Sample records for tank st-up flow

  1. Results from the Water Flow Test of the Tank 37 Backflush Valve

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fowley, M.D.

    2002-11-01

    A flow test was conducted in the Thermal Fluids Lab with the Tank 37 Backflush Valve to determine the pressure drop of water flow through the material transfer port. The flow rate was varied from 0 to 100 gpm. The pressure drop through the Backflush Valve for flow rates of 20 and 70 gpm was determined to be 0.18 and 1.77 feet of H2O, respectively. An equivalent length of the Backflush Valve was derived from the flow test data. The equivalent length was used in a head loss calculation for the Tank 37 Gravity Drain Line. The calculation estimated themore » flow rate that would fill the line up to the Separator Tank, and the additional flow rate that would fill the Separator Tank. The viscosity of the fluid used in the calculation was 12 centipoise. Two specific gravities were investigated, 1.4 and 1.8. The Gravity Drain Line was assumed to be clean, unobstructed stainless steel pipe. The flow rate that would fill the line up to the Separator Tank was 73 and 75 gpm for the 1.4 or 1.8 specific gravity fluids, respectively. The flow rate that would fill the Separator Tank was 96 and 100 gpm for the 1.4 or 1.8 specific gravity fluids, respectively. These results indicate that concentrate will not back up into the Separator Tank during evaporator normal operation, 15-25 gpm, or pot liftout, 70 gpm. A noteworthy observation during the flow test was water pouring from the holes in the catheterization tube. Water poured from the holes at 25 gpm and above. Data from the water flow test indicates that at 25 gpm the pressure drop through the Backflush Valve is 0.26 ft of H2O. A concentrate with a specific gravity of 1.8 and a viscosity of 12 cp will produce the same pressure drop at 20 gpm. This implies that concentrate from the evaporator may spill out into the BFV riser during a transfer.« less

  2. Numerical studies on the performance of a flow distributor in tank

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shin, Soo Jai, E-mail: shinsoojai@kaeri.re.kr; Kim, Young In; Ryu, Seungyeob

    2015-03-10

    Flow distributors are generally observed in several nuclear power plants. During core make-up tank (CMT) injection into the reactor, the condensation and thermal stratification are observed in the CMT, and rapid condensation disturbs the injection operation. To reduce the condensation phenomena in the tank, CMT was equipped with a flow distributor. The optimal design of the flow distributor is very important to ensure the structural integrity the CMT and its safe operation during certain transient or accident conditions. In the present study, we numerically investigated the performance of a flow distributor in tank with different shape factors such as themore » total number of holes, pitch-to-hole diameter ratios, diameter of the hole, and the area ratios. These data will contribute to a design of the flow distributor.« less

  3. Tank depletion flow controller

    DOEpatents

    Georgeson, Melvin A.

    1976-10-26

    A flow control system includes two bubbler tubes installed at different levels within a tank containing such as radioactive liquid. As the tank is depleted, a differential pressure transmitter monitors pressure differences imparted by the two bubbler tubes at a remote, shielded location during uniform time intervals. At the end of each uniform interval, balance pots containing a dense liquid are valved together to equalize the pressures. The resulting sawtooth-shaped signal generated by the differential pressure transmitter is compared with a second sawtooth signal representing the desired flow rate during each time interval. Variations in the two signals are employed by a control instrument to regulate flow rate.

  4. 14 CFR 29.957 - Flow between interconnected tanks.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Powerplant Fuel System § 29.957 Flow between interconnected tanks. (a) Where tank outlets are interconnected and allow fuel to flow between them due to gravity or flight accelerations, it must be impossible for fuel to flow between tanks in...

  5. 14 CFR 29.957 - Flow between interconnected tanks.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Powerplant Fuel System § 29.957 Flow between interconnected tanks. (a) Where tank outlets are interconnected and allow fuel to flow between them due to gravity or flight accelerations, it must be impossible for fuel to flow between tanks in...

  6. 14 CFR 29.957 - Flow between interconnected tanks.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Powerplant Fuel System § 29.957 Flow between interconnected tanks. (a) Where tank outlets are interconnected and allow fuel to flow between them due to gravity or flight accelerations, it must be impossible for fuel to flow between tanks in...

  7. 14 CFR 29.957 - Flow between interconnected tanks.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Powerplant Fuel System § 29.957 Flow between interconnected tanks. (a) Where tank outlets are interconnected and allow fuel to flow between them due to gravity or flight accelerations, it must be impossible for fuel to flow between tanks in...

  8. 14 CFR 29.957 - Flow between interconnected tanks.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Powerplant Fuel System § 29.957 Flow between interconnected tanks. (a) Where tank outlets are interconnected and allow fuel to flow between them due to gravity or flight accelerations, it must be impossible for fuel to flow between tanks in...

  9. St. Lawrence River Freeze-Up Forecast Procedure.

    ERIC Educational Resources Information Center

    Assel, R. A.

    A standard operating procedure (SOP) is presented for calculating the date of freeze-up on the St. Lawrence River at Massena, N.Y. The SOP is based on two empirical temperature decline equations developed for Kingston, Ontario, and Massena, N.Y., respectively. Input data needed to forecast freeze-up consist of the forecast December flow rate and…

  10. 14 CFR 23.957 - Flow between interconnected tanks.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Powerplant Fuel System § 23.957 Flow between interconnected tanks. (a) It must be impossible, in a gravity feed system with interconnected tank outlets, for enough fuel to flow between the tanks to cause an overflow...

  11. 14 CFR 23.957 - Flow between interconnected tanks.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Powerplant Fuel System § 23.957 Flow between interconnected tanks. (a) It must be impossible, in a gravity feed system with interconnected tank outlets, for enough fuel to flow between the tanks to cause an overflow...

  12. 14 CFR 23.957 - Flow between interconnected tanks.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Powerplant Fuel System § 23.957 Flow between interconnected tanks. (a) It must be impossible, in a gravity feed system with interconnected tank outlets, for enough fuel to flow between the tanks to cause an overflow...

  13. 14 CFR 23.957 - Flow between interconnected tanks.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Powerplant Fuel System § 23.957 Flow between interconnected tanks. (a) It must be impossible, in a gravity feed system with interconnected tank outlets, for enough fuel to flow between the tanks to cause an overflow...

  14. 14 CFR 23.957 - Flow between interconnected tanks.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Powerplant Fuel System § 23.957 Flow between interconnected tanks. (a) It must be impossible, in a gravity feed system with interconnected tank outlets, for enough fuel to flow between the tanks to cause an overflow...

  15. 14 CFR 25.957 - Flow between interconnected tanks.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Fuel System § 25.957 Flow between interconnected tanks. If fuel can be pumped from one tank to another in flight, the fuel tank vents and the fuel transfer system must be designed so that no structural damage to the tanks can occur because of overfilling. ...

  16. 14 CFR 25.957 - Flow between interconnected tanks.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Fuel System § 25.957 Flow between interconnected tanks. If fuel can be pumped from one tank to another in flight, the fuel tank vents and the fuel transfer system must be designed so that no structural damage to the tanks can occur because of overfilling. ...

  17. 14 CFR 25.957 - Flow between interconnected tanks.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Fuel System § 25.957 Flow between interconnected tanks. If fuel can be pumped from one tank to another in flight, the fuel tank vents and the fuel transfer system must be designed so that no structural damage to the tanks can occur because of overfilling. ...

  18. 14 CFR 25.957 - Flow between interconnected tanks.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Fuel System § 25.957 Flow between interconnected tanks. If fuel can be pumped from one tank to another in flight, the fuel tank vents and the fuel transfer system must be designed so that no structural damage to the tanks can occur because of overfilling. ...

  19. 14 CFR 25.957 - Flow between interconnected tanks.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Fuel System § 25.957 Flow between interconnected tanks. If fuel can be pumped from one tank to another in flight, the fuel tank vents and the fuel transfer system must be designed so that no structural damage to the tanks can occur because of overfilling. ...

  20. Flow analysis in a vane-type surface tension propellant tank

    NASA Astrophysics Data System (ADS)

    Yu, A.; Ji, B.; Zhuang, B. T.; Hu, Q.; Luo, X. W.; Y Xu, H.

    2013-12-01

    Vane-type surface tension tanks are widely used as the propellant management devices in spacecrafts. This paper treats the two-phase flow inside a vane-type surface tension tank. The study indicates that the present numerical methods such as time-dependent Navier-Stokes equations, VOF model can reasonably predict the flow inside a propellant tank. It is clear that the vane geometry has important effects on transmission performance of the liquid. for a vane type propellant tank, the vane having larger width, folding angle, height of folded side and clearance is preferable if possible.

  1. TANK 18-F AND 19-F TANK FILL GROUT SCALE UP TEST SUMMARY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stefanko, D.; Langton, C.

    2012-01-03

    High-level waste (HLW) tanks 18-F and 19-F have been isolated from FTF facilities. To complete operational closure the tanks will be filled with grout for the purpose of: (1) physically stabilizing the tanks, (2) limiting/eliminating vertical pathways to residual waste, (3) entombing waste removal equipment, (4) discouraging future intrusion, and (5) providing an alkaline, chemical reducing environment within the closure boundary to control speciation and solubility of select radionuclides. This report documents the results of a four cubic yard bulk fill scale up test on the grout formulation recommended for filling Tanks 18-F and 19-F. Details of the scale upmore » test are provided in a Test Plan. The work was authorized under a Technical Task Request (TTR), HLE-TTR-2011-008, and was performed according to Task Technical and Quality Assurance Plan (TTQAP), SRNL-RP-2011-00587. The bulk fill scale up test described in this report was intended to demonstrate proportioning, mixing, and transportation, of material produced in a full scale ready mix concrete batch plant. In addition, the material produced for the scale up test was characterized with respect to fresh properties, thermal properties, and compressive strength as a function of curing time.« less

  2. 3-D Numerical Simulation for Gas-Liquid Two-Phase Flow in Aeration Tank

    NASA Astrophysics Data System (ADS)

    Xue, R.; Tian, R.; Yan, S. Y.; Li, S.

    In the crafts of activated sludge treatment, oxygen supply and the suspending state of activated sludge are primary factors to keep biochemistry process carrying on normally. However, they are all controlled by aeration. So aeration is crucial. The paper focus on aeration, use CFD software to simulate the field of aeration tank which is designed by sludge load method. The main designed size of aeration tank is: total volume: 20 000 m3; corridor width: 8m; total length of corridors: 139m; number of corridors: 3; length of one single corridor: 48m; effective depth: 4.5m; additional depth: 0.5m. According to the similarity theory, a geometrical model is set up in proportion of 10:1. The way of liquid flow is submerge to avoid liquid flow out directly. The grid is plotted by dividing the whole computational area into two parts. The bottom part which contains gas pipe and gas exit hole and the above part which is the main area are plotted by tetrahedron and hexahedron respectively. In boundary conditions, gas is defined as the primary-phase, and liquid is defined as the secondary-phase. Choosing mixture model, two-phase flow field of aeration tank is simulated by solved the Continuity equation for the mixture, Momentum equation for the mixture, Volume fraction equation for the secondary phases and Relative velocity formula when gas velocity is 10m/s, 20m/s, 30m/s. what figure shows is the contour of velocity magnitude for the mixture phase when gas velocity is 20m/s. Through analysis, the simulation tendency is agreed with actual running of aeration tank. It is feasible to use mixture model to simulate flow field of aeration tank by fluent software. According to the simulation result, the better velocity of liquid or gas (the quantity of inlet air) can be chosen by lower cost, and also the performance of aeration tank can be forecast. It will be helpful for designing and operation.

  3. Visualization of a vortex flow in a rotating tank

    NASA Astrophysics Data System (ADS)

    Kawano, Yosuke

    Flow structures of a vortex in a rotating tank were studied employing tracer method. The velocity measurements were made by photographing the motions of small polystyrene particles and analyzing strobo flash light pictures. The vortex flow is confined to a cylindrical region which is composed of a spiral upward flow in the center surrounded by an annular downward flow.

  4. Tracer adsorption in sand-tank experiments of saltwater up-coning

    NASA Astrophysics Data System (ADS)

    Jakovovic, Danica; Post, Vincent E. A.; Werner, Adrian D.; Männicke, Oliver; Hutson, John L.; Simmons, Craig T.

    2012-01-01

    SummaryThis study aims to substantiate otherwise unresolved double-peaked plumes produced in recent saltwater up-coning experiments (see Jakovovic et al. (2011), Numerical modelling of saltwater up-coning: Comparison with experimental laboratory observations, Journal of Hydrology 402, 261-273) through additional laboratory testing and numerical modelling. Laboratory experimentation successfully reproduced the double-peaked plume demonstrating that this phenomenon was not an experimental nuance in previous experiments. Numerical modelling by Jakovovic et al. (2011) was extended by considering adsorption effects, which were needed to explain the observed up-coning double peaks of both previous and current laboratory experiments. A linear adsorption isotherm was applied in predicting dye tracer (Rhodamine WT) behaviour in the sand-tank experiments using adsorption parameters obtained experimentally. The same adsorption parameters were tested on all laboratory experiments and it was found that adsorption had insignificant effect on experiments with high pumping rates. However, low pumping rates produced pronounced spatial velocity variations within the dense salt plume beneath the pumping well, with velocities within the plume increasing from the centre of the plume towards the interface. The dye tracer was retarded relative to the salt and was transported preferentially along the higher-velocity paths (i.e. along the edges of the salt plume) towards the well forming double-peaked up-coning patterns. This illustrates the sensitive adsorptive nature of Rhodamine WT and that care should be taken when it is used in similar sand-tank experiments. Observations from this study offer insight into the separation of chemicals in natural systems due to different adsorption characteristics and under conditions of density-dependent flow.

  5. 7. VIEW OF ESCAPE TRAINING TANK, LOOKING UP SOUTH SIDE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. VIEW OF ESCAPE TRAINING TANK, LOOKING UP SOUTH SIDE FROM 50-FOOT PASSAGEWAY, SHOWING 25-FOOT BLISTER AT LEFT, 18-FOOT PASSAGEWAY AND PLATFORM AT RIGHT - U.S. Naval Submarine Base, New London Submarine Escape Training Tank, Albacore & Darter Roads, Groton, New London County, CT

  6. Removal of nutrients from septic tank effluent with baffle subsurface-flow constructed wetlands.

    PubMed

    Cui, Lihua; Ouyang, Ying; Yang, Weizhi; Huang, Zhujian; Xu, Qiaoling; Yu, Guangwei

    2015-04-15

    Three new baffle flow constructed wetlands (CWs), namely the baffle horizontal flow CW (Z1), baffle vertical flow CW (Z2) and baffle hybrid flow CW (Z3), along with one traditional horizontal subsurface flow CW (Z4) were designed to test the removal efficiency of nitrogen (N) and phosphorus (P) from the septic tank effluent under varying hydraulic retention times (HRTs). Results showed that the optimal HRT was two days for maximal removal of N and P from the septic tank effluent among the four CWs. At this HRT, the Z1, Z2, Z3 and Z4 CWs removed, respectively, 49.93, 58.50, 46.01 and 44.44% of TN as well as 87.82, 93.23, 95.97 and 91.30% of TP. Our study further revealed that the Z3 CW was the best design for overall removal of N and P from the septic tank effluent due to its hybrid flow directions with better oxygen supply inside the CW system. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Testing FlowTracker2 Performance and Wading Rod Flow Disturbance in Laboratory Tow Tanks

    NASA Astrophysics Data System (ADS)

    Fan, X.; Wagenaar, D.

    2016-12-01

    The FlowTracker2 was released in February 2016 by SonTek (Xylem) to be a more feature-rich and technologically advanced replacement to the Original FlowTracker ADV. These instruments are Acoustic Doppler Velocimeters (ADVs) used for taking high-precision wading discharge and velocity measurements. The accuracy of the FlowTracker2 probe was tested in tow tanks at three different facilities: the USGS Hydrologic Instrumentation Facility (HIF), the Swiss Federal Institute for Metrology (METAS), and at the SonTek Research and Development facility. Multiple mounting configurations were examined, including mounting the ADV probe directly to the tow carts, and incorporating the two most-used wading rods for the FlowTracker (round and hex). Tow speeds ranged from 5cm/s to 1.5m/s, and different tow tank seeding schemes and wait times were examined. In addition, the performance of the FlowTracker2 probe in low Signal-to-Noise Ratio (SNR) environments was compared to the Original FlowTracker ADV. Results confirmed that the FlowTracker2 probe itself performed well within the 1%+0.25cm/s accuracy specification advertised. Tows using the wading rods created a reduced measured velocity by 1.3% of the expected velocity due to flow disturbance, a result similar to the Original FlowTracker ADV despite the change in the FlowTracker2 probe design. Finally, due to improvements in its electronics, the FlowTracker2's performance in low SNR tests exceeded that of the Original FlowTracker ADV, showing less standard error in these conditions compared to its predecessor.

  8. Continuous-flow stirred-tank reactor 20-L demonstration test: Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, D.D.; Collins, J.L.

    One of the proposed methods of removing the cesium, strontium, and transuranics from the radioactive waste storage tanks at Savannah River is the small-tank tetraphenylborate (TPB) precipitation process. A two-reactor-in-series (15-L working volume each) continuous-flow stirred-tank reactor (CSTR) system was designed, constructed, and installed in a hot cell to test the Savannah River process. The system also includes two cross-flow filtration systems to concentrate and wash the slurry produced in the process, which contains the bulk of radioactivity from the supernatant processed through the system. Installation, operational readiness reviews, and system preparation and testing were completed. The first test usingmore » the filtration systems, two CSTRs, and the slurry concentration system was conducted over a 61-h period with design removal of Cs, Sr, and U achieved. With the successful completion of Test 1a, the following tests, 1b and 1c, were not required.« less

  9. Elevations, Major Component Isometric, Propellant Flow Schematic, and External Tank ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Elevations, Major Component Isometric, Propellant Flow Schematic, and External Tank Connection to Shuttle Main Engines - Space Transportation System, Space Shuttle Main Engine, Lyndon B. Johnson Space Center, 2101 NASA Parkway, Houston, Harris County, TX

  10. Flow rate analysis of wastewater inside reactor tanks on tofu wastewater treatment plant

    NASA Astrophysics Data System (ADS)

    Mamat; Sintawardani, N.; Astuti, J. T.; Nilawati, D.; Wulan, D. R.; Muchlis; Sriwuryandari, L.; Sembiring, T.; Jern, N. W.

    2017-03-01

    The research aimed to analyse the flow rate of the wastewater inside reactor tanks which were placed a number of bamboo cutting. The resistance of wastewater flow inside reactor tanks might not be occurred and produce biogas fuel optimally. Wastewater from eleven tofu factories was treated by multi-stages anaerobic process to reduce its organic pollutant and produce biogas. Biogas plant has six reactor tanks of which its capacity for waste water and gas dome was 18 m3 and 4.5 m3, respectively. Wastewater was pumped from collecting ponds to reactors by either serial or parallel way. Maximum pump capacity, head, and electrical motor power was 5m3/h, 50m, and 0.75HP, consecutively. Maximum pressure of biogas inside the reactor tanks was 55 mbar higher than atmosphere pressure. A number of 1,400 pieces of cutting bamboo at 50-60 mm diameter and 100 mm length were used as bacteria growth media inside each reactor tank, covering around 14,287 m2 bamboo area, and cross section area of inner reactor was 4,9 m2. In each reactor, a 6 inches PVC pipe was installed vertically as channel. When channels inside reactor were opened, flow rate of wastewater was 6x10-1 L.sec-1. Contrary, when channels were closed on the upper part, wastewater flow inside the first reactor affected and increased gas dome. Initially, wastewater flowed into each reactor by a gravity mode with head difference between the second and third reactor was 15x10-2m. However, head loss at the second reactor was equal to the third reactor by 8,422 x 10-4m. As result, wastewater flow at the second and third reactors were stagnant. To overcome the problem pump in each reactor should be installed in serial mode. In order to reach the output from the first reactor and the others would be equal, and biogas space was not filled by wastewater, therefore biogas production will be optimum.

  11. Analysis and reconstructed modelling of the debris flow event of the 21st of July 2012 of St. Lorenzen (Styria, Austira)

    NASA Astrophysics Data System (ADS)

    Janu, Stefan; Mehlhorn, Susanne; Moser, Markus

    2013-04-01

    Torrent and Avalanche Control, a great number of protection measures have in the past been realized in the Lorenz torrent, which with certainty contributed significantly to an even greater amount of damage in the St. Lorenz residential area having been prevented. Attempts at reconstructing the event processes as well simulating the debris flow in 2D were undertaken in the course of the event documentation and analysis. The thus obtained discharge heights, flow velocities and impact pressure values corresponded with the well documented event. The two dimensional simulations were carried out with the program FLO-2D, which is capable of simulating debris flows. The rheological parameters of the debris flow material were determined with the aid of a viscometer and a debris rotation drum. The debris flow hydrograph, bedload and bedload ratio were reconstructed using data from the event documentation, such as difference models, geological mapping, wetted perimeters, witness's statements, etc. The aim of the very detailed event documentation and analysis was to reconstruct the extreme process sequence along with the damaging effects that they had in the build-up area of St. Lorenzen. There was a large media interest in this event. The results should therefore serve to answer the multitude of questions about this event that lie in the public as well political interests. Additional and substantial protection measures were also planned for the village of St. Lorenzen on the basis of these event analysis results. These are comprised of two debris flow barriers in the lower gorge streches with a capacity of 15,000 m³ each as well as a bedload retention basin directly above, with a capacity of 30,000 m³. Construction of these technical protection measures has already begun. Authoŕs adresses: DI Stefan Janu Fachbereich Wildbachprozesse Austrian Service for Torrent and Avalanche Control, GBL Ennstal und Salzatal Schönaustraße 50 8940 Liezen Dipl.Geogr. Susanne Mehlhorn Fachbereich

  12. Numerical analysis of the flow field in a sloshing tank with a horizontal perforated plate

    NASA Astrophysics Data System (ADS)

    Jin, Heng; Liu, Yong; Li, Huajun; Fu, Qiang

    2017-08-01

    Liquid sloshing is a type of free surface flow inside a partially filled water tank. Sloshing exerts a significant effect on the safety of liquid transport systems; in particular, it may cause large hydrodynamic loads when the frequency of the tank motion is close to the natural frequency of the tank. Perforated plates have recently been used to suppress the violent movement of liquids in a sloshing tank at resonant conditions. In this study, a numerical model based on OpenFOAM (Open Source Field Operation and Manipulation), an open source computed fluid dynamic code, is used to investigate resonant sloshing in a swaying tank with a submerged horizontal perforated plate. The numerical results of the free surface elevations are first verified using experimental data, and then the flow characteristics around the perforated plate and the fluid velocity distribution in the entire tank are examined using numerical examples. The results clearly show differences in sloshing motions under first-order and third-order resonant frequencies. This study provides a better understanding of the energy dissipation mechanism of a horizontal perforated plate in a swaying tank.

  13. Floating baffle to improve efficiency of liquid transfer from tanks

    NASA Technical Reports Server (NTRS)

    Howard, F. S. (Inventor)

    1973-01-01

    A floating baffle is described which rides up and down on a vertical shaft over a drain in a tank as the liquid level within the tank varies. When the baffle is in the raised position, the liquid is allowed to flow out of the drain at an unrestricted rate. When the baffle is in the lowered position, pull-through of air or gas that is above the liquid is presented, which would interfere and reduce the flow of liquid from the tank.

  14. Experimental Study on Scale-Up of Solid-Liquid Stirred Tank with an Intermig Impeller

    NASA Astrophysics Data System (ADS)

    Zhao, Hongliang; Zhao, Xing; Zhang, Lifeng; Yin, Pan

    2017-02-01

    The scale-up of a solid-liquid stirred tank with an Intermig impeller was characterized via experiments. Solid concentration, impeller just-off-bottom speed and power consumption were measured in stirred tanks of different scales. The scale-up criteria for achieving the same effect of solid suspension in small-scale and large-scale vessels were evaluated. The solids distribution improves if the operating conditions are held constant as the tank is scaled-up. The results of impeller just-off-bottom speed gave X = 0.868 in the scale-up relationship ND X = constant. Based on this criterion, the stirring power per unit volume obviously decreased at N = N js, and the power number ( N P) was approximately equal to 0.3 when the solids are uniformly distributed in the vessels.

  15. Removal of nutrients from septic tank effluent with baffle subsurface-flow constructed wetlands

    Treesearch

    Lihu Cui; Ying Ouyang; Weizhi Yang; Zhujian Huang; Qiaoling Xu; Guangwei Yu

    2015-01-01

    Three new baffle flow constructed wetlands (CWs), namely the baffle horizontal flow CW (Z1), baffle vertical flow CW (Z2) and baffle hybrid flow CW (Z3), along with one traditional horizontal subsurface flow CW (Z4) were designed to test the removal efficiency of nitrogen (N) and phosphorus (P) from the septic tank effluent under varying hydraulic retention times (HRTs...

  16. 34. VIEW WEST ALONG DAMIEN ROAD NEAR ST. PHILOMENA'S CHURCH. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    34. VIEW WEST ALONG DAMIEN ROAD NEAR ST. PHILOMENA'S CHURCH. PIPELINE IS BURIED ALONG LEFT SHOULDER OF ROAD AND CONTINUES UP HILL TO RESERVOIR TANKS. - Kalaupapa Water Supply System, Waikolu Valley to Kalaupapa Settlement, Island of Molokai, Kalaupapa, Kalawao County, HI

  17. 19. EMPTY SEDIMENTATION TANKS. TOP LAYER OF WATER FLOWS OVER ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    19. EMPTY SEDIMENTATION TANKS. TOP LAYER OF WATER FLOWS OVER TRIANGULATED CHANNELS AND OUT THE RAISED DUCTS TO FILTRATION PLANT. MOVEABLE BOARDS ON BOTTOM ASSIST IN REMOVING SLUDGE. VIEW LOOKING NORTHEAST. FILTER CONTROL BUILDING AT REAR. - F. E. Weymouth Filtration Plant, 700 North Moreno Avenue, La Verne, Los Angeles County, CA

  18. Image analysis method for the measurement of water saturation in a two-dimensional experimental flow tank

    NASA Astrophysics Data System (ADS)

    Belfort, Benjamin; Weill, Sylvain; Lehmann, François

    2017-04-01

    A novel, non-invasive imaging technique that determines 2D maps of water content in unsaturated porous media is presented. This method directly relates digitally measured intensities to the water content of the porous medium. This method requires the classical image analysis steps, i.e., normalization, filtering, background subtraction, scaling and calibration. The main advantages of this approach are that no calibration experiment is needed and that no tracer or dye is injected into the flow tank. The procedure enables effective processing of a large number of photographs and thus produces 2D water content maps at high temporal resolution. A drainage / imbibition experiment in a 2D flow tank with inner dimensions of 40 cm x 14 cm x 6 cm (L x W x D) is carried out to validate the methodology. The accuracy of the proposed approach is assessed using numerical simulations with a state-of-the-art computational code that solves the Richards. Comparison of the cumulative mass leaving and entering the flow tank and water content maps produced by the photographic measurement technique and the numerical simulations demonstrate the efficiency and high accuracy of the proposed method for investigating vadose zone flow processes. Application examples to a larger flow tank with various boundary conditions are finally presented to illustrate the potential of the methodology.

  19. Steady-state flow distribution and monthly flow duration in selected branches of St. Clair and Detroit rivers within the Great Lakes waterway

    USGS Publications Warehouse

    Holtschlag, D.J.; Koschik, J.A.

    2001-01-01

    St. Clair and Detroit Rivers are connecting channels between Lake Huron and Lake Erie in the Great Lakes waterway, and form part of the boundary between the United States and Canada. St. Clair River, the upper connecting channel, drains 222,400 square miles and has an average flow of about 182,000 cubic feet per second. Water from St. Clair River combines with local inflows and discharges into Lake St. Clair before flowing into Detroit River. In some reaches of St. Clair and Detroit Rivers, islands and dikes split the flow into two to four branches. Even when the flow in a reach is known, proportions of flows within individual branches of a reach are uncertain. Simple linear regression equations, subject to a flow continuity constraint, are developed to provide estimators of these proportions and flows. The equations are based on 533 paired measurements of flow in 13 reaches forming 31 branches. The equations provide a means for computing the expected values and uncertainties of steady-state flows on the basis of flow conditions specified at the upstream boundaries of the waterway. In 7 upstream reaches, flow is considered fixed because it can be determined on the basis of flows specified at waterway boundaries and flow continuity. In these reaches, the uncertainties of flow proportions indicated by the regression equations can be used directly to determine the uncertainties of the corresponding flows. In the remaining 6 downstream reaches, flow is considered uncertain because these reaches do not receive flow from all the branches of an upstream reach, or they receive flow from some branches of more than one upstream reach. Monte Carlo simulation analysis is used to quantify this increase in uncertainty associated with the propagation of uncertainties from upstream reaches to downstream reaches. To eliminate the need for Monte Carlo simulations for routine calculations, polynomial regression equations are developed to approximate the variation in uncertainties as

  20. Momentum Transfer in a Spinning Fuel Tank Filled with Xenon

    NASA Technical Reports Server (NTRS)

    Peugeot, John W.; Dorney, Daniel J.

    2006-01-01

    Transient spin-up and spin-down flows inside of spacecraft fuel tanks need to be analyzed in order to properly design spacecraft control systems. Knowledge of the characteristics of angular momentum transfer to and from the fuel is used to size the de-spin mechanism that places the spacecraft in a controllable in-orbit state. In previous studies, several analytical models of the spin-up process were developed. However, none have accurately predicted all of the flow dynamics. Several studies have also been conducted using Navier-Stokes based methods. These approaches have been much more successful at simulating the dynamic processes in a cylindrical container, but have not addressed the issue of momentum transfer. In the current study, the spin-up and spin-down of a fuel tank filled with gaseous xenon has been investigated using a three-dimensional unsteady Navier-Stokes code. Primary interests have been concentrated on the spin-up/spin-down time constants and the initial torque imparted on the system. Additional focus was given to the relationship between the dominant flow dynamics and the trends in momentum transfer. Through the simulation of both a cylindrical and a spherical tank, it was revealed that the transfer of angular momentum is nonlinear at early times and tends toward a linear pattern at later times. Further investigation suggests that the nonlinear spin up is controlled by the turbulent transport of momentum, while the linear phase is controlled by a Coriolis driven (Ekman) flow along the outer wall. These results indicate that the spinup and spin-down processes occur more quickly in tanks with curved surfaces than those with defined top, bottom, and side walls. The results also provide insights for the design of spacecraft de-spin mechanisms.

  1. Efficacy of controlled-release KMnO4 (CRP) for controlling dissolved TCE plume in groundwater: a large flow-tank study.

    PubMed

    Lee, Byung Sun; Kim, Jeong Hee; Lee, Ki Churl; Kim, Yang Bin; Schwartz, Franklin W; Lee, Eung Seok; Woo, Nam Chil; Lee, Myoung Ki

    2009-02-01

    A well-based, reactive barrier system using controlled-release potassium permanganate (CRP system) was recently developed as a long-term treatment option for dilute plumes of chlorinated solvents in groundwater. In this study, we performed large-scale (L x W x D = 8 m x 4 m x 2 m) flow-tank experiments to examine remedial efficacy of the CRP system. A total of 110 CRP rods (OD x L=5 cm x 150 cm) were used to construct a well-based CRP system (L x W x D = 3 m x 4 m x 1.5 m) comprising three discrete barriers installed at 1-m interval downstream. Natural sands having oxidant demand of 3.7 g MnO(4)(-)kg(-1) for 500 mg L(-1)MnO(4)(-) were used as porous media. After MnO(4)(-) concentrations were somewhat stabilized (0.5-6.0 mg L(-1)), trichloroethylene (TCE) plume was flowed through the flow-tank for 53 d by supplying 1.19 m(3)d(-1) of TCE solution. Mean initial TCE concentrations were 87 microg L(-1) for first 20 d and 172 microg L(-1) for the next 33 d. During TCE treatment, flow velocity (0.60md(-1)), pH (7.0-8.2), and concentrations of dissolved metals ([Al]=0.7 mg L(-1), [Fe]=0.01 mg L(-1)) showed little variations. The MnO(2)(s) contents in the sandy media measured after the TCE treatment ranged from 21 to 26 mg kg(-1), slightly increased from mean baseline value of 17 mg kg(-1). Strengths of the TCE plume considerably diminished by the CRP system. For the 87 microg L(-1) plume, TCE concentrations decreased by 38% (53), 67% (29), and 74% (23 microg L(-1)) after 1st, 2nd, and 3rd barriers, respectively. For the 172 microg L(-1) plume, TCE concentrations decreased by 27% (125), 46% (93), and 65% (61 microg L(-1)) after 1st, 2nd, and 3rd barriers, respectively. Incomplete destruction of TCE plume was attributed to the lack of lateral dispersion in the unpumped well-based barrier system. Development of delivery systems that can facilitate lateral spreading and mixing of permanganate with contaminant plume is warranted.

  2. Progressive epicardial coronary blood flow reduction fails to produce ST-segment depression at normal heart rates.

    PubMed

    de Chantal, Marilyn; Diodati, Jean G; Nasmith, James B; Amyot, Robert; LeBlanc, A Robert; Schampaert, Erick; Pharand, Chantal

    2006-12-01

    ST-segment depression is commonly seen in patients with acute coronary syndromes. Most authors have attributed it to transient reductions in coronary blood flow due to nonocclusive thrombus formation on a disrupted atherosclerotic plaque and dynamic focal vasospasm at the site of coronary artery stenosis. However, ST-segment depression was never reproduced in classic animal models of coronary stenosis without the presence of tachycardia. We hypothesized that ST-segment depression occurring during acute coronary syndromes is not entirely explained by changes in epicardial coronary artery resistance and thus evaluated the effect of a slow, progressive epicardial coronary artery occlusion on the ECG and regional myocardial blood flow in anesthetized pigs. Slow, progressive occlusion over 72 min (SD 27) of the left anterior descending coronary artery in 20 anesthetized pigs led to a 90% decrease in coronary blood flow and the development of ST-segment elevation associated with homogeneous and transmural myocardial blood flow reductions, confirmed by microspheres and myocardial contrast echocardiography. ST-segment depression was not observed in any ECG lead before the development of ST-segment elevation. At normal heart rates, progressive epicardial stenosis of a coronary artery results in myocardial ischemia associated with homogeneous, transmural reduction in regional myocardial blood flow and ST-segment elevation, without preceding ST-segment depression. Thus, in coronary syndromes with ST-segment depression and predominant subendocardial ischemia, factors other than mere increases in epicardial coronary resistance must be invoked to explain the heterogeneous parietal distribution of flow and associated ECG changes.

  3. CFD simulation of local and global mixing time in an agitated tank

    NASA Astrophysics Data System (ADS)

    Li, Liangchao; Xu, Bin

    2017-01-01

    The Issue of mixing efficiency in agitated tanks has drawn serious concern in many industrial processes. The turbulence model is very critical to predicting mixing process in agitated tanks. On the basis of computational fluid dynamics(CFD) software package Fluent 6.2, the mixing characteristics in a tank agitated by dual six-blade-Rushton-turbines(6-DT) are predicted using the detached eddy simulation(DES) method. A sliding mesh(SM) approach is adopted to solve the rotation of the impeller. The simulated flow patterns and liquid velocities in the agitated tank are verified by experimental data in the literature. The simulation results indicate that the DES method can obtain more flow details than Reynolds-averaged Navier-Stokes(RANS) model. Local and global mixing time in the agitated tank is predicted by solving a tracer concentration scalar transport equation. The simulated results show that feeding points have great influence on mixing process and mixing time. Mixing efficiency is the highest for the feeding point at location of midway of the two impellers. Two methods are used to determine global mixing time and get close result. Dimensionless global mixing time remains unchanged with increasing of impeller speed. Parallel, merging and diverging flow pattern form in the agitated tank, respectively, by changing the impeller spacing and clearance of lower impeller from the bottom of the tank. The global mixing time is the shortest for the merging flow, followed by diverging flow, and the longest for parallel flow. The research presents helpful references for design, optimization and scale-up of agitated tanks with multi-impeller.

  4. Coproduction of hydrogen and methane via anaerobic fermentation of cornstalk waste in continuous stirred tank reactor integrated with up-flow anaerobic sludge bed.

    PubMed

    Cheng, Xi-Yu; Li, Qian; Liu, Chun-Zhao

    2012-06-01

    A 10 L continuous stirred tank reactor (CSTR) system was developed for a two-stage hydrogen fermentation process with an integrated alkaline treatment. The maximum hydrogen production rate reached 218.5 mL/L h at a cornstalk concentration of 30 g/L, and the total hydrogen yield and volumetric hydrogen production rate reached 58.0 mL/g-cornstalk and 0.55-0.57 L/L d, respectively. A 10 L up-flow anaerobic sludge bed (UASB) was used for continuous methane fermentation of the effluents obtained from the two-stage hydrogen fermentation. At the optimal organic loading rate of 15.0 g-COD/Ld, the COD removal efficiency and volumetric biogas production rate reached 83.3% and 4.6L/Ld, respectively. Total methane yield reached 200.9 mL/g-cornstalk in anaerobic fermentation with the effluents and alkaline hydrolysate. As a result, the total energy recovery by coproduction of hydrogen and methane with anaerobic fermentation of cornstalk reached 67.1%. Copyright © 2012 Elsevier Ltd. All rights reserved.

  5. The effect of channel shape, bed morphology, and shipwrecks on flow velocities in the Upper St. Clair River

    USGS Publications Warehouse

    Czuba, Jonathan A.; Oberg, Kevin; Best, Jim; Parsons, Daniel R.

    2009-01-01

    In the Great Lakes of North America, the St. Clair River is the major outlet of Lake Huron and conveys water to Lake St. Clair which then flows to Lake Erie. One major topic of interest is morphological change in the St. Clair River and its impact on water levels in the Upper Great Lakes and connecting channel flows. A combined multibeam echosounder (MBES) bathymetric survey and acoustic Doppler current profiler (ADCP) flow survey of the outlet of Lake Huron and the Upper St. Clair River was conducted July 21 – 25, 2008. This paper presents how channel morphology and shipwrecks affect the flow in the Upper St. Clair River. The river is most constricted at the Blue Water Bridge near Port Huron, Michigan, with water velocities over 2 ms-1 for a flow of 5,200 m3s-1. Downstream of this constriction, the river flows around a bend and expands creating a large recirculation zone along the left bank due to flow separation. This recirculation zone reduces the effective channel width, and thus increases flow velocities to over 2 ms-1 in this region. The surveys reveal several shipwrecks on the bed of the St. Clair River, which possess distinct wakes in their flow velocity downstream of the wrecks. The constriction and expansion of the channel, combined with forcing of the flow by bed topography, initiates channel-scale secondary flow, creating streamwise vortices that maintain coherence downstream over a distance of several channel widths.

  6. Residence time distribution measurements in a pilot-scale poison tank using radiotracer technique.

    PubMed

    Pant, H J; Goswami, Sunil; Samantray, J S; Sharma, V K; Maheshwari, N K

    2015-09-01

    Various types of systems are used to control the reactivity and shutting down of a nuclear reactor during emergency and routine shutdown operations. Injection of boron solution (borated water) into the core of a reactor is one of the commonly used methods during emergency operation. A pilot-scale poison tank was designed and fabricated to simulate injection of boron poison into the core of a reactor along with coolant water. In order to design a full-scale poison tank, it was desired to characterize flow of liquid from the tank. Residence time distribution (RTD) measurement and analysis was adopted to characterize the flow dynamics. Radiotracer technique was applied to measure RTD of aqueous phase in the tank using Bromine-82 as a radiotracer. RTD measurements were carried out with two different modes of operation of the tank and at different flow rates. In Mode-1, the radiotracer was instantaneously injected at the inlet and monitored at the outlet, whereas in Mode-2, the tank was filled with radiotracer and its concentration was measured at the outlet. From the measured RTD curves, mean residence times (MRTs), dead volume and fraction of liquid pumped in with time were determined. The treated RTD curves were modeled using suitable mathematical models. An axial dispersion model with high degree of backmixing was found suitable to describe flow when operated in Mode-1, whereas a tanks-in-series model with backmixing was found suitable to describe flow of the poison in the tank when operated in Mode-2. The results were utilized to scale-up and design a full-scale poison tank for a nuclear reactor. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Using analog flow experiments to model morphologies developed during episodic dome growth: A case study of Mount St Helens, 1980-1986

    NASA Astrophysics Data System (ADS)

    Altman, K. M.; Teasdale, R.

    2009-12-01

    From 1980 to 1986 the dacite dome at Mount St. Helens was emplaced as a series of 17 events, identified by different growth rates, volumes, height to diameter ratios, emplacement rates, surface textures and dome morphologies (Swanson, 1989). Rates of emplacement characterize three periods; between October 18, 1980 and the end of 1981 the growth rate was 1.8 x 10^6 m^3/month; between March 1982 and March 1984 the growth rate was 1.3 x 10^6 m^3/month; followed by a growth rate of 0.62 x 10^6 m^3/month until the end of the emplacement events in 1986 (Swanson, 1989). The shape of the dome changed from 1980 to 1986 as a function of magma viscosity, tensile strength of the hot core, and thickness of the outer shell (Swanson, 1989). The height to diameter ratios (h:d) recorded throughout the growth of the dome have been used to quantify the changes in the shape of the dome. The dome was flatter during the first period of emplacement when larger volumes kept the dome hotter and hindered the formation of a thick, cool outer crust (Swanson, 1989). Once the growth rate slowed by June 1981, a thick skin had formed and allowed the dome to steepen (Swanson, 1989). Analog models presented here aim to reproduce the emplacement of the domes based on observations and data recorded at Mount St. Helens from 1980 to 1986. Flow experiments use a slurry of PEG (poly-ethelyne glycol) mixed with kaolin powder that is pumped into a tank of cold water (Fink and Griffiths, 1998). PEG is used because it is liquid at room temperature and solidifies in the cold water. Kaolin powder is added to the PEG to simulate the viscosity of the dacite domes. The observed and recorded data from Mount St. Helens are used to constrain analog flow model parameters such as slope, effusion rate, and PEG viscosity in an attempt to recreate the dome morphologies observed in the 1980 to 1986 episodes. As expected, dome morphology in experiments varies with the crustal thickness developed during experiments. The

  8. Modeling Bottom Sediment Erosion Process by Swirling the Flow by Tangential Supply of Oil in the Tank

    NASA Astrophysics Data System (ADS)

    Nekrasov, V. O.

    2016-10-01

    The article carries out a statistical data processing of quantitative and territorial division of oil tanks operating in Tyumen region, intended for reception, storage and distribution of commercial oil through trunk pipelines. It describes the working principle of the new device of erosion and prevention of oil bottom sediment formation with tangential supply of oil pumped into reservoir. The most significant similarity criteria can be emphasized in modeling rotational flows exerting significant influence on the structure of the circulating flow of oil in tank when operation of the device described. The dependence of the distribution of the linear velocity of a point on the surface along the radius at the circular motion of the oil in the tank is characterized, and on the basis of this dependence, a formula of general kinetic energy of rotational motion of oil and asphalt-resin-paraffin deposits total volume in the oil reservoir is given.

  9. Simulation of ground-water flow in the St. Peter aquifer in an area contaminated by coal-tar derivatives, St. Louis Park, Minnesota. Water Resources Investigation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lorenz, D.L.; Stark, J.R.

    1990-01-01

    A model constructed to simulate ground-water flow in part of the Prairie du Chien-Jordan and St. Peter aquifers, St. Louis Park, Minnesota, was used to test hypotheses about the movement of ground water contaminated with coal-tar derivatives and to simulate alternatives for reducing the downgradient movement of contamination in the St. Peter aquifer. The model, constructed for a previous study, was applied to simulate the effects of current ground-water withdrawals on the potentiometric surface of the St. Peter aquifer. Model simulations predict that the multiaquifer wells have the potential to limit downgradient migration of contaminants in the St. Peter aquifermore » caused by cones of depression created around the multiaquifer wells. Differences in vertical leakage to the St. Peter aquifer may exist in areas of bedrock valleys. Model simulations indicate that these differences are not likely to affect significantly the general patterns of ground-water flow.« less

  10. Unsteady numerical analysis of solid-liquid two-phase flow in stirred tank with double helical ribbon impeller

    NASA Astrophysics Data System (ADS)

    Bai, He; Chen, Xiangshan; Zhao, Guangyu; Xiao, Chenglei; Li, Chen; Zhong, Cheng; Chen, Yu

    2017-08-01

    In order to enhance the mixing process of soil contaminated by oil and water, one kind of double helical ribbon (DHR) impeller was developed. In this study, the unsteady simulation analysis of solid-liquid two-phase flow in stirring tank with DHR impeller was conducted by the the computational fluid dynamics and the multi-reference frame (MRF) method. It was found that at 0-3.0 s stage, the rate of liquid was greater than the rate of solid particles, while the power consumption was 5-6 times more than the smooth operation. The rates of the liquid and the solid particles were almost the same, and the required power was 32 KW at t > 3.0 s. The flow of the solid particles in the tank was a typical axial circle flow, and the dispersed sequence of the solid that was accumulated at the bottom of the tank was: the bottom loop region, the annular region near the wall of the groove and finally the area near axial center. The results show that the DHR impeller was suitable for the mixing of liquid-solid two-phase.

  11. Recommended high-tank temperatures for maintenance of high-tank backup support, Revision 3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Greager, O.H.

    1964-05-20

    Purpose of this note is to recommend revised curves for the high-tank temperature required to maintain adequate high-tank backup support at the six small reactors. Compliance with the conditions shown on these curves will ensure adequate high-tank flow rates following the simultaneous loss of electric and steam power.

  12. A new tree-ring date for the "floating island" lava flow, Mount St. Helens, Washington

    USGS Publications Warehouse

    Yamaguchi, D.K.; Hoblitt, R.P.; Lawrence, D.B.

    1990-01-01

    Anomalously narrow and missing rings in trees 12 m from Mount St. Helens' "floating island" lava flow, and synchronous growth increases in trees farther from the flow margin, are evidence that this andesitic flow was extruded between late summer 1799 and spring 1800 a.d., within a few months after the eruption of Mount St. Helens' dacitic layer T tephra. For ease of reference, we assign here an 1800 a.d. date to this flow. The new date shows that the start of Mount St. Helens' Goat Rocks eruptive period (1800-1857 a.d.) resembled the recent (1980-1986) activity in both petrochemical trends and timing. In both cases, an initial explosive eruption of dacite was quickly succeeded by the eruption of more mafic lavas; dacite lavas then reappeared during an extended concluding phase of activity. This behavior is consistent with a recently proposed fluid-dynamic model of magma withdrawal from a compositionally zoned magma chamber. ?? 1990 Springer-Verlag.

  13. Application of color Doppler flow mapping to calculate orifice area of St Jude mitral valve

    NASA Technical Reports Server (NTRS)

    Leung, D. Y.; Wong, J.; Rodriguez, L.; Pu, M.; Vandervoort, P. M.; Thomas, J. D.

    1998-01-01

    BACKGROUND: The effective orifice area (EOA) of a prosthetic valve is superior to transvalvular gradients as a measure of valve function, but measurement of mitral prosthesis EOA has not been reliable. METHODS AND RESULTS: In vitro flow across St Jude valves was calculated by hemispheric proximal isovelocity surface area (PISA) and segment-of-spheroid (SOS) methods. For steady and pulsatile conditions, PISA and SOS flows correlated with true flow, but SOS and not PISA underestimated flow. These principles were then used intraoperatively to calculate cardiac output and EOA of newly implanted St Jude mitral valves in 36 patients. Cardiac output by PISA agreed closely with thermodilution (r=0.91, Delta=-0.05+/-0.55 L/min), but SOS underestimated it (r=0.82, Delta=-1.33+/-0.73 L/min). Doppler EOAs correlated with Gorlin equation estimates (r=0.75 for PISA and r=0.68 for SOS, P<0.001) but were smaller than corresponding in vitro EOA estimates. CONCLUSIONS: Proximal flow convergence methods can calculate forward flow and estimate EOA of St Jude mitral valves, which may improve noninvasive assessment of prosthetic mitral valve obstruction.

  14. Determination of the Flow Field in the Propellant Tank of a Rocket Engine on Completion of the Mission

    NASA Astrophysics Data System (ADS)

    Fedorov, A. V.; Bedarev, I. A.; Lavruk, S. A.; Trushlyakov, V. I.; Kudentsov, V. Yu.

    2018-03-01

    In the present work, a method of mathematical simulation is employed to describe processes occurring in the specimens of new equipment and using the remaining propellant in rocket-engine tanks. Within the framework of certain turbulence models, the authors perform a calculation of the flow field in the volume of the tank of the launch-vehicle stage when a hot gas jet is injected into it. A vortex flow structure is revealed; the characteristics of heat transfer for different angles of injection of the jet are determined. The obtained correlation Nu = Nu(Re) satisfactorily describes experimental data.

  15. Determination of the Flow Field in the Propellant Tank of a Rocket Engine on Completion of the Mission

    NASA Astrophysics Data System (ADS)

    Fedorov, A. V.; Bedarev, I. A.; Lavruk, S. A.; Trushlyakov, V. I.; Kudentsov, V. Yu.

    2018-05-01

    In the present work, a method of mathematical simulation is employed to describe processes occurring in the specimens of new equipment and using the remaining propellant in rocket-engine tanks. Within the framework of certain turbulence models, the authors perform a calculation of the flow field in the volume of the tank of the launch-vehicle stage when a hot gas jet is injected into it. A vortex flow structure is revealed; the characteristics of heat transfer for different angles of injection of the jet are determined. The obtained correlation Nu = Nu(Re) satisfactorily describes experimental data.

  16. 3. VIEW OF KENCH TANK Used to preserve skins before ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. VIEW OF KENCH TANK Used to preserve skins before processing, the skins were placed in tanks in layers, alternating with salt. Some skins and salt remain. - Sealing Plant, St. George Island, Pribilof Islands, Saint George, Aleutians West Census Area, AK

  17. 2. VIEW OF WASH TANKS Skins are brought in through ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. VIEW OF WASH TANKS Skins are brought in through hatches, seen on rear wall, and washed of blood and flesh in redwood tanks, with wooden grates to hold skins down in water. Superstructure and screening on tanks are a later alteration, unrelated to this process. - Sealing Plant, St. George Island, Pribilof Islands, Saint George, Aleutians West Census Area, AK

  18. Image analysis method for the measurement of water saturation in a two-dimensional experimental flow tank

    NASA Astrophysics Data System (ADS)

    Belfort, Benjamin; Weill, Sylvain; Lehmann, François

    2017-07-01

    A novel, non-invasive imaging technique is proposed that determines 2D maps of water content in unsaturated porous media. This method directly relates digitally measured intensities to the water content of the porous medium. This method requires the classical image analysis steps, i.e., normalization, filtering, background subtraction, scaling and calibration. The main advantages of this approach are that no calibration experiment is needed, because calibration curve relating water content and reflected light intensities is established during the main monitoring phase of each experiment and that no tracer or dye is injected into the flow tank. The procedure enables effective processing of a large number of photographs and thus produces 2D water content maps at high temporal resolution. A drainage/imbibition experiment in a 2D flow tank with inner dimensions of 40 cm × 14 cm × 6 cm (L × W × D) is carried out to validate the methodology. The accuracy of the proposed approach is assessed using a statistical framework to perform an error analysis and numerical simulations with a state-of-the-art computational code that solves the Richards' equation. Comparison of the cumulative mass leaving and entering the flow tank and water content maps produced by the photographic measurement technique and the numerical simulations demonstrate the efficiency and high accuracy of the proposed method for investigating vadose zone flow processes. Finally, the photometric procedure has been developed expressly for its extension to heterogeneous media. Other processes may be investigated through different laboratory experiments which will serve as benchmark for numerical codes validation.

  19. Analysis of up-flow aerated biological activated carbon filter technology in drinking water treatment.

    PubMed

    Lu, Shaoming; Liu, Jincui; Li, Shaowen; Biney, Elizabeth

    2013-01-01

    Problems have been found in the traditional post-positioned down-flow biological activated carbon filter (DBACF), such as microorganism leakage and low biodegradability. A pilot test was carried out to place a BACF between the sediment tank and the sand filter; a new technology of dual media up-flow aerated biological activated carbon filter (UBACF) was developed. Results showed that in terms of the new process, the up-flow mode was better than the down-flow. Compared with the DBACF, the problem of microorganism leakage could be well resolved with the UBACF process by adding disinfectant before the sand filtration, and a similar adsorption effect could be obtained. For the tested raw water, the COD(Mn) and NH3-N removal rate was 54.6% and 85.0%, respectively, similar to the waterworks with the DBACF process. The UBACF greatly enhanced oxygen supply capability and mass transfer rate via aeration, and the NH3-N removal ability was significantly improved from 1.5 mg/L to more than 3 mg/L. Influent to the UBACF with higher turbidity could be coped with through the primary filtration of the ceramisite layer combined with fluid-bed technology, which gave the carbon bed a low-turbidity environment of less than 1.0 NTU. The backwashing parameters and carbon abrasion rate of the two processes were almost the same.

  20. TANK48 CFD MODELING ANALYSIS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, S.

    2011-05-17

    The process of recovering the waste in storage tanks at the Savannah River Site (SRS) typically requires mixing the contents of the tank to ensure uniformity of the discharge stream. Mixing is accomplished with one to four dual-nozzle slurry pumps located within the tank liquid. For the work, a Tank 48 simulation model with a maximum of four slurry pumps in operation has been developed to estimate flow patterns for efficient solid mixing. The modeling calculations were performed by using two modeling approaches. One approach is a single-phase Computational Fluid Dynamics (CFD) model to evaluate the flow patterns and qualitativemore » mixing behaviors for a range of different modeling conditions since the model was previously benchmarked against the test results. The other is a two-phase CFD model to estimate solid concentrations in a quantitative way by solving the Eulerian governing equations for the continuous fluid and discrete solid phases over the entire fluid domain of Tank 48. The two-phase results should be considered as the preliminary scoping calculations since the model was not validated against the test results yet. A series of sensitivity calculations for different numbers of pumps and operating conditions has been performed to provide operational guidance for solids suspension and mixing in the tank. In the analysis, the pump was assumed to be stationary. Major solid obstructions including the pump housing, the pump columns, and the 82 inch central support column were included. The steady state and three-dimensional analyses with a two-equation turbulence model were performed with FLUENT{trademark} for the single-phase approach and CFX for the two-phase approach. Recommended operational guidance was developed assuming that local fluid velocity can be used as a measure of sludge suspension and spatial mixing under single-phase tank model. For quantitative analysis, a two-phase fluid-solid model was developed for the same modeling conditions as the

  1. Low flow water quality in rivers; septic tank systems and high-resolution phosphorus signals.

    PubMed

    Macintosh, K A; Jordan, P; Cassidy, R; Arnscheidt, J; Ward, C

    2011-12-15

    Rural point sources of phosphorus (P), including septic tank systems, provide a small part of the overall phosphorus budget to surface waters in agricultural catchments but can have a disproportionate impact on the low flow P concentration of receiving rivers. This has particular importance as the discharges are approximately constant into receiving waters and these have restricted dilution capacity during ecologically sensitive summer periods. In this study, a number of identified high impact septic systems were replaced with modern sequential batch reactors in three rural catchments during a monitoring period of 4 years. Sub-hourly P monitoring was conducted using bankside-analysers. Results show that strategic replacement of defective septic tank systems with modern systems and polishing filters decreased the low flow P concentration of one catchment stream by 0.032 mg TPL(-1) (0.018 mg TRPL(-1)) over the 4 years. However two of the catchment mitigation efforts were offset by continued new-builds that increased the density of septic systems from 3.4 km(-2) to 4.6 km(-2) and 13.8 km(-2) to 17.2 km(-2) and subsequently increased low flow P concentrations. Future considerations for septic system mitigation should include catchment carrying capacity as well as technology changes. Copyright © 2011 Elsevier B.V. All rights reserved.

