Sample records for tank programs approved

  1. 40 CFR 282.73 - Minnesota State-Administered Program.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... WASTES (CONTINUED) APPROVED UNDERGROUND STORAGE TANK PROGRAMS Approved State Programs § 282.73 Minnesota State-Administered Program. (a) The State of Minnesota's underground storage tank program is approved in... chapter. EPA approved the Minnesota underground storage tank program on November 30, 2001, and approval...

  2. 40 CFR 282.73 - Minnesota State-Administered Program.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... WASTES (CONTINUED) APPROVED UNDERGROUND STORAGE TANK PROGRAMS Approved State Programs § 282.73 Minnesota State-Administered Program. (a) The State of Minnesota's underground storage tank program is approved in... chapter. EPA approved the Minnesota underground storage tank program on November 30, 2001, and approval...

  3. 40 CFR 282.73 - Minnesota State-Administered Program.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... WASTES (CONTINUED) APPROVED UNDERGROUND STORAGE TANK PROGRAMS Approved State Programs § 282.73 Minnesota State-Administered Program. (a) The State of Minnesota's underground storage tank program is approved in... chapter. EPA approved the Minnesota underground storage tank program on November 30, 2001, and approval...

  4. 40 CFR 282.73 - Minnesota State-Administered Program.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... WASTES (CONTINUED) APPROVED UNDERGROUND STORAGE TANK PROGRAMS Approved State Programs § 282.73 Minnesota State-Administered Program. (a) The State of Minnesota's underground storage tank program is approved in... chapter. EPA approved the Minnesota underground storage tank program on November 30, 2001, and approval...

  5. 40 CFR 282.83 - North Carolina State-Administered Program.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... (Insofar as .94A(2) subjects certain heating oil tanks and the piping connected to otherwise excluded tanks... WASTES (CONTINUED) APPROVED UNDERGROUND STORAGE TANK PROGRAMS Approved State Programs § 282.83 North... an underground storage tank program in lieu of the Federal program under subtitle I of the Resource...

  6. 76 FR 21299 - Oregon: Tentative Approval of State Underground Storage Tank Program: Public Hearing Cancellation

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-15

    ... ENVIRONMENTAL PROTECTION AGENCY 40 CFR Part 281 [EPA-R10-UST-2011-0097; FRL-9296-1] Oregon: Tentative Approval of State Underground Storage Tank Program: Public Hearing Cancellation AGENCY... application for final approval of its Underground Storage Tank (UST) Program under Subtitle I of the Resource...

  7. 40 CFR 282.61 - Hawaii State-Administered Program.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 26 2010-07-01 2010-07-01 false Hawaii State-Administered Program. 282... (CONTINUED) APPROVED UNDERGROUND STORAGE TANK PROGRAMS Approved State Programs § 282.61 Hawaii State-Administered Program. (a) The State of Hawaii's underground storage tank program is approved in lieu of the...

  8. 40 CFR 282.87 - Oregon State-Administered Program.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 28 2012-07-01 2012-07-01 false Oregon State-Administered Program. 282... (CONTINUED) APPROVED UNDERGROUND STORAGE TANK PROGRAMS Approved State Programs § 282.87 Oregon State-Administered Program. (a) The State of Oregon is approved to administer and enforce an underground storage tank...

  9. 40 CFR 282.87 - Oregon State-Administered Program.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 27 2014-07-01 2014-07-01 false Oregon State-Administered Program. 282... (CONTINUED) APPROVED UNDERGROUND STORAGE TANK PROGRAMS Approved State Programs § 282.87 Oregon State-Administered Program. (a) The State of Oregon is approved to administer and enforce an underground storage tank...

  10. 40 CFR 282.87 - Oregon State-Administered Program.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 28 2013-07-01 2013-07-01 false Oregon State-Administered Program. 282... (CONTINUED) APPROVED UNDERGROUND STORAGE TANK PROGRAMS Approved State Programs § 282.87 Oregon State-Administered Program. (a) The State of Oregon is approved to administer and enforce an underground storage tank...

  11. 40 CFR 282.96 - Virginia State-Administered Program.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...” includes heating oil tanks of greater than 5,000 gallon capacity and “Regulated substance” 9 VAC 25-580-130General requirements for all petroleum and hazardous substance UST systems, heating oil tanks of greater... WASTES (CONTINUED) APPROVED UNDERGROUND STORAGE TANK PROGRAMS Approved State Programs § 282.96 Virginia...

  12. 76 FR 12355 - Agency Information Collection Activities; Submission to OMB for Review and Approval; Comment...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-07

    ... Activities; Submission to OMB for Review and Approval; Comment Request; Underground Storage Tank: Information... docket, go to http://www.regulations.gov . Title: Underground Storage Tank: Information Request Letters... Storage Tanks: Technical and Financial Requirements, and State Program Approval Procedures.'' This...

  13. 1988 Underground Storage Tanks; Technical Requirements; Final Rule and Underground Storage Tanks Containing Petroleum-Financial Responsibility Requirements and State Program Approval Objective; Final Rule

    EPA Pesticide Factsheets

    EPA's 1988 regulations concerning USTs are contained in 40 CFR Part 280, 40 CFR Part 281 and 40 CFR Parts 282.50-282.105 and divided into three sections: technical requirements, financial responsibility requirements, and state program approval objectives.

  14. 40 CFR 282.81 - New Mexico State-Administered Program.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 26 2010-07-01 2010-07-01 false New Mexico State-Administered Program... WASTES (CONTINUED) APPROVED UNDERGROUND STORAGE TANK PROGRAMS Approved State Programs § 282.81 New Mexico State-Administered Program. (a) The State of New Mexico is approved to administer and enforce an...

  15. 40 CFR 282.81 - New Mexico State-Administered Program.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 27 2011-07-01 2011-07-01 false New Mexico State-Administered Program... WASTES (CONTINUED) APPROVED UNDERGROUND STORAGE TANK PROGRAMS Approved State Programs § 282.81 New Mexico State-Administered Program. (a) The State of New Mexico is approved to administer and enforce an...

  16. 40 CFR 282.81 - New Mexico State-Administered Program.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 28 2012-07-01 2012-07-01 false New Mexico State-Administered Program... WASTES (CONTINUED) APPROVED UNDERGROUND STORAGE TANK PROGRAMS Approved State Programs § 282.81 New Mexico State-Administered Program. (a) The State of New Mexico is approved to administer and enforce an...

  17. 40 CFR 282.81 - New Mexico State-Administered Program.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 28 2013-07-01 2013-07-01 false New Mexico State-Administered Program... WASTES (CONTINUED) APPROVED UNDERGROUND STORAGE TANK PROGRAMS Approved State Programs § 282.81 New Mexico State-Administered Program. (a) The State of New Mexico is approved to administer and enforce an...

  18. 40 CFR 282.81 - New Mexico State-Administered Program.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 27 2014-07-01 2014-07-01 false New Mexico State-Administered Program... WASTES (CONTINUED) APPROVED UNDERGROUND STORAGE TANK PROGRAMS Approved State Programs § 282.81 New Mexico State-Administered Program. (a) The State of New Mexico is approved to administer and enforce an...

  19. Tank waste remediation system privatization infrastructure program requirements and document management process guide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    ROOT, R.W.

    1999-05-18

    This guide provides the Tank Waste Remediation System Privatization Infrastructure Program management with processes and requirements to appropriately control information and documents in accordance with the Tank Waste Remediation System Configuration Management Plan (Vann 1998b). This includes documents and information created by the program, as well as non-program generated materials submitted to the project. It provides appropriate approval/control, distribution and filing systems.

  20. ANNUAL RADIOACTIVE WASTE TANK INSPECTION PROGRAM- 2007

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    West, B; Ruel Waltz, R

    2008-06-05

    Aqueous radioactive wastes from Savannah River Site (SRS) separations and vitrification processes are contained in large underground carbon steel tanks. The 2007 inspection program revealed that the structural integrity and waste confinement capability of the Savannah River Site waste tanks were maintained. A very small amount of material had seeped from Tank 12 from a previously identified leaksite. The material observed had dried on the tank wall and did not reach the annulus floor. A total of 5945 photographs were made and 1221 visual and video inspections were performed during 2007. Additionally, ultrasonic testing was performed on four Waste Tanksmore » (15, 36, 37 and 38) in accordance with approved inspection plans that met the requirements of WSRC-TR-2002- 00061, Revision 2 'In-Service Inspection Program for High Level Waste Tanks'. The Ultrasonic Testing (UT) In-Service Inspections (ISI) are documented in a separate report that is prepared by the ISI programmatic Level III UT Analyst. Tanks 15, 36, 37 and 38 are documented in 'Tank Inspection NDE Results for Fiscal Year 2007'; WSRC-TR-2007-00064.« less

  1. 46 CFR 160.135-13 - Approval inspections and tests for prototype lifeboats.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ...-11 of this subpart; (ii) Assuring that the quality assurance program of the manufacturer is.... (2) Fiber Reinforced Plastic (FRP) prototype lifeboat lay-up. For the prototype of each design of an... non-portable fuel tank must be tested by a static head above the tank top of 3 m (10 ft) of water...

  2. 46 CFR 160.135-13 - Approval inspections and tests for prototype lifeboats.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ...-11 of this subpart; (ii) Assuring that the quality assurance program of the manufacturer is.... (2) Fiber Reinforced Plastic (FRP) prototype lifeboat lay-up. For the prototype of each design of an... non-portable fuel tank must be tested by a static head above the tank top of 3 m (10 ft) of water...

  3. 46 CFR 160.135-13 - Approval inspections and tests for prototype lifeboats.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ...-11 of this subpart; (ii) Assuring that the quality assurance program of the manufacturer is.... (2) Fiber Reinforced Plastic (FRP) prototype lifeboat lay-up. For the prototype of each design of an... non-portable fuel tank must be tested by a static head above the tank top of 3 m (10 ft) of water...

  4. 40 CFR 282.79 - New Hampshire.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 26 2010-07-01 2010-07-01 false New Hampshire. 282.79 Section 282.79... UNDERGROUND STORAGE TANK PROGRAMS Approved State Programs § 282.79 New Hampshire. (a) The State of New....C. 6991 et seq. The State's program, as administered by the New Hampshire Department of...

  5. 40 CFR 282.79 - New Hampshire.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 27 2014-07-01 2014-07-01 false New Hampshire. 282.79 Section 282.79... UNDERGROUND STORAGE TANK PROGRAMS Approved State Programs § 282.79 New Hampshire. (a) The State of New....C. 6991 et seq. The State's program, as administered by the New Hampshire Department of...

  6. 40 CFR 282.79 - New Hampshire.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 27 2011-07-01 2011-07-01 false New Hampshire. 282.79 Section 282.79... UNDERGROUND STORAGE TANK PROGRAMS Approved State Programs § 282.79 New Hampshire. (a) The State of New....C. 6991 et seq. The State's program, as administered by the New Hampshire Department of...

  7. 40 CFR 282.79 - New Hampshire.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 28 2013-07-01 2013-07-01 false New Hampshire. 282.79 Section 282.79... UNDERGROUND STORAGE TANK PROGRAMS Approved State Programs § 282.79 New Hampshire. (a) The State of New....C. 6991 et seq. The State's program, as administered by the New Hampshire Department of...

  8. 40 CFR 282.79 - New Hampshire.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 28 2012-07-01 2012-07-01 false New Hampshire. 282.79 Section 282.79... UNDERGROUND STORAGE TANK PROGRAMS Approved State Programs § 282.79 New Hampshire. (a) The State of New....C. 6991 et seq. The State's program, as administered by the New Hampshire Department of...

  9. 49 CFR 179.3 - Procedure for securing approval.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Executive Director—Tank Car Safety, AAR, for consideration by its Tank Car Committee and other appropriate... SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION HAZARDOUS MATERIALS REGULATIONS SPECIFICATIONS FOR TANK CARS Introduction, Approvals and Reports § 179.3 Procedure for securing approval. (a) Application...

  10. 40 CFR 282.102 - Puerto Rico State-Administered Program.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... part 281, subpart E. If the Commonwealth obtains approval for the revised requirements pursuant to... RCRA, 42 U.S.C. 6991 et seq. (A) Puerto Rico Statutory Requirements Applicable to the Underground Storage Tank Program, 1997. (B) Puerto Rico Regulatory Requirements Applicable to the Underground Storage...

  11. 40 CFR 282.84 - North Dakota State-Administered Program.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... administered by the North Dakota Department of Health and Consolidated Laboratories, was approved by EPA... 11, 1991 and it was effective on December 10, 1991. (b) North Dakota has primary responsibility for enforcing its underground storage tank program. However, EPA retains the authority to exercise its...

  12. 49 CFR 179.3 - Procedure for securing approval.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) SPECIFICATIONS FOR TANK CARS... Safety, AAR, for consideration by its Tank Car Committee and other appropriate committees. Approval or... designs, materials and construction, conversion or alteration of tank car tanks under these specifications...

  13. 49 CFR 179.3 - Procedure for securing approval.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) SPECIFICATIONS FOR TANK CARS... Safety, AAR, for consideration by its Tank Car Committee and other appropriate committees. Approval or... designs, materials and construction, conversion or alteration of tank car tanks under these specifications...

  14. 49 CFR 179.3 - Procedure for securing approval.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) SPECIFICATIONS FOR TANK CARS... Safety, AAR, for consideration by its Tank Car Committee and other appropriate committees. Approval or... designs, materials and construction, conversion or alteration of tank car tanks under these specifications...

  15. 49 CFR 179.3 - Procedure for securing approval.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) SPECIFICATIONS FOR TANK CARS... Safety, AAR, for consideration by its Tank Car Committee and other appropriate committees. Approval or... designs, materials and construction, conversion or alteration of tank car tanks under these specifications...

  16. 76 FR 76684 - Idaho: Tentative Approval of State Underground Storage Tank Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-08

    .... Skyline, Suite B, Idaho Falls, ID 83402 from 10 a.m. to 12 p.m. and 1 p.m. to 4 p.m.; and 6. IDEQ Lewiston... ENVIRONMENTAL PROTECTION AGENCY 40 CFR Part 281 [EPA-R10-UST-2011-0896; FRL-9502-6] Idaho...). ACTION: Proposed rule. SUMMARY: The State of Idaho has applied for final approval of its Underground...

  17. 77 FR 25366 - Underground Storage Tank Program: Approved State Program for the State of Oregon

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-30

    ... the online instructions for submitting comments. Email: griffith[email protected] . Mail: Katherine Griffith, U. S. Environmental Protection Agency, Region 10, 1200 Sixth Avenue, Suite 900, Mail Stop: OCE... electronically in http://www.regulations.gov or in hard copy. FOR FURTHER INFORMATION CONTACT: Katherine Griffith...

  18. 76 FR 4250 - Operating Certain Railroad Tank Cars in Excess of 263,000 Pounds Gross Rail Load; Approval

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-25

    ... Railroad Tank Cars in Excess of 263,000 Pounds Gross Rail Load; Approval AGENCY: Federal Railroad... certain railroad tank cars in excess of 263,000 pounds gross rail load. SUMMARY: On May 14, 2010, the... to allow certain rail tank cars, transporting hazardous materials, to exceed the gross weight on rail...

  19. 76 FR 63295 - Agency Information Collection Activities OMB Responses

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-12

    ... the Office of Management and Budget (OMB) responses to Agency Clearance requests, in compliance with...; Underground Storage Tanks: Technical and Financial Requirements, and State Program Approval Procedures; 40 CFR... with change. EPA ICR Number 2028.06; NESHAP for Industrial, Commercial, and Institutional Boilers and...

  20. 76 FR 11775 - Agency Information Collection Activities; Submission to OMB for Review and Approval; Comment...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-03

    ... Activities; Submission to OMB for Review and Approval; Comment Request; Underground Storage Tanks: [email protected] , or by mail to: EPA Docket Center, Environmental Protection Agency, Underground Storage Tank... White, Office of Underground Storage Tanks, Mail Code 5403P, Environmental Protection Agency, 1200...

  1. 77 FR 11750 - Idaho: Final Approval of State Underground Storage Tank Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-28

    ... defined under Executive Order 12866. I. National Technology Transfer and Advancement Act Section 12(d) of the National Technology Transfer and Advancement Act of 1995 (``NTTAA''), Public Law 104-113, 12(d... the time needed to review instructions; develop, acquire, install, and utilize technology and systems...

  2. 76 FR 57659 - Oregon: Final Approval of State Underground Storage Tank Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-16

    ... defined under Executive Order 12866. I. National Technology Transfer and Advancement Act Section 12(d) of the National Technology Transfer and Advancement Act of 1995 (``NTTAA''), Public Law 104-113, 12(d... instructions; develop, acquire, install, and utilize technology and systems for the purposes of collecting...

  3. 40 CFR 282.53 - Arkansas State-Administered Program.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... administered by the Arkansas Department of Pollution Control and Ecology, was approved by EPA pursuant to 42 U... Pollution Control and Ecology, 8001 National Drive, Little Rock, AR 72219-8913. (1) State statutes and... include: (1) Arkansas Department of Pollution Control and Ecology Regulation Number 12—Storage Tank...

  4. 40 CFR 282.53 - Arkansas State-Administered Program.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... administered by the Arkansas Department of Pollution Control and Ecology, was approved by EPA pursuant to 42 U... Pollution Control and Ecology, 8001 National Drive, Little Rock, AR 72219-8913. (1) State statutes and... include: (1) Arkansas Department of Pollution Control and Ecology Regulation Number 12—Storage Tank...

  5. 78 FR 69084 - Information Collection Request Submitted to OMB for Review and Approval; Comment Request; Air...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-18

    ..., Surface Impoundment and Containers (Renewal) AGENCY: Environmental Protection Agency (EPA). ACTION: Notice... Emission Standards for Tanks, Surface Impoundment and Containers (40 CFR Part 264, Subpart CC, and 40 CFR..., Monitoring, Assistance, and Media Programs Division, Office of Compliance, Mail Code 2227A, Environmental...

  6. 40 CFR 282.53 - Arkansas State-Administered Program.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... administered by the Arkansas Department of Pollution Control and Ecology, was approved by EPA pursuant to 42 U... Pollution Control and Ecology, 8001 National Drive, Little Rock, AR 72219-8913. (1) State statutes and... include: (1) Arkansas Department of Pollution Control and Ecology Regulation Number 12—Storage Tank...

  7. 40 CFR 282.53 - Arkansas State-Administered Program.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... administered by the Arkansas Department of Pollution Control and Ecology, was approved by EPA pursuant to 42 U... Pollution Control and Ecology, 8001 National Drive, Little Rock, AR 72219-8913. (1) State statutes and... include: (1) Arkansas Department of Pollution Control and Ecology Regulation Number 12—Storage Tank...

  8. 40 CFR 282.53 - Arkansas State-Administered Program.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... administered by the Arkansas Department of Pollution Control and Ecology, was approved by EPA pursuant to 42 U... Pollution Control and Ecology, 8001 National Drive, Little Rock, AR 72219-8913. (1) State statutes and... include: (1) Arkansas Department of Pollution Control and Ecology Regulation Number 12—Storage Tank...

  9. Feasibility of Helicopter Support Seek Frost.

    DTIC Science & Technology

    1980-05-01

    the allowable maximum weight can be used as the payload. The payload is a variable. Small helicopters with full fuel and auxillary tanks can fly...equipment, that the program to obtain icing approval on the S-76 will be finalized for management evaluation, and a decision can be made at that time to

  10. 75 FR 7590 - North Carolina Waters Along the Entire Length of New Hanover County; Final No Discharge Zone...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-22

    ... approved and regulated septic tanks or State approved on- site waste treatment plant, or the waste is collected into a large holding tank for transport to a sewage treatment plant. Thus all vessel sewage will... tanks: (1) Carolina Beach Municipal Marina, Carolina Beach, 910-458-2540, open 24 hours per day, 7 days...

  11. 76 FR 11404 - Oregon: Tentative Approval of State Underground Storage Tank Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-02

    ... Order 12866. 9. National Technology Transfer and Advancement Act Section 12(d) of the National Technology Transfer and Advancement Act of 1995 (``NTTAA''), Public Law 104-113, section 12(d) (15 U.S.C. 272... Confidential Business Information (CBI) or other information whose disclosure is restricted by statute. Do not...

  12. FY 95 engineering work plan for the design reconstitution implementation action plan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bigbee, J.D.

    Design reconstitution work is to be performed as part of an overall effort to upgrade Configuration Management (CM) at TWRS. WHC policy is to implement a program that is compliant with DOE-STD-1073-93, Guide for Operational Configuration Management Program. DOE-STD-1073 requires an adjunct program for reconstituting design information. WHC-SD-WM-CM-009, Design Reconstitution Program Plan for Waste Tank Farms and 242-A Evaporator of Tank Waste Remediation System, is the TWRS plan for meeting DOE-STD-1073 design reconstitution requirements. The design reconstitution plan is complex requiring significant time and effort for implementation. In order to control costs, and integrate the work into other TWRS activities,more » a Design Reconstitution Implementation Action Plan (DR IAP) will be developed, and approved by those organizations having ownership or functional interest in this activity.« less

  13. 49 CFR 238.423 - Fuel tanks.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ....423 Fuel tanks. (a) External fuel tanks. Each type of external fuel tank must be approved by FRA's... equivalent to a fuel tank that complies with the external fuel tank requirements in § 238.223(a). (b) Internal fuel tanks. Internal fuel tanks shall comply with the requirements specified in § 238.223(b). ...

  14. 49 CFR 179.400-13 - Support system for inner tank.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... FOR TANK CARS Specification for Cryogenic Liquid Tank Car Tanks and Seamless Steel Tanks (Classes DOT... magnitudes and directions when the inner tank is fully loaded and the car is equipped with a conventional... electrically, by either the support system, piping, or a separate electrical connection of approved design. ...

  15. 40 CFR 281.30 - New UST system design, construction, installation, and notification.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 27 2011-07-01 2011-07-01 false New UST system design, construction, installation, and notification. 281.30 Section 281.30 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) APPROVAL OF STATE UNDERGROUND STORAGE TANK PROGRAMS Criteria for No-Less-Stringent § 281.30 New UST...

  16. 40 CFR 281.30 - New UST system design, construction, installation, and notification.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 26 2010-07-01 2010-07-01 false New UST system design, construction, installation, and notification. 281.30 Section 281.30 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) APPROVAL OF STATE UNDERGROUND STORAGE TANK PROGRAMS Criteria for No-Less-Stringent § 281.30 New UST...

  17. 46 CFR 153.250 - Double-bottom and deep tanks as cargo tanks.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 5 2011-10-01 2011-10-01 false Double-bottom and deep tanks as cargo tanks. 153.250... Equipment Cargo Tanks § 153.250 Double-bottom and deep tanks as cargo tanks. Except in those cases in which Commandant (CG-522) specifically approves another arrangement, such as a double-bottom or deep tank as a...

  18. 46 CFR 153.250 - Double-bottom and deep tanks as cargo tanks.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 5 2013-10-01 2013-10-01 false Double-bottom and deep tanks as cargo tanks. 153.250... Equipment Cargo Tanks § 153.250 Double-bottom and deep tanks as cargo tanks. Except in those cases in which Commandant (CG-ENG) specifically approves another arrangement, such as a double-bottom or deep tank as a...

  19. 46 CFR 153.250 - Double-bottom and deep tanks as cargo tanks.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Double-bottom and deep tanks as cargo tanks. 153.250... Equipment Cargo Tanks § 153.250 Double-bottom and deep tanks as cargo tanks. Except in those cases in which Commandant (CG-522) specifically approves another arrangement, such as a double-bottom or deep tank as a...

  20. 46 CFR 153.250 - Double-bottom and deep tanks as cargo tanks.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 5 2014-10-01 2014-10-01 false Double-bottom and deep tanks as cargo tanks. 153.250... Equipment Cargo Tanks § 153.250 Double-bottom and deep tanks as cargo tanks. Except in those cases in which Commandant (CG-ENG) specifically approves another arrangement, such as a double-bottom or deep tank as a...

  1. 46 CFR 153.250 - Double-bottom and deep tanks as cargo tanks.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 5 2012-10-01 2012-10-01 false Double-bottom and deep tanks as cargo tanks. 153.250... Equipment Cargo Tanks § 153.250 Double-bottom and deep tanks as cargo tanks. Except in those cases in which Commandant (CG-ENG) specifically approves another arrangement, such as a double-bottom or deep tank as a...

  2. 49 CFR 179.4 - Changes in specifications for tank cars.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Changes in specifications for tank cars. 179.4... TANK CARS Introduction, Approvals and Reports § 179.4 Changes in specifications for tank cars. (a...—Tank Car Safety, AAR, for consideration by its Tank Car Committee. An application for construction of...

  3. 49 CFR 238.423 - Fuel tanks.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 4 2014-10-01 2014-10-01 false Fuel tanks. 238.423 Section 238.423 Transportation....423 Fuel tanks. (a) External fuel tanks. Each type of external fuel tank must be approved by FRA's Associate Administrator for Safety upon a showing that the fuel tank provides a level of safety at least...

  4. 49 CFR 238.423 - Fuel tanks.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 4 2011-10-01 2011-10-01 false Fuel tanks. 238.423 Section 238.423 Transportation....423 Fuel tanks. (a) External fuel tanks. Each type of external fuel tank must be approved by FRA's Associate Administrator for Safety upon a showing that the fuel tank provides a level of safety at least...

  5. 49 CFR 238.423 - Fuel tanks.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 4 2013-10-01 2013-10-01 false Fuel tanks. 238.423 Section 238.423 Transportation....423 Fuel tanks. (a) External fuel tanks. Each type of external fuel tank must be approved by FRA's Associate Administrator for Safety upon a showing that the fuel tank provides a level of safety at least...

  6. 49 CFR 238.423 - Fuel tanks.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 4 2012-10-01 2012-10-01 false Fuel tanks. 238.423 Section 238.423 Transportation....423 Fuel tanks. (a) External fuel tanks. Each type of external fuel tank must be approved by FRA's Associate Administrator for Safety upon a showing that the fuel tank provides a level of safety at least...

  7. 49 CFR 179.400-13 - Support system for inner tank.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... CARS Specification for Cryogenic Liquid Tank Car Tanks and Seamless Steel Tanks (Classes DOT-113 and... directions when the inner tank is fully loaded and the car is equipped with a conventional draft gear... the support system, piping, or a separate electrical connection of approved design. ...

  8. 49 CFR 179.400-13 - Support system for inner tank.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... CARS Specification for Cryogenic Liquid Tank Car Tanks and Seamless Steel Tanks (Classes DOT-113 and... directions when the inner tank is fully loaded and the car is equipped with a conventional draft gear... the support system, piping, or a separate electrical connection of approved design. ...

  9. 49 CFR 179.400-13 - Support system for inner tank.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... CARS Specification for Cryogenic Liquid Tank Car Tanks and Seamless Steel Tanks (Classes DOT-113 and... directions when the inner tank is fully loaded and the car is equipped with a conventional draft gear... the support system, piping, or a separate electrical connection of approved design. ...

  10. 49 CFR 179.400-13 - Support system for inner tank.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... CARS Specification for Cryogenic Liquid Tank Car Tanks and Seamless Steel Tanks (Classes DOT-113 and... directions when the inner tank is fully loaded and the car is equipped with a conventional draft gear... the support system, piping, or a separate electrical connection of approved design. ...

  11. 49 CFR 179.400-17 - Inner tank piping.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... vapor space of the inner tank to facilitate unloading the liquid lading must be approved. [Amdt. 179-32... Liquid Tank Car Tanks and Seamless Steel Tanks (Classes DOT-113 and 107A) § 179.400-17 Inner tank piping. (a) Product lines. The piping system for vapor and liquid phase transfer and venting must be made for...

  12. 49 CFR 179.400-17 - Inner tank piping.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... vapor space of the inner tank to facilitate unloading the liquid lading must be approved. [Amdt. 179-32... Liquid Tank Car Tanks and Seamless Steel Tanks (Classes DOT-113 and 107A) § 179.400-17 Inner tank piping. (a) Product lines. The piping system for vapor and liquid phase transfer and venting must be made for...

  13. 49 CFR 179.400-17 - Inner tank piping.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... vapor space of the inner tank to facilitate unloading the liquid lading must be approved. [Amdt. 179-32... Liquid Tank Car Tanks and Seamless Steel Tanks (Classes DOT-113 and 107A) § 179.400-17 Inner tank piping. (a) Product lines. The piping system for vapor and liquid phase transfer and venting must be made for...

  14. 49 CFR 179.201-3 - Lined tanks.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ...-Pressure Tank Car Tanks (Classes DOT-111AW and 115AW) § 179.201-3 Lined tanks. (a) Rubber-lined tanks. (1) Each tank or each compartment thereof must be lined with acid-resistant rubber or other approved rubber... double thickness. The rubber lining must overlap at least 11/2 inches at all edges which must be straight...

  15. 49 CFR 179.201-3 - Lined tanks.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ...-Pressure Tank Car Tanks (Classes DOT-111AW and 115AW) § 179.201-3 Lined tanks. (a) Rubber-lined tanks. (1) Each tank or each compartment thereof must be lined with acid-resistant rubber or other approved rubber... double thickness. The rubber lining must overlap at least 11/2 inches at all edges which must be straight...

  16. 49 CFR 179.201-3 - Lined tanks.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ...-Pressure Tank Car Tanks (Classes DOT-111AW and 115AW) § 179.201-3 Lined tanks. (a) Rubber-lined tanks. (1) Each tank or each compartment thereof must be lined with acid-resistant rubber or other approved rubber... double thickness. The rubber lining must overlap at least 11/2 inches at all edges which must be straight...

  17. 49 CFR 179.201-3 - Lined tanks.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ...-Pressure Tank Car Tanks (Classes DOT-111AW and 115AW) § 179.201-3 Lined tanks. (a) Rubber-lined tanks. (1) Each tank or each compartment thereof must be lined with acid-resistant rubber or other approved rubber... double thickness. The rubber lining must overlap at least 11/2 inches at all edges which must be straight...

  18. 46 CFR 194.10-10 - Integral magazine construction.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... spaces suitable approved incombustible thermal insulation shall be provided to prevent condensation of moisture. (c) Where a tank top forms the magazine deck it shall be insulated with an approved deck covering to prevent condensation of moisture. Tank top manholes shall not be installed in magazines. (d) Light...

  19. 49 CFR 173.32 - Requirements for the use of portable tanks.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... portable tanks. (1) The bursting strength of any piping and fittings must be at least four times the design... specified portable tank must meet the same design profile; for example, a DOT Specification 51 portable tank... manufactured portable tanks must conform to the requirements for the design, construction and approval of UN...

  20. 49 CFR 179.4 - Changes in specifications for tank cars.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 3 2012-10-01 2012-10-01 false Changes in specifications for tank cars. 179.4... CARS Introduction, Approvals and Reports § 179.4 Changes in specifications for tank cars. (a) Proposed changes in or additions to specifications for tanks must be submitted to the Executive Director—Tank Car...

  1. 49 CFR 179.4 - Changes in specifications for tank cars.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 3 2011-10-01 2011-10-01 false Changes in specifications for tank cars. 179.4... CARS Introduction, Approvals and Reports § 179.4 Changes in specifications for tank cars. (a) Proposed changes in or additions to specifications for tanks must be submitted to the Executive Director—Tank Car...

  2. 49 CFR 179.4 - Changes in specifications for tank cars.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 3 2014-10-01 2014-10-01 false Changes in specifications for tank cars. 179.4... CARS Introduction, Approvals and Reports § 179.4 Changes in specifications for tank cars. (a) Proposed changes in or additions to specifications for tanks must be submitted to the Executive Director—Tank Car...

  3. 49 CFR 179.4 - Changes in specifications for tank cars.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 3 2013-10-01 2013-10-01 false Changes in specifications for tank cars. 179.4... CARS Introduction, Approvals and Reports § 179.4 Changes in specifications for tank cars. (a) Proposed changes in or additions to specifications for tanks must be submitted to the Executive Director—Tank Car...

  4. 49 CFR 179.400-3 - Type.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... Liquid Tank Car Tanks and Seamless Steel Tanks (Classes DOT-113 and 107A) § 179.400-3 Type. (a) A tank... (IBR, see § 171.7 of this subchapter); (2) Have the annular space evacuated after filling the annular space with an approved insulating material; (3) Have the inner tank heads designed concave to pressure...

  5. 46 CFR 35.03-10 - Use-TB/ALL.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS OPERATIONS Work Vests § 35.03-10 Use—TB/ALL. (a) Approved buoyant work vests are considered to be items of safety apparel and may be carried aboard tank... vests shall not be accepted in lieu of any portion of the required number of approved life preservers...

  6. 46 CFR 35.03-10 - Use-TB/ALL.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS OPERATIONS Work Vests § 35.03-10 Use—TB/ALL. (a) Approved buoyant work vests are considered to be items of safety apparel and may be carried aboard tank... vests shall not be accepted in lieu of any portion of the required number of approved life preservers...

  7. 46 CFR 35.03-10 - Use-TB/ALL.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS OPERATIONS Work Vests § 35.03-10 Use—TB/ALL. (a) Approved buoyant work vests are considered to be items of safety apparel and may be carried aboard tank... vests shall not be accepted in lieu of any portion of the required number of approved life preservers...

  8. 46 CFR 35.03-10 - Use-TB/ALL.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS OPERATIONS Work Vests § 35.03-10 Use—TB/ALL. (a) Approved buoyant work vests are considered to be items of safety apparel and may be carried aboard tank... vests shall not be accepted in lieu of any portion of the required number of approved life preservers...

  9. 46 CFR 35.03-10 - Use-TB/ALL.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS OPERATIONS Work Vests § 35.03-10 Use—TB/ALL. (a) Approved buoyant work vests are considered to be items of safety apparel and may be carried aboard tank... vests shall not be accepted in lieu of any portion of the required number of approved life preservers...

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    The Pacific Northwest Laboratory (PNL), operated by Battelle Memorial Institute under contract to the U.S. Department of Energy, operates tank systems for the U.S. Department of Energy, Richland Operations Office (DOE-RL), that contain dangerous waste constituents as defined by Washington State Department of Ecology (WDOE) Dangerous Waste Regulations, Washington Administrative Code (WAC) 173-303-040(18). Chapter 173-303-640(2) of the WAC requires the performance of integrity assessments for each existing tank system that treats or stores dangerous waste, except those operating under interim status with compliant secondary containment. This Integrity Assessment Plan (IAP) identifies all tasks that will be performed during the integritymore » assessment of the PNL-operated Radioactive Liquid Waste Systems (RLWS) associated with the 324 and 325 Buildings located in the 300 Area of the Hanford Site. It describes the inspections, tests, and analyses required to assess the integrity of the PNL RLWS (tanks, ancillary equipment, and secondary containment) and provides sufficient information for adequate budgeting and control of the assessment program. It also provides necessary information to permit the Independent, Qualified, Registered Professional Engineer (IQRPE) to approve the integrity assessment program.« less

  11. 77 FR 70382 - Airworthiness Directives; Eurocopter France Helicopters

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-26

    ... the fuel tank draining system. This proposed AD is prompted by a closed fuel tank drain that, in the... fuel tank compartments' draining system. FAA's Determination These helicopters have been approved by... buoyancy fixed parts, the ASBs describe procedures to modify the fuel tank draining system by removing...

  12. 46 CFR 154.410 - Cargo tank sloshing loads.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 5 2012-10-01 2012-10-01 false Cargo tank sloshing loads. 154.410 Section 154.410... Containment Systems § 154.410 Cargo tank sloshing loads. (a) For the calculation required under § 154.406 (a... be specially approved by the Commandant (CG-ENG). (b) If the sloshing loads affect the cargo tank...

