Sample records for tank volume measurements

  1. Volumetric measurement of tank volume

    NASA Technical Reports Server (NTRS)

    Walter, Richard T. (Inventor); Vanbuskirk, Paul D. (Inventor); Weber, William F. (Inventor); Froebel, Richard C. (Inventor)

    1991-01-01

    A method is disclosed for determining the volume of compressible gas in a system including incompressible substances in a zero-gravity environment consisting of measuring the change in pressure (delta P) for a known volume change rate (delta V/delta t) in the polytrophic region between isothermal and adiabatic conditions. The measurements are utilized in an idealized formula for determining the change in isothermal pressure (delta P sub iso) for the gas. From the isothermal pressure change (delta iso) the gas volume is obtained. The method is also applicable to determination of gas volume by utilizing work (W) in the compression process. In a passive system, the relationship of specific densities can be obtained.

  2. Estimating Residual Solids Volume In Underground Storage Tanks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clark, Jason L.; Worthy, S. Jason; Martin, Bruce A.

    2014-01-08

    ability to accurately determine a volume is a function of the quantity and quality of the waste tank images. Currently, mapping is performed remotely with closed circuit video cameras and still photograph cameras due to the hazardous environment. There are two methods that can be used to create a solids volume map. These methods are: liquid transfer mapping / post transfer mapping and final residual solids mapping. The task is performed during a transfer because the liquid level (which is a known value determined by a level measurement device) is used as a landmark to indicate solids accumulation heights. The post transfer method is primarily utilized after the majority of waste has been removed. This method relies on video and still digital images of the waste tank after the liquid transfer is complete to obtain the relative height of solids across a waste tank in relation to known and usable landmarks within the waste tank (cooling coils, column base plates, etc.). In order to accurately monitor solids over time across various cleaning campaigns, and provide a technical basis to support final waste tank closure, a consistent methodology for volume determination has been developed and implemented at SRS.« less

  3. Simscape Modeling of a Custom Closed-Volume Tank

    NASA Technical Reports Server (NTRS)

    Fischer, Nathaniel P.

    2015-01-01

    The library for Mathworks Simscape does not currently contain a model for a closed volume fluid tank where the ullage pressure is variable. In order to model a closed-volume variable ullage pressure tank, it was necessary to consider at least two separate cases: a vertical cylinder, and a sphere. Using library components, it was possible to construct a rough model for the cylindrical tank. It was not possible to construct a model for a spherical tank, using library components, due to the variable area. It was decided that, for these cases, it would be preferable to create a custom library component to represent each case, using the Simscape language. Once completed, the components were added to models, where filling and draining the tanks could be simulated. When the models were performing as expected, it was necessary to generate code from the models and run them in Trick (a real-time simulation program). The data output from Trick was then compared to the output from Simscape and found to be within acceptable limits.

  4. ICPP tank farm closure study. Volume 2: Engineering design files

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1998-02-01

    Volume 2 contains the following topical sections: Tank farm heel flushing/pH adjustment; Grouting experiments for immobilization of tank farm heel; Savannah River high level waste tank 20 closure; Tank farm closure information; Clean closure of tank farm; Remediation issues; Remote demolition techniques; Decision concerning EIS for debris treatment facility; CERCLA/RCRA issues; Area of contamination determination; Containment building of debris treatment facility; Double containment issues; Characterization costs; Packaging and disposal options for the waste resulting from the total removal of the tank farm; Take-off calculations for the total removal of soils and structures at the tank farm; Vessel off-gas systems; Jet-groutedmore » polymer and subsurface walls; Exposure calculations for total removal of tank farm; Recommended instrumentation during retrieval operations; High level waste tank concrete encasement evaluation; Recommended heavy equipment and sizing equipment for total removal activities; Tank buoyancy constraints; Grout and concrete formulas for tank heel solidification; Tank heel pH requirements; Tank cooling water; Evaluation of conservatism of vehicle loading on vaults; Typical vault dimensions and approximately tank and vault void volumes; Radiological concerns for temporary vessel off-gas system; Flushing calculations for tank heels; Grout lift depth analysis; Decontamination solution for waste transfer piping; Grout lift determination for filling tank and vault voids; sprung structure vendor data; Grout flow properties through a 2--4 inch pipe; Tank farm load limitations; NRC low level waste grout; Project data sheet calculations; Dose rates for tank farm closure tasks; Exposure and shielding calculations for grout lines; TFF radionuclide release rates; Documentation of the clean closure of a system with listed waste discharge; and Documentation of the ORNL method of radionuclide concentrations in tanks.« less

  5. Research on volume metrology method of large vertical energy storage tank based on internal electro-optical distance-ranging method

    NASA Astrophysics Data System (ADS)

    Hao, Huadong; Shi, Haolei; Yi, Pengju; Liu, Ying; Li, Cunjun; Li, Shuguang

    2018-01-01

    A Volume Metrology method based on Internal Electro-optical Distance-ranging method is established for large vertical energy storage tank. After analyzing the vertical tank volume calculation mathematical model, the key processing algorithms, such as gross error elimination, filtering, streamline, and radius calculation are studied for the point cloud data. The corresponding volume values are automatically calculated in the different liquids by calculating the cross-sectional area along the horizontal direction and integrating from vertical direction. To design the comparison system, a vertical tank which the nominal capacity is 20,000 m3 is selected as the research object, and there are shown that the method has good repeatability and reproducibility. Through using the conventional capacity measurement method as reference, the relative deviation of calculated volume is less than 0.1%, meeting the measurement requirements. And the feasibility and effectiveness are demonstrated.

  6. Soil load above Hanford waste storage tanks (2 volumes)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pianka, E.W.

    1995-01-25

    This document is a compilation of work performed as part of the Dome Load Control Project in 1994. Section 2 contains the calculations of the weight of the soil over the tank dome for each of the 75-feet-diameter waste-storage tanks located at the Hanford Site. The chosen soil specific weight and soil depth measured at the apex of the dome crown are the same as those used in the primary analysis that qualified the design. Section 3 provides reference dimensions for each of the tank farm sites. The reference dimensions spatially orient the tanks and provide an outer diameter formore » each tank. Section 4 summarizes the available soil surface elevation data. It also provides examples of the calculations performed to establish the present soil elevation estimates. The survey data and other data sources from which the elevation data has been obtained are printed separately in Volume 2 of this Supporting Document. Section 5 contains tables that provide an overall summary of the present status of dome loads. Tables summarizing the load state corresponding to the soil depth and soil specific weight for the original qualification analysis, the gravity load requalification for soil depth and soil specific weight greater than the expected actual values, and a best estimate condition of soil depth and specific weight are presented for the Double-Shell Tanks. For the Single-Shell Tanks, only the original qualification analysis is available; thus, the tabulated results are for this case only. Section 6 provides a brief overview of past analysis and testing results that given an indication of the load capacity of the waste storage tanks that corresponds to a condition approaching ultimate failure of the tank. 31 refs.« less

  7. Radiotracer investigation in gold leaching tanks.

    PubMed

    Dagadu, C P K; Akaho, E H K; Danso, K A; Stegowski, Z; Furman, L

    2012-01-01

    Measurement and analysis of residence time distribution (RTD) is a classical method to investigate performance of chemical reactors. In the present investigation, the radioactive tracer technique was used to measure the RTD of aqueous phase in a series of gold leaching tanks at the Damang gold processing plant in Ghana. The objective of the investigation was to measure the effective volume of each tank and validate the design data after recent process intensification or revamping of the plant. I-131 was used as a radioactive tracer and was instantaneously injected into the feed stream of the first tank and monitored at the outlet of different tanks. Both sampling and online measurement methods were used to monitor the tracer concentration. The results of measurements indicated that both the methods provided identical RTD curves. The mean residence time (MRT) and effective volume of each tank was estimated. The tanks-in-series model with exchange between active and stagnant volume was used and found suitable to describe the flow structure of aqueous phase in the tanks. The estimated effective volume of the tanks and high degree of mixing in tanks could validate the design data and confirmed the expectation of the plant engineer after intensification of the process. Copyright © 2011 Elsevier Ltd. All rights reserved.

  8. Pressure-Volume-Temperature (PVT) Gauging of an Isothermal Cryogenic Propellant Tank Pressurized with Gaseous Helium

    NASA Technical Reports Server (NTRS)

    VanDresar, Neil T.; Zimmerli, Gregory A.

    2014-01-01

    Results are presented for pressure-volume-temperature (PVT) gauging of a liquid oxygen/liquid nitrogen tank pressurized with gaseous helium that was supplied by a high-pressure cryogenic tank simulating a cold helium supply bottle on a spacecraft. The fluid inside the test tank was kept isothermal by frequent operation of a liquid circulation pump and spray system, and the propellant tank was suspended from load cells to obtain a high-accuracy reference standard for the gauging measurements. Liquid quantity gauging errors of less than 2 percent of the tank volume were obtained when quasi-steady-state conditions existed in the propellant and helium supply tanks. Accurate gauging required careful attention to, and corrections for, second-order effects of helium solubility in the liquid propellant plus differences in the propellant/helium composition and temperature in the various plumbing lines attached to the tanks. On the basis of results from a helium solubility test, a model was developed to predict the amount of helium dissolved in the liquid as a function of cumulative pump operation time. Use of this model allowed correction of the basic PVT gauging calculations and attainment of the reported gauging accuracy. This helium solubility model is system specific, but it may be adaptable to other hardware systems.

  9. Photogrammetry and Laser Imagery Tests for Tank Waste Volume Estimates: Summary Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Field, Jim G.

    2013-03-27

    Feasibility tests were conducted using photogrammetry and laser technologies to estimate the volume of waste in a tank. These technologies were compared with video Camera/CAD Modeling System (CCMS) estimates; the current method used for post-retrieval waste volume estimates. This report summarizes test results and presents recommendations for further development and deployment of technologies to provide more accurate and faster waste volume estimates in support of tank retrieval and closure.

  10. Orbital flight test shuttle external tank aerothermal flight evaluation, volume 1

    NASA Technical Reports Server (NTRS)

    Praharaj, Sarat C.; Engel, Carl D.; Warmbrod, John D.

    1986-01-01

    This 3-volume report discusses the evaluation of aerothermal flight measurements made on the orbital flight test Space Shuttle External Tanks (ETs). Six ETs were instrumented to measure various quantities during flight; including heat transfer, pressure, and structural temperature. The flight data was reduced and analyzed against math models established from an extensive wind tunnel data base and empirical heat-transfer relationships. This analysis has supported the validity of the current aeroheating methodology and existing data base; and, has also identified some problem areas which require methodology modifications. This is Volume 1, an Executive Summary. Volume 2 contains Appendices A (Aerothermal Comparisons) and B (Flight Derived h sub 1/h sub u vs. M sub inf. Plots), and Volume 3 contains Appendix C (Comparison of Interference Factors among OFT Flight, Prediction and 1H-97A Data), Appendix D (Freestream Stanton Number and Reynolds Number Correlation for Flight and Tunnel Data), and Appendix E (Flight-Derived h sub i/h sub u Tables).

  11. Orbital flight test shuttle external tank aerothermal flight evaluation, volume 3

    NASA Technical Reports Server (NTRS)

    Praharaj, Sarat C.; Engel, Carl D.; Warmbrod, John D.

    1986-01-01

    This 3-volume report discusses the evaluation of aerothermal flight measurements made on the orbital flight test Space Shuttle External Tanks (ETs). Six ETs were instrumented to measure various quantities during flight; including heat transfer, pressure, and structural temperature. The flight data was reduced and analyzed against math models established from an extensive wind tunnel data base and empirical heat-transfer relationships. This analysis has supported the validity of the current aeroheating methodology and existing data base; and, has also identified some problem areas which require methodology modifications. Volume 1 is the Executive Summary. Volume 2 contains Appendix A (Aerothermal Comparisons), and Appendix B (Flight-Derived h sub 1/h sub u vs. M sub inf. Plots). This is Volume 3, containing Appendix C (Comparison of Interference Factors between OFT Flight, Prediction and 1H-97A Data), Appendix D (Freestream Stanton Number and Reynolds Number Correlation for Flight and Tunnel Data), and Appendix E (Flight-Derived h sub i/h sub u Tables).

  12. Orbital flight test shuttle external tank aerothermal flight evaluation, volume 2

    NASA Technical Reports Server (NTRS)

    Praharaj, Sarat C.; Engel, Carl D.; Warmbrod, John D.

    1986-01-01

    This 3-volume report discusses the evaluation of aerothermal flight measurements made on the orbital flight test Space Shuttle External Tanks (ETs). Six ETs were instrumented to measure various quantities during flight; including heat transfer, pressure, and structural temperature. The flight data was reduced and analyzed against math models established from an extensive wind tunnel data base and empirical heat-transfer relationships. This analysis has supported the validity of the current aeroheating methodology and existing data base; and, has also identified some problem areas which require methodology modifications. Volume 1 is the Executive Summary. This is volume 2, containing Appendix A (Aerothermal Comparisons), and Appendix B (Flight-Derived h sub i/h sub u vs. M sub inf. Plots). Volume 3 contains Appendix C (Comparison of Interference Factors between OFT Flight, Prediction and 1H-97A Data), Appendix D (Freestream Stanton Number and Reynolds Number Correlation for Flight and Tunnel Data), and Appendix E (Flight-Derived h sub i/h sub u Tables).

  13. Residence time distribution measurements in a pilot-scale poison tank using radiotracer technique.

    PubMed

    Pant, H J; Goswami, Sunil; Samantray, J S; Sharma, V K; Maheshwari, N K

    2015-09-01

    Various types of systems are used to control the reactivity and shutting down of a nuclear reactor during emergency and routine shutdown operations. Injection of boron solution (borated water) into the core of a reactor is one of the commonly used methods during emergency operation. A pilot-scale poison tank was designed and fabricated to simulate injection of boron poison into the core of a reactor along with coolant water. In order to design a full-scale poison tank, it was desired to characterize flow of liquid from the tank. Residence time distribution (RTD) measurement and analysis was adopted to characterize the flow dynamics. Radiotracer technique was applied to measure RTD of aqueous phase in the tank using Bromine-82 as a radiotracer. RTD measurements were carried out with two different modes of operation of the tank and at different flow rates. In Mode-1, the radiotracer was instantaneously injected at the inlet and monitored at the outlet, whereas in Mode-2, the tank was filled with radiotracer and its concentration was measured at the outlet. From the measured RTD curves, mean residence times (MRTs), dead volume and fraction of liquid pumped in with time were determined. The treated RTD curves were modeled using suitable mathematical models. An axial dispersion model with high degree of backmixing was found suitable to describe flow when operated in Mode-1, whereas a tanks-in-series model with backmixing was found suitable to describe flow of the poison in the tank when operated in Mode-2. The results were utilized to scale-up and design a full-scale poison tank for a nuclear reactor. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Using Photogrammetry to Estimate Tank Waste Volumes from Video

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Field, Jim G.

    Washington River Protection Solutions (WRPS) contracted with HiLine Engineering & Fabrication, Inc. to assess the accuracy of photogrammetry tools as compared to video Camera/CAD Modeling System (CCMS) estimates. This test report documents the results of using photogrammetry to estimate the volume of waste in tank 241-C-I04 from post-retrieval videos and results using photogrammetry to estimate the volume of waste piles in the CCMS test video.

  15. Tank atmosphere perturbation: a procedure for assessing flashing losses from oil storage tanks.

    PubMed

    Littlejohn, David; Lucas, Donald

    2003-03-01

    A new procedure to measure the total volume of emissions from heavy crude oil storage tanks is described. Tank flashing losses, which are difficult to measure, can be determined by correcting this value for working and breathing losses. The procedure uses a fan or blower to vent the headspace of the storage tank, with subsequent monitoring of the change in concentrations of oxygen or other gases. Combined with a separate determination of the reactive organic carbon (ROC) fraction in the gas, this method allows the evaluation of the total amount of ROC emitted. The operation of the system is described, and results from measurement of several storage tanks in California oil fields are presented. Our measurements are compared with those obtained using the California Air Resources Board (CARB) 150 method.

  16. In-tank precipitation facility (ITP) and H-Tank Farm (HTF) geotechnical report, WSRC-TR-95-0057, Revision 0, Volume 5

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    A geotechnical study has been completed in H-Area for the In-Tank Precipitation Facility (ITP) and the balance of the H-Area Tank Farm (HTF) at the Savannah River Site (SRS) in South Carolina. The study consisted of subsurface field exploration, field and laboratory testing, and engineering analyses. The purpose of these investigations is to evaluate the overall stability of the H-Area tanks under static and dynamic conditions. The objectives of the study are to define the site-specific geological conditions at ITP and HTF, obtain engineering properties for the assessment of the stability of the native soils and embankment under static andmore » dynamic loads (i.e., slope stability, liquefaction potential, and potential settlements), and derive properties for soil-structure interaction studies. This document (Volume 5) contains the laboratory test results for the In-Tank Precipitation Facility (ITP) and H-Tank Farm (HTF) Geotechnical Report.« less

  17. Accountability Tanks Calibration Data Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wendelberger, James G.; Salazar, William Richard; Finstad, Casey Charles

    2017-04-25

    MET-1 utilizes tanks to store plutonium in solution. The Nuclear Material Control & Accountability group at LANL requires that MET-1 be able to determine the amount of SNM remaining in solution in the tanks for accountability purposes. For this reason it is desired to determine how well various operators may read the volume of liquid left in the tank with the tank measurement device (glass column or slab). The accuracy of the measurement is then compared to the current SAFE-NMCA acceptance criteria for lean and rich plutonium solutions to determine whether or not the criteria are reasonable and may bemore » met.« less

  18. Analysis of Water Volume Changes and Temperature Measurement Location Effect to the Accuracy of RTP Power Calibration

    NASA Astrophysics Data System (ADS)

    Lanyau, T.; Hamzah, N. S.; Jalal Bayar, A. M.; Karim, J. Abdul; Phongsakorn, P. K.; Suhaimi, K. Mohammad; Hashim, Z.; Razi, H. Md; Fazli, Z. Mohd; Ligam, A. S.; Mustafa, M. K. A.

    2018-01-01

    Power calibration is one of the important aspect for safe operation of the reactor. In RTP, the calorimetric method has been applied in reactor power calibration. This method involves measurement of water temperature in the RTP tank. Water volume and location of the temperature measurement may play an important role to the accuracy of the measurement. In this study, the analysis of water volume changes and thermocouple location effect to the power calibration accuracy has been done. The changes of the water volume are controlled by the variation of water level in reactor tank. The water level is measured by the ultrasonic measurement device. Temperature measurement has been done by thermocouple placed at three different locations. The accuracy of the temperature trend from various condition of measurement has been determined and discussed in this paper.

  19. Significant volume reduction of tank waste by selective crystallization: 1994 Annual report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Herting, D.L.; Lunsford, T.R.

    1994-09-27

    The objective of this technology task plan is to develop and demonstrate a scaleable process of reclaim sodium nitrate (NaNO{sub 3}) from Hanford waste tanks as a clean nonradioactive salt. The purpose of the so-called Clean Salt Process is to reduce the volume of low level waste glass by as much as 70%. During the reporting period of October 1, 1993, through May 31, 1994, progress was made on four fronts -- laboratory studies, surrogate waste compositions, contracting for university research, and flowsheet development and modeling. In the laboratory, experiments with simulated waste were done to explore the effects ofmore » crystallization parameters on the size and crystal habit of product NaNO{sub 3} crystals. Data were obtained to allows prediction of decontamination factor as a function of solid/liquid separation parameters. Experiments with actual waste from tank 101-SY were done to determine the extent of contaminant occlusions in NaNO{sub 3} crystals. In preparation for defining surrogate waste compositions, single shell tanks were categorized according to the weight percent NaNO{sub 3} in each tank. A detailed process flowsheet and computer model were created using the ASPENPlus steady state process simulator. This is the same program being used by the Tank Waste Remediation System (TWRS) program for their waste pretreatment and disposal projections. Therefore, evaluations can be made of the effect of the Clean Salt Process on the low level waste volume and composition resulting from the TWRS baseline flowsheet. Calculations, using the same assumptions as used for the TWRS baseline where applicable indicate that the number of low level glass vaults would be reduced from 44 to 16 if the Clean Salt Process were incorporated into the baseline flowsheet.« less

  20. Riser Difference Uncertainty Methodology Based on Tank AY-101 Wall Thickness Measurements with Application to Tank AN-107

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weier, Dennis R.; Anderson, Kevin K.; Berman, Herbert S.

    2005-03-10

    The DST Integrity Plan (RPP-7574, 2003, Double-Shell Tank Integrity Program Plan, Rev. 1A, CH2M HILL Hanford Group, Inc., Richland, Washington.) requires the ultrasonic wall thickness measurement of two vertical scans of the tank primary wall while using a single riser location. The resulting measurements are then used in extreme value methodology to predict the minimum wall thickness expected for the entire tank. The representativeness of using a single riser in this manner to draw conclusions about the entire circumference of a tank has been questioned. The only data available with which to address the representativeness question comes from Tank AY-101more » since only for that tank have multiple risers been used for such inspection. The purpose of this report is to (1) further characterize AY-101 riser differences (relative to prior work); (2) propose a methodology for incorporating a ''riser difference'' uncertainty for subsequent tanks for which only a single riser is used, and (3) specifically apply the methodology to measurements made from a single riser in Tank AN-107.« less

  1. ICPP tank farm closure study. Volume 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Spaulding, B.C.; Gavalya, R.A.; Dahlmeir, M.M.

    1998-02-01

    The disposition of INEEL radioactive wastes is now under a Settlement Agreement between the DOE and the State of Idaho. The Settlement Agreement requires that existing liquid sodium bearing waste (SBW), and other liquid waste inventories be treated by December 31, 2012. This agreement also requires that all HLW, including calcined waste, be disposed or made road ready to ship from the INEEL by 2035. Sodium bearing waste (SBW) is produced from decontamination operations and HLW from reprocessing of SNF. SBW and HLW are radioactive and hazardous mixed waste; the radioactive constituents are regulated by DOE and the hazardous constituentsmore » are regulated by the Resource Conservation and Recovery Act (RCRA). Calcined waste, a dry granular material, is produced in the New Waste Calcining Facility (NWCF). Two primary waste tank storage locations exist at the ICPP: Tank Farm Facility (TFF) and the Calcined Solids Storage Facility (CSSF). The TFF has the following underground storage tanks: four 18,400-gallon tanks (WM 100-102, WL 101); four 30,000-gallon tanks (WM 103-106); and eleven 300,000+ gallon tanks. This includes nine 300,000-gallon tanks (WM 182-190) and two 318,000 gallon tanks (WM 180-181). This study analyzes the closure and subsequent use of the eleven 300,000+ gallon tanks. The 18,400 and 30,000-gallon tanks were not included in the work scope and will be closed as a separate activity. This study was conducted to support the HLW Environmental Impact Statement (EIS) waste separations options and addresses closure of the 300,000-gallon liquid waste storage tanks and subsequent tank void uses. A figure provides a diagram estimating how the TFF could be used as part of the separations options. Other possible TFF uses are also discussed in this study.« less

  2. SINDA/FLUINT Stratified Tank Modeling for Cryrogenic Propellant Tanks

    NASA Technical Reports Server (NTRS)

    Sakowski, Barbara

    2014-01-01

    A general purpose SINDA/FLUINT (S/F) stratified tank model was created to simulate self-pressurization and axial jet TVS; Stratified layers in the vapor and liquid are modeled using S/F lumps.; The stratified tank model was constructed to permit incorporating the following additional features:, Multiple or singular lumps in the liquid and vapor regions of the tank, Real gases (also mixtures) and compressible liquids, Venting, pressurizing, and draining, Condensation and evaporation/boiling, Wall heat transfer, Elliptical, cylindrical, and spherical tank geometries; Extensive user logic is used to allow detailed tailoring - Don't have to rebuilt everything from scratch!!; Most code input for a specific case is done through the Registers Data Block:, Lump volumes are determined through user input:; Geometric tank dimensions (height, width, etc); Liquid level could be input as either a volume percentage of fill level or actual liquid level height

  3. The electrostatic properties of Fiber-Reinforced-Plastics double wall underground storage gasoline tanks

    NASA Astrophysics Data System (ADS)

    Li, Yipeng; Liu, Quanzhen; Meng, He; Sun, Lifu; Zhang, Yunpeng

    2013-03-01

    At present Fiber Reinforced Plastics (FRP) double wall underground storage gasoline tanks are wildly used. An FRP product with a resistance of more than 1011 Ω is a static non-conductor, so it is difficult for the static electricity in the FRP product to decay into the earth. In this paper an experimental system was built to simulate an automobile gasoline filling station. Some electrostatic parameters of the gasoline, including volume charge density, were tested when gasoline was unloaded into a FRP double wall underground storage tank. Measurements were taken to make sure the volume charge density in the oil-outlet was similar to the volume charge density in the tank. In most cases the volume charge density of the gasoline was more than 22.7 μC m-3, which is likely to cause electrostatic discharge in FRP double wall underground storage gasoline tanks. On the other hand, it would be hard to ignite the vapor by electrostatic discharge since the vapor pressure in the tanks is over the explosion limit. But when the tank is repaired or re-used, the operators must pay attention to the static electricity and some measurements should be taken to avoid electrostatic accident. Besides the relaxation time of charge in the FRP double wall gasoline storage tanks should be longer.

  4. Fiber-Optic Strain-Gage Tank Level Measurement System for Cryogenic Propellants

    NASA Technical Reports Server (NTRS)

    Figueroa, Fernando; Mitchell, Mark; Langford, Lester

    2004-01-01

    Measurement of tank level, particularly for cryogenic propellants, has proven to be a difficult problem. Current methods based on differential pressure, capacitance sensors, temperature sensors, etc.; do not provide sufficiently accurate or robust measurements, especially at run time. These methods are designed to measure tank-level, but when the fluids are in supercritical state, the liquid-gas interface disappears. Furthermore, there is a need for a non-intrusive measurement system; that is, the sensors should not require tank modifications and/or disturb the fluids. This paper describes a simple, but effective method to determine propellant mass by measuring very small deformations of the structure supporting the tank. Results of a laboratory study to validate the method, and experimental data from a deployed system are presented. A comparison with an existing differential pressure sensor shows that the strain gage system provides a much better quality signal across all regimes during an engine test. Experimental results also show that the use of fiber optic strain gages (FOSG) over classic foil strain gages extends the operation time (before the system becomes uncalibrated), and increases accuracy. Finally, a procedure is defined whereby measurements from the FOSG mounted on the tank supporting structure are compensated using measurements of a FOSG mounted on a reference plate and temperature measurements of the structure. Results describing the performance of a deployed system that measures tank level during propulsion tests are included.

  5. 40 CFR 280.43 - Methods of release detection for tanks.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... plus 130 gallons on a monthly basis in the following manner: (1) Inventory volume measurements for... reconciled with delivery receipts by measurement of the tank inventory volume before and after delivery; (4... inches for every 5 gallons of product withdrawn; and (6) The measurement of any water level in the bottom...

  6. Screening the Hanford tanks for trapped gas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Whitney, P.

    1995-10-01

    The Hanford Site is home to 177 large, underground nuclear waste storage tanks. Hydrogen gas is generated within the waste in these tanks. This document presents the results of a screening of Hanford`s nuclear waste storage tanks for the presence of gas trapped in the waste. The method used for the screening is to look for an inverse correlation between waste level measurements and ambient atmospheric pressure. If the waste level in a tank decreases with an increase in ambient atmospheric pressure, then the compressibility may be attributed to gas trapped within the waste. In this report, this methodology ismore » not used to estimate the volume of gas trapped in the waste. The waste level measurements used in this study were made primarily to monitor the tanks for leaks and intrusions. Four measurement devices are widely used in these tanks. Three of these measure the level of the waste surface. The remaining device measures from within a well embedded in the waste, thereby monitoring the liquid level even if the liquid level is below a dry waste crust. In the past, a steady rise in waste level has been taken as an indicator of trapped gas. This indicator is not part of the screening calculation described in this report; however, a possible explanation for the rise is given by the mathematical relation between atmospheric pressure and waste level used to support the screening calculation. The screening was applied to data from each measurement device in each tank. If any of these data for a single tank indicated trapped gas, that tank was flagged by this screening process. A total of 58 of the 177 Hanford tanks were flagged as containing trapped gas, including 21 of the 25 tanks currently on the flammable gas watch list.« less

  7. Structural arrangement trade study. Volume 3: Reusable Hydrogen Composite Tank System (RHCTS) and Graphite Composite Primary Structures (GCPS). Addendum

    NASA Astrophysics Data System (ADS)

    1995-03-01

    This volume is the third of a 3 volume set that addresses the structural trade study plan that will identify the most suitable structural configuration for an SSTO winged vehicle capable of delivering 25,000 lbs to a 220 nm circular orbit at 51.6 deg inclination. The most suitable Reusable Hydrogen Composite Tank System (RHCTS), and Graphite Composite Tank System (GCPS) composite materials for intertank, wing and thrust structures are identified. Vehicle resizing charts, selection criteria and back-up charts, parametric costing approach and the finite element method analysis are discussed.

  8. Structural arrangement trade study. Volume 3: Reusable Hydrogen Composite Tank System (RHCTS) and Graphite Composite Primary Structures (GCPS). Addendum

    NASA Technical Reports Server (NTRS)

    1995-01-01

    This volume is the third of a 3 volume set that addresses the structural trade study plan that will identify the most suitable structural configuration for an SSTO winged vehicle capable of delivering 25,000 lbs to a 220 nm circular orbit at 51.6 deg inclination. The most suitable Reusable Hydrogen Composite Tank System (RHCTS), and Graphite Composite Tank System (GCPS) composite materials for intertank, wing and thrust structures are identified. Vehicle resizing charts, selection criteria and back-up charts, parametric costing approach and the finite element method analysis are discussed.

  9. Strain-Gauge Measurement of Weight of Fluid in a Tank

    NASA Technical Reports Server (NTRS)

    Figueroa, Jorge; SaintCyr, William; Rahman, Shamim; McVay, Gregory; VanDyke, David; Mitchell, William; Langford, Lester

    2003-01-01

    A method of determining the amount of fluid in a tank is based on measurement of strains induced in tank supports by the weight of the fluid. Unlike most prior methods, this method is nonintrusive: there is no need to insert instrumentation in the tank and, hence, no need to run wires, cables, or tubes through the tank wall. Also unlike most prior methods, this method is applicable even if the fluid in the tank is at supercritical pressure and temperature, because it does not depend on the presence of a liquid/gas interface (as in liquid-level-measuring methods). The strain gauges used in this method are of two types: foil and fiber-optic. Four foil gauges and one or more fiber-optic gauges are mounted on each of the tank-supporting legs. An additional fiber-optic gauge is mounted on an object, made of the same material as that of the tank-supporting legs, that is not subjected to any mechanical load. The reading obtained by the additional fiber-optic gauge is used to compensate for apparent strains caused by changes in temperature. The signals from the foil and fiber-optic gauges are conditioned, then digitized for input to a computer. As the tank is filled or emptied, the deformation in each leg increases or decreases, respectively. Measured deformations of all legs are added to obtain a composite deformation indicative of the change in weight of the tank plus fluid. An initial calibration is performed by recording data at two points (usually, empty and full) for which the mass or weight of fluid is known. It is assumed that the deformations are elastic, so that the line passing through the two points can be used as a calibration curve of mass (or weight) of fluid versus deformation. At the time of reporting the information for this article, a set of foil gauges had been tested on the supports of a 500-gallon (1,900-liter) tank. The gauges were found to be capable of measuring the deformations (up to 22 microstrain) that occurred during filling and emptying the

  10. Apollo oxygen tank stratification analysis, volume 2

    NASA Technical Reports Server (NTRS)

    Barton, J. E.; Patterson, H. W.

    1972-01-01

    An analysis of flight performance of the Apollo 15 cryogenic oxygen tanks was conducted with the variable grid stratification math model developed earlier in the program. Flight conditions investigated were the CMP-EVA and one passive thermal control period which exhibited heater temperature characteristics not previously observed. Heater temperatures for these periods were simulated with the math model using flight acceleration data. Simulation results (heater temperature and tank pressure) compared favorably with the Apollo 15 flight data, and it was concluded that tank performance was nominal. Math model modifications were also made to improve the simulation accuracy. The modifications included the addition of the effects of the tank wall thermal mass and an improved system flow distribution model. The modifications improved the accuracy of simulated pressure response based on comparisons with flight data.

  11. 46 CFR 38.15-1 - Filling of tanks-TB/ALL.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... that there is an outage of at least 2 percent of the volume of the tank at the temperature..., the maximum volume to which a tank may be loaded is: V L=0.98d r V/d L where: V L=maximum volume to which tank may be loaded. V=volume of tank. d r=density of cargo at the temperature required for a cargo...

  12. EXPERIMENTAL METHODS TO ESTIMATE ACCUMULATED SOLIDS IN NUCLEAR WASTE TANKS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Duignan, M.; Steeper, T.; Steimke, J.

    2012-12-10

    The Department of Energy has a large number of nuclear waste tanks. It is important to know if fissionable materials can concentrate when waste is transferred from staging tanks prior to feeding waste treatment plants. Specifically, there is a concern that large, dense particles, e.g., plutonium containing, could accumulate in poorly mixed regions of a blend tank heel for tanks that employ mixing jet pumps. At the request of the DOE Hanford Tank Operations Contractor, Washington River Protection Solutions, the Engineering Development Laboratory of the Savannah River National Laboratory performed a scouting study in a 1/22-scale model of a wastemore » tank to investigate this concern and to develop measurement techniques that could be applied in a more extensive study at a larger scale. Simulated waste tank solids and supernatant were charged to the test tank and rotating liquid jets were used to remove most of the solids. Then the volume and shape of the residual solids and the spatial concentration profiles for the surrogate for plutonium were measured. This paper discusses the overall test results, which indicated heavy solids only accumulate during the first few transfer cycles, along with the techniques and equipment designed and employed in the test. Those techniques include: Magnetic particle separator to remove stainless steel solids, the plutonium surrogate from a flowing stream; Magnetic wand used to manually remove stainless steel solids from samples and the tank heel; Photographs were used to determine the volume and shape of the solids mounds by developing a composite of topographical areas; Laser rangefinders to determine the volume and shape of the solids mounds; Core sampler to determine the stainless steel solids distribution within the solids mounds; Computer driven positioner that placed the laser rangefinders and the core sampler over solids mounds that accumulated on the bottom of a scaled staging tank in locations where jet velocities were

  13. High-level waste storage tank farms/242-A evaporator Standards/Requirements Identification Document (S/RID), Volume 7. Revision 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burt, D.L.

    1994-04-01

    The High-Level Waste Storage Tank Farms/242-A Evaporator Standards/Requirements Identification Document (S/RID) is contained in multiple volumes. This document (Volume 7) presents the standards and requirements for the following sections: Occupational Safety and Health, and Environmental Protection.

  14. Effect of tank geometry on its average performance

    NASA Astrophysics Data System (ADS)

    Orlov, Aleksey A.; Tsimbalyuk, Alexandr F.; Malyugin, Roman V.; Leontieva, Daria A.; Kotelnikova, Alexandra A.

    2018-03-01

    The mathematical model of non-stationary filling of vertical submerged tanks with gaseous uranium hexafluoride is presented in the paper. There are calculations of the average productivity, heat exchange area, and filling time of various volumes tanks with smooth inner walls depending on their "height : radius" ratio as well as the average productivity, degree, and filling time of horizontal ribbing tank with volume 6.10-2 m3 with change central hole diameter of the ribs. It has been shown that the growth of "height / radius" ratio in tanks with smooth inner walls up to the limiting values allows significantly increasing tank average productivity and reducing its filling time. Growth of H/R ratio of tank with volume 1.0 m3 to the limiting values (in comparison with the standard tank having H/R equal 3.49) augments tank productivity by 23.5 % and the heat exchange area by 20%. Besides, we have demonstrated that maximum average productivity and a minimum filling time are reached for the tank with volume 6.10-2 m3 having central hole diameter of horizontal ribs 6.4.10-2 m.

  15. Strain-Gauge Measurement of Weight of Fluid in a Tank

    NASA Technical Reports Server (NTRS)

    Figueroa, Jorge; St. Cyr, William; Rahman, Shamim; McVay, Gregory; Van Dyke, David; Mitchell, William; Langford, Lester

    2004-01-01

    A method of determining the amount of fluid in a tank is based on measurement of strains induced in tank supports by the weight of the fluid. Unlike most prior methods, this method is nonintrusive: there is no need to insert instrumentation in the tank and, hence, no need to run wires, cables, or tubes through the tank wall. Also unlike most prior methods, this method is applicable even if the fluid in the tank is at supercritical pressure and temperature, because it does not depend on the presence of a liquid/gas interface (as in liquid-level-measuring methods). The strain gauges used in this method may be of two types: foil and fiber-optic. Four foil gauges (full bridge) are mounted on each of the tank-supporting legs. As the tank is filled or emptied, the deformation in each leg increases or decreases, respectively. Measured deformations of all legs are added to obtain a composite deformation indicative of the change in weight of the tank plus fluid. An initial calibration is performed by recording data at two points (usually, empty and full) for which the mass or weight of fluid is known. It is assumed that the deformations are elastic, so that the line passing through the two points can be used as a calibration curve of mass (or weight) of fluid versus deformation. One or more fiber-optic gauges may be used instead of the foil gauges. The resolution of the fiber-optic and foil gauges is approximately the same, but the fiber-optic gauges are immune to EMI (electromagnetic interference), are linear with respect to temperature over their entire dynamic range (as defined by the behavior of the sample), and measure thermally induced deformations as predictable signals. Conversely, long term testing has demonstrated that the foil gauges exhibit an erratic behavior whenever subjected to direct sun radiation (even if protected with a rubberized cover). Henceforth, for deployment in outdoor conditions, fiber-optic gauges are the only option if one is to rely on the

  16. Experimental Methods to Estimate Accumulated Solids in Nuclear Waste Tanks - 13313

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Duignan, Mark R.; Steeper, Timothy J.; Steimke, John L.

    2013-07-01

    The Department of Energy has a large number of nuclear waste tanks. It is important to know if fissionable materials can concentrate when waste is transferred from staging tanks prior to feeding waste treatment plants. Specifically, there is a concern that large, dense particles, e.g., plutonium containing, could accumulate in poorly mixed regions of a blend tank heel for tanks that employ mixing jet pumps. At the request of the DOE Hanford Tank Operations Contractor, Washington River Protection Solutions, the Engineering Development Laboratory of the Savannah River National Laboratory performed a scouting study in a 1/22-scale model of a wastemore » tank to investigate this concern and to develop measurement techniques that could be applied in a more extensive study at a larger scale. Simulated waste tank solids and supernatant were charged to the test tank and rotating liquid jets were used to remove most of the solids. Then the volume and shape of the residual solids and the spatial concentration profiles for the surrogate for plutonium were measured. This paper discusses the overall test results, which indicated heavy solids only accumulate during the first few transfer cycles, along with the techniques and equipment designed and employed in the test. Those techniques include: - Magnetic particle separator to remove stainless steel solids, the plutonium surrogate from a flowing stream. - Magnetic wand used to manually remove stainless steel solids from samples and the tank heel. - Photographs were used to determine the volume and shape of the solids mounds by developing a composite of topographical areas. - Laser range finders to determine the volume and shape of the solids mounds. - Core sampler to determine the stainless steel solids distribution within the solids mounds. - Computer driven positioner that placed the laser range finders and the core sampler over solids mounds that accumulated on the bottom of a scaled staging tank in locations where jet

  17. Photogrammetry Measurements During a Tanking Test on the Space Shuttle External Tank, ET-137

    NASA Technical Reports Server (NTRS)

    Littell, Justin D.; Schmidt, Tim; Tyson, John; Oliver, Stanley T.; Melis, Matthew E.; Ruggeri, Charles

    2012-01-01

    On November 5, 2010, a significant foam liberation threat was observed as the Space Shuttle STS-133 launch effort was scrubbed because of a hydrogen leak at the ground umbilical carrier plate. Further investigation revealed the presence of multiple cracks at the tops of stringers in the intertank region of the Space Shuttle External Tank. As part of an instrumented tanking test conducted on December 17, 2010, a three dimensional digital image correlation photogrammetry system was used to measure radial deflections and overall deformations of a section of the intertank region. This paper will describe the experimental challenges that were overcome in order to implement the photogrammetry measurements for the tanking test in support of STS-133. The technique consisted of configuring and installing two pairs of custom stereo camera bars containing calibrated cameras on the 215-ft level of the fixed service structure of Launch Pad 39-A. The cameras were remotely operated from the Launch Control Center 3.5 miles away during the 8 hour duration test, which began before sunrise and lasted through sunset. The complete deformation time history was successfully computed from the acquired images and would prove to play a crucial role in the computer modeling validation efforts supporting the successful completion of the root cause analysis of the cracked stringer problem by the Space Shuttle Program. The resulting data generated included full field fringe plots, data extraction time history analysis, section line spatial analyses and differential stringer peak ]valley motion. Some of the sample results are included with discussion. The resulting data showed that new stringer crack formation did not occur for the panel examined, and that large amounts of displacement in the external tank occurred because of the loads derived from its filling. The measurements acquired were also used to validate computer modeling efforts completed by NASA Marshall Space Flight Center (MSFC).

  18. Case Study in Corporate Memory Recovery: Hanford Tank Farms Miscellaneous Underground Waste Storage Tanks - 15344

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Washenfelder, D. J.; Johnson, J. M.; Turknett, J. C.

    In addition to managing the 177 underground waste storage tanks containing 212,000 m3 (56 million gal) of radioactive waste at the U. S. Department of Energy’s Hanford Site 200 Area Tank Farms, Washington River Protection Solutions LLC is responsible for managing numerous small catch tanks and special surveillance facilities. These are collectively known as “MUSTs” - Miscellaneous Underground Storage Tanks. The MUSTs typically collected drainage and flushes during waste transfer system piping changes; special surveillance facilities supported Tank Farm processes including post-World War II uranium recovery and later fission product recovery from tank wastes. Most were removed from service followingmore » deactivation of the single-shell tank system in 1980 and stabilized by pumping the remaining liquids from them. The MUSTs were isolated by blanking connecting transfer lines and adding weatherproofing to prevent rainwater entry. Over the next 30 years MUST operating records were dispersed into large electronic databases or transferred to the National Archives Regional Center in Seattle, Washington. During 2014 an effort to reacquire the historical bases for the MUSTs’ published waste volumes was undertaken. Corporate Memory Recovery from a variety of record sources allowed waste volumes to be initially determined for 21 MUSTs, and waste volumes to be adjusted for 37 others. Precursors and symptoms of Corporate Memory Loss were identified in the context of MUST records recovery.« less

  19. Acoustic Profiling of Bottom Sediments in Large Oil Storage Tanks

    NASA Astrophysics Data System (ADS)

    Svet, V. D.; Tsysar', S. A.

    2018-01-01

    Characteristic features of acoustic profiling of bottom sediments in large oil storage tanks are considered. Basic acoustic parameters of crude oil and bottom sediments are presented. It is shown that, because of the presence of both transition layers in crude oil and strong reverberation effects in oil tanks, the volume of bottom sediments that is calculated from an acoustic surface image is generally overestimated. To reduce the error, additional post-processing of acoustic profilometry data is proposed in combination with additional measurements of viscosity and tank density distributions in vertical at several points of the tank.

  20. Measurement of electromagnetic fields over a small electrolytic tank

    NASA Astrophysics Data System (ADS)

    Caffey, T. W. H.; Morris, H. E.

    1990-12-01

    In 1986, Hart proposed a large, hemispherical electrolytic tank and the use of the Surface Electrical Potential method with which to study resistivity changes due to energy-extraction processes in the earth. A second method for the inference of underground resistivity changes, the Controlled Source Audio-MagnetoTelluric method, has been widely used in the field. This method uses measurements of the electromagnetic field from a surface dipole, rather than the surface potential distribution from a buried vertical electrode, as the basis of the technique. If both SEP and CSAMT could be applied to the same model structure in the same electrolytic tank, it would seem that the diagnostic information would be enhanced over the use of each technique separately. Accordingly, the specific objectives were: to determine to what radial extent the bowl could be used as a homogeneous half-space; and to demonstrate acceptable accuracy by measuring the effect of a conducting target immersed in the bowl and comparing the measurements with numerical modeling. Electromagnetic fields over an electrolytic tank have been measured by others, and this report begins with a comparative summary of both prior and present work. The next section presents the formulas for the electromagnetic fields, and explains the choice of a particular method of measuring apparent resistivity. The field theory is also used in the subsequent section to provide error estimates needed for design guidance. The following sections describe the measurements, and the considerations for a larger facility. The appendices include the derivatives of the fields, the electrolyte characteristics, a description of the apparatus, and calibration methods.

