Sample records for tank system closure

  1. ICPP tank farm closure study. Volume 2: Engineering design files

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1998-02-01

    Volume 2 contains the following topical sections: Tank farm heel flushing/pH adjustment; Grouting experiments for immobilization of tank farm heel; Savannah River high level waste tank 20 closure; Tank farm closure information; Clean closure of tank farm; Remediation issues; Remote demolition techniques; Decision concerning EIS for debris treatment facility; CERCLA/RCRA issues; Area of contamination determination; Containment building of debris treatment facility; Double containment issues; Characterization costs; Packaging and disposal options for the waste resulting from the total removal of the tank farm; Take-off calculations for the total removal of soils and structures at the tank farm; Vessel off-gas systems; Jet-groutedmore » polymer and subsurface walls; Exposure calculations for total removal of tank farm; Recommended instrumentation during retrieval operations; High level waste tank concrete encasement evaluation; Recommended heavy equipment and sizing equipment for total removal activities; Tank buoyancy constraints; Grout and concrete formulas for tank heel solidification; Tank heel pH requirements; Tank cooling water; Evaluation of conservatism of vehicle loading on vaults; Typical vault dimensions and approximately tank and vault void volumes; Radiological concerns for temporary vessel off-gas system; Flushing calculations for tank heels; Grout lift depth analysis; Decontamination solution for waste transfer piping; Grout lift determination for filling tank and vault voids; sprung structure vendor data; Grout flow properties through a 2--4 inch pipe; Tank farm load limitations; NRC low level waste grout; Project data sheet calculations; Dose rates for tank farm closure tasks; Exposure and shielding calculations for grout lines; TFF radionuclide release rates; Documentation of the clean closure of a system with listed waste discharge; and Documentation of the ORNL method of radionuclide concentrations in tanks.« less

  2. Permanent Closure of MFC Biodiesel Underground Storage Tank 99ANL00013

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kerry L. Nisson

    2012-10-01

    This closure package documents the site assessment and permanent closure of the Materials and Fuels Complex biodiesel underground storage tank 99ANL00013 in accordance with the regulatory requirements established in 40 CFR 280.71, “Technical Standards and Corrective Action Requirements for Owners and Operators of Underground Storage Tanks: Out-of-Service UST Systems and Closure.”

  3. ICPP tank farm closure study. Volume 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Spaulding, B.C.; Gavalya, R.A.; Dahlmeir, M.M.

    1998-02-01

    The disposition of INEEL radioactive wastes is now under a Settlement Agreement between the DOE and the State of Idaho. The Settlement Agreement requires that existing liquid sodium bearing waste (SBW), and other liquid waste inventories be treated by December 31, 2012. This agreement also requires that all HLW, including calcined waste, be disposed or made road ready to ship from the INEEL by 2035. Sodium bearing waste (SBW) is produced from decontamination operations and HLW from reprocessing of SNF. SBW and HLW are radioactive and hazardous mixed waste; the radioactive constituents are regulated by DOE and the hazardous constituentsmore » are regulated by the Resource Conservation and Recovery Act (RCRA). Calcined waste, a dry granular material, is produced in the New Waste Calcining Facility (NWCF). Two primary waste tank storage locations exist at the ICPP: Tank Farm Facility (TFF) and the Calcined Solids Storage Facility (CSSF). The TFF has the following underground storage tanks: four 18,400-gallon tanks (WM 100-102, WL 101); four 30,000-gallon tanks (WM 103-106); and eleven 300,000+ gallon tanks. This includes nine 300,000-gallon tanks (WM 182-190) and two 318,000 gallon tanks (WM 180-181). This study analyzes the closure and subsequent use of the eleven 300,000+ gallon tanks. The 18,400 and 30,000-gallon tanks were not included in the work scope and will be closed as a separate activity. This study was conducted to support the HLW Environmental Impact Statement (EIS) waste separations options and addresses closure of the 300,000-gallon liquid waste storage tanks and subsequent tank void uses. A figure provides a diagram estimating how the TFF could be used as part of the separations options. Other possible TFF uses are also discussed in this study.« less

  4. Environmental Assessment for the Closure of the High-Level Waste Tanks in F- & H-Areas at the Savannah River Site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    N /A

    1996-07-31

    This Environmental Assessment (EA) has been prepared by the Department of Energy (DOE) to assess the potential environmental impacts associated with the closure of 51 high-level radioactive waste tanks and tank farm ancillary equipment (including transfer lines, evaporators, filters, pumps, etc) at the Savannah River Site (SRS) located near Aiken, South Carolina. The waste tanks are located in the F- and H-Areas of SRS and vary in capacity from 2,839,059 liters (750,000 gallons) to 4,921,035 liters (1,300,000 gallons). These in-ground tanks are surrounded by soil to provide shielding. The F- and H-Area High-Level Waste Tanks are operated under the authoritymore » of Industrial Wastewater Permits No.17,424-IW; No.14520, and No.14338 issued by the South Carolina Department of Health and Environmental Control (SCDHEC). In accordance with the Permit requirements, DOE has prepared a Closure Plan (DOE, 1996) and submitted it to SCDHEC for approval. The Closure Plan identifies all applicable or relevant and appropriate regulations, statutes, and DOE Orders for closing systems operated under the Industrial Wastewater Permits. When approved by SCDHEC, the Closure Plan will present the regulatory process for closing all of the F- and H-Area High Level Waste Tanks. The Closure Plan establishes performance objectives or criteria to be met prior to closing any tank, group of tanks, or ancillary tank farm equipment. The proposed action is to remove the residual wastes from the tanks and to fill the tanks with a material to prevent future collapse and bind up residual waste, to lower human health risks, and to increase safety in and around the tanks. If required, an engineered cap consisting of clay, backfill (soil), and vegetation as the final layer to prevent erosion would be applied over the tanks. The selection of tank system closure method will be evaluated against the following Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) criteria

  5. TANK FARM CLOSURE - A NEW TWIST ON REGULATORY STRATEGIES FOR CLOSURE OF WASTE TANK RESIDUALS FOLLOWING NUREG

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    LEHMAN LL

    2008-01-23

    Waste from a number of single-shell tanks (SST) at the U.S. Department of Energy's (DOE) Hanford Site has been retrieved by CH2M HILL Hanford Group to fulfill the requirements of the 'Hanford Federal Facility Agreement and Consent Order (HFFACO) [1]. Laboratory analyses of the Hanford tank residual wastes have provided concentration data which will be used to determine waste classification and disposal options for tank residuals. The closure of tank farm facilities remains one of the most challenging activities faced by the DOE. This is due in part to the complicated regulatory structures that have developed. These regulatory structures aremore » different at each of the DOE sites, making it difficult to apply lessons learned from one site to the next. During the past two years with the passage of the Section 3116 of the 'Ronald Reagan Defense Authorization Act of 2005' (NDAA) [2] some standardization has emerged for Savannah River Site and the Idaho National Laboratory tank residuals. Recently, with the issuance of 'NRC Staff Guidance for Activities Related to US. Department of Energy Waste Determinations' (NUREG-1854) [3] more explicit options may be considered for Hanford tank residuals than are presently available under DOE Orders. NUREG-1854, issued in August 2007, contains several key pieces of information that if utilized by the DOE in the tank closure process, could simplify waste classification and streamline the NRC review process by providing information to the NRC in their preferred format. Other provisions of this NUREG allow different methods to be applied in determining when waste retrieval is complete by incorporating actual project costs and health risks into the calculation of 'technically and economically practical'. Additionally, the NUREG requires a strong understanding of the uncertainties of the analyses, which given the desire of some NRC/DOE staff may increase the likelihood of using probabilistic approaches to uncertainty analysis. The

  6. Tank Closure Progress at the Department of Energy's Idaho National Engineering Laboratory Tank Farm Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lockie, K.A.; Suttora, L.C.; Quigley, K.D.

    2007-07-01

    Significant progress has been made at the U.S. Department of Energy (DOE) Idaho National Laboratory (INL) to clean and close emptied radioactive liquid waste storage tanks at the Idaho Nuclear Technology and Engineering Center (INTEC) Tank Farm Facility (TFF). The TFF includes eleven 1,135.6-kL (300,000-gal) underground stainless steel storage tanks and four smaller, 113.5-kL (30,000-gal) stainless steel tanks, along with tank vaults, interconnecting piping, and ancillary equipment. The TFF tanks have historically been used to store a variety of radioactive liquid waste, including wastes associated with past spent nuclear fuel reprocessing. Although four of the large storage tanks remain inmore » use for waste storage, the other seven 1,135.6-kL (300,000-gal) tanks and the four 113.5-kL (30,000-gal) tanks have been emptied of waste and cleaned in preparation of final closure. A water spray cleaning system was developed and deployed to clean internal tank surfaces and remove remaining tank wastes. The cleaning system was effective in removing all but a very small volume of solid residual waste particles. Recent issuance of an Amended Record of Decision (ROD) in accordance with the National Environmental Policy Act, and a Waste Determination complying with Section 3116 of the Ronald W. Reagan National Defense Authorization Act (NDAA) for Fiscal Year 2005, has allowed commencement of grouting activities on the cleaned tanks. In November 2006, three of the 113.5-kL (30,000-gal) tanks were filled with grout to provide long-term stability. It is currently planned that all seven cleaned 1,135.6-kL (300,000-gal) tanks, as well as the four 113.5-kL (30,000-gal) tanks and all associated tank vaults and interconnecting piping, will be stabilized with grout as early as 2008. (authors)« less

  7. Summary of Group Development and Testing for Single Shell Tank Closure at Hanford

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harbour, John, R.

    2005-04-28

    This report is a summary of the bench-scale and large scale experimental studies performed by Savannah River National Laboratory for CH2M HILL to develop grout design mixes for possible use in producing fill materials as a part of Tank Closure of the Single-Shell Tanks at Hanford. The grout development data provided in this report demonstrates that these design mixes will produce fill materials that are ready for use in Hanford single shell tank closure. The purpose of this report is to assess the ability of the proposed grout specifications to meet the current requirements for successful single shell tank closuremore » which will include the contracting of services for construction and operation of a grout batch plant. The research and field experience gained by SRNL in the closure of Tanks 17F and 20F at the Savannah River Site was leveraged into the grout development efforts for Hanford. It is concluded that the three Hanford grout design mixes provide fill materials that meet the current requirements for successful placement. This conclusion is based on the completion of recommended testing using Hanford area materials by the operators of the grout batch plant. This report summarizes the regulatory drivers and the requirements for grout mixes as tank fill material. It is these requirements for both fresh and cured grout properties that drove the development of the grout formulations for the stabilization, structural and capping layers.« less

  8. Technical Review of Retrieval and Closure Plans for the INEEL INTEC Tank Farm Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bamberger, Judith A; Burks, Barry L; Quigley, Keith D

    2001-09-28

    The purpose of this report is to document the conclusions of a technical review of retrieval and closure plans for the Idaho National Energy and Environmental Laboratory (INEEL) Idaho Nuclear Technology and Engineering Center (INTEC) Tank Farm Facility. In addition to reviewing retrieval and closure plans for these tanks, the review process served as an information exchange mechanism so that staff in the INEEL High Level Waste (HLW) Program could become more familiar with retrieval and closure approaches that have been completed or are planned for underground storage tanks at the Oak Ridge National Laboratory (ORNL) and Hanford sites. Thismore » review focused not only on evaluation of the technical feasibility and appropriateness of the approach selected by INEEL but also on technology gaps that could be addressed through utilization of technologies or performance data available at other DOE sites and in the private sector. The reviewers, Judith Bamberger of Pacific Northwest National Laboratory (PNNL) and Dr. Barry Burks of The Providence Group Applied Technology, have extensive experience in the development and application of tank waste retrieval technologies for nuclear waste remediation.« less

  9. 100-N Area underground storage tank closures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rowley, C.A.

    1993-08-01

    This report describes the removal/characterization actions concerning underground storage tanks (UST) at the 100-N Area. Included are 105-N-LFT, 182-N-1-DT, 182-N-2-DT, 182-N-3-DT, 100-N-SS-27, and 100-N-SS-28. The text of this report gives a summary of remedial activities. In addition, correspondence relating to UST closures can be found in Appendix B. Appendix C contains copies of Unusual Occurrence Reports, and validated sampling data results comprise Appendix D.

  10. Citizen Contributions to the Closure of High-Level Waste (HLW) Tanks 18 and 19 at the Department of Energy's (DOE) Savannah River Site (SRS) - 13448

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lawless, W.F.

    2013-07-01

    Citizen involvement in DOE's decision-making for the environmental cleanup from DOE's management of its nuclear wastes across the DOE complex has had a positive effect on the cleanup of its SRS site, characterized by an acceleration of cleanup not only for the Transuranic wastes at SRS, but also for DOE's first two closures of HLW tanks, both of which occurred at SRS. The Citizens around SRS had pushed successfully for the closures of Tanks 17 and 20 in 1997, becoming the first closures of HLW tanks under regulatory guidance in the USA. However, since then, HLW tank closures ceased duemore » to a lawsuit, the application of new tank clean-up technology, interagency squabbling between DOE and NRC over tank closure criteria, and finally and almost fatally, from budget pressures. Despite an agreement with its regulators for the closure of Tanks 18 and 19 by the end of calendar year 2012, the outlook in Fall 2011 to close these two tanks had dimmed. It was at this point that the citizens around SRS became reengaged with tank closures, helping DOE to reach its agreed upon milestone. (authors)« less

  11. Closure Report for Corrective Action Unit 127: Areas 25 and 26 Storage Tanks, Nevada Test Site, Nevada

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NSTec Environmental Restoration

    CAU 127, Areas 25 and 26 Storage Tanks, consists of twelve CASs located in Areas 25 and 26 of the NTS. The closure alternatives included no further action, clean closure, and closure in place with administrative controls. The purpose of this Closure Report is to provide a summary of the completed closure activities, documentation of waste disposal, and analytical data to confirm that the remediation goals were met.

  12. 78 FR 75913 - Final Tank Closure and Waste Management Environmental Impact Statement for the Hanford Site...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-13

    ... Subtitle C barrier, a multi-layer barrier designed to provide 500-year protection. \\2\\ Under Tank Closure..., which means the tanks, ancillary equipment, and contaminated soil would be removed, and the remaining... Hanford barrier, a multi- layer barrier designed to provide 1,000-year protection. Alternative 6: All...

  13. 40 CFR 280.71 - Permanent closure and changes-in-service.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... UNDERGROUND STORAGE TANKS (UST) Out-of-Service UST Systems and Closure § 280.71 Permanent closure and changes... sludges. All tanks taken out of service permanently must also be either removed from the ground or filled with an inert solid material. (c) Continued use of an UST system to store a non-regulated substance is...

  14. 40 CFR 280.71 - Permanent closure and changes-in-service.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... UNDERGROUND STORAGE TANKS (UST) Out-of-Service UST Systems and Closure § 280.71 Permanent closure and changes... sludges. All tanks taken out of service permanently must also be either removed from the ground or filled with an inert solid material. (c) Continued use of an UST system to store a non-regulated substance is...

  15. 40 CFR 280.71 - Permanent closure and changes-in-service.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... UNDERGROUND STORAGE TANKS (UST) Out-of-Service UST Systems and Closure § 280.71 Permanent closure and changes... sludges. All tanks taken out of service permanently must also be either removed from the ground or filled with an inert solid material. (c) Continued use of an UST system to store a non-regulated substance is...

  16. 40 CFR 280.71 - Permanent closure and changes-in-service.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... UNDERGROUND STORAGE TANKS (UST) Out-of-Service UST Systems and Closure § 280.71 Permanent closure and changes... sludges. All tanks taken out of service permanently must also be either removed from the ground or filled with an inert solid material. (c) Continued use of an UST system to store a non-regulated substance is...

  17. Closure Report for Corrective Action Unit 516: Septic Systems and Discharge Points

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NSTec Environmental Restoration

    Corrective Action Unit (CAU) 516 is located in Areas 3, 6, and 22 of the Nevada Test Site. CAU 516 is listed in the Federal Facility Agreement and Consent Order of 1996 as Septic Systems and Discharge Points, and is comprised of six Corrective Action Sites (CASs): {sm_bullet} CAS 03-59-01, Bldg 3C-36 Septic System {sm_bullet} CAS 03-59-02, Bldg 3C-45 Septic System {sm_bullet} CAS 06-51-01, Sump and Piping {sm_bullet} CAS 06-51-02, Clay Pipe and Debris {sm_bullet} CAS 06-51-03, Clean Out Box and Piping {sm_bullet} CAS 22-19-04, Vehicle Decontamination Area The Nevada Division of Environmental Protection (NDEP)-approved corrective action alternative for CASsmore » 06-51-02 and 22-19-04 is no further action. The NDEP-approved corrective action alternative for CASs 03-59-01, 03-59-02, 06-51-01, and 06-51-03 is clean closure. Closure activities included removing and disposing of total petroleum hydrocarbon (TPH)-impacted septic tank contents, septic tanks, distribution/clean out boxes, and piping. CAU 516 was closed in accordance with the NDEP-approved CAU 516 Corrective Action Plan (CAP). The closure activities specified in the CAP were based on the recommendations presented in the CAU 516 Corrective Action Decision Document (U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office, 2004). This Closure Report documents CAU 516 closure activities. During closure activities, approximately 186 tons of hydrocarbon waste in the form of TPH-impacted soil and debris, as well as 89 tons of construction debris, were generated and managed and disposed of appropriately. Waste minimization techniques, such as field screening of soil samples and the utilization of laboratory analysis to characterize and classify waste streams, were employed during the performance of closure work.« less

  18. 40 CFR 280.74 - Closure records.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... following ways: (a) By the owners and operators who took the UST system out of service; (b) By the current... STANDARDS AND CORRECTIVE ACTION REQUIREMENTS FOR OWNERS AND OPERATORS OF UNDERGROUND STORAGE TANKS (UST) Out-of-Service UST Systems and Closure § 280.74 Closure records. Owners and operators must maintain...

  19. 40 CFR 280.74 - Closure records.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... following ways: (a) By the owners and operators who took the UST system out of service; (b) By the current... STANDARDS AND CORRECTIVE ACTION REQUIREMENTS FOR OWNERS AND OPERATORS OF UNDERGROUND STORAGE TANKS (UST) Out-of-Service UST Systems and Closure § 280.74 Closure records. Owners and operators must maintain...

  20. 40 CFR 280.74 - Closure records.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... following ways: (a) By the owners and operators who took the UST system out of service; (b) By the current... STANDARDS AND CORRECTIVE ACTION REQUIREMENTS FOR OWNERS AND OPERATORS OF UNDERGROUND STORAGE TANKS (UST) Out-of-Service UST Systems and Closure § 280.74 Closure records. Owners and operators must maintain...

  1. 40 CFR 280.74 - Closure records.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... following ways: (a) By the owners and operators who took the UST system out of service; (b) By the current... STANDARDS AND CORRECTIVE ACTION REQUIREMENTS FOR OWNERS AND OPERATORS OF UNDERGROUND STORAGE TANKS (UST) Out-of-Service UST Systems and Closure § 280.74 Closure records. Owners and operators must maintain...

  2. 40 CFR 280.74 - Closure records.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... following ways: (a) By the owners and operators who took the UST system out of service; (b) By the current... STANDARDS AND CORRECTIVE ACTION REQUIREMENTS FOR OWNERS AND OPERATORS OF UNDERGROUND STORAGE TANKS (UST) Out-of-Service UST Systems and Closure § 280.74 Closure records. Owners and operators must maintain...

  3. Tank Closure Progress at the Department of Energy's Idaho National Engineering Laboratory Tank Farm Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Quigley, K.D.; Butterworth, St.W.; Lockie, K.A.

    2008-07-01

    Significant progress has been made at the U.S. Department of Energy (DOE) Idaho National Laboratory (INL) to empty, clean and close radioactive liquid waste storage tanks at the Idaho Nuclear Technology and Engineering Center (INTEC) Tank Farm Facility (TFF). The TFF includes eleven 1,135.6-kL (300,000-gal) underground stainless steel storage tanks and four smaller, 113.5-kL (30,000-gal) stainless steel tanks, along with tank vaults, interconnecting piping, and ancillary equipment. The TFF tanks have historically been used to store a variety of radioactive liquid waste, including wastes associated with past spent nuclear fuel reprocessing. Although four of the large storage tanks remain inmore » use for waste storage, the other seven 1,135.6-kL (300,000-gal) tanks and the four 113.5-kL (30,000-gal) tanks have been emptied of waste, cleaned and filled with grout. A water spray cleaning system was developed and deployed to clean internal tank surfaces and remove remaining tank wastes. The cleaning system was effective in removing all but a very small volume of solid residual waste particles. Recent issuance of an Amended Record of Decision (ROD) in accordance with the National Environmental Policy Act, and a Waste Determination complying with Section 3116 of the Ronald W. Reagan National Defense Authorization Act (NDAA) for Fiscal Year 2005, has allowed commencement of grouting activities on the cleaned tanks. The first three 113.5-kL (30,000-gal) tanks were grouted in the Fall of 2006 and the fourth tank and the seven 1,135.6-kL (300,000-gal) tanks were filled with grout in 2007 to provide long-term stability. It is currently planned that associated tank valve boxes and interconnecting piping, will be stabilized with grout as early as 2008. (authors)« less

  4. Ecological Data in Support of the Tank Closure and Waste Management Environmental Impact Statement. Part 2: Results of Spring 2007 Field Surveys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sackschewsky, Michael R.; Downs, Janelle L.

    2007-05-31

    This review provides an evaluation of potential impacts of actions that have been proposed under various alternatives to support the closure of the high level waste tanks on the Hanford Site. This review provides a summary of data collected in the field during the spring of 2007 at all of the proposed project sites within 200 East and 200 West Areas, and at sites not previously surveyed. The primary purpose of this review is to provide biological data that can be incorporated into or used to support the Tank Closure and Waste Management Environmental Impact Statement.

  5. 46 CFR 64.41 - Stop valve closure.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Stop valve closure. 64.41 Section 64.41 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING MARINE PORTABLE TANKS AND CARGO HANDLING SYSTEMS Standards for an MPT § 64.41 Stop valve closure. A stop valve that operates by a screwed...

  6. Tank waste remediation system nuclear criticality safety program management review

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    BRADY RAAP, M.C.

    1999-06-24

    This document provides the results of an internal management review of the Tank Waste Remediation System (TWRS) criticality safety program, performed in advance of the DOE/RL assessment for closure of the TWRS Nuclear Criticality Safety Issue, March 1994. Resolution of the safety issue was identified as Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement) Milestone M-40-12, due September 1999.

  7. Closure Report for Corrective Action Unit 151: Septic Systems and Discharge Area, Nevada Test Site, Nevada

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NSTec Environmental Restoration

    2008-04-01

    Corrective Action Unit (CAU) 151 is identified in the Federal Facility Agreement and Consent Order (FFACO) as Septic Systems and Discharge Area. CAU 151 consists of the following eight Corrective Action Sites (CASs), located in Areas 2, 12, and 18 of the Nevada Test Site, approximately 65 miles northwest of Las Vegas, Nevada: (1) CAS 02-05-01, UE-2ce Pond; (2) CAS 12-03-01, Sewage Lagoons (6); (3) CAS 12-04-01, Septic Tanks; (4) CAS 12-04-02, Septic Tanks; (5) CAS 12-04-03, Septic Tank; (6) CAS 12-47-01, Wastewater Pond; (7) CAS 18-03-01, Sewage Lagoon; and (8) CAS 18-99-09, Sewer Line (Exposed). CAU 151 closure activitiesmore » were conducted according to the FFACO (FFACO, 1996; as amended February 2008) and the Corrective Action Plan for CAU 151 (U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office, 2007) from October 2007 to January 2008. The corrective action alternatives included no further action, clean closure, and closure in place with administrative controls. CAU 151 closure activities are summarized in Table 1. Closure activities generated liquid remediation waste, sanitary waste, hydrocarbon waste, and mixed waste. Waste generated was appropriately managed and disposed. Waste that is currently staged onsite is being appropriately managed and will be disposed under approved waste profiles in permitted landfills. Waste minimization activities included waste characterization sampling and segregation of waste streams. Some waste exceeded land disposal restriction limits and required offsite treatment prior to disposal. Other waste meeting land disposal restrictions was disposed of in appropriate onsite or offsite landfills. Waste disposition documentation is included as Appendix C.« less

  8. Tanks focus area multiyear program plan FY97-FY99

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1996-08-01

    The U.S. Department of Energy (DOE) continues to face a major tank remediation problem with approximately 332 tanks storing over 378,000 ml of high-level waste (HLW) and transuranic (TRU) waste across the DOE complex. Most of the tanks have significantly exceeded their life spans. Approximately 90 tanks across the DOE complex are known or assumed to have leaked. Some of the tank contents are potentially explosive. These tanks must be remediated and made safe. How- ever, regulatory drivers are more ambitious than baseline technologies and budgets will support. Therefore, the Tanks Focus Area (TFA) began operation in October 1994. Themore » focus area manages, coordinates, and leverages technology development to provide integrated solutions to remediate problems that will accelerate safe and cost-effective cleanup and closure of DOE`s national tank system. The TFA is responsible for technology development to support DOE`s four major tank sites: Hanford Site (Washington), INEL (Idaho), Oak Ridge Reservation (ORR) (Tennessee), and Savannah River Site (SRS) (South Carolina). Its technical scope covers the major functions that comprise a complete tank remediation system: safety, characterization, retrieval, pretreatment, immobilization, and closure.« less

  9. Closure Report for Corrective Action Unit 224: Decon Pad and Septic Systems, Nevada Test Site, Nevada

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NSTec Environmental Restoration

    Corrective Action Unit (CAU) 224 is located in Areas 02, 03, 05, 06, 11, and 23 of the Nevada Test Site, which is situated approximately 65 miles northwest of Las Vegas, Nevada. CAU 224 is listed in the Federal Facility Agreement and Consent Order (FFACO) of 1996 as Decon Pad and Septic Systems and is comprised of the following nine Corrective Action Sites (CASs): CAS 02-04-01, Septic Tank (Buried); CAS 03-05-01, Leachfield; CAS 05-04-01, Septic Tanks (4)/Discharge Area; CAS 06-03-01, Sewage Lagoons (3); CAS 06-05-01, Leachfield; CAS 06-17-04, Decon Pad and Wastewater Catch; CAS 06-23-01, Decon Pad Discharge Piping; CASmore » 11-04-01, Sewage Lagoon; and CAS 23-05-02, Leachfield. The Nevada Division of Environmental Protection (NDEP)-approved corrective action alternative for CASs 02-04-01, 03-05-01, 06-03-01, 11-04-01, and 23-05-02 is no further action. As a best management practice, the septic tanks and distribution box were removed from CASs 02-04-01 and 11-04-01 and disposed of as hydrocarbon waste. The NDEP-approved correction action alternative for CASs 05-04-01, 06-05-01, 06-17-04, and 06-23-01 is clean closure. Closure activities for these CASs included removing and disposing of radiologically and pesticide-impacted soil and debris. CAU 224 was closed in accordance with the NDEP-approved CAU 224 Corrective Action Plan (CAP). The closure activities specified in the CAP were based on the recommendations presented in the CAU 224 Corrective Action Decision Document (U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office, 2005). This Closure Report documents CAU 224 closure activities. During closure activities, approximately 60 cubic yards (yd3) of mixed waste in the form of soil and debris; approximately 70 yd{sup 3} of sanitary waste in the form of soil, liquid from septic tanks, and concrete debris; approximately 10 yd{sup 3} of hazardous waste in the form of pesticide-impacted soil; approximately 0.5 yd{sup 3} of universal

  10. Development and Testing of a Mobile Platform for Tank Remediation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nance, T.A.

    2001-01-16

    The Department of Energy (DOE) is committed to removing millions of gallons of high level radioactive waste from waste storage tanks at the Savannah River Site (SRS). SRS was the first site in the DOE complex to have emptied and closed high level waste tanks. Tank closure at the Site is now progressing to tanks containing waste composed of liquid and large deposits of solids, including a tank that has a potential ''heel''. A heel is a hardened mass of solid waste material spread across the tank bottom. Tank closure requires breaking up this heel and moving the material tomore » the intake of a pumping system for transfer from the tank. In the past, overhead spray systems have been used with some success at moving waste. But the limited number of risers restricts the coverage area of the overhead spray system. Therefore, a floor- level spray system will be used to separate manageable size chunks of the material from the heel. The chunks will be guided into the pump's intake to be remove from the tank. The floor-level spray system movement will be accomplished by using a mobile platform, a crawler, which provides transport to nearly every point on the tank floor. Transport of the spray system will allow the system to ''corral'' the waste away from the tank walls and control the movement of the material across the tank floor. Because the available access riser is small, and a wide crawler platform is required to support the spray system, the crawler's frame must fold to enter the tank. After entry into the tank, the crawler unfolds on the tank floor using the crawler drive tracks to expand the frame and position the mobile platform under the entry riser. The spray system will then be lowered separately through the entry riser and mated onto the crawler on the tank floor. The crawler and spray system are tethered and controlled remotely by personnel at the control station. Motorized cable reels will also be remotely controlled to pay out, retrieve, and manage the

  11. Annual Report, Fall 2016: Identifying Cost Effective Tank Waste Characterization Approaches

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reboul, S. H.; DiPrete, D. P.

    2016-12-12

    This report documents the activities that were performed during the second year of a project undertaken to improve the cost effectiveness and timeliness of SRNL’s tank closure characterization practices. The activities performed during the first year of the project were previously reported in SRNL-STI-2015-00144. The scope of the second year activities was divided into the following three primary tasks: 1) develop a technical basis and strategy for improving the cost effectiveness and schedule of SRNL’s tank closure characterization program; 2) initiate the design and assembly of a new waste removal system for improving the throughput and reducing the personnel dosemore » associated with extraction chromatography radiochemical separations; and 3) develop and perform feasibility testing of three alternative radiochemical separation protocols holding promise for improving high resource demand/time consuming tank closure sample analysis methods.« less

  12. 49 CFR 179.100-17 - Closures for openings.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) SPECIFICATIONS FOR TANK CARS Specifications for Pressure Tank Car Tanks (Classes DOT-105, 109, 112, 114 and 120) § 179.100-17 Closures for...

  13. 49 CFR 179.100-17 - Closures for openings.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) SPECIFICATIONS FOR TANK CARS Specifications for Pressure Tank Car Tanks (Classes DOT-105, 109, 112, 114 and 120) § 179.100-17 Closures for...

  14. 49 CFR 179.100-17 - Closures for openings.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) SPECIFICATIONS FOR TANK CARS Specifications for Pressure Tank Car Tanks (Classes DOT-105, 109, 112, 114 and 120) § 179.100-17 Closures for...

  15. 49 CFR 179.220-22 - Closure for openings.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) SPECIFICATIONS FOR TANK CARS Specifications for Non-Pressure Tank Car Tanks (Classes DOT-111AW and 115AW) § 179.220-22 Closure for openings...

  16. 49 CFR 179.200-21 - Closures for openings.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) SPECIFICATIONS FOR TANK CARS Specifications for Non-Pressure Tank Car Tanks (Classes DOT-111AW and 115AW) § 179.200-21 Closures for openings...

  17. 49 CFR 179.220-22 - Closure for openings.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) SPECIFICATIONS FOR TANK CARS Specifications for Non-Pressure Tank Car Tanks (Classes DOT-111AW and 115AW) § 179.220-22 Closure for openings...

  18. 49 CFR 179.200-21 - Closures for openings.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) SPECIFICATIONS FOR TANK CARS Specifications for Non-Pressure Tank Car Tanks (Classes DOT-111AW and 115AW) § 179.200-21 Closures for openings...

  19. 49 CFR 179.200-15 - Closures for manways.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) SPECIFICATIONS FOR TANK CARS Specifications for Non-Pressure Tank Car Tanks (Classes DOT-111AW and 115AW) § 179.200-15 Closures for manways...

  20. 49 CFR 179.200-21 - Closures for openings.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) SPECIFICATIONS FOR TANK CARS Specifications for Non-Pressure Tank Car Tanks (Classes DOT-111AW and 115AW) § 179.200-21 Closures for openings...

  1. 49 CFR 179.200-15 - Closures for manways.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) SPECIFICATIONS FOR TANK CARS Specifications for Non-Pressure Tank Car Tanks (Classes DOT-111AW and 115AW) § 179.200-15 Closures for manways...

  2. 49 CFR 179.200-15 - Closures for manways.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) SPECIFICATIONS FOR TANK CARS Specifications for Non-Pressure Tank Car Tanks (Classes DOT-111AW and 115AW) § 179.200-15 Closures for manways...

  3. Closure Report for Corrective Action Unit 563: Septic Systems, Nevada Test Site, Nevada

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NSTec Environmental Restoration

    2010-02-28

    Corrective Action Unit (CAU) 563 is identified in the Federal Facility Agreement and Consent Order (FFACO) as “Septic Systems” and consists of the following four Corrective Action Sites (CASs), located in Areas 3 and 12 of the Nevada Test Site: · CAS 03-04-02, Area 3 Subdock Septic Tank · CAS 03-59-05, Area 3 Subdock Cesspool · CAS 12-59-01, Drilling/Welding Shop Septic Tanks · CAS 12-60-01, Drilling/Welding Shop Outfalls Closure activities were conducted from September to November 2009 in accordance with the FFACO (1996, as amended February 2008) and the Corrective Action Plan for CAU 563. The corrective action alternatives includedmore » No Further Action and Clean Closure.« less

  4. Dual Tank Fuel System

    DOEpatents

    Wagner, Richard William; Burkhard, James Frank; Dauer, Kenneth John

    1999-11-16

    A dual tank fuel system has primary and secondary fuel tanks, with the primary tank including a filler pipe to receive fuel and a discharge line to deliver fuel to an engine, and with a balance pipe interconnecting the primary tank and the secondary tank. The balance pipe opens close to the bottom of each tank to direct fuel from the primary tank to the secondary tank as the primary tank is filled, and to direct fuel from the secondary tank to the primary tank as fuel is discharged from the primary tank through the discharge line. A vent line has branches connected to each tank to direct fuel vapor from the tanks as the tanks are filled, and to admit air to the tanks as fuel is delivered to the engine.

  5. CEMENTITIOUS GROUT FOR CLOSING SRS HIGH LEVEL WASTE TANKS - #12315

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Langton, C.; Burns, H.; Stefanko, D.

    2012-01-10

    In 1997, the first two United States Department of Energy (US DOE) high level waste tanks (Tanks 17-F and 20-F: Type IV, single shell tanks) were taken out of service (permanently closed) at the Savannah River Site (SRS). In 2012, the DOE plans to remove from service two additional Savannah River Site (SRS) Type IV high-level waste tanks, Tanks 18-F and 19-F. These tanks were constructed in the late 1950's and received low-heat waste and do not contain cooling coils. Operational closure of Tanks 18-F and 19-F is intended to be consistent with the applicable requirements of the Resource Conservationmore » and Recovery Act (RCRA) and the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) and will be performed in accordance with South Carolina Department of Health and Environmental Control (SCDHEC). The closure will physically stabilize two 4.92E+04 cubic meter (1.3 E+06 gallon) carbon steel tanks and isolate and stabilize any residual contaminants left in the tanks. The closure will also fill, physically stabilize and isolate ancillary equipment abandoned in the tanks. A Performance Assessment (PA) has been developed to assess the long-term fate and transport of residual contamination in the environment resulting from the operational closure of the F-Area Tank Farm (FTF) waste tanks. Next generation flowable, zero-bleed cementitious grouts were designed, tested, and specified for closing Tanks 18-F and 19-F and for filling the abandoned equipment. Fill requirements were developed for both the tank and equipment grouts. All grout formulations were required to be alkaline with a pH of 12.4 and chemically reduction potential (Eh) of -200 to -400 to stabilize selected potential contaminants of concern. This was achieved by including Portland cement and Grade 100 slag in the mixes, respectively. Ingredients and proportions of cementitious reagents were selected and adjusted, respectively, to support the mass placement strategy developed by

  6. The Integration of the 241-Z Building Decontamination and Decommissioning Under Cercla with RCRA Closure at the Plutonium Finishing Plant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mattlin, E.; Charboneau, S.; Johnston, G.

    2007-07-01

    The 241-Z treatment and storage tanks, a hazardous waste Treatment, Storage and Disposal (TSD) unit permitted pursuant to the Resource Conservation and Recovery Act of 1976 (RCRA) and Washington State Hazardous Waste Management Act, RCW 70.105, , have been deactivated and are being actively decommissioned under the provisions of the Hanford Federal Facility Agreement and Consent Order (HFFACO), RCRA and Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA) 42 U.S.C. 9601 et seq. The 241-Z TSD unit managed non-listed radioactive contaminated waste water, containing trace RCRA characteristic constituents. The 241-Z TSD unit consists of below grade tanks (D-4,more » D-5, D-7, D-8, and an overflow tank) located in a concrete containment vault, sample glovebox GB-2-241-ZA, and associated ancillary piping and equipment. The tank system is located beneath the 241-Z building. The 241-Z building is not a portion of the TSD unit. The sample glovebox is housed in the above-grade building. Waste managed at the TSD unit was received via underground piping from Plutonium Finishing Plant (PFP) sources. Tank D-6, located in the D-6 vault cell, is a past-practice tank that was taken out of service in 1972 and has never operated as a portion of the RCRA TSD unit. CERCLA actions will address Tank D-6, its containment vault cell, and soil beneath the cell that was potentially contaminated during past-practice operations and any other potential past-practice contamination identified during 241-Z closure, while outside the scope of the Hanford Facility Dangerous Waste Closure Plan, 241-Z Treatment and Storage Tanks. Under the RCRA closure plan, the 241-Z TSD unit is anticipated to undergo clean closure to the performance standards of the State of Washington with respect to dangerous waste contamination from RCRA operations. The TSD unit will be clean closed if physical closure activities identified in the plan achieve clean closure standards for all

  7. Commercial Submersible Mixing Pump For SRS Tank Waste Removal - 15223

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hubbard, Mike; Herbert, James E.; Scheele, Patrick W.

    The Savannah River Site Tank Farms have 45 active underground waste tanks used to store and process nuclear waste materials. There are 4 different tank types, ranging in capacity from 2839 m 3 to 4921 m 3 (750,000 to 1,300,000 gallons). Eighteen of the tanks are older style and do not meet all current federal standards for secondary containment. The older style tanks are the initial focus of waste removal efforts for tank closure and are referred to as closure tanks. Of the original 51 underground waste tanks, six of the original 24 older style tanks have completed waste removalmore » and are filled with grout. The insoluble waste fraction that resides within most waste tanks at SRS requires vigorous agitation to suspend the solids within the waste liquid in order to transfer this material for eventual processing into glass filled canisters at the Defense Waste Processing Facility (DWPF). SRS suspends the solid waste by use of recirculating mixing pumps. Older style tanks generally have limited riser openings which will not support larger mixing pumps, since the riser access is typically 58.4 cm (23 inches) in diameter. Agitation for these tanks has been provided by four long shafted standard slurry pumps (SLP) powered by an above tank 112KW (150 HP) electric motor. The pump shaft is lubricated and cooled in a pressurized water column that is sealed from the surrounding waste in the tank. Closure of four waste tanks has been accomplished utilizing long shafted pump technology combined with heel removal using multiple technologies. Newer style waste tanks at SRS have larger riser openings, allowing the processing of waste solids to be accomplished with four large diameter SLPs equipped with 224KW (300 HP) motors. These tanks are used to process the waste from closure tanks for DWPF. In addition to the SLPs, a 224KW (300 HP) submersible mixer pump (SMP) has also been developed and deployed within older style tanks. The SMPs are product cooled and product lubricated

  8. System for closure of a physical anomaly

    DOEpatents

    Bearinger, Jane P; Maitland, Duncan J; Schumann, Daniel L; Wilson, Thomas S

    2014-11-11

    Systems for closure of a physical anomaly. Closure is accomplished by a closure body with an exterior surface. The exterior surface contacts the opening of the anomaly and closes the anomaly. The closure body has a primary shape for closing the anomaly and a secondary shape for being positioned in the physical anomaly. The closure body preferably comprises a shape memory polymer.

  9. Corrective Action Decision Document/Closure Report for Corrective Action 405: Area 3 Septic Systems, Tonopah Test Range, Nevada Rev. No.: 0, April 2002

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    IT Coroporation, Las Vegas, NV

    2002-04-17

    This Corrective Action Decision Document/Closure Report (CADD/CR) has been prepared for Corrective Action Unit (CAU) 405, Area 3 Septic Systems, in accordance with the Federal Facility Agreement and Consent Order. Located on the Tonopah Test Range (TTR) approximately 235 miles north of Las Vegas, Nevada, CAU 405 consists of three Corrective Action Sites (CASs): 03-05-002-SW03, Septic Waste System (aka: Septic Waste System [SWS] 3); 03-05-002-SW04, Septic Waste System (aka: SWS 4); 03-05-002-SW07, Septic Waste System (aka: SWS 7). The CADD and CR have been combined into one report because no further action is recommended for this CAU, and this reportmore » provides specific information necessary to support this recommendation. The CAU consists of three leachfields and associated collection systems that were installed in or near Area 3 for wastewater disposal. These systems were used until a consolidated sewer system was installed in 1990. Historically, operations within various buildin gs in and near Area 3 of the TTR generated sanitary and industrial wastewaters. There is a potential that contaminants of concern (COCs) were present in the wastewaters and were disposed of in septic tanks and leachfields. The justification for closure of this CAU without further action is based on process knowledge and the results of the investigative activities. Closure activities were performed at these CASs between January 14 and February 2, 2002, and included the removal and proper disposal of media containing regulated constituents and proper closure of septic tanks. No further action is appropriate because all necessary activities have been completed. No use restrictions are required to be imposed for these sites since the investigation showed no evidence of COCs identified in the soil for CAU 405.« less

  10. 33 CFR 155.815 - Tank vessel integrity.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 2 2012-07-01 2012-07-01 false Tank vessel integrity. 155.815..., Procedures, Equipment, and Records § 155.815 Tank vessel integrity. (a) Except as provided in paragraph (b) of this section, a tank vessel underway or at anchor must have all closure mechanisms on the...

  11. 33 CFR 155.815 - Tank vessel integrity.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Tank vessel integrity. 155.815..., Procedures, Equipment, and Records § 155.815 Tank vessel integrity. (a) Except as provided in paragraph (b) of this section, a tank vessel underway or at anchor must have all closure mechanisms on the...

  12. Tank System Integrated Model: A Cryogenic Tank Performance Prediction Program

    NASA Technical Reports Server (NTRS)

    Bolshinskiy, L. G.; Hedayat, A.; Hastings, L. J.; Sutherlin, S. G.; Schnell, A. R.; Moder, J. P.

    2017-01-01

    Accurate predictions of the thermodynamic state of the cryogenic propellants, pressurization rate, and performance of pressure control techniques in cryogenic tanks are required for development of cryogenic fluid long-duration storage technology and planning for future space exploration missions. This Technical Memorandum (TM) presents the analytical tool, Tank System Integrated Model (TankSIM), which can be used for modeling pressure control and predicting the behavior of cryogenic propellant for long-term storage for future space missions. Utilizing TankSIM, the following processes can be modeled: tank self-pressurization, boiloff, ullage venting, mixing, and condensation on the tank wall. This TM also includes comparisons of TankSIM program predictions with the test data andexamples of multiphase mission calculations.

  13. Think Tank.

    ERIC Educational Resources Information Center

    Governick, Heather; Wellington, Thom

    1998-01-01

    Examines the options for upgrading, replacing, and removal or closure of underground storage tanks (UST). Reveals the diverse regulatory control involving USTs, the Environmental Protection Agency's interest in pursuing violators, and stresses the need for administrators to be knowledgeable about state and local agency definitions of regulated…

  14. Photogrammetry and Laser Imagery Tests for Tank Waste Volume Estimates: Summary Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Field, Jim G.

    2013-03-27

    Feasibility tests were conducted using photogrammetry and laser technologies to estimate the volume of waste in a tank. These technologies were compared with video Camera/CAD Modeling System (CCMS) estimates; the current method used for post-retrieval waste volume estimates. This report summarizes test results and presents recommendations for further development and deployment of technologies to provide more accurate and faster waste volume estimates in support of tank retrieval and closure.

  15. TANKS 18 AND 19-F EQUIPMENT GROUT FILL MATERIAL EVALUATION AND RECOMMENDATIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stefanko, D.; Langton, C.

    The United States Department of Energy (US DOE) intends to remove Tanks 18-F and 19-F at the Savannah River Site (SRS) from service. The high-level waste (HLW) tanks have been isolated from the F-area Tank Farm (FTF) facilities and will be filled with cementitious grout for the purpose of: (1) physically stabilizing the empty volumes in the tanks, (2) limiting/eliminating vertical pathways from the surface to residual waste on the bottom of the tanks, (3) providing an intruder barrier, and (4) providing an alkaline, chemical reducing environment within the closure boundary to limit solubility of residual radionuclides. Bulk waste andmore » heel waste removal equipment will remain in Tanks 18-F and 19-F when the tanks are closed. This equipment includes: mixer pumps, transfer pumps, transfer jets, equipment support masts, sampling masts and dip tube assemblies. The current Tank 18-F and 19-F closure strategy is to grout the internal void spaces in this equipment to eliminate fast vertical pathways and slow water infiltration to the residual material on the tank floor. This report documents the results of laboratory testing performed to identify a grout formulation for filling the abandoned equipment in Tanks 18-F and 19-F. The objective of this work was to formulate a flowable grout for filling internal voids of equipment that will remain in Tanks 18-F and 19-F during the final closures. This work was requested by V. A. Chander, Tank Farm Closure Engineering, in HLW-TTR-2011-008. The scope for this task is provided in the Task Technical and Quality Assurance Plan (TTQAP), SRNL-RP-2011-00587. The specific objectives of this task were to: (1) Prepare and evaluate the SRR cooling coil grout identified in WSRC-STI-2008-00298 per the TTR for this work. The cooling coil grout is a mixture of BASF MasterFlow{reg_sign} 816 cable grout (67.67 wt. %), Grade 100 ground granulated blast furnace slag (7.52 wt. %) and water (24.81 wt. %); (2) Identify equipment grout placement

  16. TANK 18-F AND 19-F TANK FILL GROUT SCALE UP TEST SUMMARY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stefanko, D.; Langton, C.

