/cm. The accuracy of OLI Analyzer™ was determined using available literature data. Overall, 95% of computed estimates of electrical conductivity are within ±15% of literature values for component concentrations from 0 to 15 M and temperatures from 0 to 125 °C. Though the computational results are generally in good agreement with the measured data, a small portion of literature data deviates as much as ±76%. A simplified model was created that can be used readily to estimate electrical conductivity of waste solution in computer spreadsheets. The variability of this simplified approach deviates up to 140% from measured values. Generally, this model can be applied to estimate the conductivity within a factor of two. The

  16. 46 CFR 154.1330 - Liquid level alarm system: Independent tank type C.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 5 2012-10-01 2012-10-01 false Liquid level alarm system: Independent tank type C. 154..., Construction and Equipment Instrumentation § 154.1330 Liquid level alarm system: Independent tank type C. Independent tanks type C need not have the high liquid level alarm system under § 154.1325 if: (a) The tank...

  17. 46 CFR 154.1330 - Liquid level alarm system: Independent tank type C.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 5 2011-10-01 2011-10-01 false Liquid level alarm system: Independent tank type C. 154..., Construction and Equipment Instrumentation § 154.1330 Liquid level alarm system: Independent tank type C. Independent tanks type C need not have the high liquid level alarm system under § 154.1325 if: (a) The tank...

  18. 46 CFR 154.1330 - Liquid level alarm system: Independent tank type C.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 5 2013-10-01 2013-10-01 false Liquid level alarm system: Independent tank type C. 154..., Construction and Equipment Instrumentation § 154.1330 Liquid level alarm system: Independent tank type C. Independent tanks type C need not have the high liquid level alarm system under § 154.1325 if: (a) The tank...

  19. 46 CFR 154.1330 - Liquid level alarm system: Independent tank type C.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Liquid level alarm system: Independent tank type C. 154..., Construction and Equipment Instrumentation § 154.1330 Liquid level alarm system: Independent tank type C. Independent tanks type C need not have the high liquid level alarm system under § 154.1325 if: (a) The tank...

  20. 46 CFR 154.1330 - Liquid level alarm system: Independent tank type C.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 5 2014-10-01 2014-10-01 false Liquid level alarm system: Independent tank type C. 154..., Construction and Equipment Instrumentation § 154.1330 Liquid level alarm system: Independent tank type C. Independent tanks type C need not have the high liquid level alarm system under § 154.1325 if: (a) The tank...

  1. 46 CFR 39.20-9 - Tank barge liquid overfill protection-B/ALL.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... Section 39.20-9 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS VAPOR CONTROL SYSTEMS Design and Equipment § 39.20-9 Tank barge liquid overfill protection—B/ALL. Each cargo tank of a tank...-57 and 501-12; and (iii) § 111.105-9 of this chapter. (b) An intrinsically safe overfill control...

  2. 46 CFR 39.20-9 - Tank barge liquid overfill protection-B/ALL.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Section 39.20-9 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS VAPOR CONTROL SYSTEMS Design and Equipment § 39.20-9 Tank barge liquid overfill protection—B/ALL. Each cargo tank of a tank...-57 and 501-12; and (iii) § 111.105-9 of this chapter. (b) An intrinsically safe overfill control...

  3. 46 CFR 39.20-9 - Tank barge liquid overfill protection-B/ALL.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Section 39.20-9 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS VAPOR CONTROL SYSTEMS Design and Equipment § 39.20-9 Tank barge liquid overfill protection—B/ALL. Each cargo tank of a tank...-57 and 501-12; and (iii) § 111.105-9 of this chapter. (b) An intrinsically safe overfill control...

  4. 29 CFR 780.157 - Other transportation incident to farming.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... AGRICULTURE, PROCESSING OF AGRICULTURAL COMMODITIES, AND RELATED SUBJECTS UNDER THE FAIR LABOR STANDARDS ACT... operations, such as seed, animal or poultry feed, farm machinery or equipment, etc., would be incidental to... farm products from farms to a processing establishment by employees of a person who owns both the farms...

  5. 29 CFR 780.157 - Other transportation incident to farming.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... AGRICULTURE, PROCESSING OF AGRICULTURAL COMMODITIES, AND RELATED SUBJECTS UNDER THE FAIR LABOR STANDARDS ACT... operations, such as seed, animal or poultry feed, farm machinery or equipment, etc., would be incidental to... farm products from farms to a processing establishment by employees of a person who owns both the farms...

  6. 29 CFR 780.157 - Other transportation incident to farming.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... AGRICULTURE, PROCESSING OF AGRICULTURAL COMMODITIES, AND RELATED SUBJECTS UNDER THE FAIR LABOR STANDARDS ACT... operations, such as seed, animal or poultry feed, farm machinery or equipment, etc., would be incidental to... farm products from farms to a processing establishment by employees of a person who owns both the farms...

  7. 29 CFR 780.157 - Other transportation incident to farming.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... AGRICULTURE, PROCESSING OF AGRICULTURAL COMMODITIES, AND RELATED SUBJECTS UNDER THE FAIR LABOR STANDARDS ACT... operations, such as seed, animal or poultry feed, farm machinery or equipment, etc., would be incidental to... farm products from farms to a processing establishment by employees of a person who owns both the farms...

  8. 29 CFR 780.157 - Other transportation incident to farming.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... AGRICULTURE, PROCESSING OF AGRICULTURAL COMMODITIES, AND RELATED SUBJECTS UNDER THE FAIR LABOR STANDARDS ACT... operations, such as seed, animal or poultry feed, farm machinery or equipment, etc., would be incidental to... farm products from farms to a processing establishment by employees of a person who owns both the farms...

  9. Genetic diversity and virulence profiles of Listeria monocytogenes recovered from bulk tank milk, milk filters, and milking equipment from dairies in the United States (2002 to 2014).

    PubMed

    Kim, Seon Woo; Haendiges, Julie; Keller, Eric N; Myers, Robert; Kim, Alexander; Lombard, Jason E; Karns, Jeffrey S; Van Kessel, Jo Ann S; Haley, Bradd J

    2018-01-01

    Unpasteurized dairy products are known to occasionally harbor Listeria monocytogenes and have been implicated in recent listeriosis outbreaks and numerous sporadic cases of listeriosis. However, the diversity and virulence profiles of L. monocytogenes isolates recovered from these products have not been fully described. Here we report a genomic analysis of 121 L. monocytogenes isolates recovered from milk, milk filters, and milking equipment collected from bovine dairy farms in 19 states over a 12-year period. In a multi-virulence-locus sequence typing (MVLST) analysis, 59 Virulence Types (VT) were identified, of which 25% were Epidemic Clones I, II, V, VI, VII, VIII, IX, or X, and 31 were novel VT. In a multi-locus sequence typing (MLST) analysis, 60 Sequence Types (ST) of 56 Clonal Complexes (CC) were identified. Within lineage I, CC5 and CC1 were among the most abundant, and within lineage II, CC7 and CC37 were the most abundant. Multiple CCs previously associated with central nervous system and maternal-neonatal infections were identified. A genomic analysis identified variable distribution of virulence markers, Listeria pathogenicity islands (LIPI) -1, -3, and -4, and stress survival island-1 (SSI-1). Of these, 14 virulence markers, including LIPI-3 and -4 were more frequently detected in one lineage (I or II) than the other. LIPI-3 and LIPI-4 were identified in 68% and 28% of lineage I CCs, respectively. Results of this analysis indicate that there is a high level of genetic diversity among the L. monocytogenes present in bulk tank milk in the United States with some strains being more frequently detected than others, and some being similar to those that have been isolated from previous non-dairy related outbreaks. Results of this study also demonstrate significant number of strains isolated from dairy farms encode virulence markers associated with severe human disease.

  10. Developing strategies for maintaining tank car integrity during train accidents

    DOT National Transportation Integrated Search

    2007-09-11

    Accidents that lead to rupture of tank cars carrying : hazardous materials can cause serious public safety hazards and : substantial economic losses. The desirability of improved tank : car designs that are better equipped to keep the commodity : con...

  11. Health effects of agrochemicals among farm workers in commercial farms of Kwekwe district, Zimbabwe

    PubMed Central

    Magauzi, Regis; Mabaera, Bigboy; Rusakaniko, Simbarashe; Chimusoro, Anderson; Ndlovu, Nqobile; Tshimanga, Mufuta; Shambira, Gerald; Chadambuka, Addmore; Gombe, Notion

    2011-01-01

    Introduction Farm workers are at a very high risk of occupational diseases due to exposure to pesticides resulting from inadequate education, training and safety systems. The farm worker spends a lot of time exposed to these harmful agrochemicals. Numerous acute cases with symptoms typical of agrochemical exposure were reported from the commercial farms. We assessed the health effects of agrochemicals in farm workers in commercial farms of Kwekwe District (Zimbabwe), in 2006. Methods An analytical cross sectional study was conducted amongst a sample of 246 farm workers who handled agrochemicals when discharging their duties in the commercial farms. Plasma cholinesterase activity in blood specimens obtained from farm workers was measured using spectrophotometry to establish levels of poisoning by organophosphate and/or carbamates. Information on the knowledge, attitudes and practices of farm workers on agrochemicals use was collected using a pre-tested interviewer administered questionnaire. Bivariate and multivariate analyses were conducted to determine factors that were associated with abnormal cholinesterase activity. Results The prevalence of organophosphate poisoning, indicated by cholinesterase activity of 75% or less, was 24.1%. The median period of exposure to agrochemicals was 3 years (Q1:=1 year, Q3:=7 years). Ninety eight (41.5%) farm workers knew the triangle colour code for the most dangerous agrochemicals. Not being provided with personal protective equipment (OR 2.00; 95% CI: 1.07 – 3.68) and lack of knowledge of the triangle colour code for most dangerous agrochemicals (OR 2.02; 95% CI: 1.02 – 4.03) were significantly associated with abnormal cholinesterase activity. Conclusion There was organophosphate poisoning in the commercial farms. Factors that were significantly associated with the poisoning were lack of protective clothing and lack of knowledge of the triangle colour code for most dangerous agrochemicals. We recommended intensive health

  12. Health effects of agrochemicals among farm workers in commercial farms of Kwekwe district, Zimbabwe.

    PubMed

    Magauzi, Regis; Mabaera, Bigboy; Rusakaniko, Simbarashe; Chimusoro, Anderson; Ndlovu, Nqobile; Tshimanga, Mufuta; Shambira, Gerald; Chadambuka, Addmore; Gombe, Notion

    2011-01-01

    Farm workers are at a very high risk of occupational diseases due to exposure to pesticides resulting from inadequate education, training and safety systems. The farm worker spends a lot of time exposed to these harmful agrochemicals. Numerous acute cases with symptoms typical of agrochemical exposure were reported from the commercial farms. We assessed the health effects of agrochemicals in farm workers in commercial farms of Kwekwe District (Zimbabwe), in 2006. An analytical cross sectional study was conducted amongst a sample of 246 farm workers who handled agrochemicals when discharging their duties in the commercial farms. Plasma cholinesterase activity in blood specimens obtained from farm workers was measured using spectrophotometry to establish levels of poisoning by organophosphate and/or carbamates. Information on the knowledge, attitudes and practices of farm workers on agrochemicals use was collected using a pre-tested interviewer administered questionnaire. Bivariate and multivariate analyses were conducted to determine factors that were associated with abnormal cholinesterase activity. The prevalence of organophosphate poisoning, indicated by cholinesterase activity of 75% or less, was 24.1%. The median period of exposure to agrochemicals was 3 years (Q(1):=1 year, Q(3):=7 years). Ninety eight (41.5%) farm workers knew the triangle colour code for the most dangerous agrochemicals. Not being provided with personal protective equipment (OR 2.00; 95% CI: 1.07 - 3.68) and lack of knowledge of the triangle colour code for most dangerous agrochemicals (OR 2.02; 95% CI: 1.02 - 4.03) were significantly associated with abnormal cholinesterase activity. There was organophosphate poisoning in the commercial farms. Factors that were significantly associated with the poisoning were lack of protective clothing and lack of knowledge of the triangle colour code for most dangerous agrochemicals. We recommended intensive health education and training of farm workers on

  13. Potential sources of Campylobacter infection on chicken farms: contamination and control of broiler-harvesting equipment, vehicles and personnel.

    PubMed

    Ridley, A; Morris, V; Gittins, J; Cawthraw, S; Harris, J; Edge, S; Allen, V

    2011-07-01

    To test the efficacy of enhanced biosecurity measures on poultry farms for reducing environmental contamination with Campylobacter during partial depopulation of broiler flocks prior to normal slaughter age. The study has also evaluated the risk of infection from live-bird transport crates that are routinely cleaned at the slaughterhouse, but may remain contaminated. On-farm sampling and Campylobacter isolation was undertaken to compare the prevalence of contamination on vehicles, equipment and catching personnel during farm visits that took place under normal or enhanced biosecurity. Campylobacters were found in almost all types of sample examined and enhanced biosecurity reduced the prevalence. However, the additional measures failed to prevent colonisation of the flocks. For transport crates, challenge trials involved exposure of broilers to commercially cleaned crates and genotyping of any campylobacters isolated. The birds were rapidly colonised with the same genotypes as those isolated from the cleaned crates. The enhanced biosecurity measures were insufficient to prevent flock colonisation, and the problem was exacerbated by inadequate cleaning of transport crates at the slaughterhouse. Current commercial practices in the United Kingdom facilitate the spread of campylobacters among broiler chicken flocks. Prevention of flock infection appears to require more stringent biosecurity than that studied here. © 2011 Crown Copyright. Journal of Applied Microbiology © 2011 The Society for Applied Microbiology.

  14. 33 CFR 183.564 - Fuel tank fill system.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Fuel tank fill system. 183.564...) BOATING SAFETY BOATS AND ASSOCIATED EQUIPMENT Fuel Systems Manufacturer Requirements § 183.564 Fuel tank fill system. (a) Each fuel fill opening must be located so that a gasoline overflow of up to five...