  1. Fatigue crack growth behavior of railroad tank car steel TC-128B subjected to various environments. Volume 2 : appendices

    DOT National Transportation Integrated Search

    2006-12-01

    This is Volume II-Appendices of Fatigue Crack Growth Behavior of Railroad Tank Car Steel TC-128B Subjected to Various Environments. This document contains miscellaneous supporting documentation, fatigue crack growth laboratory data, and analyses.

  2. Advanced collapsible tank for liquid containment

    NASA Technical Reports Server (NTRS)

    Flanagan, David T.; Hopkins, Robert C.

    1993-01-01

    Tanks for bulk liquid containment will be required to support advanced planetary exploration programs. Potential applications include storage of potable, process, and waste water, and fuels and process chemicals. The launch mass and volume penalties inherent in rigid tanks suggest that collapsible tanks may be more efficient. Collapsible tanks are made of lightweight flexible material and can be folded compactly for storage and transport. Although collapsible tanks for terrestrial use are widely available, a new design was developed that has significantly less mass and bulk than existing models. Modelled after the shape of a sessible drop, this design features a dual membrane with a nearly uniform stress distribution and a low surface-to-volume ratio. It can be adapted to store a variety of liquids in nearly any environment with constant acceleration field. Three models of 10L, 50L, and 378L capacity have been constructed and tested. The 378L (100 gallon) model weighed less than 10 percent of a commercially available collapsible tank of equivalent capacity, and required less than 20 percent of the storage space when folded for transport.

  3. VOLUMETRIC LEAK DETECTION IN LARGE UNDERGROUND STORAGE TANKS - VOLUME I

    EPA Science Inventory

    A set of experiments was conducted to determine whether volumetric leak detection system presently used to test underground storage tanks (USTs) up to 38,000 L (10,000 gal) in capacity could meet EPA's regulatory standards for tank tightness and automatic tank gauging systems whe...

  4. Correlation of Apollo oxygen tank thermodynamic performance predictions

    NASA Technical Reports Server (NTRS)

    Patterson, H. W.

    1971-01-01

    Parameters necessary to analyze the stratified performance of the Apollo oxygen tanks include g levels, tank elasticity, flow rates and pressurized volumes. Methods for estimating g levels and flow rates from flight plans prior to flight, and from quidance and system data for use in the post flight analysis are described. Equilibrium thermodynamic equations are developed for the effects of tank elasticity and pressurized volumes on the tank pressure response and their relative magnitudes are discussed. Correlations of tank pressures and heater temperatures from flight data with the results of a stratification model are shown. Heater temperatures were also estimated with empirical heat transfer agreement with flight data when fluid properties were averaged rather than evaluated at the mean film temperature.

  5. Reference Gauging System for a Small-Scale Liquid Hydrogen Tank

    NASA Technical Reports Server (NTRS)

    VanDresar, Neil T.; Siegwarth, James D.

    2003-01-01

    A system to accurately weigh the fluid contents of a small-scale liquid hydrogen test tank has been experimentally verified. It is intended for use as a reference or benchmark system when testing lowgravity liquid quantity gauging concepts in the terrestrial environment. The reference gauging system has shown a repeatable measurement accuracy of better than 0.5 percent of the full tank liquid weight. With further refinement, the system accuracy can be improved to within 0.10 percent of full scale. This report describes the weighing system design, calibration, and operational results. Suggestions are given for further refinement of the system. An example is given to illustrate additional sources of uncertainty when mass measurements are converted to volume equivalents. Specifications of the companion test tank and its multi-layer insulation system are provided.

  6. Opposed Bellows Would Expel Contents Of Tank

    NASA Technical Reports Server (NTRS)

    Whitaker, Willie

    1994-01-01

    Proposed storage tank contains two pairs of opposed bellows used to expel its contents. Storage and expulsion volumes of tank same as those of older version of tank equipped with single bellows. Four bellows offer greater stability. Applications include automobile cooling systems and gasoline-powered tools like chain saws and leaf blowers.

  7. Using Drained Spacecraft Propellant Tanks for Habitation

    NASA Technical Reports Server (NTRS)

    Thomas, Andrew S. W.

    2009-01-01

    A document proposes that future spacecraft for planetary and space exploration be designed to enable reuse of drained propellant tanks for occupancy by humans. This proposal would enable utilization of volume and mass that would otherwise be unavailable and, in some cases, discarded. Such utilization could enable reductions in cost, initial launch mass, and number of launches needed to build up a habitable outpost in orbit about, or on the surface of, a planet or moon. According to the proposal, the large propellant tanks of a spacecraft would be configured to enable crews to gain access to their interiors. The spacecraft would incorporate hatchways, between a tank and the crew volume, that would remain sealed while the tank contained propellant and could be opened after the tank was purged by venting to outer space and then refilled with air. The interior of the tank would be pre-fitted with some habitation fixtures that were compatible with the propellant environment. Electrical feed-throughs, used originally for gauging propellants, could be reused to supply electric power to equipment installed in the newly occupied space. After a small amount of work, the tank would be ready for long-term use as a habitation module.

  8. The Gunite and Associated Tanks Remediation Project Tank Waste Retrieval Performance and Lessons Learned, vol. 1 [of 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lewis, BE

    2003-10-07

    The Gunite and Associated Tanks (GAAT) Remediation Project was the first of its kind performed in the United States. Robotics and remotely operated equipment were used to successfully transfer almost 94,000 gal of remote-handled transuranic sludge containing over 81,000 Ci of radioactive contamination from nine large underground storage tanks at the Oak Ridge National Laboratory (ORNL). The sludge was transferred with over 439,000 gal of radioactive waste supernatant and {approx}420,500 gal of fresh water that was used in sluicing operations. The GAATs are located in a high-traffic area of ORNL near a main thoroughfare. A phased and integrated approach tomore » waste retrieval operations was used for the GAAT Remediation Project. The project promoted safety by obtaining experience from low-risk operations in the North Tank Farm before moving to higher-risk operations in the South Tank Farm. This approach allowed project personnel to become familiar with the tanks and waste, as well as the equipment, processes, procedures, and operations required to perform successful waste retrieval. By using an integrated approach to tank waste retrieval and tank waste management, the project was completed years ahead of the original baseline schedule, which resulted in avoiding millions of dollars in associated costs. This report is organized in two volumes. Volume 1 provides information on the various phases of the GAAT Remediation Project. It also describes the different types of equipment and how they were used. The emphasis of Volume 1 is on the description of the tank waste retrieval performance and the lessons learned during the GAAT Remediation Project. Volume 2 provides the appendixes for the report, which include the following information: (A) Background Information for the Gunite and Associated Tanks Operable Unit; (B) Annotated Bibliography; (C) Comprehensive Listing of the Sample Analysis Data from the GAAT Remediation Project; (D) GAAT Equipment Matrix; and (E

  9. Measurement of limb volume: laser scanning versus volume displacement.

    PubMed

    McKinnon, John Gregory; Wong, Vanessa; Temple, Walley J; Galbraith, Callum; Ferry, Paul; Clynch, George S; Clynch, Colin

    2007-10-01

    Determining the prevalence and treatment success of surgical lymphedema requires accurate and reproducible measurement. A new method of measurement of limb volume is described. A series of inanimate objects of known and unknown volume was measured using digital laser scanning and water displacement. A similar comparison was made with 10 human volunteers. Digital scanning was evaluated by comparison to the established method of water displacement, then to itself to determine reproducibility of measurement. (1) Objects of known volume: Laser scanning accurately measured the calculated volume but water displacement became less accurate as the size of the object increased. (2) Objects of unknown volume: As average volume increased, there was an increasing bias of underestimation of volume by the water displacement method. The coefficient of reproducibility of water displacement was 83.44 ml. In contrast, the reproducibility of the digital scanning method was 19.0 ml. (3) Human data: The mean difference between water displacement volume and laser scanning volume was 151.7 ml (SD +/- 189.5). The coefficient of reproducibility of water displacement was 450.8 ml whereas for laser scanning it was 174 ml. Laser scanning is an innovative method of measuring tissue volume that combines precision and reproducibility and may have clinical utility for measuring lymphedema. 2007 Wiley-Liss, Inc

  10. Sensor for measuring hydrogen partial pressure in parabolic trough power plant expansion tanks

    NASA Astrophysics Data System (ADS)

    Glatzmaier, Greg C.; Cooney, Daniel A.

    2017-06-01

    The National Renewable Energy Laboratory and Acciona Energy North America are working together to design and implement a process system that provides a permanent solution to the issue of hydrogen buildup at parabolic trough power plants. We are pursuing a method that selectively removes hydrogen from the expansion tanks that serve as reservoirs for the heat transfer fluid (HTF) that circulates in the collector field and power block components. Our modeling shows that removing hydrogen from the expansion tanks at a design rate reduces and maintains dissolved hydrogen in the circulating HTF to a selected target level. Our collaborative work consists of several tasks that are needed to advance this process concept to a development stage, where it is ready for implementation at a commercial power plant. Our main effort is to design and evaluate likely process-unit operations that remove hydrogen from the expansion tanks at a specified rate. Additionally, we designed and demonstrated a method and instrumentation to measure hydrogen partial pressure and concentration in the expansion-tank headspace gas. We measured hydrogen partial pressure in the headspace gas mixture using a palladium-alloy membrane, which is permeable exclusively to hydrogen. The membrane establishes a pure hydrogen gas phase that is in equilibrium with the hydrogen in the gas mixture. We designed and fabricated instrumentation, and demonstrated its effectiveness in measuring hydrogen partial pressures over a range of three orders of magnitude. Our goal is to install this instrument at the Nevada Solar One power plant and to demonstrate its effectiveness in measuring hydrogen levels in the expansion tanks under normal plant operating conditions.

  11. Sensor for Measuring Hydrogen Partial Pressure in Parabolic Trough Power Plant Expansion Tanks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Glatzmaier, Greg C.; Cooney, Daniel A.

    The National Renewable Energy Laboratory and Acciona Energy North America are working together to design and implement a process system that provides a permanent solution to the issue of hydrogen buildup at parabolic trough power plants. We are pursuing a method that selectively removes hydrogen from the expansion tanks that serve as reservoirs for the heat transfer fluid (HTF) that circulates in the collector field and power block components. Our modeling shows that removing hydrogen from the expansion tanks at a design rate reduces and maintains dissolved hydrogen in the circulating HTF to a selected target level. Our collaborative workmore » consists of several tasks that are needed to advance this process concept to a development stage, where it is ready for implementation at a commercial power plant. Our main effort is to design and evaluate likely process-unit operations that remove hydrogen from the expansion tanks at a specified rate. Additionally, we designed and demonstrated a method and instrumentation to measure hydrogen partial pressure and concentration in the expansion-tank headspace gas. We measured hydrogen partial pressure in the headspace gas mixture using a palladium-alloy membrane, which is permeable exclusively to hydrogen. The membrane establishes a pure hydrogen gas phase that is in equilibrium with the hydrogen in the gas mixture. We designed and fabricated instrumentation, and demonstrated its effectiveness in measuring hydrogen partial pressures over a range of three orders of magnitude. Our goal is to install this instrument at the Nevada Solar One power plant and to demonstrate its effectiveness in measuring hydrogen levels in the expansion tanks under normal plant operating conditions.« less

  12. Optical Mass Gauging System for Measuring Liquid Levels in a Reduced Gravity Environment

    NASA Technical Reports Server (NTRS)

    Sullenberger, Ryan M.; Munoz, Wesley M.; Lyon, Matt P.; Vogel, Kenny; Yalin, Azer P.; Korman, Valentin; Polzin, Kurt A.

    2010-01-01

    A compact and rugged fiber-coupled liquid volume sensor designed for flight on a sounding rocket platform is presented. The sensor consists of a Mach-Zehnder interferometer capable of measuring the amount of liquid contained in a tank under any gravitational conditions, including a microgravity environment, by detecting small changes in the index of refraction of the gas contained within a sensing region. By monitoring changes in the interference fringe pattern as the system undergoes a small compression provided by a piston, the ullage volume of a tank can be directly measured allowing for a determination of the liquid volume. To demonstrate the technique, data are acquired using two tanks containing different volumes of liquid, which are representative of the levels of liquid in a tank at different time periods during a mission. The two tanks are independently exposed to the measurement apparatus, allowing for a determination of the liquid level in each. In a controlled, laboratory test of the unit, the system demonstrated a capability of measuring a liquid level in an individual tank of 10.53 mL with a 2% error. The overall random uncertainty for the flight system is higher than that one test, at +/- 1.5 mL.

  13. The low-frequency sound power measuring technique for an underwater source in a non-anechoic tank

    NASA Astrophysics Data System (ADS)

    Zhang, Yi-Ming; Tang, Rui; Li, Qi; Shang, Da-Jing

    2018-03-01

    In order to determine the radiated sound power of an underwater source below the Schroeder cut-off frequency in a non-anechoic tank, a low-frequency extension measuring technique is proposed. This technique is based on a unique relationship between the transmission characteristics of the enclosed field and those of the free field, which can be obtained as a correction term based on previous measurements of a known simple source. The radiated sound power of an unknown underwater source in the free field can thereby be obtained accurately from measurements in a non-anechoic tank. To verify the validity of the proposed technique, a mathematical model of the enclosed field is established using normal-mode theory, and the relationship between the transmission characteristics of the enclosed and free fields is obtained. The radiated sound power of an underwater transducer source is tested in a glass tank using the proposed low-frequency extension measuring technique. Compared with the free field, the radiated sound power level of the narrowband spectrum deviation is found to be less than 3 dB, and the 1/3 octave spectrum deviation is found to be less than 1 dB. The proposed testing technique can be used not only to extend the low-frequency applications of non-anechoic tanks, but also for measurement of radiated sound power from complicated sources in non-anechoic tanks.

  14. Optimum aerobic volume control based on continuous in-line oxygen uptake monitoring.

    PubMed

    Svardal, K; Lindtner, S; Winkler, S

    2003-01-01

    Dynamic adaptation of the aerated volume to changing load conditions is essential to maximise the nitrogen removal performance and to minimise energy consumption. A control strategy is presented which provides optimum aerobic volume control (OAV-control concept) based on continuous in-line oxygen uptake monitoring. For ammonium concentrations below 1 mg/l the oxygen uptake rate shows a strong and almost linear dependency on the ammonium concentration. Therefore, the oxygen uptake rate is an ideal indicator for the nitrification performance in activated sludge systems. The OAV-control concept provides dynamic variation of the minimum aerobic volume required for complete nitrification and therefore maximises the denitrification performance. In-line oxygen uptake monitoring is carried out by controlling the oxygen concentration in a continuous aerated zone of the aeration tank and measuring the total air flow to the aeration tank. The total air flow to the aeration tank is directly proportional to the current oxygen uptake rate and can therefore be used as an indicator for the required aerobic volume. The instrumentation requirements for installation of the OAV-control are relatively low, oxygen sensors in the aeration tank and an on-line air flow measurement are needed. This enables individual control of aeration tanks operated in parallel at low investment costs. The OAV-control concept is installed at the WWTP Linz-Asten (1 Mio PE) and shows very good results. Full scale results are presented.

  15. MODELING DISINFECTANT RESIDUALS IN DRINKING-WATER STORAGE TANKS

    EPA Science Inventory

    The factors leading to the loss of disinfectant residual in well-mixed drinking-water storage tanks are studied. Equations relating disinfectant residual to the disinfectant's reation rate, the tank volume, and the fill and drain rates are presented. An analytical solution for ...

  16. MCNP Simulations of Measurement of Insulation Compaction in the Cryogenic Rocket Fuel Tanks at Kennedy Space Center by Fast/Thermal Neutron Techniques

    NASA Technical Reports Server (NTRS)

    Livingston, R. A.; Schweitzer, J. S.; Parsons, A. M.; Arens, E. E.

    2010-01-01

    MCNP simulations have been run to evaluate the feasibility of using a combination of fast and thermal neutrons as a nondestructive method to measure of the compaction of the perlite insulation in the liquid hydrogen and oxygen cryogenic storage tanks at John F. Kennedy Space Center (KSC). Perlite is a feldspathic volcanic rock made up of the major elements Si, AI, Na, K and 0 along with some water. When heated it expands from four to twenty times its original volume which makes it very useful for thermal insulation. The cryogenic tanks at Kennedy Space Center are spherical with outer diameters of 69-70 feet and lined with a layer of expanded perlite with thicknesses on the order of 120 cm. There is evidence that some of the perlite has compacted over time since the tanks were built 1965, affecting the thermal properties and possibly also the structural integrity of the tanks. With commercially available portable neutron generators it is possible to produce simultaneously fluxes of neutrons in two energy ranges: fast (14 Me V) and thermal (25 me V). The two energy ranges produce complementary information. Fast neutrons produce gamma rays by inelastic scattering, which is sensitive to Fe and O. Thermal neutrons produce gamma rays by prompt gamma neutron activation (PGNA) and this is sensitive to Si, Al, Na, K and H. The compaction of the perlite can be measured by the change in gamma ray signal strength which is proportional to the atomic number densities of the constituent elements. The MCNP simulations were made to determine the magnitude of this change. The tank wall was approximated by a I-dimensional slab geometry with an 11/16" outer carbon steel wall, an inner stainless wall and 120 cm thick perlite zone. Runs were made for cases with expanded perlite, compacted perlite or with various void fractions. Runs were also made to simulate the effect of adding a moderator. Tallies were made for decay-time analysis from t=0 to 10 ms; total detected gamma

  17. Will the U.S. Army Have a Tank in 2020?

    DTIC Science & Technology

    1998-04-15

    However, new high efficiency propulsion systems are available that significantly reduce the volume required under armor on tanks. A diesel...the increasing electricity demand of modernized tanks. APUs have been mounted on Ml series tanks and an under armor APU will be part of the Ml A2

  18. Structural Arrangement Trade Study. Volume 1: Reusable Hydrogen Composite Tank System (RHCTS) and Graphite Composite Primary Structures (GCPS). Executive summary

    NASA Astrophysics Data System (ADS)

    1995-03-01

    This volume is the first of a three volume set that discusses the structural arrangement trade study plan that will identify the most suitable configuration for an SSTO winged vehicle capable of delivering 25,000 lbs to a 220 nm circular orbit at 51.6 deg inclination. The Reusable Hydrogen Composite Tank System (RHCTS), and Graphite Composite Primary Structures most suitable for intertank, wing and thrust structures are identified. This executive summary presents the trade study process, the selection process, requirements used, analysis performed and data generated. Conclusions and recommendations are also presented.

  19. Structural Arrangement Trade Study. Volume 1: Reusable Hydrogen Composite Tank System (RHCTS) and Graphite Composite Primary Structures (GCPS). Executive summary

    NASA Technical Reports Server (NTRS)

    1995-01-01

    This volume is the first of a three volume set that discusses the structural arrangement trade study plan that will identify the most suitable configuration for an SSTO winged vehicle capable of delivering 25,000 lbs to a 220 nm circular orbit at 51.6 deg inclination. The Reusable Hydrogen Composite Tank System (RHCTS), and Graphite Composite Primary Structures most suitable for intertank, wing and thrust structures are identified. This executive summary presents the trade study process, the selection process, requirements used, analysis performed and data generated. Conclusions and recommendations are also presented.

  20. Tank Closure Progress at the Department of Energy's Idaho National Engineering Laboratory Tank Farm Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Quigley, K.D.; Butterworth, St.W.; Lockie, K.A.

    2008-07-01

    Significant progress has been made at the U.S. Department of Energy (DOE) Idaho National Laboratory (INL) to empty, clean and close radioactive liquid waste storage tanks at the Idaho Nuclear Technology and Engineering Center (INTEC) Tank Farm Facility (TFF). The TFF includes eleven 1,135.6-kL (300,000-gal) underground stainless steel storage tanks and four smaller, 113.5-kL (30,000-gal) stainless steel tanks, along with tank vaults, interconnecting piping, and ancillary equipment. The TFF tanks have historically been used to store a variety of radioactive liquid waste, including wastes associated with past spent nuclear fuel reprocessing. Although four of the large storage tanks remain inmore » use for waste storage, the other seven 1,135.6-kL (300,000-gal) tanks and the four 113.5-kL (30,000-gal) tanks have been emptied of waste, cleaned and filled with grout. A water spray cleaning system was developed and deployed to clean internal tank surfaces and remove remaining tank wastes. The cleaning system was effective in removing all but a very small volume of solid residual waste particles. Recent issuance of an Amended Record of Decision (ROD) in accordance with the National Environmental Policy Act, and a Waste Determination complying with Section 3116 of the Ronald W. Reagan National Defense Authorization Act (NDAA) for Fiscal Year 2005, has allowed commencement of grouting activities on the cleaned tanks. The first three 113.5-kL (30,000-gal) tanks were grouted in the Fall of 2006 and the fourth tank and the seven 1,135.6-kL (300,000-gal) tanks were filled with grout in 2007 to provide long-term stability. It is currently planned that associated tank valve boxes and interconnecting piping, will be stabilized with grout as early as 2008. (authors)« less

  1. Development of a prototype fluid volume measurement system. [for urine volume measurement on space missions

    NASA Technical Reports Server (NTRS)

    Poppendiek, H. F.; Sabin, C. M.; Meckel, P. T.

    1974-01-01

    The research is reported in applying the axial fluid temperature differential flowmeter to a urine volume measurement system for space missions. The fluid volume measurement system is described along with the prototype equipment package. Flowmeter calibration, electronic signal processing, and typical void volume measurements are also described.

  2. Water level response measurement in a steel cylindrical liquid storage tank using image filter processing under seismic excitation

    NASA Astrophysics Data System (ADS)

    Kim, Sung-Wan; Choi, Hyoung-Suk; Park, Dong-Uk; Baek, Eun-Rim; Kim, Jae-Min

    2018-02-01

    Sloshing refers to the movement of fluid that occurs when the kinetic energy of various storage tanks containing fluid (e.g., excitation and vibration) is continuously applied to the fluid inside the tanks. As the movement induced by an external force gets closer to the resonance frequency of the fluid, the effect of sloshing increases, and this can lead to a serious problem with the structural stability of the system. Thus, it is important to accurately understand the physics of sloshing, and to effectively suppress and reduce the sloshing. Also, a method for the economical measurement of the water level response of a liquid storage tank is needed for the exact analysis of sloshing. In this study, a method using images was employed among the methods for measuring the water level response of a liquid storage tank, and the water level response was measured using an image filter processing algorithm for the reduction of the noise of the fluid induced by light, and for the sharpening of the structure installed at the liquid storage tank. A shaking table test was performed to verify the validity of the method of measuring the water level response of a liquid storage tank using images, and the result was analyzed and compared with the response measured using a water level gauge.

  3. Tank Vapor Characterization Project: Tank 241-S-102 fourth temporal study: Headspace gas and vapor characterization results from samples collected on December 19, 1996

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pool, K.H.; Evans, J.C.; Olsen, K.B.

    1997-08-01

    This report presents the results from analyses of samples taken from the headspace of waste storage tank 241-S-102 (Tank S-102) at the Hanford Site in Washington State. Tank headspace samples collected by SGN Eurisys Service Corporation (SESC) were analyzed by Pacific Northwest National Laboratory (PNNL) to determine headspace concentrations of selected non-radioactive analytes. Analyses were performed by the Vapor Analytical Laboratory (VAL) at PNNL. Vapor concentrations from sorbent trap samples are based on measured sample volumes provided by SESC. Ammonia was determined to be above the immediate notification limit of 150 ppm as specified by the sampling and analysis planmore » (SAP). Hydrogen was the principal flammable constituent of the Tank S-102 headspace, determined to be present at approximately 2.410% of its lower flammability limit (LFL). Total headspace flammability was estimated to be <2.973% of its lower flammability limit (LFL). Total headspace flammability was estimated to be <2.973% of the LFL. Average measured concentrations of targeted gases, inorganic vapors, and selected organic vapors are provided in Table S.1. A summary of experimental methods, including sampling methodology, analytical procedures, and quality assurance and control methods are presented in Section 2.0. Detailed descriptions of the analytical results are provided in Section 3.0.« less

  4. 46 CFR 38.15-1 - Filling of tanks-TB/ALL.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... which tank may be loaded. V=volume of tank. d r=density of cargo at the temperature required for a cargo vapor pressure equal to the relief valve setting. d L=density of cargo at the loading temperature and pressure. (b) Nonrefrigerated tanks shall be filled so that their filling densities shall not exceed the...

  5. 46 CFR 38.15-1 - Filling of tanks-TB/ALL.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... which tank may be loaded. V=volume of tank. d r=density of cargo at the temperature required for a cargo vapor pressure equal to the relief valve setting. d L=density of cargo at the loading temperature and pressure. (b) Nonrefrigerated tanks shall be filled so that their filling densities shall not exceed the...

  6. 46 CFR 38.15-1 - Filling of tanks-TB/ALL.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... which tank may be loaded. V=volume of tank. d r=density of cargo at the temperature required for a cargo vapor pressure equal to the relief valve setting. d L=density of cargo at the loading temperature and pressure. (b) Nonrefrigerated tanks shall be filled so that their filling densities shall not exceed the...

  7. 46 CFR 38.15-1 - Filling of tanks-TB/ALL.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... which tank may be loaded. V=volume of tank. d r=density of cargo at the temperature required for a cargo vapor pressure equal to the relief valve setting. d L=density of cargo at the loading temperature and pressure. (b) Nonrefrigerated tanks shall be filled so that their filling densities shall not exceed the...

  8. Optical Cryogenic Tank Level Sensor

    NASA Technical Reports Server (NTRS)

    Duffell, Amanda

    2005-01-01

    Cryogenic fluids play an important role in space transportation. Liquid oxygen and hydrogen are vital fuel components for liquid rocket engines. It is also difficult to accurately measure the liquid level in the cryogenic tanks containing the liquids. The current methods use thermocouple rakes, floats, or sonic meters to measure tank level. Thermocouples have problems examining the boundary between the boiling liquid and the gas inside the tanks. They are also slow to respond to temperature changes. Sonic meters need to be mounted inside the tank, but still above the liquid level. This causes problems for full tanks, or tanks that are being rotated to lie on their side.

  9. Results for the DWPF Slurry Mix Evaporator Condensate Tank, Off Gas Condensate Tank, And Recycle Collection Tank Samples

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    TERRI, FELLINGER

    2004-12-21

    The Defense Waste Processing Facility, DWPF, currently generates approximately 1.4 million gallons of recycle water per year during Sludge-Only operations. DWPF has minimized condensate generation to 1.4 million gallons by not operating the Steam Atomized Scrubbers, SASs, for the melter off gas system. By not operating the SASs, DWPF has reduced the total volume by approximately 800,000 gallons of condensate per year. Currently, the recycle stream is sent to back to the Tank Farm and processed through the 2H Evaporator system. To alleviate the load on the 2H Evaporator system, an acid evaporator design is being considered as an alternatemore » processing and/or concentration method for the DWPF recycle stream. In order to support this alternate processing option, the DWPF has requested that the chemical and radionuclide compositions of the Off Gas Condensate Tank, OGCT, Slurry Mix Evaporator Condensate Tank, SMECT, Recycle Collection Tank, RCT, and the Decontamination Waste Treatment Tank, DWTT, be determined as a part of the process development work for the acid evaporator design. Samples have been retrieved from the OGCT, RCT, and SMECT and have been sent to the Savannah River National Laboratory, SRNL for this characterization. The DWTT samples have been recently shipped to SRNL. The results for the DWTT samples will be issued at later date.« less

  10. 49 CFR 172.331 - Bulk packagings other than portable tanks, cargo tanks, tank cars and multi-unit tank car tanks.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 2 2012-10-01 2012-10-01 false Bulk packagings other than portable tanks, cargo tanks, tank cars and multi-unit tank car tanks. 172.331 Section 172.331 Transportation Other Regulations... packagings other than portable tanks, cargo tanks, tank cars and multi-unit tank car tanks. (a) Each person...

  11. 49 CFR 172.331 - Bulk packagings other than portable tanks, cargo tanks, tank cars and multi-unit tank car tanks.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Bulk packagings other than portable tanks, cargo tanks, tank cars and multi-unit tank car tanks. 172.331 Section 172.331 Transportation Other Regulations... packagings other than portable tanks, cargo tanks, tank cars and multi-unit tank car tanks. (a) Each person...

  12. 49 CFR 172.331 - Bulk packagings other than portable tanks, cargo tanks, tank cars and multi-unit tank car tanks.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 2 2014-10-01 2014-10-01 false Bulk packagings other than portable tanks, cargo tanks, tank cars and multi-unit tank car tanks. 172.331 Section 172.331 Transportation Other Regulations... packagings other than portable tanks, cargo tanks, tank cars and multi-unit tank car tanks. (a) Each person...

  13. 49 CFR 172.331 - Bulk packagings other than portable tanks, cargo tanks, tank cars and multi-unit tank car tanks.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 2 2011-10-01 2011-10-01 false Bulk packagings other than portable tanks, cargo tanks, tank cars and multi-unit tank car tanks. 172.331 Section 172.331 Transportation Other Regulations... packagings other than portable tanks, cargo tanks, tank cars and multi-unit tank car tanks. (a) Each person...

  14. 49 CFR 172.331 - Bulk packagings other than portable tanks, cargo tanks, tank cars and multi-unit tank car tanks.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 2 2013-10-01 2013-10-01 false Bulk packagings other than portable tanks, cargo tanks, tank cars and multi-unit tank car tanks. 172.331 Section 172.331 Transportation Other Regulations... packagings other than portable tanks, cargo tanks, tank cars and multi-unit tank car tanks. (a) Each person...

  15. 27 CFR 25.35 - Tanks.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Tanks. 25.35 Section 25.35... TREASURY LIQUORS BEER Construction and Equipment Equipment § 25.35 Tanks. Each stationary tank, vat, cask... contents of tanks or containers in lieu of providing each tank or container with a measuring device. (Sec...

  16. 27 CFR 25.35 - Tanks.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2013-04-01 2013-04-01 false Tanks. 25.35 Section 25.35... TREASURY ALCOHOL BEER Construction and Equipment Equipment § 25.35 Tanks. Each stationary tank, vat, cask... contents of tanks or containers in lieu of providing each tank or container with a measuring device. (Sec...

  17. Clean option: An alternative strategy for Hanford Tank Waste Remediation. Volume 2, Detailed description of first example flowsheet

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Swanson, J.L.

    1993-09-01

    Disposal of high-level tank wastes at the Hanford Site is currently envisioned to divide the waste between two principal waste forms: glass for the high-level waste (HLW) and grout for the low-level waste (LLW). The draft flow diagram shown in Figure 1.1 was developed as part of the current planning process for the Tank Waste Remediation System (TWRS), which is evaluating options for tank cleanup. The TWRS has been established by the US Department of Energy (DOE) to safely manage the Hanford tank wastes. It includes tank safety and waste disposal issues, as well as the waste pretreatment and wastemore » minimization issues that are involved in the ``clean option`` discussed in this report. This report describes the results of a study led by Pacific Northwest Laboratory to determine if a more aggressive separations scheme could be devised which could mitigate concerns over the quantity of the HLW and the toxicity of the LLW produced by the reference system. This aggressive scheme, which would meet NRC Class A restrictions (10 CFR 61), would fit within the overall concept depicted in Figure 1.1; it would perform additional and/or modified operations in the areas identified as interim storage, pretreatment, and LLW concentration. Additional benefits of this scheme might result from using HLW and LLW disposal forms other than glass and grout, but such departures from the reference case are not included at this time. The evaluation of this aggressive separations scheme addressed institutional issues such as: radioactivity remaining in the Hanford Site LLW grout, volume of HLW glass that must be shipped offsite, and disposition of appropriate waste constituents to nonwaste forms.« less

  18. Tank Closure Progress at the Department of Energy's Idaho National Engineering Laboratory Tank Farm Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lockie, K.A.; Suttora, L.C.; Quigley, K.D.

    2007-07-01

    Significant progress has been made at the U.S. Department of Energy (DOE) Idaho National Laboratory (INL) to clean and close emptied radioactive liquid waste storage tanks at the Idaho Nuclear Technology and Engineering Center (INTEC) Tank Farm Facility (TFF). The TFF includes eleven 1,135.6-kL (300,000-gal) underground stainless steel storage tanks and four smaller, 113.5-kL (30,000-gal) stainless steel tanks, along with tank vaults, interconnecting piping, and ancillary equipment. The TFF tanks have historically been used to store a variety of radioactive liquid waste, including wastes associated with past spent nuclear fuel reprocessing. Although four of the large storage tanks remain inmore » use for waste storage, the other seven 1,135.6-kL (300,000-gal) tanks and the four 113.5-kL (30,000-gal) tanks have been emptied of waste and cleaned in preparation of final closure. A water spray cleaning system was developed and deployed to clean internal tank surfaces and remove remaining tank wastes. The cleaning system was effective in removing all but a very small volume of solid residual waste particles. Recent issuance of an Amended Record of Decision (ROD) in accordance with the National Environmental Policy Act, and a Waste Determination complying with Section 3116 of the Ronald W. Reagan National Defense Authorization Act (NDAA) for Fiscal Year 2005, has allowed commencement of grouting activities on the cleaned tanks. In November 2006, three of the 113.5-kL (30,000-gal) tanks were filled with grout to provide long-term stability. It is currently planned that all seven cleaned 1,135.6-kL (300,000-gal) tanks, as well as the four 113.5-kL (30,000-gal) tanks and all associated tank vaults and interconnecting piping, will be stabilized with grout as early as 2008. (authors)« less

  19. Nondestructive examination of the Tropical Rainfall Measuring Mission (TRMM) reaction control subsystem (RCS) propellant tanks

    NASA Technical Reports Server (NTRS)

    Free, James M.

    1993-01-01

    This paper assesses the feasibility of using eddy current nondestructive examination to determine flaw sizes in completely assembled hydrazine propellant tanks. The study was performed by the NASA Goddard Space Flight Center for the Tropical Rainfall Measuring Mission (TRMM) project to help determine whether existing propellant tanks could meet the fracture analysis requirements of the current pressure vessel specification, MIL-STD-1522A and, therefore be used on the TRMM spacecraft. After evaluating several nondestructive test methods, eddy current testing was selected as the most promising method for determining flaw sizes on external and internal surfaces of completely assembled tanks. Tests were conducted to confirm the detection capability of the eddy current NDE, procedures were developed to inspect two candidate tanks, and the test support equipment was designed. The non-spherical tank eddy current NDE test program was terminated when the decision was made to procure new tanks for the TRMM propulsion subsystem. The information on the development phase of this test program is presented in this paper as a reference for future investigation on the subject.

  20. Tank Waste Retrieval Lessons Learned at the Hanford Site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dodd, R.A.

    One of the environmental remediation challenges facing the nation is the retrieval and permanent disposal of approximately 90 million gallons of radioactive waste stored in underground tanks at the U. S. Department of Energy (DOE) facilities. The Hanford Site is located in southeastern Washington State and stores roughly 60 percent of this waste. An estimated 53 million gallons of high-level, transuranic, and low-level radioactive waste is stored underground in 149 single-shell tanks (SSTs) and 28 newer double-shell tanks (DSTs) at the Hanford Site. These SSTs range in size from 55,000 gallons to 1,000,000 gallon capacity. Approximately 30 million gallons ofmore » this waste is stored in SSTs. The SSTs were constructed between 1943 and 1964 and all have exceeded the nominal 20-year design life. Sixty-seven SSTs are known or suspected to have leaked an estimated 1,000,000 gallons of waste to the surrounding soil. The risk of additional SST leakage has been greatly reduced by removing more than 3 million gallons of interstitial liquids and supernatant and transferring this waste to the DST system. Retrieval of SST salt-cake and sludge waste is underway to further reduce risks and stage feed materials for the Hanford Site Waste Treatment Plant. Regulatory requirements for SST waste retrieval and tank farm closure are established in the Hanford Federal Facility Agreement and Consent Order (HFFACO), better known as the Tri- Party Agreement, or TPA. The HFFACO was signed by the DOE, the State of Washington Department of Ecology (Ecology), and U.S. Environmental Protection Agency (EPA) and requires retrieval of as much waste as technically possible, with waste residues not to exceed 360 ft{sup 3} in 530,000 gallon or larger tanks; 30 ft{sup 3} in 55,000 gallon or smaller tanks; or the limit of waste retrieval technology, whichever is less. If residual waste volume requirements cannot be achieved, then HFFACO Appendix H provisions can be invoked to request Ecology and

  1. Analysis of accelerations measured during full-scale tank car impact tests

    DOT National Transportation Integrated Search

    2007-04-01

    Tank car impact responses were investigated using accelerometers mounted at various locations on a tank car. Several tests were run with both a full and an empty tank car, and varying the tank car impact speed. The data from the accelerometers went t...

  2. Three-dimensional vector modeling and restoration of flat finite wave tank radiometric measurements

    NASA Technical Reports Server (NTRS)

    Truman, W. M.; Balanis, C. A.; Holmes, J. J.

    1977-01-01

    In this paper, a three-dimensional Fourier transform inversion method describing the interaction between water surface emitted radiation from a flat finite wave tank and antenna radiation characteristics is reported. The transform technique represents the scanning of the antenna mathematically as a correlation. Computation time is reduced by using the efficient and economical fast Fourier transform algorithm. To verify the inversion method, computations have been made and compared with known data and other available results. The technique has been used to restore data of the finite wave tank system and other available antenna temperature measurements made at the Cape Cod Canal. The restored brightness temperatures serve as better representations of the emitted radiation than the measured antenna temperatures.

  3. ADVANCED REACTIVITY MEASUREMENT FACILITY, TRA660, INTERIOR. REACTOR INSIDE TANK. METAL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    ADVANCED REACTIVITY MEASUREMENT FACILITY, TRA-660, INTERIOR. REACTOR INSIDE TANK. METAL WORK PLATFORM ABOVE. THE REACTOR WAS IN A SMALL WATER-FILLED POOL. INL NEGATIVE NO. 66-6373. Unknown Photographer, ca. 1966 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID

  4. Application of fiber Bragg grating sensors to real-time strain measurement of cryogenic tanks

    NASA Astrophysics Data System (ADS)

    Takeda, Nobuo; Mizutani, Tadahito; Hayashi, Kentaro; Okabe, Yoji

    2003-08-01

    Although many researches of strain measurement using fiber Bragg grating (FBG) sensors were conducted, there were few applications of FBG sensors to spacecraft in operation. It is very significant to develop an onboard system for the real-time strain measurement during the flight operation. In the present research, the real-time strain measurement of a composite liquid hydrogen (LH2) tank, which consisted of CFRP and aluminum liner, was attempted. Adhesive property of the FBG sensors was investigated first of all. As a result, UV coated FBG sensors and polyurethane adhesive were adopted. Then, reflection spectra from FBG sensors were measured through the tensile test at liquid helium (LHe) temperature. Since the center wavelength shifted in proportion to the applied strain, the FBG sensor was suitable as a precise strain sensor even at LHe temperature. Next, the development of an onboard FBG demodulator was discussed. This onboard demodulator was designed for weight saving to be mounted on a reusable rocket vehicle test (RVT) operated by the Institute of Space and Astronautical Science (ISAS). FBG sensors were bonded on the surface of the composite LH2 tank for the RVT. Then, strain measurement using the onboard demodulator was conducted through the cryogenic pressure test of the tank and compared with the result measured using the optical spectrum analyzer (OSA).

  5. SU-E-T-118: Analysis of Variability and Stability Between Two Water Tank Phantoms Utilizing Water Tank Commissioning Procedures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roring, J; Saenz, D; Cruz, W

    2015-06-15

    Purpose: The commissioning criteria of water tank phantoms are essential for proper accuracy and reproducibility in a clinical setting. This study outlines the results of mechanical and dosimetric testing between PTW MP3-M water tank system and the Standard Imaging Doseview 3D water tank system. Methods: Measurements were taken of each axis of movement on the tank using 30 cm calipers at 1, 5, 10, 50, 100, and 200 mm for accuracy and reproducibility of tank movement. Dosimetric quantities such as percent depth dose and dose profiles were compared between tanks using a 6 MV beam from a Varian 23EX LINAC.more » Properties such as scanning speed effects, central axis depth dose agreement with static measurements, reproducibility of measurements, symmetry and flatness, and scan time between tanks were also investigated. Results: Results showed high geometric accuracy within 0.2 mm. Central axis PDD and in-field profiles agreed within 0.75% between the tanks. These outcomes test many possible discrepancies in dose measurements across the two tanks and form a basis for comparison on a broader range of tanks in the future. Conclusion: Both 3D water scanning phantoms possess a high degree of spatial accuracy, allowing for equivalence in measurements regardless of the phantom used. A commissioning procedure when changing water tanks or upon receipt of a new tank is nevertheless critical to ensure consistent operation before and after the arrival of new hardware.« less

  6. Optimization of armored spherical tanks for storage on the lunar surface

    NASA Technical Reports Server (NTRS)

    Bents, D. J.; Knight, D. A.

    1992-01-01

    A redundancy strategy for reducing micrometeroid armoring mass is investigated, with application to cryogenic reactant storage for a regenerative fuel cell (RFC) on the lunar surface. In that micrometeoroid environment, the cryogenic fuel must be protected from loss due to tank puncture. The tankage must have a sufficiently high probability of survival over the length of the mission so that the probability of system failure due to tank puncture is low compared to the other mission risk factors. Assuming that a single meteoroid penetration can cause a storage tank to lose its contents, two means are available to raise the probability of surviving micrometeoroid attack to the desired level. One can armor the tanks to a thickness sufficient to reduce probability of penetration of any tank to the desired level or add extra capacity in the form of spare tanks that results in survival of a given number out of the ensemble at the desired level. A combination of these strategies (armoring and redundancy) is investigated. The objective is to find the optimum combination which yields the lowest shielding mass per cubic meter of surviving fuel out of the original ensemble. The investigation found that, for the volumes of fuel associated with multikilowatt class cryo storage RFC's, and the armoring methodology and meteoroid models used, storage should be fragmented into small individual tanks. Larger installations (more fuel) pay less of a shielding penalty than small installations. For the same survival probability over the same time period, larger volumes will require less armoring mass per unit volume protected.

  7. Selected topics in railroad tank car safety. Volume 2 : test plan for accelerated life testing of thermally shielded tank cars

    DOT National Transportation Integrated Search

    1978-08-01

    A test plan for the accelerated life testing of thermally shielded tank cars is described. The test program would be conducted at the DOT Transportation Test Center in Pueblo, Colorado. Eighteen tank cars would be included in the program. Five cars w...

  8. Tank vapor characterization project. Headspace vapor characterization of Hanford waste tank 241-BY-108: Second comparison study results from samples collected on 3/28/96

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thomas, B.L.; Pool, K.H.; Evans, J.C.

    1997-01-01

    This report describes the analytical results of vapor samples taken from the headspace of waste storage tank 241-BY-108 (Tank BY-108) at the Hanford Site in Washington State. The results described in this report is the second in a series comparing vapor sampling of the tank headspace using the Vapor Sampling System (VSS) and In Situ Vapor Sampling (ISVS) system without high efficiency particulate air (HEPA) prefiltration. The results include air concentrations of water (H{sub 2}O) and ammonia (NH{sub 3}), permanent gases, total non-methane organic compounds (TO-12), and individual organic analytes collected in SUMMA{trademark} canisters and on triple sorbent traps (TSTs).more » Samples were collected by Westinghouse Hanford Company (WHC) and analyzed by Pacific Northwest National Laboratory (PNNL). Analyses were performed by the Vapor Analytical Laboratory (VAL) at PNNL. Analyte concentrations were based on analytical results and, where appropriate, sample volume measurements provided by WHC.« less

  9. Cone Penetrometer Shear Strength Measurements of Sludge Waste in Tanks 241-AN-101 and 241-AN-106

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Follett, Jordan R.

    2014-03-06

    This document presents the resulting shear strength profiles for sludge waste in Tanks 241-AN-101 and 241-AN-106, as determined with a full-flow cone penetrometer. Full-flow penetrometer measurements indicate shear strength profiles that increase roughly uniformly with depth. For Tank 241-AN-101, the undrained shear strength was calculated to range from 500 Pa near the sludge surface to roughly 3,300 Pa at 15 inches above the tank bottom. For 241-AN-106, the undrained shear strength was calculated to range from 500 Pa near the sludge surface to roughly 5,000 Pa at 15 inches above the tank bottom.