  13. 46 CFR 154.410 - Cargo tank sloshing loads.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Cargo tank sloshing loads. 154.410 Section 154.410... Containment Systems § 154.410 Cargo tank sloshing loads. (a) For the calculation required under § 154.406 (a... be specially approved by the Commandant (CG-522). (b) If the sloshing loads affect the cargo tank...

  14. 30 CFR 36.50 - Tests of fuel tank.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Tests of fuel tank. 36.50 Section 36.50 Mineral... MINING PRODUCTS APPROVAL REQUIREMENTS FOR PERMISSIBLE MOBILE DIESEL-POWERED TRANSPORTATION EQUIPMENT Test Requirements § 36.50 Tests of fuel tank. The fuel tank shall be inspected and tested to determine whether: (a...

  15. 30 CFR 36.50 - Tests of fuel tank.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Tests of fuel tank. 36.50 Section 36.50 Mineral... MINING PRODUCTS APPROVAL REQUIREMENTS FOR PERMISSIBLE MOBILE DIESEL-POWERED TRANSPORTATION EQUIPMENT Test Requirements § 36.50 Tests of fuel tank. The fuel tank shall be inspected and tested to determine whether: (a...

  16. 30 CFR 36.50 - Tests of fuel tank.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Tests of fuel tank. 36.50 Section 36.50 Mineral... MINING PRODUCTS APPROVAL REQUIREMENTS FOR PERMISSIBLE MOBILE DIESEL-POWERED TRANSPORTATION EQUIPMENT Test Requirements § 36.50 Tests of fuel tank. The fuel tank shall be inspected and tested to determine whether: (a...

  17. 30 CFR 36.50 - Tests of fuel tank.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Tests of fuel tank. 36.50 Section 36.50 Mineral... MINING PRODUCTS APPROVAL REQUIREMENTS FOR PERMISSIBLE MOBILE DIESEL-POWERED TRANSPORTATION EQUIPMENT Test Requirements § 36.50 Tests of fuel tank. The fuel tank shall be inspected and tested to determine whether: (a...

  18. 30 CFR 36.50 - Tests of fuel tank.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Tests of fuel tank. 36.50 Section 36.50 Mineral... MINING PRODUCTS APPROVAL REQUIREMENTS FOR PERMISSIBLE MOBILE DIESEL-POWERED TRANSPORTATION EQUIPMENT Test Requirements § 36.50 Tests of fuel tank. The fuel tank shall be inspected and tested to determine whether: (a...

  19. 49 CFR 179.300-20 - Reports.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 3 2011-10-01 2011-10-01 false Reports. 179.300-20 Section 179.300-20...-Unit Tank Car Tanks (Classes DOT-106A and 110AW) § 179.300-20 Reports. (a) Before a tank is placed in..., Mechanical Division, Association of American Railroads, a report in approved form certifying that the tank...

  20. 49 CFR 179.300-20 - Reports.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 3 2012-10-01 2012-10-01 false Reports. 179.300-20 Section 179.300-20...-Unit Tank Car Tanks (Classes DOT-106A and 110AW) § 179.300-20 Reports. (a) Before a tank is placed in..., Mechanical Division, Association of American Railroads, a report in approved form certifying that the tank...

  1. FET. Tank Building, TAN631. Elevations, sections, details. Tank pads and ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    FET. Tank Building, TAN-631. Elevations, sections, details. Tank pads and saddles. RAlph M. Parsons 1229-2 ANP/GE-5-631-A-1. Date: March 1957. Approved by INEEL Classification Office for public release. INEEL index code no. 036-0631-00-693-107142 - Idaho National Engineering Laboratory, Test Area North, Scoville, Butte County, ID

  2. 46 CFR 95.05-10 - Fixed fire extinguishing systems.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... oil units, valves, or manifolds in the line between the settling tanks and the boilers. (e) Fire... approved system must be installed in all cargo compartments and tanks for combustible cargo, except for vessels engaged exclusively in the carriage of coal or grain in bulk. For cargo compartments and tanks...

  3. 9 CFR 354.34 - Application for inspection service in official plants; approval.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... sewer, cesspool, sedimentation tank, etc. (13) Approximate rate of production—indicate hourly rate of..., if so, specify such uses. (10) Hot water facilities—specify facilities such as boilers, storage tanks, mixing valves, etc., and indicate the size and number of boilers and storage tanks. (11) Specify number...

  4. 46 CFR 54.15-25 - Minimum relief capacities for cargo tanks containing compressed or liquefied gas.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... overpressure permitted shall be in accordance with § 54.15-5. (c) The rate of discharge for heat input of fire... exposure factor for the following tank types: F=1.0 for tanks without insulation located on the open deck. F=0.5 for tanks on the open deck having insulation that has approved fire proofing, thermal...

  5. 46 CFR 54.15-25 - Minimum relief capacities for cargo tanks containing compressed or liquefied gas.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... overpressure permitted shall be in accordance with § 54.15-5. (c) The rate of discharge for heat input of fire... exposure factor for the following tank types: F=1.0 for tanks without insulation located on the open deck. F=0.5 for tanks on the open deck having insulation that has approved fire proofing, thermal...

  6. 46 CFR 54.15-25 - Minimum relief capacities for cargo tanks containing compressed or liquefied gas.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... overpressure permitted shall be in accordance with § 54.15-5. (c) The rate of discharge for heat input of fire... exposure factor for the following tank types: F=1.0 for tanks without insulation located on the open deck. F=0.5 for tanks on the open deck having insulation that has approved fire proofing, thermal...

  7. 46 CFR 54.15-25 - Minimum relief capacities for cargo tanks containing compressed or liquefied gas.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... overpressure permitted shall be in accordance with § 54.15-5. (c) The rate of discharge for heat input of fire... exposure factor for the following tank types: F=1.0 for tanks without insulation located on the open deck. F=0.5 for tanks on the open deck having insulation that has approved fire proofing, thermal...

  8. 46 CFR 54.15-25 - Minimum relief capacities for cargo tanks containing compressed or liquefied gas.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... overpressure permitted shall be in accordance with § 54.15-5. (c) The rate of discharge for heat input of fire... exposure factor for the following tank types: F=1.0 for tanks without insulation located on the open deck. F=0.5 for tanks on the open deck having insulation that has approved fire proofing, thermal...

  9. 7 CFR 58.237 - Condensed surge supply.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ..., GENERAL SPECIFICATIONS FOR APPROVED PLANTS AND STANDARDS FOR GRADES OF DAIRY PRODUCTS 1 General... Procedures § 58.237 Condensed surge supply. Surge tanks or balance tanks if used between the evaporators and...

  10. 46 CFR 30.10-3 - Approved-TB/ALL.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 1 2014-10-01 2014-10-01 false Approved-TB/ALL. 30.10-3 Section 30.10-3 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS GENERAL PROVISIONS Definitions § 30.10-3 Approved—TB/ALL. The term approved means approved by the Commandant unless otherwise stated. ...

  11. 46 CFR 30.10-3 - Approved-TB/ALL.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 1 2010-10-01 2010-10-01 false Approved-TB/ALL. 30.10-3 Section 30.10-3 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS GENERAL PROVISIONS Definitions § 30.10-3 Approved—TB/ALL. The term approved means approved by the Commandant unless otherwise stated. ...

  12. 46 CFR 30.10-3 - Approved-TB/ALL.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 1 2013-10-01 2013-10-01 false Approved-TB/ALL. 30.10-3 Section 30.10-3 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS GENERAL PROVISIONS Definitions § 30.10-3 Approved—TB/ALL. The term approved means approved by the Commandant unless otherwise stated. ...

  13. 46 CFR 30.10-3 - Approved-TB/ALL.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 1 2011-10-01 2011-10-01 false Approved-TB/ALL. 30.10-3 Section 30.10-3 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS GENERAL PROVISIONS Definitions § 30.10-3 Approved—TB/ALL. The term approved means approved by the Commandant unless otherwise stated. ...

  14. 46 CFR 30.10-3 - Approved-TB/ALL.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 1 2012-10-01 2012-10-01 false Approved-TB/ALL. 30.10-3 Section 30.10-3 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS GENERAL PROVISIONS Definitions § 30.10-3 Approved—TB/ALL. The term approved means approved by the Commandant unless otherwise stated. ...

  15. 78 FR 21159 - Additional Requirements for Special Dipping and Coating Operations (Dip Tanks); Extension of the...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-09

    ...] Additional Requirements for Special Dipping and Coating Operations (Dip Tanks); Extension of the Office of Management and Budget's Approval of the Information Collection (Paperwork) Requirement AGENCY: Occupational... requirement specified in its Standard on Dipping and Coating Operations (Dip Tanks) (29 CFR 1910.126(g)(4...

  16. 49 CFR 179.300-9 - Welding.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Welding. 179.300-9 Section 179.300-9... Specifications for Multi-Unit Tank Car Tanks (Classes DOT-106A and 110AW) § 179.300-9 Welding. (a) Longitudinal... fusion welded on class DOT-110A tanks. Welding procedures, welders and fabricators must be approved in...

  17. 46 CFR 38.10-5 - Filling and discharge pipes-TB/ALL.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ...-closing valve shall satisfy the requirements of § 38.10-1(j). (b) For pressure vessel type tanks the... the piping enters the tank. For pressure vessel type tanks operating at low pressure and with service temperature near the cargo atmospheric boiling point, the Commandant may approve individual installations...

  18. 49 CFR 179.400-11 - Welding.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 3 2012-10-01 2012-10-01 false Welding. 179.400-11 Section 179.400-11... Liquid Tank Car Tanks and Seamless Steel Tanks (Classes DOT-113 and 107A) § 179.400-11 Welding. (a... welding procedure, welder, and fabricator must be approved. [Amdt. 179-32, 48 FR 27708, June 16, 1983, as...

  19. 49 CFR 179.400-11 - Welding.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 3 2014-10-01 2014-10-01 false Welding. 179.400-11 Section 179.400-11... Liquid Tank Car Tanks and Seamless Steel Tanks (Classes DOT-113 and 107A) § 179.400-11 Welding. (a... welding procedure, welder, and fabricator must be approved. [Amdt. 179-32, 48 FR 27708, June 16, 1983, as...

  20. 49 CFR 179.300-9 - Welding.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 3 2013-10-01 2013-10-01 false Welding. 179.300-9 Section 179.300-9...-Unit Tank Car Tanks (Classes DOT-106A and 110AW) § 179.300-9 Welding. (a) Longitudinal joints must be... class DOT-110A tanks. Welding procedures, welders and fabricators must be approved in accordance with...

  1. 49 CFR 179.300-9 - Welding.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 3 2012-10-01 2012-10-01 false Welding. 179.300-9 Section 179.300-9...-Unit Tank Car Tanks (Classes DOT-106A and 110AW) § 179.300-9 Welding. (a) Longitudinal joints must be... class DOT-110A tanks. Welding procedures, welders and fabricators must be approved in accordance with...

  2. 49 CFR 179.400-11 - Welding.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 3 2013-10-01 2013-10-01 false Welding. 179.400-11 Section 179.400-11... Liquid Tank Car Tanks and Seamless Steel Tanks (Classes DOT-113 and 107A) § 179.400-11 Welding. (a... welding procedure, welder, and fabricator must be approved. [Amdt. 179-32, 48 FR 27708, June 16, 1983, as...

  3. 49 CFR 179.300-9 - Welding.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 3 2014-10-01 2014-10-01 false Welding. 179.300-9 Section 179.300-9...-Unit Tank Car Tanks (Classes DOT-106A and 110AW) § 179.300-9 Welding. (a) Longitudinal joints must be... class DOT-110A tanks. Welding procedures, welders and fabricators must be approved in accordance with...

  4. 49 CFR 179.300-9 - Welding.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 3 2011-10-01 2011-10-01 false Welding. 179.300-9 Section 179.300-9...-Unit Tank Car Tanks (Classes DOT-106A and 110AW) § 179.300-9 Welding. (a) Longitudinal joints must be... class DOT-110A tanks. Welding procedures, welders and fabricators must be approved in accordance with...

  5. 49 CFR 179.400-11 - Welding.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 3 2011-10-01 2011-10-01 false Welding. 179.400-11 Section 179.400-11... Liquid Tank Car Tanks and Seamless Steel Tanks (Classes DOT-113 and 107A) § 179.400-11 Welding. (a... welding procedure, welder, and fabricator must be approved. [Amdt. 179-32, 48 FR 27708, June 16, 1983, as...

  6. 49 CFR 176.315 - Fire protection requirements.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... combustible liquid being transported on board a vessel in a portable tank, rail tank car, or a motor vehicle... (flammable) and combustible liquids stowage areas must be fitted with an approved combination solid stream...

  7. 49 CFR 176.315 - Fire protection requirements.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... combustible liquid being transported on board a vessel in a portable tank, rail tank car, or a motor vehicle... (flammable) and combustible liquids stowage areas must be fitted with an approved combination solid stream...

  8. 49 CFR 176.315 - Fire protection requirements.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... combustible liquid being transported on board a vessel in a portable tank, rail tank car, or a motor vehicle... (flammable) and combustible liquids stowage areas must be fitted with an approved combination solid stream...

  9. 49 CFR 176.315 - Fire protection requirements.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... combustible liquid being transported on board a vessel in a portable tank, rail tank car, or a motor vehicle... (flammable) and combustible liquids stowage areas must be fitted with an approved combination solid stream...

  10. Tanks Focus Area Site Needs Assessment - FY 2001

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Allen, Robert W.; Josephson, Gary B.; Westsik, Joseph H.

    2001-04-30

    The TFA uses a systematic process for developing its annual program that draws from the tanks science and technology development needs expressed by the five DOE tank waste sites. TFA's annual program development process is iterative and involves the following steps: Collection of site needs; Needs analysis; Development of technical responses and initial prioritization; Refinement of the program for the next fiscal year; Formulation of the Corporate Review Budget (CRB); Preparation of Program Execution Guidance (PEG) for the next FY Revision of the Multiyear Program Plan (MYPP). This document describes the outcomes of the first phase of this process, frommore » collection of site needs to the initial prioritization of technical activities. The TFA received site needs in October - December 2000. A total of 170 site needs were received, an increase of 30 over the previous year. The needs were analyzed and integrated, where appropriate. Sixty-six distinct technical responses were drafted and prioritized. In addition, seven strategic tasks were approved to compete for available funding in FY 2002 and FY 2003. Draft technical responses were prepared and provided to the TFA Site Representatives and the TFA User Steering Group (USG) for their review and comment. These responses were discussed at a March 15, 2001, meeting where the TFA Management Team established the priority listing in preparation for input to the DOE Office of Science and Technology (OST) budget process. At the time of publication of this document, the TFA continues to finalize technical responses as directed by the TFA Management Team and clarify the intended work scopes for FY 2002 and FY 2003.« less

  11. 49 CFR 179.400-17 - Inner tank piping.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    .... Suitable provison must be made to allow for thermal expansion and contraction. (1) Loading and unloading... vapor space of the inner tank to facilitate unloading the liquid lading must be approved. [Amdt. 179-32...

  12. 46 CFR 154.630 - Cargo tank material.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... alloy in the annealed condition. (c) Increased yield strength and tensile strength of a material at low temperature for independent tanks type A, B, and C must be specially approved by the Commandant (CG-522). [CGD...

  13. 46 CFR 32.55-5 - Ventilation of tank vessels constructed between November 10, 1936, and July 1, 1951-TB/ALL.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... actuated gas ejectors or blowers or ventilators fitted with heads for natural ventilation, will be approved... 46 Shipping 1 2010-10-01 2010-10-01 false Ventilation of tank vessels constructed between November... HOMELAND SECURITY TANK VESSELS SPECIAL EQUIPMENT, MACHINERY, AND HULL REQUIREMENTS Ventilation and Venting...

  14. 49 CFR 179.220-15 - Support system for inner container.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... FOR TANK CARS Specifications for Non-Pressure Tank Car Tanks (Classes DOT-111AW and 115AW) § 179.220... when the inner container is loaded so that the car is at its rail load limit, and the car is equipped... either by the support system used, piping, or by a separate electrical connection of approved design...

  15. 46 CFR 39.1013 - U.S.-flagged tank vessel certification procedures for vapor control system designs-TB/ALL.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... vapor control system designs-TB/ALL. 39.1013 Section 39.1013 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS VAPOR CONTROL SYSTEMS General § 39.1013 U.S.-flagged tank vessel certification procedures for vapor control system designs—TB/ALL. (a) For an existing Coast Guard-approved vapor...

  16. 46 CFR 39.1013 - U.S.-flagged tank vessel certification procedures for vapor control system designs-TB/ALL.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... vapor control system designs-TB/ALL. 39.1013 Section 39.1013 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS VAPOR CONTROL SYSTEMS General § 39.1013 U.S.-flagged tank vessel certification procedures for vapor control system designs—TB/ALL. (a) For an existing Coast Guard-approved vapor...

  17. Technology Transfer: A Think Tank Approach to Managing Innovation in the Public Sector

    DTIC Science & Technology

    1985-01-01

    TECHNOLOGY TRANSFER: A THINK TANK APPROACH TO MANAGING INNOVATION IN THE PUBLIC SECTOR CISIRIBUTIOtl STATEMENT A Approved for Public Release...NAVAL FACILITIES ENGINEERING COMMAND TECHNOLOGY TRANSFER: A THINK TANK APPROACH TO MANAGING INNOVATION IN THE PUBLIC SECTOR Edited by J. W. Creighton...Publication of this book, Technology Transfer: A Think Tank Approach to Managing Innovation in the Public Sector, was in part supported by funds from the U.S

  18. 49 CFR 179.220-4 - Insulation.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ...-Pressure Tank Car Tanks (Classes DOT-111AW and 115AW) § 179.220-4 Insulation. The annular space between the inner container and the outer shell must contain an approved insulation material. [Amdt. 179-9, 36 FR...

  19. 49 CFR 179.220-4 - Insulation.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ...-Pressure Tank Car Tanks (Classes DOT-111AW and 115AW) § 179.220-4 Insulation. The annular space between the inner container and the outer shell must contain an approved insulation material. [Amdt. 179-9, 36 FR...

  20. 49 CFR 179.220-4 - Insulation.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ...-Pressure Tank Car Tanks (Classes DOT-111AW and 115AW) § 179.220-4 Insulation. The annular space between the inner container and the outer shell must contain an approved insulation material. [Amdt. 179-9, 36 FR...

  1. Managing Underground Storage Tank Data Using dBASE III PLUS.

    DTIC Science & Technology

    1987-06-01

    create a more user friendly environment that will simplify the process of using the UST data. For example, using the Assistant facility a user can delete... for the novice user. Approved for public release; distribution is unlimited. t6 The contents of this report are not to be used for advertising...Al jther ed.lons are Obsolete U11class if iC( %J %. % FOREWORD The programs which this user’s manual documents were developed for the Office of the

  2. 46 CFR 154.1860 - Integral tanks: Cargo colder than −10 °C (14 °F).

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 5 2013-10-01 2013-10-01 false Integral tanks: Cargo colder than â10 °C (14 °F). 154....1860 Integral tanks: Cargo colder than −10 °C (14 °F). The master shall ensure that an integral tank does not carry a cargo colder than −10 °C (14 °F) unless that carriage is specially approved by the...

  3. 46 CFR 154.1860 - Integral tanks: Cargo colder than −10 °C (14 °F).

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 5 2011-10-01 2011-10-01 false Integral tanks: Cargo colder than â10 °C (14 °F). 154....1860 Integral tanks: Cargo colder than −10 °C (14 °F). The master shall ensure that an integral tank does not carry a cargo colder than −10 °C (14 °F) unless that carriage is specially approved by the...

  4. 46 CFR 154.1860 - Integral tanks: Cargo colder than −10 °C (14 °F).

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 5 2012-10-01 2012-10-01 false Integral tanks: Cargo colder than â10 °C (14 °F). 154....1860 Integral tanks: Cargo colder than −10 °C (14 °F). The master shall ensure that an integral tank does not carry a cargo colder than −10 °C (14 °F) unless that carriage is specially approved by the...

  5. 46 CFR 154.1860 - Integral tanks: Cargo colder than −10 °C (14 °F).

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Integral tanks: Cargo colder than â10 °C (14 °F). 154....1860 Integral tanks: Cargo colder than −10 °C (14 °F). The master shall ensure that an integral tank does not carry a cargo colder than −10 °C (14 °F) unless that carriage is specially approved by the...

  6. 46 CFR 154.1860 - Integral tanks: Cargo colder than −10 °C (14 °F).

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 5 2014-10-01 2014-10-01 false Integral tanks: Cargo colder than â10 °C (14 °F). 154....1860 Integral tanks: Cargo colder than −10 °C (14 °F). The master shall ensure that an integral tank does not carry a cargo colder than −10 °C (14 °F) unless that carriage is specially approved by the...

  7. 75 FR 80512 - Collection of Information Under Review by Office of Management and Budget: OMB Control Numbers...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-22

    ... Tanks; Approval of Non-Specification Portable Tanks; (2) 1625-0078, Licensing and Manning Requirements...: Licensing and Manning Requirements for Officers of Towing Vessels. OMB Control Number: 1625-0078. Type of...

  8. IET. Tank building (TAN627). Plans, elevation, details. shows position of ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    IET. Tank building (TAN-627). Plans, elevation, details. shows position of tanks within building and concrete supports. Ralph M. Parsons 902-4-ANP-627-A&S 420. Date: Fabruary 1954. Approved by INEEL Classification Office for public release. INEEL index code no. 035-0627-00-693-106975 - Idaho National Engineering Laboratory, Test Area North, Scoville, Butte County, ID

  9. 46 CFR 153.1120 - Procedures for tank prewash: Categories A, B, and C.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... approved Procedures and Arrangements Manual for the prewash. (3) The wash water must be heated if required by § 153.1108, and water or tank washings must pass through the cargo pump and piping, including any... collected in the bottom of the tank for the pump to gain suction, and if the NLS is immiscible with water or...

  10. 46 CFR 153.1120 - Procedures for tank prewash: Categories A, B, and C.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... approved Procedures and Arrangements Manual for the prewash. (3) The wash water must be heated if required by § 153.1108, and water or tank washings must pass through the cargo pump and piping, including any... collected in the bottom of the tank for the pump to gain suction, and if the NLS is immiscible with water or...

  11. 46 CFR 153.1120 - Procedures for tank prewash: Categories A, B, and C.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... approved Procedures and Arrangements Manual for the prewash. (3) The wash water must be heated if required by § 153.1108, and water or tank washings must pass through the cargo pump and piping, including any... collected in the bottom of the tank for the pump to gain suction, and if the NLS is immiscible with water or...

  12. 46 CFR 153.1120 - Procedures for tank prewash: Categories A, B, and C.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... approved Procedures and Arrangements Manual for the prewash. (3) The wash water must be heated if required by § 153.1108, and water or tank washings must pass through the cargo pump and piping, including any... collected in the bottom of the tank for the pump to gain suction, and if the NLS is immiscible with water or...

  13. 46 CFR 153.1120 - Procedures for tank prewash: Categories A, B, and C.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... approved Procedures and Arrangements Manual for the prewash. (3) The wash water must be heated if required by § 153.1108, and water or tank washings must pass through the cargo pump and piping, including any... collected in the bottom of the tank for the pump to gain suction, and if the NLS is immiscible with water or...

  14. 75 FR 35024 - North Carolina Waters Along the Entire Length of Brunswick and Pender Counties and the Saline...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-21

    ... and regulated septic tanks or State approved on site waste treatment plant, or the waste is collected into a large holding tank for transport to a sewage treatment plant. Thus all vessel sewage will be... New Hanover Counties for pumping out vessel holding tanks: (1) St. James Plantation Marina, 910-253...

  15. 46 CFR 162.017-2 - Type.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... APPROVAL ENGINEERING EQUIPMENT General Provisions; Valves, Pressure-Vacuum Relief, for Tank Vessels § 162.017-2 Type. This specification covers the design and construction of pressure-vacuum relief valves intended for use in venting systems on all tank vessels transporting inflammable or combustible liquids...

  16. 46 CFR 162.017-2 - Type.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... APPROVAL ENGINEERING EQUIPMENT General Provisions; Valves, Pressure-Vacuum Relief, for Tank Vessels § 162.017-2 Type. This specification covers the design and construction of pressure-vacuum relief valves intended for use in venting systems on all tank vessels transporting inflammable or combustible liquids...

  17. 46 CFR 162.017-2 - Type.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... APPROVAL ENGINEERING EQUIPMENT General Provisions; Valves, Pressure-Vacuum Relief, for Tank Vessels § 162.017-2 Type. This specification covers the design and construction of pressure-vacuum relief valves intended for use in venting systems on all tank vessels transporting inflammable or combustible liquids...

  18. 46 CFR 154.449 - Model test.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ...-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES Design, Construction and Equipment Independent Tank Type B § 154.449 Model test. The following analyzed data of a model test of structural elements for independent tank type B must be submitted to the Commandant (CG-ENG) for special approval: (a) Stress concentration...

  19. 40 CFR 86.155-98 - Records required; refueling test.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...-integrated systems, fuel system (including fuel tank(s) capacity and location), basic engine description... odometer reading. (g) All pertinent instrument information including nozzle and fuel delivery system description. As an alternative, a reference to a vehicle test cell number may be used, with advance approval...

  20. 40 CFR 86.155-98 - Records required; refueling test.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...-integrated systems, fuel system (including fuel tank(s) capacity and location), basic engine description... odometer reading. (g) All pertinent instrument information including nozzle and fuel delivery system description. As an alternative, a reference to a vehicle test cell number may be used, with advance approval...

  1. 40 CFR 86.155-98 - Records required; refueling test.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...-integrated systems, fuel system (including fuel tank(s) capacity and location), basic engine description... odometer reading. (g) All pertinent instrument information including nozzle and fuel delivery system description. As an alternative, a reference to a vehicle test cell number may be used, with advance approval...

  2. 40 CFR 86.155-98 - Records required; refueling test.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...-integrated systems, fuel system (including fuel tank(s) capacity and location), basic engine description... odometer reading. (g) All pertinent instrument information including nozzle and fuel delivery system description. As an alternative, a reference to a vehicle test cell number may be used, with advance approval...

  3. 40 CFR 86.155-98 - Records required; refueling test.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...-integrated systems, fuel system (including fuel tank(s) capacity and location), basic engine description... odometer reading. (g) All pertinent instrument information including nozzle and fuel delivery system description. As an alternative, a reference to a vehicle test cell number may be used, with advance approval...

  4. 46 CFR 64.3 - Applicability.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ..., DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING MARINE PORTABLE TANKS AND CARGO HANDLING..., U.S. Coast Guard Marine Safety Center, receives an application for approval on or before May 1, 1991. (b) Subpart F of this part also applies to portable tanks and to cargo-handling systems for portable...

  5. 46 CFR 162.017-2 - Type.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... APPROVAL ENGINEERING EQUIPMENT Valves, Pressure-Vacuum Relief, for Tank Vessels § 162.017-2 Type. This specification covers the design and construction of pressure-vacuum relief valves intended for use in venting systems on all tank vessels transporting inflammable or combustible liquids. [56 FR 35827, July 29, 1991] ...

  6. 46 CFR 162.017-2 - Type.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... APPROVAL ENGINEERING EQUIPMENT Valves, Pressure-Vacuum Relief, for Tank Vessels § 162.017-2 Type. This specification covers the design and construction of pressure-vacuum relief valves intended for use in venting systems on all tank vessels transporting inflammable or combustible liquids. [56 FR 35827, July 29, 1991] ...

  7. 7 CFR 58.131 - Equipment and facilities.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... with 3-A Sanitary Standards for Stainless Steel Automotive Milk and Milk Products Transportation Tanks... be stainless steel and so constructed that it will not buckle, sag or prevent complete drainage. All... under sanitary conditions from farm bulk tanks through stainless steel piping or approved tubing. The...

  8. 7 CFR 58.131 - Equipment and facilities.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... with 3-A Sanitary Standards for Stainless Steel Automotive Milk and Milk Products Transportation Tanks... be stainless steel and so constructed that it will not buckle, sag or prevent complete drainage. All... under sanitary conditions from farm bulk tanks through stainless steel piping or approved tubing. The...

  9. 7 CFR 58.131 - Equipment and facilities.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... with 3-A Sanitary Standards for Stainless Steel Automotive Milk and Milk Products Transportation Tanks... be stainless steel and so constructed that it will not buckle, sag or prevent complete drainage. All... under sanitary conditions from farm bulk tanks through stainless steel piping or approved tubing. The...

  10. 7 CFR 58.131 - Equipment and facilities.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... with 3-A Sanitary Standards for Stainless Steel Automotive Milk and Milk Products Transportation Tanks... be stainless steel and so constructed that it will not buckle, sag or prevent complete drainage. All... under sanitary conditions from farm bulk tanks through stainless steel piping or approved tubing. The...

  11. 7 CFR 58.131 - Equipment and facilities.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... with 3-A Sanitary Standards for Stainless Steel Automotive Milk and Milk Products Transportation Tanks... be stainless steel and so constructed that it will not buckle, sag or prevent complete drainage. All... under sanitary conditions from farm bulk tanks through stainless steel piping or approved tubing. The...

  12. 29 CFR 1926.152 - Flammable liquids.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... tank, unless control valves and their connections to the tank are of a type designed to prevent... storage cabinets shall be constructed in the following manner, or equivalent: The bottom, sides, and top... extinguishing system is provided, the system shall be designed and installed in an approved manner. Openings to...

  13. 29 CFR 1926.152 - Flammable liquids.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... tank, unless control valves and their connections to the tank are of a type designed to prevent... storage cabinets shall be constructed in the following manner, or equivalent: The bottom, sides, and top... extinguishing system is provided, the system shall be designed and installed in an approved manner. Openings to...

  14. 49 CFR 179.220-10 - Welding.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Welding. 179.220-10 Section 179.220-10... Specifications for Non-Pressure Tank Car Tanks (Classes DOT-111AW and 115AW) § 179.220-10 Welding. (a) All joints... of this subchapter). Welding procedures, welders, and fabricators shall be approved. (b) Radioscopy...

  15. 40 CFR 86.157-98 - Refueling test procedures for liquefied petroleum gas-fueled vehicles.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ..., evaporative/refueling emission family, fuel tank(s) capacity, basic fuel system description and odometer.... As an alternative, a reference to a vehicle test cell number may be used, with advance approval of the Administrator, provided test cell calibration records show the pertinent instrument information...

  16. 46 CFR 35.03-5 - Approved types of work vests-TB/ALL.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 1 2014-10-01 2014-10-01 false Approved types of work vests-TB/ALL. 35.03-5 Section 35.03-5 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS OPERATIONS Work Vests § 35.03-5 Approved types of work vests—TB/ALL. (a) Each buoyant work vest carried under the permissive...

  17. 46 CFR 35.03-5 - Approved types of work vests-TB/ALL.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 1 2011-10-01 2011-10-01 false Approved types of work vests-TB/ALL. 35.03-5 Section 35.03-5 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS OPERATIONS Work Vests § 35.03-5 Approved types of work vests—TB/ALL. (a) Each buoyant work vest carried under the permissive...

  18. 46 CFR 35.03-5 - Approved types of work vests-TB/ALL.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 1 2010-10-01 2010-10-01 false Approved types of work vests-TB/ALL. 35.03-5 Section 35.03-5 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS OPERATIONS Work Vests § 35.03-5 Approved types of work vests—TB/ALL. (a) Each buoyant work vest carried under the permissive...

  19. 46 CFR 35.03-5 - Approved types of work vests-TB/ALL.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 1 2013-10-01 2013-10-01 false Approved types of work vests-TB/ALL. 35.03-5 Section 35.03-5 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS OPERATIONS Work Vests § 35.03-5 Approved types of work vests—TB/ALL. (a) Each buoyant work vest carried under the permissive...

  20. 46 CFR 35.03-5 - Approved types of work vests-TB/ALL.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 1 2012-10-01 2012-10-01 false Approved types of work vests-TB/ALL. 35.03-5 Section 35.03-5 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS OPERATIONS Work Vests § 35.03-5 Approved types of work vests—TB/ALL. (a) Each buoyant work vest carried under the permissive...

  1. 49 CFR 179.100-7 - Materials.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... welding and must comply with one of the following specifications (IBR, see § 171.7 of this subchapter... sensitizing treatment prior to testing. (d) All attachments welded to tank shell must be of approved material which is suitable for welding to the tank. [Amdt. 179-10, 36 FR 21344, Nov. 6, 1971, as amended by Amdt...

  2. 77 FR 14327 - Bulk Packaging To Allow for Transfer of Hazardous Liquid Cargoes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-09

    ... Substance N.O.S. Not otherwise specified OSV Offshore supply vessel PHMSA Pipeline and Hazardous Materials... transfer of hazardous materials to and from portable tanks on vessels. The Coast Guard proposes to expand the list of portable tanks approved for hazardous material transfers to include IMO Type 1 and IMO...

  3. 49 CFR 179.102-4 - Vinyl fluoride, stabilized.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... weld metal and heat affected zone prepared and tested in accordance with AAR Specifications for Tank...) Insulation must be of approved material. (c) Excess flow valves must be installed under all liquid and vapor... OPERATING TEMPERATURE _ °F. (i) The tank car and insulation must be designed to prevent the vapor pressure...

  4. 49 CFR 179.102-4 - Vinyl fluoride, stabilized.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... weld metal and heat affected zone prepared and tested in accordance with AAR Specifications for Tank...) Insulation must be of approved material. (c) Excess flow valves must be installed under all liquid and vapor... OPERATING TEMPERATURE _ °F. (i) The tank car and insulation must be designed to prevent the vapor pressure...

  5. 49 CFR 179.102-4 - Vinyl fluoride, stabilized.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... weld metal and heat affected zone prepared and tested in accordance with AAR Specifications for Tank...) Insulation must be of approved material. (c) Excess flow valves must be installed under all liquid and vapor... OPERATING TEMPERATURE _ °F. (i) The tank car and insulation must be designed to prevent the vapor pressure...

  6. 49 CFR 179.102-4 - Vinyl fluoride, stabilized.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... weld metal and heat affected zone prepared and tested in accordance with AAR Specifications for Tank...) Insulation must be of approved material. (c) Excess flow valves must be installed under all liquid and vapor... OPERATING TEMPERATURE _ °F. (i) The tank car and insulation must be designed to prevent the vapor pressure...

  7. 49 CFR 178.273 - Approval of Specification UN portable tanks.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... including, but not limited to, ensuring that the quality control, design calculations and required tests are... necessary to ensure that the design meets the relevant specification. (ii) The manufacturer's serial number that will be assigned to each portable tank. (iii) A statement as to whether the design type has been...

  8. 49 CFR 178.273 - Approval of Specification UN portable tanks.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... including, but not limited to, ensuring that the quality control, design calculations and required tests are... necessary to ensure that the design meets the relevant specification. (ii) The manufacturer's serial number that will be assigned to each portable tank. (iii) A statement as to whether the design type has been...

  9. 49 CFR 178.273 - Approval of Specification UN portable tanks.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... including, but not limited to, ensuring that the quality control, design calculations and required tests are... necessary to ensure that the design meets the relevant specification. (ii) The manufacturer's serial number that will be assigned to each portable tank. (iii) A statement as to whether the design type has been...

  10. 49 CFR 178.273 - Approval of Specification UN portable tanks.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... including, but not limited to, ensuring that the quality control, design calculations and required tests are... necessary to ensure that the design meets the relevant specification. (ii) The manufacturer's serial number that will be assigned to each portable tank. (iii) A statement as to whether the design type has been...