  15. Farm Health and Safety

    MedlinePlus

    ... jobs in the United States. Farms have many health and safety hazards, including Chemicals and pesticides Machinery, ... equipment can also reduce accidents. Occupational Safety and Health Administration

  16. Prevalence of individual and bulk tank milk antibodies of bovine herpesvirus type 1 and its relation to milk quality parameters on dairy farms in Catalonia (north-east Spain)

    PubMed Central

    Armengol, Ramon; Villalba, Daniel; Coma, Ester; Porquet, Lourdes; Jubert, Anna

    2017-01-01

    Bovine herpesvirus type 1 (BoHV-1) is the causative agent for infectious bovine rhinotracheitis and infectious pustular vulvovaginitis in cows or balanoposthitis in bulls. In this study, individual and bulk tank milk (BTM) samples from 5 Catalan dairy farms with different control strategies against BoHV-1 were analysed during the course of a year for milk quality parameters and glycoprotein E (gE) antibodies. Detection of gE antibodies was carried out with ELISA techniques. Prevalence of BoHV-1 varied between farms, and was stable during the study in individual and BTM samples. Comparing the antibody results of samples with milk quality parameters, positive samples with higher levels of antibodies corresponded to lower lactose and to higher percentages of fat and somatic cells. PMID:28761669

  17. 2020 Vision for Tank Waste Cleanup (One System Integration) - 12506

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harp, Benton; Charboneau, Stacy; Olds, Erik

    2012-07-01

    The mission of the Department of Energy's Office of River Protection (ORP) is to safely retrieve and treat the 56 million gallons of Hanford's tank waste and close the Tank Farms to protect the Columbia River. The millions of gallons of waste are a by-product of decades of plutonium production. After irradiated fuel rods were taken from the nuclear reactors to the processing facilities at Hanford they were exposed to a series of chemicals designed to dissolve away the rod, which enabled workers to retrieve the plutonium. Once those chemicals were exposed to the fuel rods they became radioactive andmore » extremely hot. They also couldn't be used in this process more than once. Because the chemicals are caustic and extremely hazardous to humans and the environment, underground storage tanks were built to hold these chemicals until a more permanent solution could be found. The Cleanup of Hanford's 56 million gallons of radioactive and chemical waste stored in 177 large underground tanks represents the Department's largest and most complex environmental remediation project. Sixty percent by volume of the nation's high-level radioactive waste is stored in the underground tanks grouped into 18 'tank farms' on Hanford's central plateau. Hanford's mission to safely remove, treat and dispose of this waste includes the construction of a first-of-its-kind Waste Treatment Plant (WTP), ongoing retrieval of waste from single-shell tanks, and building or upgrading the waste feed delivery infrastructure that will deliver the waste to and support operations of the WTP beginning in 2019. Our discussion of the 2020 Vision for Hanford tank waste cleanup will address the significant progress made to date and ongoing activities to manage the operations of the tank farms and WTP as a single system capable of retrieving, delivering, treating and disposing Hanford's tank waste. The initiation of hot operations and subsequent full operations of the WTP are not only dependent upon the

  18. 46 CFR 154.650 - Cargo tank and process pressure vessel welding.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Cargo tank and process pressure vessel welding. 154.650... Equipment Construction § 154.650 Cargo tank and process pressure vessel welding. (a) Cargo tank and process pressure vessel welding must meet Subpart 54.05 and Part 57 of this chapter. (b) Welding consumables used...

  19. 46 CFR 154.650 - Cargo tank and process pressure vessel welding.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 5 2012-10-01 2012-10-01 false Cargo tank and process pressure vessel welding. 154.650... Equipment Construction § 154.650 Cargo tank and process pressure vessel welding. (a) Cargo tank and process pressure vessel welding must meet Subpart 54.05 and Part 57 of this chapter. (b) Welding consumables used...

  20. 46 CFR 154.650 - Cargo tank and process pressure vessel welding.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 5 2014-10-01 2014-10-01 false Cargo tank and process pressure vessel welding. 154.650... Equipment Construction § 154.650 Cargo tank and process pressure vessel welding. (a) Cargo tank and process pressure vessel welding must meet Subpart 54.05 and Part 57 of this chapter. (b) Welding consumables used...

  1. 46 CFR 154.650 - Cargo tank and process pressure vessel welding.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 5 2011-10-01 2011-10-01 false Cargo tank and process pressure vessel welding. 154.650... Equipment Construction § 154.650 Cargo tank and process pressure vessel welding. (a) Cargo tank and process pressure vessel welding must meet Subpart 54.05 and Part 57 of this chapter. (b) Welding consumables used...

  2. 46 CFR 154.650 - Cargo tank and process pressure vessel welding.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 5 2013-10-01 2013-10-01 false Cargo tank and process pressure vessel welding. 154.650... Equipment Construction § 154.650 Cargo tank and process pressure vessel welding. (a) Cargo tank and process pressure vessel welding must meet Subpart 54.05 and Part 57 of this chapter. (b) Welding consumables used...

  3. EM-31 RETRIEVAL KNOWLEDGE CENTER MEETING REPORT: MOBILIZE AND DISLODGE TANK WASTE HEELS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fellinger, A.

    2010-02-16

    The Retrieval Knowledge Center sponsored a meeting in June 2009 to review challenges and gaps to retrieval of tank waste heels. The facilitated meeting was held at the Savannah River Research Campus with personnel broadly representing tank waste retrieval knowledge at Hanford, Savannah River, Idaho, and Oak Ridge. This document captures the results of this meeting. In summary, it was agreed that the challenges to retrieval of tank waste heels fell into two broad categories: (1) mechanical heel waste retrieval methodologies and equipment and (2) understanding and manipulating the heel waste (physical, radiological, and chemical characteristics) to support retrieval optionsmore » and subsequent processing. Recent successes and lessons from deployments of the Sand and Salt Mantis vehicles as well as retrieval of C-Area tanks at Hanford were reviewed. Suggestions to address existing retrieval approaches that utilize a limited set of tools and techniques are included in this report. The meeting found that there had been very little effort to improve or integrate the multiple proven or new techniques and tools available into a menu of available methods for rapid insertion into baselines. It is recommended that focused developmental efforts continue in the two areas underway (low-level mixing evaluation and pumping slurries with large solid materials) and that projects to demonstrate new/improved tools be launched to outfit tank farm operators with the needed tools to complete tank heel retrievals effectively and efficiently. This document describes the results of a meeting held on June 3, 2009 at the Savannah River Site in South Carolina to identify technology gaps and potential technology solutions to retrieving high-level waste (HLW) heels from waste tanks within the complex of sites run by the U. S. Department of Energy (DOE). The meeting brought together personnel with extensive tank waste retrieval knowledge from DOE's four major waste sites - Hanford, Savannah

  4. 46 CFR 154.408 - Cargo tank external pressure load.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... minimum internal pressure (maximum vacuum), and the maximum external pressure to which any portion of the... 46 Shipping 5 2010-10-01 2010-10-01 false Cargo tank external pressure load. 154.408 Section 154... Equipment Cargo Containment Systems § 154.408 Cargo tank external pressure load. For the calculation...

  5. 46 CFR 154.407 - Cargo tank internal pressure head.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Equipment Cargo Containment Systems § 154.407 Cargo tank internal pressure head. (a) For the calculation..., resulting from the combined effects of gravity and dynamic accelerations of a full tank)=aβ Zβ Y; where: aβ=dimensionless acceleration relative to the acceleration of gravity resulting from gravitational and dynamic...

  6. 46 CFR 32.35-10 - Steering apparatus on tank vessels-TB/ALL.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 1 2011-10-01 2011-10-01 false Steering apparatus on tank vessels-TB/ALL. 32.35-10 Section 32.35-10 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS SPECIAL EQUIPMENT, MACHINERY, AND HULL REQUIREMENTS Main and Auxiliary Machinery § 32.35-10 Steering apparatus on tank vessels...

  7. 46 CFR 32.35-10 - Steering apparatus on tank vessels-TB/ALL.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 1 2010-10-01 2010-10-01 false Steering apparatus on tank vessels-TB/ALL. 32.35-10 Section 32.35-10 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS SPECIAL EQUIPMENT, MACHINERY, AND HULL REQUIREMENTS Main and Auxiliary Machinery § 32.35-10 Steering apparatus on tank vessels...

  8. T Tank Farm Interim Surface Barrier Demonstration - Vadose Zone Monitoring FY09 Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Z. F.; Strickland, Christopher E.; Field, Jim G.

    2010-01-01

    DOE’s Office of River Protection constructed a temporary surface barrier over a portion of the T Tank Farm as part of the T Farm Interim Surface Barrier Demonstration Project. As part of the demonstration effort, vadose zone moisture is being monitored to assess the effectiveness of the barrier at reducing soil moisture. A solar-powered system was installed to continuously monitor soil water conditions at four locations (i.e., instrument Nests A, B, C, and D) beneath the barrier and outside the barrier footprint as well as site meteorological conditions. Nest A is placed in the area outside the barrier footprint andmore » serves as a control, providing subsurface conditions outside the influence of the surface barrier. Nest B provides subsurface measurements to assess surface-barrier edge effects. Nests C and D are used to assess changes in soil-moisture conditions beneath the interim surface barrier. Each instrument nest is composed of a capacitance probe (CP) with multiple sensors, multiple heat-dissipation units (HDUs), and a neutron probe (NP) access tube. The monitoring results in FY09 are summarized below. The solar panels functioned normally and could provide sufficient power to the instruments. The CP in Nest C after September 20, 2009, was not functional. The CP sensors in Nest B after July 13 and the 0.9-m CP sensor in Nest D before June 10 gave noisy data. Other CPs were functional normally. All the HDUs were functional normally but some pressure-head values measured by HDUs were greater than the upper measurement-limit. The higher-than-upper-limit values might be due to the very wet soil condition and/or measurement error but do not imply the malfunction of the sensors. Similar to FY07 and FY08, in FY09, the soil under natural conditions (Nest A) was generally recharged during the winter period (October-March) and discharged during the summer period (April-September). Soil water conditions above about 1.5-m to 2-m depth from all three types of

  9. 21 CFR 129.40 - Equipment and procedures.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION PROCESSING AND BOTTLING OF BOTTLED DRINKING WATER Equipment § 129.40 Equipment... intended use. This includes all collection and storage tanks, piping, fittings, connections, bottle washers...

  10. 21 CFR 129.40 - Equipment and procedures.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION PROCESSING AND BOTTLING OF BOTTLED DRINKING WATER Equipment § 129.40 Equipment... intended use. This includes all collection and storage tanks, piping, fittings, connections, bottle washers...

  11. Commercial Submersible Mixing Pump For SRS Tank Waste Removal - 15223

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hubbard, Mike; Herbert, James E.; Scheele, Patrick W.

    The Savannah River Site Tank Farms have 45 active underground waste tanks used to store and process nuclear waste materials. There are 4 different tank types, ranging in capacity from 2839 m 3 to 4921 m 3 (750,000 to 1,300,000 gallons). Eighteen of the tanks are older style and do not meet all current federal standards for secondary containment. The older style tanks are the initial focus of waste removal efforts for tank closure and are referred to as closure tanks. Of the original 51 underground waste tanks, six of the original 24 older style tanks have completed waste removalmore » and are filled with grout. The insoluble waste fraction that resides within most waste tanks at SRS requires vigorous agitation to suspend the solids within the waste liquid in order to transfer this material for eventual processing into glass filled canisters at the Defense Waste Processing Facility (DWPF). SRS suspends the solid waste by use of recirculating mixing pumps. Older style tanks generally have limited riser openings which will not support larger mixing pumps, since the riser access is typically 58.4 cm (23 inches) in diameter. Agitation for these tanks has been provided by four long shafted standard slurry pumps (SLP) powered by an above tank 112KW (150 HP) electric motor. The pump shaft is lubricated and cooled in a pressurized water column that is sealed from the surrounding waste in the tank. Closure of four waste tanks has been accomplished utilizing long shafted pump technology combined with heel removal using multiple technologies. Newer style waste tanks at SRS have larger riser openings, allowing the processing of waste solids to be accomplished with four large diameter SLPs equipped with 224KW (300 HP) motors. These tanks are used to process the waste from closure tanks for DWPF. In addition to the SLPs, a 224KW (300 HP) submersible mixer pump (SMP) has also been developed and deployed within older style tanks. The SMPs are product cooled and product lubricated

  12. The Gunite and Associated Tanks Remediation Project Tank Waste Retrieval Performance and Lessons Learned, vol. 2 [of 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lewis, BE

    2003-10-07

    The Gunite and Associated Tanks (GAAT) Remediation Project was the first of its kind performed in the United States. Robotics and remotely operated equipment were used to successfully transfer almost 94,000 gal of remote-handled transuranic sludge containing over 81,000 Ci of radioactive contamination from nine large underground storage tanks at the Oak Ridge National Laboratory (ORNL). The sludge was transferred with over 439,000 gal of radioactive waste supernatant and {approx}420,500 gal of fresh water that was used in sluicing operations. The GAATs are located in a high-traffic area of ORNL near a main thoroughfare. Volume 1 provides information on themore » various phases of the project and describes the types of equipment used. Volume 1 also discusses the tank waste retrieval performance and the lessons learned during the remediation effort. Volume 2 consists of the following appendixes, which are referenced in Vol. 1: A--Background Information for the Gunite and Associated Tanks Operable Unit; B--Annotated Bibliography; C--GAAT Equipment Matrix; D--Comprehensive Listing of the Sample Analysis Data from the GAAT Remediation Project; and E--Vendor List for the GAAT Remediation Project. The remediation of the GAATs was completed {approx}5.5 years ahead of schedule and {approx}$120,435K below the cost estimated in the Remedial Investigation/Feasibility Study for the project. These schedule and cost savings were a direct result of the selection and use of state-of-the-art technologies and the dedication and drive of the engineers, technicians, managers, craft workers, and support personnel that made up the GAAT Remediation Project Team.« less

  13. 7 CFR 1400.104 - Changes in farming operations.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    .... (4) A change in ownership by sale or gift of equipment from a person or legal entity previously.... The sale or gift of equipment will be considered to be bona fide and substantive only if: (i) The... farming operation, (ii) The sale or gift of the equipment was based on the equipment's fair market value...

  14. 7 CFR 58.128 - Equipment and utensils.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... contact surfaces of all utensils and equipment such as holding tanks, pasteurizers, coolers, vats... discharge a clean dry can and cover and shall be kept properly timed in accordance with the instructions of..., signature or initials of operator. (i) Surface coolers. Surface coolers shall be equipped with hinged or...

  15. 7 CFR 58.128 - Equipment and utensils.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... contact surfaces of all utensils and equipment such as holding tanks, pasteurizers, coolers, vats... discharge a clean dry can and cover and shall be kept properly timed in accordance with the instructions of..., signature or initials of operator. (i) Surface coolers. Surface coolers shall be equipped with hinged or...