  10. Lung volumes: measurement, clinical use, and coding.

    PubMed

    Flesch, Judd D; Dine, C Jessica

    2012-08-01

    Measurement of lung volumes is an integral part of complete pulmonary function testing. Some lung volumes can be measured during spirometry; however, measurement of the residual volume (RV), functional residual capacity (FRC), and total lung capacity (TLC) requires special techniques. FRC is typically measured by one of three methods. Body plethysmography uses Boyle's Law to determine lung volumes, whereas inert gas dilution and nitrogen washout use dilution properties of gases. After determination of FRC, expiratory reserve volume and inspiratory vital capacity are measured, which allows the calculation of the RV and TLC. Lung volumes are commonly used for the diagnosis of restriction. In obstructive lung disease, they are used to assess for hyperinflation. Changes in lung volumes can also be seen in a number of other clinical conditions. Reimbursement for measurement of lung volumes requires knowledge of current procedural terminology (CPT) codes, relevant indications, and an appropriate level of physician supervision. Because of recent efforts to eliminate payment inefficiencies, the 10 previous CPT codes for lung volumes, airway resistance, and diffusing capacity have been bundled into four new CPT codes.

  11. Numerical simulation of the hydrodynamics within octagonal tanks in recirculating aquaculture systems

    NASA Astrophysics Data System (ADS)

    Liu, Yao; Liu, Baoliang; Lei, Jilin; Guan, Changtao; Huang, Bin

    2017-07-01

    A three-dimensional numerical model was established to simulate the hydrodynamics within an octagonal tank of a recirculating aquaculture system. The realizable k- ɛ turbulence model was applied to describe the flow, the discrete phase model (DPM) was applied to generate particle trajectories, and the governing equations are solved using the finite volume method. To validate this model, the numerical results were compared with data obtained from a full-scale physical model. The results show that: (1) the realizable k- ɛ model applied for turbulence modeling describes well the flow pattern in octagonal tanks, giving an average relative error of velocities between simulated and measured values of 18% from contour maps of velocity magnitudes; (2) the DPM was applied to obtain particle trajectories and to simulate the rate of particle removal from the tank. The average relative error of the removal rates between simulated and measured values was 11%. The DPM can be used to assess the self-cleaning capability of an octagonal tank; (3) a comprehensive account of the hydrodynamics within an octagonal tank can be assessed from simulations. The velocity distribution was uniform with an average velocity of 15 cm/s; the velocity reached 0.8 m/s near the inlet pipe, which can result in energy losses and cause wall abrasion; the velocity in tank corners was more than 15 cm/s, which suggests good water mixing, and there was no particle sedimentation. The percentage of particle removal for octagonal tanks was 90% with the exception of a little accumulation of ≤ 5 mm particle in the area between the inlet pipe and the wall. This study demonstrated a consistent numerical model of the hydrodynamics within octagonal tanks that can be further used in their design and optimization as well as promote the wide use of computational fluid dynamics in aquaculture engineering.

  12. The Gunite and Associated Tanks Remediation Project Tank Waste Retrieval Performance and Lessons Learned, vol. 2 [of 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lewis, BE

    2003-10-07

    The Gunite and Associated Tanks (GAAT) Remediation Project was the first of its kind performed in the United States. Robotics and remotely operated equipment were used to successfully transfer almost 94,000 gal of remote-handled transuranic sludge containing over 81,000 Ci of radioactive contamination from nine large underground storage tanks at the Oak Ridge National Laboratory (ORNL). The sludge was transferred with over 439,000 gal of radioactive waste supernatant and {approx}420,500 gal of fresh water that was used in sluicing operations. The GAATs are located in a high-traffic area of ORNL near a main thoroughfare. Volume 1 provides information on themore » various phases of the project and describes the types of equipment used. Volume 1 also discusses the tank waste retrieval performance and the lessons learned during the remediation effort. Volume 2 consists of the following appendixes, which are referenced in Vol. 1: A--Background Information for the Gunite and Associated Tanks Operable Unit; B--Annotated Bibliography; C--GAAT Equipment Matrix; D--Comprehensive Listing of the Sample Analysis Data from the GAAT Remediation Project; and E--Vendor List for the GAAT Remediation Project. The remediation of the GAATs was completed {approx}5.5 years ahead of schedule and {approx}$120,435K below the cost estimated in the Remedial Investigation/Feasibility Study for the project. These schedule and cost savings were a direct result of the selection and use of state-of-the-art technologies and the dedication and drive of the engineers, technicians, managers, craft workers, and support personnel that made up the GAAT Remediation Project Team.« less

  13. Temperature Stratification in a Cryogenic Fuel Tank

    NASA Technical Reports Server (NTRS)

    Daigle, Matthew John; Smelyanskiy, Vadim; Boschee, Jacob; Foygel, Michael Gregory

    2013-01-01

    A reduced dynamical model describing temperature stratification effects driven by natural convection in a liquid hydrogen cryogenic fuel tank has been developed. It accounts for cryogenic propellant loading, storage, and unloading in the conditions of normal, increased, and micro- gravity. The model involves multiple horizontal control volumes in both liquid and ullage spaces. Temperature and velocity boundary layers at the tank walls are taken into account by using correlation relations. Heat exchange involving the tank wall is considered by means of the lumped-parameter method. By employing basic conservation laws, the model takes into consideration the major multi-phase mass and energy exchange processes involved, such as condensation-evaporation of the hydrogen, as well as flows of hydrogen liquid and vapor in the presence of pressurizing helium gas. The model involves a liquid hydrogen feed line and a tank ullage vent valve for pressure control. The temperature stratification effects are investigated, including in the presence of vent valve oscillations. A simulation of temperature stratification effects in a generic cryogenic tank has been implemented in Matlab and results are presented for various tank conditions.

  14. STATISTICAL ANALYSIS OF TANK 5 FLOOR SAMPLE RESULTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shine, E.

    2012-03-14

    Sampling has been completed for the characterization of the residual material on the floor of Tank 5 in the F-Area Tank Farm at the Savannah River Site (SRS), near Aiken, SC. The sampling was performed by Savannah River Remediation (SRR) LLC using a stratified random sampling plan with volume-proportional compositing. The plan consisted of partitioning the residual material on the floor of Tank 5 into three non-overlapping strata: two strata enclosed accumulations, and a third stratum consisted of a thin layer of material outside the regions of the two accumulations. Each of three composite samples was constructed from five primarymore » sample locations of residual material on the floor of Tank 5. Three of the primary samples were obtained from the stratum containing the thin layer of material, and one primary sample was obtained from each of the two strata containing an accumulation. This report documents the statistical analyses of the analytical results for the composite samples. The objective of the analysis is to determine the mean concentrations and upper 95% confidence (UCL95) bounds for the mean concentrations for a set of analytes in the tank residuals. The statistical procedures employed in the analyses were consistent with the Environmental Protection Agency (EPA) technical guidance by Singh and others [2010]. Savannah River National Laboratory (SRNL) measured the sample bulk density, nonvolatile beta, gross alpha, radionuclide, inorganic, and anion concentrations three times for each of the composite samples. The analyte concentration data were partitioned into three separate groups for further analysis: analytes with every measurement above their minimum detectable concentrations (MDCs), analytes with no measurements above their MDCs, and analytes with a mixture of some measurement results above and below their MDCs. The means, standard deviations, and UCL95s were computed for the analytes in the two groups that had at least some measurements above

  15. Statistical Analysis of Tank 5 Floor Sample Results

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shine, E. P.

    2013-01-31

    Sampling has been completed for the characterization of the residual material on the floor of Tank 5 in the F-Area Tank Farm at the Savannah River Site (SRS), near Aiken, SC. The sampling was performed by Savannah River Remediation (SRR) LLC using a stratified random sampling plan with volume-proportional compositing. The plan consisted of partitioning the residual material on the floor of Tank 5 into three non-overlapping strata: two strata enclosed accumulations, and a third stratum consisted of a thin layer of material outside the regions of the two accumulations. Each of three composite samples was constructed from five primarymore » sample locations of residual material on the floor of Tank 5. Three of the primary samples were obtained from the stratum containing the thin layer of material, and one primary sample was obtained from each of the two strata containing an accumulation. This report documents the statistical analyses of the analytical results for the composite samples. The objective of the analysis is to determine the mean concentrations and upper 95% confidence (UCL95) bounds for the mean concentrations for a set of analytes in the tank residuals. The statistical procedures employed in the analyses were consistent with the Environmental Protection Agency (EPA) technical guidance by Singh and others [2010]. Savannah River National Laboratory (SRNL) measured the sample bulk density, nonvolatile beta, gross alpha, and the radionuclide1, elemental, and chemical concentrations three times for each of the composite samples. The analyte concentration data were partitioned into three separate groups for further analysis: analytes with every measurement above their minimum detectable concentrations (MDCs), analytes with no measurements above their MDCs, and analytes with a mixture of some measurement results above and below their MDCs. The means, standard deviations, and UCL95s were computed for the analytes in the two groups that had at least some

  16. Statistical Analysis Of Tank 5 Floor Sample Results

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shine, E. P.

    2012-08-01

    Sampling has been completed for the characterization of the residual material on the floor of Tank 5 in the F-Area Tank Farm at the Savannah River Site (SRS), near Aiken, SC. The sampling was performed by Savannah River Remediation (SRR) LLC using a stratified random sampling plan with volume-proportional compositing. The plan consisted of partitioning the residual material on the floor of Tank 5 into three non-overlapping strata: two strata enclosed accumulations, and a third stratum consisted of a thin layer of material outside the regions of the two accumulations. Each of three composite samples was constructed from five primarymore » sample locations of residual material on the floor of Tank 5. Three of the primary samples were obtained from the stratum containing the thin layer of material, and one primary sample was obtained from each of the two strata containing an accumulation. This report documents the statistical analyses of the analytical results for the composite samples. The objective of the analysis is to determine the mean concentrations and upper 95% confidence (UCL95) bounds for the mean concentrations for a set of analytes in the tank residuals. The statistical procedures employed in the analyses were consistent with the Environmental Protection Agency (EPA) technical guidance by Singh and others [2010]. Savannah River National Laboratory (SRNL) measured the sample bulk density, nonvolatile beta, gross alpha, and the radionuclide, elemental, and chemical concentrations three times for each of the composite samples. The analyte concentration data were partitioned into three separate groups for further analysis: analytes with every measurement above their minimum detectable concentrations (MDCs), analytes with no measurements above their MDCs, and analytes with a mixture of some measurement results above and below their MDCs. The means, standard deviations, and UCL95s were computed for the analytes in the two groups that had at least some

  17. Measuring pedestrian volumes and conflicts. Volume III, Measuring pedestrian volumes : a users manual

    DOT National Transportation Integrated Search

    1988-03-01

    Users of the manual are expected to be in divisions responsible for pedestrian safety in cities, counties, and other jurisdictions. The users manual outlines a step-by-step procedure to measure pedestrian volumes using small count intervals. Appendix...

  18. External tank aerothermal design criteria verification, volume 2

    NASA Technical Reports Server (NTRS)

    Crain, William K.; Frost, Cynthia; Warmbrod, John

    1990-01-01

    The objective of the study was to produce an independent set of ascent environments which would serve as a check on the Rockwell International (RI) IVBC-3 environments and provide an independent reevaluation of the thermal design criteria for the External Tank (ET). Given here are the plotted timewise environments comparing REMTECH results to the RI IVBC results.

  19. Modeling measured glottal volume velocity waveforms.

    PubMed

    Verneuil, Andrew; Berry, David A; Kreiman, Jody; Gerratt, Bruce R; Ye, Ming; Berke, Gerald S

    2003-02-01

    The source-filter theory of speech production describes a glottal energy source (volume velocity waveform) that is filtered by the vocal tract and radiates from the mouth as phonation. The characteristics of the volume velocity waveform, the source that drives phonation, have been estimated, but never directly measured at the glottis. To accomplish this measurement, constant temperature anemometer probes were used in an in vivo canine constant pressure model of phonation. A 3-probe array was positioned supraglottically, and an endoscopic camera was positioned subglottically. Simultaneous recordings of airflow velocity (using anemometry) and glottal area (using stroboscopy) were made in 3 animals. Glottal airflow velocities and areas were combined to produce direct measurements of glottal volume velocity waveforms. The anterior and middle parts of the glottis contributed significantly to the volume velocity waveform, with less contribution from the posterior part of the glottis. The measured volume velocity waveforms were successfully fitted to a well-known laryngeal airflow model. A noninvasive measured volume velocity waveform holds promise for future clinical use.

  20. 49 CFR 172.330 - Tank cars and multi-unit tank car tanks.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 2 2013-10-01 2013-10-01 false Tank cars and multi-unit tank car tanks. 172.330..., TRAINING REQUIREMENTS, AND SECURITY PLANS Marking § 172.330 Tank cars and multi-unit tank car tanks. (a... material— (1) In a tank car unless the following conditions are met: (i) The tank car must be marked on...

  1. 49 CFR 172.330 - Tank cars and multi-unit tank car tanks.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 2 2012-10-01 2012-10-01 false Tank cars and multi-unit tank car tanks. 172.330..., TRAINING REQUIREMENTS, AND SECURITY PLANS Marking § 172.330 Tank cars and multi-unit tank car tanks. (a... material— (1) In a tank car unless the following conditions are met: (i) The tank car must be marked on...

  2. 49 CFR 172.330 - Tank cars and multi-unit tank car tanks.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 2 2014-10-01 2014-10-01 false Tank cars and multi-unit tank car tanks. 172.330..., TRAINING REQUIREMENTS, AND SECURITY PLANS Marking § 172.330 Tank cars and multi-unit tank car tanks. (a... material— (1) In a tank car unless the following conditions are met: (i) The tank car must be marked on...

  3. ENHANCED CHEMICAL CLEANING: A NEW PROCESS FOR CHEMICALLY CLEANING SAVANNAH RIVER WASTE TANKS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ketusky, E; Neil Davis, N; Renee Spires, R

    2008-01-17

    The Savannah River Site (SRS) has 49 high level waste (HLW) tanks that must be emptied, cleaned, and closed as required by the Federal Facilities Agreement. The current method of chemical cleaning uses several hundred thousand gallons per tank of 8 weight percent (wt%) oxalic acid to partially dissolve and suspend residual waste and corrosion products such that the waste can be pumped out of the tank. This adds a significant quantity of sodium oxalate to the tanks and, if multiple tanks are cleaned, renders the waste incompatible with the downstream processing. Tank space is also insufficient to store thismore » stream given the large number of tanks to be cleaned. Therefore, a search for a new cleaning process was initiated utilizing the TRIZ literature search approach, and Chemical Oxidation Reduction Decontamination--Ultraviolet (CORD-UV), a mature technology currently used for decontamination and cleaning of commercial nuclear reactor primary cooling water loops, was identified. CORD-UV utilizes oxalic acid for sludge dissolution, but then decomposes the oxalic acid to carbon dioxide and water by UV treatment outside the system being treated. This allows reprecipitation and subsequent deposition of the sludge into a selected container without adding significant volume to that container, and without adding any new chemicals that would impact downstream treatment processes. Bench top and demonstration loop measurements on SRS tank sludge stimulant demonstrated the feasibility of applying CORD-UV for enhanced chemical cleaning of SRS HLW tanks.« less

  4. A measure for provisional-and-urgent sanitary improvement in developing countries: septic-tank performance improvement.

    PubMed

    Harada, H; Dong, N T; Matsui, S

    2008-01-01

    Although many cities have planed to develop sewerages in developing countries, sewerage establishment still requires huge investment and engineering efforts. Improvement of existing sanitation facilities may contribute the betterment of urban sanitation before sewerage establishment. The purpose of this study is to propose a measure to improve urban sanitation in areas where a sewerage development plan is proposed but has not been yet established, based on a case study in Hanoi, Vietnam. We found that 90.5% of human excreta flowed into septic tanks. However, 89.6% of septic tanks have never been desludged in the past and their performance was observed to be at a low level. The study also showed that if they introduce regular desludging with a frequency of once a year, they can eliminate 72.8% of COD loads from septic tanks. It was indicated that the performance can be dramatically recovered by regular desludging, which could contribute urban sanitation improvement in Hanoi. In conclusion, the performance recovery of septic tanks by regular desludging was proposed as a provisional-and-urgent measure for urban sanitation improvement, together with the septage treatment in sewage sludge treatment facilities, which should be established earlier than other facilities of sewage treatment systems. IWA Publishing 2008.

  5. 49 CFR 174.63 - Portable tanks, IM portable tanks, IBCs, Large Packagings, cargo tanks, and multi-unit tank car...

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 2 2014-10-01 2014-10-01 false Portable tanks, IM portable tanks, IBCs, Large Packagings, cargo tanks, and multi-unit tank car tanks. 174.63 Section 174.63 Transportation Other....63 Portable tanks, IM portable tanks, IBCs, Large Packagings, cargo tanks, and multi-unit tank car...

  6. 49 CFR 174.63 - Portable tanks, IM portable tanks, IBCs, Large Packagings, cargo tanks, and multi-unit tank car...

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Portable tanks, IM portable tanks, IBCs, Large Packagings, cargo tanks, and multi-unit tank car tanks. 174.63 Section 174.63 Transportation Other....63 Portable tanks, IM portable tanks, IBCs, Large Packagings, cargo tanks, and multi-unit tank car...

  7. 49 CFR 174.63 - Portable tanks, IM portable tanks, IBCs, Large Packagings, cargo tanks, and multi-unit tank car...

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 2 2011-10-01 2011-10-01 false Portable tanks, IM portable tanks, IBCs, Large Packagings, cargo tanks, and multi-unit tank car tanks. 174.63 Section 174.63 Transportation Other....63 Portable tanks, IM portable tanks, IBCs, Large Packagings, cargo tanks, and multi-unit tank car...

  8. 49 CFR 174.63 - Portable tanks, IM portable tanks, IBCs, Large Packagings, cargo tanks, and multi-unit tank car...

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 2 2013-10-01 2013-10-01 false Portable tanks, IM portable tanks, IBCs, Large Packagings, cargo tanks, and multi-unit tank car tanks. 174.63 Section 174.63 Transportation Other....63 Portable tanks, IM portable tanks, IBCs, Large Packagings, cargo tanks, and multi-unit tank car...

  9. 49 CFR 174.63 - Portable tanks, IM portable tanks, IBCs, Large Packagings, cargo tanks, and multi-unit tank car...

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 2 2012-10-01 2012-10-01 false Portable tanks, IM portable tanks, IBCs, Large Packagings, cargo tanks, and multi-unit tank car tanks. 174.63 Section 174.63 Transportation Other....63 Portable tanks, IM portable tanks, IBCs, Large Packagings, cargo tanks, and multi-unit tank car...

  10. Experimental Study on Scale-Up of Solid-Liquid Stirred Tank with an Intermig Impeller

    NASA Astrophysics Data System (ADS)

    Zhao, Hongliang; Zhao, Xing; Zhang, Lifeng; Yin, Pan

    2017-02-01

    The scale-up of a solid-liquid stirred tank with an Intermig impeller was characterized via experiments. Solid concentration, impeller just-off-bottom speed and power consumption were measured in stirred tanks of different scales. The scale-up criteria for achieving the same effect of solid suspension in small-scale and large-scale vessels were evaluated. The solids distribution improves if the operating conditions are held constant as the tank is scaled-up. The results of impeller just-off-bottom speed gave X = 0.868 in the scale-up relationship ND X = constant. Based on this criterion, the stirring power per unit volume obviously decreased at N = N js, and the power number ( N P) was approximately equal to 0.3 when the solids are uniformly distributed in the vessels.

  11. Implications to stormwater management as a result of lot scale rainwater tank systems: a case study in Western Sydney, Australia.

    PubMed

    van der Sterren, M; Rahman, A; Dennis, G R

    2012-01-01

    Rainwater tanks are increasingly adopted in Australia to reduce potable water demand and are perceived to reduce the volume of stormwater discharge from developments. This paper investigates the water balance of rainwater tanks, in particular the possible impacts these tanks could have in controlling the stormwater discharge volume. The study collected water quantity data from two sites in the Hawkesbury City Council area, New South Wales, Australia and utilised the collected data in a simple water balance model to assess the effectiveness of rainwater tanks in reducing the stormwater discharge volume. The results indicate that a significant reduction in discharge volume from a lot scale development can be achieved if the rainwater tank is connected to multiple end-uses, but is minimal when using irrigation alone. In addition, the commonly used volumetric runoff coefficient of 0.9 was found to over-estimate the runoff from the roof areas and to thereby under-estimate the available volume within the rainwater tanks for retention or detention. Also, sole reliance on the water in the rainwater tanks can make the users aware of their water use pattern and water availability, resulting in significant reductions in water use as the supply dwindles, through self-imposed water restrictions.

  12. 30 CFR 250.1202 - Liquid hydrocarbon measurement.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...); when obtaining net standard volume and associated measurement parameters; and (4) When requested by the Regional Supervisor, provide the pipeline (retrograde) condensate volumes as allocated to the individual... nonreset totalizer; (ii) A calibrated mechanical displacement (pipe) prover, master meter, or tank prover...

  13. 30 CFR 250.1202 - Liquid hydrocarbon measurement.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...); when obtaining net standard volume and associated measurement parameters; and (4) When requested by the Regional Supervisor, provide the pipeline (retrograde) condensate volumes as allocated to the individual... nonreset totalizer; (ii) A calibrated mechanical displacement (pipe) prover, master meter, or tank prover...

  14. 30 CFR 250.1202 - Liquid hydrocarbon measurement.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...); when obtaining net standard volume and associated measurement parameters; and (4) When requested by the Regional Supervisor, provide the pipeline (retrograde) condensate volumes as allocated to the individual... nonreset totalizer; (ii) A calibrated mechanical displacement (pipe) prover, master meter, or tank prover...

  15. Insulation systems for liquid methane fuel tanks for supersonic cruise aircraft

    NASA Technical Reports Server (NTRS)

    Brady, H. F.; Delduca, D.

    1972-01-01

    Two insulation systems for tanks containing liquid methane in supersonic cruise-type aircraft were designed and tested after an extensive materials investigation. One system is an external insulation and the other is an internal wet-type insulation system. Tank volume was maximized by making the tank shape approach a rectangular parallelopiped. One tank was designed to use the external insulation and the other tank to use the internal insulation. Performance of the external insulation system was evaluated on a full-scale tank under the temperature environment of -320 F to 700 F and ambient pressures of ground-level atmospheric to 1 psia. Problems with installing the internal insulation on the test tank prevented full-scale evaluation of performance; however, small-scale testing verified thermal conductivity, temperature capability, and installed density.

  16. 49 CFR 230.115 - Feed water tanks.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 4 2011-10-01 2011-10-01 false Feed water tanks. 230.115 Section 230.115... Tenders Steam Locomotive Tanks § 230.115 Feed water tanks. (a) General provisions. Tanks shall be... water. Feed water tanks shall be equipped with a device that permits the measurement of the quantity of...

  17. 49 CFR 230.115 - Feed water tanks.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 4 2012-10-01 2012-10-01 false Feed water tanks. 230.115 Section 230.115... Tenders Steam Locomotive Tanks § 230.115 Feed water tanks. (a) General provisions. Tanks shall be... water. Feed water tanks shall be equipped with a device that permits the measurement of the quantity of...

  18. 49 CFR 230.115 - Feed water tanks.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 4 2014-10-01 2014-10-01 false Feed water tanks. 230.115 Section 230.115... Tenders Steam Locomotive Tanks § 230.115 Feed water tanks. (a) General provisions. Tanks shall be... water. Feed water tanks shall be equipped with a device that permits the measurement of the quantity of...

  19. 49 CFR 230.115 - Feed water tanks.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 4 2013-10-01 2013-10-01 false Feed water tanks. 230.115 Section 230.115... Tenders Steam Locomotive Tanks § 230.115 Feed water tanks. (a) General provisions. Tanks shall be... water. Feed water tanks shall be equipped with a device that permits the measurement of the quantity of...

  20. Small-Scale Metal Tanks for High Pressure Storage of Fluids

    NASA Technical Reports Server (NTRS)

    London, Adam (Inventor)

    2016-01-01

    Small scale metal tanks for high-pressure storage of fluids having tank factors of more than 5000 meters and volumes of ten cubic inches or less featuring arrays of interconnected internal chambers having at least inner walls thinner than gage limitations allow. The chambers may be arranged as multiple internal independent vessels. Walls of chambers that are also portions of external tank walls may be arcuate on the internal and/or external surfaces, including domed. The tanks may be shaped adaptively and/or conformally to an application, including, for example, having one or more flat outer walls and/or having an annular shape. The tanks may have dual-purpose inlet/outlet conduits of may have separate inlet and outlet conduits. The tanks are made by fusion bonding etched metal foil layers patterned from slices of a CAD model of the tank. The fusion bonded foil stack may be further machined.

  1. Development of limb volume measuring system

    NASA Technical Reports Server (NTRS)

    Bhagat, P. K.; Kadaba, P. K.

    1983-01-01

    The mechanisms underlying the reductions in orthostatic tolerance associated with weightlessness are not well established. Contradictory results from measurements of leg volume changes suggest that altered venomotor tone and reduced blood flow may not be the only contributors to orthostatic intolerance. It is felt that a more accurate limb volume system which is insensitive to environmental factors will aid in better quantification of the hemodynamics of the leg. Of the varous limb volume techniques presently available, the ultrasonic limb volume system has proven to be the best choice. The system as described herein is free from environmental effects, safe, simple to operate and causes negligible radio frequency interference problems. The segmental ultrasonic ultrasonic plethysmograph is expected to provide a better measurement of limb volume change since it is based on cross-sectional area measurements.

  2. Measurement of dissolved oxygen during red wines tank aging with chips and micro-oxygenation.

    PubMed

    Nevares, I; del Alamo, M

    2008-07-21

    Nowadays, micro-oxygenation is a very important technique used in aging wines in order to improve their characteristics. The techniques of wine tank aging imply the use of small doses of oxygen and the addition of wood pieces of oak to the wine. Considering the low dissolved oxygen (DO) levels used by micro-oxygenation technique it is necessary to choose the appropriate measurement principle to apply the precise oxygen dosage in wine at any time, in order to assure its correct assimilation. This knowledge will allow the oenologist to control and run the wine aging correctly. This work is a thorough revision of DO measurement main technologies applied to oenology. It describes the strengths and weaknesses of each of them, and draws a comparison of their workings in wine measurement. Both, the traditional systems by electrochemical probes, and the newest photoluminescence-based probes have been used. These probes adapted to red wines ageing study are then compared. This paper also details the first results of the dissolved oxygen content evolution in red wines during a traditional and alternative tank aging. Samples have been treated by three different ageing systems: oak barrels, stainless-steel tanks with small oak wood pieces (chips) and with bigger oak pieces (staves) with low micro-oxygenation levels. French and American oak barrels manufactured by the same cooperage have been used.

  3. RECOMMENDATIONS FOR SAMPLING OF TANK 18 IN F TANK FARM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shine, G.

    2009-12-14

    Representative sampling is required for characterization of the residual floor material in Tank 18 prior to operational closure. Tank 18 is an 85-foot diameter, 34-foot high carbon steel tank with nominal operating volume of 1,300,000 gallons. It is a Type IV tank, and has been in service storing radioactive materials since 1959. Recent mechanical cleaning of the tank removed all mounds of material. Anticipating a low level of solids in the residual material, Huff and Thaxton [2009] developed a plan to sample the material during the final clean-up process while it would still be resident in sufficient quantities to supportmore » analytical determinations in four quadrants of the tank. Execution of the plan produced fewer solids than expected to support analytical determinations in all four quadrants. Huff and Thaxton [2009] then restructured the plan to characterize the residual floor material separately in the North and the South regions: two 'hemispheres.' This document provides sampling recommendations to complete the characterization of the residual material on the tank bottom following the guidance in Huff and Thaxton [2009] to split the tank floor into a North and a South hemisphere. The number of samples is determined from a modification of the formula previously published in Edwards [2001] and the sample characterization data for previous sampling of Tank 18 described by Oji [2009]. The uncertainty is quantified by an upper 95% confidence limit (UCL95%) on each analyte's mean concentration in Tank 18. The procedure computes the uncertainty in analyte concentration as a function of the number of samples, and the final number of samples is determined when the reduction in the uncertainty from an additional sample no longer has a practical impact on results. The characterization of the full suite of analytes in the North hemisphere is currently supported by a single Mantis rover sample obtained from a compact region near the center riser. A floor scrape

  4. TANK48 CFD MODELING ANALYSIS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, S.

    2011-05-17

    The process of recovering the waste in storage tanks at the Savannah River Site (SRS) typically requires mixing the contents of the tank to ensure uniformity of the discharge stream. Mixing is accomplished with one to four dual-nozzle slurry pumps located within the tank liquid. For the work, a Tank 48 simulation model with a maximum of four slurry pumps in operation has been developed to estimate flow patterns for efficient solid mixing. The modeling calculations were performed by using two modeling approaches. One approach is a single-phase Computational Fluid Dynamics (CFD) model to evaluate the flow patterns and qualitativemore » mixing behaviors for a range of different modeling conditions since the model was previously benchmarked against the test results. The other is a two-phase CFD model to estimate solid concentrations in a quantitative way by solving the Eulerian governing equations for the continuous fluid and discrete solid phases over the entire fluid domain of Tank 48. The two-phase results should be considered as the preliminary scoping calculations since the model was not validated against the test results yet. A series of sensitivity calculations for different numbers of pumps and operating conditions has been performed to provide operational guidance for solids suspension and mixing in the tank. In the analysis, the pump was assumed to be stationary. Major solid obstructions including the pump housing, the pump columns, and the 82 inch central support column were included. The steady state and three-dimensional analyses with a two-equation turbulence model were performed with FLUENT{trademark} for the single-phase approach and CFX for the two-phase approach. Recommended operational guidance was developed assuming that local fluid velocity can be used as a measure of sludge suspension and spatial mixing under single-phase tank model. For quantitative analysis, a two-phase fluid-solid model was developed for the same modeling conditions as the

  5. Test Results for Caustic Demand Measurements on Tank 241-AX-101 and Tank 241-AX-103 Archive Samples

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Doll, Stephanie R.; Bolling, Stacie D.

    Caustic demand testing is used to determine the necessary amount of caustic required to neutralize species present in the Hanford tank waste and obtain a target molarity of free hydroxide for tank corrosion control. The presence and quantity of hydroxide-consuming analytes are just as important in determining the caustic demand as is the amount of free hydroxide present. No single data point can accurately predict whether a satisfactory hydroxide level is being met, as it is dependent on multiple factors (e.g., free hydroxide, buffers, amphoteric metal hydroxides, bicarbonate, etc.). This enclosure contains the caustic demand, scanning electron microscopy (SEM), polarizedmore » light microscopy (PLM), and X-ray diffraction (XRD) analysis for the tank 241-AX-101 (AX-101) and 241-AX-103 (AX-103) samples. The work was completed to fulfill a customer request outlined in the test plan, WRPS-1505529, “Test Plan and Procedure for Caustic Demand Testing on Tank 241-AX-101 and Tank 241-AX-103 Archive Samples.” The work results will provide a baseline to support planned retrieval of AX-101 and AX-103.« less

  6. Where Did the Water Go? Boyle's Law and Pressurized Diaphragm Water Tanks

    NASA Astrophysics Data System (ADS)

    Brimhall, James; Naga, Sundar

    2007-03-01

    Many homes use pressurized diaphragm tanks for storage of water pumped from an underground well. These tanks are very carefully constructed to have separate internal chambers for the storage of water and for the air that provides the pressure. One might expect that the amount of water available for use from, for example, a 50-gallon tank would be close to 50 gallons. However, only a surprisingly small percentage of the total tank volume is available to provide water that can be drawn from the tank before the pump must cycle back on. Boyle's law ( PV is constant) provides mathematical insight into the workings of this type of tank, including predictions of the quantities of available water resulting from different initial conditions of the water tank system.

  7. Liquid oxygen sloshing in Space Shuttle External Tank

    NASA Technical Reports Server (NTRS)

    Kannapel, M. D.; Przekwas, A. J.; Singhal, A. K.; Costes, N. C.

    1987-01-01

    This paper describes a numerical simulation of the hydrodynamics within the liquid oxygen tank of the Space Shuttle External Tank during liftoff. Before liftoff, the tank is filled with liquid oxygen (LOX) to approximately 97 percent with the other 3 percent containing gaseous oxygen (GOX) and helium. During liftoff, LOX is drained from the bottom of the tank, and GOX is pumped into the tank's ullage volume. There is a delay of several seconds before the GOX reaches the tank which causes the ullage pressure to decrease for several seconds after liftoff; this pressure 'slump' is a common phenomenon in rocket propulsion. When four slosh baffles were removed from the tank, the ullage gas pressure dropped more rapidly than in all previous flights. The purpose of this analysis was to determine whether the removal of the baffles could have caused the increased pressure 'slump' by changing the LOX surface dynamics. The results show that the LOX surface undergoes very high vertical accelerations (up to 5 g) and, therefore, splashing almost certainly occurs. The number of baffles does not affect the surface if the structural motion is assumed; but, the number of baffles may affect the structural motion of the tank.

  8. Integral Radiator and Storage Tank

    NASA Technical Reports Server (NTRS)

    Burke, Kenneth A.; Miller, John R.; Jakupca, Ian; Sargi,Scott

    2007-01-01

    A simplified, lightweight system for dissipating heat of a regenerative fuel- cell system would include a heat pipe with its evaporator end placed at the heat source and its condenser end integrated into the wall of the regenerative fuel cell system gas-storage tanks. The tank walls act as heat-radiating surfaces for cooling the regenerative fuel cell system. The system was conceived for use in outer space, where radiation is the only physical mechanism available for transferring heat to the environment. The system could also be adapted for use on propellant tanks or other large-surface-area structures to convert them to space heat-radiating structures. Typically for a regenerative fuel cell system, the radiator is separate from the gas-storage tanks. By using each tank s surface as a heat-radiating surface, the need for a separate, potentially massive radiator structure is eliminated. In addition to the mass savings, overall volume is reduced because a more compact packaging scheme is possible. The underlying tank wall structure provides ample support for heat pipes that help to distribute the heat over the entire tank surface. The heat pipes are attached to the outer surface of each gas-storage tank by use of a high-thermal conductance, carbon-fiber composite-material wrap. Through proper choice of the composite layup, it is possible to exploit the high longitudinal conductivity of the carbon fibers (greater than the thermal conductivity of copper) to minimize the unevenness of the temperature distribution over the tank surface, thereby helping to maximize the overall heat-transfer efficiency. In a prototype of the system, the heat pipe and the composite wrap contribute an average mass of 340 g/sq m of radiator area. Lightweight space radiator panels have a mass of about 3,000 g/sq m of radiator area, so this technique saves almost 90 percent of the mass of separate radiator panels. In tests, the modified surface of the tank was found to have an emissivity of 0

  9. Measuring Room Area or Volume Electronically

    NASA Technical Reports Server (NTRS)

    Kavaya, M. J.

    1987-01-01

    Area- and volume-measuring instrument hand-held or mounted on tripod. Instrument rapidly measures distances to walls, ceiling, or floor at many viewing angles and automatically computes area or volume of room. Results obtained rapidly with minimal effort.

  10. VOLUMNECT: measuring volumes with Kinect

    NASA Astrophysics Data System (ADS)

    Quintino Ferreira, Beatriz; Griné, Miguel; Gameiro, Duarte; Costeira, João. Paulo; Sousa Santos, Beatriz

    2014-03-01

    This article presents a solution to volume measurement object packing using 3D cameras (such as the Microsoft KinectTM). We target application scenarios, such as warehouses or distribution and logistics companies, where it is important to promptly compute package volumes, yet high accuracy is not pivotal. Our application auto- matically detects cuboid objects using the depth camera data and computes their volume and sorting it allowing space optimization. The proposed methodology applies to a point cloud simple computer vision and image processing methods, as connected components, morphological operations and Harris corner detector, producing encouraging results, namely an accuracy in volume measurement of 8mm. Aspects that can be further improved are identified; nevertheless, the current solution is already promising turning out to be cost effective for the envisaged scenarios.

  11. Temperature and flow measurements on near-freezing aviation fuels in a wing-tank model

    NASA Technical Reports Server (NTRS)

    Friedman, R.; Stockemer, F. J.

    1980-01-01

    Freezing behavior, pumpability, and temperature profiles for aviation turbine fuels were measured in a 190-liter tank chilled to simulate internal temperature gradients encountered in commercial airplane wing tanks. When the bulk of the fuel was above the specification freezing point, pumpout of the fuel removed all fuel except a layer adhering to the bottom chilled surfaces, and the unpumpable fraction depended on the fuel temperature near these surfaces. When the bulk of the fuel was at or below the freezing point, pumpout ceased when solids blocked the pump inlet, and the unpumpable fraction depended on the overall average temperature.

  12. A Marine Aerosol Reference Tank system as a breaking wave analogue

    NASA Astrophysics Data System (ADS)

    Stokes, M. D.; Deane, G. B.; Prather, K.; Bertram, T. H.; Ruppel, M. J.; Ryder, O. S.; Brady, J. M.; Zhao, D.

    2012-12-01

    In order to better understand the processes governing the production of marine aerosols a repeatable, controlled method for their generation is required. The Marine Aerosol Reference Tank (MART) has been designed to closely approximate oceanic conditions by producing an evolving bubble plume and surface foam patch. The tank utilizes an intermittently plunging sheet of water and large volume tank reservoir to simulate turbulence, plume and foam formation, and is monitored volumetrically and acoustically to ensure the repeatability of conditions.

  13. ANNUAL RADIOACTIVE WASTE TANK INSPECTION PROGRAM 2009

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    West, B.; Waltz, R.

    2010-06-21

    Aqueous radioactive wastes from Savannah River Site (SRS) separations and vitrification processes are contained in large underground carbon steel tanks. Inspections made during 2009 to evaluate these vessels and other waste handling facilities along with evaluations based on data from previous inspections are the subject of this report. The 2009 inspection program revealed that the structural integrity and waste confinement capability of the Savannah River Site waste tanks were maintained. All inspections scheduled per LWO-LWE-2008-00423, HLW Tank Farm Inspection Plan for 2009, were completed. All Ultrasonic measurements (UT) performed in 2009 met the requirements of C-ESG-00006, In-Service Inspection Program formore » High Level Waste Tanks, Rev. 1, and WSRC-TR-2002-00061, Rev.4. UT inspections were performed on Tank 29 and the findings are documented in SRNL-STI-2009-00559, Tank Inspection NDE Results for Fiscal Year 2009, Waste Tank 29. Post chemical cleaning UT measurements were made in Tank 6 and the results are documented in SRNL-STI-2009-00560, Tank Inspection NDE Results Tank 6, Including Summary of Waste Removal Support Activities in Tanks 5 and 6. A total of 6669 photographs were made and 1276 visual and video inspections were performed during 2009. Twenty-Two new leaksites were identified in 2009. The locations of these leaksites are documented in C-ESR-G-00003, SRS High Level Waste Tank Leaksite Information, Rev.4. Fifteen leaksites at Tank 5 were documented during tank wall/annulus cleaning activities. Five leaksites at Tank 6 were documented during tank wall/annulus cleaning activities. Two new leaksites were identified at Tank 19 during waste removal activities. Previously documented leaksites were reactivated at Tanks 5 and 12 during waste removal activities. Also, a very small amount of additional leakage from a previously identified leaksite at Tank 14 was observed.« less

  14. 21 CFR 864.5950 - Blood volume measuring device.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... § 864.5950 Blood volume measuring device. (a) Identification. A blood volume measuring device is a manual, semiautomated, or automated system that is used to calculate the red cell mass, plasma volume... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Blood volume measuring device. 864.5950 Section...

  15. 21 CFR 864.5950 - Blood volume measuring device.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... § 864.5950 Blood volume measuring device. (a) Identification. A blood volume measuring device is a manual, semiautomated, or automated system that is used to calculate the red cell mass, plasma volume... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Blood volume measuring device. 864.5950 Section...

  16. 21 CFR 864.5950 - Blood volume measuring device.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... § 864.5950 Blood volume measuring device. (a) Identification. A blood volume measuring device is a manual, semiautomated, or automated system that is used to calculate the red cell mass, plasma volume... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Blood volume measuring device. 864.5950 Section...

  17. 21 CFR 864.5950 - Blood volume measuring device.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... § 864.5950 Blood volume measuring device. (a) Identification. A blood volume measuring device is a manual, semiautomated, or automated system that is used to calculate the red cell mass, plasma volume... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Blood volume measuring device. 864.5950 Section...

  18. 21 CFR 864.5950 - Blood volume measuring device.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... § 864.5950 Blood volume measuring device. (a) Identification. A blood volume measuring device is a manual, semiautomated, or automated system that is used to calculate the red cell mass, plasma volume... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Blood volume measuring device. 864.5950 Section...

  19. Five methods of breast volume measurement: a comparative study of measurements of specimen volume in 30 mastectomy cases.

    PubMed

    Kayar, Ragip; Civelek, Serdar; Cobanoglu, Murat; Gungor, Osman; Catal, Hidayet; Emiroglu, Mustafa

    2011-03-27

    To compare breast volume measurement techniques in terms of accuracy, convenience, and cost. Breast volumes of 30 patients who were scheduled to undergo total mastectomy surgery were measured preoperatively by using five different methods (mammography, anatomic [anthropometric], thermoplastic casting, the Archimedes procedure, and the Grossman-Roudner device). Specimen volume after total mastectomy was measured in each patient with the water displacement method (Archimedes). The results were compared statistically with the values obtained by the five different methods. The mean mastectomy specimen volume was 623.5 (range 150-1490) mL. The breast volume values were established to be 615.7 mL (r = 0.997) with the mammographic method, 645.4 mL (r = 0.975) with the anthropometric method, 565.8 mL (r = 0.934) with the Grossman-Roudner device, 583.2 mL (r = 0.989) with the Archimedes procedure, and 544.7 mL (r = 0.94) with the casting technique. Examination of r values revealed that the most accurate method was mammography for all volume ranges, followed by the Archimedes method. The present study demonstrated that the most accurate method of breast volume measurement is mammography, followed by the Archimedes method. However, when patient comfort, ease of application, and cost were taken into consideration, the Grossman-Roudner device and anatomic measurement were relatively less expensive, and easier methods with an acceptable degree of accuracy.

  20. Chemical Method of Urine Volume Measurement

    NASA Technical Reports Server (NTRS)

    Petrack, P.

    1967-01-01

    A system has been developed and qualified as flight hardware for the measurement of micturition volumes voided by crewmen during Gemini missions. This Chemical Urine Volume Measurement System (CUVMS) is used for obtaining samples of each micturition for post-flight volume determination and laboratory analysis for chemical constituents of physiological interest. The system is versatile with respect to volumes measured, with a capacity beyond the largest micturition expected to be encountered, and with respect to mission duration of inherently indefinite length. The urine sample is used for the measurement of total micturition volume by a tracer dilution technique, in which a fixed, predetermined amount of tritiated water is introduced and mixed into the voided urine, and the resulting concentration of the tracer in the sample is determined with a liquid scintillation spectrometer. The tracer employed does not interfere with the analysis for the chemical constituents of the urine. The CUVMS hardware consists of a four-way selector valve in which an automatically operated tracer metering pump is incorporated, a collection/mixing bag, and tracer storage accumulators. The assembled system interfaces with a urine receiver at the selector valve inlet, sample bags which connect to the side of the selector valve, and a flexible hose which carries the excess urine to the overboard drain connection. Results of testing have demonstrated system volume measurement accuracy within the specification limits of +/-5%, and operating reliability suitable for system use aboard the GT-7 mission, in which it was first used.

  1. Conformal Cryogenic Tank Trade Study for Reusable Launch Vehicles

    NASA Technical Reports Server (NTRS)

    Rivers, H. Kevin

    1999-01-01

    Future reusable launch vehicles may be lifting bodies with non-circular cross section like the proposed Lockheed-Martin VentureStar(tm). Current designs for the cryogenic tanks of these vehicles are dual-lobed and quad-lobed tanks which are packaged more efficiently than circular tanks, but still have low packaging efficiencies with large gaps existing between the vehicle outer mold line and the outer surfaces of the tanks. In this study, tanks that conform to the outer mold line of a non-circular vehicle were investigated. Four structural concepts for conformal cryogenic tanks and a quad-lobed tank concept were optimized for minimum weight designs. The conformal tank concepts included a sandwich tank stiffened with axial tension webs, a sandwich tank stiffened with transverse tension webs, a sandwich tank stiffened with rings and tension ties, and a sandwich tank stiffened with orthogrid stiffeners and tension ties. For each concept, geometric parameters (such as ring frame spacing, the number and spacing of tension ties or webs, and tank corner radius) and internal pressure loads were varied and the structure was optimized using a finite-element-based optimization procedure. Theoretical volumetric weights were calculated by dividing the weight of the barrel section of the tank concept and its associated frames, webs and tension ties by the volume it circumscribes. This paper describes the four conformal tank concepts and the design assumptions utilized in their optimization. The conformal tank optimization results included theoretical weights, trends and comparisons between the concepts, are also presented, along with results from the optimization of a quad-lobed tank. Also, the effects of minimum gauge values and non-optimum weights on the weight of the optimized structure are described in this paper.

