Sample records for tank vessel loading

  1. 40 CFR 63.651 - Marine tank vessel loading operation provisions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 11 2013-07-01 2013-07-01 false Marine tank vessel loading operation... Marine tank vessel loading operation provisions. (a) Except as provided in paragraphs (b) through (d) of this section, each owner or operator of a marine tank vessel loading operation located at a petroleum...

  2. 40 CFR 63.651 - Marine tank vessel loading operation provisions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 10 2010-07-01 2010-07-01 false Marine tank vessel loading operation... Marine tank vessel loading operation provisions. (a) Except as provided in paragraphs (b) through (d) of this section, each owner or operator of a marine tank vessel loading operation located at a petroleum...

  3. 33 CFR 157.15 - Slop tanks in tank vessels.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 2 2011-07-01 2011-07-01 false Slop tanks in tank vessels. 157... (CONTINUED) POLLUTION RULES FOR THE PROTECTION OF THE MARINE ENVIRONMENT RELATING TO TANK VESSELS CARRYING OIL IN BULK Design, Equipment, and Installation § 157.15 Slop tanks in tank vessels. (a) Number. A...

  4. 33 CFR 157.15 - Slop tanks in tank vessels.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 2 2013-07-01 2013-07-01 false Slop tanks in tank vessels. 157... (CONTINUED) POLLUTION RULES FOR THE PROTECTION OF THE MARINE ENVIRONMENT RELATING TO TANK VESSELS CARRYING OIL IN BULK Design, Equipment, and Installation § 157.15 Slop tanks in tank vessels. (a) Number. A...

  5. 33 CFR 157.15 - Slop tanks in tank vessels.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 2 2012-07-01 2012-07-01 false Slop tanks in tank vessels. 157... (CONTINUED) POLLUTION RULES FOR THE PROTECTION OF THE MARINE ENVIRONMENT RELATING TO TANK VESSELS CARRYING OIL IN BULK Design, Equipment, and Installation § 157.15 Slop tanks in tank vessels. (a) Number. A...

  6. 33 CFR 157.15 - Slop tanks in tank vessels.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 2 2014-07-01 2014-07-01 false Slop tanks in tank vessels. 157... (CONTINUED) POLLUTION RULES FOR THE PROTECTION OF THE MARINE ENVIRONMENT RELATING TO TANK VESSELS CARRYING OIL IN BULK Design, Equipment, and Installation § 157.15 Slop tanks in tank vessels. (a) Number. A...

  7. 33 CFR 157.140 - Tank vessel inspections.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 2 2012-07-01 2012-07-01 false Tank vessel inspections. 157.140...) POLLUTION RULES FOR THE PROTECTION OF THE MARINE ENVIRONMENT RELATING TO TANK VESSELS CARRYING OIL IN BULK Crude Oil Washing (COW) System on Tank Vessels Inspections § 157.140 Tank vessel inspections. (a) Before...

  8. 46 CFR 296.20 - Tank vessels.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 8 2011-10-01 2011-10-01 false Tank vessels. 296.20 Section 296.20 Shipping MARITIME... SECURITY PROGRAM (MSP) Priority for Granting Applications § 296.20 Tank vessels. (a) First priority for the award of MSP Operating Agreements under MSA 2003 shall be granted to a tank vessel that is constructed...

  9. 46 CFR 296.20 - Tank vessels.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 8 2013-10-01 2013-10-01 false Tank vessels. 296.20 Section 296.20 Shipping MARITIME... SECURITY PROGRAM (MSP) Priority for Granting Applications § 296.20 Tank vessels. (a) First priority for the award of MSP Operating Agreements under MSA 2003 shall be granted to a tank vessel that is constructed...

  10. 46 CFR 296.20 - Tank vessels.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 8 2014-10-01 2014-10-01 false Tank vessels. 296.20 Section 296.20 Shipping MARITIME... SECURITY PROGRAM (MSP) Priority for Granting Applications § 296.20 Tank vessels. (a) First priority for the award of MSP Operating Agreements under MSA 2003 shall be granted to a tank vessel that is constructed...

  11. 46 CFR 296.20 - Tank vessels.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 8 2010-10-01 2010-10-01 false Tank vessels. 296.20 Section 296.20 Shipping MARITIME... SECURITY PROGRAM (MSP) Priority for Granting Applications § 296.20 Tank vessels. (a) First priority for the award of MSP Operating Agreements under MSA 2003 shall be granted to a tank vessel that is constructed...

  12. 46 CFR 296.20 - Tank vessels.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 8 2012-10-01 2012-10-01 false Tank vessels. 296.20 Section 296.20 Shipping MARITIME... SECURITY PROGRAM (MSP) Priority for Granting Applications § 296.20 Tank vessels. (a) First priority for the award of MSP Operating Agreements under MSA 2003 shall be granted to a tank vessel that is constructed...

  13. 33 CFR 155.810 - Tank vessel security.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Tank vessel security. 155.810..., Procedures, Equipment, and Records § 155.810 Tank vessel security. Operators of tank vessels carrying more oil cargo residue than normal in any cargo tank must assign a surveillance person or persons...

  14. 33 CFR 155.810 - Tank vessel security.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 2 2012-07-01 2012-07-01 false Tank vessel security. 155.810..., Procedures, Equipment, and Records § 155.810 Tank vessel security. Operators of tank vessels carrying more oil cargo residue than normal in any cargo tank must assign a surveillance person or persons...

  15. 46 CFR 32.65-30 - Tank vessels with independent tanks-TB/ALL.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 1 2012-10-01 2012-10-01 false Tank vessels with independent tanks-TB/ALL. 32.65-30 Section 32.65-30 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS SPECIAL EQUIPMENT, MACHINERY, AND HULL REQUIREMENTS Hull Requirements for Tank Vessels Constructed On or After November 10...

  16. 46 CFR 32.65-30 - Tank vessels with independent tanks-TB/ALL.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 1 2011-10-01 2011-10-01 false Tank vessels with independent tanks-TB/ALL. 32.65-30 Section 32.65-30 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS SPECIAL EQUIPMENT, MACHINERY, AND HULL REQUIREMENTS Hull Requirements for Tank Vessels Constructed On or After November 10...

  17. 46 CFR 32.65-30 - Tank vessels with independent tanks-TB/ALL.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 1 2014-10-01 2014-10-01 false Tank vessels with independent tanks-TB/ALL. 32.65-30 Section 32.65-30 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS SPECIAL EQUIPMENT, MACHINERY, AND HULL REQUIREMENTS Hull Requirements for Tank Vessels Constructed On or After November 10...

  18. 46 CFR 32.65-30 - Tank vessels with independent tanks-TB/ALL.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 1 2013-10-01 2013-10-01 false Tank vessels with independent tanks-TB/ALL. 32.65-30 Section 32.65-30 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS SPECIAL EQUIPMENT, MACHINERY, AND HULL REQUIREMENTS Hull Requirements for Tank Vessels Constructed On or After November 10...

  19. 46 CFR 4.03-70 - Tank vessel.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 1 2010-10-01 2010-10-01 false Tank vessel. 4.03-70 Section 4.03-70 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY PROCEDURES APPLICABLE TO THE PUBLIC MARINE CASUALTIES AND INVESTIGATIONS Definitions § 4.03-70 Tank vessel. Tank vessel means a vessel that is constructed or adapted to...

  20. 46 CFR 4.03-70 - Tank vessel.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 1 2012-10-01 2012-10-01 false Tank vessel. 4.03-70 Section 4.03-70 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY PROCEDURES APPLICABLE TO THE PUBLIC MARINE CASUALTIES AND INVESTIGATIONS Definitions § 4.03-70 Tank vessel. Tank vessel means a vessel that is constructed or adapted to...

  1. 46 CFR 4.03-70 - Tank vessel.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 1 2013-10-01 2013-10-01 false Tank vessel. 4.03-70 Section 4.03-70 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY PROCEDURES APPLICABLE TO THE PUBLIC MARINE CASUALTIES AND INVESTIGATIONS Definitions § 4.03-70 Tank vessel. Tank vessel means a vessel that is constructed or adapted to...

  2. 46 CFR 4.03-70 - Tank vessel.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 1 2011-10-01 2011-10-01 false Tank vessel. 4.03-70 Section 4.03-70 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY PROCEDURES APPLICABLE TO THE PUBLIC MARINE CASUALTIES AND INVESTIGATIONS Definitions § 4.03-70 Tank vessel. Tank vessel means a vessel that is constructed or adapted to...

  3. 46 CFR 4.03-70 - Tank vessel.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 1 2014-10-01 2014-10-01 false Tank vessel. 4.03-70 Section 4.03-70 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY PROCEDURES APPLICABLE TO THE PUBLIC MARINE CASUALTIES AND INVESTIGATIONS Definitions § 4.03-70 Tank vessel. Tank vessel means a vessel that is constructed or adapted to...

  4. 33 CFR 157.140 - Tank vessel inspections.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Crude Oil Washing (COW) System on Tank Vessels Inspections § 157.140 Tank vessel inspections. (a) Before... having a COW system under § 157.10(e), § 157.10(a)(2), or § 157.10c(b)(2) and each foreign tank vessel...

  5. 33 CFR 157.147 - Similar tank design: Inspections on foreign tank vessels.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Similar tank design: Inspections... § 157.147 Similar tank design: Inspections on foreign tank vessels. (a) If a foreign tank vessel has..., for only one of those tanks to be inspected under § 157.140(a)(1). (b) Only one tank of a group of...

  6. 33 CFR 155.815 - Tank vessel integrity.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 2 2012-07-01 2012-07-01 false Tank vessel integrity. 155.815..., Procedures, Equipment, and Records § 155.815 Tank vessel integrity. (a) Except as provided in paragraph (b) of this section, a tank vessel underway or at anchor must have all closure mechanisms on the...

  7. 33 CFR 155.815 - Tank vessel integrity.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Tank vessel integrity. 155.815..., Procedures, Equipment, and Records § 155.815 Tank vessel integrity. (a) Except as provided in paragraph (b) of this section, a tank vessel underway or at anchor must have all closure mechanisms on the...

  8. 46 CFR 30.10-69 - Tank vessel-TB/ALL.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 1 2012-10-01 2012-10-01 false Tank vessel-TB/ALL. 30.10-69 Section 30.10-69 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS GENERAL PROVISIONS Definitions § 30.10-69 Tank vessel—TB/ALL. The term tank vessel means a vessel that is constructed or adapted to carry, or that...

  9. 46 CFR 30.10-69 - Tank vessel-TB/ALL.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 1 2011-10-01 2011-10-01 false Tank vessel-TB/ALL. 30.10-69 Section 30.10-69 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS GENERAL PROVISIONS Definitions § 30.10-69 Tank vessel—TB/ALL. The term tank vessel means a vessel that is constructed or adapted to carry, or that...

  10. 46 CFR 30.10-69 - Tank vessel-TB/ALL.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 1 2013-10-01 2013-10-01 false Tank vessel-TB/ALL. 30.10-69 Section 30.10-69 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS GENERAL PROVISIONS Definitions § 30.10-69 Tank vessel—TB/ALL. The term tank vessel means a vessel that is constructed or adapted to carry, or that...

  11. 46 CFR 30.10-69 - Tank vessel-TB/ALL.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 1 2014-10-01 2014-10-01 false Tank vessel-TB/ALL. 30.10-69 Section 30.10-69 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS GENERAL PROVISIONS Definitions § 30.10-69 Tank vessel—TB/ALL. The term tank vessel means a vessel that is constructed or adapted to carry, or that...

  12. 46 CFR 30.10-69 - Tank vessel-TB/ALL.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 1 2010-10-01 2010-10-01 false Tank vessel-TB/ALL. 30.10-69 Section 30.10-69 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS GENERAL PROVISIONS Definitions § 30.10-69 Tank vessel—TB/ALL. The term tank vessel means a vessel that is constructed or adapted to carry, or that...

  13. 33 CFR 157.15 - Slop tanks in tank vessels.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... tank. (2) A new vessel of 70,000 tons DWT or more must have at least two slop tanks. (b) Capacity. Slop tanks must have the total capacity to retain oily mixtures from cargo tank washings, oil residue, and ballast water containing an oily mixture of 3 percent or more of the oil carrying capacity. Two percent...

  14. 46 CFR 154.409 - Dynamic loads from vessel motion.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 5 2012-10-01 2012-10-01 false Dynamic loads from vessel motion. 154.409 Section 154... reduced speed is used in the hull strength calculation under § 31.10-5(c) of this chapter. (b) If the... EC02FE91.086 (d) If a cargo tank is designed to avoid fatigue, the dynamic loads determined under paragraph...

  15. 46 CFR 154.409 - Dynamic loads from vessel motion.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 5 2011-10-01 2011-10-01 false Dynamic loads from vessel motion. 154.409 Section 154... reduced speed is used in the hull strength calculation under § 31.10-5(c) of this chapter. (b) If the... EC02FE91.086 (d) If a cargo tank is designed to avoid fatigue, the dynamic loads determined under paragraph...

  16. 46 CFR 154.409 - Dynamic loads from vessel motion.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 5 2013-10-01 2013-10-01 false Dynamic loads from vessel motion. 154.409 Section 154... reduced speed is used in the hull strength calculation under § 31.10-5(c) of this chapter. (b) If the... EC02FE91.086 (d) If a cargo tank is designed to avoid fatigue, the dynamic loads determined under paragraph...

  17. 46 CFR 154.409 - Dynamic loads from vessel motion.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 5 2014-10-01 2014-10-01 false Dynamic loads from vessel motion. 154.409 Section 154... reduced speed is used in the hull strength calculation under § 31.10-5(c) of this chapter. (b) If the... EC02FE91.086 (d) If a cargo tank is designed to avoid fatigue, the dynamic loads determined under paragraph...

  18. 33 CFR 157.146 - Similar tank design: Inspections on U.S. tank vessels.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... RELATING TO TANK VESSELS CARRYING OIL IN BULK Crude Oil Washing (COW) System on Tank Vessels Inspections... Officer in Charge, Marine Inspection, of the zone in which the COW system is inspected, for only one of...

  19. 33 CFR 157.116 - Required documents: U.S. tank vessels.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... CARRYING OIL IN BULK Crude Oil Washing (COW) System on Tank Vessels General § 157.116 Required documents: U.S. tank vessels. The owner, operator, and master of a U.S. tank vessel having a COW system under... COW system consisting of— (1) A document from an authorized CS that certifies the vessel meets § 157...

  20. 33 CFR 157.102 - Plans for foreign tank vessels: Submission.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... CARRYING OIL IN BULK Crude Oil Washing (COW) System on Tank Vessels General § 157.102 Plans for foreign tank vessels: Submission. If the owner or operator of a foreign tank vessel having a COW system under... include— (a) A drawing or diagram of the COW pumping and piping system that meets 46 CFR 56.01-10(d); (b...

  1. 46 CFR 154.650 - Cargo tank and process pressure vessel welding.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Cargo tank and process pressure vessel welding. 154.650... Equipment Construction § 154.650 Cargo tank and process pressure vessel welding. (a) Cargo tank and process pressure vessel welding must meet Subpart 54.05 and Part 57 of this chapter. (b) Welding consumables used...

  2. 46 CFR 154.650 - Cargo tank and process pressure vessel welding.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 5 2012-10-01 2012-10-01 false Cargo tank and process pressure vessel welding. 154.650... Equipment Construction § 154.650 Cargo tank and process pressure vessel welding. (a) Cargo tank and process pressure vessel welding must meet Subpart 54.05 and Part 57 of this chapter. (b) Welding consumables used...

  3. 46 CFR 154.650 - Cargo tank and process pressure vessel welding.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 5 2014-10-01 2014-10-01 false Cargo tank and process pressure vessel welding. 154.650... Equipment Construction § 154.650 Cargo tank and process pressure vessel welding. (a) Cargo tank and process pressure vessel welding must meet Subpart 54.05 and Part 57 of this chapter. (b) Welding consumables used...

  4. 46 CFR 154.650 - Cargo tank and process pressure vessel welding.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 5 2011-10-01 2011-10-01 false Cargo tank and process pressure vessel welding. 154.650... Equipment Construction § 154.650 Cargo tank and process pressure vessel welding. (a) Cargo tank and process pressure vessel welding must meet Subpart 54.05 and Part 57 of this chapter. (b) Welding consumables used...

  5. 46 CFR 154.650 - Cargo tank and process pressure vessel welding.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 5 2013-10-01 2013-10-01 false Cargo tank and process pressure vessel welding. 154.650... Equipment Construction § 154.650 Cargo tank and process pressure vessel welding. (a) Cargo tank and process pressure vessel welding must meet Subpart 54.05 and Part 57 of this chapter. (b) Welding consumables used...

  6. 46 CFR 15.525 - Additional manning requirements for tank vessels.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 1 2014-10-01 2014-10-01 false Additional manning requirements for tank vessels. 15.525... MANNING REQUIREMENTS Manning Requirements; Inspected Vessels § 15.525 Additional manning requirements for tank vessels. Parts 31 and 35 of this chapter contain additional manning requirements applicable to...

  7. 33 CFR 157.100 - Plans for U.S. tank vessels: Submission.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... CARRYING OIL IN BULK Crude Oil Washing (COW) System on Tank Vessels General § 157.100 Plans for U.S. tank vessels: Submission. (a) Before each U.S. tank vessel having a COW system under § 157.10(e), § 157.10a(a... submit to the Coast Guard plans that include— (1) A drawing or diagram of the COW pumping and piping...

  8. 46 CFR 32.35-10 - Steering apparatus on tank vessels-TB/ALL.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 1 2011-10-01 2011-10-01 false Steering apparatus on tank vessels-TB/ALL. 32.35-10 Section 32.35-10 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS SPECIAL EQUIPMENT, MACHINERY, AND HULL REQUIREMENTS Main and Auxiliary Machinery § 32.35-10 Steering apparatus on tank vessels...

  9. 46 CFR 32.35-10 - Steering apparatus on tank vessels-TB/ALL.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 1 2010-10-01 2010-10-01 false Steering apparatus on tank vessels-TB/ALL. 32.35-10 Section 32.35-10 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS SPECIAL EQUIPMENT, MACHINERY, AND HULL REQUIREMENTS Main and Auxiliary Machinery § 32.35-10 Steering apparatus on tank vessels...

  10. Vessel Loading Observations

    DOT National Transportation Integrated Search

    1999-01-01

    Vessel Loading Observations Procedures for P.L. 480, Titles II & III, : Section 416(b) and Food for Progress programs. Notice advises steamship lines and other interested parties that the vessel loading observation (VLO) procedure will continue to be...

  11. 46 CFR 154.406 - Design loads for cargo tanks and fixtures: General.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 5 2013-10-01 2013-10-01 false Design loads for cargo tanks and fixtures: General. 154.406 Section 154.406 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SAFETY STANDARDS FOR SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES Design, Construction and Equipment Cargo Containment...

  12. 46 CFR 154.406 - Design loads for cargo tanks and fixtures: General.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 5 2012-10-01 2012-10-01 false Design loads for cargo tanks and fixtures: General. 154.406 Section 154.406 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SAFETY STANDARDS FOR SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES Design, Construction and Equipment Cargo Containment...

  13. 46 CFR 154.406 - Design loads for cargo tanks and fixtures: General.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 5 2014-10-01 2014-10-01 false Design loads for cargo tanks and fixtures: General. 154.406 Section 154.406 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SAFETY STANDARDS FOR SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES Design, Construction and Equipment Cargo Containment...

  14. 33 CFR 157.10d - Double hulls on tank vessels.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Double hulls on tank vessels. 157... OIL IN BULK Design, Equipment, and Installation § 157.10d Double hulls on tank vessels. (a) With the... completed after December 31, 1993; or (4) That is otherwise required to have a double hull by 46 U.S.C...

  15. 27 CFR 25.145 - Tanks, vehicles, and vessels.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2013-04-01 2013-04-01 false Tanks, vehicles, and vessels. 25.145 Section 25.145 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT OF THE TREASURY ALCOHOL BEER Marks, Brands, and Labels § 25.145 Tanks, vehicles, and...

  16. 27 CFR 25.145 - Tanks, vehicles, and vessels.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Tanks, vehicles, and vessels. 25.145 Section 25.145 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT OF THE TREASURY LIQUORS BEER Marks, Brands, and Labels § 25.145 Tanks, vehicles, and...

  17. Discontinuity stresses in metallic pressure vessels

    NASA Technical Reports Server (NTRS)

    1971-01-01

    The state of the art, criteria, and recommended practices for the theoretical and experimental analyses of discontinuity stresses and their distribution in metallic pressure vessels for space vehicles are outlined. The applicable types of pressure vessels include propellant tanks ranging from main load-carrying integral tank structure to small auxiliary tanks, storage tanks, solid propellant motor cases, high pressure gas bottles, and pressurized cabins. The major sources of discontinuity stresses are discussed, including deviations in geometry, material properties, loads, and temperature. The advantages, limitations, and disadvantages of various theoretical and experimental discontinuity analysis methods are summarized. Guides are presented for evaluating discontinuity stresses so that pressure vessel performance will not fall below acceptable levels.

  18. 33 CFR 165.1151 - Security Zones; liquefied hazardous gas tank vessels, San Pedro Bay, California.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... a tank vessel as liquefied petroleum gas, liquefied natural gas, or similar liquefied gas products... Eleventh Coast Guard District § 165.1151 Security Zones; liquefied hazardous gas tank vessels, San Pedro... the sea floor, within a 500 yard radius around any liquefied hazardous gas (LHG) tank vessel that is...

  19. 46 CFR 154.410 - Cargo tank sloshing loads.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 5 2012-10-01 2012-10-01 false Cargo tank sloshing loads. 154.410 Section 154.410... Containment Systems § 154.410 Cargo tank sloshing loads. (a) For the calculation required under § 154.406 (a... be specially approved by the Commandant (CG-ENG). (b) If the sloshing loads affect the cargo tank...

  20. 46 CFR 154.410 - Cargo tank sloshing loads.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Cargo tank sloshing loads. 154.410 Section 154.410... Containment Systems § 154.410 Cargo tank sloshing loads. (a) For the calculation required under § 154.406 (a... be specially approved by the Commandant (CG-522). (b) If the sloshing loads affect the cargo tank...

  1. 46 CFR 154.411 - Cargo tank thermal loads.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 5 2012-10-01 2012-10-01 false Cargo tank thermal loads. 154.411 Section 154.411... Containment Systems § 154.411 Cargo tank thermal loads. For the calculations required under § 154.406(a)(4... thermal loads for the cooling down periods of cargo tanks for design temperatures lower than −55 °C (−67...

  2. 46 CFR 154.411 - Cargo tank thermal loads.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Cargo tank thermal loads. 154.411 Section 154.411... Containment Systems § 154.411 Cargo tank thermal loads. For the calculations required under § 154.406(a)(4... thermal loads for the cooling down periods of cargo tanks for design temperatures lower than −55 °C (−67...

  3. 46 CFR 32.65-35 - Tank vessels carrying Grade A liquids-TB/ALL.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ..., 1936, and Prior to July 1, 1951 § 32.65-35 Tank vessels carrying Grade A liquids—TB/ALL. Cargo tanks for Grade A liquids having a Reid vapor pressure in excess of 25 pounds shall be independent of the... 46 Shipping 1 2013-10-01 2013-10-01 false Tank vessels carrying Grade A liquids-TB/ALL. 32.65-35...

  4. 46 CFR 32.65-35 - Tank vessels carrying Grade A liquids-TB/ALL.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ..., 1936, and Prior to July 1, 1951 § 32.65-35 Tank vessels carrying Grade A liquids—TB/ALL. Cargo tanks for Grade A liquids having a Reid vapor pressure in excess of 25 pounds shall be independent of the... 46 Shipping 1 2012-10-01 2012-10-01 false Tank vessels carrying Grade A liquids-TB/ALL. 32.65-35...

  5. 46 CFR 32.65-35 - Tank vessels carrying Grade A liquids-TB/ALL.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ..., 1936, and Prior to July 1, 1951 § 32.65-35 Tank vessels carrying Grade A liquids—TB/ALL. Cargo tanks for Grade A liquids having a Reid vapor pressure in excess of 25 pounds shall be independent of the... 46 Shipping 1 2014-10-01 2014-10-01 false Tank vessels carrying Grade A liquids-TB/ALL. 32.65-35...

  6. 46 CFR 32.65-35 - Tank vessels carrying Grade A liquids-TB/ALL.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ..., 1936, and Prior to July 1, 1951 § 32.65-35 Tank vessels carrying Grade A liquids—TB/ALL. Cargo tanks for Grade A liquids having a Reid vapor pressure in excess of 25 pounds shall be independent of the... 46 Shipping 1 2011-10-01 2011-10-01 false Tank vessels carrying Grade A liquids-TB/ALL. 32.65-35...

  7. 46 CFR 32.65-35 - Tank vessels carrying Grade A liquids-TB/ALL.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ..., 1936, and Prior to July 1, 1951 § 32.65-35 Tank vessels carrying Grade A liquids—TB/ALL. Cargo tanks for Grade A liquids having a Reid vapor pressure in excess of 25 pounds shall be independent of the... 46 Shipping 1 2010-10-01 2010-10-01 false Tank vessels carrying Grade A liquids-TB/ALL. 32.65-35...

  8. 33 CFR 157.10 - Segregated ballast tanks and crude oil washing systems for certain new vessels.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... MARINE ENVIRONMENT RELATING TO TANK VESSELS CARRYING OIL IN BULK Design, Equipment, and Installation § 157.10 Segregated ballast tanks and crude oil washing systems for certain new vessels. (a) This...) Each tank vessel under this section of 20,000 DWT or more that carries crude oil must have a crude oil...

  9. 33 CFR 157.27 - Discharges: Tank vessels carrying oil exclusively on rivers, lakes, bays, sounds, and the Great...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... oil exclusively on rivers, lakes, bays, sounds, and the Great Lakes, and seagoing tank vessels of less... VESSELS CARRYING OIL IN BULK Vessel Operation § 157.27 Discharges: Tank vessels carrying oil exclusively... tons. Unless a tank vessel carrying oil exclusively on rivers, lakes, bays, sounds, and the Great Lakes...

  10. 33 CFR 157.118 - Required documents: Foreign tank vessels.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... CARRYING OIL IN BULK Crude Oil Washing (COW) System on Tank Vessels General § 157.118 Required documents... having a COW system under § 157.10c(b)(2) shall ensure that the vessel does not enter the navigable...) Evidence that the COW system passed the required inspections by— (i) A document from an authorized CS or...

  11. 33 CFR 157.110 - Crude Oil Washing Operations and Equipment Manual for foreign tank vessels: Submission.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... MARINE ENVIRONMENT RELATING TO TANK VESSELS CARRYING OIL IN BULK Crude Oil Washing (COW) System on Tank...: Submission. If the owner or operator of a foreign tank vessel having a COW system under § 157.10(e), § 157...

  12. Fracture control method for composite tanks with load sharing liners

    NASA Technical Reports Server (NTRS)

    Bixler, W. D.

    1975-01-01

    The experimental program was based on the premise that the plastic sizing cycle, which each pressure vessel is subjected to prior to operation, acts as an effective proof test of the liner, screening out all flaws or cracks larger than a critical size. In doing so, flaw growth potential is available for cyclic operation at pressures less than the sizing pressure. Static fracture and cyclic life tests, involving laboratory type specimens and filament overwrapped tanks, were conducted on three liner materials: (1) 2219-T62 aluminum, (2) Inconel X750 STA, and (3) cryoformed 301 stainless steel. Variables included material condition, thickness, flaw size, flaw shape, temperature, sizing stress level, operating stress level and minimum-to-maximum operating stress ratio. From the empirical data base obtained, a procedure was established by which the service life of composite tanks with load sharing liners could be guaranteed with a high degree of confidence.

  13. 78 FR 63235 - Tank Vessel Oil Transfers

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-23

    ... protect the marine environment from oil spilled during oil transfers to or from tank vessels; and what... of your document so that we can contact you if we have questions regarding your submission. To submit... ``Open Docket Folder'' on the line associated with this notice. If you do not have access to the internet...

  14. Locomotive fuel tank structural safety testing program : passenger locomotive fuel tank jackknife derailment load test.

    DOT National Transportation Integrated Search

    2010-08-01

    This report presents the results of a passenger locomotive fuel tank load test simulating jackknife derailment (JD) load. The test is based on FRA requirements for locomotive fuel tanks in the Title 49, Code of Federal Regulations (CFR), Part 238, Ap...

  15. Soil load above Hanford waste storage tanks (2 volumes)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pianka, E.W.

    1995-01-25

    This document is a compilation of work performed as part of the Dome Load Control Project in 1994. Section 2 contains the calculations of the weight of the soil over the tank dome for each of the 75-feet-diameter waste-storage tanks located at the Hanford Site. The chosen soil specific weight and soil depth measured at the apex of the dome crown are the same as those used in the primary analysis that qualified the design. Section 3 provides reference dimensions for each of the tank farm sites. The reference dimensions spatially orient the tanks and provide an outer diameter formore » each tank. Section 4 summarizes the available soil surface elevation data. It also provides examples of the calculations performed to establish the present soil elevation estimates. The survey data and other data sources from which the elevation data has been obtained are printed separately in Volume 2 of this Supporting Document. Section 5 contains tables that provide an overall summary of the present status of dome loads. Tables summarizing the load state corresponding to the soil depth and soil specific weight for the original qualification analysis, the gravity load requalification for soil depth and soil specific weight greater than the expected actual values, and a best estimate condition of soil depth and specific weight are presented for the Double-Shell Tanks. For the Single-Shell Tanks, only the original qualification analysis is available; thus, the tabulated results are for this case only. Section 6 provides a brief overview of past analysis and testing results that given an indication of the load capacity of the waste storage tanks that corresponds to a condition approaching ultimate failure of the tank. 31 refs.« less

  16. Ring stability of underground toroidal tanks

    NASA Astrophysics Data System (ADS)

    Lubis, Asnawi; Su'udi, Ahmad

    2017-06-01

    The design of pressure vessels subjected to internal pressure is governed by its strength, while the design of pressure vessels subjected to external pressure is governed by its stability, which is for circular cross-section is called the ring stability. This paper presented the results of finite element study of ring stability of circular toroidal tank without stiffener under external pressure. The tank was placed underground and external pressure load from soil was simulated as pressure at the top of the vessel along 30° circumferentially. One might ask the reason for choosing toroidal rather than cylindrical tank. Preliminary finite element studies showed that toroidal shells can withstand higher external pressure than cylindrical shells. In this study, the volume of the tank was fixed for 15,000 litters. The buckling external pressure (pL) was calculated for radius ratio (R/r) of 2, 3, and 4. The corresponding cross-section radiuses were 724.3 mm, 632.7 mm, and 574.9 mm, respectively. The selected element type was SHELL 281 from the ANSYS element library. To obtain the buckling load, the arc-length method was used in the nonlinear analysis. Both material and geometric nonlinearities were activated during the analysis. The conclusion of this study is that short-radius and thin-walled toroidal shell produces higher buckling load.

  17. 33 CFR 401.73 - Cleaning tanks-hazardous cargo vessels.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 3 2011-07-01 2011-07-01 false Cleaning tanks-hazardous cargo vessels. 401.73 Section 401.73 Navigation and Navigable Waters SAINT LAWRENCE SEAWAY DEVELOPMENT CORPORATION, DEPARTMENT OF TRANSPORTATION SEAWAY REGULATIONS AND RULES Regulations Dangerous Cargo § 401.73...