  11. 49 CFR 178.273 - Approval of Specification UN portable tanks.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... including, but not limited to, ensuring that the quality control, design calculations and required tests are... necessary to ensure that the design meets the relevant specification. (ii) The manufacturer's serial number that will be assigned to each portable tank. (iii) A statement as to whether the design type has been...

  12. 49 CFR 179.100-9 - Welding.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 3 2011-10-01 2011-10-01 false Welding. 179.100-9 Section 179.100-9... Tank Car Tanks (Classes DOT-105, 109, 112, 114 and 120) § 179.100-9 Welding. (a) All joints shall be..., see § 171.7 of this subchapter). Welding procedures, welders and fabricators shall be approved. (b...

  13. 49 CFR 179.220-10 - Welding.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 3 2014-10-01 2014-10-01 false Welding. 179.220-10 Section 179.220-10...-Pressure Tank Car Tanks (Classes DOT-111AW and 115AW) § 179.220-10 Welding. (a) All joints must be fusion... subchapter). Welding procedures, welders, and fabricators shall be approved. (b) Radioscopy of the outer...

  14. 49 CFR 179.220-10 - Welding.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 3 2011-10-01 2011-10-01 false Welding. 179.220-10 Section 179.220-10...-Pressure Tank Car Tanks (Classes DOT-111AW and 115AW) § 179.220-10 Welding. (a) All joints must be fusion... subchapter). Welding procedures, welders, and fabricators shall be approved. (b) Radioscopy of the outer...

  15. 49 CFR 179.200-10 - Welding.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 3 2014-10-01 2014-10-01 false Welding. 179.200-10 Section 179.200-10...-Pressure Tank Car Tanks (Classes DOT-111AW and 115AW) § 179.200-10 Welding. (a) All joints shall be fusion... § 171.7 of this subchapter). Welding procedures, welders and fabricators shall be approved. (b) Welding...

  16. 49 CFR 179.200-10 - Welding.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 3 2012-10-01 2012-10-01 false Welding. 179.200-10 Section 179.200-10...-Pressure Tank Car Tanks (Classes DOT-111AW and 115AW) § 179.200-10 Welding. (a) All joints shall be fusion... § 171.7 of this subchapter). Welding procedures, welders and fabricators shall be approved. (b) Welding...

  17. 49 CFR 179.220-10 - Welding.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 3 2012-10-01 2012-10-01 false Welding. 179.220-10 Section 179.220-10...-Pressure Tank Car Tanks (Classes DOT-111AW and 115AW) § 179.220-10 Welding. (a) All joints must be fusion... subchapter). Welding procedures, welders, and fabricators shall be approved. (b) Radioscopy of the outer...

  18. 49 CFR 179.200-10 - Welding.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 3 2013-10-01 2013-10-01 false Welding. 179.200-10 Section 179.200-10...-Pressure Tank Car Tanks (Classes DOT-111AW and 115AW) § 179.200-10 Welding. (a) All joints shall be fusion... § 171.7 of this subchapter). Welding procedures, welders and fabricators shall be approved. (b) Welding...

  19. 49 CFR 179.220-10 - Welding.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 3 2013-10-01 2013-10-01 false Welding. 179.220-10 Section 179.220-10...-Pressure Tank Car Tanks (Classes DOT-111AW and 115AW) § 179.220-10 Welding. (a) All joints must be fusion... subchapter). Welding procedures, welders, and fabricators shall be approved. (b) Radioscopy of the outer...

  20. 49 CFR 179.100-9 - Welding.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 3 2013-10-01 2013-10-01 false Welding. 179.100-9 Section 179.100-9... Tank Car Tanks (Classes DOT-105, 109, 112, 114 and 120) § 179.100-9 Welding. (a) All joints shall be..., see § 171.7 of this subchapter). Welding procedures, welders and fabricators shall be approved. (b...

  1. 49 CFR 179.100-9 - Welding.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 3 2014-10-01 2014-10-01 false Welding. 179.100-9 Section 179.100-9... Tank Car Tanks (Classes DOT-105, 109, 112, 114 and 120) § 179.100-9 Welding. (a) All joints shall be..., see § 171.7 of this subchapter). Welding procedures, welders and fabricators shall be approved. (b...

  2. 49 CFR 179.200-10 - Welding.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 3 2011-10-01 2011-10-01 false Welding. 179.200-10 Section 179.200-10...-Pressure Tank Car Tanks (Classes DOT-111AW and 115AW) § 179.200-10 Welding. (a) All joints shall be fusion... § 171.7 of this subchapter). Welding procedures, welders and fabricators shall be approved. (b) Welding...

  3. 49 CFR 179.100-9 - Welding.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 3 2012-10-01 2012-10-01 false Welding. 179.100-9 Section 179.100-9... Tank Car Tanks (Classes DOT-105, 109, 112, 114 and 120) § 179.100-9 Welding. (a) All joints shall be..., see § 171.7 of this subchapter). Welding procedures, welders and fabricators shall be approved. (b...

  4. 49 CFR 176.2 - Definitions.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... permanent steel bulkheads. CSC safety approval plate means the safety approval plate specified in Annex I of... tank tops, decks, bulkheads, frames, plating, or ladders, or used for filling voids or fitting around... cargo on board a vessel. Portable magazine means a strong, closed, prefabricated, steel or wooden...

  5. X-33 Reusable Launch Vehicle Demonstrator, Spaceport and Range

    NASA Technical Reports Server (NTRS)

    Letchworth, Gary F.

    2011-01-01

    The X-33 was a suborbital reusable spaceplane demonstrator, in development from 1996 to early 2001. The intent of the demonstrator was to lower the risk of building and operating a full-scale reusable vehicle fleet. Reusable spaceplanes offered the potential to lower the cost of access to space by an order of magnitude, compared with conventional expendable launch vehicles. Although a cryogenic tank failure during testing ultimately led to the end of the effort, the X-33 team celebrated many successes during the development. This paper summarizes some of the accomplishments and milestones of this X-vehicle program, from the perspective of an engineer who was a member of the team throughout the development. X-33 Program accomplishments include rapid, flight hardware design, subsystem testing and fabrication, aerospike engine development and testing, Flight Operations Center and Operations Control Center ground systems design and construction, rapid Environmental Impact Statement NEPA process approval, Range development and flight plan approval for test flights, and full-scale system concept design and refinement. Lessons from the X-33 Program may have potential application to new RLV and other aerospace systems being developed a decade later.

  6. 49 CFR 176.2 - Definitions.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... its sides or permanent steel bulkheads. CSC safety approval plate means the safety approval plate... structures such as tank tops, decks, bulkheads, frames, plating, or ladders, or used for filling voids or..., prefabricated, steel or wooden, closed box or container, other than a freight container, designed and used to...

  7. Progress in Hanford's Double-Shell Tank Integrity Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bryson, D.C.; Washenfelder, D.J.; Boomer, K.D.

    2008-07-01

    The U.S. Department of Energy's Office of River Protection has an extensive integrity assessment program for the Hanford Site Double-Shell Tank System. The DOE Orders and environmental protection regulations provide the guidelines for the activities used to inspect and maintain 28 double-shell tanks (DSTs), the waste evaporator, and ancillary equipment that compose this system. This program has been reviewed by oversight and regulatory bodies and found to comply with the established guidelines. The basis for the DOE Order 435.1-1 for tank integrity comes from the Tank Structural Integrity Panel led by Brookhaven National Laboratory during the late 1990's. These guidelinesmore » established criteria for performing Non-Destructive Examination (NDE), for acceptance of the NDE results, for waste chemistry control, and for monitoring the tanks. The environmental regulations mirror these requirements and allow for the tank integrity program to provide compliant storage of the tanks. Both sets of requirements provide additional guidance for the protection of ancillary equipment. CH2M HILL uses two methods of NDE: visual inspection and Ultrasonic Testing (UT). The visual inspection program examines the primary tank and secondary liner of the DST. The primary tank is examined both on the interior surface above the waste in the tank and on the exterior surface facing the annulus of the DST. The interior surface of the tank liner is examined at the same time as the outer surface of the primary tank. The UT program examines representative areas of the primary tank and secondary liner by deploying equipment in the annulus of the tank. Both programs have led to the development of new equipment for remote inspection of the tanks. Compact camera and enhanced lighting systems have been designed and deployed through narrow access ports (called risers) into the tanks. The UT program has designed two generations of crawlers and equipment for deployment through risers into the thermally hot and radioactive environment. Also extensions were developed to allow inspection of the tank's curve upper (haunch) and lower (knuckle) surfaces. CH2M HILL primarily maintains chemistry control of the DST by ensuring that the concentrations of hydroxide and nitrite ions are favorable with respect to the nitrate ion concentration in the waste. This control program is supported by an extensive sampling program that obtains samples from the supernatant and solid layers in the tank to ensure compliance with the chemical specification. At DOE direction, CH2M HILL has embarked on a waste chemistry optimization program to enhance the protection of the tank surface and the understanding of the parameters that affect general and localized corrosion in the tanks. Over the past decade, DOE has deployed Electrochemical Noise corrosion probes in the DST to monitor localized corrosion. From the information gathered as part of the chemistry control, new information has been identified about the parameters requiring control to ensure tank integrity. CH2M HILL is deploying a series of corrosion probes to test and employ these parameters to provide real time corrosion monitoring of the DSTs. (authors)« less

  8. 33 CFR 157.43 - Discharges of clean and segregated ballast: Seagoing tank vessels of 150 gross tons or more.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... an approved oil discharge monitoring and control system or, if discharged before the required oil... mixture in the ballast. Use of an oil discharge monitoring and control system is not required. This... OF THE MARINE ENVIRONMENT RELATING TO TANK VESSELS CARRYING OIL IN BULK Vessel Operation § 157.43...

  9. 33 CFR 157.43 - Discharges of clean and segregated ballast: Seagoing tank vessels of 150 gross tons or more.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... an approved oil discharge monitoring and control system or, if discharged before the required oil... mixture in the ballast. Use of an oil discharge monitoring and control system is not required. This... OF THE MARINE ENVIRONMENT RELATING TO TANK VESSELS CARRYING OIL IN BULK Vessel Operation § 157.43...

  10. 33 CFR 157.43 - Discharges of clean and segregated ballast: Seagoing tank vessels of 150 gross tons or more.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... an approved oil discharge monitoring and control system or, if discharged before the required oil... mixture in the ballast. Use of an oil discharge monitoring and control system is not required. This... OF THE MARINE ENVIRONMENT RELATING TO TANK VESSELS CARRYING OIL IN BULK Vessel Operation § 157.43...

  11. 33 CFR 157.43 - Discharges of clean and segregated ballast: Seagoing tank vessels of 150 gross tons or more.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... an approved oil discharge monitoring and control system or, if discharged before the required oil... mixture in the ballast. Use of an oil discharge monitoring and control system is not required. This... OF THE MARINE ENVIRONMENT RELATING TO TANK VESSELS CARRYING OIL IN BULK Vessel Operation § 157.43...

  12. 33 CFR 157.43 - Discharges of clean and segregated ballast: Seagoing tank vessels of 150 gross tons or more.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... an approved oil discharge monitoring and control system or, if discharged before the required oil... mixture in the ballast. Use of an oil discharge monitoring and control system is not required. This... OF THE MARINE ENVIRONMENT RELATING TO TANK VESSELS CARRYING OIL IN BULK Vessel Operation § 157.43...

  13. 49 CFR 179.220-15 - Support system for inner container.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... CARS Specifications for Non-Pressure Tank Car Tanks (Classes DOT-111AW and 115AW) § 179.220-15 Support... container is loaded so that the car is at its rail load limit, and the car is equipped with a conventional... used, piping, or by a separate electrical connection of approved design. [Amdt. 179-9, 36 FR 21341, Nov...

  14. 49 CFR 179.220-15 - Support system for inner container.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... CARS Specifications for Non-Pressure Tank Car Tanks (Classes DOT-111AW and 115AW) § 179.220-15 Support... container is loaded so that the car is at its rail load limit, and the car is equipped with a conventional... used, piping, or by a separate electrical connection of approved design. [Amdt. 179-9, 36 FR 21341, Nov...

  15. 49 CFR 179.220-15 - Support system for inner container.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... CARS Specifications for Non-Pressure Tank Car Tanks (Classes DOT-111AW and 115AW) § 179.220-15 Support... container is loaded so that the car is at its rail load limit, and the car is equipped with a conventional... used, piping, or by a separate electrical connection of approved design. [Amdt. 179-9, 36 FR 21341, Nov...

  16. 33 CFR 155.350 - Oily mixture (bilge slops)/fuel oil tank ballast water discharges on oceangoing ships of less...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 2 2012-07-01 2012-07-01 false Oily mixture (bilge slops)/fuel... mixture (bilge slops)/fuel oil tank ballast water discharges on oceangoing ships of less than 400 gross... to a reception facility; or (2) Has approved oily-water separating equipment for processing oily...

  17. 33 CFR 155.350 - Oily mixture (bilge slops)/fuel oil tank ballast water discharges on oceangoing ships of less...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 2 2013-07-01 2013-07-01 false Oily mixture (bilge slops)/fuel... mixture (bilge slops)/fuel oil tank ballast water discharges on oceangoing ships of less than 400 gross... to a reception facility; or (2) Has approved oily-water separating equipment for processing oily...

  18. 33 CFR 155.350 - Oily mixture (bilge slops)/fuel oil tank ballast water discharges on oceangoing ships of less...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 2 2011-07-01 2011-07-01 false Oily mixture (bilge slops)/fuel... mixture (bilge slops)/fuel oil tank ballast water discharges on oceangoing ships of less than 400 gross... to a reception facility; or (2) Has approved oily-water separating equipment for processing oily...

  19. 33 CFR 155.350 - Oily mixture (bilge slops)/fuel oil tank ballast water discharges on oceangoing ships of less...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 2 2014-07-01 2014-07-01 false Oily mixture (bilge slops)/fuel... mixture (bilge slops)/fuel oil tank ballast water discharges on oceangoing ships of less than 400 gross... to a reception facility; or (2) Has approved oily-water separating equipment for processing oily...

  20. 46 CFR 31.10-32 - Loading information-TB/ALL.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... § 31.10-32 Loading information—TB/ALL. (a) This section applies to each tankship and tank barge the... have the loading information prescribed in either § 42.15-1(a) or § 45.105(a) of this chapter. For tank vessels subject to the Load Line Acts the information must be approved by the Commandant or by a...

  1. 49 CFR 179.220-15 - Support system for inner container.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... CARS Specifications for Non-Pressure Tank Car Tanks (Classes DOT-111AW and 115AW) § 179.220-15 Support... container is loaded so that the car is at its rail load limit, and the car is equipped with a conventional... used, piping, or by a separate electrical connection of approved design. [Amdt. 179-9, 36 FR 21341, Nov...

  2. n/a

    NASA Image and Video Library

    1975-10-10

    This diagram illustrates the Space Shuttle mission sequence. The Space Shuttle was approved as a national program in 1972 and developed through the 1970s. Part spacecraft and part aircraft, the Space Shuttle orbiter, the brain and the heart of the Space Transportation System (STS), required several technological advances, including thousands of insulating tiles able to stand the heat of reentry over the course of many missions, as well as sophisticated engines that could be used again and again without being thrown away. The airplane-like orbiter has three main engines, that burn liquid hydrogen and oxygen stored in the large external tank, the single largest structure in the Shuttle. Attached to the tank are two solid rocket boosters that provide the vehecile with most of the thrust needed for liftoff. Two minutes into the flight, the spent solids drop into the ocean to be recovered and refurbished for reuse, while the orbiter engines continue burning until approximately 8 minutes into the flight. After the mission is completed, the orbiter lands on a runway like an airplane.

  3. Thermal Imaging for Inspection of Large Cryogenic Tanks

    NASA Technical Reports Server (NTRS)

    Arens, Ellen

    2012-01-01

    The end of the Shuttle Program provides an opportunity to evaluate and possibly refurbish launch support infrastructure at the Kennedy Space Center in support of future launch vehicles. One major infrastructure element needing attention is the cryogenic fuel and oxidizer system and specifically the cryogenic fuel ground storage tanks located at Launch Complex 39. These tanks were constructed in 1965 and served both the Apollo and Shuttle Programs and will be used to support future launch programs. However, they have received only external inspection and minimal refurbishment over the years as there were no operational issues that warranted the significant time and schedule disruption required to drain and refurbish the tanks while the launch programs were ongoing. Now, during the break between programs, the health of the tanks is being evaluated and refurbishment is being performed as necessary to maintain their fitness for future launch programs. Thermography was used as one part of the inspection and analysis of the tanks. This paper will describe the conclusions derived from the thermal images to evaluate anomalous regions in the tanks, confirm structural integrity of components within the annular region, and evaluate the effectiveness of thermal imaging to detect large insulation voids in tanks prior to filling with cryogenic fluid. The use of thermal imaging as a tool to inspect unfilled tanks will be important if the construction of additional storage tanks is required to fuel new launch vehicles.

  4. 78 FR 58184 - Approval and Promulgation of Implementation Plans; North Carolina; Removal of Stage II Gasoline...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-23

    ...] Approval and Promulgation of Implementation Plans; North Carolina; Removal of Stage II Gasoline Vapor... measures for new and upgraded gasoline dispensing facilities in the State. The September 18, 2009, SIP... .0953), entitled Vapor Return Piping for Stage II Vapor Recovery, for all new or improved gasoline tanks...

  5. 75 FR 21197 - Approval and Promulgation of Implementation Plans; Implementation Plan Revision; State of New Jersey

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-23

    ...; asphalt pavement production plants; CTGs published in 2006: flat wood paneling, flexible packaging... new provisions that New Jersey designed to minimize emissions when a tank goes through a ``roof... approve them. Section 16.11 Asphalt Pavement Production Plants The New Jersey amendments to section 16.11...

  6. 46 CFR 35.03-15 - Shipboard stowage-TB/ALL.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS OPERATIONS Work Vests § 35.03-15 Shipboard stowage—TB/ALL. (a) The approved buoyant work vests shall be stowed separately from the regular stowage of approved life preservers. (b) The locations for the stowage of work vests shall be such as not...

  7. 46 CFR 35.03-15 - Shipboard stowage-TB/ALL.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS OPERATIONS Work Vests § 35.03-15 Shipboard stowage—TB/ALL. (a) The approved buoyant work vests shall be stowed separately from the regular stowage of approved life preservers. (b) The locations for the stowage of work vests shall be such as not...

  8. 46 CFR 35.03-15 - Shipboard stowage-TB/ALL.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS OPERATIONS Work Vests § 35.03-15 Shipboard stowage—TB/ALL. (a) The approved buoyant work vests shall be stowed separately from the regular stowage of approved life preservers. (b) The locations for the stowage of work vests shall be such as not...

  9. 46 CFR 35.03-15 - Shipboard stowage-TB/ALL.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS OPERATIONS Work Vests § 35.03-15 Shipboard stowage—TB/ALL. (a) The approved buoyant work vests shall be stowed separately from the regular stowage of approved life preservers. (b) The locations for the stowage of work vests shall be such as not...

  10. 46 CFR 35.03-15 - Shipboard stowage-TB/ALL.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS OPERATIONS Work Vests § 35.03-15 Shipboard stowage—TB/ALL. (a) The approved buoyant work vests shall be stowed separately from the regular stowage of approved life preservers. (b) The locations for the stowage of work vests shall be such as not...

  11. High level waste storage tank farms/242-A evaporator standards/requirements identification document phase 1 assessment corrective actions/compliance schedule approval report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Biebesheimer, E.

    This document, the Standards/Requirements Identification Document (S/RID) Phase I Assessment Corrective Actions/Compliance Schedule Approval Report for the subject facility, contains the corrective actions required to bring the facility into compliance as a result of an Administrative Assessment to determine whether S/RID requirements are fully addressed by existing policies, plans or procedures. These actions are delineated in the Compliance Schedule Approvals which also contain; noncompliances, risks, compensatory measures, schedules for corrective actions, justifications for approval, and resource impacts.

  12. 14 CFR 26.35 - Changes to type certificates affecting fuel tank flammability.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ...—Airbus A318, A319, A320, A321 Series A300, A310 Series A330, A340 Series (d) Design Changes and Service...) Applicability. This section applies to holders and applicants for approvals of the following design changes to any airplane subject to 14 CFR 26.33(a): (1) Any fuel tank designed to be Normally Emptied if the fuel...

  13. 14 CFR 26.35 - Changes to type certificates affecting fuel tank flammability.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ...—Airbus A318, A319, A320, A321 Series A300, A310 Series A330, A340 Series (d) Design Changes and Service...) Applicability. This section applies to holders and applicants for approvals of the following design changes to any airplane subject to 14 CFR 26.33(a): (1) Any fuel tank designed to be Normally Emptied if the fuel...

  14. 14 CFR 26.35 - Changes to type certificates affecting fuel tank flammability.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ...—Airbus A318, A319, A320, A321 Series A300, A310 Series A330, A340 Series (d) Design Changes and Service...) Applicability. This section applies to holders and applicants for approvals of the following design changes to any airplane subject to 14 CFR 26.33(a): (1) Any fuel tank designed to be Normally Emptied if the fuel...

  15. 14 CFR 26.35 - Changes to type certificates affecting fuel tank flammability.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ...—Airbus A318, A319, A320, A321 Series A300, A310 Series A330, A340 Series (d) Design Changes and Service...) Applicability. This section applies to holders and applicants for approvals of the following design changes to any airplane subject to 14 CFR 26.33(a): (1) Any fuel tank designed to be Normally Emptied if the fuel...

  16. 14 CFR 26.35 - Changes to type certificates affecting fuel tank flammability.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ...—Airbus A318, A319, A320, A321 Series A300, A310 Series A330, A340 Series (d) Design Changes and Service...) Applicability. This section applies to holders and applicants for approvals of the following design changes to any airplane subject to 14 CFR 26.33(a): (1) Any fuel tank designed to be Normally Emptied if the fuel...

  17. Environmental Assessment for the Closure of the High-Level Waste Tanks in F- & H-Areas at the Savannah River Site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    N /A

    1996-07-31

    This Environmental Assessment (EA) has been prepared by the Department of Energy (DOE) to assess the potential environmental impacts associated with the closure of 51 high-level radioactive waste tanks and tank farm ancillary equipment (including transfer lines, evaporators, filters, pumps, etc) at the Savannah River Site (SRS) located near Aiken, South Carolina. The waste tanks are located in the F- and H-Areas of SRS and vary in capacity from 2,839,059 liters (750,000 gallons) to 4,921,035 liters (1,300,000 gallons). These in-ground tanks are surrounded by soil to provide shielding. The F- and H-Area High-Level Waste Tanks are operated under the authoritymore » of Industrial Wastewater Permits No.17,424-IW; No.14520, and No.14338 issued by the South Carolina Department of Health and Environmental Control (SCDHEC). In accordance with the Permit requirements, DOE has prepared a Closure Plan (DOE, 1996) and submitted it to SCDHEC for approval. The Closure Plan identifies all applicable or relevant and appropriate regulations, statutes, and DOE Orders for closing systems operated under the Industrial Wastewater Permits. When approved by SCDHEC, the Closure Plan will present the regulatory process for closing all of the F- and H-Area High Level Waste Tanks. The Closure Plan establishes performance objectives or criteria to be met prior to closing any tank, group of tanks, or ancillary tank farm equipment. The proposed action is to remove the residual wastes from the tanks and to fill the tanks with a material to prevent future collapse and bind up residual waste, to lower human health risks, and to increase safety in and around the tanks. If required, an engineered cap consisting of clay, backfill (soil), and vegetation as the final layer to prevent erosion would be applied over the tanks. The selection of tank system closure method will be evaluated against the following Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) criteria described in 40 CFR 300.430(e)(9): ( 1) overall protection of human health and the environment; (2) compliance with applicable or relevant and appropriated requirement: (ARARs); (3) long-term effectiveness and permanence; (4) reduction of toxicity, mobility, or volume through treatment; (5) short-term effectiveness; (6) implementability; (7) cost; (8) state acceptable; and (9) community acceptance. Closure of each tank involves two separate operations after bulk waste removal has been accomplished: (1) cleaning of the tank (i.e., removing the residual contaminants), and (2) the actual closure or filling of the tank with an inert material, (e.g., grout). This process would continue until all the tanks and ancillary equipment and systems have been closed. This is expected to be about year 2028 for Type I, II, and IV tanks and associated systems. Subsequent to that, Type III tanks and systems will be closed.« less

  18. Radioactive air emissions notice of construction for installation and operation of a waste retrieval system and tanks 241-AP-102 and 241-AP-104 project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DEXTER, M.L.

    1999-11-15

    This document serves as a notice of construction (NOC) pursuant to the requirements of Washington Administrative Code (WAC) 246 247-060, and as a request for approval to modify pursuant to 40 Code of Federal Regulations (CFR) 61 07 for the installation and operation of one waste retrieval system in the 24 1 AP-102 Tank and one waste retrieval system in the 241 AP 104 Tank Pursuant to 40 CFR 61 09 (a)( 1) this application is also intended to provide anticipated initial start up notification Its is requested that EPA approval of this application will also constitute EPA acceptance ofmore » the initial start up notification Project W 211 Initial Tank Retrieval Systems (ITRS) is scoped to install a waste retrieval system in the following double-shell tanks 241-AP 102-AP 104 AN 102, AN 103, AN-104, AN 105, AY 102 AZ 102 and SY-102 between now and the year 2011. Because of the extended installation schedules and unknowns about specific activities/designs at each tank, it was decided to submit NOCs as that information became available This NOC covers the installation and operation of a waste retrieval system in tanks 241 AP-102 and 241 AP 104 Generally this includes removal of existing equipment installation of new equipment and construction of new ancillary equipment and buildings Tanks 241 AP 102 and 241 AP 104 will provide waste feed for immobilization into a low activity waste (LAW) product (i.e. glass logs) The total effective dose equivalent (TEDE) to the offsite maximally exposed individual (MEI) from the construction activities is 0 045 millirem per year The unabated TEDE to the offsite ME1 from operation of the mixer pumps is 0 042 millirem per year.« less

  19. Tank System Integrated Model: A Cryogenic Tank Performance Prediction Program

    NASA Technical Reports Server (NTRS)

    Bolshinskiy, L. G.; Hedayat, A.; Hastings, L. J.; Sutherlin, S. G.; Schnell, A. R.; Moder, J. P.

    2017-01-01

    Accurate predictions of the thermodynamic state of the cryogenic propellants, pressurization rate, and performance of pressure control techniques in cryogenic tanks are required for development of cryogenic fluid long-duration storage technology and planning for future space exploration missions. This Technical Memorandum (TM) presents the analytical tool, Tank System Integrated Model (TankSIM), which can be used for modeling pressure control and predicting the behavior of cryogenic propellant for long-term storage for future space missions. Utilizing TankSIM, the following processes can be modeled: tank self-pressurization, boiloff, ullage venting, mixing, and condensation on the tank wall. This TM also includes comparisons of TankSIM program predictions with the test data andexamples of multiphase mission calculations.

  20. Selected topics in railroad tank car safety. Volume 2 : test plan for accelerated life testing of thermally shielded tank cars

    DOT National Transportation Integrated Search

    1978-08-01

    A test plan for the accelerated life testing of thermally shielded tank cars is described. The test program would be conducted at the DOT Transportation Test Center in Pueblo, Colorado. Eighteen tank cars would be included in the program. Five cars w...

  1. 29 CFR 1910.6 - Incorporation by reference.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...); and 1910.111(d)(1) (ii) and (iii). (6) API 650 (1966) Welded Steel Tanks for Oil Storage, 3rd Ed., IBR... and Seamless Steel Pipe, IBR approved for §§ 1910.110 and 1910.111. (3) ASTM A 126-66, Gray Iron...-1968), Alloy Steel Chain, IBR approved for § 1910.184. (5) ASTM A 395-68, Ductile Iron for Use at...

  2. 29 CFR 1910.6 - Incorporation by reference.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...); and 1910.111(d)(1) (ii) and (iii). (6) API 650 (1966) Welded Steel Tanks for Oil Storage, 3rd Ed., IBR... and Seamless Steel Pipe, IBR approved for §§ 1910.110 and 1910.111. (3) ASTM A 126-66, Gray Iron...-1968), Alloy Steel Chain, IBR approved for § 1910.184. (5) ASTM A 395-68, Ductile Iron for Use at...

  3. Energy Policy Act of 2005 and Underground Storage Tanks (USTs)

    EPA Pesticide Factsheets

    The Energy Policy Act of 2005 significantly affected federal and state underground storage tank programs, required major changes to the programs, and is aimed at reducing underground storage tank releases to our environment.

  4. Iraq liquid radioactive waste tanks maintenance and monitoring program plan.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dennis, Matthew L.; Cochran, John Russell; Sol Shamsaldin, Emad

    2011-10-01

    The purpose of this report is to develop a project management plan for maintaining and monitoring liquid radioactive waste tanks at Iraq's Al-Tuwaitha Nuclear Research Center. Based on information from several sources, the Al-Tuwaitha site has approximately 30 waste tanks that contain varying amounts of liquid or sludge radioactive waste. All of the tanks have been non-operational for over 20 years and most have limited characterization. The program plan embodied in this document provides guidance on conducting radiological surveys, posting radiation control areas and controlling access, performing tank hazard assessments to remove debris and gain access, and conducting routine tankmore » inspections. This program plan provides general advice on how to sample and characterize tank contents, and how to prioritize tanks for soil sampling and borehole monitoring.« less

  5. Study of alternate space shuttle concepts

    NASA Technical Reports Server (NTRS)

    1971-01-01

    A study of alternate space shuttle concepts was conducted to examine the stage-and-one-half concept and its potential for later conversion and use in the two stage reusable shuttle system. A study of external hydrogen tank concepts was conducted to determine the issues involved in the design and production of a low-cost expendable tank system. The major objectives of the study were to determine: (1) realistic drop tank program cost estimates, (2) estimated drop tank program cost for selected specific designs, and (3) change in program cost due to variations in design and manufacturing concepts and changes in program assumptions.

  6. Mercury and Silver in Clinic Wastewater Goodfellow AFB, Texas

    DTIC Science & Technology

    1989-07-01

    SE(JrTY CLASSIFICATION 1b RESTRICTIVE MARINGSuncfassi I ed N/A 2a SCRITY CLASSIFICATION AUTHORITY 3 DISTRIBUTION / AVAiLABILIT OF REPORT N/A Approved...Material suctioned from teeth restoration are collected in a central separator/collection tank. The tank is automatically cleaned by rinsing it with water ...insoluble or sparingly soluble in water . In neutral or alkaline solutions, mercury is oxidized directly to the mercuric state with the formatin of

  7. 46 CFR 194.10-10 - Integral magazine construction.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... spaces suitable approved incombustible thermal insulation shall be provided to prevent condensation of... to prevent condensation of moisture. Tank top manholes shall not be installed in magazines. (d) Light...

  8. 46 CFR 194.10-10 - Integral magazine construction.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... spaces suitable approved incombustible thermal insulation shall be provided to prevent condensation of... to prevent condensation of moisture. Tank top manholes shall not be installed in magazines. (d) Light...

  9. 46 CFR 194.10-10 - Integral magazine construction.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... spaces suitable approved incombustible thermal insulation shall be provided to prevent condensation of... to prevent condensation of moisture. Tank top manholes shall not be installed in magazines. (d) Light...

  10. 46 CFR 194.10-10 - Integral magazine construction.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... spaces suitable approved incombustible thermal insulation shall be provided to prevent condensation of... to prevent condensation of moisture. Tank top manholes shall not be installed in magazines. (d) Light...

  11. Analysis of Tank 38H (HTF-38-15-47, 49) and Tank 43H (HTF-43-15-51, 53) surface and subsurface supernatant samples in support of enrichment and corrosion control programs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oji, L. N.

    This report provides the results of analyses on Tanks 38H and 43H surface and subsurface supernatant liquid samples in support of the Enrichment Control Program (ECP) and the Corrosion Control Program (CCP).

  12. 78 FR 10163 - Notice of Availability of Draft Section 3116 Basis for Determination for Closure of H Tank Farm...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-13

    ... isolation in a deep geologic repository for spent fuel or high-level radioactive waste; (2) has had highly... in 10 CFR Part 61, Subpart C and pursuant to a State approved closure plan or State-issued permit; or... with the performance objectives of 10 CFR Part 61, Subpart C; pursuant to a State approved closure plan...

  13. Conceptual Design of an In-Space Cryogenic Fluid Management Facility

    NASA Technical Reports Server (NTRS)

    Willen, G. S.; Riemer, D. H.; Hustvedt, D. C.

    1981-01-01

    The conceptual design of a Spacelab experiment to develop the technology associated with low gravity propellant management is presented. The proposed facility consisting of a supply tank, receiver tank, pressurization system, instrumentation, and supporting hardware, is described. The experimental objectives, the receiver tank to be modeled, and constraints imposed on the design by the space shuttle, Spacelab, and scaling requirements, are described. The conceptual design, including the general configurations, flow schematics, insulation systems, instrumentation requirements, and internal tank configurations for the supply tank and the receiver tank, is described. Thermal, structural, fluid, and safety and reliability aspects of the facility are analyzed. The facility development plan, including schedule and cost estimates for the facility, is presented. A program work breakdown structure and master program schedule for a seven year program are included.

  14. 46 CFR 151.10-15 - Certificate endorsement.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... CARRYING BULK LIQUID HAZARDOUS MATERIAL CARGOES Barge Hull Construction Requirements § 151.10-15... density (lb./gal.) and maximum cargo weight (tons) for each tank for which approval is requested. Their...

  15. 46 CFR 151.10-15 - Certificate endorsement.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... CARRYING BULK LIQUID HAZARDOUS MATERIAL CARGOES Barge Hull Construction Requirements § 151.10-15... density (lb./gal.) and maximum cargo weight (tons) for each tank for which approval is requested. Their...

  16. Analysis of Tank 38H (HTF-38-16-26, 27) and Tank 43H (HTF-43-16-28, 29) Samples for Support of the Enrichment Control and Corrosion Control Programs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hay, M. S.

    Savannah River National Laboratory analyzed samples from Tank 38H and Tank 43H to support Enrichment Control Program and Corrosion Control Program. The total uranium in the Tank 38H samples ranged from 20.5 to 34.0 mg/L while the Tank 43H samples ranged from 47.6 to 50.6 mg/L. The U-235 percentage ranged from 0.62% to 0.64% over the four samples. The total uranium and percent U-235 results appear consistent with previous Tank 38H and Tank 43H uranium measurements. The Tank 38H plutonium results show a large difference between the surface and sub-surface sample concentrations and a somewhat higher concentration than previous sub-surfacemore » samples. The two Tank 43H samples show similar plutonium concentrations and are within the range of values measured on previous samples. The plutonium results may be biased high due to the presence of plutonium contamination in the blank samples from the cell sample preparations. The four samples analyzed show silicon concentrations ranging from 47.9 to 105 mg/L.« less

  17. Computer programs for pressurization (RAMP) and pressurized expulsion from a cryogenic liquid propellant tank

    NASA Technical Reports Server (NTRS)

    Masters, P. A.

    1974-01-01

    An analysis to predict the pressurant gas requirements for the discharge of cryogenic liquid propellants from storage tanks is presented, along with an algorithm and two computer programs. One program deals with the pressurization (ramp) phase of bringing the propellant tank up to its operating pressure. The method of analysis involves a numerical solution of the temperature and velocity functions for the tank ullage at a discrete set of points in time and space. The input requirements of the program are the initial ullage conditions, the initial temperature and pressure of the pressurant gas, and the time for the expulsion or the ramp. Computations are performed which determine the heat transfer between the ullage gas and the tank wall. Heat transfer to the liquid interface and to the hardware components may be included in the analysis. The program output includes predictions of mass of pressurant required, total energy transfer, and wall and ullage temperatures. The analysis, the algorithm, a complete description of input and output, and the FORTRAN 4 program listings are presented. Sample cases are included to illustrate use of the programs.