  2. Effect of temperature on anaerobic treatment of black water in UASB-septic tank systems.

    PubMed

    Luostarinen, Sari; Sanders, Wendy; Kujawa-Roeleveld, Katarzyna; Zeeman, Grietje

    2007-03-01

    The effect of northern European seasonal temperature changes and low temperature on the performance of upflow anaerobic sludge blanket (UASB)-septic tanks treating black water was studied. Three UASB-septic tanks were monitored with different operational parameters and at different temperatures. The results indicated the feasibility of the UASB-septic tank for (pre)treatment of black water at low temperatures with respect to removal of suspended solids and dissolved organic material. Inoculum sludge had little effect on COD(ss) removal, though in the start-up phase some poorly adapted inoculum disintegrated and washed out, thus requiring consideration when designing the process. Removal of COD(dis) was at first negative, but improved as the sludge adapted to low temperature. The UASB-septic tank alone did not comply with Finnish or Dutch treatment requirements and should therefore be considered mainly as a pre-treatment method. However, measuring the requirements as mgCOD l(-1) may not always be the best method, as the volume of the effluent discharged is also an important factor in the final amount of COD entering the receiving water bodies.

  3. 46 CFR 154.1844 - Cargo tanks: Filling limits.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ...; V=volume of the tank; dr=density at the reference temperature specified in paragraph (b) of this section; and dL=density of the cargo at the loading temperature and pressure. (b) The reference...

  4. 46 CFR 154.1844 - Cargo tanks: Filling limits.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ...; V=volume of the tank; dr=density at the reference temperature specified in paragraph (b) of this section; and dL=density of the cargo at the loading temperature and pressure. (b) The reference...

  5. 46 CFR 154.1844 - Cargo tanks: Filling limits.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ...; V=volume of the tank; dr=density at the reference temperature specified in paragraph (b) of this section; and dL=density of the cargo at the loading temperature and pressure. (b) The reference...

  6. 46 CFR 154.1844 - Cargo tanks: Filling limits.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ...; V=volume of the tank; dr=density at the reference temperature specified in paragraph (b) of this section; and dL=density of the cargo at the loading temperature and pressure. (b) The reference...

  7. Image analysis method for the measurement of water saturation in a two-dimensional experimental flow tank

    NASA Astrophysics Data System (ADS)

    Belfort, Benjamin; Weill, Sylvain; Lehmann, François

    2017-04-01

    A novel, non-invasive imaging technique that determines 2D maps of water content in unsaturated porous media is presented. This method directly relates digitally measured intensities to the water content of the porous medium. This method requires the classical image analysis steps, i.e., normalization, filtering, background subtraction, scaling and calibration. The main advantages of this approach are that no calibration experiment is needed and that no tracer or dye is injected into the flow tank. The procedure enables effective processing of a large number of photographs and thus produces 2D water content maps at high temporal resolution. A drainage / imbibition experiment in a 2D flow tank with inner dimensions of 40 cm x 14 cm x 6 cm (L x W x D) is carried out to validate the methodology. The accuracy of the proposed approach is assessed using numerical simulations with a state-of-the-art computational code that solves the Richards. Comparison of the cumulative mass leaving and entering the flow tank and water content maps produced by the photographic measurement technique and the numerical simulations demonstrate the efficiency and high accuracy of the proposed method for investigating vadose zone flow processes. Application examples to a larger flow tank with various boundary conditions are finally presented to illustrate the potential of the methodology.

  8. A hydrostatic weighing method using total lung capacity and a small tank.

    PubMed Central

    Warner, J G; Yeater, R; Sherwood, L; Weber, K

    1986-01-01

    The purpose of this study was to establish the validity and reliability of a hydrostatic weighing method using total lung capacity (measuring vital capacity with a respirometer at the time of weighing) the prone position, and a small oblong tank. The validity of the method was established by comparing the TLC prone (tank) method against three hydrostatic weighing methods administered in a pool. The three methods included residual volume seated, TLC seated and TLC prone. Eighty male and female subjects were underwater weighed using each of the four methods. Validity coefficients for per cent body fat between the TLC prone (tank) method and the RV seated (pool), TLC seated (pool) and TLC prone (pool) methods were .98, .99 and .99, respectively. A randomised complete block ANOVA found significant differences between the RV seated (pool) method and each of the three TLC methods with respect to both body density and per cent body fat. The differences were negligible with respect to HW error. Reliability of the TLC prone (tank) method was established by weighing twenty subjects three different times with ten-minute time intervals between testing. Multiple correlations yielded reliability coefficients for body density and per cent body fat values of .99 and .99, respectively. It was concluded that the TLC prone (tank) method is valid, reliable and a favourable method of hydrostatic weighing. PMID:3697596

  9. A hydrostatic weighing method using total lung capacity and a small tank.

    PubMed

    Warner, J G; Yeater, R; Sherwood, L; Weber, K

    1986-03-01

    The purpose of this study was to establish the validity and reliability of a hydrostatic weighing method using total lung capacity (measuring vital capacity with a respirometer at the time of weighing) the prone position, and a small oblong tank. The validity of the method was established by comparing the TLC prone (tank) method against three hydrostatic weighing methods administered in a pool. The three methods included residual volume seated, TLC seated and TLC prone. Eighty male and female subjects were underwater weighed using each of the four methods. Validity coefficients for per cent body fat between the TLC prone (tank) method and the RV seated (pool), TLC seated (pool) and TLC prone (pool) methods were .98, .99 and .99, respectively. A randomised complete block ANOVA found significant differences between the RV seated (pool) method and each of the three TLC methods with respect to both body density and per cent body fat. The differences were negligible with respect to HW error. Reliability of the TLC prone (tank) method was established by weighing twenty subjects three different times with ten-minute time intervals between testing. Multiple correlations yielded reliability coefficients for body density and per cent body fat values of .99 and .99, respectively. It was concluded that the TLC prone (tank) method is valid, reliable and a favourable method of hydrostatic weighing.

  10. Development and Evaluation of an Airplane Fuel Tank Ullage Composition Model. Volume 2. Experimental Determination of Airplane Fuel Tank Ullage Compositions

    DTIC Science & Technology

    1987-10-01

    Airplane Fuel Tank Ullage Compositions ~C A. J. Roth BOEING MILITARY AIRPLANE COMPANY P. 0. Box 3707 Seattle, Washington 98124-2207 October 1987 FINAL...controlled mission simulations were made using the ModComp computer to control the Simulated Aircraft Fuel Tank Environment ( SAFTEI facility at Wright...of this report. iii PREFACE This is a final report of work conducted under F33615-84-C-2431 and submitted by the Boeing Military Airplane Company

  11. Environmental projects. Volume 2: Underground storage tanks compliance program

    NASA Technical Reports Server (NTRS)

    Kushner, L.

    1987-01-01

    Six large parabolic dish antennas are located at the Goldstone Deep Space Communications Complex north of Barstow, California. As a large-scale facility located in a remote, isolated desert region, the GDSCC operations require numerous on-site storage facilities for gasoline, diesel and hydraulic oil. These essential fluids are stored in underground storage tanks (USTs). Because USTs may develop leaks with the resultant seepage of their hazardous contents into the surrounding soil, local, State and Federal authorities have adopted stringent regulations for the testing and maintenance of USTs. Under the supervision of JPL's Office of Telecommunications and Data Acquisition, a year-long program has brought 27 USTs at the Goldstone Complex into compliance with Federal, State of California and County of San Bernadino regulations. Of these 27 USTs, 15 are operating today, 11 have been temporary closed down, and 1 abandoned in place. In 1989, the 15 USTs now operating at the Goldstone DSCC will be replaced either by modern, double-walled USTs equipped with automatic sensors for leak detection, or by above ground storage tanks. The 11 inactivated USTs are to be excavated, removed and disposed of according to regulation.

  12. TANKS 18 AND 19-F EQUIPMENT GROUT FILL MATERIAL EVALUATION AND RECOMMENDATIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stefanko, D.; Langton, C.

    The United States Department of Energy (US DOE) intends to remove Tanks 18-F and 19-F at the Savannah River Site (SRS) from service. The high-level waste (HLW) tanks have been isolated from the F-area Tank Farm (FTF) facilities and will be filled with cementitious grout for the purpose of: (1) physically stabilizing the empty volumes in the tanks, (2) limiting/eliminating vertical pathways from the surface to residual waste on the bottom of the tanks, (3) providing an intruder barrier, and (4) providing an alkaline, chemical reducing environment within the closure boundary to limit solubility of residual radionuclides. Bulk waste andmore » heel waste removal equipment will remain in Tanks 18-F and 19-F when the tanks are closed. This equipment includes: mixer pumps, transfer pumps, transfer jets, equipment support masts, sampling masts and dip tube assemblies. The current Tank 18-F and 19-F closure strategy is to grout the internal void spaces in this equipment to eliminate fast vertical pathways and slow water infiltration to the residual material on the tank floor. This report documents the results of laboratory testing performed to identify a grout formulation for filling the abandoned equipment in Tanks 18-F and 19-F. The objective of this work was to formulate a flowable grout for filling internal voids of equipment that will remain in Tanks 18-F and 19-F during the final closures. This work was requested by V. A. Chander, Tank Farm Closure Engineering, in HLW-TTR-2011-008. The scope for this task is provided in the Task Technical and Quality Assurance Plan (TTQAP), SRNL-RP-2011-00587. The specific objectives of this task were to: (1) Prepare and evaluate the SRR cooling coil grout identified in WSRC-STI-2008-00298 per the TTR for this work. The cooling coil grout is a mixture of BASF MasterFlow{reg_sign} 816 cable grout (67.67 wt. %), Grade 100 ground granulated blast furnace slag (7.52 wt. %) and water (24.81 wt. %); (2) Identify equipment grout placement

  13. Washing and caustic leaching of Hanford tank sludges: results of FY 1996 studies. Revision

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lumetta, G.J.; Rapko, B.M.; Wagner, M.J.

    During the past few years, the primary mission at the US Department of Energy`s Hanford Site has changed from producing plutonium to restoring the environment. Large volumes of high-level radioactive wastes (HLW), generated during past Pu production and other operations, are stored in underground tanks on site. The current plan for remediating the Hanford tank farms consists of waste retrieval, pretreatment, treatment (immobilization), and disposal. The HLW will be immobilized in a borosilicate glass matrix and then disposed of in a geologic repository. Because of the expected high cost of HLW vitrification and geologic disposal, pretreatment processes will be implementedmore » to reduce the volume of borosilicate glass produced in disposing of the tank wastes. On this basis, a pretreatment plan is being developed. This report describes the sludge washing and caustic leaching test conducted to create a Hanford tank sludge pretreatment flowsheet.« less

  14. RECOMMENDATIONS FOR SAMPLING OF TANK 19 IN F TANK FARM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harris, S.; Shine, G.

    2009-12-14

    needed and can be achieved by the addition of the archived samples, they will be analyzed and included in the statistical computations. Initially the analyte concentrations in the residual material on the floor of Tank 19 will be determined separately in the North and the South hemispheres. However, if final sampling results show that differences between the North and South samples are consistent within sampling variation, then the final computations can be based on consolidating all sample results from the tank floor. Recommended locations may be subject to physical tank access and sampling constraints for the additional samples. The recommendations have been discussed in Section 4 and are based on partitioning the Tank 19 floor into an inner and an outer ring and six 60{sup o} sectors depicted in Figure 1. The location of the border between the inner and outer rings is based on dividing the residual material into two approximately equal volumes.« less

  15. CFD simulation of mechanical draft tube mixing in anaerobic digester tanks.

    PubMed

    Meroney, Robert N; Colorado, P E

    2009-03-01

    Computational Fluid Dynamics (CFD) was used to simulate the mixing characteristics of four different circular anaerobic digester tanks (diameters of 13.7, 21.3, 30.5, and 33.5m) equipped with single and multiple draft impeller tube mixers. Rates of mixing of step and slug injection of tracers were calculated from which digester volume turnover time (DVTT), mixture diffusion time (MDT), and hydraulic retention time (HRT) could be calculated. Washout characteristics were compared to analytic formulae to estimate any presence of partial mixing, dead volume, short-circuiting, or piston flow. CFD satisfactorily predicted performance of both model and full-scale circular tank configurations.

  16. Selected topics in railroad tank car safety research. Volume 1 : fatigue evaluation of prototype tank car head shield

    DOT National Transportation Integrated Search

    1978-08-01

    The characteristics of a prototype head shield for hazardous material tank cars were evaluated with respect to the maintenance of its structural integrity under normal service conditions. The primary concern was with the resistance to fatigue damage ...

  17. Tank characterization report for double-shell tank 241-AW-105

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sasaki, L.M.

    1997-06-05

    One of the major functions of the Tank Waste Remediation System (TWRS) is to characterize wastes in support of waste management and disposal activities at the Hanford Site. Analytical data from sampling and analysis, along with other available information about a tank, are compiled and maintained in a tank characterization report (TCR). This report and its appendices serve as the TCR for double-shell tank 241-AW-105. The objectives of this report are to use characterization data in response to technical issues associated with tank 241-AW-105 waste; and to provide a standard characterization of this waste in terms of a best-basis inventorymore » estimate. The response to technical issues is summarized in Section 2.0, and the best-basis inventory estimate is presented in Section 3.0. Recommendations regarding safety status and additional sampling needs are provided in Section 4.0. Supporting data and information are contained in the appendices. This report supports the requirements of the Hanford Federal Facility Agreement and Consent Order milestone Characterization. information presented in this report originated from sample analyses and known historical sources. While only the results of a recent sampling event will be used to fulfill the requirements of the data quality objectives (DQOs), other information can be used to support or question conclusions derived from these results. Historical information for tank 241-AW-105 is provided in Appendix A, including surveillance information, records pertaining to waste transfers and tank operations, and expected tank contents derived from a process knowledge model. The recent sampling event listed, as well as pertinent sample data obtained before 1996, are summarized in Appendix B along with the sampling results. The results of the 1996 grab sampling event satisfied the data requirements specified in the sampling and analysis plan (SAP) for this tank. In addition, the tank headspace flammability was measured, which

  18. Mixing and transient interface condensation of a liquid hydrogen tank

    NASA Technical Reports Server (NTRS)

    Lin, C. S.; Hasan, M. M.; Nyland, T. W.

    1993-01-01

    Experiments were conducted to investigate the effect of axial jet-induced mixing on the pressure reduction of a thermally stratified liquid hydrogen tank. The tank was nearly cylindrical, having a volume of about 0.144 cu m with 0.559 m in diameter and 0.711 m long. A mixer/pump unit, which had a jet nozzle outlet of 0.0221 m in diameter was located 0.178 m from the tank bottom and was installed inside the tank to generate the axial jet mixing and tank fluid circulation. The liquid fill and jet flow rate ranged from 42 to 85 percent (by volume) and 0.409 to 2.43 cu m/hr, respectively. Mixing tests began with the tank pressure ranging from 187.5 to 238.5 kPa at which the thermal stratification results in 4.9 to 6.2 K liquid sub cooling. The mixing time and transient vapor condensation rate at the liquid-vapor interface are determined. Two mixing time correlations, based on the thermal equilibrium and pressure equilibrium, are developed. Both mixing time correlations are expressed as functions of system and buoyancy parameters and compared well with other experimental data. The steady state condensation rate correlation of Sonin et al. based on steam-water data is modified and expressed as a function of jet subcooling. The limited liquid hydrogen data of the present study shows that the modified steady state condensation rate correlation may be used to predict the transient condensation rate in a mixing process if the instantaneous values of jet sub cooling and turbulence intensity at the interface are employed.

  19. International Space Station (ISS) Advanced Recycle Filter Tank Assembly (ARFTA)

    NASA Technical Reports Server (NTRS)

    Nasrullah, Mohammed K.

    2013-01-01

    The International Space Station (ISS) Recycle Filter Tank Assembly (RFTA) provides the following three primary functions for the Urine Processor Assembly (UPA): volume for concentrating/filtering pretreated urine, filtration of product distillate, and filtration of the Pressure Control and Pump Assembly (PCPA) effluent. The RFTAs, under nominal operations, are to be replaced every 30 days. This poses a significant logistical resupply problem, as well as cost in upmass and new tanks purchase. In addition, it requires significant amount of crew time. To address and resolve these challenges, NASA required Boeing to develop a design which eliminated the logistics and upmass issues and minimize recurring costs. Boeing developed the Advanced Recycle Filter Tank Assembly (ARFTA) that allowed the tanks to be emptied on-orbit into disposable tanks that eliminated the need for bringing the fully loaded tanks to earth for refurbishment and relaunch, thereby eliminating several hundred pounds of upmass and its associated costs. The ARFTA will replace the RFTA by providing the same functionality, but with reduced resupply requirements

  20. CFD simulation of vertical linear motion mixing in anaerobic digester tanks.

    PubMed

    Meroney, Robert N; Sheker, Robert E

    2014-09-01

    Computational fluid dynamics (CFD) was used to simulate the mixing characteristics of a small circular anaerobic digester tank (diameter 6 m) equipped sequentially with 13 different plunger type vertical linear motion mixers and two different type internal draft-tube mixers. Rates of mixing of step injection of tracers were calculated from which active volume (AV) and hydraulic retention time (HRT) could be calculated. Washout characteristics were compared to analytic formulae to estimate any presence of partial mixing, dead volume, short-circuiting, or piston flow. Active volumes were also estimated based on tank regions that exceeded minimum velocity criteria. The mixers were ranked based on an ad hoc criteria related to the ratio of AV to unit power (UP) or AV/UP. The best plunger mixers were found to behave about the same as the conventional draft-tube mixers of similar UP.

  1. Lifecycle Verification of Tank Liner Polymers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anovitz, Lawrence; Smith, Barton

    2014-03-01

    This report describes a method that was developed for the purpose of assessing the durability of thermoplastic liners used in a Type IV hydrogen storage tank during the tank s expected service life. In the method, a thermoplastic liner specimen is cycled between the maximum and minimum expected working temperatures while it is differentially pressurized with high-pressure hydrogen gas. The number of thermal cycling intervals corresponds to those expected within the tank s design lifetime. At prescribed intervals, hydrogen permeation measurements are done in situ to assess the ability of the liner specimen to maintain its hydrogen barrier properties andmore » to model its permeability over the tank lifetime. Finally, the model is used to assess whether the steady-state leakage rate in the tank could potentially exceed the leakage specification for hydrogen fuel cell passenger vehicles. A durability assessment was performed on a specimen of high-density polyethylene (HDPE) that is in current use as a tank liner. Hydrogen permeation measurements were performed on several additional tank liner polymers as well as novel polymers proposed for use as storage tank liners and hydrogen barrier materials. The following technical barriers from the Fuel Cell Technologies Program MYRDD were addressed by the project: D. Durability of on-board storage systems lifetime of at least 1500 cycles G. Materials of construction vessel containment that is resistant to hydrogen permeation M. Lack of Tank Performance Data and Understanding of Failure Mechanisms And the following technical targets1 for on-board hydrogen storage systems R&D were likewise addressed: Operational cycle life (1/4 tank to full) FY 2017: 1500 cycles; Ultimate: 1500 cycles Environmental health & safety Permeation and leakage: Meets or exceeds applicable standards Loss of useable H2: FY 2017: 0.05 g/h/kg H2; Ultimate: 0.05 g/h/kg H2« less

  2. Cerebrospinal fluid volume measurements in hydrocephalic rats.

    PubMed

    Basati, Sukhraaj; Desai, Bhargav; Alaraj, Ali; Charbel, Fady; Linninger, Andreas

    2012-10-01

    Object Experimental data about the evolution of intracranial volume and pressure in cases of hydrocephalus are limited due to the lack of available monitoring techniques. In this study, the authors validate intracranial CSF volume measurements within the lateral ventricle, while simultaneously using impedance sensors and pressure transducers in hydrocephalic animals. Methods A volume sensor was fabricated and connected to a catheter that was used as a shunt to withdraw CSF. In vitro bench-top calibration experiments were created to provide data for the animal experiments and to validate the sensors. To validate the measurement technique in a physiological system, hydrocephalus was induced in weanling rats by kaolin injection into the cisterna magna. At 28 days after induction, the sensor was implanted into the lateral ventricles. After sealing the skull using dental cement, an acute CSF drainage/infusion protocol consisting of 4 sequential phases was performed with a pump. Implant location was confirmed via radiography using intraventricular iohexol contrast administration. Results Controlled CSF shunting in vivo with hydrocephalic rats resulted in precise and accurate sensor measurements (r = 0.98). Shunting resulted in a 17.3% maximum measurement error between measured volume and actual volume as assessed by a Bland-Altman plot. A secondary outcome confirmed that both ventricular volume and intracranial pressure decreased during CSF shunting and increased during infusion. Ventricular enlargement consistent with successful hydrocephalus induction was confirmed using imaging, as well as postmortem. These results indicate that volume monitoring is feasible for clinical cases of hydrocephalus. Conclusions This work marks a departure from traditional shunting systems currently used to treat hydrocephalus. The overall clinical application is to provide alternative monitoring and treatment options for patients. Future work includes development and testing of a chronic

  3. A new gas dilution method for measuring body volume.

    PubMed Central

    Nagao, N; Tamaki, K; Kuchiki, T; Nagao, M

    1995-01-01

    This study was designed to examine the validity of a new gas dilution method (GD) for measuring human body volume and to compare its accuracy with the results obtained by the underwater weighing method (UW). We measured the volume of plastic bottles and 16 subjects (including two females), aged 18-42 years with each method. For the bottles, the volume measured by hydrostatic weighing was correlated highly (r = 1.000) with that measured by the new gas dilution method. For the subjects, the body volume determined by the two methods was significantly correlated (r = 0.998). However, the subject's volume measured by the gas dilution method was significantly larger than that by underwater weighing method. There was significant correlation (r = 0.806) between GD volume-UW volume and the body mass index (BMI), so that UW volume could be predicted from GD volume and BMI. It can be concluded that the new gas dilution method offers promising possibilities for future research in the population who cannot submerge underwater. PMID:7551760

  4. Tank 12H Acidic Chemical Cleaning Sample Analysis And Material Balance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martino, C. J.; Reboul, S. H.; Wiersma, B. J.

    2013-11-08

    A process of Bulk Oxalic Acid (BOA) chemical cleaning was performed for Tank 12H during June and July of 2013 to remove all or a portion of the approximately 4400 gallon sludge heel. Three strikes of oxalic acid (nominally 4 wt% or 2 wt%) were used at 55°C and tank volumes of 96- to 140-thousand gallons. This report details the sample analysis of a scrape sample taken prior to BOA cleaning and dip samples taken during BOA cleaning. It also documents a rudimentary material balance for the Tank 12H cleaning results.

  5. Factors confounding impedance catheter volume measurements in vitro.

    PubMed

    Bielefeld, M R; Cabreriza, S E; Spotnitz, H M

    1993-06-01

    The impedance catheter allows continuous measurement of ventricular volume. External influences have been described as causing parallel shifts in impedance-measured volumes; however, factors affecting impedance measurements in a nonparallel manner have not been fully characterized. Accordingly, an impedance catheter was placed inside a latex balloon into which known volumes of normal saline solution were injected. Conductive and nonconductive materials were individually placed within the balloon. Impedance was measured with materials touching (T) or not touching (NT) the catheter. Impedance-measured volumes were plotted versus actual volumes. Compared with the line of identity (LID), a statistical difference (p < 0.05) was found in the slopes in the presence of metallic objects only. These included a pacing lead (T, NT) (mT = 1.32m mNT = 1.29 versus mLID = 1.00), titanium (T) (mT = 1.68 versus mLID = 1.00), and aluminum (NT) (mNT = 0.72 versus mLID = 1.00). These changes in slope indicate nonparallel effects on impedance that confound the ability of the impedance catheter to determine volumes in vitro. These observations imply that serial calibration of both the slope constant (alpha) and the intercept (parallel conductance) of impedance may be necessary for in vivo measurements of ventricular volume based on impedance in the presence of metallic objects.

  6. Mutualistic ants contribute to tank-bromeliad nutrition.

    PubMed

    Leroy, Céline; Carrias, Jean-François; Corbara, Bruno; Pélozuelo, Laurent; Dézerald, Olivier; Brouard, Olivier; Dejean, Alain; Céréghino, Régis

    2013-09-01

    Epiphytism imposes physiological constraints resulting from the lack of access to the nutrient sources available to ground-rooted plants. A conspicuous adaptation in response to that lack is the phytotelm (plant-held waters) of tank-bromeliad species that are often nutrient-rich. Associations with terrestrial invertebrates also result in higher plant nutrient acquisition. Assuming that tank-bromeliads rely on reservoir-assisted nutrition, it was hypothesized that the dual association with mutualistic ants and the phytotelm food web provides greater nutritional benefits to the plant compared with those bromeliads involved in only one of these two associations. Quantitative (water volume, amount of fine particulate organic matter, predator/prey ratio, algal density) and qualitative variables (ant-association and photosynthetic pathways) were compared for eight tank- and one tankless-bromeliad morphospecies from French Guiana. An analysis was also made of which of these variables affect nitrogen acquisition (leaf N and δ(15)N). All variables were significantly different between tank-bromeliad species. Leaf N concentrations and leaf δ(15)N were both positively correlated with the presence of mutualistic ants. The amount of fine particulate organic matter and predator/prey ratio had a positive and negative effect on leaf δ(15)N, respectively. Water volume was positively correlated with leaf N concentration whereas algal density was negatively correlated. Finally, the photosynthetic pathway (C3 vs. CAM) was positively correlated with leaf N concentration with a slightly higher N concentration for C3-Tillandsioideae compared with CAM-Bromelioideae. The study suggests that some of the differences in N nutrition between bromeliad species can be explained by the presence of mutualistic ants. From a nutritional standpoint, it is more advantageous for a bromeliad to use myrmecotrophy via its roots than to use carnivory via its tank. The results highlight a gap in our

  7. Mutualistic ants contribute to tank-bromeliad nutrition

    PubMed Central

    Leroy, Céline; Carrias, Jean-François; Corbara, Bruno; Pélozuelo, Laurent; Dézerald, Olivier; Brouard, Olivier; Dejean, Alain; Céréghino, Régis

    2013-01-01

    Background and Aims Epiphytism imposes physiological constraints resulting from the lack of access to the nutrient sources available to ground-rooted plants. A conspicuous adaptation in response to that lack is the phytotelm (plant-held waters) of tank-bromeliad species that are often nutrient-rich. Associations with terrestrial invertebrates also result in higher plant nutrient acquisition. Assuming that tank-bromeliads rely on reservoir-assisted nutrition, it was hypothesized that the dual association with mutualistic ants and the phytotelm food web provides greater nutritional benefits to the plant compared with those bromeliads involved in only one of these two associations. Methods Quantitative (water volume, amount of fine particulate organic matter, predator/prey ratio, algal density) and qualitative variables (ant-association and photosynthetic pathways) were compared for eight tank- and one tankless-bromeliad morphospecies from French Guiana. An analysis was also made of which of these variables affect nitrogen acquisition (leaf N and δ15N). Key Results All variables were significantly different between tank-bromeliad species. Leaf N concentrations and leaf δ15N were both positively correlated with the presence of mutualistic ants. The amount of fine particulate organic matter and predator/prey ratio had a positive and negative effect on leaf δ15N, respectively. Water volume was positively correlated with leaf N concentration whereas algal density was negatively correlated. Finally, the photosynthetic pathway (C3 vs. CAM) was positively correlated with leaf N concentration with a slightly higher N concentration for C3-Tillandsioideae compared with CAM-Bromelioideae. Conclusions The study suggests that some of the differences in N nutrition between bromeliad species can be explained by the presence of mutualistic ants. From a nutritional standpoint, it is more advantageous for a bromeliad to use myrmecotrophy via its roots than to use carnivory via its

  8. Septic tank additive impacts on microbial populations.

    PubMed

    Pradhan, S; Hoover, M T; Clark, G H; Gumpertz, M; Wollum, A G; Cobb, C; Strock, J

    2008-01-01

    Environmental health specialists, other onsite wastewater professionals, scientists, and homeowners have questioned the effectiveness of septic tank additives. This paper describes an independent, third-party, field scale, research study of the effects of three liquid bacterial septic tank additives and a control (no additive) on septic tank microbial populations. Microbial populations were measured quarterly in a field study for 12 months in 48 full-size, functioning septic tanks. Bacterial populations in the 48 septic tanks were statistically analyzed with a mixed linear model. Additive effects were assessed for three septic tank maintenance levels (low, intermediate, and high). Dunnett's t-test for tank bacteria (alpha = .05) indicated that none of the treatments were significantly different, overall, from the control at the statistical level tested. In addition, the additives had no significant effects on septic tank bacterial populations at any of the septic tank maintenance levels. Additional controlled, field-based research iswarranted, however, to address additional additives and experimental conditions.

  9. Acoustical monitoring of fish behavior in a tank

    NASA Astrophysics Data System (ADS)

    Conti, Stephan G.; Maurer, Benjamin D.; Roux, Philippe; Fauvel, Christian; Demer, David A.; Waters, Kendall R.

    2004-10-01

    In recent publications, it has been demonstrated that the total scattering cross section of fish moving in a tank can be estimated from ensembles of reverberation time series. However, the reproducibility of these measurements is influenced by parameters such as the motion or the behavior of the fish. In this work, we propose to observe acoustically the behavior of fish in a tank, and to measure their average speed. The total scattering cross section of live fish (sardines, sea bass and bocaccio) in a tank was measured repeatedly over multiple days. The species used in this study have different behaviors, which are reflected in the acoustical measurements. Depending on the behavior of the fish, such as the average displacement between two acoustic pings or the aggregation type, the total scattering cross section is different. Correlation between the acoustical measurements and the day and night behavior of the fish is demonstrated. Interpretation of such measurements can lead to monitoring acoustically and nonintrusively the behavior of fish in tanks.

  10. Three-dimensional vector modeling and restoration of flat finite wave tank radiometric measurements

    NASA Technical Reports Server (NTRS)

    Truman, W. M.; Balanis, C. A.

    1977-01-01

    The three-dimensional vector interaction between a microwave radiometer and a wave tank was modeled. Computer programs for predicting the response of the radiometer to the brightness temperature characteristics of the surroundings were developed along with a computer program that can invert (restore) the radiometer measurements. It is shown that the computer programs can be used to simulate the viewing of large bodies of water, and is applicable to radiometer measurements received from satellites monitoring the ocean. The water temperature, salinity, and wind speed can be determined.

  11. Radio-Frequency Tank Eigenmode Sensor for Propellant Quantity Gauging

    NASA Technical Reports Server (NTRS)

    Zimmerli, Gregory A.; Buchanan, David A.; Follo, Jeffrey C.; Vaden, Karl R.; Wagner, James D.; Asipauskas, Marius; Herlacher, Michael D.

    2010-01-01

    Although there are several methods for determining liquid level in a tank, there are no proven methods to quickly gauge the amount of propellant in a tank while it is in low gravity or under low-settling thrust conditions where propellant sloshing is an issue. Having the ability to quickly and accurately gauge propellant tanks in low-gravity is an enabling technology that would allow a spacecraft crew or mission control to always know the amount of propellant onboard, thus increasing the chances for a successful mission. The Radio Frequency Mass Gauge (RFMG) technique measures the electromagnetic eigenmodes, or natural resonant frequencies, of a tank containing a dielectric fluid. The essential hardware components consist of an RF network analyzer that measures the reflected power from an antenna probe mounted internal to the tank. At a resonant frequency, there is a drop in the reflected power, and these inverted peaks in the reflected power spectrum are identified as the tank eigenmode frequencies using a peak-detection software algorithm. This information is passed to a pattern-matching algorithm, which compares the measured eigenmode frequencies with a database of simulated eigenmode frequencies at various fill levels. A best match between the simulated and measured frequency values occurs at some fill level, which is then reported as the gauged fill level. The database of simulated eigenmode frequencies is created by using RF simulation software to calculate the tank eigenmodes at various fill levels. The input to the simulations consists of a fairly high-fidelity tank model with proper dimensions and including internal tank hardware, the dielectric properties of the fluid, and a defined liquid/vapor interface. Because of small discrepancies between the model and actual hardware, the measured empty tank spectra and simulations are used to create a set of correction factors for each mode (typically in the range of 0.999 1.001), which effectively accounts for

  12. Single bi-temperature thermal storage tank for application in solar thermal plant

    DOEpatents

    Litwin, Robert Zachary; Wait, David; Lancet, Robert T.

    2017-05-23

    Thermocline storage tanks for solar power systems are disclosed. A thermocline region is provided between hot and cold storage regions of a fluid within the storage tank cavity. One example storage tank includes spaced apart baffles fixed relative to the tank and arranged within the thermocline region to substantially physically separate the cavity into hot and cold storage regions. In another example, a flexible baffle separated the hot and cold storage regions and deflects as the thermocline region shifts to accommodate changing hot and cold volumes. In yet another example, a controller is configured to move a baffle within the thermocline region in response to flow rates from hot and cold pumps, which are used to pump the fluid.

  13. Energy consumption of agitators in activated sludge tanks - actual state and optimization potential.

    PubMed

    Füreder, K; Svardal, K; Frey, W; Kroiss, H; Krampe, J

    2018-02-01

    Depending on design capacity, agitators consume about 5 to 20% of the total energy consumption of a wastewater treatment plant. Based on inhabitant-specific energy consumption (kWh PE 120 -1 a -1 ; PE 120 is population equivalent, assuming 120 g chemical oxygen demand per PE per day), power density (W m -3 ) and volume-specific energy consumption (Wh m -3 d -1 ) as evaluation indicators, this paper provides a sound contribution to understanding energy consumption and energy optimization potentials of agitators. Basically, there are two ways to optimize agitator operation: the reduction of the power density and the reduction of the daily operating time. Energy saving options range from continuous mixing with low power densities of 1 W m -3 to mixing by means of short, intense energy pulses (impulse aeration, impulse stirring). However, the following correlation applies: the shorter the duration of energy input, the higher the power density on the respective volume-specific energy consumption isoline. Under favourable conditions with respect to tank volume, tank geometry, aeration and agitator position, mixing energy can be reduced to 24 Wh m -3 d -1 and below. Additionally, it could be verified that power density of agitators stands in inverse relation to tank volume.

  14. Simulation of Hanford Tank 241-C-106 Waste Release into Tank 241-Y-102

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    KP Recknagle; Y Onishi

    Waste stored in Hdord single-shell Tank 241-C-106 will be sluiced with a supernatant liquid from doubIe-shell Tank 241 -AY- 102 (AY-1 02) at the U.S. Department of Energy's Har@ord Site in Eastern Washington. The resulting slurry, containing up to 30 wtYo solids, will then be transferred to Tank AY-102. During the sluicing process, it is important to know the mass of the solids being transferred into AY- 102. One of the primary instruments used to measure solids transfer is an E+ densitometer located near the periphery of the tank at riser 15S. This study was undert.dcen to assess how wellmore » a densitometer measurement could represent the total mass of soiids transferred if a uniform lateral distribution was assumed. The study evaluated the C-1 06 slurry mixing and accumulation in Tank AY- 102 for the following five cases: Case 1: 3 wt'%0 slurry in 6.4-m AY-102 waste Case 2: 3 w-t% slurry in 4.3-m AY-102 waste Case 3: 30 wtYo slurry in 6.4-m AY-102 waste Case 4: 30 wt% slurry in 4.3-m AY-102 waste Case 5: 30 wt% slurry in 5. O-m AY-102 waste. The tirne-dependent, three-dimensional, TEMPEST computer code was used to simulate solid deposition and accumulation during the injection of the C-106 slurry into AY-102 through four injection nozzles. The TEMPEST computer code was applied previously to other Hanford tanks, AP-102, SY-102, AZ-101, SY-101, AY-102, and C-106, to model tank waste mixing with rotating pump jets, gas rollover events, waste transfer from one tank to another, and pump-out retrieval of the sluiced waste. The model results indicate that the solid depth accumulated at the densitometer is within 5% of the average depth accumulation. Thus the reading of the densitometer is expected to represent the total mass of the transferred solids reasonably well.« less

  15. External tank aerothermal design criteria verification, volume 1

    NASA Technical Reports Server (NTRS)

    Crain, William K.; Frost, Cynthia; Warmbrod, John

    1990-01-01

    The objective of this study was to produce an independent set of ascent environments which would serve as a check on the Rockwell IVBC-3 environments and provide an independent reevaluation of the thermal design criteria for the External Tank (ET). Design heating rates and loads were calculated at 367 acreage body point locations. Ascent flight regimes covered were lift-off, first stage ascent, Solid Rocket Booster (SRB) staging and second stage ascent through ET separation. The purpose here is to document these results, briefly describe the methodology used and present the environments along with a comparison with the Rockwell IVBC-3 counterpart. The methodology and environment summaries are given.

  16. Fluid-structure interaction analysis of the drop impact test for helicopter fuel tank.

    PubMed

    Yang, Xianfeng; Zhang, Zhiqiang; Yang, Jialing; Sun, Yuxin

    2016-01-01

    The crashworthiness of helicopter fuel tank is vital to the survivability of the passengers and structures. In order to understand and improve the crashworthiness of the soft fuel tank of helicopter during the crash, this paper investigated the dynamic behavior of the nylon woven fabric composite fuel tank striking on the ground. A fluid-structure interaction finite element model of the fuel tank based on the arbitrary Lagrangian-Eulerian method was constructed to elucidate the dynamic failure behavior. The drop impact tests were conducted to validate the accuracy of the numerical simulation. Good agreement was achieved between the experimental and numerical results of the impact force with the ground. The influences of the impact velocity, the impact angle, the thickness of the fuel tank wall and the volume fraction of water on the dynamic responses of the dropped fuel tank were studied. The results indicated that the corner of the fuel tank is the most vulnerable location during the impact with ground.

  17. Liquid volume monitoring based on ultrasonic sensor and Arduino microcontroller

    NASA Astrophysics Data System (ADS)

    Husni, M.; Siahaan, D. O.; Ciptaningtyas, H. T.; Studiawan, H.; Aliarham, Y. P.

    2016-04-01

    Incident of oil leakage and theft in oil tank often happens. To prevent it, the liquid volume insides the tank needs to be monitored continuously. Aim of the study is to calculate the liquid volume inside oil tank on any road condition and send the volume data and location data to the user. This research use some ultrasonic sensors (to monitor the fluid height), Bluetooth modules (to sent data from the sensors to the Arduino microcontroller), Arduino Microcontroller (to calculate the liquid volume), and also GPS/GPRS/GSM Shield module (to get location of vehicle and sent the data to the Server). The experimental results show that the accuracy rate of monitoring liquid volume inside tanker while the vehicle is in the flat road is 99.33% and the one while the vehicle is in the road with elevation angle is 84%. Thus, this system can be used to monitor the tanker position and the liquid volume in any road position continuously via web application to prevent illegal theft.

  18. 33 CFR 157.15 - Slop tanks in tank vessels.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 2 2011-07-01 2011-07-01 false Slop tanks in tank vessels. 157... (CONTINUED) POLLUTION RULES FOR THE PROTECTION OF THE MARINE ENVIRONMENT RELATING TO TANK VESSELS CARRYING OIL IN BULK Design, Equipment, and Installation § 157.15 Slop tanks in tank vessels. (a) Number. A...

  19. 33 CFR 157.15 - Slop tanks in tank vessels.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 2 2013-07-01 2013-07-01 false Slop tanks in tank vessels. 157... (CONTINUED) POLLUTION RULES FOR THE PROTECTION OF THE MARINE ENVIRONMENT RELATING TO TANK VESSELS CARRYING OIL IN BULK Design, Equipment, and Installation § 157.15 Slop tanks in tank vessels. (a) Number. A...

  20. 33 CFR 157.15 - Slop tanks in tank vessels.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 2 2012-07-01 2012-07-01 false Slop tanks in tank vessels. 157... (CONTINUED) POLLUTION RULES FOR THE PROTECTION OF THE MARINE ENVIRONMENT RELATING TO TANK VESSELS CARRYING OIL IN BULK Design, Equipment, and Installation § 157.15 Slop tanks in tank vessels. (a) Number. A...

  1. 33 CFR 157.15 - Slop tanks in tank vessels.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 2 2014-07-01 2014-07-01 false Slop tanks in tank vessels. 157... (CONTINUED) POLLUTION RULES FOR THE PROTECTION OF THE MARINE ENVIRONMENT RELATING TO TANK VESSELS CARRYING OIL IN BULK Design, Equipment, and Installation § 157.15 Slop tanks in tank vessels. (a) Number. A...

  2. 21 CFR 876.1800 - Urine flow or volume measuring system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... volume measuring system. (a) Identification. A urine flow or volume measuring system is a device that measures directly or indirectly the volume or flow of urine from a patient, either during the course of... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Urine flow or volume measuring system. 876.1800...

  3. Mixing and transient interface condensation of a liquid hydrogen tank

    NASA Technical Reports Server (NTRS)

    Lin, C. S.; Hasan, M. M.; Nyland, T. W.

    1993-01-01

    Experiments were conducted to investigate the effect of axial jet-induced mixing on the pressure reduction of a thermally stratified liquid hydrogen tank. The tank was nearly cylindrical, having a volume of about 0.144 cu m with 0.559 m in diameter and 0.711 m length. A mixer/pump unit, which had a jet nozzle outlet of 0.0221 m in diameter was located 0.178 m from the tank bottom and was installed inside the tank to generate the axial jet mixing and tank fluid circulation. Mixing tests began with the tank pressures at which the thermal stratification results in 4.9-6.2 K liquid subcooling. The mixing time and transient vapor condensation rate at the liquid-vapor interface are determined. Two mixing time correlations, based on the thermal equilibrium and pressure equilibrium, are developed and expressed as functions of system and buoyancy parameters. The limited liquid hydrogen data of the present study shows that the modified steady state condensation rate correlation may be used to predict the transient condensation rate in a mixing process if the instantaneous values of jet sub cooling and turbulence intensity at the interface are employed.

  4. TankSIM: A Cryogenic Tank Performance Prediction Program

    NASA Technical Reports Server (NTRS)

    Bolshinskiy, L. G.; Hedayat, A.; Hastings, L. J.; Moder, J. P.; Schnell, A. R.; Sutherlin, S. G.

    2015-01-01

    Accurate prediction of the thermodynamic state of the cryogenic propellants in launch vehicle tanks is necessary for mission planning and successful execution. Cryogenic propellant storage and transfer in space environments requires that tank pressure be controlled. The pressure rise rate is determined by the complex interaction of external heat leak, fluid temperature stratification, and interfacial heat and mass transfer. If the required storage duration of a space mission is longer than the period in which the tank pressure reaches its allowable maximum, an appropriate pressure control method must be applied. Therefore, predictions of the pressurization rate and performance of pressure control techniques in cryogenic tanks are required for development of cryogenic fluid long-duration storage technology and planning of future space exploration missions. This paper describes an analytical tool, Tank System Integrated Model (TankSIM), which can be used for modeling pressure control and predicting the behavior of cryogenic propellant for long-term storage for future space missions. It is written in the FORTRAN 90 language and can be compiled with any Visual FORTRAN compiler. A thermodynamic vent system (TVS) is used to achieve tank pressure control. Utilizing TankSIM, the following processes can be modeled: tank self-pressurization, boiloff, ullage venting, and mixing. Details of the TankSIM program and comparisons of its predictions with test data for liquid hydrogen and liquid methane will be presented in the final paper.