  2. Evaluation of Water Quality for Two St. Johns River Tributaries Receiving Septic Tank Effluent, Duval County, Florida

    USGS Publications Warehouse

    Wicklein, Shaun M.

    2004-01-01

    Tributary streamflow to the St. Johns River in Duval County is thought to be affected by septic tank leachate from residential areas adjacent to these tributaries. Water managers and the city of Jacksonville have committed to infrastructure improvements as part of a management plan to address the impairment of tributary water quality. In order to provide data to evaluate the effects of future remedial activities in selected tributaries, major ion and nutrient concentrations, fecal coliform concentrations, detection of wastewater compounds, and tracking of bacterial sources were used to document septic tank influences on the water quality of selected tributaries. The tributaries Fishing Creek and South Big Fishweir Creek were selected because they drain subdivisions identified as high priority locations for septic tank phase-out projects: the Pernecia and Murray Hill B subdivisions, respectively. Population, housing (number of residences), and septic tank densities for the Murray Hill B subdivision are greater than those for the Pernecia subdivision. Water-quality samples collected in the study basins indicate influences from ground water and septic tanks. Estimated concentrations of total nitrogen ranged from 0.33 to 2.86 milligrams per liter (mg/L), and ranged from less than laboratory reporting limit (0.02 mg/L) to 0.64 mg/L for total phosphorus. Major ion concentrations met the State of Florida Class III surface-water standards; total nitrogen and total phosphorus concentrations exceeded the U.S. Environmental Protection Agency Ecoregion XII nutrient criteria for rivers and streams 49 and 96 percent of the time, respectively. Organic wastewater compounds detected at study sites were categorized as detergents, antioxidants and flame retardants, manufactured polycarbonate resins, industrial solvents, and mosquito repellent. The most commonly detected compound was para-nonylphenol, a breakdown product of detergent. Results of wastewater sampling give evidence that

  3. Farming in a fish tank.

    PubMed

    Youth, H

    1992-01-01

    Water, fish, and vegetables are all things that most developing countries do not have enough of. There is a method of food production called aquaculture that integrates fish and vegetable growing and conserves and purifies water at the same time. A working system that grows vegetables and fish for regional supermarkets in Massachusetts is a gravity fed system. At the top of the system is a 3,000 gallon fish rearing tank that measures 12 feet in diameter. Water trickles out of the tank and fish wastes are captured which can be composted and used in farm fields. The water goes into a bio filter that contains bacteria which convert harmful ammonia generated from fish waste into beneficial nitrate. Then the water flows into 100 foot long hydroponic tanks where lettuce grows. A 1/6 horsepower pump return the purified water to the fish tank and completes the cycle. The key to success is maintaining a balance between the fish nutrients and waste and the plants nutrients and waste. The system is estimated to produce 35,000 heads of lettuce and 2 tons of fish annually which translates into $23,500. The system could be adapted to developing countries with several modifications to reduce the start up cost.

  4. Peak flow responses to landscape disturbances caused by the cataclysmic 1980 eruption of Mount St. Helens, Washington

    USGS Publications Warehouse

    Major, Jon J.; Mark, Linda E.

    2006-01-01

    Years of discharge measurements that precede and follow the cataclysmic 1980 eruption of Mount St. Helens, Washington, provide an exceptional opportunity to examine the responses of peak flows to abrupt, widespread, devastating landscape disturbance. Multiple basins surrounding Mount St. Helens (300–1300 km2 drainage areas) were variously disturbed by: (1) a debris avalanche that buried 60 km2 of valley; (2) a lateral volcanic blast and associated pyroclastic flow that destroyed 550 km2 of mature forest and blanketed the landscape with silt-capped lithic tephra; (3) debris flows that reamed riparian corridors and deposited tens to hundreds of centimeters of gravelly sand on valley floors; and (4) a Plinian tephra fall that blanketed areas proximal to the volcano with up to tens of centimeters of pumiceous silt, sand, and gravel. The spatially complex disturbances produced a variety of potentially compensating effects that interacted with and influenced hydrological responses. Changes to water transfer on hillslopes and to flow storage and routing along channels both enhanced and retarded runoff. Rapid post-eruption modifications of hillslope surface textures, adjustments of channel networks, and vegetation recovery, in conjunction with the complex nature of the eruptive impacts and strong seasonal variability in regional climate hindered a consistent or persistent shift in peak discharges. Overall, we detected a short-lived (5–10 yr) increase in the magnitudes of autumn and winter peak flows. In general, peak flows were larger, and moderate to large flows (>Q2 yr) were more substantively affected than predicted by early modeling efforts. Proportional increases in the magnitudes of both small and large flows in basins subject to severe channel disturbances, but not in basins subject solely to hillslope disturbances, suggest that eruption-induced modifications to flow efficiency along alluvial channels that have very mobile beds differentially affected flows of

  5. Calibrating the Helium Pressurization System for the Space Shuttle Liquid-Hydrogen Tank

    NASA Technical Reports Server (NTRS)

    2008-01-01

    Analysis of the results from the STS-114 tanking tests and subsequent launch called into question existing thermal and mass models of helium pressurization of the liquid hydrogen tank. This hydrogen tank, which makes up the bottom two-thirds of the External Tank, is pressurized prior to launch to avoid cavitation in the Shuttle Main Engine pumps. At about 2 minutes prior to launch, the main vent valve is closed, and pressurized helium flows into the tank ullage space to achieve set point pressure. As the helium gas cools, its pressure drops, calling for additional helium. Subsequent helium flows are provided in short, timed pulses. The number of pulses is taken as a rough leak indicator. An analysis of thermal models by Marshall Space Flight Center showed considerable uncertainty in the pressure-versus-time behavior of the helium ullage space and the ability to predict the number of pulses normally expected. Kennedy Space Center proposed to calibrate the dime-sized orifice, which together with valves, controls the helium flow quantity (Figure 1). Pressure and temperature sensors were installed to provide upstream and downstream measurements necessary to compute flow rate based on the orifice discharge coefficient. An assessment of flow testing with helium indicated an extremely costly use of this critical resource. In order to reduce costs, we proposed removing the orifices from each Mobile Launcher Platform (MLP) and asking Colorado Engineering Experiment Station Inc. (CEESI) to calibrate the flow. CEESI has a high-pressure air flow system with traceable flow meters capable of handling the large flow rates. However, literature research indicated that square-edged orifices of small diameters often exhibit significant hysteresis and nonrepeatability in the vicinity of choked or sonic flow. Fortunately, the MLP orifices behaved relatively well in testing (Figure 2). Using curve fitting of the air-flow data, in conjunction with ASME orifice modeling equations, a

  6. In-tank recirculating arsenic treatment system

    DOEpatents

    Brady, Patrick V [Albuquerque, NM; Dwyer, Brian P [Albuquerque, NM; Krumhansl, James L [Albuquerque, NM; Chwirka, Joseph D [Tijeras, NM

    2009-04-07

    A low-cost, water treatment system and method for reducing arsenic contamination in small community water storage tanks. Arsenic is removed by using a submersible pump, sitting at the bottom of the tank, which continuously recirculates (at a low flow rate) arsenic-contaminated water through an attached and enclosed filter bed containing arsenic-sorbing media. The pump and treatment column can be either placed inside the tank (In-Tank) by manually-lowering through an access hole, or attached to the outside of the tank (Out-of-Tank), for easy replacement of the sorption media.

  7. Bed morphology, flow structure, and sediment transport at the outlet of Lake Huron and in the upper St. Clair River

    USGS Publications Warehouse

    Czuba, J.A.; Best, J.L.; Oberg, K.A.; Parsons, D.R.; Jackson, P.R.; Garcia, M.H.; Ashmore, P.

    2011-01-01

    An integrated multibeam echo sounder and acoustic Doppler current profiler field survey was conducted in July 2008 to investigate the morphodynamics of the St. Clair River at the outlet of Lake Huron. The principal morphological features of the upper St. Clair River included flow-transverse bedforms that appear weakly mobile, erosive bedforms in cohesive muds, thin non-cohesive veneers of weakly mobile sediment that cover an underlying cohesive (till or glacio-lacustrine) surface, and vegetation that covers the bed. The flow was characterized by acceleration as the banks constrict from Lake Huron into the St. Clair River, an approximately 1500-m long region of flow separation downstream from the Blue Water Bridge, and secondary flow connected to: i) channel curvature; ii) forcing of the flow by local bed topography, and iii) flow wakes in the lee side of ship wrecks. Nearshore, sand-sized, sediment from Lake Huron was capable of being transported into, and principally along, the banks of the upper St. Clair River by the measured flow. A comparison of bathymetric surveys conducted in 2007 and 2008 identifies that the gravel bed does undergo slow downstream movement, but that this movement does not appear to be generated by the mean flow, and could possibly be caused by ship-propeller-induced turbulence. The study results suggest that the measured mean flow and dredging within the channel have not produced major scour of the upper St. Clair River and that the recent fall in the level of Lake Huron is unlikely to have been caused by these mechanisms. ?? 2011.

  8. A sub-tank water-saving drinking water station

    NASA Astrophysics Data System (ADS)

    Zhang, Ting

    2017-05-01

    "Thousands of boiling water" problem has been affecting people's quality of life and good health, and now most of the drinking fountains cannot effectively solve this problem, at the same time, ordinary drinking water also has high energy consumption, there are problems such as yin and yang water. Our newly designed dispenser uses a two-tank heating system. Hot water after heating, into the insulation tank for insulation, when the water tank in the water tank below a certain water level, the cold water and then enter the heating tank heating. Through the water flow, tank volume and other data to calculate the time required for each out of water, so as to determine the best position of the water level control, summed up the optimal program, so that water can be continuously uninterrupted supply. Two cans are placed up and down the way, in the same capacity on the basis of the capacity of the container, the appropriate to reduce its size, and increase the bottom radius, reduce the height of its single tank to ensure that the overall height of two cans compared with the traditional single change. Double anti-dry design, to ensure the safety of the use of drinking water. Heating tank heating circuit on and off by the tank of the float switch control, so that the water heating time from the tank water level control, to avoid the "thousands of boiling water" generation. The entry of cold water is controlled by two solenoid valves in the inlet pipe, and the opening and closing of the solenoid valve is controlled by the float switch in the two tanks. That is, the entry of cold water is determined by the water level of the two tanks. By designing the control scheme cleverly, Yin and yang water generation. Our design completely put an end to the "thousands of boiling water", yin and yang water, greatly improving the drinking water quality, for people's drinking water safety provides a guarantee, in line with the concept of green and healthy development. And in the small

  9. Analysis of Tank PMD Rewetting Following Thrust Resettling

    NASA Astrophysics Data System (ADS)

    Weislogel, M. M.; Sala, M. A.; Collicott, S. H.

    2002-10-01

    Recent investigations have successfully demonstrated closed-form analytical solutions of spontaneous capillary flows in idealized cylindrical containers with interior corners. In this report, the theory is extended and applied to complex containers modeling spacecraft fuel tanks employing propellant management devices (PMDs). The specific problem investigated is one of spontaneous rewetting of a typical partially filled liquid fuel/cryogen tank with PMD after thrust resettling. The transients of this flow impact the logistics of orbital maneuvers and potentially tank thermal control. The general procedure to compute the initial condition (mean radius of curvature for the interface) for the closed-form transient flows is first outlined then solved for several 'complex' cylindrical tanks exhibiting symmetry. The utility and limitations of the technique as a design tool are discussed in a summary, which also highlights comparisons with NASA flight data of a model propellant tank with PMD.

  10. Analysis of Tank PMD Rewetting Following Thrust Resettling

    NASA Technical Reports Server (NTRS)

    Weislogel, M. M.; Sala, M. A.; Collicott, S. H.; Rame, Enrique (Technical Monitor)

    2002-01-01

    Recent investigations have successfully demonstrated closed-form analytical solutions of spontaneous capillary flows in idealized cylindrical containers with interior corners. In this report, the theory is extended and applied to complex containers modeling spacecraft fuel tanks employing propellant management devices (PMDs). The specific problem investigated is one of spontaneous rewetting of a typical partially filled liquid fuel/cryogen tank with PMD after thrust resettling. The transients of this flow impact the logistics of orbital maneuvers and potentially tank thermal control. The general procedure to compute the initial condition (mean radius of curvature for the interface) for the closed-form transient flows is first outlined then solved for several 'complex' cylindrical tanks exhibiting symmetry. The utility and limitations of the technique as a design tool are discussed in a summary, which also highlights comparisons with NASA flight data of a model propellant tank with PMD.

  11. PREFACE: 1st European Conference on Gas Micro Flows (GasMems 2012)

    NASA Astrophysics Data System (ADS)

    Frijns, Arjan; Valougeorgis, Dimitris; Colin, Stéphane; Baldas, Lucien

    2012-05-01

    The aim of the 1st European Conference on Gas Micro Flows is to advance research in Europe and worldwide in the field of gas micro flows as well as to improve global fundamental knowledge and to enable technological applications. Gas flows in microsystems are of great importance and touch almost every industrial field (e.g. fluidic microactuators for active control of aerodynamic flows, vacuum generators for extracting biological samples, mass flow and temperature micro-sensors, pressure gauges, micro heat-exchangers for the cooling of electronic components or for chemical applications, and micro gas analyzers or separators). The main characteristic of gas microflows is their rarefaction, which for device design often requires modelling and simulation both by continuous and molecular approaches. In such flows various non-equilibrium transport phenomena appear, while the role played by the interaction between the gas and the solid device surfaces becomes essential. The proposed models of boundary conditions often need an empirical adjustment strongly dependent on the micro manufacturing technique. The 1st European Conference on Gas Micro Flows is organized under the umbrella of the recently established GASMEMS network (www.gasmems.eu/) consisting of 13 participants and six associate members. The main objectives of the network are to structure research and train researchers in the fields of micro gas dynamics, measurement techniques for gaseous flows in micro experimental setups, microstructure design and micro manufacturing with applications in lab and industry. The conference takes place on June 6-8 2012, at the Skiathos Palace Hotel, on the beautiful island of Skiathos, Greece. The conference has received funding from the European Community's Seventh Framework Programme FP7/2007-2013 under grant agreement ITN GASMEMS no. 215504. It owes its success to many people. We would like to acknowledge the support of all members of the Scientific Committee and of all

  12. A 400,000 lb crude oil storage tank was moved on an 11 in. air blanket

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1979-03-01

    The British patented-system used to move the 55,000 bbl tank at the Cushing, Okla., tank farm of Getty Oil Co. uses the same airlift principle employed by various hovercraft. Representatives from 20 pipeline and oil companies watched the move, which placed the tank 22 ft higher and 600 ft away from its former location, to improve its gravity flow rate, an improvement spurred by greater crude demands placed on Cushing Terminal. Two 425 hp air compressors were attached to the tank's shell and produced 130,000 cu ft/min of air. The airflow was directed beneath the tank through a segmented skirtmore » fixed to the circumference of the tank's base. Less than 0.5 psi air pressure across the tank floor was needed to lift the tank. Four large D-7 tractors pulled and guided the tank up the incline onto its new pad, where the vessel was rotated into alignment for piping connections. Preliminary rig-up, grading, and pad preparation took six days, but actual tank relocation required only two hours. Getty's Cushing terminal feeds to the 20 in. dia Osage pipeline that serves Getty's El Dorado, Kans., refinery as well as other carriers.« less

  13. Correlation of Apollo oxygen tank thermodynamic performance predictions

    NASA Technical Reports Server (NTRS)

    Patterson, H. W.

    1971-01-01

    Parameters necessary to analyze the stratified performance of the Apollo oxygen tanks include g levels, tank elasticity, flow rates and pressurized volumes. Methods for estimating g levels and flow rates from flight plans prior to flight, and from quidance and system data for use in the post flight analysis are described. Equilibrium thermodynamic equations are developed for the effects of tank elasticity and pressurized volumes on the tank pressure response and their relative magnitudes are discussed. Correlations of tank pressures and heater temperatures from flight data with the results of a stratification model are shown. Heater temperatures were also estimated with empirical heat transfer agreement with flight data when fluid properties were averaged rather than evaluated at the mean film temperature.

  14. CFD simulation of vertical linear motion mixing in anaerobic digester tanks.

    PubMed

    Meroney, Robert N; Sheker, Robert E

    2014-09-01

    Computational fluid dynamics (CFD) was used to simulate the mixing characteristics of a small circular anaerobic digester tank (diameter 6 m) equipped sequentially with 13 different plunger type vertical linear motion mixers and two different type internal draft-tube mixers. Rates of mixing of step injection of tracers were calculated from which active volume (AV) and hydraulic retention time (HRT) could be calculated. Washout characteristics were compared to analytic formulae to estimate any presence of partial mixing, dead volume, short-circuiting, or piston flow. Active volumes were also estimated based on tank regions that exceeded minimum velocity criteria. The mixers were ranked based on an ad hoc criteria related to the ratio of AV to unit power (UP) or AV/UP. The best plunger mixers were found to behave about the same as the conventional draft-tube mixers of similar UP.

  15. Chemical composition of Hanford Tank SY-102

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Birnbaum, E.; Agnew, S.; Jarvinen, G.

    1993-12-01

    The US Department of Energy established the Tank Waste Remediation System (TWRS) to safely manage and dispose of the radioactive waste, both current and future, stored in double-shell and single-shell tanks at the Hanford sites. One major program element in TWRS is pretreatment which was established to process the waste prior to disposal using the Hanford Waste Vitrification Plant. In support of this program, Los Alamos National Laboratory has developed a conceptual process flow sheet which will remediate the entire contents of a selected double-shelled underground waste tank, including supernatant and sludge, into forms that allow storage and final disposalmore » in a safe, cost-effective and environmentally sound manner. The specific tank selected for remediation is 241-SY-102 located in the 200 West Area. As part of the flow sheet development effort, the composition of the tank was defined and documented. This database was built by examining the history of liquid waste transfers to the tank and by performing careful analysis of all of the analytical data that have been gathered during the tank`s lifetime. In order to more completely understand the variances in analytical results, material and charge balances were done to help define the chemistry of the various components in the tank. This methodology of defining the tank composition and the final results are documented in this report.« less

  16. The modified swirl sedimentation tanks for water purification.

    PubMed

    Ochowiak, Marek; Matuszak, Magdalena; Włodarczak, Sylwia; Ancukiewicz, Małgorzata; Krupińska, Andżelika

    2017-03-15

    This paper discusses design, evaluation, and application for the use of swirl/vortex technologies as liquid purification system. A study was performed using modified swirl sedimentation tanks. The vortex separators (OW, OWK, OWR and OWKR) have been studied under laboratory conditions at liquid flow rate from 2.8⋅10 -5 to 5.1⋅10 -4 [m 3 /s]. The pressure drop and the efficiency of purification of liquid stream were analyzed. The suspended particles of different diameters were successfully removed from liquid with the application of swirl chambers of proposed constructions. It was found that damming of liquid in the tank increases alongside liquid stream at the inlet and depends on the tank construction. The efficiency of the sedimentation tanks increases alongside the diameters of solid particles and decrease in the liquid flow rate. The best construction proved to be the OWR sedimentation tank due to smallest liquid damming, even at high flow rates, and the highest efficiency of the purification liquid stream for solid particles of the smallest diameter. The proposed solution is an alternative to the classical constructions of sedimentation tanks. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Assessing nutrient flows in septic tanks by eliciting expert judgement: a promising method in the context of developing countries.

    PubMed

    Montangero, Agnes; Belevi, Hasan

    2007-03-01

    Simple models based on the physical and biochemical processes occurring in septic tanks, pit and urine diversion latrines were developed to determine the nutrient flows in these systems. Nitrogen and phosphorus separation in different output materials from these on-site sanitation installations were thus determined. Moreover, nutrient separation in septic tanks was also assessed through literature values and by eliciting expert judgement. Use of formal expert elicitation technique proved to be effective, particularly in the context of developing countries where data is often scarce but expert judgement readily available. In Vietnam, only 5-14% and 11-27% of the nitrogen and phosphorus input, respectively, are removed from septic tanks with the faecal sludge. The remaining fraction leaves the tank via the liquid effluent. Unlike septic tanks, urine diversion latrines allow to immobilize most of the nutrients either in form of stored urine or dehydrated faecal matter. These latrines thus contribute to reducing the nutrient load in the environment and lowering consumption of energy and non-renewable resources for fertiliser production.

  18. Tank vapor mitigation requirements for Hanford Tank Farms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rakestraw, L.D.

    1994-11-15

    Westinghouse Hanford Company has contracted Los Alamos Technical Associates to listing of vapors and aerosols that are or may be emitted from the High Level Waste (HLW) tanks at Hanford. Mitigation requirements under Federal and State law, as well as DOE Orders, are included in the listing. The lists will be used to support permitting activities relative to tank farm ventilation system up-grades. This task is designated Task 108 under MJB-SWV-312057 and is an extension of efforts begun under Task 53 of Purchase Order MPB-SVV-03291 5 for Mechanical Engineering Support. The results of that task, which covered only thirty-nine tanks,more » are repeated here to provide a single source document for vapor mitigation requirements for all 177 HLW tanks.« less

  19. Microgravity Propellant Tank Geyser Analysis and Prediction

    NASA Technical Reports Server (NTRS)

    Thornton, Randall J.; Hochstein, John I.; Turner, James E. (Technical Monitor)

    2001-01-01

    An established correlation for geyser height prediction of an axial jet inflow into a microgravity propellant tank was analyzed and an effort to develop an improved correlation was made. The original correlation, developed using data from ethanol flow in small-scale drop tower tests, uses the jet-Weber number and the jet-Bond number to predict geyser height. A new correlation was developed from the same set of experimental data using the jet-Weber number and both the jet-Bond number and tank-Bond number to describe the geyser formation. The resulting correlation produced nearly a 40% reduction in geyser height predictive error compared to the original correlation with experimental data. Two additional tanks were computationally modeled in addition to the small-scale tank used in the drop tower testing. One of these tanks was a 50% enlarged small-scale tank and the other a full-scale 2 m radius tank. Simulations were also run for liquid oxygen and liquid hydrogen. Results indicated that the new correlation outperformed the original correlation in geyser height prediction under most circumstances. The new correlation has also shown a superior ability to recognize the difference between flow patterns II (geyser formation only) and III (pooling at opposite end of tank from the bulk fluid region).

  20. Modeling and simulation of large scale stirred tank

    NASA Astrophysics Data System (ADS)

    Neuville, John R.

    agitation of the vessel is adequate to produce a homogenous mixture but not so high that it produces excessive erosion to internal components. The main findings reported by this study were: (1) Careful consideration of the fluid yield stress characteristic is required to make predictions of fluid flow behavior. Laminar Models can predict flow patterns and stagnant regions in the tank until full movement of the flow field occurs. Power Curves and flow patterns were developed for the full scale mixing model to show the differences in expected performance of the mixing process for a broad range of fluids that exhibit Herschel--Bulkley and Bingham Plastic flow behavior. (2) The impeller power demand is independent of the flow model selection for turbulent flow fields in the region of the impeller. The laminar models slightly over predicted the agitator impeller power demand produced by turbulent models. (3) The CFD results show that the power number produced by the mixing system is independent of size. The 40 gallon model produced the same power number results as the 9300 gallon model for the same process conditions. (4) CFD Results show that the Scale-Up of fluid motion in a 40 gallon tank should compare with fluid motion at full scale, 9300 gallons by maintaining constant impeller Tip Speed.

  1. Load limit of a UASB fed septic tank-treated domestic wastewater.

    PubMed

    Lohani, Sunil Prasad; Bakke, Rune; Khanal, Sanjay N

    2015-01-01

    Performance of a 250 L pilot-scale up-flow anaerobic sludge blanket (UASB) reactor, operated at ambient temperatures, fed septic tank effluents intermittently, was monitored for hydraulic retention time (HRT) from 18 h to 4 h. The total suspended solids (TSS), total chemical oxygen demand (CODT), dissolved chemical oxygen demand (CODdis) and suspended chemical oxygen demand (CODss) removal efficiencies ranged from 20 to 63%, 15 to 56%, 8 to 35% and 22 to 72%, respectively, for the HRT range tested. Above 60% TSS and 47% CODT removal were obtained in the combined septic tank and UASB process. The process established stable UASB treatment at HRT≥6 h, indicating a hydraulic load design limit. The tested septic tank-UASB combined system can be a low-cost and effective on-site sanitation solution.

  2. Vented Tank Resupply Experiment--Flight Test Results

    NASA Technical Reports Server (NTRS)

    Chato, David J.; Martin, Timothy A.

    1997-01-01

    This paper reports the results of the Vented Tank Resupply Experiment (VTRE) which was flown as a payload on STS 77. VTRE looks at the ability of vane Propellant Management Devices (PMD) to separate liquid and gas in low gravity. VTRE used two clear 0.8 cubic foot tanks one spherical and one with a short barrel section and transferred Refrigerant 113 between them as well as venting it to space. Tests included retention of liquid during transfer, liquid free venting, and recovery of liquid into the PMD after thruster firing. Liquid was retained successfully at the highest flow rate tested (2.73 gpm). Liquid free vents were achieved for both tanks, although at a higher flow rate (0.1591 cfm) for the spherical tank than the other (0.0400 cfm). Recovery from a thruster firing which moved the liquid to the opposite end of the tank from the PMD was achieved in 30 seconds.

  3. 33 CFR 80.720 - St. Simons Island, GA to Amelia Island, FL.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false St. Simons Island, GA to Amelia... SECURITY INTERNATIONAL NAVIGATION RULES COLREGS DEMARCATION LINES Seventh District § 80.720 St. Simons Island, GA to Amelia Island, FL. (a) A line drawn from St. Simons Light to the northernmost tank on...

  4. Detection of conveyance changes in St. Clair River using historical water-level and flow data with inverse one-dimensional hydrodynamic modeling

    USGS Publications Warehouse

    Holtschlag, David J.; Hoard, C.J.

    2009-01-01

    St. Clair River is a connecting channel that transports water from Lake Huron to the St. Clair River Delta and Lake St. Clair. A negative trend has been detected in differences between water levels on Lake Huron and Lake St. Clair. This trend may indicate a combination of flow and conveyance changes within St. Clair River. To identify where conveyance change may be taking place, eight water-level gaging stations along St. Clair River were selected to delimit seven reaches. Positive trends in water-level fall were detected in two reaches, and negative trends were detected in two other reaches. The presence of both positive and negative trends in water-level fall indicates that changes in conveyance are likely occurring among some reaches because all reaches transmit essentially the same flow. Annual water-level fall in reaches and reach lengths was used to compute conveyance ratios for all pairs of reaches by use of water-level data from 1962 to 2007. Positive and negative trends in conveyance ratios indicate that relative conveyance is changing among some reaches. Inverse one-dimensional (1-D) hydrodynamic modeling was used to estimate a partial annual series of effective channel-roughness parameters in reaches forming the St. Clair River for 21 years when flow measurements were sufficient to support parameter estimation. Monotonic, persistent but non-monotonic, and irregular changes in estimated effective channel roughness with time were interpreted as systematic changes in conveyances in five reaches. Time-varying parameter estimates were used to simulate flow throughout the St. Clair River and compute changes in conveyance with time. Based on the partial annual series of parameters, conveyance in the St. Clair River increased about 10 percent from 1962 to 2002. Conveyance decreased, however, about 4.1 percent from 2003 to 2007, so that conveyance was about 5.9 percent higher in 2007 than in 1962.

  5. Pump tank divider plate for sump suction sodium pumps

    DOEpatents

    George, John A.; Nixon, Donald R.

    1977-01-01

    A circular plate extends across the diameter of "sump suction" pump, with a close clearance between the edge of the plate and the wall of the pump tank. The plate is located above the pump impeller, inlet and outlet flow nozzles but below the sodium free surface and effectively divides the pump tank into two separate chambers. On change of pump speed, the close fitting flow restriction plate limits the rate of flow into or out of the upper chamber, thereby minimizing the rate of level change in the tank and permitting time for the pump cover gas pressure to be varied to maintain an essentially constant level.

  6. Multi-scale roughness spectra of Mount St. Helens debris flows

    NASA Technical Reports Server (NTRS)

    Austin, Richard T.; England, Anthony W.

    1993-01-01

    A roughness spectrum allows surface structure to be interpreted as a sum of sinusoidal components with differing wavelengths. Knowledge of the roughness spectrum gives insight into the mechanisms responsible for electromagnetic scattering at a given wavelength. Measured spectra from 10-year-old primary debris flow surfaces at Mount St. Helens conform to a power-law spectral model, suggesting that these surfaces are scaling over the measured range of spatial frequencies. Measured spectra from water-deposited surfaces deviate from this model.

  7. Comparative hydraulics of two fishery research circular tanks and recommendations for control of experimental bias

    USGS Publications Warehouse

    Odeh, M.; Schrock, R.M.; Gannam, A.

    2003-01-01

    Hydraulic characteristics inside two research circular tanks (1.5-m and 1.2-m diameter) with the same volume of water were studied to understand how they might affect experimental bias by influencing the behavior and development of juvenile fish. Water velocities inside each tank were documented extensively and flow behavior studied. Surface inflow to the 1.5-m tank created a highly turbulent and aerated surface, and produced unevenly distributed velocities within the tank. A low-flow velocity, or "dead" zone, persisted just upstream of the surface inflow. A single submerged nozzle in the 1.2-m tank created uniform flow and did not cause undue turbulence or introduce air. Flow behavior in the 1.5-m tank is believed to have negatively affected the feeding behavior and physiological development of a group of juvenile fall chinook salmon, Oncorhynchus tshawytscha. A new inflow nozzle design provided comparable flow behavior regardless of tank size and water depth. Maintaining similar hydraulic conditions inside tanks used for various biological purposes, including fish research, would minimize experimental bias caused by differences in flow behavior. Other sources of experimental bias are discussed and recommendations given for reporting and control of experimental conditions in fishery research tank experiments.

  8. TANKS 18 AND 19-F EQUIPMENT GROUT FILL MATERIAL EVALUATION AND RECOMMENDATIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stefanko, D.; Langton, C.

    The United States Department of Energy (US DOE) intends to remove Tanks 18-F and 19-F at the Savannah River Site (SRS) from service. The high-level waste (HLW) tanks have been isolated from the F-area Tank Farm (FTF) facilities and will be filled with cementitious grout for the purpose of: (1) physically stabilizing the empty volumes in the tanks, (2) limiting/eliminating vertical pathways from the surface to residual waste on the bottom of the tanks, (3) providing an intruder barrier, and (4) providing an alkaline, chemical reducing environment within the closure boundary to limit solubility of residual radionuclides. Bulk waste andmore » heel waste removal equipment will remain in Tanks 18-F and 19-F when the tanks are closed. This equipment includes: mixer pumps, transfer pumps, transfer jets, equipment support masts, sampling masts and dip tube assemblies. The current Tank 18-F and 19-F closure strategy is to grout the internal void spaces in this equipment to eliminate fast vertical pathways and slow water infiltration to the residual material on the tank floor. This report documents the results of laboratory testing performed to identify a grout formulation for filling the abandoned equipment in Tanks 18-F and 19-F. The objective of this work was to formulate a flowable grout for filling internal voids of equipment that will remain in Tanks 18-F and 19-F during the final closures. This work was requested by V. A. Chander, Tank Farm Closure Engineering, in HLW-TTR-2011-008. The scope for this task is provided in the Task Technical and Quality Assurance Plan (TTQAP), SRNL-RP-2011-00587. The specific objectives of this task were to: (1) Prepare and evaluate the SRR cooling coil grout identified in WSRC-STI-2008-00298 per the TTR for this work. The cooling coil grout is a mixture of BASF MasterFlow{reg_sign} 816 cable grout (67.67 wt. %), Grade 100 ground granulated blast furnace slag (7.52 wt. %) and water (24.81 wt. %); (2) Identify equipment grout placement

  9. System for removing liquid waste from a tank

    DOEpatents

    Meneely, Timothy K.; Sherbine, Catherine A.

    1994-01-01

    A tank especially suited for nuclear applications is disclosed. The tank comprises a tank shell for protectively surrounding the liquid contained therein; an inlet positioned on the tank for passing a liquid into the tank; a sump positioned in an interior portion of the tank for forming a reservoir of the liquid; a sloped incline for resting the tank thereon and for creating a natural flow of the liquid toward the sump; a pump disposed adjacent the tank for pumping the liquid; and a pipe attached to the pump and extending into the sump for passing the liquid therethrough. The pump pumps the liquid in the sump through the pipe and into the pump for discharging the liquid out of the tank.

  10. System for removing liquid waste from a tank

    DOEpatents

    Meneely, T.K.; Sherbine, C.A.

    1994-04-26

    A tank especially suited for nuclear applications is disclosed. The tank comprises a tank shell for protectively surrounding the liquid contained therein; an inlet positioned on the tank for passing a liquid into the tank; a sump positioned in an interior portion of the tank for forming a reservoir of the liquid; a sloped incline for resting the tank thereon and for creating a natural flow of the liquid toward the sump; a pump disposed adjacent the tank for pumping the liquid; and a pipe attached to the pump and extending into the sump for passing the liquid there through. The pump pumps the liquid in the sump through the pipe and into the pump for discharging the liquid out of the tank. 2 figures.

  11. VIEW OF PDP TANK TOP (LOWER LEFT) AND RTR/LTR TANK ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    VIEW OF PDP TANK TOP (LOWER LEFT) AND RTR/LTR TANK TOP(LOWER RIGHT), LOOKING SOUTHEAST INTO THE PDP ROOM AT LEVEL 0’. ROLL-UP LOADING DOOR ON RIGHT AND SHEAVE RACKS FOR PDP AND LTR AT TOP - Physics Assembly Laboratory, Area A/M, Savannah River Site, Aiken, Aiken County, SC

  12. Soil moisture flow and nitrate transport through partially saturated zone considering mobile-immobile approach using 3D tank setup

    NASA Astrophysics Data System (ADS)

    Tomar, J.; Yadav, B. K.

    2016-12-01

    The aim of this study is to investigate the soil water flow and nitrate movement through vadose zone considering mobile-immobile approach using large scale three dimensional (3D) tank setup. The three dimensional sand tank setup was fabricated having dimension of 60 cm length, 30 cm width and 60 cm height and embedded with horizontal and vertical layers of sampling ports. The tank was filled with a porous media of average size of 0.5 to 1.0 mm homogeneous and nitrate concentration of 300 mg/l was applied with a distributed constant water flux of 150ml/hr. at the top using a sprinkler system. Pore water samples were collected hourly from the sampling ports and were analyzed using UV-spectrophotometer. The soil hydraulic and solute transport parameters were deduced from the laboratory experiments for simulating the considered 3D domain using the mobile-immobile approach. Soil moisture flow and contaminant transport equations are numerically solved for simulating the nitrate movement in the tank setup. The simulated break through curves (BTC) show the nitrate movement is rapid in mobile region by a factor of 1.2 as compared with the immobile region. The results show that the mobile-immobile approach of predicting solute transport in variably saturated zone can be used effectively in field after getting the required parameters using the laboratory experiments under similar environmental conditions. The high concentration 130 ppm was observed in lateral and transverse axis at 05 cm depth. This results will help in further investigation in field and in implementation of decontamination techniques.

  13. Assessment of Tank 241-S-112 Liquid Waste Mixing in Tank 241-SY-101

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Onishi, Yasuo; Trent, Donald S.; Wells, Beric E.

    The objectives of this study were to evaluate mixing of liquid waste from Tank 241-S-112 with waste in Tank 241-SY-101 and to determine the properties of the resulting waste for the cross-site transfer to avoid potential double-shell tank corrosion and pipeline plugging. We applied the time-varying, three-dimensional computer code TEMPEST to Tank SY-101 as it received the S-112 liquid waste. The model predicts that temperature variations in Tank SY-101 generate a natural convection flow that is very slow, varying from about 7 x 10{sup -5} to 1 x 10{sup -3} ft/sec (0.3 to about 4 ft/hr) in most areas. Thus,more » natural convection would eventually mix the liquid waste in SY-101 but would be very slow to achieve nearly complete mixing. These simulations indicate that the mixing of S-112 and SY-101 wastes in Tank SY-101 is a very slow process, and the density difference between the two wastes would further limit mixing. It is expected to take days or weeks to achieve relatively complete mixing in Tank SY-101.« less

  14. Impact on Water Heater Performance of Heating Methods that Promote Tank Temperature Stratification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gluesenkamp, Kyle R; BushPE, John D

    2016-01-01

    During heating of a water heater tank, the vertical temperature stratification of the water can be increased or decreased, depending on the method of heating. Methods that increase stratification during heating include (1) removing cold water from the tank bottom, heating it, and re-introducing it to the tank top at relatively low flow rate, (2) using a heat exchanger wrapped around the tank, through which heating fluid (with finite specific heat) flows from top to bottom, and (3) using an immersed heat element that is relatively high in the tank. Using such methods allows for improved heat pump water heatermore » (HPWH) cycle efficiencies when the heat pump can take advantage of the lower temperatures that exist lower in the tank, and accommodate the resulting glide. Transcritical cycles are especially well-suited to capitalize on this opportunity, and other HPWH configurations (that have been proposed elsewhere) may benefit as well. This work provides several stratification categories of heat pump water heater tank configurations relevant to their stratification potential. To illustrate key differences among categories, it also compiles available experimental data for (a) single pass pumped flow, (b) multi-pass pumped flow, and (c) top-down wrapped tank with transcritical refrigerant.« less

  15. 6. VIEW OF BRINING TANK Older, redwood model. Paddles agitated ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    6. VIEW OF BRINING TANK Older, redwood model. Paddles agitated the skins while they soaked in brine. The skins were then hung to dry. - Sealing Plant, St. George Island, Pribilof Islands, Saint George, Aleutians West Census Area, AK

  16. Investigation of thermolytic hydrogen generation rate of tank farm simulated and actual waste

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martino, C.; Newell, D.; Woodham, W.

    To support resolution of Potential Inadequacies in the Safety Analysis for the Savannah River Site (SRS) Tank Farm, Savannah River National Laboratory conducted research to determine the thermolytic hydrogen generation rate (HGR) with simulated and actual waste. Gas chromatography methods were developed and used with air-purged flow systems to quantify hydrogen generation from heated simulated and actual waste at rates applicable to the Tank Farm Documented Safety Analysis (DSA). Initial simulant tests with a simple salt solution plus sodium glycolate demonstrated the behavior of the test apparatus by replicating known HGR kinetics. Additional simulant tests with the simple salt solutionmore » excluding organics apart from contaminants provided measurement of the detection and quantification limits for the apparatus with respect to hydrogen generation. Testing included a measurement of HGR on actual SRS tank waste from Tank 38. A final series of measurements examined HGR for a simulant with the most common SRS Tank Farm organics at temperatures up to 140 °C. The following conclusions result from this testing.« less

  17. 49 CFR 172.331 - Bulk packagings other than portable tanks, cargo tanks, tank cars and multi-unit tank car tanks.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 2 2012-10-01 2012-10-01 false Bulk packagings other than portable tanks, cargo tanks, tank cars and multi-unit tank car tanks. 172.331 Section 172.331 Transportation Other Regulations... packagings other than portable tanks, cargo tanks, tank cars and multi-unit tank car tanks. (a) Each person...

  18. 49 CFR 172.331 - Bulk packagings other than portable tanks, cargo tanks, tank cars and multi-unit tank car tanks.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Bulk packagings other than portable tanks, cargo tanks, tank cars and multi-unit tank car tanks. 172.331 Section 172.331 Transportation Other Regulations... packagings other than portable tanks, cargo tanks, tank cars and multi-unit tank car tanks. (a) Each person...

  19. 49 CFR 172.331 - Bulk packagings other than portable tanks, cargo tanks, tank cars and multi-unit tank car tanks.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 2 2014-10-01 2014-10-01 false Bulk packagings other than portable tanks, cargo tanks, tank cars and multi-unit tank car tanks. 172.331 Section 172.331 Transportation Other Regulations... packagings other than portable tanks, cargo tanks, tank cars and multi-unit tank car tanks. (a) Each person...

  20. 49 CFR 172.331 - Bulk packagings other than portable tanks, cargo tanks, tank cars and multi-unit tank car tanks.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 2 2011-10-01 2011-10-01 false Bulk packagings other than portable tanks, cargo tanks, tank cars and multi-unit tank car tanks. 172.331 Section 172.331 Transportation Other Regulations... packagings other than portable tanks, cargo tanks, tank cars and multi-unit tank car tanks. (a) Each person...

  1. 49 CFR 172.331 - Bulk packagings other than portable tanks, cargo tanks, tank cars and multi-unit tank car tanks.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 2 2013-10-01 2013-10-01 false Bulk packagings other than portable tanks, cargo tanks, tank cars and multi-unit tank car tanks. 172.331 Section 172.331 Transportation Other Regulations... packagings other than portable tanks, cargo tanks, tank cars and multi-unit tank car tanks. (a) Each person...

  2. 7. VIEW OF BRINING TANK Newer, concrete model. After drying, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. VIEW OF BRINING TANK Newer, concrete model. After drying, skins were rolled in borax and packed into barrels, such as those seen in background. - Sealing Plant, St. George Island, Pribilof Islands, Saint George, Aleutians West Census Area, AK

  3. Catalytic Reactor for Inerting of Aircraft Fuel Tanks

    DTIC Science & Technology

    1974-06-01

    Aluminum Panels After Triphase Corrosion Test 79 35 Inerting System Flows in Various Flight Modes 82 36 High Flow Reactor Parametric Data 84 37 System...AD/A-000 939 CATALYTIC REACTOR FOR INERTING OF AIRCRAFT FUEL TANKS George H. McDonald, et al AiResearch Manufacturing Company Prepared for: Air Force...190th Street 2b. GROUP Torrance, California .. REPORT TITLE CATALYTIC REACTOR FOR INERTING OF AIRCRAFT FUEL TANKS . OESCRIP TIVE NOTEs (Thpe of refpoft

  4. 7 CFR 1955.57 - Real property containing underground storage tanks.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ...; (3) Septic tanks; (4) Pipeline facilities (including gathering lines) regulated under; (i) The...) Storm water or wastewater collection systems; (7) Flow-through process tanks; (8) Liquid traps or... 7 Agriculture 14 2014-01-01 2014-01-01 false Real property containing underground storage tanks...

  5. 7 CFR 1955.57 - Real property containing underground storage tanks.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ...; (3) Septic tanks; (4) Pipeline facilities (including gathering lines) regulated under; (i) The...) Storm water or wastewater collection systems; (7) Flow-through process tanks; (8) Liquid traps or... 7 Agriculture 14 2011-01-01 2011-01-01 false Real property containing underground storage tanks...

  6. 7 CFR 1955.57 - Real property containing underground storage tanks.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ...; (3) Septic tanks; (4) Pipeline facilities (including gathering lines) regulated under; (i) The...) Storm water or wastewater collection systems; (7) Flow-through process tanks; (8) Liquid traps or... 7 Agriculture 14 2012-01-01 2012-01-01 false Real property containing underground storage tanks...

  7. 7 CFR 1955.57 - Real property containing underground storage tanks.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ...; (3) Septic tanks; (4) Pipeline facilities (including gathering lines) regulated under; (i) The...) Storm water or wastewater collection systems; (7) Flow-through process tanks; (8) Liquid traps or... 7 Agriculture 14 2013-01-01 2013-01-01 false Real property containing underground storage tanks...

  8. 46 CFR 58.50-10 - Diesel fuel tanks.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 2 2011-10-01 2011-10-01 false Diesel fuel tanks. 58.50-10 Section 58.50-10 Shipping... AND RELATED SYSTEMS Independent Fuel Tanks § 58.50-10 Diesel fuel tanks. (a) Construction. (1) Tanks... not less than 0.031 inch (USSG 22) may be used for tanks up to 30-gallon capacity. 4 For diesel tanks...

  9. 46 CFR 58.50-10 - Diesel fuel tanks.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Diesel fuel tanks. 58.50-10 Section 58.50-10 Shipping... AND RELATED SYSTEMS Independent Fuel Tanks § 58.50-10 Diesel fuel tanks. (a) Construction. (1) Tanks... not less than 0.031 inch (USSG 22) may be used for tanks up to 30-gallon capacity. 4 For diesel tanks...

  10. Transport of Strontium and Cesium in Simulated Hanford Tank Waste Leachate through Quartz Sand under Saturated and Unsaturated Flow

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rod, Kenton A.; Um, Wooyong; Flury, Markus

    2010-11-01

    We investigated the effects of water saturation and formation of secondary precipitates on transport of Sr and Cs through sand columns under unsaturated water flow. A series of column experiments was run at effective water saturations ranging from 0.2 to 1.0 under steady-state flow using columns filled with quartz sand. The solution phase was either 0.1 M NaNO3 or a simulated tank waste leachate (STWL), mimicking the leaks of tank wastes at the Hanford Site, Washington, USA. In STWL, the mobility of Sr was significantly reduced as the water saturation decreased, because Sr was incorporated into or sorbed to neo-formedmore » secondary precipitates. In contrast, the transport of Cs in STWL was similar to that of a nonreactive tracer. In 0.1 M NaNO3, Sr moved like a conservative tracer, showing no retardation, whereas Cs was retarded relative to Sr. The flow regime for the 0.1 M NaNO3 columns under all water saturations could be described with the equilibrium convection-dispersion equation (CDE). However, for STWL, the Sr and Cs breakthrough curves indicated the presence of non-equilibria under unsaturated flow conditions. Such non-equilibrium conditions, caused by physical and chemical processes can reduce the mobility of radionuclides at the Hanford vadose zone.« less

  11. Performance of hybrid constructed wetland systems for treating septic tank effluent.

    PubMed

    Cui, Li-hua; Liu, Wen; Zhu, Xi-zhen; Ma, Mei; Huang, Xi-hua; Xia, Yan-yang

    2006-01-01

    The integrated wetland systems were constructed by combining horizontal-flow and vertical-flow bed, and their purification efficiencies for septic tank effluent were detected when the hydraulic retention time (HRT) was 1 d, 3 d, 5 d under different seasons. The results showed that the removal efficiencies of the organics, phosphorus were steady in the hybrid systems, but the removal efficiency of total nitrogen was not steady due to high total nitrogen concentration in the septic tank effluent. The average removal rates of COD (chemical oxygen demand) were 89%, 87%, 83%, and 86% in summer, autumn, winter and spring, respectively, and it was up to 88%, 85%, 73%, and 74% for BOD5 (5 d biochemical oxygen demand) removal rate in four seasons. The average removal rates of TP (total phosphorous) could reach up to 97%, 98%, 95%, 98% in four seasons, but the removal rate of TN (total nitrogen) was very low. The results of this study also indicated that the capability of purification was the worst in winter. Cultivating with plants could improve the treated effluent quality from the hybrid systems. The results of the operation of the horizontal-flow and vertical-flow cells (hybrid systems) showed that the removal efficiencies of the organics, TP and TN in horizontal-flow and vertical-flow cells were improved significantly with the extension of HRT under the same season. The removal rate of 3 d HRT was obviously higher than that of 1 d HRT, and the removal rate of 5 d HRT was better than that of 3 d HRT, but the removal efficiency was not very obvious with the increment of HRT. Therefore, 3 d HRT might be recommended in the actual operation of the hybrid systems for economic and technical reasons.

  12. Gradient flows without blow-up for Lefschetz thimbles

    DOE PAGES

    Tanizaki, Yuya; Nishimura, Hiromichi; Verbaarschot, Jacobus J. M.

    2017-10-16

    We propose new gradient flows that define Lefschetz thimbles and do not blow up in a finite flow time. Here, we study analytic properties of these gradient flows, and confirm them by numerical tests in simple examples.

  13. Preliminary remedial action objectives for the Tank 16 groundwater operable unit

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miles, W.C. Jr.

    1992-10-28

    Tank 16 is a High Level Radioactive Waste tank in the H-Area Tank Farm on the Savannah River Site that was placed into service in May 1959. A leak was detected in one of the construction weld joints while the tank was being filled. Before jet evacuation of the tank waste was completed, the leak overflowed the annulus pan and an estimated 16 to 700 gallons of waste escaped to the environment (soil and groundwater) over a six hour period contaminating approximately 1,600--70,000 cubic feet of soil with up to 5000 curies of activity (principally Cs[sup 137]). The Tank 16more » bottom is constructed below the groundwater table which resulted in almost immediate contamination of that medium. Low groundwater flow rates, the ion exchange property of adjacent soils, and the distance to the nearest surface water bodies (1,500 to 8,000 feet) indicates that surface water and sediment outcrop of contaminates may be expected between 44 and 530 years (Poe et al., 1974). Remedial action objectives consist of medium-specific and operable unit specific goals for protecting human health and the environment. These objectives are specific and do not limit the range of alternatives that may be developed.A range of remedial technologies, which provides for treatment, containment, and removal requirements of contaminated media remaining at the Tank 16 groundwater operable unit, is identified and developed for each general response action.« less

  14. Preliminary remedial action objectives for the Tank 16 groundwater operable unit

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miles, W.C. Jr.

    1992-10-28

    Tank 16 is a High Level Radioactive Waste tank in the H-Area Tank Farm on the Savannah River Site that was placed into service in May 1959. A leak was detected in one of the construction weld joints while the tank was being filled. Before jet evacuation of the tank waste was completed, the leak overflowed the annulus pan and an estimated 16 to 700 gallons of waste escaped to the environment (soil and groundwater) over a six hour period contaminating approximately 1,600--70,000 cubic feet of soil with up to 5000 curies of activity (principally Cs{sup 137}). The Tank 16more » bottom is constructed below the groundwater table which resulted in almost immediate contamination of that medium. Low groundwater flow rates, the ion exchange property of adjacent soils, and the distance to the nearest surface water bodies (1,500 to 8,000 feet) indicates that surface water and sediment outcrop of contaminates may be expected between 44 and 530 years (Poe et al., 1974). Remedial action objectives consist of medium-specific and operable unit specific goals for protecting human health and the environment. These objectives are specific and do not limit the range of alternatives that may be developed.A range of remedial technologies, which provides for treatment, containment, and removal requirements of contaminated media remaining at the Tank 16 groundwater operable unit, is identified and developed for each general response action.« less

  15. Low cost, SPF aluminum cryogenic tank structure for ALS

    NASA Technical Reports Server (NTRS)

    Anton, Claire E.; Rasmussen, Perry; Thompson, Curt; Latham, Richard; Hamilton, C. Howard; Ren, Ben; Gandhi, Chimata; Hardwick, Dallis

    1992-01-01

    Past production work has shown that cryogenic tank structure for the Shuttle Booster Rockets and the Titan system have very high life cycle costs for the fuel tank structure. The tanks are machined stiffener-skin combination that are subsequently formed into the required contour after machining. The material scrap rate for these configurations are usually high, and the loss of a tank panel due to forming or heat treatment problems is very costly. The idea of reducing the amount of scrap material and scrapped structural members has prompted the introduction of built-up structure for cryogenic tanks to be explored on the ALS program. A build-up structure approach that has shown improvements in life cycle cost over the conventional built-up approach is the use of superplastically formed (SPF) stiffened panels (reducing the overall part count and weight for the tank) resistance spot welded (RSW) to outer tank skin material. The stiffeners provide for general stability of the tank, while the skin material provides hoop direction continuity for the loads.

  16. Treatment and utilization of septic tank effluent using vertical-flow constructed wetlands and vegetable hydroponics.

    PubMed

    Cui, Li-Hua; Luo, Shi-Ming; Zhu, Xi-Zhen; Liu, Ying-Hu

    2003-01-01

    Vertical flow constructed wetlands is a typical ecological sanitation system for sewage treatment. The removal rates for COD, BOD5, SS, TN, and TP were 60%, 80%, 74%, 49% and 79%, respectively, when septic tank effluent was treated by vertical flow filter. So the concentration of COD and BOD5 in the treated effluent could meet the quality standard for irrigation water. After that the treated effluent was used for hydroponic cultivation of water spinach and romaine lettuce, the removal efficiencies of the whole system for COD, BOD5, SS, TN and TP were 71.4%, 97.5%, 96.9%, 86.3%, and 87.4%, respectively. And it could meet the integrated wastewater discharge standard for secondary biological treatment plant. It was found that using treated effluent for hydroponic cultivation of vegetables could reduce the nitrate content in vegetables. The removal rates for total bacteria and coliform index by using vertical flow bed system with cinder substrate were 80%-90% and 85%-96%, respectively.

  17. Views of the external tank as it falls away from Discovery

    NASA Image and Video Library

    1995-07-13

    STS070-303-007 (13 JULY 1995) --- The external fuel tank (ET) for STS-70 is photographed just after falling away from the space shuttle Discovery en route to the 101st human-tended United States space flight.

  18. Experimental Investigation of Jet-Induced Mixing of a Large Liquid Hydrogen Storage Tank

    NASA Technical Reports Server (NTRS)

    Lin, C. S.; Hasan, M. M.; Vandresar, N. T.

    1994-01-01

    Experiments have been conducted to investigate the effect of fluid mixing on the depressurization of a large liquid hydrogen storage tank. The test tank is approximately ellipsoidal, having a volume of 4.89 m(exp 3) and an average wall heat flux of 4.2 W/m(exp 2) due to external heat input. A mixer unit was installed near the bottom of the tank to generate an upward directed axial jet flow normal to the liquid-vapor interface. Mixing tests were initiated after achieving thermally stratified conditions in the tank either by the introduction of hydrogen gas into the tank or by self-pressurization due to ambient heat leak through the tank wall. The subcooled liquid jet directed towards the liquid-vapor interface by the mixer induced vapor condensation and caused a reduction in tank pressure. Tests were conducted at two jet submergence depths for jet Reynolds numbers from 80,000 to 495,000 and Richardson numbers from 0.014 to 0.52. Results show that the rate of tank pressure change is controlled by the competing effects of subcooled jet flow and the free convection boundary layer flow due to external tank wall heating. It is shown that existing correlations for mixing time and vapor condensation rate based on small scale tanks may not be applicable to large scale liquid hydrogen systems.

  19. 14 CFR 29.977 - Fuel tank outlet.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Powerplant Fuel System § 29.977 Fuel tank outlet. (a) There must be... airplanes, prevent the passage of any object that could restrict fuel flow or damage any fuel system... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Fuel tank outlet. 29.977 Section 29.977...

  20. 14 CFR 25.977 - Fuel tank outlet.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Fuel System § 25.977 Fuel tank outlet. (a) There must be... airplanes, prevent the passage of any object that could restrict fuel flow or damage any fuel system... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Fuel tank outlet. 25.977 Section 25.977...

  1. 14 CFR 29.977 - Fuel tank outlet.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Powerplant Fuel System § 29.977 Fuel tank outlet. (a) There must be... airplanes, prevent the passage of any object that could restrict fuel flow or damage any fuel system... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Fuel tank outlet. 29.977 Section 29.977...

  2. 14 CFR 25.977 - Fuel tank outlet.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Fuel System § 25.977 Fuel tank outlet. (a) There must be... airplanes, prevent the passage of any object that could restrict fuel flow or damage any fuel system... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Fuel tank outlet. 25.977 Section 25.977...