  18. 33 CFR 165.1151 - Security Zones; liquefied hazardous gas tank vessels, San Pedro Bay, California.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... the sea floor, within a 500 yard radius around any liquefied hazardous gas (LHG) tank vessel that is... waters, extending from the surface to the sea floor, within a 500 yard radius around any LHG tank vessel that is moored, or in the process of mooring, at any berth within the Los Angeles or Long Beach port...

  19. 33 CFR 165.1151 - Security Zones; liquefied hazardous gas tank vessels, San Pedro Bay, California.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... the sea floor, within a 500 yard radius around any liquefied hazardous gas (LHG) tank vessel that is... waters, extending from the surface to the sea floor, within a 500 yard radius around any LHG tank vessel that is moored, or in the process of mooring, at any berth within the Los Angeles or Long Beach port...

  20. 33 CFR 165.1151 - Security Zones; liquefied hazardous gas tank vessels, San Pedro Bay, California.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... the sea floor, within a 500 yard radius around any liquefied hazardous gas (LHG) tank vessel that is... waters, extending from the surface to the sea floor, within a 500 yard radius around any LHG tank vessel that is moored, or in the process of mooring, at any berth within the Los Angeles or Long Beach port...

  1. 33 CFR 165.1151 - Security Zones; liquefied hazardous gas tank vessels, San Pedro Bay, California.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... the sea floor, within a 500 yard radius around any liquefied hazardous gas (LHG) tank vessel that is... waters, extending from the surface to the sea floor, within a 500 yard radius around any LHG tank vessel that is moored, or in the process of mooring, at any berth within the Los Angeles or Long Beach port...

  2. 46 CFR 154.408 - Cargo tank external pressure load.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... minimum internal pressure (maximum vacuum), and the maximum external pressure to which any portion of the... 46 Shipping 5 2010-10-01 2010-10-01 false Cargo tank external pressure load. 154.408 Section 154... Equipment Cargo Containment Systems § 154.408 Cargo tank external pressure load. For the calculation...

  3. Study on Calculation of Liquid Level And Storage of Tanks for LNG-fueled Vessels

    NASA Astrophysics Data System (ADS)

    Li, Kun; Wang, Guoqing; Liu, Chang

    2018-01-01

    As the ongoing development of the application of LNG as a clean energy in waterborne transport industry, the fleet scale of LNG-fueled vessels enlarged and the safety operation has attracted more attention in the industry. Especially the accurate detection of liquid level of LNG tanks is regarded as an important issue to ensure a safe and stable operation of LNG-fueled ships and a key parameter to keep the proper functioning of marine fuel storage system, supply system and safety control system. At present, detection of LNG tank liquid level mainly adopts differential pressure detection method. Liquid level condition could be found from the liquid level reference tables. However in practice, since LNG-fueled vessels are generally not in a stationary state, liquid state within the LNG tanks will constantly change, the detection of storage of tanks only by reference to the tables will cause deviation to some extent. By analyzing the temperature under different pressure, the effects of temperature change on density and volume integration calculation, a method of calculating the liquid level and storage of LNG tanks is put forward making the calculation of liquid level and actual storage of LNG tanks more accurately and providing a more reliable basis for the calculation of energy consumption level and operation economy for LNG-fueled vessels.

  4. 46 CFR 98.30-4 - Vessels carrying portable tanks other than MPTs.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 4 2013-10-01 2013-10-01 false Vessels carrying portable tanks other than MPTs. 98.30-4 Section 98.30-4 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CARGO AND MISCELLANEOUS VESSELS SPECIAL CONSTRUCTION, ARRANGEMENT, AND OTHER PROVISIONS FOR CERTAIN DANGEROUS CARGOES IN BULK...

  5. 33 CFR 157.108 - Crude Oil Washing Operations and Equipment Manual for U.S. tank vessels: Submission.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... MARINE ENVIRONMENT RELATING TO TANK VESSELS CARRYING OIL IN BULK Crude Oil Washing (COW) System on Tank...: Submission. Before each U.S. tank vessel having a COW system under § 157.10(e), § 157.10a(a)(2), or § 157.10c... manual that meets § 157.138, to the Officer in Charge, Marine Inspection, of the zone in which the COW...

  6. 46 CFR 39.1015 - Foreign-flagged tank vessel certification procedures for vapor control system designs-TB/ALL.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... vapor control system designs-TB/ALL. 39.1015 Section 39.1015 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS VAPOR CONTROL SYSTEMS General § 39.1015 Foreign-flagged tank vessel certification procedures for vapor control system designs—TB/ALL. As an alternative to meeting the requirements...

  7. 46 CFR 39.1015 - Foreign-flagged tank vessel certification procedures for vapor control system designs-TB/ALL.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... vapor control system designs-TB/ALL. 39.1015 Section 39.1015 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS VAPOR CONTROL SYSTEMS General § 39.1015 Foreign-flagged tank vessel certification procedures for vapor control system designs—TB/ALL. As an alternative to meeting the requirements...

  8. Acoustic emission testing of composite vessels under sustained loading

    NASA Technical Reports Server (NTRS)

    Lark, R. F.; Moorhead, P. E.

    1978-01-01

    Acoustic emission (AE) tests have been conducted on small-diameter Kevlar 49/epoxy pressure vessels subjected to long-term sustained load-to-failure tests. Single-cycle burst tests were used as a basis for determining the test pressure in the sustained-loading tests. AE data from two vessel locations were compared. The data suggest that AE from vessel wall-mounted transducers is quite different for identical vessels subjected to the same pressure loading. AE from boss-mounted transducers yielded relatively consistent values. These values were not a function of time for vessel failure. The development of an AE test procedure for predicting the residual service life or integrity of composite vessels is discussed.

  9. 33 CFR 401.73 - Cleaning tanks-hazardous cargo vessels.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... gas freeing and tank cleaning has been reported to the nearest Seaway station. (b) Hot work permission. Before any hot work, defined as any work that uses flame or that can produce a source of ignition... prior to the vessel's arrival on SLSMC approach walls or wharfs. The hot work shall not commence until...

  10. 33 CFR 401.73 - Cleaning tanks-hazardous cargo vessels.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... gas freeing and tank cleaning has been reported to the nearest Seaway station. (b) Hot work permission. Before any hot work, defined as any work that uses flame or that can produce a source of ignition... prior to the vessel's arrival on SLSMC approach walls or wharfs. The hot work shall not commence until...

  11. 46 CFR 39.1013 - U.S.-flagged tank vessel certification procedures for vapor control system designs-TB/ALL.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... vapor control system designs-TB/ALL. 39.1013 Section 39.1013 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS VAPOR CONTROL SYSTEMS General § 39.1013 U.S.-flagged tank vessel certification procedures for vapor control system designs—TB/ALL. (a) For an existing Coast Guard-approved vapor...

  12. 46 CFR 39.1013 - U.S.-flagged tank vessel certification procedures for vapor control system designs-TB/ALL.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... vapor control system designs-TB/ALL. 39.1013 Section 39.1013 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS VAPOR CONTROL SYSTEMS General § 39.1013 U.S.-flagged tank vessel certification procedures for vapor control system designs—TB/ALL. (a) For an existing Coast Guard-approved vapor...

  13. 46 CFR 190.01-5 - Vessels subject to load line.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Vessels subject to load line. 190.01-5 Section 190.01-5 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) OCEANOGRAPHIC RESEARCH VESSELS CONSTRUCTION AND ARRANGEMENT Hull Structure § 190.01-5 Vessels subject to load line. (a) For vessels assigned a...

  14. 46 CFR 111.105-39 - Additional requirements for vessels carrying vehicles with fuel in their tanks.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false Additional requirements for vessels carrying vehicles... SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Hazardous Locations § 111.105-39 Additional requirements for vessels carrying vehicles with fuel in their tanks. Each vessel...

  15. 46 CFR 111.105-39 - Additional requirements for vessels carrying vehicles with fuel in their tanks.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 4 2012-10-01 2012-10-01 false Additional requirements for vessels carrying vehicles... SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Hazardous Locations § 111.105-39 Additional requirements for vessels carrying vehicles with fuel in their tanks. Each vessel...

  16. 46 CFR 154.409 - Dynamic loads from vessel motion.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Equipment Cargo Containment Systems § 154.409 Dynamic loads from vessel motion. (a) For the calculation required under § 154.406 (a)(3) and (b), the dynamic loads must be determined from the long term... 46 Shipping 5 2010-10-01 2010-10-01 false Dynamic loads from vessel motion. 154.409 Section 154...

  17. Tank Applied Testing of Load-Bearing Multilayer Insulation (LB-MLI)

    NASA Technical Reports Server (NTRS)

    Johnson, Wesley L.; Valenzuela, Juan G.; Feller, Jerr; Plachta, Dave

    2014-01-01

    The development of long duration orbital cryogenic storage systems will require the reduction of heat loads into the storage tank. In the case of liquid hydrogen, complete elimination of the heat load at 20 K is currently impractical due to the limitations in lift available on flight cryocoolers. In order to reduce the heat load, without having to remove heat at 20 K, the concept of Reduced Boil-Off uses cooled shields within the insulation system at approximately 90 K. The development of Load-Bearing Multilayer Insulation (LB-MLI) allowed the 90 K shield with tubing and cryocooler attachments to be suspended within the MLI and still be structurally stable. Coupon testing both thermally and structurally were performed to verify that the LB-MLI should work at the tank applied level. Then tank applied thermal and structural (acoustic) testing was performed to demonstrate the functionality of the LB-MLI as a structural insulation system. The LB-MLI showed no degradation of thermal performance due to the acoustic testing and showed excellent thermal performance when integrated with a 90 K class cryocooler on a liquid hydrogen tank.

  18. Tank Applied Testing of Load-Bearing Multilayer Insulation (LB-MLI)

    NASA Technical Reports Server (NTRS)

    Johnson, Wesley L.; Valenzuela, Juan G.; Feller, Jeffrey R.; Plachta, David W.

    2014-01-01

    The development of long duration orbital cryogenic storage systems will require the reduction of heat loads into the storage tank. In the case of liquid hydrogen, complete elimination of the heat load at 20 K is currently impractical due to the limitations in lift available on flight cryocoolers. In order to reduce the heat load, without having to remove heat at 20 K, the concept of Reduced Boil-Off uses cooled shields within the insulation system at approximately 90 K. The development of Load-Bearing Multilayer Insulation (LB-MLI) allowed the 90 K shield with tubing and cryocooler attachments to be suspended within the MLI and still be structurally stable. Coupon testing, both thermal and structural was performed to verify that the LB-MLI should work at the tank applied level. Then tank applied thermal and structural (acoustic) testing was performed to demonstrate the functionality of the LB-MLI as a structural insulation system. The LB-MLI showed no degradation of thermal performance due to the acoustic testing and showed excellent thermal performance when integrated with a 90 K class cryocooler on a liquid hydrogen tank.

  19. 46 CFR 31.10-32 - Loading information-TB/ALL.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... § 31.10-32 Loading information—TB/ALL. (a) This section applies to each tankship and tank barge the... have the loading information prescribed in either § 42.15-1(a) or § 45.105(a) of this chapter. For tank vessels subject to the Load Line Acts the information must be approved by the Commandant or by a...

  20. DEVELOPMENT OF ASME SECTION X CODE RULES FOR HIGH PRESSURE COMPOSITE HYDROGEN PRESSURE VESSELS WITH NON-LOAD SHARING LINERS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rawls, G.; Newhouse, N.; Rana, M.

    2010-04-13

    The Boiler and Pressure Vessel Project Team on Hydrogen Tanks was formed in 2004 to develop Code rules to address the various needs that had been identified for the design and construction of up to 15000 psi hydrogen storage vessel. One of these needs was the development of Code rules for high pressure composite vessels with non-load sharing liners for stationary applications. In 2009, ASME approved new Appendix 8, for Section X Code which contains the rules for these vessels. These vessels are designated as Class III vessels with design pressure ranging from 20.7 MPa (3,000 ps)i to 103.4 MPamore » (15,000 psi) and maximum allowable outside liner diameter of 2.54 m (100 inches). The maximum design life of these vessels is limited to 20 years. Design, fabrication, and examination requirements have been specified, included Acoustic Emission testing at time of manufacture. The Code rules include the design qualification testing of prototype vessels. Qualification includes proof, expansion, burst, cyclic fatigue, creep, flaw, permeability, torque, penetration, and environmental testing.« less

  1. SOUTH SIDE OF TANKS. LOADING DOCK, WITH FIRST AID STATION ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    SOUTH SIDE OF TANKS. LOADING DOCK, WITH FIRST AID STATION IN LEFT FOREGROUND - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Liquid Oxygen & Nitrogen Storage Tank Farm, Intersection of Altair & Jupiter Boulevards, Boron, Kern County, CA

  2. 46 CFR 32.55-5 - Ventilation of tank vessels constructed between November 10, 1936, and July 1, 1951-TB/ALL.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... actuated gas ejectors or blowers or ventilators fitted with heads for natural ventilation, will be approved... 46 Shipping 1 2010-10-01 2010-10-01 false Ventilation of tank vessels constructed between November... HOMELAND SECURITY TANK VESSELS SPECIAL EQUIPMENT, MACHINERY, AND HULL REQUIREMENTS Ventilation and Venting...

  3. Acoustic emission testing of composite vessels under sustained loading

    NASA Technical Reports Server (NTRS)

    Lark, R. F.; Moorhead, P. E.

    1978-01-01

    Acoustic emissions (AE) generated from Kevlar 49/epoxy composite pressure vessels subjected to sustained load-to-failure tests were studied. Data from two different transducer locations on the vessels were compared. It was found that AE from vessel wall-mounted transducers showed a wide variance from those for identical vessels subjected to the same pressure loading. Emissions from boss-mounted transducers did, however, yield values that were relatively consistent. It appears that the signals from the boss-mounted transducers represent an integrated average of the emissions generated by fibers fracturing during the vessel tests. The AE from boss-mounted transducers were also independent of time for vessel failure. This suggests that a similar number of fiber fractures must occur prior to initiation of vessel failure. These studies indicate a potential for developing an AE test procedure for predicting the residual service life or integrity of composite vessels.

  4. 46 CFR 31.10-32 - Loading information-TB/ALL.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 1 2014-10-01 2014-10-01 false Loading information-TB/ALL. 31.10-32 Section 31.10-32 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS INSPECTION AND CERTIFICATION Inspections § 31.10-32 Loading information—TB/ALL. (a) This section applies to each tankship and tank barge the...

  5. 46 CFR 31.10-32 - Loading information-TB/ALL.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 1 2012-10-01 2012-10-01 false Loading information-TB/ALL. 31.10-32 Section 31.10-32 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS INSPECTION AND CERTIFICATION Inspections § 31.10-32 Loading information—TB/ALL. (a) This section applies to each tankship and tank barge the...

  6. 46 CFR 31.10-32 - Loading information-TB/ALL.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 1 2013-10-01 2013-10-01 false Loading information-TB/ALL. 31.10-32 Section 31.10-32 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS INSPECTION AND CERTIFICATION Inspections § 31.10-32 Loading information—TB/ALL. (a) This section applies to each tankship and tank barge the...

  7. 46 CFR 31.10-32 - Loading information-TB/ALL.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 1 2011-10-01 2011-10-01 false Loading information-TB/ALL. 31.10-32 Section 31.10-32 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS INSPECTION AND CERTIFICATION Inspections § 31.10-32 Loading information—TB/ALL. (a) This section applies to each tankship and tank barge the...

  8. 46 CFR 31.10-21a - Periodic gauging of tank vessel midbodies more than 30 years old that carry certain oil cargoes...

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 1 2010-10-01 2010-10-01 false Periodic gauging of tank vessel midbodies more than 30..., DEPARTMENT OF HOMELAND SECURITY TANK VESSELS INSPECTION AND CERTIFICATION Inspections § 31.10-21a Periodic... vessels certificated to carry a pollution category I oil cargo listed in 46 CFR Table 30.25-1 must undergo...

  9. 46 CFR 31.10-21a - Periodic gauging of tank vessel midbodies more than 30 years old that carry certain oil cargoes...

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 1 2013-10-01 2013-10-01 false Periodic gauging of tank vessel midbodies more than 30..., DEPARTMENT OF HOMELAND SECURITY TANK VESSELS INSPECTION AND CERTIFICATION Inspections § 31.10-21a Periodic... vessels certificated to carry a pollution category I oil cargo listed in 46 CFR table 30.25-1 must undergo...

  10. 46 CFR 31.10-21a - Periodic gauging of tank vessel midbodies more than 30 years old that carry certain oil cargoes...

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 1 2012-10-01 2012-10-01 false Periodic gauging of tank vessel midbodies more than 30..., DEPARTMENT OF HOMELAND SECURITY TANK VESSELS INSPECTION AND CERTIFICATION Inspections § 31.10-21a Periodic... vessels certificated to carry a pollution category I oil cargo listed in 46 CFR Table 30.25-1 must undergo...

  11. 46 CFR 31.10-21a - Periodic gauging of tank vessel midbodies more than 30 years old that carry certain oil cargoes...

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 1 2014-10-01 2014-10-01 false Periodic gauging of tank vessel midbodies more than 30..., DEPARTMENT OF HOMELAND SECURITY TANK VESSELS INSPECTION AND CERTIFICATION Inspections § 31.10-21a Periodic... vessels certificated to carry a pollution category I oil cargo listed in 46 CFR table 30.25-1 must undergo...

  12. 46 CFR 31.10-21a - Periodic gauging of tank vessel midbodies more than 30 years old that carry certain oil cargoes...

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 1 2011-10-01 2011-10-01 false Periodic gauging of tank vessel midbodies more than 30..., DEPARTMENT OF HOMELAND SECURITY TANK VESSELS INSPECTION AND CERTIFICATION Inspections § 31.10-21a Periodic... vessels certificated to carry a pollution category I oil cargo listed in 46 CFR Table 30.25-1 must undergo...

  13. 46 CFR 32.50-5 - Cargo pump gauges on tank vessels constructed on or after November 10, 1936-TB/ALL.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... point visible with respect to the pump controls. [CGFR 65-50, 30 FR 16671, Dec. 30, 1965, as amended by... 46 Shipping 1 2014-10-01 2014-10-01 false Cargo pump gauges on tank vessels constructed on or... SECURITY TANK VESSELS SPECIAL EQUIPMENT, MACHINERY, AND HULL REQUIREMENTS Pumps, Piping, and Hose for Cargo...

  14. 46 CFR 32.50-5 - Cargo pump gauges on tank vessels constructed on or after November 10, 1936-TB/ALL.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... point visible with respect to the pump controls. [CGFR 65-50, 30 FR 16671, Dec. 30, 1965, as amended by... 46 Shipping 1 2012-10-01 2012-10-01 false Cargo pump gauges on tank vessels constructed on or... SECURITY TANK VESSELS SPECIAL EQUIPMENT, MACHINERY, AND HULL REQUIREMENTS Pumps, Piping, and Hose for Cargo...

  15. 46 CFR 32.50-5 - Cargo pump gauges on tank vessels constructed on or after November 10, 1936-TB/ALL.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... point visible with respect to the pump controls. [CGFR 65-50, 30 FR 16671, Dec. 30, 1965, as amended by... 46 Shipping 1 2010-10-01 2010-10-01 false Cargo pump gauges on tank vessels constructed on or... SECURITY TANK VESSELS SPECIAL EQUIPMENT, MACHINERY, AND HULL REQUIREMENTS Pumps, Piping, and Hose for Cargo...

  16. 46 CFR 32.50-5 - Cargo pump gauges on tank vessels constructed on or after November 10, 1936-TB/ALL.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... point visible with respect to the pump controls. [CGFR 65-50, 30 FR 16671, Dec. 30, 1965, as amended by... 46 Shipping 1 2013-10-01 2013-10-01 false Cargo pump gauges on tank vessels constructed on or... SECURITY TANK VESSELS SPECIAL EQUIPMENT, MACHINERY, AND HULL REQUIREMENTS Pumps, Piping, and Hose for Cargo...

  17. 46 CFR 32.50-5 - Cargo pump gauges on tank vessels constructed on or after November 10, 1936-TB/ALL.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... point visible with respect to the pump controls. [CGFR 65-50, 30 FR 16671, Dec. 30, 1965, as amended by... 46 Shipping 1 2011-10-01 2011-10-01 false Cargo pump gauges on tank vessels constructed on or... SECURITY TANK VESSELS SPECIAL EQUIPMENT, MACHINERY, AND HULL REQUIREMENTS Pumps, Piping, and Hose for Cargo...

  18. ICPP tank farm closure study. Volume 2: Engineering design files

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1998-02-01

    Volume 2 contains the following topical sections: Tank farm heel flushing/pH adjustment; Grouting experiments for immobilization of tank farm heel; Savannah River high level waste tank 20 closure; Tank farm closure information; Clean closure of tank farm; Remediation issues; Remote demolition techniques; Decision concerning EIS for debris treatment facility; CERCLA/RCRA issues; Area of contamination determination; Containment building of debris treatment facility; Double containment issues; Characterization costs; Packaging and disposal options for the waste resulting from the total removal of the tank farm; Take-off calculations for the total removal of soils and structures at the tank farm; Vessel off-gas systems; Jet-groutedmore » polymer and subsurface walls; Exposure calculations for total removal of tank farm; Recommended instrumentation during retrieval operations; High level waste tank concrete encasement evaluation; Recommended heavy equipment and sizing equipment for total removal activities; Tank buoyancy constraints; Grout and concrete formulas for tank heel solidification; Tank heel pH requirements; Tank cooling water; Evaluation of conservatism of vehicle loading on vaults; Typical vault dimensions and approximately tank and vault void volumes; Radiological concerns for temporary vessel off-gas system; Flushing calculations for tank heels; Grout lift depth analysis; Decontamination solution for waste transfer piping; Grout lift determination for filling tank and vault voids; sprung structure vendor data; Grout flow properties through a 2--4 inch pipe; Tank farm load limitations; NRC low level waste grout; Project data sheet calculations; Dose rates for tank farm closure tasks; Exposure and shielding calculations for grout lines; TFF radionuclide release rates; Documentation of the clean closure of a system with listed waste discharge; and Documentation of the ORNL method of radionuclide concentrations in tanks.« less

  19. 46 CFR 111.105-39 - Additional requirements for vessels carrying vehicles with fuel in their tanks.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Additional requirements for vessels carrying vehicles with fuel in their tanks. 111.105-39 Section 111.105-39 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Hazardous Locations § 111.105-39 Additional requirements for vessels...

  20. 46 CFR 111.105-39 - Additional requirements for vessels carrying vehicles with fuel in their tanks.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 4 2014-10-01 2014-10-01 false Additional requirements for vessels carrying vehicles with fuel in their tanks. 111.105-39 Section 111.105-39 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Hazardous Locations § 111.105-39 Additional requirements for vessels...

  1. 46 CFR 32.35-15 - Installation of air compressors on tank vessels contracted for on or after June 15, 1977-TB/ALL.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... June 15, 1977—TB/ALL. No tank vessel, except an oil pollution clean-up vessel, that carries petroleum... compressor intake installed in any of the following cargo areas: (a) A cargo handling room. (b) An enclosed... or ventilation opening to a cargo handling room. (f) Except for tank barges, the cargo deck space...

  2. 46 CFR 32.35-15 - Installation of air compressors on tank vessels contracted for on or after June 15, 1977-TB/ALL.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... June 15, 1977—TB/ALL. No tank vessel, except an oil pollution clean-up vessel, that carries petroleum... compressor intake installed in any of the following cargo areas: (a) A cargo handling room. (b) An enclosed... or ventilation opening to a cargo handling room. (f) Except for tank barges, the cargo deck space...

  3. 46 CFR 32.35-15 - Installation of air compressors on tank vessels contracted for on or after June 15, 1977-TB/ALL.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... June 15, 1977—TB/ALL. No tank vessel, except an oil pollution clean-up vessel, that carries petroleum... compressor intake installed in any of the following cargo areas: (a) A cargo handling room. (b) An enclosed... or ventilation opening to a cargo handling room. (f) Except for tank barges, the cargo deck space...

  4. 46 CFR 32.35-15 - Installation of air compressors on tank vessels contracted for on or after June 15, 1977-TB/ALL.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... June 15, 1977—TB/ALL. No tank vessel, except an oil pollution clean-up vessel, that carries petroleum... compressor intake installed in any of the following cargo areas: (a) A cargo handling room. (b) An enclosed... or ventilation opening to a cargo handling room. (f) Except for tank barges, the cargo deck space...

  5. 46 CFR 32.35-15 - Installation of air compressors on tank vessels contracted for on or after June 15, 1977-TB/ALL.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... June 15, 1977—TB/ALL. No tank vessel, except an oil pollution clean-up vessel, that carries petroleum... compressor intake installed in any of the following cargo areas: (a) A cargo handling room. (b) An enclosed... or ventilation opening to a cargo handling room. (f) Except for tank barges, the cargo deck space...

  6. Large-scale boiling experiments of the flooded cavity concept for in-vessel core retention

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chu, T.Y.; Slezak, S.E.; Bentz, J.H.

    1994-03-01

    This paper presents results of ex-vessel boiling experiments performed in the CYBL (CYlindrical BoiLing) facility. CYBL is a reactor-scale facility for confirmatory research of the flooded cavity concept for accident management. CYBL has a tank-within-a-tank design; the inner tank simulates the reactor vessel and the outer tank simulates the reactor cavity. Experiments with uniform and edge-peaked heat flux distributions up to 20 W/cm{sup 2} across the vessel bottom were performed. Boiling outside the reactor vessel was found to be subcooled nucleate boiling. The subcooling is mainly due to the gravity head which results from flooding the sides of the reactormore » vessel. The boiling process exhibits a cyclic pattern with four distinct phases: direct liquid/solid contact, bubble nucleation and growth, coalescence, and vapor mass dispersion (ejection). The results suggest that under prototypic heat load and heat flux distributions, the flooded cavity in a passive pressurized water reactor like the AP-600 should be capable of cooling the reactor pressure vessel in the central region of the lower head that is addressed by these tests.« less

  7. Start-up control system and vessel for LMFBR

    DOEpatents

    Durrant, Oliver W.; Kakarala, Chandrasekhara R.; Mandel, Sheldon W.

    1987-01-01

    A reflux condensing start-up system includes a steam generator, a start-up vessel connected parallel to the steam generator, a main steam line connecting steam outlets of the steam generator and start-up vessel to a steam turbine, a condenser connected to an outlet of the turbine and a feedwater return line connected between the condenser and inlets of the steam generator and start-up vessel. The start-up vessel has one or more heaters at the bottom thereof for heating feedwater which is supplied over a start-up line to the start-up vessel. Steam is thus generated to pressurize the steam generator before the steam generator is supplied with a heat transfer medium, for example liquid sodium, in the case of a liquid metal fast breeder reactor. The start-up vessel includes upper and lower bulbs with a smaller diameter mid-section to act as water and steam reservoirs. The start-up vessel can thus be used not only in a start-up operation but as a mixing tank, a water storage tank and a level control at low loads for controlling feedwater flow.

  8. Start-up control system and vessel for LMFBR

    DOEpatents

    Durrant, Oliver W.; Kakarala, Chandrasekhara R.; Mandel, Sheldon W.

    1987-01-01

    A reflux condensing start-up system comprises a steam generator, a start-up vessel connected parallel to the steam generator, a main steam line connecting steam outlets of the steam generator and start-up vessel to a steam turbine, a condenser connected to an outlet of the turbine and a feedwater return line connected between the condenser and inlets of the steam generator and start-up vessel. The start-up vessel has one or more heaters at the bottom thereof for heating feedwater which is supplied over a start-up line to the start-up vessel. Steam is thus generated to pressurize the steam generator before the steam generator is supplied with a heat transfer medium, for example liquid sodium, in the case of a liquid metal fast breeder reactor. The start-up vessel includes upper and lower bulbs with a smaller diameter mid-section to act as water and steam reservoirs. The start-up vessel can thus be used not only in a start-up operation but as a mixing tank, a water storage tank and a level control at low loads for controlling feedwater flow.

  9. Hybrid Tank Technology

    NASA Technical Reports Server (NTRS)

    2004-01-01

    Researchers have accomplished great advances in pressure vessel technology by applying high-performance composite materials as an over-wrap to metal-lined pressure vessels. These composite over-wrapped pressure vessels (COPVs) are used in many areas, from air tanks for firefighters and compressed natural gas tanks for automobiles, to pressurant tanks for aerospace launch vehicles and propellant tanks for satellites and deep-space exploration vehicles. NASA and commercial industry are continually striving to find new ways to make high-performance pressure vessels safer and more reliable. While COPVs are much lighter than all-metal pressure vessels, the composite material, typically graphite fibers with an epoxy matrix resin, is vulnerable to impact damage. Carbon fiber is most frequently used for the high-performance COPV applications because of its high strength-to-weight characteristics. Other fibers have been used, but with limitations. For example, fiberglass is inexpensive but much heavier than carbon. Aramid fibers are impact resistant but have less strength than carbon and their performance tends to deteriorate.

  10. Workbook for predicting pressure wave and fragment effects of exploding propellant tanks and gas storage vessels

    NASA Technical Reports Server (NTRS)

    Baker, W. E.; Kulesz, J. J.; Ricker, R. E.; Bessey, R. L.; Westine, P. S.; Parr, V. B.; Oldham, G. A.

    1975-01-01

    Technology needed to predict damage and hazards from explosions of propellant tanks and bursts of pressure vessels, both near and far from these explosions is introduced. Data are summarized in graphs, tables, and nomographs.

  11. 9 CFR 91.19 - Inspection of ocean vessels prior to loading.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 9 Animals and Animal Products 1 2012-01-01 2012-01-01 false Inspection of ocean vessels prior to... Inspection of ocean vessels prior to loading. It shall be the responsibility of the owners or the masters of an ocean vessel intended for use in exporting livestock to present the vessel to an inspector at a...

  12. 9 CFR 91.19 - Inspection of ocean vessels prior to loading.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 9 Animals and Animal Products 1 2010-01-01 2010-01-01 false Inspection of ocean vessels prior to... Inspection of ocean vessels prior to loading. It shall be the responsibility of the owners or the masters of an ocean vessel intended for use in exporting livestock to present the vessel to an inspector at a...

  13. 9 CFR 91.19 - Inspection of ocean vessels prior to loading.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 9 Animals and Animal Products 1 2011-01-01 2011-01-01 false Inspection of ocean vessels prior to... Inspection of ocean vessels prior to loading. It shall be the responsibility of the owners or the masters of an ocean vessel intended for use in exporting livestock to present the vessel to an inspector at a...

  14. 9 CFR 91.19 - Inspection of ocean vessels prior to loading.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 9 Animals and Animal Products 1 2013-01-01 2013-01-01 false Inspection of ocean vessels prior to... Inspection of ocean vessels prior to loading. It shall be the responsibility of the owners or the masters of an ocean vessel intended for use in exporting livestock to present the vessel to an inspector at a...

  15. 9 CFR 91.19 - Inspection of ocean vessels prior to loading.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 9 Animals and Animal Products 1 2014-01-01 2014-01-01 false Inspection of ocean vessels prior to... Inspection of ocean vessels prior to loading. It shall be the responsibility of the owners or the masters of an ocean vessel intended for use in exporting livestock to present the vessel to an inspector at a...