  5. Effect of nitric oxide, perfluorocarbon, and heliox on minute volume measurement and ventilator volumes delivered.

    PubMed

    Devabhaktuni, V G; Torres, A; Wilson, S; Yeh, M P

    1999-08-01

    To determine the effect of heliox, nitric oxide (NO), and perfluorocarbon on differential pressure pneumotachometer characteristics and to determine the effect of heliox on volumes delivered by the Siemens S900C (S900C), and Servo Ventilator 300 (SV300) ventilators. Prospective, laboratory study. Pulmonary laboratory of a tertiary care, nonprofit children's hospital. SV300, S900C ventilator, differential pressure pneumotachometer. Dual pneumotachometers were connected in series to a 0.5-L calibration syringe and a 1-L anesthesia bag creating a closed system. Calibration of the pneumotachometers was done in room air at ambient temperature with 100 strokes. Accepted accuracy of measured volumes is within 0.5%. Flow-conductance curves were constructed using 100 strokes each for heliox (70:30 mixture), NO, and perfluorocarbon. Expired gases of room air and a 70:30 mixture of heliox from the above ventilators were collected into a nondiffusing gas collection bag, and the volume was measured in a chain-compensated gasometer. Ten sets of 500-mL breaths (20 breaths each set) and 100-mL breaths (40 breaths each set) were collected. The paired Student's t-test was used to detect significant differences in measured volumes, with significance defined as p < .01. Volumes measured with the pneumotachometer using 25 ppm of NO, 50 ppm of NO, and perfluorocarbon were within +0.25%, -0.7%, and +0.4%, respectively (p = .155, p = .001, p = .06). Heliox decreased the conductance of the pneumotachometer, thereby increasing the measured volume by 15% (p < .001). However, heliox did not affect its linearity. Heliox had no affect on volumes delivered by the S900C. However, the SV300 delivered 7.9% less volume of heliox at a set tidal volume of 500 mL and 10.8% less at a set tidal volume of 100 mL. A 70:30 mixture of heliox caused a significantly overestimated gas volume measured and, therefore, an underestimated gas volume delivered by SV300. NO at 25 ppm and perfluorocarbon did not

  6. A urine volume measurement system

    NASA Technical Reports Server (NTRS)

    Poppendiek, H. F.; Mouritzen, G.; Sabin, C. M.

    1972-01-01

    An improved urine volume measurement system for use in the unusual environment of manned space flight is reported. The system utilizes a low time-constant thermal flowmeter. The time integral of the transient response of the flowmeter gives the urine volume during a void as it occurs. In addition, the two phase flows through the flowmeter present no problem. Developments of the thermal flowmeter and a verification of the predicted performance characteristics are summarized.

  7. 27 CFR 24.229 - Tank car and tank truck requirements.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2014-04-01 2014-04-01 false Tank car and tank truck... BUREAU, DEPARTMENT OF THE TREASURY ALCOHOL WINE Spirits § 24.229 Tank car and tank truck requirements. Railroad tank cars and tank trucks used to transport spirits for use in wine production will be constructed...

  8. 27 CFR 24.229 - Tank car and tank truck requirements.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2012-04-01 2012-04-01 false Tank car and tank truck... BUREAU, DEPARTMENT OF THE TREASURY LIQUORS WINE Spirits § 24.229 Tank car and tank truck requirements. Railroad tank cars and tank trucks used to transport spirits for use in wine production will be constructed...

  9. 27 CFR 24.229 - Tank car and tank truck requirements.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Tank car and tank truck... BUREAU, DEPARTMENT OF THE TREASURY LIQUORS WINE Spirits § 24.229 Tank car and tank truck requirements. Railroad tank cars and tank trucks used to transport spirits for use in wine production will be constructed...

  10. 27 CFR 24.229 - Tank car and tank truck requirements.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2013-04-01 2013-04-01 false Tank car and tank truck... BUREAU, DEPARTMENT OF THE TREASURY ALCOHOL WINE Spirits § 24.229 Tank car and tank truck requirements. Railroad tank cars and tank trucks used to transport spirits for use in wine production will be constructed...

  11. 27 CFR 24.229 - Tank car and tank truck requirements.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2011-04-01 2011-04-01 false Tank car and tank truck... BUREAU, DEPARTMENT OF THE TREASURY LIQUORS WINE Spirits § 24.229 Tank car and tank truck requirements. Railroad tank cars and tank trucks used to transport spirits for use in wine production will be constructed...

  12. Ideas for Policymakers: Enhancing the Impact of Think Tanks. Policy Insight, Volume 1, Issue 2

    ERIC Educational Resources Information Center

    Montoya, Silvia; Swanger, Rachel M.

    2007-01-01

    As think tanks have become more numerous, visible, and seemingly influential, scholars have begun to pay more attention to them--analyzing their characteristics, their modes of operation, and their roles in policymaking. This "Policy Insight" builds on this work and examines the role of think tanks in civil society, with an emphasis on…

  13. Factors influencing suspended solids concentrations in activated sludge settling tanks.

    PubMed

    Kim, Y; Pipes, W O

    1999-05-31

    A significant fraction of the total mass of sludge in an activated sludge process may be in the settling tanks if the sludge has a high sludge volume index (SVI) or when a hydraulic overload occurs during a rainstorm. Under those conditions, an accurate estimate of the amount of sludge in the settling tanks is needed in order to calculate the mean cell residence time or to determine the capacity of the settling tanks to store sludge. Determination of the amount of sludge in the settling tanks requires estimation of the average concentration of suspended solids in the layer of sludge (XSB) in the bottom of the settling tanks. A widely used reference recommends averaging the concentrations of suspended solids in the mixed liquor (X) and in the underflow (Xu) from the settling tanks (XSB=0. 5{X+Xu}). This method does not take into consideration other pertinent information available to an operator. This is a report of a field study which had the objective of developing a more accurate method for estimation of the XSB in the bottom of the settling tanks. By correlation analysis, it was found that only 44% of the variation in the measured XSB is related to sum of X and Xu. XSB is also influenced by the SVI, the zone settling velocity at X and the overflow and underflow rates of the settling tanks. The method of averaging X and Xu tends to overestimate the XSB. A new empirical estimation technique for XSB was developed. The estimation technique uses dimensionless ratios; i.e., the ratio of XSB to Xu, the ratio of the overflow rate to the sum of the underflow rate and the initial settling velocity of the mixed liquor and sludge compaction expressed as a ratio (dimensionless SVI). The empirical model is compared with the method of averaging X and Xu for the entire range of sludge depths in the settling tanks and for SVI values between 100 and 300 ml/g. Since the empirical model uses dimensionless ratios, the regression parameters are also dimensionless and the model can be

  14. Present-day monitoring underestimates the risk of exposure to pathogenic bacteria from cold water storage tanks

    PubMed Central

    2018-01-01

    Water-borne bacteria, found in cold water storage tanks, are causative agents for various human infections and diseases including Legionnaires’ disease. Consequently, regular microbiological monitoring of tank water is undertaken as part of the regulatory framework used to control pathogenic bacteria. A key assumption is that a small volume of water taken from under the ball valve (where there is easy access to the stored water) will be representative of the entire tank. To test the reliability of this measure, domestic water samples taken from different locations of selected tanks in London properties between November 2015 and July 2016 were analysed for TVCs, Pseudomonas and Legionella at an accredited laboratory, according to regulatory requirements. Out of ~6000 tanks surveyed, only 15 were selected based on the ability to take a water sample from the normal sampling hatch (located above the ball valve) and from the far end of the tank (usually requiring disassembly of the tank lid with risk of structural damage), and permission being granted by the site manager to undertake the additional investigation and sampling. Despite seasonal differences in water temperature, we found 100% compliance at the ball valve end. In contrast, 40% of the tanks exceeded the regulatory threshold for temperature at the far end of the tank in the summer months. Consequently, 20% of the tanks surveyed failed to trigger appropriate regulatory action based on microbiological analyses of the water sample taken under the ball valve compared to the far end sample using present-day standards. These data show that typical water samples collected for routine monitoring may often underestimate the microbiological status of the water entering the building, thereby increasing the risk of exposure to water bourne pathogens with potential public health implications. We propose that water storage tanks should be redesigned to allow access to the far end of tanks for routine monitoring purposes

  15. 33 CFR 157.19 - Cargo tank arrangement and size.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... (Os) anywhere within the length of the vessel must not exceed OA (30,000 cubic meters or (400)×(3√ DWT) whichever is greater, limited to a maximum of 40,000 cubic meters); (2) The volume of each wing tank and...

  16. A sub-tank water-saving drinking water station

    NASA Astrophysics Data System (ADS)

    Zhang, Ting

    2017-05-01

    "Thousands of boiling water" problem has been affecting people's quality of life and good health, and now most of the drinking fountains cannot effectively solve this problem, at the same time, ordinary drinking water also has high energy consumption, there are problems such as yin and yang water. Our newly designed dispenser uses a two-tank heating system. Hot water after heating, into the insulation tank for insulation, when the water tank in the water tank below a certain water level, the cold water and then enter the heating tank heating. Through the water flow, tank volume and other data to calculate the time required for each out of water, so as to determine the best position of the water level control, summed up the optimal program, so that water can be continuously uninterrupted supply. Two cans are placed up and down the way, in the same capacity on the basis of the capacity of the container, the appropriate to reduce its size, and increase the bottom radius, reduce the height of its single tank to ensure that the overall height of two cans compared with the traditional single change. Double anti-dry design, to ensure the safety of the use of drinking water. Heating tank heating circuit on and off by the tank of the float switch control, so that the water heating time from the tank water level control, to avoid the "thousands of boiling water" generation. The entry of cold water is controlled by two solenoid valves in the inlet pipe, and the opening and closing of the solenoid valve is controlled by the float switch in the two tanks. That is, the entry of cold water is determined by the water level of the two tanks. By designing the control scheme cleverly, Yin and yang water generation. Our design completely put an end to the "thousands of boiling water", yin and yang water, greatly improving the drinking water quality, for people's drinking water safety provides a guarantee, in line with the concept of green and healthy development. And in the small

  17. Volume-weighted measure for eternal inflation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Winitzki, Sergei

    2008-08-15

    I propose a new volume-weighted probability measure for cosmological 'multiverse' scenarios involving eternal inflation. The 'reheating-volume (RV) cutoff' calculates the distribution of observable quantities on a portion of the reheating hypersurface that is conditioned to be finite. The RV measure is gauge-invariant, does not suffer from the 'youngness paradox', and is independent of initial conditions at the beginning of inflation. In slow-roll inflationary models with a scalar inflaton, the RV-regulated probability distributions can be obtained by solving nonlinear diffusion equations. I discuss possible applications of the new measure to 'landscape' scenarios with bubble nucleation. As an illustration, I compute themore » predictions of the RV measure in a simple toy landscape.« less

  18. Hot water tank for use with a combination of solar energy and heat-pump desuperheating

    DOEpatents

    Andrews, John W.

    1983-06-28

    A water heater or system which includes a hot water tank having disposed therein a movable baffle to function as a barrier between the incoming volume of cold water entering the tank and the volume of heated water entering the tank which is heated by the circulation of the cold water through a solar collector and/or a desuperheater of a heat pump so as to optimize the manner in which heat is imparted to the water in accordance to the demand on the water heater or system. A supplemental heater is also provided and it is connected so as to supplement the heating of the water in the event that the solar collector and/or desuperheater cannot impart all of the desired heat input into the water.

  19. Hot water tank for use with a combination of solar energy and heat-pump desuperheating

    DOEpatents

    Andrews, J.W.

    1980-06-25

    A water heater or system is described which includes a hot water tank having disposed therein a movable baffle to function as a barrier between the incoming volume of cold water entering the tank and the volume of heated water entering the tank which is heated by the circulation of the cold water through a solar collector and/or a desuperheater of a heat pump so as to optimize the manner in which heat is imparted to the water in accordance to the demand on the water heater or system. A supplemental heater is also provided and it is connected so as to supplement the heating of the water in the event that the solar collector and/or desuperheater cannot impart all of the desired heat input into the water.

  20. Ring stability of underground toroidal tanks

    NASA Astrophysics Data System (ADS)

    Lubis, Asnawi; Su'udi, Ahmad

    2017-06-01

    The design of pressure vessels subjected to internal pressure is governed by its strength, while the design of pressure vessels subjected to external pressure is governed by its stability, which is for circular cross-section is called the ring stability. This paper presented the results of finite element study of ring stability of circular toroidal tank without stiffener under external pressure. The tank was placed underground and external pressure load from soil was simulated as pressure at the top of the vessel along 30° circumferentially. One might ask the reason for choosing toroidal rather than cylindrical tank. Preliminary finite element studies showed that toroidal shells can withstand higher external pressure than cylindrical shells. In this study, the volume of the tank was fixed for 15,000 litters. The buckling external pressure (pL) was calculated for radius ratio (R/r) of 2, 3, and 4. The corresponding cross-section radiuses were 724.3 mm, 632.7 mm, and 574.9 mm, respectively. The selected element type was SHELL 281 from the ANSYS element library. To obtain the buckling load, the arc-length method was used in the nonlinear analysis. Both material and geometric nonlinearities were activated during the analysis. The conclusion of this study is that short-radius and thin-walled toroidal shell produces higher buckling load.

  1. Testicular volume measurement: comparison of ultrasonography, orchidometry, and water displacement.

    PubMed

    Sakamoto, Hideo; Saito, Katsuyuki; Oohta, Michiya; Inoue, Katuki; Ogawa, Yoshio; Yoshida, Hideki

    2007-01-01

    To determine the accuracy of orchidometry and ultrasonography for measuring the testicular volume by comparing the resultant measurements with the actual testicular volume in humans. The testicular volume of 40 testes from 20 patients with prostate cancer (mean age +/- SD 74.5 +/- 7.5 years) was measured using the Prader orchidometer and ultrasonography before therapeutic bilateral orchiectomy. The ultrasound measurements of testicular volume were calculated using three formulas: length (L) x width (W) x height (H) x 0.52, L x W2 x 0.52, and L x W x H x 0.71. The actual testicular volumes were determined by water displacement of the surgical specimen. The mean actual testicular volume of the 40 testes was 9.3 cm3 (range 2.5 to 23.0). A strong correlation was found between the testicular volume calculated by the three ultrasound formulas and the actual volume (r = 0.910 to 0.965, P <0.0001) and was stronger than the correlation with the Prader orchidometer (r = 0.818, P <0.0001). The smallest mean difference from the actual testicular volume was observed with the formula L x W x H x 0.71, which overestimated the actual volume by 0.80 cm3 (7.42%). The measurements using the Prader orchidometer correlated with the actual testicular volume and with the testicular volume calculated using the three ultrasound formulas (r = 0.801 to 0.816, P <0.0001). However, the orchidometer measurements had the largest mean difference from the actual testicular volume (6.68 cm3, 81.7%). The results of this study have shown that measuring the testicular volume by ultrasonography is more accurate than by the Prader orchidometer, and the formula L x W x H x 0.71 was the most accurate for calculating the testicular volume.

  2. HYDRAULICS AND MIXING EVALUATIONS FOR NT-21/41 TANKS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, S.; Barnes, O.

    2014-11-17

    The hydraulic results demonstrate that pump head pressure of 20 psi recirculates about 5.6 liters/min flowrate through the existing 0.131-inch orifice when a valve connected to NT-41 is closed. In case of the valve open to NT-41, the solution flowrates to HB-Line tanks, NT-21 and NT-41, are found to be about 0.5 lpm and 5.2 lpm, respectively. The modeling calculations for the mixing operations of miscible fluids contained in the HB-Line tank NT-21 were performed by taking a three-dimensional Computational Fluid Dynamics (CFD) approach. The CFD modeling results were benchmarked against the literature results and the previous SRNL test resultsmore » to validate the model. Final performance calculations were performed for the nominal case by using the validated model to quantify the mixing time for the HB-Line tank. The results demonstrate that when a pump recirculates a solution volume of 5.7 liters every minute out of the 72-liter tank contents containing two acid solutions of 2.7 M and 0 M concentrations (i.e., water), a minimum mixing time of 1.5 hours is adequate for the tank contents to get the tank contents adequately mixed. In addition, the sensitivity results for the tank contents of 8 M existing solution and 1.5 M incoming species show that the mixing time takes about 2 hours to get the solutions mixed.« less

  3. 49 CFR 180.519 - Periodic retest and inspection of tank cars other than single-unit tank car tanks.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Periodic retest and inspection of tank cars other than single-unit tank car tanks. 180.519 Section 180.519 Transportation Other Regulations Relating to... of Tank Cars § 180.519 Periodic retest and inspection of tank cars other than single-unit tank car...

  4. Assessment of single-shell tank residual-liquid issues at Hanford Site, Washington

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Murthy, K.S.; Stout, L.A.; Napier, B.A.

    1983-06-01

    This report provides an assessment of the overall effectiveness and implications of jet pumping the interstitial liquids (IL) from single-shell tanks at Hanford. The jet-pumping program, currently in progress at Hanford, involves the planned removal of IL contained in 89 of the 149 single-shell tanks and its transfer to double-shell tanks after volume reduction by evaporation. The purpose of this report is to estimate the public and worker doses associated with (1) terminating pumping immediately, (2) pumping to a 100,000-gal limit per tank, (3) pumping to a 50,000-gal limit per tank, and (4) pumping to the maximum practical liquid removalmore » level of 30,000 gal. Assessment of the cost-effectiveness of these various levels of pumping in minimizing any undue health and safety risks to the public or worker is also presented.« less

  5. Sand filter clogging by septic tank effluent.

    PubMed

    Spychała, M; Błazejewski, R

    2003-01-01

    The aim of this study was to characterise conditions and factors affecting fine sand clogging by septic tank effluent on the basis of physical modelling. The physical model consisted of 12 sand columns dosed with sewage from one household (5 persons), preliminary treated in a septic tank. Hydraulic loadings of the sand filters were equal to 82 mm/d. The mean discharge from sand columns, measured as the effluent volume collected during 10 minutes, decreased significantly over the experiment period from 34 cm3/min in August 2000 to 20 cm3/min in August 2001 at the same temperature of about 20 degrees C. First the columns clogged almost completely after 480 days in December 2001, however six columns had remained unclogged till the end of the experiment (March 2002). The temperature had a significant impact on hydraulic conductivity. A vertical distribution of accumulated mass and biomass was investigated in partly clogged sand. Microscopic survey of the clogging layer showed a presence of live micro-organisms, residuals of dead micro-organisms, particularly pieces of small animal armour and many fibres. These particles accelerated the accumulation of solids in the upper clogging layer. The study indicated that temperature impact on the filter hydraulic conductivity was more significant for biological activity, than for sewage viscosity.

  6. POTENTIAL IMPACT OF BLENDING RESIDUAL SOLIDS FROM TANKS 18/19 MOUNDS WITH TANK 7 OPERATIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eibling, R; Erich Hansen, E; Bradley Pickenheim, B

    2007-03-29

    High level waste tanks 18F and 19F have residual mounds of waste which may require removal before the tanks can be closed. Conventional slurry pump technology, previously used for waste removal and tank cleaning, has been incapable of removing theses mounds from tanks 18F and 19F. A mechanical cleaning method has been identified that is potentially capable of removing and transferring the mound material to tank 7F for incorporation in a sludge batch for eventual disposal in high level waste glass by the Defense Waste Processing Facility. The Savannah River National Laboratory has been requested to evaluate whether the materialmore » transferred from tanks 18F/19F by the mechanical cleaning technology can later be suspended in Tank 7F by conventional slurry pumps after mixing with high level waste sludge. The proposed mechanical cleaning process for removing the waste mounds from tanks 18 and 19 may utilize a high pressure water jet-eductor that creates a vacuum to mobilize solids. The high pressure jet is also used to transport the suspended solids. The jet-eductor system will be mounted on a mechanical crawler for movement around the bottom of tanks 18 and 19. Based on physical chemical property testing of the jet-eductor system processed IE-95 zeolite and size-reduced IE-95 zeolite, the following conclusions were made: (1) The jet-eductor system processed zeolite has a mean and median particle size (volume basis) of 115.4 and 43.3 microns in water. Preferential settling of these large particles is likely. (2) The jet-eductor system processed zeolite rapidly generates settled solid yield stresses in excess of 11,000 Pascals in caustic supernates and will not be easily retrieved from Tank 7 with the existing slurry pump technology. (3) Settled size-reduced IE-95 zeolite (less than 38 microns) in caustic supernate does not generate yield stresses in excess of 600 Pascals in less than 30 days. (4) Preferential settling of size-reduced zeolite is a function of the

  7. Analysis of Tank 38H (HTF-38-17-52, -53) and Tank 43H (HTF-43-17-54, -55) Samples for Support of the Enrichment Control and Corrosion Control Programs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hay, M.; Coleman, C.; Diprete, D.

    SRNL analyzed samples from Tank 38H and Tank 43H to support ECP and CCP. The total uranium in the Tank 38H surface sample was 41.3 mg/L while the sub-surface sample was 43.5 mg/L. The Tank 43H samples contained total uranium concentrations of 28.5 mg/L in the surface sample and 28.1 mg/L in the sub-surface sample. The U-235 percentage ranged from 0.62% to 0.63% for the Tank 38H samples and Tank 43H samples. The total uranium and percent U-235 results in the table appear slightly lower than recent Tank 38H and Tank 43H uranium measurements. The plutonium results in the tablemore » show a large difference between the surface and sub-surface sample concentrations for Tank 38H. The Tank 43H plutonium results closely match the range of values measured on previous samples. The Cs-137 results for the Tank 38H surface and sub-surface samples show similar concentrations slightly higher than the concentrations measured in recent samples. The Cs-137 results for the two Tank 43H samples also show similar concentrations within the range of values measured on previous samples. The four samples show silicon concentrations somewhat lower than the previous samples with values ranging from 124 to 168 mg/L.« less

  8. Spray sealing: A breakthrough in integral fuel tank sealing technology

    NASA Astrophysics Data System (ADS)

    Richardson, Martin D.; Zadarnowski, J. H.

    1989-11-01

    In a continuing effort to increase readiness, a new approach to sealing integral fuel tanks is being developed. The technique seals potential leak sources by spraying elastomeric materials inside the tank cavity. Laboratory evaluations project an increase in aircraft supportability and reliability, an improved maintainability, decreasing acquisition and life cycle costs. Increased usable fuel volume and lower weight than conventional bladders improve performance. Concept feasibility was demonstrated on sub-scale aircraft fuel tanks. Materials were selected by testing sprayable elastomers in a fuel tank environment. Chemical stability, mechanical properties, and dynamic durability of the elastomer are being evaluated at the laboratory level and in sub-scale and full scale aircraft component fatigue tests. The self sealing capability of sprayable materials is also under development. Ballistic tests show an improved aircraft survivability, due in part to the elastomer's mechanical properties and its ability to damp vibrations. New application equipment, system removal, and repair methods are being investigated.

  9. Think Tanks

    NASA Technical Reports Server (NTRS)

    2001-01-01

    A new inspection robot from Solex Robotics Systems was designed to eliminate hazardous inspections of petroleum and chemical storage tanks. The submersible robot, named Maverick, is used to inspect the bottoms of tanks, keeping the tanks operational during inspection. Maverick is able to provide services that will make manual tank inspections obsolete. While the inspection is conducted, Maverick's remote human operators remain safe outside of the tank. The risk to human health and life is now virtually eliminated. The risk to the environment is also minimal because there is a reduced chance of spillage from emptying and cleaning the tanks, where previously, tons of pollutants were released through the process of draining and refilling.

  10. Analysis of tank 38H (HTF-38-17-18, -19) and tank 43H (HTF-43-17-20, -21) samples for support of the enrichment control and corrosion control programs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hay, M. S.; Coleman, C. J.; Diprete, D. P.

    SRNL analyzed samples from Tank 38H and Tank 43H to support ECP and CCP. The total uranium in the Tank 38H samples ranged from 53.7 mg/L for the surface sample to 57.0 mg/L in the sub-surface sample. The Tank 43H samples showed uranium concentrations of 46.2 mg/L for the surface sample and 45.7 mg/L in the sub-surface sample. The U-235 percentage was 0.63% in the Tank 38H samples and 0.62% in the Tank 43H samples. The total uranium and percent U-235 results appear consistent with recent Tank 38H and Tank 43H uranium measurements. The plutonium results for the Tank 38Hmore » surface sample are slightly higher than recent sample results, while the Tank 43H plutonium results are within the range of values measured on previous samples. The Cs-137 results for the Tank 38H surface and subsurface samples are slightly higher than the concentrations measured in recent samples. The Cs-137 results for the two Tank 43H samples are within the range of values measured on previous samples. The comparison of the sum of the cations in each sample versus the sum of the anions shows a difference of 23% for the Tank 38H surface sample and 18% for the Tank 43H surface sample. The four samples show silicon concentrations somewhat lower than the previous samples with values ranging from 80.2 to 105 mg/L.« less

  11. Dual Tank Fuel System

    DOEpatents

    Wagner, Richard William; Burkhard, James Frank; Dauer, Kenneth John

    1999-11-16

    A dual tank fuel system has primary and secondary fuel tanks, with the primary tank including a filler pipe to receive fuel and a discharge line to deliver fuel to an engine, and with a balance pipe interconnecting the primary tank and the secondary tank. The balance pipe opens close to the bottom of each tank to direct fuel from the primary tank to the secondary tank as the primary tank is filled, and to direct fuel from the secondary tank to the primary tank as fuel is discharged from the primary tank through the discharge line. A vent line has branches connected to each tank to direct fuel vapor from the tanks as the tanks are filled, and to admit air to the tanks as fuel is delivered to the engine.

  12. Parametric Weight Study of Cryogenic Metallic Tanks for the ``Bimodal'' NTR Mars Vehicle Concept

    NASA Astrophysics Data System (ADS)

    Kosareo, Daniel N.; Roche, Joseph M.

    2006-01-01

    A parametric weight assessment of large cryogenic metallic tanks was conducted using the design optimization capabilities in the ANSYS ® finite element analysis code. This analysis was performed to support the sizing of a ``bimodal'' nuclear thermal rocket (NTR) Mars vehicle concept developed at the NASA Glenn Research Center. The tank design study was driven by two load conditions: an in-line, ``Shuttle-derived'' heavy-lift launch with the tanks filled and pressurized, and a burst-test pressure. The main tank structural arrangement is a state-of-the art metallic construction which uses an aluminum-lithium alloy stiffened internally with a ring and stringer framework. The tanks must carry liquid hydrogen in separate launches to orbit where all vehicle components will dock and mate. All tank designs stayed within the available mass and payload volume limits of both the in-line heavy lift and Shuttle derived launch vehicles. Weight trends were developed over a range of tank lengths with varying stiffener cross-sections and tank wall thicknesses. The object of this parametric study was to verify that the proper mass was allocated for the tanks in the overall vehicle sizing model. This paper summarizes the tank weights over a range of tank lengths.

  13. IceTop tank response to muons

    NASA Astrophysics Data System (ADS)

    Demirörs, L.; Beimforde, M.; Eisch, J.; Madsen, J.; Niessen, P.; Spiczak, G.M.; Stoyanov, S.; Tilav, S

    The calibration of the surface air shower array of IceCube - IceTop is based on identifying and understanding the muon response of each IceTop tank. Special calibration runs are carried out throughout the year and are supplemented with austral season measurements with tagging telescope for vertical muons. The vertical equivalent muon (VEM) charge value of each tank is determined and monitored by keeping track of its variation with time and temperature. We also study muons that stop and decay in the tank. The energy spectrum of the electrons from muon decay (Michel spectrum) is well known with maximum energy of 53 MeV. This energy is usually deposited inside the tank and can also be used as a calibration tool. We use both these spectra and compare them to a Monte Carlo simulation to gain a better understanding of the tank properties.

  14. Relative Evaluation of the Independent Volume Measures of Caverns

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    MUNSON,DARRELL E.

    2000-08-01

    Throughout the construction and operation of the caverns of the Strategic Petroleum Reserve (SPR), three types of cavern volume measurements have been maintained. These are: (1) the calculated solution volume determined during initial construction by solution mining and any subsequent solutioning during oil transfers, (2) the calculated sonar volume determined through sonar surveys of the cavern dimensions, and (3) the direct metering of oil to determine the volume of the cavern occupied by the oil. The objective of this study is to compare these measurements to each other and determine, if possible, the uncertainties associated with a given type ofmore » measurement. Over time, each type of measurement has acquired a customary, or an industry accepted, stated uncertainty. This uncertainty is not necessarily the result of a technical analysis. Ultimately there is one definitive quantity, the oil volume measure by the oil custody transfer meters, taken by all parties to the transfer as the correct ledger amount and for which the SPR Project is accountable. However, subsequent transfers within a site may not be with meters of the same accuracy. In this study, a very simple theory of the perfect relationship is used to evaluate the correlation (deviation) of the various measures. This theory permits separation of uncertainty and bias. Each of the four SPR sites are examined, first with comparisons between the calculated solution volumes and the sonar volumes determined during construction, then with comparisons of the oil inventories and the sonar volumes obtained either by surveying through brine prior to oil filling or through the oil directly.« less

  15. RESIDUAL LIMB VOLUME CHANGE: SYSTEMATIC REVIEW OF MEASUREMENT AND MANAGEMENT

    PubMed Central

    Sanders, JE; Fatone, S

    2014-01-01

    Management of residual limb volume affects decisions regarding timing of fit of the first prosthesis, when a new prosthetic socket is needed, design of a prosthetic socket, and prescription of accommodation strategies for daily volume fluctuations. The purpose of this systematic review was to assess what is known about measurement and management of residual limb volume change in persons with lower-limb amputation. Publications that met inclusion criteria were grouped into three categories: (I) descriptions of residual limb volume measurement techniques; (II) studies on people with lower-limb amputation investigating the effect of residual limb volume change on clinical care; and (III) studies of residual limb volume management techniques or descriptions of techniques for accommodating or controlling residual limb volume. The review showed that many techniques for the measurement of residual limb volume have been described but clinical use is limited largely because current techniques lack adequate resolution and in-socket measurement capability. Overall, there is limited evidence regarding the management of residual limb volume, and the evidence available focuses primarily on adults with trans-tibial amputation in the early post-operative phase. While we can draw some insights from the available research about residual limb volume measurement and management, further research is required. PMID:22068373

  16. 33 CFR 157.15 - Slop tanks in tank vessels.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... tank. (2) A new vessel of 70,000 tons DWT or more must have at least two slop tanks. (b) Capacity. Slop tanks must have the total capacity to retain oily mixtures from cargo tank washings, oil residue, and ballast water containing an oily mixture of 3 percent or more of the oil carrying capacity. Two percent...

  17. TANK 21 AND TANK 24 BLEND AND FEED STUDY: BLENDING TIMES, SETTLING TIMES, AND TRANSFERS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, S.; Leishear, R.; Poirier, M.

    2012-05-31

    the solid particles have higher density and/or larger size than indicated by previous analysis of SRS sludge and sludge simulants. (5) Tank 21 waste characterization, laboratory settling tests, and additional field turbidity measurements during mixing evolutions are recommended to better understand potential risk for extended (> 60 days) settling times in Tank 21.« less

  18. Compatibility of the Radio Frequency Mass Gauge with Composite Tanks

    NASA Technical Reports Server (NTRS)

    Zimmerli, Greg; Mueller, Carl

    2015-01-01

    The radio frequency mass gauge (RFMG) is a low-gravity propellant quantity gauge being developed at NASA for possible use in long-duration space missions utilizing cryogenic propellants. As part of the RFMG technology development process, we evaluated the compatibility of the RFMG with a graphite-epoxy composite material used to construct propellant tanks. The key material property that can affect compatibility with the RFMG is the electrical conductivity. Using samples of 8552IM7 graphite-epoxy composite, we characterized the resistivity and reflectivity over a range of frequencies. An RF impedance analyzer was used to characterize the out-of-plane electrical properties (along the sample thickness) in the frequency range 10 to 1800 MHZ. The resistivity value at 500 MHz was 4.8 ohm-cm. Microwave waveguide measurements of samples in the range 1.7 2.6 GHz, performed by inserting the samples into a WR-430 waveguide, showed reflectivity values above 98. Together, these results suggested that a tank constructed from graphite-epoxy composite would produce good quality electromagnetic tank modes, which is needed for the RFMG. This was verified by room-temperature measurements of the electromagnetic modes of a 2.4 m diameter tank constructed by Boeing from similar graphite-epoxy composite material. The quality factor Q of the tank electromagnetic modes, measured via RF reflection measurements from an antenna mounted in the tank, was typically in the range 400 Q 3000. The good quality modes observed in the tank indicate that the RFMG is compatible with graphite-epoxy tanks, and thus the RFMG could be used as a low-gravity propellant quantity gauge in such tanks filled with cryogenic propellants.

  19. Tank System Integrated Model: A Cryogenic Tank Performance Prediction Program

    NASA Technical Reports Server (NTRS)

    Bolshinskiy, L. G.; Hedayat, A.; Hastings, L. J.; Sutherlin, S. G.; Schnell, A. R.; Moder, J. P.

    2017-01-01

    Accurate predictions of the thermodynamic state of the cryogenic propellants, pressurization rate, and performance of pressure control techniques in cryogenic tanks are required for development of cryogenic fluid long-duration storage technology and planning for future space exploration missions. This Technical Memorandum (TM) presents the analytical tool, Tank System Integrated Model (TankSIM), which can be used for modeling pressure control and predicting the behavior of cryogenic propellant for long-term storage for future space missions. Utilizing TankSIM, the following processes can be modeled: tank self-pressurization, boiloff, ullage venting, mixing, and condensation on the tank wall. This TM also includes comparisons of TankSIM program predictions with the test data andexamples of multiphase mission calculations.

  20. Measurement of lung volumes from supine portable chest radiographs.

    PubMed

    Ries, A L; Clausen, J L; Friedman, P J

    1979-12-01

    Lung volumes in supine nonambulatory patients are physiological parameters often difficult to measure with current techniques (plethysmograph, gas dilution). Existing radiographic methods for measuring lung volumes require standard upright chest radiographs. Accordingly, in 31 normal supine adults, we determined helium-dilution functional residual and total lung capacities and measured planimetric lung field areas (LFA) from corresponding portable anteroposterior and lateral radiographs. Low radiation dose methods, which delivered less than 10% of that from standard portable X-ray technique, were utilized. Correlation between lung volume and radiographic LFA was highly significant (r = 0.96, SEE = 10.6%). Multiple-step regressions using height and chest diameter correction factors reduced variance, but weight and radiographic magnification factors did not. In 17 additional subjects studied for validation, the regression equations accurately predicted radiographic lung volume. Thus, this technique can provide accurate and rapid measurement of lung volume in studies involving supine patients.

  1. ANNUAL RADIOACTIVE WASTE TANK INSPECTION PROGRAM 2010

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    West, B.; Waltz, R.

    Aqueous radioactive wastes from Savannah River Site (SRS) separations and vitrification processes are contained in large underground carbon steel tanks. Inspections made during 2010 to evaluate these vessels and other waste handling facilities along with evaluations based on data from previous inspections are the subject of this report. The 2010 inspection program revealed that the structural integrity and waste confinement capability of the Savannah River Site waste tanks were maintained. All inspections scheduled per SRR-LWE-2009-00138, HLW Tank Farm Inspection Plan for 2010, were completed. Ultrasonic measurements (UT) performed in 2010 met the requirements of C-ESG-00006, In-Service Inspection Program for Highmore » Level Waste Tanks, Rev. 3, and WSRC-TR-2002-00061, Rev.6. UT inspections were performed on Tanks 30, 31 and 32 and the findings are documented in SRNL-STI-2010-00533, Tank Inspection NDE Results for Fiscal Year 2010, Waste Tanks 30, 31 and 32. A total of 5824 photographs were made and 1087 visual and video inspections were performed during 2010. Ten new leaksites at Tank 5 were identified in 2010. The locations of these leaksites are documented in C-ESR-G-00003, SRS High Level Waste Tank Leaksite Information, Rev.5. Ten leaksites at Tank 5 were documented during tank wall/annulus cleaning activities. None of these new leaksites resulted in a release to the environment. The leaksites were documented during wall cleaning activities and the waste nodules associated with the leaksites were washed away. Previously documented leaksites were reactivated at Tank 12 during waste removal activities.« less

  2. Mining volume measurement system

    NASA Technical Reports Server (NTRS)

    Heyman, Joseph Saul (Inventor)

    1988-01-01

    In a shaft with a curved or straight primary segment and smaller off-shooting segments, at least one standing wave is generated in the primary segment. The shaft has either an open end or a closed end and approximates a cylindrical waveguide. A frequency of a standing wave that represents the fundamental mode characteristic of the primary segment can be measured. Alternatively, a frequency differential between two successive harmonic modes that are characteristic of the primary segment can be measured. In either event, the measured frequency or frequency differential is characteristic of the length and thus the volume of the shaft based on length times the bore area.

  3. Experimental Investigation of Jet-Induced Mixing of a Large Liquid Hydrogen Storage Tank

    NASA Technical Reports Server (NTRS)

    Lin, C. S.; Hasan, M. M.; Vandresar, N. T.

    1994-01-01

    Experiments have been conducted to investigate the effect of fluid mixing on the depressurization of a large liquid hydrogen storage tank. The test tank is approximately ellipsoidal, having a volume of 4.89 m(exp 3) and an average wall heat flux of 4.2 W/m(exp 2) due to external heat input. A mixer unit was installed near the bottom of the tank to generate an upward directed axial jet flow normal to the liquid-vapor interface. Mixing tests were initiated after achieving thermally stratified conditions in the tank either by the introduction of hydrogen gas into the tank or by self-pressurization due to ambient heat leak through the tank wall. The subcooled liquid jet directed towards the liquid-vapor interface by the mixer induced vapor condensation and caused a reduction in tank pressure. Tests were conducted at two jet submergence depths for jet Reynolds numbers from 80,000 to 495,000 and Richardson numbers from 0.014 to 0.52. Results show that the rate of tank pressure change is controlled by the competing effects of subcooled jet flow and the free convection boundary layer flow due to external tank wall heating. It is shown that existing correlations for mixing time and vapor condensation rate based on small scale tanks may not be applicable to large scale liquid hydrogen systems.

  4. 21 CFR 876.1800 - Urine flow or volume measuring system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Urine flow or volume measuring system. 876.1800... (CONTINUED) MEDICAL DEVICES GASTROENTEROLOGY-UROLOGY DEVICES Diagnostic Devices § 876.1800 Urine flow or volume measuring system. (a) Identification. A urine flow or volume measuring system is a device that...

  5. 21 CFR 876.1800 - Urine flow or volume measuring system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Urine flow or volume measuring system. 876.1800... (CONTINUED) MEDICAL DEVICES GASTROENTEROLOGY-UROLOGY DEVICES Diagnostic Devices § 876.1800 Urine flow or volume measuring system. (a) Identification. A urine flow or volume measuring system is a device that...

  6. 21 CFR 876.1800 - Urine flow or volume measuring system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Urine flow or volume measuring system. 876.1800... (CONTINUED) MEDICAL DEVICES GASTROENTEROLOGY-UROLOGY DEVICES Diagnostic Devices § 876.1800 Urine flow or volume measuring system. (a) Identification. A urine flow or volume measuring system is a device that...

  7. 21 CFR 876.1800 - Urine flow or volume measuring system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Urine flow or volume measuring system. 876.1800... (CONTINUED) MEDICAL DEVICES GASTROENTEROLOGY-UROLOGY DEVICES Diagnostic Devices § 876.1800 Urine flow or volume measuring system. (a) Identification. A urine flow or volume measuring system is a device that...

  8. 49 CFR 179.400 - General specification applicable to cryogenic liquid tank car tanks.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... liquid tank car tanks. 179.400 Section 179.400 Transportation Other Regulations Relating to... MATERIALS REGULATIONS SPECIFICATIONS FOR TANK CARS Specification for Cryogenic Liquid Tank Car Tanks and... liquid tank car tanks. ...

  9. 49 CFR 179.100 - General specifications applicable to pressure tank car tanks.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... car tanks. 179.100 Section 179.100 Transportation Other Regulations Relating to Transportation...) SPECIFICATIONS FOR TANK CARS Specifications for Pressure Tank Car Tanks (Classes DOT-105, 109, 112, 114 and 120) § 179.100 General specifications applicable to pressure tank car tanks. ...

  10. 49 CFR 179.100 - General specifications applicable to pressure tank car tanks.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... car tanks. 179.100 Section 179.100 Transportation Other Regulations Relating to Transportation...) SPECIFICATIONS FOR TANK CARS Specifications for Pressure Tank Car Tanks (Classes DOT-105, 109, 112, 114 and 120) § 179.100 General specifications applicable to pressure tank car tanks. ...

  11. 49 CFR 179.100 - General specifications applicable to pressure tank car tanks.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... car tanks. 179.100 Section 179.100 Transportation Other Regulations Relating to Transportation... REGULATIONS SPECIFICATIONS FOR TANK CARS Specifications for Pressure Tank Car Tanks (Classes DOT-105, 109, 112, 114 and 120) § 179.100 General specifications applicable to pressure tank car tanks. ...

  12. 49 CFR 179.100 - General specifications applicable to pressure tank car tanks.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... car tanks. 179.100 Section 179.100 Transportation Other Regulations Relating to Transportation...) SPECIFICATIONS FOR TANK CARS Specifications for Pressure Tank Car Tanks (Classes DOT-105, 109, 112, 114 and 120) § 179.100 General specifications applicable to pressure tank car tanks. ...

  13. Initial parametric study of the flammability of plume releases in Hanford waste tanks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Antoniak, Z.I.; Recknagle, K.P.

    This study comprised systematic analyses of waste tank headspace flammability following a plume-type of gas release from the waste. First, critical parameters affecting plume flammability were selected, evaluated, and refined. As part of the evaluation the effect of ventilation (breathing) air inflow on the convective flow field inside the tank headspace was assessed, and the magnitude of the so-called {open_quotes}numerical diffusion{close_quotes} on numerical simulation accuracy was investigated. Both issues were concluded to be negligible influences on predicted flammable gas concentrations in the tank headspace. Previous validation of the TEMPEST code against experimental data is also discussed, with calculated results inmore » good agreements with experimental data. Twelve plume release simulations were then run, using release volumes and flow rates that were thought to cover the range of actual release volumes and rates. The results indicate that most plume-type releases remain flammable only during the actual release ends. Only for very large releases representing a significant fraction of the volume necessary to make the entire mixed headspace flammable (many thousands of cubic feet) can flammable concentrations persist for several hours after the release ends. However, as in the smaller plumes, only a fraction of the total release volume is flammable at any one time. The transient evolution of several plume sizes is illustrated in a number of color contour plots that provide insight into plume mixing behavior.« less

  14. Single launch lunar habitat derived from an NSTS external tank

    NASA Technical Reports Server (NTRS)

    King, Charles B.; Butterfield, Ansel J.; Hypes, Warren D.; Nealy, John E.; Simonsen, Lisa C.

    1990-01-01

    A concept for using the spent external tank from a National Space Transportation System (NSTS) to derive a lunar habitat is described. The external tank is carried into low Earth orbit where the oxygen tank-intertank subassembly is separated from the hydrogen tank, berthed to Space Station Freedom and the subassembly outfitted as a 12-person lunar habitat using extravehicular activity (EVA) and intravehicular activity (IVA). A single launch of the NSTS orbiter can place the external tank in LEO, provide orbiter astronauts for disassembly of the external tank, and transport the required subsystem hardware for outfitting the lunar habitat. An estimate of the astronauts' EVA and IVA is provided. The liquid oxygen intertank modifications utilize existing structures and openings for man access without compromising the structural integrity of the tank. The modifications include installation of living quarters, instrumentation, and an airlock. Feasibility studies of the following additional systems include micrometeoroid and radiation protection, thermal control, environmental control and life support, and propulsion. The converted lunar habitat is designed for unmanned transport and autonomous soft landing on the lunar surface without need for site preparation. Lunar regolith is used to fill the micrometeoroid shield volume for radiation protection using a conveyer. The lunar habitat concept is considered to be feasible by the year 2000 with the concurrent development of a space transfer vehicle and a lunar lander for crew changeover and resupply.

  15. 49 CFR 179.102 - Special commodity requirements for pressure tank car tanks.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... car tanks. 179.102 Section 179.102 Transportation Other Regulations Relating to Transportation... REGULATIONS SPECIFICATIONS FOR TANK CARS Specifications for Pressure Tank Car Tanks (Classes DOT-105, 109, 112, 114 and 120) § 179.102 Special commodity requirements for pressure tank car tanks. (a) In addition to...

  16. A single launch lunar habitat derived from an NSTS external tank

    NASA Technical Reports Server (NTRS)

    King, Charles B.; Butterfield, Ansel J.; Hypes, Warren D.; Nealy, John E.; Simonsen, Lisa C.