  3. 14 CFR 25.977 - Fuel tank outlet.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Fuel System § 25.977 Fuel tank outlet. (a) There must be... airplanes, prevent the passage of any object that could restrict fuel flow or damage any fuel system... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Fuel tank outlet. 25.977 Section 25.977...

  4. 14 CFR 29.977 - Fuel tank outlet.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Powerplant Fuel System § 29.977 Fuel tank outlet. (a) There must be... airplanes, prevent the passage of any object that could restrict fuel flow or damage any fuel system... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Fuel tank outlet. 29.977 Section 29.977...

  5. 14 CFR 29.977 - Fuel tank outlet.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Powerplant Fuel System § 29.977 Fuel tank outlet. (a) There must be... airplanes, prevent the passage of any object that could restrict fuel flow or damage any fuel system... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Fuel tank outlet. 29.977 Section 29.977...

  6. 14 CFR 25.977 - Fuel tank outlet.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Fuel System § 25.977 Fuel tank outlet. (a) There must be... airplanes, prevent the passage of any object that could restrict fuel flow or damage any fuel system... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Fuel tank outlet. 25.977 Section 25.977...

  7. 14 CFR 25.977 - Fuel tank outlet.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Fuel System § 25.977 Fuel tank outlet. (a) There must be... airplanes, prevent the passage of any object that could restrict fuel flow or damage any fuel system... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Fuel tank outlet. 25.977 Section 25.977...

  8. 14 CFR 29.977 - Fuel tank outlet.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Powerplant Fuel System § 29.977 Fuel tank outlet. (a) There must be... airplanes, prevent the passage of any object that could restrict fuel flow or damage any fuel system... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Fuel tank outlet. 29.977 Section 29.977...

  9. Radiotracer investigation in gold leaching tanks.

    PubMed

    Dagadu, C P K; Akaho, E H K; Danso, K A; Stegowski, Z; Furman, L

    2012-01-01

    Measurement and analysis of residence time distribution (RTD) is a classical method to investigate performance of chemical reactors. In the present investigation, the radioactive tracer technique was used to measure the RTD of aqueous phase in a series of gold leaching tanks at the Damang gold processing plant in Ghana. The objective of the investigation was to measure the effective volume of each tank and validate the design data after recent process intensification or revamping of the plant. I-131 was used as a radioactive tracer and was instantaneously injected into the feed stream of the first tank and monitored at the outlet of different tanks. Both sampling and online measurement methods were used to monitor the tracer concentration. The results of measurements indicated that both the methods provided identical RTD curves. The mean residence time (MRT) and effective volume of each tank was estimated. The tanks-in-series model with exchange between active and stagnant volume was used and found suitable to describe the flow structure of aqueous phase in the tanks. The estimated effective volume of the tanks and high degree of mixing in tanks could validate the design data and confirmed the expectation of the plant engineer after intensification of the process. Copyright © 2011 Elsevier Ltd. All rights reserved.

  10. Liquid Hydrogen Recirculation System for Forced Flow Cooling Test of Superconducting Conductors

    NASA Astrophysics Data System (ADS)

    Shirai, Y.; Kainuma, T.; Shigeta, H.; Shiotsu, M.; Tatsumoto, H.; Naruo, Y.; Kobayashi, H.; Nonaka, S.; Inatani, Y.; Yoshinaga, S.

    2017-12-01

    The knowledge of forced flow heat transfer characteristics of liquid hydrogen (LH2) is important and necessary for design and cooling analysis of high critical temperature superconducting devices. However, there are few test facilities available for LH2 forced flow cooling for superconductors. A test system to provide a LH2 forced flow (∼10 m/s) of a short period (less than 100 s) has been developed. The test system was composed of two LH2 tanks connected by a transfer line with a controllable valve, in which the forced flow rate and its period were limited by the storage capacity of tanks. In this paper, a liquid hydrogen recirculation system, which was designed and fabricated in order to study characteristics of superconducting cables in a stable forced flow of liquid hydrogen for longer period, was described. This LH2 loop system consists of a centrifugal pump with dynamic gas bearings, a heat exchanger which is immersed in a liquid hydrogen tank, and a buffer tank where a test section (superconducting wires or cables) is set. The buffer tank has LHe cooled superconducting magnet which can produce an external magnetic field (up to 7T) at the test section. A performance test was conducted. The maximum flow rate was 43.7 g/s. The lowest temperature was 22.5 K. It was confirmed that the liquid hydrogen can stably circulate for 7 hours.

  11. VIEW WEST, 1ST FLOOR, EAST ROOM, HYDRAULIC COTTON PRESS, DETAIL, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    VIEW WEST, 1ST FLOOR, EAST ROOM, HYDRAULIC COTTON PRESS, DETAIL, CONTINENTAL GIN COMPANY HYDRAULIC TANK - Magnolia Plantation, Cotton Gins & Presses, LA Route 119, Natchitoches, Natchitoches Parish, LA

  12. Simulation of the Groundwater-Flow System in Pierce, Polk, and St. Croix Counties, Wisconsin

    USGS Publications Warehouse

    Juckem, Paul F.

    2009-01-01

    Groundwater is the sole source of residential water supply in Pierce, Polk, and St. Croix Counties, Wisconsin. A regional three-dimensional groundwater-flow model and three associated demonstration inset models were developed to simulate the groundwater-flow systems in the three-county area. The models were developed by the U.S. Geological Survey in cooperation with the three county governments. The objectives of the regional model of Pierce, Polk, and St. Croix Counties were to improve understanding of the groundwaterflow system and to develop a tool suitable for evaluating the effects of potential water-management programs. The regional groundwater-flow model described in this report simulates the major hydrogeologic features of the modeled area, including bedrock and surficial aquifers, groundwater/surface-water interactions, and groundwater withdrawals from high-capacity wells. Results from the regional model indicate that about 82 percent of groundwater in the three counties is from recharge within the counties; 15 percent is from surface-water sources, consisting primarily of recirculated groundwater seepage in areas with abrupt surface-water-level changes, such as near waterfalls, dams, and the downgradient side of reservoirs and lakes; and 4 percent is from inflow across the county boundaries. Groundwater flow out of the counties is to streams (85 percent), outflow across county boundaries (14 percent), and pumping wells (1 percent). These results demonstrate that the primary source of groundwater withdrawn by pumping wells is water that recharges within the counties and would otherwise discharge to local streams and lakes. Under current conditions, the St. Croix and Mississippi Rivers are groundwater discharge locations (gaining reaches) and appear to function as 'fully penetrating' hydraulic boundaries such that groundwater does not cross between Wisconsin and Minnesota beneath them. Being hydraulic boundaries, however, they can change in response to

  13. Experimental Study of an On-board Fuel Tank Inerting System

    NASA Astrophysics Data System (ADS)

    Wu, Fei; Lin, Guiping; Zeng, Yu; Pan, Rui; Sun, Haoyang

    2017-03-01

    A simulated aircraft fuel tank inerting system was established and experiments were conducted to investigate the performance of the system. The system uses hollow fiber membrane which is widely used in aircraft as the air separation device and a simplified 20% scale multi compartment fuel tank as the inerting object. Experiments were carried out to investigate the influences of different operating parameters on the inerting effectiveness of the system, including NEA (nitrogen-enriched air) flow rate, NEA oxygen concentration, NEA distribution, pressure of bleeding air and fuel load of the tank. Results showed that for the multi compartment fuel tank, concentrated flow washing inerting would cause great differences throughout the distribution of oxygen concentration in the fuel tank, and inerting dead zone would exist. The inerting effectiveness was greatly improved and the ullage oxygen concentration of the tank would reduce to 12% successfully when NEA entered three compartments evenly. The time span of a complete inerting process reduced obviously with increasing NEA flow rate and decreasing NEA concentration, but the trend became weaker gradually. However, the reduction of NEA concentration will decrease the utilization efficiency of the bleeding air. In addition, the time span can also be reduced by raising the pressure of bleeding air, which will improve the bleeding air utilization efficiency at the same time. The time span decreases linearly as the fuel load increases.

  14. Development of instructional manual encouraging student active learning for high school teaching on fluid mechanics through Torricelli's tank experiment

    NASA Astrophysics Data System (ADS)

    Apiwan, Suttinee; Puttharugsa, Chokchai; Khemmani, Supitch

    2018-01-01

    The purposes of this research were to help students to perform Physics laboratory by themselves and to provide guidelines for high school teacher to develop active learning on fluid mechanics by using Torricelli's tank experiment. The research was conducted as follows: 1) constructed an appropriate Torricelli's tank experiment for high school teaching and investigated the condition for maximum water falling distance. As a consequence, it was found that the distance of the falling water measured from the experiment was shorter than that obtained from the theory of ideal fluid because of the energy loss during a flow, 2) developed instructional manual for high school teaching that encourages active learning by using problem based learning (PBL) approach, which is consistent with the trend of teaching and learning in 21st century. The content validity of our instructional manual using Index of Item-objective Congruence (IOC) as evaluated by three experts was over 0.67. The manual developed was therefore qualified for classroom practice.

  15. Start-up control system and vessel for LMFBR

    DOEpatents

    Durrant, Oliver W.; Kakarala, Chandrasekhara R.; Mandel, Sheldon W.

    1987-01-01

    A reflux condensing start-up system includes a steam generator, a start-up vessel connected parallel to the steam generator, a main steam line connecting steam outlets of the steam generator and start-up vessel to a steam turbine, a condenser connected to an outlet of the turbine and a feedwater return line connected between the condenser and inlets of the steam generator and start-up vessel. The start-up vessel has one or more heaters at the bottom thereof for heating feedwater which is supplied over a start-up line to the start-up vessel. Steam is thus generated to pressurize the steam generator before the steam generator is supplied with a heat transfer medium, for example liquid sodium, in the case of a liquid metal fast breeder reactor. The start-up vessel includes upper and lower bulbs with a smaller diameter mid-section to act as water and steam reservoirs. The start-up vessel can thus be used not only in a start-up operation but as a mixing tank, a water storage tank and a level control at low loads for controlling feedwater flow.

  16. Start-up control system and vessel for LMFBR

    DOEpatents

    Durrant, Oliver W.; Kakarala, Chandrasekhara R.; Mandel, Sheldon W.

    1987-01-01

    A reflux condensing start-up system comprises a steam generator, a start-up vessel connected parallel to the steam generator, a main steam line connecting steam outlets of the steam generator and start-up vessel to a steam turbine, a condenser connected to an outlet of the turbine and a feedwater return line connected between the condenser and inlets of the steam generator and start-up vessel. The start-up vessel has one or more heaters at the bottom thereof for heating feedwater which is supplied over a start-up line to the start-up vessel. Steam is thus generated to pressurize the steam generator before the steam generator is supplied with a heat transfer medium, for example liquid sodium, in the case of a liquid metal fast breeder reactor. The start-up vessel includes upper and lower bulbs with a smaller diameter mid-section to act as water and steam reservoirs. The start-up vessel can thus be used not only in a start-up operation but as a mixing tank, a water storage tank and a level control at low loads for controlling feedwater flow.

  17. Study of Psychological (and Associated Physiological) Effects on a Tank Crew Resulting from Being Buttoned Up

    DTIC Science & Technology

    1976-10-01

    should he made for either ixiternal storage or a means of voiding the urinal in a storage container in the compartment’. Development of-Adequate...upper temperature ranges fu- critical components of the M60 tank under desert storage and operational conditions. He found that the Wet Bulb Globe...five-gallon cans on the outside turret bustle racks. If buttoned-up operations for extended periods of time are envisioned, a built-in water storage

  18. 49 CFR 172.330 - Tank cars and multi-unit tank car tanks.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 2 2013-10-01 2013-10-01 false Tank cars and multi-unit tank car tanks. 172.330..., TRAINING REQUIREMENTS, AND SECURITY PLANS Marking § 172.330 Tank cars and multi-unit tank car tanks. (a... material— (1) In a tank car unless the following conditions are met: (i) The tank car must be marked on...

  19. 49 CFR 172.330 - Tank cars and multi-unit tank car tanks.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 2 2012-10-01 2012-10-01 false Tank cars and multi-unit tank car tanks. 172.330..., TRAINING REQUIREMENTS, AND SECURITY PLANS Marking § 172.330 Tank cars and multi-unit tank car tanks. (a... material— (1) In a tank car unless the following conditions are met: (i) The tank car must be marked on...

  20. 49 CFR 172.330 - Tank cars and multi-unit tank car tanks.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 2 2014-10-01 2014-10-01 false Tank cars and multi-unit tank car tanks. 172.330..., TRAINING REQUIREMENTS, AND SECURITY PLANS Marking § 172.330 Tank cars and multi-unit tank car tanks. (a... material— (1) In a tank car unless the following conditions are met: (i) The tank car must be marked on...

  1. Development of the HyStEP Device

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, Terry A.; Ainscough, Christopher; Terlip, Danny

    2016-04-05

    With the introduction of more fuel cell electric vehicles (FCEVs) on U.S. roadways, especially in California, the need for available hydrogen refueling stations is growing. While funding from the California Energy Commission is helping to solve this problem, solutions need to be developed and implemented to help reduce the time to commission a hydrogen station. The current practice of hydrogen station acceptance can take months because each vehicle manufacturer conducts their own testing and evaluation. This process is not practical or sufficient to support the timely development of a hydrogen fueling station network. To address this issue, as part ofmore » the Hydrogen Fueling Infrastructure Research and Station Technology (H2FIRST) Project Sandia National Laboratories and the National Renewable Energy Laboratory along with a team of stakeholders and contractor Powertech Labs has developed the Hydrogen Station Equipment Performance (HyStEP) Device. The HyStEP Device is intended to be a surrogate for FCEVs that can be used to collect data on hydrogen station fueling performance. The device includes three Type IV 70 MPa tanks capable of storing a total of 9 kg H2 that are instrumented with pressure and temperature sensors. The tanks can be used individually or in parallel to simulate small, medium, and large fuel systems. The tanks are connected to a 70 MPa receptacle equipped with pressure and temperature sensor as well as infrared communications integrated with a data acquisition, analysis, and control system. The HyStEP Device is capable of performing tests defined in the test method standard CSA HGV 4.3 and providing the data needed to ensure that hydrogen stations meet the fueling protocol standard SAE J2601-2014. These include IrDA communication tests, fault detection tests, and communication and non-communication fueling.« less

  2. 49 CFR 174.63 - Portable tanks, IM portable tanks, IBCs, Large Packagings, cargo tanks, and multi-unit tank car...

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 2 2014-10-01 2014-10-01 false Portable tanks, IM portable tanks, IBCs, Large Packagings, cargo tanks, and multi-unit tank car tanks. 174.63 Section 174.63 Transportation Other....63 Portable tanks, IM portable tanks, IBCs, Large Packagings, cargo tanks, and multi-unit tank car...

  3. 49 CFR 174.63 - Portable tanks, IM portable tanks, IBCs, Large Packagings, cargo tanks, and multi-unit tank car...

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Portable tanks, IM portable tanks, IBCs, Large Packagings, cargo tanks, and multi-unit tank car tanks. 174.63 Section 174.63 Transportation Other....63 Portable tanks, IM portable tanks, IBCs, Large Packagings, cargo tanks, and multi-unit tank car...

  4. 49 CFR 174.63 - Portable tanks, IM portable tanks, IBCs, Large Packagings, cargo tanks, and multi-unit tank car...

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 2 2011-10-01 2011-10-01 false Portable tanks, IM portable tanks, IBCs, Large Packagings, cargo tanks, and multi-unit tank car tanks. 174.63 Section 174.63 Transportation Other....63 Portable tanks, IM portable tanks, IBCs, Large Packagings, cargo tanks, and multi-unit tank car...

  5. 49 CFR 174.63 - Portable tanks, IM portable tanks, IBCs, Large Packagings, cargo tanks, and multi-unit tank car...

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 2 2013-10-01 2013-10-01 false Portable tanks, IM portable tanks, IBCs, Large Packagings, cargo tanks, and multi-unit tank car tanks. 174.63 Section 174.63 Transportation Other....63 Portable tanks, IM portable tanks, IBCs, Large Packagings, cargo tanks, and multi-unit tank car...

  6. 49 CFR 174.63 - Portable tanks, IM portable tanks, IBCs, Large Packagings, cargo tanks, and multi-unit tank car...

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 2 2012-10-01 2012-10-01 false Portable tanks, IM portable tanks, IBCs, Large Packagings, cargo tanks, and multi-unit tank car tanks. 174.63 Section 174.63 Transportation Other....63 Portable tanks, IM portable tanks, IBCs, Large Packagings, cargo tanks, and multi-unit tank car...

  7. Use of water towing tanks for aerodynamics and hydrodynamics

    NASA Technical Reports Server (NTRS)

    Gadelhak, Mohamed

    1987-01-01

    Wind tunnels and flumes have become standard laboratory tools for modeling a variety of aerodynamic and hydrodynamic flow problems. Less available, although by no means less useful, are facilities in which a model can be towed (or propelled) through air or water. This article emphasizes the use of the water towing tank as an experimental tool for aerodynamic and hydrodynamic studies. Its advantages and disadvantages over other flow rigs are discussed, and its usefullness is illustrated through many examples of research results obtained over the past few years in a typical towing tank facility.

  8. Temperature Stratification in a Cryogenic Fuel Tank

    NASA Technical Reports Server (NTRS)

    Daigle, Matthew John; Smelyanskiy, Vadim; Boschee, Jacob; Foygel, Michael Gregory

    2013-01-01

    A reduced dynamical model describing temperature stratification effects driven by natural convection in a liquid hydrogen cryogenic fuel tank has been developed. It accounts for cryogenic propellant loading, storage, and unloading in the conditions of normal, increased, and micro- gravity. The model involves multiple horizontal control volumes in both liquid and ullage spaces. Temperature and velocity boundary layers at the tank walls are taken into account by using correlation relations. Heat exchange involving the tank wall is considered by means of the lumped-parameter method. By employing basic conservation laws, the model takes into consideration the major multi-phase mass and energy exchange processes involved, such as condensation-evaporation of the hydrogen, as well as flows of hydrogen liquid and vapor in the presence of pressurizing helium gas. The model involves a liquid hydrogen feed line and a tank ullage vent valve for pressure control. The temperature stratification effects are investigated, including in the presence of vent valve oscillations. A simulation of temperature stratification effects in a generic cryogenic tank has been implemented in Matlab and results are presented for various tank conditions.

  9. Apollo oxygen tank stratification analysis, volume 2

    NASA Technical Reports Server (NTRS)

    Barton, J. E.; Patterson, H. W.

    1972-01-01

    An analysis of flight performance of the Apollo 15 cryogenic oxygen tanks was conducted with the variable grid stratification math model developed earlier in the program. Flight conditions investigated were the CMP-EVA and one passive thermal control period which exhibited heater temperature characteristics not previously observed. Heater temperatures for these periods were simulated with the math model using flight acceleration data. Simulation results (heater temperature and tank pressure) compared favorably with the Apollo 15 flight data, and it was concluded that tank performance was nominal. Math model modifications were also made to improve the simulation accuracy. The modifications included the addition of the effects of the tank wall thermal mass and an improved system flow distribution model. The modifications improved the accuracy of simulated pressure response based on comparisons with flight data.

  10. PRSA hydrogen tank thermal acoustic oscillation study

    NASA Technical Reports Server (NTRS)

    Riemer, D. H.

    1979-01-01

    The power reactant storage assembly (PRSA) hydrogen tank test data were reviewed. Two hundred and nineteen data points illustrating the effect of flow rate, temperature ratio and configuration were identified. The test data were reduced to produce the thermal acoustic oscillation parameters. Frequency and amplitude were determined for model correlation. A comparison of PRSA hydrogen tank test data with the analytical models indicated satisfactory agreement for the supply and poor agreement for the full line.

  11. Zero Boil-OFF Tank Hardware Setup

    NASA Image and Video Library

    2017-09-19

    iss053e027051 (Sept. 19, 2017) --- Flight Engineer Joe Acaba works in the U.S. Destiny laboratory module setting up hardware for the Zero Boil-Off Tank (ZBOT) experiment. ZBOT uses an experimental fluid to test active heat removal and forced jet mixing as alternative means for controlling tank pressure for volatile fluids. Rocket fuel, spacecraft heating and cooling systems, and sensitive scientific instruments rely on very cold cryogenic fluids. Heat from the environment around cryogenic tanks can cause their pressures to rise, which requires dumping or "boiling off" fluid to release the excess pressure, or actively cooling the tanks in some way.

  12. 46 CFR 25.40-1 - Tanks and engine spaces.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 1 2011-10-01 2011-10-01 false Tanks and engine spaces. 25.40-1 Section 25.40-1...-1 Tanks and engine spaces. (a) All motorboats or motor vessels, except open boats and as provided in..., and other spaces to which explosive or flammable gases and vapors from these compartments may flow...

  13. 46 CFR 25.40-1 - Tanks and engine spaces.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 1 2010-10-01 2010-10-01 false Tanks and engine spaces. 25.40-1 Section 25.40-1...-1 Tanks and engine spaces. (a) All motorboats or motor vessels, except open boats and as provided in..., and other spaces to which explosive or flammable gases and vapors from these compartments may flow...

  14. 46 CFR 25.40-1 - Tanks and engine spaces.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 1 2014-10-01 2014-10-01 false Tanks and engine spaces. 25.40-1 Section 25.40-1...-1 Tanks and engine spaces. (a) All motorboats or motor vessels, except open boats and as provided in..., and other spaces to which explosive or flammable gases and vapors from these compartments may flow...

  15. 46 CFR 25.40-1 - Tanks and engine spaces.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 1 2013-10-01 2013-10-01 false Tanks and engine spaces. 25.40-1 Section 25.40-1...-1 Tanks and engine spaces. (a) All motorboats or motor vessels, except open boats and as provided in..., and other spaces to which explosive or flammable gases and vapors from these compartments may flow...

  16. 46 CFR 25.40-1 - Tanks and engine spaces.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 1 2012-10-01 2012-10-01 false Tanks and engine spaces. 25.40-1 Section 25.40-1...-1 Tanks and engine spaces. (a) All motorboats or motor vessels, except open boats and as provided in..., and other spaces to which explosive or flammable gases and vapors from these compartments may flow...

  17. Suspended sediment in the St. Francis River at St. Francis, Arkansas, 1986-95

    USGS Publications Warehouse

    Green, W. Reed; Barks, C. Shane; Hall, Alan P.

    2000-01-01

    Daily suspended-sediment concentrations were analyzed from the St. Francis River at St. Francis, Arkansas during 1986 through 1995. Suspended-sediment particle size distribution was measured in selected samples from 1978 through 1998. These data are used to assess changes in suspended-sediment concentrations and loads through time. Suspended-sediment concentrations were positively related to discharge. At higher flows, percent silt-clay was negatively related to discharge. Nonparametric trend analysis (Mann-Kendall test) of suspended-sediment concentration over the period of record indicated a slight decrease in concentration. Flow-adjusted residuals of suspended-sediment concentration also decreased slightly through the same period. No change was identified in annual suspended-sediment load or annual flow-weighted concentration. Continued monitorig of daily-suspended-sediment concentrations at this site and others, and similar data analysis at other sites where data are available will provide a better understanding of sediment transport withint the St. Francis River.

  18. CLEANING UP MIXED WASTE STREAMS--THE TANK TRUCK WASHING EXAMPLE

    EPA Science Inventory

    This Executive Report describes the joint venture of EPA's Office of Energy, Minerals and Industry and the Matlack Corporation into the construction and demonstration of a full-scale tank truck wastewater treatment plant. The report covers the technical and economic viability of ...

  19. Sloshing in the Liquid Hydrogen and Liquid Oxygen Propellant Tanks After Main Engine Cut Off

    NASA Technical Reports Server (NTRS)

    Kim, Sura; West, Jeff

    2011-01-01

    NASA Marshall Space Flight Center is designing and developing the Main Propulsion System (MPS) for Ares launch vehicles. Propellant sloshing in the liquid hydrogen (LH2) and liquid oxygen (LO2) propellant tanks after Main Engine Cut Off (MECO) was modeled using the Volume of Fluid (VOF) module of the computational fluid dynamics code, CFD-ACE+. The present simulation shows that there is substantial sloshing side forces acting on the LH2 tank during the deceleration of the vehicle after MECO. The LH2 tank features a side wall drain pipe. The side loads result from the residual propellant mass motion in the LH2 tank which is initiated by the stop of flow into the drain pipe at MECO. The simulations show that radial force on the LH2 tank wall is less than 50 lbf and the radial moment calculated based up through the center of gravity of the vehicle is predicted to be as high as 300 lbf-ft. The LO2 tank features a bottom dome drain system and is equipped with sloshing baffles. The remaining LO2 in the tank slowly forms a liquid column along the centerline of tank under the zero gravity environments. The radial force on the LO2 tank wall is predicted to be less than 100 lbf. The radial moment calculated based on the center of gravity of the vehicle is predicted as high as 4500 lbf-ft just before MECO and dropped down to near zero after propellant draining stopped completely.

  20. Nitrogen and COD Removal from Septic Tank Wastewater in Subsurface Flow Constructed Wetlands: Plants Effects.

    PubMed

    Collison, R S; Grismer, M E

    2015-11-01

    We evaluated subsurface flow (SSF) constructed wetland treatment performance with respect to organics (COD) and nitrogen (ammonium and nitrate) removal from domestic (septic tank) wastewater as affected by the presence of plants, substrate "rock" cation exchange capacity (CEC), laboratory versus field conditions and use of synthetic as compared to actual domestic wastewater. This article considers the effects of plants on constructed wetland treatment in the field. Each constructed wetland system was comprised of two beds (2.6 m long by 0.28 m wide and deep filled with ~18 mm crushed lava rock) separated by an aeration tank connected in series. The lava rock had a porosity of ~47% and a CEC of 4 meq/100 gm. One pair of constructed wetland systems was planted with cattails in May 2008, while an adjacent pair of systems remained un-planted. Collected septic tank or synthesized wastewater was allowed to gravity feed each constructed wetland system and effluent samples were regularly collected and tested for COD and nitrogen species during four time periods spanning November 2008 through June 2009. These effluent concentrations were tested for statistical differences at the 95% level for individual time periods as well as the overall 6-month period. Organics removal from domestic wastewater was 78.8% and 76.1% in the planted and un-planted constructed wetland systems, respectively, while ammonium removal was 94.5% and 90.2%, respectively. Similarly, organics removal from the synthetic wastewater of equivalent strength was 88.8% and 90.1% for planted and un-planted constructed wetland systems, respectively, while ammonium removal was 96.9% and 97.3%, respectively.

  1. St. Mary cooks up awareness with heart-healthy booklet, television.

    PubMed

    Botvin, Judith D

    2003-01-01

    St. Mary Medical Center, Langhorne, Pa., distributed a half-million copies of its copyrighted booklet, "Heart Healthy Living" as the first of a larger, long-term marketing initiative to raise awareness of the suburban medical center. In addition to the medical center and physicians' offices, St. Mary had the booklet distributed by regional food markets and Fleet Bank. These partnerships and those with food products manufacturers helped reduce expenses. St. Mary physicians appeared on a cable television cooking show as well as in selected grocery markets.

  2. Cryogenic Storage Tank Non-Destructive Evaluation

    NASA Technical Reports Server (NTRS)

    Arens, Ellen

    2010-01-01

    This slide presentation reviews the work in non-destructive evaluation (NDE) of cryogenic storage tanks. Four large cryogenic tanks, constructed in 1965 with perlite insulation in the annular regions, are of concern. The construction of the tanks, two Liquid Oxygen (LOX) and two Liquid Hydrogen (LH2), are described. The loss rate for the LOX tank at Pad A is slightly higher than that for the one at Pad B. The concerns for the LH2 tank at Pad B are that there is a significantly higher boil-off rate than that at Pad A, that there is mold growth, indicative of increased heat flow, that there is a long down-time needed for repairs, and that 3 of 5 full thermal cycles have been used on the Pad B LH2 tank. The advantages and disadvantages of thermal imaging are given. A detailed description of what is visible of the structures in the infra-red is given and views of the thermal images are included. Missing Perlite is given as the probable cause of the cold spot on the Pad B LH2 tank. There is no indications of problematic cold regions on the Pad A LH2 tank, as shown by the thermal images given in the presentation. There is definite indication of a cold region on the Pad A LOX tank. There is however concerns with thermal imaging, as thermal images can be significantly effected by environmental conditions, image differences on similar days but with different wind speeds. Other effects that must be considered include ambient temperature, humidity levels/dew, and cloud reflections

  3. Dewatering Treatment Scale-up Testing Results of Hanford Tank Wastes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tedeschi, A.R.; May, T.H.; Bryan, W.E.

    2008-07-01

    This report documents CH2M HILL Hanford Group Inc. (CH2M HILL) 2007 dryer testing results in Richland, WA at the AMEC Nuclear Ltd., GeoMelt Division (AMEC) Horn Rapids Test Site. It provides a discussion of scope and results to qualify the dryer system as a viable unit-operation in the continuing evaluation of the bulk vitrification process. A 10,000 liter (L) dryer/mixer was tested for supplemental treatment of Hanford tank low activity wastes, drying and mixing a simulated non-radioactive salt solution with glass forming minerals. Testing validated the full scale equipment for producing dried product similar to smaller scale tests, and qualifiedmore » the dryer system for a subsequent integrated dryer/vitrification test using the same simulant and glass formers. The dryer system is planned for installation at the Hanford tank farms to dry/mix radioactive waste for final treatment evaluation of the supplemental bulk vitrification process. (authors)« less

  4. Role of the ring current in the dynamics of fluctuating electron and ion flows in the low-latitude magnetosphere

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shyutte, N.M.; Izhovkina, N.I.

    1987-11-01

    Electron and ion flows with fluctuating energy spectra show up on the low L-shells. The authors have discovered that these flows show up less frequently as the absolute value of D/sub st/ increases (for D/sub st/ < 0). Their results are based on data from Kosmos-900. Our results are based on data from Kosmos-900. Their estimates indicate that one of the reasons for this phenomenon may be strong nonlinear diffusion of charged particle flows in VLF waves in the waveguide channels which have been detected at the boundary of the plasmasphere

  5. Zero Boil-Off Tank (ZBOT) Experiment

    NASA Technical Reports Server (NTRS)

    Mcquillen, John

    2016-01-01

    The Zero-Boil-Off Tank (ZBOT) experiment has been developed as a small scale ISS experiment aimed at delineating important fluid flow, heat and mass transport, and phase change phenomena that affect cryogenic storage tank pressurization and pressure control in microgravity. The experiments use a simulant transparent low boiling point fluid (PnP) in a sealed transparent Dewar to study and quantify: (a) fluid flow and thermal stratification during pressurization; (b) mixing, thermal destratification, depressurization, and jet-ullage penetration during pressure control by jet mixing. The experiment will provide valuable microgravity empirical two-phase data associated with the above-mentioned physical phenomena through highly accurate local wall and fluid temperature and pressure measurements, full-field phase-distribution and flow visualization. Moreover, the experiments are performed under tightly controlled and definable heat transfer boundary conditions to provide reliable high-fidelity data and precise input as required for validation verification of state-of-the-art two-phase CFD models developed as part of this research and by other groups in the international scientific and cryogenic fluid management communities.

  6. The significance of late-stage processes in lava flow emplacement: squeeze-ups in the 2001 Etna flow field

    NASA Astrophysics Data System (ADS)

    Applegarth, L. J.; Pinkerton, H.; James, M. R.

    2009-04-01

    The general processes associated with the formation and activity of ephemeral boccas in lava flow fields are well documented (e.g. Pinkerton & Sparks 1976; Polacci & Papale 1997). The importance of studying such behaviour is illustrated by observations of the emplacement of a basaltic andesite flow at Parícutin during the 1940s. Following a pause in advance of one month, this 8 km long flow was reactivated by the resumption of supply from the vent, which forced the rapid drainage of stagnant material in the flow front region. The material extruded during drainage was in a highly plastic state (Krauskopf 1948), and its displacement allowed hot fluid lava from the vent to be transported in a tube to the original flow front, from where it covered an area of 350,000 m2 in one night (Luhr & Simkin 1993). Determining when a flow has stopped advancing, and cannot be drained in such a manner, is therefore highly important in hazard assessment and flow modelling, and our ability to do this may be improved through the examination of relatively small-scale secondary extrusions and boccas. The 2001 flank eruption of Mt. Etna, Sicily, resulted in the emplacement of a 7 km long compound `a`ā flow field over a period of 23 days. During emplacement, many ephemeral boccas were observed in the flow field, which were active for between two and at least nine days. The longer-lived examples initially fed well-established flows that channelled fresh material from the main vent. With time, as activity waned, the nature of the extruded material changed. The latest stages of development of all boccas involved the very slow extrusion of material that was either draining from higher parts of the flow or being forced out of the flow interior as changing local flow conditions pressurised parts of the flow that had been stagnant for some time. Here we describe this late-stage activity of the ephemeral boccas, which resulted in the formation of ‘squeeze-ups' of lava with a markedly different

  7. Development and application of a screening model for simulating regional ground-water flow in the St. Croix River basin, Minnesota and Wisconsin

    USGS Publications Warehouse

    Feinstein, Daniel T.; Buchwald, Cheryl A.; Dunning, Charles P.; Hunt, Randall J.

    2006-01-01

    A series of databases and an accompanying screening model were constructed by the U.S. Geological Survey, in cooperation with the National Park Service, to better understand the regional ground-water-flow system and its relation to stream drainage in the St. Croix River Basin. The St. Croix River and its tributaries drain about 8,000 square miles in northeastern Minnesota and northwestern Wisconsin. The databases contain information for the entire St. Croix River Basin pertaining to well logs, lithology, thickness of lithologic groups, ground-water levels, streamflow, and well pumpage. Maps and generalized cross sections created from the compiled data show the lithologic groups, extending from the water table to the crystalline bedrock, through which ground water flows. These lithologic groups are: fine-grained unconsolidated deposits; coarse-grained unconsolidated deposits; sandstone bedrock; carbonate bedrock; and other bedrock lithologies including shale, siltstone, conglomerate, and igneous intrusions. The steady-state screening model treats the ground-water-flow system as a single layer with transmissivity zones that reflect the distribution of lithologic groups, and with recharge zones that correspond to general areas of high or low evapotranspiration. The model includes representation of second- and higher-order streams and municipal and other high-capacity production wells. The analytic-element model code GFLOW was used to simulate the regional ground-water flow, the water-table surface across the St. Croix River Basin, and base-flow contributions from ground water to streams. In addition, the model routes tributary base flow through the stream network to the St. Croix River. The parameter-estimation inverse model UCODE was linked to the GFLOW model to select the combination of parameter values best able to match over 5,000 water-level measurements and base-flow estimates at 22 streamflow-gaging stations. Results from the calibrated screening model show

  8. Use of avoidance response by rainbow trout to carbon dioxide for fish self-transfer between tanks

    USGS Publications Warehouse

    Clingerman, J.; Bebak, J.; Mazik, P.M.; Summerfelt, S.T.

    2007-01-01

    Convenient, economical, and reduced labor fish harvest and transfer systems are required to realize operating cost savings that can be achieved with the use of much larger and deeper circular culture tanks. To achieve these goals, we developed a new technology for transferring fish based on their avoidance behavior to elevated concentrations of dissolved carbon dioxide (CO2). We observed this behavioral response during controlled, replicated experiments that showed dissolved CO2 concentrations of 60-120 mg/L induced rainbow trout (Oncorhynchus mykiss) to swim out of their 11 m3 "growout" tank, through a transfer pipe carrying a flow with ???23 mg/L dissolved CO2, into a second 11 m3 "harvest" tank. The research was conducted using separate groups of rainbow trout held at commercially relevant densities (40-60 kg/m3). The average weight of fish ranged from 0.15 to 1.3 kg during the various trials. In all trials that used a constant flow of low CO2 water (???23 mg/L) entering the growout tank from the harvest tank, approximately 80-90% of the fish swam from the growout tank, through the transfer pipe, and into the harvest tank after the CO2 concentration in the growout tank had exceeded 60 mg/L. The fish that remained in the growout tank stayed within the area of relatively low CO2 water at the entrance of the transfer pipe. However, the rate of fish transfer from the growout tank to the harvest tank was more than doubled when the diameter of the transfer pipe was increased from 203 to 406 mm. To consistently achieve fish transfer efficiencies of 99%, water flow rate through the fish transfer pipe had to be reduced to 10-20% of the original flow just before the conclusion of each trial. Reducing the flow of relatively low CO2 water near the end of each fish transfer event, restricted the zone of relatively low CO2 water about the entrance of the fish transfer pipe, and provided the stimulus for all but a few remaining fish to swim out of the growout tank. Results

  9. Cryogenic Pressure Control Modeling for Ellipsoidal Space Tanks

    NASA Technical Reports Server (NTRS)

    Lopez, Alfredo; Grayson, Gary D.; Chandler, Frank O.; Hastings, Leon J.; Heyadat, Ali

    2007-01-01

    A computational fluid dynamics (CFD) model is developed to simulate pressure control of an ellipsoidal-shaped liquid hydrogen tank under external heating in normal gravity. Pressure control is provided by an axial jet thermodynamic vent system (TVS) centered within the vessel that injects cooler liquid into the tank, mixing the contents and reducing tank pressure. The two-phase cryogenic tank model considers liquid hydrogen in its own vapor with liquid density varying with temperature only and a fully compressible ullage. The axisymmetric model is developed using a custom version of the commercially available FLOW-31) software. Quantitative model validation is ,provided by engineering checkout tests performed at Marshall Space Flight Center in 1999 in support of the Solar Thermal Upper Stage_ Technology Demonstrator (STUSTD) program. The engineering checkout tests provide cryogenic tank self-pressurization test data at various heat leaks and tank fill levels. The predicted self-pressurization rates, ullage and liquid temperatures at discrete locations within the STUSTD tank are in good agreement with test data. The work presented here advances current CFD modeling capabilities for cryogenic pressure control and helps develop a low cost CFD-based design process for space hardware.

  10. Atmospheric Pressure Effects on Cryogenic Storage Tank Boil-Off

    NASA Technical Reports Server (NTRS)

    Sass, J. P.; Frontier, C. R.

    2007-01-01

    The Cryogenics Test Laboratory (CTL) at the Kennedy Space Center (KSC) routinely utilizes cryostat test hardware to evaluate comparative and absolute thermal conductivities of a wide array of insulation systems. The test method is based on measurement of the flow rate of gas evolved due to evaporative boil-off of a cryogenic liquid. The gas flow rate typically stabilizes after a period of a couple of hours to a couple of days, depending upon the test setup. The stable flow rate value is then used to calculate the thermal conductivity for the insulation system being tested. The latest set of identical cryostats, 1,000-L spherical tanks, exhibited different behavior. On a macro level, the flow rate did stabilize after a couple of days; however the stable flow rate was oscillatory with peak to peak amplitude of up to 25 percent of the nominal value. The period of the oscillation was consistently 12 hours. The source of the oscillation has been traced to variations in atmospheric pressure due to atmospheric tides similar to oceanic tides. This paper will present analysis of this phenomenon, including a calculation that explains why other cryostats are not affected by it.

  11. Hypersonic aerodynamic characteristics of NR-ATP orbiter, orbiter with external tank, and ascent configuration

    NASA Technical Reports Server (NTRS)

    Ashby, G. C., Jr.

    1973-01-01

    A scale model of the North American Rockwell ATP Orbiter with and without the external tank has been tested in a 22-inch helium tunnel at Mach 20 and a Reynolds number based on model length, of 2.14 times one million. Longitudinal and lateral-directional data were determined for the orbiter alone while only longitudinal characteristics and elevon roll effectiveness were investigated for the orbiter/tank combination. Oil flow and electron beam flow visualization studies were conducted for the orbiter alone, orbiter with external tank and the ascent configuration.

  12. Exposures to jet fuel and benzene during aircraft fuel tank repair in the U.S. Air Force.

    PubMed

    Carlton, G N; Smith, L B

    2000-06-01

    Jet fuel and benzene vapor exposures were measured during aircraft fuel tank entry and repair at twelve U.S. Air Force bases. Breathing zone samples were collected on the fuel workers who performed the repair. In addition, instantaneous samples were taken at various points during the procedures with SUMMA canisters and subsequent analysis by mass spectrometry. The highest eight-hour time-weighted average (TWA) fuel exposure found was 1304 mg/m3; the highest 15-minute short-term exposure was 10,295 mg/m3. The results indicate workers who repair fuel tanks containing explosion suppression foam have a significantly higher exposure to jet fuel as compared to workers who repair tanks without foam (p < 0.001). It is assumed these elevations result from the tendency for fuel, absorbed by the foam, to volatilize during the foam removal process. Fuel tanks that allow flow-through ventilation during repair resulted in lower exposures compared to those tanks that have only one access port and, as a result, cannot be ventilated efficiently. The instantaneous sampling results confirm that benzene exposures occur during fuel tank repair; levels up to 49.1 mg/m3 were found inside the tanks during the repairs. As with jet fuel, these elevated benzene concentrations were more likely to occur in foamed tanks. The high temperatures associated with fuel tank repair, along with the requirement to wear vapor-permeable cotton coveralls for fire reasons, could result in an increase in the benzene body burden of tank entrants.

  13. Vented Tank Resupply Experiment Demonstrated Vane Propellant Management Device for Fluid Transfer

    NASA Technical Reports Server (NTRS)

    Chato, David J.

    1998-01-01

    The Vented Tank Resupply Experiment (VTRE) flown on STS-77 confirmed the design approaches presently used in the development of vane-type propellant management devices (PMD) for use in resupply and tank-venting situations, and it provided the first practical demonstration of an autonomous fluid transfer system. All the objectives were achieved. Transfers were more stable than drop tower testing indicated. Liquid was retained successfully at the highest flow rate tested (2.73 gal/min), demonstrating that rapid fills could be achieved. Liquid-free vents were achieved for two different tanks, although the flow rate was higher for the spherical tank (0.1591 cu ft/min) than for the tank with a short barrel section (0.0400 cu ft/min). Recovery from a thruster firing, which moved the liquid to the opposite end of the tank from the PMD, was achieved in 30 sec, showing that liquid rewicked more quickly into the PMD after thruster firing than pretest projections had predicted. In addition, researchers obtained great insights into the PMD behavior from the video footage provided, and discovered new considerations for future PMD designs that would not have been seen without this flight test.

  14. VOLUMETRIC LEAK DETECTION IN LARGE UNDERGROUND STORAGE TANKS - VOLUME I

    EPA Science Inventory

    A set of experiments was conducted to determine whether volumetric leak detection system presently used to test underground storage tanks (USTs) up to 38,000 L (10,000 gal) in capacity could meet EPA's regulatory standards for tank tightness and automatic tank gauging systems whe...

  15. EFFECT OF FLOW CHARACTERISTICS ON DO DISTRIBUTION IN A FULL SCALE OXIDATION DITCH WITH DIFFUSED AERATION AND VERTICAL FLOW BOOSTERS

    NASA Astrophysics Data System (ADS)

    Nakamachi, Kazuo; Fujiwara, Taku; Kawaguchi, Yukio; Tsuno, Hiroshi

    The high loading rate oxidation ditch (OD) system with dual dissolved oxygen (DO) control has been developed for the purpose of advanced wastewater treatment and cost saving. For the purpose of scale-up to the real scale, the clean water experiments were conducted, with the full scale oxidation ditch with diffused aeration and vertical flow boosters, to examine the effect to the dual DO control by the design and operational factors, which include a flow characteristics and a oxygen supply capability. In this study, the flow characteristics of the OD channel were analyzed using a tank number and circulation ratio as the parameters. The analysis showed the complicated flow characteristics of the OD channel, which changed from the plug flow to the completely mixing transiently. Based on the tank number N =65~100 which were obtained from the tracer tests, a model of DO mass balance was constructed, then the accurate method for estimate the overall oxygen transfer coefficients was proposed. The potential error of the conventional method in the specific conditions was indicated. In addition, the effect of the flow characteristics on the design and operational parameters of the dual DO control, which include the circulation time or the DO profile, was clarified.

  16. Transport of strontium and cesium in simulated hanford tank waste leachate through quartz sand under saturated and unsaturated flow.

    PubMed

    Rod, Kenton A; Um, Wooyong; Flury, Markus

    2010-11-01

    We investigated the effects of water saturation and secondary precipitate formation on Sr and Cs transport through quartz sand columns under saturated and unsaturated flow. Column experiments were conducted at effective water saturation ranging from 0.2 to 1.0 under steady-state flow using either 0.1 M NaNO(3) or simulated tank waste leachate (STWL; 1 M NaNO(3) and 1 M NaOH) mimicking Hanford (Washington, USA) tank waste. In 0.1 M NaNO(3) columns, Sr transported like a conservative tracer, whereas Cs was retarded relative to Sr. The transport of Sr and Cs in the 0.1 M NaNO(3) columns under all water saturations could be described with the equilibrium convection-dispersion equation (CDE). In STWL columns, Sr mobility was significantly reduced compared to the 0.1 M NaNO(3) column, because Sr was incorporated into or sorbed to neo-formed secondary precipitates. Strontium sequestration by precipitates was confirmed by additional batch and electron micrograph analyses. In contrast(,) the transport of Cs was less affected by the STWL; retardation of Cs in STWL columns was similar to that found in 0.1 M NaNO(3) columns. Analysis of STWL column data revealed that both Sr and Cs breakthrough curves showed nonideal behavior that suggest nonequilibrium conditions, although nonlinear geochemical behavior cannot be ruled out.

  17. View of Minneapolis-St.Paul, Minnesota area

    NASA Image and Video Library

    1973-08-30

    SL3-28-009 (July-September 1973) --- A near vertical view of the Minneapolis-St. Paul, Minnesota area, as photographed from Earth orbit by one of the six lenses of the Itek-furnished S190-A Multispectral Photographic Facility Experiment in the Multiple Docking Adapter of the Skylab space station. A 150mm lens, with SO-356 high definition Ektachrome film, was used to take this picture. The Mississippi River flows southeasterly through this large metropolitan area. Minneapolis is on the west bank of the Mississippi. The Minnesota River makes a large bend at the southern edge of the picture then flows northeasterly to empty into the Mississippi at Minneapolis-St. Paul. The St. Croix River, which serves as a portion of the boundary between Minnesota and Wisconsin, flows into the Mississippi downstream from the twin cities. A long, nearly straight, stretch of Interstate 35 leads southward from Minneapolis-St. Paul. Interstate 94 parallels the Mississippi toward the northwest. The highway and road network in the area is clearly visible. Note the numerous small lakes in the photograph. This view includes the smaller cities of Hastings, Faribault, Owatonna, Mankato, St. Peter, New Ulm and St. Cloud. The S190-A experiment is part of the Skylab Earth Resources Experiments Package. Photo credit: NASA

  18. Twelve-month clinical outcomes of acute non-ST versus ST-segment elevation myocardial infarction patients with reduced preprocedural thrombolysis in myocardial infarction flow undergoing percutaneous coronary intervention.

    PubMed

    Baek, Ju Yeol; Kang, Tae Soo; Rha, Seung-Woon; Choi, Byoung Geol; Park, Sang Ho; Jeong, Myung Ho

    2018-04-27

    Reduced preprocedural thrombolysis in myocardial infarction (TIMI) flow in patients with ST-segment elevation myocardial infarction (STEMI) is known to be associated with increased mortality. However, clinical implications of reduced preprocedural TIMI flow in patients with non-ST-segment elevation myocardial infarction (NSTEMI) have not been fully elucidated as yet. The aim of the present study was to compare the clinical influence of reduced preprocedural TIMI flows between patients with STEMI and NSTEMI undergoing percutaneous coronary intervention (PCI). From the Korea Acute Myocardial Infarction Registry, a total of 7336 AMI patients with angiographically confirmed reduced preprocedural TIMI flow (TIMI 0/1) during PCI were selected and divided into STEMI (n=4852) and NSTEMI (n=2484) groups. The 12-month composite of total death, nonfatal myocardial infarction, coronary artery bypass graft, and repeated PCI was compared between the two groups. After adjustment of baseline confounders by propensity score stratification, the NSTEMI group had lower incidences of major adverse cardiac events than the STEMI group (7.15 vs. 11.19%; hazard ratio: 0.63; 95% confidence interval: 0.47-0.84; P=0.001) at 12 months, which was largely attributable to the lower incidences of total deaths (2.43 vs. 3.99%; P=0.04) and repeated PCI (3.81 vs. 6.41%; P=0.01). Among AMI patients with TIMI 0/1, patients with NSTEMI had better outcomes compared with those of patients with STEMI on the basis of the incidences of 12-month outcomes. This could be attributable to lower total death and repeated revascularization in patients with NSTEMI.

  19. Comparative PIV and LDA studies of Newtonian and non-Newtonian flows in an agitated tank.

    PubMed

    Story, Anna; Jaworski, Zdzisław; Simmons, Mark J; Nowak, Emilia

    2018-01-01

    The paper presents results of an experimental study of the fluid velocity field in a stirred tank equipped with a Prochem Maxflo T (PMT) type impeller which was rotating at a constant frequency of N  = 4.1 or 8.2 s -1 inducing transitional ( Re  = 499 or 1307) or turbulent ( Re  = 2.43 × 10 4 ) flow of the fluid. The experiments were performed for a Newtonian fluid (water) and a non-Newtonian fluid (0.2 wt% aqueous solution of carboxymethyl cellulose, CMC) exhibiting mild viscoelastic properties. Measurements were carried out using laser light scattering on tracer particles which follow the flow (2-D PIV). For both the water and the CMC solution one primary and two secondary circulation loops were observed within the fluid volume; however, the secondary loops were characterized by much lower intensity. The applied PMT-type impeller produced in the Newtonian fluid an axial primary flow, whilst in the non-Newtonian fluid the flow was more radial. The results obtained in the form of the local mean velocity components were in satisfactory agreement with the literature data from LDA. Distribution of the shear rate in the studied system was also analyzed. For the non-Newtonian fluid an area was computed where the elastic force dominates over the viscous one. The area was nearly matching the region occupied by the primary circulation loop.

  20. Chemical Equilibrium of Aluminate in Hanford Tank Waste Originating from Tanks 241-AN-105 and 241-AP-108

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCoskey, Jacob K.; Cooke, Gary A.; Herting, Daniel L.

    The purposes of the study described in this document follow; Determine or estimate the thermodynamic equilibrium of gibbsite in contact with two real tank waste supernatant liquids through both dissolution of gibbsite (bottom-up approach) and precipitation of aluminum-bearing solids (top-down approach); determine or estimate the thermodynamic equilibrium of a mixture of gibbsite and real tank waste saltcake in contact with real tank waste supernatant liquid through both dissolution of gibbsite and precipitation of aluminum-bearing solids; and characterize the solids present after equilibrium and precipitation of aluminum-bearing solids.

  1. Dual diaphragm tank with telltale drain

    NASA Technical Reports Server (NTRS)

    Tuthill, Wallace C., Jr. (Inventor)

    1991-01-01

    A fluid storage and expulsion system comprising a tank with an internal flexible diaphragm assembly of dual diaphragms in back-to-back relationship, at least one of which is provided with a patterned surface having fine edges such that the diaphragms are in contact along said edges without mating contact of surface areas to thereby form fluid channels which extend outwardly to the peripheral edges of the diaphragms is described. The interior wall of the tank at the juncture of tank sections is formed with a circumferential annular recess comprising an outer annular recess portion which forms a fluid collection chamber and an inner annular recess portion which accommodates the peripheral edge portions of the diaphragms and a sealing ring in clamped sealing relation therebetween. The sealing ring is perforated with radially extending passages which allow any fluid leaking or diffusing past a diaphragm to flow through the fluid channels between the diaphragms to the fluid collection chamber. Ports connectable to pressure fittings are provided in the tank sections for admission of fluids to opposite sides of the diaphragm assembly. A drain passage through the tank wall to the fluid collection chamber permits detection, analysis and removal of fluids in the collection chamber.

  2. Tank Insulation

    NASA Technical Reports Server (NTRS)

    1979-01-01

    For NASA's Apollo program, McDonnell Douglas Astronautics Company, Huntington Beach, California, developed and built the S-IVB, uppermost stage of the three-stage Saturn V moonbooster. An important part of the development task was fabrication of a tank to contain liquid hydrogen fuel for the stage's rocket engine. The liquid hydrogen had to be contained at the supercold temperature of 423 degrees below zero Fahrenheit. The tank had to be perfectly insulated to keep engine or solar heat from reaching the fuel; if the hydrogen were permitted to warm up, it would have boiled off, or converted to gaseous form, reducing the amount of fuel available to the engine. McDonnell Douglas' answer was a supereffective insulation called 3D, which consisted of a one-inch thickness of polyurethane foam reinforced in three dimensions with fiberglass threads. Over a 13-year development and construction period, the company built 30 tanks and never experienced a failure. Now, after years of additional development, an advanced version of 3D is finding application as part of a containment system for transporting Liquefied Natural Gas (LNG) by ship.

  3. Direct flow crystal growth system

    DOEpatents

    Montgomery, Kenneth E.; Milanovich, Fred P.

    1992-01-01

    A crystal is grown in a constantly filtered solution which is flowed directly into the growing face of a crystal. In a continuous flow system, solution at its saturation temperature is removed from a crystal growth tank, heated above its saturation temperature, filtered, cooled back to its saturation temperature, and returned to the tank.

  4. Tank 241-Z-361 Sludge Retrieval and Treatment Alternatives

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    HAMPTON, B.K.

    2000-05-24

    The Plutonium Finishing Plant (PFP) Tank 241-Z-361 (Z-361) contains legacy sludge resulting from waste discharges from past missions at PFP. A sketch of the tank is shown in Figure 1. In this view various risers and penetrations are shown along with the sludge level depicted by the horizontal line halfway up the tank, and the ground level depicted by the horizontal line above the tank. The HEPA filter installed for breathing is also shown on one of the risers.

  5. Computational Analyses of Pressurization in Cryogenic Tanks

    NASA Technical Reports Server (NTRS)

    Ahuja, Vineet; Hosangadi, Ashvin; Mattick, Stephen; Lee, Chun P.; Field, Robert E.; Ryan, Harry

    2008-01-01

    A) Advanced Gas/Liquid Framework with Real Fluids Property Routines: I. A multi-fluid formulation in the preconditioned CRUNCH CFD(Registered TradeMark) code developed where a mixture of liquid and gases can be specified: a) Various options for Equation of state specification available (from simplified ideal fluid mixtures, to real fluid EOS such as SRK or BWR models). b) Vaporization of liquids driven by pressure value relative to vapor pressure and combustion of vapors allowed. c) Extensive validation has been undertaken. II. Currently working on developing primary break-up models and surface tension effects for more rigorous phase-change modeling and interfacial dynamics B) Framework Applied to Run-time Tanks at Ground Test Facilities C) Framework Used For J-2 Upper Stage Tank Modeling: 1) NASA MSFC tank pressurization: a) Hydrogen and oxygen tank pre-press, repress and draining being modeled at NASA MSFC. 2) NASA AMES tank safety effort a) liquid hydrogen and oxygen are separated by a baffle in the J-2 tank. We are modeling pressure rise and possible combustion if a hole develops in the baffle and liquid hydrogen leaks into the oxygen tank. Tank pressure rise rates simulated and risk of combustion evaluated.