  18. 18 CFR 1304.209 - Land-based structures/alterations.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ..., satellite antennas, septic tanks, and septic drainfields shall not be allowed on TVA land. (c) Utility lines... APPROVAL OF CONSTRUCTION IN THE TENNESSEE RIVER SYSTEM AND REGULATION OF STRUCTURES AND OTHER ALTERATIONS...

  19. 18 CFR 1304.209 - Land-based structures/alterations.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ..., satellite antennas, septic tanks, and septic drainfields shall not be allowed on TVA land. (c) Utility lines... APPROVAL OF CONSTRUCTION IN THE TENNESSEE RIVER SYSTEM AND REGULATION OF STRUCTURES AND OTHER ALTERATIONS...

  20. Interim Basis for PCB Sampling and Analyses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    BANNING, D.L.

    2001-01-18

    This document was developed as an interim basis for sampling and analysis of polychlorinated biphenyls (PCBs) and will be used until a formal data quality objective (DQO) document is prepared and approved. On August 31, 2000, the Framework Agreement for Management of Polychlorinated Biphenyls (PCBs) in Hanford Tank Waste was signed by the US. Department of Energy (DOE), the Environmental Protection Agency (EPA), and the Washington State Department of Ecology (Ecology) (Ecology et al. 2000). This agreement outlines the management of double shell tank (DST) waste as Toxic Substance Control Act (TSCA) PCB remediation waste based on a risk-based disposalmore » approval option per Title 40 of the Code of Federal Regulations 761.61 (c). The agreement calls for ''Quantification of PCBs in DSTs, single shell tanks (SSTs), and incoming waste to ensure that the vitrification plant and other ancillary facilities PCB waste acceptance limits and the requirements of the anticipated risk-based disposal approval are met.'' Waste samples will be analyzed for PCBs to satisfy this requirement. This document describes the DQO process undertaken to assure appropriate data will be collected to support management of PCBs and is presented in a DQO format. The DQO process was implemented in accordance with the U.S. Environmental Protection Agency EPA QAlG4, Guidance for the Data Quality Objectives Process (EPA 1994) and the Data Quality Objectives for Sampling and Analyses, HNF-IP-0842, Rev. 1 A, Vol. IV, Section 4.16 (Banning 1999).« less

  1. Interim Basis for PCB Sampling and Analyses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    BANNING, D.L.

    2001-03-20

    This document was developed as an interim basis for sampling and analysis of polychlorinated biphenyls (PCBs) and will be used until a formal data quality objective (DQO) document is prepared and approved. On August 31, 2000, the Framework Agreement for Management of Polychlorinated Biphenyls (PCBs) in Hanford Tank Waste was signed by the U.S. Department of Energy (DOE), the Environmental Protection Agency (EPA), and the Washington State Department of Ecology (Ecology) (Ecology et al. 2000). This agreement outlines the management of double shell tank (DST) waste as Toxic Substance Control Act (TSCA) PCB remediation waste based on a risk-based disposalmore » approval option per Title 40 of the Code of Federal Regulations 761.61 (c). The agreement calls for ''Quantification of PCBs in DSTs, single shell tanks (SSTs), and incoming waste to ensure that the vitrification plant and other ancillary facilities PCB waste acceptance limits and the requirements of the anticipated risk-based disposal approval are met.'' Waste samples will be analyzed for PCBs to satisfy this requirement. This document describes the DQO process undertaken to assure appropriate data will be collected to support management of PCBs and is presented in a DQO format. The DQO process was implemented in accordance with the U.S. Environmental Protection Agency EPA QA/G4, Guidance for the Data Quality Objectives Process (EPA 1994) and the Data Quality Objectives for Sampling and Analyses, HNF-IP-0842, Rev. 1A, Vol. IV, Section 4.16 (Banning 1999).« less

  2. Communicating Performance Assessments Results - 13609

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Layton, Mark

    2013-07-01

    The F-Area Tank Farms (FTF) and H-Area Tank Farm (HTF) are owned by the U.S. Department of Energy (DOE) and operated by Savannah River Remediation LLC (SRR), Liquid Waste Operations contractor at DOE's Savannah River Site (SRS). The FTF and HTF are active radioactive waste storage and treatment facilities consisting of 51 carbon steel waste tanks and ancillary equipment such as transfer lines, evaporators and pump tanks. Performance Assessments (PAs) for each Tank Farm have been prepared to support the eventual closure of the underground radioactive waste tanks and ancillary equipment. PAs provide the technical bases and results to bemore » used in subsequent documents to demonstrate compliance with the pertinent requirements for final closure of the Tank Farms. The Tank Farms are subject to a number of regulatory requirements. The State regulates Tank Farm operations through an industrial waste water permit and through a Federal Facility Agreement approved by the State, DOE and the Environmental Protection Agency (EPA). Closure documentation will include State-approved Tank Farm Closure Plans and tank-specific closure modules utilizing information from the PAs. For this reason, the State of South Carolina and the EPA must be involved in the performance assessment review process. The residual material remaining after tank cleaning is also subject to reclassification prior to closure via a waste determination pursuant to Section 3116 of the Ronald W. Reagan National Defense Authorization Act of Fiscal Year 2005. PAs are performance-based, risk-informed analyses of the fate and transport of FTF and HTF residual wastes following final closure of the Tank Farms. Since the PAs serve as the primary risk assessment tools in evaluating readiness for closure, it is vital that PA conclusions be communicated effectively. In the course of developing the FTF and HTF PAs, several lessons learned have emerged regarding communicating PA results. When communicating PA results it is important to stress that the primary goal of the PA results is to provide risk understanding, recognizing the magnitude of risk and identifying the conceptual model decisions and critical assumptions that most impact the results. Conceptual models that describe reality using simplified, mathematical approaches, and their roles in arriving at the PA results, must also be communicated. When presenting PA results, evaluations will typically be focused on a single baseline (or Base Case) to provide a foundation for discussion. The PA results are supplemented by other studies (alternate configurations, uncertainty analyses, and sensitivity analyses) which provide a breadth of modeling to supplement the Base Case. The suite of information offered by the various modeling cases and studies provides confidence that the overall risk is understood along with the underlying parameters and conditions that contribute to risk. (author)« less

  3. ANNUAL RADIOACTIVE WASTE TANK INSPECTION PROGRAM 2009

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    West, B.; Waltz, R.

    2010-06-21

    Aqueous radioactive wastes from Savannah River Site (SRS) separations and vitrification processes are contained in large underground carbon steel tanks. Inspections made during 2009 to evaluate these vessels and other waste handling facilities along with evaluations based on data from previous inspections are the subject of this report. The 2009 inspection program revealed that the structural integrity and waste confinement capability of the Savannah River Site waste tanks were maintained. All inspections scheduled per LWO-LWE-2008-00423, HLW Tank Farm Inspection Plan for 2009, were completed. All Ultrasonic measurements (UT) performed in 2009 met the requirements of C-ESG-00006, In-Service Inspection Program formore » High Level Waste Tanks, Rev. 1, and WSRC-TR-2002-00061, Rev.4. UT inspections were performed on Tank 29 and the findings are documented in SRNL-STI-2009-00559, Tank Inspection NDE Results for Fiscal Year 2009, Waste Tank 29. Post chemical cleaning UT measurements were made in Tank 6 and the results are documented in SRNL-STI-2009-00560, Tank Inspection NDE Results Tank 6, Including Summary of Waste Removal Support Activities in Tanks 5 and 6. A total of 6669 photographs were made and 1276 visual and video inspections were performed during 2009. Twenty-Two new leaksites were identified in 2009. The locations of these leaksites are documented in C-ESR-G-00003, SRS High Level Waste Tank Leaksite Information, Rev.4. Fifteen leaksites at Tank 5 were documented during tank wall/annulus cleaning activities. Five leaksites at Tank 6 were documented during tank wall/annulus cleaning activities. Two new leaksites were identified at Tank 19 during waste removal activities. Previously documented leaksites were reactivated at Tanks 5 and 12 during waste removal activities. Also, a very small amount of additional leakage from a previously identified leaksite at Tank 14 was observed.« less

  4. Vented Tank Resupply Experiment (VTRE) for In-space Technology Experiment Program (IN-STEP)

    NASA Technical Reports Server (NTRS)

    1992-01-01

    An overview of the Vented Tank Resupply Experiment (VTRE) program is presented in outline and graphical form. The goal of the program is to develop, design, build and provide flight and post flight support for a Shuttle Hitchhiker Experiment to investigate and demonstrate vented tank venting in space. Program schedules and experiment subsystem schematics are presented and specific technical objectives, power requirements, payload assemblies, Hitchhiker canister integration, and orbiter mission approach are addressed.

  5. Analysis of Tank 13H (HTF-13-14-156, 157) Surface and Subsurface Supernatant Samples in Support of Enrichment Control, Corrosion Control and Sodium Aluminosilicate Formation Potential Programs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oji, L. N.

    2015-02-18

    The 2H Evaporator system includes mainly Tank 43H (feed tank) and Tank 38H (drop tank) with Tank 22H acting as the DWPF recycle receipt tank. The Tank 13H is being characterized to ensure that it can be transferred to the 2H evaporator. This report provides the results of analyses on Tanks 13H surface and subsurface supernatant liquid samples to ensure compliance with the Enrichment Control Program (ECP), the Corrosion Control Program and Sodium Aluminosilicate Formation Potential in the Evaporator. The U-235 mass divided by the total uranium averaged 0.00799 (0.799 % uranium enrichment) for both the surface and subsurface Tankmore » 13H samples. This enrichment is slightly above the enrichment for Tanks 38H and 43H, where the enrichment normally ranges from 0.59 to 0.7 wt%. The U-235 concentration in Tank 13H samples ranged from 2.01E-02 to 2.63E-02 mg/L, while the U-238 concentration in Tank 13H ranged from 2.47E+00 to 3.21E+00 mg/L. Thus, the U-235/total uranium ratio is in line with the prior 2H-evaporator ECP samples. Measured sodium and silicon concentrations averaged, respectively, 2.46 M and 1.42E-04 M (3.98 mg/L) in the Tank 13H subsurface sample. The measured aluminum concentration in Tanks 13H subsurface samples averaged 2.01E-01 M.« less

  6. Developing NDE Techniques for Large Cryogenic Tanks

    NASA Technical Reports Server (NTRS)

    Parker, Don; Starr, Stan; Arens, Ellen

    2011-01-01

    The Shuttle Program requires very large cryogenic ground storage tanks in which to store liquid oxygen and hydrogen. The existing Pads A and B Launch Complex-39 tanks, which will be passed onto future launch programs, are 45 years old and have received minimal refurbishment and only external inspections over the years. The majority of the structure is inaccessible without a full system drain of cryogenic liquid and granular insulation in the annular region. It was previously thought that there was a limit to the number of temperature cycles that the tanks could handle due to possible insulation compaction before undergoing a costly and time consuming complete overhaul; therefore the tanks were not drained and performance issues with these tanks, specifically the Pad B liquid hydrogen tank, were accepted. There is a needind an opportunity, as the Shuttle program ends and work to upgrade the launch pads progresses, to develop innovative non-destructive evaluation (NDE) techniques to analyze the current tanks. Techniques are desired that can aid in determining the extent of refurbishment required to keep the tanks in service for another 20+ years. A nondestructive technique would also be a significant aid in acceptance testing of new and refurbished tanks, saving significant time and money, if corrective actions can be taken before cryogen is introduced to the systems.

  7. ANNUAL RADIOACTIVE WASTE TANK INSPECTION PROGRAM - 2011

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    West, B.; Waltz, R.

    2012-06-21

    Aqueous radioactive wastes from Savannah River Site (SRS) separations and vitrification processes are contained in large underground carbon steel tanks. Inspections made during 2011 to evaluate these vessels and other waste handling facilities along with evaluations based on data from previous inspections are the subject of this report. The 2011 inspection program revealed that the structural integrity and waste confinement capability of the Savannah River Site waste tanks were maintained. All inspections scheduled per SRR-LWE-2011-00026, HLW Tank Farm Inspection Plan for 2011, were completed. Ultrasonic measurements (UT) performed in 2011 met the requirements of C-ESR-G-00006, In-Service Inspection Program for Highmore » Level Waste Tanks, Rev. 3, and WSRC-TR-2002-00061, Rev.6. UT inspections were performed on Tanks 25, 26 and 34 and the findings are documented in SRNL-STI-2011-00495, Tank Inspection NDE Results for Fiscal Year 2011, Waste Tanks 25, 26, 34 and 41. A total of 5813 photographs were made and 835 visual and video inspections were performed during 2011. A potential leaksite was discovered at Tank 4 during routine annual inspections performed in 2011. The new crack, which is above the allowable fill level, resulted in no release to the environment or tank annulus. The location of the crack is documented in C-ESR-G-00003, SRS High Level Waste Tank Leaksite Information, Rev.6.« less

  8. RPP-PRT-58489, Revision 1, One Systems Consistent Safety Analysis Methodologies Report. 24590-WTP-RPT-MGT-15-014

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gupta, Mukesh; Niemi, Belinda; Paik, Ingle

    2015-09-02

    In 2012, One System Nuclear Safety performed a comparison of the safety bases for the Tank Farms Operations Contractor (TOC) and Hanford Tank Waste Treatment and Immobilization Plant (WTP) (RPP-RPT-53222 / 24590-WTP-RPT-MGT-12-018, “One System Report of Comparative Evaluation of Safety Bases for Hanford Waste Treatment and Immobilization Plant Project and Tank Operations Contract”), and identified 25 recommendations that required further evaluation for consensus disposition. This report documents ten NSSC approved consistent methodologies and guides and the results of the additional evaluation process using a new set of evaluation criteria developed for the evaluation of the new methodologies.

  9. ANNUAL RADIOACTIVE WASTE TANK INSPECTION PROGRAM 2010

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    West, B.; Waltz, R.

    Aqueous radioactive wastes from Savannah River Site (SRS) separations and vitrification processes are contained in large underground carbon steel tanks. Inspections made during 2010 to evaluate these vessels and other waste handling facilities along with evaluations based on data from previous inspections are the subject of this report. The 2010 inspection program revealed that the structural integrity and waste confinement capability of the Savannah River Site waste tanks were maintained. All inspections scheduled per SRR-LWE-2009-00138, HLW Tank Farm Inspection Plan for 2010, were completed. Ultrasonic measurements (UT) performed in 2010 met the requirements of C-ESG-00006, In-Service Inspection Program for Highmore » Level Waste Tanks, Rev. 3, and WSRC-TR-2002-00061, Rev.6. UT inspections were performed on Tanks 30, 31 and 32 and the findings are documented in SRNL-STI-2010-00533, Tank Inspection NDE Results for Fiscal Year 2010, Waste Tanks 30, 31 and 32. A total of 5824 photographs were made and 1087 visual and video inspections were performed during 2010. Ten new leaksites at Tank 5 were identified in 2010. The locations of these leaksites are documented in C-ESR-G-00003, SRS High Level Waste Tank Leaksite Information, Rev.5. Ten leaksites at Tank 5 were documented during tank wall/annulus cleaning activities. None of these new leaksites resulted in a release to the environment. The leaksites were documented during wall cleaning activities and the waste nodules associated with the leaksites were washed away. Previously documented leaksites were reactivated at Tank 12 during waste removal activities.« less

  10. 49 CFR 107.502 - General registration requirements.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... one or more tanks or cargo tanks on a motor vehicle or to a motor vehicle suspension component; (ii... MATERIALS PROGRAM PROCEDURES Registration of Cargo Tank and Cargo Tank Motor Vehicle Manufacturers... the certification of the cargo tank motor vehicle; or (iii) The installation of linings, coatings, or...

  11. Hanford immobilized low-activity tank waste performance assessment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mann, F.M.

    1998-03-26

    The Hanford Immobilized Low-Activity Tank Waste Performance Assessment examines the long-term environmental and human health effects associated with the planned disposal of the vitrified low-level fraction of waste presently contained in Hanford Site tanks. The tank waste is the by-product of separating special nuclear materials from irradiated nuclear fuels over the past 50 years. This waste has been stored in underground single and double-shell tanks. The tank waste is to be retrieved, separated into low and high-activity fractions, and then immobilized by private vendors. The US Department of Energy (DOE) will receive the vitrified waste from private vendors and plansmore » to dispose of the low-activity fraction in the Hanford Site 200 East Area. The high-level fraction will be stored at Hanford until a national repository is approved. This report provides the site-specific long-term environmental information needed by the DOE to issue a Disposal Authorization Statement that would allow the modification of the four existing concrete disposal vaults to provide better access for emplacement of the immobilized low-activity waste (ILAW) containers; filling of the modified vaults with the approximately 5,000 ILAW containers and filler material with the intent to dispose of the containers; construction of the first set of next-generation disposal facilities. The performance assessment activity will continue beyond this assessment. The activity will collect additional data on the geotechnical features of the disposal sites, the disposal facility design and construction, and the long-term performance of the waste. Better estimates of long-term performance will be produced and reviewed on a regular basis. Performance assessments supporting closure of filled facilities will be issued seeking approval of those actions necessary to conclude active disposal facility operations. This report also analyzes the long-term performance of the currently planned disposal system as a basis to set requirements on the waste form and the facility design that will protect the long-term public health and safety and protect the environment.« less

  12. 49 CFR 179.200-4 - Insulation.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ..., the tank shell and expansion dome when used must be insulated with an approved material. The entire... thermal conductance at 60 °F is not more than 0.225 Btu per hour, per square foot, per degree F...

  13. 75 FR 43970 - Agency Information Collection Activities; Submission to OMB for Review and Approval; Comment...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-27

    ....07, OMB Control Number 2060-0327 AGENCY: Environmental Protection Agency (EPA). ACTION: Notice... Anodizing Tanks (Renewal). ICR Numbers: EPA ICR Number 1611.07, OMB Control Number 2060-0327. ICR Status...

  14. 24 CFR 1710.10 - Single-family residence exemption.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... potable water supply is available year-round and that the lot is approved for the installation of a septic tank. (6) The contract of sale must require delivery within 180 days after the signing of the sales...

  15. Blunt Impact Tests of Retired Passenger Locomotive Fuel Tanks

    DOT National Transportation Integrated Search

    2017-08-01

    The Transportation Technology Center, Inc. conducted impact tests on three locomotive fuel tanks as part of the Federal Railroad Administrations locomotive fuel tank crashworthiness improvement program. Three fuel tanks, two from EMD F40PH locomot...

  16. Blunt impact tests of retired passenger locomotive fuel tanks

    DOT National Transportation Integrated Search

    2017-08-01

    The Transportation Technology Center, Inc. conducted impact tests on three locomotive fuel tanks as part of the Federal Railroad Administrations locomotive fuel tank crashworthiness improvement program. Three fuel tanks, two from EMD F40PH locomot...

  17. Analysis of tank 4 (FTF-4-15-22, 23) surface and subsurface supernatant samples in support of enrichment control, corrosion control and evaporator feed qualification programs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oji, L. N.

    This report provides the results of analyses on Savannah River Site Tank 4 surface and subsurface supernatant liquid samples in support of the Enrichment Control Program (ECP), the Corrosion Control Program (CCP) and the Evaporator Feed Qualification (EFQ) Program. The purpose of the ECP sample taken from Tank 4 in August 2015 was to determine if the supernatant liquid would be “acceptable feed” to the 2H and 3H evaporator systems.

  18. TMA Chemical Release Payloads for Stratospheric Wind Measurements Auroral E Program and Related Programs

    DTIC Science & Technology

    1982-03-15

    this work was to provide a piston tank filled with trimethyl aluminum for release as a trail in the upper atmosphere. This payload was launched from the...trail payloads. II. PAYLOAD DESCRIPTION The payload consists of a programmer section with plumbing and a piston tank section. The outer shell of the...payload is the wall of the piston tank . The liquid side of the piston tank is filled with 20 pounds of tri- methyl- aluminum (TMA). After filling the

  19. 40 CFR 282.50 - Alabama State-Administered Program.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... and Recovery Act of 1976 (RCRA), as amended, 42 U.S.C. 6991 et seq. The State's program, as... Alabama underground storage tank program concurrently with this notice and it will be effective on March... to be effective on March 25, 1997. Copies of Alabama's underground storage tank program may be...

  20. 49 CFR 238.223 - Locomotive fuel tanks.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... an industry standard providing at least an equivalent level of safety if approved by FRA under § 238..., at a minimum, be equivalent to a 5/16-inch thick steel plate with a yield strength of 25,000 pounds...

  1. Double Shell Tank AY-102 Radioactive Waste Leak Investigation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Washenfelder, Dennis J.

    2014-04-10

    PowerPoint. The objectives of this presentation are to: Describe Effort to Determine Whether Tank AY-102 Leaked; Review Probable Causes of the Tank AY-102 Leak; and, Discuss Influence of Leak on Hanford’s Double-Shell Tank Integrity Program.

  2. Compatibility Grab Sampling and Analysis Plan for FY 2000

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    SASAKI, L.M.

    1999-12-29

    This sampling and analysis plan (SAP) identifies characterization objectives pertaining to sample collection, laboratory analytical evaluation, and reporting requirements for grab samples obtained to address waste compatibility. It is written in accordance with requirements identified in Data Quality Objectives for Tank Farms Waste Compatibility Program (Mulkey et al. 1999) and Tank Farm Waste Transfer Compatibility Program (Fowler 1999). In addition to analyses to support Compatibility, the Waste Feed Delivery program has requested that tank samples obtained for Compatibility also be analyzed to confirm the high-level waste and/or low-activity waste envelope(s) for the tank waste (Baldwin 1999). The analytical requirements tomore » confirm waste envelopes are identified in Data Quality Objectives for TWRS Privatization Phase I: Confirm Tank T is an Appropriate Feed Source for Low-Activity Waste Feed Batch X (Nguyen 1999a) and Data Quality Objectives for RPP Privatization Phase I: Confirm Tank T is an Appropriate Feed Source for High-Level Waste Feed Batch X (Nguyen 1999b).« less

  3. Guidelines for development of structural integrity programs for DOE high-level waste storage tanks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bandyopadhyay, K.; Bush, S.; Kassir, M.

    Guidelines are provided for developing programs to promote the structural integrity of high-level waste storage tanks and transfer lines at the facilities of the Department of Energy. Elements of the program plan include a leak-detection system, definition of appropriate loads, collection of data for possible material and geometric changes, assessment of the tank structure, and non-destructive examination. Possible aging degradation mechanisms are explored for both steel and concrete components of the tanks, and evaluated to screen out nonsignificant aging mechanisms and to indicate methods of controlling the significant aging mechanisms. Specific guidelines for assessing structural adequacy will be provided inmore » companion documents. Site-specific structural integrity programs can be developed drawing on the relevant portions of the material in this document.« less

  4. EFFECTS OF CHEMISTRY AND OTHER VARIABLES ON CORROSION AND STRESS CORROSION CRACKING IN HANFORD DOUBLE SHELL TANKS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    BROWN MH

    2008-11-13

    Laboratory testing was performed to develop a comprehensive understanding of the corrosivity of the tank wastes stored in Double-Shell Tanks using simulants primarily from Tanks 241-AP-105, 241-SY-103 and 241-AW-105. Additional tests were conducted using simulants of the waste stored in 241-AZ-102, 241-SY-101, 241-AN-107, and 241-AY-101. This test program placed particular emphasis on defining the range of tank waste chemistries that do not induce the onset of localized forms of corrosion, particularly pitting and stress corrosion cracking. This document summarizes the key findings of the research program.

  5. Tank 241-C-112 vapor sampling and analysis tank characterization report. Revision 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huckaby, J.L.

    1995-05-31

    Tank 241-C-112 headspace gas and vapor samples were collected and analyzed to help determine the potential risks to tank farm workers due to fugitive emissions from the tank. The drivers and objectives of waste tank headspace sampling and analysis are discussed in {open_quotes}Program Plan for the Resolution of Tank Vapor Issues.{close_quotes} Tank 241-C-112 was vapor sampled in accordance with {open_quotes}Data Quality Objectives for Generic In-Tank Health and Safety Issue Resolution.{close_quotes}

  6. No Vent Tank Fill and Transfer Line Chilldown Analysis by Generalized Fluid System Simulation Program (GFSSP)

    NASA Technical Reports Server (NTRS)

    Majumdar, Alok

    2013-01-01

    The purpose of the paper is to present the analytical capability developed to model no vent chill and fill of cryogenic tank to support CPST (Cryogenic Propellant Storage and Transfer) program. Generalized Fluid System Simulation Program (GFSSP) was adapted to simulate charge-holdvent method of Tank Chilldown. GFSSP models were developed to simulate chilldown of LH2 tank in K-site Test Facility and numerical predictions were compared with test data. The report also describes the modeling technique of simulating the chilldown of a cryogenic transfer line and GFSSP models were developed to simulate the chilldown of a long transfer line and compared with test data.

  7. A summary description of the flammable gas tank safety program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, G.D.; Sherwood, D.J.

    1994-10-01

    Radioactive liquid waste may produce hydrogen as result of the interaction of gamma radiation and water. If the waste contains organic chelating agents, additional hydrogen as well as nitrous oxide and ammonia may be produced by thermal and radiolytic decomposition of these organics. Several high-level radioactive liquid waste storage tanks, located underground at the Hanford Site in Washington State, are on a Flammable Gas Watch List. Some contain waste that produces and retains gases until large quantities of gas are released rapidly to the tank vapor space. Tanks nearly-filled to capacity have relatively little vapor space; therefore if the wastemore » suddenly releases a large amount of hydrogen and nitrous oxide, a flammable gas mixture could result. The most notable example of a Hanford waste tank with a flammable gas problem is tank 241-SY-101. Upon occasion waste stored in this tank has released enough flammable gas to burn if an ignition source had been present inside of the tank. Several, other Hanford waste tanks exhibit similar behavior although to a lesser magnitude. Because this behavior was hot adequately-addressed in safety analysis reports for the Hanford Tank Farms, an unreviewed safety question was declared, and in 1990 the Flammable Gas Tank Safety Program was established to address this problem. The purposes of the program are a follows: (1) Provide safety documents to fill gaps in the safety analysis reports, and (2) Resolve the safety issue by acquiring knowledge about gas retention and release from radioactive liquid waste and developing mitigation technology. This document provides the general logic and work activities required to resolve the unreviewed safety question and the safety issue of flammable gas mixtures in radioactive liquid waste storage tanks.« less

  8. Developing NDE Techniques for Large Cryogenic Tanks

    NASA Technical Reports Server (NTRS)

    Parker, Don; Starr, Stan

    2009-01-01

    The Shuttle and Constellation Programs require very large cryogenic ground storage tanks in which to store liquid oxygen and hydrogen. The existing LC-39 pad tanks, which will be passed onto Constellation, are 40 years old and have received minimal refurbishment or even inspection, because they can only be temperature cycled a few times before being overhauled (a costly operation in both time and dollars). Numerous questions exist on the performance and reliability of these old tanks which could cause a major Program schedule disruption. Consequently, with the passing of the first two tanks to Constellation to occur this year, there is growing awareness that NDE is needed to detect problems early in these tanks so that corrective actions can be scheduled when least disruptive. Time series thermal images of two sides of the Pad B LH2 tank have been taken over multiple days to demonstrate the effects of environmental conditions to the solar heating of the tank and therefore the effectiveness of thermal imaging.

  9. Space Shuttle External Tank Project status

    NASA Technical Reports Server (NTRS)

    Davis, R. M.

    1980-01-01

    The External Tank Project is reviewed with emphasis on the DDT&E and production phases and the lightweight tank development. It is noted that the DDT&E phase is progressing well with the structural and ground vibration test article programs complete, the propulsion test article program progressing well, and the component qualification and verification testing 92% complete. New tools and facilities are being brought on line to support the increased build rate for the production phase. The lightweight tank, which will provide additional payload in orbit, is progressing to schedule with first delivery in early 1982.

  10. KSC-2012-3055

    NASA Image and Video Library

    2012-05-23

    CAPE CANAVERAL, Fla. – A NASA Railroad train crosses the railroad’s Jay Jay Railroad Bridge north of Launch Complex 39 at NASA’s Kennedy Space Center in Florida. The train is on its way to the Florida East Coast Railway interchange in Titusville, Fla., where the train’s helium tank cars, a liquid oxygen tank car, and a liquid hydrogen dewar or tank car will be transferred for delivery to the SpaceX engine test complex outside McGregor, Texas. The helium tank cars are positioned in the front and rear of the train. The long, thin tank car in the middle was used for liquid hydrogen, followed by a much larger tank car used for liquid oxygen. The railroad cars were needed in support of the Space Shuttle Program but currently are not in use by NASA following the completion of the program in 2011. Originally, the tankers belonged to the U.S. Bureau of Mines. At the peak of the shuttle program, there were approximately 30 cars in the fleet. About half the cars were returned to the bureau as launch activity diminished. Five tank cars are being loaned to SpaceX and repurposed to support their engine tests in Texas. Eight cars previously were shipped to California on loan to support the SpaceX Falcon 9 rocket launches from Space Launch Complex-4 on Vandenberg Air Force Base. SpaceX already has three helium tank cars previously used for the shuttle program at Space Launch Complex-40 on Cape Canaveral Air Force Station in Florida. For more information, visit http://www.nasa.gov/spacex. Photo credit: NASA/Jim Grossmann

  11. KSC-2012-3054

    NASA Image and Video Library

    2012-05-23

    CAPE CANAVERAL, Fla. – A NASA Railroad train crosses the railroad’s Jay Jay Railroad Bridge north of Launch Complex 39 at NASA’s Kennedy Space Center in Florida. The train is on its way to the Florida East Coast Railway interchange in Titusville, Fla., where the train’s helium tank cars, a liquid oxygen tank car, and a liquid hydrogen dewar or tank car will be transferred for delivery to the SpaceX engine test complex outside McGregor, Texas. The helium tank cars are positioned in the front and rear of the train. The long, thin tank car in the middle was used for liquid hydrogen, followed by a much larger tank car used for liquid oxygen. The railroad cars were needed in support of the Space Shuttle Program but currently are not in use by NASA following the completion of the program in 2011. Originally, the tankers belonged to the U.S. Bureau of Mines. At the peak of the shuttle program, there were approximately 30 cars in the fleet. About half the cars were returned to the bureau as launch activity diminished. Five tank cars are being loaned to SpaceX and repurposed to support their engine tests in Texas. Eight cars previously were shipped to California on loan to support the SpaceX Falcon 9 rocket launches from Space Launch Complex-4 on Vandenberg Air Force Base. SpaceX already has three helium tank cars previously used for the shuttle program at Space Launch Complex-40 on Cape Canaveral Air Force Station in Florida. For more information, visit http://www.nasa.gov/spacex. Photo credit: NASA/Jim Grossmann

  12. Design review report for the SY-101 RAPID mitigation system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    SCHLOSSER, R.L.

    1999-05-24

    This report documents design reviews conducted of the SY-101 Respond And Pump In Days (RAPID) Mitigation System. As part of the SY-101 Surface-Level-Rise Remediation Project, the SY-101 WID Mitigation System will reduce the potential unacceptable consequences of crust growth in Tank 241-SY-101 (SY-101). Projections of the crust growth rate indicate that the waste level in the tank may reach the juncture of the primary and secondary confinement structures of the tank late in 1999. Because of this time constraint, many design activities are being conducted in parallel and design reviews were conducted for system adequacy as well as design implementationmore » throughout the process. Design implementation, as used in this design review report, is the final component selection (e.g., which circuit breaker, valve, or thermocouple) that meets the approved design requirements, system design, and design and procurement specifications. Design implementation includes the necessary analysis, testing, verification, and qualification to demonstrate compliance with the system design and design requirements. Design implementation is outside the scope of this design review. The design activities performed prior to detailed design implementation (i.e., system mission requirements, functional design requirements, technical criteria, system conceptual design, and where design and build contracts were placed, the procurement specification) have been reviewed and are within the scope of this design review report. Detailed design implementation will be controlled, reviewed, and where appropriate, approved in accordance with Tank Waste Remediation System (TWRS) engineering procedures. Review of detailed design implementation will continue until all components necessary to perform the transfer function are installed and tested.« less

  13. Developments in the safe design of LNG tanks

    NASA Astrophysics Data System (ADS)

    Fulford, N. J.; Slatter, M. D.

    The objective of this paper is to discuss how the gradual development of design concepts for liquefied natural gas (LNG) storage systems has helped to enhance storage safety and economy. The experience in the UK is compared with practice in other countries with similar LNG storage requirements. Emphasis is placed on the excellent record of safety and reliability exhibited by tanks with a primary metal container designed and constructed to approved standards. The work carried out to promote the development of new materials, fire protection, and monitoring systems for use in LNG storage is also summarized, and specific examples described from British Gas experience. Finally, the trends in storage tank design world-wide and options for future design concepts are discussed, bearing in mind planned legislation and design codes governing hazardous installations.

  14. Locomotive fuel tank structural safety testing program : passenger locomotive fuel tank jackknife derailment load test.

    DOT National Transportation Integrated Search

    2010-08-01

    This report presents the results of a passenger locomotive fuel tank load test simulating jackknife derailment (JD) load. The test is based on FRA requirements for locomotive fuel tanks in the Title 49, Code of Federal Regulations (CFR), Part 238, Ap...

  15. Thermographic Methods of Detecting Insulation Voids in Large Cryogenic Tanks

    NASA Technical Reports Server (NTRS)

    Arens, Ellen; Nurge, Mark; Youngquist, Robert; Starr, Stanley

    2010-01-01

    Four very large (900Kgal) cryogenic liquid hydrogen and oxygen storage tanks at Kennedy Space Center's LC-39 launch pads were constructed in 1965 to support the Apollo/Saturn V Program and continue to support the Space Shuttle Program. These double-walled spherical tanks with powdered insulation in the annular region, have received minimal refurbishment or even inspection over the years. Intrusively inspecting these tanks would mean a significant down time to the program as the cryogenic liquid and the perlite insulation would have to be removed which would be a significant task and long-term schedule disruption. A study of the tanks was performed to determine the extent to which performance and structural information could be revealed without intrusive inspection. Thermal images of the tanks were taken over a variety of environmental conditions to determine the best conditions under which to compare and use thermography as a health monitoring technique as the tanks continue to age. The settling and subsequent compaction of insulation is a serious concern for cryogenic tanks. Comparison of images from the tanks reveals significant variations in the insulation in the annual regions and point to the use of thermography as a way to monitor for insulation migration and possible compaction. These measurements, when combined with mathematical models of historical boil-off data provide key insight to the condition of the vessels. Acceptance testing methods for new tanks, before they are filled with cryogenic commodity (and thereby thermally cycled), are needed and we explore how thermography can be used to accomplish this.