  16. 33 CFR 183.580 - Static pressure test for fuel tanks.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 2 2012-07-01 2012-07-01 false Static pressure test for fuel... SECURITY (CONTINUED) BOATING SAFETY BOATS AND ASSOCIATED EQUIPMENT Fuel Systems Tests § 183.580 Static pressure test for fuel tanks. A fuel tank is tested by performing the following procedures in the following...

  17. 33 CFR 183.580 - Static pressure test for fuel tanks.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 2 2013-07-01 2013-07-01 false Static pressure test for fuel... SECURITY (CONTINUED) BOATING SAFETY BOATS AND ASSOCIATED EQUIPMENT Fuel Systems Tests § 183.580 Static pressure test for fuel tanks. A fuel tank is tested by performing the following procedures in the following...

  18. 33 CFR 183.580 - Static pressure test for fuel tanks.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 2 2014-07-01 2014-07-01 false Static pressure test for fuel... SECURITY (CONTINUED) BOATING SAFETY BOATS AND ASSOCIATED EQUIPMENT Fuel Systems Tests § 183.580 Static pressure test for fuel tanks. A fuel tank is tested by performing the following procedures in the following...

  19. 33 CFR 183.580 - Static pressure test for fuel tanks.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 2 2011-07-01 2011-07-01 false Static pressure test for fuel... SECURITY (CONTINUED) BOATING SAFETY BOATS AND ASSOCIATED EQUIPMENT Fuel Systems Tests § 183.580 Static pressure test for fuel tanks. A fuel tank is tested by performing the following procedures in the following...

  20. 33 CFR 183.580 - Static pressure test for fuel tanks.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Static pressure test for fuel... SECURITY (CONTINUED) BOATING SAFETY BOATS AND ASSOCIATED EQUIPMENT Fuel Systems Tests § 183.580 Static pressure test for fuel tanks. A fuel tank is tested by performing the following procedures in the following...

  1. 77 FR 62224 - Hanford Tank Farms Flammable Gas Safety Strategy

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-12

    ... believes that actions are necessary to install real time monitoring to measure tank ventilation flowrates... monitoring. In its August letter, the Board noted that DOE's SAC for flammable gas monitoring exhibited a... flammable gas monitoring, it remained inadequate as a credited safety control. The SAC is less reliable than...

  2. 49 CFR 179.20 - Service equipment; protection systems.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 3 2011-10-01 2011-10-01 false Service equipment; protection systems. 179.20 Section 179.20 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND... CARS General Design Requirements § 179.20 Service equipment; protection systems. If an applicable tank...

  3. STATE-OF-THE-ART PROCEDURES AND EQUIPMENT FOR INTERNAL INSPECTION OF UNDERGROUND STORAGE TANKS

    EPA Science Inventory

    Preventing leaks from underground storage tanks is of paramount importance in this decade as environmental resources are seriously threatened by the release of toxic substances and costs of reparation are exorbitant. Inspecting underground storage tanks is one action that helps p...

  4. Safety on North Carolina and Kentucky trout farms.

    PubMed

    Ogunsanya, T J; Durborow, R M; Myers, M L; Cole, H P; Thompson, S L

    2011-01-01

    The objective of this study was to identify and describe work-related safety hazards, injuries, and near-injury events (close calls) that occurred on trout farms in North Carolina and Kentucky. An interview instrument was used to collect information on occupational hazards, injuries, and near-injury events that resulted from work-related activities. Trout farmers reported occupational hazards including falling live tank lids, slippery surfaces on hauling trucks, lifting strains, falls from raceway walls and walkways, needlesticks while vaccinating fish, allergies, hypothermia/drowning, falls from cranes, chemical exposure, fire/explosions related to oxygen exposure, and electrical contact with overhead power lines. This study also reports solutions suggested by farm safety researchers or used by farmers to prevent the safety hazards found on trout farms.

  5. Characterization of the tank 51 alternate reductant sludge batch 9 slurry sample (HTF-51-15-130)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reboul, S. H.

    Tank 51 slurry sample HTF-51-15-130 was collected following sludge washing at the Tank Farm. The sample was received at SRNL and then characterized in preparation for qualification of the alternate reductant Sludge Batch 9 (SB9) flowsheet. In this characterization, densities, solids distribution, elemental constituents, anionic constituents, carbon content, and select radioisotopes were quantified.

  6. Alternative Fuels Data Center: Propane Tank Overfill Safety Advisory

    Science.gov Websites

    rises above set safe levels. However, even if conditions result in a fuel release, an ignition source vehicle tanks are all equipped with PRDs to ensure safe levels of LPG pressure in the tanks, and we are practices for OPDs to ensure they work properly. The US DOE Clean Cities (DOE-CC) program is working with

  7. MICHELLE TILLOTSON WITH TEST EQUIPMENT

    NASA Image and Video Library

    2016-01-20

    MICHELLE TILLOTSON, AN ENGINEER AT NASA’S MARSHALL SPACE FLIGHT CENTER, SHOWS KALYN HOPKINS A STUDENT AT THE MIAMI VALLEY SCHOOL, DAYTON OHIO, NEW EQUIPMENT THAT WILL BE USED TO TEST THE PROPELLANT TANKS FOR THE SLS

  8. 33 CFR 157.110 - Crude Oil Washing Operations and Equipment Manual for foreign tank vessels: Submission.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... MARINE ENVIRONMENT RELATING TO TANK VESSELS CARRYING OIL IN BULK Crude Oil Washing (COW) System on Tank...: Submission. If the owner or operator of a foreign tank vessel having a COW system under § 157.10(e), § 157...

  9. Farm business and operator variables associated with bulk tank somatic cell count from dairy herds in the southeastern United States.

    PubMed

    DeLong, Karen L; Lambert, Dayton M; Schexnayder, Susan; Krawczel, Peter; Fly, Mark; Garkovich, Lorraine; Oliver, Steve

    2017-11-01

    Mastitis is a worldwide problem in dairy cows and results in reduced milk production, the culling of cows, and other economic losses. Bulk tank somatic cell count (BTSCC) over 200,000 cells/mL often indicates underlying subclinical mastitis in dairy herds. Several preventative measures that can be implemented to help improve the incidence of mastitis exist, but surveys find these practices not fully adopted by producers. The goal of this research was to analyze the farm and operator characteristics associated with BTSCC in dairy herds by analyzing a survey of dairy producers in the southeastern United States. We examined this region because it has experienced a decline in the number of dairy farms, dairy cows, and milk production over the past 2 decades. The southeast region is also associated with higher BTSCC levels than the national average. Dairy farms in Georgia, Mississippi, Kentucky, North Carolina, South Carolina, Tennessee, and Virginia were surveyed. Producers were asked questions about the BTSCC at which they take action to address BTSCC, the information sources they use to learn about and manage BTSCC, farm structure and management characteristics, and attitudinal variables associated with profitability, managerial control, and planning horizon. Least squares regression was used to determine how these factors were associated with BTSCC levels across the 7-state region. Concern over mastitis, financial consequences of mastitis, and increased previous-year BTSCC were associated with higher current BTSCC levels. Obtaining information about mastitis from veterinarians and extension personnel, taking action against mastitis at a BTSCC less than 300,000 cells/mL, and perceived ability to control processes and mastitis incidence were associated with reduced BTSCC. We found average BTSCC was lower in North Carolina and Virginia. These results suggest that proactive producers (i.e., those that perceive they can control BTSCC and seek information from reliable

  10. Detail view of the Fluid Acquisition and Resupply Equipment experiment.

    NASA Image and Video Library

    1992-12-09

    STS053-09-019 (2 - 9 Dec 1992) --- A medium close-up view of part of the Fluid Acquisition and Resupply Equipment (FARE) onboard the Space Shuttle Discovery. Featured in the mid-deck FARE setup is fluid activity in one of two 12.5-inch spherical tanks made of transparent acrylic. Pictured is the receiver tank. The other tank, out of frame below, is for supplying fluids. The purpose of FARE is to investigate the dynamics of fluid transfer in microgravity and develop methods for transferring vapor-free propellants and other liquids that must be replenished in long-term space systems like satellites, Extended-Duration Orbiters (EDO), and Space Station Freedom. Eight times over an eight-hour test period, the mission specialists conducted the FARE experiment. A sequence of manual valve operations caused pressurized air from the bottles to force fluids from the supply tank to the receiver tank and back again to the supply tank. Baffles in the receiver tank controlled fluid motion during transfer, a fine-mesh screen filtered vapor from the fluid, and the overboard vent removed vapor from the receiver tank as the liquid rose. FARE is managed by NASA's Marshall Space Flight Center (MSFC) in Alabama. The basic equipment was developed by Martin Marietta for the Storable Fluid Management Demonstration. Susan L. Driscoll is the principal investigator.

  11. 40 CFR Table 1 to Subpart Bbbbbb... - Applicability Criteria, Emission Limits, and Management Practices for Storage Tanks

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... and operate each internal and external floating roof gasoline storage tank according to the applicable... (b) Equip each internal floating roof gasoline storage tank according to the requirements in § 60... the requirements in § 60.112b(a)(1)(iv) through (ix) of this chapter; and (c) Equip each external...

  12. 49 CFR 172.331 - Bulk packagings other than portable tanks, cargo tanks, tank cars and multi-unit tank car tanks.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 2 2012-10-01 2012-10-01 false Bulk packagings other than portable tanks, cargo tanks, tank cars and multi-unit tank car tanks. 172.331 Section 172.331 Transportation Other Regulations... packagings other than portable tanks, cargo tanks, tank cars and multi-unit tank car tanks. (a) Each person...

  13. 49 CFR 172.331 - Bulk packagings other than portable tanks, cargo tanks, tank cars and multi-unit tank car tanks.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Bulk packagings other than portable tanks, cargo tanks, tank cars and multi-unit tank car tanks. 172.331 Section 172.331 Transportation Other Regulations... packagings other than portable tanks, cargo tanks, tank cars and multi-unit tank car tanks. (a) Each person...

  14. 49 CFR 172.331 - Bulk packagings other than portable tanks, cargo tanks, tank cars and multi-unit tank car tanks.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 2 2014-10-01 2014-10-01 false Bulk packagings other than portable tanks, cargo tanks, tank cars and multi-unit tank car tanks. 172.331 Section 172.331 Transportation Other Regulations... packagings other than portable tanks, cargo tanks, tank cars and multi-unit tank car tanks. (a) Each person...

  15. 49 CFR 172.331 - Bulk packagings other than portable tanks, cargo tanks, tank cars and multi-unit tank car tanks.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 2 2011-10-01 2011-10-01 false Bulk packagings other than portable tanks, cargo tanks, tank cars and multi-unit tank car tanks. 172.331 Section 172.331 Transportation Other Regulations... packagings other than portable tanks, cargo tanks, tank cars and multi-unit tank car tanks. (a) Each person...

  16. 49 CFR 172.331 - Bulk packagings other than portable tanks, cargo tanks, tank cars and multi-unit tank car tanks.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 2 2013-10-01 2013-10-01 false Bulk packagings other than portable tanks, cargo tanks, tank cars and multi-unit tank car tanks. 172.331 Section 172.331 Transportation Other Regulations... packagings other than portable tanks, cargo tanks, tank cars and multi-unit tank car tanks. (a) Each person...

  17. 33 CFR 157.10d - Double hulls on tank vessels.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Double hulls on tank vessels. 157... OIL IN BULK Design, Equipment, and Installation § 157.10d Double hulls on tank vessels. (a) With the... completed after December 31, 1993; or (4) That is otherwise required to have a double hull by 46 U.S.C...

  18. Field study comparing the effect of hydraulic mixing on septic tank performance and sludge accumulation.

    PubMed

    Almomani, Fares

    2016-01-01

    This study investigates the effect of hydraulic mixing on anaerobic digestion and sludge accumulation in a septic tank. The performance of a septic tank equipped with a hydraulic mixer was compared with that of a similar standard septic tank over a period of 10 months. The study was conducted in two phases: Phase-I--from May to November 2013 (6 months); Phase-II--from January to May 2014 (4 months). Hydraulic mixing effectively reduced the effluent biological oxygen demand (BOD) and total suspended solids, and reduced the sludge accumulation rate in the septic tank. The BOD removal efficiencies during Phase-II were 65% and 75% in the standard septic tank and a septic tank equipped with hydraulic mixer (Smart Digester™), respectively. The effect of hydraulic mixing reduced the rate of sludge accumulation from 0.64 cm/day to 0.27 cm/day, and increased the pump-out interval by a factor of 3.

  19. 49 CFR 173.314 - Compressed gases in tank cars and multi-unit tank cars.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... applicable authorized tank car specification and must be equipped with a head shield as prescribed in § 179... jacket and head shield. When the jacket and head shield are made from any authorized steel with a minimum... jacket and head shield must be increased by a factor of 1.157. Forming allowances for heads are not...

  20. 49 CFR 173.314 - Compressed gases in tank cars and multi-unit tank cars.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... applicable authorized tank car specification and must be equipped with a head shield as prescribed in § 179... jacket and head shield. When the jacket and head shield are made from any authorized steel with a minimum... jacket and head shield must be increased by a factor of 1.157. Forming allowances for heads are not...

  1. 46 CFR 31.35-1 - Electrical installations, lighting and power equipment, batteries, etc.-TB/ALL.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 1 2010-10-01 2010-10-01 false Electrical installations, lighting and power equipment, batteries, etc.-TB/ALL. 31.35-1 Section 31.35-1 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK... and power equipment, batteries, etc.—TB/ALL. All tank vessels are subject to the regulations contained...

  2. 46 CFR 31.35-1 - Electrical installations, lighting and power equipment, batteries, etc.-TB/ALL.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 1 2011-10-01 2011-10-01 false Electrical installations, lighting and power equipment, batteries, etc.-TB/ALL. 31.35-1 Section 31.35-1 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK... and power equipment, batteries, etc.—TB/ALL. All tank vessels are subject to the regulations contained...

  3. 46 CFR 31.35-1 - Electrical installations, lighting and power equipment, batteries, etc.-TB/ALL.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 1 2012-10-01 2012-10-01 false Electrical installations, lighting and power equipment, batteries, etc.-TB/ALL. 31.35-1 Section 31.35-1 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK... and power equipment, batteries, etc.—TB/ALL. All tank vessels are subject to the regulations contained...

  4. 46 CFR 31.35-1 - Electrical installations, lighting and power equipment, batteries, etc.-TB/ALL.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 1 2014-10-01 2014-10-01 false Electrical installations, lighting and power equipment, batteries, etc.-TB/ALL. 31.35-1 Section 31.35-1 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK... and power equipment, batteries, etc.—TB/ALL. All tank vessels are subject to the regulations contained...