  6. Experimentally Modeling Black and White Hole Event Horizons via Fluid Flow

    NASA Astrophysics Data System (ADS)

    Manheim, Marc E.; Lindner, John F.; Manz, Niklas

    We will present a scaled down experiment that hydrodynamically models the interaction between electromagnetic waves and black/white holes. It has been mathematically proven that gravity waves in water can behave analogously to electromagnetic waves traveling through spacetime. In this experiment, gravity waves will be generated in a water tank and propagate in a direction opposed to a flow of varying rate. We observe a noticeable change in the wave's spreading behavior as it travels through the simulated horizon with decreased wave speeds up to standing waves, depending on the opposite flow rate. Such an experiment has already been performed in a 97.2 cubic meter tank. We reduced the size significantly to be able to perform the experiment under normal lab conditions.

  7. 14 CFR 27.977 - Fuel tank outlet.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... STANDARDS: NORMAL CATEGORY ROTORCRAFT Powerplant Fuel System § 27.977 Fuel tank outlet. (a) There must be a... rotorcraft, prevent the passage of any object that could restrict fuel flow or damage any fuel system...] Fuel System Components ...

  8. 14 CFR 27.977 - Fuel tank outlet.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... STANDARDS: NORMAL CATEGORY ROTORCRAFT Powerplant Fuel System § 27.977 Fuel tank outlet. (a) There must be a... rotorcraft, prevent the passage of any object that could restrict fuel flow or damage any fuel system...] Fuel System Components ...

  9. 14 CFR 27.977 - Fuel tank outlet.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... STANDARDS: NORMAL CATEGORY ROTORCRAFT Powerplant Fuel System § 27.977 Fuel tank outlet. (a) There must be a... rotorcraft, prevent the passage of any object that could restrict fuel flow or damage any fuel system...] Fuel System Components ...

  10. 14 CFR 27.977 - Fuel tank outlet.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... STANDARDS: NORMAL CATEGORY ROTORCRAFT Powerplant Fuel System § 27.977 Fuel tank outlet. (a) There must be a... rotorcraft, prevent the passage of any object that could restrict fuel flow or damage any fuel system...] Fuel System Components ...

  11. 14 CFR 27.977 - Fuel tank outlet.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... STANDARDS: NORMAL CATEGORY ROTORCRAFT Powerplant Fuel System § 27.977 Fuel tank outlet. (a) There must be a... rotorcraft, prevent the passage of any object that could restrict fuel flow or damage any fuel system...] Fuel System Components ...

  12. Nutrient removal by up-scaling a hybrid floating treatment bed (HFTB) using plant and periphyton: From laboratory tank to polluted river.

    PubMed

    Liu, Junzhuo; Wang, Fengwu; Liu, Wei; Tang, Cilai; Wu, Chenxi; Wu, Yonghong

    2016-05-01

    Planted floating treatment bed (FTB) is an innovative technique of removing nutrients from polluted water but limited in deep water and cold seasons. Periphyton was integrated into FTB for a hybrid floating treatment bed (HFTB) to improve its nutrient removal capacity. To assess its potential for treating nutrient-polluted rivers, HFTB was up-scaled from 5L laboratory tanks to 350L outdoor tanks and then to a commercial-scale 900m section of polluted river. Plants and periphyton interacted in HFTB with periphyton limiting plant root growth and plants having shading effects on periphyton. Non-overlapping distribution of plants and periphyton can minimize the negative interactions in HFTB. HFTB successfully kept TN and TP of the river at less than 2.0 and 0.02mgL(-1), respectively. This study indicates that HFTB can be easily up-scaled for nutrients removal from polluted rivers in different seasons providing a long-term, environmentally-friendly method to remediate polluted ecosystems. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. ICPP tank farm closure study. Volume 2: Engineering design files

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1998-02-01

    Volume 2 contains the following topical sections: Tank farm heel flushing/pH adjustment; Grouting experiments for immobilization of tank farm heel; Savannah River high level waste tank 20 closure; Tank farm closure information; Clean closure of tank farm; Remediation issues; Remote demolition techniques; Decision concerning EIS for debris treatment facility; CERCLA/RCRA issues; Area of contamination determination; Containment building of debris treatment facility; Double containment issues; Characterization costs; Packaging and disposal options for the waste resulting from the total removal of the tank farm; Take-off calculations for the total removal of soils and structures at the tank farm; Vessel off-gas systems; Jet-groutedmore » polymer and subsurface walls; Exposure calculations for total removal of tank farm; Recommended instrumentation during retrieval operations; High level waste tank concrete encasement evaluation; Recommended heavy equipment and sizing equipment for total removal activities; Tank buoyancy constraints; Grout and concrete formulas for tank heel solidification; Tank heel pH requirements; Tank cooling water; Evaluation of conservatism of vehicle loading on vaults; Typical vault dimensions and approximately tank and vault void volumes; Radiological concerns for temporary vessel off-gas system; Flushing calculations for tank heels; Grout lift depth analysis; Decontamination solution for waste transfer piping; Grout lift determination for filling tank and vault voids; sprung structure vendor data; Grout flow properties through a 2--4 inch pipe; Tank farm load limitations; NRC low level waste grout; Project data sheet calculations; Dose rates for tank farm closure tasks; Exposure and shielding calculations for grout lines; TFF radionuclide release rates; Documentation of the clean closure of a system with listed waste discharge; and Documentation of the ORNL method of radionuclide concentrations in tanks.« less

  14. Low gravity reorientation in a scale-model Centaur liquid-hydrogen tank

    NASA Technical Reports Server (NTRS)

    Salzman, J. A.; Masica, W. J.; Lacovic, R. F.

    1973-01-01

    An experiment was conducted to investigate the process of liquid reorientation from one end of a scale-model Centaur liquid-hydrogen tank to the other end by means of low-level accelerations. Prior to reorientation, the liquid was stabilized at the top of the tank at a Bond number of 15. Tanks both with and without ring baffles and with tank radii of 5.5 and 7.0 centimeters were used in the study. Reorientation acceleration values were varied to obtain Bond numbers of 200 and 450. Liquid fill levels of 20 and 70 percent were used. From the data in this study, relations were developed to estimate reorientation event times in unbaffled tanks through the point of final liquid clearing from the top of the tank. The insertion of ring baffles drastically changed the reorientation flow profiles but resulted in only minor differences in the times of tank-top uncovering and liquid collection.

  15. Water velocity in commercial RAS culture tanks for Atlantic salmon smolt production

    USDA-ARS?s Scientific Manuscript database

    An optimal flow domain in culture tanks is vital for fish growth and welfare. This paper presents empirical data on rotational velocity and water quality in circular and octagonal tanks at two large commercial smolt production sites, with an approximate production rate of 1000 and 1300 ton smolt ann...

  16. 14 CFR 23.1013 - Oil tanks.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ...) and (b); and (2) Withstand any vibration, inertia, and fluid loads expected in operation. (b... to prevent hazardous loss of oil during acrobatic maneuvers, including short periods of inverted flight. (e) Outlet. No oil tank outlet may be enclosed by any screen or guard that would reduce the flow...

  17. 14 CFR 23.1013 - Oil tanks.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ...) and (b); and (2) Withstand any vibration, inertia, and fluid loads expected in operation. (b... to prevent hazardous loss of oil during acrobatic maneuvers, including short periods of inverted flight. (e) Outlet. No oil tank outlet may be enclosed by any screen or guard that would reduce the flow...

  18. 14 CFR 23.1013 - Oil tanks.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ...) and (b); and (2) Withstand any vibration, inertia, and fluid loads expected in operation. (b... to prevent hazardous loss of oil during acrobatic maneuvers, including short periods of inverted flight. (e) Outlet. No oil tank outlet may be enclosed by any screen or guard that would reduce the flow...

  19. 14 CFR 23.1013 - Oil tanks.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ...) and (b); and (2) Withstand any vibration, inertia, and fluid loads expected in operation. (b... to prevent hazardous loss of oil during acrobatic maneuvers, including short periods of inverted flight. (e) Outlet. No oil tank outlet may be enclosed by any screen or guard that would reduce the flow...

  20. 14 CFR 23.1013 - Oil tanks.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ...) and (b); and (2) Withstand any vibration, inertia, and fluid loads expected in operation. (b... to prevent hazardous loss of oil during acrobatic maneuvers, including short periods of inverted flight. (e) Outlet. No oil tank outlet may be enclosed by any screen or guard that would reduce the flow...

  1. Modeling a full-scale primary sedimentation tank using artificial neural networks.

    PubMed

    Gamal El-Din, A; Smith, D W

    2002-05-01

    Modeling the performance of full-scale primary sedimentation tanks has been commonly done using regression-based models, which are empirical relationships derived strictly from observed daily average influent and effluent data. Another approach to model a sedimentation tank is using a hydraulic efficiency model that utilizes tracer studies to characterize the performance of model sedimentation tanks based on eddy diffusion. However, the use of hydraulic efficiency models to predict the dynamic behavior of a full-scale sedimentation tank is very difficult as the development of such models has been done using controlled studies of model tanks. In this paper, another type of model, namely artificial neural network modeling approach, is used to predict the dynamic response of a full-scale primary sedimentation tank. The neuralmodel consists of two separate networks, one uses flow and influent total suspended solids data in order to predict the effluent total suspended solids from the tank, and the other makes predictions of the effluent chemical oxygen demand using data of the flow and influent chemical oxygen demand as inputs. An extensive sampling program was conducted in order to collect a data set to be used in training and validating the networks. A systematic approach was used in the building process of the model which allowed the identification of a parsimonious neural model that is able to learn (and not memorize) from past data and generalize very well to unseen data that were used to validate the model. Theresults seem very promising. The potential of using the model as part of a real-time process control system isalso discussed.

  2. Effect of tank geometry on its average performance

    NASA Astrophysics Data System (ADS)

    Orlov, Aleksey A.; Tsimbalyuk, Alexandr F.; Malyugin, Roman V.; Leontieva, Daria A.; Kotelnikova, Alexandra A.

    2018-03-01

    The mathematical model of non-stationary filling of vertical submerged tanks with gaseous uranium hexafluoride is presented in the paper. There are calculations of the average productivity, heat exchange area, and filling time of various volumes tanks with smooth inner walls depending on their "height : radius" ratio as well as the average productivity, degree, and filling time of horizontal ribbing tank with volume 6.10-2 m3 with change central hole diameter of the ribs. It has been shown that the growth of "height / radius" ratio in tanks with smooth inner walls up to the limiting values allows significantly increasing tank average productivity and reducing its filling time. Growth of H/R ratio of tank with volume 1.0 m3 to the limiting values (in comparison with the standard tank having H/R equal 3.49) augments tank productivity by 23.5 % and the heat exchange area by 20%. Besides, we have demonstrated that maximum average productivity and a minimum filling time are reached for the tank with volume 6.10-2 m3 having central hole diameter of horizontal ribs 6.4.10-2 m.

  3. Cone Penetrometer Shear Strength Measurements of Sludge Waste in Tanks 241-AN-101 and 241-AN-106

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Follett, Jordan R.

    2014-03-06

    This document presents the resulting shear strength profiles for sludge waste in Tanks 241-AN-101 and 241-AN-106, as determined with a full-flow cone penetrometer. Full-flow penetrometer measurements indicate shear strength profiles that increase roughly uniformly with depth. For Tank 241-AN-101, the undrained shear strength was calculated to range from 500 Pa near the sludge surface to roughly 3,300 Pa at 15 inches above the tank bottom. For 241-AN-106, the undrained shear strength was calculated to range from 500 Pa near the sludge surface to roughly 5,000 Pa at 15 inches above the tank bottom.

  4. TANK 21 AND TANK 24 BLEND AND FEED STUDY: BLENDING TIMES, SETTLING TIMES, AND TRANSFERS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, S.; Leishear, R.; Poirier, M.

    2012-05-31

    The Salt Disposition Integration (SDI) portfolio of projects provides the infrastructure within existing Liquid Waste facilities to support the startup and long term operation of the Salt Waste Processing Facility (SWPF). Within SDI, the Blend and Feed Project will equip existing waste tanks in the Tank Farms to serve as Blend Tanks where salt solutions of up to 1.2 million gallons will be blended in 1.3 million gallon tanks and qualified for use as feedstock for SWPF. In particular, Tanks 21 and 24 are planned to be used for blending and transferring to the SDI feed tank. These tanks weremore » evaluated here to determine blending times, to determine a range of settling times for disturbed sludge, and to determine that the SWPF Waste Acceptance Criteria that less than 1200 mg/liter of solids will be entrained in salt solutions during transfers from the Tank 21 and Tank 24 will be met. Overall conclusions for Tank 21 and Tank 24 operations include: (1) Experimental correction factors were applied to CFD (computational fluid dynamics) models to establish blending times between approximately two and five hours. As shown in Phase 2 research, blending times may be as much as ten times greater, or more, if lighter fluids are added to heavier fluids (i.e., water added to salt solution). As the densities of two salt solutions converge this effect may be minimized, but additional confirmatory research was not performed. (2) At the current sludge levels and the presently planned operating heights of the transfer pumps, solids entrainment will be less than 1200 mg/liter, assuming a conservative, slow settling sludge simulant. (3) Based on theoretical calculations, particles in the density range of 2.5 to 5.0 g/mL must be greater than 2-4 {micro}m in diameter to ensure they settle adequately in 30-60 days to meet the SWPF feed criterion (<1200 mg/l). (4) Experimental tests with sludge batch 6 simulant and field turbidity data from a recent Tank 21 mixing evolution suggest

  5. Wind-Tunnel Tests of Several Arrangements of External Auxiliary Fuel Tanks on a Fighter-Type Airplane

    DTIC Science & Technology

    1942-08-01

    vinfi tanks of lorg plane. Mcdjl ta:ik tiona ä.oignod to attached to n typi this lr..-estimation 350-grllcn fuvl ».;etion...of ISO-gilo showod tho lci.st effect o of the -lrpl’-no yith .*. ch lift-dr.-g rr.tlo iron 3.0 Tank -\\ n .-,l..a ci...and alle Th; eircul- n nr.u 30C-|F;I11 n tue noroiynrj iaifu In tho nc: to 4.8 percent >*.nd vertical d s, vlthin reas f 3S0

  6. Runtime and Pressurization Analyses of Propellant Tanks

    NASA Technical Reports Server (NTRS)

    Field, Robert E.; Ryan, Harry M.; Ahuja, Vineet; Hosangadi, Ashvin; Lee, Chung P.

    2007-01-01

    Multi-element unstructured CFD has been utilized at NASA SSC to carry out analyses of propellant tank systems in different modes of operation. The three regimes of interest at SSC include (a) tank chill down (b) tank pressurization and (c) runtime propellant draw-down and purge. While tank chill down is an important event that is best addressed with long time-scale heat transfer calculations, CFD can play a critical role in the tank pressurization and runtime modes of operation. In these situations, problems with contamination of the propellant by inclusion of the pressurant gas from the ullage causes a deterioration of the quality of the propellant delivered to the test article. CFD can be used to help quantify the mixing and propellant degradation. During tank pressurization under some circumstances, rapid mixing of relatively warm pressurant gas with cryogenic propellant can lead to rapid densification of the gas and loss of pressure in the tank. This phenomenon can cause serious problems during testing because of the resulting decrease in propellant flow rate. With proper physical models implemented, CFD can model the coupling between the propellant and pressurant including heat transfer and phase change effects and accurately capture the complex physics in the evolving flowfields. This holds the promise of allowing the specification of operational conditions and procedures that could minimize the undesirable mixing and heat transfer inherent in propellant tank operation. It should be noted that traditional CFD modeling is inadequate for such simulations because the fluids in the tank are in a range of different sub-critical and supercritical states and elaborate phase change and mixing rules have to be developed to accurately model the interaction between the ullage gas and the propellant. We show a typical run-time simulation of a spherical propellant tank, containing RP-1 in this case, being pressurized with room-temperature nitrogen at 540 R. Nitrogen

  7. Vented Chill / No-Vent Fill of Cryogenic Propellant Tanks

    NASA Technical Reports Server (NTRS)

    Rhys, Noah O.; Foster, Lee W.; Martin, Adam K.; Stephens, Jonathan R.

    2016-01-01

    Architectures for extended duration missions often include an on-orbit replenishment of the space vehicle's cryogenic liquid propellants. Such a replenishment could be accomplished via a tank-to-tank transfer from a dedicated tanker or a more permanent propellant depot storage tank. Minimizing the propellant loss associated with transfer line and receiver propellant tank thermal conditioning is essential for mass savings. A new methodology for conducting tank-to-tank transfer while minimizing such losses has been demonstrated. Charge-Hold-Vent is the traditional methodology for conducting a tank-to-tank propellant transfer. A small amount of cryogenic liquid is introduced to chill the transfer line and propellant tank. As the propellant absorbs heat and undergoes a phase change, the tank internal pressure increases. The tank is then vented to relieve pressure prior to another charge of cryogenic liquid being introduced. This cycle is repeated until the transfer lines and tank are sufficiently chilled and the replenishment of the propellant tank is complete. This method suffers inefficiencies due to multiple chill and vent cycles within the transfer lines and associated feed system components. Additionally, this system requires precise measuring of cryogenic fluid delivery for each transfer, multiple valve cycling events, and other complexities associated with cycled operations. To minimize propellant loss and greatly simplify on-orbit operations, an alternate methodology has been designed and demonstrated. The Vented Chill / No Vent Fill method is a simpler, constant flow approach in which the propellant tank and transfer lines are only chilled once. The receiver tank is continuously vented as cryogenic liquid chills the transfer lines, tank mass and ullage space. Once chilled sufficiently, the receiver tank valve is closed and the tank is completely filled. Interestingly, the vent valve can be closed prior to receiver tank components reaching liquid saturation

  8. Mortality in bullous pemphigoid and prognostic factors in 1st and 3rd year of follow-up in specialized centre in Poland.

    PubMed

    Kalinska-Bienias, Agnieszka; Lukowska-Smorawska, Katarzyna; Jagielski, Pawel; Kowalewski, Cezary; Wozniak, Katarzyna

    2017-11-01

    Bullous pemphigoid (BP) is associated with higher mortality and coexisting comorbidities, some of them affecting poor prognosis. The aim of the study was to identify prognostic factors causing greater mortality both in the 1st and 3rd year of follow-up and to determine the 1-, 2-, 3-year mortality rates, standardized mortality ratio (SMR) in Polish BP patients. All patients with BP (a cohort of 205 patients, mean age 76.2 years) diagnosed between 5 January 2000 and 10 December 2013 in a referral unit for autoimmune bullous diseases at the university hospital in Poland were included retrospectively. Mortality data were obtained from the Centre for Document Personalization at the Minister of Interior and Administration. Our original observation was that prednisone in moderate dose (0.5 mg kg -1 ) in monotherapy was an independent risk factor of fatal prognosis in the 1st year of follow-up, assessed using multivariate analysis. We confirmed the strong correlation between neurological diseases and greater mortality. Both in the 1st and 3rd year of follow-up, dementia and Parkinson disease resulted in increased mortality. We also found that arrhythmias significantly increased mortality in the 1st and 3rd year of follow-up. The prognostic factors in BP changed over time of follow-up. In the 3rd year of observation, the age above 77, longer hospitalization and BP severity were associated with greater mortality. We observed poorer prognosis in BP patients than age-matched general Polish population. The 1-, 2-, 3-year mortality rates were 22.4, 31.2, 39.5% and SMR was 3.8 (95% CI 3.4-3.7).

  9. Three members of Medicago truncatula ST family (MtST4, MtST5 and MtST6) are specifically induced by hormones involved in biotic interactions.

    PubMed

    Albornos, Lucía; Martín, Ignacio; Hernández-Nistal, Josefina; Labrador, Emilia; Dopico, Berta

    2018-06-01

    In this work, we study the function of the Medicago truncatula ST4, ST5 and ST6 proteins that belong to a protein family of unknown function characterized by the DUF2775 domain. Thus, we analyse their promoter sequence and activity, their transcript accumulation, and their subcellular location. The analysis of the three promoters showed different combination of cis-acting regulatory elements and they presented different activity pattern. Throughout development only ST6 mRNAs have been detected in most of the stages analysed, while ST4 was faintly detected in the roots and in the flowers and ST5 was always absent. The addition of MeJA, ET and SA revealed specific responses of the STs, the ST4 transcript accumulation increased by MeJA; the ST5 by MeJA and ET when applied together; and the ST6 by ET and by SA. Finally, the ST4 and ST5 proteins were in the cell wall whereas the ST6 had a dual location. From these results, we can conclude that the ST4, ST5 and ST6 RNAs are specifically and differentially up-regulated by MeJA, ET and SA, plant regulators also involved in the plant defence, pointing that ST4, ST5 and ST6 proteins might be involved in specific biotic interactions through different signalling pathways. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  10. 33 CFR 183.564 - Fuel tank fill system.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Fuel tank fill system. 183.564...) BOATING SAFETY BOATS AND ASSOCIATED EQUIPMENT Fuel Systems Manufacturer Requirements § 183.564 Fuel tank fill system. (a) Each fuel fill opening must be located so that a gasoline overflow of up to five...

  11. Analysis of Adsorbed Natural Gas Tank Technology

    NASA Astrophysics Data System (ADS)

    Knight, Ernest; Schultz, Conrad; Rash, Tyler; Dohnke, Elmar; Stalla, David; Gillespie, Andrew; Sweany, Mark; Seydel, Florian; Pfeifer, Peter

    With gasoline being an ever decreasing finite resource and with the desire to reduce humanity's carbon footprint, there has been an increasing focus on innovation of alternative fuel sources. Natural gas burns cleaner, is more abundant, and conforms to modern engines. However, storing compressed natural gas (CNG) requires large, heavy gas cylinders, which limits space and fuel efficiency. Adsorbed natural gas (ANG) technology allows for much greater fuel storage capacity and the ability to store the gas at a much lower pressure. Thus, ANG tanks are much more flexible in terms of their size, shape, and weight. Our ANG tank employs monolithic nanoporous activated carbon as its adsorbent material. Several different configurations of this Flat Panel Tank Assembly (FPTA) along with a Fuel Extraction System (FES) were examined to compare with the mass flow rate demands of an engine.

  12. Thermospheric neutral density estimates from heater-induced ion up-flow at EISCAT

    NASA Astrophysics Data System (ADS)

    Kosch, Michael; Ogawa, Yasunobu; Yamazaki, Yosuke; Vickers, Hannah; Blagoveshchenskaya, Nataly

    We exploit a recently-developed technique to estimate the upper thermospheric neutral density using measurements of ionospheric plasma parameters made by the EISCAT UHF radar during ionospheric modification experiments. Heating the electrons changes the balance between upward plasma pressure gradient and downward gravity, resulting in ion up-flow up to ~200 m/s. This field-aligned flow is retarded by collisions, which is directly related to the neutral density. Whilst the ion up-flow is consistent with the plasma pressure gradient, the estimated thermospheric neutral density depends on the assumed composition, which varies with altitude. Results in the topside ionosphere are presented.

  13. Genomic investigation of Staphylococcus aureus isolates from bulk tank milk and dairy cows with clinical mastitis.

    PubMed

    Ronco, Troels; Klaas, Ilka C; Stegger, Marc; Svennesen, Line; Astrup, Lærke B; Farre, Michael; Pedersen, Karl

    2018-02-01

    Staphylococcus aureus is one of the most common pathogens that cause mastitis in dairy cows. Various subtypes, virulence genes and mobile genetic elements have been associated with isolates from bulk tank milk and clinical mastitis. So far, no Danish cattle associated S. aureus isolates have been whole-genome sequenced and further analyzed. Thus, the main objective was to investigate the population structure and genomic content of isolates from bulk tank milk and clinical mastitis, using whole-genome sequencing. This may reveal the origin of strains that cause clinical mastitis. S. aureus isolates from bulk tank milk (n = 94) and clinical mastitis (n = 63) were collected from 91 and 24 different farms, respectively and whole-genome sequenced. The genomic content was analyzed and a phylogenetic tree based on single nucleotide polymorphisms was constructed. In general, the isolates from both bulk tank milk and clinical mastitis were of similar genetic background. This suggests that dairy cows are natural carriers of the S. aureus subtypes that cause clinical mastitis if the right conditions are present and that a broad range of subtypes cause mastitis. A phylogenetic cluster that mostly consisted of ST151 isolates carried three mobile genetic elements that were primarily found in this group. The prevalence of resistance genes was generally low. However, the first ST398 methicillin resistant S. aureus isolate from a Danish dairy cow with clinical mastitis was detected. Copyright © 2018 Elsevier B.V. All rights reserved.

  14. System for venting gas from a liquid storage tank

    NASA Astrophysics Data System (ADS)

    Dugan, Regina E.

    1989-07-01

    Gas is vented from a non-cryogenic liquid storage tank while discharging pressurized liquid from a tube into the tank through a plurality of inclined jets, circumferentially spaced about an end of a vent tube positioned within the tube. Each jet is directed toward a central axis of the vent tube, such that the end of the vent tube receives gas from the vessel passing between individual jetstreams, which in combination form a conical shaped barrier to liquid droplets which would otherwise also pass to the vent tube and out the tank. Gas is thus vented through the central tube while pressurized liquid flows in an axially opposite direction in the annulus between the inner vent tube and the outer liquid tube. The system of the present invention is prarticularly well suited for venting gas from a tank being replenished with liquid at a zero or near zero gravity environment. A screen-type liquid acquisition device employing surface tension is provided for withdrawing substantially liquid from the tank. The withdrawn liquid may be resupplied to the liquid tube under pressure supplied by a circulating pump, thereby releasing substantially only gas from the storage tank to reduce the pressure in the tank.

  15. 33 CFR 157.15 - Slop tanks in tank vessels.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 2 2011-07-01 2011-07-01 false Slop tanks in tank vessels. 157... (CONTINUED) POLLUTION RULES FOR THE PROTECTION OF THE MARINE ENVIRONMENT RELATING TO TANK VESSELS CARRYING OIL IN BULK Design, Equipment, and Installation § 157.15 Slop tanks in tank vessels. (a) Number. A...

  16. 33 CFR 157.15 - Slop tanks in tank vessels.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 2 2013-07-01 2013-07-01 false Slop tanks in tank vessels. 157... (CONTINUED) POLLUTION RULES FOR THE PROTECTION OF THE MARINE ENVIRONMENT RELATING TO TANK VESSELS CARRYING OIL IN BULK Design, Equipment, and Installation § 157.15 Slop tanks in tank vessels. (a) Number. A...

  17. 33 CFR 157.15 - Slop tanks in tank vessels.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 2 2012-07-01 2012-07-01 false Slop tanks in tank vessels. 157... (CONTINUED) POLLUTION RULES FOR THE PROTECTION OF THE MARINE ENVIRONMENT RELATING TO TANK VESSELS CARRYING OIL IN BULK Design, Equipment, and Installation § 157.15 Slop tanks in tank vessels. (a) Number. A...

  18. 33 CFR 157.15 - Slop tanks in tank vessels.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 2 2014-07-01 2014-07-01 false Slop tanks in tank vessels. 157... (CONTINUED) POLLUTION RULES FOR THE PROTECTION OF THE MARINE ENVIRONMENT RELATING TO TANK VESSELS CARRYING OIL IN BULK Design, Equipment, and Installation § 157.15 Slop tanks in tank vessels. (a) Number. A...

  19. 4. TOPSIDE VIEW FROM UPPER DECK LOOKING DOWN INTO TANK ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. TOPSIDE VIEW FROM UPPER DECK LOOKING DOWN INTO TANK WITH SHUTTLE CARGO BAY MOCK-UP AT BOTTOM OF 40 FOOT TANK. - Marshall Space Flight Center, Neutral Buoyancy Simulator Facility, Rideout Road, Huntsville, Madison County, AL

  20. 5. TOPSIDE VIEW FROM UPPER DECK LOOKING DOWN INTO TANK ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. TOPSIDE VIEW FROM UPPER DECK LOOKING DOWN INTO TANK WITH SHUTTLE CARGO BAY MOCK-UP AT BOTTOM OF 40 FOOT TANK. - Marshall Space Flight Center, Neutral Buoyancy Simulator Facility, Rideout Road, Huntsville, Madison County, AL

  1. TankSIM: A Cryogenic Tank Performance Prediction Program

    NASA Technical Reports Server (NTRS)

    Bolshinskiy, L. G.; Hedayat, A.; Hastings, L. J.; Moder, J. P.; Schnell, A. R.; Sutherlin, S. G.

    2015-01-01

    Accurate prediction of the thermodynamic state of the cryogenic propellants in launch vehicle tanks is necessary for mission planning and successful execution. Cryogenic propellant storage and transfer in space environments requires that tank pressure be controlled. The pressure rise rate is determined by the complex interaction of external heat leak, fluid temperature stratification, and interfacial heat and mass transfer. If the required storage duration of a space mission is longer than the period in which the tank pressure reaches its allowable maximum, an appropriate pressure control method must be applied. Therefore, predictions of the pressurization rate and performance of pressure control techniques in cryogenic tanks are required for development of cryogenic fluid long-duration storage technology and planning of future space exploration missions. This paper describes an analytical tool, Tank System Integrated Model (TankSIM), which can be used for modeling pressure control and predicting the behavior of cryogenic propellant for long-term storage for future space missions. It is written in the FORTRAN 90 language and can be compiled with any Visual FORTRAN compiler. A thermodynamic vent system (TVS) is used to achieve tank pressure control. Utilizing TankSIM, the following processes can be modeled: tank self-pressurization, boiloff, ullage venting, and mixing. Details of the TankSIM program and comparisons of its predictions with test data for liquid hydrogen and liquid methane will be presented in the final paper.

  2. Zero-Boil-Off Tank (ZBOT) Experiment: Ground-Based Validation of Self-Pressurization and Pressure Control Two-Phase CFD Model

    NASA Technical Reports Server (NTRS)

    Kassemi, Mohammad; Hylton, Sonya; Kartuzova, Olga

    2017-01-01

    Integral to all phases of NASA's projected space and planetary expeditions is affordable and reliable cryogenic fluid storage for use in propellant or life support systems. Cryogen vaporization due to heat leaks into the tank from its surroundings and support structure can cause self-pressurization relieved through venting. This has led to a desire to develop innovative pressure control designs based on mixing of the bulk tank fluid together with some form of active or passive cooling to allow storage of the cryogenic fluid with zero or reduced boil-off. The Zero-Boil-Off Tank (ZBOT) Experiments are a series of small scale tank pressurization and pressure control experiments aboard the International Space Station (ISS) that use a transparent volatile simulant fluid in a transparent sealed tank to delineate various fundamental fluid flow, heat and mass transport, and phase change phenomena that control storage tank pressurization and pressure control in microgravity. The hardware for ZBOT-1 flew to ISS on the OA-7 flight in April 2017 and operations are planned to begin in September 2017, encompassing more than 90 tests. This paper presents preliminary results from ZBOT's ground-based research delineating both pressurization and pressure reduction trends in the sealed test tank. Tank self-pressurization tests are conducted under three modes: VJ heating, strip heating and simultaneous VJ and strip heating in attempt to simulate heat leaks from the environment, the support structure and both. The jet mixing pressure control studies are performed either from an elevated uniform temperature condition or from thermally stratified conditions following a self-pressurization run. Jet flow rates are varied from 2-25 cm/s spanning a range of jet Re number in laminar, transitional, and turbulent regimes and a range of Weber numbers covering no ullage penetration, partial penetration and complete ullage penetration and break-up (only in microgravity). Numerical prediction of a

  3. 27 CFR 24.229 - Tank car and tank truck requirements.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2014-04-01 2014-04-01 false Tank car and tank truck... BUREAU, DEPARTMENT OF THE TREASURY ALCOHOL WINE Spirits § 24.229 Tank car and tank truck requirements. Railroad tank cars and tank trucks used to transport spirits for use in wine production will be constructed...

  4. 27 CFR 24.229 - Tank car and tank truck requirements.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2012-04-01 2012-04-01 false Tank car and tank truck... BUREAU, DEPARTMENT OF THE TREASURY LIQUORS WINE Spirits § 24.229 Tank car and tank truck requirements. Railroad tank cars and tank trucks used to transport spirits for use in wine production will be constructed...

  5. 27 CFR 24.229 - Tank car and tank truck requirements.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Tank car and tank truck... BUREAU, DEPARTMENT OF THE TREASURY LIQUORS WINE Spirits § 24.229 Tank car and tank truck requirements. Railroad tank cars and tank trucks used to transport spirits for use in wine production will be constructed...

  6. 27 CFR 24.229 - Tank car and tank truck requirements.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2013-04-01 2013-04-01 false Tank car and tank truck... BUREAU, DEPARTMENT OF THE TREASURY ALCOHOL WINE Spirits § 24.229 Tank car and tank truck requirements. Railroad tank cars and tank trucks used to transport spirits for use in wine production will be constructed...

  7. 27 CFR 24.229 - Tank car and tank truck requirements.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2011-04-01 2011-04-01 false Tank car and tank truck... BUREAU, DEPARTMENT OF THE TREASURY LIQUORS WINE Spirits § 24.229 Tank car and tank truck requirements. Railroad tank cars and tank trucks used to transport spirits for use in wine production will be constructed...

  8. Experimental investigation on pressurization performance of cryogenic tank during high-temperature helium pressurization process

    NASA Astrophysics Data System (ADS)

    Lei, Wang; Yanzhong, Li; Yonghua, Jin; Yuan, Ma

    2015-03-01

    Sufficient knowledge of thermal performance and pressurization behaviors in cryogenic tanks during rocket launching period is of importance to the design and optimization of a pressurization system. In this paper, ground experiments with liquid oxygen (LO2) as the cryogenic propellant, high-temperature helium exceeding 600 K as the pressurant gas, and radial diffuser and anti-cone diffuser respectively at the tank inlet were performed. The pressurant gas requirements, axial and radial temperature distributions, and energy distributions inside the propellant tank were obtained and analyzed to evaluate the comprehensive performance of the pressurization system. It was found that the pressurization system with high-temperature helium as the pressurant gas could work well that the tank pressure was controlled within a specified range and a stable discharging liquid rate was achieved. For the radial diffuser case, the injected gas had a direct impact on the tank inner wall. The severe gas-wall heat transfer resulted in about 59% of the total input energy absorbed by the tank wall. For the pressurization case with anti-cone diffuser, the direct impact of high-temperature gas flowing toward the liquid surface resulted in a greater deal of energy transferred to the liquid propellant, and the percentage even reached up to 38%. Moreover, both of the two cases showed that the proportion of energy left in ullage to the total input energy was quite small, and the percentage was only about 22-24%. This may indicate that a more efficient diffuser should be developed to improve the pressurization effect. Generally, the present experimental results are beneficial to the design and optimization of the pressurization system with high-temperature gas supplying the pressurization effect.

  9. RECOMMENDATIONS FOR SAMPLING OF TANK 19 IN F TANK FARM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harris, S.; Shine, G.

    2009-12-14

    Representative sampling is required for characterization of the residual material in Tank 19 prior to operational closure. Tank 19 is a Type IV underground waste storage tank located in the F-Tank Farm. It is a cylindrical-shaped, carbon steel tank with a diameter of 85 feet, a height of 34.25 feet, and a working capacity of 1.3 million gallons. Tank 19 was placed in service in 1961 and initially received a small amount of low heat waste from Tank 17. It then served as an evaporator concentrate (saltcake) receiver from February 1962 to September 1976. Tank 19 also received the spentmore » zeolite ion exchange media from a cesium removal column that once operated in the Northeast riser of the tank to remove cesium from the evaporator overheads. Recent mechanical cleaning of the tank removed all mounds of material. Anticipating a low level of solids in the residual waste, Huff and Thaxton [2009] developed a plan to sample the waste during the final clean-up process while it would still be resident in sufficient quantities to support analytical determinations in four quadrants of the tank. Execution of the plan produced fewer solids than expected to support analytical determinations in all four quadrants. Huff and Thaxton [2009] then restructured the plan to characterize the residual separately in the North and the South regions: two 'hemispheres.' This document provides sampling recommendations to complete the characterization of the residual material on the tank bottom following the guidance in Huff and Thaxton [2009] to split the tank floor into a North and a South hemisphere. The number of samples is determined from a modification of the formula previously published in Edwards [2001] and the sample characterization data for previous sampling of Tank 19 described by Oji [2009]. The uncertainty is quantified by an upper 95% confidence limit (UCL95%) on each analyte's mean concentration in Tank 19. The procedure computes the uncertainty in analyte concentration as

  10. Using Drained Spacecraft Propellant Tanks for Habitation

    NASA Technical Reports Server (NTRS)

    Thomas, Andrew S. W.

    2009-01-01

    A document proposes that future spacecraft for planetary and space exploration be designed to enable reuse of drained propellant tanks for occupancy by humans. This proposal would enable utilization of volume and mass that would otherwise be unavailable and, in some cases, discarded. Such utilization could enable reductions in cost, initial launch mass, and number of launches needed to build up a habitable outpost in orbit about, or on the surface of, a planet or moon. According to the proposal, the large propellant tanks of a spacecraft would be configured to enable crews to gain access to their interiors. The spacecraft would incorporate hatchways, between a tank and the crew volume, that would remain sealed while the tank contained propellant and could be opened after the tank was purged by venting to outer space and then refilled with air. The interior of the tank would be pre-fitted with some habitation fixtures that were compatible with the propellant environment. Electrical feed-throughs, used originally for gauging propellants, could be reused to supply electric power to equipment installed in the newly occupied space. After a small amount of work, the tank would be ready for long-term use as a habitation module.

  11. Numerical Simulation of Liquids Draining From a Tank Using OpenFOAM

    NASA Astrophysics Data System (ADS)

    Sakri, Fadhilah Mohd; Sukri Mat Ali, Mohamed; Zaki Shaikh Salim, Sheikh Ahmad; Muhamad, Sallehuddin

    2017-08-01

    Accurate simulation of liquids draining is a challenging task. It involves two phases flow, i.e. liquid and air. In this study draining a liquid from a cylindrical tank is numerically simulated using OpenFOAM. OpenFOAM is an open source CFD package and it becomes increasingly popular among the academician and also industries. Comparisons with theoretical and results from previous published data confirmed that OpenFOAM is able to simulate the liquids draining very well. This is done using the gas-liquid interface solver available in the standard library of OpenFOAM. Additionally, this study was also able to explain the physics flow of the draining tank.

  12. Computational Fluid Dynamics (CFD) Simulations of Jet Mixing in Tanks of Different Scales

    NASA Technical Reports Server (NTRS)

    Breisacher, Kevin; Moder, Jeffrey

    2010-01-01

    For long-duration in-space storage of cryogenic propellants, an axial jet mixer is one concept for controlling tank pressure and reducing thermal stratification. Extensive ground-test data from the 1960s to the present exist for tank diameters of 10 ft or less. The design of axial jet mixers for tanks on the order of 30 ft diameter, such as those planned for the Ares V Earth Departure Stage (EDS) LH2 tank, will require scaling of available experimental data from much smaller tanks, as well designing for microgravity effects. This study will assess the ability for Computational Fluid Dynamics (CFD) to handle a change of scale of this magnitude by performing simulations of existing ground-based axial jet mixing experiments at two tank sizes differing by a factor of ten. Simulations of several axial jet configurations for an Ares V scale EDS LH2 tank during low Earth orbit (LEO) coast are evaluated and selected results are also presented. Data from jet mixing experiments performed in the 1960s by General Dynamics with water at two tank sizes (1 and 10 ft diameter) are used to evaluate CFD accuracy. Jet nozzle diameters ranged from 0.032 to 0.25 in. for the 1 ft diameter tank experiments and from 0.625 to 0.875 in. for the 10 ft diameter tank experiments. Thermally stratified layers were created in both tanks prior to turning on the jet mixer. Jet mixer efficiency was determined by monitoring the temperatures on thermocouple rakes in the tanks to time when the stratified layer was mixed out. Dye was frequently injected into the stratified tank and its penetration recorded. There were no velocities or turbulence quantities available in the experimental data. A commercially available, time accurate, multi-dimensional CFD code with free surface tracking (FLOW-3D from Flow Science, Inc.) is used for the simulations presented. Comparisons are made between computed temperatures at various axial locations in the tank at different times and those observed experimentally. The

  13. Numerical Modeling of Propellant Boil-Off in a Cryogenic Storage Tank

    NASA Technical Reports Server (NTRS)

    Majumdar, A. K.; Steadman, T. E.; Maroney, J. L.; Sass, J. P.; Fesmire, J. E.

    2007-01-01

    A numerical model to predict boil-off of stored propellant in large spherical cryogenic tanks has been developed. Accurate prediction of tank boil-off rates for different thermal insulation systems was the goal of this collaboration effort. The Generalized Fluid System Simulation Program, integrating flow analysis and conjugate heat transfer for solving complex fluid system problems, was used to create the model. Calculation of tank boil-off rate requires simultaneous simulation of heat transfer processes among liquid propellant, vapor ullage space, and tank structure. The reference tank for the boil-off model was the 850,000 gallon liquid hydrogen tank at Launch Complex 39B (LC- 39B) at Kennedy Space Center, which is under study for future infrastructure improvements to support the Constellation program. The methodology employed in the numerical model was validated using a sub-scale model and tank. Experimental test data from a 1/15th scale version of the LC-39B tank using both liquid hydrogen and liquid nitrogen were used to anchor the analytical predictions of the sub-scale model. Favorable correlations between sub-scale model and experimental test data have provided confidence in full-scale tank boil-off predictions. These methods are now being used in the preliminary design for other cases including future launch vehicles

  14. 49 CFR 180.519 - Periodic retest and inspection of tank cars other than single-unit tank car tanks.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Periodic retest and inspection of tank cars other than single-unit tank car tanks. 180.519 Section 180.519 Transportation Other Regulations Relating to... of Tank Cars § 180.519 Periodic retest and inspection of tank cars other than single-unit tank car...

  15. Spinning Up Interest: Classroom Demonstrations of Rotating Fluid Dynamics

    NASA Astrophysics Data System (ADS)

    Aurnou, J.

    2005-12-01

    The complex relationship between rotation and its effect on fluid motions presents some of the most difficult and vexing concepts for both undergraduate and graduate level students to learn. We have found that student comprehension is greatly increased by the presentation of in-class fluid mechanics experiments. A relatively inexpensive experimental set-up consists of the following components: a record player, a wireless camera placed in the rotating frame, a tank of fluid, and food coloring. At my poster, I will use this set-up to carry out demonstrations that illustrate the Taylor-Proudman theorem, flow within the Ekman layer, columnar convection, and flow around high and low pressure centers. By sending the output of the wireless camera through an LCD projection system, such demonstrations can be carried out even for classes in large lecture halls.

  16. Simulation of Hanford Tank 241-C-106 Waste Release into Tank 241-Y-102

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    KP Recknagle; Y Onishi

    Waste stored in Hdord single-shell Tank 241-C-106 will be sluiced with a supernatant liquid from doubIe-shell Tank 241 -AY- 102 (AY-1 02) at the U.S. Department of Energy's Har@ord Site in Eastern Washington. The resulting slurry, containing up to 30 wtYo solids, will then be transferred to Tank AY-102. During the sluicing process, it is important to know the mass of the solids being transferred into AY- 102. One of the primary instruments used to measure solids transfer is an E+ densitometer located near the periphery of the tank at riser 15S. This study was undert.dcen to assess how wellmore » a densitometer measurement could represent the total mass of soiids transferred if a uniform lateral distribution was assumed. The study evaluated the C-1 06 slurry mixing and accumulation in Tank AY- 102 for the following five cases: Case 1: 3 wt'%0 slurry in 6.4-m AY-102 waste Case 2: 3 w-t% slurry in 4.3-m AY-102 waste Case 3: 30 wtYo slurry in 6.4-m AY-102 waste Case 4: 30 wt% slurry in 4.3-m AY-102 waste Case 5: 30 wt% slurry in 5. O-m AY-102 waste. The tirne-dependent, three-dimensional, TEMPEST computer code was used to simulate solid deposition and accumulation during the injection of the C-106 slurry into AY-102 through four injection nozzles. The TEMPEST computer code was applied previously to other Hanford tanks, AP-102, SY-102, AZ-101, SY-101, AY-102, and C-106, to model tank waste mixing with rotating pump jets, gas rollover events, waste transfer from one tank to another, and pump-out retrieval of the sluiced waste. The model results indicate that the solid depth accumulated at the densitometer is within 5% of the average depth accumulation. Thus the reading of the densitometer is expected to represent the total mass of the transferred solids reasonably well.« less

  17. Continuous monitoring of Mount St. Helens Volcano

    USGS Publications Warehouse

    Spall, H.

    1980-01-01

    Day by day monitoring of the Mount St. Helens Volcano. These are four scenarios, very different scenarios, that can occur in a average week at Mount St. Helens. Ranging from eruptions of gas and to steam to eruptions of ash and pyroclastic flows to even calm days. This example of monitoring illustrates the differences from day to day volcanic activities at Mount St. Helens. 

  18. Erosion by flowing lava: Geochemical evidence in the Cave Basalt, Mount St. Helens, Washington

    USGS Publications Warehouse

    Williams, D.A.; Kadel, S.D.; Greeley, R.; Lesher, C.M.; Clynne, M.A.

    2004-01-01

    We sampled basaltic lava flows and underlying dacitic tuff deposits in or near lava tubes of the Cave Basalt, Mount St. Helens, Washington to determine whether the Cave Basalt lavas contain geochemical evidence of substrate contamination by lava erosion. The samples were analyzed using a combination of wavelength-dispersive X-ray fluorescence spectrometry and inductively-coupled plasma mass spectrometry. The results indicate that the oldest, outer lava tube linings in direct contact with the dacitic substrate are contaminated, whereas the younger, inner lava tube linings are uncontaminated and apparently either more evolved or enriched in residual liquid. The most heavily contaminated lavas occur closer to the vent and in steeper parts of the tube system, and the amount of contamination decreases with increasing distance downstream. These results suggest that erosion by lava and contamination were limited to only the initially emplaced flows and that erosion was localized and enhanced by vigorous laminar flow over steeper slopes. After cooling, the initial Cave Basalt lava flows formed an insulating lining within the tubes that prevented further erosion by later flows. This interpretation is consistent with models of lava erosion that predict higher erosion rates closer to sources and over steeper slopes. A greater abundance of xenoliths and xenocrysts relative to xenomelts in hand samples indicates that mechanical erosion rather than thermal erosion was the dominant erosional process in the Cave Basalt, but further sampling and petrographic analyses must be performed to verify this hypothesis. ?? Springer-Verlag 2003.

  19. Aircraft-Fuel-Tank Design for Liquid Hydrogen

    NASA Technical Reports Server (NTRS)

    Reynolds, T W

    1955-01-01

    Some of the considerations involved in the design of aircraft fuel tanks for liquid hydrogen are discussed herein. Several of the physical properties of metals and thermal insulators in the temperature range from ambient to liquid-hydrogen temperatures are assembled. Calculations based on these properties indicate that it is possible to build a large-size liquid-hydrogen fuel tank which (1) will weigh less then 15 percent of the fuel weight, (2) will have a hydrogen vaporization rate less than 30 percent of the cruise fuel-flow rate, and (3) can be held in a stand-by condition and readied for flight in a short time.

  20. Developing NDE Techniques for Large Cryogenic Tanks - Year 2 Report

    NASA Technical Reports Server (NTRS)

    Arens, Ellen; youngquist, Robert; McFall, Judith; Simmons, Stephen

    2010-01-01

    The Shuttle Program requires very large cryogenic ground storage tanks in which to store liquid oxygen and hydrogen. The existing Launch Complex-39 Pad tanks, which will be passed onto future launch programs, are over 40 years old and have received minimal refurbishment and only external inspections over the years. The majority of the structure is inaccessible without a full system drain of cryogenic liquid and insulation in the annular region. It was previously thought that there was a limit to the number of temperature cycles that the tanks could handle due to possible insulation compaction before undergoing a costly and time consuming complete overhaul; therefore the tanks were not drained and performance issues with these tanks, specifically the Pad B LH2 tank, were accepted. There is a need and an opportunity, as the Shuttle program ends and work to upgrade the launch pad progresses, to develop innovative non-destructive evaluation (NDE) techniques to analyze the current tanks. Techniques are desired that can aid in determining the extent of refurbishment required to keep the tanks in service for another 20+ years. A non-destructive technique would also be a significant aid in acceptance testing of new and refurbished tanks, saving significant time and money, if corrective actions can be taken before cryogen is introduced to the systems. Year one of this project concentrated on analysis of the current tanks located at LC-39 while cryogen was present. Year two of this project concentrated on analysis of detectable thermal variations on the outer surface of the tanks as the cryogen was drained and the inner vessel warmed to ambient conditions. Two techniques have been deployed in the field to monitor the tank. The first consisted of a displacement sensor to monitor for any expansions at the base of the tank during warm-up that could indicate a compaction issue with the insulation. The second technique was continued thermal monitoring of the tank through and

  1. REMOVAL OF TANK AND SEWER SEDIMENT BY GATE FLUSHING: COMPUTATIONAL FLUID DYNAMICS MODEL STUDIES

    EPA Science Inventory

    This presentation will discuss the application of a computational fluid dynamics 3D flow model to simulate gate flushing for removing tank/sewer sediments. The physical model of the flushing device was a tank fabricated and installed at the head-end of a hydraulic flume. The fl...

  2. Numerical simulation of the hydrodynamics within octagonal tanks in recirculating aquaculture systems

    NASA Astrophysics Data System (ADS)

    Liu, Yao; Liu, Baoliang; Lei, Jilin; Guan, Changtao; Huang, Bin

    2017-07-01

    A three-dimensional numerical model was established to simulate the hydrodynamics within an octagonal tank of a recirculating aquaculture system. The realizable k- ɛ turbulence model was applied to describe the flow, the discrete phase model (DPM) was applied to generate particle trajectories, and the governing equations are solved using the finite volume method. To validate this model, the numerical results were compared with data obtained from a full-scale physical model. The results show that: (1) the realizable k- ɛ model applied for turbulence modeling describes well the flow pattern in octagonal tanks, giving an average relative error of velocities between simulated and measured values of 18% from contour maps of velocity magnitudes; (2) the DPM was applied to obtain particle trajectories and to simulate the rate of particle removal from the tank. The average relative error of the removal rates between simulated and measured values was 11%. The DPM can be used to assess the self-cleaning capability of an octagonal tank; (3) a comprehensive account of the hydrodynamics within an octagonal tank can be assessed from simulations. The velocity distribution was uniform with an average velocity of 15 cm/s; the velocity reached 0.8 m/s near the inlet pipe, which can result in energy losses and cause wall abrasion; the velocity in tank corners was more than 15 cm/s, which suggests good water mixing, and there was no particle sedimentation. The percentage of particle removal for octagonal tanks was 90% with the exception of a little accumulation of ≤ 5 mm particle in the area between the inlet pipe and the wall. This study demonstrated a consistent numerical model of the hydrodynamics within octagonal tanks that can be further used in their design and optimization as well as promote the wide use of computational fluid dynamics in aquaculture engineering.

  3. Space Shuttle Upgrade Liquid Oxygen Tank Thermal Stratification

    NASA Technical Reports Server (NTRS)

    Tunc, Gokturk; Wagner, Howard; Bayazitoglu, Yildiz

    2001-01-01

    In 1997, NASA initiated a study of a liquid oxygen and ethanol orbital maneuvering and reaction control system for space shuttle upgrades as well as other reusable launch vehicle applications. The pressure-fed system uses sub-cooled liquid oxygen at 2413.2 KPa (350 psia) stored passively using insulation. Thermal stratification builds up while the space shuttle is docked at the international space station. The venting from the space shuttle's liquid oxygen tank is not desired during this 96-hr time period. Once the shuttle undocks from the space station there could be a pressure collapse in the liquid oxygen tank caused by fluid mixing due to the thruster fU"ings . The thermal stratification and resulting pressure rise in the tank were examined by a computational fluid dynamic model. Since the heat transfer from the pressurant gas to the liquid will result in a decrease in tank pressure the final pressure after the 96 hours will be significantly less when the tank is pressurized with ambient temperature helium. Therefore, using helium at ambient temperature to pressurize the tank is preferred to pressurizing the tank with helium at the liquid oxygen temperature. The higher helium temperature will also result in less mass of helium to pressurize the tank.

  4. Liquid oxygen sloshing in Space Shuttle External Tank

    NASA Technical Reports Server (NTRS)

    Kannapel, M. D.; Przekwas, A. J.; Singhal, A. K.; Costes, N. C.

    1987-01-01

    This paper describes a numerical simulation of the hydrodynamics within the liquid oxygen tank of the Space Shuttle External Tank during liftoff. Before liftoff, the tank is filled with liquid oxygen (LOX) to approximately 97 percent with the other 3 percent containing gaseous oxygen (GOX) and helium. During liftoff, LOX is drained from the bottom of the tank, and GOX is pumped into the tank's ullage volume. There is a delay of several seconds before the GOX reaches the tank which causes the ullage pressure to decrease for several seconds after liftoff; this pressure 'slump' is a common phenomenon in rocket propulsion. When four slosh baffles were removed from the tank, the ullage gas pressure dropped more rapidly than in all previous flights. The purpose of this analysis was to determine whether the removal of the baffles could have caused the increased pressure 'slump' by changing the LOX surface dynamics. The results show that the LOX surface undergoes very high vertical accelerations (up to 5 g) and, therefore, splashing almost certainly occurs. The number of baffles does not affect the surface if the structural motion is assumed; but, the number of baffles may affect the structural motion of the tank.

  5. Developing a model for moisture in saltcake waste tanks: Progress report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Simmons, C.S.; Aimo, N.; Fayer, M.J.

    1997-07-01

    This report describes a modeling effort to provide a computer simulation capability for estimating the distribution and movement of moisture in the saltcake-type waste contained in Hanford`s single-shell radioactive waste storage tanks. This moisture model goes beyond an earlier version because it describes water vapor movement as well as the interstitial liquid held in a saltcake waste. The work was performed by Pacific Northwest National Laboratory to assist Duke Engineering and Services Hanford with the Organic Tank Safety Program. The Organic Tank Safety Program is concerned whether saltcake waste, when stabilized by jet pumping, will retain sufficient moisture near themore » surface to preclude any possibility of an accidental ignition and propagation of burning. The nitrate/nitrite saltcake, which might also potentially include combustible organic chemicals might not always retain enough moisture near the surface to preclude any such accident. Draining liquid from a tank by pumping, coupled with moisture evaporating into a tank`s head space, may cause a dry waste surface that is not inherently safe. The moisture model was devised to help examine this safety question. The model accounts for water being continually cycled by evaporation into the head space and returned to the waste by condensation or partly lost through venting to the external atmosphere. Water evaporation occurs even in a closed tank, because it is driven by the transfer to the outside of the heat load generated by radioactivity within the waste. How dry a waste may become over time depends on the particular hydraulic properties of a saltcake, and the model uses those properties to describe the capillary flow of interstitial liquid as well as the water vapor flow caused by thermal differences within the porous waste.« less

  6. CFD simulation of an unbaffled stirred tank reactor driven by a magnetic rod: assessment of turbulence models.

    PubMed

    Li, Jiajia; Deng, Baoqing; Zhang, Bing; Shen, Xiuzhong; Kim, Chang Nyung

    2015-01-01

    A simulation of an unbaffled stirred tank reactor driven by a magnetic stirring rod was carried out in a moving reference frame. The free surface of unbaffled stirred tank was captured by Euler-Euler model coupled with the volume of fluid (VOF) method. The re-normalization group (RNG) k-ɛ model, large eddy simulation (LES) model and detached eddy simulation (DES) model were evaluated for simulating the flow field in the stirred tank. All turbulence models can reproduce the tangential velocity in an unbaffled stirred tank with a rotational speed of 150 rpm, 250 rpm and 400 rpm, respectively. Radial velocity is underpredicted by the three models. LES model and RNG k-ɛ model predict the better tangential velocity and axial velocity, respectively. RNG k-ɛ model is recommended for the simulation of the flow in an unbaffled stirred tank with magnetic rod due to its computational effort.