  16. Estimates of air emissions from asphalt storage tanks and truck loading

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Trumbore, D.C.

    1999-12-31

    Title V of the 1990 Clean Air Act requires the accurate estimation of emissions from all US manufacturing processes, and places the burden of proof for that estimate on the process owner. This paper is published as a tool to assist in the estimation of air emission from hot asphalt storage tanks and asphalt truck loading operations. Data are presented on asphalt vapor pressure, vapor molecular weight, and the emission split between volatile organic compounds and particulate emissions that can be used with AP-42 calculation techniques to estimate air emissions from asphalt storage tanks and truck loading operations. Since currentmore » AP-42 techniques are not valid in asphalt tanks with active fume removal, a different technique for estimation of air emissions in those tanks, based on direct measurement of vapor space combustible gas content, is proposed. Likewise, since AP-42 does not address carbon monoxide or hydrogen sulfide emissions that are known to be present in asphalt operations, this paper proposes techniques for estimation of those emissions. Finally, data are presented on the effectiveness of fiber bed filters in reducing air emissions in asphalt operations.« less

  17. Comparative analysis of different loading conditions on large container ships from the perspective of the stability requirement

    NASA Astrophysics Data System (ADS)

    Stanca, C.; Acomi, N.; Ancuta, C.; Georgescu, S.

    2015-11-01

    Container ships carry cargoes that are considered light from the weight point of view, compared to their volumetric capacity. This fact makes the still water vertical bending moment to be in hogging condition. Thus, the double bottom structure is permanent subject to compressive load. With the enlargement of container ships to the Post Panamax vessels, the breadth to depth ratio tends to be increased comparative to those of Panamax container ships that present restriction related to maximum breadth of the ship.The current studies on new build models reveal the impossibility for Panamax container ships to comply with the minimum metacentric height value of stability without loading ballast water in the double bottom tanks. In contrast, the Post-Panamax container ships, as resulted from metacentric height calculation, have adequate stability even if the ballast water is not loaded in the double bottom tanks. This analysis was conducted considering two partially loaded port-container vessels. Given the minimization of ballast quantities, the frequency with which the still water vertical bending moment reaches close to the allowable value increases.This study aims to analyse the ships’ behaviour in partially loaded conditions and carrying ballast water in the double bottom tanks. By calculating the metacentric height that influences the stability of the partially loaded port container vessels, this study will emphasize the critical level of loading condition which triggers the uptake of ballast water in the double bottom tanks, due to metacentric height variation.

  18. 33 CFR 157.43 - Discharges of clean and segregated ballast: Seagoing tank vessels of 150 gross tons or more.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... an approved oil discharge monitoring and control system or, if discharged before the required oil... mixture in the ballast. Use of an oil discharge monitoring and control system is not required. This... OF THE MARINE ENVIRONMENT RELATING TO TANK VESSELS CARRYING OIL IN BULK Vessel Operation § 157.43...

  19. 33 CFR 157.43 - Discharges of clean and segregated ballast: Seagoing tank vessels of 150 gross tons or more.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... an approved oil discharge monitoring and control system or, if discharged before the required oil... mixture in the ballast. Use of an oil discharge monitoring and control system is not required. This... OF THE MARINE ENVIRONMENT RELATING TO TANK VESSELS CARRYING OIL IN BULK Vessel Operation § 157.43...

  20. 33 CFR 157.43 - Discharges of clean and segregated ballast: Seagoing tank vessels of 150 gross tons or more.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... an approved oil discharge monitoring and control system or, if discharged before the required oil... mixture in the ballast. Use of an oil discharge monitoring and control system is not required. This... OF THE MARINE ENVIRONMENT RELATING TO TANK VESSELS CARRYING OIL IN BULK Vessel Operation § 157.43...

  1. 33 CFR 157.43 - Discharges of clean and segregated ballast: Seagoing tank vessels of 150 gross tons or more.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... an approved oil discharge monitoring and control system or, if discharged before the required oil... mixture in the ballast. Use of an oil discharge monitoring and control system is not required. This... OF THE MARINE ENVIRONMENT RELATING TO TANK VESSELS CARRYING OIL IN BULK Vessel Operation § 157.43...

  2. 33 CFR 157.43 - Discharges of clean and segregated ballast: Seagoing tank vessels of 150 gross tons or more.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... an approved oil discharge monitoring and control system or, if discharged before the required oil... mixture in the ballast. Use of an oil discharge monitoring and control system is not required. This... OF THE MARINE ENVIRONMENT RELATING TO TANK VESSELS CARRYING OIL IN BULK Vessel Operation § 157.43...

  3. 76 FR 9276 - Tank Vessel and Marine Transportation-Related Facility Response Plans for Hazardous Substances

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-17

    ... and USCG-1999-5705] RIN 2115-AE87 and 2115-AE88 Tank Vessel and Marine Transportation-Related Facility... Marine Transportation-Related Facility Response Plans for Hazardous Substances (USCG-1999-5705). The... marine transportation-related facilities, that could reasonably be expected to cause substantial harm to...

  4. 76 FR 4250 - Operating Certain Railroad Tank Cars in Excess of 263,000 Pounds Gross Rail Load; Approval

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-25

    ... Railroad Tank Cars in Excess of 263,000 Pounds Gross Rail Load; Approval AGENCY: Federal Railroad... certain railroad tank cars in excess of 263,000 pounds gross rail load. SUMMARY: On May 14, 2010, the... to allow certain rail tank cars, transporting hazardous materials, to exceed the gross weight on rail...

  5. 46 CFR 32.50-35 - Remote manual shutdown for internal combustion engine driven cargo pump on tank vessels-TB/ALL.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 1 2011-10-01 2011-10-01 false Remote manual shutdown for internal combustion engine... for Cargo Handling § 32.50-35 Remote manual shutdown for internal combustion engine driven cargo pump on tank vessels—TB/ALL. (a) Any tank vessel which is equipped with an internal combustion engine...

  6. 46 CFR 32.50-35 - Remote manual shutdown for internal combustion engine driven cargo pump on tank vessels-TB/ALL.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 1 2013-10-01 2013-10-01 false Remote manual shutdown for internal combustion engine... for Cargo Handling § 32.50-35 Remote manual shutdown for internal combustion engine driven cargo pump on tank vessels—TB/ALL. (a) Any tank vessel which is equipped with an internal combustion engine...

  7. 46 CFR 32.50-35 - Remote manual shutdown for internal combustion engine driven cargo pump on tank vessels-TB/ALL.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 1 2010-10-01 2010-10-01 false Remote manual shutdown for internal combustion engine... for Cargo Handling § 32.50-35 Remote manual shutdown for internal combustion engine driven cargo pump on tank vessels—TB/ALL. (a) Any tank vessel which is equipped with an internal combustion engine...

  8. 46 CFR 32.50-35 - Remote manual shutdown for internal combustion engine driven cargo pump on tank vessels-TB/ALL.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 1 2012-10-01 2012-10-01 false Remote manual shutdown for internal combustion engine... for Cargo Handling § 32.50-35 Remote manual shutdown for internal combustion engine driven cargo pump on tank vessels—TB/ALL. (a) Any tank vessel which is equipped with an internal combustion engine...

  9. 46 CFR 32.50-35 - Remote manual shutdown for internal combustion engine driven cargo pump on tank vessels-TB/ALL.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 1 2014-10-01 2014-10-01 false Remote manual shutdown for internal combustion engine... for Cargo Handling § 32.50-35 Remote manual shutdown for internal combustion engine driven cargo pump on tank vessels—TB/ALL. (a) Any tank vessel which is equipped with an internal combustion engine...

  10. 46 CFR 38.05-3 - Design and construction of pressure vessel type cargo tanks-TB/ALL.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... subjected to external loads. Consideration shall also be given to excessive loads that can be imposed on the tanks by their support due to static and dynamic forces under operating conditions or during testing...

  11. 46 CFR 38.05-3 - Design and construction of pressure vessel type cargo tanks-TB/ALL.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... subjected to external loads. Consideration shall also be given to excessive loads that can be imposed on the tanks by their support due to static and dynamic forces under operating conditions or during testing...

  12. 46 CFR 38.05-3 - Design and construction of pressure vessel type cargo tanks-TB/ALL.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... subjected to external loads. Consideration shall also be given to excessive loads that can be imposed on the tanks by their support due to static and dynamic forces under operating conditions or during testing...

  13. 46 CFR 38.05-3 - Design and construction of pressure vessel type cargo tanks-TB/ALL.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... subjected to external loads. Consideration shall also be given to excessive loads that can be imposed on the tanks by their support due to static and dynamic forces under operating conditions or during testing...

  14. Effect of Geometrical Imperfection on Buckling Failure of ITER VVPSS Tank

    NASA Astrophysics Data System (ADS)

    Jha, Saroj Kumar; Gupta, Girish Kumar; Pandey, Manish Kumar; Bhattacharya, Avik; Jogi, Gaurav; Bhardwaj, Anil Kumar

    2017-04-01

    The ‘Vacuum Vessel Pressure Suppression System’ (VVPSS) is part of ITER machine, which is designed to protect the ITER Vacuum Vessel and its connected systems, from an over-pressure situation. It is comprised of a partially evacuated tank of stainless steel approximately 46 m long and 6 m in diameter and thickness 30 mm. It is to hold approximately 675 tonnes of water at room temperature to condense the steam resulting from the adverse water leakage into the Vacuum Vessel chamber. For any vacuum vessel, geometrical imperfection has significant effect on buckling failure and structural integrity. Major geometrical imperfection in VVPSS tank depends on form tolerances. To study the effect of geometrical imperfection on buckling failure of VVPSS tank, finite element analysis (FEA) has been performed in line with ASME section VIII division 2 part 5 [1], ‘design by analysis method’. Linear buckling analysis has been performed to get the buckled shape and displacement. Geometrical imperfection due to form tolerance is incorporated in FEA model of VVPSS tank by scaling the resulted buckled shape by a factor ‘60’. This buckled shape model is used as input geometry for plastic collapse and buckling failure assessment. Plastic collapse and buckling failure of VVPSS tank has been assessed by using the elastic-plastic analysis method. This analysis has been performed for different values of form tolerance. The results of analysis show that displacement and load proportionality factor (LPF) vary inversely with form tolerance. For higher values of form tolerance LPF reduces significantly with high values of displacement.

  15. Cryogenic glass-filament-wound tank evaluation

    NASA Technical Reports Server (NTRS)

    Morris, E. E.; Landes, R. E.

    1971-01-01

    High-pressure glass-filament-wound fluid storage vessels with thin aluminum liners were designed, fabricated, and tested at ambient and cryogenic temperatures which demonstrated the feasibility of producing such vessels as well as high performance and light weight. Significant developments and advancements were made in solving problems associated with the thin metal liners in the tanks, including liner bonding to the overwrap and high strain magnification at the vessel polar bosses. The vessels had very high burst strengths, and failed in cyclic fatigue tests by local liner fracture and leakage without structural failure of the composite tank wall. The weight of the tanks was only 40 to 55% of comparable 2219-T87 aluminum and Inconel 718 tanks.

  16. Nutrient loading on subsoils from on-site wastewater effluent, comparing septic tank and secondary treatment systems.

    PubMed

    Gill, L W; O'Luanaigh, N; Johnston, P M; Misstear, B D R; O'Suilleabhain, C

    2009-06-01

    The performance of six separate percolation areas was intensively monitored to ascertain the attenuation effects of unsaturated subsoils with respect to on-site wastewater effluent: three sites receiving septic tank effluent, the other three sites receiving secondary treated effluent. The development of a biomat across the percolation areas receiving secondary treated effluent was restricted on these sites compared to those sites receiving septic tank effluent and this created significant differences in terms of the potential nitrogen loading to groundwater. The average nitrogen loading per capita at 1.0m depth of unsaturated subsoil equated to 3.9 g total-N/d for the sites receiving secondary treated effluent, compared to 2.1 g total-N/d for the sites receiving septic tank effluent. Relatively high nitrogen loading was, however, found on the septic tank sites discharging effluent into highly permeable subsoil that counteracted any significant denitrification. Phosphorus removal was generally very good on all of the sites although a clear relationship to the soil mineralogy was determined.

  17. 33 CFR 157.134 - Cargo tank drainage.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 2 2012-07-01 2012-07-01 false Cargo tank drainage. 157.134...) POLLUTION RULES FOR THE PROTECTION OF THE MARINE ENVIRONMENT RELATING TO TANK VESSELS CARRYING OIL IN BULK Crude Oil Washing (COW) System on Tank Vessels Design, Equipment, and Installation § 157.134 Cargo tank...

  18. 33 CFR 157.134 - Cargo tank drainage.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Cargo tank drainage. 157.134...) POLLUTION RULES FOR THE PROTECTION OF THE MARINE ENVIRONMENT RELATING TO TANK VESSELS CARRYING OIL IN BULK Crude Oil Washing (COW) System on Tank Vessels Design, Equipment, and Installation § 157.134 Cargo tank...

  19. A loose bolt delays loading of Endeavour's external tank

    NASA Technical Reports Server (NTRS)

    2000-01-01

    This loose bracket, observed hanging down from the side of the White Room at Launch Pad 39B, delayed loading of Endeavour's external tank by several hours to allow technicians to remove it. A 'U' bolt connects the bracket to a fire suppression water line attached to the exterior of the White Room. The loose bolt could have possibly created a debris hazard.

  20. 46 CFR 154.406 - Design loads for cargo tanks and fixtures: General.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... motion of the vessel. (4) Transient or stationary thermal loads if the design temperature is colder that..., cargo weight, and corresponding support reaction. (8) Insulation weight. (9) Loads of a pipe tower and...

  1. 46 CFR 154.406 - Design loads for cargo tanks and fixtures: General.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... motion of the vessel. (4) Transient or stationary thermal loads if the design temperature is colder that..., cargo weight, and corresponding support reaction. (8) Insulation weight. (9) Loads of a pipe tower and...

  2. A loose bolt delays loading of Endeavour's external tank

    NASA Technical Reports Server (NTRS)

    2000-01-01

    A closeup reveals the loose bracket, observed hanging down from the side of the White Room at Launch Pad 39B, that delayed loading of Endeavour's external tank by several hours to allow technicians to remove it. A 'U' bolt connects the bracket to a fire suppression water line attached to the exterior of the White Room. The loose bolt could have possibly created a debris hazard.

  3. Load limit of a UASB fed septic tank-treated domestic wastewater.

    PubMed

    Lohani, Sunil Prasad; Bakke, Rune; Khanal, Sanjay N

    2015-01-01

    Performance of a 250 L pilot-scale up-flow anaerobic sludge blanket (UASB) reactor, operated at ambient temperatures, fed septic tank effluents intermittently, was monitored for hydraulic retention time (HRT) from 18 h to 4 h. The total suspended solids (TSS), total chemical oxygen demand (CODT), dissolved chemical oxygen demand (CODdis) and suspended chemical oxygen demand (CODss) removal efficiencies ranged from 20 to 63%, 15 to 56%, 8 to 35% and 22 to 72%, respectively, for the HRT range tested. Above 60% TSS and 47% CODT removal were obtained in the combined septic tank and UASB process. The process established stable UASB treatment at HRT≥6 h, indicating a hydraulic load design limit. The tested septic tank-UASB combined system can be a low-cost and effective on-site sanitation solution.

  4. 46 CFR 151.15-1 - Tank types.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... its carrying vessel's hull. (c) Gravity. Tanks having a design pressure (as described in Part 54 of... where stress analysis is neither readily nor completely determinate. (Integral tanks are of the gravity.... Independent gravity tanks which are of normal pressure vessel configuration (i.e., bodies of revolution, in...

  5. Elastic-Plastic Nonlinear Response of a Space Shuttle External Tank Stringer. Part 2; Thermal and Mechanical Loadings

    NASA Technical Reports Server (NTRS)

    Knight, Norman F., Jr.; Warren, Jerry E.; Elliott, Kenny B.; Song, Kyongchan; Raju, Ivatury S.

    2012-01-01

    Elastic-plastic, large-deflection nonlinear thermo-mechanical stress analyses are performed for the Space Shuttle external tank s intertank stringers. Detailed threedimensional finite element models are developed and used to investigate the stringer s elastic-plastic response for different thermal and mechanical loading events from assembly through flight. Assembly strains caused by initial installation on an intertank panel are accounted for in the analyses. Thermal loading due to tanking was determined to be the bounding loading event. The cryogenic shrinkage caused by tanking resulted in a rotation of the intertank chord flange towards the center of the intertank, which in turn loaded the intertank stringer feet. The analyses suggest that the strain levels near the first three fasteners remain sufficiently high that a failure may occur. The analyses also confirmed that the installation of radius blocks on the stringer feet ends results in an increase in the stringer capability.

  6. Guidelines for pressure vessel safety assessment

    NASA Astrophysics Data System (ADS)

    Yukawa, S.

    1990-04-01

    A technical overview and information on metallic pressure containment vessels and tanks is given. The intent is to provide Occupational Safety and Health Administration (OSHA) personnel and other persons with information to assist in the evaluation of the safety of operating pressure vessels and low pressure storage tanks. The scope is limited to general industrial application vessels and tanks constructed of carbon or low alloy steels and used at temperatures between -75 and 315 C (-100 and 600 F). Information on design codes, materials, fabrication processes, inspection and testing applicable to the vessels and tanks are presented. The majority of the vessels and tanks are made to the rules and requirements of ASME Code Section VIII or API Standard 620. The causes of deterioration and damage in operation are described and methods and capabilities of detecting serious damage and cracking are discussed. Guidelines and recommendations formulated by various groups to inspect for the damages being found and to mitigate the causes and effects of the problems are presented.

  7. 33 CFR 157.17 - Oil residue (sludge) tank.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Oil residue (sludge) tank. 157.17...) POLLUTION RULES FOR THE PROTECTION OF THE MARINE ENVIRONMENT RELATING TO TANK VESSELS CARRYING OIL IN BULK Design, Equipment, and Installation § 157.17 Oil residue (sludge) tank. (a) A tank vessel of 400 gross...

  8. 33 CFR 157.17 - Oil residue (sludge) tank.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 2 2011-07-01 2011-07-01 false Oil residue (sludge) tank. 157.17...) POLLUTION RULES FOR THE PROTECTION OF THE MARINE ENVIRONMENT RELATING TO TANK VESSELS CARRYING OIL IN BULK Design, Equipment, and Installation § 157.17 Oil residue (sludge) tank. (a) A tank vessel of 400 gross...

  9. 33 CFR 157.17 - Oil residue (sludge) tank.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 2 2012-07-01 2012-07-01 false Oil residue (sludge) tank. 157.17...) POLLUTION RULES FOR THE PROTECTION OF THE MARINE ENVIRONMENT RELATING TO TANK VESSELS CARRYING OIL IN BULK Design, Equipment, and Installation § 157.17 Oil residue (sludge) tank. (a) A tank vessel of 400 gross...

  10. 33 CFR 157.17 - Oil residue (sludge) tank.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 2 2014-07-01 2014-07-01 false Oil residue (sludge) tank. 157.17...) POLLUTION RULES FOR THE PROTECTION OF THE MARINE ENVIRONMENT RELATING TO TANK VESSELS CARRYING OIL IN BULK Design, Equipment, and Installation § 157.17 Oil residue (sludge) tank. (a) A tank vessel of 400 gross...

  11. 33 CFR 157.17 - Oil residue (sludge) tank.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 2 2013-07-01 2013-07-01 false Oil residue (sludge) tank. 157.17...) POLLUTION RULES FOR THE PROTECTION OF THE MARINE ENVIRONMENT RELATING TO TANK VESSELS CARRYING OIL IN BULK Design, Equipment, and Installation § 157.17 Oil residue (sludge) tank. (a) A tank vessel of 400 gross...

  12. 46 CFR 32.60-30 - Tank vessels with independent tanks-TB/ALL.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... tanks and hull structure can be made. (b) When an independent cargo tank is located in an enclosed space... be safeguarded as such as required by this subpart. (c) Cargo tanks independent of the hull structure shall be supported in saddles or on foundations of steel or other suitable material and securely...

  13. 46 CFR 32.60-30 - Tank vessels with independent tanks-TB/ALL.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... tanks and hull structure can be made. (b) When an independent cargo tank is located in an enclosed space... be safeguarded as such as required by this subpart. (c) Cargo tanks independent of the hull structure shall be supported in saddles or on foundations of steel or other suitable material and securely...

  14. 46 CFR 32.60-30 - Tank vessels with independent tanks-TB/ALL.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... tanks and hull structure can be made. (b) When an independent cargo tank is located in an enclosed space... be safeguarded as such as required by this subpart. (c) Cargo tanks independent of the hull structure shall be supported in saddles or on foundations of steel or other suitable material and securely...

  15. 46 CFR 32.60-30 - Tank vessels with independent tanks-TB/ALL.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... tanks and hull structure can be made. (b) When an independent cargo tank is located in an enclosed space... be safeguarded as such as required by this subpart. (c) Cargo tanks independent of the hull structure shall be supported in saddles or on foundations of steel or other suitable material and securely...

  16. 46 CFR 32.60-30 - Tank vessels with independent tanks-TB/ALL.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... tanks and hull structure can be made. (b) When an independent cargo tank is located in an enclosed space... be safeguarded as such as required by this subpart. (c) Cargo tanks independent of the hull structure shall be supported in saddles or on foundations of steel or other suitable material and securely...

  17. 76 FR 27300 - Hazardous Materials: Cargo Tank Motor Vehicle Loading and Unloading Operations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-11

    ... Motor Vehicle Loading and Unloading Operations AGENCY: Pipeline and Hazardous Materials Safety... cargo tank motor vehicle proposals in this notice, we are providing affected entities as well as the...

  18. 46 CFR 42.11-10 - Applications for load line assignments and certificates for vessels other than U.S.-flag vessels.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... OF HOMELAND SECURITY (CONTINUED) LOAD LINES DOMESTIC AND FOREIGN VOYAGES BY SEA Applications for Load... certificate for a foreign vessel belonging to (or which will belong to) either a country ratifying or acceding to the International Convention on Load Lines, 1966, or to a country with which the United States of...

  19. 46 CFR 42.11-10 - Applications for load line assignments and certificates for vessels other than U.S.-flag vessels.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... OF HOMELAND SECURITY (CONTINUED) LOAD LINES DOMESTIC AND FOREIGN VOYAGES BY SEA Applications for Load... certificate for a foreign vessel belonging to (or which will belong to) either a country ratifying or acceding to the International Convention on Load Lines, 1966, or to a country with which the United States of...

  20. 33 CFR 157.132 - Cargo tanks: Hydrocarbon vapor emissions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... CARRYING OIL IN BULK Crude Oil Washing (COW) System on Tank Vessels Design, Equipment, and Installation § 157.132 Cargo tanks: Hydrocarbon vapor emissions. Each tank vessel having a COW system under § 157.10a...

  1. Liner-less Tanks for Space Application - Design and Manufacturing Considerations

    NASA Technical Reports Server (NTRS)

    Jones, Brian H.; Li, Min-Chung

    2003-01-01

    Composite pressure vessels, used extensively for gas and fuel containment in space vehicles, are generally constructed with a metallic liner, while the fiber reinforcement carries the major portion of the pressure-induced load. The design is dominated by the liner s low strain at yield since the reinforcing fibers cannot operate at their potential load-bearing capability without resorting to pre-stressing (or autofrettaging). An ultra high-efficiency pressure vessel, which operates at the optimum strain capability of the fibers, can be potentially achieved with a liner-less construction. This paper discusses the design and manufacturing challenges to be overcome in the development of such a pressure vessel. These include: (1) gas/liquid containment and permeation, (2) design and structural analysis, and (3) manufacturing process development. The paper also presents the development and validation tests on a liner-less pressure vessel developed by Kaiser Compositek Inc. (KCI). It should be noted that KCI s liner-less tank exhibits a highly controlled leak-before-burst mode. This feature results in a structure having the highest level of safety.

  2. 40 CFR 61.139 - Provisions for alternative means for process vessels, storage tanks, and tar-intercepting sumps.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Recovery Plants § 61.139 Provisions for alternative means for process vessels, storage tanks, and tar... scheduled replacement time means the day that is estimated to be 90 percent of the demonstrated bed life, as... days before the point in the cycle where the exceedance was detected); this is a second example of the...

  3. 40 CFR 61.139 - Provisions for alternative means for process vessels, storage tanks, and tar-intercepting sumps.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Recovery Plants § 61.139 Provisions for alternative means for process vessels, storage tanks, and tar... scheduled replacement time means the day that is estimated to be 90 percent of the demonstrated bed life, as... days before the point in the cycle where the exceedance was detected); this is a second example of the...

  4. 40 CFR 61.139 - Provisions for alternative means for process vessels, storage tanks, and tar-intercepting sumps.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Recovery Plants § 61.139 Provisions for alternative means for process vessels, storage tanks, and tar... scheduled replacement time means the day that is estimated to be 90 percent of the demonstrated bed life, as... days before the point in the cycle where the exceedance was detected); this is a second example of the...

  5. 40 CFR 61.139 - Provisions for alternative means for process vessels, storage tanks, and tar-intercepting sumps.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Recovery Plants § 61.139 Provisions for alternative means for process vessels, storage tanks, and tar... scheduled replacement time means the day that is estimated to be 90 percent of the demonstrated bed life, as... days before the point in the cycle where the exceedance was detected); this is a second example of the...

  6. Collapsible Cryogenic Storage Vessel Project

    NASA Technical Reports Server (NTRS)

    Fleming, David C.

    2002-01-01

    Collapsible cryogenic storage vessels may be useful for future space exploration missions by providing long-term storage capability using a lightweight system that can be compactly packaged for launch. Previous development efforts have identified an 'inflatable' concept as most promising. In the inflatable tank concept, the cryogen is contained within a flexible pressure wall comprised of a flexible bladder to contain the cryogen and a fabric reinforcement layer for structural strength. A flexible, high-performance insulation jacket surrounds the vessel. The weight of the tank and the cryogen is supported by rigid support structures. This design concept is developed through physical testing of a scaled pressure wall, and through development of tests for a flexible Layered Composite Insulation (LCI) insulation jacket. A demonstration pressure wall is fabricated using Spectra fabric for reinforcement, and burst tested under noncryogenic conditions. An insulation test specimens is prepared to demonstrate the effectiveness of the insulation when subject to folding effects, and to examine the effect of compression of the insulation under compressive loading to simulate the pressure effect in a nonrigid insulation blanket under the action atmospheric pressure, such as would be seen in application on the surface of Mars. Although pressure testing did not meet the design goals, the concept shows promise for the design. The testing program provides direction for future development of the collapsible cryogenic vessel concept.

  7. Effects of scalding method and sequential tanks on broiler processing wastewater loadings

    USDA-ARS?s Scientific Manuscript database

    The effects of scalding time and temperature, and sequential scalding tanks was evaluated based on impact to poultry processing wastewater (PPW) stream loading rates following the slaughter of commercially raised broilers. On 3 separate weeks (trials), broilers were obtained following feed withdrawa...

  8. 33 CFR 157.124 - COW tank washing machines.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 2 2012-07-01 2012-07-01 false COW tank washing machines. 157... (CONTINUED) POLLUTION RULES FOR THE PROTECTION OF THE MARINE ENVIRONMENT RELATING TO TANK VESSELS CARRYING OIL IN BULK Crude Oil Washing (COW) System on Tank Vessels Design, Equipment, and Installation § 157...

  9. A loose bolt delays loading of Endeavour's external tank

    NASA Technical Reports Server (NTRS)

    2000-01-01

    This view shows the pipe (center top) leading toward Endeavour from the side of the White Room at Launch Pad 39B. A loose bracket observed hanging down from the pipe delayed loading of Endeavour's external tank by several hours to allow technicians to remove it. A 'U' bolt connects the bracket to a fire suppression water line attached to the exterior of the White Room. The loose bolt could have possibly created a debris hazard.

  10. Fuel tank crashworthiness : loading scenarios

    DOT National Transportation Integrated Search

    2011-03-16

    The Federal Railroad Administrations Office of Research and Development is conducting research into fuel tank crashworthiness. The breaching of fuel tanks during passenger : rail collisions and derailments increases the potential of serious injury...

  11. 33 CFR 157.147 - Similar tank design: Inspections on foreign tank vessels.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... tanks similar in dimensions and internal structure, the owner or operator may submit a written request... tanks similar in dimensions and internal structure is inspected under § 157.140(a)(1), if the Commandant...

  12. 33 CFR 157.147 - Similar tank design: Inspections on foreign tank vessels.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... tanks similar in dimensions and internal structure, the owner or operator may submit a written request... tanks similar in dimensions and internal structure is inspected under § 157.140(a)(1), if the Commandant...

  13. 33 CFR 157.147 - Similar tank design: Inspections on foreign tank vessels.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... tanks similar in dimensions and internal structure, the owner or operator may submit a written request... tanks similar in dimensions and internal structure is inspected under § 157.140(a)(1), if the Commandant...

  14. 46 CFR 38.05-4 - Design and construction of nonpressure vessel type cargo tanks-TB/ALL.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... precooling or cooling during loading shall be included in the design. (g) All weld intersections or crossings... intersection. All other welding in the primary tank and in the secondary barrier shall be spot radiographed in...

  15. 46 CFR 38.05-4 - Design and construction of nonpressure vessel type cargo tanks-TB/ALL.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... precooling or cooling during loading shall be included in the design. (g) All weld intersections or crossings... intersection. All other welding in the primary tank and in the secondary barrier shall be spot radiographed in...

  16. 46 CFR 38.05-4 - Design and construction of nonpressure vessel type cargo tanks-TB/ALL.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... precooling or cooling during loading shall be included in the design. (g) All weld intersections or crossings... intersection. All other welding in the primary tank and in the secondary barrier shall be spot radiographed in...

  17. 46 CFR 38.05-4 - Design and construction of nonpressure vessel type cargo tanks-TB/ALL.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... precooling or cooling during loading shall be included in the design. (g) All weld intersections or crossings... intersection. All other welding in the primary tank and in the secondary barrier shall be spot radiographed in...

  18. 46 CFR 38.05-4 - Design and construction of nonpressure vessel type cargo tanks-TB/ALL.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... precooling or cooling during loading shall be included in the design. (g) All weld intersections or crossings... intersection. All other welding in the primary tank and in the secondary barrier shall be spot radiographed in...

  19. 46 CFR 150.130 - Loading a cargo on vessels carrying cargoes with which it is incompatible.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 5 2011-10-01 2011-10-01 false Loading a cargo on vessels carrying cargoes with which it is incompatible. 150.130 Section 150.130 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES COMPATIBILITY OF CARGOES § 150.130 Loading a cargo on vessels...

  20. 46 CFR 150.130 - Loading a cargo on vessels carrying cargoes with which it is incompatible.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 5 2012-10-01 2012-10-01 false Loading a cargo on vessels carrying cargoes with which it is incompatible. 150.130 Section 150.130 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES COMPATIBILITY OF CARGOES § 150.130 Loading a cargo on vessels...

  1. 46 CFR 150.130 - Loading a cargo on vessels carrying cargoes with which it is incompatible.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 5 2013-10-01 2013-10-01 false Loading a cargo on vessels carrying cargoes with which it is incompatible. 150.130 Section 150.130 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES COMPATIBILITY OF CARGOES § 150.130 Loading a cargo on vessels...