  5. 46 CFR 31.35-1 - Electrical installations, lighting and power equipment, batteries, etc.-TB/ALL.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 1 2013-10-01 2013-10-01 false Electrical installations, lighting and power equipment, batteries, etc.-TB/ALL. 31.35-1 Section 31.35-1 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK... and power equipment, batteries, etc.—TB/ALL. All tank vessels are subject to the regulations contained...

  6. Development and validation of quasi-steady-state heat pump water heater model having stratified water tank and wrapped-tank condenser

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shen, Bo; Nawaz, Kashif; Baxter, Van D.

    Heat pump water heater systems (HPWH) introduce new challenges for design and modeling tools, because they require vapor compression system balanced with a water storage tank. In addition, a wrapped-tank condenser coil has strong coupling with a stratified water tank, which leads HPWH simulation to a transient process. To tackle these challenges and deliver an effective, hardware-based HPWH equipment design tool, a quasi-steady-state HPWH model was developed based on the DOE/ORNL Heat Pump Design Model (HPDM). Two new component models were added via this study. One is a one-dimensional stratified water tank model, an improvement to the open-source EnergyPlus watermore » tank model, by introducing a calibration factor to account for bulk mixing effect due to water draws, circulations, etc. The other is a wrapped-tank condenser coil model, using a segment-to-segment modeling approach. In conclusion, the HPWH system model was validated against available experimental data. After that, the model was used for parametric simulations to determine the effects of various design factors.« less

  7. Development and validation of quasi-steady-state heat pump water heater model having stratified water tank and wrapped-tank condenser

    DOE PAGES

    Shen, Bo; Nawaz, Kashif; Baxter, Van D.; ...

    2017-10-31

    Heat pump water heater systems (HPWH) introduce new challenges for design and modeling tools, because they require vapor compression system balanced with a water storage tank. In addition, a wrapped-tank condenser coil has strong coupling with a stratified water tank, which leads HPWH simulation to a transient process. To tackle these challenges and deliver an effective, hardware-based HPWH equipment design tool, a quasi-steady-state HPWH model was developed based on the DOE/ORNL Heat Pump Design Model (HPDM). Two new component models were added via this study. One is a one-dimensional stratified water tank model, an improvement to the open-source EnergyPlus watermore » tank model, by introducing a calibration factor to account for bulk mixing effect due to water draws, circulations, etc. The other is a wrapped-tank condenser coil model, using a segment-to-segment modeling approach. In conclusion, the HPWH system model was validated against available experimental data. After that, the model was used for parametric simulations to determine the effects of various design factors.« less

  8. 29 CFR 780.136 - Employment in practices on a farm.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... activity (§§ 780.104 through 780.144). Even though an employee may work on several farms during a workweek... an employee occurs off the farm will not affect this conclusion. Thus, an employee may spend a small amount of time within the workweek in transporting necessary equipment for work to be done on farms...

  9. PBF (PER620) interior. Detail view across top of reactor tank. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    PBF (PER-620) interior. Detail view across top of reactor tank. Camera facing northeast. Ait tubing is cleanup equipment. Note projections from reactor structure above water level in tank. Date: May 2004. INEEL negative no. HD-41-5-1 - Idaho National Engineering Laboratory, SPERT-I & Power Burst Facility Area, Scoville, Butte County, ID

  10. 46 CFR 154.1325 - Liquid level alarm system: All cargo tanks.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... percent liquid full and without causing the pressure in the loading lines to exceed the design pressure... 46 Shipping 5 2010-10-01 2010-10-01 false Liquid level alarm system: All cargo tanks. 154.1325... Equipment Instrumentation § 154.1325 Liquid level alarm system: All cargo tanks. Except as allowed under...

  11. 46 CFR 154.1325 - Liquid level alarm system: All cargo tanks.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... percent liquid full and without causing the pressure in the loading lines to exceed the design pressure... 46 Shipping 5 2013-10-01 2013-10-01 false Liquid level alarm system: All cargo tanks. 154.1325... Equipment Instrumentation § 154.1325 Liquid level alarm system: All cargo tanks. Except as allowed under...

  12. 46 CFR 154.1325 - Liquid level alarm system: All cargo tanks.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... percent liquid full and without causing the pressure in the loading lines to exceed the design pressure... 46 Shipping 5 2012-10-01 2012-10-01 false Liquid level alarm system: All cargo tanks. 154.1325... Equipment Instrumentation § 154.1325 Liquid level alarm system: All cargo tanks. Except as allowed under...

  13. 46 CFR 154.1325 - Liquid level alarm system: All cargo tanks.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... percent liquid full and without causing the pressure in the loading lines to exceed the design pressure... 46 Shipping 5 2011-10-01 2011-10-01 false Liquid level alarm system: All cargo tanks. 154.1325... Equipment Instrumentation § 154.1325 Liquid level alarm system: All cargo tanks. Except as allowed under...

  14. 46 CFR 154.1325 - Liquid level alarm system: All cargo tanks.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... percent liquid full and without causing the pressure in the loading lines to exceed the design pressure... 46 Shipping 5 2014-10-01 2014-10-01 false Liquid level alarm system: All cargo tanks. 154.1325... Equipment Instrumentation § 154.1325 Liquid level alarm system: All cargo tanks. Except as allowed under...

  15. Using Drained Spacecraft Propellant Tanks for Habitation

    NASA Technical Reports Server (NTRS)

    Thomas, Andrew S. W.

    2009-01-01

    A document proposes that future spacecraft for planetary and space exploration be designed to enable reuse of drained propellant tanks for occupancy by humans. This proposal would enable utilization of volume and mass that would otherwise be unavailable and, in some cases, discarded. Such utilization could enable reductions in cost, initial launch mass, and number of launches needed to build up a habitable outpost in orbit about, or on the surface of, a planet or moon. According to the proposal, the large propellant tanks of a spacecraft would be configured to enable crews to gain access to their interiors. The spacecraft would incorporate hatchways, between a tank and the crew volume, that would remain sealed while the tank contained propellant and could be opened after the tank was purged by venting to outer space and then refilled with air. The interior of the tank would be pre-fitted with some habitation fixtures that were compatible with the propellant environment. Electrical feed-throughs, used originally for gauging propellants, could be reused to supply electric power to equipment installed in the newly occupied space. After a small amount of work, the tank would be ready for long-term use as a habitation module.

  16. 46 CFR 154.655 - Stress relief for independent tanks type C.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Stress relief for independent tanks type C. 154.655... Equipment Construction § 154.655 Stress relief for independent tanks type C. For a design temperature colder... stress relieved by post-weld heat treatment under § 54.25-7 of this chapter or by mechanical stress...

  17. 46 CFR 154.655 - Stress relief for independent tanks type C.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 5 2011-10-01 2011-10-01 false Stress relief for independent tanks type C. 154.655... Equipment Construction § 154.655 Stress relief for independent tanks type C. For a design temperature colder... stress relieved by post-weld heat treatment under § 54.25-7 of this chapter or by mechanical stress...

  18. 46 CFR 154.655 - Stress relief for independent tanks type C.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 5 2013-10-01 2013-10-01 false Stress relief for independent tanks type C. 154.655... Equipment Construction § 154.655 Stress relief for independent tanks type C. For a design temperature colder... stress relieved by post-weld heat treatment under § 54.25-7 of this chapter or by mechanical stress...

  19. 46 CFR 154.655 - Stress relief for independent tanks type C.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 5 2014-10-01 2014-10-01 false Stress relief for independent tanks type C. 154.655... Equipment Construction § 154.655 Stress relief for independent tanks type C. For a design temperature colder... stress relieved by post-weld heat treatment under § 54.25-7 of this chapter or by mechanical stress...

  20. 46 CFR 154.655 - Stress relief for independent tanks type C.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 5 2012-10-01 2012-10-01 false Stress relief for independent tanks type C. 154.655... Equipment Construction § 154.655 Stress relief for independent tanks type C. For a design temperature colder... stress relieved by post-weld heat treatment under § 54.25-7 of this chapter or by mechanical stress...

  1. Lunar habitat concept employing the space shuttle external tank.

    PubMed

    King, C B; Butterfield, A J; Hypes, W D; Nealy, J E; Simonsen, L C

    1990-01-01

    The space shuttle external tank, which consists of a liquid oxygen tank, an intertank structure, and a liquid hydrogen tank, is an expendable structure used for approximately 8.5 min during each launch. A concept for outfitting the liquid oxygen tank-intertank unit for a 12-person lunar habitat is described. The concept utilizes existing structures and openings for both man and equipment access without compromising the structural integrity of the tank. Living quarters, instrumentation, environmental control and life support, thermal control, and propulsion systems are installed at Space Station Freedom. The unmanned habitat is then transported to low lunar orbit and autonomously soft landed on the lunar surface. Design studies indicate that this concept is feasible by the year 2000 with concurrent development of a space transfer vehicle and manned cargo lander for crew changeover and resupply.

  2. Communicating Performance Assessments Results - 13609

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Layton, Mark

    2013-07-01

    The F-Area Tank Farms (FTF) and H-Area Tank Farm (HTF) are owned by the U.S. Department of Energy (DOE) and operated by Savannah River Remediation LLC (SRR), Liquid Waste Operations contractor at DOE's Savannah River Site (SRS). The FTF and HTF are active radioactive waste storage and treatment facilities consisting of 51 carbon steel waste tanks and ancillary equipment such as transfer lines, evaporators and pump tanks. Performance Assessments (PAs) for each Tank Farm have been prepared to support the eventual closure of the underground radioactive waste tanks and ancillary equipment. PAs provide the technical bases and results to bemore » used in subsequent documents to demonstrate compliance with the pertinent requirements for final closure of the Tank Farms. The Tank Farms are subject to a number of regulatory requirements. The State regulates Tank Farm operations through an industrial waste water permit and through a Federal Facility Agreement approved by the State, DOE and the Environmental Protection Agency (EPA). Closure documentation will include State-approved Tank Farm Closure Plans and tank-specific closure modules utilizing information from the PAs. For this reason, the State of South Carolina and the EPA must be involved in the performance assessment review process. The residual material remaining after tank cleaning is also subject to reclassification prior to closure via a waste determination pursuant to Section 3116 of the Ronald W. Reagan National Defense Authorization Act of Fiscal Year 2005. PAs are performance-based, risk-informed analyses of the fate and transport of FTF and HTF residual wastes following final closure of the Tank Farms. Since the PAs serve as the primary risk assessment tools in evaluating readiness for closure, it is vital that PA conclusions be communicated effectively. In the course of developing the FTF and HTF PAs, several lessons learned have emerged regarding communicating PA results. When communicating PA results it

  3. 46 CFR 154.340 - Access to tanks and spaces in the cargo area.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... access from the weather deck to gas-safe spaces in the cargo area must be at least 2.4 m (7.9 ft.) above... 46 Shipping 5 2014-10-01 2014-10-01 false Access to tanks and spaces in the cargo area. 154.340... Equipment Ship Arrangements § 154.340 Access to tanks and spaces in the cargo area. (a) Each cargo tank must...

  4. 46 CFR 154.340 - Access to tanks and spaces in the cargo area.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... access from the weather deck to gas-safe spaces in the cargo area must be at least 2.4 m (7.9 ft.) above... 46 Shipping 5 2012-10-01 2012-10-01 false Access to tanks and spaces in the cargo area. 154.340... Equipment Ship Arrangements § 154.340 Access to tanks and spaces in the cargo area. (a) Each cargo tank must...

  5. 46 CFR 154.340 - Access to tanks and spaces in the cargo area.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... access from the weather deck to gas-safe spaces in the cargo area must be at least 2.4 m (7.9 ft.) above... 46 Shipping 5 2013-10-01 2013-10-01 false Access to tanks and spaces in the cargo area. 154.340... Equipment Ship Arrangements § 154.340 Access to tanks and spaces in the cargo area. (a) Each cargo tank must...

  6. 46 CFR 154.340 - Access to tanks and spaces in the cargo area.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... access from the weather deck to gas-safe spaces in the cargo area must be at least 2.4 m (7.9 ft.) above... 46 Shipping 5 2010-10-01 2010-10-01 false Access to tanks and spaces in the cargo area. 154.340... Equipment Ship Arrangements § 154.340 Access to tanks and spaces in the cargo area. (a) Each cargo tank must...

  7. 46 CFR 154.340 - Access to tanks and spaces in the cargo area.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... access from the weather deck to gas-safe spaces in the cargo area must be at least 2.4 m (7.9 ft.) above... 46 Shipping 5 2011-10-01 2011-10-01 false Access to tanks and spaces in the cargo area. 154.340... Equipment Ship Arrangements § 154.340 Access to tanks and spaces in the cargo area. (a) Each cargo tank must...

  8. Tank 241-AZ-102 Privatization Push Mode Core Sampling and Analysis Plan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    RASMUSSEN, J.H.

    1999-08-02

    This sampling and analysis plan (SAP) identifies characterization objectives pertaining to sample collection, laboratory analytical evaluation, and reporting requirements for samples obtained from tank 241-AZ-102. The purpose of this sampling event is to obtain information about the characteristics of the contents of 241-AZ-102 required to satisfy the Data Quality Objectives For TWRS Privatization Phase I: Confirm Tank TIS An Appropriate Feed Source For High-Level Waste Feed Batch X(HLW DQO) (Nguyen 1999a), Data Quality Objectives For TWRS Privatization Phase 1: Confirm Tank TIS An Appropriate Feed Source For Low-Activity Waste Feed Batch X (LAW DQO) (Nguyen 1999b), Low Activity Waste andmore » High Level Waste Feed Data Quality Objectives (L&H DQO) (Patello et al. 1999) and Characterization Data Needs for Development, Design, and Operation of Retrieval Equipment Developed through the Data Quality Objective Process (Equipment DQO) (Bloom 1996). The Tank Characterization Technical Sampling Basis document (Brown et al. 1998) indicates that these issues, except the Equipment DQO apply to tank 241-AZ-102 for this sampling event. The Equipment DQO is applied for shear strength measurements of the solids segments only. Poppiti (1999) requires additional americium-241 analyses of the sludge segments. Brown et al. (1998) also identify safety screening, regulatory issues and provision of samples to the Privatization Contractor(s) as applicable issues for this tank. However, these issues will not be addressed via this sampling event. Reynolds et al. (1999) concluded that information from previous sampling events was sufficient to satisfy the safety screening requirements for tank 241 -AZ-102. Push mode core samples will be obtained from risers 15C and 24A to provide sufficient material for the chemical analyses and tests required to satisfy these data quality objectives. The 222-S Laboratory will extrude core samples, composite the liquids and solids, perform chemical

  9. High level waste tank closure project: ALARA applications at the Idaho National Engineering and Environmental Laboratory.