  7. Chaotic characteristics enhanced by impeller of perturbed six-bent-bladed turbine in stirred tank

    NASA Astrophysics Data System (ADS)

    Luan, Deyu; Zhang, Shengfeng; Lu, Jianping; Zhang, Xiaoguang

    The fundamental way of improving the mixing efficiency is to induce the chaotic flow in a stirred vessel. The impeller form plays an important role for changing the structure of flow field and realizing chaotic mixing. Based on the velocity time series acquired by the experiment of particle image velocimetry (PIV), with the software Matlab, the macro-instability (MI), largest Lyapunov exponent (LLE), and Kolmogorov entropy in the water stirred tank is investigated respectively with the impeller of perturbed six-bent-bladed turbine (6PBT). The results show that the MI characteristics are obvious and two peak values of MI frequency are observed at the speed N = 60 rpm. With the increasing speed (more than 100 rpm), the peak characteristics of MI frequency disappear and a multi-scale wavelet structure of characterizing the chaotic flow field appears. Moreover, under the speed N = 60 rpm, the LLE is less than 0 and Kolmogorov entropy is 0, which means that the flow field is in the periodic moving state. As the speed is increased to more than 100 rpm, the LLE and Kolmogorov entropy are all more than 0, which indicates that the flow field goes into the chaotic mixing. When the speed reaches up to about 210 rpm, both of the LLE and Kolmogorov entropy achieve the optimum values, which will result in an excellent chaos with the highest mixing efficient. So it is feasible that the MI frequency, the LLE and the Kolmogorov entropy can be used to analyze the flow field characteristics in a stirred tank. The research results promote the understanding of the chaotic mixing mechanism and provide a theoretical reference for the development of new type impeller.

  8. Sediment morpho-dynamics induced by a swirl-flow: an experimental study

    NASA Astrophysics Data System (ADS)

    Gonzalez-Vera, Alfredo; Duran-Matute, Matias; van Heijst, Gertjan

    2016-11-01

    This research focuses on a detailed experimental study of the effect of a swirl-flow over a sediment bed in a cylindrical domain. Experiments were performed in a water-filled cylindrical rotating tank with a bottom layer of translucent polystyrene particles acting as a sediment bed. The experiments started by slowly spinning the tank up until the fluid had reached a solid-body rotation at a selected rotation speed (Ωi). Once this state was reached, a swirl-flow was generated by spinning-down the system to a lower rotation rate (Ωf). Under the flow's influence, particles from the bed were displaced, which changed the bed morphology, and under certain conditions, pattern formation was observed. Changes in the bed height distribution were measured by utilizing a Light Attenuation Technique (LAT). For this purpose, the particle layer was illuminated from below. Images of the transmitted light distribution provided quantitative information about the local thickness of the sediment bed. The experiments revealed a few characteristic regimes corresponding to sediment displacement, pattern formation and the occurrence of particle pick-up. Such regimes depend on both the Reynolds (Re) and Rossby (Ro) numbers. This research is funded by CONACYT (Mexico) through the Ph.D. Grant (383903) and NWO (the Netherlands) through the VENI Grant (863.13.022).

  9. Single bi-temperature thermal storage tank for application in solar thermal plant

    DOEpatents

    Litwin, Robert Zachary; Wait, David; Lancet, Robert T.

    2017-05-23

    Thermocline storage tanks for solar power systems are disclosed. A thermocline region is provided between hot and cold storage regions of a fluid within the storage tank cavity. One example storage tank includes spaced apart baffles fixed relative to the tank and arranged within the thermocline region to substantially physically separate the cavity into hot and cold storage regions. In another example, a flexible baffle separated the hot and cold storage regions and deflects as the thermocline region shifts to accommodate changing hot and cold volumes. In yet another example, a controller is configured to move a baffle within the thermocline region in response to flow rates from hot and cold pumps, which are used to pump the fluid.

  10. Think Tanks

    NASA Technical Reports Server (NTRS)

    2001-01-01

    A new inspection robot from Solex Robotics Systems was designed to eliminate hazardous inspections of petroleum and chemical storage tanks. The submersible robot, named Maverick, is used to inspect the bottoms of tanks, keeping the tanks operational during inspection. Maverick is able to provide services that will make manual tank inspections obsolete. While the inspection is conducted, Maverick's remote human operators remain safe outside of the tank. The risk to human health and life is now virtually eliminated. The risk to the environment is also minimal because there is a reduced chance of spillage from emptying and cleaning the tanks, where previously, tons of pollutants were released through the process of draining and refilling.

  11. Ventless pressure control of two-phase propellant tanks in microgravity.

    PubMed

    Kassemi, Mohammad; Panzarella, Charles H

    2004-11-01

    This work studies pressurization and pressure control of a large liquid hydrogen storage tank. A finite element model is developed that couples a lumped thermodynamic formulation for the vapor region with a complete solution of the Navier-Stokes and energy equations for the flow and temperature fields in the liquid. Numerical results show that buoyancy effects are strong, even in microgravity, and can reposition a vapor bubble that is initially at the center of the tank to a region near the tank wall in a relatively short time. Long-term tank pressurization with the vapor bubble at the tank wall shows that after an initial transient lasting about a week, the final rate of pressure increase agrees with a purely thermodynamic analysis of the entire tank. However, the final pressure levels are quite different from thermodynamic predictions. Numerical results also show that there is significant thermal stratification in the liquid due to the effects of natural convection. A subcooled jet is used to provide simultaneous cooling and mixing in order to bring the tank pressure back down to its initial value. Three different jet speeds are examined. Although the lowest jet speed is ineffective at controlling the pressure because of insufficient penetration into the liquid region, the highest jet speed is shown to be quite effective at disrupting thermal stratification and reducing the tank pressure in reasonable time.

  12. Ventless pressure control of two-phase propellant tanks in microgravity

    NASA Technical Reports Server (NTRS)

    Kassemi, Mohammad; Panzarella, Charles H.

    2004-01-01

    This work studies pressurization and pressure control of a large liquid hydrogen storage tank. A finite element model is developed that couples a lumped thermodynamic formulation for the vapor region with a complete solution of the Navier-Stokes and energy equations for the flow and temperature fields in the liquid. Numerical results show that buoyancy effects are strong, even in microgravity, and can reposition a vapor bubble that is initially at the center of the tank to a region near the tank wall in a relatively short time. Long-term tank pressurization with the vapor bubble at the tank wall shows that after an initial transient lasting about a week, the final rate of pressure increase agrees with a purely thermodynamic analysis of the entire tank. However, the final pressure levels are quite different from thermodynamic predictions. Numerical results also show that there is significant thermal stratification in the liquid due to the effects of natural convection. A subcooled jet is used to provide simultaneous cooling and mixing in order to bring the tank pressure back down to its initial value. Three different jet speeds are examined. Although the lowest jet speed is ineffective at controlling the pressure because of insufficient penetration into the liquid region, the highest jet speed is shown to be quite effective at disrupting thermal stratification and reducing the tank pressure in reasonable time.

  13. Dual Tank Fuel System

    DOEpatents

    Wagner, Richard William; Burkhard, James Frank; Dauer, Kenneth John

    1999-11-16

    A dual tank fuel system has primary and secondary fuel tanks, with the primary tank including a filler pipe to receive fuel and a discharge line to deliver fuel to an engine, and with a balance pipe interconnecting the primary tank and the secondary tank. The balance pipe opens close to the bottom of each tank to direct fuel from the primary tank to the secondary tank as the primary tank is filled, and to direct fuel from the secondary tank to the primary tank as fuel is discharged from the primary tank through the discharge line. A vent line has branches connected to each tank to direct fuel vapor from the tanks as the tanks are filled, and to admit air to the tanks as fuel is delivered to the engine.

  14. Cooperative water-resources monitoring in the St. Clair River/Lake St. Clair Basin, Michigan

    USGS Publications Warehouse

    Rheaume, Stephen J.; Neff, Brian P.; Blumer, Stephen P.

    2007-01-01

    As part of the Lake St. Clair Regional Monitoring Project, this report describes numerous cooperative water-resources monitoring efforts conducted in the St. Clair River/Lake St. Clair Basin over the last 100 years. Cooperative monitoring is a tool used to observe and record changes in water quantity and quality over time. This report describes cooperative efforts for monitoring streamflows and flood magnitudes, past and present water-quality conditions, significant human-health threats, and flow-regime changes that are the result of changing land use. Water-resources monitoring is a long-term effort that can be made cost-effective by leveraging funds, sharing data, and avoiding duplication of effort. Without long-term cooperative monitoring, future water-resources managers and planners may find it difficult to establish and maintain public supply, recreational, ecological, and esthetic water-quality goals for the St. Clair River/Lake St. Clair Basin.

  15. Inclusion of tank configurations as a variable in the cost optimization of branched piped-water networks

    NASA Astrophysics Data System (ADS)

    Hooda, Nikhil; Damani, Om

    2017-06-01

    The classic problem of the capital cost optimization of branched piped networks consists of choosing pipe diameters for each pipe in the network from a discrete set of commercially available pipe diameters. Each pipe in the network can consist of multiple segments of differing diameters. Water networks also consist of intermediate tanks that act as buffers between incoming flow from the primary source and the outgoing flow to the demand nodes. The network from the primary source to the tanks is called the primary network, and the network from the tanks to the demand nodes is called the secondary network. During the design stage, the primary and secondary networks are optimized separately, with the tanks acting as demand nodes for the primary network. Typically the choice of tank locations, their elevations, and the set of demand nodes to be served by different tanks is manually made in an ad hoc fashion before any optimization is done. It is desirable therefore to include this tank configuration choice in the cost optimization process itself. In this work, we explain why the choice of tank configuration is important to the design of a network and describe an integer linear program model that integrates the tank configuration to the standard pipe diameter selection problem. In order to aid the designers of piped-water networks, the improved cost optimization formulation is incorporated into our existing network design system called JalTantra.

  16. CFD analysis of aircraft fuel tanks thermal behaviour

    NASA Astrophysics Data System (ADS)

    Zilio, C.; Longo, G. A.; Pernigotto, G.; Chiacchio, F.; Borrelli, P.; D'Errico, E.

    2017-11-01

    This work is carried out within the FP7 European research project TOICA (Thermal Overall Integrated Conception of Aircraft, http://www.toica-fp7.eu/). One of the tasks foreseen for the TOICA project is the analysis of fuel tanks as possible heat sinks for future aircrafts. In particular, in the present paper, commercial regional aircraft is considered as case study and CFD analysis with the commercial code STAR-CCM+ is performed in order to identify the potential capability to use fuel stored in the tanks as a heat sink for waste heat dissipated by other systems. The complex physical phenomena that characterize the heat transfer inside liquid fuel, at the fuel-ullage interface and inside the ullage are outlined. Boundary conditions, including the effect of different ground and flight conditions, are implemented in the numerical simulation approach. The analysis is implemented for a portion of aluminium wing fuel tank, including the leading edge effects. Effect of liquid fuel transfer among different tank compartments and the air flow in the ullage is included. According to Fuel Tank Flammability Assessment Method (FTFAM) proposed by the Federal Aviation Administration, the results are exploited in terms of exponential time constants and fuel temperature difference to the ambient for the different cases investigated.

  17. 33 CFR 157.15 - Slop tanks in tank vessels.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... tank. (2) A new vessel of 70,000 tons DWT or more must have at least two slop tanks. (b) Capacity. Slop tanks must have the total capacity to retain oily mixtures from cargo tank washings, oil residue, and ballast water containing an oily mixture of 3 percent or more of the oil carrying capacity. Two percent...

  18. Detection and delineation of underground septic tanks in sandy terrain using ground penetrating radar

    NASA Astrophysics Data System (ADS)

    Omolaiye, Gabriel Efomeh; Ayolabi, Elijah A.

    2010-09-01

    A ground penetrating radar (GPR) survey was conducted on the Lekki Peninsula, Lagos State, Nigeria. The primary target of the survey was the delineation of underground septic tanks (ST). A total of four GPR profiles were acquired on the survey site using Ramac X3M GPR equipment with a 250MHz antenna, chosen based on the depth of interest and resolution. An interpretable depth of penetration of 4.5m below the surface was achieved after processing. The method accurately delineated five underground ST. The tops of the ST were easily identified on the radargram based on the strong-amplitude anomalies, the length and the depths to the base of the ST were estimated with 99 and 73 percent confidence respectively. The continuous vertical profiles provide uninterrupted subsurface data along the lines of traverse, while the non-intrusive nature makes it an ideal tool for the accurate mapping and delineation of underground utilities.

  19. 46 CFR 154.1831 - Persons in charge of transferring liquid cargo in bulk or preparing cargo tanks.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... in bulk or a cool-down, warm-up, gas-free, or air-out of each cargo tank; (2) Each transfer of liquid cargo in bulk, and each cool-down, warm-up, gas-free, or air-out of a cargo tank, is supervised by a... in bulk or a cool-down, warm-up, gas-free, or air-out of a cargo tank possesses the qualifications...

  20. 46 CFR 154.1831 - Persons in charge of transferring liquid cargo in bulk or preparing cargo tanks.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... in bulk or a cool-down, warm-up, gas-free, or air-out of each cargo tank; (2) Each transfer of liquid cargo in bulk, and each cool-down, warm-up, gas-free, or air-out of a cargo tank, is supervised by a... in bulk or a cool-down, warm-up, gas-free, or air-out of a cargo tank possesses the qualifications...

  1. 46 CFR 154.1831 - Persons in charge of transferring liquid cargo in bulk or preparing cargo tanks.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... in bulk or a cool-down, warm-up, gas-free, or air-out of each cargo tank; (2) Each transfer of liquid cargo in bulk, and each cool-down, warm-up, gas-free, or air-out of a cargo tank, is supervised by a... in bulk or a cool-down, warm-up, gas-free, or air-out of a cargo tank possesses the qualifications...

  2. 46 CFR 154.1831 - Persons in charge of transferring liquid cargo in bulk or preparing cargo tanks.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... in bulk or a cool-down, warm-up, gas-free, or air-out of each cargo tank; (2) Each transfer of liquid cargo in bulk, and each cool-down, warm-up, gas-free, or air-out of a cargo tank, is supervised by a... in bulk or a cool-down, warm-up, gas-free, or air-out of a cargo tank possesses the qualifications...

  3. Tank System Integrated Model: A Cryogenic Tank Performance Prediction Program

    NASA Technical Reports Server (NTRS)

    Bolshinskiy, L. G.; Hedayat, A.; Hastings, L. J.; Sutherlin, S. G.; Schnell, A. R.; Moder, J. P.

    2017-01-01

    Accurate predictions of the thermodynamic state of the cryogenic propellants, pressurization rate, and performance of pressure control techniques in cryogenic tanks are required for development of cryogenic fluid long-duration storage technology and planning for future space exploration missions. This Technical Memorandum (TM) presents the analytical tool, Tank System Integrated Model (TankSIM), which can be used for modeling pressure control and predicting the behavior of cryogenic propellant for long-term storage for future space missions. Utilizing TankSIM, the following processes can be modeled: tank self-pressurization, boiloff, ullage venting, mixing, and condensation on the tank wall. This TM also includes comparisons of TankSIM program predictions with the test data andexamples of multiphase mission calculations.

  4. Effect of soil fortified by polyurethane foam on septic tank effluent treatment.

    PubMed

    Nie, J Y; Zhu, N W; Lin, K M; Song, F Y

    2011-01-01

    Fortified soil was made up of a mixture at a mass ratio 4/1000-6/1000 of sponge and natural soil according to the results of column experiment. The fortified soil had bigger porosity and higher hydraulic conductivity than the natural soil. The columns packed with 900 mm of the fortified soil endured a flow rate equivalent to 100 L/m(2)/d of septic tank effluent and the average chemical oxygen demand, nitrogen, and phosphorus removal rates were around 92%, 75% and 96%, respectively. After 100 weeks of operation, the saturated hydraulic conductivity of the fortified soil kept higher than 0.2 m/d. The bigger porosity of sponge improved the effective porosity, and the bigger specific surface area of sponge acted as an ideal support for biomat growth and ensured the sewage treatment performance of the fortified soil. The comparable performance was due to a similar and sufficient degree of soil clogging genesis coupled with bioprocesses that effectively purified the septic tank effluent given the adequate retention times.

  5. Reduced nutrient pollution in a rural stream following septic tank upgrade and installation of runoff retention measures.

    PubMed

    Ockenden, M C; Quinton, J N; Favaretto, N; Deasy, C; Surridge, B

    2014-07-01

    Surface water quality in the UK and much of Western Europe has improved in recent decades, in response to better point source controls and the regulation of fertilizer, manure and slurry use. However, diffuse sources of pollution, such as leaching or runoff of nutrients from agricultural fields, and micro-point sources including farmyards, manure heaps and septic tank sewerage systems, particularly systems without soil adsorption beds, are now hypothesised to contribute a significant proportion of the nutrients delivered to surface watercourses. Tackling such sources in an integrated manner is vital, if improvements in freshwater quality are to continue. In this research, we consider the combined effect of constructing small field wetlands and improving a septic tank system on stream water quality within an agricultural catchment in Cumbria, UK. Water quality in the ditch-wetland system was monitored by manual sampling at fortnightly intervals (April-October 2011 and February-October 2012), with the septic tank improvement taking place in February 2012. Reductions in nutrient concentrations were observed through the catchment, by up to 60% when considering total phosphorus (TP) entering and leaving a wetland with a long residence time. Average fluxes of TP, soluble reactive phosphorus (SRP) and ammonium-N (NH4-N) at the head of the ditch system in 2011 (before septic tank improvement) compared to 2012 (after septic tank improvement) were reduced by 28%, 9% and 37% respectively. However, TP concentration data continue to show a clear dilution with increasing flow, indicating that the system remained point source dominated even after the septic tank improvement.

  6. 49 CFR 179.400 - General specification applicable to cryogenic liquid tank car tanks.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... liquid tank car tanks. 179.400 Section 179.400 Transportation Other Regulations Relating to... MATERIALS REGULATIONS SPECIFICATIONS FOR TANK CARS Specification for Cryogenic Liquid Tank Car Tanks and... liquid tank car tanks. ...

  7. 49 CFR 179.100 - General specifications applicable to pressure tank car tanks.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... car tanks. 179.100 Section 179.100 Transportation Other Regulations Relating to Transportation...) SPECIFICATIONS FOR TANK CARS Specifications for Pressure Tank Car Tanks (Classes DOT-105, 109, 112, 114 and 120) § 179.100 General specifications applicable to pressure tank car tanks. ...

  8. 49 CFR 179.100 - General specifications applicable to pressure tank car tanks.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... car tanks. 179.100 Section 179.100 Transportation Other Regulations Relating to Transportation...) SPECIFICATIONS FOR TANK CARS Specifications for Pressure Tank Car Tanks (Classes DOT-105, 109, 112, 114 and 120) § 179.100 General specifications applicable to pressure tank car tanks. ...

  9. 49 CFR 179.100 - General specifications applicable to pressure tank car tanks.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... car tanks. 179.100 Section 179.100 Transportation Other Regulations Relating to Transportation... REGULATIONS SPECIFICATIONS FOR TANK CARS Specifications for Pressure Tank Car Tanks (Classes DOT-105, 109, 112, 114 and 120) § 179.100 General specifications applicable to pressure tank car tanks. ...

  10. 49 CFR 179.100 - General specifications applicable to pressure tank car tanks.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... car tanks. 179.100 Section 179.100 Transportation Other Regulations Relating to Transportation...) SPECIFICATIONS FOR TANK CARS Specifications for Pressure Tank Car Tanks (Classes DOT-105, 109, 112, 114 and 120) § 179.100 General specifications applicable to pressure tank car tanks. ...

  11. The effectiveness of St. John's Wort in major depressive disorder: a naturalistic phase 2 follow-up in which nonresponders were provided alternate medication.

    PubMed

    Gelenberg, Alan J; Shelton, Richard C; Crits-Christoph, Paul; Keller, Martin B; Dunner, David L; Hirschfeld, Robert M A; Thase, Michael E; Russell, James M; Lydiard, R Bruce; Gallop, Robert J; Todd, Linda; Hellerstein, David J; Goodnick, Paul J; Keitner, Gabor I; Stahl, Stephen M; Halbreich, Uriel; Hopkins, Heather S

    2004-08-01

    A continuation study of an extract of St. John's wort (Hypericum perforatum) for depression was performed in follow-up to an acute study that found no significant difference between St. John's wort extract and placebo. Seventeen subjects with DSM-IV-defined major depressive disorder who responded to St. John's wort extract in the acute-phase study (phase 1) were continued on double-blind treatment with the same preparation for 24 weeks. Ninety-five subjects who did not respond to either St. John's wort or placebo were treated with an antidepressant for 24 weeks. During antidepressant treatment, mean scores on the Hamilton Rating Scale for Depression for phase 1 nonresponders decreased significantly (p <.0001), with no significant difference between St. John's wort nonresponders and placebo nonresponders. Of the 17 subjects continued on treatment with St. John's wort extract, 5 (29.4%) relapsed. The subjects who did not respond to St. John's wort extract or placebo in phase 1 were, by and large, not resistant to antidepressant treatment. This suggests that the lack of efficacy found by Shelton et al. in the acute-phase study was unlikely to be the result of a high proportion of treatment-resistant subjects.

  12. The UASB reactor as an alternative for the septic tank for on-site sewage treatment.

    PubMed

    Coelho, A L S S; do Nascimento, M B H; Cavalcanti, P F F; van Haandel, A C

    2003-01-01

    Although septic tanks are amply used for on site sewage treatment, these units have serious drawbacks: the removal efficiency of organic material and suspended solids is low, the units are costly and occupy a large area and operational cost is high due to the need for periodic desludging. In this paper an innovative variant of the UASB reactor is proposed as an alternative for the septic tank. This alternative has several important advantages in comparison with the conventional septic tank: (1) Although the volume of the UASB reactor was about 4 times smaller than the septic tank, its effluent quality was superior, even though small sludge particles were present, (2) desludging of the UASB reactor is unnecessary and even counterproductive, as the sludge mass guarantees proper performance, (3) the UASB reactor is easily transportable (compact and light) and therefore can be produced in series, strongly reducing construction costs and (4) since the concentration of colloids in the UASB effluent is much smaller than in the ST effluent, it is expected that the infiltration of the effluent will be much less problematic.

  13. An analytical study of reduced-gravity flow dynamics

    NASA Technical Reports Server (NTRS)

    Bradshaw, R. D.; Kramer, J. L.; Zich, J. L.

    1976-01-01

    Addition of surface tension forces to a marker-and-cell code and the performance of four incompressible fluid simulations in reduced gravity, were studied. This marker-and-cell code has a variable grid capability with arbitrary curved boundaries and time dependent acceleration fields. The surface tension logic includes a spline fit of surface marker particles as well as contact angle logic for straight and curved wall boundaries. Three types of flow motion were simulated with the improved code: impulsive settling in a model Centaur LH2 tank, continuous settling in a model and full scale Centaur LO2 tank and mixing in a Centaur LH2 tank. The impulsive settling case confirmed a drop tower analysis which indicated more orderly fluid collection flow patterns with this method providing a potential savings in settling propellants. In the LO2 tank, fluid collection and flow simulation into the thrust barrel were achieved. The mixing simulation produced good results indicating both the development of the flow field and fluid interface behavior.

  14. Critical Velocities in Open Capillary Flow

    NASA Technical Reports Server (NTRS)

    Dreyer, Michael; Langbein, Dieter; Rath, Hans J.

    1996-01-01

    This paper describes the proposed research program on open capillary flow and the preliminary work performed theoretically and in drop tower experiments. The work focuses on the fundamental physical understanding of the flow through capillary bound geometries, where the circumference of the cross section of the flow path contains free surfaces. Examples for such a flow configuration are capillary vanes in surface tension tanks, flow along edges and corners and flow through liquid bridges. The geometries may be classified by their cross section areas, wetted circumferences and the radii of curvature of the free surfaces. In the streaming float zone the flow path is bound by a free surface only. The ribbon vane is a model for vane types used in surface tension tanks, where a structure in proximity to the tank wall forms a capillary gap. A groove is used in heat pipes for the transportation of the condensed working fluid to the heat source and a wedge may occur in a spaceborne experiment where fluid has to be transported by the means of surface tension. The research objectives are the determination of the maximum volume flux, the observation of the free surfaces and the liquid flow inside the flow path as well as the evaluation of the limiting capillary wave speed. The restriction of the maximum volume flux is due to convective forces (flow velocity exceeding the capillary wave speed) and/or viscous forces, i.e. the viscous head loss along the flow path must be compensated by the capillary pressure due to the curved free surface. Exceeding the maximum volume flux leads to the choking of the flow path, thus the free surface collapses and.gas ingestion occurs at the outlet. The means are ground-based experimental work with plateau tanks and in a drop tower, a sounding rocket flight, and theoretical analysis with integral balances as well as full three dimensional CFD solutions for flow with free surfaces.

  15. Vapor Flow Patterns During a Start-Up Transient in Heat Pipes

    NASA Technical Reports Server (NTRS)

    Issacci, F.; Ghoniem, N, M.; Catton, I.

    1996-01-01

    The vapor flow patterns in heat pipes are examined during the start-up transient phase. The vapor core is modelled as a channel flow using a two dimensional compressible flow model. A nonlinear filtering technique is used as a post process to eliminate the non-physical oscillations of the flow variables. For high-input heat flux, multiple shock reflections are observed in the evaporation region. The reflections cause a reverse flow in the evaporation and circulations in the adiabatic region. Furthermore, each shock reflection causes a significant increase in the local pressure and a large pressure drop along the heat pipe.

  16. 49 CFR 179.102 - Special commodity requirements for pressure tank car tanks.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... car tanks. 179.102 Section 179.102 Transportation Other Regulations Relating to Transportation... REGULATIONS SPECIFICATIONS FOR TANK CARS Specifications for Pressure Tank Car Tanks (Classes DOT-105, 109, 112, 114 and 120) § 179.102 Special commodity requirements for pressure tank car tanks. (a) In addition to...

  17. Analysis of suspended solids transport processes in primary settling tanks.

    PubMed

    Patziger, Miklós; Kiss, Katalin

    2015-01-01

    The paper shows the results of a long-term research comprising FLUENT-based numerical modeling, in situ measurements and laboratory tests to analyze suspended solids (SS) transport processes in primary settling tanks (PSTs). The investigated PST was one of the rectangular horizontal flow PSTs at a large municipal wastewater treatment plant (WWTP) of a capacity of 500,000 population equivalent. Many middle-sized and large WWTPs are equipped with such PSTs. The numerical PST model was calibrated and validated based on the results of comprehensive in situ flow and SS concentration measurements from low (5 m/h) up to quite high surface overflow rates of 9.5 and 13.0 m/h and on settling and other laboratory tests. The calibrated and validated PST model was also successfully used for evaluation of some slight modifications of the inlet geometry (removing lamellas, installing a flocculation 'box', shifting the inlet into a 'bottom-near' or into a 'high' position), which largely affect PST behavior and performance. The investigations provided detailed insight into the flow and SS transport processes within the investigated PST, which strongly contributes to hydrodynamically driven design and upgrading of PSTs.

  18. 49 CFR 179.102 - Special commodity requirements for pressure tank car tanks.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... car tanks. 179.102 Section 179.102 Transportation Other Regulations Relating to Transportation...) SPECIFICATIONS FOR TANK CARS Specifications for Pressure Tank Car Tanks (Classes DOT-105, 109, 112, 114 and 120) § 179.102 Special commodity requirements for pressure tank car tanks. (a) In addition to §§ 179.100 and...

  19. 49 CFR 179.102 - Special commodity requirements for pressure tank car tanks.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... car tanks. 179.102 Section 179.102 Transportation Other Regulations Relating to Transportation...) SPECIFICATIONS FOR TANK CARS Specifications for Pressure Tank Car Tanks (Classes DOT-105, 109, 112, 114 and 120) § 179.102 Special commodity requirements for pressure tank car tanks. (a) In addition to §§ 179.100 and...

  20. 49 CFR 179.102 - Special commodity requirements for pressure tank car tanks.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... car tanks. 179.102 Section 179.102 Transportation Other Regulations Relating to Transportation...) SPECIFICATIONS FOR TANK CARS Specifications for Pressure Tank Car Tanks (Classes DOT-105, 109, 112, 114 and 120) § 179.102 Special commodity requirements for pressure tank car tanks. (a) In addition to §§ 179.100 and...

  1. 27 CFR 24.230 - Examination of tank car or tank truck.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2014-04-01 2014-04-01 false Examination of tank car or... TRADE BUREAU, DEPARTMENT OF THE TREASURY ALCOHOL WINE Spirits § 24.230 Examination of tank car or tank truck. Upon arrival of a tank car or tank truck at the bonded wine premises, the proprietor shall...

  2. 27 CFR 24.230 - Examination of tank car or tank truck.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2013-04-01 2013-04-01 false Examination of tank car or... TRADE BUREAU, DEPARTMENT OF THE TREASURY ALCOHOL WINE Spirits § 24.230 Examination of tank car or tank truck. Upon arrival of a tank car or tank truck at the bonded wine premises, the proprietor shall...

  3. 27 CFR 24.230 - Examination of tank car or tank truck.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2012-04-01 2012-04-01 false Examination of tank car or... TRADE BUREAU, DEPARTMENT OF THE TREASURY LIQUORS WINE Spirits § 24.230 Examination of tank car or tank truck. Upon arrival of a tank car or tank truck at the bonded wine premises, the proprietor shall...

  4. 27 CFR 24.230 - Examination of tank car or tank truck.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Examination of tank car or... TRADE BUREAU, DEPARTMENT OF THE TREASURY LIQUORS WINE Spirits § 24.230 Examination of tank car or tank truck. Upon arrival of a tank car or tank truck at the bonded wine premises, the proprietor shall...

  5. 27 CFR 24.230 - Examination of tank car or tank truck.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2011-04-01 2011-04-01 false Examination of tank car or... TRADE BUREAU, DEPARTMENT OF THE TREASURY LIQUORS WINE Spirits § 24.230 Examination of tank car or tank truck. Upon arrival of a tank car or tank truck at the bonded wine premises, the proprietor shall...

  6. Strategy Plan A Methodology to Predict the Uniformity of Double-Shell Tank Waste Slurries Based on Mixing Pump Operation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    J.A. Bamberger; L.M. Liljegren; P.S. Lowery

    This document presents an analysis of the mechanisms influencing mixing within double-shell slurry tanks. A research program to characterize mixing of slurries within tanks has been proposed. The research program presents a combined experimental and computational approach to produce correlations describing the tank slurry concentration profile (and therefore uniformity) as a function of mixer pump operating conditions. The TEMPEST computer code was used to simulate both a full-scale (prototype) and scaled (model) double-shell waste tank to predict flow patterns resulting from a stationary jet centered in the tank. The simulation results were used to evaluate flow patterns in the tankmore » and to determine whether flow patterns are similar between the full-scale prototype and an existing 1/12-scale model tank. The flow patterns were sufficiently similar to recommend conducting scoping experiments at 1/12-scale. Also, TEMPEST modeled velocity profiles of the near-floor jet were compared to experimental measurements of the near-floor jet with good agreement. Reported values of physical properties of double-shell tank slurries were analyzed to evaluate the range of properties appropriate for conducting scaled experiments. One-twelfth scale scoping experiments are recommended to confirm the prioritization of the dimensionless groups (gravitational settling, Froude, and Reynolds numbers) that affect slurry suspension in the tank. Two of the proposed 1/12-scale test conditions were modeled using the TEMPEST computer code to observe the anticipated flow fields. This information will be used to guide selection of sampling probe locations. Additional computer modeling is being conducted to model a particulate laden, rotating jet centered in the tank. The results of this modeling effort will be compared to the scaled experimental data to quantify the agreement between the code and the 1/12-scale experiment. The scoping experiment results will guide selection of parameters

  7. Treatment of variable and intermittently flowing wastewaters.

    PubMed

    Kocasoy, Günay

    1993-11-01

    The biological treatment of wastewaters originating from hotels and residential areas of seasonal use, flowing intermittently, is difficult due to the fact that bacteria cannot survive during periods of no-flow. An investigation has been conducted in order to develop a system which will be able to overcome the difficulties encountered. After a long investigation the following system has given satisfactory results. The wastewater was taken initially into an aeration tank operating as a sequential batch reactor. Waste was taken after the sedimentation phase of the reactor into a coagulation-flocculation tank where it was treated by chemical means, and then settled in order to separate the floes. When the population of bacteria in the aeration tank reached the required level, the physico-chemical treatment was terminated and the tank used for chemical treatment has been started to be used as an equalization tank while the aeration and sedimentation tanks have been used as an activated sludge unit. This system has been proved to be a satisfactory method for the above mentioned wastes.

  8. Flow resistance under conditions of intense gravel transport

    USGS Publications Warehouse

    Pitlick, John

    1992-01-01

    A study of flow resistance was undertaken in a channelized reach of the North Fork Toutle River, downstream of Mount St. Helens, Washington. Hydraulic and sediment transport data were collected in flows with velocities up to 3 m/s and shear stresses up to 7 times the critical value needed for bed load transport. Details of the flow structure as revealed in vertical velocity profiles indicate that weak bed load transport over a plane gravel bed has little effect on flow resistance. The plane gravel bed persists up to stresses ∼3 times critical, at which point, irregular bed forms appear. Bed forms greatly increase flow resistance and cause velocity profiles to become distorted. The latter arises as an effect of flows becoming depth-limited as bed form amplitude increases. At very high rates of bed load transport, an upper stage plane bed appeared. Velocity profiles measured in these flows match the law of the wall closely, with the equivalent roughness being well represented by ks = 3D84 of the bed load. The effects noted here will be important in very large floods or in rivers that are not free to widen, such as those cut into bedrock.

  9. 1. Cruzatte Tank, view to southwest, 210mm lens. Undoubtedly one ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. Cruzatte Tank, view to southwest, 210mm lens. Undoubtedly one of the last wooden water tanks left on the former Southern Pacific system, the Cruzatte Tank would have been completed circa 1927 during the later construction phase of the Natron Cutoff. No longer in use, it originally supplied water to steam locomotives that stopped at Cruzatte Siding on the long climb up the grade from Oakridge to Cascade Summit. While not subject to effects from this undertaking, the Cruzatte Tank was recorded as a rare and increasingly ephemeral surviving representative of a Southern Pacific Common Standard 50,000 Gallon Wooden Water Tank, and as a contributor to the Southern Pacific Natron Cutoff. - Southern Pacific Railroad Natron Cutoff, Cruzatte Tank, Milepost 545.4, McCredie Springs, Lane County, OR

  10. 49 CFR 179.500 - Specification DOT-107A * * * * seamless steel tank car tanks.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... car tanks. 179.500 Section 179.500 Transportation Other Regulations Relating to Transportation...) SPECIFICATIONS FOR TANK CARS Specification for Cryogenic Liquid Tank Car Tanks and Seamless Steel Tanks (Classes DOT-113 and 107A) § 179.500 Specification DOT-107A * * * * seamless steel tank car tanks. ...

  11. 49 CFR 179.101 - Individual specification requirements applicable to pressure tank car tanks.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... to pressure tank car tanks. 179.101 Section 179.101 Transportation Other Regulations Relating to... MATERIALS REGULATIONS SPECIFICATIONS FOR TANK CARS Specifications for Pressure Tank Car Tanks (Classes DOT... tank car tanks. Editorial Note: At 66 FR 45186, Aug. 28, 2001, an amendment published amending a table...

  12. 49 CFR 179.400 - General specification applicable to cryogenic liquid tank car tanks.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... liquid tank car tanks. 179.400 Section 179.400 Transportation Other Regulations Relating to... (CONTINUED) SPECIFICATIONS FOR TANK CARS Specification for Cryogenic Liquid Tank Car Tanks and Seamless Steel Tanks (Classes DOT-113 and 107A) § 179.400 General specification applicable to cryogenic liquid tank car...

  13. 49 CFR 179.500 - Specification DOT-107A * * * * seamless steel tank car tanks.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... car tanks. 179.500 Section 179.500 Transportation Other Regulations Relating to Transportation... REGULATIONS SPECIFICATIONS FOR TANK CARS Specification for Cryogenic Liquid Tank Car Tanks and Seamless Steel Tanks (Classes DOT-113 and 107A) § 179.500 Specification DOT-107A * * * * seamless steel tank car tanks. ...

  14. 49 CFR 179.500 - Specification DOT-107A * * * * seamless steel tank car tanks.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... car tanks. 179.500 Section 179.500 Transportation Other Regulations Relating to Transportation...) SPECIFICATIONS FOR TANK CARS Specification for Cryogenic Liquid Tank Car Tanks and Seamless Steel Tanks (Classes DOT-113 and 107A) § 179.500 Specification DOT-107A * * * * seamless steel tank car tanks. ...

  15. 49 CFR 179.500 - Specification DOT-107A * * * * seamless steel tank car tanks.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... car tanks. 179.500 Section 179.500 Transportation Other Regulations Relating to Transportation...) SPECIFICATIONS FOR TANK CARS Specification for Cryogenic Liquid Tank Car Tanks and Seamless Steel Tanks (Classes DOT-113 and 107A) § 179.500 Specification DOT-107A * * * * seamless steel tank car tanks. ...

  16. 49 CFR 179.400 - General specification applicable to cryogenic liquid tank car tanks.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... liquid tank car tanks. 179.400 Section 179.400 Transportation Other Regulations Relating to... (CONTINUED) SPECIFICATIONS FOR TANK CARS Specification for Cryogenic Liquid Tank Car Tanks and Seamless Steel Tanks (Classes DOT-113 and 107A) § 179.400 General specification applicable to cryogenic liquid tank car...

  17. 49 CFR 179.400 - General specification applicable to cryogenic liquid tank car tanks.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... liquid tank car tanks. 179.400 Section 179.400 Transportation Other Regulations Relating to... (CONTINUED) SPECIFICATIONS FOR TANK CARS Specification for Cryogenic Liquid Tank Car Tanks and Seamless Steel Tanks (Classes DOT-113 and 107A) § 179.400 General specification applicable to cryogenic liquid tank car...

  18. Double-Shell Tank Visual Inspection Changes Resulting from the Tank 241-AY-102 Primary Tank Leak

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Girardot, Crystal L.; Washenfelder, Dennis J.; Johnson, Jeremy M.

    2013-11-14

    As part of the Double-Shell Tank (DST) Integrity Program, remote visual inspections are utilized to perform qualitative in-service inspections of the DSTs in order to provide a general overview of the condition of the tanks. During routine visual inspections of tank 241-AY-102 (AY-102) in August 2012, anomalies were identified on the annulus floor which resulted in further evaluations. In October 2012, Washington River Protection Solutions, LLC determined that the primary tank of AY-102 was leaking. Following identification of the tank AY-102 probable leak cause, evaluations considered the adequacy of the existing annulus inspection frequency with respect to the circumstances ofmore » the tank AY-102 1eak and the advancing age of the DST structures. The evaluations concluded that the interval between annulus inspections should be shortened for all DSTs, and each annulus inspection should cover > 95 percent of annulus floor area, and the portion of the primary tank (i.e., dome, sidewall, lower knuckle, and insulating refractory) that is visible from the annulus inspection risers. In March 2013, enhanced visual inspections were performed for the six oldest tanks: 241-AY-101, 241-AZ-101,241-AZ-102, 241-SY-101, 241-SY-102, and 241-SY-103, and no evidence of leakage from the primary tank were observed. Prior to October 2012, the approach for conducting visual examinations of DSTs was to perform a video examination of each tank's interior and annulus regions approximately every five years (not to exceed seven years between inspections). Also, the annulus inspection only covered about 42 percent of the annulus floor.« less

  19. Team Up for 21st Century Teaching and Learning: What Research and Practice Reveal about Professional Learning. Condensed Excerpts

    ERIC Educational Resources Information Center

    Carroll, Thomas G., Ed.; Fulton, Kathleen, Ed.; Doerr, Hanna, Ed.

    2010-01-01

    This document contains excerpts from Team Up for 21st Century Teaching & Learning. This document includes the excerpts of five articles that provide a substantial evidence-based argument for the power of collaborative communities to improve teaching and learning. These articles are: (1) Professional Communities and the Artisan Model of…

  20. 33 CFR 157.147 - Similar tank design: Inspections on foreign tank vessels.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Similar tank design: Inspections... § 157.147 Similar tank design: Inspections on foreign tank vessels. (a) If a foreign tank vessel has..., for only one of those tanks to be inspected under § 157.140(a)(1). (b) Only one tank of a group of...

  1. 27 CFR 27.174 - Tank cars and tank trucks to be sealed.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2012-04-01 2012-04-01 false Tank cars and tank trucks... Tank cars and tank trucks to be sealed. Where a shipment of distilled spirits from customs custody to the distilled spirits plant is made in a tank car or tank truck, all openings affording access to the...

  2. 27 CFR 27.174 - Tank cars and tank trucks to be sealed.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2011-04-01 2011-04-01 false Tank cars and tank trucks... Tank cars and tank trucks to be sealed. Where a shipment of distilled spirits from customs custody to the distilled spirits plant is made in a tank car or tank truck, all openings affording access to the...

  3. 27 CFR 27.174 - Tank cars and tank trucks to be sealed.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2014-04-01 2014-04-01 false Tank cars and tank trucks... Tank cars and tank trucks to be sealed. Where a shipment of distilled spirits from customs custody to the distilled spirits plant is made in a tank car or tank truck, all openings affording access to the...

  4. 46 CFR 153.250 - Double-bottom and deep tanks as cargo tanks.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 5 2011-10-01 2011-10-01 false Double-bottom and deep tanks as cargo tanks. 153.250... Equipment Cargo Tanks § 153.250 Double-bottom and deep tanks as cargo tanks. Except in those cases in which Commandant (CG-522) specifically approves another arrangement, such as a double-bottom or deep tank as a...

  5. 46 CFR 153.250 - Double-bottom and deep tanks as cargo tanks.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 5 2013-10-01 2013-10-01 false Double-bottom and deep tanks as cargo tanks. 153.250... Equipment Cargo Tanks § 153.250 Double-bottom and deep tanks as cargo tanks. Except in those cases in which Commandant (CG-ENG) specifically approves another arrangement, such as a double-bottom or deep tank as a...

  6. 46 CFR 153.250 - Double-bottom and deep tanks as cargo tanks.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Double-bottom and deep tanks as cargo tanks. 153.250... Equipment Cargo Tanks § 153.250 Double-bottom and deep tanks as cargo tanks. Except in those cases in which Commandant (CG-522) specifically approves another arrangement, such as a double-bottom or deep tank as a...

  7. 46 CFR 153.250 - Double-bottom and deep tanks as cargo tanks.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 5 2014-10-01 2014-10-01 false Double-bottom and deep tanks as cargo tanks. 153.250... Equipment Cargo Tanks § 153.250 Double-bottom and deep tanks as cargo tanks. Except in those cases in which Commandant (CG-ENG) specifically approves another arrangement, such as a double-bottom or deep tank as a...

  8. 46 CFR 153.250 - Double-bottom and deep tanks as cargo tanks.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 5 2012-10-01 2012-10-01 false Double-bottom and deep tanks as cargo tanks. 153.250... Equipment Cargo Tanks § 153.250 Double-bottom and deep tanks as cargo tanks. Except in those cases in which Commandant (CG-ENG) specifically approves another arrangement, such as a double-bottom or deep tank as a...

  9. 49 CFR 179.301 - Individual specification requirements for multi-unit tank car tanks.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ...-unit tank car tanks. 179.301 Section 179.301 Transportation Other Regulations Relating to... (CONTINUED) SPECIFICATIONS FOR TANK CARS Specifications for Multi-Unit Tank Car Tanks (Classes DOT-106A and 110AW) § 179.301 Individual specification requirements for multi-unit tank car tanks. (a) In addition to...

  10. 49 CFR 179.301 - Individual specification requirements for multi-unit tank car tanks.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ...-unit tank car tanks. 179.301 Section 179.301 Transportation Other Regulations Relating to... MATERIALS REGULATIONS SPECIFICATIONS FOR TANK CARS Specifications for Multi-Unit Tank Car Tanks (Classes DOT-106A and 110AW) § 179.301 Individual specification requirements for multi-unit tank car tanks. (a) In...

  11. 49 CFR 179.301 - Individual specification requirements for multi-unit tank car tanks.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ...-unit tank car tanks. 179.301 Section 179.301 Transportation Other Regulations Relating to... (CONTINUED) SPECIFICATIONS FOR TANK CARS Specifications for Multi-Unit Tank Car Tanks (Classes DOT-106A and 110AW) § 179.301 Individual specification requirements for multi-unit tank car tanks. (a) In addition to...

  12. 49 CFR 179.301 - Individual specification requirements for multi-unit tank car tanks.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ...-unit tank car tanks. 179.301 Section 179.301 Transportation Other Regulations Relating to... (CONTINUED) SPECIFICATIONS FOR TANK CARS Specifications for Multi-Unit Tank Car Tanks (Classes DOT-106A and 110AW) § 179.301 Individual specification requirements for multi-unit tank car tanks. (a) In addition to...

  13. Reproducibility of up-flow column percolation tests for contaminated soils

    PubMed Central

    Naka, Angelica; Sakanakura, Hirofumi; Kurosawa, Akihiko; Inui, Toru; Takeo, Miyuki; Inoba, Seiji; Watanabe, Yasutaka; Fujikawa, Takuro; Miura, Toshihiko; Miyaguchi, Shinji; Nakajou, Kunihide; Sumikura, Mitsuhiro; Ito, Kenichi; Tamoto, Shuichi; Tatsuhara, Takeshi; Chida, Tomoyuki; Hirata, Kei; Ohori, Ken; Someya, Masayuki; Katoh, Masahiko; Umino, Madoka; Negishi, Masanori; Ito, Keijiro; Kojima, Junichi; Ogawa, Shohei

    2017-01-01

    Up-flow column percolation tests are used at laboratory scale to assess the leaching behavior of hazardous substance from contaminated soils in a specific condition as a function of time. Monitoring the quality of these test results inter or within laboratory is crucial, especially if used for Environment-related legal policy or for routine testing purposes. We tested three different sandy loam type soils (Soils I, II and III) to determine the reproducibility (variability inter laboratory) of test results and to evaluate the difference in the test results within laboratory. Up-flow column percolation tests were performed following the procedure described in the ISO/TS 21268–3. This procedure consists of percolating solution (calcium chloride 1 mM) from bottom to top at a flow rate of 12 mL/h through softly compacted soil contained in a column of 5 cm diameter and 30 ± 5 cm height. Eluate samples were collected at liquid-to-solid ratio of 0.1, 0.2, 0.5, 1, 2, 5 and 10 L/kg and analyzed for quantification of the target elements (Cu, As, Se, Cl, Ca, F, Mg, DOC and B in this research). For Soil I, 17 institutions in Japan joined this validation test. The up-flow column experiments were conducted in duplicate, after 48 h of equilibration time and at a flow rate of 12 mL/h. Column percolation test results from Soils II and III were used to evaluate the difference in test results from the experiments conducted in duplicate in a single laboratory, after 16 h of equilibration time and at a flow rate of 36 mL/h. Overall results showed good reproducibility (expressed in terms of the coefficient of variation, CV, calculated by dividing the standard deviation by the mean), as the CV was lower than 30% in more than 90% of the test results associated with Soil I. Moreover, low variability (expressed in terms of difference between the two test results divided by the mean) was observed in the test results related to Soils II and III, with a variability lower than 30% in more

  14. Evaluating crude oil chemical dispersion efficacy in a flow-through wave tank under regular non-breaking wave and breaking wave conditions.

    PubMed

    Li, Zhengkai; Lee, Kenneth; King, Thomas; Boufadel, Michel C; Venosa, Albert D

    2009-05-01

    Testing dispersant effectiveness under conditions similar to that of the open environment is required for improvements in operational procedures and the formulation of regulatory guidelines. To this end, a novel wave tank facility was fabricated to study the dispersion of crude oil under regular non-breaking and irregular breaking wave conditions. This wave tank facility was designed for operation in a flow-through mode to simulate both wave- and current-driven hydrodynamic conditions. We report here an evaluation of the effectiveness of chemical dispersants (Corexit EC9500A and SPC 1000) on two crude oils (Medium South American [MESA] and Alaska North Slope [ANS]) under two different wave conditions (regular non-breaking and plunging breaking waves) in this wave tank. The dispersant effectiveness was assessed by measuring the water column oil concentration and dispersed oil droplet size distribution. In the absence of dispersants, nearly 8-19% of the test crude oils were dispersed and diluted under regular wave and breaking wave conditions. In the presence of dispersants, about 21-36% of the crude oils were dispersed and diluted under regular waves, and 42-62% under breaking waves. Consistently, physical dispersion under regular waves produced large oil droplets (volumetric mean diameter or VMD > or = 300 microm), whereas chemical dispersion under breaking waves created small droplets (VMD < or = 50 microm). The data can provide useful information for developing better operational guidelines for dispersant use and improved predictive models on dispersant effectiveness in the field.

  15. 241-AY-101 Tank Construction Extent of Condition Review for Tank Integrity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barnes, Travis J.; Gunter, Jason R.

    2013-08-26

    This report provides the results of an extent of condition construction history review for tank 241-AY-101. The construction history of tank 241-AY-101 has been reviewed to identify issues similar to those experienced during tank AY-102 construction. Those issues and others impacting integrity are discussed based on information found in available construction records, using tank AY-102 as the comparison benchmark. In tank 241-AY-101, the second double-shell tank constructed, similar issues as those with tank 241-AY-102 construction reoccurred. The overall extent of similary and affect on tank 241-AY-101 integrity is described herein.

  16. 241-AP Tank Farm Construction Extent of Condition Review for Tank Integrity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barnes, Travis J.; Gunter, Jason R.; Reeploeg, Gretchen E.

    2014-04-04

    This report provides the results of an extent of condition construction history review for the 241-AP tank farm. The construction history of the 241-AP tank farm has been reviewed to identify issues similar to those experienced during tank AY-102 construction. Those issues and others impacting integrity are discussed based on information found in available construction records, using tank AY-102 as the comparison benchmark. In the 241-AP tank farm, the sixth double-shell tank farm constructed, tank bottom flatness, refractory material quality, post-weld stress relieving, and primary tank bottom weld rejection were improved.

  17. 49 CFR 180.519 - Periodic retest and inspection of tank cars other than single-unit tank car tanks.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 3 2011-10-01 2011-10-01 false Periodic retest and inspection of tank cars other than single-unit tank car tanks. 180.519 Section 180.519 Transportation Other Regulations Relating to... (CONTINUED) CONTINUING QUALIFICATION AND MAINTENANCE OF PACKAGINGS Qualification and Maintenance of Tank Cars...

  18. 49 CFR 180.519 - Periodic retest and inspection of tank cars other than single-unit tank car tanks.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 3 2013-10-01 2013-10-01 false Periodic retest and inspection of tank cars other than single-unit tank car tanks. 180.519 Section 180.519 Transportation Other Regulations Relating to... (CONTINUED) CONTINUING QUALIFICATION AND MAINTENANCE OF PACKAGINGS Qualification and Maintenance of Tank Cars...

  19. 49 CFR 180.519 - Periodic retest and inspection of tank cars other than single-unit tank car tanks.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 3 2012-10-01 2012-10-01 false Periodic retest and inspection of tank cars other than single-unit tank car tanks. 180.519 Section 180.519 Transportation Other Regulations Relating to... (CONTINUED) CONTINUING QUALIFICATION AND MAINTENANCE OF PACKAGINGS Qualification and Maintenance of Tank Cars...

  20. 49 CFR 180.519 - Periodic retest and inspection of tank cars other than single-unit tank car tanks.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 3 2014-10-01 2014-10-01 false Periodic retest and inspection of tank cars other than single-unit tank car tanks. 180.519 Section 180.519 Transportation Other Regulations Relating to... (CONTINUED) CONTINUING QUALIFICATION AND MAINTENANCE OF PACKAGINGS Qualification and Maintenance of Tank Cars...

  1. 49 CFR 179.500 - Specification DOT-107A * * * * seamless steel tank car tanks.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 3 2014-10-01 2014-10-01 false Specification DOT-107A * * * * seamless steel tank...) SPECIFICATIONS FOR TANK CARS Specification for Cryogenic Liquid Tank Car Tanks and Seamless Steel Tanks (Classes DOT-113 and 107A) § 179.500 Specification DOT-107A * * * * seamless steel tank car tanks. ...

  2. ADM. Tanks: from left to right: fuel oil tank, fuel ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    ADM. Tanks: from left to right: fuel oil tank, fuel pump house (TAN-611), engine fuel tank, water pump house, water storage tank. Camera facing northwest. Not edge of shielding berm at left of view. Date: November 25, 1953. INEEL negative no. 9217 - Idaho National Engineering Laboratory, Test Area North, Scoville, Butte County, ID

  3. Phase change paint tests on Rockwell orbiter/tank and orbiter alone configurations (OH3A/OH3B)

    NASA Technical Reports Server (NTRS)

    Quan, M.; Craig, C.

    1974-01-01

    Wind tunnel tests were conducted on scale models of the space shuttle orbiter and external tank. The tests were designed to determine the basic heating rate and interference effects on the orbiter-tank configuration and to analyze the effectiveness of the thermal protective system on the reentry vehicle. The phase change paint techniques were used to determine areodynamic heating rates. Oil flow and schlieren photographs were used for flow visualization.

  4. Oscillations in the reduction of permanganate by hydrogen peroxide or by ninhydrin in a batch reactor and mixed-mode oscillations in a continuous-flow stirred tank reactor

    NASA Astrophysics Data System (ADS)

    Tóthová, Mária; Nagy, Arpád; Treindl, Ľudovít.

    1999-01-01

    The periodical reduction of permanganate by hydrogen peroxide or by ninhydrin with transient oscillations in a closed system has been observed and discussed in relation to the first two permanganate oscillators described earlier. The mixed-mode oscillations of the permanganate-H 2O 2 oscillating system in a continuous-flow stirred tank reactor have been described.

  5. 241-AW Tank Farm Construction Extent of Condition Review for Tank Integrity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barnes, Travis J.; Gunter, Jason R.; Reeploeg, Gretchen E.

    2013-11-19

    This report provides the results of an extent of condition construction history review for the 241-AW tank farm. The construction history of the 241-AW tank farm has been reviewed to identify issues similar to those experienced during tank AY-102 construction. Those issues and others impacting integrity are discussed based on information found in available construction records, using tank AY-102 as the comparison benchmark. In the 241-AW tank farm, the fourth double-shell tank farm constructed, similar issues as those with tank 241-AY-102 construction occured. The overall extent of similary and affect on 241-AW tank farm integrity is described herein.

  6. Self-Pressurization of a Flightweight, Liquid Hydrogen Tank: Simulation and Comparison with Experiments

    NASA Technical Reports Server (NTRS)

    Stewart, Mark E. M.; Moder, Jeffrey P.