  16. Developing NDE Techniques for Large Cryogenic Tanks - Year 2 Report

    NASA Technical Reports Server (NTRS)

    Arens, Ellen; youngquist, Robert; McFall, Judith; Simmons, Stephen

    2010-01-01

    The Shuttle Program requires very large cryogenic ground storage tanks in which to store liquid oxygen and hydrogen. The existing Launch Complex-39 Pad tanks, which will be passed onto future launch programs, are over 40 years old and have received minimal refurbishment and only external inspections over the years. The majority of the structure is inaccessible without a full system drain of cryogenic liquid and insulation in the annular region. It was previously thought that there was a limit to the number of temperature cycles that the tanks could handle due to possible insulation compaction before undergoing a costly and time consuming complete overhaul; therefore the tanks were not drained and performance issues with these tanks, specifically the Pad B LH2 tank, were accepted. There is a need and an opportunity, as the Shuttle program ends and work to upgrade the launch pad progresses, to develop innovative non-destructive evaluation (NDE) techniques to analyze the current tanks. Techniques are desired that can aid in determining the extent of refurbishment required to keep the tanks in service for another 20+ years. A non-destructive technique would also be a significant aid in acceptance testing of new and refurbished tanks, saving significant time and money, if corrective actions can be taken before cryogen is introduced to the systems. Year one of this project concentrated on analysis of the current tanks located at LC-39 while cryogen was present. Year two of this project concentrated on analysis of detectable thermal variations on the outer surface of the tanks as the cryogen was drained and the inner vessel warmed to ambient conditions. Two techniques have been deployed in the field to monitor the tank. The first consisted of a displacement sensor to monitor for any expansions at the base of the tank during warm-up that could indicate a compaction issue with the insulation. The second technique was continued thermal monitoring of the tank through and after warm up. The indications noted in the thermal images were compared to bore-scope images of the annular region taken once the tank was inert and warmed to ambient conditions. Similar thermal imaging was performed on a smaller tank where an insulation void was induced to compare the effectiveness of thermal imagining on a different tank geometry.

  17. --No Title--

    Science.gov Websites

    -- OAS Intranet -- Sunday 27 May 2018 Approved Program-Budget 2018 Proposed Program-Budget 2018 Approved Program-Budget 2017 Proposed Program-Budget 2017 Approved Program-Budget 2016 Proposed Program -Budget 2016 Approved Program-Budget 2015 Proposed Program-Budget 2015 Approved Program-Budget 2014

  18. 40 CFR 270.305 - What tank information must I keep at my facility?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... (CONTINUED) SOLID WASTES (CONTINUED) EPA ADMINISTERED PERMIT PROGRAMS: THE HAZARDOUS WASTE PERMIT PROGRAM... 267.198. (j) For tank systems in which ignitable, reactive, or incompatible wastes are to be stored or...

  19. TankSIM: A Cryogenic Tank Performance Prediction Program

    NASA Technical Reports Server (NTRS)

    Bolshinskiy, L. G.; Hedayat, A.; Hastings, L. J.; Moder, J. P.; Schnell, A. R.; Sutherlin, S. G.

    2015-01-01

    Accurate prediction of the thermodynamic state of the cryogenic propellants in launch vehicle tanks is necessary for mission planning and successful execution. Cryogenic propellant storage and transfer in space environments requires that tank pressure be controlled. The pressure rise rate is determined by the complex interaction of external heat leak, fluid temperature stratification, and interfacial heat and mass transfer. If the required storage duration of a space mission is longer than the period in which the tank pressure reaches its allowable maximum, an appropriate pressure control method must be applied. Therefore, predictions of the pressurization rate and performance of pressure control techniques in cryogenic tanks are required for development of cryogenic fluid long-duration storage technology and planning of future space exploration missions. This paper describes an analytical tool, Tank System Integrated Model (TankSIM), which can be used for modeling pressure control and predicting the behavior of cryogenic propellant for long-term storage for future space missions. It is written in the FORTRAN 90 language and can be compiled with any Visual FORTRAN compiler. A thermodynamic vent system (TVS) is used to achieve tank pressure control. Utilizing TankSIM, the following processes can be modeled: tank self-pressurization, boiloff, ullage venting, and mixing. Details of the TankSIM program and comparisons of its predictions with test data for liquid hydrogen and liquid methane will be presented in the final paper.

  20. Results from the interim salt disposition program macrobatch 10 tank 21H qualification samples

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peters, T. B.; Bannochie, C. J.

    2017-02-23

    Savannah River National Laboratory (SRNL) analyzed samples from Tank 21H in support of qualification of Macrobatch (Salt Batch) 10 for the Interim Salt Disposition Program (ISDP). This document reports characterization data on the samples of Tank 21H and fulfills the requirements of Deliverable 3 of the Technical Task Request (TTR). Further work will report the results of the Extraction-Scrub-Strip (ESS) testing (Task 5 of the TTR) using the Tank 21H material. Task 4 of the TTR (MST Strike) will not be completed for Salt Batch 10.

  1. Analysis of tank 7 surface supernatant sample (FTF-7-15-26) in support of corrosion control program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oji, L. N

    2015-10-01

    This report provides the results of analyses on Savannah River Site Tank 7 surface supernatant liquid sample in support of the Corrosion Control Program (CCP). The measured nitrate, nitrite and free-hydroxide concentrations for the Tank 7 surface sample averaged, 3.74E-01 ± 1.88E-03, 4.17E-01 ± 9.01E-03 and 0.602 ± 0.005 M, respectively. The Tank 7 surface cesium-137, sodium and silicon concentrations were, respectively, 3.99E+08, ± 3.25E+06 dpm/mL, 2.78 M and <3.10 mg/L. The measured aluminum concentration in the Tank 7 surface sample averaged 0.11 M.

  2. 7 CFR 58.422 - Brine tank.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... AGRICULTURAL MARKETING ACT OF 1946 AND THE EGG PRODUCTS INSPECTION ACT (CONTINUED) GRADING AND INSPECTION, GENERAL SPECIFICATIONS FOR APPROVED PLANTS AND STANDARDS FOR GRADES OF DAIRY PRODUCTS 1 General... clean, well circulated, and of the proper strength and temperature for the variety of cheese being made. ...

  3. 46 CFR 296.20 - Tank vessels.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 8 2011-10-01 2011-10-01 false Tank vessels. 296.20 Section 296.20 Shipping MARITIME... SECURITY PROGRAM (MSP) Priority for Granting Applications § 296.20 Tank vessels. (a) First priority for the award of MSP Operating Agreements under MSA 2003 shall be granted to a tank vessel that is constructed...

  4. 46 CFR 296.20 - Tank vessels.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 8 2013-10-01 2013-10-01 false Tank vessels. 296.20 Section 296.20 Shipping MARITIME... SECURITY PROGRAM (MSP) Priority for Granting Applications § 296.20 Tank vessels. (a) First priority for the award of MSP Operating Agreements under MSA 2003 shall be granted to a tank vessel that is constructed...

  5. 46 CFR 296.20 - Tank vessels.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 8 2014-10-01 2014-10-01 false Tank vessels. 296.20 Section 296.20 Shipping MARITIME... SECURITY PROGRAM (MSP) Priority for Granting Applications § 296.20 Tank vessels. (a) First priority for the award of MSP Operating Agreements under MSA 2003 shall be granted to a tank vessel that is constructed...

  6. 46 CFR 296.20 - Tank vessels.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 8 2010-10-01 2010-10-01 false Tank vessels. 296.20 Section 296.20 Shipping MARITIME... SECURITY PROGRAM (MSP) Priority for Granting Applications § 296.20 Tank vessels. (a) First priority for the award of MSP Operating Agreements under MSA 2003 shall be granted to a tank vessel that is constructed...

  7. 46 CFR 296.20 - Tank vessels.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 8 2012-10-01 2012-10-01 false Tank vessels. 296.20 Section 296.20 Shipping MARITIME... SECURITY PROGRAM (MSP) Priority for Granting Applications § 296.20 Tank vessels. (a) First priority for the award of MSP Operating Agreements under MSA 2003 shall be granted to a tank vessel that is constructed...

  8. Analysis of the Education Program Approval Process: A Program Evaluation.

    ERIC Educational Resources Information Center

    Fountaine, Charles A.; And Others

    A study of the education program approval process involving the Veterans Administration (VA) and the State Approving Agencies (SAAs) had the following objectives: to describe the present education program approval process; to determine time and costs associated with the education program approval process; to describe the approval process at…

  9. Investigation of lightweight designs and materials for LO2 and LH2 propellant tanks for space vehicles, phase 2 and phase 3

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Full size Tug LO2 and LH2 tank configurations were defined, based on selected tank geometries. These configurations were then locally modeled for computer stress analysis. A large subscale test tank, representing the selected Tug LO2 tank, was designed and analyzed. This tank was fabricated using procedures which represented production operations. An evaluation test program was outlined and a test procedure defined. The necessary test hardware was also fabricated.

  10. Numerical Modeling of Propellant Boil-Off in a Cryogenic Storage Tank

    NASA Technical Reports Server (NTRS)

    Majumdar, A. K.; Steadman, T. E.; Maroney, J. L.; Sass, J. P.; Fesmire, J. E.

    2007-01-01

    A numerical model to predict boil-off of stored propellant in large spherical cryogenic tanks has been developed. Accurate prediction of tank boil-off rates for different thermal insulation systems was the goal of this collaboration effort. The Generalized Fluid System Simulation Program, integrating flow analysis and conjugate heat transfer for solving complex fluid system problems, was used to create the model. Calculation of tank boil-off rate requires simultaneous simulation of heat transfer processes among liquid propellant, vapor ullage space, and tank structure. The reference tank for the boil-off model was the 850,000 gallon liquid hydrogen tank at Launch Complex 39B (LC- 39B) at Kennedy Space Center, which is under study for future infrastructure improvements to support the Constellation program. The methodology employed in the numerical model was validated using a sub-scale model and tank. Experimental test data from a 1/15th scale version of the LC-39B tank using both liquid hydrogen and liquid nitrogen were used to anchor the analytical predictions of the sub-scale model. Favorable correlations between sub-scale model and experimental test data have provided confidence in full-scale tank boil-off predictions. These methods are now being used in the preliminary design for other cases including future launch vehicles

  11. Vapor Corrosion Response of Low Carbon Steel Exposed to Simulated High Level Radioactive Waste

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wiersma, B

    2006-01-26

    A program to resolve the issues associated with potential vapor space corrosion and liquid/air interface corrosion in the Type III high level waste tanks is in place. The objective of the program is to develop understanding of vapor space (VSC) and liquid/air interface (LAIC) corrosion to ensure a defensible technical basis to provide accurate corrosion evaluations with regard to vapor space and liquid/air interface corrosion. The results of the FY05 experiments are presented here. The experiments are an extension of the previous research on the corrosion of tank steel exposed to simple solutions to corrosion of the steel when exposedmore » to complex high level waste simulants. The testing suggested that decanting and the consequent residual species on the tank wall is the predominant source of surface chemistry on the tank wall. The laboratory testing has shown that at the boundary conditions of the chemistry control program for solutions greater than 1M NaNO{sub 3}{sup -}. Minor and isolated pitting is possible within crevices in the vapor space of the tanks that contain stagnant dilute solution for an extended period of time, specifically when residues are left on the tank wall during decanting. Liquid/air interfacial corrosion is possible in dilute stagnant solutions, particularly with high concentrations of chloride. The experimental results indicate that Tank 50 would be most susceptible to the potential for liquid/air interfacial corrosion or vapor space corrosion, with Tank 49 and 41 following, since these tanks are nearest to the chemistry control boundary conditions. The testing continues to show that the combination of well-inhibited solutions and mill-scale sufficiently protect against pitting in the Type III tanks.« less

  12. Chemical composition of Hanford Tank SY-102

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Birnbaum, E.; Agnew, S.; Jarvinen, G.

    1993-12-01

    The US Department of Energy established the Tank Waste Remediation System (TWRS) to safely manage and dispose of the radioactive waste, both current and future, stored in double-shell and single-shell tanks at the Hanford sites. One major program element in TWRS is pretreatment which was established to process the waste prior to disposal using the Hanford Waste Vitrification Plant. In support of this program, Los Alamos National Laboratory has developed a conceptual process flow sheet which will remediate the entire contents of a selected double-shelled underground waste tank, including supernatant and sludge, into forms that allow storage and final disposalmore » in a safe, cost-effective and environmentally sound manner. The specific tank selected for remediation is 241-SY-102 located in the 200 West Area. As part of the flow sheet development effort, the composition of the tank was defined and documented. This database was built by examining the history of liquid waste transfers to the tank and by performing careful analysis of all of the analytical data that have been gathered during the tank`s lifetime. In order to more completely understand the variances in analytical results, material and charge balances were done to help define the chemistry of the various components in the tank. This methodology of defining the tank composition and the final results are documented in this report.« less

  13. 46 CFR 34.17-10 - Controls-T/ALL.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS FIREFIGHTING EQUIPMENT Fixed Foam Extinguishing Systems, Details § 34.17-10 Controls—T/ALL. (a) The foam agent, its container, measuring devices, and other items peculiar to the system shall be of an approved type. (b) The foam-producing material...

  14. 46 CFR 34.17-10 - Controls-T/ALL.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS FIREFIGHTING EQUIPMENT Fixed Foam Extinguishing Systems, Details § 34.17-10 Controls—T/ALL. (a) The foam agent, its container, measuring devices, and other items peculiar to the system shall be of an approved type. (b) The foam-producing material...

  15. 46 CFR 153.557 - Special requirements for hydrochloric acid.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... CARGOES SHIPS CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Design and... system that carries hydrochloric acid must be lined with: (1) Natural rubber; (2) Neoprene; or (3) A material approved for hydrochloric acid tanks by the Commandant (CG-522). (b) Containment systems for...

  16. 9 CFR 590.538 - Defrosting facilities.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 9 Animals and Animal Products 2 2010-01-01 2010-01-01 false Defrosting facilities. 590.538 Section 590.538 Animals and Animal Products FOOD SAFETY AND INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE EGG..., and Facility Requirements § 590.538 Defrosting facilities. (a) Approved metal defrosting tanks or vats...

  17. 46 CFR 38.15-15 - Electrical installations-TB/ALL.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... this chapter for tank vessels, except as otherwise specified in this part. (b) Spaces containing cargo... devices, except Coast Guard approved intrinsically safe devices, shall be installed in these spaces. Electric motors shall be segregated from these spaces by a gastight bulkhead. Electric lighting of the...

  18. 46 CFR 38.15-15 - Electrical installations-TB/ALL.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... this chapter for tank vessels, except as otherwise specified in this part. (b) Spaces containing cargo... devices, except Coast Guard approved intrinsically safe devices, shall be installed in these spaces. Electric motors shall be segregated from these spaces by a gastight bulkhead. Electric lighting of the...

  19. 46 CFR 38.15-15 - Electrical installations-TB/ALL.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... this chapter for tank vessels, except as otherwise specified in this part. (b) Spaces containing cargo... devices, except Coast Guard approved intrinsically safe devices, shall be installed in these spaces. Electric motors shall be segregated from these spaces by a gastight bulkhead. Electric lighting of the...

  20. 46 CFR 38.15-15 - Electrical installations-TB/ALL.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... this chapter for tank vessels, except as otherwise specified in this part. (b) Spaces containing cargo... devices, except Coast Guard approved intrinsically safe devices, shall be installed in these spaces. Electric motors shall be segregated from these spaces by a gastight bulkhead. Electric lighting of the...

  1. 46 CFR 38.15-15 - Electrical installations-TB/ALL.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... this chapter for tank vessels, except as otherwise specified in this part. (b) Spaces containing cargo... devices, except Coast Guard approved intrinsically safe devices, shall be installed in these spaces. Electric motors shall be segregated from these spaces by a gastight bulkhead. Electric lighting of the...

  2. 46 CFR 36.01-5 - Certificate of inspection-TB/ALL.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ...-5 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS ELEVATED TEMPERATURE CARGOES... for the carriage of elevated temperature cargoes as follows: “Inspected and approved for the carriage of Grade E combustible liquids when transported in molten form at elevated temperatures.” (b...

  3. 46 CFR 36.01-5 - Certificate of inspection-TB/ALL.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ...-5 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS ELEVATED TEMPERATURE CARGOES... for the carriage of elevated temperature cargoes as follows: “Inspected and approved for the carriage of Grade E combustible liquids when transported in molten form at elevated temperatures.” (b...

  4. 46 CFR 36.01-5 - Certificate of inspection-TB/ALL.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ...-5 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS ELEVATED TEMPERATURE CARGOES... for the carriage of elevated temperature cargoes as follows: “Inspected and approved for the carriage of Grade E combustible liquids when transported in molten form at elevated temperatures.” (b...

  5. 46 CFR 36.01-5 - Certificate of inspection-TB/ALL.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ...-5 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS ELEVATED TEMPERATURE CARGOES... for the carriage of elevated temperature cargoes as follows: “Inspected and approved for the carriage of Grade E combustible liquids when transported in molten form at elevated temperatures.” (b...

  6. --No Title--

    Science.gov Websites

    and Cuttings Repository Oil & Gas Oil & Gas (Map-Based) Spills (Environmental Events) Tanks Exploration Notice of Intent Uranium Exploration Permit Oil & Gas Approved Oil & Gas Permits Oil and Gas Maps Undergound Injection Control - Class II Well Production/Injection Report Oil & Gas

  7. swimming

    Science.gov Websites

    and Cuttings Repository Oil & Gas Oil & Gas (Map-Based) Spills (Environmental Events) Tanks Exploration Notice of Intent Uranium Exploration Permit Oil & Gas Approved Oil & Gas Permits Oil and Gas Maps Undergound Injection Control - Class II Well Production/Injection Report Oil & Gas

  8. UST/LUST Program Information

    EPA Pesticide Factsheets

    This asset includes an inventory of programmatic information, including policies and guidance, training course materials and Leaking Underground Storage Tanks (LUST) Trust Fund information. This documentation is used by states, territories, tribes and private parties to implement the Underground Storage Tank (UST) program. It also includes analysis of the laws and regulations that govern USTs, and policies and guidance for implementing the UST program developed by EPA in consultation with state and territorial UST programs.

  9. 77 FR 497 - Control of Emissions From New Nonroad Compression-Ignition Engines: Approval of New Scheduled...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-05

    ... replenishment of the nitrogen-containing reducing agent for selective catalytic reduction (SCR) technologies... NO X reduction requirements for their diesel engines. SCR systems use a nitrogen-containing reducing... balance between the dictates of operating nonroad equipment (which requires DEF tanks of small enough...

  10. 46 CFR 56.01-10 - Plan approval.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... ballast piping. (vii) Tank cleaning piping. (viii) Condenser circulating water piping. (ix) Vent, sound....) (xii) Cargo piping. (xiii) Hot water heating systems if the temperature is greater than 121 °C(250 °F... substantiate their compliance with the regulations of this subchapter; (3) A thermal stress analysis is not...

  11. 46 CFR 34.20-10 - Controls-T/ALL.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS FIREFIGHTING EQUIPMENT Deck Foam System, Details § 34.20-10 Controls—T/ALL. (a) The foam agent, its container, measuring devices, and other items peculiar to this system shall be of an approved type. (b) The foam agent container and the main controls...

  12. 46 CFR 34.20-10 - Controls-T/ALL.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS FIREFIGHTING EQUIPMENT Deck Foam System, Details § 34.20-10 Controls—T/ALL. (a) The foam agent, its container, measuring devices, and other items peculiar to this system shall be of an approved type. (b) The foam agent container and the main controls...

  13. 46 CFR 35.01-25 - Sacrificial anode installations-TB/ALL.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... installation of magnesium sacrificial anodes in cargo tanks utilized for the carriage of flammable or... analysis of the alloy composition shall be submitted for approval. The anode should be magnesium free and... consideration. (c) Sacrificial anodes using materials other than those having aluminum and/or magnesium in whole...

  14. 46 CFR 35.01-25 - Sacrificial anode installations-TB/ALL.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... installation of magnesium sacrificial anodes in cargo tanks utilized for the carriage of flammable or... analysis of the alloy composition shall be submitted for approval. The anode should be magnesium free and... consideration. (c) Sacrificial anodes using materials other than those having aluminum and/or magnesium in whole...

  15. 49 CFR 179.102-4 - Vinyl fluoride, stabilized.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ...) Include impact specimens of weld metal and heat affected zone prepared and tested in accordance with AAR.... (b) Insulation must be of approved material. (c) Excess flow valves must be installed under all... capacity stencil, MINIMUM OPERATING TEMPERATURE _ °F. (i) The tank car and insulation must be designed to...

  16. 14 CFR 33.71 - Lubrication system.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... bypass flow path. (6) Each strainer or filter required by this paragraph that has no bypass, except the... installed on an airplane approved for ETOPS, the oil tank must be designed to prevent a hazardous loss of.... Each oil radiator must withstand, without failure, any vibration, inertia, and oil pressure load to...

  17. 46 CFR 154.1755 - Nitrogen.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 5 2011-10-01 2011-10-01 false Nitrogen. 154.1755 Section 154.1755 Shipping COAST GUARD... Nitrogen. Except for deck tanks and their piping systems, cargo containment systems and piping systems carrying nitrogen must be specially approved by the Commandant (CG-522). [CGD 74-289, 44 FR 26009, May 3...

  18. 46 CFR 154.1755 - Nitrogen.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 5 2013-10-01 2013-10-01 false Nitrogen. 154.1755 Section 154.1755 Shipping COAST GUARD... Nitrogen. Except for deck tanks and their piping systems, cargo containment systems and piping systems carrying nitrogen must be specially approved by the Commandant (CG-OES). [CGD 74-289, 44 FR 26009, May 3...

  19. 46 CFR 154.1755 - Nitrogen.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 5 2014-10-01 2014-10-01 false Nitrogen. 154.1755 Section 154.1755 Shipping COAST GUARD... Nitrogen. Except for deck tanks and their piping systems, cargo containment systems and piping systems carrying nitrogen must be specially approved by the Commandant (CG-OES). [CGD 74-289, 44 FR 26009, May 3...

  20. 46 CFR 154.1755 - Nitrogen.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 5 2012-10-01 2012-10-01 false Nitrogen. 154.1755 Section 154.1755 Shipping COAST GUARD... Nitrogen. Except for deck tanks and their piping systems, cargo containment systems and piping systems carrying nitrogen must be specially approved by the Commandant (CG-OES). [CGD 74-289, 44 FR 26009, May 3...

  1. 49 CFR 179.12 - Interior heater systems.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Design Requirements § 179.12 Interior heater systems. (a) Interior heater systems shall be of approved design and materials. If a tank is divided into compartments, a separate system shall be provided for... 49 Transportation 2 2010-10-01 2010-10-01 false Interior heater systems. 179.12 Section 179.12...

  2. 76 FR 62424 - Collection of Information Under Review by Office of Management and Budget

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-07

    ... following collections of information: 1625-0001, Marine Casualty Information & Periodic Chemical Drug and... 46 CFR Subchapter E.; 1625-0097, Plan Approval and Records for Marine Engineering Systems--46 CFR Subchapter F; and 1625- 0101, Periodic Gauging and Engineering Analyses for Certain Tank Vessels Over 30...

  3. 75 FR 15391 - Approval and Promulgation of Air Quality Implementation Plans; Texas; Revision to Control...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-29

    ... Promulgation of Air Quality Implementation Plans; Texas; Revision to Control Volatile Organic Compound... to control volatile organic compound (VOC) emissions from storage tanks, transport vessels and marine... parties interested in commenting on this action should do so at this time. For additional information, see...

  4. Program Management for Tank Crewman Skills Training Program.

    DTIC Science & Technology

    1979-11-01

    RESEARCH PRODUCT 79-16 PROGRAM MANAGEMENT FOR TANK CREWMAN SKILLS TRAINING PROGRAM ARI Field Unit at Fort Knox, Kentucky f hadocumr-e r- has~ bean a4...40121, and monitored by Donald F . Haggard, Chief, ARI Field I - -Unit-Fort Knox. It. KEY WORDS (Continue on reverse side If necessary end identify by...TRAINING PROGRAM Richard E. O’Brien William J. Crum Human Resources Research Organization (HumRRO) Submitted by-. Donald F . Haggard, Chief ARI Field

  5. Cryogenic Tank Technology Program (CTTP)

    NASA Technical Reports Server (NTRS)

    Vaughn, T. P.

    2001-01-01

    The objectives of the Cryogenic Tank Technology Program were to: (1) determine the feasibility and cost effectiveness of near net shape hardware; (2) demonstrate near net shape processes by fabricating large scale-flight quality hardware; and (3) advance state of current weld processing technologies for aluminum lithium alloys.

  6. Analysis of Tank 38H (HTF-38-15-119, 127) Surface, Subsurface and Tank 43H (HTF-43-15-116, 117 and 118) Surface, Feed Pump Suction and Jet Suction Subsurface Supernatant Samples in Support of Enrichment, Corrosion Control and Salt Batch Planning Programs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oji, L.

    Compositional feed limits have been established to ensure that a nuclear criticality event for the 2H and 3H Evaporators is not possible. The Enrichment Control Program (ECP) requires feed sampling to determine the equivalent enriched uranium content prior to transfer of waste other than recycle transfers (requires sampling to determine the equivalent enriched uranium at two locations in Tanks 38H and 43H every 26 weeks) The Corrosion Control Program (CCP) establishes concentration and temperature limits for key constituents and periodic sampling and analysis to confirm that waste supernate is within these limits. This report provides the results of analyses onmore » Tanks 38H and 43H surface and subsurface supernatant liquid samples in support of the ECP, the CCP, and the Salt Batch 10 Planning Program.« less

  7. In-service Inspection of Radioactive Waste Tanks at the Savannah River Site – 15410

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wiersma, Bruce; Maryak, Matthew; Baxter, Lindsay

    2015-01-12

    Liquid radioactive wastes from the Savannah River Site (SRS) separation process are stored in large underground carbon steel tanks. The high level wastes are processed in several of the tanks and then transferred by piping to other site facilities for further processing before they are stabilized in a vitrified or grout waste form. Based on waste removal and processing schedules, many of the tanks will be required to be in service for times exceeding the initial intended life. Until the waste is removed from storage, transferred, and processed, the materials and structures of the tanks must maintain a confinement functionmore » by providing a barrier to the environment and by maintaining acceptable structural stability during design basis events, which include loadings from both normal service and abnormal (e.g., earthquake) conditions. A structural integrity program is in place to maintain the structural and leak integrity functions of these waste tanks throughout their intended service life. In-service inspection (ISI) is an essential element of a comprehensive structural integrity program for the waste tanks at the Savannah River Site (SRS). The ISI program was developed to determine the degree of degradation the waste tanks have experienced due to service conditions. As a result of the inspections, an assessment can be made of the effectiveness of corrosion controls for the waste chemistry, which precludes accelerated localized and general corrosion of the waste tanks. Ultrasonic inspections (UT) are performed to detect and quantify the degree of general wall thinning, pitting and cracking as a measure of tank degradation. The results from these inspections through 2013, for the 27 Type III/IIIA tanks, indicate no reportable in-service corrosion degradation in the primary tank (i.e., general, pitting, or cracking). The average wall thickness for all tanks remains above the manufactured nominal thickness minus 0.25 millimeter and the largest pit identified is approximately 1.70 millimeter deep (i.e., less than 10% through-wall). Improvements to the inspection program were recently instituted to provide additional confidence in the degradation rates. Thickness measurements from a single vertical strip along the accessible height of the primary tank have been used as a baseline to compare historical measurements. Changes in wall thickness and pit depths along this vertical strip are utilized to estimate the rate of corrosion degradation. An independent review of the ISI program methodology, results, and path forward was held in August 2009. The review recommended statistical sampling of the tanks to improve the confidence of the single strip inspection program. The statistical sampling plan required that SRS increase the amount of area scanned per tank. Therefore, in addition to the baseline vertical strip that is obtained for historical comparisons, four additional randomly selected vertical strips are inspected. To date, a total of 104 independent vertical strips along the height of the primary tank have been completed. A statistical analysis of the data indicates that at this coverage level there is a 99.5% confidence level that one of the worst 5% of all the vertical strips was inspected. That is, there is a relatively high likelihood that the SRS inspection program has covered one of the most corroded areas of any of the Type III/IIIA waste tanks. These data further support the conclusion that there are no significant indications of wall thinning or pitting. Random sampling will continue to increase the confidence that one of the worst 5% has been inspected. In order to obtain the additional vertical strips, and minimize budget and schedule impacts, data collection speed for the UT system was optimized. Prior to 2009, the system collected data at a rate of 32 square centimeters per minute. The scan rate was increased to 129 - 160 square centimeters per minute by increasing the scanner step and pixel sizes in the data acquisition set-up. Laboratory testing was utilized to optimize the scan index/pixel size such that the requirements for wall thinning and pit detection were still maintained. SRS continues to evaluate improvements to ultrasonic equipment.« less

  8. Performance Assessment Program for the Savannah River Site Liquid Waste Facilities - 13610

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rosenberger, Kent H.

    2013-07-01

    The Liquid Waste facilities at the U.S. Department of Energy's (DOE) Savannah River Site (SRS) are operated by Liquid Waste Operations contractor Savannah River Remediation LLC (SRR). A separate Performance Assessment (PA) is prepared to support disposal operations at the Saltstone Disposal Facility and closure evaluations for the two liquid waste tank farm facilities at SRS, F-Tank Farm and H-Tank Farm. A PA provides the technical basis and results to be used in subsequent documents to demonstrate compliance with the pertinent requirements identified in operations and closure regulatory guidance. The Saltstone Disposal Facility is subject to a State of Southmore » Carolina industrial solid waste landfill permit and the tank farms are subject to a state industrial waste water permit. The three Liquid Waste facilities are also subject to a Federal Facility Agreement approved by the State, DOE and the Environmental Protection Agency (EPA). Due to the regulatory structure, a PA is a key technical document reviewed by the DOE, the State of South Carolina and the EPA. As the waste material disposed of in the Saltstone Disposal Facility and the residual material in the closed tank farms is also subject to reclassification prior to closure via a waste determination pursuant to Section 3116 of the Ronald W. Reagan National Defense Authorization Act of Fiscal Year 2005, the U.S. Nuclear Regulatory Commission (NRC) is also a reviewing agency for the PAs. Pursuant to the Act, the NRC also has a continuing role to monitor disposal actions to assess compliance with stated performance objectives. The Liquid Waste PA program at SRS represents a continual process over the life of the disposal and closure operations. When the need for a PA or PA revision is identified, the first step is to develop a conceptual model to best represent the facility conditions. The conceptual model will include physical dimensions of the closed system, both the engineered and natural system, and modeling input parameters associated with the modeled features, both initial values (at the time of facility closure) and degradation rates/values. During the development of the PA, evaluations are conducted to reflect not only the results associated with the best available information at the time but also to evaluate potential uncertainties and sensitivities associated with the modeled system. While the PA will reflect the modeled system results from the best available information, it will also identify areas for future work to reduce overall PA uncertainties moving forward. DOE requires a PA Maintenance Program such that work continues to reduce model uncertainties, thus bolstering confidence in PA results that support regulatory decisions. This maintenance work may include new Research and Development activities or modeling as informed by previous PA results and other new information that becomes available. As new information becomes available, it is evaluated against previous PAs and appropriate actions are taken to ensure continued confidence in the regulatory decisions. Therefore, the PA program is a continual process that is not just the development of a PA but seeks to incorporate new information to reduce overall model uncertainty and provide continuing confidence in regulatory decisions. (author)« less

  9. 9 CFR 314.1 - Disposition of condemned products at official establishments having tanking facilities; sealing...

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 9 Animals and Animal Products 2 2010-01-01 2010-01-01 false Disposition of condemned products at official establishments having tanking facilities; sealing of tanks. 314.1 Section 314.1 Animals and Animal... § 314.3 before leaving such establishment. (b) The seals of tanks shall be broken only by a Program...

  10. 9 CFR 314.1 - Disposition of condemned products at official establishments having tanking facilities; sealing...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 9 Animals and Animal Products 2 2011-01-01 2011-01-01 false Disposition of condemned products at official establishments having tanking facilities; sealing of tanks. 314.1 Section 314.1 Animals and Animal... § 314.3 before leaving such establishment. (b) The seals of tanks shall be broken only by a Program...

  11. Reusable LH2 tank technology demonstration through ground test

    NASA Technical Reports Server (NTRS)

    Bianca, C.; Greenberg, H. S.; Johnson, S. E.

    1995-01-01

    The paper presents the project plan to demonstrate, by March 1997, the reusability of an integrated composite LH2 tank structure, cryogenic insulation, and thermal protection system (TPS). The plan includes establishment of design requirements and a comprehensive trade study to select the most suitable Reusable Hydrogen Composite Tank system (RHCTS) within the most suitable of 4 candidate structural configurations. The 4 vehicles are winged body with the capability to deliver 25,000 lbs of payload to a circular 220 nm, 51.6 degree inclined orbit (also 40,000 lbs to a 28.5 inclined 150 nm orbit). A prototype design of the selected RHCTS is established to identify the construction, fabrication, and stress simulation and test requirements necessary in an 8 foot diameter tank structure/insulation/TPS test article. A comprehensive development test program supports the 8 foot test article development and involves the composite tank itself, cryogenic insulation, and integrated tank/insulation/TPS designs. The 8 foot diameter tank will contain the integrated cryogenic insulation and TPS designs resulting from this development and that of the concurrent lightweight durable TPS program. Tank ground testing will include 330 cycles of LH2 filling, pressurization, body loading, depressurization, draining, and entry heating.

  12. Improved Design Process Part of the Ship Producibility Program of the National Shipbuilding Research Program

    DTIC Science & Technology

    1977-04-01

    Exh and Escape Fresh Water Feed Treatment Cargo Oil Tank Cleaning Diesel Generator Piping Piping Material Schedule List of Motors and... tank length frame and stiffener spacing, etc. One yard buys only mill edge plates, and one yard buys only cold flange quality plates. 2-13 C. POST...gage boards, all interconnecting piping and valves, and all mounted on a common foundation, or a pump room assembled on a tank top unit. Use of packages

  13. Notification: Evaluation of EPA Efforts to Protect Tribal Communities From Risks Related to Underground Storage Tanks

    EPA Pesticide Factsheets

    Project #OPE-FY16-0013, March 8, 2016. The EPA OIG plans to begin preliminary research on the EPA’s work related to Underground Storage Tank and Leaking Underground Storage Tank programs in Indian country.

  14. Nondestructive examination of the Tropical Rainfall Measuring Mission (TRMM) reaction control subsystem (RCS) propellant tanks

    NASA Technical Reports Server (NTRS)

    Free, James M.

    1993-01-01

    This paper assesses the feasibility of using eddy current nondestructive examination to determine flaw sizes in completely assembled hydrazine propellant tanks. The study was performed by the NASA Goddard Space Flight Center for the Tropical Rainfall Measuring Mission (TRMM) project to help determine whether existing propellant tanks could meet the fracture analysis requirements of the current pressure vessel specification, MIL-STD-1522A and, therefore be used on the TRMM spacecraft. After evaluating several nondestructive test methods, eddy current testing was selected as the most promising method for determining flaw sizes on external and internal surfaces of completely assembled tanks. Tests were conducted to confirm the detection capability of the eddy current NDE, procedures were developed to inspect two candidate tanks, and the test support equipment was designed. The non-spherical tank eddy current NDE test program was terminated when the decision was made to procure new tanks for the TRMM propulsion subsystem. The information on the development phase of this test program is presented in this paper as a reference for future investigation on the subject.