  2. 46 CFR 150.130 - Loading a cargo on vessels carrying cargoes with which it is incompatible.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 5 2014-10-01 2014-10-01 false Loading a cargo on vessels carrying cargoes with which it is incompatible. 150.130 Section 150.130 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES COMPATIBILITY OF CARGOES § 150.130 Loading a cargo on vessels...

  3. Secondary barrier construction for vessels carrying spherical low temperature liquefied gas storage tanks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Okamoto, T.; Nishimoto, T.; Sawada, K.

    1978-05-16

    To simplify and thus reduce the cost of the secondary barrier for spherical LNG storage tanks onboard ocean-transport vessels, Japan's Hitachi Shipbuilding and Engineering Co., Ltd., has developed a new secondary-containment system that allows easy installation directly on the cargo hold's bottom plate beneath the spherical tank. The new system comprises at least two layers of rigid-foam synthetic resin sprayed on the hold plates and covered by a layer of glass mesh and adhesive. Alternatively, the layers of synthetic resin, glass mesh, and adhesive are applied to plywood attached to the hold plates by joists, thus forming an air spacemore » between the secondary barrier and the hold plates. Where the hold plates have a multisurface construction, (1) laminated rigid urethane foam blocks are butted end-to-end and are bonded to each other and to the plywood sheets at the corners between adjacent hold plates, (2) the spray-formed layers are applied between the blocks, and (3) the entire assembly is covered by a protective layer of glass mesh and adhesive.« less

  4. 46 CFR 154.439 - Tank design.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Tank design. 154.439 Section 154.439 Shipping COAST... SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES Design, Construction and Equipment Independent Tank Type A § 154.439 Tank design. An independent tank type A must meet the deep tank standard of the...

  5. 46 CFR 154.439 - Tank design.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 5 2011-10-01 2011-10-01 false Tank design. 154.439 Section 154.439 Shipping COAST... SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES Design, Construction and Equipment Independent Tank Type A § 154.439 Tank design. An independent tank type A must meet the deep tank standard of the...

  6. Analysis of stress-strain state of RVS-20000 tank under non-axisymmetric wind load action

    NASA Astrophysics Data System (ADS)

    Tarasenko, A. A.; Chepur, P. V.; Gruchenkova, A. A.

    2018-03-01

    In modern reference documentation, it is customary to set the wind load as uniformly distributed pressure over the area and wall of the tank. Experimental studies in the wind tunnel for various designs of the VST carried out under the guidance of professors V.E. Shutov and V.L. Berezin showed that when wind acts on the shell, there occur rarefaction zones, which must be taken into account during strain analysis of tanks. A finite-element model of the RVS-20000 tank was developed to calculate the wind load in a non-axisymmetric setting, taking into account the array of differentiated values of the aerodynamic coefficient. The distribution of stresses and strains of RVS-20000 metal structures under the effect of unevenly distributed wind pressure with a normal value of Qn = 600 Pa is obtained. It is established that the greatest strains and stresses occur at the interface of the wall and the fixed floor.

  7. Conformable pressure vessel for high pressure gas storage

    DOEpatents

    Simmons, Kevin L.; Johnson, Kenneth I.; Lavender, Curt A.; Newhouse, Norman L.; Yeggy, Brian C.

    2016-01-12

    A non-cylindrical pressure vessel storage tank is disclosed. The storage tank includes an internal structure. The internal structure is coupled to at least one wall of the storage tank. The internal structure shapes and internally supports the storage tank. The pressure vessel storage tank has a conformability of about 0.8 to about 1.0. The internal structure can be, but is not limited to, a Schwarz-P structure, an egg-crate shaped structure, or carbon fiber ligament structure.

  8. 46 CFR 169.234 - Integral fuel oil tank examinations.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 7 2012-10-01 2012-10-01 false Integral fuel oil tank examinations. 169.234 Section 169... VESSELS Inspection and Certification Drydocking Or Hauling Out § 169.234 Integral fuel oil tank examinations. (a) Each fuel oil tank with at least one side integral to the vessel's hull and located within...

  9. 46 CFR 169.234 - Integral fuel oil tank examinations.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 7 2013-10-01 2013-10-01 false Integral fuel oil tank examinations. 169.234 Section 169... VESSELS Inspection and Certification Drydocking Or Hauling Out § 169.234 Integral fuel oil tank examinations. (a) Each fuel oil tank with at least one side integral to the vessel's hull and located within...

  10. 46 CFR 169.234 - Integral fuel oil tank examinations.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 7 2011-10-01 2011-10-01 false Integral fuel oil tank examinations. 169.234 Section 169... VESSELS Inspection and Certification Drydocking Or Hauling Out § 169.234 Integral fuel oil tank examinations. (a) Each fuel oil tank with at least one side integral to the vessel's hull and located within...

  11. 46 CFR 169.234 - Integral fuel oil tank examinations.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 7 2014-10-01 2014-10-01 false Integral fuel oil tank examinations. 169.234 Section 169... VESSELS Inspection and Certification Drydocking Or Hauling Out § 169.234 Integral fuel oil tank examinations. (a) Each fuel oil tank with at least one side integral to the vessel's hull and located within...

  12. 46 CFR 154.188 - Membrane tank: Inner hull steel.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Membrane tank: Inner hull steel. 154.188 Section 154.188... STANDARDS FOR SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES Design, Construction and Equipment Hull Structure § 154.188 Membrane tank: Inner hull steel. For a vessel with membrane tanks, the inner hull...

  13. Fuel tank for liquefied natural gas

    NASA Technical Reports Server (NTRS)

    DeLay, Thomas K. (Inventor)

    2012-01-01

    A storage tank is provided for storing liquefied natural gas on, for example, a motor vehicle such as a bus or truck. The storage tank includes a metal liner vessel encapsulated by a resin-fiber composite layer. A foam insulating layer, including an outer protective layer of epoxy or of a truck liner material, covers the composite layer. A non-conducting protective coating may be painted on the vessel between the composite layer and the vessel so as to inhibit galvanic corrosion.

  14. Loading Considerations for Implementing Friction STIR Welding for Large Diameter Tank Fabrication

    NASA Technical Reports Server (NTRS)

    Adams, Glynn

    1998-01-01

    The main objectives of the research presented here are to determine the reaction loads associated with friction stir welding (FSW) and to determine the suitability of an existing welding fixture for implementing this welding process in the fabrication of large diameter tanks. Friction stir welding is a relatively new process which is being investigated as a method for joining aluminum alloys. The aluminum-lithium alloy, Al-Li 2195, which is being used to fabricate the super-light-weight shuttle external tank has proven difficult to join using fusion techniques. Therefore, FSW and its potential applicability to joining Al-Li 2195 are of particular interest to NASA.

  15. Nonlinear Analysis of the Space Shuttle Superlightweight LO2 Tank. Part 2; Behavior Under 3g End-of-Flight Loads

    NASA Technical Reports Server (NTRS)

    Nemeth, Michael P.; Young, Richard D.; Collins, Timothy J.; Starnes, James H.,Jr.

    1998-01-01

    Results of linear bifurcation and nonlinear analyses of the Space Shuttle super lightweight (SLWT) external liquid-oxygen (LO2) tank are presented for an important end-of-flight loading condition. These results illustrate an important type of response mode for thin-walled shells, that are subjected to combined mechanical and thermal loads, that may be encountered in the design of other liquid-fuel launch vehicles. Linear bifurcation analyses are presented that predict several nearly equal eigenvalues that correspond to local buckling modes in the aft dome of the LO2 tank. In contrast, the nonlinear response phenomenon is shown to consist of a short-wavelength bending deformation in the aft elliptical dome of the LO2 tank that grows in amplitude in a stable manner with increasing load. Imperfection sensitivity analyses are presented that show that the presence of several nearly equal eigenvalues does not lead to a premature general instability mode for the aft dome. For the linear bifurcation and nonlinear analyses, the results show that accurate predictions of the response of the shell generally require a large-scale, high fidelity finite-element model. Results are also presented that show that the SLWT LO2 tank can support loads in excess of approximately 1.9 times the values of the operational loads considered.

  16. Modeling Xenon Tank Pressurization using One-Dimensional Thermodynamic and Heat Transfer Equations

    NASA Technical Reports Server (NTRS)

    Gilligan, Ryan P.; Tomsik, Thomas M.

    2017-01-01

    As a first step in understanding what ground support equipment (GSE) is required to provide external cooling during the loading of 5,000 kg of xenon into 4 aluminum lined composite overwrapped pressure vessels (COPVs), a modeling analysis was performed using Microsoft Excel. The goals of the analysis were to predict xenon temperature and pressure throughout loading at the launch facility, estimate the time required to load one tank, and to get an early estimate of what provisions for cooling xenon might be needed while the tanks are being filled. The model uses the governing thermodynamic and heat transfer equations to achieve these goals. Results indicate that a single tank can be loaded in about 15 hours with reasonable external coolant requirements. The model developed in this study was successfully validated against flight and test data. The first data set is from the Dawn mission which also utilizes solar electric propulsion with xenon propellant, and the second is test data from the rapid loading of a hydrogen cylindrical COPV. The main benefit of this type of model is that the governing physical equations using bulk fluid solid temperatures can provide a quick and accurate estimate of the state of the propellant throughout loading which is much cheaper in terms of computational time and licensing costs than a Computation Fluid Dynamics (CFD) analysis while capturing the majority of the thermodynamics and heat transfer.

  17. 46 CFR 154.446 - Tank design.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Tank design. 154.446 Section 154.446 Shipping COAST... SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES Design, Construction and Equipment Independent Tank Type B § 154.446 Tank design. An independent tank type B must meet the calculations under § 154...

  18. 46 CFR 154.446 - Tank design.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 5 2011-10-01 2011-10-01 false Tank design. 154.446 Section 154.446 Shipping COAST... SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES Design, Construction and Equipment Independent Tank Type B § 154.446 Tank design. An independent tank type B must meet the calculations under § 154...

  19. 40 CFR 63.563 - Compliance and performance testing.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Standards for Marine Tank Vessel Loading Operations § 63.563 Compliance and performance testing. (a) The... indirectly, shall be secured closed during marine tank vessel loading operations either by using a car-seal... devices, sampling, and venting for maintenance. Marine tank vessel loading operations shall not be...

  20. 40 CFR 63.563 - Compliance and performance testing.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Standards for Marine Tank Vessel Loading Operations § 63.563 Compliance and performance testing. (a) The... indirectly, shall be secured closed during marine tank vessel loading operations either by using a car-seal... devices, sampling, and venting for maintenance. Marine tank vessel loading operations shall not be...

  1. Risk Assessment for Titanium Pressure Vessels Operating Inside the ARES I's Liquid Hydrogen Tank Environment

    NASA Technical Reports Server (NTRS)

    Lee, Jonathan A.

    2008-01-01

    Titanium alloy (Ti-6-4) is currently being proposed for the manufacturing of pressure vessels (PV) for storage of compressed helium gas, which are mounted inside the ARES I's liquid hydrogen (LH2) tank. At cryogenic temperature, titanium alloys usually have the highest strength-to-weight ratio property and have been considered as the metallic materials of choice for lightweight PV operating in LH2 environment. Titanium PV s are also considered as heritage hardware because they have been used by NASA for the Saturn IV-B rocket s LH2 tank in the mid 1960 s. However, hydrogen embrittlement is possible if Ti-6-4 alloy is exposed to gaseous hydrogen at certain pressure and temperature during the LH2 tank filling and draining operations on the launch pad, and during the J2X engine burn period for the ARES I s upper stage. Additionally, the fracture toughness and ductility properties of Ti-6-4 are significantly decreased at cryogenic temperature. These factors do not necessary preclude the use of titanium PV in hydrogen or at cryogenic applications; however, their synergistic effects and the material damage tolerance must be accounted for in the mission life assessment for PV s, which are considered as fracture critical hardware. In this paper, an overview of the risk assessment for Ti-6-4 alloy, strategy to control hydrogen embrittlement and brief metallic material trade study for PV operating in LH2 tank will be presented.

  2. Applying Hanford Tank Mixing Data to Define Pulse Jet Mixer Operation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wells, Beric E.; Bamberger, Judith A.; Recknagle, Kurtis P.

    Pulse jet mixed (PJM) process vessels are being developed for storing, blending, and chemical processing of nuclear waste slurries at the Waste Treatment and Immobilization Plant (WTP) to be built at Hanford, Washington. These waste slurries exhibit variable process feed characteristics including Newtonian to non-Newtonian rheologies over a range of solids loadings. Waste feed to the WTP from the Hanford Tank Farms will be accomplished via the Waste Feed Delivery (WFD) system which includes million-gallon underground storage double-shell tanks (DSTs) with dual-opposed jet mixer pumps. Experience using WFD type jet mixer pumps to mobilize actual Hanford waste in DSTs maymore » be used to establish design threshold criteria of interest to pulse jet mixed process vessel operation. This paper describes a method to evaluate the pulse jet mixed vessel capability to process waste based on information obtained during mobilizing and suspending waste by the WFD system jet mixer pumps in a DST. Calculations of jet velocity and wall shear stress in a specific pulse jet mixed process vessel were performed using a commercial computational fluid dynamics (CFD) code. The CFD-modelled process vessel consists of a 4.9-m- (16-ft-) diameter tank with a 2:1 semi-elliptical head, a single, 10-cm (4-in.) downward facing 60-degree conical nozzle, and a 0.61-m (24-in.) inside diameter PJM. The PJM is located at 70% of the vessel radius with the nozzle stand-off-distance 14 cm (6 in.) above the vessel head. The CFD modeled fluid velocity and wall shear stress can be used to estimate vessel waste-processing performance by comparison to available actual WFD system process data. Test data from the operation of jet mixer pumps in the 23-m (75-ft) diameter DSTs have demonstrated mobilization, solid particles in a sediment matrix were moved from their initial location, and suspension, mobilized solid particles were moved to a higher elevation in the vessel than their initial location, of waste

  3. 46 CFR 32.75-15 - Electric bonding and grounding for tanks-TB/ALL.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... EQUIPMENT, MACHINERY, AND HULL REQUIREMENTS Hull Requirements for Wood Hull Tank Vessels Constructed Prior... cargo tanks in wood hull tank vessels shall be electrically bonded together with stranded copper cable...

  4. 46 CFR 32.75-15 - Electric bonding and grounding for tanks-TB/ALL.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... EQUIPMENT, MACHINERY, AND HULL REQUIREMENTS Hull Requirements for Wood Hull Tank Vessels Constructed Prior... cargo tanks in wood hull tank vessels shall be electrically bonded together with stranded copper cable...

  5. Modeling ARRM Xenon Tank Pressurization Using 1D Thermodynamic and Heat Transfer Equations

    NASA Technical Reports Server (NTRS)

    Gilligan, Patrick; Tomsik, Thomas

    2016-01-01

    As a first step in understanding what ground support equipment (GSE) is required to provide external cooling during the loading of 5,000 kg of xenon into 4 aluminum lined composite overwrapped pressure vessels (COPVs), a modeling analysis was performed using Microsoft Excel. The goals of the analysis were to predict xenon temperature and pressure throughout loading at the launch facility, estimate the time required to load one tank, and to get an early estimate of what provisions for cooling xenon might be needed while the tanks are being filled. The model uses the governing thermodynamic and heat transfer equations to achieve these goals. Results indicate that a single tank can be loaded in about 15 hours with reasonable external coolant requirements. The model developed in this study was successfully validated against flight and test data. The first data set is from the Dawn mission which also utilizes solar electric propulsion with xenon propellant, and the second is test data from the rapid loading of a hydrogen cylindrical COPV. The main benefit of this type of model is that the governing physical equations using bulk fluid solid temperatures can provide a quick and accurate estimate of the state of the propellant throughout loading which is much cheaper in terms of computational time and licensing costs than a Computation Fluid Dynamics (CFD) analysis while capturing the majority of the thermodynamics and heat transfer.

  6. 46 CFR 32.52-5 - Bilge piping for pump rooms and adjacent cofferdams on tank vessels constructed or converted on...

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... as complying with this provision, or alternatively, the pump controls shall be arranged so that they... 46 Shipping 1 2013-10-01 2013-10-01 false Bilge piping for pump rooms and adjacent cofferdams on... REQUIREMENTS Bilge Systems § 32.52-5 Bilge piping for pump rooms and adjacent cofferdams on tank vessels...

  7. 46 CFR 32.52-5 - Bilge piping for pump rooms and adjacent cofferdams on tank vessels constructed or converted on...

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... as complying with this provision, or alternatively, the pump controls shall be arranged so that they... 46 Shipping 1 2014-10-01 2014-10-01 false Bilge piping for pump rooms and adjacent cofferdams on... REQUIREMENTS Bilge Systems § 32.52-5 Bilge piping for pump rooms and adjacent cofferdams on tank vessels...

  8. 46 CFR 32.52-5 - Bilge piping for pump rooms and adjacent cofferdams on tank vessels constructed or converted on...

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... as complying with this provision, or alternatively, the pump controls shall be arranged so that they... 46 Shipping 1 2011-10-01 2011-10-01 false Bilge piping for pump rooms and adjacent cofferdams on... REQUIREMENTS Bilge Systems § 32.52-5 Bilge piping for pump rooms and adjacent cofferdams on tank vessels...

  9. 46 CFR 32.52-5 - Bilge piping for pump rooms and adjacent cofferdams on tank vessels constructed or converted on...

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... as complying with this provision, or alternatively, the pump controls shall be arranged so that they... 46 Shipping 1 2010-10-01 2010-10-01 false Bilge piping for pump rooms and adjacent cofferdams on... REQUIREMENTS Bilge Systems § 32.52-5 Bilge piping for pump rooms and adjacent cofferdams on tank vessels...

  10. 46 CFR 32.52-5 - Bilge piping for pump rooms and adjacent cofferdams on tank vessels constructed or converted on...

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... as complying with this provision, or alternatively, the pump controls shall be arranged so that they... 46 Shipping 1 2012-10-01 2012-10-01 false Bilge piping for pump rooms and adjacent cofferdams on... REQUIREMENTS Bilge Systems § 32.52-5 Bilge piping for pump rooms and adjacent cofferdams on tank vessels...

  11. Sharing of Tank Information

    NASA Technical Reports Server (NTRS)

    Tamminga, Joshua D.

    2011-01-01

    Test Rationale -- Attempt to Address 10% vs. 25+% effects of crater penetration on full scale titanium alloy tanks and comparison to plate tests Utilize Baseline Burst Pressure versus HVI impacted vessels as gauge of effects Examine craters (post test) to determine penetration characteristics on a fluid filled vessel versus plate tests. Examine crater effects leading to vessel failure (if any).

  12. 46 CFR 56.50-85 - Tank-vent piping.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... this requirement. (4) Tank vents must extend above the weather deck, except vents from fresh water tanks, bilge oily-water holding tanks, bilge slop tanks, and tanks containing Grade E combustible... barges in inland service and for Great Lakes vessels, the height from the deck to any point where water...

  13. 46 CFR 56.50-85 - Tank-vent piping.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... this requirement. (4) Tank vents must extend above the weather deck, except vents from fresh water tanks, bilge oily-water holding tanks, bilge slop tanks, and tanks containing Grade E combustible... barges in inland service and for Great Lakes vessels, the height from the deck to any point where water...

  14. 46 CFR 56.50-85 - Tank-vent piping.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... this requirement. (4) Tank vents must extend above the weather deck, except vents from fresh water tanks, bilge oily-water holding tanks, bilge slop tanks, and tanks containing Grade E combustible... barges in inland service and for Great Lakes vessels, the height from the deck to any point where water...

  15. 46 CFR 105.20-3 - Cargo tanks.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 4 2013-10-01 2013-10-01 false Cargo tanks. 105.20-3 Section 105.20-3 Shipping COAST... VESSELS DISPENSING PETROLEUM PRODUCTS Specific Requirements-Cargo Tanks § 105.20-3 Cargo tanks. (a) Construction and Materials. (1) The cargo tanks must be constructed of iron, steel, copper, nickel alloy...

  16. 46 CFR 105.20-3 - Cargo tanks.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 4 2014-10-01 2014-10-01 false Cargo tanks. 105.20-3 Section 105.20-3 Shipping COAST... VESSELS DISPENSING PETROLEUM PRODUCTS Specific Requirements-Cargo Tanks § 105.20-3 Cargo tanks. (a) Construction and Materials. (1) The cargo tanks must be constructed of iron, steel, copper, nickel alloy...

  17. 46 CFR 105.20-3 - Cargo tanks.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false Cargo tanks. 105.20-3 Section 105.20-3 Shipping COAST... VESSELS DISPENSING PETROLEUM PRODUCTS Specific Requirements-Cargo Tanks § 105.20-3 Cargo tanks. (a) Construction and Materials. (1) The cargo tanks must be constructed of iron, steel, copper, nickel alloy...

  18. 46 CFR 105.20-3 - Cargo tanks.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 4 2012-10-01 2012-10-01 false Cargo tanks. 105.20-3 Section 105.20-3 Shipping COAST... VESSELS DISPENSING PETROLEUM PRODUCTS Specific Requirements-Cargo Tanks § 105.20-3 Cargo tanks. (a) Construction and Materials. (1) The cargo tanks must be constructed of iron, steel, copper, nickel alloy...

  19. 33 CFR 157.33 - Water ballast in fuel oil tanks.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Water ballast in fuel oil tanks... OIL IN BULK Vessel Operation § 157.33 Water ballast in fuel oil tanks. A new vessel may not carry ballast water in a fuel oil tank. [CGD 74-32, 40 FR 48283, Oct. 14, 1975, as amended by USCG-2000-7641, 66...

  20. 14 CFR 23.967 - Fuel tank installation.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ....967 Fuel tank installation. (a) Each fuel tank must be supported so that tank loads are not... tank liner is used, it must be supported so that it is not required to withstand fluid loads; (4... securing or loss of the fuel filler cap. (b) Each tank compartment must be ventilated and drained to...

  1. 14 CFR 23.967 - Fuel tank installation.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ....967 Fuel tank installation. (a) Each fuel tank must be supported so that tank loads are not... tank liner is used, it must be supported so that it is not required to withstand fluid loads; (4... securing or loss of the fuel filler cap. (b) Each tank compartment must be ventilated and drained to...

  2. 14 CFR 23.967 - Fuel tank installation.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ....967 Fuel tank installation. (a) Each fuel tank must be supported so that tank loads are not... tank liner is used, it must be supported so that it is not required to withstand fluid loads; (4... securing or loss of the fuel filler cap. (b) Each tank compartment must be ventilated and drained to...

  3. 14 CFR 23.967 - Fuel tank installation.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ....967 Fuel tank installation. (a) Each fuel tank must be supported so that tank loads are not... tank liner is used, it must be supported so that it is not required to withstand fluid loads; (4... securing or loss of the fuel filler cap. (b) Each tank compartment must be ventilated and drained to...

  4. 14 CFR 23.967 - Fuel tank installation.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ....967 Fuel tank installation. (a) Each fuel tank must be supported so that tank loads are not... tank liner is used, it must be supported so that it is not required to withstand fluid loads; (4... securing or loss of the fuel filler cap. (b) Each tank compartment must be ventilated and drained to...

  5. 46 CFR 119.435 - Integral fuel tanks.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 4 2012-10-01 2012-10-01 false Integral fuel tanks. 119.435 Section 119.435 Shipping... Machinery Requirements § 119.435 Integral fuel tanks. (a) Diesel fuel tanks may not be built integral with... for certification of a vessel, integral fuel tanks must withstand a hydrostatic pressure test of 35 k...

  6. 46 CFR 119.435 - Integral fuel tanks.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 4 2013-10-01 2013-10-01 false Integral fuel tanks. 119.435 Section 119.435 Shipping... Machinery Requirements § 119.435 Integral fuel tanks. (a) Diesel fuel tanks may not be built integral with... for certification of a vessel, integral fuel tanks must withstand a hydrostatic pressure test of 35 k...

  7. 46 CFR 169.234 - Integral fuel oil tank examinations.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... operator of the vessel shall have the tanks cleaned out and gas freed as necessary to permit internal... an examination of the fuel tanks of each vessel during an internal structural examination at... and internally examined if the marine inspector is able to determine by external examination that the...

  8. Design and implementation of an air-conditioning system with storage tank for load shifting

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hsu, Y.Y.; Wu, C.J.; Liou, K.L.

    1987-11-01

    The experience with the design, simulation and implementation of an air-conditioning system with chilled water storage tank is presented in this paper. The system is used to shift air-conditioning load of residential and commercial buildings from on-peak to off-peak period. Demand-side load management can thus be achieved if many buildings are equipped with such storage devices. In the design of this system, a lumped-parameter circuit model is first employed to simulate the heat transfer within the air-conditioned building such that the required capacity of the storage tank can be figured out. Then, a set of desirable parameters for the temperaturemore » controller of the system are determined using the parameter plane method and the root locus method. The validity of the proposed mathematical model and design approach is verified by comparing the results obtained from field tests with those from the computer simulations. Cost-benefit analysis of the system is also discussed.« less

  9. 33 CFR 157.160 - Tanks: Ballasting and crude oil washing.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... CARRYING OIL IN BULK Crude Oil Washing (COW) System on Tank Vessels Cow Operations § 157.160 Tanks... vessel having a COW system under § 157.10a(a)(2) or § 157.10c(b)(2) shall ensure that— (1) Ballast water...

  10. 46 CFR 154.439 - Tank design.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 5 2013-10-01 2013-10-01 false Tank design. 154.439 Section 154.439 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SAFETY STANDARDS FOR SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES Design, Construction and Equipment Independent Tank Type A § 154.439 Tank design. An independent...

  11. 46 CFR 154.439 - Tank design.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 5 2014-10-01 2014-10-01 false Tank design. 154.439 Section 154.439 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SAFETY STANDARDS FOR SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES Design, Construction and Equipment Independent Tank Type A § 154.439 Tank design. An independent...

  12. 46 CFR 154.446 - Tank design.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 5 2013-10-01 2013-10-01 false Tank design. 154.446 Section 154.446 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SAFETY STANDARDS FOR SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES Design, Construction and Equipment Independent Tank Type B § 154.446 Tank design. An independent...

  13. 46 CFR 154.446 - Tank design.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 5 2014-10-01 2014-10-01 false Tank design. 154.446 Section 154.446 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SAFETY STANDARDS FOR SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES Design, Construction and Equipment Independent Tank Type B § 154.446 Tank design. An independent...

  14. 46 CFR 154.439 - Tank design.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 5 2012-10-01 2012-10-01 false Tank design. 154.439 Section 154.439 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SAFETY STANDARDS FOR SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES Design, Construction and Equipment Independent Tank Type A § 154.439 Tank design. An independent...

  15. 46 CFR 154.446 - Tank design.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 5 2012-10-01 2012-10-01 false Tank design. 154.446 Section 154.446 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SAFETY STANDARDS FOR SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES Design, Construction and Equipment Independent Tank Type B § 154.446 Tank design. An independent...

  16. 19 CFR 151.44 - Storage tanks.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 19 Customs Duties 2 2014-04-01 2014-04-01 false Storage tanks. 151.44 Section 151.44 Customs... Storage tanks. (a) Plans and gauge tables. When petroleum or petroleum products subject to duty at a specific rate per barrel are imported in bulk in tank vessels and are to be transferred into shore storage...

  17. 19 CFR 151.44 - Storage tanks.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 19 Customs Duties 2 2013-04-01 2013-04-01 false Storage tanks. 151.44 Section 151.44 Customs... Storage tanks. (a) Plans and gauge tables. When petroleum or petroleum products subject to duty at a specific rate per barrel are imported in bulk in tank vessels and are to be transferred into shore storage...

  18. 19 CFR 151.44 - Storage tanks.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 19 Customs Duties 2 2010-04-01 2010-04-01 false Storage tanks. 151.44 Section 151.44 Customs... Storage tanks. (a) Plans and gauge tables. When petroleum or petroleum products subject to duty at a specific rate per barrel are imported in bulk in tank vessels and are to be transferred into shore storage...

  19. 19 CFR 151.44 - Storage tanks.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 19 Customs Duties 2 2011-04-01 2011-04-01 false Storage tanks. 151.44 Section 151.44 Customs... Storage tanks. (a) Plans and gauge tables. When petroleum or petroleum products subject to duty at a specific rate per barrel are imported in bulk in tank vessels and are to be transferred into shore storage...

  20. 19 CFR 151.44 - Storage tanks.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 19 Customs Duties 2 2012-04-01 2012-04-01 false Storage tanks. 151.44 Section 151.44 Customs... Storage tanks. (a) Plans and gauge tables. When petroleum or petroleum products subject to duty at a specific rate per barrel are imported in bulk in tank vessels and are to be transferred into shore storage...

  1. Investigation of the Effect of Tip Tanks on the Wing Loading of a Republic F-84 Airplane in the Ames 40- by 80-foot Wind Tunnel

    NASA Technical Reports Server (NTRS)

    Hunton, Lynn W.; Dew, Joseph K.; Salisbury, Ralph D.

    1949-01-01

    Wind-tunnel tests at low Mach number of a Republic F-84C airplane were conducted to determine by pressure-distribution measurements the air loads on wing-tip tanks and the change in wing load distribution due to the presence of tip tanks. Measurements of the aeroelastic twist of the wing were also obtained. Results are presented in the form of loading coefficient, center-of- pressure location, pitching-moment coefficient, aerodynamic-center location, and aeroelastic twist. The investigation revealed that the redistributions in loading brought about by either the tip tanks or elastic deformation of the wing were relatively small when compared with the chnnges in loading normally associated with the deflection of an aileron.

  2. 40 CFR 63.563 - Compliance and performance testing.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... marine tank vessel can document that repair is technically infeasible without cleaning and gas freeing or... Standards for Marine Tank Vessel Loading Operations § 63.563 Compliance and performance testing. (a) The... indirectly, shall be secured closed during marine tank vessel loading operations either by using a car-seal...

  3. 40 CFR 63.563 - Compliance and performance testing.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... marine tank vessel can document that repair is technically infeasible without cleaning and gas freeing or... Standards for Marine Tank Vessel Loading Operations § 63.563 Compliance and performance testing. (a) The... indirectly, shall be secured closed during marine tank vessel loading operations either by using a car-seal...

  4. 46 CFR 32.60-20 - Pumprooms on tank vessels carrying Grade A, B, C, D and/or E liquid cargo-TB/ALL.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    .... Ventilation from the weather deck shall be provided. Power supply ventilation may be fitted in lieu of natural... not exceed 500 °F. (b) Ventilation for pumprooms on tank vessels the construction or conversion of... with power ventilation. Pumprooms equipped with power ventilation shall have the ventilation outlets...

  5. Pressurizer tank upper support

    DOEpatents

    Baker, T.H.; Ott, H.L.