    2016-01-01

    This paper presents ANSYS Fluent simulation results and analysis for self-pressurization of a flightweight, cryogenic, liquid hydrogen tank in 1-g. These results are compared with experimental data, in particular, pressure evolution and temperature measurements at a set of sensors. The simulations can be analyzed to identify and quantify heat flows in the tank. Heat flows change over time and influence the self-pressurization process. The initial rate of self-pressurization is sensitive to the initial temperature profile near the interface. Uncertainty in saturation pressure data and the accuracy of experimental measurements complicate simulation of self-pressurization. Numerical issues encountered, and their resolution, are also explained.

  7. Removal of selected emerging PPCP compounds using greater duckweed (Spirodela polyrhiza) based lab-scale free water constructed wetland.

    PubMed

    Li, Jianan; Zhou, Qizhi; Campos, Luiza C

    2017-12-01

    Greater duckweed (Spirodela polyrhiza) based lab-scale free water constructed wetland (CW) was employed for removing four emerging pharmaceuticals and personal care products (PPCPs) (i.e. DEET, paracetamol, caffeine and triclosan). Orthogonal design was used to test the effect of light intensity, aeration, E.coli abundance and plant biomass on the target compounds. Synthetic wastewater contaminated with the target compounds at concentration of 25 μg/L was prepared, and both batch and continuous flow experiments were conducted. Up to 100% removals were achieved for paracetamol (PAR), caffeine (CAF) and tricolsan (TCS) while the highest removal for DEET was 32.2% in batch tests. Based on orthogonal Duncan analysis, high light intensity (240 μmolmm -2 s -1 ), full aeration, high plant biomass (1.00 kg/m 2 ) and high E.coli abundance (1.0 × 10 6  CFU/100 mL) favoured elimination of the PPCPs. Batch verification test achieved removals of 17.1%, 98.8%, 96.4% and 95.4% for DEET, PAR, CAF and TCS respectively. Continuous flow tests with CW only and CW followed by stabilization tank (CW-ST) were carried out. Final removals of the PPCP contaminants were 32.6%, 97.7%, 98.0% and 100% for DEET, PAR, CAF and TCS, respectively, by CW system alone, while 43.3%, 97.5%, 98.2% and 100%, respectively, were achieved by CW-ST system. By adding the ST tank, PPCP concentrations decreased significantly faster (p < 0.05) compared with continuous flow CW alone. In addition, after removing aerators during continuous flow CW experiments, the treatment systems presented good stability for the PPCP removals. CW-ST showed better chemical oxygen demand (COD) and total organic carbon (TOC) removals (89.3%, 91.2%, respectively) than CW only (79.4%, 85.2%, respectively). However, poor DEET removal (<50%) and high E.coli abundance (up to 1.7 log increase) in the final treated water indicated further treatment processes may be required. Statistical analysis showed significant correlations

  8. SLUDGE RETRIEVAL FROM HANFORD K WEST BASIN SETTLER TANKS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    ERPENBECK EG; LESHIKAR GA

    In 2010, an innovative, remotely operated retrieval system was deployed to successfully retrieve over 99.7% of the radioactive sludge from ten submerged tanks in Hanford's K-West Basin. As part of K-West Basin cleanup, the accumulated sludge needed to be removed from the 0.5 meter diameter by 5 meter long settler tanks and transferred approximately 45 meters to an underwater container for sampling and waste treatment. The abrasive, dense, non-homogeneous sludge was the product of the washing process of corroded nuclear fuel. It consists of small (less than 600 micron) particles of uranium metal, uranium oxide, and various other constituents, potentiallymore » agglomerated or cohesive after 10 years of storage. The Settler Tank Retrieval System (STRS) was developed to access, mobilize and pump out the sludge from each tank using a standardized process of retrieval head insertion, periodic high pressure water spray, retraction, and continuous pumping of the sludge. Blind operations were guided by monitoring flow rate, radiation levels in the sludge stream, and solids concentration. The technology developed and employed in the STRS can potentially be adapted to similar problematic waste tanks or pipes that must be remotely accessed to achieve mobilization and retrieval of the sludge within.« less

  9. 49 CFR 179.101 - Individual specification requirements applicable to pressure tank car tanks.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... to pressure tank car tanks. 179.101 Section 179.101 Transportation Other Regulations Relating to... (CONTINUED) SPECIFICATIONS FOR TANK CARS Specifications for Pressure Tank Car Tanks (Classes DOT-105, 109, 112, 114 and 120) § 179.101 Individual specification requirements applicable to pressure tank car...

  10. 49 CFR 179.101 - Individual specification requirements applicable to pressure tank car tanks.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... to pressure tank car tanks. 179.101 Section 179.101 Transportation Other Regulations Relating to... (CONTINUED) SPECIFICATIONS FOR TANK CARS Specifications for Pressure Tank Car Tanks (Classes DOT-105, 109, 112, 114 and 120) § 179.101 Individual specification requirements applicable to pressure tank car...

  11. 49 CFR 179.101 - Individual specification requirements applicable to pressure tank car tanks.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... to pressure tank car tanks. 179.101 Section 179.101 Transportation Other Regulations Relating to... (CONTINUED) SPECIFICATIONS FOR TANK CARS Specifications for Pressure Tank Car Tanks (Classes DOT-105, 109, 112, 114 and 120) § 179.101 Individual specification requirements applicable to pressure tank car...

  12. Site-Specific, Covalent Immobilization of Dehalogenase ST2570 Catalyzed by Formylglycine-Generating Enzymes and Its Application in Batch and Semi-Continuous Flow Reactors.

    PubMed

    Jian, Hui; Wang, Yingwu; Bai, Yan; Li, Rong; Gao, Renjun

    2016-07-11

    Formylglycine-generating enzymes can selectively recognize and oxidize cysteine residues within the sulfatase sub motif at the terminus of proteins to form aldehyde-bearing formylglycine (FGly) residues, and are normally used in protein labeling. In this study, an aldehyde tag was introduced to proteins using formylglycine-generating enzymes encoded by a reconstructed set of the pET28a plasmid system for enzyme immobilization. The haloacid dehalogenase ST2570 from Sulfolobus tokodaii was used as a model enzyme. The C-terminal aldehyde-tagged ST2570 (ST2570CQ) exhibited significant enzymological properties, such as new free aldehyde groups, a high level of protein expression and improved enzyme activity. SBA-15 has widely been used as an immobilization support for its large surface and excellent thermal and chemical stability. It was functionalized with amino groups by aminopropyltriethoxysilane. The C-terminal aldehyde-tagged ST2570 was immobilized to SBA-15 by covalent binding. The site-specific immobilization of ST2570 avoided the chemical denaturation that occurs in general covalent immobilization and resulted in better fastening compared to physical adsorption. The site-specific immobilized ST2570 showed 3-fold higher thermal stability, 1.2-fold higher catalytic ability and improved operational stability than free ST2570. The site-specific immobilized ST2570 retained 60% of its original activity after seven cycles of batch operation, and it was superior to the ST2570 immobilized to SBA-15 by physical adsorption, which loses 40% of its original activity when used for the second time. It is remarkable that the site-specific immobilized ST2570 still retained 100% of its original activity after 10 cycles of reuse in the semi-continuous flow reactor. Overall, these results provide support for the industrial-scale production and application of site-specific, covalently immobilized ST2570.

  13. Think tank (3) - Present activities of other representative organizations

    NASA Astrophysics Data System (ADS)

    Obara, Michio

    There were some think tank businesses in Japan before the war. South Manchuria Railway Company established its Research Department for the purpose of getting power to control Manchuria as a colony, and got the good results. Think tank business was flourishing three times after the war. This business attracts much attention when the social and economic paradigm is going to change. Among the key large-scale think tanks in Japan, Nomura Research Institute, Ltd. (NRI) was the first to enhance the system functions by the merger, and posted think tank function up in the SI business. Mitsubishi Research Institute, Inc. (MRI) intends to be an orthodox think tank, and established an advanced research institute and the laboratory for R&D. Daiwa Institute of Research, Ltd. (DIR) focuses on economic forecast by using system. Fuji Research Institute, Corp. (FUJI RIC) focuses on survey and policy proposing in macro-economics, and analyzing technology. The Japan Research Institute, Ltd. (JRI) focuses on regional development, and R&D in advanced technology.

  14. Chronology, morphology and stratigraphy of pumiceous pyroclastic-flow (ignimbrite) deposits from the eruption of Mount St. Helens on 18 May 1983

    NASA Technical Reports Server (NTRS)

    Criswell, C. W.; Elston, W. E.

    1984-01-01

    Between 1217 and 1620 hours (PDT), on May 18, 1980, the magmatic eruption column of Mount St. Helens formed an ash fountain and pyroclastic flows dominated the eruption process over tephra ejection. Eurption-rate pulsations generally increased to a maximum at 1600 to 1700 hrs. After 1620 hrs, the eruption assumed an open-vent discharge with strong, vertical ejection of tephra. Relative eruption rates (relative mass flux rates) of the pyroclastic flows were determined by correlating sequential photographs and SLAR images, obtained during the eruption, with stratigraphy and surface morphology of the deposits.

  15. RECOMMENDATIONS FOR SAMPLING OF TANK 18 IN F TANK FARM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shine, G.

    2009-12-14

    Representative sampling is required for characterization of the residual floor material in Tank 18 prior to operational closure. Tank 18 is an 85-foot diameter, 34-foot high carbon steel tank with nominal operating volume of 1,300,000 gallons. It is a Type IV tank, and has been in service storing radioactive materials since 1959. Recent mechanical cleaning of the tank removed all mounds of material. Anticipating a low level of solids in the residual material, Huff and Thaxton [2009] developed a plan to sample the material during the final clean-up process while it would still be resident in sufficient quantities to supportmore » analytical determinations in four quadrants of the tank. Execution of the plan produced fewer solids than expected to support analytical determinations in all four quadrants. Huff and Thaxton [2009] then restructured the plan to characterize the residual floor material separately in the North and the South regions: two 'hemispheres.' This document provides sampling recommendations to complete the characterization of the residual material on the tank bottom following the guidance in Huff and Thaxton [2009] to split the tank floor into a North and a South hemisphere. The number of samples is determined from a modification of the formula previously published in Edwards [2001] and the sample characterization data for previous sampling of Tank 18 described by Oji [2009]. The uncertainty is quantified by an upper 95% confidence limit (UCL95%) on each analyte's mean concentration in Tank 18. The procedure computes the uncertainty in analyte concentration as a function of the number of samples, and the final number of samples is determined when the reduction in the uncertainty from an additional sample no longer has a practical impact on results. The characterization of the full suite of analytes in the North hemisphere is currently supported by a single Mantis rover sample obtained from a compact region near the center riser. A floor scrape

  16. Microgravity experiment study on the vane type surface tension tank

    NASA Astrophysics Data System (ADS)

    Kang, Qi; Duan, Li; Rui, Wei

    Having advantages of low cost, convenience and high level of microgravity, the drop tower has become a significant microgravity experiment facility. National Microgravity Laboratory/CAS(NMLC) drop tower has 3.5s effective microgravity time, meanwhile the level of microgravity can reach 10 (-5) g. And the impact acceleration is less than 15g in the recovery period. The microgravity experiments have been conducted on the scaling model of vane type surface tension tank in NMLC’s drop tower. The efficiency of Propellant Management Devices (PMDs) was studied, which focus on the effects of Propellant Management Devices (PMDs), numbers of PMDs, contact angle, and liquid viscosity on the flow rate. The experimental results shown that the numbers of PMDs have little or no effect on the flow rate while the liquid is sufficient. The experiments about the influence of different charging ratio have been carried out while tank is placed positively and reversely, and we find the charging ratio has less effect on the capillary flow rate when the charging ratio is greater than 2%.

  17. Fuel tank integrity research : fuel tank analyses and test plans

    DOT National Transportation Integrated Search

    2013-04-15

    The Federal Railroad Administrations Office of Research : and Development is conducting research into fuel tank : crashworthiness. Fuel tank research is being performed to : determine strategies for increasing the fuel tank impact : resistance to ...

  18. Hydrologic data summary for the St. Lucie River Estuary, Martin and St. Lucie Counties, Florida, 1998-2001

    USGS Publications Warehouse

    Byrne, Michael J.; Patino, Eduardo

    2004-01-01

    A hydrologic analysis was made at three canal sites and four tidal sites along the St. Lucie River Estuary in southeastern Florida from 1998 to 2001. The data included for analysis are stage, 15-minute flow, salinity, water temperature, turbidity, and suspended-solids concentration. During the period of record, the estuary experienced a drought, major storm events, and high-water discharge from Lake Okeechobee. Flow mainly occurred through the South Fork of the St. Lucie River; however, when flow increased through control structures along the C-23 and C-24 Canals, the North Fork was a larger than usual contributor of total freshwater inflow to the estuary. At one tidal site (Steele Point), the majority of flow was southward toward the St. Lucie Inlet; at a second tidal site (Indian River Bridge), the majority of flow was northward into the Indian River Lagoon. Large-volume stormwater discharge events greatly affected the St. Lucie River Estuary. Increased discharge typically was accompanied by salinity decreases that resulted in water becoming and remaining fresh throughout the estuary until the discharge events ended. Salinity in the estuary usually returned to prestorm levels within a few days after the events. Turbidity decreased and salinity began to increase almost immediately when the gates at the control structures closed. Salinity ranged from less than 1 to greater than 35 parts per thousand during the period of record (1998-2001), and typically varied by several parts per thousand during a tidal cycle. Suspended-solids concentrations were observed at one canal site (S-80) and two tidal sites (Speedy Point and Steele Point) during a discharge event in April and May 2000. Results suggest that most deposition of suspended-solids concentration occurs between S-80 and Speedy Point. The turbidity data collected also support this interpretation. The ratio of inorganic to organic suspended-solids concentration observed at S-80, Speedy Point, and Steele Point

  19. Solar receiver protection means and method for loss of coolant flow

    DOEpatents

    Glasgow, Lyle E.

    1983-01-01

    An apparatus and method for preventing a solar receiver (12) utilizing a flowing coolant liquid for removing heat energy therefrom from overheating after a loss of coolant flow. Solar energy is directed to the solar receiver (12) by a plurality of reflectors (16) which rotate so that they direct solar energy to the receiver (12) as the earth rotates. The apparatus disclosed includes a first storage tank (30) for containing a first predetermined volume of the coolant and a first predetermined volume of gas at a first predetermined pressure. The first storage tank (30) includes an inlet and outlet through which the coolant can enter and exit. The apparatus also includes a second storage tank (34) for containing a second predetermined volume of the coolant and a second predetermined volume of the gas at a second predetermined pressure, the second storage tank (34) having an inlet through which the coolant can enter. The first and second storage tanks (30) and (34) are in fluid communication with each other through the solar receiver (12). The first and second predetermined coolant volumes, the first and second gas volumes, and the first and second predetermined pressures are chosen so that a predetermined volume of the coolant liquid at a predetermined rate profile will flow from the first storage tank (30) through the solar receiver (12) and into the second storage tank (34). Thus, in the event of a power failure so that coolant flow ceases and the solar reflectors (16) stop rotating, a flow rate maintained by the pressure differential between the first and second storage tanks (30) and (34) will be sufficient to maintain the coolant in the receiver (12) below a predetermined upper temperature until the solar reflectors (16) become defocused with respect to the solar receiver (12) due to the earth's rotation.

  20. Solar receiver protection means and method for loss of coolant flow

    DOEpatents

    Glasgow, L.E.

    1980-11-24

    An apparatus and method are disclosed for preventing a solar receiver utilizing a flowing coolant liquid for removing heat energy therefrom from overheating after a loss of coolant flow. Solar energy is directed to the solar receiver by a plurality of reflectors which rotate so that they direct solar energy to the receiver as the earth rotates. The apparatus disclosed includes a first storage tank for containing a first predetermined volume of the coolant and a first predetermined volume of gas at a first predetermined pressure. The first storage tank includes an inlet and outlet through which the coolant can enter and exit. The apparatus also includes a second storage tank for containing a second predetermined volume of the coolant and a second predetermined volume of the gas at a second predetermined pressure, the second storage tank having an inlet through which the coolant can enter. The first and second storage tanks are in fluid communication with each other through the solar receiver. The first and second predetermined coolant volumes, the first and second gas volumes, and the first and second predetermined pressures are chosen so that a predetermined volume of the coolant liquid at a predetermined rate profile will flow from the first storage tank through the solar receiver and into the second storage tank. Thus, in the event of a power failure so that coolant flow ceases and the solar reflectors stop rotating, a flow rate maintained by the pressure differential between the first and second storage tanks will be sufficient to maintain the coolant in the receiver below a predetermined upper temperature until the solar reflectors become defocused with respect to the solar receiver due to the earth's rotation.

  1. Computational Analyses of Pressurization in Cryogenic Tanks

    NASA Technical Reports Server (NTRS)

    Ahuja, Vineet; Hosangadi, Ashvin; Lee, Chun P.; Field, Robert E.; Ryan, Harry

    2010-01-01

    A comprehensive numerical framework utilizing multi-element unstructured CFD and rigorous real fluid property routines has been developed to carry out analyses of propellant tank and delivery systems at NASA SSC. Traditionally CFD modeling of pressurization and mixing in cryogenic tanks has been difficult primarily because the fluids in the tank co-exist in different sub-critical and supercritical states with largely varying properties that have to be accurately accounted for in order to predict the correct mixing and phase change between the ullage and the propellant. For example, during tank pressurization under some circumstances, rapid mixing of relatively warm pressurant gas with cryogenic propellant can lead to rapid densification of the gas and loss of pressure in the tank. This phenomenon can cause serious problems during testing because of the resulting decrease in propellant flow rate. With proper physical models implemented, CFD can model the coupling between the propellant and pressurant including heat transfer and phase change effects and accurately capture the complex physics in the evolving flowfields. This holds the promise of allowing the specification of operational conditions and procedures that could minimize the undesirable mixing and heat transfer inherent in propellant tank operation. In our modeling framework, we incorporated two different approaches to real fluids modeling: (a) the first approach is based on the HBMS model developed by Hirschfelder, Beuler, McGee and Sutton and (b) the second approach is based on a cubic equation of state developed by Soave, Redlich and Kwong (SRK). Both approaches cover fluid properties and property variation spanning sub-critical gas and liquid states as well as the supercritical states. Both models were rigorously tested and properties for common fluids such as oxygen, nitrogen, hydrogen etc were compared against NIST data in both the sub-critical as well as supercritical regimes.

  2. Design criteria monograph for metal tanks and tank components

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Significant elements in detail tank design are wall and end structures, weld joints at bulkhead and attachment junctures, and ports and access openings. Additional design considerations are influence and effect of fabrication processes on tank component design, and finally, testing and inspection that are required to establish confidence in tank design.

  3. TANKS 18 AND 19-F STRUCTURAL FLOWABLE GROUT FILL MATERIAL EVALUATION AND RECOMMENDATIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stefanko, D.; Langton, C.

    2011-11-01

    Cementitious grout will be used to close Tanks 18-F and 19-F. The functions of the grout are to: (1) physically stabilize the final landfill by filling the empty volume in the tanks with a non compressible material; (2) provide a barrier for inadvertent intrusion into the tank; (3) reduce contaminant mobility by (a) limiting the hydraulic conductivity of the closed tank and (b) reducing contact between the residual waste and infiltrating water; and (4) providing an alkaline, chemically reducing environment in the closed tank to control speciation and solubility of selected radionuclides. The objective of this work was to identifymore » a single (all-in-one) grout to stabilize and isolate the residual radionuclides in the tank, provide structural stability of the closed tank and serve as an inadvertent intruder barrier. This work was requested by V. A. Chander, High Level Waste (HLW) Tank Engineering, in HLW-TTR-2011-008. The complete task scope is provided in the Task Technical and QA Plan, SRNL-RP-2011-00587 Revision 0. The specific objectives of this task were to: (1) Identify new admixtures and dosages for formulating a zero bleed flowable tank fill material selected by HLW Tank Closure Project personnel based on earlier tank fill studies performed in 2007. The chemical admixtures used for adjusting the flow properties needed to be updated because the original admixture products are no longer available. Also, the sources of cement and fly ash have changed, and Portland cements currently available contain up to 5 wt. % limestone (calcium carbonate). (2) Prepare and evaluate the placement, compressive strength, and thermal properties of the selected formulation with new admixture dosages. (3) Identify opportunities for improving the mix selected by HLW Closure Project personnel and prepare and evaluate two potentially improved zero bleed flowable fill design concepts; one based on the reactor fill grout and the other based on a shrinkage compensating flowable

  4. Database for geologic maps of pyroclastic-flow and related deposits of the 1980 eruptions of Mount St. Helens, Washington

    USGS Publications Warehouse

    Furze, Andrew J.; Bard, Joseph A.; Robinson, Joel; Ramsey, David W.; Kuntz, Mel A.; Rowley, Peter D.; MacLeod, Norman S.

    2017-10-31

    This publication releases digital versions of the geologic maps in U.S. Geological Survey Miscellaneous Investigations Map 1950 (USGS I-1950), “Geologic maps of pyroclastic-flow and related deposits of the 1980 eruptions of Mount St. Helens, Washington” (Kuntz, Rowley, and MacLeod, 1990) (https://pubs.er.usgs.gov/publication/i1950). The 1980 Mount St. Helens eruptions on May 18, May 25, June 12, July 22, August 7, and October 16–18 produced pyroclastic-flow and related deposits. The distribution and morphology of these deposits, as determined from extensive field studies and examination of vertical aerial photographs, are shown on four maps in I-1950 (maps A–D) on two map sheets. Map A shows the May 18, May 25, and June 12 deposits; map B shows the July 22 deposits; map C shows the August 7 deposits; and map D shows the October 16–18 deposits. No digital geospatial versions of the geologic data were made available at the time of publication of the original maps. This data release consists of attributed vector features, data tables, and the cropped and georeferenced scans from which the features were digitized, in order to enable visualization and analysis of these data in GIS software. This data release enables users to digitally re-create the maps and description of map units of USGS I-1950; map sheet 1 includes text sections (Introduction, Physiography of Mount St. Helens at the time of the 1980 eruptions, Processes of the 1980 eruptions, Deposits of the 1980 eruptions, Limitations of the maps, Preparation of the maps, and References cited) and associated tables and figures that are not included in this data release.

  5. Correlation of Miocene strata on the submarine St. Croix Ridge and onland St. Croix, US Virgin Islands

    NASA Astrophysics Data System (ADS)

    von Salis, Katharina; Speed, Robert

    1995-03-01

    The nannofossils of an hydraulic piston core from the steep scarp between the St. Croix Ridge and Virgin Islands Basin were restudied. Formerly thought to represent a Pliocene debris flow, we interpret it as an early Miocene (NN1/2) hemipelagic deposit. We correlate the seismic unit sampled by piston core with the Kingshill-Jealousy Formation present on St. Croix. These sediments likely belong to an extensive, thick, deep marine cover of the St. Croix Ridge, deposited on a metamorphic—igneous basement between early Eocene and early Miocene time. Faulting did not evidently affect this sediment cover until the late Neogene.

  6. Experimental investigation of a molten salt thermocline storage tank

    NASA Astrophysics Data System (ADS)

    Yang, Xiaoping; Yang, Xiaoxi; Qin, Frank G. F.; Jiang, Runhua

    2016-07-01

    Thermal energy storage is considered as an important subsystem for solar thermal power stations. Investigations into thermocline storage tanks have mainly focused on numerical simulations because conducting high-temperature experiments is difficult. In this paper, an experimental study of the heat transfer characteristics of a molten salt thermocline storage tank was conducted by using high-temperature molten salt as the heat transfer fluid and ceramic particle as the filler material. This experimental study can verify the effectiveness of numerical simulation results and provide reference for engineering design. Temperature distribution and thermal storage capacity during the charging process were obtained. A temperature gradient was observed during the charging process. The temperature change tendency showed that thermocline thickness increased continuously with charging time. The slope of the thermal storage capacity decreased gradually with the increase in time. The low-cost filler material can replace the expensive molten salt to achieve thermal storage purposes and help to maintain the ideal gravity flow or piston flow of molten salt fluid.

  7. Development and Testing of a Mobile Platform for Tank Remediation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nance, T.A.

    2001-01-16

    The Department of Energy (DOE) is committed to removing millions of gallons of high level radioactive waste from waste storage tanks at the Savannah River Site (SRS). SRS was the first site in the DOE complex to have emptied and closed high level waste tanks. Tank closure at the Site is now progressing to tanks containing waste composed of liquid and large deposits of solids, including a tank that has a potential ''heel''. A heel is a hardened mass of solid waste material spread across the tank bottom. Tank closure requires breaking up this heel and moving the material tomore » the intake of a pumping system for transfer from the tank. In the past, overhead spray systems have been used with some success at moving waste. But the limited number of risers restricts the coverage area of the overhead spray system. Therefore, a floor- level spray system will be used to separate manageable size chunks of the material from the heel. The chunks will be guided into the pump's intake to be remove from the tank. The floor-level spray system movement will be accomplished by using a mobile platform, a crawler, which provides transport to nearly every point on the tank floor. Transport of the spray system will allow the system to ''corral'' the waste away from the tank walls and control the movement of the material across the tank floor. Because the available access riser is small, and a wide crawler platform is required to support the spray system, the crawler's frame must fold to enter the tank. After entry into the tank, the crawler unfolds on the tank floor using the crawler drive tracks to expand the frame and position the mobile platform under the entry riser. The spray system will then be lowered separately through the entry riser and mated onto the crawler on the tank floor. The crawler and spray system are tethered and controlled remotely by personnel at the control station. Motorized cable reels will also be remotely controlled to pay out, retrieve, and manage the

  8. 49 CFR 179.103 - Special requirements for class 114A * * * tank car tanks.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 3 2013-10-01 2013-10-01 false Special requirements for class 114A * * * tank car...) SPECIFICATIONS FOR TANK CARS Specifications for Pressure Tank Car Tanks (Classes DOT-105, 109, 112, 114 and 120) § 179.103 Special requirements for class 114A * * * tank car tanks. (a) In addition to the applicable...

  9. 49 CFR 179.103 - Special requirements for class 114A * * * tank car tanks.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 3 2011-10-01 2011-10-01 false Special requirements for class 114A * * * tank car...) SPECIFICATIONS FOR TANK CARS Specifications for Pressure Tank Car Tanks (Classes DOT-105, 109, 112, 114 and 120) § 179.103 Special requirements for class 114A * * * tank car tanks. (a) In addition to the applicable...

  10. 49 CFR 179.103 - Special requirements for class 114A * * * tank car tanks.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 3 2012-10-01 2012-10-01 false Special requirements for class 114A * * * tank car...) SPECIFICATIONS FOR TANK CARS Specifications for Pressure Tank Car Tanks (Classes DOT-105, 109, 112, 114 and 120) § 179.103 Special requirements for class 114A * * * tank car tanks. (a) In addition to the applicable...

  11. 49 CFR 179.103 - Special requirements for class 114A * * * tank car tanks.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Special requirements for class 114A * * * tank car... SPECIFICATIONS FOR TANK CARS Specifications for Pressure Tank Car Tanks (Classes DOT-105, 109, 112, 114 and 120) § 179.103 Special requirements for class 114A * * * tank car tanks. (a) In addition to the applicable...

  12. Results of oil flow visualization tests of an 0.010-scale model (52-OT) of the space shuttle orbiter-tank mated and orbiter configurations in the AEDC VKF tunnel B (IA17B)

    NASA Technical Reports Server (NTRS)

    Daileda, J. J.

    1975-01-01

    An 0.010-scale model of the space shuttle (orbiter-tank mated and orbiter configurations) was tested in the AEDC VKF Tunnel B to investigate aerodynamic flow patterns. The tests utilized oil flow techniques to visualize the flow patterns. Tunnel free stream Mach number was 7.95 and nominal unit Reynolds number was 3.7 million per foot. Model angle of attack was varied from -5 deg through 10 deg and angle of sideslip was 0 deg and 2 deg. Photographs of resulting oil flow patterns are presented.

  13. 49 CFR 179.201 - Individual specification requirements applicable to non-pressure tank car tanks.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... to non-pressure tank car tanks. 179.201 Section 179.201 Transportation Other Regulations Relating to... MATERIALS REGULATIONS SPECIFICATIONS FOR TANK CARS Specifications for Non-Pressure Tank Car Tanks (Classes... car tanks. ...

  14. 49 CFR 179.201 - Individual specification requirements applicable to non-pressure tank car tanks.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... to non-pressure tank car tanks. 179.201 Section 179.201 Transportation Other Regulations Relating to... (CONTINUED) SPECIFICATIONS FOR TANK CARS Specifications for Non-Pressure Tank Car Tanks (Classes DOT-111AW and 115AW) § 179.201 Individual specification requirements applicable to non-pressure tank car tanks. ...

  15. 49 CFR 179.201 - Individual specification requirements applicable to non-pressure tank car tanks.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... to non-pressure tank car tanks. 179.201 Section 179.201 Transportation Other Regulations Relating to... (CONTINUED) SPECIFICATIONS FOR TANK CARS Specifications for Non-Pressure Tank Car Tanks (Classes DOT-111AW and 115AW) § 179.201 Individual specification requirements applicable to non-pressure tank car tanks. ...

  16. 49 CFR 179.201 - Individual specification requirements applicable to non-pressure tank car tanks.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... to non-pressure tank car tanks. 179.201 Section 179.201 Transportation Other Regulations Relating to... (CONTINUED) SPECIFICATIONS FOR TANK CARS Specifications for Non-Pressure Tank Car Tanks (Classes DOT-111AW and 115AW) § 179.201 Individual specification requirements applicable to non-pressure tank car tanks. ...

  17. Tanks 18 And 19-F Structural Flowable Grout Fill Material Evaluation And Recommendations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Langton, C. A.; Stefanko, D. B.

    2013-04-23

    Cementitious grout will be used to close Tanks 18-F and 19-F. The functions of the grout are to: 1) physically stabilize the final landfill by filling the empty volume in the tanks with a non-compressible material; 2) provide a barrier for inadvertent intrusion into the tank; 3) reduce contaminant mobility by a) limiting the hydraulic conductivity of the closed tank and b) reducing contact between the residual waste and infiltrating water; and 4) providing an alkaline, chemically reducing environment in the closed tank to control speciation and solubility of selected radionuclides. The objective of this work was to identify amore » single (all-in-one) grout to stabilize and isolate the residual radionuclides in the tank, provide structural stability of the closed tank and serve as an inadvertent intruder barrier. This work was requested by V. A. Chander, High Level Waste (HLW) Tank Engineering, in HLW-TTR-2011-008. The complete task scope is provided in the Task Technical and QA Plan, SRNL-RP-2011-00587 Revision 0. The specific objectives of this task were to: 1) Identify new admixtures and dosages for formulating a zero bleed flowable tank fill material selected by HLW Tank Closure Project personnel based on earlier tank fill studies performed in 2007. The chemical admixtures used for adjusting the flow properties needed to be updated because the original admixture products are no longer available. Also, the sources of cement and fly ash have changed, and Portland cements currently available contain up to 5 wt. % limestone (calcium carbonate). 2) Prepare and evaluate the placement, compressive strength, and thermal properties of the selected formulation with new admixture dosages. 3) Identify opportunities for improving the mix selected by HLW Closure Project personnel and prepare and evaluate two potentially improved zero bleed flowable fill design concepts; one based on the reactor fill grout and the other based on a shrinkage compensating flowable fill mix

  18. Development of a remote sensing technique to study the hydrology of earth stock tanks on a semiarid watershed

    NASA Technical Reports Server (NTRS)

    Cluff, C. B.; Lovely, C. J.

    1974-01-01

    The stock tanks considered are relatively small earthen reservoirs, built in tributary stream channels and drainageways. A remote sensing technique is developed for obtaining quantitative data on water levels and water losses from stock tanks. Details of the used approaches are discussed along with some difficulties which would have to be overcome in order to determine the effects of the stock tanks on stream flow.

  19. Thermally driven up-slope flows: state of the art and open questions

    NASA Astrophysics Data System (ADS)

    Zardi, D.

    2015-12-01

    Thermally driven flows over simple slopes are a relevant research topic, not only per se, but also as a source of key concepts for understanding and modelling many other flows over more complex topographies. However, compared to down-slope, up-slope flows have received much less attention in the literature. Indeed, to investigate katabatic winds many extensive and well equipped field measurements were performed in recent years under various research projects, and a series of high-resolution numerical simulations were run. On the contrary, few field experiments have provided detailed datasets documenting the development of anabatic flows, and the analysis of numerical investigations still relies on Schumann's (1990) pioneering LES simulations. Also, analytic solutions - such as Prandtl's (1942) constant-K profiles - reproduce fairly well katabatic flows, but are definitely inadequate to accurately reproduce field data for up-slope flows (Defant 1949). In particular, some open questions still claim for further investigations, such as the conditions of instability of slope-parallel flow vs. vertical motions, and the related possible occurrence of flow separation, and the similarity analysis of slope-normal velocity profiles of temperature anomaly, wind intensity and turbulence related quantities. Here a review of the state of the art on the subject is proposed, along with some insights into possible future developments. ReferencesDefant, F., 1949: Zur Theorie der Hangwinde, nebst Bemerkungen zur Theorie der Berg- und Talwinde. [A theory of slope winds, along with remarks on the theory of mountain winds and valley winds]. Arch. Meteor. Geophys. Bioclimatol., Ser. A, 1, 421-450 (Theoretical and Applied Climatology). [English translation: Whiteman, C.D., and E. Dreiseitl, 1984: Alpine meteorology: Translations of classic contributions by A. Wagner, E. Ekhart and F. Defant. PNL-5141 / ASCOT-84-3. Pacific Northwest Laboratory, Richland, Washington, 121 pp]. Prandtl, L

  20. Three-dimensional transient flow of spin-up in a filled cylinder with oblique gravity force

    NASA Technical Reports Server (NTRS)

    Hung, R. J.; Pan, H. L.

    1995-01-01

    Three-dimensional transient flow profiles of spin-up in a fully liquid filled cylinder from rest with gravity acceleration at various direction are numerically simulated and studied. Particular interests are concentrated on the development of temporary reverse flow zones and Ekman layer right after the impulsive start of spin-up from rest, and decay before the flow reaching to the solid rotation. Relationship of these flow developments and differences in the Reynolds numbers of the flow and its size selection of grid points concerning the numerical instabilities of flow computations are also discussed. In addition to the gravitational acceleration along the axial direction of the cylindrical container, a series of complicated flow profiles accompanied by three-dimensional transient flows with oblique gravitational acceleration has been studies.

  1. 49 CFR 179.101 - Individual specification requirements applicable to pressure tank car tanks.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... to pressure tank car tanks. 179.101 Section 179.101 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) SPECIFICATIONS FOR TANK CARS Specifications for Pressure Tank Car Tanks (Classes DOT-105, 109...

  2. Tank 241-C-112 vapor sampling and analysis tank characterization report. Revision 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huckaby, J.L.

    1995-05-31

    Tank 241-C-112 headspace gas and vapor samples were collected and analyzed to help determine the potential risks to tank farm workers due to fugitive emissions from the tank. The drivers and objectives of waste tank headspace sampling and analysis are discussed in {open_quotes}Program Plan for the Resolution of Tank Vapor Issues.{close_quotes} Tank 241-C-112 was vapor sampled in accordance with {open_quotes}Data Quality Objectives for Generic In-Tank Health and Safety Issue Resolution.{close_quotes}

  3. Liquid rocket metal tanks and tank components

    NASA Technical Reports Server (NTRS)

    Wagner, W. A.; Keller, R. B. (Editor)

    1974-01-01

    Significant guidelines are presented for the successful design of aerospace tanks and tank components, such as expulsion devices, standpipes, and baffles. The state of the art is reviewed, and the design criteria are presented along with recommended practices. Design monographs are listed.

  4. Closeup view of the External Tank and Solid Rocket Boosters ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Close-up view of the External Tank and Solid Rocket Boosters at the Launch Pad at Kennedy Space Center. Note the Hydrogen Vent Arm extending out from the Fixed Service Structure at attached to the Intertank segment of the External Tank. - Space Transportation System, Orbiter Discovery (OV-103), Lyndon B. Johnson Space Center, 2101 NASA Parkway, Houston, Harris County, TX

  5. 241-AZ Tank Farm Construction Extent of Condition Review for Tank Integrity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barnes, Travis J.; Boomer, Kayle D.; Gunter, Jason R.

    2013-07-30

    This report provides the results of an extent of condition construction history review for tanks 241-AZ-101 and 241-AZ-102. The construction history of the 241-AZ tank farm has been reviewed to identify issues similar to those experienced during tank AY-102 construction. Those issues and others impacting integrity are discussed based on information found in available construction records, using tank AY-102 as the comparison benchmark. In the 241-AZ tank farm, the second DST farm constructed, both refractory quality and tank and liner fabrication were improved.

  6. Salt tectonics in an experimental turbiditic tank

    NASA Astrophysics Data System (ADS)

    Sellier, Nicolas; Vendeville, Bruno

    2010-05-01

    We modelled the effect of the deposition of clastic sediments wedges along passive margin by combining two different experimental approaches. The first approach, which uses flume experiments in order to model turbiditic transport and deposition, had focused, so far mainly on the stratigraphic architecture and flow properties. But most experiments have not accounted for the impact of syndepositional deformation. The second approach is the classic tectonic modelling (sand-box experiments) is aimed essentially at understanding deformation, for example the deformation of a sediment wedge deposited onto a mobile salt layer. However, with this approach, the sediment transport processes are crudely modelled by adding each sediment layer uniformly, regardless of the potential influence of the sea-floor bathymetry on the depositional pattern. We designed a new tectono-stratigraphic modelling tank, which combines modelling of the turbiditic transport and deposition, and salt-related deformation driven by sediment loading. The set-up comprises a channel connected to a main water tank. A deformation box is placed at the mouth of the channel, on the base of the tank. The base of the box can be filled with various kinds of substrates either rigid (sand) or viscous (silicone polymer, simulating mobile salt layer having varying length and thickness). A mixture of fine-grained powder and water is maintained in suspension in a container, and then released and channelled toward the basin, generating an analogue of basin-floor fans or lobes. We investigated the effect of depositing several consecutive turbiditic lobes on the deformation of the salt body and its overburden. The dynamics of experimental turbidity currents lead to deposits whose thickness varied gradually laterally: the lobe is thick in the proximal region and thins progressively distally, thus creating a very gentle regional surface slope. As the fan grows by episodic deposition of successive turbiditic lobes, the model

  7. The Effect of Compressibility on the Pressure Reading of a Prandtl Pitot Tube at Subsonic Flow Velocity

    NASA Technical Reports Server (NTRS)

    Walchner, O

    1939-01-01

    Errors arising from yawed flow were also determined up to 20 degrees angle of attack. In axial flow, the Prandtl pitot tube begins at w/a approx. = 0.8 to give an incorrect static pressure reading, while it records the tank pressure correctly, as anticipated, up to sonic velocity. Owing to the compressibility of the air, the Prandtl pitot tube manifests compression shocks when the air speed approaches velocity of sound. This affects the pressure reading of the instrument. Because of the increasing importance of high speed in aviation, this compressibility effect is investigated in detail.

  8. 49 CFR 179.100 - General specifications applicable to pressure tank car tanks.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... car tanks. 179.100 Section 179.100 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) SPECIFICATIONS FOR TANK CARS Specifications for Pressure Tank Car Tanks (Classes DOT-105, 109, 112, 114 and 120...

  9. 49 CFR 179.102 - Special commodity requirements for pressure tank car tanks.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... car tanks. 179.102 Section 179.102 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) SPECIFICATIONS FOR TANK CARS Specifications for Pressure Tank Car Tanks (Classes DOT-105, 109, 112, 114 and 120...

  10. An external tank is moved from a barge in the turn basin to the VAB

    NASA Technical Reports Server (NTRS)

    2000-01-01

    A newly arrived external tank is transported from the turn basin to the Vehicle Assembly Building (VAB), seen behind the tank. External tanks are built by the NASA Michoud Assembly Facility in New Orleans and transported by barge to Cape Canaveral and then up the Banana River to the turn basin in the Launch Complex 39 Area. In the VAB, the tank will await stacking for a future Shuttle mission.

  11. An external tank is moved from a barge in the turn basin to the VAB

    NASA Technical Reports Server (NTRS)

    2000-01-01

    A newly arrived external tank heads from the turn basin toward the Vehicle Assembly Building (VAB), seen behind the tank. External tanks are built by the NASA Michoud Assembly Facility in New Orleans and transported by barge to Cape Canaveral and then up the Banana River to the turn basin in the Launch Complex 39 Area. In the VAB, the tank will await stacking for a future Shuttle mission.

  12. Predictors of residual flow in embolized intracranial ruptured aneurysms at early follow-up.

    PubMed

    Serafin, Zbigniew; Strześniewski, Piotr; Beuth, Wojciech

    2014-01-01

    The possibility of recanalization and the need for retreatment are the most important drawbacks of intracranial aneurysm embolization. The purpose of the study was to prospectively analyze the results of early follow-up angiography of embolized ruptured aneurysms in an attempt to determine factors predicting the presence of residual flow. Evaluation included 72 patients with 72 aneurysms, which were followed-up 3 months after the treatment. Analysis of residual flow predictors included: age and gender, clinical state in Hunt-Hess scale, aneurysm localization, aneurysm three dimensions and volume, neck width, sac-to-neck ratio, initial result of embolization, number of coils used and the use of hydrogel coils and stents. Mean sac diameter was 6.5±3.9 mm, and mean neck width was 2.9±1.4 mm. Follow-up angiography presented residual flow in 26 aneurysms (36.1%): class 2 in 8 aneurysms (11.1%), and class 3 in 18 cases (25.0%). Stable aneurysm filling was observed in 45 cases (62.5%), progression of residual flow in 25 cases (34.7%), and regression in 2 cases (2.8%). According to ROC analysis independent predictors of residual flow were aneurysm neck diameter (AUC 0.857, 95% CI: 0.755-0.928, p<0.0001) and sac-to-neck ratio (AUC 0.817, 95% CI: 0.708-0.898, p<0.0001). Cut-off point of the ROC curve was established at 2.8 mm for neck diameter, and 1.73 for sac-to-neck ratio. Aneurysm neck diameter and sac-to-neck ratio are independently related to the residual flow in embolized ruptured aneurysms at early follow-up.

  13. Quantifying the impact of septic tank systems on eutrophication risk in rural headwaters.

    PubMed

    Withers, P J A; Jarvie, H P; Stoate, C

    2011-04-01

    Septic tank systems (STS) are a potential source of nutrient emissions to surface waters but few data exist in the UK to quantify their significance for eutrophication. We monitored the impact of STS on nutrient concentrations in a stream network around a typical English village over a 1-year period. Septic tank effluent discharging via a pipe directly into one stream was highly concentrated in soluble N (8-63mgL(-1)) and P (<1-14mgL(-1)) and other nutrients (Na, K, Cl, B and Mn) typical of detergent and household inputs. Ammonium-N (NH(4)N) and soluble reactive P (SRP) fractions were dominant (70-85% of total) and average concentrations of nitrite-N (NO(2)N) were above levels considered harmful to fish (0.1mgL(-1)). Lower nutrient concentrations were recorded at a ditch and a stream site, but range and average values downstream of rural habitation were still 4 to 10-fold greater than those in upstream sections. At the ditch site, where flow volumes were low, annual flow-weighted concentrations of NH(4)N and SRP increased from 0.04 and 0.07mgL(-1), respectively upstream to 0.55 and 0.21mgL(-1) downstream. At the stream site, flow volumes were twice as large and flow-weighted concentrations increased much less; from 0.04 to 0.21mgL(-1) for NH(4)N and from 0.06 to 0.08mgL(-1) for SRP. At all sites, largest nutrient concentrations were recorded under low flow and stream discharge was the most important factor determining the eutrophication impact of septic tank systems. The very high concentrations, intercorrelation and dilution patterns of SRP, NH(4)-N and the effluent markers Na and B suggested that soakaways in the heavy clay catchment soils were not retaining and treating the septic tank effluents efficiently, with profound implications for stream biodiversity. Water companies, water regulators and rural communities therefore need to be made more aware of the potential impacts of STS on water quality so that their management can be optimised to reduce the risk of

  14. SINDA/FLUINT Stratified Tank Modeling for Cryrogenic Propellant Tanks

    NASA Technical Reports Server (NTRS)

    Sakowski, Barbara

    2014-01-01

    A general purpose SINDA/FLUINT (S/F) stratified tank model was created to simulate self-pressurization and axial jet TVS; Stratified layers in the vapor and liquid are modeled using S/F lumps.; The stratified tank model was constructed to permit incorporating the following additional features:, Multiple or singular lumps in the liquid and vapor regions of the tank, Real gases (also mixtures) and compressible liquids, Venting, pressurizing, and draining, Condensation and evaporation/boiling, Wall heat transfer, Elliptical, cylindrical, and spherical tank geometries; Extensive user logic is used to allow detailed tailoring - Don't have to rebuilt everything from scratch!!; Most code input for a specific case is done through the Registers Data Block:, Lump volumes are determined through user input:; Geometric tank dimensions (height, width, etc); Liquid level could be input as either a volume percentage of fill level or actual liquid level height

  15. Modeling of Gaseous Oxygen Liquefaction Inside Mars Ascent Vehicle Propellant Tank

    NASA Technical Reports Server (NTRS)

    Wang, Xiao-Yen; Plachta, David

    2016-01-01

    The In-Situ production of propellants for Mars missions has been considered to utilize the Carbon dioxide (CO2) in Mars atmosphere to produce Oxygen using a high temperature solid oxide electrolyzer. The oxygen then needs to be cooled, liquefied, and stored to be available for propulsion and other end users. The storage period could be up to two years either in the actual Mars ascent propulsion tanks or in a separate tank. Recent investigations have demonstrated the feasibility of both achieving zero-boil-off and controlling the pressure of oxygen within a tank using high efficiency cryocoolers. A representative configuration of tube on tank liquefaction using cryocooler is shown in Fig. 1.

  16. CFD Extraction of Heat Transfer Coefficient in Cryogenic Propellant Tanks

    NASA Technical Reports Server (NTRS)

    Yang, H. Q.; West, Jeff

    2015-01-01

    Current reduced-order thermal model for cryogenic propellant tanks is based on correlations built for flat plates collected in the 1950's. The use of these correlations suffers from inaccurate geometry representation; inaccurate gravity orientation; ambiguous length scale; and lack of detailed validation. This study uses first-principles based CFD methodology to compute heat transfer from the tank wall to the cryogenic fluids and extracts and correlates the equivalent heat transfer coefficient to support reduced-order thermal model. The CFD tool was first validated against available experimental data and commonly used correlations for natural convection along a vertically heated wall. Good agreements between the present prediction and experimental data have been found for flows in laminar as well turbulent regimes. The convective heat transfer between the tank wall and cryogenic propellant, and that between the tank wall and ullage gas were then simulated. The results showed that the commonly used heat transfer correlations for either vertical or horizontal plate over-predict heat transfer rate for the cryogenic tank, in some cases by as much as one order of magnitude. A characteristic length scale has been defined that can correlate all heat transfer coefficients for different fill levels into a single curve. This curve can be used for the reduced-order heat transfer model analysis.

  17. Liquid Hydrogen Propellant Tank Sub-Surface Pressurization with Gaseous Helium

    NASA Technical Reports Server (NTRS)

    Stephens, J. R.; Cartagena, W.

    2015-01-01

    A series of tests were conducted to evaluate the performance of a propellant tank pressurization system with the pressurant diffuser intentionally submerged beneath the surface of the liquid. Propellant tanks and pressurization systems are typically designed with the diffuser positioned to apply pressurant gas directly into the tank ullage space when the liquid propellant is settled. Space vehicles, and potentially propellant depots, may need to conduct tank pressurization operations in micro-gravity environments where the exact location of the liquid relative to the diffuser is not well understood. If the diffuser is positioned to supply pressurant gas directly to the tank ullage space when the propellant is settled, then it may become partially or completely submerged when the liquid becomes unsettled in a microgravity environment. In such case, the pressurization system performance will be adversely affected requiring additional pressurant mass and longer pressurization times. This series of tests compares and evaluates pressurization system performance using the conventional method of supplying pressurant gas directly to the propellant tank ullage, and then supplying pressurant gas beneath the liquid surface. The pressurization tests were conducted on the Engineering Development Unit (EDU) located at Test Stand 300 at NASA Marshall Space Flight Center (MSFC). EDU is a ground based Cryogenic Fluid Management (CFM) test article supported by Glenn Research Center (GRC) and MSFC. A 150 ft3 propellant tank was filled with liquid hydrogen (LH2). The pressurization system used regulated ambient helium (GHe) as a pressurant, a variable position valve to maintain flow rate, and two identical independent pressurant diffusers. The ullage diffuser was located in the forward end of the tank and was completely exposed to the tank ullage. The submerged diffuser was located in the aft end of the tank and was completely submerged when the tank liquid level was 10% or greater

  18. Evaluation of decentralized treatment of sewage employing Upflow Septic Tank/Baffled Reactor (USBR) in developing countries.

    PubMed

    Sabry, Tarek

    2010-02-15

    A new concept for a low-cost modified septic tank, named Upflow Septic Tank/Baffled Reactor (USBR), was constructed and tested in a small village in Egypt. During almost one year of continuous operation and monitoring, this system was found to have very satisfactory removal results, where the average results of COD, BOD, and TSS removal efficiencies were 84%, 81%, and 89%, respectively, and the results of the experiment proved that the second compartment (Anaerobic Baffled Reactor) was the main treatment unit in removing the pollutants during the start-up period and at the very early steady-state stage. However, after this period and during the steady-state operation conditions, the second compartment served as a polishing step. Also, it was observed that the USBR system was not affected by the imposed shock loads at the peak flow and organic periods. The results showed that the system is slightly influenced by the drop in the temperature. Decreasing in BOD and COD removal by factor of 9% was observed, when temperature decreases from the average of 35 degrees C in summer time (for the first 127 days) to the average of 22 degrees C in winter time (between day 252 and day 280). Whereas, the TSS removals were not affected by the drop in temperature. The results of the sewage flow variations during one year of operation were compared with Goodrich Formula to see the applicability of this equation in rural developing countries. MAIN FINDING OF THE WORK: The Upflow Septic Tank/Baffled Reactor system could become a promising alternative to the conventional treatment plants in rural developing countries.

  19. Analysis of railroad tank car releases using a generalized binomial model.

    PubMed

    Liu, Xiang; Hong, Yili

    2015-11-01

    The United States is experiencing an unprecedented boom in shale oil production, leading to a dramatic growth in petroleum crude oil traffic by rail. In 2014, U.S. railroads carried over 500,000 tank carloads of petroleum crude oil, up from 9500 in 2008 (a 5300% increase). In light of continual growth in crude oil by rail, there is an urgent national need to manage this emerging risk. This need has been underscored in the wake of several recent crude oil release incidents. In contrast to highway transport, which usually involves a tank trailer, a crude oil train can carry a large number of tank cars, having the potential for a large, multiple-tank-car release incident. Previous studies exclusively assumed that railroad tank car releases in the same train accident are mutually independent, thereby estimating the number of tank cars releasing given the total number of tank cars derailed based on a binomial model. This paper specifically accounts for dependent tank car releases within a train accident. We estimate the number of tank cars releasing given the number of tank cars derailed based on a generalized binomial model. The generalized binomial model provides a significantly better description for the empirical tank car accident data through our numerical case study. This research aims to provide a new methodology and new insights regarding the further development of risk management strategies for improving railroad crude oil transportation safety. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Temperature and flow measurements on near-freezing aviation fuels in a wing-tank model

    NASA Technical Reports Server (NTRS)

    Friedman, R.; Stockemer, F. J.

    1980-01-01

    Freezing behavior, pumpability, and temperature profiles for aviation turbine fuels were measured in a 190-liter tank chilled to simulate internal temperature gradients encountered in commercial airplane wing tanks. When the bulk of the fuel was above the specification freezing point, pumpout of the fuel removed all fuel except a layer adhering to the bottom chilled surfaces, and the unpumpable fraction depended on the fuel temperature near these surfaces. When the bulk of the fuel was at or below the freezing point, pumpout ceased when solids blocked the pump inlet, and the unpumpable fraction depended on the overall average temperature.

  1. 46 CFR 32.65-30 - Tank vessels with independent tanks-TB/ALL.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 1 2012-10-01 2012-10-01 false Tank vessels with independent tanks-TB/ALL. 32.65-30 Section 32.65-30 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS SPECIAL EQUIPMENT, MACHINERY, AND HULL REQUIREMENTS Hull Requirements for Tank Vessels Constructed On or After November 10...

  2. 46 CFR 32.65-30 - Tank vessels with independent tanks-TB/ALL.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 1 2011-10-01 2011-10-01 false Tank vessels with independent tanks-TB/ALL. 32.65-30 Section 32.65-30 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS SPECIAL EQUIPMENT, MACHINERY, AND HULL REQUIREMENTS Hull Requirements for Tank Vessels Constructed On or After November 10...

  3. 46 CFR 32.65-30 - Tank vessels with independent tanks-TB/ALL.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 1 2014-10-01 2014-10-01 false Tank vessels with independent tanks-TB/ALL. 32.65-30 Section 32.65-30 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS SPECIAL EQUIPMENT, MACHINERY, AND HULL REQUIREMENTS Hull Requirements for Tank Vessels Constructed On or After November 10...

  4. 46 CFR 32.65-30 - Tank vessels with independent tanks-TB/ALL.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 1 2013-10-01 2013-10-01 false Tank vessels with independent tanks-TB/ALL. 32.65-30 Section 32.65-30 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS SPECIAL EQUIPMENT, MACHINERY, AND HULL REQUIREMENTS Hull Requirements for Tank Vessels Constructed On or After November 10...

  5. Water tank installed at A-3 Test Stand

    NASA Technical Reports Server (NTRS)

    2009-01-01

    A water tank is lifted into place at the A-3 Test Stand being built at NASA's John C. Stennis Space Center. Fourteen water, liquid oxygen (LOX) and isopropyl alcohol (IPA) tanks are being installed to support the chemical steam generators to be used on the A-3 Test Stand. The IPA and LOX tanks will provide fuel for the generators. The water will allow the generators to produce steam that will be used to reduce pressure inside the stand's test cell diffuser, enabling operators to simulate altitudes up to 100,000 feet. In that way, operators can perform the tests needed on rocket engines being built to carry humans back to the moon and possibly beyond. The A-3 Test Stand is set for completion and activation in 2011.

  6. Water tank installed at A-3 Test Stand

    NASA Image and Video Library

    2009-08-13

    A water tank is lifted into place at the A-3 Test Stand being built at NASA's John C. Stennis Space Center. Fourteen water, liquid oxygen (LOX) and isopropyl alcohol (IPA) tanks are being installed to support the chemical steam generators to be used on the A-3 Test Stand. The IPA and LOX tanks will provide fuel for the generators. The water will allow the generators to produce steam that will be used to reduce pressure inside the stand's test cell diffuser, enabling operators to simulate altitudes up to 100,000 feet. In that way, operators can perform the tests needed on rocket engines being built to carry humans back to the moon and possibly beyond. The A-3 Test Stand is set for completion and activation in 2011.

  7. Development of dissolved air flotation technology from the first generation to the newest (third) one (DAF in turbulent flow conditions).