    1990-01-01

    A concept for using a spent External Tank from the National Space Transportation System (Shuttle) to derive a Lunar habitat is described. The concept is that the External Tank is carried into Low-Earth Orbit (LEO) where the oxygen tank-intertank subassembly is separated from the hydrogen tank, berthed to Space Station Freedom and the subassembly outfitted as a 12-person Lunar habitat using extravehicular activity (EVA) and intravehicular activity (IVA). A single launch of the NSTS Orbiter can place the External Tank in LEO, provide orbiter astronauts for disassembly of the External Tank, and transport the required subsystem hardware for outfitting the Lunar habitat. An estimate of the astronauts' EVA and IVA is provided. The liquid oxygen tank-intertank modifications utilize existing structures and openings for human access without compromising the structural integrity of the tank. The modification includes installation of living quarters, instrumentation, and an air lock. Feasibility studies of the following additional systems include micrometeoroid and radiation protection, thermal-control, environmental-control and life-support, and propulsion. The converted Lunar habitat is designed for unmanned transport and autonomous soft landing on the Lunar surface without need for site preparation. Lunar regolith is used to fill the micrometeoroid shield volume for radiation protection using a conveyor. The Lunar habitat concept is considered to be feasible by the year 2000 with the concurrent development of a space transfer vehicle and a Lunar lander for crew changeover and resupply.

  17. Measurement of absolute lung volumes by imaging techniques.

    PubMed

    Clausen, J

    1997-10-01

    In this paper, the techniques available for estimating total lung capacities from standard chest radiographs in children and infants as well as adults are reviewed. These techniques include manual measurements using ellipsoid and planimetry techniques as well as computerized systems. Techniques are also available for making radiographic lung volume measurements from portable chest radiographs. There are inadequate data in the literature to support recommending one specific technique over another. Though measurements of lung volumes by radiographic, plethysmographic, gas dilution or washout techniques result in remarkably similar mean results when groups of normal subjects are tested, in patients with disease, the results of these different basic measurement techniques can differ significantly. Computed tomographic and magnetic resonance techniques can also be used to measure absolute lung volumes and offer the theoretical advantages that the results in individual subjects are less affected by variances of thoracic shape than are measurements made using conventional chest radiographs.

  18. 49 CFR 179.102 - Special commodity requirements for pressure tank car tanks.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... car tanks. 179.102 Section 179.102 Transportation Other Regulations Relating to Transportation...) SPECIFICATIONS FOR TANK CARS Specifications for Pressure Tank Car Tanks (Classes DOT-105, 109, 112, 114 and 120) § 179.102 Special commodity requirements for pressure tank car tanks. (a) In addition to §§ 179.100 and...

  19. 49 CFR 179.102 - Special commodity requirements for pressure tank car tanks.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... car tanks. 179.102 Section 179.102 Transportation Other Regulations Relating to Transportation...) SPECIFICATIONS FOR TANK CARS Specifications for Pressure Tank Car Tanks (Classes DOT-105, 109, 112, 114 and 120) § 179.102 Special commodity requirements for pressure tank car tanks. (a) In addition to §§ 179.100 and...

  20. 49 CFR 179.102 - Special commodity requirements for pressure tank car tanks.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... car tanks. 179.102 Section 179.102 Transportation Other Regulations Relating to Transportation...) SPECIFICATIONS FOR TANK CARS Specifications for Pressure Tank Car Tanks (Classes DOT-105, 109, 112, 114 and 120) § 179.102 Special commodity requirements for pressure tank car tanks. (a) In addition to §§ 179.100 and...

  1. Engineering report single-shell tank farms interim measures to limit infiltration through the vadose zone

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    HAASS, C.C.

    1999-10-14

    Identifies, evaluates and recommends interim measures for reducing or eliminating water sources and preferential pathways within the vadose zone of the single-shell tank farms. Features studied: surface water infiltration and leaking water lines that provide recharge moisture, and wells that could provide pathways for contaminant migration. An extensive data base, maps, recommended mitigations, and rough order of magnitude costs are included.

  2. Effluent migration from septic tank systems in two different lithologies, Broward County, Florida

    USGS Publications Warehouse

    Waller, B.G.; Howie, Barbara; Causaras, C.R.

    1987-01-01

    Two septic tank test sites, one in sand and one in limestone, in Broward County, Florida, were analyzed for effluent migration. Groundwater from shallow wells, both in background areas and hydraulically down-gradient of the septic tank system, was sampled during a 16-month period from April 1983 through August 1984. Water quality indicators were used to determine the effluent affected zone near the septic tank systems. Specific conductance levels and concentrations of chloride, sulfate, ammonium, and nitrate indicated effluent movement primarily in a vertical direction with abrupt dilution as it moved down-gradient. Effluent was detected in the sand to a depth more than 20 ft below the septic tank outlet, but was diluted to near background conditions 50 ft down-gradient from the tank. Effluent in the limestone was detected in all three observation wells to depths exceeding 25 ft below the septic tank outlet and was diluted, but still detectable, 40 ft down-gradient. The primary controls on effluent movement from septic tank systems in Broward County are the lithology and layering of the geologic materials, hydraulic gradients, and the volume and type of use the system receives. (Author 's abstract)

  3. Flow rate measurement in a volume

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Galvez, Cristhian

    A system for measuring flow rate within a volume includes one or more transmission devices that transmit one or more signals through fluid contained within the volume. The volume may be bounded, at least in part, by an outer structure and by an object at least partially contained within the outer structure. A transmission device located at a first location of the outer structure transmits a first signal to a second location of the outer structure. A second signal is transmitted through the fluid from the second location to a third location of the outer structure. The flow rate ofmore » the fluid within the volume may be determined based, at least in part, on the time of flight of both the first signal and the second signal.« less

  4. Development of an energy storage tank model

    NASA Astrophysics Data System (ADS)

    Buckley, Robert Christopher

    A linearized, one-dimensional finite difference model employing an implicit finite difference method for energy storage tanks is developed, programmed with MATLAB, and demonstrated for different applications. A set of nodal energy equations is developed by considering the energy interactions on a small control volume. The general method of solving these equations is described as are other features of the simulation program. Two modeling applications are presented: the first using a hot water storage tank with a solar collector and an absorption chiller to cool a building in the summer, the second using a molten salt storage system with a solar collector and steam power plant to generate electricity. Recommendations for further study as well as all of the source code generated in the project are also provided.

  5. Experimental study of foam-insulated liquified-gas tanks

    NASA Technical Reports Server (NTRS)

    Reynolds, Thaine W; Weiss, Solomon

    1957-01-01

    Experiments with liquid nitrogen and liquid hydrogen is styrofoam-insulated tanks have indicated good agreement between measured and calculated heat-leak rates when the insulation was formed from a single block of material. In a large tank installation where the insulation was applied in sections without sealing the joints, the measured heat leak was about 2 and 1/2 times the calculated value.

  6. 27 CFR 24.230 - Examination of tank car or tank truck.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2014-04-01 2014-04-01 false Examination of tank car or... TRADE BUREAU, DEPARTMENT OF THE TREASURY ALCOHOL WINE Spirits § 24.230 Examination of tank car or tank truck. Upon arrival of a tank car or tank truck at the bonded wine premises, the proprietor shall...

  7. 27 CFR 24.230 - Examination of tank car or tank truck.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2013-04-01 2013-04-01 false Examination of tank car or... TRADE BUREAU, DEPARTMENT OF THE TREASURY ALCOHOL WINE Spirits § 24.230 Examination of tank car or tank truck. Upon arrival of a tank car or tank truck at the bonded wine premises, the proprietor shall...

  8. 27 CFR 24.230 - Examination of tank car or tank truck.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2012-04-01 2012-04-01 false Examination of tank car or... TRADE BUREAU, DEPARTMENT OF THE TREASURY LIQUORS WINE Spirits § 24.230 Examination of tank car or tank truck. Upon arrival of a tank car or tank truck at the bonded wine premises, the proprietor shall...

  9. 27 CFR 24.230 - Examination of tank car or tank truck.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Examination of tank car or... TRADE BUREAU, DEPARTMENT OF THE TREASURY LIQUORS WINE Spirits § 24.230 Examination of tank car or tank truck. Upon arrival of a tank car or tank truck at the bonded wine premises, the proprietor shall...

  10. 27 CFR 24.230 - Examination of tank car or tank truck.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2011-04-01 2011-04-01 false Examination of tank car or... TRADE BUREAU, DEPARTMENT OF THE TREASURY LIQUORS WINE Spirits § 24.230 Examination of tank car or tank truck. Upon arrival of a tank car or tank truck at the bonded wine premises, the proprietor shall...

  11. ANNUAL RADIOACTIVE WASTE TANK INSPECTION PROGRAM - 2011

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    West, B.; Waltz, R.

    2012-06-21

    Aqueous radioactive wastes from Savannah River Site (SRS) separations and vitrification processes are contained in large underground carbon steel tanks. Inspections made during 2011 to evaluate these vessels and other waste handling facilities along with evaluations based on data from previous inspections are the subject of this report. The 2011 inspection program revealed that the structural integrity and waste confinement capability of the Savannah River Site waste tanks were maintained. All inspections scheduled per SRR-LWE-2011-00026, HLW Tank Farm Inspection Plan for 2011, were completed. Ultrasonic measurements (UT) performed in 2011 met the requirements of C-ESR-G-00006, In-Service Inspection Program for Highmore » Level Waste Tanks, Rev. 3, and WSRC-TR-2002-00061, Rev.6. UT inspections were performed on Tanks 25, 26 and 34 and the findings are documented in SRNL-STI-2011-00495, Tank Inspection NDE Results for Fiscal Year 2011, Waste Tanks 25, 26, 34 and 41. A total of 5813 photographs were made and 835 visual and video inspections were performed during 2011. A potential leaksite was discovered at Tank 4 during routine annual inspections performed in 2011. The new crack, which is above the allowable fill level, resulted in no release to the environment or tank annulus. The location of the crack is documented in C-ESR-G-00003, SRS High Level Waste Tank Leaksite Information, Rev.6.« less

  12. Measures of anxiety in zebrafish (Danio rerio): dissociation of black/white preference and novel tank test.

    PubMed

    Blaser, Rachel E; Rosemberg, Denis B

    2012-01-01

    The effects of wall color stimuli on diving, and the effects of depth stimuli on scototaxis, were assessed in zebrafish. Three groups of fish were confined to a black, a white, or a transparent tank, and tested for depth preference. Two groups of fish were confined to a deep or a shallow tank, and tested for black-white preference. As predicted, fish preferred the deep half of a split-tank over the shallow half, and preferred the black half of a black/white tank over the white half. Results indicated that the tank wall color significantly affected depth preference, with the transparent tank producing the strongest depth preference and the black tank producing the weakest preference. Tank depth, however, did not significantly affect color preference. Additionally, wall color significantly affected shuttling and immobility, while depth significantly affected shuttling and thigmotaxis. These results are consistent with previous indications that the diving response and scototaxis may reflect dissociable mechanisms of behavior. We conclude that the two tests are complementary rather than interchangeable, and that further research on the motivational systems underlying behavior in each of the two tests is needed.

  13. 49 CFR 179.500 - Specification DOT-107A * * * * seamless steel tank car tanks.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... car tanks. 179.500 Section 179.500 Transportation Other Regulations Relating to Transportation...) SPECIFICATIONS FOR TANK CARS Specification for Cryogenic Liquid Tank Car Tanks and Seamless Steel Tanks (Classes DOT-113 and 107A) § 179.500 Specification DOT-107A * * * * seamless steel tank car tanks. ...

  14. 49 CFR 179.101 - Individual specification requirements applicable to pressure tank car tanks.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... to pressure tank car tanks. 179.101 Section 179.101 Transportation Other Regulations Relating to... MATERIALS REGULATIONS SPECIFICATIONS FOR TANK CARS Specifications for Pressure Tank Car Tanks (Classes DOT... tank car tanks. Editorial Note: At 66 FR 45186, Aug. 28, 2001, an amendment published amending a table...

  15. 49 CFR 179.400 - General specification applicable to cryogenic liquid tank car tanks.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... liquid tank car tanks. 179.400 Section 179.400 Transportation Other Regulations Relating to... (CONTINUED) SPECIFICATIONS FOR TANK CARS Specification for Cryogenic Liquid Tank Car Tanks and Seamless Steel Tanks (Classes DOT-113 and 107A) § 179.400 General specification applicable to cryogenic liquid tank car...

  16. 49 CFR 179.500 - Specification DOT-107A * * * * seamless steel tank car tanks.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... car tanks. 179.500 Section 179.500 Transportation Other Regulations Relating to Transportation... REGULATIONS SPECIFICATIONS FOR TANK CARS Specification for Cryogenic Liquid Tank Car Tanks and Seamless Steel Tanks (Classes DOT-113 and 107A) § 179.500 Specification DOT-107A * * * * seamless steel tank car tanks. ...

  17. 49 CFR 179.500 - Specification DOT-107A * * * * seamless steel tank car tanks.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... car tanks. 179.500 Section 179.500 Transportation Other Regulations Relating to Transportation...) SPECIFICATIONS FOR TANK CARS Specification for Cryogenic Liquid Tank Car Tanks and Seamless Steel Tanks (Classes DOT-113 and 107A) § 179.500 Specification DOT-107A * * * * seamless steel tank car tanks. ...

  18. 49 CFR 179.500 - Specification DOT-107A * * * * seamless steel tank car tanks.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... car tanks. 179.500 Section 179.500 Transportation Other Regulations Relating to Transportation...) SPECIFICATIONS FOR TANK CARS Specification for Cryogenic Liquid Tank Car Tanks and Seamless Steel Tanks (Classes DOT-113 and 107A) § 179.500 Specification DOT-107A * * * * seamless steel tank car tanks. ...

  19. 49 CFR 179.400 - General specification applicable to cryogenic liquid tank car tanks.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... liquid tank car tanks. 179.400 Section 179.400 Transportation Other Regulations Relating to... (CONTINUED) SPECIFICATIONS FOR TANK CARS Specification for Cryogenic Liquid Tank Car Tanks and Seamless Steel Tanks (Classes DOT-113 and 107A) § 179.400 General specification applicable to cryogenic liquid tank car...

  20. 49 CFR 179.400 - General specification applicable to cryogenic liquid tank car tanks.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... liquid tank car tanks. 179.400 Section 179.400 Transportation Other Regulations Relating to... (CONTINUED) SPECIFICATIONS FOR TANK CARS Specification for Cryogenic Liquid Tank Car Tanks and Seamless Steel Tanks (Classes DOT-113 and 107A) § 179.400 General specification applicable to cryogenic liquid tank car...

  1. STS-133/ET-137 Tanking Test Photogrammetry Assessment

    NASA Technical Reports Server (NTRS)

    Oliver, Stanley T.

    2012-01-01

    Following the launch scrub of Space Shuttle mission STS-133 on November 5, 2010, an anomalous condition of cracked and raised thermal protection system (TPS) foam was observed on the External Tank (ET). Subsequent dissection of the affected TPS region revealed cracks in the feet of two Intertank (IT) metallic stringers. An extensive investigation into the cause(s) and corrective action(s) for the cracked stringers was initiated, involving a wide array of material and structural tests and nondestructive evaluations, with the intent to culminate into the development of flight rational. One such structural test was the instrumented tanking test performed on December 17, 2010. The tanking test incorporated two three-dimensional optical displacement measurement systems to measure full-field outer surface displacements of the TPS surrounding the affected region that contained the stringer cracks. The results showed that the radial displacement and rotation of the liquid oxygen (LO2) tank flange changed significantly as the fluid level of the LO2 approached and passed the LO2 tank flange.

  2. Double-Shell Tank Visual Inspection Changes Resulting from the Tank 241-AY-102 Primary Tank Leak

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Girardot, Crystal L.; Washenfelder, Dennis J.; Johnson, Jeremy M.

    2013-11-14

    As part of the Double-Shell Tank (DST) Integrity Program, remote visual inspections are utilized to perform qualitative in-service inspections of the DSTs in order to provide a general overview of the condition of the tanks. During routine visual inspections of tank 241-AY-102 (AY-102) in August 2012, anomalies were identified on the annulus floor which resulted in further evaluations. In October 2012, Washington River Protection Solutions, LLC determined that the primary tank of AY-102 was leaking. Following identification of the tank AY-102 probable leak cause, evaluations considered the adequacy of the existing annulus inspection frequency with respect to the circumstances ofmore » the tank AY-102 1eak and the advancing age of the DST structures. The evaluations concluded that the interval between annulus inspections should be shortened for all DSTs, and each annulus inspection should cover > 95 percent of annulus floor area, and the portion of the primary tank (i.e., dome, sidewall, lower knuckle, and insulating refractory) that is visible from the annulus inspection risers. In March 2013, enhanced visual inspections were performed for the six oldest tanks: 241-AY-101, 241-AZ-101,241-AZ-102, 241-SY-101, 241-SY-102, and 241-SY-103, and no evidence of leakage from the primary tank were observed. Prior to October 2012, the approach for conducting visual examinations of DSTs was to perform a video examination of each tank's interior and annulus regions approximately every five years (not to exceed seven years between inspections). Also, the annulus inspection only covered about 42 percent of the annulus floor.« less

  3. Evaluation and Testing of IONSIV IE-911 for the Removal of Cesium-137 from INEEL Tank Waste and Dissolved Calcines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    N. R. Mann; T. A. Todd; K. N. Brewer

    1999-04-01

    Development of waste treatment processes for the remediation of radioactive wastes is currently underway. A number of experiments were performed at the Idaho Nuclear Technology and Environmental Center (INTEC) located at the Idaho National Engineering and Environmental Laboratory (INEEL) with the commercially available sorbent material, IONSIV IE-911, crystalline silicotitanate (CST), manufactured by UOP LLC. The purpose of this work was to evaluate the removal efficiency, sorbent capacity and selectivity of CST for removing Cs-137 from actual and simulated acidic tank waste in addition to dissolved pilot-plant calcine solutions. The scope of this work included batch contact tests performed with non-radioactivemore » dissolved Al and Run-64 pilot plant calcines in addition to simulants representing the average composition of tank waste. Small-scale column tests were performed with actual INEEL tank WM-183 waste, tank waste simulant, dissolved Al and Run-64 pilot plant calcine solutions. Small-scale column experiments using actual WM-183 tank waste resulted in fifty-percent Cs-137 breakthrough at approximately 589 bed volumes. Small-scale column experiments using the tank waste simulant displayed fifty-percent Cs-137 breakthrough at approximately 700 bed volumes. Small-scale column experiments using dissolved Al calcine simulant displayed fifty-percent Cs-137 breakthrough at approximately 795 bed volumes. Column experiments with dissolved Run-64, pilot plant calcine did not reach fifty-percent breakthrough throughout the test.« less

  4. 33 CFR 157.147 - Similar tank design: Inspections on foreign tank vessels.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Similar tank design: Inspections... § 157.147 Similar tank design: Inspections on foreign tank vessels. (a) If a foreign tank vessel has..., for only one of those tanks to be inspected under § 157.140(a)(1). (b) Only one tank of a group of...

  5. 27 CFR 27.174 - Tank cars and tank trucks to be sealed.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2012-04-01 2012-04-01 false Tank cars and tank trucks... Tank cars and tank trucks to be sealed. Where a shipment of distilled spirits from customs custody to the distilled spirits plant is made in a tank car or tank truck, all openings affording access to the...

  6. 27 CFR 27.174 - Tank cars and tank trucks to be sealed.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2011-04-01 2011-04-01 false Tank cars and tank trucks... Tank cars and tank trucks to be sealed. Where a shipment of distilled spirits from customs custody to the distilled spirits plant is made in a tank car or tank truck, all openings affording access to the...

  7. 27 CFR 27.174 - Tank cars and tank trucks to be sealed.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2014-04-01 2014-04-01 false Tank cars and tank trucks... Tank cars and tank trucks to be sealed. Where a shipment of distilled spirits from customs custody to the distilled spirits plant is made in a tank car or tank truck, all openings affording access to the...

  8. 46 CFR 153.250 - Double-bottom and deep tanks as cargo tanks.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 5 2011-10-01 2011-10-01 false Double-bottom and deep tanks as cargo tanks. 153.250... Equipment Cargo Tanks § 153.250 Double-bottom and deep tanks as cargo tanks. Except in those cases in which Commandant (CG-522) specifically approves another arrangement, such as a double-bottom or deep tank as a...

  9. 46 CFR 153.250 - Double-bottom and deep tanks as cargo tanks.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 5 2013-10-01 2013-10-01 false Double-bottom and deep tanks as cargo tanks. 153.250... Equipment Cargo Tanks § 153.250 Double-bottom and deep tanks as cargo tanks. Except in those cases in which Commandant (CG-ENG) specifically approves another arrangement, such as a double-bottom or deep tank as a...

  10. 46 CFR 153.250 - Double-bottom and deep tanks as cargo tanks.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Double-bottom and deep tanks as cargo tanks. 153.250... Equipment Cargo Tanks § 153.250 Double-bottom and deep tanks as cargo tanks. Except in those cases in which Commandant (CG-522) specifically approves another arrangement, such as a double-bottom or deep tank as a...

  11. 46 CFR 153.250 - Double-bottom and deep tanks as cargo tanks.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 5 2014-10-01 2014-10-01 false Double-bottom and deep tanks as cargo tanks. 153.250... Equipment Cargo Tanks § 153.250 Double-bottom and deep tanks as cargo tanks. Except in those cases in which Commandant (CG-ENG) specifically approves another arrangement, such as a double-bottom or deep tank as a...

  12. 46 CFR 153.250 - Double-bottom and deep tanks as cargo tanks.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 5 2012-10-01 2012-10-01 false Double-bottom and deep tanks as cargo tanks. 153.250... Equipment Cargo Tanks § 153.250 Double-bottom and deep tanks as cargo tanks. Except in those cases in which Commandant (CG-ENG) specifically approves another arrangement, such as a double-bottom or deep tank as a...

  13. 49 CFR 179.301 - Individual specification requirements for multi-unit tank car tanks.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ...-unit tank car tanks. 179.301 Section 179.301 Transportation Other Regulations Relating to... (CONTINUED) SPECIFICATIONS FOR TANK CARS Specifications for Multi-Unit Tank Car Tanks (Classes DOT-106A and 110AW) § 179.301 Individual specification requirements for multi-unit tank car tanks. (a) In addition to...

  14. 49 CFR 179.301 - Individual specification requirements for multi-unit tank car tanks.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ...-unit tank car tanks. 179.301 Section 179.301 Transportation Other Regulations Relating to... MATERIALS REGULATIONS SPECIFICATIONS FOR TANK CARS Specifications for Multi-Unit Tank Car Tanks (Classes DOT-106A and 110AW) § 179.301 Individual specification requirements for multi-unit tank car tanks. (a) In...

  15. 49 CFR 179.301 - Individual specification requirements for multi-unit tank car tanks.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ...-unit tank car tanks. 179.301 Section 179.301 Transportation Other Regulations Relating to... (CONTINUED) SPECIFICATIONS FOR TANK CARS Specifications for Multi-Unit Tank Car Tanks (Classes DOT-106A and 110AW) § 179.301 Individual specification requirements for multi-unit tank car tanks. (a) In addition to...

  16. 49 CFR 179.301 - Individual specification requirements for multi-unit tank car tanks.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ...-unit tank car tanks. 179.301 Section 179.301 Transportation Other Regulations Relating to... (CONTINUED) SPECIFICATIONS FOR TANK CARS Specifications for Multi-Unit Tank Car Tanks (Classes DOT-106A and 110AW) § 179.301 Individual specification requirements for multi-unit tank car tanks. (a) In addition to...

  17. Measuring Intracranial Pressure And Volume Noninvasively

    NASA Technical Reports Server (NTRS)

    Cantrell, John H.; Yost, William T.

    1994-01-01

    Ultrasonic technique eliminates need to drill into brain cavity. Intracranial dynamics instrument probes cranium ultrasonically to obtain data for determination of intracranial pressure (ICP) and pressure-volume index (PVI). Instrument determines sensitivity of skull to changes in pressure and by use of mechanical device to exert external calibrated pressure on skull. By monitoring volume of blood flowing into jugular vein, one determines change of volume of blood in cranial system. By measuring response of skull to increasing pressure (where pressure increased by tilting patient known amount) and by using cranial blood pressure, one determines intial pressure in cerebrospinal fluid. Once PVI determined, ICP determined.

  18. 241-AY-101 Tank Construction Extent of Condition Review for Tank Integrity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barnes, Travis J.; Gunter, Jason R.

    2013-08-26

    This report provides the results of an extent of condition construction history review for tank 241-AY-101. The construction history of tank 241-AY-101 has been reviewed to identify issues similar to those experienced during tank AY-102 construction. Those issues and others impacting integrity are discussed based on information found in available construction records, using tank AY-102 as the comparison benchmark. In tank 241-AY-101, the second double-shell tank constructed, similar issues as those with tank 241-AY-102 construction reoccurred. The overall extent of similary and affect on tank 241-AY-101 integrity is described herein.

  19. 241-AP Tank Farm Construction Extent of Condition Review for Tank Integrity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barnes, Travis J.; Gunter, Jason R.; Reeploeg, Gretchen E.

    2014-04-04

    This report provides the results of an extent of condition construction history review for the 241-AP tank farm. The construction history of the 241-AP tank farm has been reviewed to identify issues similar to those experienced during tank AY-102 construction. Those issues and others impacting integrity are discussed based on information found in available construction records, using tank AY-102 as the comparison benchmark. In the 241-AP tank farm, the sixth double-shell tank farm constructed, tank bottom flatness, refractory material quality, post-weld stress relieving, and primary tank bottom weld rejection were improved.

  20. Environmental projects. Volume 13: Underground storage tanks, removal and replacement. Goldstone Deep Space Communications Complex

    NASA Technical Reports Server (NTRS)

    Bengelsdorf, Irv

    1991-01-01

    The Goldstone Deep Space Communications Complex (GDSCC), located in the Mojave Desert about 40 miles north of Barstow, California, and about 160 miles northeast of Pasadena, is part of the National Aeronautics and Space Administration's (NASA's) Deep Space Network, one of the world's largest and most sensitive scientific telecommunications and radio navigation networks. Activities at the GDSCC are carried out in support of six large parabolic dish antennas. As a large-scale facility located in a remote, isolated desert region, the GDSCC operations require numerous on-site storage facilities for gasoline, diesel oil, hydraulic oil, and waste oil. These fluids are stored in underground storage tanks (USTs). This present volume describes what happened to the 26 USTs that remained at the GDSCC. Twenty-four of these USTs were constructed of carbon steel without any coating for corrosion protection, and without secondary containment or leak detection. Two remaining USTs were constructed of fiberglass-coated carbon steel but without secondary containment or leak protection. Of the 26 USTs that remained at the GDSCC, 23 were cleaned, removed from the ground, cut up, and hauled away from the GDSCC for environmentally acceptable disposal. Three USTs were permanently closed (abandoned in place).

  1. 49 CFR 180.519 - Periodic retest and inspection of tank cars other than single-unit tank car tanks.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 3 2011-10-01 2011-10-01 false Periodic retest and inspection of tank cars other than single-unit tank car tanks. 180.519 Section 180.519 Transportation Other Regulations Relating to... (CONTINUED) CONTINUING QUALIFICATION AND MAINTENANCE OF PACKAGINGS Qualification and Maintenance of Tank Cars...

  2. 49 CFR 180.519 - Periodic retest and inspection of tank cars other than single-unit tank car tanks.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 3 2013-10-01 2013-10-01 false Periodic retest and inspection of tank cars other than single-unit tank car tanks. 180.519 Section 180.519 Transportation Other Regulations Relating to... (CONTINUED) CONTINUING QUALIFICATION AND MAINTENANCE OF PACKAGINGS Qualification and Maintenance of Tank Cars...

  3. 49 CFR 180.519 - Periodic retest and inspection of tank cars other than single-unit tank car tanks.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 3 2012-10-01 2012-10-01 false Periodic retest and inspection of tank cars other than single-unit tank car tanks. 180.519 Section 180.519 Transportation Other Regulations Relating to... (CONTINUED) CONTINUING QUALIFICATION AND MAINTENANCE OF PACKAGINGS Qualification and Maintenance of Tank Cars...

  4. 49 CFR 180.519 - Periodic retest and inspection of tank cars other than single-unit tank car tanks.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 3 2014-10-01 2014-10-01 false Periodic retest and inspection of tank cars other than single-unit tank car tanks. 180.519 Section 180.519 Transportation Other Regulations Relating to... (CONTINUED) CONTINUING QUALIFICATION AND MAINTENANCE OF PACKAGINGS Qualification and Maintenance of Tank Cars...

  5. 49 CFR 179.500 - Specification DOT-107A * * * * seamless steel tank car tanks.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 3 2014-10-01 2014-10-01 false Specification DOT-107A * * * * seamless steel tank...) SPECIFICATIONS FOR TANK CARS Specification for Cryogenic Liquid Tank Car Tanks and Seamless Steel Tanks (Classes DOT-113 and 107A) § 179.500 Specification DOT-107A * * * * seamless steel tank car tanks. ...

  6. ADM. Tanks: from left to right: fuel oil tank, fuel ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    ADM. Tanks: from left to right: fuel oil tank, fuel pump house (TAN-611), engine fuel tank, water pump house, water storage tank. Camera facing northwest. Not edge of shielding berm at left of view. Date: November 25, 1953. INEEL negative no. 9217 - Idaho National Engineering Laboratory, Test Area North, Scoville, Butte County, ID

  7. A model for tracking concentration of chemical compounds within a tank of an automatic film processor.

    PubMed

    Sobol, Wlad T

    2002-01-01

    A simple kinetic model that describes the time evolution of the chemical concentration of an arbitrary compound within the tank of an automatic film processor is presented. It provides insights into the kinetics of chemistry concentration inside the processor's tank; the results facilitate the tasks of processor tuning and quality control (QC). The model has successfully been used in several troubleshooting sessions of low-volume mammography processors for which maintaining consistent QC tracking was difficult due to fluctuations of bromide levels in the developer tank.

  8. Measurement of Human Blood and Plasma Volumes

    NASA Technical Reports Server (NTRS)

    Greenleaf, J. E.; Szalkay, H. G. H.

    1987-01-01

    Report reviews techniques for measuring blood-plasma volume in humans. Common technique of using radioactive iodine isotope to label plasma albumin involves unwarranted risks from low-level radiation. Report emphasizes techniques using Evans-blue-dye (T-1824) labeling of albumin, hematocrit or hemoglobin/hematocrit measurements, or blood densitometry. In Evans-blue-dye technique, plasma volume determined from decrease in dye concentration occurring after small amount of dye solution injected into circulatory system. Subjection of Evans blue dye to test for carcinogenicity gave negative results.

  9. 241-AW Tank Farm Construction Extent of Condition Review for Tank Integrity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barnes, Travis J.; Gunter, Jason R.; Reeploeg, Gretchen E.

    2013-11-19

    This report provides the results of an extent of condition construction history review for the 241-AW tank farm. The construction history of the 241-AW tank farm has been reviewed to identify issues similar to those experienced during tank AY-102 construction. Those issues and others impacting integrity are discussed based on information found in available construction records, using tank AY-102 as the comparison benchmark. In the 241-AW tank farm, the fourth double-shell tank farm constructed, similar issues as those with tank 241-AY-102 construction occured. The overall extent of similary and affect on 241-AW tank farm integrity is described herein.

  10. METHODOLOGY AND CALCULATIONS FOR THE ASSIGNMENT OF WASTE GROUPS FOR THE LARGE UNDERGROUND WASTE STORAGE TANKS AT THE HANFORD SITE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    WEBER RA

    2009-01-16

    The Hanford Site contains 177 large underground radioactive waste storage tanks (28 double-shell tanks and 149 single-shell tanks). These tanks are categorized into one of three waste groups (A, B, and C) based on their waste and tank characteristics. These waste group assignments reflect a tank's propensity to retain a significant volume of flammable gases and the potential of the waste to release retained gas by a buoyant displacement gas release event. Assignments of waste groups to the 177 double-shell tanks and single-shell tanks, as reported in this document, are based on a Monte Carlo analysis of three criteria. Themore » first criterion is the headspace flammable gas concentration following release of retained gas. This criterion determines whether the tank contains sufficient retained gas such that the well-mixed headspace flammable gas concentration would reach 100% of the lower flammability limit if the entire tank's retained gas were released. If the volume of retained gas is not sufficient to reach 100% of the lower flammability limit, then flammable conditions cannot be reached and the tank is classified as a waste group C tank independent of the method the gas is released. The second criterion is the energy ratio and considers whether there is sufficient supernatant on top of the saturated solids such that gas-bearing solids have the potential energy required to break up the material and release gas. Tanks that are not waste group C tanks and that have an energy ratio < 3.0 do not have sufficient potential energy to break up material and release gas and are assigned to waste group B. These tanks are considered to represent a potential induced flammable gas release hazard, but no spontaneous buoyant displacement flammable gas release hazard. Tanks that are not waste group C tanks and have an energy ratio {ge} 3.0, but that pass the third criterion (buoyancy ratio < 1.0, see below) are also assigned to waste group B. Even though the designation as a

  11. Image analysis method for the measurement of water saturation in a two-dimensional experimental flow tank

    NASA Astrophysics Data System (ADS)

    Belfort, Benjamin; Weill, Sylvain; Lehmann, François

    2017-07-01

    A novel, non-invasive imaging technique is proposed that determines 2D maps of water content in unsaturated porous media. This method directly relates digitally measured intensities to the water content of the porous medium. This method requires the classical image analysis steps, i.e., normalization, filtering, background subtraction, scaling and calibration. The main advantages of this approach are that no calibration experiment is needed, because calibration curve relating water content and reflected light intensities is established during the main monitoring phase of each experiment and that no tracer or dye is injected into the flow tank. The procedure enables effective processing of a large number of photographs and thus produces 2D water content maps at high temporal resolution. A drainage/imbibition experiment in a 2D flow tank with inner dimensions of 40 cm × 14 cm × 6 cm (L × W × D) is carried out to validate the methodology. The accuracy of the proposed approach is assessed using a statistical framework to perform an error analysis and numerical simulations with a state-of-the-art computational code that solves the Richards' equation. Comparison of the cumulative mass leaving and entering the flow tank and water content maps produced by the photographic measurement technique and the numerical simulations demonstrate the efficiency and high accuracy of the proposed method for investigating vadose zone flow processes. Finally, the photometric procedure has been developed expressly for its extension to heterogeneous media. Other processes may be investigated through different laboratory experiments which will serve as benchmark for numerical codes validation.

  12. 49 CFR 179.101 - Individual specification requirements applicable to pressure tank car tanks.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... to pressure tank car tanks. 179.101 Section 179.101 Transportation Other Regulations Relating to... (CONTINUED) SPECIFICATIONS FOR TANK CARS Specifications for Pressure Tank Car Tanks (Classes DOT-105, 109, 112, 114 and 120) § 179.101 Individual specification requirements applicable to pressure tank car...

  13. 49 CFR 179.101 - Individual specification requirements applicable to pressure tank car tanks.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... to pressure tank car tanks. 179.101 Section 179.101 Transportation Other Regulations Relating to... (CONTINUED) SPECIFICATIONS FOR TANK CARS Specifications for Pressure Tank Car Tanks (Classes DOT-105, 109, 112, 114 and 120) § 179.101 Individual specification requirements applicable to pressure tank car...

  14. 49 CFR 179.101 - Individual specification requirements applicable to pressure tank car tanks.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... to pressure tank car tanks. 179.101 Section 179.101 Transportation Other Regulations Relating to... (CONTINUED) SPECIFICATIONS FOR TANK CARS Specifications for Pressure Tank Car Tanks (Classes DOT-105, 109, 112, 114 and 120) § 179.101 Individual specification requirements applicable to pressure tank car...

  15. Chemical measurement of urine volume

    NASA Technical Reports Server (NTRS)

    Sauer, R. L.

    1978-01-01

    Chemical method of measuring volume of urine samples using lithium chloride dilution technique, does not interfere with analysis, is faster, and more accurate than standard volumetric of specific gravity/weight techniques. Adaptation of procedure to urinalysis could prove generally practical for hospital mineral balance and catechoamine determinations.

  16. Fuel tank integrity research : fuel tank analyses and test plans

    DOT National Transportation Integrated Search

    2013-04-15

    The Federal Railroad Administrations Office of Research : and Development is conducting research into fuel tank : crashworthiness. Fuel tank research is being performed to : determine strategies for increasing the fuel tank impact : resistance to ...

  17. Results of a conventional fuel tank blunt impact test

    DOT National Transportation Integrated Search

    2015-03-23

    The Federal Railroad Administrations Office of Research : and Development is conducting research into passenger : locomotive fuel tank crashworthiness. A series of impact tests is : being conducted to measure fuel tank deformation under two : type...

  18. Data on the mixing of non-Newtonian fluids by a Rushton turbine in a cylindrical tank.

    PubMed

    Khapre, Akhilesh; Munshi, Basudeb

    2016-09-01

    The paper focuses on the data collected from the mixing of shear thinning non-Newtonian fluids in a cylindrical tank by a Rushton turbine. The data presented are obtained by using Computational Fluid Dynamics (CFD) simulation of fluid flow field in the entire tank volume. The CFD validation data for this study is reported in the research article 'Numerical investigation of hydrodynamic behavior of shear thinning fluids in stirred tank' (Khapre and Munshi, 2015) [1]. The tracer injection method is used for the prediction of mixing time and mixing efficiency of a Rushton turbine impeller.

  19. Variable amplitude fatigue crack growth characteristics of railroad tank car steel volume III

    DOT National Transportation Integrated Search

    2006-12-01

    The load history that railroad tank cars experience has a significant variable amplitude characteristic. Although previous efforts have been directed toward understanding baseline fatigue crack growth behavior of TC-128B steel as a function of materi...

  20. Design criteria monograph for metal tanks and tank components

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Significant elements in detail tank design are wall and end structures, weld joints at bulkhead and attachment junctures, and ports and access openings. Additional design considerations are influence and effect of fabrication processes on tank component design, and finally, testing and inspection that are required to establish confidence in tank design.

  1. Determination of Probe Volume Dimensions in Coherent Measurement Techniques

    NASA Technical Reports Server (NTRS)

    Tedder, Sarah A.; Weikl, Markus C.; Seeger, Thomas; Leipertz, Alfred

    2008-01-01

    When investigating combustion phenomena with pump-probe techniques, the spatial resolution is given by the overlapping region of the laser beams and thus defines the probe volume size. The size of this probe volume becomes important when the length scales of interest are on the same order or smaller. In this work, we present a new approach to measure the probe volume in three dimensions (3-D), which can be used to determine the probe volume length, diameter, and shape. The optical arrangement and data evaluation are demonstrated for a dual-pump dual-broadband coherent anti-Stokes Raman scattering (CARS) setup which is used for combustion diagnostics. This new approach offers a simple, quick alternative with more capabilities than formerly used probe volume measurement methods.

  2. Test requirements of locomotive fuel tank blunt impact tests

    DOT National Transportation Integrated Search

    2013-10-15

    The Federal Railroad Administrations Office of Research : and Development is conducting research into passenger : locomotive fuel tank crashworthiness. A series of impact tests : are planned to measure fuel tank deformation under two types : of dy...

  3. 49 CFR 179.103 - Special requirements for class 114A * * * tank car tanks.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 3 2013-10-01 2013-10-01 false Special requirements for class 114A * * * tank car...) SPECIFICATIONS FOR TANK CARS Specifications for Pressure Tank Car Tanks (Classes DOT-105, 109, 112, 114 and 120) § 179.103 Special requirements for class 114A * * * tank car tanks. (a) In addition to the applicable...

  4. 49 CFR 179.103 - Special requirements for class 114A * * * tank car tanks.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 3 2011-10-01 2011-10-01 false Special requirements for class 114A * * * tank car...) SPECIFICATIONS FOR TANK CARS Specifications for Pressure Tank Car Tanks (Classes DOT-105, 109, 112, 114 and 120) § 179.103 Special requirements for class 114A * * * tank car tanks. (a) In addition to the applicable...

  5. 49 CFR 179.103 - Special requirements for class 114A * * * tank car tanks.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 3 2012-10-01 2012-10-01 false Special requirements for class 114A * * * tank car...) SPECIFICATIONS FOR TANK CARS Specifications for Pressure Tank Car Tanks (Classes DOT-105, 109, 112, 114 and 120) § 179.103 Special requirements for class 114A * * * tank car tanks. (a) In addition to the applicable...

  6. 49 CFR 179.103 - Special requirements for class 114A * * * tank car tanks.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Special requirements for class 114A * * * tank car... SPECIFICATIONS FOR TANK CARS Specifications for Pressure Tank Car Tanks (Classes DOT-105, 109, 112, 114 and 120) § 179.103 Special requirements for class 114A * * * tank car tanks. (a) In addition to the applicable...

  7. 49 CFR 179.201 - Individual specification requirements applicable to non-pressure tank car tanks.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... to non-pressure tank car tanks. 179.201 Section 179.201 Transportation Other Regulations Relating to... MATERIALS REGULATIONS SPECIFICATIONS FOR TANK CARS Specifications for Non-Pressure Tank Car Tanks (Classes... car tanks. ...

  8. 49 CFR 179.201 - Individual specification requirements applicable to non-pressure tank car tanks.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... to non-pressure tank car tanks. 179.201 Section 179.201 Transportation Other Regulations Relating to... (CONTINUED) SPECIFICATIONS FOR TANK CARS Specifications for Non-Pressure Tank Car Tanks (Classes DOT-111AW and 115AW) § 179.201 Individual specification requirements applicable to non-pressure tank car tanks. ...

  9. 49 CFR 179.201 - Individual specification requirements applicable to non-pressure tank car tanks.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... to non-pressure tank car tanks. 179.201 Section 179.201 Transportation Other Regulations Relating to... (CONTINUED) SPECIFICATIONS FOR TANK CARS Specifications for Non-Pressure Tank Car Tanks (Classes DOT-111AW and 115AW) § 179.201 Individual specification requirements applicable to non-pressure tank car tanks. ...

  10. 49 CFR 179.201 - Individual specification requirements applicable to non-pressure tank car tanks.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... to non-pressure tank car tanks. 179.201 Section 179.201 Transportation Other Regulations Relating to... (CONTINUED) SPECIFICATIONS FOR TANK CARS Specifications for Non-Pressure Tank Car Tanks (Classes DOT-111AW and 115AW) § 179.201 Individual specification requirements applicable to non-pressure tank car tanks. ...

  11. LH2 tank pressure control by thermodynamic vent system (TVS) at zero gravity

    NASA Astrophysics Data System (ADS)

    Wang, B.; Huang, Y. H.; Chen, Z. C.; Wu, J. Y.; Li, P.; Sun, P. J.

    2017-02-01

    Thermodynamic vent system (TVS) is employed for pressure control of propellant tanks at zero gravity. An analytical lumped parameter model is developed to predict pressure variation in an 18.09 m3 liquid hydrogen tank equipped with TVS. Mathematical simulations are carried out assuming tank is filled up to 75% volume (liquid mass equals to 945 kg) and is subjected to heat flux of 0.76 W/m2. Tank pressure controls at 165.5-172.4, 165.5-179.3 and 165.5-182.2 kPa are compared with reference to number of vent cycles, vent duration per cycle and loss of hydrogen. Analysis results indicate that the number of vent cycles significantly decreases from 62 to 21 when tank pressure control increases from 6.9 to 20.4 kPa. Also, duration of vent cycle increases from 63 to 152 and cycle duration decreases from 3920 to 3200 s. Further, the analysis result suggests that LH2 evaporation loss per day decreases from 0.17 to 0.14%. Based on the results of analysis, TVS is found effective in controlling the propellant tank pressure in zero gravity.

  12. Comparative hydraulics of two fishery research circular tanks and recommendations for control of experimental bias

    USGS Publications Warehouse

    Odeh, M.; Schrock, R.M.; Gannam, A.

    2003-01-01

    Hydraulic characteristics inside two research circular tanks (1.5-m and 1.2-m diameter) with the same volume of water were studied to understand how they might affect experimental bias by influencing the behavior and development of juvenile fish. Water velocities inside each tank were documented extensively and flow behavior studied. Surface inflow to the 1.5-m tank created a highly turbulent and aerated surface, and produced unevenly distributed velocities within the tank. A low-flow velocity, or "dead" zone, persisted just upstream of the surface inflow. A single submerged nozzle in the 1.2-m tank created uniform flow and did not cause undue turbulence or introduce air. Flow behavior in the 1.5-m tank is believed to have negatively affected the feeding behavior and physiological development of a group of juvenile fall chinook salmon, Oncorhynchus tshawytscha. A new inflow nozzle design provided comparable flow behavior regardless of tank size and water depth. Maintaining similar hydraulic conditions inside tanks used for various biological purposes, including fish research, would minimize experimental bias caused by differences in flow behavior. Other sources of experimental bias are discussed and recommendations given for reporting and control of experimental conditions in fishery research tank experiments.