    1994-01-11

    A pressurizer tank in a pressurized water nuclear reactor is mounted between structural walls of the reactor on a substructure of the reactor, the tank extending upwardly from the substructure. For bearing lateral loads such as seismic shocks, a girder substantially encircles the pressurizer tank at a space above the substructure and is coupled to the structural walls via opposed sway struts. Each sway strut is attached at one end to the girder and at an opposite end to one of the structural walls, and the sway struts are oriented substantially horizontally in pairs aligned substantially along tangents to the wall of the circular tank. Preferably, eight sway struts attach to the girder at 90[degree] intervals. A compartment encloses the pressurizer tank and forms the structural wall. The sway struts attach to corners of the compartment for maximum stiffness and load bearing capacity. A valve support frame carrying the relief/discharge piping and valves of an automatic depressurization arrangement is fixed to the girder, whereby lateral loads on the relief/discharge piping are coupled directly to the compartment rather than through any portion of the pressurizer tank. Thermal insulation for the valve support frame prevents thermal loading of the piping and valves. The girder is shimmed to define a gap for reducing thermal transfer, and the girder is free to move vertically relative to the compartment walls, for accommodating dimensional variation of the pressurizer tank with changes in temperature and pressure. 10 figures.

  6. Pressurizer tank upper support

    DOEpatents

    Baker, Tod H.; Ott, Howard L.

    1994-01-01

    A pressurizer tank in a pressurized water nuclear reactor is mounted between structural walls of the reactor on a substructure of the reactor, the tank extending upwardly from the substructure. For bearing lateral loads such as seismic shocks, a girder substantially encircles the pressurizer tank at a space above the substructure and is coupled to the structural walls via opposed sway struts. Each sway strut is attached at one end to the girder and at an opposite end to one of the structural walls, and the sway struts are oriented substantially horizontally in pairs aligned substantially along tangents to the wall of the circular tank. Preferably, eight sway struts attach to the girder at 90.degree. intervals. A compartment encloses the pressurizer tank and forms the structural wall. The sway struts attach to corners of the compartment for maximum stiffness and load bearing capacity. A valve support frame carrying the relief/discharge piping and valves of an automatic depressurization arrangement is fixed to the girder, whereby lateral loads on the relief/discharge piping are coupled directly to the compartment rather than through any portion of the pressurizer tank. Thermal insulation for the valve support frame prevents thermal loading of the piping and valves. The girder is shimmed to define a gap for reducing thermal transfer, and the girder is free to move vertically relative to the compartment walls, for accommodating dimensional variation of the pressurizer tank with changes in temperature and pressure.

  7. 46 CFR 151.03-51 - Tank barge.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 5 2012-10-01 2012-10-01 false Tank barge. 151.03-51 Section 151.03-51 Shipping COAST... LIQUID HAZARDOUS MATERIAL CARGOES Definitions § 151.03-51 Tank barge. A non-self-propelled vessel especially constructed or converted to carry bulk liquid cargo in tanks. ...

  8. 46 CFR 151.03-51 - Tank barge.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 5 2011-10-01 2011-10-01 false Tank barge. 151.03-51 Section 151.03-51 Shipping COAST... LIQUID HAZARDOUS MATERIAL CARGOES Definitions § 151.03-51 Tank barge. A non-self-propelled vessel especially constructed or converted to carry bulk liquid cargo in tanks. ...

  9. 46 CFR 151.03-51 - Tank barge.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 5 2014-10-01 2014-10-01 false Tank barge. 151.03-51 Section 151.03-51 Shipping COAST... LIQUID HAZARDOUS MATERIAL CARGOES Definitions § 151.03-51 Tank barge. A non-self-propelled vessel especially constructed or converted to carry bulk liquid cargo in tanks. ...

  10. 46 CFR 151.03-51 - Tank barge.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 5 2013-10-01 2013-10-01 false Tank barge. 151.03-51 Section 151.03-51 Shipping COAST... LIQUID HAZARDOUS MATERIAL CARGOES Definitions § 151.03-51 Tank barge. A non-self-propelled vessel especially constructed or converted to carry bulk liquid cargo in tanks. ...

  11. 46 CFR 151.03-51 - Tank barge.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Tank barge. 151.03-51 Section 151.03-51 Shipping COAST... LIQUID HAZARDOUS MATERIAL CARGOES Definitions § 151.03-51 Tank barge. A non-self-propelled vessel especially constructed or converted to carry bulk liquid cargo in tanks. ...

  12. 46 CFR 105.25-15 - Spacings around tanks.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 4 2013-10-01 2013-10-01 false Spacings around tanks. 105.25-15 Section 105.25-15... COMMERCIAL FISHING VESSELS DISPENSING PETROLEUM PRODUCTS Additional Requirements-When Cargo Tanks Are Installed Below Decks § 105.25-15 Spacings around tanks. (a) Tanks shall be located so as to provide at...

  13. 46 CFR 105.25-15 - Spacings around tanks.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 4 2012-10-01 2012-10-01 false Spacings around tanks. 105.25-15 Section 105.25-15... COMMERCIAL FISHING VESSELS DISPENSING PETROLEUM PRODUCTS Additional Requirements-When Cargo Tanks Are Installed Below Decks § 105.25-15 Spacings around tanks. (a) Tanks shall be located so as to provide at...

  14. 33 CFR 157.124 - COW tank washing machines.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false COW tank washing machines. 157... OIL IN BULK Crude Oil Washing (COW) System on Tank Vessels Design, Equipment, and Installation § 157.124 COW tank washing machines. (a) COW machines must be permanently mounted in each cargo tank. (b...

  15. Composite overwrapped metallic tanks

    NASA Technical Reports Server (NTRS)

    Caudill, C. L.; Kirlin, R. L.

    1972-01-01

    Work is reported for fabricating and testing the fiberglass overwrapped titanium pressure vessel for cryogenic service. Difficulties encountered in the tank liner fabrication phase involved explosive forming, vacuum annealing, chemical milling and electron beam welding. While each of these processes and the nondestructive test methods employed are normally considered to be individually reliable, the combination of poor material together with fabrication and development reversals prevented the full achievement of the desired end results. Eight tanks plus a prototype and tool proofing article were produced. Six of the vessels failed during the hydrostatic sizing operation. One of the remaining tanks was hydrostatically pressurized to burst and the other was pressurized repeatedly at 75 F from 100 psi to the operating pressure until failure occurred. As a result, it is not possible to draw firm conclusions as to the true value of the design concept due to the problems encountered in the program.

  16. 46 CFR 154.235 - Cargo tank location.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 5 2013-10-01 2013-10-01 false Cargo tank location. 154.235 Section 154.235 Shipping... FOR SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES Design, Construction and Equipment Ship Survival Capability and Cargo Tank Location § 154.235 Cargo tank location. (a) For type IG hulls, cargo...

  17. 46 CFR 154.235 - Cargo tank location.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 5 2012-10-01 2012-10-01 false Cargo tank location. 154.235 Section 154.235 Shipping... FOR SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES Design, Construction and Equipment Ship Survival Capability and Cargo Tank Location § 154.235 Cargo tank location. (a) For type IG hulls, cargo...

  18. 46 CFR 154.235 - Cargo tank location.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 5 2014-10-01 2014-10-01 false Cargo tank location. 154.235 Section 154.235 Shipping... FOR SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES Design, Construction and Equipment Ship Survival Capability and Cargo Tank Location § 154.235 Cargo tank location. (a) For type IG hulls, cargo...

  19. Estimation of the Unsteady Aerodynamic Load on Space Shuttle External Tank Protuberances from a Component Wind Tunnel Test

    NASA Technical Reports Server (NTRS)

    Panda, Jayatana; Martin, Fred W.; Sutliff, Daniel L.

    2008-01-01

    At the wake of the Columbia (STS-107) accident it was decided to remove the Protuberance Aerodynamic Load (PAL) Ramp that was originally intended to protect various protuberances outside of the Space Shuttle External Tank from high buffet load induced by cross-flows at transonic speed. In order to establish the buffet load without the PAL ramp, a wind tunnel test was conducted where segments of the protuberances were instrumented with dynamic pressure transducers; and power-spectra of sectional lift and drag forces at various span-wise locations between two adjacent support brackets were measured under different cross flow angles, Mach number and other conditions. Additionally, frequency-dependent spatial correlations between the sectional forces were also established. The sectional forces were then adjusted by the correlation length to establish span-averaged spectra of normal and lateral forces that can be suitably "added" to various other unsteady forces encountered by the protuberance. This paper describes the methodology used for calculating the correlation-adjusted power spectrum of the buffet load. A second part of the paper describes wind-tunnel results on the difference in the buffet load on the protuberances with and without the PAL ramp. In general when the ramp height is the same as that of the protuberance height, such as that found on the liquid Oxygen part of the tank, the ramp is found to cause significant reduction of the unsteady aerodynamic load. However, on the liquid Hydrogen part of the tank, where the Oxygen feed-line is far larger in diameter than the height of the PAL ramp, little protection is found to be available to all but the Cable Tray.

  20. Damage Tolerance Analysis of a Pressurized Liquid Oxygen Tank

    NASA Technical Reports Server (NTRS)

    Forth, Scott C.; Harvin, Stephen F.; Gregory, Peyton B.; Mason, Brian H.; Thompson, Joe E.; Hoffman, Eric K.

    2006-01-01

    A damage tolerance assessment was conducted of an 8,000 gallon pressurized Liquid Oxygen (LOX) tank. The LOX tank is constructed of a stainless steel pressure vessel enclosed by a thermal-insulating vacuum jacket. The vessel is pressurized to 2,250 psi with gaseous nitrogen resulting in both thermal and pressure stresses on the tank wall. Finite element analyses were performed on the tank to characterize the stresses from operation. Engineering material data was found from both the construction of the tank and the technical literature. An initial damage state was assumed based on records of a nondestructive inspection performed on the tank. The damage tolerance analyses were conducted using the NASGRO computer code. This paper contains the assumptions, and justifications, made for the input parameters to the damage tolerance analyses and the results of the damage tolerance analyses with a discussion on the operational safety of the LOX tank.

  1. 46 CFR 170.055 - Definitions concerning a vessel.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ...) Barge means a vessel not equipped with a means of self-propulsion. (d) Beam or B means the maximum width... vessel's keel was laid; or (2) Construction identifiable with the vessel began and assembly of that... a vessel propelled only by sails. (q) Ship means a self-propelled vessel. (r) Tank vessel means a...

  2. Influence of sludge properties and hydraulic loading on the performance of secondary settling tanks--full-scale operational results.

    PubMed

    Vestner, R J; Günthert, F Wolfgang

    2004-01-01

    Full-scale investigations at a WWTP with a two-stage secondary settling tank process revealed relationships between significant operating parameters and performance in terms of effluent suspended solids concentration. Besides common parameters (e.g. surface overflow rate and sludge volume loading rate) feed SS concentration and flocculation time must be considered. Concentration of the return activated sludge may help to estimate the performance of existing secondary settling tanks.

  3. 33 CFR 157.132 - Cargo tanks: Hydrocarbon vapor emissions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 2 2011-07-01 2011-07-01 false Cargo tanks: Hydrocarbon vapor... § 157.132 Cargo tanks: Hydrocarbon vapor emissions. Each tank vessel having a COW system under § 157.10a... must have— (a) A means to discharge hydrocarbon vapors from each cargo tank that is ballasted to a...

  4. 46 CFR 154.1730 - Ethylene oxide: Loading and off loading.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Ethylene oxide: Loading and off loading. 154.1730... Operating Requirements § 154.1730 Ethylene oxide: Loading and off loading. (a) The master shall ensure that before ethylene oxide is loaded into a cargo tank: (1) The tank is thoroughly clean, dry, and free of...

  5. 40 CFR 63.1062 - Storage vessel control requirements.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 10 2010-07-01 2010-07-01 false Storage vessel control requirements... (CONTINUED) National Emission Standards for Storage Vessels (Tanks)-Control Level 2 § 63.1062 Storage vessel control requirements. (a) For each storage vessel to which this subpart applies, the owner or operator...

  6. 40 CFR 63.1062 - Storage vessel control requirements.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 10 2011-07-01 2011-07-01 false Storage vessel control requirements... (CONTINUED) National Emission Standards for Storage Vessels (Tanks)-Control Level 2 § 63.1062 Storage vessel control requirements. (a) For each storage vessel to which this subpart applies, the owner or operator...

  7. 40 CFR 63.1062 - Storage vessel control requirements.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 11 2013-07-01 2013-07-01 false Storage vessel control requirements... (CONTINUED) National Emission Standards for Storage Vessels (Tanks)-Control Level 2 § 63.1062 Storage vessel control requirements. (a) For each storage vessel to which this subpart applies, the owner or operator...

  8. 46 CFR 154.427 - Membrane tank system design.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 5 2014-10-01 2014-10-01 false Membrane tank system design. 154.427 Section 154.427 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SAFETY STANDARDS FOR SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES Design, Construction and Equipment Membrane Tanks § 154.427 Membrane tank system...

  9. 46 CFR 154.427 - Membrane tank system design.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 5 2012-10-01 2012-10-01 false Membrane tank system design. 154.427 Section 154.427 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SAFETY STANDARDS FOR SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES Design, Construction and Equipment Membrane Tanks § 154.427 Membrane tank system...

  10. 46 CFR 154.427 - Membrane tank system design.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 5 2013-10-01 2013-10-01 false Membrane tank system design. 154.427 Section 154.427 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SAFETY STANDARDS FOR SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES Design, Construction and Equipment Membrane Tanks § 154.427 Membrane tank system...

  11. Large-scale testing of in-vessel debris cooling through external flooding of the reactor pressure vessel in the CYBL facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chu, T.Y.; Bentz, J.H.; Bergeron, K.D.

    1994-04-01

    The possibility of achieving in-vessel core retention by flooding the reactor cavity, or the ``flooded cavity``, is an accident management concept currently under consideration for advanced light water reactors (ALWR), as well as for existing light water reactors (LWR). The CYBL (CYlindrical BoiLing) facility is a facility specifically designed to perform large-scale confirmatory testing of the flooded cavity concept. CYBL has a tank-within-a-tank design; the inner 3.7 m diameter tank simulates the reactor vessel, and the outer tank simulates the reactor cavity. The energy deposition on the bottom head is simulated with an array of radiant heaters. The array canmore » deliver a tailored heat flux distribution corresponding to that resulting from core melt convection. The present paper provides a detailed description of the capabilities of the facility, as well as results of recent experiments with heat flux in the range of interest to those required for in-vessel retention in typical ALWRs. The paper concludes with a discussion of other experiments for the flooded cavity applications.« less

  12. Original analytical model of the hydrodynamic loads applied on the half-bridge of a circular settling tank

    NASA Astrophysics Data System (ADS)

    Oanta, Emil M.; Dascalescu, Anca-Elena; Sabau, Adrian

    2016-12-01

    The paper presents an original analytical model of the hydrodynamic loads applied on the half-bridge of a circular settling tank. The calculus domain is defined using analytical geometry and the calculus of the local dynamic pressure is based on the radius from the center of the settling tank to the current area, i.e. the relative velocity of the fluid and the depth where the current area is located, i.e. the density of the fluid. Calculus of the local drag forces uses the discrete frontal cross sectional areas of the submerged structure in contact with the fluid. In the last stage is performed the reduction of the local drag forces in the appropriate points belonging to the main beam. This class of loads is producing the flexure of the main beam in a horizontal plane and additional twisting moments along this structure. Taking into account the hydrodynamic loads, the results of the theoretical models, i.e. the analytical model and the finite element model, may have an increased accuracy.

  13. 49 CFR 178.345-11 - Tank outlets.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 3 2012-10-01 2012-10-01 false Tank outlets. 178.345-11 Section 178.345-11... Containers for Motor Vehicle Transportation § 178.345-11 Tank outlets. (a) General. As used in this section, “loading/unloading outlet” means any opening in the cargo tank wall used for loading or unloading of lading...

  14. 49 CFR 178.345-11 - Tank outlets.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 3 2013-10-01 2013-10-01 false Tank outlets. 178.345-11 Section 178.345-11... Containers for Motor Vehicle Transportation § 178.345-11 Tank outlets. (a) General. As used in this section, “loading/unloading outlet” means any opening in the cargo tank wall used for loading or unloading of lading...

  15. 49 CFR 178.345-11 - Tank outlets.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 3 2014-10-01 2014-10-01 false Tank outlets. 178.345-11 Section 178.345-11... Containers for Motor Vehicle Transportation § 178.345-11 Tank outlets. (a) General. As used in this section, “loading/unloading outlet” means any opening in the cargo tank wall used for loading or unloading of lading...

  16. 49 CFR 178.345-11 - Tank outlets.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 3 2011-10-01 2011-10-01 false Tank outlets. 178.345-11 Section 178.345-11... Containers for Motor Vehicle Transportation § 178.345-11 Tank outlets. (a) General. As used in this section, “loading/unloading outlet” means any opening in the cargo tank wall used for loading or unloading of lading...

  17. Design Guide for glass fiber reinforced metal pressure vessel

    NASA Technical Reports Server (NTRS)

    Landes, R. E.

    1973-01-01

    Design Guide has been prepared for pressure vessel engineers concerned with specific glass fiber reinforced metal tank design or general tank tradeoff study. Design philosophy, general equations, and curves are provided for safelife design of tanks operating under anticipated space shuttle service conditions.

  18. Design and development of Shuttle Get-Away-Special experiment G-0074. [off-load capability for a full-tank propellant acquisition system

    NASA Technical Reports Server (NTRS)

    Orton, G. F.

    1984-01-01

    An experiment to investigate more versatile, lower cost surface tension propellant acquisition approaches for future satellite and spacecraft propellant tanks is designed to demonstrate a propellant off-load capability for a full-tank gallery surface tension device, such as that employed in the shuttle reaction control subsystem, and demonstrate a low-cost refillable trap concept that could be used in future orbit maneuver propulsion systems for multiple engine restarts. A Plexiglas test tank, movie camera and lights, auxiliary liquid accumulator, control electronics, battery pack, and associated valving and plumbing are used. The test liquid is Freon 113, dyed blue for color movie coverage. The fully loaded experiments weighs 106 pounds and is to be installed in a NASA five-cubic-foot flight canister. Vibration tests, acoustic tests, and high and low temperature tests were performed to quality the experiment for flight.

  19. 46 CFR 32.70-25 - Cargo tanks-TB/ALL.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... REQUIREMENTS Hull Requirements for Steel Hull Tank Vessels Constructed Prior to November 10, 1936 § 32.70-25... inspection, a satisfactory inspection of the cargo tanks and hull structure can be made. ...

  20. 46 CFR 32.70-25 - Cargo tanks-TB/ALL.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... REQUIREMENTS Hull Requirements for Steel Hull Tank Vessels Constructed Prior to November 10, 1936 § 32.70-25... inspection, a satisfactory inspection of the cargo tanks and hull structure can be made. ...

  1. 46 CFR 32.70-25 - Cargo tanks-TB/ALL.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... REQUIREMENTS Hull Requirements for Steel Hull Tank Vessels Constructed Prior to November 10, 1936 § 32.70-25... inspection, a satisfactory inspection of the cargo tanks and hull structure can be made. ...

  2. 46 CFR 32.70-25 - Cargo tanks-TB/ALL.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... REQUIREMENTS Hull Requirements for Steel Hull Tank Vessels Constructed Prior to November 10, 1936 § 32.70-25... inspection, a satisfactory inspection of the cargo tanks and hull structure can be made. ...

  3. 46 CFR 32.70-25 - Cargo tanks-TB/ALL.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... REQUIREMENTS Hull Requirements for Steel Hull Tank Vessels Constructed Prior to November 10, 1936 § 32.70-25... inspection, a satisfactory inspection of the cargo tanks and hull structure can be made. ...

  4. Annual Radioactive Waste Tank Inspection Program 1994

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McNatt, F.G. Sr.

    1995-04-01

    Aqueous radioactive wastes from Savannah River Site (SRS) separations processes are contained in large underground carbon steel tanks. Inspections made during 1994 to evaluate these vessels and evaluations based on data accrued by inspections made since the tanks were constructed are the subject of this report.

  5. 46 CFR 91.25-37 - Tanks containing dangerous cargoes.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 4 2014-10-01 2014-10-01 false Tanks containing dangerous cargoes. 91.25-37 Section 91... VESSELS INSPECTION AND CERTIFICATION Inspection for Certification § 91.25-37 Tanks containing dangerous cargoes. (a) For inspection and tests of tanks containing certain dangerous cargoes in bulk, see part 98...

  6. 46 CFR 91.25-37 - Tanks containing dangerous cargoes.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Tanks containing dangerous cargoes. 91.25-37 Section 91... VESSELS INSPECTION AND CERTIFICATION Inspection for Certification § 91.25-37 Tanks containing dangerous cargoes. (a) For inspection and tests of tanks containing certain dangerous cargoes in bulk, see part 98...

  7. 46 CFR 91.25-37 - Tanks containing dangerous cargoes.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false Tanks containing dangerous cargoes. 91.25-37 Section 91... VESSELS INSPECTION AND CERTIFICATION Inspection for Certification § 91.25-37 Tanks containing dangerous cargoes. (a) For inspection and tests of tanks containing certain dangerous cargoes in bulk, see part 98...

  8. 46 CFR 91.25-37 - Tanks containing dangerous cargoes.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 4 2013-10-01 2013-10-01 false Tanks containing dangerous cargoes. 91.25-37 Section 91... VESSELS INSPECTION AND CERTIFICATION Inspection for Certification § 91.25-37 Tanks containing dangerous cargoes. (a) For inspection and tests of tanks containing certain dangerous cargoes in bulk, see part 98...

  9. 46 CFR 91.25-37 - Tanks containing dangerous cargoes.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 4 2012-10-01 2012-10-01 false Tanks containing dangerous cargoes. 91.25-37 Section 91... VESSELS INSPECTION AND CERTIFICATION Inspection for Certification § 91.25-37 Tanks containing dangerous cargoes. (a) For inspection and tests of tanks containing certain dangerous cargoes in bulk, see part 98...

  10. 75 FR 750 - Consumer Price Index Adjustments of Oil Pollution Act of 1990 Limits of Liability-Vessels and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-06

    ... applicability of the OPA 90 single-hull tank vessel limits of liability. DATES: This final rule is effective... amendments to clarify the applicability of the single-hull tank vessel limits of liability, and solicited... regulations, at 33 CFR part 138, subpart A, to single- hull tank vessels that do not carry oil as cargo. As...

  11. 46 CFR 98.30-4 - Vessels carrying MPTs.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CARGO AND MISCELLANEOUS VESSELS SPECIAL CONSTRUCTION, ARRANGEMENT, AND OTHER PROVISIONS FOR CERTAIN DANGEROUS CARGOES IN BULK Portable Tanks and Intermediate Bulk Containers § 98.30-4 Vessels carrying MPTs. Each MPT on a vessel to which this part applies...

  12. 46 CFR 31.15-10 - Towing vessels may carry persons in addition to crew-B/LBR.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 1 2010-10-01 2010-10-01 false Towing vessels may carry persons in addition to crew-B/LBR. 31.15-10 Section 31.15-10 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS INSPECTION AND CERTIFICATION Manning of Tank Vessels § 31.15-10 Towing vessels may carry persons in addition...

  13. 46 CFR 31.15-10 - Towing vessels may carry persons in addition to crew-B/LBR.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 1 2012-10-01 2012-10-01 false Towing vessels may carry persons in addition to crew-B/LBR. 31.15-10 Section 31.15-10 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS INSPECTION AND CERTIFICATION Manning of Tank Vessels § 31.15-10 Towing vessels may carry persons in addition...

  14. 46 CFR 31.15-10 - Towing vessels may carry persons in addition to crew-B/LBR.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 1 2013-10-01 2013-10-01 false Towing vessels may carry persons in addition to crew-B/LBR. 31.15-10 Section 31.15-10 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS INSPECTION AND CERTIFICATION Manning of Tank Vessels § 31.15-10 Towing vessels may carry persons in addition...

  15. 46 CFR 31.15-10 - Towing vessels may carry persons in addition to crew-B/LBR.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 1 2011-10-01 2011-10-01 false Towing vessels may carry persons in addition to crew-B/LBR. 31.15-10 Section 31.15-10 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS INSPECTION AND CERTIFICATION Manning of Tank Vessels § 31.15-10 Towing vessels may carry persons in addition...

  16. 46 CFR 31.15-10 - Towing vessels may carry persons in addition to crew-B/LBR.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 1 2014-10-01 2014-10-01 false Towing vessels may carry persons in addition to crew-B/LBR. 31.15-10 Section 31.15-10 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS INSPECTION AND CERTIFICATION Manning of Tank Vessels § 31.15-10 Towing vessels may carry persons in addition...

  17. 46 CFR 167.15-40 - Integral fuel oil tank examinations-T/ALL.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... vessel shall have the tanks cleaned out and gas freed as necessary to permit internal examination of the... examination of the fuel tanks of each vessel during an internal structural examination at intervals not to... examined if the marine inspector is able to determine by external examination that the general condition of...

  18. 46 CFR 188.10-57 - Portable tank.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 7 2013-10-01 2013-10-01 false Portable tank. 188.10-57 Section 188.10-57 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) OCEANOGRAPHIC RESEARCH VESSELS GENERAL PROVISIONS Definition of Terms Used in This Subchapter § 188.10-57 Portable tank. This phrase means a...

  19. 46 CFR 188.10-57 - Portable tank.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 7 2011-10-01 2011-10-01 false Portable tank. 188.10-57 Section 188.10-57 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) OCEANOGRAPHIC RESEARCH VESSELS GENERAL PROVISIONS Definition of Terms Used in This Subchapter § 188.10-57 Portable tank. This phrase means a...

  20. 46 CFR 188.10-57 - Portable tank.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 7 2012-10-01 2012-10-01 false Portable tank. 188.10-57 Section 188.10-57 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) OCEANOGRAPHIC RESEARCH VESSELS GENERAL PROVISIONS Definition of Terms Used in This Subchapter § 188.10-57 Portable tank. This phrase means a...

  1. 46 CFR 188.10-57 - Portable tank.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Portable tank. 188.10-57 Section 188.10-57 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) OCEANOGRAPHIC RESEARCH VESSELS GENERAL PROVISIONS Definition of Terms Used in This Subchapter § 188.10-57 Portable tank. This phrase means a...

  2. 46 CFR 188.10-57 - Portable tank.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 7 2014-10-01 2014-10-01 false Portable tank. 188.10-57 Section 188.10-57 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) OCEANOGRAPHIC RESEARCH VESSELS GENERAL PROVISIONS Definition of Terms Used in This Subchapter § 188.10-57 Portable tank. This phrase means a...

  3. 46 CFR 31.15-5 - Tank barges-B/ALL.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 1 2010-10-01 2010-10-01 false Tank barges-B/ALL. 31.15-5 Section 31.15-5 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS INSPECTION AND CERTIFICATION Manning of Tank... manned unless, in the judgment of the Officer in Charge, Marine Inspection, such manning is necessary for...

  4. 46 CFR 31.15-5 - Tank barges-B/ALL.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 1 2012-10-01 2012-10-01 false Tank barges-B/ALL. 31.15-5 Section 31.15-5 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS INSPECTION AND CERTIFICATION Manning of Tank... manned unless, in the judgment of the Officer in Charge, Marine Inspection, such manning is necessary for...

  5. 46 CFR 31.15-5 - Tank barges-B/ALL.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 1 2014-10-01 2014-10-01 false Tank barges-B/ALL. 31.15-5 Section 31.15-5 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS INSPECTION AND CERTIFICATION Manning of Tank... manned unless, in the judgment of the Officer in Charge, Marine Inspection, such manning is necessary for...

  6. 46 CFR 31.15-5 - Tank barges-B/ALL.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 1 2011-10-01 2011-10-01 false Tank barges-B/ALL. 31.15-5 Section 31.15-5 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS INSPECTION AND CERTIFICATION Manning of Tank... manned unless, in the judgment of the Officer in Charge, Marine Inspection, such manning is necessary for...

  7. 46 CFR 31.15-5 - Tank barges-B/ALL.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 1 2013-10-01 2013-10-01 false Tank barges-B/ALL. 31.15-5 Section 31.15-5 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS INSPECTION AND CERTIFICATION Manning of Tank... manned unless, in the judgment of the Officer in Charge, Marine Inspection, such manning is necessary for...

  8. LH2 Tank Composite Coverplate Development and Flight Qualification for the X-33

    NASA Technical Reports Server (NTRS)

    Wright, Richard J.; Roule, Gerard M.

    2000-01-01

    In this paper, the development history for the first cryogenic pressurized fuel tank coverplates is presented along with a synopsis of the development strategy and technologies which led to success on this program. Coverplates are the large access panels used to access launch vehicle fuel tanks. These structures incorporate all of the requirements for a pressure vessel as well as the added requirement to mount all of the miscellaneous access points required for a fuel management system. The first composite coverplates to meet the requirements for flight qualification were developed on the X-33 program. The X-33 composite coverplates went from an open requirement to successful finished flight hardware with multiple unique configurations, complete with verification testing, in less than eighteen months. Besides the rapid development schedule, these components introduced several new technologies previously unseen in cryogenic composites including solutions to cryogenic shrinkage, self-supporting sealing surfaces, and highly loaded composite bosses with precision sealing interfaces. These components were proven to seal liquid hydrogen at cryogenic temperatures under maximum loading and pressure conditions.

  9. Damage detection in hazardous waste storage tank bottoms using ultrasonic guided waves

    NASA Astrophysics Data System (ADS)

    Cobb, Adam C.; Fisher, Jay L.; Bartlett, Jonathan D.; Earnest, Douglas R.

    2018-04-01

    Detecting damage in storage tanks is performed commercially using a variety of techniques. The most commonly used inspection technologies are magnetic flux leakage (MFL), conventional ultrasonic testing (UT), and leak testing. MFL and UT typically involve manual or robotic scanning of a sensor along the metal surfaces to detect cracks or corrosion wall loss. For inspection of the tank bottom, however, the storage tank is commonly emptied to allow interior access for the inspection system. While there are costs associated with emptying a storage tank for inspection that can be justified in some scenarios, there are situations where emptying the tank is impractical. Robotic, submersible systems have been developed for inspecting these tanks, but there are some storage tanks whose contents are so hazardous that even the use of these systems is untenable. Thus, there is a need to develop an inspection strategy that does not require emptying the tank or insertion of the sensor system into the tank. This paper presents a guided wave system for inspecting the bottom of double-shelled storage tanks (DSTs), with the sensor located on the exterior side-wall of the vessel. The sensor used is an electromagnetic acoustic transducer (EMAT) that generates and receives shear-horizontal guided plate waves using magnetostriction principles. The system operates by scanning the sensor around the circumference of the storage tank and sending guided waves into the tank bottom at regular intervals. The data from multiple locations are combined using the synthetic aperture focusing technique (SAFT) to create a color-mapped image of the vessel thickness changes. The target application of the system described is inspection of DSTs located at the Hanford site, which are million-gallon vessels used to store nuclear waste. Other vessels whose exterior walls are accessible would also be candidates for inspection using the described approach. Experimental results are shown from tests on multiple

  10. 46 CFR 36.30-1 - Lagged tanks-TB/ALL.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 1 2010-10-01 2010-10-01 false Lagged tanks-TB/ALL. 36.30-1 Section 36.30-1 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS ELEVATED TEMPERATURE CARGOES Periodic Inspections § 36.30-1 Lagged tanks—TB/ALL. (a) Lagged tanks shall have part of the lagging removed on the...