    PubMed

    Kiuru, H J

    2001-01-01

    This paper gives a brief description of the development of dissolved air flotation DAF (or so-called high pressure flotation) as an unit operation for removal of solids in water and wastewater treatment during the last 80 years up to this time. The first DAF-systems used in the water industry were the ADKA and Sveen-Pedersen ones from the 1920s. Some of these are still in use. The tanks in which the flotation phenomenon takes place in these systems are very shallow and narrow as well as rather long. The flow rate of water is some 2-3 m/h (at most less than 5 m/h only) and there is a very thin micro-bubble blanket below the water surface between the dry sludge blanket on that and the clarified water which flows almost horizontally below the bubble blanket toward the end of the tanks to be taken out there from near the bottom. The second generation of DAF was introduced in the 1960s and these units are widely in use today. Their tanks are almost square ones having usually a little bit more length than breadth. They are rather deep, too. There is an under-flow wall in front of the back wall of the units having a narrow horizontal gap on the bottom of the tanks for letting out the clarified water from the flotation space. The flow rate of water is usually 5-7 m/h or at most less than 10 m/h. The direction of flow is 30-45 degrees below the horizontal. There is a rather thick micro-bubble bed at the beginning of the tank below the dry sludge blanket. This bubble-bed becomes clearly thinner, when going toward the end of the tank. There are also round DAF tanks which are based on the same hydraulic principles as the rectangular ones presented above. A special application of DAF called the flotation filter was invented at the very end of the 1960s. It is a combination of flotation and rapid sand filtration, both of those being placed in the same tank. Flotation takes place in the upper part of the tank and the filter has been placed in the lower part of it. The direction

  8. 49 CFR 179.201 - Individual specification requirements applicable to non-pressure tank car tanks.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... to non-pressure tank car tanks. 179.201 Section 179.201 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) SPECIFICATIONS FOR TANK CARS Specifications for Non-Pressure Tank Car Tanks (Classes DOT-111AW...

  9. Asymptomatic ST-segment depression during exercise testing and the risk of sudden cardiac death in middle-aged men: a population-based follow-up study

    PubMed Central

    Laukkanen, Jari A.; Mäkikallio, Timo H.; Rauramaa, Rainer; Kurl, Sudhir

    2009-01-01

    Aims Silent electrocardiographic ST change predicts future coronary events in patients with coronary heart disease (CHD), but the prognostic significance of asymptomatic ST-segment depression with respect to sudden cardiac death in subjects without apparent CHD is not well known. Methods and results We investigated the association between silent ST-segment depression during and after maximal symptom-limited exercise test and the risk of sudden cardiac death in a population-based sample of 1769 men without evident CHD. A total of 72 sudden cardiac death occurred during the median follow-up of 18 years. The risk of sudden cardiac death was increased among men with asymptomatic ST-segment depression during exercise [hazard ratio (HR) 2.1, 95% confidence interval (CI) 1.2–3.9] as well as among those with asymptomatic ST-segment depression during recovery period (HR 3.2, 95% CI 1.7–6.0). Asymptomatic ST-depression during exercise testing was a stronger predictor for the risk of sudden cardiac death especially among smokers as well as in hypercholesterolaemic and hypertensive men than in men without these risk factors. Conclusion Asymptomatic ST-segment depression was a very strong predictor of sudden cardiac death in men with any conventional risk factor but no previously diagnosed CHD, emphasizing the value of exercise testing to identify asymptomatic high-risk men who could benefit from preventive measures. PMID:19168533

  10. Jet mixing in low gravity - Results of the Tank Pressure Control Experiment

    NASA Technical Reports Server (NTRS)

    Bentz, M. D.; Meserole, J. S.; Knoll, R. H.

    1992-01-01

    The Tank Pressure Control Experiment (TPCE) is discussed with attention given to the results for controlling storage-tank pressures by forced-convective mixing in microgravitational environments. The fluid dynamics of cryogenic fluids in space is simulated with freon-113 during axial-jet-induced mixing. The experimental flow-pattern data are found to confirm previous data as well as existing mixing correlations. Thermal nonuniformities and tank pressure can be reduced by employing low-energy mixing jets which are useful for enhancing heat/mass transfer between phases. It is found that space cryogenic systems based on the principle of active mixing can be more reliable and predictable than other methods, and continuous or periodic mixing can be accomplished with only minor energy addition to the fluid.

  11. Environmental factors and flow paths related to Escherichia coli concentrations at two beaches on Lake St. Clair, Michigan, 2002–2005

    USGS Publications Warehouse

    Holtschlag, David J.; Shively, Dawn; Whitman, Richard L.; Haack, Sheridan K.; Fogarty, Lisa R.

    2008-01-01

    Regression analyses and hydrodynamic modeling were used to identify environmental factors and flow paths associated with Escherichia coli (E. coli) concentrations at Memorial and Metropolitan Beaches on Lake St. Clair in Macomb County, Mich. Lake St. Clair is part of the binational waterway between the United States and Canada that connects Lake Huron with Lake Erie in the Great Lakes Basin. Linear regression, regression-tree, and logistic regression models were developed from E. coli concentration and ancillary environmental data. Linear regression models on log10 E. coli concentrations indicated that rainfall prior to sampling, water temperature, and turbidity were positively associated with bacteria concentrations at both beaches. Flow from Clinton River, changes in water levels, wind conditions, and log10 E. coli concentrations 2 days before or after the target bacteria concentrations were statistically significant at one or both beaches. In addition, various interaction terms were significant at Memorial Beach. Linear regression models for both beaches explained only about 30 percent of the variability in log10 E. coli concentrations. Regression-tree models were developed from data from both Memorial and Metropolitan Beaches but were found to have limited predictive capability in this study. The results indicate that too few observations were available to develop reliable regression-tree models. Linear logistic models were developed to estimate the probability of E. coli concentrations exceeding 300 most probable number (MPN) per 100 milliliters (mL). Rainfall amounts before bacteria sampling were positively associated with exceedance probabilities at both beaches. Flow of Clinton River, turbidity, and log10 E. coli concentrations measured before or after the target E. coli measurements were related to exceedances at one or both beaches. The linear logistic models were effective in estimating bacteria exceedances at both beaches. A receiver operating

  12. Analysis of In-Canyon Flow Characterisitcs in step-up street canyons

    NASA Astrophysics Data System (ADS)

    PARK, S.; Kim, J.; Choi, W.; Pardyjak, E.

    2017-12-01

    Flow characteristics in strep-up street canyons were investigated focusing on in-canyon region. To see the effects of the building geometry, two building height ratios [ratio of the upwind (Hu) to downwind building heights (Hd) = 0.33, 0.6] were considered and eight building length ratios [ratio of the cross-wind building length (L) to street-canyon width (S) from 0.5 to 4 with the increment of 0.5] were systematically changed. For the model validation, the simulated results were compared with the wind- tunnel data measured for Hu/Hd = 0.33, 0.6 and L/S = 1, 2, 3, and 4. In the CFD model simulations, the corner vortices at the downwind side near the ground level and the recirculation zones above the downwind buildings had the relatively small extents, compared with those in the wind-tunnel experiments. However, the CFD model reproduced the main flow features such as the street-canyon vortices, circulations above the building roof, and the positions of the stagnation points on the downwind building walls in the wind-tunnel experiments reasonably well. By further analyzing the three-dimensional flow structures based on the numerical results simulated in the step-up street canyons, we schematically suggested the flow characteristics with different building-height and building-length ratios.

  13. Single-Shell Tanks Leak Integrity Elements/ SX Farm Leak Causes and Locations - 12127

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Girardot, Crystal; Harlow, Don; Venetz, Theodore

    2012-07-01

    related to leak detection. In-tank parameters can include temperature of the supernatant and sludge, types of waste, and chemical determination by either transfer or sample analysis. Ex-tank information can be assembled from many sources including design media, construction conditions, technical specifications, and other sources. Five conditions may have contributed to SX Farm tank liner failure including: tank design, thermal shock, chemistry-corrosion, liner behavior (bulging), and construction temperature. Tank design did not apparently change from tank to tank for the SX Farm tanks; however, there could be many unknown variables present in the quality of materials and quality of construction. Several significant SX Farm tank design changes occurred from previous successful tank farm designs. Tank construction occurred in winter under cold conditions which could have affected the ductile to brittle transition temperature of the tanks. The SX Farm tanks received high temperature boiling waste from REDOX which challenged the tank design with rapid heat up and high temperatures. All eight of the leaking SX Farm tanks had relatively high rate of temperature rise. Supernatant removal with subsequent nitrate leaching was conducted in all but three of the eight leaking tanks prior to leaks being detected. It is possible that no one characteristic of the SX Farm tanks could in isolation from the others have resulted in failure. However, the application of so many stressors - heat up rate, high temperature, loss of corrosion protection, and tank design working jointly or serially resulted in their failure. Thermal shock coupled with the tank design, construction conditions, and nitrate leaching seem to be the overriding factors that can lead to tank liner failure. The distinction between leaking and sound SX Farm tanks seems to center on the waste types, thermal conditions, and nitrate leaching. (authors)« less

  14. SINGLE-SHELL TANKS LEAK INTEGRITY ELEMENTS/SX FARM LEAK CAUSES AND LOCATIONS - 12127

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    VENETZ TJ; WASHENFELDER D; JOHNSON J

    2012-01-25

    related to leak detection. In-tank parameters can include temperature of the supernatant and sludge, types of waste, and chemical determination by either transfer or sample analysis. Ex-tank information can be assembled from many sources including design media, construction conditions, technical specifications, and other sources. Five conditions may have contributed to SX Farm tank liner failure including: tank design, thermal shock, chemistry-corrosion, liner behavior (bulging), and construction temperature. Tank design did not apparently change from tank to tank for the SX Farm tanks; however, there could be many unknown variables present in the quality of materials and quality of construction. Several significant SX Farm tank design changes occurred from previous successful tank farm designs. Tank construction occurred in winter under cold conditions which could have affected the ductile to brittle transition temperature of the tanks. The SX Farm tanks received high temperature boiling waste from REDOX which challenged the tank design with rapid heat up and high temperatures. All eight of the leaking SX Farm tanks had relatively high rate of temperature rise. Supernatant removal with subsequent nitrate leaching was conducted in all but three of the eight leaking tanks prior to leaks being detected. It is possible that no one characteristic of the SX Farm tanks could in isolation from the others have resulted in failure. However, the application of so many stressors - heat up rate, high temperature, loss of corrosion protection, and tank design - working jointly or serially resulted in their failure. Thermal shock coupled with the tank design, construction conditions, and nitrate leaching seem to be the overriding factors that can lead to tank liner failure. The distinction between leaking and sound SX Farm tanks seems to center on the waste types, thermal conditions, and nitrate leaching.« less

  15. Tank characterization report for double-shell tank 241-AW-105

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sasaki, L.M.

    1997-06-05

    One of the major functions of the Tank Waste Remediation System (TWRS) is to characterize wastes in support of waste management and disposal activities at the Hanford Site. Analytical data from sampling and analysis, along with other available information about a tank, are compiled and maintained in a tank characterization report (TCR). This report and its appendices serve as the TCR for double-shell tank 241-AW-105. The objectives of this report are to use characterization data in response to technical issues associated with tank 241-AW-105 waste; and to provide a standard characterization of this waste in terms of a best-basis inventorymore » estimate. The response to technical issues is summarized in Section 2.0, and the best-basis inventory estimate is presented in Section 3.0. Recommendations regarding safety status and additional sampling needs are provided in Section 4.0. Supporting data and information are contained in the appendices. This report supports the requirements of the Hanford Federal Facility Agreement and Consent Order milestone Characterization. information presented in this report originated from sample analyses and known historical sources. While only the results of a recent sampling event will be used to fulfill the requirements of the data quality objectives (DQOs), other information can be used to support or question conclusions derived from these results. Historical information for tank 241-AW-105 is provided in Appendix A, including surveillance information, records pertaining to waste transfers and tank operations, and expected tank contents derived from a process knowledge model. The recent sampling event listed, as well as pertinent sample data obtained before 1996, are summarized in Appendix B along with the sampling results. The results of the 1996 grab sampling event satisfied the data requirements specified in the sampling and analysis plan (SAP) for this tank. In addition, the tank headspace flammability was measured, which

  16. Data on the mixing of non-Newtonian fluids by a Rushton turbine in a cylindrical tank.

    PubMed

    Khapre, Akhilesh; Munshi, Basudeb

    2016-09-01

    The paper focuses on the data collected from the mixing of shear thinning non-Newtonian fluids in a cylindrical tank by a Rushton turbine. The data presented are obtained by using Computational Fluid Dynamics (CFD) simulation of fluid flow field in the entire tank volume. The CFD validation data for this study is reported in the research article 'Numerical investigation of hydrodynamic behavior of shear thinning fluids in stirred tank' (Khapre and Munshi, 2015) [1]. The tracer injection method is used for the prediction of mixing time and mixing efficiency of a Rushton turbine impeller.

  17. 40 CFR 270.305 - What tank information must I keep at my facility?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ..., bypass systems, and pressure controls (e.g., vents). (d) A diagram of piping, instrumentation, and process flow for each tank system. (e) A description of materials and equipment used to provide external...

  18. 40 CFR 270.305 - What tank information must I keep at my facility?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ..., bypass systems, and pressure controls (e.g., vents). (d) A diagram of piping, instrumentation, and process flow for each tank system. (e) A description of materials and equipment used to provide external...

  19. 40 CFR 270.305 - What tank information must I keep at my facility?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ..., bypass systems, and pressure controls (e.g., vents). (d) A diagram of piping, instrumentation, and process flow for each tank system. (e) A description of materials and equipment used to provide external...

  20. 40 CFR 270.305 - What tank information must I keep at my facility?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ..., bypass systems, and pressure controls (e.g., vents). (d) A diagram of piping, instrumentation, and process flow for each tank system. (e) A description of materials and equipment used to provide external...

  1. Research on Liquid Management Technology in Water Tank and Reactor for Propulsion System with Hydrogen Production System Utilizing Aluminum and Water Reaction

    NASA Astrophysics Data System (ADS)

    Imai, Ryoji; Imamura, Takuya; Sugioka, Masatoshi; Higashino, Kazuyuki

    2017-12-01

    High pressure hydrogen produced by aluminum and water reaction is considered to be applied to space propulsion system. Water tank and hydrogen production reactor in this propulsion system require gas and liquid separation function under microgravity condition. We consider to install vane type liquid acquisition device (LAD) utilizing surface tension in the water tank, and install gas-liquid separation mechanism by centrifugal force which swirling flow creates in the hydrogen reactor. In water tank, hydrophilic coating was covered on both tank wall and vane surface to improve wettability. Function of LAD in water tank and gas-liquid separation in reaction vessel were evaluated by short duration microgravity experiments using drop tower facility. In the water tank, it was confirmed that liquid was driven and acquired on the outlet due to capillary force created by vanes. In addition of this, it was found that gas-liquid separation worked well by swirling flow in hydrogen production reactor. However, collection of hydrogen gas bubble was sometimes suppressed by aluminum alloy particles, which is open problem to be solved.

  2. A follow-up study of airway symptoms and lung function among residents and workers 5.5 years after an oil tank explosion.

    PubMed

    Granslo, Jens-Tore; Bråtveit, Magne; Hollund, Bjørg Eli; Lygre, Stein Håkon Låstad; Svanes, Cecilie; Moen, Bente Elisabeth

    2017-01-17

    Assess if people who lived or worked in an area polluted after an oil tank explosion had persistent respiratory health impairment as compared to a non-exposed population 5.5 years after the event. A follow-up study 5.5 years after the explosion, 330 persons aged 18-67 years, compared lung function, lung function decline and airway symptoms among exposed persons (residents <6 km from the accident site or working in the industrial harbour at the time of the explosion) with a non-exposed group (residence >20 km away). Also men in the exposed group who had participated in accident related tasks (firefighting or clean-up of pollution) were compared with men who did not. Data were analysed using Poisson regression, adjusted for smoking, occupational exposure, atopy and age. Exposed men who had participated in accident related tasks had higher prevalence of lower airway symptoms after 5.5 years (n = 24 [73%]) than non-exposed men (28 [48%]), (adjusted relative risk 1.51 [95% confidence interval 1.07, 2.14]). Among men who participated in accident related tasks FEV 1 decline was 48 mL per year, and 12 mL among men who did not (adjusted difference -34 mL per year [-67 mL, -1 mL]), and at follow-up FEV 1 /FVC ratio was 71.4 and 74.2% respectively, (adjusted difference -3.0% [-6.0, 0.0%]). Residents and workers had more airway symptoms and impaired lung function 5.5 years after an oil tank explosion, most significant for a group of men engaged in firefighting and clean-up of pollution after the accident. Public health authorities should be aware of long-term consequences after such accidents.

  3. Post-warm-up muscle temperature maintenance: blood flow contribution and external heating optimisation.

    PubMed

    Raccuglia, Margherita; Lloyd, Alex; Filingeri, Davide; Faulkner, Steve H; Hodder, Simon; Havenith, George

    2016-02-01

    Passive muscle heating has been shown to reduce the drop in post-warm-up muscle temperature (Tm) by about 25% over 30 min, with concomitant sprint/power performance improvements. We sought to determine the role of leg blood flow in this cooling and whether optimising the heating procedure would further benefit post-warm-up T m maintenance. Ten male cyclists completed 15-min sprint-based warm-up followed by 30 min recovery. Vastus lateralis Tm (Tmvl) was measured at deep-, mid- and superficial-depths before and after the warm-up, and after the recovery period (POST-REC). During the recovery period, participants wore water-perfused trousers heated to 43 °C (WPT43) with either whole leg heating (WHOLE) or upper leg heating (UPPER), which was compared to heating with electrically heated trousers at 40 °C (ELEC40) and a non-heated control (CON). The blood flow cooling effect on Tmvl was studied comparing one leg with (BF) and without (NBF) blood flow. Warm-up exercise significantly increased Tmvl by ~3 °C at all depths. After the recovery period, BF Tmvl was lower (~0.3 °C) than NBF Tmvl at all measured depths, with no difference between WHOLE versus UPPER. WPT43 reduced the post-warm-up drop in deep-Tmvl (-0.12 °C ± 0.3 °C) compared to ELEC40 (-1.08 ± 0.4 °C) and CON (-1.3 ± 0.3 °C), whereas mid- and superficial-Tmvl even increased by 0.15 ± 0.3 and 1.1 ± 1.1 °C, respectively. Thigh blood flow contributes to the post-warm-up Tmvl decline. Optimising the external heating procedure and increasing heating temperature of only 3 °C successfully maintained and even increased T mvl, demonstrating that heating temperature is the major determinant of post-warm-up Tmvl cooling in this application.

  4. Generation of pyroclastic flows and surges by hot-rock avalanches from the dome of Mount St. Helens volcano, USA

    USGS Publications Warehouse

    Mellors, R.A.; Waitt, R.B.; Swanson, D.A.

    1988-01-01

    Several hot-rock avalanches have occurred during the growth of the composite dome of Mount St. Helens, Washington between 1980 and 1987. One of these occurred on 9 May 1986 and produced a fan-shaped avalanche deposit of juvenile dacite debris together with a more extensive pyroclastic-flow deposit. Laterally thinning deposits and abrasion and baking of wooden and plastic objects show that a hot ash-cloud surge swept beyond the limits of the pyroclastic flow. Plumes that rose 2-3 km above the dome and vitric ash that fell downwind of the volcano were also effects of this event, but no explosion occurred. All the facies observed originated from a single avalanche. Erosion and melting of craterfloor snow by the hot debris caused debris flows in the crater, and a small flood that carried juvenile and other clasts north of the crater. A second, broadly similar event occured in October 1986. Larger events of this nature could present a significant volcanic hazard. ?? 1988 Springer-Verlag.

  5. Submerged jet mixing in nuclear waste tanks: a correlation for jet velocity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Daas, M.; Srivastava, R.; Roelant, D.

    2007-07-01

    Experimental studies were carried out in jet-stirred slurry tanks to correlate the influence of nozzle diameter, initial jet flow velocity, submerged depth of jet, tank diameter and slurry properties on the jet axial velocity. The tanks used in the experimental work had diameters of 0.3 m (1-ft) and 2.13 m (7-ft). The fluids emerged from nozzles of 0.003 m and 0.01 m in diameter, 1/8-inch and 3/8-inch respectively. The examined slurries were non-Newtonian and contained 5 weight percent total insoluble solids. The axial velocities along the centerline of a submerged jet stream were measured at different jet flow rates andmore » at various distances from the nozzle orifice (16 to 200 nozzle diameters) utilizing electromagnetic velocity meter. A new simplified correlation was developed to describe the jet axial velocity in submerged jet stirred tanks utilizing more than 350 data points. The Buckingham Pi theorem and non-linear regression method of multivariate approximation, in conjunction with the Gauss-Jordan elimination method, were used to develop the new correlation. The new correlation agreed well with the experimental data obtained from the current study. Good agreement was also possible with literature data except at large distances from the nozzle as the model slightly overestimated the jet axial velocity. The proposed correlation incorporates the contributions of system geometry, fluid properties, and external forces. Furthermore, it provides reasonable estimates of jet axial velocity. (authors)« less

  6. Monitoring and analysis of liquid storage in LNG tank based on different support springs

    NASA Astrophysics Data System (ADS)

    He, Hua; Sun, Jianping; Li, Ke; Wu, Zheng; Chen, Qidong; Chen, Guodong; Cao, Can

    2018-04-01

    With the rapid development of social modernization, LNG vehicles are springing up in daily life. However, it is difficult to monitor and judge the liquid storage tanks accurately and quickly. Based on this, this paper presents a new method of liquid storage monitoring, LNG tank on-line vibration monitoring system. By collecting the vibration frequency of LNG tank and tank liquid and supporting spring system, the liquid storage quality in the tank can be calculated. In this experiment, various vibration modes of the tank spring system are fully taken into account. The vibration effects of different types of support springs on the LNG tank system were investigated. The results show that the spring model has a great influence on the test results. This study provides a technical reference for the selection of suitable support springs for liquid storage monitoring.

  7. Turbulent behaviour of non-cohesive sediment gravity flows at unexpectedly high flow density

    NASA Astrophysics Data System (ADS)

    Baker, Megan; Baas, Jaco H.; Malarkey, Jonathan; Kane, Ian

    2016-04-01

    Experimental lock exchange-type turbidity currents laden with non-cohesive silica-flour were found to be highly dynamic at remarkably high suspended sediment concentrations. These experiments were conducted to produce sediment gravity flows of volumetric concentrations ranging from 1% to 52%, to study how changes in suspended sediment concentration affects the head velocities and run-out distances of these flows, in natural seawater. Increasing the volumetric concentration of suspended silica-flour, C, up to C = 46%, within the flows led to a progressive increase in the maximum head velocity. This relationship suggests that suspended sediment concentration intensifies the density difference between the turbulent suspension and the ambient water, which drives the flow, even if almost half of the available space is occupied by sediment particles. However, from C = 46% to C = 52% a rapid reduction in the maximum head velocity was measured. It is inferred that at C = 46%, friction from grain-to-grain interactions begins to attenuate turbulence within the flows. At C > 46%, the frictional stresses become progressively more dominant over the turbulent forces and excess density, thus producing lower maximum head velocities. This grain interaction process started to rapidly reduce the run-out distance of the silica-flour flows at equally high concentrations of C ≥ 47%. All flows with C < 47% reflected off the end of the 5-m long tank, but the head velocities gradually reduced along the tank. Bagnold (1954, 1963) estimated that, for sand flows, grain-to-grain interactions start to become important in modulating turbulence at C > 9%. Yet, the critical flow concentration at which turbulence modulation commenced for these silica-flour laden flows appeared to be much higher. We suggest that Bagnold's 9% criterion cannot be applied to flows that carry fine-grained sediment, because turbulent forces are more important than dispersive forces, and frictional forces start to

  8. Mount St. Helens Rebirth

    NASA Technical Reports Server (NTRS)

    2002-01-01

    The catastrophic eruption of Mt. St. Helens 20 years ago today (on May 18, 1980), ranks among the most important natural events of the twentieth century in the United States. Because Mt. St. Helens is in a remote area of the Cascades Mountains, only a few people were killed by the eruption, but property damage and destruction totaled in the billions of dollars. Mount St. Helens is an example of a composite or stratovolcano. These are explosive volcanoes that are generally steep-sided, symmetrical cones built up by the accumulation of debris from previous eruptions and consist of alternating layers of lava flows, volcanic ash and cinder. Some of the most photographed mountains in the world are stratovolcanoes, including Mount Fuji in Japan, Mount Cotopaxi in Ecuador, Mount Hood in Oregon, and Mount Rainier in Washington. The recently erupting Mount Usu on the island of Hokkaido in Japan is also a stratovolcano. Stratovolcanoes are characterized by having plumbing systems that move magma from a chamber deep within the Earth's crust to vents at the surface. The height of Mt. St. Helens was reduced from about 2950 m (9677 ft) to about 2550 m (8364 ft) as a result of the explosive eruption on the morning of May 18. The eruption sent a column of dust and ash upwards more than 25 km into the atmosphere, and shock waves from the blast knocked down almost every tree within 10 km of the central crater. Massive avalanches and mudflows, generated by the near-instantaneous melting of deep snowpacks on the flanks of the mountain, devastated an area more than 20 km to the north and east of the former summit, and rivers choked with all sorts of debris were flooded more than 100 km away. The area of almost total destruction was about 600 sq. km. Ash from the eruption cloud was rapidly blown to the northeast and east producing lightning which started many small forest fires. An erie darkness caused by the cloud enveloped the landscape more than 200 km from the blast area, and ash

  9. Cryogenic Pressure Control Modeling for Ellipsoidal Space Tanks in Reduced Gravity

    NASA Technical Reports Server (NTRS)

    Hedayat, Ali; Lopez, Alfredo; Grayson, Gary D.; Chandler, Frank O.; Hastings, Leon J.

    2008-01-01

    A computational fluid dynamics (CFD) model is developed to simulate pressure control of an ellipsoidal-shaped liquid hydrogen tank under external heating in low gravity. Pressure control is provided by an axial jet thermodynamic vent system (TVS) centered within the vessel that injects cooler liquid into the tank, mixing the contents and reducing tank pressure. The two-phase cryogenic tank model considers liquid hydrogen in its own vapor with liquid density varying with temperature only and a fully compressible ullage. The axisymmetric model is developed using a custom version of the commercially available FLOW-3D software and simulates low gravity extrapolations of engineering checkout tests performed at Marshall Space Flight Center in 1999 in support of the Solar Thermal Upper Stage Technology Demonstrator (STUSTD) program. Model results illustrate that stable low gravity liquid-gas interfaces are maintained during all phases of the pressure control cycle. Steady and relatively smooth ullage pressurization rates are predicted. This work advances current low gravity CFD modeling capabilities for cryogenic pressure control and aids the development of a low cost CFD-based design process for space hardware.

  10. 49 CFR 179.103 - Special requirements for class 114A * * * tank car tanks.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 3 2014-10-01 2014-10-01 false Special requirements for class 114A * * * tank car...) PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) SPECIFICATIONS FOR TANK CARS Specifications for Pressure Tank Car Tanks (Classes DOT-105, 109, 112, 114 and 120...

  11. 1st Stage Separation Aerodynamics Of VEGA Launcher

    NASA Astrophysics Data System (ADS)

    Genito, M.; Paglia, F.; Mogavero, A.; Barbagallo, D.

    2011-05-01

    VEGA is an European launch vehicle under development by the Prime Contractor ELV S.p.A. in the frame of an ESA contract. It is constituted by four stages, dedicated to the scientific/commercial market of small satellites (300 ÷ 2500 kg) into Low Earth Orbits, with inclinations ranging from 5.2° up to Sun Synchronous Orbits and with altitude ranging from 300 to 1500 km. Aim of this paper is to present a study of flow field due to retro-rockets impingement during the 1st stage VEGA separation phase. In particular the main goal of the present work is to present the aerodynamic activities performed for the justification of the separation phase.

  12. PSO-tuned PID controller for coupled tank system via priority-based fitness scheme

    NASA Astrophysics Data System (ADS)

    Jaafar, Hazriq Izzuan; Hussien, Sharifah Yuslinda Syed; Selamat, Nur Asmiza; Abidin, Amar Faiz Zainal; Aras, Mohd Shahrieel Mohd; Nasir, Mohamad Na'im Mohd; Bohari, Zul Hasrizal

    2015-05-01

    The industrial applications of Coupled Tank System (CTS) are widely used especially in chemical process industries. The overall process is require liquids to be pumped, stored in the tank and pumped again to another tank. Nevertheless, the level of liquid in tank need to be controlled and flow between two tanks must be regulated. This paper presents development of an optimal PID controller for controlling the desired liquid level of the CTS. Two method of Particle Swarm Optimization (PSO) algorithm will be tested in optimizing the PID controller parameters. These two methods of PSO are standard Particle Swarm Optimization (PSO) and Priority-based Fitness Scheme in Particle Swarm Optimization (PFPSO). Simulation is conducted within Matlab environment to verify the performance of the system in terms of settling time (Ts), steady state error (SSE) and overshoot (OS). It has been demonstrated that implementation of PSO via Priority-based Fitness Scheme (PFPSO) for this system is potential technique to control the desired liquid level and improve the system performances compared with standard PSO.

  13. Numerical Modeling of Pressurization of Cryogenic Propellant Tank for Integrated Vehicle Fluid System

    NASA Technical Reports Server (NTRS)

    Majumdar, Alok K.; LeClair, Andre C.; Hedayat, Ali

    2016-01-01

    This paper presents a numerical model of pressurization of a cryogenic propellant tank for the Integrated Vehicle Fluid (IVF) system using the Generalized Fluid System Simulation Program (GFSSP). The IVF propulsion system, being developed by United Launch Alliance, uses boiloff propellants to drive thrusters for the reaction control system as well as to run internal combustion engines to develop power and drive compressors to pressurize propellant tanks. NASA Marshall Space Flight Center (MSFC) has been running tests to verify the functioning of the IVF system using a flight tank. GFSSP, a finite volume based flow network analysis software developed at MSFC, has been used to develop an integrated model of the tank and the pressurization system. This paper presents an iterative algorithm for converging the interface boundary conditions between different component models of a large system model. The model results have been compared with test data.

  14. Simulation model of stratified thermal energy storage tank using finite difference method

    NASA Astrophysics Data System (ADS)

    Waluyo, Joko

    2016-06-01

    Stratified TES tank is normally used in the cogeneration plant. The stratified TES tanks are simple, low cost, and equal or superior in thermal performance. The advantage of TES tank is that it enables shifting of energy usage from off-peak demand for on-peak demand requirement. To increase energy utilization in a stratified TES tank, it is required to build a simulation model which capable to simulate the charging phenomenon in the stratified TES tank precisely. This paper is aimed to develop a novel model in addressing the aforementioned problem. The model incorporated chiller into the charging of stratified TES tank system in a closed system. The model was developed in one-dimensional type involve with heat transfer aspect. The model covers the main factors affect to degradation of temperature distribution namely conduction through the tank wall, conduction between cool and warm water, mixing effect on the initial flow of the charging as well as heat loss to surrounding. The simulation model is developed based on finite difference method utilizing buffer concept theory and solved in explicit method. Validation of the simulation model is carried out using observed data obtained from operating stratified TES tank in cogeneration plant. The temperature distribution of the model capable of representing S-curve pattern as well as simulating decreased charging temperature after reaching full condition. The coefficient of determination values between the observed data and model obtained higher than 0.88. Meaning that the model has capability in simulating the charging phenomenon in the stratified TES tank. The model is not only capable of generating temperature distribution but also can be enhanced for representing transient condition during the charging of stratified TES tank. This successful model can be addressed for solving the limitation temperature occurs in charging of the stratified TES tank with the absorption chiller. Further, the stratified TES tank can be

  15. Augmenting two-dimensional hydrodynamic simulations with measured velocity data to identify flow paths as a function of depth on Upper St. Clair River in the Great Lakes basin

    USGS Publications Warehouse

    Holtschlag, D.J.; Koschik, J.A.

    2005-01-01

    Upper St. Clair River, which receives outflow from Lake Huron, is characterized by flow velocities that exceed 7 feet per second and significant channel curvature that creates complex flow patterns downstream from the Blue Water Bridge in the Port Huron, Michigan, and Sarnia, Ontario, area. Discrepancies were detected between depth-averaged velocities previously simulated by a two-dimensional (2D) hydrodynamic model and surface velocities determined from drifting buoy deployments. A detailed ADCP (acoustic Doppler current profiler) survey was done on Upper St. Clair River during July 1–3, 2003, to help resolve these discrepancies. As part of this study, a refined finite-element mesh of the hydrodynamic model used to identify source areas to public water intakes was developed for Upper St. Clair River. In addition, a numerical procedure was used to account for radial accelerations, which cause secondary flow patterns near channel bends. The refined model was recalibrated to better reproduce local velocities measured in the ADCP survey. ADCP data also were used to help resolve the remaining discrepancies between simulated and measured velocities and to describe variations in velocity with depth. Velocity data from ADCP surveys have significant local variability, and statistical processing is needed to compute reliable point estimates. In this study, velocity innovations were computed for seven depth layers posited within the river as the differences between measured and simulated velocities. For each layer, the spatial correlation of velocity innovations was characterized by use of variogram analysis. Results were used with kriging to compute expected innovations within each layer at applicable model nodes. Expected innovations were added to simulated velocities to form integrated velocities, which were used with reverse particle tracking to identify the expected flow path near a sewage outfall as a function of flow depth. Expected particle paths generated by use

  16. Design and Uncertainty Analysis for a PVTt Gas Flow Standard

    PubMed Central

    Wright, John D.; Johnson, Aaron N.; Moldover, Michael R.

    2003-01-01

    A new pressure, volume, temperature, and, time (PVTt) primary gas flow standard at the National Institute of Standards and Technology has an expanded uncertainty (k = 2) of between 0.02 % and 0.05 %. The standard spans the flow range of 1 L/min to 2000 L/min using two collection tanks and two diverter valve systems. The standard measures flow by collecting gas in a tank of known volume during a measured time interval. We describe the significant and novel features of the standard and analyze its uncertainty. The gas collection tanks have a small diameter and are immersed in a uniform, stable, thermostatted water bath. The collected gas achieves thermal equilibrium rapidly and the uncertainty of the average gas temperature is only 7 mK (22 × 10−6 T). A novel operating method leads to essentially zero mass change in and very low uncertainty contributions from the inventory volume. Gravimetric and volume expansion techniques were used to determine the tank and the inventory volumes. Gravimetric determinations of collection tank volume made with nitrogen and argon agree with a standard deviation of 16 × 10−6 VT. The largest source of uncertainty in the flow measurement is drift of the pressure sensor over time, which contributes relative standard uncertainty of 60 × 10−6 to the determinations of the volumes of the collection tanks and to the flow measurements. Throughout the range 3 L/min to 110 L/min, flows were measured independently using the 34 L and the 677 L collection systems, and the two systems agreed within a relative difference of 150 × 10−6. Double diversions were used to evaluate the 677 L system over a range of 300 L/min to 1600 L/min, and the relative differences between single and double diversions were less than 75 × 10−6. PMID:27413592

  17. Eruptions of Mount St. Helens : Past, present, and future

    USGS Publications Warehouse

    Tilling, Robert I.; Topinka, Lyn J.; Swanson, Donald A.

    1990-01-01

    Mount St. Helens, located in southwestern Washington about 50 miles northeast of Portland, Oregon, is one of several lofty volcanic peaks that dominate the Cascade Range of the Pacific Northwest; the range extends from Mount Garibaldi in British Columbia, Canada, to Lassen Peak in northern California. Geologists call Mount St. Helens a composite volcano (or stratovolcano), a term for steepsided, often symmetrical cones constructed of alternating layers of lava flows, ash, and other volcanic debris. Composite volcanoes tend to erupt explosively and pose considerable danger to nearby life and property. In contrast, the gently sloping shield volcanoes, such as those in Hawaii, typically erupt nonexplosively, producing fluid lavas that can flow great distances from the active vents. Although Hawaiian-type eruptions may destroy property, they rarely cause death or injury. Before 1980, snow-capped, gracefully symmetrical Mount St. Helens was known as the "Fujiyama of America." Mount St. Helens, other active Cascade volcanoes, and those of Alaska form the North American segment of the circum-Pacific "Ring of Fire," a notorious zone that produces frequent, often destructive, earthquake and volcanic activity.

  18. Estimating Residual Solids Volume In Underground Storage Tanks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clark, Jason L.; Worthy, S. Jason; Martin, Bruce A.

    2014-01-08

    The Savannah River Site liquid waste system consists of multiple facilities to safely receive and store legacy radioactive waste, treat, and permanently dispose waste. The large underground storage tanks and associated equipment, known as the 'tank farms', include a complex interconnected transfer system which includes underground transfer pipelines and ancillary equipment to direct the flow of waste. The waste in the tanks is present in three forms: supernatant, sludge, and salt. The supernatant is a multi-component aqueous mixture, while sludge is a gel-like substance which consists of insoluble solids and entrapped supernatant. The waste from these tanks is retrieved andmore » treated as sludge or salt. The high level (radioactive) fraction of the waste is vitrified into a glass waste form, while the low-level waste is immobilized in a cementitious grout waste form called saltstone. Once the waste is retrieved and processed, the tanks are closed via removing the bulk of the waste, chemical cleaning, heel removal, stabilizing remaining residuals with tailored grout formulations and severing/sealing external penetrations. The comprehensive liquid waste disposition system, currently managed by Savannah River Remediation, consists of 1) safe storage and retrieval of the waste as it is prepared for permanent disposition; (2) definition of the waste processing techniques utilized to separate the high-level waste fraction/low-level waste fraction; (3) disposition of LLW in saltstone; (4) disposition of the HLW in glass; and (5) closure state of the facilities, including tanks. This paper focuses on determining the effectiveness of waste removal campaigns through monitoring the volume of residual solids in the waste tanks. Volume estimates of the residual solids are performed by creating a map of the residual solids on the waste tank bottom using video and still digital images. The map is then used to calculate the volume of solids remaining in the waste tank. The

  19. Experimental and analytical study of cryogenic propellant boiloff to develop and verify alternate pressurization concepts for Space Shuttle external tank using a scaled down tank

    NASA Technical Reports Server (NTRS)

    Akyuzlu, K. M.; Jones, S.; Meredith, T.

    1993-01-01

    Self pressurization by propellant boiloff is experimentally studied as an alternate pressurization concept for the Space Shuttle external tank (ET). The experimental setup used in the study is an open flow system which is composed of a variable area test tank and a recovery tank. The vacuum jacketed test tank is geometrically similar to the external LOx tank for the Space Shuttle. It is equipped with instrumentation to measure the temperature and pressure histories within the liquid and vapor, and viewports to accommodate visual observations and Laser-Doppler Anemometry measurements of fluid velocities. A set of experiments were conducted using liquid Nitrogen to determine the temperature stratification in the liquid and vapor, and pressure histories of the vapor during sudden and continuous depressurization for various different boundary and initial conditions. The study also includes the development and calibration of a computer model to simulate the experiments. This model is a one-dimensional, multi-node type which assumes the liquid and the vapor to be under non-equilibrium conditions during the depressurization. It has been tested for a limited number of cases. The preliminary results indicate that the accuracy of the simulations is determined by the accuracy of the heat transfer coefficients for the vapor and the liquid at the interface which are taken to be the calibration parameters in the present model.

  20. The Gunite and Associated Tanks Remediation Project Tank Waste Retrieval Performance and Lessons Learned, vol. 1 [of 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lewis, BE

    2003-10-07

    The Gunite and Associated Tanks (GAAT) Remediation Project was the first of its kind performed in the United States. Robotics and remotely operated equipment were used to successfully transfer almost 94,000 gal of remote-handled transuranic sludge containing over 81,000 Ci of radioactive contamination from nine large underground storage tanks at the Oak Ridge National Laboratory (ORNL). The sludge was transferred with over 439,000 gal of radioactive waste supernatant and {approx}420,500 gal of fresh water that was used in sluicing operations. The GAATs are located in a high-traffic area of ORNL near a main thoroughfare. A phased and integrated approach tomore » waste retrieval operations was used for the GAAT Remediation Project. The project promoted safety by obtaining experience from low-risk operations in the North Tank Farm before moving to higher-risk operations in the South Tank Farm. This approach allowed project personnel to become familiar with the tanks and waste, as well as the equipment, processes, procedures, and operations required to perform successful waste retrieval. By using an integrated approach to tank waste retrieval and tank waste management, the project was completed years ahead of the original baseline schedule, which resulted in avoiding millions of dollars in associated costs. This report is organized in two volumes. Volume 1 provides information on the various phases of the GAAT Remediation Project. It also describes the different types of equipment and how they were used. The emphasis of Volume 1 is on the description of the tank waste retrieval performance and the lessons learned during the GAAT Remediation Project. Volume 2 provides the appendixes for the report, which include the following information: (A) Background Information for the Gunite and Associated Tanks Operable Unit; (B) Annotated Bibliography; (C) Comprehensive Listing of the Sample Analysis Data from the GAAT Remediation Project; (D) GAAT Equipment Matrix; and (E

  1. Tank characterization report for single-shell tank 241-C-109

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Simpson, B.C.

    1997-05-23

    One of the major functions of the Tank Waste Remediation System (TWRS) is to characterize wastes in support of waste management and disposal activities at the Hanford Site. Analytical data from sampling and analysis, along with other available information about a tank, are compiled and maintained in a tank characterization report (TCR). This report and its appendices serve as the TCR for single-shell tank 241-C-109. The objectives of this report are: (1) to use characterization data in response to technical issues associated with tank 241 C-109 waste; and (2) to provide a standard characterization of this waste in terms ofmore » a best-basis inventory estimate. The response to technical issues is summarized in Section 2.0, and the best-basis inventory estimate is presented in Section 3.0. Recommendations regarding safety status and additional sampling needs are provided in Section 4.0. Supporting data and information are contained in the appendices.« less

  2. Summary of Activities for Nondestructive Evaluation of Insulation in Cryogenic Tanks

    NASA Technical Reports Server (NTRS)

    Arens, Ellen

    2012-01-01

    This project was undertaken to investigate methods to non-intrusively determine the existence and density of perlite insulation in the annular region of the cryogenic storage vessels, specifically considering the Launch Complex 39 hydrogen tanks at Kennedy Space Center. Lack of insulation in the tanks (as existed in the pad B hydrogen tank at Kennedy Space Center) results in an excessive loss of commodity and can pose operational and safety risks if precautions are not taken to relieve the excessive gas build-up. Insulation with a density that is higher than normal (due to settling or compaction) may also pose an operational and safety risk if the insulation prevents the system from moving and responding to expansions and contractions as fluid is removed and added to the tank.

  3. The analysis of the transient pressure response of the shuttle EPS-ECS cryogenic tanks with external pressurization systems

    NASA Technical Reports Server (NTRS)

    Barton, J. E.; Patterson, H. W.

    1973-01-01

    An analysis of transient pressures in externally pressurized cryogenic hydrogen and oxygen tanks was conducted and the effects of design variables on pressure response determined. The analysis was conducted with a computer program which solves the compressible viscous flow equations in two-dimensional regions representing the tank and external loop. The external loop volume, thermal mass, and heat leak were the dominant design variables affecting the system pressure response. No significant temperature stratification occurred in the fluid contained in the tank.

  4. EXPERIMENTAL METHODS TO ESTIMATE ACCUMULATED SOLIDS IN NUCLEAR WASTE TANKS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Duignan, M.; Steeper, T.; Steimke, J.

    2012-12-10

    The Department of Energy has a large number of nuclear waste tanks. It is important to know if fissionable materials can concentrate when waste is transferred from staging tanks prior to feeding waste treatment plants. Specifically, there is a concern that large, dense particles, e.g., plutonium containing, could accumulate in poorly mixed regions of a blend tank heel for tanks that employ mixing jet pumps. At the request of the DOE Hanford Tank Operations Contractor, Washington River Protection Solutions, the Engineering Development Laboratory of the Savannah River National Laboratory performed a scouting study in a 1/22-scale model of a wastemore » tank to investigate this concern and to develop measurement techniques that could be applied in a more extensive study at a larger scale. Simulated waste tank solids and supernatant were charged to the test tank and rotating liquid jets were used to remove most of the solids. Then the volume and shape of the residual solids and the spatial concentration profiles for the surrogate for plutonium were measured. This paper discusses the overall test results, which indicated heavy solids only accumulate during the first few transfer cycles, along with the techniques and equipment designed and employed in the test. Those techniques include: Magnetic particle separator to remove stainless steel solids, the plutonium surrogate from a flowing stream; Magnetic wand used to manually remove stainless steel solids from samples and the tank heel; Photographs were used to determine the volume and shape of the solids mounds by developing a composite of topographical areas; Laser rangefinders to determine the volume and shape of the solids mounds; Core sampler to determine the stainless steel solids distribution within the solids mounds; Computer driven positioner that placed the laser rangefinders and the core sampler over solids mounds that accumulated on the bottom of a scaled staging tank in locations where jet velocities were

  5. TANK 32 EVAPORATOR FEED PUMP TRANSFER ANALYSIS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tamburello, D; Richard Dimenna, R; Si Lee, S

    2009-01-27

    The transfer of liquid salt solution from Tank 32 to an evaporator is to be accomplished by activating the evaporator feed pump, with the supernate surface at a minimum height of approximately 74.4 inches above the sludge layer, while simultaneously turning on the downcomer with a flow rate of 110 gpm. Previously, activation of the evaporator feed pump was an isolated event without any other components running at the same time. An analysis of the dissolved solution transfer has been performed using computational fluid dynamics (CFD) methods to determine the amount of entrained sludge solids pumped out of the tankmore » toward the evaporator with the downcomer turned on. The analysis results shows that, for the minimum tank liquid level of 105 inches above the tank bottom (which corresponds to a liquid depth of 74.4 inches above the sludge layer), the evaporator feed pump will contain less than 0.1 wt% sludge solids in the discharge stream, which is an order of magnitude less than the 1.0 wt% undissolved solids (UDS) loading criteria to feed the evaporator. Lower liquid levels with respect to the sludge layer will result in higher amounts of sludge entrainment due to the increased plunging jet velocity from the downcomer disturbing the sludge layer.« less

  6. Evaluation of transverse dispersion effects in tank experiments by numerical modeling: parameter estimation, sensitivity analysis and revision of experimental design.

    PubMed

    Ballarini, E; Bauer, S; Eberhardt, C; Beyer, C

    2012-06-01

    Transverse dispersion represents an important mixing process for transport of contaminants in groundwater and constitutes an essential prerequisite for geochemical and biodegradation reactions. Within this context, this work describes the detailed numerical simulation of highly controlled laboratory experiments using uranine, bromide and oxygen depleted water as conservative tracers for the quantification of transverse mixing in porous media. Synthetic numerical experiments reproducing an existing laboratory experimental set-up of quasi two-dimensional flow through tank were performed to assess the applicability of an analytical solution of the 2D advection-dispersion equation for the estimation of transverse dispersivity as fitting parameter. The fitted dispersivities were compared to the "true" values introduced in the numerical simulations and the associated error could be precisely estimated. A sensitivity analysis was performed on the experimental set-up in order to evaluate the sensitivities of the measurements taken at the tank experiment on the individual hydraulic and transport parameters. From the results, an improved experimental set-up as well as a numerical evaluation procedure could be developed, which allow for a precise and reliable determination of dispersivities. The improved tank set-up was used for new laboratory experiments, performed at advective velocities of 4.9 m d(-1) and 10.5 m d(-1). Numerical evaluation of these experiments yielded a unique and reliable parameter set, which closely fits the measured tracer concentration data. For the porous medium with a grain size of 0.25-0.30 mm, the fitted longitudinal and transverse dispersivities were 3.49×10(-4) m and 1.48×10(-5) m, respectively. The procedures developed in this paper for the synthetic and rigorous design and evaluation of the experiments can be generalized and transferred to comparable applications. Copyright © 2012 Elsevier B.V. All rights reserved.

  7. DETAIL VIEW OF WATER TANKS AND PIPELINE TO WATER SOURCE. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    DETAIL VIEW OF WATER TANKS AND PIPELINE TO WATER SOURCE. LOOKING NORTHWEST FROM LARGE TAILINGS PILE. THE TANK ON THE LEFT IS A WATER TANK, POSSIBLY ASSOCIATED WITH A WATER SHAFT THAT IS SEEN AS A RAISED SPOT ON THE GROUND JUST TO THE RIGHT OF IT. THE TANK ON THE RIGHT IS IN DIRECT CONNECTION WITH THE PIPELINE CARRYING WATER FROM A NEARBY SPRING IN THE DISTANCE AT CENTER. THE WATER WAS THEN PUMPED UP TO ALL PARTS OF THE MINING OPERATION, INCLUDING THE UPPER MINES ONE MILE NORTH, THE MILL, AND THE CYANIDE PLANT. THE PIPELINE ITSELF IS DISMANTLED, WITH PARTS OF IT MISSING OR SCATTERED ALONG THE GROUND, AS SEEN IN THE CENTER DISTANCE. THE SPRING IS APPROX. A QUARTER MILE DISTANT, AND IS NOT PROMINENT IN THIS PHOTOGRAPH. - Keane Wonder Mine, Park Route 4 (Daylight Pass Cutoff), Death Valley Junction, Inyo County, CA

  8. X-33 Tank Failure During Autoclave Fabrication

    NASA Technical Reports Server (NTRS)

    Nettles, Alan T.; Munafo, Paul (Technical Monitor)

    2001-01-01

    The composite liquid hydrogen tank (tank #1 of 2) for the X-33 flight vehicle is made up of four lobes that have a sandwich construction, bonded to a frame of longerons. Lobes 1 and 4 showed local disbonds to the longerons they were bonded to. The 'bad' areas were cut away and patched with new material. The new material was cured by placing the entire tank in a heated autoclave with no pressure. Upon removal from the autoclave, it was noted that lobe 1 had severe skin/core disbonds on the inner and outer skins. The skins on this lobe were cracked as well. The core was disbonded from the inner skin across the entire acreage, except for spots around the lobe perimeter. The outer skin was separated from the core in a region near the center of the lobe. Lobe 1 was removed from the tank on January 13, 1999. Bolts were placed through the lobe to hold it together and the cuts on the inner skin were not continuous, but 'tabs' were left for final cutting and removal. Upon closer inspection of the disbonded basesheet, it was noted that there was a lack of filleting into the honeycomb core. Good fillets are critical to bond strength.

  9. Tank Closure Progress at the Department of Energy's Idaho National Engineering Laboratory Tank Farm Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Quigley, K.D.; Butterworth, St.W.; Lockie, K.A.

    2008-07-01

    Significant progress has been made at the U.S. Department of Energy (DOE) Idaho National Laboratory (INL) to empty, clean and close radioactive liquid waste storage tanks at the Idaho Nuclear Technology and Engineering Center (INTEC) Tank Farm Facility (TFF). The TFF includes eleven 1,135.6-kL (300,000-gal) underground stainless steel storage tanks and four smaller, 113.5-kL (30,000-gal) stainless steel tanks, along with tank vaults, interconnecting piping, and ancillary equipment. The TFF tanks have historically been used to store a variety of radioactive liquid waste, including wastes associated with past spent nuclear fuel reprocessing. Although four of the large storage tanks remain inmore » use for waste storage, the other seven 1,135.6-kL (300,000-gal) tanks and the four 113.5-kL (30,000-gal) tanks have been emptied of waste, cleaned and filled with grout. A water spray cleaning system was developed and deployed to clean internal tank surfaces and remove remaining tank wastes. The cleaning system was effective in removing all but a very small volume of solid residual waste particles. Recent issuance of an Amended Record of Decision (ROD) in accordance with the National Environmental Policy Act, and a Waste Determination complying with Section 3116 of the Ronald W. Reagan National Defense Authorization Act (NDAA) for Fiscal Year 2005, has allowed commencement of grouting activities on the cleaned tanks. The first three 113.5-kL (30,000-gal) tanks were grouted in the Fall of 2006 and the fourth tank and the seven 1,135.6-kL (300,000-gal) tanks were filled with grout in 2007 to provide long-term stability. It is currently planned that associated tank valve boxes and interconnecting piping, will be stabilized with grout as early as 2008. (authors)« less

  10. LADEE Propulsion System Cold Flow Test

    NASA Technical Reports Server (NTRS)

    Williams, Jonathan Hunter; Chapman, Jack M.; Trinh, Hau, P.; Bell, James H.

    2013-01-01

    Lunar Atmosphere and Dust Environment Explorer (LADEE) is a NASA mission that will orbit the Moon. Its main objective is to characterize the atmosphere and lunar dust environment. The spacecraft development is being led by NASA Ames Research Center and scheduled for launch in 2013. The LADEE spacecraft will be operated with a bi-propellant hypergolic propulsion system using MMH and NTO as the fuel and oxidizer, respectively. The propulsion system utilizes flight-proven hardware on major components. The propulsion layout is composed of one 100-lbf main thruster and four 5-lbf RCS thrusters. The propellants are stored in four tanks (two parallel-connected tanks per propellant component). The propellants will be pressurized by regulated helium. A simulated propulsion system has been built for conducting cold flow test series to characterize the transient fluid flow of the propulsion system feed lines and to verify the critical operation modes, such as system priming, waterhammer, and crucial mission duty cycles. Propellant drainage differential between propellant tanks will also be assessed. Since the oxidizer feed line system has a higher flow demand than the fuel system does, the cold flow test focuses on the oxidizer system. The objective of the cold flow test is to simulate the LADEE propulsion fluid flow operation through water cold flow test and to obtain data for anchoring analytical models. The models will be used to predict the transient and steady state flow behaviors in the actual flight operations. The test activities, including the simulated propulsion test article, cold flow test, and analytical modeling, are being performed at NASA Marshall Space Flight Center. At the time of the abstract submission, the test article checkout is being performed. The test series will be completed by November, 2012

  11. Influence of heat transfer rates on pressurization of liquid/slush hydrogen propellant tanks

    NASA Technical Reports Server (NTRS)

    Sasmal, G. P.; Hochstein, J. I.; Hardy, T. L.

    1993-01-01

    A multi-dimensional computational model of the pressurization process in liquid/slush hydrogen tank is developed and used to study the influence of heat flux rates at the ullage boundaries on the process. The new model computes these rates and performs an energy balance for the tank wall whereas previous multi-dimensional models required a priori specification of the boundary heat flux rates. Analyses of both liquid hydrogen and slush hydrogen pressurization were performed to expose differences between the two processes. Graphical displays are presented to establish the dependence of pressurization time, pressurant mass required, and other parameters of interest on ullage boundary heat flux rates and pressurant mass flow rate. Detailed velocity fields and temperature distributions are presented for selected cases to further illuminate the details of the pressurization process. It is demonstrated that ullage boundary heat flux rates do significantly effect the pressurization process and that minimizing heat loss from the ullage and maximizing pressurant flow rate minimizes the mass of pressurant gas required to pressurize the tank. It is further demonstrated that proper dimensionless scaling of pressure and time permit all the pressure histories examined during this study to be displayed as a single curve.

  12. 27 CFR 25.35 - Tanks.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Tanks. 25.35 Section 25.35... TREASURY LIQUORS BEER Construction and Equipment Equipment § 25.35 Tanks. Each stationary tank, vat, cask... contents of tanks or containers in lieu of providing each tank or container with a measuring device. (Sec...