    2012-01-03

    High-level waste (HLW) tanks 18-F and 19-F have been isolated from FTF facilities. To complete operational closure the tanks will be filled with grout for the purpose of: (1) physically stabilizing the tanks, (2) limiting/eliminating vertical pathways to residual waste, (3) entombing waste removal equipment, (4) discouraging future intrusion, and (5) providing an alkaline, chemical reducing environment within the closure boundary to control speciation and solubility of select radionuclides. This report documents the results of a four cubic yard bulk fill scale up test on the grout formulation recommended for filling Tanks 18-F and 19-F. Details of the scale upmore » test are provided in a Test Plan. The work was authorized under a Technical Task Request (TTR), HLE-TTR-2011-008, and was performed according to Task Technical and Quality Assurance Plan (TTQAP), SRNL-RP-2011-00587. The bulk fill scale up test described in this report was intended to demonstrate proportioning, mixing, and transportation, of material produced in a full scale ready mix concrete batch plant. In addition, the material produced for the scale up test was characterized with respect to fresh properties, thermal properties, and compressive strength as a function of curing time.« less

  17. TECHNICAL ASPECTS OF UNDERGROUND STORAGE TANK CLOSURE

    EPA Science Inventory

    The overall objective of the study was to develop a deeper understanding of UST residuals at closure: their quantities, origins, physical/chemical properties, ease of removal by various cleaning methods, and their environmental mobility and persistence. The investigation covered ...

  18. 49 CFR 178.337-6 - Closure for manhole.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Containers for Motor Vehicle Transportation § 178.337-6 Closure for manhole. (a) Each cargo tank marked or...), except that a cargo tank constructed of NQT steel having a capacity of 3,500 water gallons or less may be provided with an inspection opening conforming to paragraph UG-46 and other applicable requirements of the...

  19. 49 CFR 178.337-6 - Closure for manhole.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... Containers for Motor Vehicle Transportation § 178.337-6 Closure for manhole. (a) Each cargo tank marked or...), except that a cargo tank constructed of NQT steel having a capacity of 3,500 water gallons or less may be provided with an inspection opening conforming to paragraph UG-46 and other applicable requirements of the...

  20. 49 CFR 178.337-6 - Closure for manhole.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... Containers for Motor Vehicle Transportation § 178.337-6 Closure for manhole. (a) Each cargo tank marked or...), except that a cargo tank constructed of NQT steel having a capacity of 3,500 water gallons or less may be provided with an inspection opening conforming to paragraph UG-46 and other applicable requirements of the...

  1. 49 CFR 178.337-6 - Closure for manhole.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... Containers for Motor Vehicle Transportation § 178.337-6 Closure for manhole. (a) Each cargo tank marked or...), except that a cargo tank constructed of NQT steel having a capacity of 3,500 water gallons or less may be provided with an inspection opening conforming to paragraph UG-46 and other applicable requirements of the...

  2. 33 CFR 183.520 - Fuel tank vent systems.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 2 2012-07-01 2012-07-01 false Fuel tank vent systems. 183.520...) BOATING SAFETY BOATS AND ASSOCIATED EQUIPMENT Fuel Systems Equipment Standards § 183.520 Fuel tank vent systems. (a) Each fuel tank must have a vent system that prevents pressure in the tank from exceeding 80...

  3. 33 CFR 183.520 - Fuel tank vent systems.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Fuel tank vent systems. 183.520...) BOATING SAFETY BOATS AND ASSOCIATED EQUIPMENT Fuel Systems Equipment Standards § 183.520 Fuel tank vent systems. (a) Each fuel tank must have a vent system that prevents pressure in the tank from exceeding 80...

  4. In-tank recirculating arsenic treatment system

    DOEpatents

    Brady, Patrick V [Albuquerque, NM; Dwyer, Brian P [Albuquerque, NM; Krumhansl, James L [Albuquerque, NM; Chwirka, Joseph D [Tijeras, NM

    2009-04-07

    A low-cost, water treatment system and method for reducing arsenic contamination in small community water storage tanks. Arsenic is removed by using a submersible pump, sitting at the bottom of the tank, which continuously recirculates (at a low flow rate) arsenic-contaminated water through an attached and enclosed filter bed containing arsenic-sorbing media. The pump and treatment column can be either placed inside the tank (In-Tank) by manually-lowering through an access hole, or attached to the outside of the tank (Out-of-Tank), for easy replacement of the sorption media.

  5. 46 CFR 154.427 - Membrane tank system design.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Membrane tank system design. 154.427 Section 154.427... Membrane Tanks § 154.427 Membrane tank system design. A membrane tank system must be designed for: (a) Any static and dynamic loads with respect to plastic deformation and fatigue; (b) Combined strains from...

  6. Modeling and Test Data Analysis of a Tank Rapid Chill and Fill System for the Advanced Shuttle Upper Stage (ASUS) Concept

    NASA Technical Reports Server (NTRS)

    Flachbart, Robin; Hedayat, Ali; Holt, Kimberly A.; Cruit, Wendy (Technical Monitor)

    2001-01-01

    The Advanced Shuttle Upper Stage (ASUS) concept addresses safety concerns associated .with cryogenic stages by launching empty, and filling on ascent. The ASUS employs a rapid chill and fill concept. A spray bar is used to completely chill the tank before fill, allowing the vent valve to be closed during the fill process. The first tests of this concept, using a flight size (not flight weight) tank. were conducted at Marshall Space Flight Center (MSFC) during the summer of 2000. The objectives of the testing were to: 1) demonstrate that a flight size tank could be filled in roughly 5 minutes to accommodate the shuttle ascent window, and 2) demonstrate a no-vent fill of the tank. A total of 12 tests were conducted. Models of the test facility fill and vent systems, as well as the tank, were constructed. The objective of achieving tank fill in 5 minutes was met during the test series. However, liquid began to accumulate in the tank before it was chilled. Since the tank was not chilled until the end of each test, vent valve closure during fill was not possible. Even though the chill and fill process did not occur as expected, reasonable model correlation with the test data was achieved.

  7. Mass extraction container closure integrity physical testing method development for parenteral container closure systems.

    PubMed

    Yoon, Seung-Yil; Sagi, Hemi; Goldhammer, Craig; Li, Lei

    2012-01-01

    Container closure integrity (CCI) is a critical factor to ensure that product sterility is maintained over its entire shelf life. Assuring the CCI during container closure (C/C) system qualification, routine manufacturing and stability is important. FDA guidance also encourages industry to develop a CCI physical testing method in lieu of sterility testing in a stability program. A mass extraction system has been developed to check CCI for a variety of container closure systems such as vials, syringes, and cartridges. Various types of defects (e.g., glass micropipette, laser drill, wire) were created and used to demonstrate a detection limit. Leakage, detected as mass flow in this study, changes as a function of defect length and diameter. Therefore, the morphology of defects has been examined in detail with fluid theories. This study demonstrated that a mass extraction system was able to distinguish between intact samples and samples with 2 μm defects reliably when the defect was exposed to air, water, placebo, or drug product (3 mg/mL concentration) solution. Also, it has been verified that the method was robust, and capable of determining the acceptance limit using 3σ for syringes and 6σ for vials. Sterile products must maintain their sterility over their entire shelf life. Container closure systems such as those found in syringes and vials provide a seal between rubber and glass containers. This seal must be ensured to maintain product sterility. A mass extraction system has been developed to check container closure integrity for a variety of container closure systems such as vials, syringes, and cartridges. In order to demonstrate the method's capability, various types of defects (e.g., glass micropipette, laser drill, wire) were created in syringes and vials and were tested. This study demonstrated that a mass extraction system was able to distinguish between intact samples and samples with 2 μm defects reliably when the defect was exposed to air, water

  8. Engineering study of 50 miscellaneous inactive underground radioactive waste tanks located at the Hanford Site, Washington

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Freeman-Pollard, J.R.

    1994-03-02

    This engineering study addresses 50 inactive underground radioactive waste tanks. The tanks were formerly used for the following functions associated with plutonium and uranium separations and waste management activities in the 200 East and 200 West Areas of the Hanford Site: settling solids prior to disposal of supernatant in cribs and a reverse well; neutralizing acidic process wastes prior to crib disposal; receipt and processing of single-shell tank (SST) waste for uranium recovery operations; catch tanks to collect water that intruded into diversion boxes and transfer pipeline encasements and any leakage that occurred during waste transfer operations; and waste handlingmore » and process experimentation. Most of these tanks have not been in use for many years. Several projects have, been planned and implemented since the 1970`s and through 1985 to remove waste and interim isolate or interim stabilize many of the tanks. Some tanks have been filled with grout within the past several years. Responsibility for final closure and/or remediation of these tanks is currently assigned to several programs including Tank Waste Remediation Systems (TWRS), Environmental Restoration and Remedial Action (ERRA), and Decommissioning and Resource Conservation and Recovery Act (RCRA) Closure (D&RCP). Some are under facility landlord responsibility for maintenance and surveillance (i.e. Plutonium Uranium Extraction [PUREX]). However, most of the tanks are not currently included in any active monitoring or surveillance program.« less

  9. 49 CFR 179.200-22 - Test of tanks.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... evidence of distress. All rivets and closures, except safety relief valves or safety vents, shall be in place when test is made. (b) Insulated tanks shall be tested before insulation is applied. (c) Rubber-lined tanks shall be tested before rubber lining is applied. (d) Caulking of welded joints to stop leaks...

  10. 49 CFR 179.200-22 - Test of tanks.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... evidence of distress. All rivets and closures, except safety relief valves or safety vents, shall be in place when test is made. (b) Insulated tanks shall be tested before insulation is applied. (c) Rubber-lined tanks shall be tested before rubber lining is applied. (d) Caulking of welded joints to stop leaks...

  11. 49 CFR 179.200-22 - Test of tanks.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... evidence of distress. All rivets and closures, except safety relief valves or safety vents, shall be in place when test is made. (b) Insulated tanks shall be tested before insulation is applied. (c) Rubber-lined tanks shall be tested before rubber lining is applied. (d) Caulking of welded joints to stop leaks...

  12. 49 CFR 179.200-22 - Test of tanks.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... evidence of distress. All rivets and closures, except safety relief valves or safety vents, shall be in place when test is made. (b) Insulated tanks shall be tested before insulation is applied. (c) Rubber-lined tanks shall be tested before rubber lining is applied. (d) Caulking of welded joints to stop leaks...

  13. 40 CFR 63.902 - Standards-Tank fixed roof.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... section joints or between the interface of the roof edge and the tank wall. (3) Each opening in the fixed... closure devices shall include: organic vapor permeability, the effects of any contact with the liquid or its vapors managed in the tank; the effects of outdoor exposure to wind, moisture, and sunlight; and...

  14. 40 CFR 63.902 - Standards-Tank fixed roof.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... section joints or between the interface of the roof edge and the tank wall. (3) Each opening in the fixed... closure devices shall include: organic vapor permeability, the effects of any contact with the liquid or its vapors managed in the tank; the effects of outdoor exposure to wind, moisture, and sunlight; and...

  15. 40 CFR 63.902 - Standards-Tank fixed roof.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... section joints or between the interface of the roof edge and the tank wall. (3) Each opening in the fixed... closure devices shall include: organic vapor permeability, the effects of any contact with the liquid or its vapors managed in the tank; the effects of outdoor exposure to wind, moisture, and sunlight; and...

  16. 40 CFR 63.902 - Standards-Tank fixed roof.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... section joints or between the interface of the roof edge and the tank wall. (3) Each opening in the fixed... closure devices shall include: organic vapor permeability, the effects of any contact with the liquid or its vapors managed in the tank; the effects of outdoor exposure to wind, moisture, and sunlight; and...

  17. Evaluation of Container Closure System Integrity for Frozen Storage Drug Products.

    PubMed

    Nieto, Alejandra; Roehl, Holger; Brown, Helen; Nikoloff, Jonas; Adler, Michael; Mahler, Hanns-Christian

    2016-01-01

    Sometimes, drug product for parenteral administration is stored in a frozen state (e.g., -20 °C or -80 °C), particularly during early stages of development of some biotech molecules in order to provide sufficient stability. Shipment of frozen product could potentially be performed in the frozen state, yet possibly at different temperatures, for example, using dry ice (-80 °C). Container closure systems of drug products usually consist of a glass vial, rubber stopper, and an aluminum crimped cap. In the frozen state, the glass transition temperature (Tg) of commonly used rubber stoppers is between -55 and -65 °C. Below their Tg, rubber stoppers are known to lose their elastic properties and become brittle, and thus potentially fail to maintain container closure integrity in the frozen state. Leaks during frozen temperature storage and transportation are likely to be transient, yet, can possibly risk container closure integrity and lead to microbial contamination. After thawing, the rubber stopper is supposed to re-seal the container closure system. Given the transient nature of the possible impact on container closure integrity in the frozen state, typical container closure integrity testing methods (used at room temperature conditions) are unable to evaluate and thus confirm container closure integrity in the frozen state. Here we present the development of a novel method (thermal physical container closure integrity) for direct assessment of container closure integrity by a physical method (physical container closure integrity) at frozen conditions, using a modified He leakage test. In this study, different container closure systems were evaluated with regard to physical container closure integrity in the frozen state to assess the suitability of vial/stopper combinations and were compared to a gas headspace method. In summary, the thermal physical container closure integrity He leakage method was more sensitive in detecting physical container closure

  18. 300 Area waste acid treatment system closure plan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    LUKE, S.N.

    1999-05-17

    The Hanford Facility Dangerous Waste Permit Application is considered to be a single application organized into a General Information Portion (document number DOERL-91-28) and a Unit-Specific Portion. The scope of the Unit-Specific Portion includes closure plan documentation submitted for individual, treatment, storage, and/or disposal units undergoing closure, such as the 300 Area Waste Acid Treatment System. Documentation contained in the General Information Portion is broader in nature and could be used by multiple treatment, storage, and/or disposal units (e.g., the glossary provided in the General Information Portion). Whenever appropriate, 300 Area Waste Acid Treatment System documentation makes cross-reference to themore » General Information Portion, rather than duplicating text. This 300 Area Waste Acid Treatment System Closure Plan (Revision 2) includes a Hanford Facility Dangerous Waste Permit Application, Part A, Form 3. Information provided in this closure plan is current as of April 1999.« less

  19. F-Tank Farm Performance Assessment Updates through the Special Analysis Process at Savannah River Site - 12169

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Layton, Mark H.

    2012-07-01

    The F-Area Tank Farm (FTF) is owned by the U.S. Department of Energy and operated by Savannah River Remediation, LLC (SRR), Liquid Waste Operations contractor at DOE's Savannah River Site (SRS). The FTF is in the north-central portion of the SRS and occupies approximately 22 acres within F-Area. The FTF is an active radioactive waste storage facility consisting of 22 carbon steel waste tanks and ancillary equipment such as transfer lines, evaporators and pump tanks. An FTF Performance Assessment (PA) was prepared to support the eventual closure of the FTF underground radioactive waste tanks and ancillary equipment. The PA providesmore » the technical basis and results to be used in subsequent documents to demonstrate compliance with the pertinent requirements identified below for final closure of FTF. The FTank Farm is subject to a state industrial waste water permit and Federal Facility Agreement. Closure documentation will include an F-Tank Farm Closure Plan and tank-specific closure modules utilizing information from the performance assessment. For this reason, the State of South Carolina and the Environmental Protection Agency must be involved in the performance assessment review process. The residual material remaining after tank cleaning is also subject to reclassification prior to closure via a waste determination pursuant to Section 3116 of the Ronald W. Reagan National Defense Authorization Act of Fiscal Year 2005. The projected waste tank inventories in the FTF PA provide reasonably bounding FTF inventory projections while taking into account uncertainties in the effectiveness of future tank cleaning technologies. As waste is removed from the FTF waste tanks, the residual contaminants will be sampled and the remaining residual inventory is characterized. In this manner, tank specific data for the tank inventories at closure will be available to supplement the waste tank inventory projections currently used in the FTF PA. For FTF, the new tank specific

  20. 33 CFR 183.564 - Fuel tank fill system.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 2 2012-07-01 2012-07-01 false Fuel tank fill system. 183.564...) BOATING SAFETY BOATS AND ASSOCIATED EQUIPMENT Fuel Systems Manufacturer Requirements § 183.564 Fuel tank... floating position. (b) Each hose in the tank fill system must be secured to a pipe, spud, or hose fitting...

  1. 40 CFR 280.230 - Operating an underground storage tank or underground storage tank system.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... underground storage tank or underground storage tank system. (a) Operating an UST or UST system prior to...) Operating an UST or UST system after foreclosure. The following provisions apply to a holder who, through..., the purchaser must decide whether to operate or close the UST or UST system in accordance with...

  2. 40 CFR 280.230 - Operating an underground storage tank or underground storage tank system.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... underground storage tank or underground storage tank system. (a) Operating an UST or UST system prior to...) Operating an UST or UST system after foreclosure. The following provisions apply to a holder who, through..., the purchaser must decide whether to operate or close the UST or UST system in accordance with...

  3. 40 CFR 280.230 - Operating an underground storage tank or underground storage tank system.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... underground storage tank or underground storage tank system. (a) Operating an UST or UST system prior to...) Operating an UST or UST system after foreclosure. The following provisions apply to a holder who, through..., the purchaser must decide whether to operate or close the UST or UST system in accordance with...

  4. 40 CFR 280.230 - Operating an underground storage tank or underground storage tank system.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... underground storage tank or underground storage tank system. (a) Operating an UST or UST system prior to...) Operating an UST or UST system after foreclosure. The following provisions apply to a holder who, through..., the purchaser must decide whether to operate or close the UST or UST system in accordance with...

  5. 40 CFR 280.230 - Operating an underground storage tank or underground storage tank system.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... underground storage tank or underground storage tank system. (a) Operating an UST or UST system prior to...) Operating an UST or UST system after foreclosure. The following provisions apply to a holder who, through..., the purchaser must decide whether to operate or close the UST or UST system in accordance with...

  6. Estimating Residual Solids Volume In Underground Storage Tanks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clark, Jason L.; Worthy, S. Jason; Martin, Bruce A.

    2014-01-08

    The Savannah River Site liquid waste system consists of multiple facilities to safely receive and store legacy radioactive waste, treat, and permanently dispose waste. The large underground storage tanks and associated equipment, known as the 'tank farms', include a complex interconnected transfer system which includes underground transfer pipelines and ancillary equipment to direct the flow of waste. The waste in the tanks is present in three forms: supernatant, sludge, and salt. The supernatant is a multi-component aqueous mixture, while sludge is a gel-like substance which consists of insoluble solids and entrapped supernatant. The waste from these tanks is retrieved andmore » treated as sludge or salt. The high level (radioactive) fraction of the waste is vitrified into a glass waste form, while the low-level waste is immobilized in a cementitious grout waste form called saltstone. Once the waste is retrieved and processed, the tanks are closed via removing the bulk of the waste, chemical cleaning, heel removal, stabilizing remaining residuals with tailored grout formulations and severing/sealing external penetrations. The comprehensive liquid waste disposition system, currently managed by Savannah River Remediation, consists of 1) safe storage and retrieval of the waste as it is prepared for permanent disposition; (2) definition of the waste processing techniques utilized to separate the high-level waste fraction/low-level waste fraction; (3) disposition of LLW in saltstone; (4) disposition of the HLW in glass; and (5) closure state of the facilities, including tanks. This paper focuses on determining the effectiveness of waste removal campaigns through monitoring the volume of residual solids in the waste tanks. Volume estimates of the residual solids are performed by creating a map of the residual solids on the waste tank bottom using video and still digital images. The map is then used to calculate the volume of solids remaining in the waste tank. The

  7. High level waste tank closure project: ALARA applications at the Idaho National Engineering and Environmental Laboratory.

    PubMed

    Aitken, Steven B; Butler, Richard; Butterworth, Steven W; Quigley, Keith D

    2005-05-01

    Bechtel BWXT Idaho, Maintenance and Operating Contractor for the Department of Energy at the Idaho National Engineering and Environmental Laboratory, has emptied, cleaned, and sampled six of the eleven 1.135 x 10(6) L high level waste underground storage tanks at the Idaho Nuclear Technology and Engineering Center, well ahead of the State of Idaho Consent Order cleaning schedule. Cleaning of a seventh tank is expected to be complete by the end of calendar year 2004. The tanks, with associated vaults, valve boxes, and distribution systems, are being closed to meet Resource Conservation and Recovery Act regulations and Department of Energy orders. The use of remotely operated equipment placed in the tanks through existing tank riser access points, sampling methods and application of as-low-as-reasonably-achievable (ALARA) principles have proven effective in keeping personnel dose low during equipment removal, tank, vault, and valve box cleaning, and sampling activities, currently at 0.03 Sv.

  8. 46 CFR 154.427 - Membrane tank system design.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 5 2014-10-01 2014-10-01 false Membrane tank system design. 154.427 Section 154.427 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SAFETY STANDARDS FOR SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES Design, Construction and Equipment Membrane Tanks § 154.427 Membrane tank system...

  9. 46 CFR 154.427 - Membrane tank system design.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 5 2012-10-01 2012-10-01 false Membrane tank system design. 154.427 Section 154.427 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SAFETY STANDARDS FOR SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES Design, Construction and Equipment Membrane Tanks § 154.427 Membrane tank system...

  10. 46 CFR 154.427 - Membrane tank system design.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 5 2013-10-01 2013-10-01 false Membrane tank system design. 154.427 Section 154.427 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SAFETY STANDARDS FOR SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES Design, Construction and Equipment Membrane Tanks § 154.427 Membrane tank system...

  11. System Description for Tank 241-AZ-101 Waste Retrieval Data Acquisition System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    ROMERO, S.G.

    2000-02-14

    The proposed activity provides the description of the Data Acquisition System for Tank 241-AZ-101. This description is documented in HNF-5572, Tank 241-AZ-101 Waste Retrieval Data Acquisition System (DAS). This activity supports the planned mixer pump tests for Tank 241-AZ-101. Tank 241-AZ-101 has been selected for the first full-scale demonstration of a mixer pump system. The tank currently holds over 960,000 gallons of neutralized current acid waste, including approximately 12.7 inches of settling solids (sludge) at the bottom of the tank. As described in Addendum 4 of the FSAR (LMHC 2000a), two 300 HP mixer pumps with associated measurement and monitoringmore » equipment have been installed in Tank 241-AZ-101. The purpose of the Tank 241-AZ-101 retrieval system Data Acquisition System (DAS) is to provide monitoring and data acquisition of key parameters in order to confirm the effectiveness of the mixer pumps utilized for suspending solids in the tank. The suspension of solids in Tank 241-AZ-101 is necessary for pretreatment of the neutralized current acid waste and eventual disposal as glass via the Hanford Waste Vitrification Plant. HNF-5572 provides a basic description of the Tank 241-AZ-101 retrieval system DAS, including the field instrumentation and application software. The DAS is provided to fulfill requirements for data collection and monitoring. This document is not an operations procedure or is it intended to describe the mixing operation. This USQ screening provides evaluation of HNF-5572 (Revision 1) including the changes as documented on ECN 654001. The changes include (1) add information on historical trending and data backup, (2) modify DAS I/O list in Appendix E to reflect actual conditions in the field, and (3) delete IP address in Appendix F per Lockheed Martin Services, Inc. request.« less

  12. Tank waste remediation system baseline tank waste inventory estimates for fiscal year 1995

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shelton, L.W., Westinghouse Hanford

    1996-12-06

    A set of tank-by-tank waste inventories is derived from historical waste models, flowsheet records, and analytical data to support the Tank Waste Remediation System flowsheet and retrieval sequence studies. Enabling assumptions and methodologies used to develop the inventories are discussed. These provisional inventories conform to previously established baseline inventories and are meant to serve as an interim basis until standardized inventory estimates are made available.

  13. Corrective Action Decision Document/Closure Report for Corrective Action Unit 560: Septic Systems, Nevada Test Site, Nevada, Revision 0

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grant Evenson

    2010-04-01

    Corrective Action Unit 560 comprises seven corrective action sites (CASs): •03-51-01, Leach Pit •06-04-02, Septic Tank •06-05-03, Leach Pit •06-05-04, Leach Bed •06-59-03, Building CP-400 Septic System •06-59-04, Office Trailer Complex Sewage Pond •06-59-05, Control Point Septic System The purpose of this CADD/CR is to provide justification and documentation supporting the recommendation for closure of CAU 560 with no further corrective action. To achieve this, corrective action investigation (CAI) activities were performed from October 7, 2008, through February 24, 2010, as set forth in the Corrective Action Investigation Plan for Corrective Action Unit 560: Septic Systems, Nevada Test Site, Nevada, and Recordmore » of Technical Change No. 1. The purpose of the CAI was to fulfill the following data needs as defined during the data quality objective (DQO) process: •Determine whether contaminants of concern (COCs) are present. •If COCs are present, determine their nature and extent. •Provide sufficient information and data to complete appropriate corrective actions. The CAU 560 dataset from the investigation results was evaluated based on the data quality indicator parameters. This evaluation demonstrated the quality and acceptability of the dataset for use in fulfilling the DQO data needs. Analytes detected during the CAI were evaluated against final action levels (FALs) established in this document. The following contaminants were determined to be present at concentrations exceeding their corresponding FALs: •No contamination exceeding the FALs was identified at CASs 03-51-01, 06-04-02, and 06-59-04. •The soil at the base of the leach pit chamber at CAS 06-05-03 contains arsenic above the FAL of 23 milligrams per kilogram (mg/kg) and polychlorinated biphenyl (PCBs) above the FAL of 0.74 mg/kg, confined vertically from a depth of approximately 5 to 20 feet (ft) below ground surface. The contamination is confined laterally to the walls

  14. The Cementitious Barriers Partnership Experimental Programs and Software Advancing DOE’s Waste Disposal/Tank Closure Efforts – 15436

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burns, Heather; Flach, Greg; Smith, Frank

    2015-01-27

    The U.S. Department of Energy Environmental Management (DOE-EM) Office of Tank Waste Management-sponsored Cementitious Barriers Partnership (CBP) is chartered with providing the technical basis for implementing cement-based waste forms and radioactive waste containment structures for long-term disposal. DOE needs in this area include the following to support progress in final treatment and disposal of legacy waste and closure of High-Level Waste (HLW) tanks in the DOE complex: long-term performance predictions, flow sheet development and flow sheet enhancements, and conceptual designs for new disposal facilities. The DOE-EM Cementitious Barriers Partnership is producing software and experimental programs resulting in new methods andmore » data needed for end-users involved with environmental cleanup and waste disposal. Both the modeling tools and the experimental data have already benefited the DOE sites in the areas of performance assessments by increasing confidence backed up with modeling support, leaching methods, and transport properties developed for actual DOE materials. In 2014, the CBP Partnership released the CBP Software Toolbox –“Version 2.0” which provides concrete degradation models for 1) sulfate attack, 2) carbonation, and 3) chloride initiated rebar corrosion, and includes constituent leaching. These models are applicable and can be used by both DOE and the Nuclear Regulatory Commission (NRC) for service life and long-term performance evaluations and predictions of nuclear and radioactive waste containment structures across the DOE complex, including future SRS Saltstone and HLW tank performance assessments and special analyses, Hanford site HLW tank closure projects and other projects in which cementitious barriers are required, the Advanced Simulation Capability for Environmental Management (ASCEM) project which requires source terms from cementitious containment structures as input to their flow simulations, regulatory reviews of DOE

  15. Tank Remote Repair System Conceptual Design

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kriikku, E.

    2002-12-06

    This document describes two conceptual designs for a Tank Remote Repair System to perform leak site repairs of double shell waste tank walls (Types I, II, III, and IIIA) from the annulus space. The first concept uses a magnetic wall crawler and an epoxy patch system and the second concept uses a magnetic wall crawler and a magnetic patch system. The recommended concept uses the magnetic patch system, since it is simpler to deliver, easier to apply, and has a higher probability of stopping an active leak.

  16. 40 CFR 280.220 - Ownership of an underground storage tank or underground storage tank system or facility or...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 26 2010-07-01 2010-07-01 false Ownership of an underground storage tank or underground storage tank system or facility or property on which an underground storage tank or underground storage tank system is located. 280.220 Section 280.220 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID...

  17. Development of a High Level Waste Tank Inspection System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Appel, D.K.; Loibl, M.W.; Meese, D.C.

    1995-03-21

    The Westinghouse Savannah River Technology Center was requested by it`s sister site, West Valley Nuclear Service (WVNS), to develop a remote inspection system to gather wall thickness readings of their High Level Waste Tanks. WVNS management chose to take a proactive approach to gain current information on two tanks t hat had been in service since the early 70`s. The tanks contain high level waste, are buried underground, and have only two access ports to an annular space between the tank and the secondary concrete vault. A specialized remote system was proposed to provide both a visual surveillance and ultrasonicmore » thickness measurements of the tank walls. A magnetic wheeled crawler was the basis for the remote delivery system integrated with an off-the-shelf Ultrasonic Data Acquisition System. A development program was initiated for Savannah River Technology Center (SRTC) to design, fabricate, and test a remote system based on the Crawler. The system was completed and involved three crawlers to perform the needed tasks, an Ultrasonic Crawler, a Camera Crawler, and a Surface Prep Crawler. The crawlers were computer controlled so that their operation could be done remotely and their position on the wall could be tracked. The Ultrasonic Crawler controls were interfaced with ABB Amdata`s I-PC, Ultrasonic Data Acquisition System so that thickness mapping of the wall could be obtained. A second system was requested by Westinghouse Savannah River Company (WSRC), to perform just ultrasonic mapping on their similar Waste Storage Tanks; however, the system needed to be interfaced with the P-scan Ultrasonic Data Acquisition System. Both remote inspection systems were completed 9/94. Qualifications tests were conducted by WVNS prior to implementation on the actual tank and tank development was achieved 10/94. The second inspection system was deployed at WSRC 11/94 with success, and the system is now in continuous service inspecting the remaining high level waste tanks

  18. Tank Riser Pit Decontamination System (Pit Viper) Return on Investment and Break-Even Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Young, Joan K.; Weimar, Mark R.; Balducci, Patrick J.

    2003-06-30

    This study assessed the cost benefit of Pit Viper deployment for 80 tank farm pits between October 1, 2003 and September 30, 2012 under the technical baseline for applicable double-shell tank (DST) and single-shell tank (SST) projects. After this assessment had been completed, the U.S. Department of Energy (DOE) Richland Operations Office (RL) and Office of River Protection (ORP) published the Hanford Performance Management Plan (August 2003), which accelerated the schedule for SST retrieval. Then, DOE/CH2M HILL contract modification M064 (October 2002) and The Integrated Mission Acceleration Plan (March 2003) further accelerated SST retrieval and closure schedules. Twenty-six to 40more » tanks must be retrieved by 2006. Thus the schedule for SST pit entries is accelerated and the number of SST pit entries is increased. This study estimates the return on investment (ROI) and the number of pits where Pit Viper deployment would break even or save money over current manual practices. The results of the analysis indicate a positive return on the federal investment for deployment of the Pit Viper provided it is used on a sufficient number of pits.« less

  19. 33 CFR 183.564 - Fuel tank fill system.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Fuel tank fill system. 183.564...) BOATING SAFETY BOATS AND ASSOCIATED EQUIPMENT Fuel Systems Manufacturer Requirements § 183.564 Fuel tank fill system. (a) Each fuel fill opening must be located so that a gasoline overflow of up to five...

  20. Insulation systems for liquid methane fuel tanks for supersonic cruise aircraft

    NASA Technical Reports Server (NTRS)

    Brady, H. F.; Delduca, D.

    1972-01-01

    Two insulation systems for tanks containing liquid methane in supersonic cruise-type aircraft were designed and tested after an extensive materials investigation. One system is an external insulation and the other is an internal wet-type insulation system. Tank volume was maximized by making the tank shape approach a rectangular parallelopiped. One tank was designed to use the external insulation and the other tank to use the internal insulation. Performance of the external insulation system was evaluated on a full-scale tank under the temperature environment of -320 F to 700 F and ambient pressures of ground-level atmospheric to 1 psia. Problems with installing the internal insulation on the test tank prevented full-scale evaluation of performance; however, small-scale testing verified thermal conductivity, temperature capability, and installed density.

  1. 49 CFR 179.400-13 - Support system for inner tank.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... FOR TANK CARS Specification for Cryogenic Liquid Tank Car Tanks and Seamless Steel Tanks (Classes DOT... magnitudes and directions when the inner tank is fully loaded and the car is equipped with a conventional... electrically, by either the support system, piping, or a separate electrical connection of approved design. ...

  2. System Description for Tank 241-AZ-101 Waste Retrieval Data Acquisition System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    ROMERO, S.G.

    2000-01-10

    Describes the hardware and software for the AZ-101 Mixer Pump Data Acquisition System. The purpose of the tank 241-AZ-101 retrieval system Data Acquisition System (DAS) is to provide monitoring and data acquisition of key parameters in order to confirm the effectiveness of the mixer pumps utilized for suspending solids in the tank. The suspension of solids in Tank 241-AZ-101 is necessary for pretreatment of the neutralized current acid waste (NCAW), and eventual disposal as glass via the Hanford Waste Vitrification Plant.

  3. ANNULUS CLOSURE TECHNOLOGY DEVELOPMENT INSPECTION/SALT DEPOSIT CLEANING MAGNETIC WALL CRAWLER

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Minichan, R; Russell Eibling, R; James Elder, J

    2008-06-01

    The Liquid Waste Technology Development organization is investigating technologies to support closure of radioactive waste tanks at the Savannah River Site (SRS). Tank closure includes removal of the wastes that have propagated to the tank annulus. Although amounts and types of residual waste materials in the annuli of SRS tanks vary, simple salt deposits are predominant on tanks with known leak sites. This task focused on developing and demonstrating a technology to inspect and spot clean salt deposits from the outer primary tank wall located in the annulus of an SRS Type I tank. The Robotics, Remote and Specialty Equipmentmore » (RRSE) and Materials Science and Technology (MS&T) Sections of the Savannah River National Laboratory (SRNL) collaborated to modify and equip a Force Institute magnetic wall crawler with the tools necessary to demonstrate the inspection and spot cleaning in a mock-up of a Type I tank annulus. A remote control camera arm and cleaning head were developed, fabricated and mounted on the crawler. The crawler was then tested and demonstrated on a salt simulant also developed in this task. The demonstration showed that the camera is capable of being deployed in all specified locations and provided the views needed for the planned inspection. It also showed that the salt simulant readily dissolves with water. The crawler features two different techniques for delivering water to dissolve the salt deposits. Both water spay nozzles were able to dissolve the simulated salt, one is more controllable and the other delivers a larger water volume. The cleaning head also includes a rotary brush to mechanically remove the simulated salt nodules in the event insoluble material is encountered. The rotary brush proved to be effective in removing the salt nodules, although some fine tuning may be required to achieve the best results. This report describes the design process for developing technology to add features to a commercial wall crawler and the

  4. Failure Diagnosis for the Holdup Tank System via ISFA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Huijuan; Bragg-Sitton, Shannon; Smidts, Carol

    This paper discusses the use of the integrated system failure analysis (ISFA) technique for fault diagnosis for the holdup tank system. ISFA is a simulation-based, qualitative and integrated approach used to study fault propagation in systems containing both hardware and software subsystems. The holdup tank system consists of a tank containing a fluid whose level is controlled by an inlet valve and an outlet valve. We introduce the component and functional models of the system, quantify the main parameters and simulate possible failure-propagation paths based on the fault propagation approach, ISFA. The results show that most component failures in themore » holdup tank system can be identified clearly and that ISFA is viable as a technique for fault diagnosis. Since ISFA is a qualitative technique that can be used in the very early stages of system design, this case study provides indications that it can be used early to study design aspects that relate to robustness and fault tolerance.« less

  5. 40 CFR 281.36 - Out-of-service UST systems and closure.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 28 2013-07-01 2013-07-01 false Out-of-service UST systems and closure... § 281.36 Out-of-service UST systems and closure. In order to be considered no less stringent than the... and corrective action requirements must be complied with. (c) All UST systems taken out of service...

  6. 40 CFR 281.36 - Out-of-service UST systems and closure.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 27 2014-07-01 2014-07-01 false Out-of-service UST systems and closure... § 281.36 Out-of-service UST systems and closure. In order to be considered no less stringent than the... and corrective action requirements must be complied with. (c) All UST systems taken out of service...

  7. 40 CFR 281.36 - Out-of-service UST systems and closure.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 26 2010-07-01 2010-07-01 false Out-of-service UST systems and closure... § 281.36 Out-of-service UST systems and closure. In order to be considered no less stringent than the... and corrective action requirements must be complied with. (c) All UST systems taken out of service...

  8. 40 CFR 281.36 - Out-of-service UST systems and closure.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 27 2011-07-01 2011-07-01 false Out-of-service UST systems and closure... § 281.36 Out-of-service UST systems and closure. In order to be considered no less stringent than the... and corrective action requirements must be complied with. (c) All UST systems taken out of service...

  9. 40 CFR 281.36 - Out-of-service UST systems and closure.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 28 2012-07-01 2012-07-01 false Out-of-service UST systems and closure... § 281.36 Out-of-service UST systems and closure. In order to be considered no less stringent than the... and corrective action requirements must be complied with. (c) All UST systems taken out of service...

  10. 49 CFR 178.337-6 - Closure for manhole.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Specifications for Containers for Motor Vehicle Transportation § 178.337-6 Closure for manhole. (a) Each cargo... this subchapter), except that a cargo tank constructed of NQT steel having a capacity of 3,500 water gallons or less may be provided with an inspection opening conforming to paragraph UG-46 and other...

  11. 49 CFR 179.400-13 - Support system for inner tank.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... CARS Specification for Cryogenic Liquid Tank Car Tanks and Seamless Steel Tanks (Classes DOT-113 and... directions when the inner tank is fully loaded and the car is equipped with a conventional draft gear... the support system, piping, or a separate electrical connection of approved design. ...

  12. 49 CFR 179.400-13 - Support system for inner tank.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... CARS Specification for Cryogenic Liquid Tank Car Tanks and Seamless Steel Tanks (Classes DOT-113 and... directions when the inner tank is fully loaded and the car is equipped with a conventional draft gear... the support system, piping, or a separate electrical connection of approved design. ...

  13. 49 CFR 179.400-13 - Support system for inner tank.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... CARS Specification for Cryogenic Liquid Tank Car Tanks and Seamless Steel Tanks (Classes DOT-113 and... directions when the inner tank is fully loaded and the car is equipped with a conventional draft gear... the support system, piping, or a separate electrical connection of approved design. ...

  14. 49 CFR 179.400-13 - Support system for inner tank.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... CARS Specification for Cryogenic Liquid Tank Car Tanks and Seamless Steel Tanks (Classes DOT-113 and... directions when the inner tank is fully loaded and the car is equipped with a conventional draft gear... the support system, piping, or a separate electrical connection of approved design. ...

  15. 46 CFR 154.1330 - Liquid level alarm system: Independent tank type C.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 5 2012-10-01 2012-10-01 false Liquid level alarm system: Independent tank type C. 154..., Construction and Equipment Instrumentation § 154.1330 Liquid level alarm system: Independent tank type C. Independent tanks type C need not have the high liquid level alarm system under § 154.1325 if: (a) The tank...

  16. 46 CFR 154.1330 - Liquid level alarm system: Independent tank type C.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 5 2011-10-01 2011-10-01 false Liquid level alarm system: Independent tank type C. 154..., Construction and Equipment Instrumentation § 154.1330 Liquid level alarm system: Independent tank type C. Independent tanks type C need not have the high liquid level alarm system under § 154.1325 if: (a) The tank...

  17. 46 CFR 154.1330 - Liquid level alarm system: Independent tank type C.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 5 2013-10-01 2013-10-01 false Liquid level alarm system: Independent tank type C. 154..., Construction and Equipment Instrumentation § 154.1330 Liquid level alarm system: Independent tank type C. Independent tanks type C need not have the high liquid level alarm system under § 154.1325 if: (a) The tank...

  18. 46 CFR 154.1330 - Liquid level alarm system: Independent tank type C.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Liquid level alarm system: Independent tank type C. 154..., Construction and Equipment Instrumentation § 154.1330 Liquid level alarm system: Independent tank type C. Independent tanks type C need not have the high liquid level alarm system under § 154.1325 if: (a) The tank...

  19. 46 CFR 154.1330 - Liquid level alarm system: Independent tank type C.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 5 2014-10-01 2014-10-01 false Liquid level alarm system: Independent tank type C. 154..., Construction and Equipment Instrumentation § 154.1330 Liquid level alarm system: Independent tank type C. Independent tanks type C need not have the high liquid level alarm system under § 154.1325 if: (a) The tank...

  20. 49 CFR 179.16 - Tank-head puncture-resistance systems.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... CARS General Design Requirements § 179.16 Tank-head puncture-resistance systems. (a) Performance...; and (3) The impacted tank car is pressurized to at least 6.9 Bar (100 psig). (b) Verification by... design and test requirements of the full-head protection (shields) or full tank-head jackets must meet...

  1. Tank waste remediation system retrieval and disposal mission readiness-to-proceed responses to internal independent assessment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schaus, P.S.

    1998-01-06

    The US Department of Energy (DOE) is planning to make critical decisions during fiscal year (FY) 1998 regarding privatization contracts for the treatment of Hanford tank waste. Specifically, DOE, Richland Operations Office (RL), will make decisions related to proceeding with Phase 1 Privatization. In support of these decisions, the management and integration (M+I) contractor must be able to meet the requirements to support the Phase 1 privatization contractors. As part of the assessment of the Tank Waste Retrieval (TWR) Readiness-To-Proceed (RTP), an independent review of their process and products was required by the RL letter of August 8, 1997. Themore » Independent Review Team reviewed the adequacy of the planning that has been done by the M+I contractor to validate that, if the plans are carried out, there is reasonable assurance of success. Overall, the RTP Independent Review Team concluded that, if the planning by the M+I contractor team is carried out with adequate funding, there is reasonable assurance that the M+I contractor will be able to deliver waste to the privatization contractor for the duration of Phase 1. This conclusion was based on addressing the recommendations contained in the Independent Review Team`s Final Report and in the individual Criteria and Review Approach (CRA) forms completed during the assessment. The purpose of this report is to formally document the independent assessment and the RTP team responses to the Independent Review Team recommendations. It also provides closure logics for selected recommendations from a Lockheed Martin Hanford Corporation (LMHC) internal assessment of the Technical Basis Review (TBR) packages. This report contains the RTP recommendation closure process (Section 2.0); the closure tables (Section 3.0) which provide traceability between each review team recommendation and its corresponding Project Hanford Management Contract closure logic; and two attachments that formally document the Independent Review

  2. Analysis on influence of guide vanes closure laws of pump-turbine on load rejection transient process

    NASA Astrophysics Data System (ADS)

    Yao, Z.; Bi, H. L.; Huang, Q. S.; Li, Z. J.; Wang, Z. W.

    2013-12-01

    In load rejection transient process, the sudden shut down of guide vanes may cause units speed rise and a sharp increase in water hammer pressure of diversion system, which endangers the safety operation of the power plant. Adopting reasonable guide vane closure law is a kind of economic and effective measurement to reduce the water hammer pressure and limit rotational speed increases. In this paper, combined with Guangzhou Pumped Storage Power Station plant A, the load rejection condition under different guide vanes closure laws is calculated and the key factor of guide vanes closure laws on the impact of the load rejection transition process is analyzed. The different inflection points, which are the closure modes, on the impact of unit speed change, water level fluctuation of surge tank, and the pressure fluctuation of volute inlet and draft tube inlet are further discussed. By compared with the calculation results, a reasonable guide vanes inflection point position can be determined according to security requirements and a reasonable guide vanes closure law can be attained to effectively coordinate the unit speed rise and the rapid pressure change in the load rejection transient process.

  3. Hanford Tanks 241-C-203 and 241-C-204: Residual Waste Contaminant Release Model and Supporting Data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deutsch, William J.; Krupka, Kenneth M.; Lindberg, Michael J.