  11. 46 CFR 154.195 - Aluminum cargo tank: Steel enclosure.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... Equipment Hull Structure § 154.195 Aluminum cargo tank: Steel enclosure. (a) An aluminum cargo tank and its dome must be enclosed by the vessel's hull structure or a separate steel cover. (b) The steel cover for... 46 Shipping 5 2012-10-01 2012-10-01 false Aluminum cargo tank: Steel enclosure. 154.195 Section...

  12. 46 CFR 154.195 - Aluminum cargo tank: Steel enclosure.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... Equipment Hull Structure § 154.195 Aluminum cargo tank: Steel enclosure. (a) An aluminum cargo tank and its dome must be enclosed by the vessel's hull structure or a separate steel cover. (b) The steel cover for... 46 Shipping 5 2013-10-01 2013-10-01 false Aluminum cargo tank: Steel enclosure. 154.195 Section...

  13. 46 CFR 154.195 - Aluminum cargo tank: Steel enclosure.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Equipment Hull Structure § 154.195 Aluminum cargo tank: Steel enclosure. (a) An aluminum cargo tank and its dome must be enclosed by the vessel's hull structure or a separate steel cover. (b) The steel cover for... 46 Shipping 5 2010-10-01 2010-10-01 false Aluminum cargo tank: Steel enclosure. 154.195 Section...

  14. 46 CFR 154.195 - Aluminum cargo tank: Steel enclosure.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... Equipment Hull Structure § 154.195 Aluminum cargo tank: Steel enclosure. (a) An aluminum cargo tank and its dome must be enclosed by the vessel's hull structure or a separate steel cover. (b) The steel cover for... 46 Shipping 5 2014-10-01 2014-10-01 false Aluminum cargo tank: Steel enclosure. 154.195 Section...

  15. 46 CFR 154.195 - Aluminum cargo tank: Steel enclosure.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Equipment Hull Structure § 154.195 Aluminum cargo tank: Steel enclosure. (a) An aluminum cargo tank and its dome must be enclosed by the vessel's hull structure or a separate steel cover. (b) The steel cover for... 46 Shipping 5 2011-10-01 2011-10-01 false Aluminum cargo tank: Steel enclosure. 154.195 Section...

  16. 46 CFR 36.30-1 - Lagged tanks-TB/ALL.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 1 2012-10-01 2012-10-01 false Lagged tanks-TB/ALL. 36.30-1 Section 36.30-1 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS ELEVATED TEMPERATURE CARGOES Periodic Inspections § 36.30-1 Lagged tanks—TB/ALL. (a) Lagged tanks shall have part of the lagging removed on the...

  17. 46 CFR 32.75-10 - Cargo tanks-TB/ALL.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 1 2010-10-01 2010-10-01 false Cargo tanks-TB/ALL. 32.75-10 Section 32.75-10 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS SPECIAL EQUIPMENT, MACHINERY, AND HULL... Cargo tanks—TB/ALL. Cargo tanks shall be independent of the wood hull, shall be made of steel or iron...

  18. 46 CFR 36.30-1 - Lagged tanks-TB/ALL.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 1 2014-10-01 2014-10-01 false Lagged tanks-TB/ALL. 36.30-1 Section 36.30-1 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS ELEVATED TEMPERATURE CARGOES Periodic Inspections § 36.30-1 Lagged tanks—TB/ALL. (a) Lagged tanks shall have part of the lagging removed on the...

  19. 46 CFR 36.30-1 - Lagged tanks-TB/ALL.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 1 2011-10-01 2011-10-01 false Lagged tanks-TB/ALL. 36.30-1 Section 36.30-1 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS ELEVATED TEMPERATURE CARGOES Periodic Inspections § 36.30-1 Lagged tanks—TB/ALL. (a) Lagged tanks shall have part of the lagging removed on the...

  20. 46 CFR 36.30-1 - Lagged tanks-TB/ALL.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 1 2013-10-01 2013-10-01 false Lagged tanks-TB/ALL. 36.30-1 Section 36.30-1 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS ELEVATED TEMPERATURE CARGOES Periodic Inspections § 36.30-1 Lagged tanks—TB/ALL. (a) Lagged tanks shall have part of the lagging removed on the...

  1. 46 CFR 32.75-10 - Cargo tanks-TB/ALL.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 1 2012-10-01 2012-10-01 false Cargo tanks-TB/ALL. 32.75-10 Section 32.75-10 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS SPECIAL EQUIPMENT, MACHINERY, AND HULL... Cargo tanks—TB/ALL. Cargo tanks shall be independent of the wood hull, shall be made of steel or iron...

  2. 46 CFR 32.75-10 - Cargo tanks-TB/ALL.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 1 2011-10-01 2011-10-01 false Cargo tanks-TB/ALL. 32.75-10 Section 32.75-10 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS SPECIAL EQUIPMENT, MACHINERY, AND HULL... Cargo tanks—TB/ALL. Cargo tanks shall be independent of the wood hull, shall be made of steel or iron...

  3. 46 CFR 32.75-10 - Cargo tanks-TB/ALL.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... REQUIREMENTS Hull Requirements for Wood Hull Tank Vessels Constructed Prior to November 10, 1936 § 32.75-10 Cargo tanks—TB/ALL. Cargo tanks shall be independent of the wood hull, shall be made of steel or iron, and shall pass the tests required in § 32.65-40 (a), (b). Where cargo tanks in wood hulls are not...

  4. 46 CFR 32.75-10 - Cargo tanks-TB/ALL.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... REQUIREMENTS Hull Requirements for Wood Hull Tank Vessels Constructed Prior to November 10, 1936 § 32.75-10 Cargo tanks—TB/ALL. Cargo tanks shall be independent of the wood hull, shall be made of steel or iron, and shall pass the tests required in § 32.65-40 (a), (b). Where cargo tanks in wood hulls are not...

  5. 46 CFR 98.30-9 - Stowage of portable tanks.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 4 2013-10-01 2013-10-01 false Stowage of portable tanks. 98.30-9 Section 98.30-9... CONSTRUCTION, ARRANGEMENT, AND OTHER PROVISIONS FOR CERTAIN DANGEROUS CARGOES IN BULK Portable Tanks § 98.30-9 Stowage of portable tanks. (a) No person may operate a vessel to which this subpart applies unless each...

  6. 46 CFR 98.30-9 - Stowage of portable tanks.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 4 2012-10-01 2012-10-01 false Stowage of portable tanks. 98.30-9 Section 98.30-9... CONSTRUCTION, ARRANGEMENT, AND OTHER PROVISIONS FOR CERTAIN DANGEROUS CARGOES IN BULK Portable Tanks § 98.30-9 Stowage of portable tanks. (a) No person may operate a vessel to which this subpart applies unless each...

  7. 46 CFR 154.188 - Membrane tank: Inner hull steel.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... Structure § 154.188 Membrane tank: Inner hull steel. For a vessel with membrane tanks, the inner hull... 46 Shipping 5 2013-10-01 2013-10-01 false Membrane tank: Inner hull steel. 154.188 Section 154.188... “Rules for Building and Classing Steel Vessels”, 1981. [CGD 74-289, 44 FR 26009, May 3, 1979, as amended...

  8. 46 CFR 154.188 - Membrane tank: Inner hull steel.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... Structure § 154.188 Membrane tank: Inner hull steel. For a vessel with membrane tanks, the inner hull... 46 Shipping 5 2014-10-01 2014-10-01 false Membrane tank: Inner hull steel. 154.188 Section 154.188... “Rules for Building and Classing Steel Vessels”, 1981. [CGD 74-289, 44 FR 26009, May 3, 1979, as amended...

  9. 46 CFR 154.188 - Membrane tank: Inner hull steel.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Structure § 154.188 Membrane tank: Inner hull steel. For a vessel with membrane tanks, the inner hull... 46 Shipping 5 2011-10-01 2011-10-01 false Membrane tank: Inner hull steel. 154.188 Section 154.188... “Rules for Building and Classing Steel Vessels”, 1981. [CGD 74-289, 44 FR 26009, May 3, 1979, as amended...

  10. 46 CFR 154.188 - Membrane tank: Inner hull steel.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... Structure § 154.188 Membrane tank: Inner hull steel. For a vessel with membrane tanks, the inner hull... 46 Shipping 5 2012-10-01 2012-10-01 false Membrane tank: Inner hull steel. 154.188 Section 154.188... “Rules for Building and Classing Steel Vessels”, 1981. [CGD 74-289, 44 FR 26009, May 3, 1979, as amended...

  11. 46 CFR 35.05-15 - Tank vessel security-TB/ALL.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... scuppers, if any, unobstructed; meets any loadline or freeboard requirements; and neither leaks cargo into the water, voids, or cofferdams nor leaks water into the tanks, voids, or cofferdams; (ii) Ensuring... checks are made of every tank barge in the tow for leakage of cargo into the water, voids, or cofferdams...

  12. Composite Overwrap Pressure Vessels: Mechanics and Stress Rupture Lifting Philosophy

    NASA Technical Reports Server (NTRS)

    Thesken, John C.; Murthy, Pappu L. N.; Phoenix, S. L.

    2009-01-01

    The NASA Engineering and Safety Center (NESC) has been conducting an independent technical assessment to address safety concerns related to the known stress rupture failure mode of filament wound pressure vessels in use on Shuttle and the International Space Station. The Shuttle s Kevlar-49 (DuPont) fiber overwrapped tanks are of particular concern due to their long usage and the poorly understood stress rupture process in Kevlar-49 filaments. Existing long term data show that the rupture process is a function of stress, temperature and time. However due to the presence of load sharing liners and the complex manufacturing procedures, the state of actual fiber stress in flight hardware and test articles is not clearly known. Indeed nonconservative life predictions have been made where stress rupture data and lifing procedures have ignored the contribution of the liner in favor of applied pressure as the controlling load parameter. With the aid of analytical and finite element results, this paper examines the fundamental mechanical response of composite overwrapped pressure vessels including the influence of elastic plastic liners and degraded/creeping overwrap properties. Graphical methods are presented describing the non-linear relationship of applied pressure to Kevlar-49 fiber stress/strain during manufacturing, operations and burst loadings. These are applied to experimental measurements made on a variety of vessel systems to demonstrate the correct calibration of fiber stress as a function of pressure. Applying this analysis to the actual qualification burst data for Shuttle flight hardware revealed that the nominal fiber stress at burst was in some cases 23 percent lower than what had previously been used to predict stress rupture life. These results motivate a detailed discussion of the appropriate stress rupture lifing philosophy for COPVs including the correct transference of stress rupture life data between dissimilar vessels and test articles.

  13. Composite Overwrap Pressure Vessels: Mechanics and Stress Rupture Lifing Philosophy

    NASA Technical Reports Server (NTRS)

    Thesken, John C.; Murthy, Pappu L. N.; Phoenix, Leigh

    2007-01-01

    The NASA Engineering and Safety Center (NESC) has been conducting an independent technical assessment to address safety concerns related to the known stress rupture failure mode of filament wound pressure vessels in use on Shuttle and the International Space Station. The Shuttle's Kevlar-49 fiber overwrapped tanks are of particular concern due to their long usage and the poorly understood stress rupture process in Kevlar-49 filaments. Existing long term data show that the rupture process is a function of stress, temperature and time. However due to the presence of load sharing liners and the complex manufacturing procedures, the state of actual fiber stress in flight hardware and test articles is not clearly known. Indeed non-conservative life predictions have been made where stress rupture data and lifing procedures have ignored the contribution of the liner in favor of applied pressure as the controlling load parameter. With the aid of analytical and finite element results, this paper examines the fundamental mechanical response of composite overwrapped pressure vessels including the influence of elastic-plastic liners and degraded/creeping overwrap properties. Graphical methods are presented describing the non-linear relationship of applied pressure to Kevlar-49 fiber stress/strain during manufacturing, operations and burst loadings. These are applied to experimental measurements made on a variety of vessel systems to demonstrate the correct calibration of fiber stress as a function of pressure. Applying this analysis to the actual qualification burst data for Shuttle flight hardware revealed that the nominal fiber stress at burst was in some cases 23% lower than what had previously been used to predict stress rupture life. These results motivate a detailed discussion of the appropriate stress rupture lifing philosophy for COPVs including the correct transference of stress rupture life data between dissimilar vessels and test articles.

  14. 46 CFR 31.10-24 - Integral fuel oil tank examinations-T/ALL.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... tanks cleaned out and gas freed as necessary to permit internal examination of the tank or tanks... of each vessel during an internal structural examination at intervals not to exceed five years. (b... inspector is able to determine by external examination that the general condition of the tanks is...

  15. VIEW OF PDP TANK TOP (LOWER LEFT) AND RTR/LTR TANK ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    VIEW OF PDP TANK TOP (LOWER LEFT) AND RTR/LTR TANK TOP(LOWER RIGHT), LOOKING SOUTHEAST INTO THE PDP ROOM AT LEVEL 0’. ROLL-UP LOADING DOOR ON RIGHT AND SHEAVE RACKS FOR PDP AND LTR AT TOP - Physics Assembly Laboratory, Area A/M, Savannah River Site, Aiken, Aiken County, SC

  16. 46 CFR 182.440 - Independent fuel tanks.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... for “Manufacturer's Standard Gage” for sheet steel thickness. 2 Tanks over 1514 liters (400 gallons... meters (11.5 feet) in height attached to the tank may be filled with water to accomplish the 35 kPa (5....330. (d) Alternative procedures. A vessel of not more than 19.8 meters (65 feet) in length carrying...

  17. Asymmetric Bulkheads for Cylindrical Pressure Vessels

    NASA Technical Reports Server (NTRS)

    Ford, Donald B.

    2007-01-01

    Asymmetric bulkheads are proposed for the ends of vertically oriented cylindrical pressure vessels. These bulkheads, which would feature both convex and concave contours, would offer advantages over purely convex, purely concave, and flat bulkheads (see figure). Intended originally to be applied to large tanks that hold propellant liquids for launching spacecraft, the asymmetric-bulkhead concept may also be attractive for terrestrial pressure vessels for which there are requirements to maximize volumetric and mass efficiencies. A description of the relative advantages and disadvantages of prior symmetric bulkhead configurations is prerequisite to understanding the advantages of the proposed asymmetric configuration: In order to obtain adequate strength, flat bulkheads must be made thicker, relative to concave and convex bulkheads; the difference in thickness is such that, other things being equal, pressure vessels with flat bulkheads must be made heavier than ones with concave or convex bulkheads. Convex bulkhead designs increase overall tank lengths, thereby necessitating additional supporting structure for keeping tanks vertical. Concave bulkhead configurations increase tank lengths and detract from volumetric efficiency, even though they do not necessitate additional supporting structure. The shape of a bulkhead affects the proportion of residual fluid in a tank that is, the portion of fluid that unavoidably remains in the tank during outflow and hence cannot be used. In this regard, a flat bulkhead is disadvantageous in two respects: (1) It lacks a single low point for optimum placement of an outlet and (2) a vortex that forms at the outlet during outflow prevents a relatively large amount of fluid from leaving the tank. A concave bulkhead also lacks a single low point for optimum placement of an outlet. Like purely concave and purely convex bulkhead configurations, the proposed asymmetric bulkhead configurations would be more mass-efficient than is the flat

  18. 46 CFR 105.25-7 - Ventilation systems for cargo tank or pumping system compartment.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Ventilation systems for cargo tank or pumping system compartment. 105.25-7 Section 105.25-7 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CARGO AND MISCELLANEOUS VESSELS COMMERCIAL FISHING VESSELS DISPENSING PETROLEUM PRODUCTS Additional Requirements-When Cargo Tanks Are Installed...

  19. 33 CFR 157.10c - Segregated ballast tanks, crude oil washing systems, and dedicated clean ballast tanks for...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... to meet the draft and trim requirements in § 157.09(b); or (2) A crude oil washing system that meets... trim requirements in § 157.09(b); or (2) Dedicated clean ballast tanks that meet the design and... meet the draft and trim requirements in § 157.09(b). (d) If the arrangement of tanks on a vessel under...

  20. 33 CFR 157.10c - Segregated ballast tanks, crude oil washing systems, and dedicated clean ballast tanks for...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... to meet the draft and trim requirements in § 157.09(b); or (2) A crude oil washing system that meets... trim requirements in § 157.09(b); or (2) Dedicated clean ballast tanks that meet the design and... meet the draft and trim requirements in § 157.09(b). (d) If the arrangement of tanks on a vessel under...

  1. 46 CFR 4.05-2 - Incidents involving foreign tank vessels.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... discharge, resulting from damage to the vessel or its equipment. The factors you must consider to determine...; (vi) The nature of damage to the vessel; and (vii) Failure or breakdown aboard the vessel, its...

  2. 46 CFR 42.05-63 - Ship(s) and vessel(s).

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 2 2011-10-01 2011-10-01 false Ship(s) and vessel(s). 42.05-63 Section 42.05-63 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) LOAD LINES DOMESTIC AND FOREIGN VOYAGES BY SEA Definition of Terms Used in This Subchapter § 42.05-63 Ship(s) and vessel(s). The terms ship(s...

  3. 46 CFR 42.05-63 - Ship(s) and vessel(s).

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 2 2013-10-01 2013-10-01 false Ship(s) and vessel(s). 42.05-63 Section 42.05-63 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) LOAD LINES DOMESTIC AND FOREIGN VOYAGES BY SEA Definition of Terms Used in This Subchapter § 42.05-63 Ship(s) and vessel(s). The terms ship(s...

  4. 46 CFR 42.05-63 - Ship(s) and vessel(s).

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 2 2012-10-01 2012-10-01 false Ship(s) and vessel(s). 42.05-63 Section 42.05-63 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) LOAD LINES DOMESTIC AND FOREIGN VOYAGES BY SEA Definition of Terms Used in This Subchapter § 42.05-63 Ship(s) and vessel(s). The terms ship(s...

  5. 46 CFR 42.05-63 - Ship(s) and vessel(s).

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 2 2014-10-01 2014-10-01 false Ship(s) and vessel(s). 42.05-63 Section 42.05-63 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) LOAD LINES DOMESTIC AND FOREIGN VOYAGES BY SEA Definition of Terms Used in This Subchapter § 42.05-63 Ship(s) and vessel(s). The terms ship(s...

  6. Space Shuttle with rail system and aft thrust structure securing solid rocket boosters to external tank

    NASA Technical Reports Server (NTRS)

    Vonpragenau, G. L. (Inventor)

    1984-01-01

    The configuration and relationship of the external propellant tank and solid rocket boosters of space transportation systems such as the space shuttle are described. The space shuttle system with the improved propellant tank is shown. The external tank has a forward pressure vessel for liquid hydrogen and an aft pressure vessel for liquid oxygen. The solid rocket boosters are joined together by a thrust frame which extends across and behind the external tank. The thrust of the orbiter's main rocket engines are transmitted to the aft portion of the external tank and the thrust of the solid rocket boosters are transmitted to the aft end of the external tank.

  7. 46 CFR 39.20-9 - Tank barge liquid overfill protection-B/ALL.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... Section 39.20-9 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS VAPOR CONTROL SYSTEMS Design and Equipment § 39.20-9 Tank barge liquid overfill protection—B/ALL. Each cargo tank of a tank...-57 and 501-12; and (iii) § 111.105-9 of this chapter. (b) An intrinsically safe overfill control...

  8. 46 CFR 39.20-9 - Tank barge liquid overfill protection-B/ALL.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Section 39.20-9 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS VAPOR CONTROL SYSTEMS Design and Equipment § 39.20-9 Tank barge liquid overfill protection—B/ALL. Each cargo tank of a tank...-57 and 501-12; and (iii) § 111.105-9 of this chapter. (b) An intrinsically safe overfill control...

  9. 46 CFR 39.20-9 - Tank barge liquid overfill protection-B/ALL.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Section 39.20-9 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS VAPOR CONTROL SYSTEMS Design and Equipment § 39.20-9 Tank barge liquid overfill protection—B/ALL. Each cargo tank of a tank...-57 and 501-12; and (iii) § 111.105-9 of this chapter. (b) An intrinsically safe overfill control...

  10. 46 CFR 195.11-30 - Portable tanks.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 7 2014-10-01 2014-10-01 false Portable tanks. 195.11-30 Section 195.11-30 Shipping... AND MISCELLANEOUS SYSTEMS AND EQUIPMENT Portable Vans and Tanks § 195.11-30 Portable tanks. (a) All portable tanks, whether hazardous or nonhazardous commodities, shall be loaded and stowed in accordance...

  11. 46 CFR 195.11-30 - Portable tanks.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 7 2013-10-01 2013-10-01 false Portable tanks. 195.11-30 Section 195.11-30 Shipping... AND MISCELLANEOUS SYSTEMS AND EQUIPMENT Portable Vans and Tanks § 195.11-30 Portable tanks. (a) All portable tanks, whether hazardous or nonhazardous commodities, shall be loaded and stowed in accordance...

  12. 46 CFR 195.11-30 - Portable tanks.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Portable tanks. 195.11-30 Section 195.11-30 Shipping... AND MISCELLANEOUS SYSTEMS AND EQUIPMENT Portable Vans and Tanks § 195.11-30 Portable tanks. (a) All portable tanks, whether hazardous or nonhazardous commodities, shall be loaded and stowed in accordance...

  13. 46 CFR 195.11-30 - Portable tanks.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 7 2011-10-01 2011-10-01 false Portable tanks. 195.11-30 Section 195.11-30 Shipping... AND MISCELLANEOUS SYSTEMS AND EQUIPMENT Portable Vans and Tanks § 195.11-30 Portable tanks. (a) All portable tanks, whether hazardous or nonhazardous commodities, shall be loaded and stowed in accordance...

  14. 46 CFR 195.11-30 - Portable tanks.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 7 2012-10-01 2012-10-01 false Portable tanks. 195.11-30 Section 195.11-30 Shipping... AND MISCELLANEOUS SYSTEMS AND EQUIPMENT Portable Vans and Tanks § 195.11-30 Portable tanks. (a) All portable tanks, whether hazardous or nonhazardous commodities, shall be loaded and stowed in accordance...

  15. 46 CFR 169.627 - Compartments containing diesel fuel tanks.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 7 2011-10-01 2011-10-01 false Compartments containing diesel fuel tanks. 169.627 Section 169.627 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) NAUTICAL SCHOOLS SAILING SCHOOL VESSELS Machinery and Electrical Ventilation § 169.627 Compartments containing diesel fuel tanks...

  16. 46 CFR 169.627 - Compartments containing diesel fuel tanks.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Compartments containing diesel fuel tanks. 169.627 Section 169.627 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) NAUTICAL SCHOOLS SAILING SCHOOL VESSELS Machinery and Electrical Ventilation § 169.627 Compartments containing diesel fuel tanks...

  17. 46 CFR 38.15-1 - Filling of tanks-TB/ALL.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... that there is an outage of at least 2 percent of the volume of the tank at the temperature..., the maximum volume to which a tank may be loaded is: V L=0.98d r V/d L where: V L=maximum volume to which tank may be loaded. V=volume of tank. d r=density of cargo at the temperature required for a cargo...

  18. 75 FR 12233 - New York State Prohibition of Discharges of Vessel Sewage; Receipt of Petition and Tentative...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-15

    ... Hours of Operation: 7 a.m.-9 p.m. Facility Fee: $5.00 Vessel Size: 50' Disposal/Treatment: Holding Tank...' Disposal/Treatment: Holding Tank Name: Chazy Yacht Club Inc Phone Number: 518-298-2866 Lat/Long: 44.934336... p.m. Facility Fee: $ 5.00 Vessel Size: 50' Disposal/Treatment: Holding Tank Name: Gilbert Brook...

  19. The measured contribution of whipping and springing on the fatigue and extreme loading of container vessels

    NASA Astrophysics Data System (ADS)

    Storhaug, Gaute

    2014-12-01

    Whipping/springing research started in the 50'ies. In the 60'ies inland water vessels design rules became stricter due to whipping/springing. The research during the 70-90'ies may be regarded as academic. In 2000 a large ore carrier was strengthened due to severe cracking from North Atlantic operation, and whipping/springing contributed to half of the fatigue damage. Measurement campaigns on blunt and slender vessels were initiated. A few blunt ships were designed to account for whipping/springing. Based on the measurements, the focus shifted from fatigue to extreme loading. In 2005 model tests of a 4,400 TEU container vessel included extreme whipping scenarios. In 2007 the 4400 TEU vessel MSC Napoli broke in two under similar conditions. In 2009 model tests of an 8,600 TEU container vessel container vessel included extreme whipping scenarios. In 2013 the 8,100 TEU vessel MOL COMFORT broke in two under similar conditions. Several classification societies have published voluntary guidelines, which have been used to include whipping/springing in the design of several container vessels. This paper covers results from model tests and full scale measurements used as background for the DNV Legacy guideline. Uncertainties are discussed and recommendations are given in order to obtain useful data. Whipping/springing is no longer academic.

  20. The Costs and Benefits of High Speed Vessels Relative to Traditional C-17 Military Airlift

    DTIC Science & Technology

    2003-12-01

    37 APPENDIX D SWOT Analysis...Port Action Officers Group IBCT Interim Brigade Combat Team LCS Littoral Combat Ship LST Landing ship tank LSV Logistics Support Vessel... SWOT Strength Weakness Opportunity Threat TACOM Tank and Automotive Command TSV Theater Support Vessel USS United States Ship USTRANSCOM

  1. Hydrogen storage in insulated pressure vessels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aceves, S.M.; Garcia-Villazana, O.

    1998-08-01

    Insulated pressure vessels are cryogenic-capable pressure vessels that can be fueled with liquid hydrogen (LH{sub 2}) or ambient-temperature compressed hydrogen (CH{sub 2}). Insulated pressure vessels offer the advantages of liquid hydrogen tanks (low weight and volume), with reduced disadvantages (lower energy requirement for hydrogen liquefaction and reduced evaporative losses). This paper shows an evaluation of the applicability of the insulated pressure vessels for light-duty vehicles. The paper shows an evaluation of evaporative losses and insulation requirements and a description of the current analysis and experimental plans for testing insulated pressure vessels. The results show significant advantages to the use ofmore » insulated pressure vessels for light-duty vehicles.« less

  2. Green Propellant Loading Demonstration at U.S. Range

    NASA Technical Reports Server (NTRS)

    Mulkey, Henry W.; Miller, Joseph T.; Bacha, Caitlin E.

    2016-01-01

    The Green Propellant Loading Demonstration (GPLD) was conducted December 2015 at Wallops Flight Facility (WFF), leveraging work performed over recent years to bring lower toxicity hydrazine replacement green propellants to flight missions. The objective of this collaboration between NASA Goddard Space Flight Center (GSFC), WFF, the Swedish National Space Board (SNSB), and Ecological Advanced Propulsion Systems (ECAPS) was to successfully accept LMP-103S propellant at a U.S. Range, store the propellant, and perform a simulated flight vehicle propellant loading. NASA GSFC Propulsion (Code 597) managed all aspects of the operation, handling logistics, preparing the procedures, and implementing the demonstration. In addition to the partnership described above, Moog Inc. developed an LMP-103S propellant-compatible titanium rolling diaphragm flight development tank and loaned it to GSFC to act as the GPLD flight vessel. The flight development tank offered the GPLD an additional level of flight-like propellant handling process and procedures. Moog Inc. also provided a compatible latching isolation valve for remote propellant expulsion. The GPLD operation, in concert with Moog Inc. executed a flight development tank expulsion efficiency performance test using LMP-103S propellant. As part of the demonstration work, GSFC and WFF documented Range safety analyses and practices including all elements of shipping, storage, handling, operations, decontamination, and disposal. LMP-103S has not been previously handled at a U.S. Launch Range. Requisite for this activity was an LMP-103S Risk Analysis Report and Ground Safety Plan. GSFC and WFF safety offices jointly developed safety documentation for application into the GPLD operation. The GPLD along with the GSFC Propulsion historical hydrazine loading experiences offer direct comparison between handling green propellant versus safety intensive, highly toxic hydrazine propellant. These described motives initiated the GPLD operation

  3. Measuring Diameters Of Large Vessels

    NASA Technical Reports Server (NTRS)

    Currie, James R.; Kissel, Ralph R.; Oliver, Charles E.; Smith, Earnest C.; Redmon, John W., Sr.; Wallace, Charles C.; Swanson, Charles P.

    1990-01-01

    Computerized apparatus produces accurate results quickly. Apparatus measures diameter of tank or other large cylindrical vessel, without prior knowledge of exact location of cylindrical axis. Produces plot of inner circumference, estimate of true center of vessel, data on radius, diameter of best-fit circle, and negative and positive deviations of radius from circle at closely spaced points on circumference. Eliminates need for time-consuming and error-prone manual measurements.

  4. 46 CFR 38.15-1 - Filling of tanks-TB/ALL.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... which tank may be loaded. V=volume of tank. d r=density of cargo at the temperature required for a cargo vapor pressure equal to the relief valve setting. d L=density of cargo at the loading temperature and pressure. (b) Nonrefrigerated tanks shall be filled so that their filling densities shall not exceed the...

  5. 46 CFR 38.15-1 - Filling of tanks-TB/ALL.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... which tank may be loaded. V=volume of tank. d r=density of cargo at the temperature required for a cargo vapor pressure equal to the relief valve setting. d L=density of cargo at the loading temperature and pressure. (b) Nonrefrigerated tanks shall be filled so that their filling densities shall not exceed the...

  6. 46 CFR 38.15-1 - Filling of tanks-TB/ALL.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... which tank may be loaded. V=volume of tank. d r=density of cargo at the temperature required for a cargo vapor pressure equal to the relief valve setting. d L=density of cargo at the loading temperature and pressure. (b) Nonrefrigerated tanks shall be filled so that their filling densities shall not exceed the...

  7. 46 CFR 38.15-1 - Filling of tanks-TB/ALL.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... which tank may be loaded. V=volume of tank. d r=density of cargo at the temperature required for a cargo vapor pressure equal to the relief valve setting. d L=density of cargo at the loading temperature and pressure. (b) Nonrefrigerated tanks shall be filled so that their filling densities shall not exceed the...

  8. 19 CFR 151.28 - Gauging of sirup or molasses discharged into storage tanks.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... storage tanks. 151.28 Section 151.28 Customs Duties U.S. CUSTOMS AND BORDER PROTECTION, DEPARTMENT OF... Sugars, Sirups, and Molasses § 151.28 Gauging of sirup or molasses discharged into storage tanks. (a) Plans of storage tank to be filed. When sirup or molasses is imported in bulk in tank vessels and is to...

  9. Modification of a liquid hydrogen tank for integrated refrigeration and storage

    NASA Astrophysics Data System (ADS)

    Swanger, A. M.; Jumper, K. M.; Fesmire, J. E.; Notardonato, W. U.

    2015-12-01

    The modification and outfitting of a 125,000-liter liquid hydrogen tank was performed to provide integrated refrigeration and storage capability. These functions include zero boil-off, liquefaction, and densification and therefore require provisions for sub-atmospheric tank pressures within the vacuum-jacketed, multilayer insulated tank. The primary structural modification was to add stiffening rings inside the inner vessel. The internal stiffening rings were designed, built, and installed per the ASME Boiler and Pressure Vessel Code, Section VIII, to prevent collapse in the case of vacuum jacket failure in combination with sub-atmospheric pressure within the tank. For the integrated refrigeration loop, a modular, skeleton-type heat exchanger, with refrigerant temperature instrumentation, was constructed using the stiffening rings as supports. To support the system thermal performance testing, three custom temperature rakes were designed and installed along the 21-meter length of the tank, once again using rings as supports. The temperature rakes included a total of 20 silicon diode temperature sensors mounted both vertically and radially to map the bulk liquid temperature within the tank. The tank modifications were successful and the system is now operational for the research and development of integrated refrigeration technology.