    PubMed

    Aitken, Steven B; Butler, Richard; Butterworth, Steven W; Quigley, Keith D

    2005-05-01

    Bechtel BWXT Idaho, Maintenance and Operating Contractor for the Department of Energy at the Idaho National Engineering and Environmental Laboratory, has emptied, cleaned, and sampled six of the eleven 1.135 x 10(6) L high level waste underground storage tanks at the Idaho Nuclear Technology and Engineering Center, well ahead of the State of Idaho Consent Order cleaning schedule. Cleaning of a seventh tank is expected to be complete by the end of calendar year 2004. The tanks, with associated vaults, valve boxes, and distribution systems, are being closed to meet Resource Conservation and Recovery Act regulations and Department of Energy orders. The use of remotely operated equipment placed in the tanks through existing tank riser access points, sampling methods and application of as-low-as-reasonably-achievable (ALARA) principles have proven effective in keeping personnel dose low during equipment removal, tank, vault, and valve box cleaning, and sampling activities, currently at 0.03 Sv.

  10. TANK 18-F AND 19-F TANK FILL GROUT SCALE UP TEST SUMMARY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stefanko, D.; Langton, C.

    2012-01-03

    High-level waste (HLW) tanks 18-F and 19-F have been isolated from FTF facilities. To complete operational closure the tanks will be filled with grout for the purpose of: (1) physically stabilizing the tanks, (2) limiting/eliminating vertical pathways to residual waste, (3) entombing waste removal equipment, (4) discouraging future intrusion, and (5) providing an alkaline, chemical reducing environment within the closure boundary to control speciation and solubility of select radionuclides. This report documents the results of a four cubic yard bulk fill scale up test on the grout formulation recommended for filling Tanks 18-F and 19-F. Details of the scale upmore » test are provided in a Test Plan. The work was authorized under a Technical Task Request (TTR), HLE-TTR-2011-008, and was performed according to Task Technical and Quality Assurance Plan (TTQAP), SRNL-RP-2011-00587. The bulk fill scale up test described in this report was intended to demonstrate proportioning, mixing, and transportation, of material produced in a full scale ready mix concrete batch plant. In addition, the material produced for the scale up test was characterized with respect to fresh properties, thermal properties, and compressive strength as a function of curing time.« less

  11. Use of Chemical Pesticides in Ethiopia: A Cross-Sectional Comparative Study on Knowledge, Attitude and Practice of Farmers and Farm Workers in Three Farming Systems.

    PubMed

    Negatu, Beyene; Kromhout, Hans; Mekonnen, Yalemtshay; Vermeulen, Roel

    2016-06-01

    Chemical pesticides, regardless of their inherent hazard, are used intensively in the fast changing agricultural sector of Ethiopia. We conducted a cross-sectional pesticide Knowledge, Attitude and Practice (KAP) survey among 601 farmers and farm workers (applicators and re-entry workers) in three farming systems [large-scale closed greenhouses (LSGH), large-scale open farms (LSOF), and small-scale irrigated farms (SSIF)]. Main observations were that 85% of workers did not attain any pesticide-related training, 81% were not aware of modern alternatives for chemical pesticides, 10% used a full set of personal protective equipment, and 62% did not usually bath or shower after work. Among applicators pesticide training attendance was highest in LSGH (35%) and was lowest in SSIF (4%). None of the female re-entry farm workers had received pesticide-related training. Personal protective equipment use was twice as high among pesticide applicators as among re-entry workers (13 versus 7%), while none of the small-scale farm workers used personal protection equipment. Stockpiling and burial of empty pesticide containers and discarding empty pesticide containers in farming fields were reported in both LSOF and by 75% of the farm workers in SSIF. Considerable increment in chemical pesticide usage intensity, illegitimate usages of DDT and Endosulfan on food crops and direct import of pesticides without the formal Ethiopian registration process were also indicated. These results point out a general lack of training and knowledge regarding the safe use of pesticides in all farming systems but especially among small-scale farmers. This in combination with the increase in chemical pesticide usage in the past decade likely results in occupational and environmental health risks. Improved KAP that account for institutional difference among various farming systems and enforcement of regulatory measures including the available occupational and environmental proclamations in Ethiopia are

  12. Occupational risky business: injury prevention behaviors of farm women and children.

    PubMed

    Pryor, Susan K; Carruth, Ann K; LaCour, Georgia

    2005-01-01

    On farms in the United States, there are approximately 100 fatal and 32,800 nonfatal injuries annually in children 19 years and younger (United States Department of Labor, 1999). Up to 40% of nonfatally injured children are left with permanent disabilities. The impact of injury and death on children associated with farming in the United States is substantial. Research suggests that modeling of health behaviors may be an effective technique for the socialization of children's health behaviors. The purpose of this study is twofold. First, the study describes the participation and use of protective farm equipment or practices by the caregiver and the child. The second purpose is to compare the practices of the caregivers and the children in relation to the use of protective farm equipment and practices. Descriptive and categorical data analysis methods were used to examine the associations of 177 pairs of caregivers and children and their use of protective equipment and preventative behaviors. Greater than 50% of the children under the age of 7 had handled or touched livestock, as well as rode as passengers on tractors. Many children in all age categories had ridden in the back of pick-up trucks. Modeling of the prevention behavior by the caregivers did parallel the use of the equipment by the children. However, the opposite also was true; if the caregiver did not use the equipment, neither did the child.

  13. 46 CFR 154.630 - Cargo tank material.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 5 2011-10-01 2011-10-01 false Cargo tank material. 154.630 Section 154.630 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SAFETY STANDARDS FOR SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES Design, Construction and Equipment Materials...

  14. 46 CFR 154.630 - Cargo tank material.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 5 2013-10-01 2013-10-01 false Cargo tank material. 154.630 Section 154.630 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SAFETY STANDARDS FOR SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES Design, Construction and Equipment Materials...

  15. 46 CFR 154.630 - Cargo tank material.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 5 2014-10-01 2014-10-01 false Cargo tank material. 154.630 Section 154.630 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SAFETY STANDARDS FOR SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES Design, Construction and Equipment Materials...

  16. Capture and characterization of particulate phosphorus from farm drainage waters in the Everglades Agricultural Area

    NASA Astrophysics Data System (ADS)

    Bhadha, J. H.; Lang, T.; Daroub, S.

    2012-12-01

    The buildup of highly labile, organic, phosphorus (P)-enriched sediments in farms canals within the Everglades Agricultural Area (EAA) has been associated with the production of floating aquatic vegetation. During drainage events, these sediments are susceptible to transport and contribute to the overall P load. In order to evaluate the total P load exiting the farm canals, a settling tank experiment was conducted to capture the sediments during drainage events from eight farms. Drainage water was channelized through two 200L polypropylene collection tanks which allowed sediments to settle at the bottom based on its particle size. Water was carefully siphoned out of the tanks and the sediments collected for analyses. A five step P-fractionation process was used to distinguish organic (o) and inorganic (i) forms of P: KCl extractable P, NaOH extractable P, HCl extractable P, and residual P. The KCl-Pi fraction represents the labile Pi that is water soluble and exchangeable (loosely adsorbed); NaOH extractable P represents Fe- and Al- bound inorganic P (NaOH-Pi) and organic P associated with humic and fulvic acids (NaOH-Po). The HCl-Pi fraction includes Ca- and Mg- bound P, while Residue-P represents recalcitrant organic P compounds and P bound to minerals. The sediments were also used to conduct a P-flux study under both aerobic and anaerobic conditions. Our goal is to provide growers with vital information and insight into P loading that will help them in their efforts to reduce off-farm P loads in the EAA.

  17. 33 CFR 157.10 - Segregated ballast tanks and crude oil washing systems for certain new vessels.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... MARINE ENVIRONMENT RELATING TO TANK VESSELS CARRYING OIL IN BULK Design, Equipment, and Installation § 157.10 Segregated ballast tanks and crude oil washing systems for certain new vessels. (a) This...) Each tank vessel under this section of 20,000 DWT or more that carries crude oil must have a crude oil...

  18. Lamella dissolved air flotation treatment of fish farming effluents as a part of an integrated farming and effluent treatment concept.

    PubMed

    Jokela, Petri; Lepistö, Raghida

    2014-01-01

    Nutrient emissions from fish farming can be reduced by a bag pen, i.e., a floating circular basin which serves simultaneously both as a fish cultivation tank and a swirl separation tank. Solid matter (excreta and uneaten feed) is collected at the bottom of the bag pen and pumped as an underflow to a dissolved air flotation (DAF) unit for nutrient removal. DAF equipped with lamella elements was studied in real conditions. Altogether 3000 rainbow trout females (2.0 kg each) were cultivated. Solid-water mixture was pumped from the bottom of the bag pen to an equalizing basin using a sequence of 2-min pumping followed by a 4-min pause. In some tests the influent was pumped directly and continuously from the bag pen to DAF. The influent quality changed substantially: average suspended solids (SS) and phosphorus (P) concentrations were 290 mg l⁻¹ ± 110 mg l⁻¹ and 3.2 mg l⁻¹ ± 1.2 mg l⁻¹, respectively. When the influent was fresh and P strongly associated with SS, DAF without precipitation chemicals produced up to 86% SS and 83% P removals. The influence of chemical doses was studied using 6.4-29.2 mg Fe l⁻¹ with hydraulic loadings (HLs) of 11.0-11.7 m h⁻¹. SS and P removal did not change substantially and the effluent concentration levelled at 30 mg SS l⁻¹ and 0.20-0.30 mg P l⁻¹, respectively. The lamella DAF, coupled with ferric precipitation, produced up to 90% P and 80% nitrogen reductions. HLs, excluding recycle water flow and lamella projection, up to 21 m h⁻¹ could be used.

  19. Justification of parameters and selection of equipment for laboratory researches of a rammer's operating element dynamics in a soil foundation of a tank for oil and oil products storage

    NASA Astrophysics Data System (ADS)

    Gruzin, A. V.; Gruzin, V. V.; Shalay, V. V.

    2017-08-01

    The development of technology for a directional soil compaction of tank foundations for oil and oil products storage is a relevant problem which solution will enable simultaneously provide required operational characteristics of a soil foundation and reduce time and material costs to prepare the foundation. The impact dynamics of rammers' operating elements on the soil foundation is planned to specify in the course of laboratory studies. A specialized technique is developed to justify the parameters and select the equipment for laboratory researches. The usage of this technique enabled us to calculate dimensions of the models, of a test bench and specifications of the recording equipment, and a lighting system. The necessary equipment for laboratory studies was selected. Preliminary laboratory tests were carried out. The estimate of accuracy for planned laboratory studies was given.

  20. Final Report For The Erosion And Corrosion Analysis Of Waste Transfer Primary Pipeline Sections From 241-SY Tank Farm

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Page, J. S.; Wyrwas, R. B.; Cooke, G. A.

    Three sections of primary transfer pipeline removed from the 241-SY Tank Farm in Hanford's 200 West area, labeled as SN-285, SN-286, and SN-278, were analyzed for the presence and amount of corrosion and erosion on the inside surface of the transfer pipe. All three sections of pipe, ranging in length between 6 and 8 in., were received at the 222-S Laboratory still in the pipe-in-pipe assembly. The annular spaces were filled with urethane foam injected into the pipes for as low as reasonably achievable (ALARA) purposes. The 3-in. primary transfer pipes were first separated from the outer encasement, 6-in. pipes.more » The pipes were cut into small sections, or coupons, based upon the results of a non-destructive pipe wall thickness measurement which used an ultrasonic transducer. Following removal of the foam, the coupons were subjected to a series of analytical methods utilizing both optical microscopy and scanning electron microscopy to obtain erosion and corrosion information. The ultrasonic transducer analysis of the SN-285 primary pipe did not show any thinned locations in the pipe wall which were outside the expected range for the 3-in. schedule 40 pipe of 216 mils. A coupon was cut from the thinnest area on the pipe, and analysis of the inside surface, which was in contact with the tank waste, revealed a continuous layer of corrosion ~ 100 11m (4 mils) thick under a semi-continuous layer of tank waste residue ~ 20 11m (1 mil) thick. This residue layer was composed of an amorphous phase rich in chromium, magnesium, calcium, and chlorine. Small pits were detected throughout the inside pipe surface with depths up to ~ 50 11m (2 mils). Similarly, the SN-286 primary pipe did not show, by the ultrasonic transducer measurements, any thinned locations in the pipe wall which were outside the expected range for this pipe. Analysis of the coupon cut from the pipe section showed the presence of a tank waste layer containing sodium aluminate and phases rich in iron

  1. Respirator Use Among US Farm Operators With Asthma: Results From the 2011 Farm and Ranch Safety Survey

    PubMed Central

    Casey, Megan L.; Mazurek, Jacek M.

    2017-01-01

    Objective The purpose of this study was to estimate the national prevalence of respirator use among farm operators with farm work–related asthma and factors associated with respirator use. Methods The authors examined the 2011 Farm and Ranch Safety Survey, a national survey collected from 11,210 actively farming farm operators in the United States. Adjusted prevalence ratios (aPORs) of respirator use were calculated by demographic characteristics, farm characteristics, asthma characteristics, and selected exposures and hazards. Results Among the estimated 2.2 million farm operators in 2011, 35.7% reported using a respirator in the past 12 months. Respirator use was significantly (P <.05) associated with age, marital status, sex, smoking status, farm value of sales, farm type, farm acreage, and geographic region. Operators who work with pesticides were 3.5 times more likely to use respirator than those who did not work with pesticides (P < .0001). Among those with current asthma, 60.8% of operators with farm work–related asthma used respirators compared with 44.4% of operators with non–farm work–related asthma (P = .03). Farm operators with farm work–related asthma who had an asthma attack at work were 11.3 times more likely to report respirator use than those who did not have an asthma attack at work (P = .03). Conclusions Personal protective equipment, including respirators, is an approach to reducing respiratory exposures in agricultural settings, in particular among those with farm work–related asthma. Education for respirator use and evaluation for respirator tolerance should be considered. PMID:28095135

  2. 46 CFR 35.40-20 - Emergency equipment-TB/ALL.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 1 2014-10-01 2014-10-01 false Emergency equipment-TB/ALL. 35.40-20 Section 35.40-20 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS OPERATIONS Posting and Marking Requirements-TB/ALL § 35.40-20 Emergency equipment—TB/ALL. Each locker and space where emergency equipment is...