    This report describes the development of release models for key contaminants that are present in residual sludge remaining after closure of Hanford Tanks 241-C-203 (C-203) and 241-C-204 (C-204). The release models were developed from data generated by laboratory characterization and testing of samples from these two tanks. Key results from this work are (1) future releases from the tanks of the primary contaminants of concern (99Tc and 238U) can be represented by relatively simple solubility relationships between infiltrating water and solid phases containing the contaminants; and (2) high percentages of technetium-99 in the sludges (20 wt% in C-203 and 75more » wt% in C-204) are not readily water leachable, and, in fact, are very recalcitrant. This is similar to results found in related studies of sludges from Tank AY-102. These release models are being developed to support the tank closure risk assessments performed by CH2M HILL Hanford Group, Inc., for the U.S. Department of Energy.« less

  4. The TopClosure® 3S System, for skin stretching and a secure wound closure.

    PubMed

    Topaz, Moris; Carmel, Narin-Nard; Silberman, Adi; Li, Ming Sen; Li, Yong Zhong

    2012-07-01

    The principle of stretching wound margins for primary wound closure is commonly practiced and used for various skin defects, leading at times to excessive tension and complications during wound closure. Different surgical techniques, skin stretching devices and tissue expanders have been utilized to address this issue. Previously designed skin stretching devices resulted in considerable morbidity. They were invasive by nature and associated with relatively high localized tissue pressure, frequently leading to necrosis, damage and tearing of skin at the wound margins. To assess the clinical effectiveness and performance and, to determine the safety of TopClosure® for gradual, controlled, temporary, noninvasive and invasive applications for skin stretching and secure wound closing, the TopClosure® device was applied to 20 patients for preoperative skin lesion removal and to secure closure of a variety of wound sizes. TopClosure® was reinforced with adhesives, staples and/or surgical sutures, depending on the circumstances of the wound and the surgeon's judgment. TopClosure® was used prior to, during and/or after surgery to reduce tension across wound edges. No significant complications or adverse events were associated with its use. TopClosure® was effectively used for preoperative skin expansion in preparation for dermal resection (e.g., congenital nevi). It aided closure of large wounds involving significant loss of skin and soft tissue by mobilizing skin and subcutaneous tissue, thus avoiding the need for skin grafts or flaps. Following surgery, it was used to secure closure of wounds under tension, thus improving wound aesthetics. A sample case study will be presented. We designed TopClosure®, an innovative device, to modify the currently practiced concept of wound closure by applying minimal stress to the skin, away from damaged wound edges, with flexible force vectors and versatile methods of attachment to the skin, in a noninvasive or invasive manner.

  5. Experimental Study of an On-board Fuel Tank Inerting System

    NASA Astrophysics Data System (ADS)

    Wu, Fei; Lin, Guiping; Zeng, Yu; Pan, Rui; Sun, Haoyang

    2017-03-01

    A simulated aircraft fuel tank inerting system was established and experiments were conducted to investigate the performance of the system. The system uses hollow fiber membrane which is widely used in aircraft as the air separation device and a simplified 20% scale multi compartment fuel tank as the inerting object. Experiments were carried out to investigate the influences of different operating parameters on the inerting effectiveness of the system, including NEA (nitrogen-enriched air) flow rate, NEA oxygen concentration, NEA distribution, pressure of bleeding air and fuel load of the tank. Results showed that for the multi compartment fuel tank, concentrated flow washing inerting would cause great differences throughout the distribution of oxygen concentration in the fuel tank, and inerting dead zone would exist. The inerting effectiveness was greatly improved and the ullage oxygen concentration of the tank would reduce to 12% successfully when NEA entered three compartments evenly. The time span of a complete inerting process reduced obviously with increasing NEA flow rate and decreasing NEA concentration, but the trend became weaker gradually. However, the reduction of NEA concentration will decrease the utilization efficiency of the bleeding air. In addition, the time span can also be reduced by raising the pressure of bleeding air, which will improve the bleeding air utilization efficiency at the same time. The time span decreases linearly as the fuel load increases.

  6. Large-Scale Wireless Temperature Monitoring System for Liquefied Petroleum Gas Storage Tanks

    PubMed Central

    Fan, Guangwen; Shen, Yu; Hao, Xiaowei; Yuan, Zongming; Zhou, Zhi

    2015-01-01

    Temperature distribution is a critical indicator of the health condition for Liquefied Petroleum Gas (LPG) storage tanks. In this paper, we present a large-scale wireless temperature monitoring system to evaluate the safety of LPG storage tanks. The system includes wireless sensors networks, high temperature fiber-optic sensors, and monitoring software. Finally, a case study on real-world LPG storage tanks proves the feasibility of the system. The unique features of wireless transmission, automatic data acquisition and management, local and remote access make the developed system a good alternative for temperature monitoring of LPG storage tanks in practical applications. PMID:26393596

  7. Large-Scale Wireless Temperature Monitoring System for Liquefied Petroleum Gas Storage Tanks.

    PubMed

    Fan, Guangwen; Shen, Yu; Hao, Xiaowei; Yuan, Zongming; Zhou, Zhi

    2015-09-18

    Temperature distribution is a critical indicator of the health condition for Liquefied Petroleum Gas (LPG) storage tanks. In this paper, we present a large-scale wireless temperature monitoring system to evaluate the safety of LPG storage tanks. The system includes wireless sensors networks, high temperature fiber-optic sensors, and monitoring software. Finally, a case study on real-world LPG storage tanks proves the feasibility of the system. The unique features of wireless transmission, automatic data acquisition and management, local and remote access make the developed system a good alternative for temperature monitoring of LPG storage tanks in practical applications.

  8. Reference Gauging System for a Small-Scale Liquid Hydrogen Tank

    NASA Technical Reports Server (NTRS)

    VanDresar, Neil T.; Siegwarth, James D.

    2003-01-01

    A system to accurately weigh the fluid contents of a small-scale liquid hydrogen test tank has been experimentally verified. It is intended for use as a reference or benchmark system when testing lowgravity liquid quantity gauging concepts in the terrestrial environment. The reference gauging system has shown a repeatable measurement accuracy of better than 0.5 percent of the full tank liquid weight. With further refinement, the system accuracy can be improved to within 0.10 percent of full scale. This report describes the weighing system design, calibration, and operational results. Suggestions are given for further refinement of the system. An example is given to illustrate additional sources of uncertainty when mass measurements are converted to volume equivalents. Specifications of the companion test tank and its multi-layer insulation system are provided.

  9. Inadvertent Intruder Calculatios for F Tank Farm

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koffman, L

    2005-09-12

    Savannah River National Laboratory (SRNL) has been providing radiological performance assessment analysis for Savannah River Site (SRS) solid waste disposal facilities (McDowell-Boyer 2000). The performance assessment considers numerous potential exposure pathways that could occur in the future. One set of exposure scenarios, known as inadvertent intruder analysis, considers the impact on hypothetical individuals who are assumed to inadvertently intrude onto the waste disposal site. An Automated Intruder Analysis application was developed by SRNL (Koffman 2004) that simplifies the inadvertent intruder analysis into a routine, automated calculation. Based on SRNL's experience, personnel from Planning Integration & Technology of Closure Business Unitmore » asked SRNL to assist with inadvertent intruder calculations for F Tank Farm to support the development of the Tank Closure Waste Determination Document. Meetings were held to discuss the scenarios to be calculated and the assumptions to be used in the calculations. As a result of the meetings, SRNL was asked to perform four scenario calculations. Two of the scenarios are the same as those calculated by the Automated Intruder Analysis application and these can be calculated directly by providing appropriate inputs. The other two scenarios involve use of groundwater by the intruder and the Automated Intruder Analysis application was adapted to perform these calculations. The four calculations to be performed are: (1) A post-drilling scenario in which the drilling penetrates a transfer line. (2) A calculation of internal exposure due to drinking water from a well located near a waste tank. (3) A post-drilling calculation in which waste is introduced by irrigation of the garden with water from a well located near a waste tank. (4) A resident scenario where a house is built above transfer lines. Note that calculations 1 and 4 use sources from the waste inventory in the transfer line (given in Table 1) whereas

  10. CFM technologies for space transportation: Multipurpose hydrogen testbed system definition and tank procurement

    NASA Technical Reports Server (NTRS)

    Fox, E. C.; Kiefel, E. R.; Mcintosh, G. L.; Sharpe, J. B.; Sheahan, D. R.; Wakefield, M. E.

    1993-01-01

    The development of a test bed tank and system for evaluating cryogenic fluid management technologies in a simulated upper stage liquid hydrogen tank is covered. The tank is 10 ft long and is 10 ft in diameter, and is an ASME certified tank constructed of 5083 aluminum. The tank is insulated with a combination of sprayed on foam insulation, covered by 45 layers of double aluminized mylar separated by dacron net. The mylar is applied by a continuous wrap system adapted from commercial applications, and incorporates variable spacing between the mylar to provide more space between those layers having a high delta temperature, which minimizes heat leak. It also incorporates a unique venting system which uses fewer large holes in the mylar rather than the multitude of small holes used conventionally. This significantly reduces radiation heat transfer. The test bed consists of an existing vacuum chamber at MSFC, the test bed tank and its thermal control system, and a thermal shroud (which may be heated) surrounding the tank. Provisions are made in the tank and chamber for inclusion of a variety of cryogenic fluid management experiments.

  11. 46 CFR 105.25-7 - Ventilation systems for cargo tank or pumping system compartment.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Ventilation systems for cargo tank or pumping system compartment. 105.25-7 Section 105.25-7 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CARGO AND MISCELLANEOUS VESSELS COMMERCIAL FISHING VESSELS DISPENSING PETROLEUM PRODUCTS Additional Requirements-When Cargo Tanks Are Installed...

  12. Evaluation of Aquaponics Techniques for Enhancing Productivity and Degree of Closure of Bioregenerative Life Support Systems (BLSS)

    NASA Astrophysics Data System (ADS)

    Nelson, Mark; Dempster, William; Highfield, Eric

    A number of researchers in space bioregenerative life support systems (BLSS) have advocated the inclusion of fish-rearing. Fish have relatively high feed to production ratios and can utilize some waste products from other system components. In recent years, there has been much advance in an approach to combining fish-culture with hydroponically-grown crops called “aquaponics”. Aquaponics systems vary but generally include: fish-rearing unit, settling basin, biofilter, hydroponic plant unit and sump where water is pumped back and the cycle continues. Aquaponics research and application has grown since these systems have the potential to increase overall productivity of both crops and fish. Since the fish waste is used as the growth medium of the food plants, there are environmental benefits in reduced discharge of nutrient-rich wastewater which has been one of the drawbacks of conventional aquaculture. In addition, since water use is reduced 95+% over field agriculture, since water from the hydroponic tanks is fed back to the fish tanks and water is recycled apart from evapotranspiration losses, conservation of water resources and applications in water-limited arid regions are other benefits fueling the spread of aquaponics around the world. These considerations also make utilization of aquaponic approaches desirable in BLSS for space application. This paper will examine some recent research results with aquaponics and explore how it might be utilized for food production and reduction of consumables in space life support. In addition, a review and comparison with other fish-culture options previously advanced will evaluate whether aquaponics can improve production efficiency, reduce inputs and better recycle critical resources. Finally, we will explore whether for the space environment, even more advanced aquaponics systems are possible where consumables such as fish-food can be partially or completely supplied from other subsystems of the BLSS and ET water

  13. THE INTEGRATION OF THE 241-Z BUILDING DECONTAMINATION & DECOMMISSIONING (D&D) UNDER COMPREHENSIVE ENVIRONMENTAL RESPONSE COMPENSATION & LIABILITY ACT (CERCLA) WITH RESOURCE CONSERVATION & RECOVERY ACT (RCRA) CLOSURE AT THE PLUTONIUM FINISHING PLANT (PFP)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    HOPKINS, A.M.

    2007-02-20

    The 241-Z treatment and storage tanks, a hazardous waste Treatment, Storage and Disposal (TSD) unit permitted pursuant to the ''Resource Conservation and Recovery Act of 1976'' (RCRA) and Washington State ''Hazardous Waste Management Act, RCW 70.105'', have been deactivated and are being actively decommissioned. The 241-Z TSD unit managed non-listed radioactive contaminated waste water, containing trace RCRA characteristic constituents. The 241-Z TSD unit consists of below grade tanks (D-4, D-5, D-7, D-8, and an overflow tank) located in a concrete containment vault, sample glovebox GB-2-241-ZA, and associated ancillary piping and equipment. The tank system is located beneath the 241-Z building.more » The 241-Z building is not a portion of the TSD unit. The sample glovebox is housed in the above-grade building. Waste managed at the TSD unit was received via underground mining from Plutonium Finishing Plant (PFP) sources. Tank D-6, located in the D-6 vault cell, is a past-practice tank that was taken out of service in 1972 and has never operated as a portion of the RCRA TSD unit. CERCLA actions address Tank D-6, its containment vault cell, and soil beneath the cell that was potentially contaminated during past-practice operations and any other potential past-practice contamination identified during 241-Z closure, while outside the scope of the ''Hanford Facility Dangerous Waste Closure Plant, 241-Z Treatment and Storage Tanks''.« less

  14. Alternative Chemical Cleaning Methods for High Level Waste Tanks: Actual Waste Testing with SRS Tank 5F Sludge

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    King, William D.; Hay, Michael S.

    Solubility testing with actual High Level Waste tank sludge has been conducted in order to evaluate several alternative chemical cleaning technologies for the dissolution of sludge residuals remaining in the tanks after the exhaustion of mechanical cleaning and sludge sluicing efforts. Tests were conducted with archived Savannah River Site (SRS) radioactive sludge solids that had been retrieved from Tank 5F in order to determine the effectiveness of an optimized, dilute oxalic/nitric acid cleaning reagent toward dissolving the bulk non-radioactive waste components. Solubility tests were performed by direct sludge contact with the oxalic/nitric acid reagent and with sludge that had beenmore » pretreated and acidified with dilute nitric acid. For comparison purposes, separate samples were also contacted with pure, concentrated oxalic acid following current baseline tank chemical cleaning methods. One goal of testing with the optimized reagent was to compare the total amounts of oxalic acid and water required for sludge dissolution using the baseline and optimized cleaning methods. A second objective was to compare the two methods with regard to the dissolution of actinide species known to be drivers for SRS tank closure Performance Assessments (PA). Additionally, solubility tests were conducted with Tank 5 sludge using acidic and caustic permanganate-based methods focused on the “targeted” dissolution of actinide species.« less

  15. Corrective Action Decision Document/Closure Report for Corrective Action Unit 274: Septic Systems, Nevada Test Site, Nevada, Rev. No.: 0

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grant Evenson

    2006-09-01

    This Corrective Action Decision Document/Closure Report has been prepared for Corrective Action Unit 274, Septic Systems, Nevada Test Site (NTS), Nevada in accordance with the ''Federal Facility Agreement and Consent Order'' (1996). Corrective Action Unit (CAU) 274 is comprised of five corrective action sites (CASs): (1) CAS 03-02-01, WX-6 ETS Building Septic System; (2) CAS 06-02-01, Cesspool; (3) CAS 09-01-01, Spill Site; (4) CAS 09-05-01, Leaching Pit; and (5) CAS 20-05-01, Septic System. The purpose of this Corrective Action Decision Document/Closure Report is to provide justification and documentation supporting the closure of CAU 274 with no further corrective action. Tomore » achieve this, corrective action investigation (CAI) activities were performed from November 14 through December 17, 2005 as set forth in the CAU 274 Corrective Action Investigation Plan. The purpose of the CAI was to fulfill the following data needs as defined during the data quality objective (DQO) process: (1) Determine whether contaminants of concern (COCs) are present. (2) If contaminants of concern are present, determine their nature and extent. (3) Provide sufficient information and data to complete appropriate corrective actions. The CAU 274 dataset from the investigation results was evaluated based on the data quality indicator parameters. This evaluation demonstrated the quality and acceptability of the dataset for use in fulfilling the DQO data needs. Analytes detected during the CAI were evaluated against final action levels (FALs) established in this document. No analytes were detected at concentrations exceeding the FALs. No COCs have been released to the soil at CAU 274, and corrective action is not required. Therefore, the DQO data needs were met, and it was determined that no corrective action based on risk to human receptors is necessary for the site. All FALs were calculated using the industrial site worker scenario except for benzo(a)pyrene, which was calculated

  16. Fiber-Optic Strain-Gage Tank Level Measurement System for Cryogenic Propellants

    NASA Technical Reports Server (NTRS)

    Figueroa, Fernando; Mitchell, Mark; Langford, Lester

    2004-01-01

    Measurement of tank level, particularly for cryogenic propellants, has proven to be a difficult problem. Current methods based on differential pressure, capacitance sensors, temperature sensors, etc.; do not provide sufficiently accurate or robust measurements, especially at run time. These methods are designed to measure tank-level, but when the fluids are in supercritical state, the liquid-gas interface disappears. Furthermore, there is a need for a non-intrusive measurement system; that is, the sensors should not require tank modifications and/or disturb the fluids. This paper describes a simple, but effective method to determine propellant mass by measuring very small deformations of the structure supporting the tank. Results of a laboratory study to validate the method, and experimental data from a deployed system are presented. A comparison with an existing differential pressure sensor shows that the strain gage system provides a much better quality signal across all regimes during an engine test. Experimental results also show that the use of fiber optic strain gages (FOSG) over classic foil strain gages extends the operation time (before the system becomes uncalibrated), and increases accuracy. Finally, a procedure is defined whereby measurements from the FOSG mounted on the tank supporting structure are compensated using measurements of a FOSG mounted on a reference plate and temperature measurements of the structure. Results describing the performance of a deployed system that measures tank level during propulsion tests are included.

  17. External tank project new technology plan. [development of space shuttle external tank system

    NASA Technical Reports Server (NTRS)

    1973-01-01

    A production plan for the space shuttle external tank configuration is presented. The subjects discussed are: (1) the thermal protection system, (2) thermal coating application techniques, (3) manufacturing and tooling, (4) propulsion system configurations and components, (5) low temperature rotating and sliding joint seals, (6) lightning protection, and (7) nondestructive testing technology.

  18. Analysis of randomly time varying systems by gaussian closure technique

    NASA Astrophysics Data System (ADS)

    Dash, P. K.; Iyengar, R. N.

    1982-07-01

    The Gaussian probability closure technique is applied to study the random response of multidegree of freedom stochastically time varying systems under non-Gaussian excitations. Under the assumption that the response, the coefficient and the excitation processes are jointly Gaussian, deterministic equations are derived for the first two response moments. It is further shown that this technique leads to the best Gaussian estimate in a minimum mean square error sense. An example problem is solved which demonstrates the capability of this technique for handling non-linearity, stochastic system parameters and amplitude limited responses in a unified manner. Numerical results obtained through the Gaussian closure technique compare well with the exact solutions.

  19. Tanks 18 And 19-F Structural Flowable Grout Fill Material Evaluation And Recommendations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Langton, C. A.; Stefanko, D. B.

    2013-04-23

    Cementitious grout will be used to close Tanks 18-F and 19-F. The functions of the grout are to: 1) physically stabilize the final landfill by filling the empty volume in the tanks with a non-compressible material; 2) provide a barrier for inadvertent intrusion into the tank; 3) reduce contaminant mobility by a) limiting the hydraulic conductivity of the closed tank and b) reducing contact between the residual waste and infiltrating water; and 4) providing an alkaline, chemically reducing environment in the closed tank to control speciation and solubility of selected radionuclides. The objective of this work was to identify amore » single (all-in-one) grout to stabilize and isolate the residual radionuclides in the tank, provide structural stability of the closed tank and serve as an inadvertent intruder barrier. This work was requested by V. A. Chander, High Level Waste (HLW) Tank Engineering, in HLW-TTR-2011-008. The complete task scope is provided in the Task Technical and QA Plan, SRNL-RP-2011-00587 Revision 0. The specific objectives of this task were to: 1) Identify new admixtures and dosages for formulating a zero bleed flowable tank fill material selected by HLW Tank Closure Project personnel based on earlier tank fill studies performed in 2007. The chemical admixtures used for adjusting the flow properties needed to be updated because the original admixture products are no longer available. Also, the sources of cement and fly ash have changed, and Portland cements currently available contain up to 5 wt. % limestone (calcium carbonate). 2) Prepare and evaluate the placement, compressive strength, and thermal properties of the selected formulation with new admixture dosages. 3) Identify opportunities for improving the mix selected by HLW Closure Project personnel and prepare and evaluate two potentially improved zero bleed flowable fill design concepts; one based on the reactor fill grout and the other based on a shrinkage compensating flowable fill mix

  20. MIXING IN DISTRIBUTION SYSTEM STORAGE TANKS: ITS EFFECT ON WATER QUALITY

    EPA Science Inventory

    Nearly all distribution systems in the US include storage tanks and reservoirs. They are the most visible components of a wate distribution system but are generally the least understood in terms of their impact on water quality. Long residence times in storage tanks can have nega...

  1. System for venting gas from a liquid storage tank

    NASA Astrophysics Data System (ADS)

    Dugan, Regina E.

    1989-07-01

    Gas is vented from a non-cryogenic liquid storage tank while discharging pressurized liquid from a tube into the tank through a plurality of inclined jets, circumferentially spaced about an end of a vent tube positioned within the tube. Each jet is directed toward a central axis of the vent tube, such that the end of the vent tube receives gas from the vessel passing between individual jetstreams, which in combination form a conical shaped barrier to liquid droplets which would otherwise also pass to the vent tube and out the tank. Gas is thus vented through the central tube while pressurized liquid flows in an axially opposite direction in the annulus between the inner vent tube and the outer liquid tube. The system of the present invention is prarticularly well suited for venting gas from a tank being replenished with liquid at a zero or near zero gravity environment. A screen-type liquid acquisition device employing surface tension is provided for withdrawing substantially liquid from the tank. The withdrawn liquid may be resupplied to the liquid tube under pressure supplied by a circulating pump, thereby releasing substantially only gas from the storage tank to reduce the pressure in the tank.

  2. Tank-connected food waste disposer systems--current status and potential improvements.

    PubMed

    Bernstad, A; Davidsson, A; Tsai, J; Persson, E; Bissmont, M; la Cour Jansen, J

    2013-01-01

    An unconventional system for separate collection of food waste was investigated through evaluation of three full-scale systems in the city of Malmö, Sweden. Ground food waste is led to a separate settling tank where food waste sludge is collected regularly with a tank-vehicle. These tank-connected systems can be seen as a promising method for separate collection of food waste from both households and restaurants. Ground food waste collected from these systems is rich in fat and has a high methane potential when compared to food waste collected in conventional bag systems. The content of heavy metals is low. The concentrations of N-tot and P-tot in sludge collected from sedimentation tanks were on average 46.2 and 3.9 g/kg TS, equalling an estimated 0.48 and 0.05 kg N-tot and P-tot respectively per year and household connected to the food waste disposer system. Detergents in low concentrations can result in increased degradation rates and biogas production, while higher concentrations can result in temporary inhibition of methane production. Concentrations of COD and fat in effluent from full-scale tanks reached an average of 1068 mg/l and 149 mg/l respectively over the five month long evaluation period. Hydrolysis of the ground material is initiated between sludge collection occasions (30 days). Older food waste sludge increases the degradation rate and the risks of fugitive emissions of methane from tanks between collection occasions. Increased particle size decreases hydrolysis rate and could thus decrease losses of carbon and nutrients in the sewerage system, but further studies in full-scale systems are needed to confirm this. Copyright © 2012 Elsevier Ltd. All rights reserved.

  3. Effluent migration from septic tank systems in two different lithologies, Broward County, Florida

    USGS Publications Warehouse

    Waller, B.G.; Howie, Barbara; Causaras, C.R.

    1987-01-01

    Two septic tank test sites, one in sand and one in limestone, in Broward County, Florida, were analyzed for effluent migration. Groundwater from shallow wells, both in background areas and hydraulically down-gradient of the septic tank system, was sampled during a 16-month period from April 1983 through August 1984. Water quality indicators were used to determine the effluent affected zone near the septic tank systems. Specific conductance levels and concentrations of chloride, sulfate, ammonium, and nitrate indicated effluent movement primarily in a vertical direction with abrupt dilution as it moved down-gradient. Effluent was detected in the sand to a depth more than 20 ft below the septic tank outlet, but was diluted to near background conditions 50 ft down-gradient from the tank. Effluent in the limestone was detected in all three observation wells to depths exceeding 25 ft below the septic tank outlet and was diluted, but still detectable, 40 ft down-gradient. The primary controls on effluent movement from septic tank systems in Broward County are the lithology and layering of the geologic materials, hydraulic gradients, and the volume and type of use the system receives. (Author 's abstract)

  4. Tank waste remediation system configuration management plan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vann, J.M.

    The configuration management program for the Tank Waste Remediation System (TWRS) Project Mission supports management of the project baseline by providing the mechanisms to identify, document, and control the functional and physical characteristics of the products. This document is one of the tools used to develop and control the mission and work. It is an integrated approach for control of technical, cost, schedule, and administrative information necessary to manage the configurations for the TWRS Project Mission. Configuration management focuses on five principal activities: configuration management system management, configuration identification, configuration status accounting, change control, and configuration management assessments. TWRS Projectmore » personnel must execute work in a controlled fashion. Work must be performed by verbatim use of authorized and released technical information and documentation. Application of configuration management will be consistently applied across all TWRS Project activities and assessed accordingly. The Project Hanford Management Contract (PHMC) configuration management requirements are prescribed in HNF-MP-013, Configuration Management Plan (FDH 1997a). This TWRS Configuration Management Plan (CMP) implements those requirements and supersedes the Tank Waste Remediation System Configuration Management Program Plan described in Vann, 1996. HNF-SD-WM-CM-014, Tank Waste Remediation System Configuration Management Implementation Plan (Vann, 1997) will be revised to implement the requirements of this plan. This plan provides the responsibilities, actions and tools necessary to implement the requirements as defined in the above referenced documents.« less

  5. Closure Report for Corrective Action Unit 261: Area 25 Test Cell A Leachfield System, Nevada Test Site, Nevada

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    T. M. Fitzmaurice

    2001-04-01

    The purpose of this Closure Report (CR) is to provide documentation of the completed corrective action at the Test Cell A Leachfield System and to provide data confirming the corrective action. The Test Cell A Leachfield System is identified in the Federal Facility Agreement and Consent Order (FFACO) of 1996 as Corrective Action Unit (CAU) 261. Remediation of CAU 261 is required under the FFACO (1996). CAU 261 is located in Area 25 of the Nevada Test Site (NTS) which is approximately 140 kilometers (87 miles) northwest of Las Vegas, Nevada (Figure 1). CAU 261 consists of two Corrective Actionmore » Sites (CASS): CAS 25-05-01, Leachfield; and CAS 25-05-07, Acid Waste Leach Pit (AWLP) (Figures 2 and 3). Test Cell A was operated during the 1960s and 1970s to support the Nuclear Rocket Development Station. Various operations within Building 3124 at Test Cell A resulted in liquid waste releases to the Leachfield and the AWLP. The following existing site conditions were reported in the Corrective Action Decision Document (CADD) (U.S. Department of Energy, Nevada Operations Office [DOE/NV], 1999): Soil in the leachfield was found to exceed the Nevada Division of Environmental Protection (NDEP) Action Level for petroleum hydrocarbons, the U.S. Environmental Protection Agency (EPA) preliminary remediation goals for semi volatile organic compounds, and background concentrations for strontium-90; Soil below the sewer pipe and approximately 4.5 meters (m) (15 feet [ft]) downstream of the initial outfall was found to exceed background concentrations for cesium-137 and strontium-90; Sludge in the leachfield septic tank was found to exceed the NDEP Action Level for petroleum hydrocarbons and to contain americium-241, cesium-137, uranium-234, uranium-238, potassium-40, and strontium-90; No constituents of concern (COC) were identified at the AWLP. The NDEP-approved CADD (DOWNV, 1999) recommended Corrective Action Alternative 2, ''Closure of the Septic Tank and Distribution Box

  6. A simple model for closure temperature of a trace element in cooling bi-mineralic systems

    NASA Astrophysics Data System (ADS)

    Liang, Yan

    2015-09-01

    Closure temperature is defined as the lower temperature limit at which the element of interest effectively ceases diffusive exchange with its surrounding medium during cooling. Here we generalize the classic equation of Dodson (1973) for cooling mono-mineralic systems to cooling bi-mineralic aggregates by considering diffusive exchange of a trace element between the two minerals in a closed system. We present a simple analytical model that includes key parameters affecting the closure temperature of a trace element in cooling bi-mineralic systems: cooling rate, temperature-dependent diffusion coefficients for the trace element in the two minerals, temperature-dependent partition coefficient of the trace element between the two minerals, effective grain sizes of the two minerals, and volume proportions of the minerals in the system. We show that closure temperatures of a trace element in cooling bi-mineralic systems are bounded by the closure temperatures of the trace element in the two mono-mineralic systems and that our generalized model reduces to Dodson's equation when one of the mineral serves as "an effective infinite" reservoir to the other mineral. Application to closure temperatures of REE in orthopyroxene and clinopyroxene bi-mineralic systems highlights the importance of REE diffusion and partitioning in the pyroxenes as well as clinopyroxene modal abundance and grain size in the systems. Closure temperatures for REE in two-pyroxene bearing equigranular rocks are controlled primarily by diffusion in orthopyroxene unless the modal abundance of clinopyroxene is very small. This has important bearings on the interpretation of temperatures derived from the REE-in-two-pyroxene thermometer.

  7. 9. Water Purification System and Instrument Air Receiver Tank, view ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    9. Water Purification System and Instrument Air Receiver Tank, view to the south. The water purification system is visible in the right foreground of the photograph and the instrument air receiver tank is visible in the right background of the photograph. - Washington Water Power Clark Fork River Cabinet Gorge Hydroelectric Development, Powerhouse, North Bank of Clark Fork River at Cabinet Gorge, Cabinet, Bonner County, ID

  8. Thermal Analysis on Cryogenic Liquid Hydrogen Tank on an Unmanned Aerial Vehicle System

    NASA Technical Reports Server (NTRS)

    Wang, Xiao-Yen; Harpster, George; Hunter, James

    2007-01-01

    Thermal analyses are performed on the liquid hydrogen (LH2) tank designed for an unmanned aerial vehicle (UAV) powered by solar arrays and a regenerative proton-exchange membrane (PEM) fuel cell. A 14-day cruise mission at a 65,000 ft altitude is considered. Thermal analysis provides the thermal loads on the tank system and the boiling-off rates of LH2. Different approaches are being considered to minimize the boiling-off rates of the LH2. It includes an evacuated multilayer insulation (MLI) versus aerogel insulation on the LH2 tank and aluminum versus stainless steel spacer rings between the inner and outer tank. The resulting boil-off rates of LH2 provided by the one-dimensional model and three-dimensional finite element analysis (FEA) on the tank system are presented and compared to validate the results of the three-dimensional FEA. It concludes that heat flux through penetrations by conduction is as significant as that through insulation around the tank. The tank system with MLI insulation and stainless steel spacer rings result in the lowest boiling-off rate of LH2.

  9. TankSIM: A Cryogenic Tank Performance Prediction Program

    NASA Technical Reports Server (NTRS)

    Bolshinskiy, L. G.; Hedayat, A.; Hastings, L. J.; Moder, J. P.; Schnell, A. R.; Sutherlin, S. G.

    2015-01-01

    Accurate prediction of the thermodynamic state of the cryogenic propellants in launch vehicle tanks is necessary for mission planning and successful execution. Cryogenic propellant storage and transfer in space environments requires that tank pressure be controlled. The pressure rise rate is determined by the complex interaction of external heat leak, fluid temperature stratification, and interfacial heat and mass transfer. If the required storage duration of a space mission is longer than the period in which the tank pressure reaches its allowable maximum, an appropriate pressure control method must be applied. Therefore, predictions of the pressurization rate and performance of pressure control techniques in cryogenic tanks are required for development of cryogenic fluid long-duration storage technology and planning of future space exploration missions. This paper describes an analytical tool, Tank System Integrated Model (TankSIM), which can be used for modeling pressure control and predicting the behavior of cryogenic propellant for long-term storage for future space missions. It is written in the FORTRAN 90 language and can be compiled with any Visual FORTRAN compiler. A thermodynamic vent system (TVS) is used to achieve tank pressure control. Utilizing TankSIM, the following processes can be modeled: tank self-pressurization, boiloff, ullage venting, and mixing. Details of the TankSIM program and comparisons of its predictions with test data for liquid hydrogen and liquid methane will be presented in the final paper.

  10. 46 CFR 154.1325 - Liquid level alarm system: All cargo tanks.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... percent liquid full and without causing the pressure in the loading lines to exceed the design pressure... 46 Shipping 5 2010-10-01 2010-10-01 false Liquid level alarm system: All cargo tanks. 154.1325... Equipment Instrumentation § 154.1325 Liquid level alarm system: All cargo tanks. Except as allowed under...

  11. 46 CFR 154.1325 - Liquid level alarm system: All cargo tanks.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... percent liquid full and without causing the pressure in the loading lines to exceed the design pressure... 46 Shipping 5 2013-10-01 2013-10-01 false Liquid level alarm system: All cargo tanks. 154.1325... Equipment Instrumentation § 154.1325 Liquid level alarm system: All cargo tanks. Except as allowed under...

  12. 46 CFR 154.1325 - Liquid level alarm system: All cargo tanks.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... percent liquid full and without causing the pressure in the loading lines to exceed the design pressure... 46 Shipping 5 2012-10-01 2012-10-01 false Liquid level alarm system: All cargo tanks. 154.1325... Equipment Instrumentation § 154.1325 Liquid level alarm system: All cargo tanks. Except as allowed under...

  13. 46 CFR 154.1325 - Liquid level alarm system: All cargo tanks.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... percent liquid full and without causing the pressure in the loading lines to exceed the design pressure... 46 Shipping 5 2011-10-01 2011-10-01 false Liquid level alarm system: All cargo tanks. 154.1325... Equipment Instrumentation § 154.1325 Liquid level alarm system: All cargo tanks. Except as allowed under...

  14. 46 CFR 154.1325 - Liquid level alarm system: All cargo tanks.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... percent liquid full and without causing the pressure in the loading lines to exceed the design pressure... 46 Shipping 5 2014-10-01 2014-10-01 false Liquid level alarm system: All cargo tanks. 154.1325... Equipment Instrumentation § 154.1325 Liquid level alarm system: All cargo tanks. Except as allowed under...

  15. The open abdomen and temporary abdominal closure systems--historical evolution and systematic review.

    PubMed

    Quyn, A J; Johnston, C; Hall, D; Chambers, A; Arapova, N; Ogston, S; Amin, A I

    2012-08-01

    Several techniques for temporary abdominal closure have been developed. We systematically review the literature on temporary abdominal closure to ascertain whether the method can be tailored to the indication. Medline, Embase, the Cochrane Central Register of Controlled Trials and relevant meeting abstracts until December 2009 were searched using the following headings: open abdomen, laparostomy, VAC (vacuum assisted closure), TNP (topical negative pressure), fascial closure, temporary abdominal closure, fascial dehiscence and deep wound dehiscence. The data were analysed by closure technique and aetiology. The primary end-points included delayed fascial closure and in-hospital mortality. The secondary end-points were intra-abdominal complications. The search identified 106 papers for inclusion. The techniques described were VAC (38 series), mesh/sheet (30 series), packing (15 series), Wittmann patch (eight series), Bogotá bag (six series), dynamic retention sutures (three series), zipper (15 series), skin only and locking device (one series each). The highest facial closure rates were seen with the Wittmann patch (78%), dynamic retention sutures (71%) and VAC (61%). Temporary abdominal closure has evolved from simple packing to VAC based systems. In the absence of sepsis Wittmann patch and VAC offered the best outcome. In its presence VAC had the highest delayed primary closure and the lowest mortality rates. However, due to data heterogeneity only limited conclusions can be drawn from this analysis. © 2012 The Authors. Colorectal Disease © 2012 The Association of Coloproctology of Great Britain and Ireland.

  16. Material balance and diet in bioregenerative life support systems: connection with coefficient of closure.

    PubMed

    Manukovsky, N S; Kovalev, V S; Somova, L A; Gurevich, Yu L; Sadovsky, M G

    2005-01-01

    Bioregenerative life support systems (BLSS) with different coefficients of closure are considered. The 66.2% coefficient of closure achieved in "BIOS-3" facility experiments has been taken as a base value. The increase in coefficient of closure up to 72.6-93.0% is planned due to use of soil-like substrate (SLS) and concentrating of urine. Food values were estimated both in a base variant ("BIOS-3"), and with increases in the coefficient of closure. It is shown that food requirements will be more fully satisfied by internal crop production with an increase in the coefficient of closure of the BLSS. Changes of massflow rates on an 'input-output' and inside BLSS are considered. Equations of synthesis and degradation of organic substances in BLSS were examined using a stoichiometric model. The paper shows that at incomplete closure of BLSS containing SLS there is a problem of nitrogen balancing. To compensate for the removal of nitrogen from the system in urine and feces, it is necessary to introduce food and a nitrogen-containing additive. c2005 COSPAR. Published by Elsevier Ltd. All rights reserved.

  17. Evaluation of milk quality in delivering sterilized milk with soft tank transportation system.

    PubMed

    Tsukamoto, C; Rula, Sa; Asano, H; Ando, K

    2009-09-01

    A new transportation system is proposed recently to improve the defects of liquid transportation by tank trucks. This method is called "soft tank transportation system"; a driver installs a sac-like container (soft tank), which is made from a tarpaulin with high-pressure resistant-waterproof zippers, in a general cargo vehicle. To evaluate the quality of sterilized milk by using the soft tank transportation system, ground and marine transportation for a long distance which took about 36 h from the shipper's loading to the receiver's unloading in a high-temperature summer season (average outside temperature was 33.4 degrees C) were carried out. Although the difference of milk temperature before and after the delivery varied from -0.7 to +1.4 degrees C, there was no difference in milk quality (fat, nonfat solids, total dissolved solids, and pH) and no coliform bacteria were detected. It can be evaluated that sterilized milk was carried in keeping good conditions by soft tank transportation system.

  18. Numerical Modeling of Pressurization of Cryogenic Propellant Tank for Integrated Vehicle Fluid System

    NASA Technical Reports Server (NTRS)

    Majumdar, Alok K.; LeClair, Andre C.; Hedayat, Ali

    2016-01-01

    This paper presents a numerical model of pressurization of a cryogenic propellant tank for the Integrated Vehicle Fluid (IVF) system using the Generalized Fluid System Simulation Program (GFSSP). The IVF propulsion system, being developed by United Launch Alliance, uses boiloff propellants to drive thrusters for the reaction control system as well as to run internal combustion engines to develop power and drive compressors to pressurize propellant tanks. NASA Marshall Space Flight Center (MSFC) has been running tests to verify the functioning of the IVF system using a flight tank. GFSSP, a finite volume based flow network analysis software developed at MSFC, has been used to develop an integrated model of the tank and the pressurization system. This paper presents an iterative algorithm for converging the interface boundary conditions between different component models of a large system model. The model results have been compared with test data.

  19. 33 CFR 157.10c - Segregated ballast tanks, crude oil washing systems, and dedicated clean ballast tanks for...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... to meet the draft and trim requirements in § 157.09(b); or (2) A crude oil washing system that meets... trim requirements in § 157.09(b); or (2) Dedicated clean ballast tanks that meet the design and... meet the draft and trim requirements in § 157.09(b). (d) If the arrangement of tanks on a vessel under...

  20. 33 CFR 157.10c - Segregated ballast tanks, crude oil washing systems, and dedicated clean ballast tanks for...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... to meet the draft and trim requirements in § 157.09(b); or (2) A crude oil washing system that meets... trim requirements in § 157.09(b); or (2) Dedicated clean ballast tanks that meet the design and... meet the draft and trim requirements in § 157.09(b). (d) If the arrangement of tanks on a vessel under...

  1. 14 CFR Special Federal Aviation... - Fuel Tank System Fault Tolerance Evaluation Requirements

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Fuel Tank System Fault Tolerance Evaluation Requirements Federal Special Federal Aviation Regulation No. 88 Aeronautics and Space FEDERAL AVIATION..., SFAR No. 88 Special Federal Aviation Regulation No. 88—Fuel Tank System Fault Tolerance Evaluation...

  2. 14 CFR Special Federal Aviation... - Fuel Tank System Fault Tolerance Evaluation Requirements

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Fuel Tank System Fault Tolerance Evaluation Requirements Federal Special Federal Aviation Regulation No. 88 Aeronautics and Space FEDERAL AVIATION..., SFAR No. 88 Special Federal Aviation Regulation No. 88—Fuel Tank System Fault Tolerance Evaluation...

  3. 14 CFR Special Federal Aviation... - Fuel Tank System Fault Tolerance Evaluation Requirements

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Fuel Tank System Fault Tolerance Evaluation Requirements Federal Special Federal Aviation Regulation No. 88 Aeronautics and Space FEDERAL AVIATION..., SFAR No. 88 Special Federal Aviation Regulation No. 88—Fuel Tank System Fault Tolerance Evaluation...

  4. 14 CFR Special Federal Aviation... - Fuel Tank System Fault Tolerance Evaluation Requirements

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Fuel Tank System Fault Tolerance Evaluation Requirements Federal Special Federal Aviation Regulation No. 88 Aeronautics and Space FEDERAL AVIATION..., SFAR No. 88 Special Federal Aviation Regulation No. 88—Fuel Tank System Fault Tolerance Evaluation...

  5. 14 CFR Special Federal Aviation... - Fuel Tank System Fault Tolerance Evaluation Requirements

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Fuel Tank System Fault Tolerance Evaluation Requirements Federal Special Federal Aviation Regulation No. 88 Aeronautics and Space FEDERAL AVIATION..., SFAR No. 88 Special Federal Aviation Regulation No. 88—Fuel Tank System Fault Tolerance Evaluation...

  6. Despin System for Hydrogen Tank in the Propulsion Systems Laboratory

    NASA Image and Video Library

    1962-04-21

    Mechanic Howard Wine inspects the setup of a spin isolator in Cell 2 of the Propulsion Systems Laboratory at the National Aeronautics and Space Administration (NASA) Lewis Research Center. Photographer Al Jecko filmed the proceedings. This test was unique in that the chamber’s altitude system was used, but not its inlet air flow. The test was in preparation for an upcoming launch of modified liquid hydrogen propellant tank on a sounding rocket. This Weightlessness Analysis Sounding Probe (WASP) was part of Lewis investigation into methods for controlling partially filled liquid hydrogen fuel tanks during flight. Second-stage rockets, the Centaur in particular, were designed to stop their engines and coast, then restart them when needed. During this coast period, the propellant often shifted inside the tank. This movement could throw the rocket off course or result in the sloshing of fuel away from the fuel pump. Wine was one of only three journeymen mechanics at Lewis when he was hired in January 1954. He spent his first decade in the Propulsion Systems Laboratory and was soon named a section head. Wine went on to serve as Assistant Division Chief and later served as an assistant to the director. Jecko joined the center in 1947 as a photographer and artist. He studied at the Cleveland School or Art and was known for his cartoon drawing. He worked at the center for 26 years.

  7. Experimental Thermal Performance Testing of Cryogenic Tank Systems and Materials

    NASA Technical Reports Server (NTRS)

    Myers, Wesley C.; Fesmire, J. E.

    2018-01-01

    A comparative study was conducted to collect and analyze thermal conductivity data on a wide variety of low density materials, as well as thermal performance data on a number of vacuum-jacketed cryogenic tank systems. Although a vast number of these types of materials and cryogenic tank systems exist, the thermal conductivity of insulation materials and the thermal performance of cryogenic tank systems is often difficult to compare because many industrial methods and experimental conditions are available and utilized. The availability of a new thermal conductivity measurement device, the Macroflash Cup Cryostat, which is applicable for assessing a variety of materials, is accessible at NASA's Cryogenic Test Laboratory (CTL) at the Kennedy Space Center (KSC). The convenience of this device has resulted in the ability to rapidly measure the thermal conductivity properties of these materials by using a flat-plate liquid nitrogen (LN2) boiloff technique that employs a guarded heat flow test methodology in order to determine the effective thermal conductivity (ke) of a test specimen. As the thermal conductivities are measured at cryogenic temperatures, materials suitable for both future space missions and cryogenic tank systems can be identified and experimentally analyzed. Also recognizable are materials which may help increase energy efficiency by limiting the thermal losses encountered under various environmental conditions. The overall focus of this work consisted of two parts. One part, was to produce and analyze thermal conductivity data on a wide variety of materials with suitable properties conducive to those needed to aid in the production of a calibration curve for the "low end" of the Macroflash instrument. (Low end meaning materials with a thermal conductivity rating below 100 milliwatts per meter-Kelvin). The second part was to collect and analyze heat transfer data for a variety of small vacuum-jacketed vessels (cryogenic tank systems) in order to compare

  8. Thermodynamic model for uranium release from hanford site tank residual waste.

    PubMed

    Cantrell, Kirk J; Deutsch, William J; Lindberg, Mike J

    2011-02-15

    A thermodynamic model of U solid-phase solubility and paragenesis was developed for Hanford Site tank residual waste that will remain in place after tank closure. The model was developed using a combination of waste composition data, waste leach test data, and thermodynamic modeling of the leach test data. The testing and analyses were conducted using actual Hanford Site tank residual waste. Positive identification of U phases by X-ray diffraction was generally not possible either because solids in the waste were amorphous or their concentrations were not detectable by XRD for both as-received and leached residual waste. Three leachant solutions were used in the studies: deionized water, CaCO3 saturated solution, and Ca(OH)2 saturated solution. Analysis of calculated saturation indices indicate that NaUO2PO4·xH2O and Na2U2O7(am) are present in the residual wastes initially. Leaching of the residual wastes with deionized water or CaCO3 saturated solution results in preferential dissolution Na2U2O7(am) and formation of schoepite. Leaching of the residual wastes with Ca(OH)2 saturated solution appears to result in transformation of both NaUO2PO4·xH2O and Na2U2O7(am) to CaUO4. Upon the basis of these results, the paragenetic sequence of secondary phases expected to occur as leaching of residual waste progresses for two tank closure scenarios was identified.