  10. 46 CFR 98.30-6 - Lifting a portable tank.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 4 2013-10-01 2013-10-01 false Lifting a portable tank. 98.30-6 Section 98.30-6 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CARGO AND MISCELLANEOUS VESSELS SPECIAL CONSTRUCTION, ARRANGEMENT, AND OTHER PROVISIONS FOR CERTAIN DANGEROUS CARGOES IN BULK Portable Tanks § 98.30-6...

  11. 75 FR 55973 - Salvage and Marine Firefighting Requirements; Vessel Response Plans for Oil

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-15

    ... and Marine Firefighting Requirements; Vessel Response Plans for Oil AGENCY: Coast Guard, DHS. ACTION... the vessel response plan salvage and marine firefighting requirements for tank vessels carrying oil... Marine Firefighting Requirements; Vessel Response Plans for Oil'' (73 FR 80618). The final rule amended...

  12. 49 CFR 174.67 - Tank car unloading.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 2 2013-10-01 2013-10-01 false Tank car unloading. 174.67 Section 174.67... and Loading Requirements § 174.67 Tank car unloading. For transloading operations, the following rules... least one wheel to prevent movement in any direction. If multiple tank cars are coupled together...

  13. 49 CFR 174.67 - Tank car unloading.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 2 2012-10-01 2012-10-01 false Tank car unloading. 174.67 Section 174.67... and Loading Requirements § 174.67 Tank car unloading. For transloading operations, the following rules... least one wheel to prevent movement in any direction. If multiple tank cars are coupled together...

  14. 49 CFR 174.67 - Tank car unloading.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 2 2014-10-01 2014-10-01 false Tank car unloading. 174.67 Section 174.67... and Loading Requirements § 174.67 Tank car unloading. For transloading operations, the following rules... least one wheel to prevent movement in any direction. If multiple tank cars are coupled together...

  15. 49 CFR 174.67 - Tank car unloading.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 2 2011-10-01 2011-10-01 false Tank car unloading. 174.67 Section 174.67... and Loading Requirements § 174.67 Tank car unloading. For transloading operations, the following rules... least one wheel to prevent movement in any direction. If multiple tank cars are coupled together...

  16. 46 CFR 154.427 - Membrane tank system design.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Membrane tank system design. 154.427 Section 154.427... Membrane Tanks § 154.427 Membrane tank system design. A membrane tank system must be designed for: (a) Any static and dynamic loads with respect to plastic deformation and fatigue; (b) Combined strains from...

  17. Pressure vessel bottle mount

    NASA Technical Reports Server (NTRS)

    Wingett, Paul (Inventor)

    2001-01-01

    A mounting assembly for mounting a composite pressure vessel to a vehicle includes a saddle having a curved surface extending between two pillars for receiving the vessel. The saddle also has flanged portions which can be bolted to the vehicle. Each of the pillars has hole in which is mounted the shaft portion of an attachment member. A resilient member is disposed between each of the shaft portions and the holes and loaded by a tightening nut. External to the holes, each of the attachment members has a head portion to which a steel band is attached. The steel band circumscribes the vessel and translates the load on the springs into a clamping force on the vessel. As the vessel expands and contracts, the resilient members expand and contract so that the clamping force applied by the band to the vessel remains constant.

  18. Combining ascent loads

    NASA Technical Reports Server (NTRS)

    Houbolt, J. C.

    1972-01-01

    Criteria and guidelines are presented for combining loads that develop during the ascent phase of a space flight. The primary load-caring structure is discussed including the basic tank and interconnecting members, engine support mounts and connections to tank structure, transition structures between stages, payload shrouds, and the basic support points at separation planes.

  19. Innovative Method for Developing a Helium Pressurant Tank Suitable for the Upper Stage Flight Experiment

    NASA Technical Reports Server (NTRS)

    DeLay, Tom K.; Munafo, Paul (Technical Monitor)

    2001-01-01

    The AFRL USFE project is an experimental test bed for new propulsion technologies. It will utilize ambient temperature fuel and oxidizers (Kerosene and Hydrogen peroxide). The system is pressure fed, not pump fed, and will utilize a helium pressurant tank to drive the system. Mr. DeLay has developed a method for cost effectively producing a unique, large pressurant tank that is not commercially available. The pressure vessel is a layered composite structure with an electroformed metallic permeation barrier. The design/process is scalable and easily adaptable to different configurations with minimal cost in tooling development 1/3 scale tanks have already been fabricated and are scheduled for testing. The full-scale pressure vessel (50" diameter) design will be refined based on the performance of the sub-scale tank. The pressure vessels have been designed to operate at 6,000 psi. a PV/W of 1.92 million is anticipated.

  20. Role of container vessels in the introduction of exotic species.

    PubMed

    Niimi, Arthur J

    2004-11-01

    Ballast water exchange practices were monitored on 28 incoming container vessels at the Port of Montreal. Measurements on 15 vessels indicated 13 of 32 tanks had salinities of <30 per thousand. The 16 transits with a North Atlantic route visited 31 of 37 ports located on freshwater or near freshwater outflows. Ballast carried by this vessel type represents an important means for the introduction of species on a global scale because of its transit routes, dockside discharge and moving ballast between tanks. Container vessels represent about 15% of the world fleet, but account for 32% of all visits to global ports, and 46% of visits to the 25 largest ports. The 10 ports that handled the largest volumes of international cargo also included 8 that handled the most cargo containers. Large ports can receive over 100,000 visits by all vessel types annually, and serve as hubs for over 500 ports in 100 countries. Secondary transport of exotic species is also a concern because of frequent visits by regional vessels.

  1. 46 CFR 25.40-1 - Tanks and engine spaces.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 1 2011-10-01 2011-10-01 false Tanks and engine spaces. 25.40-1 Section 25.40-1...-1 Tanks and engine spaces. (a) All motorboats or motor vessels, except open boats and as provided in..., and other spaces to which explosive or flammable gases and vapors from these compartments may flow...

  2. 46 CFR 25.40-1 - Tanks and engine spaces.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 1 2010-10-01 2010-10-01 false Tanks and engine spaces. 25.40-1 Section 25.40-1...-1 Tanks and engine spaces. (a) All motorboats or motor vessels, except open boats and as provided in..., and other spaces to which explosive or flammable gases and vapors from these compartments may flow...

  3. 46 CFR 25.40-1 - Tanks and engine spaces.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 1 2014-10-01 2014-10-01 false Tanks and engine spaces. 25.40-1 Section 25.40-1...-1 Tanks and engine spaces. (a) All motorboats or motor vessels, except open boats and as provided in..., and other spaces to which explosive or flammable gases and vapors from these compartments may flow...

  4. 46 CFR 25.40-1 - Tanks and engine spaces.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 1 2013-10-01 2013-10-01 false Tanks and engine spaces. 25.40-1 Section 25.40-1...-1 Tanks and engine spaces. (a) All motorboats or motor vessels, except open boats and as provided in..., and other spaces to which explosive or flammable gases and vapors from these compartments may flow...

  5. 46 CFR 25.40-1 - Tanks and engine spaces.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 1 2012-10-01 2012-10-01 false Tanks and engine spaces. 25.40-1 Section 25.40-1...-1 Tanks and engine spaces. (a) All motorboats or motor vessels, except open boats and as provided in..., and other spaces to which explosive or flammable gases and vapors from these compartments may flow...

  6. Filament-wound, fiberglass cryogenic tank supports

    NASA Technical Reports Server (NTRS)

    Carter, J. S.; Timberlake, T. E.

    1971-01-01

    The design, fabrication, and testing of filament-wound, fiberglass cryogenic tank supports for a LH2 tank, a LF2/FLOX tank and a CH4 tank. These supports consist of filament-wound fiberglass tubes with titanium end fittings. These units were satisfactorily tested at cryogenic temperatures, thereby offering a design that can be reliably and economically produced in large or small quantities. The basic design concept is applicable to any situation where strong, lightweight axial load members are desired.

  7. 49 CFR 179.400-13 - Support system for inner tank.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... FOR TANK CARS Specification for Cryogenic Liquid Tank Car Tanks and Seamless Steel Tanks (Classes DOT... magnitudes and directions when the inner tank is fully loaded and the car is equipped with a conventional... electrically, by either the support system, piping, or a separate electrical connection of approved design. ...

  8. Strength, Fatigue, and Fracture Toughness of Ti-6Al-4V Liner from a Composite Over-Wrapped Pressure Vessel

    NASA Technical Reports Server (NTRS)

    Salem, Jonathan A.; Lerch, Brad; Thesken, John C.; Sutter, Jim; Russell, Richard

    2008-01-01

    It was demonstrated by way of experiment that Composite Over-wrapped Pressure Vessel (COPV) Ti-6Al-4V liner material can sustain the expected service loads and cycles. The experiments were performed as part of investigations on the residual life of COPV tanks being used in Space Shuttle Orbiters. Measured properties included tensile strength, compressive strength, reversed loading cycles to simulate liner proof strains, and cyclic fatigue loading to demonstrate the ability to sustain 1000 cycles after liner buckling. The liner material came from a salvaged 40 in. Columbia (orbiter 102) tank (SN029), and tensile strength measurements were made on both boss-transition (thick) and membrane regions (thin). The average measured yield strength was 131 ksi in the boss-transition and membrane regions, in good agreement with measurements made on 1970 s vintage forged plate stock. However, Young s modulus was 17.4+/-0.3 Msi, somewhat higher than typical handbook values (approx.16 Msi). The fracture toughness, as estimated from a failed fatigue specimen, was 74 ksi/sq in, in reasonable agreement with standardized measurements made on 1970 s vintage forged plate stock. Low cycle fatigue of a buckled test specimen implied that as-imprinted liners can sustain over 4000 load cycles.

  9. Two-tank working gas storage system for heat engine

    DOEpatents

    Hindes, Clyde J.

    1987-01-01

    A two-tank working gas supply and pump-down system is coupled to a hot gas engine, such as a Stirling engine. The system has a power control valve for admitting the working gas to the engine when increased power is needed, and for releasing the working gas from the engine when engine power is to be decreased. A compressor pumps the working gas that is released from the engine. Two storage vessels or tanks are provided, one for storing the working gas at a modest pressure (i.e., half maximum pressure), and another for storing the working gas at a higher pressure (i.e., about full engine pressure). Solenoid valves are associated with the gas line to each of the storage vessels, and are selectively actuated to couple the vessels one at a time to the compressor during pumpdown to fill the high-pressure vessel with working gas at high pressure and then to fill the low-pressure vessel with the gas at low pressure. When more power is needed, the solenoid valves first supply the low-pressure gas from the low-pressure vessel to the engine and then supply the high-pressure gas from the high-pressure vessel. The solenoid valves each act as a check-valve when unactuated, and as an open valve when actuated.

  10. Analyses of the reflector tank, cold source, and beam tube cooling for ANS reactor. [Advanced Neutron Source (ANS)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marland, S.

    1992-07-01

    This report describes my work as an intern with Martin Marietta Energy Systems, Inc., in the summer of 1991. I was assigned to the Reactor Technology Engineering Department, working on the Advanced Neutron Source (ANS). My first project was to select and analyze sealing systems for the top of the diverter/reflector tank. This involved investigating various metal seals and calculating the forces necessary to maintain an adequate seal. The force calculations led to an analysis of several bolt patterns and lockring concepts that could be used to maintain a seal on the vessel. Another project involved some pressure vessel stressmore » calculations and the calculation of the center of gravity for the cold source assembly. I also completed some sketches of possible cooling channel patterns for the inner vessel of the cold source. In addition, I worked on some thermal design analyses for the reflector tank and beam tubes, including heat transfer calculations and assisting in Patran and Pthermal analyses. To supplement the ANS work, I worked on other projects. I completed some stress/deflection analyses on several different beams. These analyses were done with the aid of CAASE, a beam-analysis software package. An additional project involved bending analysis on a carbon removal system. This study was done to find the deflection of a complex-shaped beam when loaded with a full waste can.« less

  11. 46 CFR 119.435 - Integral fuel tanks.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... for certification of a vessel, integral fuel tanks must withstand a hydrostatic pressure test of 35 kPa (5 psig), or the maximum pressure head to which they may be subjected in service, whichever is...

  12. 49 CFR 173.172 - Aircraft hydraulic power unit fuel tank.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 2 2012-10-01 2012-10-01 false Aircraft hydraulic power unit fuel tank. 173.172... Class 1 and Class 7 § 173.172 Aircraft hydraulic power unit fuel tank. Aircraft hydraulic power unit... consist of an aluminum pressure vessel made from tubing and having welded heads. Primary containment of...

  13. 49 CFR 173.172 - Aircraft hydraulic power unit fuel tank.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 2 2014-10-01 2014-10-01 false Aircraft hydraulic power unit fuel tank. 173.172... Class 1 and Class 7 § 173.172 Aircraft hydraulic power unit fuel tank. Aircraft hydraulic power unit... consist of an aluminum pressure vessel made from tubing and having welded heads. Primary containment of...

  14. 49 CFR 173.172 - Aircraft hydraulic power unit fuel tank.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 2 2011-10-01 2011-10-01 false Aircraft hydraulic power unit fuel tank. 173.172... Class 1 and Class 7 § 173.172 Aircraft hydraulic power unit fuel tank. Aircraft hydraulic power unit... consist of an aluminum pressure vessel made from tubing and having welded heads. Primary containment of...

  15. 49 CFR 173.172 - Aircraft hydraulic power unit fuel tank.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 2 2013-10-01 2013-10-01 false Aircraft hydraulic power unit fuel tank. 173.172... Class 1 and Class 7 § 173.172 Aircraft hydraulic power unit fuel tank. Aircraft hydraulic power unit... consist of an aluminum pressure vessel made from tubing and having welded heads. Primary containment of...

  16. 49 CFR 173.172 - Aircraft hydraulic power unit fuel tank.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Aircraft hydraulic power unit fuel tank. 173.172... Class 1 and Class 7 § 173.172 Aircraft hydraulic power unit fuel tank. Aircraft hydraulic power unit... consist of an aluminum pressure vessel made from tubing and having welded heads. Primary containment of...

  17. Development and flight test of metal-lined CFRP cryogenic tank for reusable rocket

    NASA Astrophysics Data System (ADS)

    Higuchi, Ken; Takeuchi, Shinsuke; Sato, Eiichi; Naruo, Yoshihiro; Inatani, Yoshifumi; Namiki, Fumiharu; Tanaka, Kohtaro; Watabe, Yoko

    2005-07-01

    A cryogenic tank made of carbon fiber reinforced plastic (CFRP) shell with aluminum thin liner has been designed as a liquid hydrogen (LH2) tank for an ISAS reusable launch vehicle, and the function of it has been proven by repeated flights onboard the test vehicle called reusable vehicle testing (RVT) in October 2003. The liquid hydrogen tank has to be a pressure vessel, because the fuel of the engine of the test vehicle is supplied by fuel pressure. The pressure vessel of a combination of the outer shell of CFRP for strength element at a cryogenic temperature and the inner liner of aluminum for gas barrier has shown excellent weight merit for this purpose. Interfaces such as tank outline shape, bulk capacity, maximum expected operating pressure (MEOP), thermal insulation, pipe arrangement, and measurement of data are also designed to be ready onboard. This research has many aims, not only development of reusable cryogenic composite tank but also the demonstration of repeated operation including thermal cycle and stress cycle, familiarization with test techniques of operation of cryogenic composite tanks, and the accumulation of data for future design of tanks, vehicle structures, safety evaluation, and total operation systems.

  18. 75 FR 54026 - Salvage and Marine Firefighting Requirements; Vessel Response Plans for Oil

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-03

    ... and Marine Firefighting Requirements; Vessel Response Plans for Oil AGENCY: Coast Guard, DHS. ACTION... vessel response plan salvage and marine firefighting requirements for tank vessels carrying oil. The... establish evidence that they have properly planned to mitigate oil outflow and to provide that information...

  19. 19 CFR 151.28 - Gauging of sirup or molasses discharged into storage tanks.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 19 Customs Duties 2 2011-04-01 2011-04-01 false Gauging of sirup or molasses discharged into... Sugars, Sirups, and Molasses § 151.28 Gauging of sirup or molasses discharged into storage tanks. (a) Plans of storage tank to be filed. When sirup or molasses is imported in bulk in tank vessels and is to...

  20. Non-Axisymmetric Inflatable Pressure Structure (NAIPS) Concept that Enables Mass Efficient Packageable Pressure Vessels with Sealable Openings

    NASA Technical Reports Server (NTRS)

    Doggett, William R.; Jones, Thomas C.; Kenner, Winfred S.; Moore, David F.; Watson, Judith J.; Warren, Jerry E.; Makino, Alberto; Yount, Bryan; Selig, Molly; Shariff, Khadijah; hide

    2016-01-01

    Achieving minimal launch volume and mass are always important for space missions, especially for deep space manned missions where the costs required to transport mass to the destination are high and volume in the payload shroud is limited. Pressure vessels are used for many purposes in space missions including habitats, airlocks, and tank farms for fuel or processed resources. A lucrative approach to minimize launch volume is to construct the pressure vessels from soft goods so that they can be compactly packaged for launch and then inflated en route or at the final destination. In addition, there is the potential to reduce system mass because the packaged pressure vessels are inherently robust to launch loads and do not need to be modified from their in-service configuration to survive the launch environment. A novel concept is presented herein, in which sealable openings or hatches into the pressure vessels can also be fabricated from soft goods. To accomplish this, the structural shape is designed to have large regions where one principal stress is near zero. The pressure vessel is also required to have an elongated geometry for applications such as airlocks.

  1. 49 CFR 179.400-13 - Support system for inner tank.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... CARS Specification for Cryogenic Liquid Tank Car Tanks and Seamless Steel Tanks (Classes DOT-113 and... directions when the inner tank is fully loaded and the car is equipped with a conventional draft gear... the support system, piping, or a separate electrical connection of approved design. ...

  2. 49 CFR 179.400-13 - Support system for inner tank.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... CARS Specification for Cryogenic Liquid Tank Car Tanks and Seamless Steel Tanks (Classes DOT-113 and... directions when the inner tank is fully loaded and the car is equipped with a conventional draft gear... the support system, piping, or a separate electrical connection of approved design. ...

  3. 49 CFR 179.400-13 - Support system for inner tank.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... CARS Specification for Cryogenic Liquid Tank Car Tanks and Seamless Steel Tanks (Classes DOT-113 and... directions when the inner tank is fully loaded and the car is equipped with a conventional draft gear... the support system, piping, or a separate electrical connection of approved design. ...

  4. 49 CFR 179.400-13 - Support system for inner tank.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... CARS Specification for Cryogenic Liquid Tank Car Tanks and Seamless Steel Tanks (Classes DOT-113 and... directions when the inner tank is fully loaded and the car is equipped with a conventional draft gear... the support system, piping, or a separate electrical connection of approved design. ...

  5. 46 CFR 36.05-1 - Installation of cargo tanks-TB/ALL.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 1 2014-10-01 2014-10-01 false Installation of cargo tanks-TB/ALL. 36.05-1 Section 36.05-1 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS ELEVATED TEMPERATURE CARGOES... elevated temperatures for the purpose of maintaining the material in the molten form shall be installed...

  6. 46 CFR 36.05-1 - Installation of cargo tanks-TB/ALL.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 1 2010-10-01 2010-10-01 false Installation of cargo tanks-TB/ALL. 36.05-1 Section 36.05-1 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS ELEVATED TEMPERATURE CARGOES... elevated temperatures for the purpose of maintaining the material in the molten form shall be installed...

  7. 46 CFR 36.05-1 - Installation of cargo tanks-TB/ALL.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 1 2011-10-01 2011-10-01 false Installation of cargo tanks-TB/ALL. 36.05-1 Section 36.05-1 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS ELEVATED TEMPERATURE CARGOES... elevated temperatures for the purpose of maintaining the material in the molten form shall be installed...

  8. Thermocryogenic buckling and stress analyses of a partially filled cryogenic tank subjected to cylindrical strip heating

    NASA Technical Reports Server (NTRS)

    Ko, William L.

    1994-01-01

    Thermocryogenic buckling and stress analyses were conducted on a horizontally oriented cryogenic tank using the finite element method. The tank is a finite-length circular cylindrical shell with its two ends capped with hemispherical shells. The tank is subjected to cylindrical strip heating in the region above the liquid-cryogen fill level and to cryogenic cooling below the fill level (i.e., under thermocryogenic loading). The effects of cryogen fill level on the buckling temperature and thermocryogenic stress field were investigated in detail. Both the buckling temperature and stress magnitudes were relatively insensitive to the cryogen fill level. The buckling temperature, however, was quite sensitive to the radius-to-thickness ratio. A mechanical stress analysis of the tank also was conducted when the tank was under: (1) cryogen liquid pressure loading; (2) internal pressure loading; and (3) tank-wall inertia loading. Deformed shapes of the cryogenic tanks under different loading conditions were shown, and high-stress domains were mapped on the tank wall for the strain-gage installations. The accuracies of solutions from different finite element models were compared.

  9. Damage Control Plan for International Space Station Recharge Tank Assembly Composite Overwrapped Pressure Vessel

    NASA Technical Reports Server (NTRS)

    Cook, Anthony J.

    2011-01-01

    As NASA has retired the Space Shuttle Program, a new method of transporting compressed gaseous nitrogen and oxygen needed to be created for delivery of these crucial life support resources to the International Space Station (ISS). One of the methods selected by NASA includes the use of highly pressurized, unprotected Recharge Tank Assemblies (RTAs) utilizing Composite Overwrapped Pressure Vessels (COPVs). A COPV consists of a thin liner wrapped with a fiber composite and resin or epoxy. It is typically lighter weight than an all metal pressure vessel of similar volume and therefore provides a higher-efficiency means for gas storage. However COPVs are known to be susceptible to damage resulting from handling, tool drop impacts, or impacts from other objects. As a result, a comprehensive Damage Control Plan has been established to mitigate damage to the RTA COPV throughout its life cycle. The DCP is intended to evaluate and mitigate defined threats during manufacturing, shipping and handling, test, assembly level integration, shipment while pressurized, launch vehicle integration and mission operations by defining credible threats and methods for preventing potential damage while still maintaining the primary goal of resupplying ISS gas resources. A comprehensive threat assessment is performed to identify all threats posed to the COPV during the different phases of its lifecycle. The threat assessment is then used as the basis for creating a series of general inspection, surveillance and reporting requirements which apply across all phases of the COPV's life, targeted requirements only applicable to specific work phases and a series of training courses for both ground personnel and crew aboard the ISS. A particularly important area of emphasis deals with creating DCP requirements for a highly pressurized, large and unprotected RTA COPV for use during Inter Vehicular Activities (IVA) operations in the micro gravity environment while supplying pressurized gas to the

  10. A Guide for Recertification of Ground Based Pressure Vessels and Liquid Holding Tanks

    DTIC Science & Technology

    1987-12-15

    Boiler and Pressure Vessel Code , Section...Requirements 202 Calculate Vessel MAWP Using ASME Boiler and Pressure Vessel Code Section VUI, Division 1. 203 Assess Vessel MAWP Using ASME Boiler and Pressure Vessel Code Section...Engineers (ASME) Boiler and Pressure Vessel Code (B&PV) Section VIll, Division 1, or other applicable standard. This activity involves the

  11. 7 CFR 160.28 - Tank cars of turpentine.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 3 2014-01-01 2014-01-01 false Tank cars of turpentine. 160.28 Section 160.28... STANDARDS FOR NAVAL STORES Analysis, Inspection, and Grading on Request § 160.28 Tank cars of turpentine. A tank car loaded for shipment with spirits of turpentine shall, after the same has been sampled for...

  12. 7 CFR 160.28 - Tank cars of turpentine.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 3 2011-01-01 2011-01-01 false Tank cars of turpentine. 160.28 Section 160.28... STANDARDS FOR NAVAL STORES Analysis, Inspection, and Grading on Request § 160.28 Tank cars of turpentine. A tank car loaded for shipment with spirits of turpentine shall, after the same has been sampled for...

  13. 7 CFR 160.28 - Tank cars of turpentine.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 3 2010-01-01 2010-01-01 false Tank cars of turpentine. 160.28 Section 160.28... STANDARDS FOR NAVAL STORES Analysis, Inspection, and Grading on Request § 160.28 Tank cars of turpentine. A tank car loaded for shipment with spirits of turpentine shall, after the same has been sampled for...

  14. 7 CFR 160.28 - Tank cars of turpentine.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 3 2012-01-01 2012-01-01 false Tank cars of turpentine. 160.28 Section 160.28... STANDARDS FOR NAVAL STORES Analysis, Inspection, and Grading on Request § 160.28 Tank cars of turpentine. A tank car loaded for shipment with spirits of turpentine shall, after the same has been sampled for...

  15. 7 CFR 160.28 - Tank cars of turpentine.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 3 2013-01-01 2013-01-01 false Tank cars of turpentine. 160.28 Section 160.28... STANDARDS FOR NAVAL STORES Analysis, Inspection, and Grading on Request § 160.28 Tank cars of turpentine. A tank car loaded for shipment with spirits of turpentine shall, after the same has been sampled for...

  16. Hydrogen Fire in a Storage Vessel

    NASA Technical Reports Server (NTRS)

    Hester, Zena M.

    2010-01-01

    On October 23, 2007, the operations team began a procedure to sample the Liquid Hydrogen (LH2) storage vessels ("tanks"), and associated transfer system. This procedure was being performed to determine the conditions within the system, and if necessary, to purge the system of any excess Gaseous Hydrogen (GH2) in preparation for reactivation of the system. The system had not been used since 2003. The LH2 storage system contains two (2) spherical pressure vessels of 225,000 gallons in volume, with a maximum working pressure (MAWP) of 50 psig. Eight inch transfer piping connects them to the usage point. Operations began with activation of the burnstack for the LH2 storage area. Pneumatic (GN2) systems in the storage area were then activated and checked. Pressurization of storage tank number 1 with gaseous nitrogen (GN2) was initiated, with a target pressure of 10 psig, at which point samples were planned to be taken. At 5 psig, a loud noise was heard in the upper area of tank number 2. Smoke was seen exiting the burnstack and from the insulation on vent lines for both tanks. At this time tank number 1 was vented and the pressurization system was secured. The mishap resulted in physical damage to both storage tanks, as well as to some of the piping for both tanks. Corrective action included repair of the damaged hardware by a qualified contractor. Preventive action included documented organizational policy and procedures for establishing standby and mothball conditions for facilities and equipment, including provisions as detailed in the investigation report recommendations: Recommendation 1: The using organization should define necessary activities in order to place hydrogen systems in long term periods of inactivity. The defined activities should address requirements for rendering inert, isolation (i.e., physical disconnect, double block and bleed, etc.) and periodic monitoring. Recommendation 2: The using organization should develop a process to periodically monitor

  17. Composite Pressure Vessel Including Crack Arresting Barrier

    NASA Technical Reports Server (NTRS)

    DeLay, Thomas K. (Inventor)

    2013-01-01

    A pressure vessel includes a ported fitting having an annular flange formed on an end thereof and a tank that envelopes the annular flange. A crack arresting barrier is bonded to and forming a lining of the tank within the outer surface thereof. The crack arresting barrier includes a cured resin having a post-curing ductility rating of at least approximately 60% through the cured resin, and further includes randomly-oriented fibers positioned in and throughout the cured resin.

  18. Wireless, in-vessel neutron monitor for initial core-loading of advanced breeder reactors

    NASA Technical Reports Server (NTRS)

    Delorenzo, J. T.; Kennedy, E. J.; Blalock, T. V.; Rochelle, J. M.; Chiles, M. M.; Valentine, K. H.

    1981-01-01

    An experimental wireless, in-vessel neutron monitor was developed to measure the reactivity of an advanced breeder reactor as the core is loaded for the first time to preclude an accidental critically incident. The environment is liquid sodium at a temperature of approx. 220 C, with negligible gamma or neutron radiation. With ultrasonic transmission of neutron data, no fundamental limitation was observed after tests at 230 C for 2000 h. The neutron sensitivity was approx. 1 count/s-nv, and the potential data transmission rate was approx. 10,000 counts/s.

  19. 46 CFR 32.20-1 - Equipment installations on vessels during World War II-TB/ALL.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 1 2012-10-01 2012-10-01 false Equipment installations on vessels during World War II-TB/ALL. 32.20-1 Section 32.20-1 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS... installations on vessels during World War II—TB/ALL. Boilers, pressure vessels, machinery, piping, electrical...

  20. 46 CFR 32.20-1 - Equipment installations on vessels during World War II-TB/ALL.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 1 2013-10-01 2013-10-01 false Equipment installations on vessels during World War II-TB/ALL. 32.20-1 Section 32.20-1 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS... installations on vessels during World War II—TB/ALL. Boilers, pressure vessels, machinery, piping, electrical...

  1. 46 CFR 32.20-1 - Equipment installations on vessels during World War II-TB/ALL.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 1 2014-10-01 2014-10-01 false Equipment installations on vessels during World War II-TB/ALL. 32.20-1 Section 32.20-1 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS... installations on vessels during World War II—TB/ALL. Boilers, pressure vessels, machinery, piping, electrical...

  2. 46 CFR 32.20-1 - Equipment installations on vessels during World War II-TB/ALL.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 1 2011-10-01 2011-10-01 false Equipment installations on vessels during World War II-TB/ALL. 32.20-1 Section 32.20-1 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS... installations on vessels during World War II—TB/ALL. Boilers, pressure vessels, machinery, piping, electrical...

  3. Thermal Structures Technology Development for Reusable Launch Vehicle Cryogenic Propellant Tanks

    NASA Technical Reports Server (NTRS)

    Johnson, Theodore F.; Natividad, Roderick; Rivers, H. Kevin; Smith, Russell

    1998-01-01

    Analytical and experimental studies conducted at the NASA Langley Research Center for investigating integrated cryogenic propellant tank systems for a Reusable Launch Vehicle are described. The cryogenic tanks are investigated as an integrated tank system. An integrated tank system includes the tank wall, cryogenic insulation, Thermal Protection System (TPS) attachment sub-structure, and TPS. Analysis codes are used to size the thicknesses of cryogenic insulation and TPS insulation for thermal loads, and to predict tank buckling strengths at various ring frame spacings. The unique test facilities developed for the testing of cryogenic tank components are described. Testing at cryogenic and high-temperatures verifies the integrity of materials, design concepts, manufacturing processes, and thermal/structural analyses. Test specimens ranging from the element level to the subcomponent level are subjected to projected vehicle operational mechanical loads and temperatures. The analytical and experimental studies described in this paper provide a portion of the basic information required for the development of light-weight reusable cryogenic propellant tanks.

  4. Thermal Structures Technology Development for Reusable Launch Vehicle Cryogenic Propellant Tanks

    NASA Technical Reports Server (NTRS)

    Johnson, Theodore F.; Natividad, Roderick; Rivers, H. Kevin; Smith, Russell W.