  3. 46 CFR 35.40-20 - Emergency equipment-TB/ALL.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 1 2011-10-01 2011-10-01 false Emergency equipment-TB/ALL. 35.40-20 Section 35.40-20 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS OPERATIONS Posting and Marking Requirements-TB/ALL. § 35.40-20 Emergency equipment—TB/ALL. Each locker and space where emergency equipment is...

  4. 46 CFR 35.40-20 - Emergency equipment-TB/ALL.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 1 2013-10-01 2013-10-01 false Emergency equipment-TB/ALL. 35.40-20 Section 35.40-20 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS OPERATIONS Posting and Marking Requirements-TB/ALL § 35.40-20 Emergency equipment—TB/ALL. Each locker and space where emergency equipment is...

  5. 46 CFR 35.40-20 - Emergency equipment-TB/ALL.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 1 2012-10-01 2012-10-01 false Emergency equipment-TB/ALL. 35.40-20 Section 35.40-20 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS OPERATIONS Posting and Marking Requirements-TB/ALL § 35.40-20 Emergency equipment—TB/ALL. Each locker and space where emergency equipment is...

  6. 46 CFR 35.40-20 - Emergency equipment-TB/ALL.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 1 2010-10-01 2010-10-01 false Emergency equipment-TB/ALL. 35.40-20 Section 35.40-20 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS OPERATIONS Posting and Marking Requirements-TB/ALL. § 35.40-20 Emergency equipment—TB/ALL. Each locker and space where emergency equipment is...

  7. A summary description of the flammable gas tank safety program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, G.D.; Sherwood, D.J.

    1994-10-01

    Radioactive liquid waste may produce hydrogen as result of the interaction of gamma radiation and water. If the waste contains organic chelating agents, additional hydrogen as well as nitrous oxide and ammonia may be produced by thermal and radiolytic decomposition of these organics. Several high-level radioactive liquid waste storage tanks, located underground at the Hanford Site in Washington State, are on a Flammable Gas Watch List. Some contain waste that produces and retains gases until large quantities of gas are released rapidly to the tank vapor space. Tanks nearly-filled to capacity have relatively little vapor space; therefore if the wastemore » suddenly releases a large amount of hydrogen and nitrous oxide, a flammable gas mixture could result. The most notable example of a Hanford waste tank with a flammable gas problem is tank 241-SY-101. Upon occasion waste stored in this tank has released enough flammable gas to burn if an ignition source had been present inside of the tank. Several, other Hanford waste tanks exhibit similar behavior although to a lesser magnitude. Because this behavior was hot adequately-addressed in safety analysis reports for the Hanford Tank Farms, an unreviewed safety question was declared, and in 1990 the Flammable Gas Tank Safety Program was established to address this problem. The purposes of the program are a follows: (1) Provide safety documents to fill gaps in the safety analysis reports, and (2) Resolve the safety issue by acquiring knowledge about gas retention and release from radioactive liquid waste and developing mitigation technology. This document provides the general logic and work activities required to resolve the unreviewed safety question and the safety issue of flammable gas mixtures in radioactive liquid waste storage tanks.« less

  8. 49 CFR 172.330 - Tank cars and multi-unit tank car tanks.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 2 2013-10-01 2013-10-01 false Tank cars and multi-unit tank car tanks. 172.330..., TRAINING REQUIREMENTS, AND SECURITY PLANS Marking § 172.330 Tank cars and multi-unit tank car tanks. (a... material— (1) In a tank car unless the following conditions are met: (i) The tank car must be marked on...

  9. 49 CFR 172.330 - Tank cars and multi-unit tank car tanks.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 2 2012-10-01 2012-10-01 false Tank cars and multi-unit tank car tanks. 172.330..., TRAINING REQUIREMENTS, AND SECURITY PLANS Marking § 172.330 Tank cars and multi-unit tank car tanks. (a... material— (1) In a tank car unless the following conditions are met: (i) The tank car must be marked on...

  10. 49 CFR 172.330 - Tank cars and multi-unit tank car tanks.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 2 2014-10-01 2014-10-01 false Tank cars and multi-unit tank car tanks. 172.330..., TRAINING REQUIREMENTS, AND SECURITY PLANS Marking § 172.330 Tank cars and multi-unit tank car tanks. (a... material— (1) In a tank car unless the following conditions are met: (i) The tank car must be marked on...

  11. Soil load above Hanford waste storage tanks (2 volumes)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pianka, E.W.

    1995-01-25

    This document is a compilation of work performed as part of the Dome Load Control Project in 1994. Section 2 contains the calculations of the weight of the soil over the tank dome for each of the 75-feet-diameter waste-storage tanks located at the Hanford Site. The chosen soil specific weight and soil depth measured at the apex of the dome crown are the same as those used in the primary analysis that qualified the design. Section 3 provides reference dimensions for each of the tank farm sites. The reference dimensions spatially orient the tanks and provide an outer diameter formore » each tank. Section 4 summarizes the available soil surface elevation data. It also provides examples of the calculations performed to establish the present soil elevation estimates. The survey data and other data sources from which the elevation data has been obtained are printed separately in Volume 2 of this Supporting Document. Section 5 contains tables that provide an overall summary of the present status of dome loads. Tables summarizing the load state corresponding to the soil depth and soil specific weight for the original qualification analysis, the gravity load requalification for soil depth and soil specific weight greater than the expected actual values, and a best estimate condition of soil depth and specific weight are presented for the Double-Shell Tanks. For the Single-Shell Tanks, only the original qualification analysis is available; thus, the tabulated results are for this case only. Section 6 provides a brief overview of past analysis and testing results that given an indication of the load capacity of the waste storage tanks that corresponds to a condition approaching ultimate failure of the tank. 31 refs.« less

  12. Load drop evaluation for TWRS FSAR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Julyk, L.J.; Ralston, G.L.

    1996-09-30

    Operational or remediation activities associated with existing underground high-level waste storage tank structures at the Hanford Site often require the installation/removal of various equipment items. To gain tank access for installation or removal of this equipment, large concrete cover blocks must be removed and reinstalled in existing concrete pits above the tanks. An accidental drop of the equipment or cover blocks while being moved over the tanks that results in the release of contaminants to the air poses a potential risk to onsite workers or to the offsite public. To minimize this potential risk, the use of critical lift hoistingmore » and rigging procedures and restrictions on lift height are being considered during development of the new tank farm Basis for Interim Operation and Final Safety Analysis Report. The analysis contained herein provides information for selecting the appropriate lift height restrictions for these activities.« less

  13. 40 CFR 1060.520 - How do I test fuel tanks for permeation emissions?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 32 2010-07-01 2010-07-01 false How do I test fuel tanks for... STATIONARY EQUIPMENT Test Procedures § 1060.520 How do I test fuel tanks for permeation emissions? Measure...) Preconditioning durability testing. Take the following steps before an emission test, in any order, if your...

  14. 40 CFR 1060.520 - How do I test fuel tanks for permeation emissions?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 34 2012-07-01 2012-07-01 false How do I test fuel tanks for... STATIONARY EQUIPMENT Test Procedures § 1060.520 How do I test fuel tanks for permeation emissions? Measure...) Preconditioning durability testing. Take the following steps before an emission test, in any order, if your...

  15. 40 CFR 1060.520 - How do I test fuel tanks for permeation emissions?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 34 2013-07-01 2013-07-01 false How do I test fuel tanks for... STATIONARY EQUIPMENT Test Procedures § 1060.520 How do I test fuel tanks for permeation emissions? Measure...) Preconditioning durability testing. Take the following steps before an emission test, in any order, if your...

  16. 40 CFR 1060.520 - How do I test fuel tanks for permeation emissions?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 33 2011-07-01 2011-07-01 false How do I test fuel tanks for... STATIONARY EQUIPMENT Test Procedures § 1060.520 How do I test fuel tanks for permeation emissions? Measure...) Preconditioning durability testing. Take the following steps before an emission test, in any order, if your...

  17. 40 CFR 1060.520 - How do I test fuel tanks for permeation emissions?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 33 2014-07-01 2014-07-01 false How do I test fuel tanks for... STATIONARY EQUIPMENT Test Procedures § 1060.520 How do I test fuel tanks for permeation emissions? Measure...) Preconditioning durability testing. Take the following steps before an emission test, in any order, if your...

  18. 49 CFR 174.63 - Portable tanks, IM portable tanks, IBCs, Large Packagings, cargo tanks, and multi-unit tank car...

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 2 2014-10-01 2014-10-01 false Portable tanks, IM portable tanks, IBCs, Large Packagings, cargo tanks, and multi-unit tank car tanks. 174.63 Section 174.63 Transportation Other....63 Portable tanks, IM portable tanks, IBCs, Large Packagings, cargo tanks, and multi-unit tank car...

  19. 49 CFR 174.63 - Portable tanks, IM portable tanks, IBCs, Large Packagings, cargo tanks, and multi-unit tank car...

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Portable tanks, IM portable tanks, IBCs, Large Packagings, cargo tanks, and multi-unit tank car tanks. 174.63 Section 174.63 Transportation Other....63 Portable tanks, IM portable tanks, IBCs, Large Packagings, cargo tanks, and multi-unit tank car...

  20. 49 CFR 174.63 - Portable tanks, IM portable tanks, IBCs, Large Packagings, cargo tanks, and multi-unit tank car...

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 2 2011-10-01 2011-10-01 false Portable tanks, IM portable tanks, IBCs, Large Packagings, cargo tanks, and multi-unit tank car tanks. 174.63 Section 174.63 Transportation Other....63 Portable tanks, IM portable tanks, IBCs, Large Packagings, cargo tanks, and multi-unit tank car...

  1. 49 CFR 174.63 - Portable tanks, IM portable tanks, IBCs, Large Packagings, cargo tanks, and multi-unit tank car...

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 2 2013-10-01 2013-10-01 false Portable tanks, IM portable tanks, IBCs, Large Packagings, cargo tanks, and multi-unit tank car tanks. 174.63 Section 174.63 Transportation Other....63 Portable tanks, IM portable tanks, IBCs, Large Packagings, cargo tanks, and multi-unit tank car...

  2. 49 CFR 174.63 - Portable tanks, IM portable tanks, IBCs, Large Packagings, cargo tanks, and multi-unit tank car...

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 2 2012-10-01 2012-10-01 false Portable tanks, IM portable tanks, IBCs, Large Packagings, cargo tanks, and multi-unit tank car tanks. 174.63 Section 174.63 Transportation Other....63 Portable tanks, IM portable tanks, IBCs, Large Packagings, cargo tanks, and multi-unit tank car...

  3. Contextual view to southeast from near barn, showing DrewSherwood Tank ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Contextual view to southeast from near barn, showing Drew-Sherwood Tank House (HABS No. CA-2610-B) through east-west line of locust trees, with line of eucalyptus trees along north-south fence line at extreme right. Drew-Sherwood House (HABS No. CA-2610-A) - Drew-Sherwood Farm, 7927 Elk Grove Boulevard, Elk Grove, Sacramento County, CA

  4. 33 CFR 157.138 - Crude Oil Washing Operations and Equipment Manual.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... VESSELS CARRYING OIL IN BULK Crude Oil Washing (COW) System on Tank Vessels Design, Equipment, and... 15 of the MARPOL 73/78. (2) A line drawing of the tank vessel's COW system showing the locations of pumps, piping, and COW machines. (3) A description of the COW system. (4) The procedure for the...

  5. 33 CFR 157.108 - Crude Oil Washing Operations and Equipment Manual for U.S. tank vessels: Submission.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... MARINE ENVIRONMENT RELATING TO TANK VESSELS CARRYING OIL IN BULK Crude Oil Washing (COW) System on Tank...: Submission. Before each U.S. tank vessel having a COW system under § 157.10(e), § 157.10a(a)(2), or § 157.10c... manual that meets § 157.138, to the Officer in Charge, Marine Inspection, of the zone in which the COW...

  6. Improved Management of the Technical Interfaces Between the Hanford Tank Farm Operator and the Hanford Waste Treatment Plant - 13383

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Duncan, Garth M.; Saunders, Scott A.

    2013-07-01

    The Department of Energy (DOE) is constructing the Waste Treatment and Immobilization Plant (WTP) at the Hanford site in Washington to treat and immobilize approximately 114 million gallons of high level radioactive waste (after all retrievals are accomplished). In order for the WTP to be designed and operated successfully, close coordination between the WTP engineering, procurement, and construction contractor, Bechtel National, Inc. and the tank farms operating contractor (TOC), Washington River Protection Solutions, LLC, is necessary. To develop optimal solutions for DOE and for the treatment of the waste, it is important to deal with the fact that two differentmore » prime contractors, with somewhat differing contracts, are tasked with retrieving and delivering the waste and for treating and immobilizing that waste. The WTP and the TOC have over the years cooperated to manage the technical interface. To manage what is becoming a much more complicated interface as the WTP design progresses and new technical issues have been identified, an organizational change was made by WTP and TOC in November of 2011. This organizational change created a co-located integrated project team (IPT) to deal with mutual and interface issues. The Technical Organization within the One System IPT includes employees from both TOC and WTP. This team has worked on a variety of technical issues of mutual interest and concern. Technical issues currently being addressed include: - The waste acceptance criteria; - Waste feed delivery and the associated data quality objectives (DQO); - Evaluation of the effects of performing a riser cut on a single shell tank on WTP operations; - The disposition of secondary waste from both TOC and WTP; - The close coordination of the TOC double shell tank mixing and sampling program and the Large Scale Integrated Test (LSIT) program for pulse jet mixers at WTP along with the associated responses to the Defense Nuclear Facilities Safety Board (DNFSB

  7. Influence of particulates on phosphorus loading exported from farm drainage during a storm event in the Everglades Agricultural Area

    NASA Astrophysics Data System (ADS)

    Bhadha, J. H.; Lang, T. A.; Daroub, S. H.