  13. 27 CFR 25.35 - Tanks.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2013-04-01 2013-04-01 false Tanks. 25.35 Section 25.35... TREASURY ALCOHOL BEER Construction and Equipment Equipment § 25.35 Tanks. Each stationary tank, vat, cask... contents of tanks or containers in lieu of providing each tank or container with a measuring device. (Sec...

  14. Interior view, looking up toward project west at the heavy ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Interior view, looking up toward project west at the heavy timber joists and center beam supporting the wood water tank. Note the iron compression bands around the perimeter of the tank. Note also the iron (steel?) water fill pipe for the tank, bent to fit between the joists and the tank wall. - East Broad Top Railroad & Company, Water Tank at Coles Station, East Broad Top Railroad & Company (at Milepost 24.3), 0.5 miles east of Coles Valley Road, Saltillo, Huntingdon County, PA

  15. Mapping ecosystem services in the St. Louis River Estuary

    EPA Science Inventory

    Sustainable management of ecosystems for the perpetual flow of services beneficial to human communities requires reliable data about from where in the ecosystem services flow. Our objective is to map ecosystem services in the St. Louis River with the overarching U.S. EPA goal of ...

  16. Isopropyl alcohol tank installed at A-3 Test Stand

    NASA Technical Reports Server (NTRS)

    2009-01-01

    An isopropyl alcohol (IPA) tank is lifted into place at the A-3 Test Stand being built at NASA's John C. Stennis Space Center. Fourteen IPA, water and liquid oxygen (LOX) tanks are being installed to support the chemical steam generators to be used on the A-3 Test Stand. The IPA and LOX tanks will provide fuel for the generators. The water will allow the generators to produce steam that will be used to reduce pressure inside the stand's test cell diffuser, enabling operators to simulate altitudes up to 100,000 feet. In that way, operators can perform the tests needed on rocket engines being built to carry humans back to the moon and possibly beyond. The A-3 Test Stand is set for completion and activation in 2011.

  17. Liquid oxygen tank installed at A-3 Test Stand

    NASA Technical Reports Server (NTRS)

    2009-01-01

    A liquid oxygen (LOX) tank is lifted into place at the A-3 Test Stand being built at NASA's John C. Stennis Space Center. Fourteen LOX, isopropyl alcohol (IPA) and water tanks are being installed to support the chemical steam generators to be used on the A-3 Test Stand. The IPA and LOX tanks will provide fuel for the generators. The water will allow the generators to produce steam that will be used to reduce pressure inside the stand's test cell diffuser, enabling operators to simulate altitudes up to 100,000 feet. In that way, operators can perform the tests needed on rocket engines being built to carry humans back to the moon and possibly beyond. The A-3 Test Stand is set for completion and activation in 2011.

  18. Liquid oxygen tank installed at A-3 Test Stand

    NASA Image and Video Library

    2009-09-18

    A liquid oxygen (LOX) tank is lifted into place at the A-3 Test Stand being built at NASA's John C. Stennis Space Center. Fourteen LOX, isopropyl alcohol (IPA) and water tanks are being installed to support the chemical steam generators to be used on the A-3 Test Stand. The IPA and LOX tanks will provide fuel for the generators. The water will allow the generators to produce steam that will be used to reduce pressure inside the stand's test cell diffuser, enabling operators to simulate altitudes up to 100,000 feet. In that way, operators can perform the tests needed on rocket engines being built to carry humans back to the moon and possibly beyond. The A-3 Test Stand is set for completion and activation in 2011.

  19. Isopropyl alcohol tank installed at A-3 Test Stand

    NASA Image and Video Library

    2009-09-18

    An isopropyl alcohol (IPA) tank is lifted into place at the A-3 Test Stand being built at NASA's John C. Stennis Space Center. Fourteen IPA, water and liquid oxygen (LOX) tanks are being installed to support the chemical steam generators to be used on the A-3 Test Stand. The IPA and LOX tanks will provide fuel for the generators. The water will allow the generators to produce steam that will be used to reduce pressure inside the stand's test cell diffuser, enabling operators to simulate altitudes up to 100,000 feet. In that way, operators can perform the tests needed on rocket engines being built to carry humans back to the moon and possibly beyond. The A-3 Test Stand is set for completion and activation in 2011.

  20. Successfully Mapping the U-Tank to an Electric Circuit

    ERIC Educational Resources Information Center

    Hong, Seok-In

    2010-01-01

    Water-flow analogies are helpful in understanding electricity. For example, in the Lodge model, the constant DC voltage source (a battery) is represented by a U-tank with two water columns of the same cross-sectional area connected by a horizontal duct in which a pump is installed. The pump maintains the difference of the levels of the two water…

  1. Unsteady flow past an airfoil pitched at constant rate

    NASA Technical Reports Server (NTRS)

    Lourenco, L.; Vandommelen, L.; Shib, C.; Krothapalli, A.

    1992-01-01

    The unsteady flow past a NACA 0012 airfoil that is undertaking a constant-rate pitching up motion is investigated experimentally by the PIDV technique in a water towing tank. The Reynolds number is 5000, based upon the airfoil's chord and the free-stream velocity. The airfoil is pitching impulsively from 0 to 30 deg. with a dimensionless pitch rate alpha of 0.131. Instantaneous velocity and associated vorticity data have been acquired over the entire flow field. The primary vortex dominates the flow behavior after it separates from the leading edge of the airfoil. Complete stall emerges after this vortex detaches from the airfoil and triggers the shedding of a counter-rotating vortex near the trailing edge. A parallel computational study using the discrete vortex, random walk approximation has also been conducted. In general, the computational results agree very well with the experiment.

  2. 49 CFR 238.423 - Fuel tanks.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ....423 Fuel tanks. (a) External fuel tanks. Each type of external fuel tank must be approved by FRA's... equivalent to a fuel tank that complies with the external fuel tank requirements in § 238.223(a). (b) Internal fuel tanks. Internal fuel tanks shall comply with the requirements specified in § 238.223(b). ...

  3. Tank characterization report for single-shell tank 241-U-110. Revision 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, T.M.; Jensen, L.

    1993-09-01

    Tank 241-U-110 (U-110) is a Hanford Site waste tank that was ;most recently sampled in November and December 1989. Analysis of the samples obtained from tank U-110 was conducted to support the characterization of the contents of this tank and to support Hanford Federal Facility Agreement and Consent Order milestone M-10-00 (Ecology, et al. 1992). Because of incomplete recovery of the waste during sampling, there may be bias in the results of this characterization report.

  4. Cryogenic Tank Modeling for the Saturn AS-203 Experiment

    NASA Technical Reports Server (NTRS)

    Grayson, Gary D.; Lopez, Alfredo; Chandler, Frank O.; Hastings, Leon J.; Tucker, Stephen P.

    2006-01-01

    A computational fluid dynamics (CFD) model is developed for the Saturn S-IVB liquid hydrogen (LH2) tank to simulate the 1966 AS-203 flight experiment. This significant experiment is the only known, adequately-instrumented, low-gravity, cryogenic self pressurization test that is well suited for CFD model validation. A 4000-cell, axisymmetric model predicts motion of the LH2 surface including boil-off and thermal stratification in the liquid and gas phases. The model is based on a modified version of the commercially available FLOW3D software. During the experiment, heat enters the LH2 tank through the tank forward dome, side wall, aft dome, and common bulkhead. In both model and test the liquid and gases thermally stratify in the low-gravity natural convection environment. LH2 boils at the free surface which in turn increases the pressure within the tank during the 5360 second experiment. The Saturn S-IVB tank model is shown to accurately simulate the self pressurization and thermal stratification in the 1966 AS-203 test. The average predicted pressurization rate is within 4% of the pressure rise rate suggested by test data. Ullage temperature results are also in good agreement with the test where the model predicts an ullage temperature rise rate within 6% of the measured data. The model is based on first principles only and includes no adjustments to bring the predictions closer to the test data. Although quantitative model validation is achieved or one specific case, a significant step is taken towards demonstrating general use of CFD for low-gravity cryogenic fluid modeling.

  5. Liquefaction Study of Gaseous Oxygen Inside Mars Ascent Vehicle Propellant Tank

    NASA Technical Reports Server (NTRS)

    Wang, Xiao-Yen

    2017-01-01

    The in-situ production of propellants for Mars missions will utilize carbon dioxide (CO2) in the Mars atmosphere to produce oxygen. The oxygen then needs to be cooled, liquefied, and stored to be available for Mars ascent propulsion, which could be up to 2 years after liquefaction starts. Recent investigations have demonstrated the feasibility of both achieving zero boiloff and controlling the pressure of oxygen within a tank using high-efficiency reverse turbo-Brayton-cycle cryocoolers. A tube-on-tank configuration is being studied in this work. The cooling fluid circulating in the cryocooler system is routed through a network of cooling tubes on the oxygen tank. The oxygen gas produced from the in-situ production process is introduced into the chilled tank. A series of analysis of this configuration has been performed to investigate the liquefaction rate inside the tank, the thermal gradient near the top of the tank where the oxygen gas feeding tubing is located. The analyses include 2D axisymmetric CFD analysis using ANSYS Fluent, 1D thermal analysis using Matlab, and 3D thermal analysis using MSC Patran/pthermal. These three models correlate and validate each other.

  6. Tank characterization report for single-shell tank 241-S-111

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Conner, J.M.

    1997-04-28

    One of the major functions of the Tank Waste Remediation System (TWRS) is to characterize wastes in support of waste management and disposal activities at the Hanford Site. Analytical data from sampling and analysis, along with other available information about a tank, are compiled and maintained in a tank characterization report (TCR). This report and its appendices serve as the TCR for single-shell tank 241-S-111. The objectives of this report are: (1) to use characterization data to address technical issues associated with tank 241-S-111 waste; and (2) to provide a standard characterization of this waste in terms of a best-basismore » inventory estimate. The response to technical issues is summarized in Section 2.0, and the best-basis inventory estimate is presented in Section 3.0. Recommendations regarding safety status and additional sampling needs are provided in Section 4.0. Supporting data and information are contained in the appendices. This report also supports the requirements of Hanford Federal Facility Agreement and Consent Order (Ecology et al. 1996) milestone M-44-10.« less

  7. Short Term Rain Prediction For Sustainability of Tanks in the Tropic Influenced by Shadow Rains

    NASA Astrophysics Data System (ADS)

    Suresh, S.

    2007-07-01

    Rainfall and flow prediction, adapting the Venkataraman single time series approach and Wiener multiple time series approach were conducted for Aralikottai tank system, and Kothamangalam tank system, Tamilnadu, India. The results indicated that the raw prediction of daily values is closer to actual values than trend identified predictions. The sister seasonal time series were more amenable for prediction than whole parent time series. Venkataraman single time approach was more suited for rainfall prediction. Wiener approach proved better for daily prediction of flow based on rainfall. The major conclusion is that the sister seasonal time series of rain and flow have their own identities even though they form part of the whole parent time series. Further studies with other tropical small watersheds are necessary to establish this unique characteristic of independent but not exclusive behavior of seasonal stationary stochastic processes as compared to parent non stationary stochastic processes.

  8. Test Report for Permanganate and Cold Strontium Strike for Tank 241-AN-102

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Duncan, James B.; Huber, Heinz J.; Smalley, Colleen S.

    Tanks 241-AN-102 and 241-AN-107 supernatants contain soluble Sr-90 and transuranic elements that require removal prior to vitrification to comply with the Waste Treatment and Immobilization Plant immobilized low-activity waste specification (WTP Contract, DE-AC27-01RV 14136, Specification 2.2.2.8, "Radionuclide Concentration Limitations") and the U.S. Nuclear Regulatory Commission provisional agreement on waste incidental to reprocessing (letter, Paperiello, C. J., "Classification of Hanford Low-Activity Tank Waste Fraction"). These two tanks have high concentrations of organics and organic complexants and are referred to as complexant concentrate tanks. A precipitation process using sodium permanganate (NaMnO{sub 4}) and strontium nitrate (Sr(NO{sub 3}){sub 2}) was developed and testedmore » with tank waste samples to precipitate Sr-90 and transuranic elements from the supernate (PNWD-3141, Optimization of Sr/TRU Removal Conditions with Samples of AN-102 Tank Waste). Testing documented in this report was conducted to further evaluate the use of the strontium nitrate/sodium permanganate process in tank farms with a retention time of up to 12 months. Previous testing was focused on developing a process for deployment in the ultrafiltration vessels in the Waste Treatment and Immobilization Plant. This environment is different from tank farms in two important ways: the waste is diluted in the Waste Treatment and Immobilization Plant to ~5.5 M sodium, whereas the supernate in the tank farms is ~9 M Na. Secondly, while the Waste Treatment and Immobilization Plant allows for a maximum treatment time of hours to days, the in-tank farms treatment of tanks 241-AN102 and 241-AN-107 will result in a retention time of months (perhaps up to12 months) before processing. A comparative compilation of separation processes for Sr/transuranics has been published as RPP-RPT-48340, Evaluation of Alternative Strontium and Transuranic Separation Processes. This report also listed the

  9. CFD simulation of mechanical draft tube mixing in anaerobic digester tanks.

    PubMed

    Meroney, Robert N; Colorado, P E

    2009-03-01

    Computational Fluid Dynamics (CFD) was used to simulate the mixing characteristics of four different circular anaerobic digester tanks (diameters of 13.7, 21.3, 30.5, and 33.5m) equipped with single and multiple draft impeller tube mixers. Rates of mixing of step and slug injection of tracers were calculated from which digester volume turnover time (DVTT), mixture diffusion time (MDT), and hydraulic retention time (HRT) could be calculated. Washout characteristics were compared to analytic formulae to estimate any presence of partial mixing, dead volume, short-circuiting, or piston flow. CFD satisfactorily predicted performance of both model and full-scale circular tank configurations.

  10. Tank Closure Progress at the Department of Energy's Idaho National Engineering Laboratory Tank Farm Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lockie, K.A.; Suttora, L.C.; Quigley, K.D.

    2007-07-01

    Significant progress has been made at the U.S. Department of Energy (DOE) Idaho National Laboratory (INL) to clean and close emptied radioactive liquid waste storage tanks at the Idaho Nuclear Technology and Engineering Center (INTEC) Tank Farm Facility (TFF). The TFF includes eleven 1,135.6-kL (300,000-gal) underground stainless steel storage tanks and four smaller, 113.5-kL (30,000-gal) stainless steel tanks, along with tank vaults, interconnecting piping, and ancillary equipment. The TFF tanks have historically been used to store a variety of radioactive liquid waste, including wastes associated with past spent nuclear fuel reprocessing. Although four of the large storage tanks remain inmore » use for waste storage, the other seven 1,135.6-kL (300,000-gal) tanks and the four 113.5-kL (30,000-gal) tanks have been emptied of waste and cleaned in preparation of final closure. A water spray cleaning system was developed and deployed to clean internal tank surfaces and remove remaining tank wastes. The cleaning system was effective in removing all but a very small volume of solid residual waste particles. Recent issuance of an Amended Record of Decision (ROD) in accordance with the National Environmental Policy Act, and a Waste Determination complying with Section 3116 of the Ronald W. Reagan National Defense Authorization Act (NDAA) for Fiscal Year 2005, has allowed commencement of grouting activities on the cleaned tanks. In November 2006, three of the 113.5-kL (30,000-gal) tanks were filled with grout to provide long-term stability. It is currently planned that all seven cleaned 1,135.6-kL (300,000-gal) tanks, as well as the four 113.5-kL (30,000-gal) tanks and all associated tank vaults and interconnecting piping, will be stabilized with grout as early as 2008. (authors)« less

  11. View of tanks T18 and T19 with redwood tanks to ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View of tanks T18 and T19 with redwood tanks to right. Old rain shed (Building No. 43) can be seen behind the tanks. Ground catchment can be seen at left in background. - Hawaii Volcanoes National Park Water Collection System, Hawaii Volcanoes National Park, Volcano, Hawaii County, HI

  12. In-Tank Elutriation Test Report And Independent Assessment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burns, H. H.; Adamson, D. J.; Qureshi, Z. H.

    2011-04-13

    elevations. Testing revealed that the most important variable was jet velocity which translates to a downstream fluid velocity in the vicinity of the suction tube which can suspend particles and potentially allow their removal from the tank. The optimum jet velocity in the vicinity of the sucti9on tube was between 1.5 and 2 ft/s (4-5 gpm). During testing at lower velocities a significant amount of slow-settling particles remained in the tank. At higher velocities a significant amount of fast-settling particles were elutriated from the tank. It should be noted that this range of velocities is appropriate for this particular geometry and particles. However, the principle of In-Tank Elutriation was proved. In-tank elutriation has the potential to save much money in tank closure. However, more work, both analytical and experimental, must be done before an improved version of the process could be applied to actual waste tanks. It is recommended that testing with more prototypic simulants be conducted. Also, scale-up criteria for elutriation and the resulting size of pilot scale test equipment require investigation during future research. In addition, it is recommended that the use of hydrocyclones be pursued in Phase 2 testing. Hydrocyclones are a precise and efficient separation tool that are frequently used in industry.« less

  13. 49 CFR 179.200 - General specifications applicable to non-pressure tank car tanks (Class DOT-111).

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... tank car tanks (Class DOT-111). 179.200 Section 179.200 Transportation Other Regulations Relating to Transportation PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION HAZARDOUS MATERIALS REGULATIONS SPECIFICATIONS FOR TANK CARS Specifications for Non-Pressure Tank Car Tanks (Classes...

  14. 49 CFR 173.314 - Compressed gases in tank cars and multi-unit tank cars.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Compressed gases in tank cars and multi-unit tank cars. 173.314 Section 173.314 Transportation Other Regulations Relating to Transportation PIPELINE AND... Compressed gases in tank cars and multi-unit tank cars. (a) Definitions. For definitions of compressed gases...

  15. 49 CFR 173.314 - Compressed gases in tank cars and multi-unit tank cars.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 2 2011-10-01 2011-10-01 false Compressed gases in tank cars and multi-unit tank cars. 173.314 Section 173.314 Transportation Other Regulations Relating to Transportation PIPELINE AND... Compressed gases in tank cars and multi-unit tank cars. (a) Definitions. For definitions of compressed gases...

  16. Traffic Flow Management Wrap-Up

    NASA Technical Reports Server (NTRS)

    Grabbe, Shon

    2011-01-01

    Traffic Flow Management involves the scheduling and routing of air traffic subject to airport and airspace capacity constraints, and the efficient use of available airspace. Significant challenges in this area include: (1) weather integration and forecasting, (2) accounting for user preferences in the Traffic Flow Management decision making process, and (3) understanding and mitigating the environmental impacts of air traffic on the environment. To address these challenges, researchers in the Traffic Flow Management area are developing modeling, simulation and optimization techniques to route and schedule air traffic flights and flows while accommodating user preferences, accounting for system uncertainties and considering the environmental impacts of aviation. This presentation will highlight some of the major challenges facing researchers in this domain, while also showcasing recent innovations designed to address these challenges.

  17. Supporting document for the historical tank content estimate for AY-tank farm

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brevick, C H; Stroup, J L; Funk, J. W.

    1997-03-12

    This Supporting Document provides historical in-depth characterization information on AY-Tank Farm, such as historical waste transfer and level data, tank physical information, temperature plots, liquid observation well plots, chemical analyte and radionuclide inventories for the Historical Tank Content Estimate Report for the Southeast Quadrant of the Hanford 200 Areas.

  18. 49 CFR 179.200 - General specifications applicable to non-pressure tank car tanks (Class DOT-111).

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... tank car tanks (Class DOT-111). 179.200 Section 179.200 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) SPECIFICATIONS FOR TANK CARS Specifications for Non-Pressure Tank Car Tanks (Classes DOT-111AW...

  19. 49 CFR 179.200 - General specifications applicable to non-pressure tank car tanks (Class DOT-111).

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... tank car tanks (Class DOT-111). 179.200 Section 179.200 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) SPECIFICATIONS FOR TANK CARS Specifications for Non-Pressure Tank Car Tanks (Classes DOT-111AW...

  20. Mixing and transient interface condensation of a liquid hydrogen tank

    NASA Technical Reports Server (NTRS)

    Lin, C. S.; Hasan, M. M.; Nyland, T. W.

    1993-01-01

    Experiments were conducted to investigate the effect of axial jet-induced mixing on the pressure reduction of a thermally stratified liquid hydrogen tank. The tank was nearly cylindrical, having a volume of about 0.144 cu m with 0.559 m in diameter and 0.711 m long. A mixer/pump unit, which had a jet nozzle outlet of 0.0221 m in diameter was located 0.178 m from the tank bottom and was installed inside the tank to generate the axial jet mixing and tank fluid circulation. The liquid fill and jet flow rate ranged from 42 to 85 percent (by volume) and 0.409 to 2.43 cu m/hr, respectively. Mixing tests began with the tank pressure ranging from 187.5 to 238.5 kPa at which the thermal stratification results in 4.9 to 6.2 K liquid sub cooling. The mixing time and transient vapor condensation rate at the liquid-vapor interface are determined. Two mixing time correlations, based on the thermal equilibrium and pressure equilibrium, are developed. Both mixing time correlations are expressed as functions of system and buoyancy parameters and compared well with other experimental data. The steady state condensation rate correlation of Sonin et al. based on steam-water data is modified and expressed as a function of jet subcooling. The limited liquid hydrogen data of the present study shows that the modified steady state condensation rate correlation may be used to predict the transient condensation rate in a mixing process if the instantaneous values of jet sub cooling and turbulence intensity at the interface are employed.

  1. Spectroscopic Measurement of Ion Flow During Merging Start-up of Field-Reversed Configuration

    NASA Astrophysics Data System (ADS)

    Oka, Hirotaka; Inomoto, Michiaki; Tanabe, Hiroshi; Annoura, Masanobu; Ono, Yasushi; Nemoto, Koshichi

    2012-10-01

    The counter-helicity merging method [1] of field-reversed configuration (FRC) formation involves generation of bidirectional toroidal flow, known as a ``sling-shot.'' In two fluids regime, reconnection process is strongly affected by the Hall effect [2]. In this study, we have investigated the behavior of toroidal bidirectional flow generated by the counter-helicity merging in two-fluids regime. We use 2D Ion Doppler Spectroscopy to mesure toroidal ion flow during merging start-up of FRC from Ar gas. We defined two cases: one case with a radially pushed-in X line (case I) and the other case with a radially pushed-out X line(case O). The flow during the plasma merging shows radial asymmetry, as expected from the magnetic measurement, but finally relaxes to a unidirectional flow in plasma current direction in both cases. We observed larger toroidal flow in the plasma current direction in case I after FRC is formed, though the FRC in case O has larger magnetic flux. These results suggest that more ions are lost during merging start-up in case I. This selective ion loss might account for stability and confinement of FRCs probably maintained by high energy ions.[4pt] [1] Y. Ono, et al., Nucl. Fusion 39, pp. 2001-2008 (1999).[0pt] [2] M. Inomoto, et al., Phys. Rev. Lett., 97, 135002, (2006)

  2. Impact of transient or persistent slow flow and adjunctive distal protection on mortality in ST-segment elevation myocardial infarction.

    PubMed

    Fujii, Toshiharu; Masuda, Naoki; Nakano, Masataka; Nakazawa, Gaku; Shinozaki, Norihiko; Matsukage, Takashi; Ogata, Nobuhiko; Yoshimachi, Fuminobu; Ikari, Yuji

    2015-04-01

    Routine use of distal protection for ST-segment elevation myocardial infarction (STEMI) is not recommended. The purpose of this study was to analyze the impact of slow flow on mortality after STEMI, and the efficacy of adjunctive distal protection following primary thrombus aspiration. We retrospectively analyzed 414 STEMI patients who underwent primary PCI. Distal protection was used following primary thrombus aspiration only when the operator judged the patient to be at high risk of slow flow. Patients were divided into 3 groups: those receiving no thrombus aspiration (A- Group), thrombus aspiration without distal protection (A+/D- Group) or a combination of aspiration with distal protection (A+/D+ Group). Slow flow/no reflow was characterized as transient or persistent. The A-, A+/D-, and A+/D+ Groups consisted of 28.5 % (n = 118), 44.4 % (n = 184), and 27.1 % (n = 112) of patients, respectively. All-cause mortality at 180 days was 6.8 % without slow flow, 14.1 % with transient and 44.4 % with persistent slow flow (P < 0.0001), but was similar whether or not distal protection was used among these groups complicated without slow flow (A-, 8.7 %; A+/D-, 6.3 %; A+/D+, 4.3 %; P = 0.5854). However, in cases complicated with transient or persistent slow flow, distal protection reduced all-cause mortality to 38.5 % (A-), 23.3 % (A+/D-), and 10.8 % (A+/D+) at 180 days (P = 0.0114). Our data confirm that routine distal protection is not to be recommended. However, it is suggested that it could reduce mortality of patients with slow flow. Predicting slow flow accurately before PCI, however, remains a challenge.

  3. St. Fergus terminal gets turboexpanders for critical service

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lillard, J.K.; Nicol, G.

    1994-09-05

    To expand the St. Fergus gas-reception terminal for the Scottish Area Gas Evacuation (SAGE) system, Mobil North Sea Ltd. is adding a second separation train and two treatment trains. To meet pipeline-gas specifications over a wide range of low rates and feed-gas compositions, single-stage turboexpander chilling was selected over Joule-Thomson valve expansion. Four turboexpanders (two per process train) will operate in parallel to achieve the required performance over the entire flow range of 90--575 MMscfd per process train. Unusual operating conditions for the turboexpanders include dense-phase inlet gas, expansion near the cricondenbar, and high equilibrium liquid content at the exhaustmore » (up to 50 wt %). The two turboexpanders in each train share common suction and discharge facilities as do their associated brake compressor. Details of the more than 400 million pounds Sterling Phase B discussed here include commissioning, start-up, and operation.« less

  4. Thermal stratification in LH2 tank of cryogenic propulsion stage tested in ISRO facility

    NASA Astrophysics Data System (ADS)

    Xavier, M.; Raj, R. Edwin; Narayanan, V.

    2017-02-01

    Liquid oxygen and hydrogen are used as oxidizer and fuel respectively in cryogenic propulsion system. These liquids are stored in foam insulated tanks of cryogenic propulsion system and are pressurized using warm pressurant gas supplied for tank pressure maintenance during cryogenic engine operation. Heat leak to cryogenic propellant tank causes buoyancy driven liquid stratification resulting in formation of warm liquid stratum at liquid free surface. This warm stratum is further heated by the admission of warm pressurant gas for tank pressurization during engine operation. Since stratified layer temperature has direct bearing on the cavitation free operation of turbo pumps integrated in cryogenic engine, it is necessary to model the thermal stratification for predicting stratified layer temperature and mass of stratified liquid in tank at the end of engine operation. These inputs are required for estimating the minimum pressure to be maintained by tank pressurization system. This paper describes configuration of cryogenic stage for ground qualification test, stage hot test sequence, a thermal model and its results for a foam insulated LH2 tank subjected to heat leak and pressurization with hydrogen gas at 200 K during liquid outflow at 38 lps for engine operation. The above model considers buoyancy flow in free convection boundary layer caused by heat flux from tank wall and energy transfer from warm pressurant gas etc. to predict temperature of liquid stratum and mass of stratified liquid in tank at the end of engine operation in stage qualification tests carried out in ISRO facility.

  5. Modified septic tank-anaerobic filter unit as a two-stage onsite domestic wastewater treatment system.

    PubMed

    Sharma, Meena Kumari; Khursheed, Anwar; Kazmi, Absar Ahmad

    2014-01-01

    This study demonstrates the performance evaluation of a uniquely designed two-stage system for onsite treatment of domestic wastewater. The system consisted of two upflow anaerobic bioreactors, a modified septic tank followed by an upflow anaerobic filter, accommodated within a single cylindrical unit. The system was started up without inoculation at 24 h hydraulic retention time (HRT). It achieved a steady-state condition after 120 days. The system was observed to be remarkably efficient in removing pollutants during steady-state condition with the average removal efficiency of 88.6 +/- 3.7% for chemical oxygen demand, 86.3 +/- 4.9% for biochemical oxygen demand and 91.2 +/- 9.7% for total suspended solids. The microbial analysis revealed a high reduction (>90%) capacity of the system for indicator organism and pathogens. It also showed a very good endurance against imposed hydraulic shock load. Tracer study showed that the flow pattern was close to plug flow reactor. Mean HRT was also found to be close to the designed value.

  6. Prevalence, antimicrobial susceptibility and molecular typing of Methicillin-Resistant Staphylococcus aureus (MRSA) in bulk tank milk from southern Italy.

    PubMed

    Parisi, A; Caruso, M; Normanno, G; Latorre, L; Sottili, R; Miccolupo, A; Fraccalvieri, R; Santagada, G

    2016-09-01

    This paper assesses the prevalence of MRSA in bulk tank milk (BTM) samples from southern Italy, and the relationship between the Coagulase Positive Staphylococci count (CPS) and MRSA prevalence. Of 486 BTM samples tested, 12 samples (2.5%) resulted positive for the presence of MRSA. Great genetic diversity was found among the isolates: ST1/t127 and t174/IVa, ST5/t688/V, ST8/t unknown/IVa/V, ST45/t015/IVa, ST71/t524/V, ST88/t786/Iva, ST398/t011 and t899/IVa/V and ST2781/t1730/V. All isolates were pvl-negative and icaA positive. The majority of strains (58%) carried the ses (sec, seh, seg, seo, sem and sen) genes. All tested strains resulted susceptible to amikacin, cephalotin, cloramphenicol, gentamycin, trimethoprim - sulfamethoxazole, tobramycin and vancomycin, and variably resistant to ampicillin, oxacillin and tetracycline. No statistical association between the CPS count and MRSA detection was found in the MRSA-positive samples. Although some of the spa-types and STs detected in our survey are known to cause human infections, raw milk from Italian herds in the considered area is not a common source of MRSA. Nonetheless, it is necessary to assess the risk of foodborne infection and the risk related to the handling of milk. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Modeling anthropogenic boron in groundwater flow and discharge at Volusia Blue Spring (Florida, USA)

    NASA Astrophysics Data System (ADS)

    Reed, Erin M.; Wang, Dingbao; Duranceau, Steven J.

    2017-01-01

    Volusia Blue Spring (VBS) is the largest spring along the St. Johns River in Florida (USA) and the spring pool is refuge for hundreds of manatees during winter months. However, the water quality of the spring flow has been degraded due to urbanization in the past few decades. A three-dimensional contaminant fate and transport model, utilizing MODFLOW-2000 and MT3DMS, was developed to simulate boron transport in the Upper Florida Aquifer, which sustains the VBS spring discharge. The VBS model relied on information and data related to natural water features, rainfall, land use, water use, treated wastewater discharge, septic tank effluent flows, and fertilizers as inputs to simulate boron transport. The model was calibrated against field-observed water levels, spring discharge, and analysis of boron in water samples. The calibrated VBS model yielded a root-mean-square-error value of 1.8 m for the head and 17.7 μg/L for boron concentrations within the springshed. Model results show that anthropogenic boron from surrounding urbanized areas contributes to the boron found at Volusia Blue Spring.

  8. Velocity fields and optical turbulence near the boundary in a strongly convective laboratory flow

    NASA Astrophysics Data System (ADS)

    Matt, Silvia; Hou, Weilin; Goode, Wesley; Hellman, Samuel

    2016-05-01

    Boundary layers around moving underwater vehicles or other platforms can be a limiting factor for optical communication. Turbulence in the boundary layer of a body moving through a stratified medium can lead to small variations in the index of refraction, which impede optical signals. As a first step towards investigating this boundary layer effect on underwater optics, we study the flow near the boundary in the Rayleigh-Bénard laboratory tank at the Naval Research Laboratory Stennis Space Center. The tank is set up to generate temperature-driven, i.e., convective turbulence, and allows control of the turbulence intensity. This controlled turbulence environment is complemented by computational fluid dynamics simulations to visualize and quantify multi-scale flow patterns. The boundary layer dynamics in the laboratory tank are quantified using a state-of-the-art Particle Image Velocimetry (PIV) system to examine the boundary layer velocities and turbulence parameters. The velocity fields and flow dynamics from the PIV are compared to the numerical model and show the model to accurately reproduce the velocity range and flow dynamics. The temperature variations and thus optical turbulence effects can then be inferred from the model temperature data. Optical turbulence is also visible in the raw data from the PIV system. The newly collected data are consistent with previously reported measurements from high-resolution Acoustic Doppler Velocimeter profilers (Nortek Vectrino), as well as fast thermistor probes and novel next-generation fiber-optics temperature sensors. This multi-level approach to studying optical turbulence near a boundary, combining in-situ measurements, optical techniques, and numerical simulations, can provide new insight and aid in mitigating turbulence impacts on underwater optical signal transmission.

  9. Supporting document for the historical tank content estimate for AX-tank farm

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brevick, C.H., Westinghouse Hanford

    This Supporting Document provides historical in-depth characterization information on AX-Tank Farm, such as historical waste transfer and level data, tank physical information,temperature plots, liquid observation well plots, chemical analyte and radionuclide inventories for the Historical Tank Content Estimate Report for the northeast quadrant of the Hanford 200 East Area.

  10. 46 CFR 32.60-30 - Tank vessels with independent tanks-TB/ALL.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... tanks and hull structure can be made. (b) When an independent cargo tank is located in an enclosed space... be safeguarded as such as required by this subpart. (c) Cargo tanks independent of the hull structure shall be supported in saddles or on foundations of steel or other suitable material and securely...

  11. 46 CFR 32.60-30 - Tank vessels with independent tanks-TB/ALL.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... tanks and hull structure can be made. (b) When an independent cargo tank is located in an enclosed space... be safeguarded as such as required by this subpart. (c) Cargo tanks independent of the hull structure shall be supported in saddles or on foundations of steel or other suitable material and securely...

  12. 46 CFR 32.60-30 - Tank vessels with independent tanks-TB/ALL.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... tanks and hull structure can be made. (b) When an independent cargo tank is located in an enclosed space... be safeguarded as such as required by this subpart. (c) Cargo tanks independent of the hull structure shall be supported in saddles or on foundations of steel or other suitable material and securely...

  13. 46 CFR 32.60-30 - Tank vessels with independent tanks-TB/ALL.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... tanks and hull structure can be made. (b) When an independent cargo tank is located in an enclosed space... be safeguarded as such as required by this subpart. (c) Cargo tanks independent of the hull structure shall be supported in saddles or on foundations of steel or other suitable material and securely...

  14. 46 CFR 32.60-30 - Tank vessels with independent tanks-TB/ALL.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... tanks and hull structure can be made. (b) When an independent cargo tank is located in an enclosed space... be safeguarded as such as required by this subpart. (c) Cargo tanks independent of the hull structure shall be supported in saddles or on foundations of steel or other suitable material and securely...

  15. Results of Hg speciation testing on tank 39 and 1Q16 tank 50 samples

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bannochie, C. J.

    2016-03-07

    The Savannah River National Laboratory (SRNL) was tasked with preparing and shipping samples for Hg speciation by Eurofins Frontier Global Sciences, Inc. in Seattle, WA on behalf of the Savannah River Remediation (SRR) Mercury Task Team.i,ii The seventeenth shipment of samples was designated to include two Tank 39 samples and the 1Q16 Tank 50 Quarterly WAC sample. The surface Tank 39 sample was pulled at 262.1” from the tank bottom, and the depth Tank 39 sample was pulled at 95” from the tank bottom. The 1Q16 Tank 50 WAC sample was drawn from the 1-L variable depth sample received bymore » SRNL.« less

  16. 49 CFR 179.221 - Individual specification requirements applicable to tank car tanks consisting of an inner...

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) SPECIFICATIONS FOR TANK CARS Specifications for Non-Pressure Tank Car Tanks (Classes DOT-111AW and 115AW) § 179.221 Individual specification... to tank car tanks consisting of an inner container supported within an outer shell. 179.221 Section...

  17. 49 CFR 179.221 - Individual specification requirements applicable to tank car tanks consisting of an inner...

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) SPECIFICATIONS FOR TANK CARS Specifications for Non-Pressure Tank Car Tanks (Classes DOT-111AW and 115AW) § 179.221 Individual specification... to tank car tanks consisting of an inner container supported within an outer shell. 179.221 Section...

  18. [Quick Start-up and Sustaining of Shortcut Nitrification in Continuous Flow Reactor].

    PubMed

    Wu, Peng; Zhang Shi-ying; Song, Yin-ling; Xu, Yue-zhong; Shen, Yao-liang

    2016-04-15

    How to achieve fast and stable startup of shortcut nitrification has a very important practical value for treatment of low C/N ratio wastewater. Thus, the quick start-up and sustaining of shortcut nitrification were investigated in continuous flow reactor targeting at the current situation of urban wastewater treatment plant using a continuous flow process. The results showed that quick start-up of shortcut nitrification could be successfully achieved in a continuous flow reactor after 60 days' operation with intermittent aeration and controlling of three stages of stop/aeration time (15 min/45 min, 45 min/45 min and 30 min/30 min). The nitrification rates could reach 90% or 95% respectively, while influent ammonia concentrations were 50 or 100 mg · L⁻¹ with stop/aeration time of 30 min/30 min. In addition, intermittent aeration could inhibit the activity of nitrite oxidizing bacteria (NOB), while short hydraulic retention time (HRT) may wash out NOB. And a combined use of both measures was beneficial to sustain shortcut nitrification.

  19. Experimental and numerical investigation of one and two phase natural convection in storage tanks

    NASA Astrophysics Data System (ADS)

    Aszodi, A.; Krepper, E.; Prasser, H.-M.

    Experiments were performed to investigate heating up processes of fluids in storage tanks under the influence of an external heat source. As a consequence of an external fire, the heat-up of the inventory may lead to the evaporation of the liquid and to release of significant quantities of dangerous gases into the environment. Several tests were performed both with heating from the bottom and with heating from the side walls. In recent tests in addition to thermocouples, the tank was equipped with needle probes for measuring of the local void fraction. The paper presents experimental and numerical investigations of single and two phase heating up processes of tanks with side wall heating. The measurement of the temperature and of the void fraction makes interesting phenomena evident, which could be explained by an own 2D model. The gained experimental results may be used for the validation of boiling models in 3D CFD codes.

  20. LOX Tank Helium Removal for Propellant Scavenging

    NASA Technical Reports Server (NTRS)

    Chato, David J.

    2009-01-01

    System studies have shown a significant advantage to reusing the hydrogen and oxygen left in these tanks after landing on the Moon in fuel cells to generate power and water for surface systems. However in the current lander concepts, the helium used to pressurize the oxygen tank can substantially degrade fuel cell power and water output by covering the reacting surface with inert gas. This presentation documents an experimental investigation of methods to remove the helium pressurant while minimizing the amount of the oxygen lost. This investigation demonstrated that significant quantities of Helium (greater than 90% mole fraction) remain in the tank after draining. Although a single vent cycle reduced the helium quantity, large amounts of helium remained. Cyclic venting appeared to be more effective. Three vent cycles were sufficient to reduce the helium to small (less than 0.2%) quantities. Two vent cycles may be sufficient since once the tank has been brought up to pressure after the second vent cycle the helium concentration has been reduced to the less than 0.2% level. The re-pressurization process seemed to contribute to diluting helium. This is as expected since in order to raise the pressure liquid oxygen must be evaporated. Estimated liquid oxygen loss is on the order of 82 pounds (assuming the third vent cycle is not required).

  1. Physics-Based Fragment Acceleration Modeling for Pressurized Tank Burst Risk Assessments

    NASA Technical Reports Server (NTRS)

    Manning, Ted A.; Lawrence, Scott L.

    2014-01-01

    As part of comprehensive efforts to develop physics-based risk assessment techniques for space systems at NASA, coupled computational fluid and rigid body dynamic simulations were carried out to investigate the flow mechanisms that accelerate tank fragments in bursting pressurized vessels. Simulations of several configurations were compared to analyses based on the industry-standard Baker explosion model, and were used to formulate an improved version of the model. The standard model, which neglects an external fluid, was found to agree best with simulation results only in configurations where the internal-to-external pressure ratio is very high and fragment curvature is small. The improved model introduces terms that accommodate an external fluid and better account for variations based on circumferential fragment count. Physics-based analysis was critical in increasing the model's range of applicability. The improved tank burst model can be used to produce more accurate risk assessments of space vehicle failure modes that involve high-speed debris, such as exploding propellant tanks and bursting rocket engines.

  2. Experimental Methods to Estimate Accumulated Solids in Nuclear Waste Tanks - 13313

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Duignan, Mark R.; Steeper, Timothy J.; Steimke, John L.

    2013-07-01

    The Department of Energy has a large number of nuclear waste tanks. It is important to know if fissionable materials can concentrate when waste is transferred from staging tanks prior to feeding waste treatment plants. Specifically, there is a concern that large, dense particles, e.g., plutonium containing, could accumulate in poorly mixed regions of a blend tank heel for tanks that employ mixing jet pumps. At the request of the DOE Hanford Tank Operations Contractor, Washington River Protection Solutions, the Engineering Development Laboratory of the Savannah River National Laboratory performed a scouting study in a 1/22-scale model of a wastemore » tank to investigate this concern and to develop measurement techniques that could be applied in a more extensive study at a larger scale. Simulated waste tank solids and supernatant were charged to the test tank and rotating liquid jets were used to remove most of the solids. Then the volume and shape of the residual solids and the spatial concentration profiles for the surrogate for plutonium were measured. This paper discusses the overall test results, which indicated heavy solids only accumulate during the first few transfer cycles, along with the techniques and equipment designed and employed in the test. Those techniques include: - Magnetic particle separator to remove stainless steel solids, the plutonium surrogate from a flowing stream. - Magnetic wand used to manually remove stainless steel solids from samples and the tank heel. - Photographs were used to determine the volume and shape of the solids mounds by developing a composite of topographical areas. - Laser range finders to determine the volume and shape of the solids mounds. - Core sampler to determine the stainless steel solids distribution within the solids mounds. - Computer driven positioner that placed the laser range finders and the core sampler over solids mounds that accumulated on the bottom of a scaled staging tank in locations where jet

  3. 49 CFR 173.315 - Compressed gases in cargo tanks and portable tanks.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    .... (b) of this section See par. (b) of this section DOT-51, MC-330, MC-331 100. Carbon dioxide...-338 275; see Note 11. Hexafluoropropylene 110 See Note 7 DOT-51, MC-330, MC-331 250. Hydrogen chloride... as specified for MC 331 cargo tanks. Note 3: If cargo tanks and portable tank containers for carbon...

  4. 49 CFR 173.315 - Compressed gases in cargo tanks and portable tanks.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    .... (b) of this section See par. (b) of this section DOT-51, MC-330, MC-331 100. Carbon dioxide...-338 275; see Note 11. Hexafluoropropylene 110 See Note 7 DOT-51, MC-330, MC-331 250. Hydrogen chloride... as specified for MC 331 cargo tanks. Note 3: If cargo tanks and portable tank containers for carbon...

  5. 49 CFR 173.315 - Compressed gases in cargo tanks and portable tanks.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    .... (b) of this section See par. (b) of this section DOT-51, MC-330, MC-331 100. Carbon dioxide...-338 275; see Note 11. Hexafluoropropylene 110 See Note 7 DOT-51, MC-330, MC-331 250. Hydrogen chloride... as specified for MC 331 cargo tanks. Note 3: If cargo tanks and portable tank containers for carbon...

  6. 49 CFR 173.315 - Compressed gases in cargo tanks and portable tanks.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    .... (b) of this section See par. (b) of this section DOT-51, MC-330, MC-331 100. Carbon dioxide...-338 275; see Note 11. Hexafluoropropylene 110 See Note 7 DOT-51, MC-330, MC-331 250. Hydrogen chloride... as specified for MC 331 cargo tanks. Note 3: If cargo tanks and portable tank containers for carbon...

  7. Rainfall changes affect the algae dominance in tank bromeliad ecosystems.

    PubMed

    Pires, Aliny Patricia Flauzino; Leal, Juliana da Silva; Peeters, Edwin T H M

    2017-01-01

    Climate change and biodiversity loss have been reported as major disturbances in the biosphere which can trigger changes in the structure and functioning of natural ecosystems. Nonetheless, empirical studies demonstrating how both factors interact to affect shifts in aquatic ecosystems are still unexplored. Here, we experimentally test how changes in rainfall distribution and litter diversity affect the occurrence of the algae-dominated condition in tank bromeliad ecosystems. Tank bromeliads are miniature aquatic ecosystems shaped by the rainwater and allochthonous detritus accumulated in the bases of their leaves. Here, we demonstrated that changes in the rainfall distribution were able to reduce the chlorophyll-a concentration in the water of bromeliad tanks affecting significantly the occurrence of algae-dominated conditions. On the other hand, litter diversity did not affect the algae dominance irrespective to the rainfall scenario. We suggest that rainfall changes may compromise important self-reinforcing mechanisms responsible for maintaining high levels of algae on tank bromeliads ecosystems. We summarized these results into a theoretical model which suggests that tank bromeliads may show two different regimes, determined by the bromeliad ability in taking up nutrients from the water and by the total amount of light entering the tank. We concluded that predicted climate changes might promote regime shifts in tropical aquatic ecosystems by shaping their structure and the relative importance of other regulating factors.

  8. Rainfall changes affect the algae dominance in tank bromeliad ecosystems

    PubMed Central

    Pires, Aliny Patricia Flauzino; Leal, Juliana da Silva; Peeters, Edwin T. H. M.

    2017-01-01

    Climate change and biodiversity loss have been reported as major disturbances in the biosphere which can trigger changes in the structure and functioning of natural ecosystems. Nonetheless, empirical studies demonstrating how both factors interact to affect shifts in aquatic ecosystems are still unexplored. Here, we experimentally test how changes in rainfall distribution and litter diversity affect the occurrence of the algae-dominated condition in tank bromeliad ecosystems. Tank bromeliads are miniature aquatic ecosystems shaped by the rainwater and allochthonous detritus accumulated in the bases of their leaves. Here, we demonstrated that changes in the rainfall distribution were able to reduce the chlorophyll-a concentration in the water of bromeliad tanks affecting significantly the occurrence of algae-dominated conditions. On the other hand, litter diversity did not affect the algae dominance irrespective to the rainfall scenario. We suggest that rainfall changes may compromise important self-reinforcing mechanisms responsible for maintaining high levels of algae on tank bromeliads ecosystems. We summarized these results into a theoretical model which suggests that tank bromeliads may show two different regimes, determined by the bromeliad ability in taking up nutrients from the water and by the total amount of light entering the tank. We concluded that predicted climate changes might promote regime shifts in tropical aquatic ecosystems by shaping their structure and the relative importance of other regulating factors. PMID:28422988

  9. LH tank installation

    NASA Image and Video Library

    2011-07-25

    Stennis Space Center employees marked another construction milestone July 25 with installation of the 85,000-gallon liquid hydrogen tank atop the A-3 Test Stand. The 300-foot-tall stand is being built to test next-generation rocket engines that could carry humans into deep space once more. The liquid hydrogen tank and a 35,000-gallon liquid oxygen tank installed atop the steel structure earlier in June will provide fuel propellants for testing the engines.

  10. Structural Continuum Modeling of Space Shuttle External Tank Foam Insulation

    NASA Technical Reports Server (NTRS)

    Steeve, Brian; Ayala, Sam; Purlee, T. Eric; Shaw, Phillip

    2006-01-01

    This document is a viewgraph presentation reporting on work in modeling the foam insulation of the Space Shuttle External Tank. An analytical understanding of foam mechanics is required to design against structural failure. The Space Shuttle External Tank is covered primarily with closed cell foam to: Prevent ice, Protect structure from ascent aerodynamic and engine plume heating, and Delay break-up during re-entry. It is important that the foam does not shed unacceptable debris during ascent environment. Therefore a modeling of the foam insulation was undertaken.

  11. A study of nonlinear dynamics of single- and two-phase flow oscillations

    NASA Astrophysics Data System (ADS)

    Mawasha, Phetolo Ruby

    The dynamics of single- and two-phase flows in channels can be contingent on nonlinearities which are not clearly understood. These nonlinearities could be interfacial forces between the flowing fluid and its walls, variations in fluid properties, growth of voids, etc. The understanding of nonlinear dynamics of fluid flow is critical in physical systems which can undergo undesirable system operating scenarios such an oscillatory behavior which may lead to component failure. A nonlinear lumped mathematical model of a surge tank with a constant inlet flow into the tank and an outlet flow through a channel is derived from first principles. The model is used to demonstrate that surge tanks with inlet and outlet flows contribute to oscillatory behavior in laminar, turbulent, single-phase, and two-phase flow systems. Some oscillations are underdamped while others are self-sustaining. The mechanisms that are active in single-phase oscillations with no heating are presented using specific cases of simplified models. Also, it is demonstrated how an external mechanism such as boiling contributes to the oscillations observed in two-phase flow and gives rise to sustained oscillations (or pressure drop oscillations). A description of the pressure drop oscillation mechanism is presented using the steady state pressure drop versus mass flow rate characteristic curve of the heated channel, available steady state pressure drop versus mass flow rate from the surge tank, and the transient pressure drop versus mass flow rate limit cycle. Parametric studies are used to verify the theoretical pressure drop oscillations model using experimental data by Yuncu's (1990). The following contributions are unique: (1) comparisons of nonlinear pressure drop oscillation models with and without the effect of the wall thermal heat capacity and (2) comparisons of linearized pressure drop oscillation models with and without the effect of the wall thermal heat capacity to identify stability boundaries.

  12. Optical Cryogenic Tank Level Sensor

    NASA Technical Reports Server (NTRS)

    Duffell, Amanda

    2005-01-01

    Cryogenic fluids play an important role in space transportation. Liquid oxygen and hydrogen are vital fuel components for liquid rocket engines. It is also difficult to accurately measure the liquid level in the cryogenic tanks containing the liquids. The current methods use thermocouple rakes, floats, or sonic meters to measure tank level. Thermocouples have problems examining the boundary between the boiling liquid and the gas inside the tanks. They are also slow to respond to temperature changes. Sonic meters need to be mounted inside the tank, but still above the liquid level. This causes problems for full tanks, or tanks that are being rotated to lie on their side.

  13. 39. DIABLO POWERHOUSE: GRAVITY LUBRICATING OIL TANKS. THESE TANKS ARE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    39. DIABLO POWERHOUSE: GRAVITY LUBRICATING OIL TANKS. THESE TANKS ARE LOCATED AT ROOF LEVEL AT THE NORTHEAST REAR CORNER OF DIABLO POWERHOUSE, 1989. - Skagit Power Development, Diablo Powerhouse, On Skagit River, 6.1 miles upstream from Newhalem, Newhalem, Whatcom County, WA

  14. 9 CFR 316.14 - Marking tank cars and tank trucks used in transportation of edible products.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 9 Animals and Animal Products 2 2010-01-01 2010-01-01 false Marking tank cars and tank trucks used in transportation of edible products. 316.14 Section 316.14 Animals and Animal Products FOOD SAFETY... CONTAINERS § 316.14 Marking tank cars and tank trucks used in transportation of edible products. Each tank...

  15. HF DBD plasma actuators for reduction of cylinder noise in flow

    NASA Astrophysics Data System (ADS)

    Kopiev, V. F.; Kazansky, P. N.; Kopiev, V. A.; Moralev, I. A.; Zaytsev, M. Yu

    2017-11-01

    Surface high frequency dielectric barrier discharge (HF DBD) was used to reduce flow-induced noise, radiated by circular cylinder in cross flow. Effect of HF DBD actuators is studied for flow velocity up to 80 m s-1 (Reynolds numbers up to 2.18 · 105), corresponding to the typical aircraft landing approach speed. Noise measurements were performed by microphone array in anechoic chamber; averaged flow parameters were studied by particle image velocimetry (PIV). Actuator was powered by high-frequency voltage in hundreds kHz range in steady or modulated mode with the modulation frequency of 0.3-20 kHz (Strouhal number St of 0.4 to 20). It is demonstrated that upstream directed plasma actuators are able to reduce the vortex noise of a cylinder by 10 dB. Noise reduction is accompanied by significant reorganization of the wake behind a cylinder, decreasing both wake width and turbulence level. The physical mechanism related to broadband noise control by HF DBD actuator is also discussed.

  16. A Marine Aerosol Reference Tank system as a breaking wave analogue for the production of foam and sea-spray aerosols

    NASA Astrophysics Data System (ADS)

    Stokes, M. D.; Deane, G. B.; Prather, K.; Bertram, T. H.; Ruppel, M. J.; Ryder, O. S.; Brady, J. M.; Zhao, D.

    2013-04-01

    In order to better understand the processes governing the production of marine aerosols a repeatable, controlled method for their generation is required. The Marine Aerosol Reference Tank (MART) has been designed to closely approximate oceanic conditions by producing an evolving bubble plume and surface foam patch. The tank utilizes an intermittently plunging sheet of water and large volume tank reservoir to simulate turbulence, plume and foam formation, and the water flow is monitored volumetrically and acoustically to ensure the repeatability of conditions.

  17. 49 CFR 179.201-3 - Lined tanks.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Specifications for Non-Pressure Tank Car Tanks (Classes DOT-111AW and 115AW) § 179.201-3 Lined tanks. (a) Rubber... the service temperatures. (b) Before a tank car tank is lined with rubber, or other rubber compound, a... suitable for the service temperatures. (f) Polyvinyl chloride lined tanks. Tank car tanks or each...

  18. LOX tank installation

    NASA Image and Video Library

    2011-06-08

    Construction of the A-3 Test Stand at Stennis Space Center continued June 8 with installation of a 35,000-gallon liquid oxygen tank atop the steel structure. The stand is being built to test next-generation rocket engines that will carry humans into deep space once more. The LOX tank and a liquid hydrogen tank to be installed atop the stand later will provide propellants for testing the engines. The A-3 Test Stand is scheduled for completion and activation in 2013.

  19. HANFORD DOUBLE SHELL TANK (DST) THERMAL & SEISMIC PROJECT SEISMIC ANALYSIS IN SUPPORT OF INCREASED LIQUID LEVEL IN 241-AP TANK FARMS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    MACKEY TC; ABBOTT FG; CARPENTER BG

    2007-02-16

    The overall scope of the project is to complete an up-to-date comprehensive analysis of record of the DST System at Hanford. The "Double-Shell Tank (DST) Integrity Project - DST Thermal and Seismic Project" is in support of Tri-Party Agreement Milestone M-48-14.

  20. Numerical Investigation of LO2 and LCH4 Storage Tanks on the Lunar Surface

    NASA Technical Reports Server (NTRS)

    Moder, Jeff; Barsi, Stephen; Kassemi, Mohammad

    2008-01-01

    Currently NASA is developing technologies to enable human exploration of the lunar surface for duration of up to 210 days. While trade studies are still underway, a cryogenic ascent stage using liquid oxygen (LO2) and liquid methane (LCH4) is being considered for the Altair lunar lander. For a representative Altair cryogenic ascent stage, we present a detailed storage analysis of the LO2 and LCH4 propellant tanks on the lunar surface for durations of up to 210 days. Both the LO2 and LCH4 propellant tanks are assumed to be pressurized with gaseous helium at launch. A two-phase lumped-vapor computational fluid dynamics model has been developed to account for the presence of a noncondensable gas in the ullage. The CFD model is used to simulate the initial pressure response of the propellant tanks while they are subjected to representative heat leak rates on the lunar surface. Once a near stationary state is achieved within the liquid phase, multizone model is used to extrapolate the solution farther in time. For fixed propellant mass and tank size, the long-term pressure response for different helium mass fractions in both the LO2 and LCH4 tanks is examined.