  9. Development of Hydrogen Storage Tank Systems Based on Complex Metal Hydrides

    PubMed Central

    Ley, Morten B.; Meggouh, Mariem; Moury, Romain; Peinecke, Kateryna; Felderhoff, Michael

    2015-01-01

    This review describes recent research in the development of tank systems based on complex metal hydrides for thermolysis and hydrolysis. Commercial applications using complex metal hydrides are limited, especially for thermolysis-based systems where so far only demonstration projects have been performed. Hydrolysis-based systems find their way in space, naval, military and defense applications due to their compatibility with proton exchange membrane (PEM) fuel cells. Tank design, modeling, and development for thermolysis and hydrolysis systems as well as commercial applications of hydrolysis systems are described in more detail in this review. For thermolysis, mostly sodium aluminum hydride containing tanks were developed, and only a few examples with nitrides, ammonia borane and alane. For hydrolysis, sodium borohydride was the preferred material whereas ammonia borane found less popularity. Recycling of the sodium borohydride spent fuel remains an important part for their commercial viability. PMID:28793541

  10. Reanalysis of Plutonium and Americium-241 in the Tank 19F Closure Grab and Core Samples

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Swingle, R.F.

    2003-02-11

    Tank 19F is scheduled to be closed by March 2004. To close this tank, a characterization of the waste remaining in the tank was required to confirm the inventory of various species for input into groundwater transport models. This characterization has been developed by a combination of process knowledge, visual observation and sample analysis. The characterization samples were obtained by High Level Waste Division (HLWD) personnel and characterized by SRTC personnel.

  11. ANALYSIS OF SAMPLES FROM TANK 5F CHEMICAL CLEANING

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Poirier, M.; Fink, S.

    2011-03-07

    The Savannah River Site (SRS) is preparing Tank 5F for closure. The first step in preparing the tank for closure is mechanical sludge removal. Following mechanical sludge removal, SRS performed chemical cleaning with oxalic acid to remove the sludge heel. Personnel are currently assessing the effectiveness of the chemical cleaning. SRS personnel collected liquid samples during chemical cleaning and submitted them to Savannah River National Laboratory (SRNL) for analysis. Following chemical cleaning, they collected a solid sample (also known as 'process sample') and submitted it to SRNL for analysis. The authors analyzed these samples to assess the effectiveness of themore » chemical cleaning process. The conclusions from this work are: (1) With the exception of iron, the dissolution of sludge components from Tank 5F agreed with results from the actual waste demonstration performed in 2007. The fraction of iron removed from Tank 5F by chemical cleaning was significantly less than the fraction removed in the SRNL demonstrations. The likely cause of this difference is the high pH following the first oxalic acid strike. (2) Most of the sludge mass remaining in the tank is iron and nickel. (3) The remaining sludge contains approximately 26 kg of barium, 37 kg of chromium, and 37 kg of mercury. (4) Most of the radioactivity remaining in the residual material is beta emitters and {sup 90}Sr. (5) The chemical cleaning removed more than {approx} 90% of the uranium isotopes and {sup 137}Cs. (6) The chemical cleaning removed {approx} 70% of the neptunium, {approx} 83% of the {sup 90}Sr, and {approx} 21% of the {sup 60}Co. (7) The chemical cleaning removed less than 10% of the plutonium, americium, and curium isotopes. (8) The chemical cleaning removed more than 90% of the aluminium, calcium, and sodium from the tank. (9) The cleaning operations removed 61% of lithium, 88% of non-radioactive strontium, and 65% of zirconium. The {sup 90}Sr and non-radioactive strontium were

  12. 300 Area waste acid treatment system closure plan. Revision 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1996-03-01

    This section provides a description of the Hanford Site, identifies the proposed method of 300 Area Waste Acid Treatment System (WATS) closure, and briefly summarizes the contents of each chapter of this plan.

  13. Pre-treatment of domestic wastewater with pre-composting tanks: evaluation of existing systems.

    PubMed

    Gajurel, D R; Benn, O; Li, Z; Behrendt, J; Otterpohl, R

    2003-01-01

    A relatively new technology called pre-composting tank or Rottebehaelter, retaining solid material and draining water to a certain extent, has been found to be an interesting component of decentralised systems to replace the usual septic tank. Results of the investigation revealed that solid material which has been retained in the pre-composting tanks still contained a high percentage of water. However, there was no odour problem at and near the tanks. The pre-composted materials have to be further composted together with household and garden wastes for a year prior to their use as soil conditioner. The filtrate is further treated in a constructed wetland. One of the major advantages of this system compared to other systems, such as septic tanks, is that it does not deprive agriculture of the valuable nutrients and soil conditioner from human excreta and does not require an expensive tanker truck. It can be the most appropriate system for application in regions where there is a demand for local reuse of the end product. It has to be stated that maintenance is a crucial factor.

  14. PSO-tuned PID controller for coupled tank system via priority-based fitness scheme

    NASA Astrophysics Data System (ADS)

    Jaafar, Hazriq Izzuan; Hussien, Sharifah Yuslinda Syed; Selamat, Nur Asmiza; Abidin, Amar Faiz Zainal; Aras, Mohd Shahrieel Mohd; Nasir, Mohamad Na'im Mohd; Bohari, Zul Hasrizal

    2015-05-01

    The industrial applications of Coupled Tank System (CTS) are widely used especially in chemical process industries. The overall process is require liquids to be pumped, stored in the tank and pumped again to another tank. Nevertheless, the level of liquid in tank need to be controlled and flow between two tanks must be regulated. This paper presents development of an optimal PID controller for controlling the desired liquid level of the CTS. Two method of Particle Swarm Optimization (PSO) algorithm will be tested in optimizing the PID controller parameters. These two methods of PSO are standard Particle Swarm Optimization (PSO) and Priority-based Fitness Scheme in Particle Swarm Optimization (PFPSO). Simulation is conducted within Matlab environment to verify the performance of the system in terms of settling time (Ts), steady state error (SSE) and overshoot (OS). It has been demonstrated that implementation of PSO via Priority-based Fitness Scheme (PFPSO) for this system is potential technique to control the desired liquid level and improve the system performances compared with standard PSO.

  15. AN EVALUATION OF HANFORD SITE TANK FARM SUBSURFACE CONTAMINATION FY2007

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    MANN, F.M.

    2007-07-10

    The Tank Farm Vadose Zone (TFVZ) Project conducts activities to characterize and analyze the long-term environmental and human health impacts from tank waste releases to the vadose zone. The project also implements interim measures to mitigate impacts, and plans the remediation of waste releases from tank farms and associated facilities. The scope of this document is to report data needs that are important to estimating long-term human health and environmental risks. The scope does not include technologies needed to remediate contaminated soils and facilities, technologies needed to close tank farms, or management and regulatory decisions that will impact remediation andmore » closure. This document is an update of ''A Summary and Evaluation of Hanford Site Tank Farm Subsurface Contamination''. That 1998 document summarized knowledge of subsurface contamination beneath the tank farms at the time. It included a preliminary conceptual model for migration of tank wastes through the vadose zone and an assessment of data and analysis gaps needed to update the conceptual model. This document provides a status of the data and analysis gaps previously defined and discussion of the gaps and needs that currently exist to support the stated mission of the TFVZ Project. The first data-gaps document provided the basis for TFVZ Project activities over the previous eight years. Fourteen of the nineteen knowledge gaps identified in the previous document have been investigated to the point that the project defines the current status as acceptable. In the process of filling these gaps, significant accomplishments were made in field work and characterization, laboratory investigations, modeling, and implementation of interim measures. The current data gaps are organized in groups that reflect Components of the tank farm vadose zone conceptual model: inventory, release, recharge, geohydrology, geochemistry, and modeling. The inventory and release components address residual wastes

  16. System for removing liquid waste from a tank

    DOEpatents

    Meneely, Timothy K.; Sherbine, Catherine A.

    1994-01-01

    A tank especially suited for nuclear applications is disclosed. The tank comprises a tank shell for protectively surrounding the liquid contained therein; an inlet positioned on the tank for passing a liquid into the tank; a sump positioned in an interior portion of the tank for forming a reservoir of the liquid; a sloped incline for resting the tank thereon and for creating a natural flow of the liquid toward the sump; a pump disposed adjacent the tank for pumping the liquid; and a pipe attached to the pump and extending into the sump for passing the liquid therethrough. The pump pumps the liquid in the sump through the pipe and into the pump for discharging the liquid out of the tank.

  17. System for removing liquid waste from a tank

    DOEpatents

    Meneely, T.K.; Sherbine, C.A.

    1994-04-26

    A tank especially suited for nuclear applications is disclosed. The tank comprises a tank shell for protectively surrounding the liquid contained therein; an inlet positioned on the tank for passing a liquid into the tank; a sump positioned in an interior portion of the tank for forming a reservoir of the liquid; a sloped incline for resting the tank thereon and for creating a natural flow of the liquid toward the sump; a pump disposed adjacent the tank for pumping the liquid; and a pipe attached to the pump and extending into the sump for passing the liquid there through. The pump pumps the liquid in the sump through the pipe and into the pump for discharging the liquid out of the tank. 2 figures.

  18. Machine Learning-based discovery of closures for reduced models of dynamical systems

    NASA Astrophysics Data System (ADS)

    Pan, Shaowu; Duraisamy, Karthik

    2017-11-01

    Despite the successful application of machine learning (ML) in fields such as image processing and speech recognition, only a few attempts has been made toward employing ML to represent the dynamics of complex physical systems. Previous attempts mostly focus on parameter calibration or data-driven augmentation of existing models. In this work we present a ML framework to discover closure terms in reduced models of dynamical systems and provide insights into potential problems associated with data-driven modeling. Based on exact closure models for linear system, we propose a general linear closure framework from viewpoint of optimization. The framework is based on trapezoidal approximation of convolution term. Hyperparameters that need to be determined include temporal length of memory effect, number of sampling points, and dimensions of hidden states. To circumvent the explicit specification of memory effect, a general framework inspired from neural networks is also proposed. We conduct both a priori and posteriori evaluations of the resulting model on a number of non-linear dynamical systems. This work was supported in part by AFOSR under the project ``LES Modeling of Non-local effects using Statistical Coarse-graining'' with Dr. Jean-Luc Cambier as the technical monitor.

  19. Hydrodynamics of octagonal culture tanks with Cornell-type dual-drain system

    USDA-ARS?s Scientific Manuscript database

    Large culture tanks of several hundred or thousand m3 size are generally encouraged for economic advantages in Recirculation Aquaculture Systems (RAS). Out of numerous possibilities in designing the inlet and outlet configurations in octagonal culture tanks, the inlet pipes near the corner walls and...

  20. Think Tanks

    NASA Technical Reports Server (NTRS)

    2001-01-01

    A new inspection robot from Solex Robotics Systems was designed to eliminate hazardous inspections of petroleum and chemical storage tanks. The submersible robot, named Maverick, is used to inspect the bottoms of tanks, keeping the tanks operational during inspection. Maverick is able to provide services that will make manual tank inspections obsolete. While the inspection is conducted, Maverick's remote human operators remain safe outside of the tank. The risk to human health and life is now virtually eliminated. The risk to the environment is also minimal because there is a reduced chance of spillage from emptying and cleaning the tanks, where previously, tons of pollutants were released through the process of draining and refilling.

  1. Seismic analysis of a LNG storage tank isolated by a multiple friction pendulum system

    NASA Astrophysics Data System (ADS)

    Zhang, Ruifu; Weng, Dagen; Ren, Xiaosong

    2011-06-01

    The seismic response of an isolated vertical, cylindrical, extra-large liquefied natural gas (LNG) tank by a multiple friction pendulum system (MFPS) is analyzed. Most of the extra-large LNG tanks have a fundamental frequency which involves a range of resonance of most earthquake ground motions. It is an effective way to decrease the response of an isolation system used for extra-large LNG storage tanks under a strong earthquake. However, it is difficult to implement in practice with common isolation bearings due to issues such as low temperature, soft site and other severe environment factors. The extra-large LNG tank isolated by a MFPS is presented in this study to address these problems. A MFPS is appropriate for large displacements induced by earthquakes with long predominant periods. A simplified finite element model by Malhotra and Dunkerley is used to determine the usefulness of the isolation system. Data reported and statistically sorted include pile shear, wave height, impulsive acceleration, convective acceleration and outer tank acceleration. The results show that the isolation system has excellent adaptability for different liquid levels and is very effective in controlling the seismic response of extra-large LNG tanks.

  2. 40 CFR 280.73 - Applicability to previously closed UST systems.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... UNDERGROUND STORAGE TANKS (UST) Out-of-Service UST Systems and Closure § 280.73 Applicability to previously closed UST systems. When directed by the implementing agency, the owner and operator of an UST system... systems. 280.73 Section 280.73 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID...

  3. 40 CFR 280.73 - Applicability to previously closed UST systems.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... UNDERGROUND STORAGE TANKS (UST) Out-of-Service UST Systems and Closure § 280.73 Applicability to previously closed UST systems. When directed by the implementing agency, the owner and operator of an UST system... systems. 280.73 Section 280.73 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID...

  4. 40 CFR 280.73 - Applicability to previously closed UST systems.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... UNDERGROUND STORAGE TANKS (UST) Out-of-Service UST Systems and Closure § 280.73 Applicability to previously closed UST systems. When directed by the implementing agency, the owner and operator of an UST system... systems. 280.73 Section 280.73 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID...

  5. 40 CFR 280.73 - Applicability to previously closed UST systems.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... UNDERGROUND STORAGE TANKS (UST) Out-of-Service UST Systems and Closure § 280.73 Applicability to previously closed UST systems. When directed by the implementing agency, the owner and operator of an UST system... systems. 280.73 Section 280.73 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID...

  6. 40 CFR 280.73 - Applicability to previously closed UST systems.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... UNDERGROUND STORAGE TANKS (UST) Out-of-Service UST Systems and Closure § 280.73 Applicability to previously closed UST systems. When directed by the implementing agency, the owner and operator of an UST system... systems. 280.73 Section 280.73 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID...

  7. In-flight Video Captured by External Tank Camera System

    NASA Technical Reports Server (NTRS)

    2005-01-01

    In this July 26, 2005 video, Earth slowly fades into the background as the STS-114 Space Shuttle Discovery climbs into space until the External Tank (ET) separates from the orbiter. An External Tank ET Camera System featuring a Sony XC-999 model camera provided never before seen footage of the launch and tank separation. The camera was installed in the ET LO2 Feedline Fairing. From this position, the camera had a 40% field of view with a 3.5 mm lens. The field of view showed some of the Bipod area, a portion of the LH2 tank and Intertank flange area, and some of the bottom of the shuttle orbiter. Contained in an electronic box, the battery pack and transmitter were mounted on top of the Solid Rocker Booster (SRB) crossbeam inside the ET. The battery pack included 20 Nickel-Metal Hydride batteries (similar to cordless phone battery packs) totaling 28 volts DC and could supply about 70 minutes of video. Located 95 degrees apart on the exterior of the Intertank opposite orbiter side, there were 2 blade S-Band antennas about 2 1/2 inches long that transmitted a 10 watt signal to the ground stations. The camera turned on approximately 10 minutes prior to launch and operated for 15 minutes following liftoff. The complete camera system weighs about 32 pounds. Marshall Space Flight Center (MSFC), Johnson Space Center (JSC), Goddard Space Flight Center (GSFC), and Kennedy Space Center (KSC) participated in the design, development, and testing of the ET camera system.

  8. K Basins sludge removal temporary sludge storage tank system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mclean, M.A.

    1997-06-12

    Shipment of sludge from the K Basins to a disposal site is now targeted for August 2000. The current path forward for sludge disposal is shipment to Tank AW-105 in the Tank Waste Remediation System (TWRS). Significant issues of the feasibility of this path exist primarily due to criticality concerns and the presence of polychlorinated biphenyls (PCBS) in the sludge at levels that trigger regulation under the Toxic Substance Control Act. Introduction of PCBs into the TWRS processes could potentially involve significant design and operational impacts to both the Spent Nuclear Fuel and TWRS projects if technical and regulatory issuesmore » related to PCB treatment cannot be satisfactorily resolved. Concerns of meeting the TWRS acceptance criteria have evolved such that new storage tanks for the K Basins sludge may be the best option for storage prior to vitrification of the sludge. A reconunendation for the final disposition of the sludge is scheduled for June 30, 1997. To support this decision process, this project was developed. This project provides a preconceptual design package including preconceptual designs and cost estimates for the temporary sludge storage tanks. Development of cost estimates for the design and construction of sludge storage systems is required to help evaluate a recommendation for the final disposition of the K Basin sludge.« less

  9. 10 CFR 60.112 - Overall system performance objective for the geologic repository after permanent closure.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... repository after permanent closure. 60.112 Section 60.112 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) DISPOSAL OF HIGH-LEVEL RADIOACTIVE WASTES IN GEOLOGIC REPOSITORIES Technical Criteria Performance Objectives § 60.112 Overall system performance objective for the geologic repository after permanent closure...

  10. Achieving Closure for Bioregenerative Life Support Systems: Engineering and Ecological Challenges, Research Opportunities

    NASA Astrophysics Data System (ADS)

    Dempster, William; Allen, John P.

    Closed systems are desirable for a number of purposes: space life support systems where precious life-supporting resources need to be kept inside; biospheric systems; where global ecological pro-cesses can be studied in great detail and testbeds where research topics requiring isolation from the outside (e.g. genetically modified organisms; radioisotopes) can be studied in isolation from the outside environment and where their ecological interactions and fluxes can be studied. But to achieve and maintain closure raises both engineering and ecological challenges. Engineering challenges include methods of achieving closure for structures of different materials, and devel-oping methods of allowing energy (for heating and cooling) and information transfer through the materially closed structure. Methods of calculating degree of closure include measuring degradation rates of inert trace gases introduced into the system. An allied problem is devel-oping means of locating where leaks are located so that they may be repaired and degree of closure maintained. Once closure is achieved, methods of dealing with the pressure differen-tials between inside and outside are needed: from inflatable structures which might adjust to the pressure difference to variable volume chambers attached to the life systems component. These issues are illustrated through the engineering employed at Biosphere 2, the Biosphere 2 Test Module and the Laboratory Biosphere and a discussion of methods used by other closed ecological system facility engineers. Ecological challenges include being able to handle faster cycling rates and accentuated daily and seasonal fluxes of critical life elements such as carbon dioxide, oxygen, water, macro-and mico-nutrients. The problems of achieving sustainability in closed systems for life support include how to handle atmospheric dynamics including trace gases, producing a complete human diet and recycling nutrients and maintaining soil fertility, healthy air and

  11. 40 CFR 280.70 - Temporary closure.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... (UST) Out-of-Service UST Systems and Closure § 280.70 Temporary closure. (a) When an UST system is... the UST system is empty. The UST system is empty when all materials have been removed using commonly... the total capacity of the UST system, remain in the system. (b) When an UST system is temporarily...

  12. 40 CFR 280.70 - Temporary closure.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... (UST) Out-of-Service UST Systems and Closure § 280.70 Temporary closure. (a) When an UST system is... the UST system is empty. The UST system is empty when all materials have been removed using commonly... the total capacity of the UST system, remain in the system. (b) When an UST system is temporarily...

  13. 40 CFR 280.70 - Temporary closure.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... (UST) Out-of-Service UST Systems and Closure § 280.70 Temporary closure. (a) When an UST system is... the UST system is empty. The UST system is empty when all materials have been removed using commonly... the total capacity of the UST system, remain in the system. (b) When an UST system is temporarily...

  14. 40 CFR 280.70 - Temporary closure.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... (UST) Out-of-Service UST Systems and Closure § 280.70 Temporary closure. (a) When an UST system is... the UST system is empty. The UST system is empty when all materials have been removed using commonly... the total capacity of the UST system, remain in the system. (b) When an UST system is temporarily...

  15. 40 CFR 280.70 - Temporary closure.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... (UST) Out-of-Service UST Systems and Closure § 280.70 Temporary closure. (a) When an UST system is... the UST system is empty. The UST system is empty when all materials have been removed using commonly... the total capacity of the UST system, remain in the system. (b) When an UST system is temporarily...

  16. 40 CFR 267.201 - What must I do when I stop operating the tank system?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... OPERATING UNDER A STANDARDIZED PERMIT Tank Systems § 267.201 What must I do when I stop operating the tank... 40 Protection of Environment 28 2012-07-01 2012-07-01 false What must I do when I stop operating the tank system? 267.201 Section 267.201 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY...

  17. 40 CFR 267.201 - What must I do when I stop operating the tank system?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... OPERATING UNDER A STANDARDIZED PERMIT Tank Systems § 267.201 What must I do when I stop operating the tank... 40 Protection of Environment 28 2013-07-01 2013-07-01 false What must I do when I stop operating the tank system? 267.201 Section 267.201 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY...

  18. 40 CFR 267.201 - What must I do when I stop operating the tank system?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... OPERATING UNDER A STANDARDIZED PERMIT Tank Systems § 267.201 What must I do when I stop operating the tank... 40 Protection of Environment 26 2010-07-01 2010-07-01 false What must I do when I stop operating the tank system? 267.201 Section 267.201 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY...

  19. 40 CFR 267.201 - What must I do when I stop operating the tank system?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... OPERATING UNDER A STANDARDIZED PERMIT Tank Systems § 267.201 What must I do when I stop operating the tank... 40 Protection of Environment 27 2011-07-01 2011-07-01 false What must I do when I stop operating the tank system? 267.201 Section 267.201 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY...

  20. 40 CFR 267.201 - What must I do when I stop operating the tank system?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... OPERATING UNDER A STANDARDIZED PERMIT Tank Systems § 267.201 What must I do when I stop operating the tank... 40 Protection of Environment 27 2014-07-01 2014-07-01 false What must I do when I stop operating the tank system? 267.201 Section 267.201 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY...

  1. Project W-211 initial tank retrieval systems year 2000 compliance assessment project plan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    BUSSELL, J.H.

    1999-08-24

    This assessment describes the potential Year 2000 (Y2K) problems and describes the methods for achieving Y2K Compliance for Project W-211, Initial Tank Retrieval Systems (ITRS). The purpose of this assessment is to give an overview of the project. This document will not be updated and any dates contained in this document are estimates and may change. The scope of project W-211 is to provide systems for retrieval of radioactive wastes from ten double-shell tanks (DST). systems will be installed in tanks 102-AP, 104-AP, 105-AN, 104-AN, 102-AZ, 101-AW, 103-AN, 107-AN, 102-AY, and 102-SY. The current tank selection and sequence supports phasemore » I feed delivery to privatized processing plants. A detailed description of system dates, functions, interfaces, potential Y2K problems, and date resolutions can not be described since the project is in the definitive design phase. This assessment will describe the methods, protocols, and practices to assure that equipment and systems do not have Y2K problems.« less

  2. Resource Conservation and Recovery Act (RCRA) Part B permit application for tank storage units at the Oak Ridge Y-12 Plant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1994-05-01

    In compliance with the Resource Conservation and Recovery Act (RCRA), this report discusses information relating to permit applications for three tank storage units at Y-12. The storage units are: Building 9811-1 RCRA Tank Storage Unit (OD-7); Waste Oil/Solvent Storage Unit (OD-9); and Liquid Organic Solvent Storage Unit (OD-10). Numerous sections discuss the following: Facility description; waste characteristics; process information; groundwater monitoring; procedures to prevent hazards; contingency plan; personnel training; closure plan, post closure plan, and financial requirements; record keeping; other federal laws; organic air emissions; solid waste management units; and certification. Sixteen appendices contain such items as maps, waste analysesmore » and forms, inspection logs, equipment identification, etc.« less

  3. Space Shuttle with rail system and aft thrust structure securing solid rocket boosters to external tank

    NASA Technical Reports Server (NTRS)

    Vonpragenau, G. L. (Inventor)

    1984-01-01

    The configuration and relationship of the external propellant tank and solid rocket boosters of space transportation systems such as the space shuttle are described. The space shuttle system with the improved propellant tank is shown. The external tank has a forward pressure vessel for liquid hydrogen and an aft pressure vessel for liquid oxygen. The solid rocket boosters are joined together by a thrust frame which extends across and behind the external tank. The thrust of the orbiter's main rocket engines are transmitted to the aft portion of the external tank and the thrust of the solid rocket boosters are transmitted to the aft end of the external tank.

  4. 40 CFR 265.310 - Closure and post-closure care.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 27 2013-07-01 2013-07-01 false Closure and post-closure care. 265.310... DISPOSAL FACILITIES Landfills § 265.310 Closure and post-closure care. (a) At final closure of the landfill... subsoils present. (b) After final closure, the owner or operator must comply with all post-closure...

  5. 40 CFR 265.310 - Closure and post-closure care.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 27 2012-07-01 2012-07-01 false Closure and post-closure care. 265.310... DISPOSAL FACILITIES Landfills § 265.310 Closure and post-closure care. (a) At final closure of the landfill... subsoils present. (b) After final closure, the owner or operator must comply with all post-closure...

  6. 40 CFR 265.310 - Closure and post-closure care.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 26 2014-07-01 2014-07-01 false Closure and post-closure care. 265.310... DISPOSAL FACILITIES Landfills § 265.310 Closure and post-closure care. (a) At final closure of the landfill... subsoils present. (b) After final closure, the owner or operator must comply with all post-closure...

  7. Hanford Tanks 241-C-203 and 241 C 204: Residual Waste Contaminant Release Model and Supporting Data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deutsch, William J.; Krupka, Kenneth M.; Lindberg, Michael J.

    This report was revised in May 2007 to correct 90Sr values in Chapter 3. The changes were made on page 3.9, paragraph two and Table 3.10; page 3.16, last paragraph on the page; and Tables 3.21 and 3.31. The rest of the text remains unchanged from the original report issued in October 2004. This report describes the development of release models for key contaminants that are present in residual sludge remaining after closure of Hanford Tanks 241-C-203 (C-203) and 241-C-204 (C-204). The release models were developed from data generated by laboratory characterization and testing of samples from these two tanks.more » Key results from this work are (1) future releases from the tanks of the primary contaminants of concern (99Tc and 238U) can be represented by relatively simple solubility relationships between infiltrating water and solid phases containing the contaminants; and (2) high percentages of technetium-99 in the sludges (20 wt% in C-203 and 75 wt% in C-204) are not readily water leachable, and, in fact, are very recalcitrant. This is similar to results found in related studies of sludges from Tank AY-102. These release models are being developed to support the tank closure risk assessments performed by CH2M HILL Hanford Group, Inc., for the U.S. Department of Energy.« less

  8. 40 CFR 264.228 - Closure and post-closure care.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 25 2010-07-01 2010-07-01 false Closure and post-closure care. 264.228... Surface Impoundments § 264.228 Closure and post-closure care. (a) At closure, the owner or operator must... materials are left in place at final closure, the owner or operator must comply with all post-closure...

  9. 40 CFR 264.228 - Closure and post-closure care.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 27 2013-07-01 2013-07-01 false Closure and post-closure care. 264.228... Surface Impoundments § 264.228 Closure and post-closure care. (a) At closure, the owner or operator must... materials are left in place at final closure, the owner or operator must comply with all post-closure...

  10. 40 CFR 264.228 - Closure and post-closure care.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 27 2012-07-01 2012-07-01 false Closure and post-closure care. 264.228... Surface Impoundments § 264.228 Closure and post-closure care. (a) At closure, the owner or operator must... materials are left in place at final closure, the owner or operator must comply with all post-closure...

  11. 40 CFR 264.228 - Closure and post-closure care.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 26 2011-07-01 2011-07-01 false Closure and post-closure care. 264.228... Surface Impoundments § 264.228 Closure and post-closure care. (a) At closure, the owner or operator must... materials are left in place at final closure, the owner or operator must comply with all post-closure...

  12. 40 CFR 264.228 - Closure and post-closure care.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 26 2014-07-01 2014-07-01 false Closure and post-closure care. 264.228... Surface Impoundments § 264.228 Closure and post-closure care. (a) At closure, the owner or operator must... materials are left in place at final closure, the owner or operator must comply with all post-closure...

  13. Tank waste remediation system systems engineering management plan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peck, L.G.

    1998-01-08

    This Systems Engineering Management Plan (SEMP) describes the Tank Waste Remediation System (TWRS) implementation of the US Department of Energy (DOE) systems engineering policy provided in 97-IMSD-193. The SEMP defines the products, process, organization, and procedures used by the TWRS Project to implement the policy. The SEMP will be used as the basis for tailoring the systems engineering applications to the development of the physical systems and processes necessary to achieve the desired end states of the program. It is a living document that will be revised as necessary to reflect changes in systems engineering guidance as the program evolves.more » The US Department of Energy-Headquarters has issued program management guidance, DOE Order 430. 1, Life Cycle Asset Management, and associated Good Practice Guides that include substantial systems engineering guidance.« less

  14. Automated method for determining Instron Residual Seal Force of glass vial/rubber closure systems.

    PubMed

    Ludwig, J D; Nolan, P D; Davis, C W

    1993-01-01

    Instron Residual Seal Force (IRSF) of glass vial/rubber closure systems was determined using an Instron 4501 Materials Testing System. Computer programs were written to process raw data and calculate IRSF values. Preliminary experiments indicated both the appearance of the stress-deformation curves and precision of the derived IRSF values were dependent on the internal dimensions and top surface geometry of the cap anvil. Therefore, a series of five cap anvils varying in shape and dimensions were machined to optimize performance and precision. Vials capped with West 4416/50 PURCOAT button closures or Helvoet compound 6207 lyophilization closures were tested with each cap anvil. Cap anvils with spherical top surfaces and narrow internal dimensions produced more precise results and more uniform stress-deformation curves than cap anvils with flat top surfaces and wider internal dimensions.

  15. Alternative Chemical Cleaning Methods for High Level Waste Tanks: Simulant Studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rudisill, T.; King, W.; Hay, M.

    Solubility testing with simulated High Level Waste tank heel solids has been conducted in order to evaluate two alternative chemical cleaning technologies for the dissolution of sludge residuals remaining in the tanks after the exhaustion of mechanical cleaning and sludge washing efforts. Tests were conducted with non-radioactive pure phase metal reagents, binary mixtures of reagents, and a Savannah River Site PUREX heel simulant to determine the effectiveness of an optimized, dilute oxalic/nitric acid cleaning reagent and pure, dilute nitric acid toward dissolving the bulk non-radioactive waste components. A focus of this testing was on minimization of oxalic acid additions duringmore » tank cleaning. For comparison purposes, separate samples were also contacted with pure, concentrated oxalic acid which is the current baseline chemical cleaning reagent. In a separate study, solubility tests were conducted with radioactive tank heel simulants using acidic and caustic permanganate-based methods focused on the “targeted” dissolution of actinide species known to be drivers for Savannah River Site tank closure Performance Assessments. Permanganate-based cleaning methods were evaluated prior to and after oxalic acid contact.« less

  16. Influence of Different Container Closure Systems and Capping Process Parameters on Product Quality and Container Closure Integrity (CCI) in GMP Drug Product Manufacturing.

    PubMed

    Mathaes, Roman; Mahler, Hanns-Christian; Roggo, Yves; Huwyler, Joerg; Eder, Juergen; Fritsch, Kamila; Posset, Tobias; Mohl, Silke; Streubel, Alexander

    2016-01-01

    Capping equipment used in good manufacturing practice manufacturing features different designs and a variety of adjustable process parameters. The overall capping result is a complex interplay of the different capping process parameters and is insufficiently described in literature. It remains poorly studied how the different capping equipment designs and capping equipment process parameters (e.g., pre-compression force, capping plate height, turntable rotating speed) contribute to the final residual seal force of a sealed container closure system and its relation to container closure integrity and other drug product quality parameters. Stopper compression measured by computer tomography correlated to residual seal force measurements.In our studies, we used different container closure system configurations from different good manufacturing practice drug product fill & finish facilities to investigate the influence of differences in primary packaging, that is, vial size and rubber stopper design on the capping process and the capped drug product. In addition, we compared two large-scale good manufacturing practice manufacturing capping equipment and different capping equipment settings and their impact on product quality and integrity, as determined by residual seal force.The capping plate to plunger distance had a major influence on the obtained residual seal force values of a sealed vial, whereas the capping pre-compression force and the turntable rotation speed showed only a minor influence on the residual seal force of a sealed vial. Capping process parameters could not easily be transferred from capping equipment of different manufacturers. However, the residual seal force tester did provide a valuable tool to compare capping performance of different capping equipment. No vial showed any leakage greater than 10(-8)mbar L/s as measured by a helium mass spectrometry system, suggesting that container closure integrity was warranted in the residual seal force range

  17. 49 CFR 172.331 - Bulk packagings other than portable tanks, cargo tanks, tank cars and multi-unit tank car tanks.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 2 2012-10-01 2012-10-01 false Bulk packagings other than portable tanks, cargo tanks, tank cars and multi-unit tank car tanks. 172.331 Section 172.331 Transportation Other Regulations... packagings other than portable tanks, cargo tanks, tank cars and multi-unit tank car tanks. (a) Each person...

  18. 49 CFR 172.331 - Bulk packagings other than portable tanks, cargo tanks, tank cars and multi-unit tank car tanks.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Bulk packagings other than portable tanks, cargo tanks, tank cars and multi-unit tank car tanks. 172.331 Section 172.331 Transportation Other Regulations... packagings other than portable tanks, cargo tanks, tank cars and multi-unit tank car tanks. (a) Each person...

  19. 49 CFR 172.331 - Bulk packagings other than portable tanks, cargo tanks, tank cars and multi-unit tank car tanks.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 2 2014-10-01 2014-10-01 false Bulk packagings other than portable tanks, cargo tanks, tank cars and multi-unit tank car tanks. 172.331 Section 172.331 Transportation Other Regulations... packagings other than portable tanks, cargo tanks, tank cars and multi-unit tank car tanks. (a) Each person...

  20. 49 CFR 172.331 - Bulk packagings other than portable tanks, cargo tanks, tank cars and multi-unit tank car tanks.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 2 2011-10-01 2011-10-01 false Bulk packagings other than portable tanks, cargo tanks, tank cars and multi-unit tank car tanks. 172.331 Section 172.331 Transportation Other Regulations... packagings other than portable tanks, cargo tanks, tank cars and multi-unit tank car tanks. (a) Each person...

  1. 49 CFR 172.331 - Bulk packagings other than portable tanks, cargo tanks, tank cars and multi-unit tank car tanks.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 2 2013-10-01 2013-10-01 false Bulk packagings other than portable tanks, cargo tanks, tank cars and multi-unit tank car tanks. 172.331 Section 172.331 Transportation Other Regulations... packagings other than portable tanks, cargo tanks, tank cars and multi-unit tank car tanks. (a) Each person...

  2. Tank waste remediation system privatization infrastructure program requirements and document management process guide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    ROOT, R.W.

    1999-05-18

    This guide provides the Tank Waste Remediation System Privatization Infrastructure Program management with processes and requirements to appropriately control information and documents in accordance with the Tank Waste Remediation System Configuration Management Plan (Vann 1998b). This includes documents and information created by the program, as well as non-program generated materials submitted to the project. It provides appropriate approval/control, distribution and filing systems.

  3. In-Tank Elutriation Test Report And Independent Assessment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burns, H. H.; Adamson, D. J.; Qureshi, Z. H.

    2011-04-13

    The Department of Energy (DOE) Office of Environmental Management (EM) funded Technology Development and Deployment (TDD) to solve technical problems associated with waste tank closure for sites such as Hanford Site and Savannah River Site (SRS). One of the tasks supported by this funding at Savannah River National Laboratory (SRNL) and Pacific Northwest Laboratory (PNNL) was In-Tank Elutriation. Elutriation is the process whereby physical separation occurs based on particle size and density. This report satisfies the first phase of Task WP_1.3.1.1 In-Tank Elutriation, which is to assess the feasibility of this method of separation in waste tanks at Hanford Sitemore » and SRS. This report includes an analysis of scoping tests performed in the Engineering Development Laboratory of SRNL, analysis of Hanford's inadvertent elutriation, the viability of separation methods such as elutriation and hydrocyclones and recommendations for a path forward. This report will demonstrate that the retrieval of Hanford salt waste tank S-112 very successfully decreased the tank's inventories of radionuclides. Analyses of samples collected from the tank showed that concentrations of the major radionuclides Cs-136 and Sr-90 were decreased by factors of 250 and 6 and their total curie tank inventories decreased by factors of 60,000 and 2000. The total tank curie loading decreased from 300,000 Ci to 55 Ci. The remaining heel was nearly all innocuous gibbsite, Al(OH){sub 3}. However, in the process of tank retrieval approximately 85% of the tank gibbsite was also removed. Significant amounts of money and processing time could be saved if more gibbsite could be left in tanks while still removing nearly all of the radionuclides. There were factors which helped to make the elutriation of Tank S-112 successful which would not necessarily be present in all salt tanks. 1. The gibbsite particles in the tank were surprisingly large, as much as 200 {micro}m. The gibbsite crystals had probably

  4. Purging of a tank-mounted multilayer insulation system by gas diffusion

    NASA Technical Reports Server (NTRS)

    Sumner, I. E.

    1978-01-01

    The investigation was conducted on a multilayer insulation (MLI) system mounted on a spherical liquid hydrogen propellant tank. The MLI consisted of two blankets of insulation each containing 15 double-aluminized Mylar radiation shields separated by double silk net spacers. The gaseous nitrogen initially contained within the MLI system and vacuum chamber was purged with gaseous helium introduced both underneath the MLI and into the vacuum chamber. The MLI panels were assumed to be purged primarily by means of gas diffusion. Overall, test results indicated that nitrogen concentrations well below 1 percent could be achieved everywhere within the MLI system. Typical times to achieve 1 percent nitrogen concentration within the MLI panels ranged from 69 minutes at the top of the tank to 158 minutes at the bottom of the tank. Four space-hold thermal performance tests indicated no significant thermal degradation of the MLI system had occurred due to the purge tests conducted. The final measured heat input attributed to the MLI was 7.23 watts as compared to 7.18 watts for the initial baseline thermal performance test.

  5. Hanford immobilized low-activity tank waste performance assessment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mann, F.M.

    1998-03-26

    The Hanford Immobilized Low-Activity Tank Waste Performance Assessment examines the long-term environmental and human health effects associated with the planned disposal of the vitrified low-level fraction of waste presently contained in Hanford Site tanks. The tank waste is the by-product of separating special nuclear materials from irradiated nuclear fuels over the past 50 years. This waste has been stored in underground single and double-shell tanks. The tank waste is to be retrieved, separated into low and high-activity fractions, and then immobilized by private vendors. The US Department of Energy (DOE) will receive the vitrified waste from private vendors and plansmore » to dispose of the low-activity fraction in the Hanford Site 200 East Area. The high-level fraction will be stored at Hanford until a national repository is approved. This report provides the site-specific long-term environmental information needed by the DOE to issue a Disposal Authorization Statement that would allow the modification of the four existing concrete disposal vaults to provide better access for emplacement of the immobilized low-activity waste (ILAW) containers; filling of the modified vaults with the approximately 5,000 ILAW containers and filler material with the intent to dispose of the containers; construction of the first set of next-generation disposal facilities. The performance assessment activity will continue beyond this assessment. The activity will collect additional data on the geotechnical features of the disposal sites, the disposal facility design and construction, and the long-term performance of the waste. Better estimates of long-term performance will be produced and reviewed on a regular basis. Performance assessments supporting closure of filled facilities will be issued seeking approval of those actions necessary to conclude active disposal facility operations. This report also analyzes the long-term performance of the currently planned disposal system as

  6. Methane, carbon dioxide, and nitrous oxide emissions from septic tank systems.

    PubMed

    Diaz-Valbuena, Libia R; Leverenz, Harold L; Cappa, Christopher D; Tchobanoglous, George; Horwath, William R; Darby, Jeannie L

    2011-04-01

    Emissions of CH4, CO2, and N2O from conventional septic tank systems are known to occur, but there is a dearth of information as to the extent. Mass emission rates of CH4, CO2, and N2O, as measured with a modified flux chamber approach in eight septic tank systems, were determined to be 11, 33.3, and 0.005 g capita(-1) day(-1), respectively, in this research. Existing greenhouse gas (GHG) emission models based on BOD (biochemical oxygen demand) loading have estimated methane emissions to be as high as 27.1 g CH4 capita(-1) day(-1), more than twice the value measured in our study, and concluded that septic tanks are potentially significant sources of GHGs due to the large number of systems currently in use. Based on the measured CH4 emission value, a revised CH4 conversion factor of 0.22 (compared to 0.5) for use in the emissions models is suggested. Emission rates of CH4, CO2, and N2O were also determined from measurements of gas concentrations and flow rates in the septic vent system and were found to be 10.7, 335, and 0.2 g capita(-1)day(-1), respectively. The excellent agreement in the CH4 emission rates between the flux chamber and the vent values indicates the dominant CH4 source is the septic tank.

  7. 40 CFR 265.228 - Closure and post-closure care.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 27 2012-07-01 2012-07-01 false Closure and post-closure care. 265.228... DISPOSAL FACILITIES Surface Impoundments § 265.228 Closure and post-closure care. (a) At closure, the owner... impoundment and provide post-closure care for a landfill under subpart G and § 265.310, including the...

  8. 40 CFR 265.228 - Closure and post-closure care.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 26 2011-07-01 2011-07-01 false Closure and post-closure care. 265.228... DISPOSAL FACILITIES Surface Impoundments § 265.228 Closure and post-closure care. (a) At closure, the owner... impoundment and provide post-closure care for a landfill under subpart G and § 265.310, including the...

  9. Feasibility study of tank leakage mitigation using subsurface barriers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Treat, R.L.; Peters, B.B.; Cameron, R.J.

    1994-09-21

    The US Department of Energy (DOE) has established the Tank Waste Remediation System (TWRS) to satisfy manage and dispose of the waste currently stored in the underground storage tanks. The retrieval element of TWRS includes a work scope to develop subsurface impermeable barriers beneath SSTs. The barriers could serve as a means to contain leakage that may result from waste retrieval operations and could also support site closure activities by facilitating cleanup. Three types of subsurface barrier systems have emerged for further consideration: (1) chemical grout, (2) freeze walls, and (3) desiccant, represented in this feasibility study as a circulatingmore » air barrier. This report contains analyses of the costs and relative risks associated with combinations retrieval technologies and barrier technologies that from 14 alternatives. Eight of the alternatives include the use of subsurface barriers; the remaining six nonbarrier alternative are included in order to compare the costs, relative risks and other values of retrieval with subsurface barriers. Each alternative includes various combinations of technologies that can impact the risks associated with future contamination of the groundwater beneath the Hanford Site to varying degrees. Other potential risks associated with these alternatives, such as those related to accidents and airborne contamination resulting from retrieval and barrier emplacement operations, are not quantitatively evaluated in this report.« less

  10. A Practical Scoring System to Select Optimally Sized Devices for Percutaneous Patent Foramen Ovale Closure.

    PubMed

    Venturini, Joseph M; Retzer, Elizabeth M; Estrada, J Raider; Mediratta, Anuj; Friant, Janet; Nathan, Sandeep; Paul, Jonathan D; Blair, John; Lang, Roberto M; Shah, Atman P

    2016-10-01

    Patent foramen ovale (PFO) has been linked to cryptogenic stroke, and closure has been reported to improve clinical outcomes. However, there are no clear guidelines to direct device sizing. This study sought to use patient characteristics and echocardiographic findings to create a prediction score for device sizing. This was a retrospective review of patients undergoing percutaneous PFO closure at our institution between July 2010 and December 2014. Demographic and clinical characteristics were recorded, and all pre- and intraprocedural echocardiography results were evaluated. Thirty-six patients underwent percutaneous PFO closure during the study period. All procedures were performed using an Amplatzer Septal Occluder "Cribriform" (ASOC) device in one of three disc diameters: 25, 30, or 35 mm. Closure was indicated for cryptogenic stroke/transient ischemic attack in 75% of cases. Every case (100%) was successful with durable shunt correction at the 6-month follow-up without complications of erosion or device embolization. The presence of atrial septal aneurysm (ASA) ( p = 0.027) and PFO tunnel length >10 mm ( p = 0.038) were independently associated with increased device size. A scoring system of 1 point for male sex, 1 point for ASA, and 1 point for PFO tunnel >10 mm long was associated with the size of closure device implanted ( p = 0.006). A simple scoring system may be used to select an optimally sized device for percutaneous PFO closure using the ASOC device.

  11. 76 FR 46798 - Compatibility of Underground Storage Tank Systems With Biofuel Blends; Correction

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-03

    ... ENVIRONMENTAL PROTECTION AGENCY [EPA-HQ-UST-2010-0651; FRL-9447-3] Compatibility of Underground Storage Tank Systems With Biofuel Blends; Correction AGENCY: Environmental Protection Agency (EPA). ACTION... of underground storage tanks (USTs) can demonstrate compliance with the Federal compatibility...

  12. 40 CFR 267.198 - What are the general operating requirements for my tank systems?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... FACILITIES OPERATING UNDER A STANDARDIZED PERMIT Tank Systems § 267.198 What are the general operating... 40 Protection of Environment 28 2012-07-01 2012-07-01 false What are the general operating requirements for my tank systems? 267.198 Section 267.198 Protection of Environment ENVIRONMENTAL PROTECTION...

  13. 40 CFR 267.198 - What are the general operating requirements for my tank systems?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... FACILITIES OPERATING UNDER A STANDARDIZED PERMIT Tank Systems § 267.198 What are the general operating... 40 Protection of Environment 27 2011-07-01 2011-07-01 false What are the general operating requirements for my tank systems? 267.198 Section 267.198 Protection of Environment ENVIRONMENTAL PROTECTION...

  14. 40 CFR 267.198 - What are the general operating requirements for my tank systems?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... FACILITIES OPERATING UNDER A STANDARDIZED PERMIT Tank Systems § 267.198 What are the general operating... 40 Protection of Environment 27 2014-07-01 2014-07-01 false What are the general operating requirements for my tank systems? 267.198 Section 267.198 Protection of Environment ENVIRONMENTAL PROTECTION...