    2015-12-01

    The purpose of this study was to evaluate the influence of particulates on P loading captured during a single storm event. The Everglades Agricultural Area of Florida comprises 280,000 hectares of organic soil farmland artificially drained by ditches, canals and pumps. Phosphorus (P)-enriched suspended particulates in canals are susceptible to transport and can contribute significantly to the overall P loads in drainage water. A settling tank experiment was conducted to capture particulates during tropical storm Isaac in 2012 from three farms approximately 2.4 to 3.6 km2 in size. Farm canal discharge water was collected in a series of two 200 liter settling tanks over a seven-day drainage period, during tropical storm Isaac. Water from the settling tanks was siphoned through Imhoff settling cones, where the particulates were allowed to settle and collected for P-fractionation analyses, and compared to intact sediment cores collected from the bottom of the canals. The discharged particulates contained higher organic matter content (OM), total P, and labile P fractions compared to the canal bottom sediments. Based on the equilibrium P concentrations, surface sediments behave as a source of P to the water column. A seven-day continuous drainage event exported 4.7 to 11.1 metric tons of suspended solids per farm, corresponding to 32 to 63 kg of particulate P being lost to downstream ecosystems. Drainage associated to a single seven-day storm event exported up to 61% of the total annual farm P load. It is evident from this study that short-term, high-intensity storm events can skew annual P loads due to the export of significantly higher particulate matter from farm canals. Exported particulates rich in P can provide a supplemental source of nutrients if captured and replenished back into the farmlands, as a sustainable farming practice.

  8. Toxoplasma gondii Antibodies in Bulk Tank Milk Samples of Caprine Dairy Herds.

    PubMed

    Gazzonis, Alessia Libera; Zanzani, Sergio Aurelio; Stradiotto, Katia; Olivieri, Emanuela; Villa, Luca; Manfredi, Maria Teresa

    2018-06-15

    A major public health issue, Toxoplasma gondii infection can affect humans mainly via the consumption of animal products from certain species, including small ruminants. Therefore, a regular monitoring of the infection in ovine and caprine populations is advisable for the control of human and animal toxoplasmosis. Antibody detection in individual and bulk tank milk may represent a valid alternative to serological analysis, being its collection easy and not affecting animal welfare. Many serological tools for milk analysis have already been validated for several parasites, including Apicomplexa. Thus, the aim of the present study was to obtain epidemiological data on T. gondii infection through the detection of antibodies in bulk tank milk of dairy goat herds from an important area for caprine dairy production (Northern Italy). The performance of a commercial ELISA was first evaluated for analysis on caprine milk samples, using a panel of serum-milk pairs of goats naturally infected by T. gondii. The analysis on bulk tank milk confirmed the presence of antibodies anti-T. gondii in 59% of the samples. Toxoplasma gondii antibody positivity was more frequently found in farms reared under extensive (64.9%) or semi-intensive systems (68.7%) in comparison to intensive farms (51.1%). Analysis on milk revealed to be a valid alternative to serological tests, being easily applied in large-scale epidemiological surveys and for continuous monitoring of T. gondii infection.

  9. Tank Investigation of the Grumman JRF-5 Airplane Equipped with Twin Hydro-Skis TED No. NACA DE 357

    NASA Technical Reports Server (NTRS)

    Ramsen, John A.; Gray, George R.

    1951-01-01

    A tank investigation has been conducted on a 1/8-size powered dynamic model of the Grumman JRF-5 airplane equipped with twin hydro-skis. The results of tests using two types of skis are presented: one had vertical sides joining the top surface to the chine; the other had the top surface faired to the chine to eliminate the vertical sides. Both configurations had satisfactory longitudinal stability although the model had a slightly greater stable elevator range available when the skis without the vertical sides were attached. Free model tests indicated no instability present when one ski emerged before the other. Considerable excess thrust was available at all speeds with either type of skis. A hump gross load-resistance ratio of 3.37 was obtained with the skis with the vertical sides and 3.53 with the other skis. Landing behavior in smooth water with yaw up to 15deg and roll up to 15deg in opposite directions was satisfactory with either type of skis.

  10. Prevalence of Bovine Mastitis Pathogens in Bulk Tank Milk in China

    PubMed Central

    Wang, Ya Jing; Qin, Yun; Guix Vallverdú, Roger; Maldonado García, Jaime; Sun, Wei; Li, Shengli; Cao, Zhijun

    2016-01-01

    The objectives of this study were to estimate the herd prevalence of major mastitis pathogens in bulk tank milk (BTM) in China dairy herds, to determine the relationship between the presence of mastitis pathogens and bulk tank milk somatic cell counts (BTSCC), and to investigate the impact of different dairy cattle farming modes and region on bacterial species. BTM samples collected from 894 dairy herds in China were examined for the presence of mastitis pathogens. The Flinders Technology Associates (FTA) cards were used for BTM sample collection, storage, and transportation and bacterial DNA amplification by real-time PCR. Among contagious pathogens, Staphylococcus aureus, Streptococcus agalactiae, and Streptococcus dysgalactiae were detected in 50.1, 92.2, and 72.3% of the 894 BTM samples, respectively. Among environmental pathogens, E. coli, Streptococcus uberis, Enterococcus spp., Klebsiella spp., Serratia marcescens, Corynebacterium bovis, and Arcanobacterium pyogenes were detected in 28.6, 8.9, 35.7, 20.0, 1.3, 17.0, and 67.2% of the BTM samples, respectively. Staphylococcal β-lactamase gene was detected in 61.7% of the BTM samples. The presence of Staphylococcus aureus and Arcanobacterium pyogenes were significantly associated with high BTSCC, respectively. Significant differences were found in presence of Staphylococcus aureus, Streptococcus agalactiae, and Streptococcus dysgalactiae in BTM sampled from the small household farms, dairy-farming communities, and large-scaled dairy farms. There were significant differences in the presence of Streptococcus agalactiae, Streptococcus dysgalactiae, Arcanobacterium pyogenes, staphylococcal β-lactamase gene, Staphylococcus spp., Klebsiella spp., Enterococcus spp., and Streptococcus uberis in BTM among Inner Mongolia, Heilongjiang, and Hebei province. In conclusion, contagious mammary pathogens are predominated among pathogens in BTM samples in China. PMID:27187065

  11. Effects of stored feed cropping systems and farm size on the profitability of Maine organic dairy farm simulations.

    PubMed

    Hoshide, A K; Halloran, J M; Kersbergen, R J; Griffin, T S; DeFauw, S L; LaGasse, B J; Jain, S

    2011-11-01

    United States organic dairy production has increased to meet the growing demand for organic milk. Despite higher prices received for milk, organic dairy farmers have come under increasing financial stress due to increases in concentrated feed prices over the past few years, which can make up one-third of variable costs. Market demand for milk has also leveled in the last year, resulting in some downward pressure on prices paid to dairy farmers. Organic dairy farmers in the Northeast United States have experimented with growing different forage and grain crops to maximize on-farm production of protein and energy to improve profitability. Three representative organic feed systems were simulated using the integrated farm system model for farms with 30, 120, and 220 milk cows. Increasing intensity of equipment use was represented by organic dairy farms growing only perennial sod (low) to those with corn-based forage systems, which purchase supplemental grain (medium) or which produce and feed soybeans (high). The relative profitability of these 3 organic feed systems was strongly dependent on dairy farm size. From results, we suggest smaller organic dairy farms can be more profitable with perennial sod-based rather than corn-based forage systems due to lower fixed costs from using only equipment associated with perennial forage harvest and storage. The largest farm size was more profitable using a corn-based system due to greater economies of scale for growing soybeans, corn grain, winter cereals, and corn silages. At an intermediate farm size of 120 cows, corn-based forage systems were more profitable if perennial sod was not harvested at optimum quality, corn was grown on better soils, or if milk yield was 10% higher. Delayed harvest decreased the protein and energy content of perennial sod crops, requiring more purchased grain to balance the ration and resulting in lower profits. Corn-based systems were less affected by lower perennial forage quality, as corn silage

  12. Monitoring and remediation of on-farm and off-farm ground current measured as step potential on a Wisconsin dairy farm: A case study.

    PubMed

    Stetzer, Dave; Leavitt, Adam M; Goeke, Charles L; Havas, Magda

    2016-01-01

    Ground current commonly referred to as "stray voltage" has been an issue on dairy farms since electricity was first brought to rural America. Equipment that generates high-frequency voltage transients on electrical wires combined with a multigrounded (electrical distribution) system and inadequate neutral returns all contribute to ground current. Despite decades of problems, we are no closer to resolving this issue, in part, due to three misconceptions that are addressed in this study. Misconception 1. The current standard of 1 V at cow contact is adequate to protect dairy cows; Misconception 2. Frequencies higher than 60 Hz do not need to be considered; and Misconception 3. All sources of ground current originate on the farm that has a ground current problem. This case study of a Wisconsin dairy farm documents, 1. how to establish permanent monitoring of ground current (step potential) on a dairy farm; 2. how to determine and remediate both on-farm and off-farm sources contributing to step potential; 3. which step-potential metrics relate to cow comfort and milk production; and 4. how these metrics relate to established standards. On-farm sources include lighting, variable speed frequency drives on motors, radio frequency identification system and off-farm sources are due to a poor primary neutral return on the utility side of the distribution system. A step-potential threshold of 1 V root mean square (RMS) at 60 Hz is inadequate to protect dairy cows as decreases of a few mV peak-peak at higher frequencies increases milk production, reduces milking time and improves cow comfort.

  13. Shear rate analysis of water dynamic in the continuous stirred tank

    NASA Astrophysics Data System (ADS)

    Tulus; Mardiningsih; Sawaluddin; Sitompul, O. S.; Ihsan, A. K. A. M.

    2018-02-01

    Analysis of mixture in a continuous stirred tank reactor (CSTR) is an important part in some process of biogas production. This paper is a preliminary study of fluid dynamic phenomenon in a continuous stirred tank numerically. The tank is designed in the form of cylindrical tank equipped with a stirrer. In this study, it is considered that the tank is filled with water. Stirring is done with a stirring speed of 10rpm, 15rpm, 20rpm, and 25rpm. Mathematical modeling of stirred tank is derived. The model is calculated by using the finite element method that are calculated using CFD software. The result shows that the shear rate is high on the front end portion of the stirrer. The maximum shear rate tend to a stable behaviour after the stirring time of 2 second. The relation between the speed and the maximum shear rate is in the form of linear equation.

  14. Fathers' Knowledge of Their Youth's Unsafe Behaviors on the Farm

    ERIC Educational Resources Information Center

    Stoneman, Zolinda; Jinnah, Hamida Amirali; Rains, Glen C.

    2016-01-01

    The study discussed in this article examined the extent to which fathers were aware of unsafe farm behaviors engaged in by their youth. Fathers and youth provided information about the youth's behaviors on the farm, particularly related to tractors/large equipment. Fathers indicated whether they were familiar with the North American Guidelines for…

  15. 46 CFR 153.491 - Waiver of certain equipment for dedicated cargo tanks.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... DANGEROUS CARGOES SHIPS CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Design and Equipment Design and Equipment for Pollution Control § 153.491 Waiver of certain equipment for...

  16. 46 CFR 153.491 - Waiver of certain equipment for dedicated cargo tanks.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... DANGEROUS CARGOES SHIPS CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Design and Equipment Design and Equipment for Pollution Control § 153.491 Waiver of certain equipment for...

  17. 46 CFR 153.491 - Waiver of certain equipment for dedicated cargo tanks.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... DANGEROUS CARGOES SHIPS CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Design and Equipment Design and Equipment for Pollution Control § 153.491 Waiver of certain equipment for...

  18. 46 CFR 153.491 - Waiver of certain equipment for dedicated cargo tanks.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... DANGEROUS CARGOES SHIPS CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Design and Equipment Design and Equipment for Pollution Control § 153.491 Waiver of certain equipment for...

  19. 46 CFR 153.491 - Waiver of certain equipment for dedicated cargo tanks.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... DANGEROUS CARGOES SHIPS CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Design and Equipment Design and Equipment for Pollution Control § 153.491 Waiver of certain equipment for...

  20. The effect of storage temperature and duration on the microbial quality of bulk tank milk.

    PubMed

    O'Connell, A; Ruegg, P L; Jordan, K; O'Brien, B; Gleeson, D

    2016-05-01

    The dairy industry in Ireland is currently undergoing a period of expansion and, as a result, it is anticipated that milk may be stored in bulk tanks on-farm for periods greater than 48 h. The objective of this study was to investigate the effects of storage temperature and duration on microbial quality of bulk tank milk when fresh milk is added to the bulk tank twice daily. Bulk tank milk stored at 3 temperatures was sampled at 24-h intervals during storage periods of 0 to 96 h. Bulk tank milk samples were analyzed for total bacterial count (TBC), psychrotrophic bacterial count (PBC), laboratory pasteurization count (LPC), psychrotrophic-thermoduric bacterial count (PBC-LPC), proteolytic bacterial count, lipolytic bacterial count, presumptive Bacillus cereus, sulfite-reducing Clostridia (SRC), and SCC. The bulk tank milk temperature was set at each of 3 temperatures (2°C, 4°C, and 6°C) in each of 3 tanks on 2 occasions during two 6-wk periods. Period 1 was undertaken in August and September, when all cows were in mid lactation, and period 2 was undertaken in October and November, when all cows were in late lactation. None of the bulk tank bacterial counts except the proteolytic count were affected by lactation period. The proteolytic bacterial count was greater in period 2 than in period 1. The TBC and PBC of milk stored at 6°C increased as storage duration increased. The TBC did not increase with increasing storage duration when milk was stored at 2°C or 4°C but the PBC of milk stored at 4°C increased significantly between 0 and 96 h. The numbers of proteolytic and lipolytic bacteria, LPC, or PBC-LPC in bulk tank milk were not affected by temperature or duration of storage. Presumptive B. cereus were detected in 10% of all bulk tank milk samples taken over the two 6-wk periods, with similar proportions observed in both. In bulk tank milk samples, a greater incidence of SRC was observed in period 2 (20%) compared with period 1 (3%). Milk produced on-farm

  1. 19. INTERIOR VIEW INSIDE BUNKER SHOWING NITROGEN TANKS, 'MOBILE AIR ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    19. INTERIOR VIEW INSIDE BUNKER SHOWING NITROGEN TANKS, 'MOBILE AIR MONITOR' EQUIPMENT, MAN. INEL PHOTO NUMBER 65-6183, TAKEN NOVEMBER 10, 1965. - Idaho National Engineering Laboratory, Advanced Reentry Vehicle Fusing System, Scoville, Butte County, ID

  2. Methods of Data Collection, Sample Processing, and Data Analysis for Edge-of-Field, Streamgaging, Subsurface-Tile, and Meteorological Stations at Discovery Farms and Pioneer Farm in Wisconsin, 2001-7

    USGS Publications Warehouse

    Stuntebeck, Todd D.; Komiskey, Matthew J.; Owens, David W.; Hall, David W.