  13. [Measurement of intracranial hematoma volume by personal computer].

    PubMed

    DU, Wanping; Tan, Lihua; Zhai, Ning; Zhou, Shunke; Wang, Rui; Xue, Gongshi; Xiao, An

    2011-01-01

    To explore the method for intracranial hematoma volume measurement by the personal computer. Forty cases of various intracranial hematomas were measured by the computer tomography with quantitative software and personal computer with Photoshop CS3 software, respectively. the data from the 2 methods were analyzed and compared. There was no difference between the data from the computer tomography and the personal computer (P>0.05). The personal computer with Photoshop CS3 software can measure the volume of various intracranial hematomas precisely, rapidly and simply. It should be recommended in the clinical medicolegal identification.

  14. VOLUMETRIC LEAK DETECTION IN LARGE UNDERGROUND STORAGE TANKS - VOLUME II: APPENDICES A-E

    EPA Science Inventory

    The program of experiments conducted at Griffiss Air Force Base was devised to expand the understanding of large underground storage tank behavior as it impacts the performance of volumetric leak detection testing. The report addresses three important questions about testing the ...

  15. 49 CFR 179.101 - Individual specification requirements applicable to pressure tank car tanks.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... to pressure tank car tanks. 179.101 Section 179.101 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) SPECIFICATIONS FOR TANK CARS Specifications for Pressure Tank Car Tanks (Classes DOT-105, 109...

  16. Tank 241-C-112 vapor sampling and analysis tank characterization report. Revision 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huckaby, J.L.

    1995-05-31

    Tank 241-C-112 headspace gas and vapor samples were collected and analyzed to help determine the potential risks to tank farm workers due to fugitive emissions from the tank. The drivers and objectives of waste tank headspace sampling and analysis are discussed in {open_quotes}Program Plan for the Resolution of Tank Vapor Issues.{close_quotes} Tank 241-C-112 was vapor sampled in accordance with {open_quotes}Data Quality Objectives for Generic In-Tank Health and Safety Issue Resolution.{close_quotes}

  17. Liquid rocket metal tanks and tank components

    NASA Technical Reports Server (NTRS)

    Wagner, W. A.; Keller, R. B. (Editor)

    1974-01-01

    Significant guidelines are presented for the successful design of aerospace tanks and tank components, such as expulsion devices, standpipes, and baffles. The state of the art is reviewed, and the design criteria are presented along with recommended practices. Design monographs are listed.

  18. Experimental Study of Fuel Heating at Low Temperatures in a Wing Tank Model, Volume 1

    NASA Technical Reports Server (NTRS)

    Stockemer, F. J.

    1981-01-01

    Scale model fuel heating systems for use with aviation hydrocarbon fuel at low temperatures were investigated. The effectiveness of the heating systems in providing flowability and pumpability at extreme low temperature when some freezing of the fuel would otherwise occur is evaluated. The test tank simulated a section of an outer wing tank, and was chilled on the upper and lower surfaces. Turbine engine lubricating oil was heated, and recirculating fuel transferred the heat. Fuels included: a commercial Jet A; an intermediate freeze point distillate; a higher freeze point distillate blended according to Experimental Referee Broadened Specification guidelines; and a higher freeze point paraffinic distillate used in a preceding investigation. Each fuel was chilled to selected temperature to evaluate unpumpable solid formation (holdup). Tests simulating extreme cold weather flight, without heating, provided baseline fuel holdup data. Heating and recirculating fuel increased bulk temperature significantly; it had a relatively small effect on temperature near the bottom of the tank. Methods which increased penetration of heated fuel into the lower boundary layer improved the capability for reducing holdup.

  19. Low-temperature resistant, elastic adhesives and sealants for gas tank insulation

    NASA Astrophysics Data System (ADS)

    Karrer, R.

    The leading European insulating firms in the domain of liquid natural gas (LNG)/liquid petroleum gas (LPG) carriers have developed special sandwich elements for the insulation of liquid gas tanks. The trend to increasing tank volumes and, at the same time, to reducing the number of cargo tanks in modern liquid gas carriers with loading capacities of up to 135,000 m 3 has in some cases entailed major changes with respect to tank design (Kaefer-Isoliertechnik, Hansa Schiffahrt-Schiffbau-Hafen, 133rd year, 1996, 2, 20-22). These changes have equally influenced both the design and the assembly of the panels used for insulation, as well as the adhesives and sealants applied for this purpose. This article describes the requirement profile and the possible applications of solvent-free two-component polyurethane adhesives (2-K PU) and recently developed polyurethane hot-melt adhesives (PU-HM) for the manufacture and/or assembly of panels. Moreover, it deals with the role of the advanced solvent-free, silane-modified polymers (MS polymers) in the pointing of panels (seam-sealing) exposed to low temperatures.

  20. Numerical Modeling of Pressurization of Cryogenic Propellant Tank for Integrated Vehicle Fluid System

    NASA Technical Reports Server (NTRS)

    Majumdar, Alok K.; LeClair, Andre C.; Hedayat, Ali

    2016-01-01

    This paper presents a numerical model of pressurization of a cryogenic propellant tank for the Integrated Vehicle Fluid (IVF) system using the Generalized Fluid System Simulation Program (GFSSP). The IVF propulsion system, being developed by United Launch Alliance, uses boiloff propellants to drive thrusters for the reaction control system as well as to run internal combustion engines to develop power and drive compressors to pressurize propellant tanks. NASA Marshall Space Flight Center (MSFC) has been running tests to verify the functioning of the IVF system using a flight tank. GFSSP, a finite volume based flow network analysis software developed at MSFC, has been used to develop an integrated model of the tank and the pressurization system. This paper presents an iterative algorithm for converging the interface boundary conditions between different component models of a large system model. The model results have been compared with test data.

  1. [A comparison between prostatic volume measured during suprapubic ultrasonography (TAUS) and volume of the enucleated gland after open prostatectomy].

    PubMed

    Szewczyk, Wojciech; Prajsner, Andrzej; Kozina, Janusz; Login, Tomasz; Kaczorowski, Marek

    2004-01-01

    General practitioner very often uses transabdominal ultrasonograpy (TAUS) in order to measure prostatic volume. Using this method it is rather impossible to distinguish between tissue of benign prostatic hyperplasia (BPH) and prostatic tissue which forms so called surgical capsule of BPH. The aim of this study was a comparison of prostatic volume measured during suprapubic (transabdominal) ultrasonography and volume of the enucleated gland after open prostatectomy. Regarding the results authors created a nomogram based on TAUS measurement of the prostate which helps to predict the volume of BPH. They also stated that surgical capsule of the BPH makes about 1/3 of the whole volume of the prostate measured by TAUS.

  2. 241-AZ Tank Farm Construction Extent of Condition Review for Tank Integrity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barnes, Travis J.; Boomer, Kayle D.; Gunter, Jason R.

    2013-07-30

    This report provides the results of an extent of condition construction history review for tanks 241-AZ-101 and 241-AZ-102. The construction history of the 241-AZ tank farm has been reviewed to identify issues similar to those experienced during tank AY-102 construction. Those issues and others impacting integrity are discussed based on information found in available construction records, using tank AY-102 as the comparison benchmark. In the 241-AZ tank farm, the second DST farm constructed, both refractory quality and tank and liner fabrication were improved.

  3. The analysis of the transient pressure response of the shuttle EPS-ECS cryogenic tanks with external pressurization systems

    NASA Technical Reports Server (NTRS)

    Barton, J. E.; Patterson, H. W.

    1973-01-01

    An analysis of transient pressures in externally pressurized cryogenic hydrogen and oxygen tanks was conducted and the effects of design variables on pressure response determined. The analysis was conducted with a computer program which solves the compressible viscous flow equations in two-dimensional regions representing the tank and external loop. The external loop volume, thermal mass, and heat leak were the dominant design variables affecting the system pressure response. No significant temperature stratification occurred in the fluid contained in the tank.

  4. Measurement properties and usability of non-contact scanners for measuring transtibial residual limb volume.

    PubMed

    Kofman, Rianne; Beekman, Anna M; Emmelot, Cornelis H; Geertzen, Jan H B; Dijkstra, Pieter U

    2018-06-01

    Non-contact scanners may have potential for measurement of residual limb volume. Different non-contact scanners have been introduced during the last decades. Reliability and usability (practicality and user friendliness) should be assessed before introducing these systems in clinical practice. The aim of this study was to analyze the measurement properties and usability of four non-contact scanners (TT Design, Omega Scanner, BioSculptor Bioscanner, and Rodin4D Scanner). Quasi experimental. Nine (geometric and residual limb) models were measured on two occasions, each consisting of two sessions, thus in total 4 sessions. In each session, four observers used the four systems for volume measurement. Mean for each model, repeatability coefficients for each system, variance components, and their two-way interactions of measurement conditions were calculated. User satisfaction was evaluated with the Post-Study System Usability Questionnaire. Systematic differences between the systems were found in volume measurements. Most of the variances were explained by the model (97%), while error variance was 3%. Measurement system and the interaction between system and model explained 44% of the error variance. Repeatability coefficient of the systems ranged from 0.101 (Omega Scanner) to 0.131 L (Rodin4D). Differences in Post-Study System Usability Questionnaire scores between the systems were small and not significant. The systems were reliable in determining residual limb volume. Measurement systems and the interaction between system and residual limb model explained most of the error variances. The differences in repeatability coefficient and usability between the four CAD/CAM systems were small. Clinical relevance If accurate measurements of residual limb volume are required (in case of research), modern non-contact scanners should be taken in consideration nowadays.

  5. Compatibility of the Radio Frequency Mass Gauge with Graphite-Epoxy Composite Tanks

    NASA Technical Reports Server (NTRS)

    Zimmerli, G. A.; Mueller, C. H.

    2015-01-01

    The radio frequency mass gauge (RFMG) is a low-gravity propellant quantity gauge being developed at NASA for possible use in long-duration space missions utilizing cryogenic propellants. As part of the RFMG technology development process, we evaluated the compatibility of the RFMG with a graphite-epoxy composite material used to construct propellant tanks. The key material property that can affect compatibility with the RFMG is the electrical conductivity. Using samples of 8552/IM7 graphite-epoxy composite, we characterized the resistivity and reflectivity over a range of frequencies. An RF impedance analyzer was used to characterize the out-of-plane electrical properties (along the sample thickness) in the frequency range 10 to 1800 MHZ. The resistivity value at 500 MHz was 4.8 ohm-cm. Microwave waveguide measurements of samples in the range 1.7 - 2.6 GHz, performed by inserting the samples into a WR-430 waveguide, showed reflectivity values above 98%. Together, these results suggested that a tank constructed from graphite/epoxy composite would produce good quality electromagnetic tank modes, which is needed for the RFMG. This was verified by room-temperature measurements of the electromagnetic modes of a 2.4 m diameter tank constructed by Boeing from similar graphite-epoxy composite material. The quality factor Q of the tank electromagnetic modes, measured via RF reflection measurements from an antenna mounted in the tank, was typically in the range 400 less than Q less than 3000. The good quality modes observed in the tank indicate that the RFMG is compatible with graphite-epoxy tanks, and thus the RFMG could be used as a low-gravity propellant quantity gauge in such tanks filled with cryogenic propellants.

  6. 49 CFR 179.100 - General specifications applicable to pressure tank car tanks.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... car tanks. 179.100 Section 179.100 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) SPECIFICATIONS FOR TANK CARS Specifications for Pressure Tank Car Tanks (Classes DOT-105, 109, 112, 114 and 120...

  7. 49 CFR 179.102 - Special commodity requirements for pressure tank car tanks.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... car tanks. 179.102 Section 179.102 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) SPECIFICATIONS FOR TANK CARS Specifications for Pressure Tank Car Tanks (Classes DOT-105, 109, 112, 114 and 120...

  8. Milestone 4: Test plan for Reusable Hydrogen Composite Tank System (RHCTS). Task 3: Composite tank materials

    NASA Technical Reports Server (NTRS)

    Greenberg, H. S.

    1994-01-01

    This document is the detailed test plan for the series of tests enumerated in the preceding section. The purpose of this plan is to present the test objectives, test parameters and procedures, expected performance and data analysis plans, criteria for success, test schedules, and related safety provisions and to describe the test articles, test instrumentation, and test facility requirements. Initial testing will be performed to screen four composite materials for suitability for SSTO LH2 tank loads and environmental conditions. The laminates for this testing will be fabricated by fiber placement, which is the manufacturing approach identified as baseline for the tank wall. Even though hand layup will be involved in fabricating many of the internal structural members of the tank, no hand-layup laminates will be evaluated in the screening or subsequent characterization testing. This decision is based on the understanding that mechanical properties measured for hand-layup material should be at least equivalent to properties measured for fiber-placed material, so that the latter should provide no less than a conservative approximation of the former. A single material will be downselected from these screening tests. This material will be subsequently characterized for impact-damage tolerance and durability under conditions of mechanical and thermal cycling, and to establish a preliminary design database to support ongoing analysis. Next, testing will be performed on critical structural elements fabricated from the selected material. Finally, the 8-foot diameter tank article, containing the critical structural features of the full-scale tank, will be fabricated by fiber placement and tested to verify its structural integrity and LH2 containment.

  9. Room temperature stretch forming of scale space shuttle external tank dome gores. Volume 1: Technical

    NASA Technical Reports Server (NTRS)

    Blunck, R. D.; Krantz, D. E.

    1974-01-01

    An account of activities and data gathered in the Room Temperature Stretch Forming of One-third Scale External Tank Bulkhead Gores for space shuttle study, and a tooling design and production cost study are reported. The following study phases are described: (1) the stretch forming of three approximately one-third scale external tank dome gores from single sheets of 2219-T37 aluminum alloy; (2) the designing of a full scale production die, including a determination of tooling requirements; and (3) the determination of cost per gore at the required production rates, including manufacturing, packaging, and shipping.

  10. Measurement of gastric meal and secretion volumes using magnetic resonance imaging

    PubMed Central

    Hoad, C.L.; Parker, H.; Hudders, N.; Costigan, C.; Cox, E.F.; Perkins, A.C.; Blackshaw, P.E.; Marciani, L.; Spiller, R.C.; Fox, M.R.; Gowland, P.A.

    2015-01-01

    MRI can assess multiple gastric functions without ionizing radiation. However, time consuming image acquisition and analysis of gastric volume data, plus confounding of gastric emptying measurements by gastric secretions mixed with the test meal have limited its use to research centres. This study presents an MRI acquisition protocol and analysis algorithm suitable for the clinical measurement of gastric volume and secretion volume. Reproducibility of gastric volume measurements was assessed using data from 10 healthy volunteers following a liquid test meal with rapid MRI acquisition within one breath-hold and semi-automated analysis. Dilution of the ingested meal with gastric secretion was estimated using a respiratory-triggered T1 mapping protocol. Accuracy of the secretion volume measurements was assessed using data from 24 healthy volunteers following a mixed (liquid/solid) test meal with MRI meal volumes compared to data acquired using gamma scintigraphy (GS) on the same subjects studied on a separate study day. The mean (SD) coefficient of variance between 3 observers for both total gastric contents (including meal, secretions and air) and just the gastric contents (meal and secretion only) was 3 (2) % at large gastric volumes (> 200 ml). Mean (SD) secretion volumes post meal ingestion were 64 (51) ml and 110 (40) ml at 15 and 75 minutes respectively. Comparison with GS meal volumes, showed that MRI meal only volume (after correction for secretion volume) were similar to GS, with a linear regression gradient (std err) of 1.06 (0.10) and intercept −11 (24) ml. In conclusion, (i) rapid acquisition removed the requirement to image during prolonged breath-hold (ii) semi-automatic analysis greatly reduced time required to derive measurements and (iii) correction for secretion volumes provides accurate assessment of gastric meal volumes and emptying. Together these features provide the scientific basis of a protocol which would be suitable in clinical practice

  11. Online measurement of viscosity for biological systems in stirred tank bioreactors.

    PubMed

    Schelden, Maximilian; Lima, William; Doerr, Eric Will; Wunderlich, Martin; Rehmann, Lars; Büchs, Jochen; Regestein, Lars

    2017-05-01

    One of the most critical parameters in chemical and biochemical processes is the viscosity of the medium. Its impact on mixing, as well as on mass and energy transfer is substantial. An increase of viscosity with reaction time can be caused by the formation of biopolymers like xanthan or by filamentous growth of microorganisms. In either case the properties of fermentation broth are changing and frequently non-Newtonian behavior are observed, resulting in major challenges for the measurement and control of mixing and mass transfer. This study demonstrates a method for the online determination of the viscosity inside a stirred tank reactor. The presented method is based on online measurement of heat transfer capacity from the bulk medium to the jacket of the reactor. To prove the feasibility of the method, fermentations with the xanthan producing bacterium Xanthomonas campestris pv. campestris B100 as model system were performed. Excellent correlation between offline measured apparent viscosity and online determined heat transfer capacity were found. The developed tool should be applicable to any other process with formation of biopolymers and filamentous growth. Biotechnol. Bioeng. 2017;114: 990-997. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  12. Air volume measurement of 'Braeburn' apple fruit.

    PubMed

    Drazeta, Lazar; Lang, Alexander; Hall, Alistair J; Volz, Richard K; Jameson, Paula E

    2004-05-01

    The radial disposition of air in the flesh of fruit of Malus domestica Borkh., cv 'Braeburn' was investigated using a gravimetric technique based on Archimedes' principle. Intercellular air volume was measured by weighing a small tissue sample under water before and after vacuum infiltration to remove the air. In a separate procedure, the volume of the same sample was measured by recording the buoyant upthrust experienced by it when fully immersed in water. The method underestimates tissue air volume due to a slight invasion of the intercellular air spaces around the edges of the sample when it is immersed in water. To correct for this error, an adjustment factor was made based upon an analysis of a series of measurements of air volume in samples of different dimensions. In 'Braeburn' there is a gradient of declining air content from just beneath the skin to the centre of the fruit with a sharp discontinuity at the core line. Cell shape and cell packing were observed in the surface layers of freshly excised and stained flesh samples using a dissecting microscope coupled to a video camera and a PC running proprietary software. Tissue organization changed with distance below the skin. It is speculated that reduced internal gas movement, due to the tightly packed tissue of 'Braeburn' and to the potential diffusion barrier at the core line between the cortex and the pith, may increase susceptibility of the flesh to disorders associated with tissue browning and breakdown.

  13. Tank vapor mitigation requirements for Hanford Tank Farms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rakestraw, L.D.

    1994-11-15

    Westinghouse Hanford Company has contracted Los Alamos Technical Associates to listing of vapors and aerosols that are or may be emitted from the High Level Waste (HLW) tanks at Hanford. Mitigation requirements under Federal and State law, as well as DOE Orders, are included in the listing. The lists will be used to support permitting activities relative to tank farm ventilation system up-grades. This task is designated Task 108 under MJB-SWV-312057 and is an extension of efforts begun under Task 53 of Purchase Order MPB-SVV-03291 5 for Mechanical Engineering Support. The results of that task, which covered only thirty-nine tanks,more » are repeated here to provide a single source document for vapor mitigation requirements for all 177 HLW tanks.« less

  14. Cosmological measure with volume averaging and the vacuum energy problem

    NASA Astrophysics Data System (ADS)

    Astashenok, Artyom V.; del Popolo, Antonino

    2012-04-01

    In this paper, we give a possible solution to the cosmological constant problem. It is shown that the traditional approach, based on volume weighting of probabilities, leads to an incoherent conclusion: the probability that a randomly chosen observer measures Λ = 0 is exactly equal to 1. Using an alternative, volume averaging measure, instead of volume weighting can explain why the cosmological constant is non-zero.

  15. TANKS 18 AND 19-F STRUCTURAL FLOWABLE GROUT FILL MATERIAL EVALUATION AND RECOMMENDATIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stefanko, D.; Langton, C.

    2011-11-01

    Cementitious grout will be used to close Tanks 18-F and 19-F. The functions of the grout are to: (1) physically stabilize the final landfill by filling the empty volume in the tanks with a non compressible material; (2) provide a barrier for inadvertent intrusion into the tank; (3) reduce contaminant mobility by (a) limiting the hydraulic conductivity of the closed tank and (b) reducing contact between the residual waste and infiltrating water; and (4) providing an alkaline, chemically reducing environment in the closed tank to control speciation and solubility of selected radionuclides. The objective of this work was to identifymore » a single (all-in-one) grout to stabilize and isolate the residual radionuclides in the tank, provide structural stability of the closed tank and serve as an inadvertent intruder barrier. This work was requested by V. A. Chander, High Level Waste (HLW) Tank Engineering, in HLW-TTR-2011-008. The complete task scope is provided in the Task Technical and QA Plan, SRNL-RP-2011-00587 Revision 0. The specific objectives of this task were to: (1) Identify new admixtures and dosages for formulating a zero bleed flowable tank fill material selected by HLW Tank Closure Project personnel based on earlier tank fill studies performed in 2007. The chemical admixtures used for adjusting the flow properties needed to be updated because the original admixture products are no longer available. Also, the sources of cement and fly ash have changed, and Portland cements currently available contain up to 5 wt. % limestone (calcium carbonate). (2) Prepare and evaluate the placement, compressive strength, and thermal properties of the selected formulation with new admixture dosages. (3) Identify opportunities for improving the mix selected by HLW Closure Project personnel and prepare and evaluate two potentially improved zero bleed flowable fill design concepts; one based on the reactor fill grout and the other based on a shrinkage compensating flowable

  16. Methods for Measuring Lung Volumes: Is There a Better One?

    PubMed

    Tantucci, Claudio; Bottone, Damiano; Borghesi, Andrea; Guerini, Michele; Quadri, Federico; Pini, Laura

    2016-01-01

    Accurate measurement of lung volumes is of paramount importance to establish the presence of ventilatory defects and give insights for diagnostic and/or therapeutic purposes. It was the aim of this study to measure lung volumes in subjects with respiratory disorders and in normal controls by 3 different techniques (plethysmographic, dilutional and radiographic methods), in an attempt to clarify the role of each of them in performing such a task, without any presumptive 'a priori' superiority of one method above others. Patients andMethods: In different groups of subjects with obstructive and restrictive ventilatory defects and in a normal control group, total lung capacity, functional residual capacity (FRC) and residual volume were measured by body plethysmography, multi-breath helium (He) dilution and radiographic CT scan method with spirometric gating. The 3 methods gave comparable results in normal subjects and in patients with a restrictive defect. In patients with an obstructive defect, CT scan and plethysmography showed similar lung volumes, while on average significantly lower lung volumes were obtained with the He dilution technique. Taking into account that the He dilution technique does primarily measure FRC during tidal breathing, our data suggest that in some patients with an obstructive defect, a number of small airways can be functionally closed at end-expiratory lung volume, preventing He to reach the lung regions subserved by these airways. In all circumstances, both CT scan with spirometric gating and plethysmographic methods provide similar values of lung volumes. In contrast, the He dilution method can measure lower lung volumes in some patients with chronic airflow obstruction. © 2016 S. Karger AG, Basel.

  17. Enhanced Chemical Cleaning: A New Process for Chemically Cleaning Savannah River Waste Tanks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ketusky, Edward; Spires, Renee; Davis, Neil

    2009-02-11

    At the Savannah River Site (SRS) there are 49 High Level Waste (HLW) tanks that eventually must be emptied, cleaned, and closed. The current method of chemically cleaning SRS HLW tanks, commonly referred to as Bulk Oxalic Acid Cleaning (BOAC), requires about a half million liters (130,000 gallons) of 8 weight percent (wt%) oxalic acid to clean a single tank. During the cleaning, the oxalic acid acts as the solvent to digest sludge solids and insoluble salt solids, such that they can be suspended and pumped out of the tank. Because of the volume and concentration of acid used, amore » significant quantity of oxalate is added to the HLW process. This added oxalate significantly impacts downstream processing. In addition to the oxalate, the volume of liquid added competes for the limited available tank space. A search, therefore, was initiated for a new cleaning process. Using TRIZ (Teoriya Resheniya Izobretatelskikh Zadatch or roughly translated as the Theory of Inventive Problem Solving), Chemical Oxidation Reduction Decontamination with Ultraviolet Light (CORD-UV{reg_sign}), a mature technology used in the commercial nuclear power industry was identified as an alternate technology. Similar to BOAC, CORD-UV{reg_sign} also uses oxalic acid as the solvent to dissolve the metal (hydr)oxide solids. CORD-UV{reg_sign} is different, however, since it uses photo-oxidation (via peroxide/UV or ozone/UV to form hydroxyl radicals) to decompose the spent oxalate into carbon dioxide and water. Since the oxalate is decomposed and off-gassed, CORD-UV{reg_sign} would not have the negative downstream oxalate process impacts of BOAC. With the oxalate destruction occurring physically outside the HLW tank, re-precipitation and transfer of the solids, as well as regeneration of the cleaning solution can be performed without adding additional solids, or a significant volume of liquid to the process. With a draft of the pre-conceptual Enhanced Chemical Cleaning (ECC) flowsheet, taking

  18. [Failure of static pulmonary volume measurements in mucoviscidosis].

    PubMed

    Haluszka, J; Zebrak, J

    1984-01-01

    With worsening of bronchial obstruction during the course of cystic fibrosis the functional residual capacity (CRF) measured by plethysmography increases progressively. The difference between values of CRF obtained by plethysmography or by Helium dilution increases even more. The difference between the two methods (for CRF) is supposed to show the volume of "trapped"' gas. A similar outcome, although less marked, is observed after physiotherapy. The extent of pulmonary distention and gas trapping is markedly overestimated by plethysmographic measurements, when one considers the anatomical and radiological anomalies. It was recently suggested that the rise in compliance of the walls of the extra-thoracic airways in the presence of bronchial obstruction may lead to an over-estimation of the pulmonary volumes measured by plethysmography. This may be the case during the course of mucoviscidosis, when repeated infections lead to a destruction of the bronchial walls. However, this anomaly does not explain this rise in CRF after mucolytic treatment and postural drainage. The CRF seems to reflect not only the volume of trapper gas in the lung, but equally the failure to equalize the interior pressures of the obstructed airways. In order to appreciate the effects of respiratory physiotherapy, different methods of measuring pulmonary volumes are necessary but the interpretation of the results take account of the complex meterology.

  19. Tanks 18 And 19-F Structural Flowable Grout Fill Material Evaluation And Recommendations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Langton, C. A.; Stefanko, D. B.

    2013-04-23

    Cementitious grout will be used to close Tanks 18-F and 19-F. The functions of the grout are to: 1) physically stabilize the final landfill by filling the empty volume in the tanks with a non-compressible material; 2) provide a barrier for inadvertent intrusion into the tank; 3) reduce contaminant mobility by a) limiting the hydraulic conductivity of the closed tank and b) reducing contact between the residual waste and infiltrating water; and 4) providing an alkaline, chemically reducing environment in the closed tank to control speciation and solubility of selected radionuclides. The objective of this work was to identify amore » single (all-in-one) grout to stabilize and isolate the residual radionuclides in the tank, provide structural stability of the closed tank and serve as an inadvertent intruder barrier. This work was requested by V. A. Chander, High Level Waste (HLW) Tank Engineering, in HLW-TTR-2011-008. The complete task scope is provided in the Task Technical and QA Plan, SRNL-RP-2011-00587 Revision 0. The specific objectives of this task were to: 1) Identify new admixtures and dosages for formulating a zero bleed flowable tank fill material selected by HLW Tank Closure Project personnel based on earlier tank fill studies performed in 2007. The chemical admixtures used for adjusting the flow properties needed to be updated because the original admixture products are no longer available. Also, the sources of cement and fly ash have changed, and Portland cements currently available contain up to 5 wt. % limestone (calcium carbonate). 2) Prepare and evaluate the placement, compressive strength, and thermal properties of the selected formulation with new admixture dosages. 3) Identify opportunities for improving the mix selected by HLW Closure Project personnel and prepare and evaluate two potentially improved zero bleed flowable fill design concepts; one based on the reactor fill grout and the other based on a shrinkage compensating flowable fill mix

  20. Self-pressurization of a flightweight liquid hydrogen tank: Effects of fill level at low wall heat flux

    NASA Technical Reports Server (NTRS)

    Vandresar, N. T.; Hasan, M. M.; Lin, C.-S.

    1991-01-01

    Experimental results are presented for the self pressurization and thermal stratification of a 4.89 cu m liquid hydrogen storage tank subjected to low heat flux (2.0 and 3.5 W/sq m) in normal gravity. The test tank was representative of future spacecraft tankage, having a low mass to volume ratio and high performance multilayer thermal insulation. Tests were performed at fill levels of 29 and 49 pcts. (by volume) and complement previous tests at 83 pct. fill. As the heat flux increases, the pressure rise rate at each fill level exceeds the homogeneous rate by an increasing ratio. Herein, this ratio did not exceed a value of 2. The slowest pressure rise rate was observed for the 49 pct. fill level at both heat fluxes. This result is attributed to the oblate spheroidal tank geometry which introduces the variables of wetted wall area, liquid-vapor interfacial area, and ratio of side wall to bottom heating as a function of fill level or liquid depth. Initial tank thermal conditions were found to affect the initial pressure rise rate. Quasi steady pressure rise rates are independent of starting conditions.

  1. Vented Chill / No-Vent Fill of Cryogenic Propellant Tanks

    NASA Technical Reports Server (NTRS)

    Rhys, Noah O.; Foster, Lee W.; Martin, Adam K.; Stephens, Jonathan R.

    2016-01-01

    Architectures for extended duration missions often include an on-orbit replenishment of the space vehicle's cryogenic liquid propellants. Such a replenishment could be accomplished via a tank-to-tank transfer from a dedicated tanker or a more permanent propellant depot storage tank. Minimizing the propellant loss associated with transfer line and receiver propellant tank thermal conditioning is essential for mass savings. A new methodology for conducting tank-to-tank transfer while minimizing such losses has been demonstrated. Charge-Hold-Vent is the traditional methodology for conducting a tank-to-tank propellant transfer. A small amount of cryogenic liquid is introduced to chill the transfer line and propellant tank. As the propellant absorbs heat and undergoes a phase change, the tank internal pressure increases. The tank is then vented to relieve pressure prior to another charge of cryogenic liquid being introduced. This cycle is repeated until the transfer lines and tank are sufficiently chilled and the replenishment of the propellant tank is complete. This method suffers inefficiencies due to multiple chill and vent cycles within the transfer lines and associated feed system components. Additionally, this system requires precise measuring of cryogenic fluid delivery for each transfer, multiple valve cycling events, and other complexities associated with cycled operations. To minimize propellant loss and greatly simplify on-orbit operations, an alternate methodology has been designed and demonstrated. The Vented Chill / No Vent Fill method is a simpler, constant flow approach in which the propellant tank and transfer lines are only chilled once. The receiver tank is continuously vented as cryogenic liquid chills the transfer lines, tank mass and ullage space. Once chilled sufficiently, the receiver tank valve is closed and the tank is completely filled. Interestingly, the vent valve can be closed prior to receiver tank components reaching liquid saturation

  2. 46 CFR 32.65-30 - Tank vessels with independent tanks-TB/ALL.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 1 2012-10-01 2012-10-01 false Tank vessels with independent tanks-TB/ALL. 32.65-30 Section 32.65-30 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS SPECIAL EQUIPMENT, MACHINERY, AND HULL REQUIREMENTS Hull Requirements for Tank Vessels Constructed On or After November 10...

  3. 46 CFR 32.65-30 - Tank vessels with independent tanks-TB/ALL.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 1 2011-10-01 2011-10-01 false Tank vessels with independent tanks-TB/ALL. 32.65-30 Section 32.65-30 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS SPECIAL EQUIPMENT, MACHINERY, AND HULL REQUIREMENTS Hull Requirements for Tank Vessels Constructed On or After November 10...

  4. 46 CFR 32.65-30 - Tank vessels with independent tanks-TB/ALL.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 1 2014-10-01 2014-10-01 false Tank vessels with independent tanks-TB/ALL. 32.65-30 Section 32.65-30 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS SPECIAL EQUIPMENT, MACHINERY, AND HULL REQUIREMENTS Hull Requirements for Tank Vessels Constructed On or After November 10...

  5. 46 CFR 32.65-30 - Tank vessels with independent tanks-TB/ALL.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 1 2013-10-01 2013-10-01 false Tank vessels with independent tanks-TB/ALL. 32.65-30 Section 32.65-30 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS SPECIAL EQUIPMENT, MACHINERY, AND HULL REQUIREMENTS Hull Requirements for Tank Vessels Constructed On or After November 10...

  6. Validation of High-Resolution CFD Method for Slosh Damping Extraction of Baffled Cryogenic Propellant Tanks

    NASA Technical Reports Server (NTRS)

    Yang, H. Q.; West, Jeff

    2016-01-01

    Propellant slosh is a potential source of disturbance critical to the stability of space vehicles. The slosh dynamics are typically represented by a mechanical model of a spring-mass-damper. This mechanical model is then included in the equation of motion of the entire vehicle for Guidance, Navigation and Control analysis. A Volume-Of-Fluid (VOF) based Computational Fluid Dynamics (CFD) program developed at MSFC was applied to extract slosh damping in the baffled tank from the first principle. First the experimental data using water with sub-scale smooth wall tank were used as the baseline validation. It is demonstrated that CFD can indeed accurately predict low damping values from the smooth wall at different fill levels. The damping due to a ring baffles at different depths from the free surface was then simulated, and fairly good agreement with experimental measurement was observed. Comparison with an empirical correlation of Miles equation is also made.

  7. Sex Assessment from the Volume of the First Metatarsal Bone: A Comparison of Linear and Volume Measurements.

    PubMed

    Gibelli, Daniele; Poppa, Pasquale; Cummaudo, Marco; Mattia, Mirko; Cappella, Annalisa; Mazzarelli, Debora; Zago, Matteo; Sforza, Chiarella; Cattaneo, Cristina

    2017-11-01

    Sexual dimorphism is a crucial characteristic of skeleton. In the last years, volumetric and surface 3D acquisition systems have enabled anthropologists to assess surfaces and volumes, whose potential still needs to be verified. This article aimed at assessing volume and linear parameters of the first metatarsal bone through 3D acquisition by laser scanning. Sixty-eight skeletons underwent 3D scan through laser scanner: Seven linear measurements and volume from each bone were assessed. A cutoff value of 13,370 mm 3 was found, with an accuracy of 80.8%. Linear measurements outperformed volume: metatarsal length and mediolateral width of base showed higher cross-validated accuracies (respectively, 82.1% and 79.1%, raising at 83.6% when both of them were included). Further studies are needed to verify the real advantage for sex assessment provided by volume measurements. © 2017 American Academy of Forensic Sciences.

  8. Measurement of gastric meal and secretion volumes using magnetic resonance imaging

    NASA Astrophysics Data System (ADS)

    Hoad, C. L.; Parker, H.; Hudders, N.; Costigan, C.; Cox, E. F.; Perkins, A. C.; Blackshaw, P. E.; Marciani, L.; Spiller, R. C.; Fox, M. R.; Gowland, P. A.

    2015-02-01

    MRI can assess multiple gastric functions without ionizing radiation. However, time consuming image acquisition and analysis of gastric volume data, plus confounding of gastric emptying measurements by gastric secretions mixed with the test meal have limited its use to research centres. This study presents an MRI acquisition protocol and analysis algorithm suitable for the clinical measurement of gastric volume and secretion volume. Reproducibility of gastric volume measurements was assessed using data from 10 healthy volunteers following a liquid test meal with rapid MRI acquisition within one breath-hold and semi-automated analysis. Dilution of the ingested meal with gastric secretion was estimated using a respiratory-triggered T1 mapping protocol. Accuracy of the secretion volume measurements was assessed using data from 24 healthy volunteers following a mixed (liquid/solid) test meal with MRI meal volumes compared to data acquired using gamma scintigraphy (GS) on the same subjects studied on a separate study day. The mean ± SD coefficient of variance between 3 observers for both total gastric contents (including meal, secretions and air) and just the gastric contents (meal and secretion only) was 3  ±  2% at large gastric volumes (>200 ml). Mean ± SD secretion volumes post meal ingestion were 64  ±  51 ml and 110  ±  40 ml at 15 and 75 min, respectively. Comparison with GS meal volumes, showed that MRI meal only volume (after correction for secretion volume) were similar to GS, with a linear regression gradient ± std err of 1.06  ±  0.10 and intercept -11  ±  24 ml. In conclusion, (i) rapid volume acquisition and respiratory triggered T1 mapping removed the requirement to image during prolonged breath-holds (ii) semi-automatic analysis greatly reduced the time required to derive measurements and (iii) correction for secretion volumes provided accurate assessment of gastric meal volumes and emptying. Together these features

  9. [Effects of tank operation on renal function of crews].

    PubMed

    Ma, Qiang; Wang, Hong-Fei; Xing, Chang-Jiang; Ma, Hua-Chao; Gong, Mei-Liang; Sun, Lei; Liang, Hong-Ling

    2014-09-01

    To explore the effects of harmful factors in tank cabins on renal function of tank crews. One hundred and fifty two tank crews as the observation group and 37 soldiers without tank environment exposure as control group were selected in the study. α1-microglobulin(α1-MG), β2-microglobulin(β2-MG), IgG, N-acetyl-β-glucosidase (NAG) and urinary albumin excretion rate (UAER) in morning and 24 h urine were measured. Compared to the control group, the levels of α1-MG, β2-MG, NAG, UAER in observation group were increased significantly (P < 0.05). β2-MG, NAG, UAER of Soldiers with more than 50 motorized hours in observation group were significantly higher than those of control group (P < 0.05). β2-MG, NAG and UAER of soldiers divorced from tank occupation more than 3 years decreased to the normal levels. β2-MG of soldiers divorced from tank occupation more than 10 years was significantly higher than that of 6-10 years group. Tank occupational exposure influences the renal function of tank crews but not to a degree of clinical kidney disease. The renal function of crews divorced from tank occupation may recover but dysfunction of renal tubular reabsorption still exists.

  10. Analysis of Tank 38H (HTF-38-16-80, 81) and Tank 43H (HTF-43-16-82, 83) Samples for Support of the Enrichment Control and Corrosion Control Programs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hay, M.

    2016-10-24

    SRNL analyzed samples from Tank 38H and Tank 43H to support ECP and CCP. The total uranium in the Tank 38H surface sample was 57.6 mg/L, while the sub-surface sample was 106 mg/L. The Tank 43H samples ranged from 50.0 to 51.9 mg/L total uranium. The U-235 percentage was consistent for all four samples at 0.62%. The total uranium and percent U-235 results appear consistent with recent Tank 38H and Tank 43H uranium measurements. The Tank 38H plutonium results show a large difference between the surface and sub-surface sample concentrations and somewhat higher concentrations than previous samples. The Pu-238 concentrationmore » is more than forty times higher in the Tank 38H sub-surface sample than the surface sample. The surface and sub-surface Tank 43H samples contain similar plutonium concentrations and are within the range of values measured on previous samples. The four samples analyzed show silicon concentrations somewhat higher than the previous sample with values ranging from 104 to 213 mg/L.« less

  11. Conventional fuel tank blunt impact tests : test and analysis results

    DOT National Transportation Integrated Search

    2014-04-02

    The Federal Railroad Administrations Office of Research : and Development is conducting research into fuel tank : crashworthiness. A series of impact tests are planned to : measure fuel tank deformation under two types of dynamic : loading conditi...

  12. Concepts for a Shroud or Propellant Tank Derived Deep Space Habitat

    NASA Technical Reports Server (NTRS)

    Howard, Robert L.

    2012-01-01

    Long duration human spaceflight missions beyond Low Earth Orbit will require much larger spacecraft than capsules such as the Russian Soyuz or American Orion Multi-Purpose Crew Vehicle. A concept spacecraft under development is the Deep Space Habitat, with volumes approaching that of space stations such as Skylab, Mir, and the International Space Station. This paper explores several concepts for Deep Space Habitats constructed from a launch vehicle shroud or propellant tank. It also recommends future research using mockups and prototypes to validate the size and crew station capabilities of such a habitat. Keywords: Exploration, space station, lunar outpost, NEA, habitat, long duration, deep space habitat, shroud, propellant tank.

  13. Radio frequency tank eigenmode sensor for propellant quantity gauging

    NASA Technical Reports Server (NTRS)

    Zimmerli, Gregory A. (Inventor)

    2013-01-01

    A method for measuring the quantity of fluid in a tank may include the steps of selecting a match between a measured set of electromagnetic eigenfrequencies and a simulated plurality of sets of electromagnetic eigenfrequencies using a matching algorithm, wherein the match is one simulated set of electromagnetic eigenfrequencies from the simulated plurality of sets of electromagnetic eigenfrequencies, and determining the fill level of the tank based upon the match.

  14. 49 CFR 179.201 - Individual specification requirements applicable to non-pressure tank car tanks.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... to non-pressure tank car tanks. 179.201 Section 179.201 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) SPECIFICATIONS FOR TANK CARS Specifications for Non-Pressure Tank Car Tanks (Classes DOT-111AW...

  15. Fluid dynamic analysis of a continuous stirred tank reactor for technical optimization of wastewater digestion.

    PubMed

    Hurtado, F J; Kaiser, A S; Zamora, B

    2015-03-15

    Continuous stirred tank reactors (CSTR) are widely used in wastewater treatment plants to reduce the organic matter and microorganism present in sludge by anaerobic digestion. The present study carries out a numerical analysis of the fluid dynamic behaviour of a CSTR in order to optimize the process energetically. The characterization of the sludge flow inside the digester tank, the residence time distribution and the active volume of the reactor under different criteria are determined. The effects of design and power of the mixing system on the active volume of the CSTR are analyzed. The numerical model is solved under non-steady conditions by examining the evolution of the flow during the stop and restart of the mixing system. An intermittent regime of the mixing system, which kept the active volume between 94% and 99%, is achieved. The results obtained can lead to the eventual energy optimization of the mixing system of the CSTR. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Numerical Modeling of Propellant Boiloff in Cryogenic Storage Tank

    NASA Technical Reports Server (NTRS)

    Majumdar, A. K.; Steadman, T. E.; Maroney, J. L.

    2007-01-01

    This Technical Memorandum (TM) describes the thermal modeling effort undertaken at Marshall Space Flight Center to support the Cryogenic Test Laboratory at Kennedy Space Center (KSC) for a study of insulation materials for cryogenic tanks in order to reduce propellant boiloff during long-term storage. The Generalized Fluid System Simulation program has been used to model boiloff in 1,000-L demonstration tanks built for testing the thermal performance of glass bubbles and perlite insulation. Numerical predictions of boiloff rate and ullage temperature have been compared with the measured data from the testing of demonstration tanks. A satisfactory comparison between measured and predicted data has been observed for both liquid nitrogen and hydrogen tests. Based on the experience gained with the modeling of the demonstration tanks, a numerical model of the liquid hydrogen storage tank at launch complex 39 at KSC was built. The predicted boiloff rate of hydrogen has been found to be in good agreement with observed field data. This TM describes three different models that have been developed during this period of study (March 2005 to June 2006), comparisons with test data, and results of parametric studies.

  17. 3-D Numerical Simulation for Gas-Liquid Two-Phase Flow in Aeration Tank

    NASA Astrophysics Data System (ADS)

    Xue, R.; Tian, R.; Yan, S. Y.; Li, S.

    In the crafts of activated sludge treatment, oxygen supply and the suspending state of activated sludge are primary factors to keep biochemistry process carrying on normally. However, they are all controlled by aeration. So aeration is crucial. The paper focus on aeration, use CFD software to simulate the field of aeration tank which is designed by sludge load method. The main designed size of aeration tank is: total volume: 20 000 m3; corridor width: 8m; total length of corridors: 139m; number of corridors: 3; length of one single corridor: 48m; effective depth: 4.5m; additional depth: 0.5m. According to the similarity theory, a geometrical model is set up in proportion of 10:1. The way of liquid flow is submerge to avoid liquid flow out directly. The grid is plotted by dividing the whole computational area into two parts. The bottom part which contains gas pipe and gas exit hole and the above part which is the main area are plotted by tetrahedron and hexahedron respectively. In boundary conditions, gas is defined as the primary-phase, and liquid is defined as the secondary-phase. Choosing mixture model, two-phase flow field of aeration tank is simulated by solved the Continuity equation for the mixture, Momentum equation for the mixture, Volume fraction equation for the secondary phases and Relative velocity formula when gas velocity is 10m/s, 20m/s, 30m/s. what figure shows is the contour of velocity magnitude for the mixture phase when gas velocity is 20m/s. Through analysis, the simulation tendency is agreed with actual running of aeration tank. It is feasible to use mixture model to simulate flow field of aeration tank by fluent software. According to the simulation result, the better velocity of liquid or gas (the quantity of inlet air) can be chosen by lower cost, and also the performance of aeration tank can be forecast. It will be helpful for designing and operation.