  15. 40 CFR 267.198 - What are the general operating requirements for my tank systems?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... FACILITIES OPERATING UNDER A STANDARDIZED PERMIT Tank Systems § 267.198 What are the general operating... 40 Protection of Environment 28 2013-07-01 2013-07-01 false What are the general operating requirements for my tank systems? 267.198 Section 267.198 Protection of Environment ENVIRONMENTAL PROTECTION...

  16. 40 CFR 267.198 - What are the general operating requirements for my tank systems?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... FACILITIES OPERATING UNDER A STANDARDIZED PERMIT Tank Systems § 267.198 What are the general operating... 40 Protection of Environment 26 2010-07-01 2010-07-01 false What are the general operating requirements for my tank systems? 267.198 Section 267.198 Protection of Environment ENVIRONMENTAL PROTECTION...

  17. Sampling and analyses plan for tank 103 at the 219-S waste handling facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    FOWLER, K.D.

    1999-06-23

    This document describes the sampling and analysis activities associated with taking a Resource Conservation and Recovery Act (RCRA) protocol sample of the waste from Tank 103 at the 21 9-S Waste Handling Facility treatment storage, andlor disposal (TSD) unit at the 2224 Laboratory complex. This sampling and analyses is required based on negotiations between the State of Washington Department of Ecology (Ecology) and the Department of Energy, Richland Operations, (RL) in letters concerning the TPA Change Form M-32-98-01. In a letter from George H. Sanders, RL to Moses N. Jaraysi, Ecology, dated January 28,1999, it was noted that ''Prior tomore » the Tank 103 waste inventory transfer, a RCRA protocol sample of the waste will be obtained and tested for the constituents contained on the Part A, Form 3 Permit Application for the 219-S Waste Handling Facility.'' In the April 2, 1999 letter, from Brenda L. Becher-Khaleel, Ecology to James, E. Rasmussen, RL, and William O. Adair, FDH, Ecology states that the purpose of these analyses is to provide information and justification for leaving Tank 103 in an isolated condition in the 2194 TSD unit until facility closure. The data may also be used at some future date in making decisions regarding closure methodology for Tank 103. Ecology also notes that As Low As Reasonably Achievable (ALARA) concerns may force deviations from some SW-846 protocol. Every effort will be made to accommodate requirements as specified. Deviations from SW-846 will be documented in accordance with HASQARD.« less

  18. Construction of a wireless communication contact closure system for liquid chromatography with multiple parallel mass spectrometers and other detectors

    USDA-ARS?s Scientific Manuscript database

    A contact closure system has been constructed and implemented that utilizes two contact closure sender boards that communicate wirelessly to four contact closure receiver boards to distribute start signals from two or three liquid chromatographs to fourteen instruments, pumps, detectors, or other co...

  19. Project W-211 Initial Tank Retrieval Systems (ITRS) Description of Operations for 241-AZ-102

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    BRIGGS, S.R.

    2000-02-25

    The primary purpose of the Initial Tank Retrieval Systems (ITRS) is to provide systems for retrieval of radioactive wastes stored in underground double-shell tanks (DSTs) for transfer to alternate storage, evaporation, pretreatment or treatment, while concurrently reducing risks associated with safety watch list and other DSTs. This Description of Operation (DOO) defines the control philosophy for the waste retrieval system for Tank 241-AZ-102 (AZ-102). This DOO provides a basis for the detailed design of the Project W-211 Retrieval Control System (RCS) for AZ-102 and also establishes test criteria for the RCS.

  20. Closure Report for Corrective Action Unit 562: Waste Systems, Nevada National Security Site, Nevada

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NSTec Environmental Restoration

    2012-08-15

    This Closure Report (CR) presents information supporting closure of Corrective Action Unit (CAU) 562, Waste Systems, and provides documentation supporting the completed corrective actions and confirmation that closure objectives for CAU 562 were met. This CR complies with the requirements of the Federal Facility Agreement and Consent Order (FFACO) that was agreed to by the State of Nevada; the U.S. Department of Energy (DOE), Environmental Management; the U.S. Department of Defense; and DOE, Legacy Management (FFACO, 1996 as amended). CAU 562 consists of the following 13 Corrective Action Sites (CASs), located in Areas 2, 23, and 25 of the Nevadamore » National Security Site: · CAS 02-26-11, Lead Shot · CAS 02-44-02, Paint Spills and French Drain · CAS 02-59-01, Septic System · CAS 02-60-01, Concrete Drain · CAS 02-60-02, French Drain · CAS 02-60-03, Steam Cleaning Drain · CAS 02-60-04, French Drain · CAS 02-60-05, French Drain · CAS 02-60-06, French Drain · CAS 02-60-07, French Drain · CAS 23-60-01, Mud Trap Drain and Outfall · CAS 23-99-06, Grease Trap · CAS 25-60-04, Building 3123 Outfalls Closure activities began in October 2011 and were completed in April 2012. Activities were conducted according to the Corrective Action Plan for CAU 562 (U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office [NNSA/NSO], 2011). The corrective actions included No Further Action and Clean Closure. Closure activities generated sanitary waste and hazardous waste. Some wastes exceeded land disposal limits and required offsite treatment prior to disposal. Other wastes met land disposal restrictions and were disposed in appropriate onsite or offsite landfills. NNSA/NSO requests the following: · A Notice of Completion from the Nevada Division of Environmental Protection to NNSA/NSO for closure of CAU 562 · The transfer of CAU 562 from Appendix III to Appendix IV, Closed Corrective Action Units, of the FFACO« less

  1. 75 FR 28655 - Rexam Closure Systems, Inc. a Subsidiary of Rexam PLC Including On-Site Leased Workers From...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-21

    ..., Inc. a Subsidiary of Rexam PLC Including On-Site Leased Workers From Addeco Employment Services..., applicable to the workers of Rexam Closure Systems, Inc., a subsidiary of Rexam PLC, Hamlet, North Carolina... Rexam Closure Systems, Inc., a subsidiary of Rexam PLC purchased Owens Illinois Manufacturing. Some...

  2. 45. STEEL RESERVOIR TANKS FOR NEW SPRINGFED WATER SYSTEM INSTALLED ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    45. STEEL RESERVOIR TANKS FOR NEW SPRING-FED WATER SYSTEM INSTALLED IN 1982. LOCATED IN WAIHANAU VALLEY, THIS REPLACED THE WAIKOLU SYSTEM AND PROVIDES A MORE CONSISTENT AND CLEAN WATER SUPPLY FOR KALAUPAPA. - Kalaupapa Water Supply System, Waikolu Valley to Kalaupapa Settlement, Island of Molokai, Kalaupapa, Kalawao County, HI

  3. Complexity VIII. Ontology of closure in complex systems: The C* hypothesis and the O° notation

    NASA Astrophysics Data System (ADS)

    Chandler, Jerry LR

    1999-03-01

    Closure is a common characteristic of mathematical, natural and socio-cultural systems. Whether one is describing a graph, a molecule, a cell, a human, or a nation state, closure is implicitly understood. An objective of this paper is to continue a construction of a systematic framework for closure which is sufficient for future quantitative transdisciplinary investigations. A further objective is to extend the Birkhoff-von Neumann criterion for quantum systems to complex natural objects. The C* hypothesis is being constructed to be consistent with algebraic category theory (Ehresmann and Vanbremeersch, 1987, 1997, Chandler, 1990, 1991, Chandler, Ehresmann and Vanbremeersch, 1996). Five aspects of closure will be used to construct a framework for categories of complex systems: 1. Truth functions in mathematics and the natural sciences 2. Systematic descriptions in the mks and O° notations 3. Organizational structures in hierarchical scientific languages 4. Transitive organizational pathways in the causal structures of complex behaviors 5. Composing additive, multiplicative and exponential operations in complex systems Truth functions can be formal or objective or subjective, depending on the complexity of the system and on our capability to represent the fine structure of the system symbolically, observationally or descriptively. "Complete" material representations of the fine structure of a system may allow truth functions to be created over sets of one to one correspondences. Less complete descriptions can support less stringent truth functions based on coherence or subjective judgments. The role of human values in creating and perpetuating truth functions can be placed in context of the degree of fine structure in the system's description. The organization of complex systems are hypothesized to be categorizable into degrees relative to one another, thereby creating an ordering relationship. This ordering relationship is denoted by the symbols: O°1, O°2,O°3

  4. Integral Radiator and Storage Tank

    NASA Technical Reports Server (NTRS)

    Burke, Kenneth A.; Miller, John R.; Jakupca, Ian; Sargi,Scott

    2007-01-01

    A simplified, lightweight system for dissipating heat of a regenerative fuel- cell system would include a heat pipe with its evaporator end placed at the heat source and its condenser end integrated into the wall of the regenerative fuel cell system gas-storage tanks. The tank walls act as heat-radiating surfaces for cooling the regenerative fuel cell system. The system was conceived for use in outer space, where radiation is the only physical mechanism available for transferring heat to the environment. The system could also be adapted for use on propellant tanks or other large-surface-area structures to convert them to space heat-radiating structures. Typically for a regenerative fuel cell system, the radiator is separate from the gas-storage tanks. By using each tank s surface as a heat-radiating surface, the need for a separate, potentially massive radiator structure is eliminated. In addition to the mass savings, overall volume is reduced because a more compact packaging scheme is possible. The underlying tank wall structure provides ample support for heat pipes that help to distribute the heat over the entire tank surface. The heat pipes are attached to the outer surface of each gas-storage tank by use of a high-thermal conductance, carbon-fiber composite-material wrap. Through proper choice of the composite layup, it is possible to exploit the high longitudinal conductivity of the carbon fibers (greater than the thermal conductivity of copper) to minimize the unevenness of the temperature distribution over the tank surface, thereby helping to maximize the overall heat-transfer efficiency. In a prototype of the system, the heat pipe and the composite wrap contribute an average mass of 340 g/sq m of radiator area. Lightweight space radiator panels have a mass of about 3,000 g/sq m of radiator area, so this technique saves almost 90 percent of the mass of separate radiator panels. In tests, the modified surface of the tank was found to have an emissivity of 0

  5. RECOMMENDATIONS FOR SAMPLING OF TANK 19 IN F TANK FARM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harris, S.; Shine, G.

    2009-12-14

    Representative sampling is required for characterization of the residual material in Tank 19 prior to operational closure. Tank 19 is a Type IV underground waste storage tank located in the F-Tank Farm. It is a cylindrical-shaped, carbon steel tank with a diameter of 85 feet, a height of 34.25 feet, and a working capacity of 1.3 million gallons. Tank 19 was placed in service in 1961 and initially received a small amount of low heat waste from Tank 17. It then served as an evaporator concentrate (saltcake) receiver from February 1962 to September 1976. Tank 19 also received the spentmore » zeolite ion exchange media from a cesium removal column that once operated in the Northeast riser of the tank to remove cesium from the evaporator overheads. Recent mechanical cleaning of the tank removed all mounds of material. Anticipating a low level of solids in the residual waste, Huff and Thaxton [2009] developed a plan to sample the waste during the final clean-up process while it would still be resident in sufficient quantities to support analytical determinations in four quadrants of the tank. Execution of the plan produced fewer solids than expected to support analytical determinations in all four quadrants. Huff and Thaxton [2009] then restructured the plan to characterize the residual separately in the North and the South regions: two 'hemispheres.' This document provides sampling recommendations to complete the characterization of the residual material on the tank bottom following the guidance in Huff and Thaxton [2009] to split the tank floor into a North and a South hemisphere. The number of samples is determined from a modification of the formula previously published in Edwards [2001] and the sample characterization data for previous sampling of Tank 19 described by Oji [2009]. The uncertainty is quantified by an upper 95% confidence limit (UCL95%) on each analyte's mean concentration in Tank 19. The procedure computes the uncertainty in analyte concentration as

  6. View of tanks T18 and T19 with redwood tanks to ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View of tanks T18 and T19 with redwood tanks to right. Old rain shed (Building No. 43) can be seen behind the tanks. Ground catchment can be seen at left in background. - Hawaii Volcanoes National Park Water Collection System, Hawaii Volcanoes National Park, Volcano, Hawaii County, HI

  7. 2020 Vision for Tank Waste Cleanup (One System Integration) - 12506

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harp, Benton; Charboneau, Stacy; Olds, Erik

    2012-07-01

    The mission of the Department of Energy's Office of River Protection (ORP) is to safely retrieve and treat the 56 million gallons of Hanford's tank waste and close the Tank Farms to protect the Columbia River. The millions of gallons of waste are a by-product of decades of plutonium production. After irradiated fuel rods were taken from the nuclear reactors to the processing facilities at Hanford they were exposed to a series of chemicals designed to dissolve away the rod, which enabled workers to retrieve the plutonium. Once those chemicals were exposed to the fuel rods they became radioactive andmore » extremely hot. They also couldn't be used in this process more than once. Because the chemicals are caustic and extremely hazardous to humans and the environment, underground storage tanks were built to hold these chemicals until a more permanent solution could be found. The Cleanup of Hanford's 56 million gallons of radioactive and chemical waste stored in 177 large underground tanks represents the Department's largest and most complex environmental remediation project. Sixty percent by volume of the nation's high-level radioactive waste is stored in the underground tanks grouped into 18 'tank farms' on Hanford's central plateau. Hanford's mission to safely remove, treat and dispose of this waste includes the construction of a first-of-its-kind Waste Treatment Plant (WTP), ongoing retrieval of waste from single-shell tanks, and building or upgrading the waste feed delivery infrastructure that will deliver the waste to and support operations of the WTP beginning in 2019. Our discussion of the 2020 Vision for Hanford tank waste cleanup will address the significant progress made to date and ongoing activities to manage the operations of the tank farms and WTP as a single system capable of retrieving, delivering, treating and disposing Hanford's tank waste. The initiation of hot operations and subsequent full operations of the WTP are not only dependent upon the

  8. TANKS 18 AND 19-F STRUCTURAL FLOWABLE GROUT FILL MATERIAL EVALUATION AND RECOMMENDATIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stefanko, D.; Langton, C.

    2011-11-01

    Cementitious grout will be used to close Tanks 18-F and 19-F. The functions of the grout are to: (1) physically stabilize the final landfill by filling the empty volume in the tanks with a non compressible material; (2) provide a barrier for inadvertent intrusion into the tank; (3) reduce contaminant mobility by (a) limiting the hydraulic conductivity of the closed tank and (b) reducing contact between the residual waste and infiltrating water; and (4) providing an alkaline, chemically reducing environment in the closed tank to control speciation and solubility of selected radionuclides. The objective of this work was to identifymore » a single (all-in-one) grout to stabilize and isolate the residual radionuclides in the tank, provide structural stability of the closed tank and serve as an inadvertent intruder barrier. This work was requested by V. A. Chander, High Level Waste (HLW) Tank Engineering, in HLW-TTR-2011-008. The complete task scope is provided in the Task Technical and QA Plan, SRNL-RP-2011-00587 Revision 0. The specific objectives of this task were to: (1) Identify new admixtures and dosages for formulating a zero bleed flowable tank fill material selected by HLW Tank Closure Project personnel based on earlier tank fill studies performed in 2007. The chemical admixtures used for adjusting the flow properties needed to be updated because the original admixture products are no longer available. Also, the sources of cement and fly ash have changed, and Portland cements currently available contain up to 5 wt. % limestone (calcium carbonate). (2) Prepare and evaluate the placement, compressive strength, and thermal properties of the selected formulation with new admixture dosages. (3) Identify opportunities for improving the mix selected by HLW Closure Project personnel and prepare and evaluate two potentially improved zero bleed flowable fill design concepts; one based on the reactor fill grout and the other based on a shrinkage compensating flowable

  9. 33 CFR 157.146 - Similar tank design: Inspections on U.S. tank vessels.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... RELATING TO TANK VESSELS CARRYING OIL IN BULK Crude Oil Washing (COW) System on Tank Vessels Inspections... Officer in Charge, Marine Inspection, of the zone in which the COW system is inspected, for only one of...

  10. A Fruit of Yucca Mountain: The Remote Waste Package Closure System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kevin Skinner; Greg Housley; Colleen Shelton-Davis

    2011-11-01

    Was the death of the Yucca Mountain repository the fate of a technical lemon or a political lemon? Without caution, this debate could lure us away from capitalizing on the fruits of the project. In March 2009, Idaho National Laboratory (INL) successfully demonstrated the Waste Package Closure System, a full-scale prototype system for closing waste packages that were to be entombed in the now abandoned Yucca Mountain repository. This article describes the system, which INL designed and built, to weld the closure lids on the waste packages, nondestructively examine the welds using four different techniques, repair the welds if necessary,more » mitigate crack initiating stresses in the surfaces of the welds, evacuate and backfill the packages with an inert gas, and perform all of these tasks remotely. As a nation, we now have a proven method for securely sealing nuclear waste packages for long term storage—regardless of whether or not the future destination for these packages will be an underground repository. Additionally, many of the system’s features and concepts may benefit other remote nuclear applications.« less

  11. Tank vapor mitigation requirements for Hanford Tank Farms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rakestraw, L.D.

    1994-11-15

    Westinghouse Hanford Company has contracted Los Alamos Technical Associates to listing of vapors and aerosols that are or may be emitted from the High Level Waste (HLW) tanks at Hanford. Mitigation requirements under Federal and State law, as well as DOE Orders, are included in the listing. The lists will be used to support permitting activities relative to tank farm ventilation system up-grades. This task is designated Task 108 under MJB-SWV-312057 and is an extension of efforts begun under Task 53 of Purchase Order MPB-SVV-03291 5 for Mechanical Engineering Support. The results of that task, which covered only thirty-nine tanks,more » are repeated here to provide a single source document for vapor mitigation requirements for all 177 HLW tanks.« less

  12. Recharge Data Package for Hanford Single-Shell Tank Waste Management Areas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fayer, Michael J.; Keller, Jason M.

    2007-09-24

    Pacific Northwest National Laboratory (PNNL) assists CH2M HILL Hanford Group, Inc., in its preparation of the Resource Conservation and Recovery Act (RCRA) Facility Investigation report. One of the PNNL tasks is to use existing information to estimate recharge rates for past and current conditions as well as future scenarios involving cleanup and closure of tank farms. The existing information includes recharge-relevant data collected during activities associated with a host of projects, including those of RCRA, the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA), the CH2M HILL Tank Farm Vadose Zone Project, and the PNNL Remediation and Closure Science Project.more » As new information is published, the report contents can be updated. The objective of this data package was to use published data to provide recharge estimates for the scenarios being considered in the RCRA Facility Investigation. Recharge rates were estimated for areas that remain natural and undisturbed, areas where the vegetation has been disturbed, areas where both the vegetation and the soil have been disturbed, and areas that are engineered (e.g., surface barrier). The recharge estimates supplement the estimates provided by PNNL researchers in 2006 for the Hanford Site using additional field measurements and model analysis using weather data through 2006.« less

  13. Cold Plasma Welding System for Surgical Skin Closure: In Vivo Porcine Feasibility Assessment.

    PubMed

    Harats, Moti; Lam, Amnon; Maller, Michael; Kornhaber, Rachel; Haik, Josef

    2016-09-29

    Cold plasma skin welding is a novel technology that bonds skin edges through soldering without the use of synthetic materials or conventional wound approximation methods such as sutures, staples, or skin adhesives. The cold plasma welding system uses a biological solder applied to the edges of a skin incision, followed by the application of cold plasma energy. The objectives of this study were to assess the feasibility of a cold plasma welding system in approximating and fixating skin incisions compared with conventional methods and to evaluate and define optimal plasma welding parameters and histopathological tissue response in a porcine model. The cold plasma welding system (BioWeld1 System, IonMed Ltd, Yokneam, Israel) was used on porcine skin incisions using variable energy parameters. Wound healing was compared macroscopically and histologically to incisions approximated with sutures. When compared to sutured skin closure, cold plasma welding in specific system parameters demonstrated comparable and favorable wound healing results histopathologically as well as macroscopically. No evidence of epidermal damage, thermal or otherwise, was encountered in the specified parameters. Notably, bleeding, infection, and wound dehiscence were not detected at incision sites. Skin incisions welded at extreme energy parameters presented second-degree burns. Implementation of cold plasma welding has been shown to be feasible for skin closure. Initial in vivo results suggest cold plasma welding might provide equal, if not better, healing results than traditional methods of closure.

  14. Systematization of a set of closure techniques.

    PubMed

    Hausken, Kjell; Moxnes, John F

    2011-11-01

    Approximations in population dynamics are gaining popularity since stochastic models in large populations are time consuming even on a computer. Stochastic modeling causes an infinite set of ordinary differential equations for the moments. Closure models are useful since they recast this infinite set into a finite set of ordinary differential equations. This paper systematizes a set of closure approximations. We develop a system, which we call a power p closure of n moments, where 0≤p≤n. Keeling's (2000a,b) approximation with third order moments is shown to be an instantiation of this system which we call a power 3 closure of 3 moments. We present an epidemiological example and evaluate the system for third and fourth moments compared with Monte Carlo simulations. Copyright © 2011 Elsevier Inc. All rights reserved.

  15. Treatment of septic tank effluents by a full-scale capillary seepage soil biofiltration system.

    PubMed

    Fan, Chihhao; Chang, Fang-Chih; Ko, Chun-Han; Teng, Chia-Ji; Chang, Tzi-Chin; Sheu, Yiong-Shing

    2009-03-01

    The purpose of this study is to evaluate the efficiency of septic tank effluent treatment by an underground capillary seepage soil biofiltration system in a suburban area of Taipei, Taiwan. In contrast to traditional subsurface wastewater infiltration systems, capillary seepage soil biofiltration systems initially draw incoming influent upwards from the distribution pipe by capillary and siphonage actions, then spread influent throughout the soil biofiltration bed. The underground capillary seepage soil biofiltration system consists of a train of underground treatment units, including one wastewater distribution tank, two capillary seepage soil biofiltration units in series, and a discharge tank. Each capillary seepage soil biofiltration unit contains one facultative digestion tank and one set of biofiltration beds. At the flow rate of 50 m3/day, average influent concentrations of biochemical oxygen demand (BOD), suspended solid (SS), ammonia nitrogen (NH3-N), and total phosphates (TP), were 36.15 mg/L, 29.14 mg/L, 16.05 mg/L, and 1.75 mg/L, respectively. After 1.5 years of system operation, the measured influent and effluent results show that the treatment efficiencies of the soil biofiltration system for BOD, SS, NH3-N, TP, and total coliforms are 82.96%, 60.95%, 67.17%, 74.86%, and 99.99%, respectively.

  16. RCRA/UST, superfund, and EPCRA hotline training module. Introduction to: RCRA subtitle I. Underground storage tanks (40 cfr part 280). Updated as of July 1996

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1996-07-01

    This module explains the Underground Storage Tank Regulatory Program established in 1988, that includes technical requirements to prevent, protect, and clean up releases from Underground Storage Tanks (USTs), as well as financial responsibility requirements to guarantee that UST owners and operators have enough money set aside to clean up releases and compensate third parties. Describes the Universe of USTs and the technical and financial requirements that apply to them. Defines underground storage tank and provides criteria for determining which USTs are subject to regulation. Discusses deadlines for upgrading tanks and the closure and corrective action requirements.

  17. Temperature distribution of a hot water storage tank in a simulated solar heating and cooling system

    NASA Technical Reports Server (NTRS)

    Namkoong, D.

    1976-01-01

    A 2,300-liter hot water storage tank was studied under conditions simulating a solar heating and cooling system. The initial condition of the tank, ranging from 37 C at the bottom to 94 C at the top, represented a condition midway through the start-up period of the system. During the five-day test period, the water in the tank gradually rose in temperature but in a manner that diminished its temperature stratification. Stratification was found not to be an important factor in the operation of the particular solar system studied.

  18. 49 CFR 172.330 - Tank cars and multi-unit tank car tanks.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 2 2013-10-01 2013-10-01 false Tank cars and multi-unit tank car tanks. 172.330..., TRAINING REQUIREMENTS, AND SECURITY PLANS Marking § 172.330 Tank cars and multi-unit tank car tanks. (a... material— (1) In a tank car unless the following conditions are met: (i) The tank car must be marked on...

  19. 49 CFR 172.330 - Tank cars and multi-unit tank car tanks.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 2 2012-10-01 2012-10-01 false Tank cars and multi-unit tank car tanks. 172.330..., TRAINING REQUIREMENTS, AND SECURITY PLANS Marking § 172.330 Tank cars and multi-unit tank car tanks. (a... material— (1) In a tank car unless the following conditions are met: (i) The tank car must be marked on...

  20. 49 CFR 172.330 - Tank cars and multi-unit tank car tanks.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 2 2014-10-01 2014-10-01 false Tank cars and multi-unit tank car tanks. 172.330..., TRAINING REQUIREMENTS, AND SECURITY PLANS Marking § 172.330 Tank cars and multi-unit tank car tanks. (a... material— (1) In a tank car unless the following conditions are met: (i) The tank car must be marked on...

  1. Novel application of polyelectrolyte multilayers as nanoscopic closures with hermetic sealing.

    PubMed

    Marcott, Stephanie A; Ada, Sena; Gibson, Phillip; Camesano, Terri A; Nagarajan, R

    2012-03-01

    Closure systems for personnel protection applications, such as protective clothing or respirator face seals, should provide effective permeation barrier to toxic gases. Currently available mechanical closure systems based on the hook and loop types (example, Velcro) do not provide adequate barrier to gas permeation. To achieve hermetic sealing, we propose a nonmechanical, nanoscopic molecular closure system based on complementary polyelectrolyte multilayers, one with a polycation outermost layer and the other with a polyanion outermost layer. The closure surfaces were prepared by depositing polyelectrolyte multilayers under a variety of deposition conditions, on conformable polymer substrates (thin films of polyethylene teraphthalate, PET or polyimide, PI). The hermetic sealing property of the closures was evaluated by measuring the air flow resistance using the dynamic moisture permeation cell (DMPC) at different humidity conditions. The DMPC measurements show that the polyelectrolyte multilayer closures provide significantly large resistance to air flow, approximately 20-800 times larger than that possible with conventional hook and loop type closure systems, at all humidity levels (from 5 to 95% relative humidity). Hence, from the point of view of providing a hermetic seal against toxic gas permeation, the polyelectrolyte multilayer closures are viable candidates for further engineering development. However, the adhesive strength of the multilayer closures measured by atomic force microscopy suggests that the magnitude of adhesion is much smaller than what is possible with mechanical closures. Therefore, we envisage the development of a composite closure system combining the mechanical closure to provide strong adhesion and the multilayer closure to provide hermetic sealing. © 2012 American Chemical Society

  2. Tank Waste Retrieval Lessons Learned at the Hanford Site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dodd, R.A.

    One of the environmental remediation challenges facing the nation is the retrieval and permanent disposal of approximately 90 million gallons of radioactive waste stored in underground tanks at the U. S. Department of Energy (DOE) facilities. The Hanford Site is located in southeastern Washington State and stores roughly 60 percent of this waste. An estimated 53 million gallons of high-level, transuranic, and low-level radioactive waste is stored underground in 149 single-shell tanks (SSTs) and 28 newer double-shell tanks (DSTs) at the Hanford Site. These SSTs range in size from 55,000 gallons to 1,000,000 gallon capacity. Approximately 30 million gallons ofmore » this waste is stored in SSTs. The SSTs were constructed between 1943 and 1964 and all have exceeded the nominal 20-year design life. Sixty-seven SSTs are known or suspected to have leaked an estimated 1,000,000 gallons of waste to the surrounding soil. The risk of additional SST leakage has been greatly reduced by removing more than 3 million gallons of interstitial liquids and supernatant and transferring this waste to the DST system. Retrieval of SST salt-cake and sludge waste is underway to further reduce risks and stage feed materials for the Hanford Site Waste Treatment Plant. Regulatory requirements for SST waste retrieval and tank farm closure are established in the Hanford Federal Facility Agreement and Consent Order (HFFACO), better known as the Tri- Party Agreement, or TPA. The HFFACO was signed by the DOE, the State of Washington Department of Ecology (Ecology), and U.S. Environmental Protection Agency (EPA) and requires retrieval of as much waste as technically possible, with waste residues not to exceed 360 ft{sup 3} in 530,000 gallon or larger tanks; 30 ft{sup 3} in 55,000 gallon or smaller tanks; or the limit of waste retrieval technology, whichever is less. If residual waste volume requirements cannot be achieved, then HFFACO Appendix H provisions can be invoked to request Ecology and

  3. 49 CFR 178.338-11 - Discharge control devices.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... water capacity, remote means of automatic closure must be installed at the ends of the cargo tank in at... control system. (ii) On a cargo tank motor vehicle of 3,500 gallons water capacity or less, at least one remote means of automatic closure must be installed on the end of the cargo tank farthest away from the...

  4. Large-Scale Liquid Hydrogen Tank Rapid Chill and Fill Testing for the Advanced Shuttle Upper Stage Concept

    NASA Technical Reports Server (NTRS)

    Flachbart, R. H.; Hedayat, A.; Holt, K. A.; Sims, J.; Johnson, E. F.; Hastings, L. J.; Lak, T.

    2013-01-01

    Cryogenic upper stages in the Space Shuttle program were prohibited primarily due to a safety risk of a 'return to launch site' abort. An upper stage concept addressed this concern by proposing that the stage be launched empty and filled using shuttle external tank residuals after the atmospheric pressure could no longer sustain an explosion. However, only about 5 minutes was allowed for tank fill. Liquid hydrogen testing was conducted within a near-ambient environment using the multipurpose hydrogen test bed 638.5 ft3 (18m3) cylindrical tank with a spray bar mounted longitudinally inside. Although the tank was filled within 5 minutes, chilldown of the tank structure was incomplete, and excessive tank pressures occurred upon vent valve closure. Elevated tank wall temperatures below the liquid level were clearly characteristic of film boiling. The test results have substantial implications for on-orbit cryogen transfer since the formation of a vapor film would be much less inhibited due to the reduced gravity. However, the heavy tank walls could become an asset in normal gravity testing for on-orbit transfer, i.e., if film boiling in a nonflight weight tank can be inhibited in normal gravity, then analytical modeling anchored with the data could be applied to reduced gravity environments with increased confidence.

  5. 49 CFR 174.63 - Portable tanks, IM portable tanks, IBCs, Large Packagings, cargo tanks, and multi-unit tank car...

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 2 2014-10-01 2014-10-01 false Portable tanks, IM portable tanks, IBCs, Large Packagings, cargo tanks, and multi-unit tank car tanks. 174.63 Section 174.63 Transportation Other....63 Portable tanks, IM portable tanks, IBCs, Large Packagings, cargo tanks, and multi-unit tank car...

  6. 49 CFR 174.63 - Portable tanks, IM portable tanks, IBCs, Large Packagings, cargo tanks, and multi-unit tank car...

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Portable tanks, IM portable tanks, IBCs, Large Packagings, cargo tanks, and multi-unit tank car tanks. 174.63 Section 174.63 Transportation Other....63 Portable tanks, IM portable tanks, IBCs, Large Packagings, cargo tanks, and multi-unit tank car...

  7. 49 CFR 174.63 - Portable tanks, IM portable tanks, IBCs, Large Packagings, cargo tanks, and multi-unit tank car...

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 2 2011-10-01 2011-10-01 false Portable tanks, IM portable tanks, IBCs, Large Packagings, cargo tanks, and multi-unit tank car tanks. 174.63 Section 174.63 Transportation Other....63 Portable tanks, IM portable tanks, IBCs, Large Packagings, cargo tanks, and multi-unit tank car...

  8. 49 CFR 174.63 - Portable tanks, IM portable tanks, IBCs, Large Packagings, cargo tanks, and multi-unit tank car...

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 2 2013-10-01 2013-10-01 false Portable tanks, IM portable tanks, IBCs, Large Packagings, cargo tanks, and multi-unit tank car tanks. 174.63 Section 174.63 Transportation Other....63 Portable tanks, IM portable tanks, IBCs, Large Packagings, cargo tanks, and multi-unit tank car...

  9. 49 CFR 174.63 - Portable tanks, IM portable tanks, IBCs, Large Packagings, cargo tanks, and multi-unit tank car...

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 2 2012-10-01 2012-10-01 false Portable tanks, IM portable tanks, IBCs, Large Packagings, cargo tanks, and multi-unit tank car tanks. 174.63 Section 174.63 Transportation Other....63 Portable tanks, IM portable tanks, IBCs, Large Packagings, cargo tanks, and multi-unit tank car...

  10. Tank 241-AX-104 upper vadose zone cone penetrometer demonstration sampling and analysis plan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    FIELD, J.G.

    1999-02-02

    This sampling and analysis plan (SAP) is the primary document describing field and laboratory activities and requirements for the tank 241-AX-104 upper vadose zone cone penetrometer (CP) demonstration. It is written in accordance with Hanford Tank Initiative Tank 241-AX-104 Upper Vadose Zone Demonstration Data Quality Objective (Banning 1999). This technology demonstration, to be conducted at tank 241-AX-104, is being performed by the Hanford Tanks Initiative (HTI) Project as a part of Tank Waste Remediation System (TWRS) Retrieval Program (EM-30) and the Office of Science and Technology (EM-50) Tanks Focus Area. Sample results obtained as part of this demonstration will providemore » additional information for subsequent revisions to the Retrieval Performance Evaluation (RPE) report (Jacobs 1998). The RPE Report is the result of an evaluation of a single tank farm (AX Tank Farm) used as the basis for demonstrating a methodology for developing the data and analyses necessary to support making tank waste retrieval decisions within the context of tank farm closure requirements. The RPE includes a study of vadose zone contaminant transport mechanisms, including analysis of projected tank leak characteristics, hydrogeologic characteristics of tank farm soils, and the observed distribution of contaminants in the vadose zone in the tank farms. With limited characterization information available, large uncertainties exist as to the nature and extent of contaminants that may exist in the upper vadose zone in the AX Tank Farm. Traditionally, data has been collected from soils in the vadose zone through the installation of boreholes and wells. Soil samples are collected as the bore hole is advanced and samples are screened on site and/or sent to a laboratory for analysis. Some in-situ geophysical methods of contaminant analysis can be used to evaluate radionuclide levels in the soils adjacent to an existing borehole. However, geophysical methods require compensation for

  11. Modeling of a lot scale rainwater tank system in XP-SWMM: a case study in Western Sydney, Australia.

    PubMed

    van der Sterren, Marlène; Rahman, Ataur; Ryan, Garry

    2014-08-01

    Lot scale rainwater tank system modeling is often used in sustainable urban storm water management, particularly to estimate the reduction in the storm water run-off and pollutant wash-off at the lot scale. These rainwater tank models often cannot be adequately calibrated and validated due to limited availability of observed rainwater tank quantity and quality data. This paper presents calibration and validation of a lot scale rainwater tank system model using XP-SWMM utilizing data collected from two rainwater tank systems located in Western Sydney, Australia. The modeling considers run-off peak and volume in and out of the rainwater tank system and also a number of water quality parameters (Total Phosphorus (TP), Total Nitrogen (TN) and Total Solids (TS)). It has been found that XP-SWMM can be used successfully to develop a lot scale rainwater system model within an acceptable error margin. It has been shown that TP and TS can be predicted more accurately than TN using the developed model. In addition, it was found that a significant reduction in storm water run-off discharge can be achieved as a result of the rainwater tank up to about one year average recurrence interval rainfall event. The model parameter set assembled in this study can be used for developing lot scale rainwater tank system models at other locations in the Western Sydney region and in other parts of Australia with necessary adjustments for the local site characteristics. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. 78 FR 10163 - Notice of Availability of Draft Section 3116 Basis for Determination for Closure of H Tank Farm...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-13

    ... isolation in a deep geologic repository for spent fuel or high-level radioactive waste; (2) has had highly... in 10 CFR Part 61, Subpart C and pursuant to a State approved closure plan or State-issued permit; or... with the performance objectives of 10 CFR Part 61, Subpart C; pursuant to a State approved closure plan...

  13. Results for the DWPF Slurry Mix Evaporator Condensate Tank, Off Gas Condensate Tank, And Recycle Collection Tank Samples

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    TERRI, FELLINGER

    2004-12-21

    The Defense Waste Processing Facility, DWPF, currently generates approximately 1.4 million gallons of recycle water per year during Sludge-Only operations. DWPF has minimized condensate generation to 1.4 million gallons by not operating the Steam Atomized Scrubbers, SASs, for the melter off gas system. By not operating the SASs, DWPF has reduced the total volume by approximately 800,000 gallons of condensate per year. Currently, the recycle stream is sent to back to the Tank Farm and processed through the 2H Evaporator system. To alleviate the load on the 2H Evaporator system, an acid evaporator design is being considered as an alternatemore » processing and/or concentration method for the DWPF recycle stream. In order to support this alternate processing option, the DWPF has requested that the chemical and radionuclide compositions of the Off Gas Condensate Tank, OGCT, Slurry Mix Evaporator Condensate Tank, SMECT, Recycle Collection Tank, RCT, and the Decontamination Waste Treatment Tank, DWTT, be determined as a part of the process development work for the acid evaporator design. Samples have been retrieved from the OGCT, RCT, and SMECT and have been sent to the Savannah River National Laboratory, SRNL for this characterization. The DWTT samples have been recently shipped to SRNL. The results for the DWTT samples will be issued at later date.« less

  14. Corrective Action Decision Document for Corrective Action Unit 428: Area 3 Septic Waste Systems 1 and 5, Tonopah Test Range, Nevada

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    U.S. Department of Energy, Nevada Operations Office

    2000-02-08

    This Corrective Action Decision Document identifies and rationalizes the US Department of Energy, Nevada Operations Office's selection of a recommended corrective action alternative (CAA) appropriate to facilitate the closure of Corrective Action Unit (CAU) 428, Septic Waste Systems 1 and 5, under the Federal Facility Agreement and Consent Order. Located in Area 3 at the Tonopah Test Range (TTR) in Nevada, CAU 428 is comprised of two Corrective Action Sites (CASs): (1) CAS 03-05-002-SW01, Septic Waste System 1 and (2) CAS 03-05-002- SW05, Septic Waste System 5. A corrective action investigation performed in 1999 detected analyte concentrations that exceeded preliminarymore » action levels; specifically, contaminants of concern (COCs) included benzo(a) pyrene in a septic tank integrity sample associated with Septic Tank 33-1A of Septic Waste System 1, and arsenic in a soil sample associated with Septic Waste System 5. During this investigation, three Corrective Action Objectives (CAOs) were identified to prevent or mitigate exposure to contents of the septic tanks and distribution box, to subsurface soil containing COCs, and the spread of COCs beyond the CAU. Based on these CAOs, a review of existing data, future use, and current operations in Area 3 of the TTR, three CAAs were developed for consideration: Alternative 1 - No Further Action; Alternative 2 - Closure in Place with Administrative Controls; and Alternative 3 - Clean Closure by Excavation and Disposal. These alternatives were evaluated based on four general corrective action standards and five remedy selection decision factors. Based on the results of the evaluation, the preferred CAA was Alternative 3. This alternative meets all applicable state and federal regulations for closure of the site and will eliminate potential future exposure pathways to the contaminated soils at the Area 3 Septic Waste Systems 1 and 5.« less

  15. Analytic closures for M1 neutrino transport

    DOE PAGES

    Murchikova, E. M.; Abdikamalov, E.; Urbatsch, T.

    2017-04-25

    Carefully accounting for neutrino transport is an essential component of many astrophysical studies. Solving the full transport equation is too expensive for most realistic applications, especially those involving multiple spatial dimensions. For such cases, resorting to approximations is often the only viable option for obtaining solutions. One such approximation, which recently became popular, is the M1 method. It utilizes the system of the lowest two moments of the transport equation and closes the system with an ad hoc closure relation. The accuracy of the M1 solution depends on the quality of the closure. Several closures have been proposed in themore » literature and have been used in various studies. We carry out an extensive study of these closures by comparing the results of M1 calculations with precise Monte Carlo calculations of the radiation field around spherically symmetric protoneutron star models. We find that no closure performs consistently better or worse than others in all cases. The level of accuracy that a given closure yields depends on the matter configuration, neutrino type and neutrino energy. As a result, given this limitation, the maximum entropy closure by Minerbo on average yields relatively accurate results in the broadest set of cases considered in this work.« less

  16. 33 CFR 157.10 - Segregated ballast tanks and crude oil washing systems for certain new vessels.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... MARINE ENVIRONMENT RELATING TO TANK VESSELS CARRYING OIL IN BULK Design, Equipment, and Installation § 157.10 Segregated ballast tanks and crude oil washing systems for certain new vessels. (a) This...) Each tank vessel under this section of 20,000 DWT or more that carries crude oil must have a crude oil...

  17. 40 CFR 264.258 - Closure and post-closure care.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Waste Piles § 264.258 Closure and post-closure care. (a) At closure, the owner or operator must remove... that apply to landfills (§ 264.310). (c)(1) The owner or operator of a waste pile that does not comply...(c) or § 264.251(b), must: (i) Include in the closure plan for the pile under § 264.112 both a plan...

  18. LH2 tank pressure control by thermodynamic vent system (TVS) at zero gravity

    NASA Astrophysics Data System (ADS)

    Wang, B.; Huang, Y. H.; Chen, Z. C.; Wu, J. Y.; Li, P.; Sun, P. J.

    2017-02-01

    Thermodynamic vent system (TVS) is employed for pressure control of propellant tanks at zero gravity. An analytical lumped parameter model is developed to predict pressure variation in an 18.09 m3 liquid hydrogen tank equipped with TVS. Mathematical simulations are carried out assuming tank is filled up to 75% volume (liquid mass equals to 945 kg) and is subjected to heat flux of 0.76 W/m2. Tank pressure controls at 165.5-172.4, 165.5-179.3 and 165.5-182.2 kPa are compared with reference to number of vent cycles, vent duration per cycle and loss of hydrogen. Analysis results indicate that the number of vent cycles significantly decreases from 62 to 21 when tank pressure control increases from 6.9 to 20.4 kPa. Also, duration of vent cycle increases from 63 to 152 and cycle duration decreases from 3920 to 3200 s. Further, the analysis result suggests that LH2 evaporation loss per day decreases from 0.17 to 0.14%. Based on the results of analysis, TVS is found effective in controlling the propellant tank pressure in zero gravity.

  19. Annual Report, Fall 2016: Alternative Chemical Cleaning of Radioactive High Level Waste Tanks - Corrosion Test Results

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wyrwas, R. B.

    The testing presented in this report is in support of the investigation of the Alternative Chemical Cleaning program to aid in developing strategies and technologies to chemically clean radioactive High Level Waste tanks prior to tank closure. The data and conclusions presented here were the examination of the corrosion rates of A285 carbon steel and 304L stainless steel exposed to two proposed chemical cleaning solutions: acidic permanganate (0.18 M nitric acid and 0.05M sodium permanganate) and caustic permanganate. (10 M sodium hydroxide and 0.05M sodium permanganate). These solutions have been proposed as a chemical cleaning solution for the retrieval ofmore » actinides in the sludge in the waste tanks, and were tested with both HM and PUREX sludge simulants at a 20:1 ratio.« less

  20. 46 CFR 39.1015 - Foreign-flagged tank vessel certification procedures for vapor control system designs-TB/ALL.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... vapor control system designs-TB/ALL. 39.1015 Section 39.1015 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS VAPOR CONTROL SYSTEMS General § 39.1015 Foreign-flagged tank vessel certification procedures for vapor control system designs—TB/ALL. As an alternative to meeting the requirements...

  1. 46 CFR 39.1015 - Foreign-flagged tank vessel certification procedures for vapor control system designs-TB/ALL.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... vapor control system designs-TB/ALL. 39.1015 Section 39.1015 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS VAPOR CONTROL SYSTEMS General § 39.1015 Foreign-flagged tank vessel certification procedures for vapor control system designs—TB/ALL. As an alternative to meeting the requirements...

  2. Development of fuel oil management system software: Phase 1, Tank management module

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lange, H.B.; Baker, J.P.; Allen, D.

    1992-01-01

    The Fuel Oil Management System (FOMS) is a micro-computer based software system being developed to assist electric utilities that use residual fuel oils with oil purchase and end-use decisions. The Tank Management Module (TMM) is the first FOMS module to be produced. TMM enables the user to follow the mixing status of oils contained in a number of oil storage tanks. The software contains a computational model of residual fuel oil mixing which addresses mixing that occurs as one oil is added to another in a storage tank and also purposeful mixing of the tank by propellers, recirculation or convection.Themore » model also addresses the potential for sludge formation due to incompatibility of oils being mixed. Part 1 of the report presents a technical description of the mixing model and a description of its development. Steps followed in developing the mixing model included: (1) definition of ranges of oil properties and tank design factors used by utilities; (2) review and adaption of prior applicable work; (3) laboratory development; and (4) field verification. Also, a brief laboratory program was devoted to exploring the suitability of suggested methods for predicting viscosities, flash points and pour points of oil mixtures. Part 2 of the report presents a functional description of the TMM software and a description of its development. The software development program consisted of the following steps: (1) on-site interviews at utilities to prioritize needs and characterize user environments; (2) construction of the user interface; and (3) field testing the software.« less

  3. USER'S GUIDE TO CLOSURE EVALUATION SYSTEM: CES BETA-TEST VERSION 1.0

    EPA Science Inventory

    The Closure Evaluation System (CES) is a decision support tool, developed by the U.S. EPA's Risk Reduction Engineering Laboratory, to assist reviewers and preparers of Resource Conservation and Recovery Act (RCRA) Part B permit applications. CES is designed to serve as a checklis...

  4. Balanced-Rotating-Spray Tank-And-Pipe-Cleaning System

    NASA Technical Reports Server (NTRS)

    Thaxton, Eric A.; Caimi, Raoul E. B.