    2008-01-01

    The University of Wisconsin (UW)-Madison Discovery Farms (Discovery Farms) and UW-Platteville Pioneer Farm (Pioneer Farm) programs were created in 2000 to help Wisconsin farmers meet environmental and economic challenges. As a partner with each program, and in cooperation with the Wisconsin Department of Natural Resources and the Sand County Foundation, the U.S. Geological Survey (USGS) Wisconsin Water Science Center (WWSC) installed, maintained, and operated equipment to collect water-quantity and water-quality data from 25 edge-offield, 6 streamgaging, and 5 subsurface-tile stations at 7 Discovery Farms and Pioneer Farm. The farms are located in the southern half of Wisconsin and represent a variety of landscape settings and crop- and animal-production enterprises common to Wisconsin agriculture. Meteorological stations were established at most farms to measure precipitation, wind speed and direction, air and soil temperature (in profile), relative humidity, solar radiation, and soil moisture (in profile). Data collection began in September 2001 and is continuing through the present (2008). This report describes methods used by USGS WWSC personnel to collect, process, and analyze water-quantity, water-quality, and meteorological data for edge-of-field, streamgaging, subsurface-tile, and meteorological stations at Discovery Farms and Pioneer Farm from September 2001 through October 2007. Information presented includes equipment used; event-monitoring and samplecollection procedures; station maintenance; sample handling and processing procedures; water-quantity, waterquality, and precipitation data analyses; and procedures for determining estimated constituent concentrations for unsampled runoff events.

  3. Agrichemical safety practices on farms in the western Cape.

    PubMed

    London, L

    1994-05-01

    In order to study agrichemical safety practices in a rural farming area in the western Cape, an audit of 45 randomly sampled farms was performed over 3 months in 1992. A response rate of 87% was achieved, and the survey results suggest that approximately 9% of permanent and 14% of seasonal farm workers are employed in jobs with potential exposure to agrichemicals. While protective equipment was widely available, gloves and masks were seldom used, with little enforcement or commercial support from the suppliers of the equipment. Farm workers receive little training on pesticide safety, but interest in the possibility of further training for workers was high. In the absence of a system of pesticide disposal, the presence of residual, unwanted and outdated stocks of pesticides in farmers' stores, and to a lesser extent the presence of empty containers, are identified as important problems. Current pesticide storage practices require improvement by simple industrial hygiene measures. Health facilities available to workers on most farms are extremely limited, particularly in the light of statutory requirements for occupational safety and health under the Machinery and Occupational Safety Act. It is argued that collective solutions to problems of pesticide safety are possible within the ambit of a public health response, particularly given the willingness of the farming community to identify and address potential health problems. As a result, initiatives to meet these needs are currently under way in the region.

  4. Mercury Dispersion Modeling And Purge Ventilation Stack Height Determination For Tank 40H

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rivera-Giboyeaux, A.

    2017-05-19

    The SRNL Atmospheric Technologies Group performed an analysis for mercury emissions from H-Tank Farm - Tank 40 ventilation system exhaust in order to assess whether the Short Term Exposure Limit (STEL), or Threshold Limit Value (TLV) levels for mercury will be exceeded during bulk sludge slurry mixing and sludge removal operations. The American Meteorological Society/Environmental Protection Agency Regulatory Model (AERMOD) was used as the main dispersion modelling tool for this analysis. The results indicated that a 45-foot stack is sufficient to raise the plume centerline from the Tank 40 release to prevent mercury exposure problems for any of the stackmore » discharge scenarios provided. However, a 42-foot stack at Tank 40 is sufficient to prevent mercury exposure concerns in all emission scenarios except the 50 mg/m 3 release. At a 42-foot stack height, values exceeding the exposure standards are only measured on receptors located above 34 feet.« less

  5. Preliminary remedial action objectives for the Tank 16 groundwater operable unit

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miles, W.C. Jr.

    1992-10-28

    Tank 16 is a High Level Radioactive Waste tank in the H-Area Tank Farm on the Savannah River Site that was placed into service in May 1959. A leak was detected in one of the construction weld joints while the tank was being filled. Before jet evacuation of the tank waste was completed, the leak overflowed the annulus pan and an estimated 16 to 700 gallons of waste escaped to the environment (soil and groundwater) over a six hour period contaminating approximately 1,600--70,000 cubic feet of soil with up to 5000 curies of activity (principally Cs[sup 137]). The Tank 16more » bottom is constructed below the groundwater table which resulted in almost immediate contamination of that medium. Low groundwater flow rates, the ion exchange property of adjacent soils, and the distance to the nearest surface water bodies (1,500 to 8,000 feet) indicates that surface water and sediment outcrop of contaminates may be expected between 44 and 530 years (Poe et al., 1974). Remedial action objectives consist of medium-specific and operable unit specific goals for protecting human health and the environment. These objectives are specific and do not limit the range of alternatives that may be developed.A range of remedial technologies, which provides for treatment, containment, and removal requirements of contaminated media remaining at the Tank 16 groundwater operable unit, is identified and developed for each general response action.« less

  6. Preliminary remedial action objectives for the Tank 16 groundwater operable unit

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miles, W.C. Jr.

    1992-10-28

    Tank 16 is a High Level Radioactive Waste tank in the H-Area Tank Farm on the Savannah River Site that was placed into service in May 1959. A leak was detected in one of the construction weld joints while the tank was being filled. Before jet evacuation of the tank waste was completed, the leak overflowed the annulus pan and an estimated 16 to 700 gallons of waste escaped to the environment (soil and groundwater) over a six hour period contaminating approximately 1,600--70,000 cubic feet of soil with up to 5000 curies of activity (principally Cs{sup 137}). The Tank 16more » bottom is constructed below the groundwater table which resulted in almost immediate contamination of that medium. Low groundwater flow rates, the ion exchange property of adjacent soils, and the distance to the nearest surface water bodies (1,500 to 8,000 feet) indicates that surface water and sediment outcrop of contaminates may be expected between 44 and 530 years (Poe et al., 1974). Remedial action objectives consist of medium-specific and operable unit specific goals for protecting human health and the environment. These objectives are specific and do not limit the range of alternatives that may be developed.A range of remedial technologies, which provides for treatment, containment, and removal requirements of contaminated media remaining at the Tank 16 groundwater operable unit, is identified and developed for each general response action.« less

  7. A 400,000 lb crude oil storage tank was moved on an 11 in. air blanket

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1979-03-01

    The British patented-system used to move the 55,000 bbl tank at the Cushing, Okla., tank farm of Getty Oil Co. uses the same airlift principle employed by various hovercraft. Representatives from 20 pipeline and oil companies watched the move, which placed the tank 22 ft higher and 600 ft away from its former location, to improve its gravity flow rate, an improvement spurred by greater crude demands placed on Cushing Terminal. Two 425 hp air compressors were attached to the tank's shell and produced 130,000 cu ft/min of air. The airflow was directed beneath the tank through a segmented skirtmore » fixed to the circumference of the tank's base. Less than 0.5 psi air pressure across the tank floor was needed to lift the tank. Four large D-7 tractors pulled and guided the tank up the incline onto its new pad, where the vessel was rotated into alignment for piping connections. Preliminary rig-up, grading, and pad preparation took six days, but actual tank relocation required only two hours. Getty's Cushing terminal feeds to the 20 in. dia Osage pipeline that serves Getty's El Dorado, Kans., refinery as well as other carriers.« less

  8. Washing and caustic leaching of Hanford tank sludges: results of FY 1996 studies. Revision

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lumetta, G.J.; Rapko, B.M.; Wagner, M.J.

    During the past few years, the primary mission at the US Department of Energy`s Hanford Site has changed from producing plutonium to restoring the environment. Large volumes of high-level radioactive wastes (HLW), generated during past Pu production and other operations, are stored in underground tanks on site. The current plan for remediating the Hanford tank farms consists of waste retrieval, pretreatment, treatment (immobilization), and disposal. The HLW will be immobilized in a borosilicate glass matrix and then disposed of in a geologic repository. Because of the expected high cost of HLW vitrification and geologic disposal, pretreatment processes will be implementedmore » to reduce the volume of borosilicate glass produced in disposing of the tank wastes. On this basis, a pretreatment plan is being developed. This report describes the sludge washing and caustic leaching test conducted to create a Hanford tank sludge pretreatment flowsheet.« less

  9. 46 CFR 154.412 - Cargo tank corrosion allowance.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... allowance if the cargo tank: (a) is located in a space that does not have inert gas or dry air; or (b... Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SAFETY STANDARDS FOR SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES Design, Construction and Equipment Cargo...

  10. 46 CFR 154.412 - Cargo tank corrosion allowance.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... allowance if the cargo tank: (a) is located in a space that does not have inert gas or dry air; or (b... Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SAFETY STANDARDS FOR SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES Design, Construction and Equipment Cargo...

  11. 46 CFR 154.412 - Cargo tank corrosion allowance.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... allowance if the cargo tank: (a) is located in a space that does not have inert gas or dry air; or (b... Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SAFETY STANDARDS FOR SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES Design, Construction and Equipment Cargo...

  12. Farm Water Supply and Sanitation--Pipe, Plumbing, Skills and Symbols. Student Materials. V.A. III. V-D-1, V-D-2.

    ERIC Educational Resources Information Center

    Texas A and M Univ., College Station. Vocational Instructional Services.

    Designed for use by individuals enrolled in vocational agricultural classes, these student materials deal with farm water supply, sanitation, and plumbing skills. Topics covered in the unit are maintaining the farm water supply; repairing faucets and valves, leaks in pipes and storage tanks, and water closets; clearing clogged drains and traps;…

  13. Assessments of the efficacy of a long-term application of a phytoremediation system using hybrid poplar trees at former oil tank farm sites.

    PubMed

    El-Gendy, Ahmed S; Svingos, Sotero; Brice, Donald; Garretson, Joel H; Schnoor, Jerald

    2009-05-01

    A poplar tree-phytoremediation system was installed at former refinery and tank farm sites in Cabin Creek, West Virginia, to cleanup petroleum-contaminated-soils and groundwater. Groundwater and soils in both sites were sampled and analyzed on a regular basis to monitor changes in contaminant concentration since 1999. The concentration of benzene, toluene, ethylbenzene, xylene, and gasoline range organics (GRO) decreased an average of 81%, 90%, 67%, 78%, and 82%, respectively, in the lower soil horizons and 34%, 84%, 12%, 19%, and 59%, respectively, in groundwater. In addition, concentrations of oxygen, methane, and carbon dioxide in soil gas demonstrated that tree roots dewatered soils and allowed penetration of oxygen deep into the soil profile, creating necessary conditions for rhizosphere bioremediation. Although required clean-up time can limit phytoremediation, it has proven to be a cost-effective strategy for site improvement if imminent pathways for human exposure and risk are not an issue.

  14. Vertical farming monitoring system using the internet of things (IoT)

    NASA Astrophysics Data System (ADS)

    Chin, Yap Shien; Audah, Lukman

    2017-09-01

    Vertical farming had become a hot topic among peak development countries. However, vertical farming is hard to practice because minor changes on the surrounding would leave big impact to the productivity and quality of farming activity. Thus, the aim of this project is to provide a vertical farming monitoring system to help keeping track on the physical conditions of crops. In this system, varieties of sensors will be used to detect current physical conditions, and send the data to BeagleBone Black (BBB) microcontroller either in analog or digital input. Then, the data will be processed by BBB and upload to the Thingspeak Cloud. Furthermore, the system will record the position of equipment in used, which make it easier for maintenance when there is equipment broken down. The system also provide basic remote function where users could turn on/off the watering system, and the LED light via web-based application. The web-based application will also be designed to analyze and display data gathered in the form of graphs, charts or figures, for better understanding. With the improvement implemented on the vertical farming culture, it is expected that the productivity and quality of crops would increase significantly.

  15. 112. REFRIGERANT CONDENSER TANKS AND PRESSURE CONTROLS IN NORTHEAST CORNER ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    112. REFRIGERANT CONDENSER TANKS AND PRESSURE CONTROLS IN NORTHEAST CORNER OF MECHANICAL EQUIPMENT ROOM (201), LSB (BLDG. 751) - Vandenberg Air Force Base, Space Launch Complex 3, Launch Pad 3 East, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  16. Innovative optronics for the new PUMA tank

    NASA Astrophysics Data System (ADS)

    Fritze, J.; Münzberg, M.; Schlemmer, H.

    2010-04-01

    The new PUMA tank is equipped with a fully stabilized 360° periscope. The thermal imager in the periscope is identical to the imager in the gunner sight. All optronic images of the cameras can be fed on every electronic display within the tank. The thermal imagers operate with a long wave 384x288 MCT starring focal plane array. The high quantum efficiency of MCT provides low NETD values at short integration times. The thermal imager has an image resolution of 768x576 pixels by means of a micro scanner. The MCT detector operates at high temperatures above 75K with high stability in noise and correctibility and offers high reliability (MTTF) values for the complete camera in a very compact design. The paper discusses the principle and functionality of the optronic combination of direct view optical channel, thermal imager and visible camera and discusses in detail the performances of the subcomponents with respect to demands for new tank applications.

  17. 46 CFR 109.301 - Operational readiness, maintenance, and inspection of lifesaving equipment.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... and cleaning each fuel tank, and refilling it with fresh fuel. (2) Each davit, winch, fall and other...(e); (ii) Maintenance and repair instructions; (iii) A schedule of periodic maintenance; (iv) A... repair equipment. Spare parts and repair equipment must be provided for each lifesaving appliance and...

  18. 46 CFR 109.301 - Operational readiness, maintenance, and inspection of lifesaving equipment.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... and cleaning each fuel tank, and refilling it with fresh fuel. (2) Each davit, winch, fall and other...(e); (ii) Maintenance and repair instructions; (iii) A schedule of periodic maintenance; (iv) A... repair equipment. Spare parts and repair equipment must be provided for each lifesaving appliance and...

  19. 46 CFR 109.301 - Operational readiness, maintenance, and inspection of lifesaving equipment.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... and cleaning each fuel tank, and refilling it with fresh fuel. (2) Each davit, winch, fall and other...(e); (ii) Maintenance and repair instructions; (iii) A schedule of periodic maintenance; (iv) A... repair equipment. Spare parts and repair equipment must be provided for each lifesaving appliance and...

  20. 46 CFR 109.301 - Operational readiness, maintenance, and inspection of lifesaving equipment.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... and cleaning each fuel tank, and refilling it with fresh fuel. (2) Each davit, winch, fall and other...(e); (ii) Maintenance and repair instructions; (iii) A schedule of periodic maintenance; (iv) A... repair equipment. Spare parts and repair equipment must be provided for each lifesaving appliance and...