  15. KSC-08pd0033

    NASA Image and Video Library

    2008-01-11

    KENNEDY SPACE CENTER, FLA. -- On Launch Pad 39A, Lockheed Martin engineer Ray Clark splices wires between space shuttle Atlantis' external tank and the engine cutoff, or ECO, sensor system. The replacement feed-through connector in the ECO sensor system will be installed later. Some of the tank's ECO sensors gave failed readings during propellant tanking for Atlantis' STS-122 mission launch attempts on Dec. 6 and Dec. 9. Results of a tanking test on Dec. 18 pointed to an open circuit in the feed-through connector wiring, which is located at the base of the tank. The feed-through connector passes the wires from the inside of the tank to the outside. The pins in the replacement connector have been precisely soldered to create a connection that allows sensors inside the tank to send signals to the computers onboard Atlantis. No problems with the ECO sensors themselves have been found. NASA's Space Shuttle Program has proposed a target launch date of Feb. 7 for the STS-122 mission. That proposed launch date remains under evaluation pending coordination with all partners in the International Space Station Program. Photo credit: NASA/George Shelton

  16. KSC-08pd0035

    NASA Image and Video Library

    2008-01-11

    KENNEDY SPACE CENTER, FLA. -- On Launch Pad 39A, Lockheed Martin engineer Ray Clark splices wires between space shuttle Atlantis' external tank and the engine cutoff, or ECO, sensor system. The replacement feed-through connector in the ECO sensor system will be installed later. Some of the tank's ECO sensors gave failed readings during propellant tanking for Atlantis' STS-122 mission launch attempts on Dec. 6 and Dec. 9. Results of a tanking test on Dec. 18 pointed to an open circuit in the feed-through connector wiring, which is located at the base of the tank. The feed-through connector passes the wires from the inside of the tank to the outside. The pins in the replacement connector have been precisely soldered to create a connection that allows sensors inside the tank to send signals to the computers onboard Atlantis. No problems with the ECO sensors themselves have been found. NASA's Space Shuttle Program has proposed a target launch date of Feb. 7 for the STS-122 mission. That proposed launch date remains under evaluation pending coordination with all partners in the International Space Station Program. Photo credit: NASA/George Shelton

  17. KSC-08pd0034

    NASA Image and Video Library

    2008-01-11

    KENNEDY SPACE CENTER, FLA. -- On Launch Pad 39A, Lockheed Martin engineer Ray Clark splices wires between space shuttle Atlantis' external tank and the engine cutoff, or ECO, sensor system. The replacement feed-through connector in the ECO sensor system will be installed later. Some of the tank's ECO sensors gave failed readings during propellant tanking for Atlantis' STS-122 mission launch attempts on Dec. 6 and Dec. 9. Results of a tanking test on Dec. 18 pointed to an open circuit in the feed-through connector wiring, which is located at the base of the tank. The feed-through connector passes the wires from the inside of the tank to the outside. The pins in the replacement connector have been precisely soldered to create a connection that allows sensors inside the tank to send signals to the computers onboard Atlantis. No problems with the ECO sensors themselves have been found. NASA's Space Shuttle Program has proposed a target launch date of Feb. 7 for the STS-122 mission. That proposed launch date remains under evaluation pending coordination with all partners in the International Space Station Program. Photo credit: NASA/George Shelton

  18. Configuration management plan for waste tank farms and the 242-A evaporator of tank waste remediation system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Laney, T.

    The configuration management architecture presented in this Configuration Management Plan is based on the functional model established by DOE-STD-1073-93, ``Guide for Operational Configuration Management Program.`` The DOE Standard defines the configuration management program by the five basic program elements of ``program management,`` ``design requirements,`` ``document control,`` ``change control,`` and ``assessments,`` and the two adjunct recovery programs of ``design reconstitution,`` and ``material condition and aging management.`` The CM model of five elements and two adjunct programs strengthen the necessary technical and administrative control to establish and maintain a consistent technical relationship among the requirements, physical configuration, and documentation. Although the DOEmore » Standard was originally developed for the operational phase of nuclear facilities, this plan has the flexibility to be adapted and applied to all life-cycle phases of both nuclear and non-nuclear facilities. The configuration management criteria presented in this plan endorses the DOE Standard and has been tailored specifically to address the technical relationship of requirements, physical configuration, and documentation during the full life cycle of the Waste Tank Farms and 242-A Evaporator of Tank Waste Remediation System.« less

  19. Engineering study of 50 miscellaneous inactive underground radioactive waste tanks located at the Hanford Site, Washington

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Freeman-Pollard, J.R.

    1994-03-02

    This engineering study addresses 50 inactive underground radioactive waste tanks. The tanks were formerly used for the following functions associated with plutonium and uranium separations and waste management activities in the 200 East and 200 West Areas of the Hanford Site: settling solids prior to disposal of supernatant in cribs and a reverse well; neutralizing acidic process wastes prior to crib disposal; receipt and processing of single-shell tank (SST) waste for uranium recovery operations; catch tanks to collect water that intruded into diversion boxes and transfer pipeline encasements and any leakage that occurred during waste transfer operations; and waste handlingmore » and process experimentation. Most of these tanks have not been in use for many years. Several projects have, been planned and implemented since the 1970`s and through 1985 to remove waste and interim isolate or interim stabilize many of the tanks. Some tanks have been filled with grout within the past several years. Responsibility for final closure and/or remediation of these tanks is currently assigned to several programs including Tank Waste Remediation Systems (TWRS), Environmental Restoration and Remedial Action (ERRA), and Decommissioning and Resource Conservation and Recovery Act (RCRA) Closure (D&RCP). Some are under facility landlord responsibility for maintenance and surveillance (i.e. Plutonium Uranium Extraction [PUREX]). However, most of the tanks are not currently included in any active monitoring or surveillance program.« less

  20. Main Propulsion Test Article (MPTA)

    NASA Technical Reports Server (NTRS)

    Snoddy, Cynthia

    2010-01-01

    Scope: The Main Propulsion Test Article integrated the main propulsion subsystem with the clustered Space Shuttle Main Engines, the External Tank and associated GSE. The test program consisted of cryogenic tanking tests and short- and long duration static firings including gimbaling and throttling. The test program was conducted on the S1-C test stand (Position B-2) at the National Space Technology Laboratories (NSTL)/Stennis Space Center. 3 tanking tests and 20 hot fire tests conducted between December 21 1 1977 and December 17, 1980 Configuration: The main propulsion test article consisted of the three space shuttle main engines, flightweight external tank, flightweight aft fuselage, interface section and a boilerplate mid/fwd fuselage truss structure.

  1. Annual Radioactive Waste Tank Inspection Program 1994

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McNatt, F.G. Sr.

    1995-04-01

    Aqueous radioactive wastes from Savannah River Site (SRS) separations processes are contained in large underground carbon steel tanks. Inspections made during 1994 to evaluate these vessels and evaluations based on data accrued by inspections made since the tanks were constructed are the subject of this report.

  2. Tank waste remediation system tank waste retrieval risk management plan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Klimper, S.C.

    1997-11-07

    This Risk Management Plan defines the approach to be taken to manage programmatic risks in the TWRS Tank Waste Retrieval program. It provides specific instructions applicable to TWR, and is used to supplement the guidance given by the TWRS Risk Management procedure.

  3. Pressurant requirements for discharge of liquid methane from a 1.52-meter-(5-ft-) diameter spherical tank under both static and slosh conditions

    NASA Technical Reports Server (NTRS)

    Dewitt, R. L.; Mcintire, T. O.

    1974-01-01

    Pressurized expulsion tests were conducted to determine the effect of various physical parameters on the pressurant gas (methane, helium, hydrogen, and nitrogen) requirements during the expulsion of liquid methane from a 1.52-meter-(5-ft-) diameter spherical tank and to compare results with those predicted by an analytical program. Also studied were the effects on methane, helium, and hydrogen pressurant requirements of various slosh excitation frequencies and amplitudes, both with and without slosh suppressing baffles in the tank. The experimental results when using gaseous methane, helium, and hydrogen show that the predictions of the analytical program agreed well with the actual pressurant requirements for static tank expulsions. The analytical program could not be used for gaseous nitrogen expulsions because of the large quantities of nitrogen which can dissolve in liquid methane. Under slosh conditions, a pronounced increase in gaseous methane requirements was observed relative to results obtained for the static tank expulsions. Slight decreases in the helium and hydrogen requirements were noted under similar test conditions.

  4. Propellant Expulsion in Unmanned Spacecraft

    DTIC Science & Technology

    1966-07-01

    29 19. Experimental WAC Corporal piston tank .. ......... . 33 20. Three piston tank designs used in the Corporal program ..... 34 21...propellant. The only universal F. Filling seal at this writing is a metal bellows. Usually, piston tank assemblies are filled by a vacuum technique...externally gener- Piston tank assemblies are subjected to essentially the ated loads due to shock and vibration may be the sever- same tests as bladders. 31

  5. Axial jet mixing of ethanol in cylindrical containers during weightlessness

    NASA Technical Reports Server (NTRS)

    Aydelott, J. C.

    1979-01-01

    An experimental program was conducted to examine the liquid flow patterns that result from the axial jet mixing of ethanol in 10-centimeter-diameter cylindrical tanks in weightlessness. A convex hemispherically ended tank and two Centaur liquid-hydrogen-tank models were used for the study. Four distinct liquid flow patterns were observed to be a function of the tank geometry, the liquid-jet velocity, the volume of liquid in the tank, and the location of the tube from which the liquid jet exited.

  6. Tank 30 and 37 Supernatant Sample Cross-Check and Evaporator Feed Qualification Analysis-2012

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oji, L. N.

    2013-03-07

    This report summarizes the analytical data reported by the F/H and Savannah River National Laboratories for the 2012 cross-check analysis for high level waste supernatant liquid samples from SRS Tanks 30 and 37. The intent of this Tank 30 and 37 sample analyses was to perform cross-checks against routine F/H Laboratory analyses (corrosion and evaporator feed qualification programs) using samples collected at the same time from both tanks as well as split samples from the tanks.

  7. KSC-2012-3033a

    NASA Image and Video Library

    2012-05-23

    CAPE CANAVERAL, Fla. – At the NASA Railroad Yard at NASA’s Kennedy Space Center in Florida, preparations are under way for the departure of a train made up of tank cars. The railroad’s track runs past Kennedy’s 525-foot-tall Vehicle Assembly Building in the background. The train is headed for the Florida East Coast Railway interchange in Titusville, Fla., where the train’s helium tank cars, a liquid oxygen tank car, and a liquid hydrogen dewar or tank car will be transferred for delivery to the SpaceX engine test complex outside McGregor, Texas. The railroad cars were needed in support of the Space Shuttle Program but currently are not in use by NASA following the completion of the program in 2011. Originally, the tankers belonged to the U.S. Bureau of Mines. At the peak of the shuttle program, there were approximately 30 cars in the fleet. About half the cars were returned to the bureau as launch activity diminished. Five tank cars are being loaned to SpaceX and repurposed to support their engine tests in Texas. Eight cars previously were shipped to California on loan to support the SpaceX Falcon 9 rocket launches from Space Launch Complex-4 on Vandenberg Air Force Base. SpaceX already has three helium tank cars previously used for the shuttle program at Space Launch Complex-40 on Cape Canaveral Air Force Station in Florida. For more information, visit http://www.nasa.gov/spacex. Photo credit: NASA/Jim Grossmann

  8. KSC-2012-3032a

    NASA Image and Video Library

    2012-05-23

    CAPE CANAVERAL, Fla. – At the NASA Railroad Yard at NASA’s Kennedy Space Center in Florida, preparations are under way for the departure of a train made up of tank cars. The train will pass by Kennedy’s 525-foot-tall Vehicle Assembly Building in the background. The train is headed for the Florida East Coast Railway interchange in Titusville, Fla., where the train’s helium tank cars, a liquid oxygen tank car, and a liquid hydrogen dewar or tank car will be transferred for delivery to the SpaceX engine test complex outside McGregor, Texas. The railroad cars were needed in support of the Space Shuttle Program but currently are not in use by NASA following the completion of the program in 2011. Originally, the tankers belonged to the U.S. Bureau of Mines. At the peak of the shuttle program, there were approximately 30 cars in the fleet. About half the cars were returned to the bureau as launch activity diminished. Five tank cars are being loaned to SpaceX and repurposed to support their engine tests in Texas. Eight cars previously were shipped to California on loan to support the SpaceX Falcon 9 rocket launches from Space Launch Complex-4 on Vandenberg Air Force Base. SpaceX already has three helium tank cars previously used for the shuttle program at Space Launch Complex-40 on Cape Canaveral Air Force Station in Florida. For more information, visit http://www.nasa.gov/spacex. Photo credit: NASA/Jim Grossmann

  9. Analysis of Large- Capacity Water Heaters in Electric Thermal Storage Programs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cooke, Alan L.; Anderson, David M.; Winiarski, David W.

    2015-03-17

    This report documents a national impact analysis of large tank heat pump water heaters (HPWH) in electric thermal storage (ETS) programs and conveys the findings related to concerns raised by utilities regarding the ability of large-tank heat pump water heaters to provide electric thermal storage services.

  10. Tanks Focus Area site needs assessment FY 1998

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    This report documents the process used by the Tanks Focus Area (TFA) to analyze and develop responses to technology needs submitted by four major US Department of Energy (DOE) sites with radioactive tank waste problems, and the initial results of the analysis. The sites are the Hanford Site, Idaho National Engineering and Environmental Laboratory (INEEL), Oak Ridge Reservation (ORR), and Savannah River Site (SRS). This document describes the TFA`s process of collecting site needs, analyzing them, and creating technical responses to the sites. It also summarizes the information contained within the TFA needs database, portraying information provided by four majormore » DOE sites with tank waste problems. The overall TFA program objective is to deliver a tank technology program that reduces the current cost, and the operational and safety risks of tank remediation. The TFA`s continues to enjoy close, cooperative relationships with each site. During the past year, the TFA has fostered exchanges of technical information between sites. These exchanges have proven to be healthy for all concerned. The TFA recognizes that site technology needs often change, and the TFA must be prepared not only to amend its program in response, but to help the sites arrive at the best technical approach to solve revised site needs.« less

  11. 77 FR 18141 - Airworthiness Directives; Fokker Services B.V. Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-27

    ...) fuel quantity indication system (FQIS) probe and the bottom of the tank structure. This condition, if... the aircraft maintenance program by revising the fuel airworthiness limitations and incorporating... Integral Center Wing Tank (ICWT) Fuel Quantity Indication System (FQIS) probe and the bottom of the tank...

  12. Side impact test and analysis of a DOT-112 tank car.

    DOT National Transportation Integrated Search

    2016-12-01

    As part of a program to improve transportation safety for tank cars, Transportation Technology Center, Inc. (TTCI) has conducted a side impact test on a DOT-112 tank car to evaluate the performance of the DOT-112 under dynamic impact conditions and t...

  13. 46 CFR 34.25-20 - Spray nozzles-T/ALL.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 1 2010-10-01 2010-10-01 false Spray nozzles-T/ALL. 34.25-20 Section 34.25-20 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS FIREFIGHTING EQUIPMENT Water Spray Extinguishing Systems, Details § 34.25-20 Spray nozzles—T/ALL. (a) Spray nozzles shall be of an approved type. ...

  14. 46 CFR 34.15-25 - Discharge outlets-T/ALL.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 1 2011-10-01 2011-10-01 false Discharge outlets-T/ALL. 34.15-25 Section 34.15-25 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS FIREFIGHTING EQUIPMENT Carbon Dioxide Extinguishing Systems, Details § 34.15-25 Discharge outlets—T/ALL. (a) Discharge outlets shall be of an approved...

  15. 46 CFR 34.25-20 - Spray nozzles-T/ALL.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 1 2011-10-01 2011-10-01 false Spray nozzles-T/ALL. 34.25-20 Section 34.25-20 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS FIREFIGHTING EQUIPMENT Water Spray Extinguishing Systems, Details § 34.25-20 Spray nozzles—T/ALL. (a) Spray nozzles shall be of an approved type. ...

  16. 46 CFR 98.30-2 - Definitions.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ..., ARRANGEMENT, AND OTHER PROVISIONS FOR CERTAIN DANGEROUS CARGOES IN BULK Portable Tanks § 98.30-2 Definitions..., (Phone (44 020 7735 7611); Web site: http://www.imo.org.) (1) International Maritime Dangerous Goods... Dangerous Goods (IMDG) Code, 2012 Edition, Section: 6.7.2 through 6.7.2.20.3, IBR approved for § 98.30-5. ...

  17. 27 CFR 24.233 - Addition of spirits to wine.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... wine. 24.233 Section 24.233 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT OF THE TREASURY LIQUORS WINE Spirits § 24.233 Addition of spirits to wine. (a) Prior to the addition of spirits. Wine will be placed in tanks approved for the addition of spirits. The...

  18. 9 CFR 354.34 - Application for inspection service in official plants; approval.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... shall be clearly indicated thereon. (4) The sheets of paper on which drawings or blueprints are made... so designated on the drawings or blueprints). (7) All steam and hot and cold water outlets for..., if so, specify such uses. (10) Hot water facilities—specify facilities such as boilers, storage tanks...

  19. 9 CFR 354.34 - Application for inspection service in official plants; approval.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... shall be clearly indicated thereon. (4) The sheets of paper on which drawings or blueprints are made... so designated on the drawings or blueprints). (7) All steam and hot and cold water outlets for..., if so, specify such uses. (10) Hot water facilities—specify facilities such as boilers, storage tanks...

  20. 9 CFR 354.34 - Application for inspection service in official plants; approval.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... shall be clearly indicated thereon. (4) The sheets of paper on which drawings or blueprints are made... so designated on the drawings or blueprints). (7) All steam and hot and cold water outlets for..., if so, specify such uses. (10) Hot water facilities—specify facilities such as boilers, storage tanks...

  1. 9 CFR 354.34 - Application for inspection service in official plants; approval.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... shall be clearly indicated thereon. (4) The sheets of paper on which drawings or blueprints are made... so designated on the drawings or blueprints). (7) All steam and hot and cold water outlets for..., if so, specify such uses. (10) Hot water facilities—specify facilities such as boilers, storage tanks...

  2. 46 CFR 34.17-20 - Discharge outlets-T/ALL.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 1 2011-10-01 2011-10-01 false Discharge outlets-T/ALL. 34.17-20 Section 34.17-20 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS FIREFIGHTING EQUIPMENT Fixed Foam Extinguishing Systems, Details § 34.17-20 Discharge outlets—T/ALL. (a) Discharge outlets shall be of an approved...

  3. 46 CFR 34.17-20 - Discharge outlets-T/ALL.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 1 2010-10-01 2010-10-01 false Discharge outlets-T/ALL. 34.17-20 Section 34.17-20 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS FIREFIGHTING EQUIPMENT Fixed Foam Extinguishing Systems, Details § 34.17-20 Discharge outlets—T/ALL. (a) Discharge outlets shall be of an approved...

  4. 78 FR 59242 - Approval and Promulgation of Air Quality Implementation Plans; Utah; Maintenance Plan for the...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-26

    ... Nonattainment and Maintenance Areas and Utah and Weber Counties: Gasoline Transfer and Storage;'' R307-335...: Qualification of Contractors and Test Procedures for Vapor Recovery Systems for Gasoline Delivery Tanks.'' This... Counties: Gasoline Transfer and Storage; Rule R307-335, Ozone Nonattainment and [[Page 59249

  5. 46 CFR 34.15-25 - Discharge outlets-T/ALL.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 1 2010-10-01 2010-10-01 false Discharge outlets-T/ALL. 34.15-25 Section 34.15-25 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS FIREFIGHTING EQUIPMENT Carbon Dioxide Extinguishing Systems, Details § 34.15-25 Discharge outlets—T/ALL. (a) Discharge outlets shall be of an approved...

  6. 46 CFR 34.15-25 - Discharge outlets-T/ALL.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 1 2013-10-01 2013-10-01 false Discharge outlets-T/ALL. 34.15-25 Section 34.15-25 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS FIREFIGHTING EQUIPMENT Carbon Dioxide Extinguishing Systems, Details § 34.15-25 Discharge outlets—T/ALL. (a) Discharge outlets shall be of an approved...

  7. 46 CFR 34.15-25 - Discharge outlets-T/ALL.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 1 2014-10-01 2014-10-01 false Discharge outlets-T/ALL. 34.15-25 Section 34.15-25 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS FIREFIGHTING EQUIPMENT Carbon Dioxide Extinguishing Systems, Details § 34.15-25 Discharge outlets—T/ALL. (a) Discharge outlets shall be of an approved...

  8. 46 CFR 34.15-25 - Discharge outlets-T/ALL.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 1 2012-10-01 2012-10-01 false Discharge outlets-T/ALL. 34.15-25 Section 34.15-25 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS FIREFIGHTING EQUIPMENT Carbon Dioxide Extinguishing Systems, Details § 34.15-25 Discharge outlets—T/ALL. (a) Discharge outlets shall be of an approved...

  9. 75 FR 59278 - Information Collection Request to Office of Management and Budget; OMB Control Numbers: 1625-0062...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-27

    ...; Approval of Non-Specification Portable Tanks; (2) 1625-0078, Licensing and Manning Requirements for...: Licensing and Manning Requirements for Officers of Towing Vessels. OMB Control Number: 1625-0078. Summary: Licensing and manning requirements ensure towing vessels operating on the navigable waters of the U.S. are...

  10. 24 CFR 1710.10 - Single-family residence exemption.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... which will not have a central water or sewage disposal system, there must be assurances that an adequate potable water supply is available year-round and that the lot is approved for the installation of a septic tank. (6) The contract of sale must require delivery within 180 days after the signing of the sales...

  11. 12 CFR 1010.10 - Single-family residence exemption.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... which will not have a central water or sewage disposal system, there must be assurances that an adequate potable water supply is available year-round and that the lot is approved for the installation of a septic tank. (6) The contract of sale must require delivery within 180 days after the signing of the sales...

  12. 12 CFR 1010.10 - Single-family residence exemption.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... which will not have a central water or sewage disposal system, there must be assurances that an adequate potable water supply is available year-round and that the lot is approved for the installation of a septic tank. (6) The contract of sale must require delivery within 180 days after the signing of the sales...

  13. 12 CFR 1010.10 - Single-family residence exemption.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... which will not have a central water or sewage disposal system, there must be assurances that an adequate potable water supply is available year-round and that the lot is approved for the installation of a septic tank. (6) The contract of sale must require delivery within 180 days after the signing of the sales...

  14. 24 CFR 1710.10 - Single-family residence exemption.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... which will not have a central water or sewage disposal system, there must be assurances that an adequate potable water supply is available year-round and that the lot is approved for the installation of a septic tank. (6) The contract of sale must require delivery within 180 days after the signing of the sales...

  15. 24 CFR 1710.10 - Single-family residence exemption.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... which will not have a central water or sewage disposal system, there must be assurances that an adequate potable water supply is available year-round and that the lot is approved for the installation of a septic tank. (6) The contract of sale must require delivery within 180 days after the signing of the sales...

  16. Trinity's "Legal Detectives" Stalk Jack the Ripper: Would Socrates Have Approved?

    ERIC Educational Resources Information Center

    Mangan, Katherine S.

    1989-01-01

    Trinity University's philosophy laboratory provides a think tank for philosophy students, allowing them to practice such skills as logic, critical reasoning, and the application of moral responsibility in decision-making by applying their skills to real-life situations. Students, selected as fellows and paid, are divided into teams for projects.…

  17. 18 CFR 1304.101 - Nonnavigable houseboats.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... follows with a properly installed and operating Marine Sanitation Device (MSD) or Sewage Holding Tank and... or Type II MSD. (2) Nonnavigable houseboats moored in: “No Discharge Lakes” must be equipped with... equipped with a Type I or Type II MSD, it must be secured to prevent discharge into the lake. (d) Approved...

  18. 46 CFR 153.558 - Special requirements for phosphoric acid.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... CARGOES SHIPS CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Design and... containment system must be: (a) Lined with natural rubber or neoprene; (b) Lined with a material approved for phosphoric acid tanks by the Commandant (CG-522); or (c) Made of a stainless steel that resists corrosion by...

  19. 14 CFR 26.33 - Holders of type certificates: Fuel tank flammability.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... in the Airworthiness Limitations Section (ALS) of the ICA required by 14 CFR 25.1529 or paragraph (f... 27, 2010, holders of type certificates affected by this section must establish an ALS of the... submit it to the FAA Oversight Office for approval. The ALS must include a section that contains the...

  20. 14 CFR 26.33 - Holders of type certificates: Fuel tank flammability.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... in the Airworthiness Limitations Section (ALS) of the ICA required by 14 CFR 25.1529 or paragraph (f... 27, 2010, holders of type certificates affected by this section must establish an ALS of the... submit it to the FAA Oversight Office for approval. The ALS must include a section that contains the...

  1. 14 CFR 26.33 - Holders of type certificates: Fuel tank flammability.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... in the Airworthiness Limitations Section (ALS) of the ICA required by 14 CFR 25.1529 or paragraph (f... 27, 2010, holders of type certificates affected by this section must establish an ALS of the... submit it to the FAA Oversight Office for approval. The ALS must include a section that contains the...

  2. 14 CFR 26.33 - Holders of type certificates: Fuel tank flammability.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... in the Airworthiness Limitations Section (ALS) of the ICA required by 14 CFR 25.1529 or paragraph (f... 27, 2010, holders of type certificates affected by this section must establish an ALS of the... submit it to the FAA Oversight Office for approval. The ALS must include a section that contains the...

  3. 14 CFR 26.33 - Holders of type certificates: Fuel tank flammability.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... in the Airworthiness Limitations Section (ALS) of the ICA required by 14 CFR 25.1529 or paragraph (f... 27, 2010, holders of type certificates affected by this section must establish an ALS of the... submit it to the FAA Oversight Office for approval. The ALS must include a section that contains the...

  4. 76 FR 17181 - Agency Information Collection Activities: Requests for Comments; Clearance of Renewed Approval of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-28

    ... May 27, 2011. FOR FURTHER INFORMATION CONTACT: Carla Scott on (202) 267-9895, or by e-mail at: Carla... Tank Flammability on Transport Category Airplanes AGENCY: Federal Aviation Administration (FAA), DOT... Flammability on Transport Category Airplanes. Form Numbers: There are no FAA forms associated with this...

  5. 46 CFR 95.05-10 - Fixed fire extinguishing systems.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... in special cases: (1) A fixed foam system may be used in cargo tanks. (2) A water sprinkling system.... Alternately, the Commandant may permit the installation of an approved water sprinkler system or other... is contracted for on or after November 19, 1952, a fixed carbon dioxide, foam, or water spray system...

  6. 46 CFR 95.05-10 - Fixed fire extinguishing systems.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... in special cases: (1) A fixed foam system may be used in cargo tanks. (2) A water sprinkling system.... Alternately, the Commandant may permit the installation of an approved water sprinkler system or other... is contracted for on or after November 19, 1952, a fixed carbon dioxide, foam, or water spray system...

  7. 46 CFR 95.05-10 - Fixed fire extinguishing systems.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... in special cases: (1) A fixed foam system may be used in cargo tanks. (2) A water sprinkling system.... Alternately, the Commandant may permit the installation of an approved water sprinkler system or other... is contracted for on or after November 19, 1952, a fixed carbon dioxide, foam, or water spray system...

  8. 46 CFR 95.05-10 - Fixed fire extinguishing systems.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... in special cases: (1) A fixed foam system may be used in cargo tanks. (2) A water sprinkling system.... Alternately, the Commandant may permit the installation of an approved water sprinkler system or other... is contracted for on or after November 19, 1952, a fixed carbon dioxide, foam, or water spray system...

  9. 46 CFR 32.65-25 - Living quarters-TB/ALL.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 1 2012-10-01 2012-10-01 false Living quarters-TB/ALL. 32.65-25 Section 32.65-25 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS SPECIAL EQUIPMENT, MACHINERY, AND HULL..., 1951 § 32.65-25 Living quarters—TB/ALL. Partitions and sheathing shall be of approved fire-resistive...

  10. 46 CFR 32.65-25 - Living quarters-TB/ALL.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 1 2010-10-01 2010-10-01 false Living quarters-TB/ALL. 32.65-25 Section 32.65-25 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS SPECIAL EQUIPMENT, MACHINERY, AND HULL..., 1951 § 32.65-25 Living quarters—TB/ALL. Partitions and sheathing shall be of approved fire-resistive...

  11. 46 CFR 32.60-25 - Living quarters-TB/ALL.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 1 2012-10-01 2012-10-01 false Living quarters-TB/ALL. 32.60-25 Section 32.60-25 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS SPECIAL EQUIPMENT, MACHINERY, AND HULL...—TB/ALL. For living quarters the partitions and sheathing shall be of an approved fire resistive...

  12. 46 CFR 32.60-25 - Living quarters-TB/ALL.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 1 2011-10-01 2011-10-01 false Living quarters-TB/ALL. 32.60-25 Section 32.60-25 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS SPECIAL EQUIPMENT, MACHINERY, AND HULL...—TB/ALL. For living quarters the partitions and sheathing shall be of an approved fire resistive...

  13. 46 CFR 32.65-25 - Living quarters-TB/ALL.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 1 2011-10-01 2011-10-01 false Living quarters-TB/ALL. 32.65-25 Section 32.65-25 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS SPECIAL EQUIPMENT, MACHINERY, AND HULL..., 1951 § 32.65-25 Living quarters—TB/ALL. Partitions and sheathing shall be of approved fire-resistive...

  14. 46 CFR 32.60-25 - Living quarters-TB/ALL.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 1 2014-10-01 2014-10-01 false Living quarters-TB/ALL. 32.60-25 Section 32.60-25 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS SPECIAL EQUIPMENT, MACHINERY, AND HULL...—TB/ALL. For living quarters the partitions and sheathing shall be of an approved fire resistive...

  15. 46 CFR 32.60-25 - Living quarters-TB/ALL.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 1 2010-10-01 2010-10-01 false Living quarters-TB/ALL. 32.60-25 Section 32.60-25 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS SPECIAL EQUIPMENT, MACHINERY, AND HULL...—TB/ALL. For living quarters the partitions and sheathing shall be of an approved fire resistive...

  16. 46 CFR 32.65-25 - Living quarters-TB/ALL.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 1 2013-10-01 2013-10-01 false Living quarters-TB/ALL. 32.65-25 Section 32.65-25 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS SPECIAL EQUIPMENT, MACHINERY, AND HULL..., 1951 § 32.65-25 Living quarters—TB/ALL. Partitions and sheathing shall be of approved fire-resistive...

  17. 46 CFR 32.60-25 - Living quarters-TB/ALL.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 1 2013-10-01 2013-10-01 false Living quarters-TB/ALL. 32.60-25 Section 32.60-25 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS SPECIAL EQUIPMENT, MACHINERY, AND HULL...—TB/ALL. For living quarters the partitions and sheathing shall be of an approved fire resistive...

  18. 46 CFR 32.65-25 - Living quarters-TB/ALL.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 1 2014-10-01 2014-10-01 false Living quarters-TB/ALL. 32.65-25 Section 32.65-25 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS SPECIAL EQUIPMENT, MACHINERY, AND HULL..., 1951 § 32.65-25 Living quarters—TB/ALL. Partitions and sheathing shall be of approved fire-resistive...

  19. Fatigue crack growth equations for TC-128B tank car steel

    DOT National Transportation Integrated Search

    2006-10-01

    In an effort to develop relevant data for use in applying damage tolerance analysis concepts to railroad tank cars, the fatigue crack growth (FCG) behavior of TC-128B tank car steel was investigated by SwRI in a previous test program conducted for th...

  20. KSC-2010-4895

    NASA Image and Video Library

    2010-09-28

    CAPE CANAVERAL, Fla. -- The Space Shuttle Program's last external fuel tank, ET-122, enters the Vehicle Assembly Building at NASA's Kennedy Space Center in Florida. The tank traveled 900 miles by sea from NASA's Michoud Assembly Facility in New Orleans to Kennedy's Turn Basin aboard the Pegasus Barge. The tank eventually will be attached to space shuttle Endeavour for the STS-134 mission to the International Space Station. STS-134, targeted to launch in Feb. 2011, currently is scheduled to be the last mission in the shuttle program. The tank, which is the largest element of the space shuttle stack, was damaged during Hurricane Katrina in August 2005 and restored to flight configuration by Lockheed Martin Space Systems Company employees. Photo credit: NASA/Jack Pfaller

  1. KSC-2010-4897

    NASA Image and Video Library

    2010-09-28

    CAPE CANAVERAL, Fla. -- The Space Shuttle Program's last external fuel tank, ET-122, has been moved inside the Vehicle Assembly Building at NASA's Kennedy Space Center in Florida. The tank traveled 900 miles by sea from NASA's Michoud Assembly Facility in New Orleans to Kennedy's Turn Basin aboard the Pegasus Barge. The tank eventually will be attached to space shuttle Endeavour for the STS-134 mission to the International Space Station. STS-134, targeted to launch in Feb. 2011, currently is scheduled to be the last mission in the shuttle program. The tank, which is the largest element of the space shuttle stack, was damaged during Hurricane Katrina in August 2005 and restored to flight configuration by Lockheed Martin Space Systems Company employees. Photo credit: NASA/Jack Pfaller

  2. KSC-2010-4896

    NASA Image and Video Library

    2010-09-28

    CAPE CANAVERAL, Fla. -- The Space Shuttle Program's last external fuel tank, ET-122, moves into the Vehicle Assembly Building at NASA's Kennedy Space Center in Florida. The tank traveled 900 miles by sea from NASA's Michoud Assembly Facility in New Orleans to Kennedy's Turn Basin aboard the Pegasus Barge. The tank eventually will be attached to space shuttle Endeavour for the STS-134 mission to the International Space Station. STS-134, targeted to launch in Feb. 2011, currently is scheduled to be the last mission in the shuttle program. The tank, which is the largest element of the space shuttle stack, was damaged during Hurricane Katrina in August 2005 and restored to flight configuration by Lockheed Martin Space Systems Company employees. Photo credit: NASA/Jack Pfaller

  3. Vehicle-scale investigation of a fluorine jet-pump liquid hydrogen tank pressurization system

    NASA Technical Reports Server (NTRS)

    Cady, E. C.; Kendle, D. W.

    1972-01-01

    A comprehensive analytical and experimental program was performed to evaluate the performance of a fluorine-hydrogen jet-pump injector for main tank injection (MTI) pressurization of a liquid hydrogen (LH2) tank. The injector performance during pressurization and LH2 expulsion was determined by a series of seven tests of a full-scale injector and MTI pressure control system in a 28.3 cu m (1000 cu ft) flight-weight LH2 tank. Although the injector did not effectively jet-pump LH2 continuously, it showed improved pressurization performance compared to straight-pipe injectors tested under the same conditions in a previous program. The MTI computer code was modified to allow performance prediction for the jet-pump injector.

  4. A computer program for the calculation of thermal stratification and self-pressurization in a liquid hydrogen tank

    NASA Technical Reports Server (NTRS)

    Arnett, R. W.; Voth, R. O.

    1972-01-01

    An analysis and computer program are described for calculating the thermal stratification and the associated self-pressurization of a closed liquid hydrogen tank. FORTRAN-IV language is used and runs were made on IBM 360/65 and CDC 3600 computers. Comparisons are made between the program calculations and test results from both ground and orbital coast tests of a Centaur space vehicle.

  5. Ferrocyanide Safety Program. Quarterly report for the period ending March 31, 1994

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meacham, J.E.; Cash, R.J.; Dukelow, G.T.