    1995-01-01

    Spray head translates and rotates to clean entire inner surface of tank or pipe. Cleansing effected by three laterally balanced gas/liquid jets from spray head that rotates about longitudinal axis. Uses much less liquid. Cleaning process in system relies on mechanical action of jets instead of contaminant dissolution. Eliminates very difficult machining needed to make multiple converging/diverging nozzles within one spray head. Makes nozzle much smaller. Basic two-phase-flow, supersonic-nozzle design applied to other spray systems for interior or exterior cleaning.

  5. Numerical simulation of the hydrodynamics within octagonal tanks in recirculating aquaculture systems

    NASA Astrophysics Data System (ADS)

    Liu, Yao; Liu, Baoliang; Lei, Jilin; Guan, Changtao; Huang, Bin

    2017-07-01

    A three-dimensional numerical model was established to simulate the hydrodynamics within an octagonal tank of a recirculating aquaculture system. The realizable k- ɛ turbulence model was applied to describe the flow, the discrete phase model (DPM) was applied to generate particle trajectories, and the governing equations are solved using the finite volume method. To validate this model, the numerical results were compared with data obtained from a full-scale physical model. The results show that: (1) the realizable k- ɛ model applied for turbulence modeling describes well the flow pattern in octagonal tanks, giving an average relative error of velocities between simulated and measured values of 18% from contour maps of velocity magnitudes; (2) the DPM was applied to obtain particle trajectories and to simulate the rate of particle removal from the tank. The average relative error of the removal rates between simulated and measured values was 11%. The DPM can be used to assess the self-cleaning capability of an octagonal tank; (3) a comprehensive account of the hydrodynamics within an octagonal tank can be assessed from simulations. The velocity distribution was uniform with an average velocity of 15 cm/s; the velocity reached 0.8 m/s near the inlet pipe, which can result in energy losses and cause wall abrasion; the velocity in tank corners was more than 15 cm/s, which suggests good water mixing, and there was no particle sedimentation. The percentage of particle removal for octagonal tanks was 90% with the exception of a little accumulation of ≤ 5 mm particle in the area between the inlet pipe and the wall. This study demonstrated a consistent numerical model of the hydrodynamics within octagonal tanks that can be further used in their design and optimization as well as promote the wide use of computational fluid dynamics in aquaculture engineering.

  6. The etiology and determinants of hospital closure.

    PubMed

    Longo, D R; Sohn, M W; Shortell, S M

    1996-01-01

    This article examines the etiology of hospital closure and the correlates of hospital closure and the extent of similarity in this organizational outcome between pre- and post-Prospective Payment System (PPS) implementation. It also replicates a study from an earlier time period. Findings support the study's main hypotheses: in more stringent and turbulent markets, institutional and strategic variables are more important determinants of hospital closure. Merger acquisitions are found to be similar to both system acquisitions and autonomous hospitals. Standard Metropolitan Statistical Area (SMSA) status and regulation show an effect on hospital closure and merger acquisition. While many similarities exist when compared to the replicated study and findings prior to PPS implementation, it appears that sufficient differences exist to support the hypothesis that the PPS has an impact upon hospital organizational outcome.

  7. Experimental Air Pressure Tank Systems for Process Control Education

    ERIC Educational Resources Information Center

    Long, Christopher E.; Holland, Charles E.; Gatzke, Edward P.

    2006-01-01

    In process control education, particularly in the field of chemical engineering, there is an inherent need for industrially relevant hands-on apparatuses that enable one to bridge the gap between the theoretical content of coursework and real-world applications. At the University of South Carolina, two experimental air-pressure tank systems have…

  8. Tank characterization report for single-shell tank 241-C-109

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Simpson, B.C.

    1997-05-23

    One of the major functions of the Tank Waste Remediation System (TWRS) is to characterize wastes in support of waste management and disposal activities at the Hanford Site. Analytical data from sampling and analysis, along with other available information about a tank, are compiled and maintained in a tank characterization report (TCR). This report and its appendices serve as the TCR for single-shell tank 241-C-109. The objectives of this report are: (1) to use characterization data in response to technical issues associated with tank 241 C-109 waste; and (2) to provide a standard characterization of this waste in terms ofmore » a best-basis inventory estimate. The response to technical issues is summarized in Section 2.0, and the best-basis inventory estimate is presented in Section 3.0. Recommendations regarding safety status and additional sampling needs are provided in Section 4.0. Supporting data and information are contained in the appendices.« less

  9. Impact of Vial Capping on Residual Seal Force and Container Closure Integrity.

    PubMed

    Mathaes, Roman; Mahler, Hanns-Christian; Roggo, Yves; Ovadia, Robert; Lam, Philippe; Stauch, Oliver; Vogt, Martin; Roehl, Holger; Huwyler, Joerg; Mohl, Silke; Streubel, Alexander

    2016-01-01

    The vial capping process is a critical unit operation during drug product manufacturing, as it could possibly generate cosmetic defects or even affect container closure integrity. Yet there is significant variability in capping equipment and processes, and their relation to potential defects or container closure integrity has not been thoroughly studied. In this study we applied several methods-residual seal force tester, a self-developed system of a piezo force sensor measurement, and computed tomography-to characterize different container closure system combinations that had been sealed using different capping process parameter settings. Additionally, container closure integrity of these samples was measured using helium leakage (physical container closure integrity) and compared to characterization data. The different capping equipment settings lead to residual seal force values from 7 to 115 N. High residual seal force values were achieved with high capping pre-compression force and a short distance between the capping plate and plunge. The choice of container closure system influenced the obtained residual seal force values. The residual seal force tester and piezoelectric measurements showed similar trends. All vials passed physical container closure integrity testing, and no stopper rupture was seen with any of the settings applied, suggesting that container closure integrity was warranted for the studied container closure system with the chosen capping setting ranges. The vial capping process is a critical unit operation during drug product manufacturing, as it could possibly generate cosmetic defects or even affect container closure integrity. Yet there is significant variability in capping equipment and processes, and their relation to potential defects or container closure integrity has not been thoroughly studied. In this study we applied several methods-residual seal force tester, a self-developed system of a piezo force sensor measurement, and

  10. A shape memory polymer concrete crack closure system activated by electrical current

    NASA Astrophysics Data System (ADS)

    Teall, Oliver; Pilegis, Martins; Davies, Robert; Sweeney, John; Jefferson, Tony; Lark, Robert; Gardner, Diane

    2018-07-01

    The presence of cracks has a negative impact on the durability of concrete by providing paths for corrosive materials to the embedded steel reinforcement. Cracks in concrete can be closed using shape memory polymers (SMP) which produce a compressive stress across the crack faces. This stress has been previously found to enhance the load recovery associated with autogenous self-healing. This paper details the experiments undertaken to incorporate SMP tendons containing polyethylene terephthalate (PET) filaments into reinforced and unreinforced 500 × 100 × 100 mm structural concrete beam samples. These tendons are activated via an electrical supply using a nickel-chrome resistance wire heating system. The set-up, methodology and results of restrained shrinkage stress and crack closure experiments are explained. Crack closure of up to 85% in unreinforced beams and 26%–39% in reinforced beams is measured using crack-mouth opening displacement, microscope and digital image correlation equipment. Conclusions are made as to the effectiveness of the system and its potential for application within industry.

  11. HANFORD DOUBLE SHELL TANK (DST) THERMAL & SEISMIC PROJECT BUCKLING EVALUATION METHODS & RESULTS FOR THE PRIMARY TANKS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    MACKEY, T.C.

    2006-03-17

    This report documents a detailed buckling evaluation of the primary tanks in the Hanford double shell waste tanks. The analysis is part of a comprehensive structural review for the Double-Shell Tank Integrity Project. This work also provides information on tank integrity that specifically responds to concerns raise by the Office of Environment, Safety, and Health (ES&H) Oversight (EH-22) during a review (in April and May 2001) of work being performed on the double-shell tank farms, and the operation of the aging waste facility (AWF) primary tank ventilation system.

  12. Research on Liquid Management Technology in Water Tank and Reactor for Propulsion System with Hydrogen Production System Utilizing Aluminum and Water Reaction

    NASA Astrophysics Data System (ADS)

    Imai, Ryoji; Imamura, Takuya; Sugioka, Masatoshi; Higashino, Kazuyuki

    2017-12-01

    High pressure hydrogen produced by aluminum and water reaction is considered to be applied to space propulsion system. Water tank and hydrogen production reactor in this propulsion system require gas and liquid separation function under microgravity condition. We consider to install vane type liquid acquisition device (LAD) utilizing surface tension in the water tank, and install gas-liquid separation mechanism by centrifugal force which swirling flow creates in the hydrogen reactor. In water tank, hydrophilic coating was covered on both tank wall and vane surface to improve wettability. Function of LAD in water tank and gas-liquid separation in reaction vessel were evaluated by short duration microgravity experiments using drop tower facility. In the water tank, it was confirmed that liquid was driven and acquired on the outlet due to capillary force created by vanes. In addition of this, it was found that gas-liquid separation worked well by swirling flow in hydrogen production reactor. However, collection of hydrogen gas bubble was sometimes suppressed by aluminum alloy particles, which is open problem to be solved.

  13. 33 CFR 157.140 - Tank vessel inspections.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Crude Oil Washing (COW) System on Tank Vessels Inspections § 157.140 Tank vessel inspections. (a) Before... having a COW system under § 157.10(e), § 157.10(a)(2), or § 157.10c(b)(2) and each foreign tank vessel...

  14. Effects of hydrated lime on radionuclides stabilization of Hanford tank residual waste.

    PubMed

    Wang, Guohui; Um, Wooyong; Cantrell, Kirk J; Snyder, Michelle M V; Bowden, Mark E; Triplett, Mark B; Buck, Edgar C

    2017-10-01

    Chemical stabilization of tank residual waste is part of a Hanford Site tank closure strategy to reduce overall risk levels to human health and the environment. In this study, a set of column leaching experiments using tank C-104 residual waste were conducted to evaluate the leachability of uranium (U) and technetium (Tc) where grout and hydrated lime were applied as chemical stabilizing agents. The experiments were designed to simulate future scenarios where meteoric water infiltrates through the vadose zones into the interior of the tank filled with layers of grout or hydrated lime, and then contacts the residual waste. Effluent concentrations of U and Tc were monitored and compared among three different packing columns (waste only, waste + grout, and waste + grout + hydrated lime). Geochemical modeling of the effluent compositions was conducted to determine saturation indices of uranium solid phases that could control the solubility of uranium. The results indicate that addition of hydrated lime strongly stabilized the uranium through transforming uranium to a highly insoluble calcium uranate (CaUO 4 ) or similar phase, whereas no significant stabilization effect of grout or hydrated lime was observed on Tc leachability. The result implies that hydrated lime could be a great candidate for stabilizing Hanford tank residual wastes where uranium is one of the main concerns. Published by Elsevier Ltd.

  15. RECOMMENDATIONS FOR SAMPLING OF TANK 18 IN F TANK FARM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shine, G.

    2009-12-14

    Representative sampling is required for characterization of the residual floor material in Tank 18 prior to operational closure. Tank 18 is an 85-foot diameter, 34-foot high carbon steel tank with nominal operating volume of 1,300,000 gallons. It is a Type IV tank, and has been in service storing radioactive materials since 1959. Recent mechanical cleaning of the tank removed all mounds of material. Anticipating a low level of solids in the residual material, Huff and Thaxton [2009] developed a plan to sample the material during the final clean-up process while it would still be resident in sufficient quantities to supportmore » analytical determinations in four quadrants of the tank. Execution of the plan produced fewer solids than expected to support analytical determinations in all four quadrants. Huff and Thaxton [2009] then restructured the plan to characterize the residual floor material separately in the North and the South regions: two 'hemispheres.' This document provides sampling recommendations to complete the characterization of the residual material on the tank bottom following the guidance in Huff and Thaxton [2009] to split the tank floor into a North and a South hemisphere. The number of samples is determined from a modification of the formula previously published in Edwards [2001] and the sample characterization data for previous sampling of Tank 18 described by Oji [2009]. The uncertainty is quantified by an upper 95% confidence limit (UCL95%) on each analyte's mean concentration in Tank 18. The procedure computes the uncertainty in analyte concentration as a function of the number of samples, and the final number of samples is determined when the reduction in the uncertainty from an additional sample no longer has a practical impact on results. The characterization of the full suite of analytes in the North hemisphere is currently supported by a single Mantis rover sample obtained from a compact region near the center riser. A floor scrape

  16. Numerical analysis of single tank thermocline thermal storage system for concentrated solar power plant

    NASA Astrophysics Data System (ADS)

    Afrin, Samia

    The overall efficiency of a Concentrating Solar Power (CSP) plant depends on the effectiveness of Thermal Energy Storage (TES) system. A Single tank TES system has potential to provide effective solution. In a single tank TES system, a thermocline region, which produces the temperature gradient between hot and cold storage fluid by density difference, is used. Preservation of this thermocline region in the tank during charging and discharging cycles depends on the uniformity of the velocity profile at any horizontal plane. One of the major challenges for the single tank thermocline is actually maintaining the thermocline region in the tank, so that it does not spread out to occupy the entire tank. Since the thermocline is a horizontal surface, the hot and cold fluid must be introduce in such a way that it does not disturb the thermocline. If the fluid is introduced in a jet stream, it will disturb the thermocline and mix the hot and cold fluids into a homogeneous medium. So the objective of this thesis is to preserve the thermocline region by maximizing the uniformity of the velocity distribution. An ideal distributor will minimize the thermocline spreading and hence maximize the useable form of thermal energy storage in a single tank system. The performance of two different types of distributors: pipe flow distributor and honeycomb distributor, were checked. The effectiveness of the pipe flow distributor was checked by varying the dimension of the geometry i.e. number of holes, distance between the holes, position of the holes and number of distributor pipes. Thermal energy storage system from solar power relies on high temperature thermal storage units for continuous operation. The storage units should have facilitated with high thermal conductivity and heat capacity storage fluid. Hence it is necessary to find a better performing heat transfer fluid at higher operating temperature. Novel materials such as nanomaterial additives can become cost effective and can

  17. 46 CFR 64.29 - Tank saddles.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 2 2011-10-01 2011-10-01 false Tank saddles. 64.29 Section 64.29 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING MARINE PORTABLE TANKS AND CARGO HANDLING SYSTEMS Standards for an MPT § 64.29 Tank saddles. If a tank is not completely supported by a framework...

  18. 46 CFR 64.29 - Tank saddles.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 2 2013-10-01 2013-10-01 false Tank saddles. 64.29 Section 64.29 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING MARINE PORTABLE TANKS AND CARGO HANDLING SYSTEMS Standards for an MPT § 64.29 Tank saddles. If a tank is not completely supported by a framework...

  19. 46 CFR 64.29 - Tank saddles.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Tank saddles. 64.29 Section 64.29 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING MARINE PORTABLE TANKS AND CARGO HANDLING SYSTEMS Standards for an MPT § 64.29 Tank saddles. If a tank is not completely supported by a framework...

  20. 46 CFR 64.29 - Tank saddles.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 2 2012-10-01 2012-10-01 false Tank saddles. 64.29 Section 64.29 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING MARINE PORTABLE TANKS AND CARGO HANDLING SYSTEMS Standards for an MPT § 64.29 Tank saddles. If a tank is not completely supported by a framework...

  1. 46 CFR 64.29 - Tank saddles.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 2 2014-10-01 2014-10-01 false Tank saddles. 64.29 Section 64.29 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING MARINE PORTABLE TANKS AND CARGO HANDLING SYSTEMS Standards for an MPT § 64.29 Tank saddles. If a tank is not completely supported by a framework...

  2. 40 CFR 264.280 - Closure and post-closure care.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Section 264.280 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES Land Treatment § 264.280 Closure and post-closure care. (a) During the closure period the owner or...

  3. 40 CFR 264.280 - Closure and post-closure care.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Section 264.280 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES Land Treatment § 264.280 Closure and post-closure care. (a) During the closure period the owner or...

  4. 40 CFR 264.280 - Closure and post-closure care.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Section 264.280 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES Land Treatment § 264.280 Closure and post-closure care. (a) During the closure period the owner or...

  5. 40 CFR 264.280 - Closure and post-closure care.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Section 264.280 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES Land Treatment § 264.280 Closure and post-closure care. (a) During the closure period the owner or...

  6. 14 CFR 27.1013 - Oil tanks.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Oil tanks. 27.1013 Section 27.1013... STANDARDS: NORMAL CATEGORY ROTORCRAFT Powerplant Oil System § 27.1013 Oil tanks. Each oil tank must be... prevent oil overflow from entering the oil tank compartment. [Doc. No. 5074, 29 FR 15695, Nov. 24, 1964...

  7. 14 CFR 27.1013 - Oil tanks.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Oil tanks. 27.1013 Section 27.1013... STANDARDS: NORMAL CATEGORY ROTORCRAFT Powerplant Oil System § 27.1013 Oil tanks. Each oil tank must be... prevent oil overflow from entering the oil tank compartment. [Doc. No. 5074, 29 FR 15695, Nov. 24, 1964...

  8. 14 CFR 27.1013 - Oil tanks.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Oil tanks. 27.1013 Section 27.1013... STANDARDS: NORMAL CATEGORY ROTORCRAFT Powerplant Oil System § 27.1013 Oil tanks. Each oil tank must be... prevent oil overflow from entering the oil tank compartment. [Doc. No. 5074, 29 FR 15695, Nov. 24, 1964...

  9. 14 CFR 27.1013 - Oil tanks.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Oil tanks. 27.1013 Section 27.1013... STANDARDS: NORMAL CATEGORY ROTORCRAFT Powerplant Oil System § 27.1013 Oil tanks. Each oil tank must be... prevent oil overflow from entering the oil tank compartment. [Doc. No. 5074, 29 FR 15695, Nov. 24, 1964...

  10. 14 CFR 27.1013 - Oil tanks.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Oil tanks. 27.1013 Section 27.1013... STANDARDS: NORMAL CATEGORY ROTORCRAFT Powerplant Oil System § 27.1013 Oil tanks. Each oil tank must be... prevent oil overflow from entering the oil tank compartment. [Doc. No. 5074, 29 FR 15695, Nov. 24, 1964...

  11. Optimization and evaluation of a bottom substrate denitrification tank for nitrate removal from a recirculating aquaculture system.

    PubMed

    Pungrasmi, Wiboonluk; Playchoom, Cholticha; Powtongsook, Sorawit

    2013-08-01

    A bottom substrate denitrification tank for a recirculating aquaculture system was developed. The laboratory scale denitrification tank was an 8 L tank (0.04 m2 tank surface area), packed to a depth of 5 cm with a bottom substrate for natural denitrifying bacteria. An aquarium pump was used for gentle water mixing in the tank; the dissolved oxygen in the water was maintained in aerobic conditions (e.g. > 2 mg/L) while anoxic conditions predominated only at the bottom substrate layer. The results showed that, among the four substrates tested (soil, sand, pumice stone and vermiculite), pumice was the most preferable material. Comparing carbon supplementation using methanol and molasses, methanol was chosen as the carbon source because it provided a higher denitrification rate than molasses. When methanol was applied at the optimal COD:N ratio of 5:1, a nitrate removal rate of 4591 +/- 133 mg-N/m2 tank bottom area/day was achieved. Finally, nitrate removal using an 80 L denitrification tank was evaluated with a 610 L recirculating tilapia culture system. Nitrate treatment was performed by batch transferring high nitrate water from the nitrification tank into the denitrification tank and mixing with methanol at a COD:N ratio of 5:1. The results from five batches of nitrate treatment revealed that nitrate was successfully removed from water without the accumulation of nitrite and ammonia. The average nitrate removal efficiency was 85.17% and the average denitrification rate of the denitrification tank was 6311 +/- 945 mg-N/m2 tank bottom area/day or 126 +/- 18 mg-N/L of pumice packing volume/day.

  12. 33 CFR 155.230 - Emergency control systems for tank barges.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Emergency control systems for tank barges. 155.230 Section 155.230 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) POLLUTION OIL OR HAZARDOUS MATERIAL POLLUTION PREVENTION REGULATIONS FOR...

  13. 33 CFR 155.230 - Emergency control systems for tank barges.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 2 2011-07-01 2011-07-01 false Emergency control systems for tank barges. 155.230 Section 155.230 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) POLLUTION OIL OR HAZARDOUS MATERIAL POLLUTION PREVENTION REGULATIONS FOR...

  14. 33 CFR 155.230 - Emergency control systems for tank barges.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 2 2012-07-01 2012-07-01 false Emergency control systems for tank barges. 155.230 Section 155.230 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) POLLUTION OIL OR HAZARDOUS MATERIAL POLLUTION PREVENTION REGULATIONS FOR...

  15. 33 CFR 155.230 - Emergency control systems for tank barges.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 2 2013-07-01 2013-07-01 false Emergency control systems for tank barges. 155.230 Section 155.230 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) POLLUTION OIL OR HAZARDOUS MATERIAL POLLUTION PREVENTION REGULATIONS FOR...

  16. Phase closure nulling: Theory and practice

    NASA Astrophysics Data System (ADS)

    Chelli, A.; Duvert, G.; Malbet, F.; Kern, P.

    2009-11-01

    We provide a complete theory of the phase closure of a binary system in which a small, feeble, and unresolved companion acts as a perturbing parameter on the spatial frequency spectrum of a dominant, bright, resolved source. We demonstrate that the influence of the companion can be measured with precision by measuring the phase closure of the system near the nulls of the primary visibility function. In these regions of phase closure nulling, frequency intervals always exist where the phase closure signature of the companion is larger than any systematic error and can thus be measured. We show that this technique allows retrieval of many astrophysically relevant properties of faint and close companions such as flux, position, and in favorable cases, spectrum. As a proof of concept, using the AMBER/VLTI instrument with 3 auxiliary telescopes of 1.8 m and only 15 minutes of on-sky integration, we detected the five magnitudes fainter companion of HD 59717 at only 3.5 stellar radii distance from the primary. This is one of the highest contrast detected by interferometry between a companion and its parent star. We conclude by a rapid study of the potentialities of phase closure nulling observations with current interferometers and explore the requirements for a new type of dedicated instrument.

  17. Accelerated testing of an optimized closing system for automotive fuel tank

    NASA Astrophysics Data System (ADS)

    Gligor, A.; Ilie, S.; Nicolae, V.; Mitran, G.

    2015-11-01

    Taking into account the legal prescriptions which are in force and the new regulatory requirements that will be mandatory to implement in the near future regarding testing characteristics of automotive fuel tanks, resulted the necessity to develop a new testing methodology which allows to estimate the behaviour of the closing system of automotive fuel tank over a long period of time (10-15 years). Thus, were designed and conducted accelerated tests under extreme assembling and testing conditions (high values for initial tightening torques, extreme values of temperature and pressure). In this paper are presented two of durability tests which were performed on an optimized closing system of fuel tank: (i) the test of exposure to temperature with cyclical variation and (ii) the test of continuous exposure to elevated temperature. In these experimental tests have been used main components of the closing system manufactured of two materials variants, both based on the polyoxymethylene, material that provides higher mechanical stiffness and strength in a wide temperature range, as well as showing increased resistance to the action of chemical agents and fuels. The tested sample included a total of 16 optimized locking systems, 8 of each of 2 versions of material. Over deploying the experiments were determined various parameters such as: the initial tightening torque, the tightening torque at different time points during measurements, the residual tightening torque, defects occurred in the system components (fissures, cracks, ruptures), the sealing conditions of system at the beginning and at the end of test. Based on obtained data were plotted the time evolution diagrams of considered parameter (the residual tightening torque of the system consisting of locking nut and threaded ring), in different temperature conditions, becoming possible to make pertinent assessments on the choice between the two types of materials. By conducting these tests and interpreting the

  18. Tank waste remediation system tank waste retrieval risk management plan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Klimper, S.C.

    1997-11-07

    This Risk Management Plan defines the approach to be taken to manage programmatic risks in the TWRS Tank Waste Retrieval program. It provides specific instructions applicable to TWR, and is used to supplement the guidance given by the TWRS Risk Management procedure.

  19. 14 CFR 25.957 - Flow between interconnected tanks.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Fuel System § 25.957 Flow between interconnected tanks. If fuel can be pumped from one tank to another in flight, the fuel tank vents and the fuel transfer system must be designed so that no structural damage to the tanks can occur because of overfilling. ...

  20. 14 CFR 25.957 - Flow between interconnected tanks.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Fuel System § 25.957 Flow between interconnected tanks. If fuel can be pumped from one tank to another in flight, the fuel tank vents and the fuel transfer system must be designed so that no structural damage to the tanks can occur because of overfilling. ...

  1. 14 CFR 25.957 - Flow between interconnected tanks.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Fuel System § 25.957 Flow between interconnected tanks. If fuel can be pumped from one tank to another in flight, the fuel tank vents and the fuel transfer system must be designed so that no structural damage to the tanks can occur because of overfilling. ...

  2. 14 CFR 25.957 - Flow between interconnected tanks.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Fuel System § 25.957 Flow between interconnected tanks. If fuel can be pumped from one tank to another in flight, the fuel tank vents and the fuel transfer system must be designed so that no structural damage to the tanks can occur because of overfilling. ...

  3. 14 CFR 25.957 - Flow between interconnected tanks.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Fuel System § 25.957 Flow between interconnected tanks. If fuel can be pumped from one tank to another in flight, the fuel tank vents and the fuel transfer system must be designed so that no structural damage to the tanks can occur because of overfilling. ...

  4. Technical evaluation of a tank-connected food waste disposer system for biogas production and nutrient recovery.

    PubMed

    Davidsson, Å; Bernstad Saraiva, A; Magnusson, N; Bissmont, M

    2017-07-01

    In this study, a tank-connected food waste disposer system with the objective to optimise biogas production and nutrient recovery from food waste in Malmö was evaluated. The project investigated the source-separation ratio of food waste through waste composition analyses, determined the potential biogas production in ground food waste, analysed the organic matter content and the limiting components in ground food waste and analysed outlet samples to calculate food waste losses from the separation tank. It can be concluded that the tank-connected food waste disposer system in Malmö can be used for energy recovery and optimisation of biogas production. The organic content of the collected waste is very high and contains a lot of energy rich fat and protein, and the methane potential is high. The results showed that approximately 38% of the food waste dry matter is collected in the tank. The remaining food waste is either found in residual waste (34% of the dry matter) or passes the tank and goes through the outlet to the sewer (28%). The relatively high dry matter content in the collected fraction (3-5% DM) indicates that the separation tank can thicken the waste substantially. The potential for nutrient recovery is rather limited considering the tank content. Only small fractions of the phosphorus (15%) and nitrogen (21%) are recyclable by the collected waste in the tank. The quality of the outlet indicates a satisfactory separation of particulate organic matter and fat. The organic content and nutrients, which are in dissolved form, cannot be retained in the tank and are rather led to the sewage via the outlet. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Suitability of Exoseal Vascular Closure Device for Antegrade Femoral Artery Puncture Site Closure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schmelter, Christopher, E-mail: christopher.schmelter@klinikum-ingolstadt.de; Liebl, Andrea; Poullos, Nektarios

    Purpose. To assess the efficacy and safety of the Exoseal vascular closure device for antegrade puncture of the femoral artery. Methods. In a prospective study from February 2011 to January 2012, a total of 93 consecutive patients received a total of 100 interventional procedures via an antegrade puncture of the femoral artery. An Exoseal vascular closure device (6F) was used for closure in all cases. Puncture technique, duration of manual compression, and use of compression bandages were documented. All patients were monitored by vascular ultrasound and color-coded duplex sonography of their respective femoral artery puncture site within 12 to 36more » h after angiography to check for vascular complications. Results. In 100 antegrade interventional procedures, the Exoseal vascular closure device was applied successfully for closure of the femoral artery puncture site in 96 cases (96 of 100, 96.0 %). The vascular closure device could not be deployed in one case as a result of kinking of the vascular sheath introducer and in three cases because the bioabsorbable plug was not properly delivered to the extravascular space adjacent to the arterial puncture site, but instead fully removed with the delivery system (4.0 %). Twelve to 36 h after the procedure, vascular ultrasound revealed no complications at the femoral artery puncture site in 93 cases (93.0 %). Minor vascular complications were found in seven cases (7.0 %), with four cases (4.0 %) of pseudoaneurysm and three cases (3.0 %) of significant late bleeding, none of which required surgery. Conclusion. The Exoseal vascular closure device was safely used for antegrade puncture of the femoral artery, with a high rate of procedural success (96.0 %), a low rate of minor vascular complications (7.0 %), and no major adverse events.« less

  6. Pressurization System Modeling for a Generic Bimese Two- Stage-to-Orbit Reusable Launch Vehicle

    NASA Technical Reports Server (NTRS)

    Mazurkivich, Pete; Chandler, Frank; Nguyen, Han

    2005-01-01

    A pressurization system model was developed for a generic bimese Two-Stage-to-orbit Reusable Launch Vehicle using a cross-feed system and operating with densified propellants. The model was based on the pressurization system model for a crossfeed subscale water test article and was validated with test data obtained from the test article. The model consists of the liquid oxygen and liquid hydrogen pressurization models, each made up of two submodels, Booster and Orbiter tank pressurization models. The tanks are controlled within a 0.2-psi band and pressurized on the ground with ambient helium and autogenously in flight with gaseous oxygen and gaseous hydrogen. A 15-psi pressure difference is maintained between the Booster and Orbiter tanks to ensure crossfeed check valve closure before Booster separation. The analysis uses an ascent trajectory generated for a generic bimese vehicle and a tank configuration based on the Space Shuttle External Tank. It determines the flow rates required to pressurize the tanks on the ground and in flight, and demonstrates the model's capability to analyze the pressurization system performance of a full-scale bimese vehicle with densified propellants.

  7. Vehicle-scale investigation of a fluorine jet-pump liquid hydrogen tank pressurization system

    NASA Technical Reports Server (NTRS)

    Cady, E. C.; Kendle, D. W.

    1972-01-01

    A comprehensive analytical and experimental program was performed to evaluate the performance of a fluorine-hydrogen jet-pump injector for main tank injection (MTI) pressurization of a liquid hydrogen (LH2) tank. The injector performance during pressurization and LH2 expulsion was determined by a series of seven tests of a full-scale injector and MTI pressure control system in a 28.3 cu m (1000 cu ft) flight-weight LH2 tank. Although the injector did not effectively jet-pump LH2 continuously, it showed improved pressurization performance compared to straight-pipe injectors tested under the same conditions in a previous program. The MTI computer code was modified to allow performance prediction for the jet-pump injector.

  8. Tank characterization report for single-shell tank 241-S-111

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Conner, J.M.

    1997-04-28

    One of the major functions of the Tank Waste Remediation System (TWRS) is to characterize wastes in support of waste management and disposal activities at the Hanford Site. Analytical data from sampling and analysis, along with other available information about a tank, are compiled and maintained in a tank characterization report (TCR). This report and its appendices serve as the TCR for single-shell tank 241-S-111. The objectives of this report are: (1) to use characterization data to address technical issues associated with tank 241-S-111 waste; and (2) to provide a standard characterization of this waste in terms of a best-basismore » inventory estimate. The response to technical issues is summarized in Section 2.0, and the best-basis inventory estimate is presented in Section 3.0. Recommendations regarding safety status and additional sampling needs are provided in Section 4.0. Supporting data and information are contained in the appendices. This report also supports the requirements of Hanford Federal Facility Agreement and Consent Order (Ecology et al. 1996) milestone M-44-10.« less

  9. Simulated Tank Anti-Armor Gunnery System (STAGS-TOW).

    DTIC Science & Technology

    1983-05-01

    to train TOW gunners. It is derived from a model previously developed for DRAGON. The system employs a terrain board with model enemy armored vehicles ...gunnery training. TOW is a crew-portable, heavy anti-tank weapon designed to attack and defeat armored vehicles and field fortifications. The missile is...a target area, converts the infrared energy to electrical signals and then to visible light and displays the visible light as a real-time scene for

  10. 40 CFR 265.1202 - Closure and post-closure care.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... post-closure care. (a) At closure of a magazine or unit which stored hazardous waste under this subpart... estimates for closure, and financial responsibility for magazines or units must meet all of the requirements... as long as it remains in service as a munitions or explosives magazine or storage unit. (b) If, after...

  11. 46 CFR 39.1013 - U.S.-flagged tank vessel certification procedures for vapor control system designs-TB/ALL.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... vapor control system designs-TB/ALL. 39.1013 Section 39.1013 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS VAPOR CONTROL SYSTEMS General § 39.1013 U.S.-flagged tank vessel certification procedures for vapor control system designs—TB/ALL. (a) For an existing Coast Guard-approved vapor...

  12. 46 CFR 39.1013 - U.S.-flagged tank vessel certification procedures for vapor control system designs-TB/ALL.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... vapor control system designs-TB/ALL. 39.1013 Section 39.1013 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS VAPOR CONTROL SYSTEMS General § 39.1013 U.S.-flagged tank vessel certification procedures for vapor control system designs—TB/ALL. (a) For an existing Coast Guard-approved vapor...

  13. RELAP-7 Closure Correlations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zou, Ling; Berry, R. A.; Martineau, R. C.

    The RELAP-7 code is the next generation nuclear reactor system safety analysis code being developed at the Idaho National Laboratory (INL). The code is based on the INL’s modern scientific software development framework, MOOSE (Multi-Physics Object Oriented Simulation Environment). The overall design goal of RELAP-7 is to take advantage of the previous thirty years of advancements in computer architecture, software design, numerical integration methods, and physical models. The end result will be a reactor systems analysis capability that retains and improves upon RELAP5’s and TRACE’s capabilities and extends their analysis capabilities for all reactor system simulation scenarios. The RELAP-7 codemore » utilizes the well-posed 7-equation two-phase flow model for compressible two-phase flow. Closure models used in the TRACE code has been reviewed and selected to reflect the progress made during the past decades and provide a basis for the colure correlations implemented in the RELAP-7 code. This document provides a summary on the closure correlations that are currently implemented in the RELAP-7 code. The closure correlations include sub-grid models that describe interactions between the fluids and the flow channel, and interactions between the two phases.« less

  14. 46 CFR 153.408 - Tank overflow control.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 5 2012-10-01 2012-10-01 false Tank overflow control. 153.408 Section 153.408 Shipping... Systems § 153.408 Tank overflow control. (a) When table 1 references this section, a cargo containment... the tank (automatic shutdown system). (b) The high level alarm and the cargo overflow alarm or...

  15. Life Support Goals Including High Closure and Low Mass Should Be Reconsidered Using Systems Analysis

    NASA Technical Reports Server (NTRS)

    Jones, Harry W.

    2017-01-01

    Recycling space life support systems have been built and tested since the 1960s and have operated on the International Space Station (ISS) since the mid 2000s. The development of space life support has been guided by a general consensus focused on two important related goals, increasing system closure and reducing launch mass. High closure is achieved by recycling crew waste products such as carbon dioxide and condensed humidity. Recycling directly reduces the mass of oxygen and water for the crew that must be launched from Earth. The launch mass of life support can be further reduced by developing recycling systems with lower hardware mass and reduced power. The life support consensus has also favored using biological systems. The goal of increasing closure using biological systems suggests that food should be grown in space and that biological processors be used for air, water, and waste recycling. The goal of reducing launch mass led to use of Equivalent System Mass (ESM) in life support advocacy and technology selection. The recent consensus assumes that the recycling systems architecture developed in the 1960s and implemented on ISS will be used on all future long missions. NASA and other project organizations use the standard systems engineering process to guide hardware development. The systems process was used to develop ISS life support, but it has been less emphasized in planning future systems for the moon and Mars. Since such missions are far in the future, there has been less immediate need for systems engineering analysis to consider trade-offs, reliability, and Life Cycle Cost (LCC). Preliminary systems analysis suggests that the life support consensus concepts should be revised to reflect systems engineering requirements.

  16. Safety evaluation for packaging transportation of equipment for tank 241-C-106 waste sluicing system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Calmus, D.B.

    1994-08-25

    A Waste Sluicing System (WSS) is scheduled for installation in nd waste storage tank 241-C-106 (106-C). The WSS will transfer high rating sludge from single shell tank 106-C to double shell waste tank 241-AY-102 (102-AY). Prior to installation of the WSS, a heel pump and a transfer pump will be removed from tank 106-C and an agitator pump will be removed from tank 102-AY. Special flexible receivers will be used to contain the pumps during removal from the tanks. After equipment removal, the flexible receivers will be placed in separate containers (packagings). The packaging and contents (packages) will be transferredmore » from the Tank Farms to the Central Waste Complex (CWC) for interim storage and then to T Plant for evaluation and processing for final disposition. Two sizes of packagings will be provided for transferring the equipment from the Tank Farms to the interim storage facility. The packagings will be designated as the WSSP-1 and WSSP-2 packagings throughout the remainder of this Safety Evaluation for Packaging (SEP). The WSSP-1 packagings will transport the heel and transfer pumps from 106-C and the WSSP-2 packaging will transport the agitator pump from 102-AY. The WSSP-1 and WSSP-2 packagings are similar except for the length.« less

  17. LH2 Liquid Separator Tank Delivery

    NASA Image and Video Library

    2016-11-17

    A new liquid hydrogen separator tank arrives at NASA's Kennedy Space Center in Florida. The tank will be lifted and rotated for delivery to Launch Pad 39B. The new separator/storage tank will be added to the pad's existing hydrogen vent system to assure gaseous hydrogen is delivered downstream to the flare stack. The 60,000 gallon tank was built by INOXCVA, in Baytown, Texas, a subcontractor of Precision Mechanical Inc. in Cocoa Florida. The new tank will support all future launches from the pad.

  18. 14 CFR 27.975 - Fuel tank vents.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... STANDARDS: NORMAL CATEGORY ROTORCRAFT Powerplant Fuel System § 27.975 Fuel tank vents. (a) Each fuel tank... system must be designed to minimize spillage of fuel through the vents to an ignition source in the event... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Fuel tank vents. 27.975 Section 27.975...

  19. 14 CFR 27.975 - Fuel tank vents.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... STANDARDS: NORMAL CATEGORY ROTORCRAFT Powerplant Fuel System § 27.975 Fuel tank vents. (a) Each fuel tank... system must be designed to minimize spillage of fuel through the vents to an ignition source in the event... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Fuel tank vents. 27.975 Section 27.975...

  20. 14 CFR 27.975 - Fuel tank vents.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... STANDARDS: NORMAL CATEGORY ROTORCRAFT Powerplant Fuel System § 27.975 Fuel tank vents. (a) Each fuel tank... system must be designed to minimize spillage of fuel through the vents to an ignition source in the event... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Fuel tank vents. 27.975 Section 27.975...

  1. 14 CFR 27.975 - Fuel tank vents.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... STANDARDS: NORMAL CATEGORY ROTORCRAFT Powerplant Fuel System § 27.975 Fuel tank vents. (a) Each fuel tank... system must be designed to minimize spillage of fuel through the vents to an ignition source in the event... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Fuel tank vents. 27.975 Section 27.975...

  2. 14 CFR 27.975 - Fuel tank vents.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... STANDARDS: NORMAL CATEGORY ROTORCRAFT Powerplant Fuel System § 27.975 Fuel tank vents. (a) Each fuel tank... system must be designed to minimize spillage of fuel through the vents to an ignition source in the event... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Fuel tank vents. 27.975 Section 27.975...

  3. Operational Plan for Underground Storage Tank 322 R2U2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Griffin, D.

    2017-06-07

    This Operational Plan provides the operator of the tank system with guidelines relating to the safe and compliant operation and maintenance of the tank system. The tank system schematic and list of emergency contacts shall be posted near the tank so they are visible to tank personnel. This Operational Plan shall be kept on file by the Facility Supervisor. It should be understood when managing this tank system that it is used to store hazardous waste temporarily for 90 calendar days or less. The rinsewater handled in the tank system is considered hazardous and may exhibit the characteristic of toxicity.

  4. Closure of colostomy.

    PubMed Central

    Beck, P H; Conklin, H B

    1975-01-01

    We analyzed the records of 77 cases of loop colostomy closure in Vietnam War Casualties. All records were complete from the date of injury to discharge following colostomy closure. Simple of the loop colostomy was performed in 44 patients and resection of the stoma and reanastomosis of bowel segments was performed in 33 patients. Average operating time for simple closure of the loop was 70 minutes compared to 115 minutes for resection and anastomosis. Nasogastric suction was used less frequently and for a shorter time with simple loop closure. The total postoperative complication rate was 9% with simple loop closure as compared to 24% for resection and anastomosis. Simple closure of the loop described in this report is technically easier and as safe as resection of the stoma and reanastomosis. Images Fig. 1. PMID:1094967

  5. 46 CFR 195.11-30 - Portable tanks.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 7 2014-10-01 2014-10-01 false Portable tanks. 195.11-30 Section 195.11-30 Shipping... AND MISCELLANEOUS SYSTEMS AND EQUIPMENT Portable Vans and Tanks § 195.11-30 Portable tanks. (a) All portable tanks, whether hazardous or nonhazardous commodities, shall be loaded and stowed in accordance...

  6. 33 CFR 183.518 - Fuel tank openings.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 2 2012-07-01 2012-07-01 false Fuel tank openings. 183.518...) BOATING SAFETY BOATS AND ASSOCIATED EQUIPMENT Fuel Systems Equipment Standards § 183.518 Fuel tank openings. Each opening into the fuel tank must be at or above the topmost surface of the tank. ...

  7. 46 CFR 195.11-30 - Portable tanks.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 7 2013-10-01 2013-10-01 false Portable tanks. 195.11-30 Section 195.11-30 Shipping... AND MISCELLANEOUS SYSTEMS AND EQUIPMENT Portable Vans and Tanks § 195.11-30 Portable tanks. (a) All portable tanks, whether hazardous or nonhazardous commodities, shall be loaded and stowed in accordance...

  8. 46 CFR 195.11-30 - Portable tanks.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Portable tanks. 195.11-30 Section 195.11-30 Shipping... AND MISCELLANEOUS SYSTEMS AND EQUIPMENT Portable Vans and Tanks § 195.11-30 Portable tanks. (a) All portable tanks, whether hazardous or nonhazardous commodities, shall be loaded and stowed in accordance...

  9. 46 CFR 195.11-30 - Portable tanks.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 7 2011-10-01 2011-10-01 false Portable tanks. 195.11-30 Section 195.11-30 Shipping... AND MISCELLANEOUS SYSTEMS AND EQUIPMENT Portable Vans and Tanks § 195.11-30 Portable tanks. (a) All portable tanks, whether hazardous or nonhazardous commodities, shall be loaded and stowed in accordance...

  10. 46 CFR 195.11-30 - Portable tanks.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 7 2012-10-01 2012-10-01 false Portable tanks. 195.11-30 Section 195.11-30 Shipping... AND MISCELLANEOUS SYSTEMS AND EQUIPMENT Portable Vans and Tanks § 195.11-30 Portable tanks. (a) All portable tanks, whether hazardous or nonhazardous commodities, shall be loaded and stowed in accordance...

  11. 33 CFR 183.518 - Fuel tank openings.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Fuel tank openings. 183.518...) BOATING SAFETY BOATS AND ASSOCIATED EQUIPMENT Fuel Systems Equipment Standards § 183.518 Fuel tank openings. Each opening into the fuel tank must be at or above the topmost surface of the tank. ...

  12. 46 CFR 58.50-10 - Diesel fuel tanks.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 2 2011-10-01 2011-10-01 false Diesel fuel tanks. 58.50-10 Section 58.50-10 Shipping... AND RELATED SYSTEMS Independent Fuel Tanks § 58.50-10 Diesel fuel tanks. (a) Construction. (1) Tanks... not less than 0.031 inch (USSG 22) may be used for tanks up to 30-gallon capacity. 4 For diesel tanks...

  13. 46 CFR 58.50-10 - Diesel fuel tanks.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Diesel fuel tanks. 58.50-10 Section 58.50-10 Shipping... AND RELATED SYSTEMS Independent Fuel Tanks § 58.50-10 Diesel fuel tanks. (a) Construction. (1) Tanks... not less than 0.031 inch (USSG 22) may be used for tanks up to 30-gallon capacity. 4 For diesel tanks...

  14. 40 CFR 265.191 - Assessment of existing tank system's integrity.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...); and (5) Results of a leak test, internal inspection, or other tank integrity examination such that: (i) For non-enterable underground tanks, this assessment must consist of a leak test that is capable of... water table effects, (ii) For other than non-enterable underground tanks and for ancillary equipment...

  15. 40 CFR 264.191 - Assessment of existing tank system's integrity.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...); and (5) Results of a leak test, internal inspection, or other tank integrity examination such that: (i) For non-enterable underground tanks, the assessment must include a leak test that is capable of taking into account the effects of temperature variations, tank end deflection, vapor pockets, and high water...

  16. An expert system to manage the operation of the Space Shuttle's fuel cell cryogenic reactant tanks

    NASA Technical Reports Server (NTRS)

    Murphey, Amy Y.

    1990-01-01

    This paper describes a rule-based expert system to manage the operation of the Space Shuttle's cryogenic fuel system. Rules are based on standard fuel tank operating procedures described in the EECOM Console Handbook. The problem of configuring the operation of the Space Shuttle's fuel tanks is well-bounded and well defined. Moreover, the solution of this problem can be encoded in a knowledge-based system. Therefore, a rule-based expert system is the appropriate paradigm. Furthermore, the expert system could be used in coordination with power system simulation software to design operating procedures for specific missions.

  17. 33 CFR 157.134 - Cargo tank drainage.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 2 2012-07-01 2012-07-01 false Cargo tank drainage. 157.134...) POLLUTION RULES FOR THE PROTECTION OF THE MARINE ENVIRONMENT RELATING TO TANK VESSELS CARRYING OIL IN BULK Crude Oil Washing (COW) System on Tank Vessels Design, Equipment, and Installation § 157.134 Cargo tank...