    2005-01-01

    Analytical and experimental studies conducted at the NASA, Langley Research Center (LaRC) for investigating integrated cryogenic propellant tank systems for a reusable launch vehicle (RLV) are described. The cryogenic tanks are investigated as an integrated tank system. An integrated tank system includes the tank wall, cryogenic insulation, thermal protection system (TPS) attachment sub-structure, and TPS. Analysis codes are used to size the thicknesses of cryogenic insulation and TPS insulation for thermal loads, and to predict tank buckling strengths at various ring frame spacings. The unique test facilities developed for the testing of cryogenic tank components are described. Testing at cryogenic and high-temperatures verifies the integrity of materials, design concepts, manufacturing processes, and thermal/structural analyses. Test specimens ranging from the element level to the subcomponent level are subjected to projected vehicle operational mechanical loads and temperatures. The analytical and experimental studies described in this paper provide a portion of the basic information required for the development of light-weight reusable cryogenic propellant tanks.

  5. Fire testing and computer modelling of rail tank-cars engulfed in fires : literature review

    DOT National Transportation Integrated Search

    2006-03-01

    This literature review contains important references relating to fire effects on pressure : vessels. The specific pressure vessels of interest are rail tank-cars carrying pressure : liquefied gases such as LPG and anhydrous ammonia. The literature id...

  6. ANNUAL RADIOACTIVE WASTE TANK INSPECTION PROGRAM 2009

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    West, B.; Waltz, R.

    2010-06-21

    Aqueous radioactive wastes from Savannah River Site (SRS) separations and vitrification processes are contained in large underground carbon steel tanks. Inspections made during 2009 to evaluate these vessels and other waste handling facilities along with evaluations based on data from previous inspections are the subject of this report. The 2009 inspection program revealed that the structural integrity and waste confinement capability of the Savannah River Site waste tanks were maintained. All inspections scheduled per LWO-LWE-2008-00423, HLW Tank Farm Inspection Plan for 2009, were completed. All Ultrasonic measurements (UT) performed in 2009 met the requirements of C-ESG-00006, In-Service Inspection Program formore » High Level Waste Tanks, Rev. 1, and WSRC-TR-2002-00061, Rev.4. UT inspections were performed on Tank 29 and the findings are documented in SRNL-STI-2009-00559, Tank Inspection NDE Results for Fiscal Year 2009, Waste Tank 29. Post chemical cleaning UT measurements were made in Tank 6 and the results are documented in SRNL-STI-2009-00560, Tank Inspection NDE Results Tank 6, Including Summary of Waste Removal Support Activities in Tanks 5 and 6. A total of 6669 photographs were made and 1276 visual and video inspections were performed during 2009. Twenty-Two new leaksites were identified in 2009. The locations of these leaksites are documented in C-ESR-G-00003, SRS High Level Waste Tank Leaksite Information, Rev.4. Fifteen leaksites at Tank 5 were documented during tank wall/annulus cleaning activities. Five leaksites at Tank 6 were documented during tank wall/annulus cleaning activities. Two new leaksites were identified at Tank 19 during waste removal activities. Previously documented leaksites were reactivated at Tanks 5 and 12 during waste removal activities. Also, a very small amount of additional leakage from a previously identified leaksite at Tank 14 was observed.« less

  7. Static-stress analysis of dual-axis safety vessel

    NASA Astrophysics Data System (ADS)

    Bultman, D. H.

    1992-11-01

    An 8 ft diameter safety vessel, made of HSLA-100 steel, is evaluated to determine its ability to contain the quasi-static residual pressure from a high explosive (HE) blast. The safety vessel is designed for use with the Dual-Axis Radiographic Hydrotest (DARHT) facility being developed at Los Alamos National Laboratory. A smaller confinement vessel fits inside the safety vessel and contains the actual explosion, and the safety vessel functions as a second layer of containment in the unlikely case of a confinement vessel leak. The safety vessel is analyzed as a pressure vessel based on the ASME Boiler and Pressure Vessel Code, Section 8, Division 1, and the Welding Research Council Bulletin, WRC107. Combined stresses that result from internal pressure and external loads on nozzles are calculated and compared to the allowable stresses for HSLA-100 steel. Results confirm that the shell and nozzle components are adequately designed for a static pressure of 830 psi, plus the maximum expected external loads. Shell stresses at the 'shell to nozzle' interface, produced from external loads on the nozzles, were less than 700 psi. The maximum combined stress resulting from the internal pressure plus external loads was 17,384 psi, which is significantly less than the allowable stress of 42,375 psi for HSLA-100 steel.

  8. 46 CFR 154.630 - Cargo tank material.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 5 2011-10-01 2011-10-01 false Cargo tank material. 154.630 Section 154.630 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SAFETY STANDARDS FOR SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES Design, Construction and Equipment Materials...

  9. 46 CFR 154.630 - Cargo tank material.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 5 2013-10-01 2013-10-01 false Cargo tank material. 154.630 Section 154.630 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SAFETY STANDARDS FOR SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES Design, Construction and Equipment Materials...

  10. 46 CFR 154.630 - Cargo tank material.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 5 2014-10-01 2014-10-01 false Cargo tank material. 154.630 Section 154.630 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SAFETY STANDARDS FOR SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES Design, Construction and Equipment Materials...

  11. 49 CFR 173.318 - Cryogenic liquids in cargo tanks.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... than two times the tank's design pressure. (6) Maximum filling rate. (i) For a tank used in oxygen and... the design service temperature of the packaging. (2) A cargo tank may not be loaded with any material... two independent pressure relief systems which are not connected in series, namely: (A) A primary...

  12. 49 CFR 173.318 - Cryogenic liquids in cargo tanks.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... than two times the tank's design pressure. (6) Maximum filling rate. (i) For a tank used in oxygen and... the design service temperature of the packaging. (2) A cargo tank may not be loaded with any material... two independent pressure relief systems which are not connected in series, namely: (A) A primary...

  13. 49 CFR 173.318 - Cryogenic liquids in cargo tanks.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... than two times the tank's design pressure. (6) Maximum filling rate. (i) For a tank used in oxygen and... the design service temperature of the packaging. (2) A cargo tank may not be loaded with any material... two independent pressure relief systems which are not connected in series, namely: (A) A primary...

  14. 49 CFR 173.318 - Cryogenic liquids in cargo tanks.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... than two times the tank's design pressure. (6) Maximum filling rate. (i) For a tank used in oxygen and... the design service temperature of the packaging. (2) A cargo tank may not be loaded with any material... two independent pressure relief systems which are not connected in series, namely: (A) A primary...

  15. Small-Scale Metal Tanks for High Pressure Storage of Fluids

    NASA Technical Reports Server (NTRS)

    London, Adam (Inventor)

    2016-01-01

    Small scale metal tanks for high-pressure storage of fluids having tank factors of more than 5000 meters and volumes of ten cubic inches or less featuring arrays of interconnected internal chambers having at least inner walls thinner than gage limitations allow. The chambers may be arranged as multiple internal independent vessels. Walls of chambers that are also portions of external tank walls may be arcuate on the internal and/or external surfaces, including domed. The tanks may be shaped adaptively and/or conformally to an application, including, for example, having one or more flat outer walls and/or having an annular shape. The tanks may have dual-purpose inlet/outlet conduits of may have separate inlet and outlet conduits. The tanks are made by fusion bonding etched metal foil layers patterned from slices of a CAD model of the tank. The fusion bonded foil stack may be further machined.

  16. ANNUAL RADIOACTIVE WASTE TANK INSPECTION PROGRAM 2010

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    West, B.; Waltz, R.

    Aqueous radioactive wastes from Savannah River Site (SRS) separations and vitrification processes are contained in large underground carbon steel tanks. Inspections made during 2010 to evaluate these vessels and other waste handling facilities along with evaluations based on data from previous inspections are the subject of this report. The 2010 inspection program revealed that the structural integrity and waste confinement capability of the Savannah River Site waste tanks were maintained. All inspections scheduled per SRR-LWE-2009-00138, HLW Tank Farm Inspection Plan for 2010, were completed. Ultrasonic measurements (UT) performed in 2010 met the requirements of C-ESG-00006, In-Service Inspection Program for Highmore » Level Waste Tanks, Rev. 3, and WSRC-TR-2002-00061, Rev.6. UT inspections were performed on Tanks 30, 31 and 32 and the findings are documented in SRNL-STI-2010-00533, Tank Inspection NDE Results for Fiscal Year 2010, Waste Tanks 30, 31 and 32. A total of 5824 photographs were made and 1087 visual and video inspections were performed during 2010. Ten new leaksites at Tank 5 were identified in 2010. The locations of these leaksites are documented in C-ESR-G-00003, SRS High Level Waste Tank Leaksite Information, Rev.5. Ten leaksites at Tank 5 were documented during tank wall/annulus cleaning activities. None of these new leaksites resulted in a release to the environment. The leaksites were documented during wall cleaning activities and the waste nodules associated with the leaksites were washed away. Previously documented leaksites were reactivated at Tank 12 during waste removal activities.« less

  17. Procedure for preparation for shipment of natural gas storage vessel

    NASA Technical Reports Server (NTRS)

    Amawd, A. M.

    1974-01-01

    A method for preparing a natural gas storage vessel for shipment is presented. The gas is stored at 3,000 pounds per square inch. The safety precautions to be observed are emphasized. The equipment and process for purging the tank and sampling the exit gas flow are described. A diagram of the pressure vessel and the equipment is provided.

  18. Dynamic Pressure Distribution due to Horizontal Acceleration in Spherical LNG Tank with Cylindrical Central Part

    NASA Astrophysics Data System (ADS)

    Ko, Dae-Eun; Shin, Sang-Hoon

    2017-11-01

    Spherical LNG tanks having many advantages such as structural safety are used as a cargo containment system of LNG carriers. However, it is practically difficult to fabricate perfectly spherical tanks of different sizes in the yard. The most effective method of manufacturing LNG tanks of various capacities is to insert a cylindrical part at the center of existing spherical tanks. While a simplified high-precision analysis method for the initial design of the spherical tanks has been developed for both static and dynamic loads, in the case of spherical tanks with a cylindrical central part, the analysis method available only considers static loads. The purpose of the present study is to derive the dynamic pressure distribution due to horizontal acceleration, which is essential for developing an analysis method that considers dynamic loads as well.

  19. ANNUAL RADIOACTIVE WASTE TANK INSPECTION PROGRAM - 2011

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    West, B.; Waltz, R.

    2012-06-21

    Aqueous radioactive wastes from Savannah River Site (SRS) separations and vitrification processes are contained in large underground carbon steel tanks. Inspections made during 2011 to evaluate these vessels and other waste handling facilities along with evaluations based on data from previous inspections are the subject of this report. The 2011 inspection program revealed that the structural integrity and waste confinement capability of the Savannah River Site waste tanks were maintained. All inspections scheduled per SRR-LWE-2011-00026, HLW Tank Farm Inspection Plan for 2011, were completed. Ultrasonic measurements (UT) performed in 2011 met the requirements of C-ESR-G-00006, In-Service Inspection Program for Highmore » Level Waste Tanks, Rev. 3, and WSRC-TR-2002-00061, Rev.6. UT inspections were performed on Tanks 25, 26 and 34 and the findings are documented in SRNL-STI-2011-00495, Tank Inspection NDE Results for Fiscal Year 2011, Waste Tanks 25, 26, 34 and 41. A total of 5813 photographs were made and 835 visual and video inspections were performed during 2011. A potential leaksite was discovered at Tank 4 during routine annual inspections performed in 2011. The new crack, which is above the allowable fill level, resulted in no release to the environment or tank annulus. The location of the crack is documented in C-ESR-G-00003, SRS High Level Waste Tank Leaksite Information, Rev.6.« less

  20. Branched hybrid vessel: in vitro loaded hydrodynamic forces influence the tissue architecture.

    PubMed

    Kobashi, T; Matsuda, T

    2000-01-01

    This study was conducted to investigate how a continuous load of hydrodynamic stresses influences the tissue architecture of a branched hybrid vessel in vitro. Tubular hybrid medial tissue of small (3 mm) and large (6 mm) diameters, prepared by thermal gelation of a cold mixed solution of bovine smooth muscle cells (SMCs) and type I collagen in glass molds, was assembled into a branched hybrid medial tissue by end-to-side anastomosis. After a 2-week culture period, bovine endothelial cells (ECs) were seeded onto the luminal surface. The branched hybrid vessel was connected to a mock circulatory loop system and tested for two modes of flow: 1) low flow rate for 24 h, 2) high flow rate for 24 or 72 h. After exposure to a low flow rate for 24 h, cobblestone appearance of the ECs was dominant. After exposure to a high flow rate, EC alignment in the direction of flow was observed in the branch region, except at the region of predicted flow separation where ECs retained their polygonal configuration. Elongation of SMCs with no preferential orientation was observed in the case of vessels exposed to a high flow rate for 24 h, and circumferential orientation was prominent in those exposed to a high flow rate for 72 h. On the other hand, collagen fibrils exhibited no preferential orientation in either case. After injection of Evans blue-albumin conjugate into the circulating medium, the luminal surface of the hybrid vessel exposed to a high flow rate for 24 h was examined by confocal laser scanning microscopy. The fluorescence intensity was low at the high shear zone in the branch region, while at the flow separation region it was very high, indicating the increased albumin permeability at the latter region. These findings reflect region-specific tissue architecture in the branch region, in response to the local flow pattern, and may provide an in vitro atherosclerosis model as well as a fundamental basis for the development of functional branched hybrid grafts.

  1. Flexible Composite-Material Pressure Vessel

    NASA Technical Reports Server (NTRS)

    Brown, Glen; Haggard, Roy; Harris, Paul A.

    2003-01-01

    A proposed lightweight pressure vessel would be made of a composite of high-tenacity continuous fibers and a flexible matrix material. The flexibility of this pressure vessel would render it (1) compactly stowable for transport and (2) more able to withstand impacts, relative to lightweight pressure vessels made of rigid composite materials. The vessel would be designed as a structural shell wherein the fibers would be predominantly bias-oriented, the orientations being optimized to make the fibers bear the tensile loads in the structure. Such efficient use of tension-bearing fibers would minimize or eliminate the need for stitching and fill (weft) fibers for strength. The vessel could be fabricated by techniques adapted from filament winding of prior composite-material vessels, perhaps in conjunction with the use of dry film adhesives. In addition to the high-bias main-body substructure described above, the vessel would include a low-bias end substructure to complete coverage and react peak loads. Axial elements would be overlaid to contain damage and to control fiber orientation around side openings. Fiber ring structures would be used as interfaces for connection to ancillary hardware.

  2. ANNUAL RADIOACTIVE WASTE TANK INSPECTION PROGRAM 2008

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    West, B.; Waltz, R.

    2009-06-11

    Aqueous radioactive wastes from Savannah River Site (SRS) separations and vitrification processes are contained in large underground carbon steel tanks. Inspections made during 2008 to evaluate these vessels and other waste handling facilities along with evaluations based on data from previous inspections are the subject of this report.

  3. Cryogenic Pressure Control Modeling for Ellipsoidal Space Tanks

    NASA Technical Reports Server (NTRS)

    Lopez, Alfredo; Grayson, Gary D.; Chandler, Frank O.; Hastings, Leon J.; Heyadat, Ali

    2007-01-01

    A computational fluid dynamics (CFD) model is developed to simulate pressure control of an ellipsoidal-shaped liquid hydrogen tank under external heating in normal gravity. Pressure control is provided by an axial jet thermodynamic vent system (TVS) centered within the vessel that injects cooler liquid into the tank, mixing the contents and reducing tank pressure. The two-phase cryogenic tank model considers liquid hydrogen in its own vapor with liquid density varying with temperature only and a fully compressible ullage. The axisymmetric model is developed using a custom version of the commercially available FLOW-31) software. Quantitative model validation is ,provided by engineering checkout tests performed at Marshall Space Flight Center in 1999 in support of the Solar Thermal Upper Stage_ Technology Demonstrator (STUSTD) program. The engineering checkout tests provide cryogenic tank self-pressurization test data at various heat leaks and tank fill levels. The predicted self-pressurization rates, ullage and liquid temperatures at discrete locations within the STUSTD tank are in good agreement with test data. The work presented here advances current CFD modeling capabilities for cryogenic pressure control and helps develop a low cost CFD-based design process for space hardware.

  4. Spherical Cryogenic Hydrogen Tank Preliminary Design Trade Studies

    NASA Technical Reports Server (NTRS)

    Arnold, Steven M.; Bednarcyk, Brett A.; Collier, Craig S.; Yarrington, Phillip W.

    2007-01-01

    A structural analysis, sizing optimization, and weight prediction study was performed by Collier Research Corporation and NASA Glenn on a spherical cryogenic hydrogen tank. The tank consisted of an inner and outer wall separated by a vacuum for thermal insulation purposes. HyperSizer (Collier Research and Development Corporation), a commercial automated structural analysis and sizing software package was used to design the lightest feasible tank for a given overall size and thermomechanical loading environment. Weight trade studies were completed for different panel concepts and metallic and composite material systems. Extensive failure analyses were performed for each combination of dimensional variables, materials, and layups to establish the structural integrity of tank designs. Detailed stress and strain fields were computed from operational temperature changes and pressure loads. The inner tank wall is sized by the resulting biaxial tensile stresses which cause it to be strength driven, and leads to an optimum panel concept that need not be stiffened. Conversely, the outer tank wall is sized by a biaxial compressive stress field, induced by the pressure differential between atmospheric pressure and the vacuum between the tanks, thereby causing the design to be stability driven and thus stiffened to prevent buckling. Induced thermal stresses become a major sizing driver when a composite or hybrid composite/metallic material systems are used for the inner tank wall for purposes such as liners to contain the fuel and reduce hydrogen permeation.

  5. 14 CFR 25.963 - Fuel tanks: general.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... tank must be able to withstand, without failure, the vibration, inertia, fluid, and structural loads... criteria in order to avoid loss of hazardous quantities of fuel: (1) All covers located in an area where... difference between the inside and the outside of the tank. [Doc. No. 5066, 29 FR 18291, Dec. 24, 1964, as...

  6. 14 CFR 25.963 - Fuel tanks: general.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... tank must be able to withstand, without failure, the vibration, inertia, fluid, and structural loads... criteria in order to avoid loss of hazardous quantities of fuel: (1) All covers located in an area where... difference between the inside and the outside of the tank. [Doc. No. 5066, 29 FR 18291, Dec. 24, 1964, as...

  7. 14 CFR 25.963 - Fuel tanks: general.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... tank must be able to withstand, without failure, the vibration, inertia, fluid, and structural loads... criteria in order to avoid loss of hazardous quantities of fuel: (1) All covers located in an area where... difference between the inside and the outside of the tank. [Doc. No. 5066, 29 FR 18291, Dec. 24, 1964, as...

  8. 14 CFR 25.963 - Fuel tanks: general.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... tank must be able to withstand, without failure, the vibration, inertia, fluid, and structural loads... criteria in order to avoid loss of hazardous quantities of fuel: (1) All covers located in an area where... difference between the inside and the outside of the tank. [Doc. No. 5066, 29 FR 18291, Dec. 24, 1964, as...

  9. 14 CFR 25.963 - Fuel tanks: general.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... tank must be able to withstand, without failure, the vibration, inertia, fluid, and structural loads... criteria in order to avoid loss of hazardous quantities of fuel: (1) All covers located in an area where... difference between the inside and the outside of the tank. [Doc. No. 5066, 29 FR 18291, Dec. 24, 1964, as...

  10. 33 CFR 157.420 - Vessel specific watch policy and procedures.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... CARRYING OIL IN BULK Interim Measures for Certain Tank Vessels Without Double Hulls Carrying Petroleum Oils... employed individual to receive essential information in a language the individual understands. (b...

  11. 33 CFR 157.420 - Vessel specific watch policy and procedures.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... CARRYING OIL IN BULK Interim Measures for Certain Tank Vessels Without Double Hulls Carrying Petroleum Oils... employed individual to receive essential information in a language the individual understands. (b...

  12. 33 CFR 157.420 - Vessel specific watch policy and procedures.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... CARRYING OIL IN BULK Interim Measures for Certain Tank Vessels Without Double Hulls Carrying Petroleum Oils... employed individual to receive essential information in a language the individual understands. (b...

  13. 33 CFR 157.420 - Vessel specific watch policy and procedures.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... CARRYING OIL IN BULK Interim Measures for Certain Tank Vessels Without Double Hulls Carrying Petroleum Oils... employed individual to receive essential information in a language the individual understands. (b...

  14. 33 CFR 157.420 - Vessel specific watch policy and procedures.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... CARRYING OIL IN BULK Interim Measures for Certain Tank Vessels Without Double Hulls Carrying Petroleum Oils... employed individual to receive essential information in a language the individual understands. (b...

  15. Over-the-road testing of the instrumented tank car : a load environment study.

    DOT National Transportation Integrated Search

    2010-05-01

    Fractures have been observed on stub sill tank cars for many years. Undetected and unattended, these fractures can develop into a variety of tank car failures. While tank car ruptures are relatively rare, the potential for a catastrophic HAZMAT relea...

  16. Experimental Study on Scale-Up of Solid-Liquid Stirred Tank with an Intermig Impeller

    NASA Astrophysics Data System (ADS)

    Zhao, Hongliang; Zhao, Xing; Zhang, Lifeng; Yin, Pan

    2017-02-01

    The scale-up of a solid-liquid stirred tank with an Intermig impeller was characterized via experiments. Solid concentration, impeller just-off-bottom speed and power consumption were measured in stirred tanks of different scales. The scale-up criteria for achieving the same effect of solid suspension in small-scale and large-scale vessels were evaluated. The solids distribution improves if the operating conditions are held constant as the tank is scaled-up. The results of impeller just-off-bottom speed gave X = 0.868 in the scale-up relationship ND X = constant. Based on this criterion, the stirring power per unit volume obviously decreased at N = N js, and the power number ( N P) was approximately equal to 0.3 when the solids are uniformly distributed in the vessels.

  17. Development of deep drawn aluminum piston tanks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Whitehead, J.C.; Bronder, R.L.; Kilgard, L.W.

    1990-06-08

    An aluminum piston tank has been developed for applications requiring lightweight, low cost, low pressure, positive-expulsion liquid storage. The 3 liter (183 in{sup 3}) vessel is made primarily from aluminum sheet, using production forming and joining operations. The development process relied mainly on pressurizing prototype parts and assemblies to failure, as the primary source of decision making information for driving the tank design toward its optimum minimum-mass configuration. Critical issues addressed by development testing included piston operation, strength of thin-walled formed shells, alloy choice, and joining the end cap to the seamless deep drawn can. 9 refs., 8 figs.

  18. 46 CFR 153.408 - Tank overflow control.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... automatic shutdown system must: (1) Be independent of one-another; and (2) Operate on loss of power. (c) The... lettering as specified for the warning sign in § 153.955. (e) A tank overflow alarm must be audible and... loading is controlled on the tankship. (f) The automatic shutdown system or tank overflow alarm must be...

  19. 46 CFR 153.408 - Tank overflow control.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... automatic shutdown system must: (1) Be independent of one-another; and (2) Operate on loss of power. (c) The... lettering as specified for the warning sign in § 153.955. (e) A tank overflow alarm must be audible and... loading is controlled on the tankship. (f) The automatic shutdown system or tank overflow alarm must be...

  20. 33 CFR 157.28 - Discharges from tank barges exempted from certain design requirements.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Discharges from tank barges exempted from certain design requirements. 157.28 Section 157.28 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) POLLUTION RULES FOR THE PROTECTION OF THE MARINE ENVIRONMENT RELATING TO TANK VESSELS CARRYING OIL I...

  1. 46 CFR 38.05-10 - Installation of cargo tanks-general-TB/ALL.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... prevent the tanks from shifting when subjected to external forces. Each tank shall be so supported as to prevent the concentration of excessive loads on the supporting portions of the shell or head as prescribed... consider the resonance of the cargo tank, or parts thereof, and the vibratory forces, found in the tank...

  2. 46 CFR 38.05-10 - Installation of cargo tanks-general-TB/ALL.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... prevent the tanks from shifting when subjected to external forces. Each tank shall be so supported as to prevent the concentration of excessive loads on the supporting portions of the shell or head as prescribed... consider the resonance of the cargo tank, or parts thereof, and the vibratory forces, found in the tank...

  3. 46 CFR 38.05-10 - Installation of cargo tanks-general-TB/ALL.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... prevent the tanks from shifting when subjected to external forces. Each tank shall be so supported as to prevent the concentration of excessive loads on the supporting portions of the shell or head as prescribed... consider the resonance of the cargo tank, or parts thereof, and the vibratory forces, found in the tank...

  4. 46 CFR 38.05-10 - Installation of cargo tanks-general-TB/ALL.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... prevent the tanks from shifting when subjected to external forces. Each tank shall be so supported as to prevent the concentration of excessive loads on the supporting portions of the shell or head as prescribed... consider the resonance of the cargo tank, or parts thereof, and the vibratory forces, found in the tank...

  5. 46 CFR 38.05-10 - Installation of cargo tanks-general-TB/ALL.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... prevent the tanks from shifting when subjected to external forces. Each tank shall be so supported as to prevent the concentration of excessive loads on the supporting portions of the shell or head as prescribed... consider the resonance of the cargo tank, or parts thereof, and the vibratory forces, found in the tank...

  6. Conventional fuel tank blunt impact tests : test and analysis results

    DOT National Transportation Integrated Search

    2014-04-02

    The Federal Railroad Administrations Office of Research : and Development is conducting research into fuel tank : crashworthiness. A series of impact tests are planned to : measure fuel tank deformation under two types of dynamic : loading conditi...

  7. 40 CFR 63.133 - Process wastewater provisions-wastewater tanks.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 10 2014-07-01 2014-07-01 false Process wastewater provisions-wastewater tanks. 63.133 Section 63.133 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED... Chemical Manufacturing Industry for Process Vents, Storage Vessels, Transfer Operations, and Wastewater...

  8. 40 CFR 63.133 - Process wastewater provisions-wastewater tanks.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 10 2012-07-01 2012-07-01 false Process wastewater provisions-wastewater tanks. 63.133 Section 63.133 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED... Chemical Manufacturing Industry for Process Vents, Storage Vessels, Transfer Operations, and Wastewater...

  9. 40 CFR 63.133 - Process wastewater provisions-wastewater tanks.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 9 2011-07-01 2011-07-01 false Process wastewater provisions-wastewater tanks. 63.133 Section 63.133 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED... Chemical Manufacturing Industry for Process Vents, Storage Vessels, Transfer Operations, and Wastewater...

  10. 40 CFR 63.133 - Process wastewater provisions-wastewater tanks.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 10 2013-07-01 2013-07-01 false Process wastewater provisions-wastewater tanks. 63.133 Section 63.133 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED... Chemical Manufacturing Industry for Process Vents, Storage Vessels, Transfer Operations, and Wastewater...

  11. Lifecycle Verification of Tank Liner Polymers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anovitz, Lawrence; Smith, Barton

    2014-03-01

    This report describes a method that was developed for the purpose of assessing the durability of thermoplastic liners used in a Type IV hydrogen storage tank during the tank s expected service life. In the method, a thermoplastic liner specimen is cycled between the maximum and minimum expected working temperatures while it is differentially pressurized with high-pressure hydrogen gas. The number of thermal cycling intervals corresponds to those expected within the tank s design lifetime. At prescribed intervals, hydrogen permeation measurements are done in situ to assess the ability of the liner specimen to maintain its hydrogen barrier properties andmore » to model its permeability over the tank lifetime. Finally, the model is used to assess whether the steady-state leakage rate in the tank could potentially exceed the leakage specification for hydrogen fuel cell passenger vehicles. A durability assessment was performed on a specimen of high-density polyethylene (HDPE) that is in current use as a tank liner. Hydrogen permeation measurements were performed on several additional tank liner polymers as well as novel polymers proposed for use as storage tank liners and hydrogen barrier materials. The following technical barriers from the Fuel Cell Technologies Program MYRDD were addressed by the project: D. Durability of on-board storage systems lifetime of at least 1500 cycles G. Materials of construction vessel containment that is resistant to hydrogen permeation M. Lack of Tank Performance Data and Understanding of Failure Mechanisms And the following technical targets1 for on-board hydrogen storage systems R&D were likewise addressed: Operational cycle life (1/4 tank to full) FY 2017: 1500 cycles; Ultimate: 1500 cycles Environmental health & safety Permeation and leakage: Meets or exceeds applicable standards Loss of useable H2: FY 2017: 0.05 g/h/kg H2; Ultimate: 0.05 g/h/kg H2« less

  12. 40 CFR 63.565 - Test methods and procedures.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 9 2010-07-01 2010-07-01 false Test methods and procedures. 63.565... Standards for Marine Tank Vessel Loading Operations § 63.565 Test methods and procedures. (a) Performance... as possible to the connection with the marine tank vessel; and (3) During the performance test...

  13. 40 CFR 63.565 - Test methods and procedures.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 10 2012-07-01 2012-07-01 false Test methods and procedures. 63.565... Standards for Marine Tank Vessel Loading Operations § 63.565 Test methods and procedures. (a) Performance... as possible to the connection with the marine tank vessel; and (3) During the performance test...

  14. 40 CFR 63.565 - Test methods and procedures.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 10 2014-07-01 2014-07-01 false Test methods and procedures. 63.565... Standards for Marine Tank Vessel Loading Operations § 63.565 Test methods and procedures. (a) Performance... as possible to the connection with the marine tank vessel; and (3) During the performance test...

  15. 40 CFR 63.565 - Test methods and procedures.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 10 2013-07-01 2013-07-01 false Test methods and procedures. 63.565... Standards for Marine Tank Vessel Loading Operations § 63.565 Test methods and procedures. (a) Performance... as possible to the connection with the marine tank vessel; and (3) During the performance test...

  16. 40 CFR 63.565 - Test methods and procedures.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 9 2011-07-01 2011-07-01 false Test methods and procedures. 63.565... Standards for Marine Tank Vessel Loading Operations § 63.565 Test methods and procedures. (a) Performance... as possible to the connection with the marine tank vessel; and (3) During the performance test...

  17. 46 CFR 151.50-13 - Propylene oxide.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ...) Pressure vessel cargo tanks shall meet the requirements of Class II pressure vessels. (2) Cargo tanks shall be designed for the maximum pressure expected to be encountered during loading, storing and... cargo piping shall be subjected to a hydrostatic test of 11/2 times the maximum pressure to which they...

  18. 46 CFR 151.50-13 - Propylene oxide.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ...) Pressure vessel cargo tanks shall meet the requirements of Class II pressure vessels. (2) Cargo tanks shall be designed for the maximum pressure expected to be encountered during loading, storing and... cargo piping shall be subjected to a hydrostatic test of 11/2 times the maximum pressure to which they...

  19. 46 CFR 151.50-13 - Propylene oxide.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ...) Pressure vessel cargo tanks shall meet the requirements of Class II pressure vessels. (2) Cargo tanks shall be designed for the maximum pressure expected to be encountered during loading, storing and... cargo piping shall be subjected to a hydrostatic test of 11/2 times the maximum pressure to which they...

  20. 46 CFR 151.50-13 - Propylene oxide.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ...) Pressure vessel cargo tanks shall meet the requirements of Class II pressure vessels. (2) Cargo tanks shall be designed for the maximum pressure expected to be encountered during loading, storing and... cargo piping shall be subjected to a hydrostatic test of 11/2 times the maximum pressure to which they...