    1994-04-01

    Various high-level radioactive waste from defense operations has accumulated at the Hanford Site in underground storage tanks since the mid-1940s. During the 1950s, additional tank storage space was required to support the defense mission. To obtain this additional storage volume within a short time period, and to minimize the need for constructing additional storage tanks, Hanford Site scientists developed a process to scavenge {sup 137}Cs from tank waste liquids. In implementing this process, approximately 140 metric tons of ferrocyanide were added to waste that was later routed to some Hanford Site single-shell tanks. The reactive nature of ferrocyanide in themore » presence of an oxidizer has been known for decades, but the conditions under which the compound can undergo endothermic and exothermic reactions have not been thoroughly studied. Because the scavenging process precipitated ferrocyanide from solutions containing nitrate and nitrite, an intimate mixture of ferrocyanides and nitrates and/or nitrites is likely to exist in some regions of the ferrocyanide tanks. This quarterly report provides a status of the activities underway at the Hanford Site on the Ferrocyanide Safety Issue, as requested by the Defense Nuclear Facilities Safety Board (DNFSB) in their Recommendation 90-7. A revised Ferrocyanide Safety Program Plan addressing the total Ferrocyanide Safety Program, including the six parts of DNFSB Recommendation 90-7, was recently prepared and released in March 1994. Activities in the revised program plan are underway or have been completed, and the status of each is described in Section 4.0 of this report.« less

  6. Support to X-33/Reusable Launch Vehicle Technology Program

    NASA Technical Reports Server (NTRS)

    2000-01-01

    The Primary activities of Lee & Associates for the referenced Purchase Order has been in direct support of the X-33/Reusable Launch Vehicle Technology Program. An independent review to evaluate the X-33 liquid hydrogen fuel tank failure, which recently occurred after-test of the starboard tank has been provided. The purpose of the Investigation team was to assess the tank design modifications, provide an assessment of the testing approach used by MSFC (Marshall Space Flight Center) in determining the flight worthiness of the tank, assessing the structural integrity, and determining the cause of the failure of the tank. The approach taken to satisfy the objectives has been for Lee & Associates to provide the expertise of Mr. Frank Key and Mr. Wayne Burton who have relevant experience from past programs and a strong background of experience in the fields critical to the success of the program. Mr. Key and Mr. Burton participated in the NASA established Failure Investigation Review Team to review the development and process data and to identify any design, testing or manufacturing weaknesses and potential problem areas. This approach worked well in satisfying the objectives and providing the Review Team with valuable information including the development of a Fault Tree. The detailed inputs were made orally in real time in the Review Team daily meetings. The results of the investigation were presented to the MSFC Center Director by the team on February 15, 2000. Attached are four charts taken from that presentation which includes 1) An executive summary, 2) The most probable cause, 3) Technology assessment, and 4) Technology Recommendations for Cryogenic tanks.

  7. Glass Science tutorial lecture No. 5: Historical review of USDOE tank waste management

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McDaniel, E.W.

    1995-02-01

    This is a two day course whose objective is to present an unbiased historical overview of the DOE tank waste activities. World events which impacted the US nuclear program (or vise versa) will be presented. Liquid, mostly tank waste, and sludge are the primary concerns of this course.

  8. Tank Inspection NDE Results for Fiscal Year 2014, Waste Tanks 26, 27, 28 and 33

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Elder, J.; Vandekamp, R.

    2014-09-29

    Ultrasonic nondestructive examinations (NDE) were performed on waste storage tanks 26, 27, 28 and 33 at the Savannah River Site as a part of the “In-Service Inspection (ISI) Program for High Level Waste Tanks.” No reportable conditions were identified during these inspections. The results indicate that the implemented corrosion control program continues to effectively mitigate corrosion in the SRS waste tanks. Ultrasonic inspection (UT) is used to detect general wall thinning, pitting and interface attack, as well as vertically oriented cracks through inspection of an 8.5 inch wide strip extending over the accessible height of the primary tank wall andmore » accessible knuckle regions. Welds were also inspected in tanks 27, 28 and 33 with no reportable indications. In a Type III/IIIA primary tank, a complete vertical strip includes scans of five plates (including knuckles) so five “plate/strips” would be completed at each vertical strip location. In FY 2014, a combined total of 79 plate/strips were examined for thickness mapping and crack detection, equating to over 45,000 square inches of area inspected on the primary tank wall. Of the 79 plate/strips examined in FY 2014 all but three have average thicknesses that remain at or above the construction minimum thickness which is nominal thickness minus 0.010 inches. There were no service induced reportable thicknesses or cracking encountered. A total of 2 pits were documented in 2014 with the deepest being 0.032 inches deep. One pit was detected in Tank 27 and one in Tank 33. No pitting was identified in Tanks 26 or 28. The maximum depth of any pit encountered in FY 2014 is 5% of nominal thickness, which is less than the minimum reportable criteria of 25% through-wall for pitting. In Tank 26 two vertical strips were inspected, as required by the ISI Program, due to tank conditions being outside normal chemistry controls for more than 3 months. Tank 28 had an area of localized thinning on the exterior wall of the secondary tank noted during the initial inspections in 2005. That area was inspected again in 2014 and found to be larger and slightly deeper. The deepest area of thinning in the secondary wall is less than 20% wall loss. The maximum length of thinning is less than 24 inches and does not impact structural or leak integrity per WSRC-TR-2002-00063. Inspection results were presented to the In-service Inspection Review Committee (ISIRC) where it was determined that no additional data was required to complete these inspections.« less

  9. KSC-2012-3053

    NASA Image and Video Library

    2012-05-23

    CAPE CANAVERAL, Fla. – A NASA Railroad train crosses the railroad’s Jay Jay Railroad Bridge north of Launch Complex 39 at NASA’s Kennedy Space Center in Florida. The train is on its way to the Florida East Coast Railway interchange in Titusville, Fla., where the train’s helium tank cars, a liquid oxygen tank car, and a liquid hydrogen dewar or tank car will be transferred for delivery to the SpaceX engine test complex outside McGregor, Texas. The railroad cars were needed in support of the Space Shuttle Program but currently are not in use by NASA following the completion of the program in 2011. Originally, the tankers belonged to the U.S. Bureau of Mines. At the peak of the shuttle program, there were approximately 30 cars in the fleet. About half the cars were returned to the bureau as launch activity diminished. Five tank cars are being loaned to SpaceX and repurposed to support their engine tests in Texas. Eight cars previously were shipped to California on loan to support the SpaceX Falcon 9 rocket launches from Space Launch Complex-4 on Vandenberg Air Force Base. SpaceX already has three helium tank cars previously used for the shuttle program at Space Launch Complex-40 on Cape Canaveral Air Force Station in Florida. For more information, visit http://www.nasa.gov/spacex. Photo credit: NASA/Jim Grossmann

  10. KSC-2012-3052

    NASA Image and Video Library

    2012-05-23

    CAPE CANAVERAL, Fla. – A NASA Railroad train crosses the railroad’s Jay Jay Railroad Bridge north of Launch Complex 39 at NASA’s Kennedy Space Center in Florida. The train is on its way to the Florida East Coast Railway interchange in Titusville, Fla., where the train’s helium tank cars, a liquid oxygen tank car, and a liquid hydrogen dewar or tank car will be transferred for delivery to the SpaceX engine test complex outside McGregor, Texas. The railroad cars were needed in support of the Space Shuttle Program but currently are not in use by NASA following the completion of the program in 2011. Originally, the tankers belonged to the U.S. Bureau of Mines. At the peak of the shuttle program, there were approximately 30 cars in the fleet. About half the cars were returned to the bureau as launch activity diminished. Five tank cars are being loaned to SpaceX and repurposed to support their engine tests in Texas. Eight cars previously were shipped to California on loan to support the SpaceX Falcon 9 rocket launches from Space Launch Complex-4 on Vandenberg Air Force Base. SpaceX already has three helium tank cars previously used for the shuttle program at Space Launch Complex-40 on Cape Canaveral Air Force Station in Florida. For more information, visit http://www.nasa.gov/spacex. Photo credit: NASA/Jim Grossmann

  11. KSC-2012-3034a

    NASA Image and Video Library

    2012-05-23

    CAPE CANAVERAL, Fla. – Engineers board a NASA Railroad train in preparation for its departure from the NASA Railroad Yard at NASA’s Kennedy Space Center in Florida. The train is headed for the Florida East Coast Railway interchange in Titusville, Fla., where the train’s helium tank cars, a liquid oxygen tank car, and a liquid hydrogen dewar or tank car will be transferred for delivery to the SpaceX engine test complex outside McGregor, Texas. The railroad cars were needed in support of the Space Shuttle Program but currently are not in use by NASA following the completion of the program in 2011. Originally, the tankers belonged to the U.S. Bureau of Mines. At the peak of the shuttle program, there were approximately 30 cars in the fleet. About half the cars were returned to the bureau as launch activity diminished. Five tank cars are being loaned to SpaceX and repurposed to support their engine tests in Texas. Eight cars previously were shipped to California on loan to support the SpaceX Falcon 9 rocket launches from Space Launch Complex-4 on Vandenberg Air Force Base. SpaceX already has three helium tank cars previously used for the shuttle program at Space Launch Complex-40 on Cape Canaveral Air Force Station in Florida. For more information, visit http://www.nasa.gov/spacex. Photo credit: NASA/Jim Grossmann

  12. KSC-2012-3039a

    NASA Image and Video Library

    2012-05-23

    CAPE CANAVERAL, Fla. – A NASA Railroad train passes in front of the 525-foot-tall Vehicle Assembly Building at NASA’s Kennedy Space Center in Florida. At the far right is the Orbiter Processing Facility. The train is on its way to the Florida East Coast Railway interchange in Titusville, Fla., where the train’s helium tank cars, a liquid oxygen tank car, and a liquid hydrogen dewar or tank car will be transferred for delivery to the SpaceX engine test complex outside McGregor, Texas. The railroad cars were needed in support of the Space Shuttle Program but currently are not in use by NASA following the completion of the program in 2011. Originally, the tankers belonged to the U.S. Bureau of Mines. At the peak of the shuttle program, there were approximately 30 cars in the fleet. About half the cars were returned to the bureau as launch activity diminished. Five tank cars are being loaned to SpaceX and repurposed to support their engine tests in Texas. Eight cars previously were shipped to California on loan to support the SpaceX Falcon 9 rocket launches from Space Launch Complex-4 on Vandenberg Air Force Base. SpaceX already has three helium tank cars previously used for the shuttle program at Space Launch Complex-40 on Cape Canaveral Air Force Station in Florida. For more information, visit http://www.nasa.gov/spacex. Photo credit: NASA/Jim Grossmann

  13. KSC-2012-3036a

    NASA Image and Video Library

    2012-05-23

    CAPE CANAVERAL, Fla. – A NASA Railroad train passes in front of the twin bays of the Orbiter Processing Facility at NASA’s Kennedy Space Center in Florida. The train is on its way to the Florida East Coast Railway interchange in Titusville, Fla., where the train’s helium tank cars, a liquid oxygen tank car, and a liquid hydrogen dewar or tank car will be transferred for delivery to the SpaceX engine test complex outside McGregor, Texas. The railroad cars were needed in support of the Space Shuttle Program but currently are not in use by NASA following the completion of the program in 2011. Originally, the tankers belonged to the U.S. Bureau of Mines. At the peak of the shuttle program, there were approximately 30 cars in the fleet. About half the cars were returned to the bureau as launch activity diminished. Five tank cars are being loaned to SpaceX and repurposed to support their engine tests in Texas. Eight cars previously were shipped to California on loan to support the SpaceX Falcon 9 rocket launches from Space Launch Complex-4 on Vandenberg Air Force Base. SpaceX already has three helium tank cars previously used for the shuttle program at Space Launch Complex-40 on Cape Canaveral Air Force Station in Florida. For more information, visit http://www.nasa.gov/spacex. Photo credit: NASA/Jim Grossmann

  14. KSC-2012-3035a

    NASA Image and Video Library

    2012-05-23

    CAPE CANAVERAL, Fla. – A NASA Railroad train passes in front of the twin bays of the Orbiter Processing Facility at NASA’s Kennedy Space Center in Florida. The train is on its way to the Florida East Coast Railway interchange in Titusville, Fla., where the train’s helium tank cars, a liquid oxygen tank car, and a liquid hydrogen dewar or tank car will be transferred for delivery to the SpaceX engine test complex outside McGregor, Texas. The railroad cars were needed in support of the Space Shuttle Program but currently are not in use by NASA following the completion of the program in 2011. Originally, the tankers belonged to the U.S. Bureau of Mines. At the peak of the shuttle program, there were approximately 30 cars in the fleet. About half the cars were returned to the bureau as launch activity diminished. Five tank cars are being loaned to SpaceX and repurposed to support their engine tests in Texas. Eight cars previously were shipped to California on loan to support the SpaceX Falcon 9 rocket launches from Space Launch Complex-4 on Vandenberg Air Force Base. SpaceX already has three helium tank cars previously used for the shuttle program at Space Launch Complex-40 on Cape Canaveral Air Force Station in Florida. For more information, visit http://www.nasa.gov/spacex. Photo credit: NASA/Jim Grossmann

  15. KSC-2012-3056

    NASA Image and Video Library

    2012-05-23

    CAPE CANAVERAL, Fla. – A NASA Railroad train has crossed the Indian River on the railroad’s Jay Jay Railroad Bridge north of Launch Complex 39 at NASA’s Kennedy Space Center in Florida. The train is on its way to the Florida East Coast Railway interchange in Titusville, Fla., where the train’s helium tank cars, a liquid oxygen tank car, and a liquid hydrogen dewar or tank car will be transferred for delivery to the SpaceX engine test complex outside McGregor, Texas. The railroad cars were needed in support of the Space Shuttle Program but currently are not in use by NASA following the completion of the program in 2011. Originally, the tankers belonged to the U.S. Bureau of Mines. At the peak of the shuttle program, there were approximately 30 cars in the fleet. About half the cars were returned to the bureau as launch activity diminished. Five tank cars are being loaned to SpaceX and repurposed to support their engine tests in Texas. Eight cars previously were shipped to California on loan to support the SpaceX Falcon 9 rocket launches from Space Launch Complex-4 on Vandenberg Air Force Base. SpaceX already has three helium tank cars previously used for the shuttle program at Space Launch Complex-40 on Cape Canaveral Air Force Station in Florida. For more information, visit http://www.nasa.gov/spacex. Photo credit: NASA/Jim Grossmann

  16. KSC-2012-3050

    NASA Image and Video Library

    2012-05-23

    CAPE CANAVERAL, Fla. – A NASA Railroad train crosses the railroad’s Jay Jay Railroad Bridge north of Launch Complex 39 at NASA’s Kennedy Space Center in Florida. The train is on its way to the Florida East Coast Railway interchange in Titusville, Fla., where the train’s helium tank cars, a liquid oxygen tank car, and a liquid hydrogen dewar or tank car will be transferred for delivery to the SpaceX engine test complex outside McGregor, Texas. The railroad cars were needed in support of the Space Shuttle Program but currently are not in use by NASA following the completion of the program in 2011. Originally, the tankers belonged to the U.S. Bureau of Mines. At the peak of the shuttle program, there were approximately 30 cars in the fleet. About half the cars were returned to the bureau as launch activity diminished. Five tank cars are being loaned to SpaceX and repurposed to support their engine tests in Texas. Eight cars previously were shipped to California on loan to support the SpaceX Falcon 9 rocket launches from Space Launch Complex-4 on Vandenberg Air Force Base. SpaceX already has three helium tank cars previously used for the shuttle program at Space Launch Complex-40 on Cape Canaveral Air Force Station in Florida. For more information, visit http://www.nasa.gov/spacex. Photo credit: NASA/Jim Grossmann

  17. KSC-2012-3051

    NASA Image and Video Library

    2012-05-23

    CAPE CANAVERAL, Fla. – A NASA Railroad train crosses the railroad’s Jay Jay Railroad Bridge north of Launch Complex 39 at NASA’s Kennedy Space Center in Florida. The train is on its way to the Florida East Coast Railway interchange in Titusville, Fla., where the train’s helium tank cars, a liquid oxygen tank car, and a liquid hydrogen dewar or tank car will be transferred for delivery to the SpaceX engine test complex outside McGregor, Texas. The railroad cars were needed in support of the Space Shuttle Program but currently are not in use by NASA following the completion of the program in 2011. Originally, the tankers belonged to the U.S. Bureau of Mines. At the peak of the shuttle program, there were approximately 30 cars in the fleet. About half the cars were returned to the bureau as launch activity diminished. Five tank cars are being loaned to SpaceX and repurposed to support their engine tests in Texas. Eight cars previously were shipped to California on loan to support the SpaceX Falcon 9 rocket launches from Space Launch Complex-4 on Vandenberg Air Force Base. SpaceX already has three helium tank cars previously used for the shuttle program at Space Launch Complex-40 on Cape Canaveral Air Force Station in Florida. For more information, visit http://www.nasa.gov/spacex. Photo credit: NASA/Jim Grossmann

  18. CFD Modelling of Adsorption Behaviour in AGN Tank with Polyethylene Terephthalate Plastic Waste Based Activated Carbon

    NASA Astrophysics Data System (ADS)

    Yuliusman; Afdhol, M. K.; Sanal, Alristo; Nasruddin

    2018-03-01

    Indonesia imports fuel (fuel oil) in large quantities. Indonesia has reserves of methane gas in the form of natural gas in large numbers but has obstacles in the process of storage. To produce a storage tank to a safe condition then proclaimed to use ANG (Adsorbed Natural Gas) technology. Manufacture of activated PET based activated carbon for storage of natural gas where technology has been widely studied, but still has some shortcomings. Therefore to predict the performance of ANG technology, modeling of ANG tank with Fluent CFD program is done so the condition inside the ANG tank can be known and can be used to increased the performance of ANG technology. Therefore, in this experiment natural gas storage test is done at the ANG tank model using Fluent CFD program. This experiment is begin with preparation tools and material by characterize the natural gas and activated carbon followed by create the mesh and model of ANG tank. The next process is state the characteristic of activated carbon and fluid in this experiment. The last process is run the simulation using the condition that already been stated which is at 27°C and 35 bar during 15 minutes. The result is at adsorption contour we can see that adsorption is higher at the top of the tank because the input of the adsorbent is at the top of the ANG tank so the adsorbate distribution is uneven that cause the adsorbate concentration at the top of the ANG tank is higher than the bottom tank.

  19. Application of Terahertz Imaging and Backscatter Radiography to Space Shuttle Foam Inspection

    NASA Technical Reports Server (NTRS)

    Ussery, Warren

    2008-01-01

    Two state of the art technologies have been developed for External Fuel Tank foam inspections. Results of POD tests have shown Backscatter Radiography and Terahertz imaging detect critical defects with no false positive issue. These techniques are currently in use on the External Tank program as one component in the foam quality assurance program.

  20. Test program to demonstrate the stability of hydrazine in propellant tanks

    NASA Technical Reports Server (NTRS)

    Moran, C. M.; Bjorklund, R. A.

    1983-01-01

    A 24-month coupon test program to evaluate the decomposition of propellant tanks is reported. The propellant fuel evaluated was monopropellant-grade hydrazine (N2H4), which is normally a colorless, fuming, corrosive, strongly reducing liquid. The degree of hydrazine decomposition was determined by means of chemical analyses of the liquid and evolved gases at the end of the test program. The experimental rates of hydrazine decomposition were determined to be within acceptable limits. The propellant tank materials and material combinations were not degraded by a 2-year exposure to hydrazine propellant. This was verified using change-of-weight determinations and microscopic examination of the specimen surface before and after exposure, and by posttest chemical analyses of hydrazine liquid for residual metal content.

  1. Nashville Solar-Water-Heater Demonstration Project. Monitoring-data analysis

    NASA Astrophysics Data System (ADS)

    1982-03-01

    Field monitoring data which were collected for the Nashville Solar Water Heater Demonstration Project from September through November of 1981 are presented. Twenty-six solar domestic water heaters were monitored during September, 35 during October, and 37 during November. Homeowners were audited to assure adequate solar access, and each selected a solar water heating system from an approved list. Two tank and one tank systems are included. The monitoring sample technique and monitoring system are described. Data are analyzed by computer to produce daily and monthly total summaries for each site. The performance of each site was assessed to compare total energy saved by the solar system, solar system savings percentage, and the energy multiplier.

  2. KSC-2010-4852

    NASA Image and Video Library

    2010-09-27

    CAPE CANAVERAL, Fla. -- The Pegasus Barge, carrying the Space Shuttle Program's last external fuel tank, ET-122, nears NASA's Kennedy Space Center in Florida. The tank traveled 900 miles by sea from NASA's Michoud Assembly Facility in New Orleans. After reaching the Turn Basin at Kennedy, the tank will be offloaded and moved to the Vehicle Assembly Building where it eventually will be attached to space shuttle Endeavour for the STS-134 mission to the International Space Station. STS-134, targeted to launch in Feb. 2011, currently is scheduled to be the last mission in the Space Shuttle Program. The tank, which is the largest element of the space shuttle stack, was damaged during Hurricane Katrina in August 2005 and restored to flight configuration by Lockheed Martin Space Systems Company employees. Photo credit: NASA/Kim Shiflett

  3. KSC-2010-4865

    NASA Image and Video Library

    2010-09-27

    CAPE CANAVERAL, Fla. -- A tugboat pulls the Pegasus Barge carrying the Space Shuttle Program's last external fuel tank, ET-122, toward NASA's Kennedy Space Center in Florida. The tank traveled 900 miles by sea from NASA's Michoud Assembly Facility in New Orleans. After reaching the Turn Basin at Kennedy, the tank will be offloaded and moved to the Vehicle Assembly Building where it eventually will be attached to space shuttle Endeavour for the STS-134 mission to the International Space Station. STS-134, targeted to launch in Feb. 2011, currently is scheduled to be the last mission in the Space Shuttle Program. The tank, which is the largest element of the space shuttle stack, was damaged during Hurricane Katrina in August 2005 and restored to flight configuration by Lockheed Martin Space Systems Company employees. Photo credit: NASA/Jim Grossmann

  4. KSC-2010-4839

    NASA Image and Video Library

    2010-09-27

    CAPE CANAVERAL, Fla. -- A tug boat pulls the Space Shuttle Program's last external fuel tank, ET-122, to the Turn Basin at NASA's Kennedy Space Center in Florida. The tank traveled 900 miles by sea from NASA's Michoud Assembly Facility in New Orleans aboard the Pegasus Barge. Next, the tank will be offloaded and moved to Kennedy's Vehicle Assembly Building where it eventually will be attached to space shuttle Endeavour for the STS-134 mission to the International Space Station. STS-134, targeted to launch in Feb. 2011, currently is scheduled to be the last mission in the Space Shuttle Program. The tank, which is the largest element of the space shuttle stack, was damaged during Hurricane Katrina in August 2005 and restored to flight configuration by Lockheed Martin Space Systems Company employees. Photo credit: NASA/Frankie Martin

  5. KSC-2010-4840

    NASA Image and Video Library

    2010-09-27

    CAPE CANAVERAL, Fla. -- A tug boat pulls the Space Shuttle Program's last external fuel tank, ET-122, to the Turn Basin at NASA's Kennedy Space Center in Florida. The tank traveled 900 miles by sea from NASA's Michoud Assembly Facility in New Orleans aboard the Pegasus Barge. Next, the tank will be offloaded and moved to Kennedy's Vehicle Assembly Building where it eventually will be attached to space shuttle Endeavour for the STS-134 mission to the International Space Station. STS-134, targeted to launch in Feb. 2011, currently is scheduled to be the last mission in the Space Shuttle Program. The tank, which is the largest element of the space shuttle stack, was damaged during Hurricane Katrina in August 2005 and restored to flight configuration by Lockheed Martin Space Systems Company employees. Photo credit: NASA/Frankie Martin

  6. KSC-2010-4876

    NASA Image and Video Library

    2010-09-27

    CAPE CANAVERAL, Fla. -- The Pegasus Barge carrying the Space Shuttle Program's last external fuel tank, ET-122, arrives at the Turn Basin at NASA's Kennedy Space Center in Florida. The tank traveled 900 miles by sea from NASA's Michoud Assembly Facility in New Orleans. Next, the tank will be offloaded and moved to the Vehicle Assembly Building where it eventually will be attached to space shuttle Endeavour for the STS-134 mission to the International Space Station. STS-134, targeted to launch in Feb. 2011, currently is scheduled to be the last mission in the Space Shuttle Program. The tank, which is the largest element of the space shuttle stack, was damaged during Hurricane Katrina in August 2005 and restored to flight configuration by Lockheed Martin Space Systems Company employees. Photo credit: NASA/Jack Pfaller

  7. KSC-2010-4862

    NASA Image and Video Library

    2010-09-27

    CAPE CANAVERAL, Fla. -- NASA's Pegasus barge, carrying the Space Shuttle Program's last external fuel tank, ET-122, arrives at the Turn Basin of NASA's Kennedy Space Center in Florida. The tank traveled 900 miles by sea from NASA's Michoud Assembly Facility in New Orleans. Next, the tank will be offloaded and moved to the Vehicle Assembly Building where it eventually will be attached to space shuttle Endeavour for the STS-134 mission to the International Space Station. STS-134, targeted to launch in Feb. 2011, currently is scheduled to be the last mission in the Space Shuttle Program. The tank, which is the largest element of the space shuttle stack, was damaged during Hurricane Katrina in August 2005 and restored to flight configuration by Lockheed Martin Space Systems Company employees. Photo credit: NASA/Kim Shiflett

  8. KSC-2010-4836

    NASA Image and Video Library

    2010-09-27

    CAPE CANAVERAL, Fla. -- A tug boat pulls the Space Shuttle Program's last external fuel tank, ET-122, toward the Turn Basin at NASA's Kennedy Space Center in Florida. The tank traveled 900 miles by sea from NASA's Michoud Assembly Facility in New Orleans aboard the Pegasus Barge. Next, the tank will be offloaded and moved to Kennedy's Vehicle Assembly Building where it eventually will be attached to space shuttle Endeavour for the STS-134 mission to the International Space Station. STS-134, targeted to launch in Feb., 2011, currently is scheduled to be the last mission in the Space Shuttle Program. The tank, which is the largest element of the space shuttle stack, was damaged during Hurricane Katrina in August 2005 and restored to flight configuration by Lockheed Martin Space Systems Company employees. Photo credit: NASA/Frankie Martin

  9. KSC-2010-4874

    NASA Image and Video Library

    2010-09-27

    CAPE CANAVERAL, Fla. -- The Pegasus Barge carrying the Space Shuttle Program's last external fuel tank, ET-122, arrives at the Turn Basin at NASA's Kennedy Space Center in Florida. The tank traveled 900 miles by sea from NASA's Michoud Assembly Facility in New Orleans. Next, the tank will be offloaded and moved to the Vehicle Assembly Building where it eventually will be attached to space shuttle Endeavour for the STS-134 mission to the International Space Station. STS-134, targeted to launch in Feb. 2011, currently is scheduled to be the last mission in the Space Shuttle Program. The tank, which is the largest element of the space shuttle stack, was damaged during Hurricane Katrina in August 2005 and restored to flight configuration by Lockheed Martin Space Systems Company employees. Photo credit: NASA/Jack Pfaller

  10. KSC-2010-4841

    NASA Image and Video Library

    2010-09-27

    CAPE CANAVERAL, Fla. -- A tug boat pulls the Space Shuttle Program's last external fuel tank, ET-122, to the Turn Basin at NASA's Kennedy Space Center in Florida. The tank traveled 900 miles by sea from NASA's Michoud Assembly Facility in New Orleans aboard the Pegasus Barge. Next, the tank will be offloaded and moved to Kennedy's Vehicle Assembly Building where it eventually will be attached to space shuttle Endeavour for the STS-134 mission to the International Space Station. STS-134, targeted to launch in Feb. 2011, currently is scheduled to be the last mission in the Space Shuttle Program. The tank, which is the largest element of the space shuttle stack, was damaged during Hurricane Katrina in August 2005 and restored to flight configuration by Lockheed Martin Space Systems Company employees. Photo credit: NASA/Frankie Martin

  11. KSC-2010-4833

    NASA Image and Video Library

    2010-09-27

    CAPE CANAVERAL, Fla. -- A tug boat pulls the Space Shuttle Program's last external fuel tank, ET-122, toward the Turn Basin at NASA's Kennedy Space Center in Florida. The tank traveled 900 miles by sea from NASA's Michoud Assembly Facility in New Orleans aboard the Pegasus Barge. Next, the tank will be offloaded and moved to Kennedy's Vehicle Assembly Building where it eventually will be attached to space shuttle Endeavour for the STS-134 mission to the International Space Station. STS-134, targeted to launch in Feb. 2011, currently is scheduled to be the last mission in the Space Shuttle Program. The tank, which is the largest element of the space shuttle stack, was damaged during Hurricane Katrina in August 2005 and restored to flight configuration by Lockheed Martin Space Systems Company employees. Photo credit: NASA/Frankie Martin

  12. KSC-2010-4838

    NASA Image and Video Library

    2010-09-27

    CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, the Pegasus Barge, carrying the Space Shuttle Program's last external fuel tank, ET-122, arrives at the Turn Basin. The tank traveled 900 miles by sea from NASA's Michoud Assembly Facility in New Orleans. Next, the tank will be offloaded and moved to Kennedy's Vehicle Assembly Building where it eventually will be attached to space shuttle Endeavour for the STS-134 mission to the International Space Station. STS-134, targeted to launch in Feb. 2011, currently is scheduled to be the last mission in the Space Shuttle Program. The tank, which is the largest element of the space shuttle stack, was damaged during Hurricane Katrina in August 2005 and restored to flight configuration by Lockheed Martin Space Systems Company employees. Photo credit: NASA/Frankie Martin

  13. KSC-2010-4871

    NASA Image and Video Library

    2010-09-27

    CAPE CANAVERAL, Fla. -- A tugboat pulls the Pegasus Barge carrying the Space Shuttle Program's last external fuel tank, ET-122, toward the Turn Basin at NASA's Kennedy Space Center in Florida. The tank traveled 900 miles by sea from NASA's Michoud Assembly Facility in New Orleans. Next, the tank will be offloaded and moved to the Vehicle Assembly Building where it eventually will be attached to space shuttle Endeavour for the STS-134 mission to the International Space Station. STS-134, targeted to launch in Feb. 2011, currently is scheduled to be the last mission in the Space Shuttle Program. The tank, which is the largest element of the space shuttle stack, was damaged during Hurricane Katrina in August 2005 and restored to flight configuration by Lockheed Martin Space Systems Company employees. Photo credit: NASA/Jack Pfaller

  14. KSC-2010-4837

    NASA Image and Video Library

    2010-09-27

    CAPE CANAVERAL, Fla. -- A tug boat pulls the Space Shuttle Program's last external fuel tank, ET-122, toward the Turn Basin at NASA's Kennedy Space Center in Florida. The tank traveled 900 miles by sea from NASA's Michoud Assembly Facility in New Orleans aboard the Pegasus Barge. Next, the tank will be offloaded and moved to Kennedy's Vehicle Assembly Building where it eventually will be attached to space shuttle Endeavour for the STS-134 mission to the International Space Station. STS-134, targeted to launch in Feb., 2011, currently is scheduled to be the last mission in the Space Shuttle Program. The tank, which is the largest element of the space shuttle stack, was damaged during Hurricane Katrina in August 2005 and restored to flight configuration by Lockheed Martin Space Systems Company employees. Photo credit: NASA/Frankie Martin

  15. KSC-2010-4834

    NASA Image and Video Library

    2010-09-27

    CAPE CANAVERAL, Fla. -- A tug boat pulls the Space Shuttle Program's last external fuel tank, ET-122, toward the Turn Basin at NASA's Kennedy Space Center in Florida. The tank traveled 900 miles by sea from NASA's Michoud Assembly Facility in New Orleans aboard the Pegasus Barge. Next, the tank will be offloaded and moved to Kennedy's Vehicle Assembly Building where it eventually will be attached to space shuttle Endeavour for the STS-134 mission to the International Space Station. STS-134, targeted to launch in Feb., 2011, currently is scheduled to be the last mission in the Space Shuttle Program. The tank, which is the largest element of the space shuttle stack, was damaged during Hurricane Katrina in August 2005 and restored to flight configuration by Lockheed Martin Space Systems Company employees. Photo credit: NASA/Frankie Martin

  16. KSC-2010-4835

    NASA Image and Video Library

    2010-09-27

    CAPE CANAVERAL, Fla. -- A tug boat pulls the Space Shuttle Program's last external fuel tank, ET-122, toward the Turn Basin at NASA's Kennedy Space Center in Florida. The tank traveled 900 miles by sea from NASA's Michoud Assembly Facility in New Orleans aboard the Pegasus Barge. Next, the tank will be offloaded and moved to Kennedy's Vehicle Assembly Building where it eventually will be attached to space shuttle Endeavour for the STS-134 mission to the International Space Station. STS-134, targeted to launch in Feb. 2011, currently is scheduled to be the last mission in the Space Shuttle Program. The tank, which is the largest element of the space shuttle stack, was damaged during Hurricane Katrina in August 2005 and restored to flight configuration by Lockheed Martin Space Systems Company employees. Photo credit: NASA/Frankie Martin

  17. Software For Design And Analysis Of Tanks And Cylindrical Shells

    NASA Technical Reports Server (NTRS)

    Luz, Paul L.; Graham, Jerry B.

    1995-01-01

    Skin-stringer Tank Analysis Spreadsheet System (STASS) computer program developed for use as preliminary design software tool that enables quick-turnaround design and analysis of structural domes and cylindrical barrel sections in propellant tanks or other cylindrical shells. Determines minimum required skin thicknesses for domes and cylindrical shells to withstand material failure due to applied pressures (ullage and/or hydrostatic) and runs buckling analyses on cylindrical shells and skin-stringers. Implemented as workbook program, using Microsoft Excel v4.0 on Macintosh II. Also implemented using Microsoft Excel v4.0 for Microsoft Windows v3.1 IBM PC.

  18. 46 CFR 31.10-5 - Inspection of new tank vessels-TB/ALL.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... approved, properly stamped and dated and distributed as follows: One set to owner or builder; one set to....com. (2) For vessels of 100 meters (328 feet) or more in length contracted for on or after September 7... certificate of inspection endorsed as a permit for the carriage of flammable or combustible liquids in bulk...

  19. 76 FR 37346 - Agency Information Collection Activities; Submission to OMB for Review and Approval; Comment...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-27

    ... and have aggregate actual Hazardous Air Pollutants (HAP) emissions of 10 tons or more of HAP, or 25 tons or more of all HAP combined. In addition, these regulations apply reasonably available control... marine tank vessel loading operations (MTVLO) that emit less than 10 tons per year of each individual HAP...

  20. 46 CFR 38.01-3 - Incorporation by reference.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 1 2012-10-01 2012-10-01 false Incorporation by reference. 38.01-3 Section 38.01-3 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS LIQUEFIED FLAMMABLE GASES General § 38.01-3 Incorporation by reference. (a) Certain standards and specifications are incorporated by reference into this part with the approval of the...

  1. 33 CFR 155.1070 - Procedures for plan review, revision, amendment, and appeal.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... REGULATIONS FOR VESSELS Tank Vessel Response Plans for Oil § 155.1070 Procedures for plan review, revision, amendment, and appeal. (a) A vessel response plan must be reviewed annually by the owner or operator. (1... of this part must be submitted. (c) Revisions or amendments to an approved response plan must be...

  2. 33 CFR 155.1070 - Procedures for plan review, revision, amendment, and appeal.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... REGULATIONS FOR VESSELS Tank Vessel Response Plans for Oil § 155.1070 Procedures for plan review, revision, amendment, and appeal. (a) A vessel response plan must be reviewed annually by the owner or operator. (1... “Application for Approval/Revision of Vessel Pollution Response Plans” (CG-6083) located at: http://www.uscg...

  3. 33 CFR 155.1070 - Procedures for plan review, revision, amendment, and appeal.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... REGULATIONS FOR VESSELS Tank Vessel Response Plans for Oil § 155.1070 Procedures for plan review, revision, amendment, and appeal. (a) A vessel response plan must be reviewed annually by the owner or operator. (1... of this part must be submitted. (c) Revisions or amendments to an approved response plan must be...