  18. 33 CFR 157.140 - Tank vessel inspections.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 2 2012-07-01 2012-07-01 false Tank vessel inspections. 157.140...) POLLUTION RULES FOR THE PROTECTION OF THE MARINE ENVIRONMENT RELATING TO TANK VESSELS CARRYING OIL IN BULK Crude Oil Washing (COW) System on Tank Vessels Inspections § 157.140 Tank vessel inspections. (a) Before...

  19. 33 CFR 157.134 - Cargo tank drainage.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Cargo tank drainage. 157.134...) POLLUTION RULES FOR THE PROTECTION OF THE MARINE ENVIRONMENT RELATING TO TANK VESSELS CARRYING OIL IN BULK Crude Oil Washing (COW) System on Tank Vessels Design, Equipment, and Installation § 157.134 Cargo tank...

  20. Ethnic differences in primary angle-closure glaucoma.

    PubMed

    Yip, Jennifer L Y; Foster, Paul J

    2006-04-01

    Observational studies from different countries have shown that populations of East Asian origin have a higher frequency of primary angle-closure glaucoma compared with those of European or African descent. As half of all cases of glaucoma reside in Asia, and with primary angle-closure glaucoma carrying a higher rate of visual morbidity, primary angle-closure glaucoma poses an important public health problem; however, the inconsistent use of techniques and definitions to detect and diagnose primary angle-closure glaucoma has resulted in difficulties in interpreting the accuracy and comparability of such data. Therefore it is important to review these studies in the light of a consistent classification system. There are increasing reports that support previous findings on the incidence and prevalence of primary angle-closure glaucoma in different ethnic groups. There have also been further investigations into the mechanism and natural history of primary angle-closure glaucoma in Asian populations. International investigations into primary angle-closure glaucoma have demonstrated reproducible evidence that ethnic variations do exist. Cross-sectional studies in this area have also suggested that differences in anterior chamber depth, together with its association with peripheral anterior synechiae, may be part of the underlying mechanism behind these differences. The ideas generated need to be further explored with longitudinal data of changes in anterior chamber depth and peripheral anterior synechiae in different populations. The detailed mechanisms behind the development of angle-closure and primary angle-closure glaucoma should also be investigated.

  1. LH2 Liquid Separator Tank Delivery

    NASA Image and Video Library

    2016-11-17

    A new liquid hydrogen separator tank arrives at NASA's Kennedy Space Center in Florida. A crane will be used to lift and rotate the tank for delivery to Launch Pad 39B. The new separator/storage tank will be added to the pad's existing hydrogen vent system to assure gaseous hydrogen is delivered downstream to the flare stack. The 60,000 gallon tank was built by INOXCVA, in Baytown, Texas, a subcontractor of Precision Mechanical Inc. in Cocoa Florida. The new tank will support all future launches from the pad.

  2. Simulated Leaching (Migration) Study for a Model Container-Closure System Applicable to Parenteral and Ophthalmic Drug Products.

    PubMed

    Jenke, Dennis; Egert, Thomas; Hendricker, Alan; Castner, James; Feinberg, Tom; Houston, Christopher; Hunt, Desmond G; Lynch, Michael; Nicholas, Kumudini; Norwood, Daniel L; Paskiet, Diane; Ruberto, Michael; Smith, Edward J; Holcomb, Frank; Markovic, Ingrid

    2017-01-01

    A simulating leaching (migration) study was performed on a model container-closure system relevant to parenteral and ophthalmic drug products. This container-closure system consisted of a linear low-density polyethylene bottle (primary container), a polypropylene cap and an elastomeric cap liner (closure), an adhesive label (labeling), and a foil overpouch (secondary container). The bottles were filled with simulating solvents (aqueous salt/acid mixture at pH 2.5, aqueous buffer at pH 9.5, and 1/1 v/v isopropanol/water), a label was affixed to the filled and capped bottles, the filled bottles were placed into the foil overpouch, and the filled and pouched units were stored either upright or inverted for up to 6 months at 40 °C. After storage, the leaching solutions were tested for leached substances using multiple complementary analytical techniques to address volatile, semi-volatile, and non-volatile organic and inorganic extractables as potential leachables.The leaching data generated supported several conclusions, including that (1) the extractables (leachables) profile revealed by a simulating leaching study can qualitatively be correlated with compositional information for materials of construction, (2) the chemical nature of both the extracting medium and the individual extractables (leachables) can markedly affect the resulting profile, and (3) while direct contact between a drug product and a system's material of construction may exacerbate the leaching of substances from that material by the drug product, direct contact is not a prerequisite for migration and leaching to occur. LAY ABSTRACT: The migration of container-related extractables from a model pharmaceutical container-closure system and into simulated drug product solutions was studied, focusing on circumstances relevant to parenteral and ophthalmic drug products. The model system was constructed specifically to address the migration of extractables from labels applied to the outside of the

  3. 46 CFR 153.281 - Piping to independent tanks.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Piping to independent tanks. 153.281 Section 153.281... Systems and Cargo Handling Equipment § 153.281 Piping to independent tanks. Piping for an independent cargo tank must penetrate the tank only through that part of the tank or dome extending above the...

  4. 46 CFR 153.281 - Piping to independent tanks.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 5 2012-10-01 2012-10-01 false Piping to independent tanks. 153.281 Section 153.281... Systems and Cargo Handling Equipment § 153.281 Piping to independent tanks. Piping for an independent cargo tank must penetrate the tank only through that part of the tank or dome extending above the...

  5. 14 CFR 23.957 - Flow between interconnected tanks.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Powerplant Fuel System § 23.957 Flow between interconnected tanks. (a) It must be impossible, in a gravity feed system with interconnected tank outlets, for enough fuel to flow between the tanks to cause an overflow...

  6. 14 CFR 23.957 - Flow between interconnected tanks.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Powerplant Fuel System § 23.957 Flow between interconnected tanks. (a) It must be impossible, in a gravity feed system with interconnected tank outlets, for enough fuel to flow between the tanks to cause an overflow...

  7. 14 CFR 23.957 - Flow between interconnected tanks.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Powerplant Fuel System § 23.957 Flow between interconnected tanks. (a) It must be impossible, in a gravity feed system with interconnected tank outlets, for enough fuel to flow between the tanks to cause an overflow...

  8. 14 CFR 23.957 - Flow between interconnected tanks.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Powerplant Fuel System § 23.957 Flow between interconnected tanks. (a) It must be impossible, in a gravity feed system with interconnected tank outlets, for enough fuel to flow between the tanks to cause an overflow...

  9. 14 CFR 23.957 - Flow between interconnected tanks.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Powerplant Fuel System § 23.957 Flow between interconnected tanks. (a) It must be impossible, in a gravity feed system with interconnected tank outlets, for enough fuel to flow between the tanks to cause an overflow...

  10. Deflection Analysis of the Space Shuttle External Tank Door Drive Mechanism

    NASA Technical Reports Server (NTRS)

    Tosto, Michael A.; Trieu, Bo C.; Evernden, Brent A.; Hope, Drew J.; Wong, Kenneth A.; Lindberg, Robert E.

    2008-01-01

    Upon observing an abnormal closure of the Space Shuttle s External Tank Doors (ETD), a dynamic model was created in MSC/ADAMS to conduct deflection analyses for assessing whether the Door Drive Mechanism (DDM) was subjected to excessive additional stress, and more importantly, to evaluate the magnitude of the induced step or gap with respect to shuttle s body tiles. To model the flexibility of the DDM, a lumped parameter approximation was used to capture the compliance of individual parts within the drive linkage. These stiffness approximations were then validated using FEA and iteratively updated in the model to converge on the actual distributed parameter equivalent stiffnesses. The goal of the analyses is to determine the deflections in the mechanism and whether or not the deflections are in the region of elastic or plastic deformation. Plastic deformation may affect proper closure of the ETD and would impact aero-heating during re-entry.

  11. 46 CFR 154.412 - Cargo tank corrosion allowance.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 5 2011-10-01 2011-10-01 false Cargo tank corrosion allowance. 154.412 Section 154.412... Containment Systems § 154.412 Cargo tank corrosion allowance. A cargo tank must be designed with a corrosion...) carries a cargo that corrodes the tank material. Note: Corrosion allowance for independent tank type C is...

  12. 46 CFR 154.412 - Cargo tank corrosion allowance.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Cargo tank corrosion allowance. 154.412 Section 154.412... Containment Systems § 154.412 Cargo tank corrosion allowance. A cargo tank must be designed with a corrosion...) carries a cargo that corrodes the tank material. Note: Corrosion allowance for independent tank type C is...

  13. POTENTIAL IMPACT OF BLENDING RESIDUAL SOLIDS FROM TANKS 18/19 MOUNDS WITH TANK 7 OPERATIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eibling, R; Erich Hansen, E; Bradley Pickenheim, B

    2007-03-29

    High level waste tanks 18F and 19F have residual mounds of waste which may require removal before the tanks can be closed. Conventional slurry pump technology, previously used for waste removal and tank cleaning, has been incapable of removing theses mounds from tanks 18F and 19F. A mechanical cleaning method has been identified that is potentially capable of removing and transferring the mound material to tank 7F for incorporation in a sludge batch for eventual disposal in high level waste glass by the Defense Waste Processing Facility. The Savannah River National Laboratory has been requested to evaluate whether the materialmore » transferred from tanks 18F/19F by the mechanical cleaning technology can later be suspended in Tank 7F by conventional slurry pumps after mixing with high level waste sludge. The proposed mechanical cleaning process for removing the waste mounds from tanks 18 and 19 may utilize a high pressure water jet-eductor that creates a vacuum to mobilize solids. The high pressure jet is also used to transport the suspended solids. The jet-eductor system will be mounted on a mechanical crawler for movement around the bottom of tanks 18 and 19. Based on physical chemical property testing of the jet-eductor system processed IE-95 zeolite and size-reduced IE-95 zeolite, the following conclusions were made: (1) The jet-eductor system processed zeolite has a mean and median particle size (volume basis) of 115.4 and 43.3 microns in water. Preferential settling of these large particles is likely. (2) The jet-eductor system processed zeolite rapidly generates settled solid yield stresses in excess of 11,000 Pascals in caustic supernates and will not be easily retrieved from Tank 7 with the existing slurry pump technology. (3) Settled size-reduced IE-95 zeolite (less than 38 microns) in caustic supernate does not generate yield stresses in excess of 600 Pascals in less than 30 days. (4) Preferential settling of size-reduced zeolite is a function of the

  14. Case Study in Corporate Memory Recovery: Hanford Tank Farms Miscellaneous Underground Waste Storage Tanks - 15344

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Washenfelder, D. J.; Johnson, J. M.; Turknett, J. C.

    In addition to managing the 177 underground waste storage tanks containing 212,000 m3 (56 million gal) of radioactive waste at the U. S. Department of Energy’s Hanford Site 200 Area Tank Farms, Washington River Protection Solutions LLC is responsible for managing numerous small catch tanks and special surveillance facilities. These are collectively known as “MUSTs” - Miscellaneous Underground Storage Tanks. The MUSTs typically collected drainage and flushes during waste transfer system piping changes; special surveillance facilities supported Tank Farm processes including post-World War II uranium recovery and later fission product recovery from tank wastes. Most were removed from service followingmore » deactivation of the single-shell tank system in 1980 and stabilized by pumping the remaining liquids from them. The MUSTs were isolated by blanking connecting transfer lines and adding weatherproofing to prevent rainwater entry. Over the next 30 years MUST operating records were dispersed into large electronic databases or transferred to the National Archives Regional Center in Seattle, Washington. During 2014 an effort to reacquire the historical bases for the MUSTs’ published waste volumes was undertaken. Corporate Memory Recovery from a variety of record sources allowed waste volumes to be initially determined for 21 MUSTs, and waste volumes to be adjusted for 37 others. Precursors and symptoms of Corporate Memory Loss were identified in the context of MUST records recovery.« less

  15. 14 CFR 27.1015 - Oil tank tests.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Oil tank tests. 27.1015 Section 27.1015... STANDARDS: NORMAL CATEGORY ROTORCRAFT Powerplant Oil System § 27.1015 Oil tank tests. Each oil tank must be... that each pressurized oil tank used with a turbine engine must be designed and installed so that it can...

  16. 14 CFR 27.1015 - Oil tank tests.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Oil tank tests. 27.1015 Section 27.1015... STANDARDS: NORMAL CATEGORY ROTORCRAFT Powerplant Oil System § 27.1015 Oil tank tests. Each oil tank must be... that each pressurized oil tank used with a turbine engine must be designed and installed so that it can...

  17. 14 CFR 27.1015 - Oil tank tests.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Oil tank tests. 27.1015 Section 27.1015... STANDARDS: NORMAL CATEGORY ROTORCRAFT Powerplant Oil System § 27.1015 Oil tank tests. Each oil tank must be... that each pressurized oil tank used with a turbine engine must be designed and installed so that it can...

  18. 14 CFR 27.1015 - Oil tank tests.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Oil tank tests. 27.1015 Section 27.1015... STANDARDS: NORMAL CATEGORY ROTORCRAFT Powerplant Oil System § 27.1015 Oil tank tests. Each oil tank must be... that each pressurized oil tank used with a turbine engine must be designed and installed so that it can...

  19. 14 CFR 27.1015 - Oil tank tests.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... that each pressurized oil tank used with a turbine engine must be designed and installed so that it can... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Oil tank tests. 27.1015 Section 27.1015... STANDARDS: NORMAL CATEGORY ROTORCRAFT Powerplant Oil System § 27.1015 Oil tank tests. Each oil tank must be...

  20. Generalized predictive control for a coupled four tank MIMO system using a continuous-discrete time observer.

    PubMed

    Gouta, Houssemeddine; Hadj Saïd, Salim; Barhoumi, Nabil; M'Sahli, Faouzi

    2017-03-01

    This paper deals with the problem of the observer based control design for a coupled four-tank liquid level system. For this MIMO system's dynamics, motivated by a desire to provide precise and sensorless liquid level control, a nonlinear predictive controller based on a continuous-discrete observer is presented. First, an analytical solution from the model predictive control (MPC) technique is developed for a particular class of nonlinear MIMO systems and its corresponding exponential stability is proven. Then, a high gain observer that runs in continuous-time with an output error correction time that is updated in a mixed continuous-discrete fashion is designed in order to estimate the liquid levels in the two upper tanks. The effectiveness of the designed control schemes are validated by two tests; The first one is maintaining a constant level in the first bottom tank while making the level in the second bottom tank to follow a sinusoidal reference signal. The second test is more difficult and it is made using two trapezoidal reference signals in order to see the decoupling performance of the system's outputs. Simulation and experimental results validate the objective of the paper. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.

  1. 241-AZ-101 Waste Tank Color Video Camera System Shop Acceptance Test Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    WERRY, S.M.

    2000-03-23

    This report includes shop acceptance test results. The test was performed prior to installation at tank AZ-101. Both the camera system and camera purge system were originally sought and procured as a part of initial waste retrieval project W-151.

  2. 46 CFR 58.50-10 - Diesel fuel tanks.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 2 2012-10-01 2012-10-01 false Diesel fuel tanks. 58.50-10 Section 58.50-10 Shipping... AND RELATED SYSTEMS Independent Fuel Tanks § 58.50-10 Diesel fuel tanks. (a) Construction. (1) Tanks... allowed in the construction of independent fuel tanks shall be as indicated in Table 58.50-10(a), except...

  3. 49 CFR 179.400-17 - Inner tank piping.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... vapor space of the inner tank to facilitate unloading the liquid lading must be approved. [Amdt. 179-32... Liquid Tank Car Tanks and Seamless Steel Tanks (Classes DOT-113 and 107A) § 179.400-17 Inner tank piping. (a) Product lines. The piping system for vapor and liquid phase transfer and venting must be made for...

  4. 49 CFR 179.400-17 - Inner tank piping.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... vapor space of the inner tank to facilitate unloading the liquid lading must be approved. [Amdt. 179-32... Liquid Tank Car Tanks and Seamless Steel Tanks (Classes DOT-113 and 107A) § 179.400-17 Inner tank piping. (a) Product lines. The piping system for vapor and liquid phase transfer and venting must be made for...

  5. 49 CFR 179.400-17 - Inner tank piping.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... vapor space of the inner tank to facilitate unloading the liquid lading must be approved. [Amdt. 179-32... Liquid Tank Car Tanks and Seamless Steel Tanks (Classes DOT-113 and 107A) § 179.400-17 Inner tank piping. (a) Product lines. The piping system for vapor and liquid phase transfer and venting must be made for...

  6. 33 CFR 157.132 - Cargo tanks: Hydrocarbon vapor emissions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... CARRYING OIL IN BULK Crude Oil Washing (COW) System on Tank Vessels Design, Equipment, and Installation § 157.132 Cargo tanks: Hydrocarbon vapor emissions. Each tank vessel having a COW system under § 157.10a...

  7. SU-E-T-118: Analysis of Variability and Stability Between Two Water Tank Phantoms Utilizing Water Tank Commissioning Procedures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roring, J; Saenz, D; Cruz, W

    2015-06-15

    Purpose: The commissioning criteria of water tank phantoms are essential for proper accuracy and reproducibility in a clinical setting. This study outlines the results of mechanical and dosimetric testing between PTW MP3-M water tank system and the Standard Imaging Doseview 3D water tank system. Methods: Measurements were taken of each axis of movement on the tank using 30 cm calipers at 1, 5, 10, 50, 100, and 200 mm for accuracy and reproducibility of tank movement. Dosimetric quantities such as percent depth dose and dose profiles were compared between tanks using a 6 MV beam from a Varian 23EX LINAC.more » Properties such as scanning speed effects, central axis depth dose agreement with static measurements, reproducibility of measurements, symmetry and flatness, and scan time between tanks were also investigated. Results: Results showed high geometric accuracy within 0.2 mm. Central axis PDD and in-field profiles agreed within 0.75% between the tanks. These outcomes test many possible discrepancies in dose measurements across the two tanks and form a basis for comparison on a broader range of tanks in the future. Conclusion: Both 3D water scanning phantoms possess a high degree of spatial accuracy, allowing for equivalence in measurements regardless of the phantom used. A commissioning procedure when changing water tanks or upon receipt of a new tank is nevertheless critical to ensure consistent operation before and after the arrival of new hardware.« less

  8. 33 CFR 183.510 - Fuel tanks.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 2 2013-07-01 2013-07-01 false Fuel tanks. 183.510 Section 183... SAFETY BOATS AND ASSOCIATED EQUIPMENT Fuel Systems Equipment Standards § 183.510 Fuel tanks. (a) Each fuel tank in a boat must have been tested by its manufacturer under § 183.580 and not leak when...

  9. 33 CFR 183.510 - Fuel tanks.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Fuel tanks. 183.510 Section 183... SAFETY BOATS AND ASSOCIATED EQUIPMENT Fuel Systems Equipment Standards § 183.510 Fuel tanks. (a) Each fuel tank in a boat must have been tested by its manufacturer under § 183.580 and not leak when...

  10. 33 CFR 183.510 - Fuel tanks.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 2 2011-07-01 2011-07-01 false Fuel tanks. 183.510 Section 183... SAFETY BOATS AND ASSOCIATED EQUIPMENT Fuel Systems Equipment Standards § 183.510 Fuel tanks. (a) Each fuel tank in a boat must have been tested by its manufacturer under § 183.580 and not leak when...

  11. Development of fuel oil management system software: Phase 1, Tank management module. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lange, H.B.; Baker, J.P.; Allen, D.

    1992-01-01

    The Fuel Oil Management System (FOMS) is a micro-computer based software system being developed to assist electric utilities that use residual fuel oils with oil purchase and end-use decisions. The Tank Management Module (TMM) is the first FOMS module to be produced. TMM enables the user to follow the mixing status of oils contained in a number of oil storage tanks. The software contains a computational model of residual fuel oil mixing which addresses mixing that occurs as one oil is added to another in a storage tank and also purposeful mixing of the tank by propellers, recirculation or convection.Themore » model also addresses the potential for sludge formation due to incompatibility of oils being mixed. Part 1 of the report presents a technical description of the mixing model and a description of its development. Steps followed in developing the mixing model included: (1) definition of ranges of oil properties and tank design factors used by utilities; (2) review and adaption of prior applicable work; (3) laboratory development; and (4) field verification. Also, a brief laboratory program was devoted to exploring the suitability of suggested methods for predicting viscosities, flash points and pour points of oil mixtures. Part 2 of the report presents a functional description of the TMM software and a description of its development. The software development program consisted of the following steps: (1) on-site interviews at utilities to prioritize needs and characterize user environments; (2) construction of the user interface; and (3) field testing the software.« less

  12. 46 CFR 76.25-20 - Pressure tank.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 3 2011-10-01 2011-10-01 false Pressure tank. 76.25-20 Section 76.25-20 Shipping COAST... Sprinkling System, Details § 76.25-20 Pressure tank. (a) A pressure tank or other suitable means shall be... shall be carried in the tank to fill the piping of the largest zone, and in addition, force out at least...

  13. 46 CFR 76.25-20 - Pressure tank.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 3 2012-10-01 2012-10-01 false Pressure tank. 76.25-20 Section 76.25-20 Shipping COAST... Sprinkling System, Details § 76.25-20 Pressure tank. (a) A pressure tank or other suitable means shall be... shall be carried in the tank to fill the piping of the largest zone, and in addition, force out at least...

  14. 46 CFR 76.25-20 - Pressure tank.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 3 2013-10-01 2013-10-01 false Pressure tank. 76.25-20 Section 76.25-20 Shipping COAST... Sprinkling System, Details § 76.25-20 Pressure tank. (a) A pressure tank or other suitable means shall be... shall be carried in the tank to fill the piping of the largest zone, and in addition, force out at least...

  15. 46 CFR 76.25-20 - Pressure tank.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 3 2014-10-01 2014-10-01 false Pressure tank. 76.25-20 Section 76.25-20 Shipping COAST... Sprinkling System, Details § 76.25-20 Pressure tank. (a) A pressure tank or other suitable means shall be... shall be carried in the tank to fill the piping of the largest zone, and in addition, force out at least...

  16. Laceration of the Common Femoral Artery Following Deployment of the StarClose{sup TM} Vascular Closure System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gonsalves, Michael, E-mail: drmag1975@gmail.com; Walkden, Miles, E-mail: rwalkden@nhs.net; Belli, Anna Maria, E-mail: Anna.Belli@stgeorges.nhs.u

    2008-07-15

    StarClose is a novel arterial closure device which achieves hemostasis, following arteriotomy, via a nitinol clip deployed on the outer arterial wall. Since its introduction to the market, several studies have shown StarClose to be both safe and effective, with few major complications encountered. We report a case of common femoral artery laceration following deployment of the StarClose vascular closure system. We conclude that the injury occurred secondary to intravascular misplacement of the nitinol clip.

  17. Project W-211, initial tank retrieval systems, description of operations for 241-AP-102 and 241-AP-104

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    RIECK, C.A.

    1999-02-25

    The primary purpose of the Initial Tank Retrieval Systems (ITRS) is to provide systems for retrieval of radioactive wastes stored in underground double-shell tanks (DSTS) for transfer to alternate storage, evaporation, pretreatment or treatment, while concurrently reducing risks associated with safety watch list and other DSTs. This Description of Operations (DOO) defines the control philosophy for the waste retrieval system for tanks 241-AP-102 (AP-102) and 241-AP-104 (AP-104). This DOO will provide a basis for the detailed design of the Retrieval Control System (RCS) for AP-102 and AP-104 and establishes test criteria for the RCS. The test criteria will be usedmore » during qualification testing and acceptance testing to verify operability.« less

  18. Evaluation of a new tension relief system for securing wound closure: A single-centre, Chinese cohort study

    PubMed Central

    Huahui, Zhang; Dan, Xue; Hongfei, Jiang; Hang, Hu; Chunmao, Han; Haitao, Ren; Jianxin, Yu; Zhiping, Tao

    2016-01-01

    BACKGROUND Wounds that have been closed under excessive tension, and skin defects that cannot be closed primarily, pose a daily challenge for the reconstructive surgeon. OBJECTIVE To evaluate a new tension relief system (TRS) device for skin stretching and secure wound closure. METHODS From September 2013 to March 2014, a consecutive series of 41 Chinese patients with 43 wounds were enrolled for application of 50 cycles of TRS therapy. TRS was used for two main clinical applications: closure of a variety of surgical/traumatic wounds; and securing wound closure after high-tension suture closure. Basic information and details regarding this therapy and its complications were recorded. Follow-up visits were conducted three to six months after wound closure. RESULTS Mean residual wound width decreased approximately 20% every two days during cycles of TRS therapy. Infection was the most common complication (five cases). Other complications included dehiscence (two cases) and pressure ulcer (one case). At the six-month follow-up visit, (21 wounds in 20 patients), both the extent of healing and the scar were acceptable. DISCUSSION There are no absolute contraindications to TRS therapy. The authors have formulated instructions for the prevention and treatment of the most common complications. CONCLUSIONS The results demonstrate that TRS therapy is a simple, effective method for primary closure of difficult wounds, and large skin and soft-tissue defects. Larger randomized studies are required to further evaluate of the effectiveness, indications, complications and cost effectiveness of this innovative TRS therapy. PMID:28439506

  19. Tank characterization report for double-shell tank 241-AW-105

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sasaki, L.M.

    1997-06-05

    One of the major functions of the Tank Waste Remediation System (TWRS) is to characterize wastes in support of waste management and disposal activities at the Hanford Site. Analytical data from sampling and analysis, along with other available information about a tank, are compiled and maintained in a tank characterization report (TCR). This report and its appendices serve as the TCR for double-shell tank 241-AW-105. The objectives of this report are to use characterization data in response to technical issues associated with tank 241-AW-105 waste; and to provide a standard characterization of this waste in terms of a best-basis inventorymore » estimate. The response to technical issues is summarized in Section 2.0, and the best-basis inventory estimate is presented in Section 3.0. Recommendations regarding safety status and additional sampling needs are provided in Section 4.0. Supporting data and information are contained in the appendices. This report supports the requirements of the Hanford Federal Facility Agreement and Consent Order milestone Characterization. information presented in this report originated from sample analyses and known historical sources. While only the results of a recent sampling event will be used to fulfill the requirements of the data quality objectives (DQOs), other information can be used to support or question conclusions derived from these results. Historical information for tank 241-AW-105 is provided in Appendix A, including surveillance information, records pertaining to waste transfers and tank operations, and expected tank contents derived from a process knowledge model. The recent sampling event listed, as well as pertinent sample data obtained before 1996, are summarized in Appendix B along with the sampling results. The results of the 1996 grab sampling event satisfied the data requirements specified in the sampling and analysis plan (SAP) for this tank. In addition, the tank headspace flammability was measured, which

  20. Interferometric Imaging Directly with Closure Phases and Closure Amplitudes

    NASA Astrophysics Data System (ADS)

    Chael, Andrew A.; Johnson, Michael D.; Bouman, Katherine L.; Blackburn, Lindy L.; Akiyama, Kazunori; Narayan, Ramesh

    2018-04-01

    Interferometric imaging now achieves angular resolutions as fine as ∼10 μas, probing scales that are inaccessible to single telescopes. Traditional synthesis imaging methods require calibrated visibilities; however, interferometric calibration is challenging, especially at high frequencies. Nevertheless, most studies present only a single image of their data after a process of “self-calibration,” an iterative procedure where the initial image and calibration assumptions can significantly influence the final image. We present a method for efficient interferometric imaging directly using only closure amplitudes and closure phases, which are immune to station-based calibration errors. Closure-only imaging provides results that are as noncommittal as possible and allows for reconstructing an image independently from separate amplitude and phase self-calibration. While closure-only imaging eliminates some image information (e.g., the total image flux density and the image centroid), this information can be recovered through a small number of additional constraints. We demonstrate that closure-only imaging can produce high-fidelity results, even for sparse arrays such as the Event Horizon Telescope, and that the resulting images are independent of the level of systematic amplitude error. We apply closure imaging to VLBA and ALMA data and show that it is capable of matching or exceeding the performance of traditional self-calibration and CLEAN for these data sets.

  1. Rubber closures for freeze-dried products.

    PubMed

    Hopkins, G H

    1976-10-01

    Once a biological product has been developed to perform its required medical or pharmaceutical function, it is essential that a container-closure system by chosen which will preserve the efficacy of the product up to the point of administration. The general requirements applicable to proper closure function will be reviewed and the suitability of natural and synthetic elastomers to perform these functions will be discussed. The specialized application of elastomeric materials as closures for freeze-dried products presents additional requirements which are superimposed upon those previously discussed. The first of these unique considerations relates to the proper physical design which will permit the outgassing of water vapor during the sublimation step in the lyophilizing chamber. During this outgassing the design must also permit the closure to remain affixed in the neck while only partially inserted. Since these preparations are lyophilized because they are unstable in aqueous solutions, the elastomer used must constitute an effective barrier to the transmission of moisture vapor through the closure. The MVT and gas transmission properties of elastomers will be discussed. Special consideration will be given to the extremely low temperatures used in the sublimation, stoppering, and storage before use of lyophilized products. The phenomenon of glass transition points with different elastomers will be explained as its relation to satisfactory performance of the closure function at low temperatures.

  2. Farming in a fish tank.

    PubMed

    Youth, H

    1992-01-01

    Water, fish, and vegetables are all things that most developing countries do not have enough of. There is a method of food production called aquaculture that integrates fish and vegetable growing and conserves and purifies water at the same time. A working system that grows vegetables and fish for regional supermarkets in Massachusetts is a gravity fed system. At the top of the system is a 3,000 gallon fish rearing tank that measures 12 feet in diameter. Water trickles out of the tank and fish wastes are captured which can be composted and used in farm fields. The water goes into a bio filter that contains bacteria which convert harmful ammonia generated from fish waste into beneficial nitrate. Then the water flows into 100 foot long hydroponic tanks where lettuce grows. A 1/6 horsepower pump return the purified water to the fish tank and completes the cycle. The key to success is maintaining a balance between the fish nutrients and waste and the plants nutrients and waste. The system is estimated to produce 35,000 heads of lettuce and 2 tons of fish annually which translates into $23,500. The system could be adapted to developing countries with several modifications to reduce the start up cost.

  3. Passive Fuel Tank Inerting Systems for Ground Combat Vehicles

    DTIC Science & Technology

    1988-09-01

    elastomers and sealants used in currently fielded equipment and redesign of selected hydraulic and gun recoil systems would be necessary to...constraint~s or access problems. "* Fuel Lines.- Fuel lines are routed to use the least amount of line possible. Fuel lines are high-pressure braided ...steel and rubber hose or steel tube construction. "* Fuel Pumps. Fuel pumps are usually mounted internal to the fuel tanks, are of heavy-duty commercial

  4. Thermal coupling potential of Solid Oxide Fuel Cells with metal hydride tanks: Thermodynamic and design considerations towards integrated systems

    NASA Astrophysics Data System (ADS)

    Yiotis, Andreas G.; Kainourgiakis, Michael E.; Kosmidis, Lefteris I.; Charalambopoulou, Georgia C.; Stubos, Athanassios K.

    2014-12-01

    We study the thermal coupling potential between a high temperature metal hydride (MH) tank and a Solid Oxide Fuel Cell (SOFC) aiming towards the design of an efficient integrated system, where the thermal power produced during normal SOFC operation is redirected towards the MH tank in order to maintain H2 desorption without the use of external heating sources. Based on principles of thermodynamics, we calculate the energy balance in the SOFC/MH system and derive analytical expressions for both the thermal power produced during SOFC operation and the corresponding thermal power required for H2 desorption, as a function of the operating temperature, efficiency and fuel utilization ratio in the SOFC, and the MH enthalpy of desorption in the tank. Based on these calculations, we propose an integrated SOFC/MH design where heat is transferred primarily by radiation to the tank in order to maintain steady-state desorption conditions. We develop a mathematical model for this particular design that accounts for heat/mass transfer and desorption kinetics in the tank, and solve for the dynamics of the system assuming MgH2 as a storage material. Our results focus primarily on tank operating conditions, such as pressure, temperature and H2 saturation profiles vs operation time.

  5. 40 CFR 264.1202 - Closure and post-closure care.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... FACILITIES Hazardous Waste Munitions and Explosives Storage § 264.1202 Closure and post-closure care. (a) At... it remains in service as a munitions or explosives magazine or storage unit. (b) If, after removing...

  6. 40 CFR 264.1202 - Closure and post-closure care.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... FACILITIES Hazardous Waste Munitions and Explosives Storage § 264.1202 Closure and post-closure care. (a) At... it remains in service as a munitions or explosives magazine or storage unit. (b) If, after removing...

  7. 40 CFR 264.1202 - Closure and post-closure care.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... FACILITIES Hazardous Waste Munitions and Explosives Storage § 264.1202 Closure and post-closure care. (a) At... it remains in service as a munitions or explosives magazine or storage unit. (b) If, after removing...

  8. 40 CFR 264.1202 - Closure and post-closure care.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... FACILITIES Hazardous Waste Munitions and Explosives Storage § 264.1202 Closure and post-closure care. (a) At... it remains in service as a munitions or explosives magazine or storage unit. (b) If, after removing...

  9. 40 CFR 265.196 - Response to leaks or spills and disposition of leaking or unfit-for-use tank systems.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 25 2010-07-01 2010-07-01 false Response to leaks or spills and... leaks or spills and disposition of leaking or unfit-for-use tank systems. A tank system or secondary containment system from which there has been a leak or spill, or which is un-fit for use, must be removed from...

  10. Systems Engineering Processes Applied to Ground Vehicle Integration at US Army Tank Automotive Research, Development, and Engineering Center (TARDEC)

    DTIC Science & Technology

    2010-08-19

    UNCLASSIFIED Systems Engineering Processes Applied To Ground Vehicle Integration at US Army Tank Automotive Research, Development, and Engineering...DATES COVERED - 4. TITLE AND SUBTITLE Systems Engineering Processes Applied To Ground Vehicle Integration at US Army Tank Automotive Research...release, distribution unlimited 13. SUPPLEMENTARY NOTES Presented at NDIAs Ground Vehicle Systems Engineering and Technology Symposium (GVSETS), 17 22

  11. Alternatives generation and analysis for double-shell tank primary ventilation systems emissions control and monitoring

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    SEDERBURG, J.P.

    1999-09-30

    This AGA addresses the question: ''What equipment upgrades, operational changes, and/or other actions are required relative to the DST tanks farms' ventilation systems to support retrieval, staging (including feed sampling), and delivery of tank waste to the Phase I private contractor?'' Issues and options for the various components within the ventilation subsystem affect each other. Recommended design requirements are presented and the preferred alternatives are detailed.

  12. 75 FR 3902 - Notice of Public Hearings on the Draft Tank Closure and Waste Management Environmental Impact...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-25

    ... ending March 19, 2010. The State of Washington, Department of Ecology (Ecology) is a cooperating agency... and information about the Washington State Department of Ecology, contact: Annette Carlson, Nuclear... ultimate closure of Hanford. In support of Hanford's cleanup mission DOE, with Ecology as a cooperating...

  13. A clinical investigation of force delivery systems for orthodontic space closure.

    PubMed

    Nightingale, C; Jones, S P

    2003-09-01

    To investigate the force retention, and rates of space closure achieved by elastomeric chain and nickel titanium coil springs. Randomized clinical trial. Eastman Dental Hospital, London and Queen Mary's University Hospital, Roehampton, 1998-2000. Twenty-two orthodontic patients, wearing the pre-adjusted edgewise appliance undergoing space closure in opposing quadrants, using sliding mechanics on 0.019 x 0.025-inch posted stainless steel archwires. Medium-spaced elastomeric chain [Durachain, OrthoCare (UK) Ltd., Bradford, UK] and 9-mm nickel titanium coil springs [OrthoCare (UK) Ltd.] were placed in opposing quadrants for 15 patients. Elastomeric chain only was used in a further seven patients. The initial forces on placement and residual forces at the subsequent visit were measured with a dial push-pull gauge [Orthocare (UK) Ltd]. Study models of eight patients were taken before and after space closure, from which measurements were made to establish mean space closure. The forces were measured in grammes and space closure in millimetres. Fifty-nine per cent (31/53) of the elastomeric sample maintained at least 50 per cent of the initial force over a time period of 1-15 weeks. No sample lost all its force, and the mean loss was 47 per cent (range: 0-76 per cent). Nickel titanium coil springs lost force rapidly over 6 weeks, following that force levels plateaued. Forty-six per cent (12/26) maintained at least 50 per cent of their initial force over a time period of 1-22 weeks, and mean force loss was 48 per cent (range: 12-68 per cent). The rate of mean weekly space closure for elastomeric chain was 0.21 mm and for nickel titanium coil springs 0.26 mm. There was no relationship between the initial force applied and rate of space closure. None of the sample failed during the study period giving a 100 per cent response rate. In clinical use, the force retention of elastomeric chain was better than previously concluded. High initial forces resulted in high force decay

  14. Cystic Duct Closure by Sealing With Bipolar Electrocoagulation

    PubMed Central

    Damgaard, B.; Jorgensen, L. N.; Larsen, S. S.; Kristiansen, V. B.

    2010-01-01

    Background: Cystic duct leakage after cholecystectomy is not uncommon and is a potentially serious complication. The aim of this study was to assess a bipolar sealing system (LigaSure®) for closure of the cystic duct. Methods: The records from consecutive laparoscopic cholecystectomies performed in 2 hospitals with closure of the cystic duct with LigaSure after informed consent were recorded and complications and morbidity registered. The records were compared with those of patients undergoing laparoscopic cholecystectomy with closure of the cystic duct with clips during the same period. Results: During the study period, 218 laparoscopic cholecystectomies were performed; 102 of these were performed with the LigaSure. One patient was excluded due to violation of the protocol. We experienced no cases of cystic duct leakage, but in one patient, bile leakage from the gallbladder bed was observed probably due to a small aberrant duct. Conclusion: The LigaSure system was safe and effective for closure and division of the cystic duct in laparoscopic cholecystectomy. PMID:20412641

  15. Quick actuating closure

    NASA Technical Reports Server (NTRS)

    White, III, Dorsey E. (Inventor); Updike, deceased, Benjamin T. (Inventor); Allred, Johnny W. (Inventor)

    1989-01-01

    A quick actuating closure for a pressure vessel 80 in which a wedge ring 30 with a conical outer surface 31 is moved forward to force shear blocks 40, with conical inner surfaces 41, radially outward to lock an end closure plug 70 within an opening 81 in the pressure vessel 80. A seal ring 60 and a preload ramp 50 sit between the shear blocks 40 and the end closure plug 70 to provide a backup sealing capability. Conical surfaces 44 and 55 of the preload ramp 50 and the shear blocks 40 interact to force the seal ring 60 into shoulders 73 and 85 in the end closure plug 70 and opening 81 to form a tight seal. The end closure plug 70 is unlocked by moving the wedge ring 30 rearward, which causes T-bars 32 of the wedge ring 30 riding within T -slots 42 of the shear blocks 40 to force them radially inward. The end closure plug 70 is then removed, allowing access to the interior of the pressure vessel 80.

  16. Underground storage tank management plan, Oak Ridge Y-12 Plant, Oak Ridge, Tennessee

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1997-09-01

    The Underground Storage Tank (UST) Program at the Oak Ridge Y-12 Plant was established to locate UST systems at the facility and to ensure that all operating UST systems are free of leaks. UST systems have been removed or upgraded in accordance with Tennessee Department of Environment and Conservation (TDEC) regulations and guidance. With the closure of a significant portion of the USTs, the continuing mission of the UST Management Program is to manage the remaining active UST systems and continue corrective actions in a safe regulatory compliant manner. This Program outlines the compliance issues that must be addressed, reviewsmore » the current UST inventory and compliance approach, and presents the status and planned activities associated with each UST system. The UST Program provides guidance for implementing TDEC regulations and guidelines for petroleum UST systems. The plan is divided into three major sections: (1) regulatory requirements, (2) active UST sites, and (3) out-of-service UST sites. These sections describe in detail the applicable regulatory drivers, the UST sites addressed under the Program, and the procedures and guidance for compliance.« less

  17. 46 CFR 154.901 - Atmospheric control within cargo tanks and cargo piping systems.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 5 2014-10-01 2014-10-01 false Atmospheric control within cargo tanks and cargo piping systems. 154.901 Section 154.901 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN..., Construction and Equipment Atmospheric Control in Cargo Containment Systems § 154.901 Atmospheric control...

  18. 46 CFR 154.901 - Atmospheric control within cargo tanks and cargo piping systems.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 5 2012-10-01 2012-10-01 false Atmospheric control within cargo tanks and cargo piping systems. 154.901 Section 154.901 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN..., Construction and Equipment Atmospheric Control in Cargo Containment Systems § 154.901 Atmospheric control...

  19. 46 CFR 154.901 - Atmospheric control within cargo tanks and cargo piping systems.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 5 2011-10-01 2011-10-01 false Atmospheric control within cargo tanks and cargo piping systems. 154.901 Section 154.901 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN..., Construction and Equipment Atmospheric Control in Cargo Containment Systems § 154.901 Atmospheric control...

  20. 46 CFR 154.901 - Atmospheric control within cargo tanks and cargo piping systems.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Atmospheric control within cargo tanks and cargo piping systems. 154.901 Section 154.901 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN..., Construction and Equipment Atmospheric Control in Cargo Containment Systems § 154.901 Atmospheric control...

  1. 46 CFR 154.901 - Atmospheric control within cargo tanks and cargo piping systems.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 5 2013-10-01 2013-10-01 false Atmospheric control within cargo tanks and cargo piping systems. 154.901 Section 154.901 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN..., Construction and Equipment Atmospheric Control in Cargo Containment Systems § 154.901 Atmospheric control...

  2. Compartmentalized storage tank for electrochemical cell system

    NASA Technical Reports Server (NTRS)

    Piecuch, Benjamin Michael (Inventor); Dalton, Luke Thomas (Inventor)

    2010-01-01

    A compartmentalized storage tank is disclosed. The compartmentalized storage tank includes a housing, a first fluid storage section disposed within the housing, a second fluid storage section disposed within the housing, the first and second fluid storage sections being separated by a movable divider, and a constant force spring. The constant force spring is disposed between the housing and the movable divider to exert a constant force on the movable divider to cause a pressure P1 in the first fluid storage section to be greater than a pressure P2 in the second fluid storage section, thereby defining a pressure differential.

  3. Tank atmosphere perturbation: a procedure for assessing flashing losses from oil storage tanks.

    PubMed

    Littlejohn, David; Lucas, Donald

    2003-03-01

    A new procedure to measure the total volume of emissions from heavy crude oil storage tanks is described. Tank flashing losses, which are difficult to measure, can be determined by correcting this value for working and breathing losses. The procedure uses a fan or blower to vent the headspace of the storage tank, with subsequent monitoring of the change in concentrations of oxygen or other gases. Combined with a separate determination of the reactive organic carbon (ROC) fraction in the gas, this method allows the evaluation of the total amount of ROC emitted. The operation of the system is described, and results from measurement of several storage tanks in California oil fields are presented. Our measurements are compared with those obtained using the California Air Resources Board (CARB) 150 method.

  4. 33 CFR 157.124 - COW tank washing machines.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false COW tank washing machines. 157... OIL IN BULK Crude Oil Washing (COW) System on Tank Vessels Design, Equipment, and Installation § 157.124 COW tank washing machines. (a) COW machines must be permanently mounted in each cargo tank. (b...

  5. Numerical Modeling of an Integrated Vehicle Fluids System Loop for Pressurizing a Cryogenic Tank

    NASA Technical Reports Server (NTRS)

    LeClair, A. C.; Hedayat, A.; Majumdar, A. K.

    2017-01-01

    This paper presents a numerical model of the pressurization loop of the Integrated Vehicle Fluids (IVF) system using the Generalized Fluid System Simulation Program (GFSSP). The IVF propulsion system, being developed by United Launch Alliance to reduce system weight and enhance reliability, uses boiloff propellants to drive thrusters for the reaction control system as well as to run internal combustion engines to develop power and drive compressors to pressurize propellant tanks. NASA Marshall Space Flight Center (MSFC) conducted tests to verify the functioning of the IVF system using a flight-like tank. GFSSP, a finite volume based flow network analysis software developed at MSFC, has been used to support the test program. This paper presents the simulation of three different test series, comparison of numerical prediction and test data and a novel method of presenting data in a dimensionless form. The paper also presents a methodology of implementing a compressor map in a system level code.

  6. Gestalt concept of closure: a construct without closure.

    PubMed

    Wasserstein, Jeanette

    2002-12-01

    This comment reviews the original Gestalt literature which introduced the concept of 'closure'. It is argued that the meaning of 'closure' was confounded in the source literature and, thus, the term connotes more than it denotes. Research based on different measures of this ambiguous construct inevitably may not always converge.

  7. Increased patient delays in care after the closure of Martin Luther King Hospital: implications for monitoring health system changes.

    PubMed

    Walker, Kara Odom; Leng, Mei; Liang, Li-Jung; Forge, Nell; Morales, Leo; Jones, Loretta; Brown, Arleen

    2011-01-01

    The safety net system remains an important part of the health care system for uninsured and minority populations, however, the closure of safety net hospitals changes the availability of care. Using community-based participatory research methods, we explored the impact of hospital closure among late middle aged and elderly racial/ethnic minorities in South Los Angeles. Telephone survey of participants in both 2008, after hospital closure, and 2003, before hospital closure, who self-identified as African American or Latino, were over the age of 50 and lived in zip codes of South Los Angeles. We developed multiple logistic regression models on imputed data sets weighted for non-response and adjusted for self-reported measures of demographic and clinical characteristics to examine the odds of reporting delays in care. After adjusting for covariates known to influence access to care and distributed differently in the two survey samples, we found significantly greater delays in care. Following the closure of the Martin Luther King, Jr. safety net hospital, the adjusted odds ratios were 1.70 (95% CI 1.01, 2.87) for delays in care, 1.88 (95% Cl 1.06, 3.13) for problems receiving needed medical care, and 2.62 (95% CI 1.46, 4.67) for seeing a specialist. Our survey of older minority adults in South Los Angeles found increased delays in access to care for needed medical services after the closure of Martin Luther King, Jr. Hospital. As health care reform unfolds, monitoring for changes in access to care that may result from new policies will be important to address future disparities, particularly for vulnerable populations.

  8. An Eco-tank system containing microbes and different aquatic plant species for the bioremediation of N,N-dimethylformamide polluted river waters.

    PubMed

    Xiao, Jibo; Chu, Shuyi; Tian, Guangming; Thring, Ronald W; Cui, Lingzhou

    2016-12-15

    An Eco-tank system of 10m was designed to simulate the natural river. It consisted of five tanks sequentially connected containing microbes, biofilm carriers and four species of floating aquatic plants. The purification performance of the system for N,N-dimethylformamide (DMF) polluted river water was evaluated by operating in continuous mode. DMF was completely removed in Tanks 1 and 2 at influent DMF concentrations between 75.42 and 161.05mg L -1 . The NH 4 + -N concentration increased in Tank 1, followed by a gradual decrease in Tanks 2-5. Removal of NH 4 + -N was enhanced by aeration. The average effluent NH 4 + -N concentration of Tank 5 decreased to a minimum of 0.89mg L -1 , corresponding to a decrease of 84.8% when compared with that before aeration. TN concentration did not decrease significantly as expected after inoculation with denitrifying bacteria. The average effluent TN concentration of the system was determined to be 4.58mg L -1 , still unable to satisfy the Class V standard for surface water environmental quality. The results of this study demonstrated that the Eco-tank system is an efficient process in removing DMF, TOC, and NH 4 + -N from DMF polluted river water. However, if possible, alternative technologies should be adopted for controlling the effluent TN concentration. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Port closure techniques.

    PubMed

    Shaher, Z

    2007-08-01

    Laparoscopic trocars do create wounds. This article aims to review and list different techniques used for closure of the fascia incision at trocar sites. A literature search was performed for articles dealing with closure techniques. The author searched this subject in English on Medline by combining the words "trocar" and "hernia," as well as "Deschamps" and "Reverdin." All articles reporting techniques with their references were reviewed. The articles described many techniques in addition to classical closure using curved needles, including Grice needle, Maciol needles, Endoclose device, Carter-Thomason device, Tahoe ligature device, Endo-Judge device, eXit puncture closure device, Lowsley retractor, spinal cord needles, dual hemostat, suture carrier, Riverdin and Deschamps needles, and Gore-Tex closure device. Three main groups of techniques were found with favor of extracorporeal manipulations under direct visualization. Old methods are sufficient and cost-effective.

  10. Development and validation of quasi-steady-state heat pump water heater model having stratified water tank and wrapped-tank condenser

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shen, Bo; Nawaz, Kashif; Baxter, Van D.

    Heat pump water heater systems (HPWH) introduce new challenges for design and modeling tools, because they require vapor compression system balanced with a water storage tank. In addition, a wrapped-tank condenser coil has strong coupling with a stratified water tank, which leads HPWH simulation to a transient process. To tackle these challenges and deliver an effective, hardware-based HPWH equipment design tool, a quasi-steady-state HPWH model was developed based on the DOE/ORNL Heat Pump Design Model (HPDM). Two new component models were added via this study. One is a one-dimensional stratified water tank model, an improvement to the open-source EnergyPlus watermore » tank model, by introducing a calibration factor to account for bulk mixing effect due to water draws, circulations, etc. The other is a wrapped-tank condenser coil model, using a segment-to-segment modeling approach. In conclusion, the HPWH system model was validated against available experimental data. After that, the model was used for parametric simulations to determine the effects of various design factors.« less

  11. Development and validation of quasi-steady-state heat pump water heater model having stratified water tank and wrapped-tank condenser

    DOE PAGES

    Shen, Bo; Nawaz, Kashif; Baxter, Van D.; ...

    2017-10-31

    Heat pump water heater systems (HPWH) introduce new challenges for design and modeling tools, because they require vapor compression system balanced with a water storage tank. In addition, a wrapped-tank condenser coil has strong coupling with a stratified water tank, which leads HPWH simulation to a transient process. To tackle these challenges and deliver an effective, hardware-based HPWH equipment design tool, a quasi-steady-state HPWH model was developed based on the DOE/ORNL Heat Pump Design Model (HPDM). Two new component models were added via this study. One is a one-dimensional stratified water tank model, an improvement to the open-source EnergyPlus watermore » tank model, by introducing a calibration factor to account for bulk mixing effect due to water draws, circulations, etc. The other is a wrapped-tank condenser coil model, using a segment-to-segment modeling approach. In conclusion, the HPWH system model was validated against available experimental data. After that, the model was used for parametric simulations to determine the effects of various design factors.« less

  12. Developing NDE Techniques for Large Cryogenic Tanks

    NASA Technical Reports Server (NTRS)

    Parker, Don; Starr, Stan; Arens, Ellen

    2011-01-01

    The Shuttle Program requires very large cryogenic ground storage tanks in which to store liquid oxygen and hydrogen. The existing Pads A and B Launch Complex-39 tanks, which will be passed onto future launch programs, are 45 years old and have received minimal refurbishment and only external inspections over the years. The majority of the structure is inaccessible without a full system drain of cryogenic liquid and granular insulation in the annular region. It was previously thought that there was a limit to the number of temperature cycles that the tanks could handle due to possible insulation compaction before undergoing a costly and time consuming complete overhaul; therefore the tanks were not drained and performance issues with these tanks, specifically the Pad B liquid hydrogen tank, were accepted. There is a needind an opportunity, as the Shuttle program ends and work to upgrade the launch pads progresses, to develop innovative non-destructive evaluation (NDE) techniques to analyze the current tanks. Techniques are desired that can aid in determining the extent of refurbishment required to keep the tanks in service for another 20+ years. A nondestructive technique would also be a significant aid in acceptance testing of new and refurbished tanks, saving significant time and money, if corrective actions can be taken before cryogen is introduced to the systems.

  13. 14 CFR 27.971 - Fuel tank sump.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Fuel tank sump. 27.971 Section 27.971 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL CATEGORY ROTORCRAFT Powerplant Fuel System § 27.971 Fuel tank sump. (a) Each fuel tank...

  14. 14 CFR 29.971 - Fuel tank sump.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Fuel tank sump. 29.971 Section 29.971 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Powerplant Fuel System § 29.971 Fuel tank sump. (a) Each fuel tank...

  15. 14 CFR 29.971 - Fuel tank sump.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Fuel tank sump. 29.971 Section 29.971 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Powerplant Fuel System § 29.971 Fuel tank sump. (a) Each fuel tank...

  16. 14 CFR 25.971 - Fuel tank sump.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Fuel tank sump. 25.971 Section 25.971 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Fuel System § 25.971 Fuel tank sump. (a) Each fuel tank...

  17. 14 CFR 29.965 - Fuel tank tests.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Fuel tank tests. 29.965 Section 29.965 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Powerplant Fuel System § 29.965 Fuel tank tests. (a) Each fuel tank...

  18. 14 CFR 27.965 - Fuel tank tests.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Fuel tank tests. 27.965 Section 27.965 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL CATEGORY ROTORCRAFT Powerplant Fuel System § 27.965 Fuel tank tests. (a) Each fuel tank...

  19. 14 CFR 29.965 - Fuel tank tests.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Fuel tank tests. 29.965 Section 29.965 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Powerplant Fuel System § 29.965 Fuel tank tests. (a) Each fuel tank...

  20. 14 CFR 25.971 - Fuel tank sump.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Fuel tank sump. 25.971 Section 25.971 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Fuel System § 25.971 Fuel tank sump. (a) Each fuel tank...

  1. 14 CFR 25.971 - Fuel tank sump.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Fuel tank sump. 25.971 Section 25.971 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Fuel System § 25.971 Fuel tank sump. (a) Each fuel tank...

  2. 14 CFR 27.965 - Fuel tank tests.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Fuel tank tests. 27.965 Section 27.965 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL CATEGORY ROTORCRAFT Powerplant Fuel System § 27.965 Fuel tank tests. (a) Each fuel tank...

  3. 14 CFR 27.971 - Fuel tank sump.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Fuel tank sump. 27.971 Section 27.971 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL CATEGORY ROTORCRAFT Powerplant Fuel System § 27.971 Fuel tank sump. (a) Each fuel tank...

  4. 14 CFR 29.965 - Fuel tank tests.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Fuel tank tests. 29.965 Section 29.965 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Powerplant Fuel System § 29.965 Fuel tank tests. (a) Each fuel tank...

  5. 14 CFR 27.971 - Fuel tank sump.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Fuel tank sump. 27.971 Section 27.971 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL CATEGORY ROTORCRAFT Powerplant Fuel System § 27.971 Fuel tank sump. (a) Each fuel tank...

  6. 14 CFR 25.971 - Fuel tank sump.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Fuel tank sump. 25.971 Section 25.971 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Fuel System § 25.971 Fuel tank sump. (a) Each fuel tank...

  7. 14 CFR 29.971 - Fuel tank sump.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Fuel tank sump. 29.971 Section 29.971 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Powerplant Fuel System § 29.971 Fuel tank sump. (a) Each fuel tank...

  8. 14 CFR 29.971 - Fuel tank sump.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Fuel tank sump. 29.971 Section 29.971 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Powerplant Fuel System § 29.971 Fuel tank sump. (a) Each fuel tank...

  9. 14 CFR 27.971 - Fuel tank sump.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Fuel tank sump. 27.971 Section 27.971 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL CATEGORY ROTORCRAFT Powerplant Fuel System § 27.971 Fuel tank sump. (a) Each fuel tank...

  10. 14 CFR 27.965 - Fuel tank tests.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Fuel tank tests. 27.965 Section 27.965 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL CATEGORY ROTORCRAFT Powerplant Fuel System § 27.965 Fuel tank tests. (a) Each fuel tank...

  11. 14 CFR 29.1015 - Oil tank tests.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Oil tank tests. 29.1015 Section 29.1015 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Powerplant Oil System § 29.1015 Oil tank tests. Each oil tank must...

  12. 14 CFR 29.1015 - Oil tank tests.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Oil tank tests. 29.1015 Section 29.1015 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Powerplant Oil System § 29.1015 Oil tank tests. Each oil tank must...

  13. 14 CFR 29.1015 - Oil tank tests.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Oil tank tests. 29.1015 Section 29.1015 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Powerplant Oil System § 29.1015 Oil tank tests. Each oil tank must...

  14. 14 CFR 29.1015 - Oil tank tests.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Oil tank tests. 29.1015 Section 29.1015 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Powerplant Oil System § 29.1015 Oil tank tests. Each oil tank must...

  15. Vented Chill / No-Vent Fill of Cryogenic Propellant Tanks

    NASA Technical Reports Server (NTRS)

    Rhys, Noah O.; Foster, Lee W.; Martin, Adam K.; Stephens, Jonathan R.

    2016-01-01

    Architectures for extended duration missions often include an on-orbit replenishment of the space vehicle's cryogenic liquid propellants. Such a replenishment could be accomplished via a tank-to-tank transfer from a dedicated tanker or a more permanent propellant depot storage tank. Minimizing the propellant loss associated with transfer line and receiver propellant tank thermal conditioning is essential for mass savings. A new methodology for conducting tank-to-tank transfer while minimizing such losses has been demonstrated. Charge-Hold-Vent is the traditional methodology for conducting a tank-to-tank propellant transfer. A small amount of cryogenic liquid is introduced to chill the transfer line and propellant tank. As the propellant absorbs heat and undergoes a phase change, the tank internal pressure increases. The tank is then vented to relieve pressure prior to another charge of cryogenic liquid being introduced. This cycle is repeated until the transfer lines and tank are sufficiently chilled and the replenishment of the propellant tank is complete. This method suffers inefficiencies due to multiple chill and vent cycles within the transfer lines and associated feed system components. Additionally, this system requires precise measuring of cryogenic fluid delivery for each transfer, multiple valve cycling events, and other complexities associated with cycled operations. To minimize propellant loss and greatly simplify on-orbit operations, an alternate methodology has been designed and demonstrated. The Vented Chill / No Vent Fill method is a simpler, constant flow approach in which the propellant tank and transfer lines are only chilled once. The receiver tank is continuously vented as cryogenic liquid chills the transfer lines, tank mass and ullage space. Once chilled sufficiently, the receiver tank valve is closed and the tank is completely filled. Interestingly, the vent valve can be closed prior to receiver tank components reaching liquid saturation

  16. 46 CFR 58.50-5 - Gasoline fuel tanks.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 2 2014-10-01 2014-10-01 false Gasoline fuel tanks. 58.50-5 Section 58.50-5 Shipping... AND RELATED SYSTEMS Independent Fuel Tanks § 58.50-5 Gasoline fuel tanks. (a) Construction—(1) Shape...) Installation. (1) Gasoline fuel tanks used for propulsion shall be located in water-tight compartments separate...

  17. 46 CFR 58.50-5 - Gasoline fuel tanks.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Gasoline fuel tanks. 58.50-5 Section 58.50-5 Shipping... AND RELATED SYSTEMS Independent Fuel Tanks § 58.50-5 Gasoline fuel tanks. (a) Construction—(1) Shape...) Installation. (1) Gasoline fuel tanks used for propulsion shall be located in water-tight compartments separate...

  18. 46 CFR 58.50-5 - Gasoline fuel tanks.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 2 2012-10-01 2012-10-01 false Gasoline fuel tanks. 58.50-5 Section 58.50-5 Shipping... AND RELATED SYSTEMS Independent Fuel Tanks § 58.50-5 Gasoline fuel tanks. (a) Construction—(1) Shape...) Installation. (1) Gasoline fuel tanks used for propulsion shall be located in water-tight compartments separate...

  19. 46 CFR 58.50-5 - Gasoline fuel tanks.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 2 2013-10-01 2013-10-01 false Gasoline fuel tanks. 58.50-5 Section 58.50-5 Shipping... AND RELATED SYSTEMS Independent Fuel Tanks § 58.50-5 Gasoline fuel tanks. (a) Construction—(1) Shape...) Installation. (1) Gasoline fuel tanks used for propulsion shall be located in water-tight compartments separate...

  20. 46 CFR 58.50-5 - Gasoline fuel tanks.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 2 2011-10-01 2011-10-01 false Gasoline fuel tanks. 58.50-5 Section 58.50-5 Shipping... AND RELATED SYSTEMS Independent Fuel Tanks § 58.50-5 Gasoline fuel tanks. (a) Construction—(1) Shape...) Installation. (1) Gasoline fuel tanks used for propulsion shall be located in water-tight compartments separate...

  1. Lifecycle Verification of Tank Liner Polymers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anovitz, Lawrence; Smith, Barton

    2014-03-01

    This report describes a method that was developed for the purpose of assessing the durability of thermoplastic liners used in a Type IV hydrogen storage tank during the tank s expected service life. In the method, a thermoplastic liner specimen is cycled between the maximum and minimum expected working temperatures while it is differentially pressurized with high-pressure hydrogen gas. The number of thermal cycling intervals corresponds to those expected within the tank s design lifetime. At prescribed intervals, hydrogen permeation measurements are done in situ to assess the ability of the liner specimen to maintain its hydrogen barrier properties andmore » to model its permeability over the tank lifetime. Finally, the model is used to assess whether the steady-state leakage rate in the tank could potentially exceed the leakage specification for hydrogen fuel cell passenger vehicles. A durability assessment was performed on a specimen of high-density polyethylene (HDPE) that is in current use as a tank liner. Hydrogen permeation measurements were performed on several additional tank liner polymers as well as novel polymers proposed for use as storage tank liners and hydrogen barrier materials. The following technical barriers from the Fuel Cell Technologies Program MYRDD were addressed by the project: D. Durability of on-board storage systems lifetime of at least 1500 cycles G. Materials of construction vessel containment that is resistant to hydrogen permeation M. Lack of Tank Performance Data and Understanding of Failure Mechanisms And the following technical targets1 for on-board hydrogen storage systems R&D were likewise addressed: Operational cycle life (1/4 tank to full) FY 2017: 1500 cycles; Ultimate: 1500 cycles Environmental health & safety Permeation and leakage: Meets or exceeds applicable standards Loss of useable H2: FY 2017: 0.05 g/h/kg H2; Ultimate: 0.05 g/h/kg H2« less

  2. 33 CFR 157.15 - Slop tanks in tank vessels.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 2 2011-07-01 2011-07-01 false Slop tanks in tank vessels. 157... (CONTINUED) POLLUTION RULES FOR THE PROTECTION OF THE MARINE ENVIRONMENT RELATING TO TANK VESSELS CARRYING OIL IN BULK Design, Equipment, and Installation § 157.15 Slop tanks in tank vessels. (a) Number. A...

  3. 33 CFR 157.15 - Slop tanks in tank vessels.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 2 2013-07-01 2013-07-01 false Slop tanks in tank vessels. 157... (CONTINUED) POLLUTION RULES FOR THE PROTECTION OF THE MARINE ENVIRONMENT RELATING TO TANK VESSELS CARRYING OIL IN BULK Design, Equipment, and Installation § 157.15 Slop tanks in tank vessels. (a) Number. A...

  4. 33 CFR 157.15 - Slop tanks in tank vessels.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 2 2012-07-01 2012-07-01 false Slop tanks in tank vessels. 157... (CONTINUED) POLLUTION RULES FOR THE PROTECTION OF THE MARINE ENVIRONMENT RELATING TO TANK VESSELS CARRYING OIL IN BULK Design, Equipment, and Installation § 157.15 Slop tanks in tank vessels. (a) Number. A...

  5. 33 CFR 157.15 - Slop tanks in tank vessels.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 2 2014-07-01 2014-07-01 false Slop tanks in tank vessels. 157... (CONTINUED) POLLUTION RULES FOR THE PROTECTION OF THE MARINE ENVIRONMENT RELATING TO TANK VESSELS CARRYING OIL IN BULK Design, Equipment, and Installation § 157.15 Slop tanks in tank vessels. (a) Number. A...

  6. External Tank Program - Legacy of Success

    NASA Technical Reports Server (NTRS)

    Pilet, Jeffery C.; Diecidue-Conners, Dawn; Worden, Michelle; Guillot, Michelle; Welzyn, Kenneth

    2011-01-01

    The largest single element of Space Shuttle is the External Tank (ET), which serves as the structural backbone of the vehicle during ascent and provides liquid propellants to the Orbiter s three Main Engines. The ET absorbs most of the seven million pounds of thrust exerted by the Solid Rocket Boosters and Main Engines. The design evolved through several block changes, reducing weight each time. Because the tank flies to orbital velocity with the Space Shuttle Orbiter, minimization of weight is mandatory, to maximize payload performance. The initial configuration, the standard weight tank, weighed 76,000 pounds and was an aluminum 2219 structure. The light weight tank weighed 66,000 pounds and flew 86 missions. The super light weight tank weighed 58,500 pounds and was primarily an aluminum-lithium structure. The final configuration and low weight enabled system level performance sufficient for assembly of the International Space Station in a high inclination orbit, vital for international cooperation. Another significant challenge was the minimization of ice formation on the cryogenic tanks. This was essential due to the system configuration and the choice of ceramic thermal protection system materials on the Orbiter. Ice would have been a major debris hazard. Spray on foam insulation materials served multiple functions including thermal insulation, conditioning of cryogenic propellants, and thermal protection for the tank structure during ascent and entry. The tank is large, and unique manufacturing facilities, tooling, and handling, and transportation operations were developed. Weld processes and tooling evolved with the design as it matured through several block changes. Non Destructive Evaluation methods were used to assure integrity of welds and thermal protection system materials. The aluminum-lithium alloy was used near the end of the program and weld processes and weld repair techniques had to be refined. Development and implementation of friction stir

  7. 46 CFR 56.50-85 - Tank-vent piping.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... of the tanks to vent pipes. (2) Tanks having a comparatively small surface, such as fuel oil settling... 46 Shipping 2 2010-10-01 2010-10-01 false Tank-vent piping. 56.50-85 Section 56.50-85 Shipping... APPURTENANCES Design Requirements Pertaining to Specific Systems § 56.50-85 Tank-vent piping. (a) This section...

  8. 40 CFR 264.197 - Closure and post-closure care.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Section 264.197 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES... as hazardous waste, unless § 261.3(d) of this chapter applies. The closure plan, closure activities...

  9. Two-tank working gas storage system for heat engine

    DOEpatents

    Hindes, Clyde J.

    1987-01-01

    A two-tank working gas supply and pump-down system is coupled to a hot gas engine, such as a Stirling engine. The system has a power control valve for admitting the working gas to the engine when increased power is needed, and for releasing the working gas from the engine when engine power is to be decreased. A compressor pumps the working gas that is released from the engine. Two storage vessels or tanks are provided, one for storing the working gas at a modest pressure (i.e., half maximum pressure), and another for storing the working gas at a higher pressure (i.e., about full engine pressure). Solenoid valves are associated with the gas line to each of the storage vessels, and are selectively actuated to couple the vessels one at a time to the compressor during pumpdown to fill the high-pressure vessel with working gas at high pressure and then to fill the low-pressure vessel with the gas at low pressure. When more power is needed, the solenoid valves first supply the low-pressure gas from the low-pressure vessel to the engine and then supply the high-pressure gas from the high-pressure vessel. The solenoid valves each act as a check-valve when unactuated, and as an open valve when actuated.

  10. 33 CFR 183.550 - Fuel tanks: Installation.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 2 2012-07-01 2012-07-01 false Fuel tanks: Installation. 183.550...) BOATING SAFETY BOATS AND ASSOCIATED EQUIPMENT Fuel Systems Manufacturer Requirements § 183.550 Fuel tanks: Installation. (a) Each fuel tank must not be integral with any boat structure or mounted on an engine. (b) Each...

  11. 33 CFR 183.514 - Fuel tanks: Labels.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 2 2012-07-01 2012-07-01 false Fuel tanks: Labels. 183.514...) BOATING SAFETY BOATS AND ASSOCIATED EQUIPMENT Fuel Systems Equipment Standards § 183.514 Fuel tanks: Labels. (a) Each fuel tank must have a label that meets the requirements of paragraphs (b) through (d) of...

  12. Opposed Bellows Would Expel Contents Of Tank

    NASA Technical Reports Server (NTRS)

    Whitaker, Willie

    1994-01-01

    Proposed storage tank contains two pairs of opposed bellows used to expel its contents. Storage and expulsion volumes of tank same as those of older version of tank equipped with single bellows. Four bellows offer greater stability. Applications include automobile cooling systems and gasoline-powered tools like chain saws and leaf blowers.

  13. 33 CFR 183.514 - Fuel tanks: Labels.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Fuel tanks: Labels. 183.514...) BOATING SAFETY BOATS AND ASSOCIATED EQUIPMENT Fuel Systems Equipment Standards § 183.514 Fuel tanks: Labels. (a) Each fuel tank must have a label that meets the requirements of paragraphs (b) through (d) of...

  14. 33 CFR 183.550 - Fuel tanks: Installation.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Fuel tanks: Installation. 183.550...) BOATING SAFETY BOATS AND ASSOCIATED EQUIPMENT Fuel Systems Manufacturer Requirements § 183.550 Fuel tanks: Installation. (a) Each fuel tank must not be integral with any boat structure or mounted on an engine. (b) Each...

  15. 14 CFR 25.1015 - Oil tank tests.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Oil tank tests. 25.1015 Section 25.1015... STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Oil System § 25.1015 Oil tank tests. Each oil tank must be designed and installed so that— (a) It can withstand, without failure, each vibration, inertia...

  16. 14 CFR 29.1015 - Oil tank tests.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Oil tank tests. 29.1015 Section 29.1015... STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Powerplant Oil System § 29.1015 Oil tank tests. Each oil tank must be designed and installed so that— (a) It can withstand, without failure, any vibration, inertia, and...

  17. 27 CFR 24.229 - Tank car and tank truck requirements.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2014-04-01 2014-04-01 false Tank car and tank truck... BUREAU, DEPARTMENT OF THE TREASURY ALCOHOL WINE Spirits § 24.229 Tank car and tank truck requirements. Railroad tank cars and tank trucks used to transport spirits for use in wine production will be constructed...

  18. 27 CFR 24.229 - Tank car and tank truck requirements.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2012-04-01 2012-04-01 false Tank car and tank truck... BUREAU, DEPARTMENT OF THE TREASURY LIQUORS WINE Spirits § 24.229 Tank car and tank truck requirements. Railroad tank cars and tank trucks used to transport spirits for use in wine production will be constructed...

  19. 27 CFR 24.229 - Tank car and tank truck requirements.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Tank car and tank truck... BUREAU, DEPARTMENT OF THE TREASURY LIQUORS WINE Spirits § 24.229 Tank car and tank truck requirements. Railroad tank cars and tank trucks used to transport spirits for use in wine production will be constructed...

  20. 27 CFR 24.229 - Tank car and tank truck requirements.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2013-04-01 2013-04-01 false Tank car and tank truck... BUREAU, DEPARTMENT OF THE TREASURY ALCOHOL WINE Spirits § 24.229 Tank car and tank truck requirements. Railroad tank cars and tank trucks used to transport spirits for use in wine production will be constructed...

  1. 27 CFR 24.229 - Tank car and tank truck requirements.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2011-04-01 2011-04-01 false Tank car and tank truck... BUREAU, DEPARTMENT OF THE TREASURY LIQUORS WINE Spirits § 24.229 Tank car and tank truck requirements. Railroad tank cars and tank trucks used to transport spirits for use in wine production will be constructed...

  2. Milestone 4: Test plan for Reusable Hydrogen Composite Tank System (RHCTS). Task 3: Composite tank materials

    NASA Technical Reports Server (NTRS)

    Greenberg, H. S.

    1994-01-01

    This document is the detailed test plan for the series of tests enumerated in the preceding section. The purpose of this plan is to present the test objectives, test parameters and procedures, expected performance and data analysis plans, criteria for success, test schedules, and related safety provisions and to describe the test articles, test instrumentation, and test facility requirements. Initial testing will be performed to screen four composite materials for suitability for SSTO LH2 tank loads and environmental conditions. The laminates for this testing will be fabricated by fiber placement, which is the manufacturing approach identified as baseline for the tank wall. Even though hand layup will be involved in fabricating many of the internal structural members of the tank, no hand-layup laminates will be evaluated in the screening or subsequent characterization testing. This decision is based on the understanding that mechanical properties measured for hand-layup material should be at least equivalent to properties measured for fiber-placed material, so that the latter should provide no less than a conservative approximation of the former. A single material will be downselected from these screening tests. This material will be subsequently characterized for impact-damage tolerance and durability under conditions of mechanical and thermal cycling, and to establish a preliminary design database to support ongoing analysis. Next, testing will be performed on critical structural elements fabricated from the selected material. Finally, the 8-foot diameter tank article, containing the critical structural features of the full-scale tank, will be fabricated by fiber placement and tested to verify its structural integrity and LH2 containment.

  3. Stapler Esophageal Closure During Total Laryngectomy.

    PubMed

    Ismi, Onur; Unal, Murat; Vayisoglu, Yusuf; Yesilova, Mesut; Helvaci, Ilter; Gorur, Kemal; Ozcan, Cengiz

    2017-01-01

    Mechanical esophageal closure with stapler during total laryngectomy has been used by various authors to decrease the surgical time and pharyngocutaneous fistula (PCF) rates. In a few of the studies, surgical site infection (SSI) rates are mentioned and none of the studies emphasize the effect of decreased surgical time on postoperative cardiovascular and cerebrovascular complications. In this study, the authors compared the PCF rates, SSI rates, operation times between 30 mechanical stapler and 40 manual esophageal closure during total laryngectomy for laryngeal cancer patients. National Nasocomial Infections Surveillance system (NNISS) scores were recorded and compared between groups. Total laryngectomy and total operation times were lower in the stapler group patients (P < 0.001 for total laryngectomy time, P = 0.024 for total operation time). There were lower rates of pharyngocutaneous fistula (P = 0.032), surgical site infection (P = 0.019), and NNISS scores (P = 0.009) in the stapler group. There was no statistically significant difference between groups regarding postoperative systemic complications (P = 0.451). In conclusion, stapler esophageal closure decreases operation time, PCF, SSI rates, and NNISS scores but not the systemic complication rates. Comorbid illnesses and prolonged surgical time are risk factors for postoperative systemic complications in total laryngectomy patients, but patients with additional illnesses must not encourage the surgeon to use stapler for decreasing postoperative systemic complications.

  4. Tank waste remediation system multi-year work plan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1994-09-01

    The Tank Waste Remediation System (TWRS) Multi-Year Work Plan (MYWP) documents the detailed total Program baseline and was constructed to guide Program execution. The TWRS MYWP is one of two elements that comprise the TWRS Program Management Plan. The TWRS MYWP fulfills the Hanford Site Management System requirement for a Multi-Year Program Plan and a Fiscal-Year Work Plan. The MYWP addresses program vision, mission, objectives, strategy, functions and requirements, risks, decisions, assumptions, constraints, structure, logic, schedule, resource requirements, and waste generation and disposition. Sections 1 through 6, Section 8, and the appendixes provide program-wide information. Section 7 includes a subsectionmore » for each of the nine program elements that comprise the TWRS Program. The foundation of any program baseline is base planning data (e.g., defendable product definition, logic, schedules, cost estimates, and bases of estimates). The TWRS Program continues to improve base data. As data improve, so will program element planning, integration between program elements, integration outside of the TWRS Program, and the overall quality of the TWRS MYWP. The MYWP establishes the TWRS baseline objectives to store, treat, and immobilize highly radioactive Hanford waste in an environmentally sound, safe, and cost-effective manner. The TWRS Program will complete the baseline mission in 2040 and will incur costs totalling approximately 40 billion dollars. The summary strategy is to meet the above objectives by using a robust systems engineering effort, placing the highest possible priority on safety and environmental protection; encouraging {open_quotes}out sourcing{close_quotes} of the work to the extent practical; and managing significant but limited resources to move toward final disposition of tank wastes, while openly communicating with all interested stakeholders.« less

  5. Tank waste remediation system multi-year work plan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    The Tank Waste Remediation System (TWRS) Multi-Year Work Plan (MYWP) documents the detailed total Program baseline and was constructed to guide Program execution. The TWRS MYWP is one of two elements that comprise the TWRS Program Management Plan. The TWRS MYWP fulfills the Hanford Site Management System requirement for a Multi-Year Program Plan and a Fiscal-Year Work Plan. The MYWP addresses program vision, mission, objectives, strategy, functions and requirements, risks, decisions, assumptions, constraints, structure, logic, schedule, resource requirements, and waste generation and disposition. Sections 1 through 6, Section 8, and the appendixes provide program-wide information. Section 7 includes a subsectionmore » for each of the nine program elements that comprise the TWRS Program. The foundation of any program baseline is base planning data (e.g., defendable product definition, logic, schedules, cost estimates, and bases of estimates). The TWRS Program continues to improve base data. As data improve, so will program element planning, integration between program elements, integration outside of the TWRS Program, and the overall quality of the TWRS MYWP. The MYWP establishes the TWRS baseline objectives to store, treat, and immobilize highly radioactive Hanford waste in an environmentally sound, safe, and cost-effective manner. The TWRS Program will complete the baseline mission in 2040 and will incur costs totalling approximately 40 billion dollars. The summary strategy is to meet the above objectives by using a robust systems engineering effort, placing the highest possible priority on safety and environmental protection; encouraging {open_quotes}out sourcing{close_quotes} of the work to the extent practical; and managing significant but limited resources to move toward final disposition of tank wastes, while openly communicating with all interested stakeholders.« less

  6. A new cable-tie based sternal closure system: description of the device, technique of implantation and first clinical evaluation

    PubMed Central

    2012-01-01

    Background Wire closure still remains the preferred technique despite reasonable disadvantages. Associated complications, such as infection and sternal instability, cause time- and cost-consuming therapies. We present a new tool for sternal closure with its first clinical experience and results. Methods The sternal ZipFixTM System is based on the cable-tie principle. It primarily consists of biocompatible Poly-Ether-Ether-Ketone implants and is predominantly used peristernally through the intercostal space. The system provides a large implant-to-bone contact for better force distribution and for avoiding bone cut through. Results 50 patients were closed with the ZipFixTM system. No sternal instability was observed at 30 days. Two patients developed a mediastinitis that necessitated the removal of the device; however, the ZipFixTM were intact and the sternum remained stable. Conclusions In our initial evaluation, the short-term results have shown that the sternal ZipFixTM can be used safely and effectively. It is fast, easy to use and serves as a potential alternative for traditional wire closure. PMID:22731778

  7. Heat exchanger and water tank arrangement for passive cooling system

    DOEpatents

    Gillett, James E.; Johnson, F. Thomas; Orr, Richard S.; Schulz, Terry L.

    1993-01-01

    A water storage tank in the coolant water loop of a nuclear reactor contains a tubular heat exchanger. The heat exchanger has tubesheets mounted to the tank connections so that the tubesheets and tubes may be readily inspected and repaired. Preferably, the tubes extend from the tubesheets on a square pitch and then on a rectangular pitch therebetween. Also, the heat exchanger is supported by a frame so that the tank wall is not required to support all of its weight.

  8. Project W-211, initial tank retrieval systems, retrieval control system software configuration management plan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    RIECK, C.A.

    1999-02-23

    This Software Configuration Management Plan (SCMP) provides the instructions for change control of the W-211 Project, Retrieval Control System (RCS) software after initial approval/release but prior to the transfer of custody to the waste tank operations contractor. This plan applies to the W-211 system software developed by the project, consisting of the computer human-machine interface (HMI) and programmable logic controller (PLC) software source and executable code, for production use by the waste tank operations contractor. The plan encompasses that portion of the W-211 RCS software represented on project-specific AUTOCAD drawings that are released as part of the C1 definitive designmore » package (these drawings are identified on the drawing list associated with each C-1 package), and the associated software code. Implementation of the plan is required for formal acceptance testing and production release. The software configuration management plan does not apply to reports and data generated by the software except where specifically identified. Control of information produced by the software once it has been transferred for operation is the responsibility of the receiving organization.« less

  9. Thermal performance of a liquid hydrogen tank multilayer insulation system at warm boundary temperatures of 630, 530, and 152 R

    NASA Astrophysics Data System (ADS)

    Stochl, Robert J.; Knoll, Richard H.

    1991-06-01

    The results are presented of a study conducted to obtain experimental heat transfer data on a liquid hydrogen tank insulated with 34 layers of MLI (multilayer insulation) for warm side boundary temperatures of 630, 530, and 150 R. The MLI system consisted of two blankets, each blanket made up of alternate layers of double silk net (16 layers) and double aluminized Mylar radiation shields (15 layers) contained between two cover sheets of Dacron scrim reinforced Mylar. The insulation system was designed for and installed on a 87.6 in diameter liquid hydrogen tank. Nominal layer density of the insulation blankets is 45 layers/in. The insulation system contained penetrations for structural support, plumbing, and electrical wiring that would be representative of a cryogenic spacecraft. The total steady state heat transfer rates into the test tank for shroud temperatures of 630, 530, 152 R were 164.4, 95.8, and 15.9 BTU/hr respectively. The noninsulation heat leaks into the tank (12 fiberglass support struts, tank plumbing, and instrumentation lines) represent between 13 to 17 pct. of the total heat input. The heat input values would translate to liquid H2 losses of 2.3, 1.3, and 0.2 pct/day, with the tank held at atmospheric pressure.

  10. Thermal performance of a liquid hydrogen tank multilayer insulation system at warm boundary temperatures of 630, 530, and 152 R

    NASA Astrophysics Data System (ADS)

    Stochl, Robert J.; Knoll, Richard H.

    1991-06-01

    The results are presented of a study conducted to obtain experimental heat transfer data on a liquid hydrogen tank insulated with 34 layers of MLI (multilayer insulation) for warm side boundary temperatures of 630, 530, and 150 R. The MLI system consisted of two blankets, each blanket made up of alternate layers of double silk net (16 layers) and double aluminized Mylar radiation shields (15 layers) contained between two cover sheets of Dacron scrim reinforced Mylar. The insulation system was designed for and installed on an 87.6 in. diameter liquid hydrogen tank. Nominal layer density of the insulation blankets is 45 layers/in. The insulation system contained penetrations for structural support, plumbing, and electrical wiring that would be representative of a cryogenic spacecraft. The total steady state heat transfer rates into the test tank for shroud temperatures of 630, 530, 152 R were 164.4, 95.8, and 15.9 BTU/hr, respectively. The noninsulation heat leaks into the tank (12 fiberglass support struts, tank plumbing, and instrumentation lines) represent between 13 to 17 pct. of the total heat input. The heat input values would translate to liquid H2 losses of 2.3, 1.3, and 0.2 pct/day, with the tank held at atmospheric pressure.

  11. Thermal Structures Technology Development for Reusable Launch Vehicle Cryogenic Propellant Tanks

    NASA Technical Reports Server (NTRS)

    Johnson, Theodore F.; Natividad, Roderick; Rivers, H. Kevin; Smith, Russell

    1998-01-01

    Analytical and experimental studies conducted at the NASA Langley Research Center for investigating integrated cryogenic propellant tank systems for a Reusable Launch Vehicle are described. The cryogenic tanks are investigated as an integrated tank system. An integrated tank system includes the tank wall, cryogenic insulation, Thermal Protection System (TPS) attachment sub-structure, and TPS. Analysis codes are used to size the thicknesses of cryogenic insulation and TPS insulation for thermal loads, and to predict tank buckling strengths at various ring frame spacings. The unique test facilities developed for the testing of cryogenic tank components are described. Testing at cryogenic and high-temperatures verifies the integrity of materials, design concepts, manufacturing processes, and thermal/structural analyses. Test specimens ranging from the element level to the subcomponent level are subjected to projected vehicle operational mechanical loads and temperatures. The analytical and experimental studies described in this paper provide a portion of the basic information required for the development of light-weight reusable cryogenic propellant tanks.

  12. Thermal Structures Technology Development for Reusable Launch Vehicle Cryogenic Propellant Tanks

    NASA Technical Reports Server (NTRS)

    Johnson, Theodore F.; Natividad, Roderick; Rivers, H. Kevin; Smith, Russell W.

    2005-01-01

    Analytical and experimental studies conducted at the NASA, Langley Research Center (LaRC) for investigating integrated cryogenic propellant tank systems for a reusable launch vehicle (RLV) are described. The cryogenic tanks are investigated as an integrated tank system. An integrated tank system includes the tank wall, cryogenic insulation, thermal protection system (TPS) attachment sub-structure, and TPS. Analysis codes are used to size the thicknesses of cryogenic insulation and TPS insulation for thermal loads, and to predict tank buckling strengths at various ring frame spacings. The unique test facilities developed for the testing of cryogenic tank components are described. Testing at cryogenic and high-temperatures verifies the integrity of materials, design concepts, manufacturing processes, and thermal/structural analyses. Test specimens ranging from the element level to the subcomponent level are subjected to projected vehicle operational mechanical loads and temperatures. The analytical and experimental studies described in this paper provide a portion of the basic information required for the development of light-weight reusable cryogenic propellant tanks.

  13. 14 CFR 23.1015 - Oil tank tests.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Oil tank tests. 23.1015 Section 23.1015... STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Powerplant Oil System § 23.1015 Oil tank tests. Each oil tank must be tested under § 23.965, except that— (a) The applied pressure must be...

  14. 14 CFR 23.1015 - Oil tank tests.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Oil tank tests. 23.1015 Section 23.1015... STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Powerplant Oil System § 23.1015 Oil tank tests. Each oil tank must be tested under § 23.965, except that— (a) The applied pressure must be...

  15. 14 CFR 23.1015 - Oil tank tests.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Oil tank tests. 23.1015 Section 23.1015... STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Powerplant Oil System § 23.1015 Oil tank tests. Each oil tank must be tested under § 23.965, except that— (a) The applied pressure must be...

  16. 14 CFR 23.1015 - Oil tank tests.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Oil tank tests. 23.1015 Section 23.1015... STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Powerplant Oil System § 23.1015 Oil tank tests. Each oil tank must be tested under § 23.965, except that— (a) The applied pressure must be...

  17. Design and implementation of an air-conditioning system with storage tank for load shifting

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hsu, Y.Y.; Wu, C.J.; Liou, K.L.

    1987-11-01

    The experience with the design, simulation and implementation of an air-conditioning system with chilled water storage tank is presented in this paper. The system is used to shift air-conditioning load of residential and commercial buildings from on-peak to off-peak period. Demand-side load management can thus be achieved if many buildings are equipped with such storage devices. In the design of this system, a lumped-parameter circuit model is first employed to simulate the heat transfer within the air-conditioned building such that the required capacity of the storage tank can be figured out. Then, a set of desirable parameters for the temperaturemore » controller of the system are determined using the parameter plane method and the root locus method. The validity of the proposed mathematical model and design approach is verified by comparing the results obtained from field tests with those from the computer simulations. Cost-benefit analysis of the system is also discussed.« less

  18. Modeling the system dynamics for nutrient removal in an innovative septic tank media filter.

    PubMed

    Xuan, Zhemin; Chang, Ni-Bin; Wanielista, Martin

    2012-05-01

    A next generation septic tank media filter to replace or enhance the current on-site wastewater treatment drainfields was proposed in this study. Unit operation with known treatment efficiencies, flow pattern identification, and system dynamics modeling was cohesively concatenated in order to prove the concept of a newly developed media filter. A multicompartmental model addressing system dynamics and feedbacks based on our assumed microbiological processes accounting for aerobic, anoxic, and anaerobic conditions in the media filter was constructed and calibrated with the aid of in situ measurements and the understanding of the flow patterns. Such a calibrated system dynamics model was then applied for a sensitivity analysis under changing inflow conditions based on the rates of nitrification and denitrification characterized through the field-scale testing. This advancement may contribute to design such a drainfield media filter in household septic tank systems in the future.

  19. Impact of Different Standard Type A7A Drum Closure-Ring Practices on Gasket Contraction and Bolt Closure Distance– 15621

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ketusky, Edward; Blanton, Paul; Bobbitt, John H.

    The Department of Energy, the Savannah River National Laboratory, several manufacturers of specification drums, and the United States Department of Transportation (DOT) are collaborating in the development of a guidance document for DOE contractors and vendors who wish to qualify containers to DOT 7A Type A requirements. Currently, the effort is focused on DOT 7A Type A 208-liter (55-gallons) drums with a standard 12-gauge bolted closure ring. The U.S. requirements, contained in Title 49, Part 178.350 “Specification 7A; general packaging, Type A specifies a competent authority review of the packaging is not required for the transport of (Class 7) radioactivemore » material containing less than Type A quantities of radioactive material. For Type AF drums, a 4 ft. regulatory free drop must be performed, such that the drum “suffers maximum damage.” Although the actual orientation is not defined by the specification, recent studies suggest that maximum damage would result from a shallow angle top impact, where kinetic energy is transferred to the lid, ultimately causing heavy damage to the lid, or even worse, causing the lid to come off. Since each vendor develops closure recommendations/procedures for the drums they manufacture, key parameters applied to drums during closing vary based on vendor. As part of the initial phase of the collaboration, the impact of the closure variants on the ability of the drum to suffer maximum damage is investigated. Specifically, closure testing is performed varying: 1) the amount of torque applied to the closure ring bolt; and, 2) stress relief protocol, including: a) weight of hammer; and, b) orientation that the hammer hits the closure ring. After closure, the amount of drum lid gasket contraction and the distance that the closure bolt moves through the closure ring is measured.« less

  20. Methane emissions from sugarcane vinasse storage and transportation systems: Comparison between open channels and tanks

    NASA Astrophysics Data System (ADS)

    Oliveira, Bruna Gonçalves; Carvalho, João Luís Nunes; Chagas, Mateus Ferreira; Cerri, Carlos Eduardo Pellegrino; Cerri, Carlos Clemente; Feigl, Brigitte Josefine

    2017-06-01

    Over the last few years the brazilian sugarcane sector has produced an average of 23.5 million liters of ethanol annually. This scale of production generates large amounts of vinasse, which depending on the manner that is disposed, can result significant greenhouse gas emissions. This study aimed to quantify the methane (CH4) emissions associated with the two most widespread systems of vinasse storage and transportation used in Brazil; open channel and those comprising of tanks and pipes. Additionally, a laboratory incubation study was performed with the aim of isolating the effects of vinasse, sediment and the interaction between these factors on CH4 emissions. We observed significant differences in CH4 emissions between the sampling points along the channels during both years of evaluation (2012-2013). In the channel system, around 80% of CH4 emissions were recorded from uncoated sections. Overall, the average CH4 emission intensity was 1.36 kg CO2eq m-3 of vinasse transported in open channels, which was 620 times higher than vinasse transported through a system of tanks and closed pipes. The laboratory incubation corroborated field results, suggesting that vinasse alone does not contribute significant emissions of CH4. Higher CH4 emissions were observed when vinasse and sediment were incubated together. In summary, our findings demonstrate that CH4 emissions originate through the anaerobic decomposition of organic material deposited on the bottom of channels and tanks. The adoption of coated channels as a substitute to uncoated channels offers the potential for an effective and affordable means of reducing CH4 emissions. Ultimately, the modernization of vinasse storage and transportation systems through the adoption of tank and closed pipe systems will provide an effective strategy for mitigating CH4 emissions generated during the disposal phase of the sugarcane ethanol production process.