  4. 33 CFR 155.1070 - Procedures for plan review, revision, amendment, and appeal.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... REGULATIONS FOR VESSELS Tank Vessel Response Plans for Oil § 155.1070 Procedures for plan review, revision, amendment, and appeal. (a) A vessel response plan must be reviewed annually by the owner or operator. (1... of this part must be submitted. (c) Revisions or amendments to an approved response plan must be...

  5. 33 CFR 155.1070 - Procedures for plan review, revision, amendment, and appeal.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... REGULATIONS FOR VESSELS Tank Vessel Response Plans for Oil § 155.1070 Procedures for plan review, revision, amendment, and appeal. (a) A vessel response plan must be reviewed annually by the owner or operator. (1... of this part must be submitted. (c) Revisions or amendments to an approved response plan must be...

  6. 46 CFR 32.55-1 - Ventilation of tank vessels constructed on or after July 1, 1951-TB/ALL.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... VESSELS SPECIAL EQUIPMENT, MACHINERY, AND HULL REQUIREMENTS Ventilation and Venting § 32.55-1 Ventilation... means of ventilation. (b) Compartments containing machinery where sources of vapor ignition are normally... approved for this purpose. Machinery spaces below the freeboard deck, in which fuels with flash point of...

  7. 46 CFR 32.55-1 - Ventilation of tank vessels constructed on or after July 1, 1951-TB/ALL.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... VESSELS SPECIAL EQUIPMENT, MACHINERY, AND HULL REQUIREMENTS Ventilation and Venting § 32.55-1 Ventilation... means of ventilation. (b) Compartments containing machinery where sources of vapor ignition are normally... approved for this purpose. Machinery spaces below the freeboard deck, in which fuels with flash point of...

  8. 46 CFR 32.55-1 - Ventilation of tank vessels constructed on or after July 1, 1951-TB/ALL.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... VESSELS SPECIAL EQUIPMENT, MACHINERY, AND HULL REQUIREMENTS Ventilation and Venting § 32.55-1 Ventilation... means of ventilation. (b) Compartments containing machinery where sources of vapor ignition are normally... approved for this purpose. Machinery spaces below the freeboard deck, in which fuels with flash point of...

  9. 46 CFR 32.55-1 - Ventilation of tank vessels constructed on or after July 1, 1951-TB/ALL.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... VESSELS SPECIAL EQUIPMENT, MACHINERY, AND HULL REQUIREMENTS Ventilation and Venting § 32.55-1 Ventilation... means of ventilation. (b) Compartments containing machinery where sources of vapor ignition are normally... approved for this purpose. Machinery spaces below the freeboard deck, in which fuels with flash point of...

  10. 46 CFR 32.55-1 - Ventilation of tank vessels constructed on or after July 1, 1951-TB/ALL.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... VESSELS SPECIAL EQUIPMENT, MACHINERY, AND HULL REQUIREMENTS Ventilation and Venting § 32.55-1 Ventilation... means of ventilation. (b) Compartments containing machinery where sources of vapor ignition are normally... approved for this purpose. Machinery spaces below the freeboard deck, in which fuels with flash point of...

  11. 50 CFR 15.26 - Approval of cooperative breeding programs.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... WILDLIFE AND PLANTS WILD BIRD CONSERVATION ACT Permits and Approval of Cooperative Breeding Programs § 15.26 Approval of cooperative breeding programs. Upon receipt of a complete application, the Director... 50 Wildlife and Fisheries 1 2011-10-01 2011-10-01 false Approval of cooperative breeding programs...

  12. External Tank Program - Legacy of Success

    NASA Technical Reports Server (NTRS)

    Pilet, Jeffery C.; Diecidue-Conners, Dawn; Worden, Michelle; Guillot, Michelle; Welzyn, Kenneth

    2011-01-01

    The largest single element of Space Shuttle is the External Tank (ET), which serves as the structural backbone of the vehicle during ascent and provides liquid propellants to the Orbiter s three Main Engines. The ET absorbs most of the seven million pounds of thrust exerted by the Solid Rocket Boosters and Main Engines. The design evolved through several block changes, reducing weight each time. Because the tank flies to orbital velocity with the Space Shuttle Orbiter, minimization of weight is mandatory, to maximize payload performance. The initial configuration, the standard weight tank, weighed 76,000 pounds and was an aluminum 2219 structure. The light weight tank weighed 66,000 pounds and flew 86 missions. The super light weight tank weighed 58,500 pounds and was primarily an aluminum-lithium structure. The final configuration and low weight enabled system level performance sufficient for assembly of the International Space Station in a high inclination orbit, vital for international cooperation. Another significant challenge was the minimization of ice formation on the cryogenic tanks. This was essential due to the system configuration and the choice of ceramic thermal protection system materials on the Orbiter. Ice would have been a major debris hazard. Spray on foam insulation materials served multiple functions including thermal insulation, conditioning of cryogenic propellants, and thermal protection for the tank structure during ascent and entry. The tank is large, and unique manufacturing facilities, tooling, and handling, and transportation operations were developed. Weld processes and tooling evolved with the design as it matured through several block changes. Non Destructive Evaluation methods were used to assure integrity of welds and thermal protection system materials. The aluminum-lithium alloy was used near the end of the program and weld processes and weld repair techniques had to be refined. Development and implementation of friction stir welding was a substantial technology development incorporated during the Program. Automated thermal protection system application processes were developed for the majority of the tank surface. Material obsolescence was an issue throughout the multi-decade program. Process controls were implemented to assure cleanliness in the production environment, to control contaminants, and to preclude corrosion. Each tank was accepted via rigorous inspections, including non-destructive evaluation techniques, proof testing, and all systems testing. In the post STS-107 era, the project focused on ascent debris risk reduction. This was accomplished via stringent process controls, post flight assessment using substantially improved imagery, and selective redesigns. These efforts were supported with a number of test programs to simulate combined environments. The debris risk was reduced by two orders of magnitude. During this time a major natural disaster was overcome when hurricane Katrina damaged the manufacturing facility. Numerous lessons from these efforts, the manufacturing and material processing issues, the key design features, and evolution of the design will be discussed.

  13. Elastomers for Tracked Vehicles: 1980-1997 Program to Improve Durability of Rubber Tank Pads for Army Tracked Vehicles

    DTIC Science & Technology

    2015-06-01

    10. Vanderbilt RT. The Vanderbilt rubber handbook . Babbit RO, editor. Norwalk (CT): RT Vanderbilt Company; 1990. 11. Loo CT. High temperature...Elastomers for Tracked Vehicles: 1980–1997 Program to Improve Durability of Rubber Tank Pads for Army Tracked Vehicles by David P Flanagan...Proving Ground, MD 21005-5069 ARL-TR-7331 June 2015 Elastomers for Tracked Vehicles: 1980–1997 Program to Improve Durability of Rubber

  14. KSC-2012-3049

    NASA Image and Video Library

    2012-05-23

    CAPE CANAVERAL, Fla. – NASA Railroad locomotive No. 3 delivers tank cars from NASA’s Kennedy Space Center in Florida to the Florida East Coast Railway interchange in Titusville, Fla. The locomotive is one of three NASA Railroad locomotives built for the Toledo, Peoria and Western, or TP&W, between 1968 and 1970. It is a GM Electromotive Division SW-1500 switcher. The locomotive was acquired by NASA from the TP&W in 1984 and painted in the NASA Railroad paint scheme. The power plant was completely overhauled in 2009. The locomotive will pull the train to the interchange in Titusville, where the train’s helium tank cars, a liquid oxygen tank car, and a liquid hydrogen dewar or tank car will be transferred for delivery to the SpaceX engine test complex outside McGregor, Texas. The railroad cars were needed in support of the Space Shuttle Program but currently are not in use by NASA following the completion of the program in 2011. Originally, the tankers belonged to the U.S. Bureau of Mines. At the peak of the shuttle program, there were approximately 30 cars in the fleet. About half the cars were returned to the bureau as launch activity diminished. Five tank cars are being loaned to SpaceX and repurposed to support their engine tests in Texas. Eight cars previously were shipped to California on loan to support the SpaceX Falcon 9 rocket launches from Space Launch Complex-4 on Vandenberg Air Force Base. SpaceX already has three helium tank cars previously used for the shuttle program at Space Launch Complex-40 on Cape Canaveral Air Force Station in Florida. For more information, visit http://www.nasa.gov/spacex. Photo credit: NASA/Jim Grossmann

  15. KSC-2012-3031a

    NASA Image and Video Library

    2012-05-23

    CAPE CANAVERAL, Fla. – NASA Railroad locomotive No. 3 is enlisted to deliver tank cars from NASA’s Kennedy Space Center in Florida to the Florida East Coast Railway interchange in Titusville, Fla. The locomotive is one of three NASA Railroad locomotives built for the Toledo, Peoria and Western, or TP&W, between 1968 and 1970. It is a GM Electromotive Division SW-1500 switcher. The locomotive was acquired by NASA from the TP&W in 1984 and painted in the NASA Railroad paint scheme. The power plant was completely overhauled in 2009. The locomotive will pull the train to the interchange in Titusville, where the train’s helium tank cars, a liquid oxygen tank car, and a liquid hydrogen dewar or tank car will be transferred for delivery to the SpaceX engine test complex outside McGregor, Texas. The railroad cars were needed in support of the Space Shuttle Program but currently are not in use by NASA following the completion of the program in 2011. Originally, the tankers belonged to the U.S. Bureau of Mines. At the peak of the shuttle program, there were approximately 30 cars in the fleet. About half the cars were returned to the bureau as launch activity diminished. Five tank cars are being loaned to SpaceX and repurposed to support their engine tests in Texas. Eight cars previously were shipped to California on loan to support the SpaceX Falcon 9 rocket launches from Space Launch Complex-4 on Vandenberg Air Force Base. SpaceX already has three helium tank cars previously used for the shuttle program at Space Launch Complex-40 on Cape Canaveral Air Force Station in Florida. For more information, visit http://www.nasa.gov/spacex. Photo credit: NASA/Jim Grossmann

  16. KSC-2012-3048

    NASA Image and Video Library

    2012-05-23

    CAPE CANAVERAL, Fla. – NASA Railroad locomotive No. 3 delivers tank cars from NASA’s Kennedy Space Center in Florida to the Florida East Coast Railway interchange in Titusville, Fla. The locomotive is one of three NASA Railroad locomotives built for the Toledo, Peoria and Western, or TP&W, between 1968 and 1970. It is a GM Electromotive Division SW-1500 switcher. The locomotive was acquired by NASA from the TP&W in 1984 and painted in the NASA Railroad paint scheme. The power plant was completely overhauled in 2009. The locomotive will pull the train to the interchange in Titusville, where the train’s helium tank cars, a liquid oxygen tank car, and a liquid hydrogen dewar or tank car will be transferred for delivery to the SpaceX engine test complex outside McGregor, Texas. The railroad cars were needed in support of the Space Shuttle Program but currently are not in use by NASA following the completion of the program in 2011. Originally, the tankers belonged to the U.S. Bureau of Mines. At the peak of the shuttle program, there were approximately 30 cars in the fleet. About half the cars were returned to the bureau as launch activity diminished. Five tank cars are being loaned to SpaceX and repurposed to support their engine tests in Texas. Eight cars previously were shipped to California on loan to support the SpaceX Falcon 9 rocket launches from Space Launch Complex-4 on Vandenberg Air Force Base. SpaceX already has three helium tank cars previously used for the shuttle program at Space Launch Complex-40 on Cape Canaveral Air Force Station in Florida. For more information, visit http://www.nasa.gov/spacex. Photo credit: NASA/Jim Grossmann

  17. Hanford Immobilized Low Activity Waste (ILAW) Performance Assessment 2001 Version [Formerly DOE/RL-97-69] [SEC 1 & 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    MANN, F.M.

    2000-08-01

    The Hanford Immobilized Low-Activity Waste Performance Assessment examines the long-term environmental and human health effects associated with the planned disposal of the vitrified low-activity fraction of waste presently contained in Hanford Site tanks. The tank waste is the byproduct of separating special nuclear materials from irradiated nuclear fuels over the past 50 years. This waste is stored in underground single- and double-shell tanks. The tank waste is to be retrieved, separated into low-activity and high-level fractions, and then immobilized by vitrification. The US. Department of Energy (DOE) plans to dispose of the low-activity fraction in the Hanford Site 200 Eastmore » Area. The high-level fraction will be stored at the Hanford Site until a national repository is approved. This report provides the site-specific long-term environmental information needed by the DOE to modify the current Disposal Authorization Statement for the Hanford Site that would allow the following: construction of disposal trenches; and filling of these trenches with ILAW containers and filler material with the intent to dispose of the containers.« less

  18. Foam-machining tool with eddy-current transducer

    NASA Technical Reports Server (NTRS)

    Copper, W. P.

    1975-01-01

    Three-cutter machining system for foam-covered tanks incorporates eddy-current sensor. Sensor feeds signal to numerical controller which programs rotational and vertical axes of sensor travel, enabling cutterhead to profile around tank protrusions.

  19. KSC-2010-4843

    NASA Image and Video Library

    2010-09-27

    CAPE CANAVERAL, Fla. -- Freedom Star, one of NASA's solid rocket booster retrieval ships, pulls the Space Shuttle Program's last external fuel tank, ET-122, toward NASA's Kennedy Space Center in Florida. The tank traveled 900 miles by sea from NASA's Michoud Assembly Facility in New Orleans aboard the Pegasus Barge. After reaching the Turn Basin at Kennedy, the tank will be offloaded and moved to the Vehicle Assembly Building where it eventually will be attached to space shuttle Endeavour for the STS-134 mission to the International Space Station. STS-134, targeted to launch in Feb. 2011, currently is scheduled to be the last mission in the Space Shuttle Program. The tank, which is the largest element of the space shuttle stack, was damaged during Hurricane Katrina in August 2005 and restored to flight configuration by Lockheed Martin Space Systems Company employees. Photo credit: NASA/Jack Pfaller

  20. KSC-2010-4850

    NASA Image and Video Library

    2010-09-27

    CAPE CANAVERAL, Fla. -- Freedom Star, one of NASA's solid rocket booster retrieval ships, pulls the Space Shuttle Program's last external fuel tank, ET-122, toward NASA's Kennedy Space Center in Florida. The tank traveled 900 miles by sea from NASA's Michoud Assembly Facility in New Orleans aboard the Pegasus Barge. After reaching the Turn Basin at Kennedy, the tank will be offloaded and moved to the Vehicle Assembly Building where it eventually will be attached to space shuttle Endeavour for the STS-134 mission to the International Space Station. STS-134, targeted to launch in Feb. 2011, currently is scheduled to be the last mission in the Space Shuttle Program. The tank, which is the largest element of the space shuttle stack, was damaged during Hurricane Katrina in August 2005 and restored to flight configuration by Lockheed Martin Space Systems Company employees. Photo credit: NASA/Kim Shiflett

  1. KSC-2010-4846

    NASA Image and Video Library

    2010-09-27

    CAPE CANAVERAL, Fla. -- Freedom Star, one of NASA's solid rocket booster retrieval ships, pulls the Space Shuttle Program's last external fuel tank, ET-122, toward NASA's Kennedy Space Center in Florida. The tank traveled 900 miles by sea from NASA's Michoud Assembly Facility in New Orleans aboard the Pegasus Barge. After reaching the Turn Basin at Kennedy, the tank will be offloaded and moved to the Vehicle Assembly Building where it eventually will be attached to space shuttle Endeavour for the STS-134 mission to the International Space Station. STS-134, targeted to launch in Feb. 2011, currently is scheduled to be the last mission in the Space Shuttle Program. The tank, which is the largest element of the space shuttle stack, was damaged during Hurricane Katrina in August 2005 and restored to flight configuration by Lockheed Martin Space Systems Company employees. Photo credit: NASA/Jack Pfaller

  2. KSC-2010-4830

    NASA Image and Video Library

    2010-09-27

    CAPE CANAVERAL, Fla. -- Freedom Star, one of NASA's solid rocket booster retrieval ships, ushers the Space Shuttle Program's last external fuel tank, ET-122, toward NASA's Kennedy Space Center in Florida. The tank traveled 900 miles by sea from NASA's Michoud Assembly Facility in New Orleans aboard the Pegasus Barge. After reaching the Turn Basin at Kennedy, the tank will be offloaded and moved to the Vehicle Assembly Building where it eventually will be attached to space shuttle Endeavour for the STS-134 mission to the International Space Station. STS-134, targeted to launch in Feb. 2011, currently is scheduled to be the last mission in the Space Shuttle Program. The tank, which is the largest element of the space shuttle stack, was damaged during Hurricane Katrina in August 2005 and restored to flight configuration by Lockheed Martin Space Systems Company employees. Photo credit: NASA/Frankie Martin

  3. KSC-2010-4853

    NASA Image and Video Library

    2010-09-27

    CAPE CANAVERAL, Fla. -- Freedom Star, one of NASA's solid rocket booster retrieval ships, pulls the Space Shuttle Program's last external fuel tank, ET-122, toward NASA's Kennedy Space Center in Florida. The tank traveled 900 miles by sea from NASA's Michoud Assembly Facility in New Orleans aboard the Pegasus Barge. After reaching the Turn Basin at Kennedy, the tank will be offloaded and moved to the Vehicle Assembly Building where it eventually will be attached to space shuttle Endeavour for the STS-134 mission to the International Space Station. STS-134, targeted to launch in Feb. 2011, currently is scheduled to be the last mission in the Space Shuttle Program. The tank, which is the largest element of the space shuttle stack, was damaged during Hurricane Katrina in August 2005 and restored to flight configuration by Lockheed Martin Space Systems Company employees. Photo credit: NASA/Kim Shiflett

  4. KSC-2010-4856

    NASA Image and Video Library

    2010-09-27

    CAPE CANAVERAL, Fla. -- NASA's Pegasus barge moves through the bridge at Port Canaveral, Fla. The barge is carrying the Space Shuttle Program's last external fuel tank, ET-122, toward NASA's Kennedy Space Center in Florida. The tank traveled 900 miles by sea from NASA's Michoud Assembly Facility in New Orleans. After reaching the Turn Basin at Kennedy, the tank will be offloaded and moved to the Vehicle Assembly Building where it eventually will be attached to space shuttle Endeavour for the STS-134 mission to the International Space Station. STS-134, targeted to launch in Feb. 2011, currently is scheduled to be the last mission in the Space Shuttle Program. The tank, which is the largest element of the space shuttle stack, was damaged during Hurricane Katrina in August 2005 and restored to flight configuration by Lockheed Martin Space Systems Company employees. Photo credit: NASA/Kim Shiflett

  5. KSC-2010-4829

    NASA Image and Video Library

    2010-09-27

    CAPE CANAVERAL, Fla. -- Freedom Star, one of NASA's solid rocket booster retrieval ships, ushers the Space Shuttle Program's last external fuel tank, ET-122, toward NASA's Kennedy Space Center in Florida. The tank traveled 900 miles by sea from NASA's Michoud Assembly Facility in New Orleans aboard the Pegasus Barge. After reaching the Turn Basin at Kennedy, the tank will be offloaded and moved to the Vehicle Assembly Building where it eventually will be attached to space shuttle Endeavour for the STS-134 mission to the International Space Station. STS-134, targeted to launch in Feb. 2011, currently is scheduled to be the last mission in the Space Shuttle Program. The tank, which is the largest element of the space shuttle stack, was damaged during Hurricane Katrina in August 2005 and restored to flight configuration by Lockheed Martin Space Systems Company employees. Photo credit: NASA/Frankie Martin

  6. KSC-2010-4845

    NASA Image and Video Library

    2010-09-27

    CAPE CANAVERAL, Fla. -- Freedom Star, one of NASA's solid rocket booster retrieval ships, pulls the Space Shuttle Program's last external fuel tank, ET-122, toward NASA's Kennedy Space Center in Florida. The tank traveled 900 miles by sea from NASA's Michoud Assembly Facility in New Orleans aboard the Pegasus Barge. After reaching the Turn Basin at Kennedy, the tank will be offloaded and moved to the Vehicle Assembly Building where it eventually will be attached to space shuttle Endeavour for the STS-134 mission to the International Space Station. STS-134, targeted to launch in Feb. 2011, currently is scheduled to be the last mission in the Space Shuttle Program. The tank, which is the largest element of the space shuttle stack, was damaged during Hurricane Katrina in August 2005 and restored to flight configuration by Lockheed Martin Space Systems Company employees. Photo credit: NASA/Jack Pfaller

  7. Internally insulated thermal storage system development program

    NASA Technical Reports Server (NTRS)

    Scott, O. L.

    1980-01-01

    A cost effective thermal storage system for a solar central receiver power system using molten salt stored in internally insulated carbon steel tanks is described. Factors discussed include: testing of internal insulation materials in molten salt; preliminary design of storage tanks, including insulation and liner installation; optimization of the storage configuration; and definition of a subsystem research experiment to demonstrate the system. A thermal analytical model and analysis of a thermocline tank was performed. Data from a present thermocline test tank was compared to gain confidence in the analytical approach. A computer analysis of the various storage system parameters (insulation thickness, number of tanks, tank geometry, etc.,) showed that (1) the most cost-effective configuration was a small number of large cylindrical tanks, and (2) the optimum is set by the mechanical constraints of the system, such as soil bearing strength and tank hoop stress, not by the economics.

  8. Internally insulated thermal storage system development program

    NASA Astrophysics Data System (ADS)

    Scott, O. L.

    1980-03-01

    A cost effective thermal storage system for a solar central receiver power system using molten salt stored in internally insulated carbon steel tanks is described. Factors discussed include: testing of internal insulation materials in molten salt; preliminary design of storage tanks, including insulation and liner installation; optimization of the storage configuration; and definition of a subsystem research experiment to demonstrate the system. A thermal analytical model and analysis of a thermocline tank was performed. Data from a present thermocline test tank was compared to gain confidence in the analytical approach. A computer analysis of the various storage system parameters (insulation thickness, number of tanks, tank geometry, etc.,) showed that (1) the most cost-effective configuration was a small number of large cylindrical tanks, and (2) the optimum is set by the mechanical constraints of the system, such as soil bearing strength and tank hoop stress, not by the economics.

  9. Alternative Fuels Data Center: Propane Tank Overfill Safety Advisory

    Science.gov Websites

    rises above set safe levels. However, even if conditions result in a fuel release, an ignition source vehicle tanks are all equipped with PRDs to ensure safe levels of LPG pressure in the tanks, and we are practices for OPDs to ensure they work properly. The US DOE Clean Cities (DOE-CC) program is working with

  10. 7 CFR 205.622 - Review of approved State organic programs.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ...) ORGANIC FOODS PRODUCTION ACT PROVISIONS NATIONAL ORGANIC PROGRAM Administrative State Organic Programs § 205.622 Review of approved State organic programs. The Secretary will review a State organic program... 7 Agriculture 3 2010-01-01 2010-01-01 false Review of approved State organic programs. 205.622...

  11. KSC-2012-3038a

    NASA Image and Video Library

    2012-05-23

    CAPE CANAVERAL, Fla. – A NASA Railroad train passes in front of the 525-foot-tall Vehicle Assembly Building, left, and the twin bays of the Orbiter Processing Facility, right, at NASA’s Kennedy Space Center in Florida. The train is on its way to the Florida East Coast Railway interchange in Titusville, Fla., where the train’s helium tank cars, a liquid oxygen tank car, and a liquid hydrogen dewar or tank car will be transferred for delivery to the SpaceX engine test complex outside McGregor, Texas. The railroad cars were needed in support of the Space Shuttle Program but currently are not in use by NASA following the completion of the program in 2011. Originally, the tankers belonged to the U.S. Bureau of Mines. At the peak of the shuttle program, there were approximately 30 cars in the fleet. About half the cars were returned to the bureau as launch activity diminished. Five tank cars are being loaned to SpaceX and repurposed to support their engine tests in Texas. Eight cars previously were shipped to California on loan to support the SpaceX Falcon 9 rocket launches from Space Launch Complex-4 on Vandenberg Air Force Base. SpaceX already has three helium tank cars previously used for the shuttle program at Space Launch Complex-40 on Cape Canaveral Air Force Station in Florida. For more information, visit http://www.nasa.gov/spacex. Photo credit: NASA/Jim Grossmann

  12. KSC-2012-3046

    NASA Image and Video Library

    2012-05-23

    CAPE CANAVERAL, Fla. – A manatee relaxes in the Indian River near the NASA Railroad’s Jay Jay Railroad Bridge north of Launch Complex 39 at NASA’s Kennedy Space Center in Florida. The manatee was spotted by a cameraman on hand to photograph a NASA Railroad train on its way to the Florida East Coast Railway interchange in Titusville, Fla., where the train’s helium tank cars, a liquid oxygen tank car, and a liquid hydrogen dewar or tank car will be transferred for delivery to the SpaceX engine test complex outside McGregor, Texas. The railroad cars were needed in support of the Space Shuttle Program but currently are not in use by NASA following the completion of the program in 2011. Originally, the tankers belonged to the U.S. Bureau of Mines. At the peak of the shuttle program, there were approximately 30 cars in the fleet. About half the cars were returned to the bureau as launch activity diminished. Five tank cars are being loaned to SpaceX and repurposed to support their engine tests in Texas. Eight cars previously were shipped to California on loan to support the SpaceX Falcon 9 rocket launches from Space Launch Complex-4 on Vandenberg Air Force Base. SpaceX already has three helium tank cars previously used for the shuttle program at Space Launch Complex-40 on Cape Canaveral Air Force Station in Florida. For more information, visit http://www.nasa.gov/spacex. Photo credit: NASA/Jim Grossmann

  13. KSC-2012-3044

    NASA Image and Video Library

    2012-05-23

    CAPE CANAVERAL, Fla. – A manatee relaxes in the Indian River near the NASA Railroad’s Jay Jay Railroad Bridge north of Launch Complex 39 at NASA’s Kennedy Space Center in Florida. The manatee was spotted by a cameraman on hand to photograph a NASA Railroad train on its way to the Florida East Coast Railway interchange in Titusville, Fla., where the train’s helium tank cars, a liquid oxygen tank car, and a liquid hydrogen dewar or tank car will be transferred for delivery to the SpaceX engine test complex outside McGregor, Texas. The railroad cars were needed in support of the Space Shuttle Program but currently are not in use by NASA following the completion of the program in 2011. Originally, the tankers belonged to the U.S. Bureau of Mines. At the peak of the shuttle program, there were approximately 30 cars in the fleet. About half the cars were returned to the bureau as launch activity diminished. Five tank cars are being loaned to SpaceX and repurposed to support their engine tests in Texas. Eight cars previously were shipped to California on loan to support the SpaceX Falcon 9 rocket launches from Space Launch Complex-4 on Vandenberg Air Force Base. SpaceX already has three helium tank cars previously used for the shuttle program at Space Launch Complex-40 on Cape Canaveral Air Force Station in Florida. For more information, visit http://www.nasa.gov/spacex. Photo credit: NASA/Jim Grossmann

  14. KSC-2012-3037a

    NASA Image and Video Library

    2012-05-23

    CAPE CANAVERAL, Fla. – A NASA Railroad train passes in front of the 525-foot-tall Vehicle Assembly Building, left, and the twin bays of the Orbiter Processing Facility, right, at NASA’s Kennedy Space Center in Florida. The train is on its way to the Florida East Coast Railway interchange in Titusville, Fla., where the train’s helium tank cars, a liquid oxygen tank car, and a liquid hydrogen dewar or tank car will be transferred for delivery to the SpaceX engine test complex outside McGregor, Texas. The railroad cars were needed in support of the Space Shuttle Program but currently are not in use by NASA following the completion of the program in 2011. Originally, the tankers belonged to the U.S. Bureau of Mines. At the peak of the shuttle program, there were approximately 30 cars in the fleet. About half the cars were returned to the bureau as launch activity diminished. Five tank cars are being loaned to SpaceX and repurposed to support their engine tests in Texas. Eight cars previously were shipped to California on loan to support the SpaceX Falcon 9 rocket launches from Space Launch Complex-4 on Vandenberg Air Force Base. SpaceX already has three helium tank cars previously used for the shuttle program at Space Launch Complex-40 on Cape Canaveral Air Force Station in Florida. For more information, visit http://www.nasa.gov/spacex. Photo credit: NASA/Jim Grossmann

  15. KSC-2012-3043

    NASA Image and Video Library

    2012-05-23

    CAPE CANAVERAL, Fla. – A manatee swims in the Indian River near the NASA Railroad’s Jay Jay Railroad Bridge north of Launch Complex 39 at NASA’s Kennedy Space Center in Florida. The manatee was spotted by a cameraman on hand to photograph a NASA Railroad train on its way to the Florida East Coast Railway interchange in Titusville, Fla., where the train’s helium tank cars, a liquid oxygen tank car, and a liquid hydrogen dewar or tank car will be transferred for delivery to the SpaceX engine test complex outside McGregor, Texas. The railroad cars were needed in support of the Space Shuttle Program but currently are not in use by NASA following the completion of the program in 2011. Originally, the tankers belonged to the U.S. Bureau of Mines. At the peak of the shuttle program, there were approximately 30 cars in the fleet. About half the cars were returned to the bureau as launch activity diminished. Five tank cars are being loaned to SpaceX and repurposed to support their engine tests in Texas. Eight cars previously were shipped to California on loan to support the SpaceX Falcon 9 rocket launches from Space Launch Complex-4 on Vandenberg Air Force Base. SpaceX already has three helium tank cars previously used for the shuttle program at Space Launch Complex-40 on Cape Canaveral Air Force Station in Florida. For more information, visit http://www.nasa.gov/spacex. Photo credit: NASA/Jim Grossmann

  16. KSC-2012-3045

    NASA Image and Video Library

    2012-05-23

    CAPE CANAVERAL, Fla. – Manatees relax in the Indian River near the NASA Railroad’s Jay Jay Railroad Bridge north of Launch Complex 39 at NASA’s Kennedy Space Center in Florida. The manatees were spotted by a cameraman on hand to photograph a NASA Railroad train on its way to the Florida East Coast Railway interchange in Titusville, Fla., where the train’s helium tank cars, a liquid oxygen tank car, and a liquid hydrogen dewar or tank car will be transferred for delivery to the SpaceX engine test complex outside McGregor, Texas. The railroad cars were needed in support of the Space Shuttle Program but currently are not in use by NASA following the completion of the program in 2011. Originally, the tankers belonged to the U.S. Bureau of Mines. At the peak of the shuttle program, there were approximately 30 cars in the fleet. About half the cars were returned to the bureau as launch activity diminished. Five tank cars are being loaned to SpaceX and repurposed to support their engine tests in Texas. Eight cars previously were shipped to California on loan to support the SpaceX Falcon 9 rocket launches from Space Launch Complex-4 on Vandenberg Air Force Base. SpaceX already has three helium tank cars previously used for the shuttle program at Space Launch Complex-40 on Cape Canaveral Air Force Station in Florida. For more information, visit http://www.nasa.gov/spacex. Photo credit: NASA/Jim Grossmann

  17. KSC-2012-3040a

    NASA Image and Video Library

    2012-05-23

    CAPE CANAVERAL, Fla. – Bubbles form around a dolphin splashing in the Indian River near the NASA Railroad’s Jay Jay Railroad Bridge north of Launch Complex 39 at NASA’s Kennedy Space Center in Florida. The dolphin was spotted by a cameraman on hand to photograph a NASA Railroad train on its way to the Florida East Coast Railway interchange in Titusville, Fla., where the train’s helium tank cars, a liquid oxygen tank car, and a liquid hydrogen dewar or tank car will be transferred for delivery to the SpaceX engine test complex outside McGregor, Texas. The railroad cars were needed in support of the Space Shuttle Program but currently are not in use by NASA following the completion of the program in 2011. Originally, the tankers belonged to the U.S. Bureau of Mines. At the peak of the shuttle program, there were approximately 30 cars in the fleet. About half the cars were returned to the bureau as launch activity diminished. Five tank cars are being loaned to SpaceX and repurposed to support their engine tests in Texas. Eight cars previously were shipped to California on loan to support the SpaceX Falcon 9 rocket launches from Space Launch Complex-4 on Vandenberg Air Force Base. SpaceX already has three helium tank cars previously used for the shuttle program at Space Launch Complex-40 on Cape Canaveral Air Force Station in Florida. For more information, visit http://www.nasa.gov/spacex. Photo credit: NASA/Jim Grossmann

  18. KSC-2012-3041a

    NASA Image and Video Library

    2012-05-23

    CAPE CANAVERAL, Fla. – A dolphin plays in the Indian River near the NASA Railroad’s Jay Jay Railroad Bridge north of Launch Complex 39 at NASA’s Kennedy Space Center in Florida. The dolphin was spotted by a cameraman on hand to photograph a NASA Railroad train on its way to the Florida East Coast Railway interchange in Titusville, Fla., where the train’s helium tank cars, a liquid oxygen tank car, and a liquid hydrogen dewar or tank car will be transferred for delivery to the SpaceX engine test complex outside McGregor, Texas. The railroad cars were needed in support of the Space Shuttle Program but currently are not in use by NASA following the completion of the program in 2011. Originally, the tankers belonged to the U.S. Bureau of Mines. At the peak of the shuttle program, there were approximately 30 cars in the fleet. About half the cars were returned to the bureau as launch activity diminished. Five tank cars are being loaned to SpaceX and repurposed to support their engine tests in Texas. Eight cars previously were shipped to California on loan to support the SpaceX Falcon 9 rocket launches from Space Launch Complex-4 on Vandenberg Air Force Base. SpaceX already has three helium tank cars previously used for the shuttle program at Space Launch Complex-40 on Cape Canaveral Air Force Station in Florida. For more information, visit http://www.nasa.gov/spacex. Photo credit: NASA/Jim Grossmann

  19. KSC-2012-3042

    NASA Image and Video Library

    2012-05-23

    CAPE CANAVERAL, Fla. – A dolphin swims in the Indian River near the NASA Railroad’s Jay Jay Railroad Bridge north of Launch Complex 39 at NASA’s Kennedy Space Center in Florida. The dolphin was spotted by a cameraman on hand to photograph a NASA Railroad train on its way to the Florida East Coast Railway interchange in Titusville, Fla., where the train’s helium tank cars, a liquid oxygen tank car, and a liquid hydrogen dewar or tank car will be transferred for delivery to the SpaceX engine test complex outside McGregor, Texas. The railroad cars were needed in support of the Space Shuttle Program but currently are not in use by NASA following the completion of the program in 2011. Originally, the tankers belonged to the U.S. Bureau of Mines. At the peak of the shuttle program, there were approximately 30 cars in the fleet. About half the cars were returned to the bureau as launch activity diminished. Five tank cars are being loaned to SpaceX and repurposed to support their engine tests in Texas. Eight cars previously were shipped to California on loan to support the SpaceX Falcon 9 rocket launches from Space Launch Complex-4 on Vandenberg Air Force Base. SpaceX already has three helium tank cars previously used for the shuttle program at Space Launch Complex-40 on Cape Canaveral Air Force Station in Florida. For more information, visit http://www.nasa.gov/spacex. Photo credit: NASA/Jim Grossmann

  20. KSC-2010-4748

    NASA Image and Video Library

    2010-09-20

    NEW ORLEANS -- The Space Shuttle Program's last external fuel tank, ET-122, is loaded onto the Pegasus Barge at NASA's Michoud Assembly Facility in New Orleans. The tank will travel 900 miles to NASA's Kennedy Space Center in Florida where it will be integrated to space shuttle Endeavour for the STS-134 mission to the International Space Station. STS-134, targeted to launch in 2011, currently is scheduled to be the last mission in the Space Shuttle Program. The tank, which is the largest element of the space shuttle stack, was damaged during Hurricane Katrina in August 2005 and restored to flight configuration by Lockheed Martin Space Systems Company employees. Photo credit: NASA/Kim Shiflett

Top