  18. Capacitance probe for fluid flow and volume measurements

    NASA Technical Reports Server (NTRS)

    Arndt, G. Dickey (Inventor); Nguyen, Thanh X. (Inventor); Carl, James R. (Inventor)

    1995-01-01

    Method and apparatus for making measurements on fluids are disclosed, including the use of a capacitive probe for measuring the flow volume of a material within a flow stream. The capacitance probe has at least two elongate electrodes and, in a specific embodiment of the invention, has three parallel elongate electrodes with the center electrode being an extension of the center conductor of a co-axial cable. A conductance probe is also provided to provide more accurate flow volume data in response to conductivity of the material within the flow stream. A preferred embodiment of the present invention provides for a gas flow stream through a microgravity environment that allows for monitoring a flow volume of a fluid sample, such as a urine sample, that is entrained within the gas flow stream.

  19. Capacitance Probe for Fluid Flow and Volume Measurements

    NASA Technical Reports Server (NTRS)

    Arndt, G. Dickey (Inventor); Nguyen, Thanh X. (Inventor); Carl, James R. (Inventor)

    1997-01-01

    Method and apparatus for making measurements on fluids are disclosed, including the use of a capacitive probe for measuring the flow volume of a material within a flow stream. The capacitance probe has at least two elongate electrodes and, in a specific embodiment of the invention, has three parallel elongate electrodes with the center electrode being an extension of the center conductor of a co-axial cable. A conductance probe is also provided to provide more accurate flow volume data in response to conductivity of the material within the flow stream. A preferred embodiment of the present invention provides for a gas flow stream through a micro-gravity environment that allows for monitoring a flow volume of a fluid sample, such as a urine sample, that is entrained within the gas flow stream.

  20. Measurement variability error for estimates of volume change

    Treesearch

    James A. Westfall; Paul L. Patterson

    2007-01-01

    Using quality assurance data, measurement variability distributions were developed for attributes that affect tree volume prediction. Random deviations from the measurement variability distributions were applied to 19381 remeasured sample trees in Maine. The additional error due to measurement variation and measurement bias was estimated via a simulation study for...

  1. 49 CFR 179.103 - Special requirements for class 114A * * * tank car tanks.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 3 2014-10-01 2014-10-01 false Special requirements for class 114A * * * tank car...) PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) SPECIFICATIONS FOR TANK CARS Specifications for Pressure Tank Car Tanks (Classes DOT-105, 109, 112, 114 and 120...

  2. Apollo 13 Mission: Cryogenic Oxygen Tank 2 Anomaly Report

    NASA Technical Reports Server (NTRS)

    1970-01-01

    There were two investigative aspects associated with the loss of the cryogenic oxygen tank pressure during the Apollo 13 flight. First, what was the cause of the flight failure of cryogenic oxygen tank 2. Second, what possible contributing factors during the ground history of the tank could have led to the ultimate failure in flight. The first flight indication of a problem occurred when the quantity measurement in the tank went full scale about 9 hours before the incident. This condition in itself could not have contributed to ignition in the tank, since the energy in the circuit is restricted to about 7 milli-joules. Data from the electrical system provided the second indication of a problem when the fans in tank 2 were activated to reduce any stratification which might have been present in the supercritical oxygen in the tank. Several short-circuits were detected and have been isolated to the fan circuits of tank 2. The first short-circuit could have contained as much as 160 joules of energy, which is within the current-protection level of the fan circuits. Tests have shown that two orders of magnitude less energy than this is sufficient to ignite the polytetrafluoroethylene insulation on the fan circuits in the tank. Consequently, the evidence indicates that the insulation on the fan wiring was ignited by the energy in the short-circuit.

  3. A Marine Aerosol Reference Tank system as a breaking wave analogue for the production of foam and sea-spray aerosols

    NASA Astrophysics Data System (ADS)

    Stokes, M. D.; Deane, G. B.; Prather, K.; Bertram, T. H.; Ruppel, M. J.; Ryder, O. S.; Brady, J. M.; Zhao, D.

    2013-04-01

    In order to better understand the processes governing the production of marine aerosols a repeatable, controlled method for their generation is required. The Marine Aerosol Reference Tank (MART) has been designed to closely approximate oceanic conditions by producing an evolving bubble plume and surface foam patch. The tank utilizes an intermittently plunging sheet of water and large volume tank reservoir to simulate turbulence, plume and foam formation, and the water flow is monitored volumetrically and acoustically to ensure the repeatability of conditions.

  4. Analysis of Tank 38H (HTF-38-16-26, 27) and Tank 43H (HTF-43-16-28, 29) Samples for Support of the Enrichment Control and Corrosion Control Programs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hay, M. S.

    Savannah River National Laboratory analyzed samples from Tank 38H and Tank 43H to support Enrichment Control Program and Corrosion Control Program. The total uranium in the Tank 38H samples ranged from 20.5 to 34.0 mg/L while the Tank 43H samples ranged from 47.6 to 50.6 mg/L. The U-235 percentage ranged from 0.62% to 0.64% over the four samples. The total uranium and percent U-235 results appear consistent with previous Tank 38H and Tank 43H uranium measurements. The Tank 38H plutonium results show a large difference between the surface and sub-surface sample concentrations and a somewhat higher concentration than previous sub-surfacemore » samples. The two Tank 43H samples show similar plutonium concentrations and are within the range of values measured on previous samples. The plutonium results may be biased high due to the presence of plutonium contamination in the blank samples from the cell sample preparations. The four samples analyzed show silicon concentrations ranging from 47.9 to 105 mg/L.« less

  5. Continuous-flow stirred-tank reactor 20-L demonstration test: Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, D.D.; Collins, J.L.

    One of the proposed methods of removing the cesium, strontium, and transuranics from the radioactive waste storage tanks at Savannah River is the small-tank tetraphenylborate (TPB) precipitation process. A two-reactor-in-series (15-L working volume each) continuous-flow stirred-tank reactor (CSTR) system was designed, constructed, and installed in a hot cell to test the Savannah River process. The system also includes two cross-flow filtration systems to concentrate and wash the slurry produced in the process, which contains the bulk of radioactivity from the supernatant processed through the system. Installation, operational readiness reviews, and system preparation and testing were completed. The first test usingmore » the filtration systems, two CSTRs, and the slurry concentration system was conducted over a 61-h period with design removal of Cs, Sr, and U achieved. With the successful completion of Test 1a, the following tests, 1b and 1c, were not required.« less

  6. Method for measuring anterior chamber volume by image analysis

    NASA Astrophysics Data System (ADS)

    Zhai, Gaoshou; Zhang, Junhong; Wang, Ruichang; Wang, Bingsong; Wang, Ningli

    2007-12-01

    Anterior chamber volume (ACV) is very important for an oculist to make rational pathological diagnosis as to patients who have some optic diseases such as glaucoma and etc., yet it is always difficult to be measured accurately. In this paper, a method is devised to measure anterior chamber volumes based on JPEG-formatted image files that have been transformed from medical images using the anterior-chamber optical coherence tomographer (AC-OCT) and corresponding image-processing software. The corresponding algorithms for image analysis and ACV calculation are implemented in VC++ and a series of anterior chamber images of typical patients are analyzed, while anterior chamber volumes are calculated and are verified that they are in accord with clinical observation. It shows that the measurement method is effective and feasible and it has potential to improve accuracy of ACV calculation. Meanwhile, some measures should be taken to simplify the handcraft preprocess working as to images.

  7. Farming in a fish tank.

    PubMed

    Youth, H

    1992-01-01

    Water, fish, and vegetables are all things that most developing countries do not have enough of. There is a method of food production called aquaculture that integrates fish and vegetable growing and conserves and purifies water at the same time. A working system that grows vegetables and fish for regional supermarkets in Massachusetts is a gravity fed system. At the top of the system is a 3,000 gallon fish rearing tank that measures 12 feet in diameter. Water trickles out of the tank and fish wastes are captured which can be composted and used in farm fields. The water goes into a bio filter that contains bacteria which convert harmful ammonia generated from fish waste into beneficial nitrate. Then the water flows into 100 foot long hydroponic tanks where lettuce grows. A 1/6 horsepower pump return the purified water to the fish tank and completes the cycle. The key to success is maintaining a balance between the fish nutrients and waste and the plants nutrients and waste. The system is estimated to produce 35,000 heads of lettuce and 2 tons of fish annually which translates into $23,500. The system could be adapted to developing countries with several modifications to reduce the start up cost.

  8. Measuring Air Leaks into the Vacuum Space of Large Liquid Hydrogen Tanks

    NASA Technical Reports Server (NTRS)

    Youngquist, Robert; Starr, Stanley; Nurge, Mark

    2012-01-01

    Large cryogenic liquid hydrogen tanks are composed of inner and outer shells. The outer shell is exposed to the ambient environment while the inner shell holds the liquid hydrogen. The region between these two shells is evacuated and typically filled with a powderlike insulation to minimize radiative coupling between the two shells. A technique was developed for detecting the presence of an air leak from the outside environment into this evacuated region. These tanks are roughly 70 ft (approx. equal 21 m) in diameter (outer shell) and the inner shell is roughly 62 ft (approx. equal 19 m) in diameter, so the evacuated region is about 4 ft (approx. equal 1 m) wide. A small leak's primary effect is to increase the boil-off of the tank. It was preferable to install a more accurate fill level sensor than to implement a boil-off meter. The fill level sensor would be composed of an accurate pair of pressure transducers that would essentially weigh the remaining liquid hydrogen. This upgrade, allowing boil-off data to be obtained weekly instead of over several months, is ongoing, and will then provide a relatively rapid indication of the presence of a leak.

  9. TH-CD-201-05: Characterization of a Novel Light-Collimating Tank Optical-CT System for 3D Dosimetry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miles, D; Yoon, S; Adamovics, J

    Purpose: Comprehensive 3D dosimetry is highly desirable for advanced clinical QA, but costly optical readout techniques have hindered widespread implementation. Here, we present the first results from a cost-effective Integrated-lens Dry-tank Optical Scanner (IDOS), designed for convenient 3D dosimetry readout of radiochromic plastic dosimeters (e.g. PRESAGE). Methods: The scanner incorporates a novel transparent light-collimating tank, which collimates a point light source into parallel-ray CT geometry. The tank was designed using an in-house Monte-Carlo optical ray-tracing simulation, and was cast in polyurethane using a 3D printed mould. IDOS spatial accuracy was evaluated by imaging a set of custom optical phantoms, withmore » comparison to x-ray CT images. IDOS dose measurement performance was assessed by imaging PRESAGE dosimeters irradiated with simple known dose distributions (e.g., 4 field box 6MV treatment with Varian Linac). Direct comparisons were made to images from our gold standard DLOS scanner and calculated dose distributions from a commissioned Eclipse planning system. Results: All optical CT images were reconstructed at 1mm isotropic resolution. Comparison of IDOS and x-ray CT images of the geometric phantom demonstrated excellent IDOS geometric accuracy (sub-mm) throughout the dosimeter. IDOS measured 3D dose distribution agreed well with prediction from Eclipse, with 95% gamma pass rate at 3%/3mm. Cross-scanner dose measurement gamma analysis shows >90% of pixels passing at 3%/3mm. Conclusion: The first prototype of the IDOS system has demonstrated promising performance, with accurate dosimeter readout and negligible spatial distortion. The use of optical simulations and 3D printing to create a light collimating-tank has dramatically increased convenience and reduced costs by removing the need for expensive lenses and large volumes of refractive matching fluids.« less

  10. CFD simulation of an unbaffled stirred tank reactor driven by a magnetic rod: assessment of turbulence models.

    PubMed

    Li, Jiajia; Deng, Baoqing; Zhang, Bing; Shen, Xiuzhong; Kim, Chang Nyung

    2015-01-01

    A simulation of an unbaffled stirred tank reactor driven by a magnetic stirring rod was carried out in a moving reference frame. The free surface of unbaffled stirred tank was captured by Euler-Euler model coupled with the volume of fluid (VOF) method. The re-normalization group (RNG) k-ɛ model, large eddy simulation (LES) model and detached eddy simulation (DES) model were evaluated for simulating the flow field in the stirred tank. All turbulence models can reproduce the tangential velocity in an unbaffled stirred tank with a rotational speed of 150 rpm, 250 rpm and 400 rpm, respectively. Radial velocity is underpredicted by the three models. LES model and RNG k-ɛ model predict the better tangential velocity and axial velocity, respectively. RNG k-ɛ model is recommended for the simulation of the flow in an unbaffled stirred tank with magnetic rod due to its computational effort.

  11. Tank characterization report for single-shell tank 241-C-109

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Simpson, B.C.

    1997-05-23

    One of the major functions of the Tank Waste Remediation System (TWRS) is to characterize wastes in support of waste management and disposal activities at the Hanford Site. Analytical data from sampling and analysis, along with other available information about a tank, are compiled and maintained in a tank characterization report (TCR). This report and its appendices serve as the TCR for single-shell tank 241-C-109. The objectives of this report are: (1) to use characterization data in response to technical issues associated with tank 241 C-109 waste; and (2) to provide a standard characterization of this waste in terms ofmore » a best-basis inventory estimate. The response to technical issues is summarized in Section 2.0, and the best-basis inventory estimate is presented in Section 3.0. Recommendations regarding safety status and additional sampling needs are provided in Section 4.0. Supporting data and information are contained in the appendices.« less

  12. Characterizing Droplet Formation from Non-Linear Slosh in a Propellant Tank

    NASA Technical Reports Server (NTRS)

    Brodnick, Jacob; Yang, Hong; West, Jeffrey

    2015-01-01

    The Fluid Dynamics Branch (ER42) at the Marshall Space Flight Center (MSFC) was tasked with characterizing the formation and evolution of liquid droplets resulting from nonlinear propellant slosh in a storage tank. Lateral excitation of propellant tanks can produce high amplitude nonlinear slosh waves through large amplitude excitations and or excitation frequencies near a resonance frequency of the tank. The high amplitude slosh waves become breaking waves upon attaining a certain amplitude or encountering a contracting geometry such as the upper dome section of a spherical tank. Inherent perturbations in the thinning regions of breaking waves result in alternating regions of high and low pressure within the fluid. Droplets form once the force from the local pressure differential becomes larger than the force maintaining the fluid interface shape due to surface tension. Droplets released from breaking waves in a pressurized tank may lead to ullage collapse given the appropriate conditions due to the increased liquid surface area and thus heat transfer between the fluids. The goal of this project is to create an engineering model that describes droplet formation as a function of propellant slosh for use in the evaluation of ullage collapse during a sloshing event. The Volume of Fluid (VOF) model in the production level Computational Fluid Dynamics (CFD) code Loci-Stream was used to predict droplet formation from breaking waves with realistic surface tension characteristics. Various excitation frequencies and amplitudes were investigated at multiple fill levels for a single storage tank to create the engineering model of droplet formation from lateral propellant slosh.

  13. Method of measuring a liquid pool volume

    DOEpatents

    Garcia, Gabe V.; Carlson, Nancy M.; Donaldson, Alan D.

    1991-01-01

    A method of measuring a molten metal liquid pool volume and in particular molten titanium liquid pools, including the steps of (a) generating an ultrasonic wave at the surface of the molten metal liquid pool, (b) shining a light on the surface of a molten metal liquid pool, (c) detecting a change in the frequency of light, (d) detecting an ultrasonic wave echo at the surface of the molten metal liquid pool, and (e) computing the volume of the molten metal liquid.

  14. Computational modeling of the pressurization process in a NASP vehicle propellant tank experimental simulation

    NASA Technical Reports Server (NTRS)

    Sasmal, G. P.; Hochstein, J. I.; Wendl, M. C.; Hardy, T. L.

    1991-01-01

    A multidimensional computational model of the pressurization process in a slush hydrogen propellant storage tank was developed and its accuracy evaluated by comparison to experimental data measured for a 5 ft diameter spherical tank. The fluid mechanic, thermodynamic, and heat transfer processes within the ullage are represented by a finite-volume model. The model was shown to be in reasonable agreement with the experiment data. A parameter study was undertaken to examine the dependence of the pressurization process on initial ullage temperature distribution and pressurant mass flow rate. It is shown that for a given heat flux rate at the ullage boundary, the pressurization process is nearly independent of initial temperature distribution. Significant differences were identified between the ullage temperature and velocity fields predicted for pressurization of slush and those predicted for pressurization of liquid hydrogen. A simplified model of the pressurization process was constructed in search of a dimensionless characterization of the pressurization process. It is shown that the relationship derived from this simplified model collapses all of the pressure history data generated during this study into a single curve.

  15. Anti-Armor Defense Data Study (A2D2). Volume 2. U.S. Anti-Tank Defense at Mortain, France (August, 1944)

    DTIC Science & Technology

    1990-03-09

    during the five days of the Battle of Mortain. A reasonable estimate would be at least 24 vehicles, including 3 Mk VI (" Tiger ") tanks , 8 Mk IV tanks...that Tiger tank that was a VI. M: Well, actually you know, there were two of them. There was a Tiger II that 0 they never changed the designation and

  16. Assessment and Management of Volume Overload and Congestion in Chronic Heart Failure: Can Measuring Blood Volume Provide New Insights?

    PubMed

    Miller, Wayne L

    2017-01-01

    Volume overload and fluid congestion remain primary clinical challenges in the assessment and management of patients with chronic heart failure (HF). The pathophysiology of volume regulation is complex, and the simple concept of passive intravascular fluid accumulation is not adequate. The dynamics of interstitial and intravascular fluid compartment interactions and fluid redistribution from venous splanchnic beds to the central pulmonary circulation need to be taken into account in strategies of volume management. Clinical bedside evaluations and right heart hemodynamic assessments can alert of changes in volume status, but only the quantitative measurement of total blood volume can help identify the heterogeneity in plasma volume and red blood cell mass that are features of volume overload in chronic HF. The quantitative assessment of intravascular volume is an effective tool to help guide individualized, appropriate therapy. Not all volume overload is the same, and the measurement of intravascular volume identifies heterogeneity to guide tailored therapy.

  17. Amygdalohippocampal MR volume measurements in the early stages of Alzheimer disease

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lehericy, S.; Baulac, M.; Chiras, J.

    1994-05-01

    To evaluate the accuracy of hippocampal and amygdala volume measurements in diagnosing patients in the early stages of Alzheimer disease. Measurements of the hippocampal formation, amygdala, amygdalohippocampal complex (the two measurements summed), caudate nucleus, and ventricles, normalized for total intracranial volume, were obtained on coronal sections (1.5 T, 400/13 [repetition time/echo time], 5 mm) of 13 patients in the mild (minimental status {ge} 21) and five patients in the moderate stages of Alzheimer disease (10 < minimental status < 21), and eight age-matched control subjects. For patients with a minimental status score of 21 or greater, atrophy was significant formore » the amygdala and hippocampal formation (-36% and -25% for amygdala/total intracranial volume and hippocampal formation/total intracranial volume, respectively), but not for the caudate nucleus. No significant ventricular enlargement was found. For patients with a minimental status score less than 21, atrophy was more severe in all structures studied (amygdala/total intracranial volume -40%; hippocampal formation/total intracranial volume, -45%; caudate nucleus/total intracranial volume, -21%), and ventricles were enlarged (63%). No overlap was found between Alzheimer disease and control values for the amygdalohippocampal volume, even in the mild stages of the disease. In Alzheimer disease patients, hippocampal formation volumes correlated with the minimental status. Hippocampal and amygdala atrophy is marked and significant in the mild stages of Alzheimer disease. Volumetric measurements of the amygdala and the amygdalohippocampal complex appear more accurate than those of the hippocampal formation alone in distinguishing patients with Alzheimer disease. 46 refs., 8 figs., 2 tabs.« less

  18. AFM-porosimetry: density and pore volume measurements of particulate materials.

    PubMed

    Sörensen, Malin H; Valle-Delgado, Juan J; Corkery, Robert W; Rutland, Mark W; Alberius, Peter C

    2008-06-01

    We introduced the novel technique of AFM-porosimetry and applied it to measure the total pore volume of porous particles with a spherical geometry. The methodology is based on using an atomic force microscope as a balance to measure masses of individual particles. Several particles within the same batch were measured, and by plotting particle mass versus particle volume, the bulk density of the sample can be extracted from the slope of the linear fit. The pore volume is then calculated from the densities of the bulk and matrix materials, respectively. In contrast to nitrogen sorption and mercury porosimetry, this method is capable of measuring the total pore volume regardless of pore size distribution and pore connectivity. In this study, three porous samples were investigated by AFM-porosimetry: one ordered mesoporous sample and two disordered foam structures. All samples were based on a matrix of amorphous silica templated by a block copolymer, Pluronic F127, swollen to various degrees with poly(propylene glycol). In addition, the density of silica spheres without a template was measured by two independent techniques: AFM and the Archimedes principle.

  19. Results of a diesel multiple unit fuel tank blunt impact test

    DOT National Transportation Integrated Search

    2017-04-04

    The Federal Railroad Administrations Office of Research and Development is conducting research into passenger locomotive fuel tank crashworthiness. A series of impact tests is being conducted to measure fuel tank deformation under two types of dyn...

  20. Method of measuring a liquid pool volume

    DOEpatents

    Garcia, G.V.; Carlson, N.M.; Donaldson, A.D.

    1991-03-19

    A method of measuring a molten metal liquid pool volume and in particular molten titanium liquid pools is disclosed, including the steps of (a) generating an ultrasonic wave at the surface of the molten metal liquid pool, (b) shining a light on the surface of a molten metal liquid pool, (c) detecting a change in the frequency of light, (d) detecting an ultrasonic wave echo at the surface of the molten metal liquid pool, and (e) computing the volume of the molten metal liquid. 3 figures.

  1. SLUDGE BATCH 7B QUALIFICATION ACTIVITIES WITH SRS TANK FARM SLUDGE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pareizs, J.; Click, D.; Lambert, D.

    2011-11-16

    highest projected noble metals content for SB7b. Characterization was performed on the Tank 51 SB7b samples and SRNL performed DWPF simulations using the Tank 40 SB7b material. This report documents: (1) The preparation and characterization of the Tank 51 SB7b and Tank 40 SB7b samples. (2) The performance of a DWPF Chemical Process Cell (CPC) simulation using the SB7b Tank 40 sample. The simulation included a Sludge Receipt and Adjustment Tank (SRAT) cycle, where acid was added to the sludge to destroy nitrite and reduce mercury, and a Slurry Mix Evaporator (SME) cycle, where glass frit was added to the sludge in preparation for vitrification. The SME cycle also included replication of five canister decontamination additions and concentrations. Processing parameters were based on work with a nonradioactive simulant. (3) Vitrification of a portion of the SME product and characterization and durability testing (as measured by the Product Consistency Test (PCT)) of the resulting glass. (4) Rheology measurements of the SRAT receipt, SRAT product, and SME product. This program was controlled by a Task Technical and Quality Assurance Plan (TTQAP), and analyses were guided by an Analytical Study Plan. This work is Technical Baseline Research and Development (R&D) for the DWPF. It should be noted that much of the data in this document has been published in interoffice memoranda. The intent of this technical report is bring all of the SB7b related data together in a single permanent record and to discuss the overall aspects of SB7b processing.« less

  2. Bioimpedance measurement of body water correlates with measured volume balance in injured patients.

    PubMed

    Rosemurgy, A S; Rodriguez, E; Hart, M B; Kurto, H Z; Albrink, M H

    1993-06-01

    Bioimpedance technology is being used increasingly to determine drug volume of distribution, body water status, and nutrition repletion. Its accuracy in patients experiencing large volume flux is not established. To address this, we undertook this prospective study in 54 consecutive seriously injured adults who had emergency celiotomy soon after arrival in the emergency department. Bioimpedance measurements were obtained in the emergency department before the patient was transported to the operating room, on completion of celiotomy, and 24 hours and 48 hours after celiotomy. Bioimpedance measurements of body water were compared with measured fluid balance. If insensible losses are subtracted from measured fluid balance, the percentage of body weight, which is body water determined by bioimpedance, closely follows fluid flux. This study supports the use of bioimpedance measurements in determining total body water even during periods of surgery, blood loss, and vigorous resuscitation.

  3. 49 CFR 238.423 - Fuel tanks.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ....423 Fuel tanks. (a) External fuel tanks. Each type of external fuel tank must be approved by FRA's... equivalent to a fuel tank that complies with the external fuel tank requirements in § 238.223(a). (b) Internal fuel tanks. Internal fuel tanks shall comply with the requirements specified in § 238.223(b). ...

  4. Ice thickness measurements and volume estimates for glaciers in Norway

    NASA Astrophysics Data System (ADS)

    Andreassen, Liss M.; Huss, Matthias; Melvold, Kjetil; Elvehøy, Hallgeir; Winsvold, Solveig H.

    2014-05-01

    Whereas glacier areas in many mountain regions around the world now are well surveyed using optical satellite sensors and available in digital inventories, measurements of ice thickness are sparse in comparison and a global dataset does not exist. Since the 1980s ice thickness measurements have been carried out by ground penetrating radar on many glaciers in Norway, often as part of contract work for hydropower companies with the aim to calculate hydrological divides of ice caps. Measurements have been conducted on numerous glaciers, covering the largest ice caps as well as a few smaller mountain glaciers. However, so far no ice volume estimate for Norway has been derived from these measurements. Here, we give an overview of ice thickness measurements in Norway, and use a distributed model to interpolate and extrapolate the data to provide an ice volume estimate of all glaciers in Norway. We also compare the results to various volume-area/thickness-scaling approaches using values from the literature as well as scaling constants we obtained from ice thickness measurements in Norway. Glacier outlines from a Landsat-derived inventory from 1999-2006 together with a national digital elevation model were used as input data for the ice volume calculations. The inventory covers all glaciers in mainland Norway and consists of 2534 glaciers (3143 glacier units) covering an area of 2692 km2 ± 81 km2. To calculate the ice thickness distribution of glaciers in Norway we used a distributed model which estimates surface mass balance distribution, calculates the volumetric balance flux and converts it into thickness using the flow law for ice. We calibrated this model with ice thickness data for Norway, mainly by adjusting the mass balance gradient. Model results generally agree well with the measured values, however, larger deviations were found for some glaciers. The total ice volume of Norway was estimated to be 275 km3 ± 30 km3. From the ice thickness data set we selected

  5. Tank characterization report for single-shell tank 241-U-110. Revision 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, T.M.; Jensen, L.

    1993-09-01

    Tank 241-U-110 (U-110) is a Hanford Site waste tank that was ;most recently sampled in November and December 1989. Analysis of the samples obtained from tank U-110 was conducted to support the characterization of the contents of this tank and to support Hanford Federal Facility Agreement and Consent Order milestone M-10-00 (Ecology, et al. 1992). Because of incomplete recovery of the waste during sampling, there may be bias in the results of this characterization report.

  6. [Efficacy and problems of bladder volume measurement using portable three dimensional ultrasound scanning device--in particular, on measuring bladder volume lower than 100ml].

    PubMed

    Oh-Oka, Hitoshi; Nose, Ryuichiro

    2005-09-01

    Using a portable three dimensional ultrasound scanning device (The Bladder Scan BVI6100, Diagnostic Ultrasound Corporation), we examined measured values of bladder volume, especially focusing on volume lower than 100 ml. A total of 100 patients (male: 66, female: 34) were enrolled in the study. We made a comparison study between the measured value (the average of three measurements of bladder urine volume after a trial in male and female modes) using BVI6100, and the actual measured value of the sample obtained by urethral catheterization in each patient. We examined the factors which could increase the error rate. We also introduced the effective techniques to reduce measurement errors. The actual measured values in all patients correlated well with the average value of three measurements after a trial in a male mode of the BVI6100. The correlation coefficient was 0.887, the error rate was--4.6 +/- 24.5%, and the average coefficient of variation was 15.2. It was observed that the measurement result using the BVI6100 is influenced by patient side factors (extracted edges between bladder wall and urine, thickened bladder wall, irregular bladder wall, flattened rate of bladder, mistaking prostate for bladder in male, mistaking bladder for uterus in a female mode, etc.) or examiner side factors (angle between BVI and abdominal wall, compatibility between abdominal wall and ultrasound probe, controlling deflection while using probe, etc). When appropriate patients are chosen and proper measurement is performed, BVI6100 provides significantly higher accuracy in determining bladder volume, compared with existing abdominal ultrasound methods. BVI6100 is a convenient and extremely effective device also for the measurement of bladder urine over 100 ml.

  7. Tank measurements of scattering from a resin-filled fiberglass spherical shell with internal flaws.

    PubMed

    Tesei, Alessandra; Guerrini, Piero; Zampolli, Mario

    2008-08-01

    This paper presents results of acoustic inversion and structural health monitoring achieved by means of low to midfrequency elastic scattering analysis of simple, curved objects, insonified in a water tank. Acoustic elastic scattering measurements were conducted between 15 and 100 kHz on a 60-mm-radius fiberglass spherical shell, filled with a low-shear-speed epoxy resin. Preliminary measurements were conducted also on the void shell before filling, and on a solid sphere of the same material as the filler. These data were used to estimate the constituent material parameters via acoustic inversion. The objects were measured in the backscatter direction, suspended at midwater, and insonified by a broadband directional transducer. From the inspection of the response of the solid-filled shell it was possible to detect and characterize significant inhomogeneities of the interior (air pockets), the presence of which were later confirmed by x-ray CT scan and ultrasound measurements. Elastic wave analysis and a model-data comparison study support the physical interpretation of the measurements.

  8. Oil Droplet Size Distribution and Optical Properties During Wave Tank Simulated Oil Spills

    NASA Astrophysics Data System (ADS)

    Conmy, R. N.; Venosa, A.; Courtenay, S.; King, T.; Robinson, B.; Ryan, S.

    2013-12-01

    Fate and transport of spilled petroleum oils in aquatic environments is highly dependent upon oil droplet behavior which is a function of chemical composition, dispersibility (natural and chemically-enhanced) and droplet size distribution (DSD) of the oil. DSD is influenced by mixing energy, temperature, salinity, pressure, presence of dissolved and particulate materials, flow rate of release, and application of dispersants. To better understand DSD and droplet behavior under varying physical conditions, flask-scale experiments are often insufficient. Rather, wave tank simulations allow for scaling to field conditions. Presented here are experiment results from the Bedford Institute of Oceanography wave tank facility, where chemically-dispersed (Corexit 9500; DOR = 1:20) Louisiana Sweet crude, IFO-120 and ANS crude oil were exposed to mixing energies to achieve dispersant effectiveness observed in the field. Oil plumes were simulated, both surface and subsea releases with varying water temperature and flow rate. Fluorometers (Chelsea Technologies Group AQUATracka, Turner Designs Cyclops, WET Labs Inc ECO) and particle size analyzers (Sequoia LISST) were used to track the dispersed plumes in the tank and characterize oil droplets. Sensors were validated with known oil volumes (down to 300 ppb) and measured Total Petroleum Hydrocarbons (TPH) and Benzene-Toluene-Ethylbenzene-Xylene (BTEX) values. This work has large implications for tracking surface and deep sea oil plumes with fluorescence and particle size analyzers, improved weathering and biodegradation estimates, and understanding the fate and transport of spill oil.

  9. Influence of sludge properties and hydraulic loading on the performance of secondary settling tanks--full-scale operational results.

    PubMed

    Vestner, R J; Günthert, F Wolfgang

    2004-01-01

    Full-scale investigations at a WWTP with a two-stage secondary settling tank process revealed relationships between significant operating parameters and performance in terms of effluent suspended solids concentration. Besides common parameters (e.g. surface overflow rate and sludge volume loading rate) feed SS concentration and flocculation time must be considered. Concentration of the return activated sludge may help to estimate the performance of existing secondary settling tanks.

  10. Tank characterization report for single-shell tank 241-S-111

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Conner, J.M.

    1997-04-28

    One of the major functions of the Tank Waste Remediation System (TWRS) is to characterize wastes in support of waste management and disposal activities at the Hanford Site. Analytical data from sampling and analysis, along with other available information about a tank, are compiled and maintained in a tank characterization report (TCR). This report and its appendices serve as the TCR for single-shell tank 241-S-111. The objectives of this report are: (1) to use characterization data to address technical issues associated with tank 241-S-111 waste; and (2) to provide a standard characterization of this waste in terms of a best-basismore » inventory estimate. The response to technical issues is summarized in Section 2.0, and the best-basis inventory estimate is presented in Section 3.0. Recommendations regarding safety status and additional sampling needs are provided in Section 4.0. Supporting data and information are contained in the appendices. This report also supports the requirements of Hanford Federal Facility Agreement and Consent Order (Ecology et al. 1996) milestone M-44-10.« less

  11. Dynamics of Crust Dissolution and Gas Release in Tank 241-SY-101

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rassat, Scot D.; Stewart, Charles W.; Wells, Beric E.

    2000-01-24

    Due primarily to an increase in floating crust thickness, the waste level in Tank 241-SY-101 has grown appreciably and the flammable gas volume stored in the crust has become a potential hazard. To remediate gas retention in the crust and the potential for buoyant displacement gas releases from the nonconvective layer at the bottom of the tank, SY-101 will be diluted to dissolve a large fraction of the solids that allow the waste to retain gas. The plan is to transfer some waste out and back-dilute with water in several steps. In this work, mechanisms and rates of waste solidsmore » dissolution and gas releases are evaluated theoretically and experimentally. Particular emphasis is given to crust dissolution processes and associated gas releases, although dissolution and gas release from the mixed-slurry and nonconvective layers are also considered. The release of hydrogen gas to the tank domespace is modeled for a number of scenarios. Under the tank conditions expected at the time of back-dilution, no plausible continuous or sudden gas release scenarios resulting in flammable hydrogen concentrations were identified.« less

  12. Sloshing in the Liquid Hydrogen and Liquid Oxygen Propellant Tanks After Main Engine Cut Off

    NASA Technical Reports Server (NTRS)

    Kim, Sura; West, Jeff

    2011-01-01

    NASA Marshall Space Flight Center is designing and developing the Main Propulsion System (MPS) for Ares launch vehicles. Propellant sloshing in the liquid hydrogen (LH2) and liquid oxygen (LO2) propellant tanks after Main Engine Cut Off (MECO) was modeled using the Volume of Fluid (VOF) module of the computational fluid dynamics code, CFD-ACE+. The present simulation shows that there is substantial sloshing side forces acting on the LH2 tank during the deceleration of the vehicle after MECO. The LH2 tank features a side wall drain pipe. The side loads result from the residual propellant mass motion in the LH2 tank which is initiated by the stop of flow into the drain pipe at MECO. The simulations show that radial force on the LH2 tank wall is less than 50 lbf and the radial moment calculated based up through the center of gravity of the vehicle is predicted to be as high as 300 lbf-ft. The LO2 tank features a bottom dome drain system and is equipped with sloshing baffles. The remaining LO2 in the tank slowly forms a liquid column along the centerline of tank under the zero gravity environments. The radial force on the LO2 tank wall is predicted to be less than 100 lbf. The radial moment calculated based on the center of gravity of the vehicle is predicted as high as 4500 lbf-ft just before MECO and dropped down to near zero after propellant draining stopped completely.

  13. Slurry growth, gas retention, and flammable gas generation by Hanford radioactive waste tanks: Synthetic waste studies, FY 1991

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bryan, S.A.; Pederson, L.R.; Ryan, J.L.

    1992-08-01

    Of 177 high-level waste storage tanks on the Hanford Site, 23 have been placed on a safety watch list because they are suspected of producing flammable gases in flammable or explosive concentrate. One tankin particular, Tank 241-SY-101 (Tank 101-SY), has exhibited slow increases in waste volume followed by a rapid decrease accompanied by venting of large quantities of gases. The purpose of this study is to help determine the processes by which flammable gases are produced, retained, and eventually released from Tank 101-SY. Waste composition data for single- and double-shell waste tanks on the flammable gas watch listare critically reviewed.more » The results of laboratory studies using synthetic double-shell wastes are summarized, including physical and chemical properties of crusts that are formed, the stoichiometry and rate ofgas generation, and mechanisms responsible for formation of a floating crust.« less

  14. View of tanks T18 and T19 with redwood tanks to ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View of tanks T18 and T19 with redwood tanks to right. Old rain shed (Building No. 43) can be seen behind the tanks. Ground catchment can be seen at left in background. - Hawaii Volcanoes National Park Water Collection System, Hawaii Volcanoes National Park, Volcano, Hawaii County, HI

  15. 49 CFR 179.200 - General specifications applicable to non-pressure tank car tanks (Class DOT-111).

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... tank car tanks (Class DOT-111). 179.200 Section 179.200 Transportation Other Regulations Relating to Transportation PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION HAZARDOUS MATERIALS REGULATIONS SPECIFICATIONS FOR TANK CARS Specifications for Non-Pressure Tank Car Tanks (Classes...

  16. 49 CFR 173.314 - Compressed gases in tank cars and multi-unit tank cars.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Compressed gases in tank cars and multi-unit tank cars. 173.314 Section 173.314 Transportation Other Regulations Relating to Transportation PIPELINE AND... Compressed gases in tank cars and multi-unit tank cars. (a) Definitions. For definitions of compressed gases...

  17. 49 CFR 173.314 - Compressed gases in tank cars and multi-unit tank cars.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 2 2011-10-01 2011-10-01 false Compressed gases in tank cars and multi-unit tank cars. 173.314 Section 173.314 Transportation Other Regulations Relating to Transportation PIPELINE AND... Compressed gases in tank cars and multi-unit tank cars. (a) Definitions. For definitions of compressed gases...

  18. Composite-Material Tanks with Chemically Resistant Liners

    NASA Technical Reports Server (NTRS)

    DeLay, Thomas K.

    2004-01-01

    Lightweight composite-material tanks with chemically resistant liners have been developed for storage of chemically reactive and/or unstable fluids . especially hydrogen peroxide. These tanks are similar, in some respects, to the ones described in gLightweight Composite-Material Tanks for Cryogenic Liquids h (MFS-31379), NASA Tech Briefs, Vol. 25, No. 1 (January, 2001), page 58; however, the present tanks are fabricated by a different procedure and they do not incorporate insulation that would be needed to prevent boil-off of cryogenic fluids. The manufacture of a tank of this type begins with the fabrication of a reusable multisegmented aluminum mandrel in the shape and size of the desired interior volume. One or more segments of the mandrel can be aluminum bosses that will be incorporated into the tank as end fittings. The mandrel is coated with a mold-release material. The mandrel is then heated to a temperature of about 400 F (approximately equal to 200 C) and coated with a thermoplastic liner material to the desired thickness [typically approxiamtely equal to 15 mils (approximately equal to 0.38 mm)] by thermal spraying. In the thermal-spraying process, the liner material in powder form is sprayed and heated to the melting temperature by a propane torch and the molten particles land on the mandrel. The sprayed liner and mandrel are allowed to cool, then the outer surface of the liner is chemically and/or mechanically etched to enhance bonding of a composite overwrap. The etched liner is wrapped with multiple layers of an epoxy resin reinforced with graphite fibers; the wrapping can be done either by manual application of epoxy-impregnated graphite cloth or by winding of epoxy-impregnated filaments. The entire assembly is heated in an autoclave to cure the epoxy. After the curing process, the multisegmented mandrel is disassembled and removed from inside, leaving the finished tank. If the tank is to be used for storing hydrogen peroxide, then the liner material

  19. Effect of interfacial turbulence and accommodation coefficient on CFD predictions of pressurization and pressure control in cryogenic storage tank

    NASA Astrophysics Data System (ADS)

    Kassemi, Mohammad; Kartuzova, Olga

    2016-03-01

    Pressurization and pressure control in cryogenic storage tanks are to a large extent affected by heat and mass transport across the liquid-vapor interface. These mechanisms are, in turn, controlled by the kinetics of the phase change process and the dynamics of the turbulent recirculating flows in the liquid and vapor phases. In this paper, the effects of accommodation coefficient and interfacial turbulence on tank pressurization and pressure control simulations are examined. Comparison between numerical predictions and ground-based measurements in two large liquid hydrogen tank experiments, performed in the K-site facility at NASA Glenn Research Center (GRC) and the Multi-purpose Hydrogen Test Bed (MHTB) facility at NASA Marshall Space Flight Center (MSFC), are used to show the impact of accommodation coefficient and interfacial and vapor phase turbulence on evolution of pressure and temperatures in the cryogenic storage tanks. In particular, the self-pressurization comparisons indicate that: (1) numerical predictions are essentially independent of the magnitude of the accommodation coefficient; and (2) surprisingly, laminar models sometimes provide results that are in better agreement with experimental self-pressurization rates, even in parametric ranges where the bulk flow is deemed fully turbulent. In this light, shortcomings of the present CFD models, especially, numerical treatments of interfacial mass transfer and turbulence, as coupled to the Volume-of-Fluid (VOF) interface capturing scheme, are underscored and discussed.

  20. The physiological basis and clinical significance of lung volume measurements.

    PubMed

    Lutfi, Mohamed Faisal

    2017-01-01

    From a physiological standpoint, the lung volumes are either dynamic or static. Both subclasses are measured at different degrees of inspiration or expiration; however, dynamic lung volumes are characteristically dependent on the rate of air flow. The static lung volumes/capacities are further subdivided into four standard volumes (tidal, inspiratory reserve, expiratory reserve, and residual volumes) and four standard capacities (inspiratory, functional residual, vital and total lung capacities). The dynamic lung volumes are mostly derived from vital capacity. While dynamic lung volumes are essential for diagnosis and follow up of obstructive lung diseases, static lung volumes are equally important for evaluation of obstructive as well as restrictive ventilatory defects. This review intends to update the reader with the physiological basis, clinical significance and interpretative approaches of the standard static lung volumes and capacities.

  1. Supporting document for the historical tank content estimate for AY-tank farm

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brevick, C H; Stroup, J L; Funk, J. W.

    1997-03-12

    This Supporting Document provides historical in-depth characterization information on AY-Tank Farm, such as historical waste transfer and level data, tank physical information, temperature plots, liquid observation well plots, chemical analyte and radionuclide inventories for the Historical Tank Content Estimate Report for the Southeast Quadrant of the Hanford 200 Areas.

  2. 49 CFR 179.200 - General specifications applicable to non-pressure tank car tanks (Class DOT-111).

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... tank car tanks (Class DOT-111). 179.200 Section 179.200 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) SPECIFICATIONS FOR TANK CARS Specifications for Non-Pressure Tank Car Tanks (Classes DOT-111AW...

  3. 49 CFR 179.200 - General specifications applicable to non-pressure tank car tanks (Class DOT-111).

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... tank car tanks (Class DOT-111). 179.200 Section 179.200 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) SPECIFICATIONS FOR TANK CARS Specifications for Non-Pressure Tank Car Tanks (Classes DOT-111AW...

  4. REVIEW OF ALTERNATIVE ENHANCED CHEMICAL CLEANING OPTIONS FOR SRS WASTE TANKS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hay, M.; Koopman, D.

    2009-08-01

    A literature review was conducted to support the Task Technical and Quality Assurance Plan for Alternative Enhanced Chemical Cleaning (AECC) for sludge heel removal funded as part of the EM-21 Engineering and Technology program. The goal was to identify potential technologies or enhancements to the baseline oxalic acid cleaning process for chemically dissolving or mobilizing Savannah River Site (SRS) sludge heels. The issues with the potentially large volume of oxalate solids generated from the baseline process have driven an effort to find an improved or enhanced chemical cleaning technology for the tank heels. This literature review builds on a previousmore » review conducted in 2003. A team was charged with evaluating the information in these reviews and developing recommendations of alternative technologies to pursue. The new information in this report supports the conclusion of the previous review that oxalic acid remains the chemical cleaning agent of choice for dissolving the metal oxides and hydroxides found in sludge heels in carbon steel tanks. The potential negative impact of large volumes of sodium oxalate on downstream processes indicates that the amount of oxalic acid used for chemical cleaning needs to be minimized as much as possible or the oxalic acid must be destroyed prior to pH adjustment in the receipt tank. The most straightforward way of minimizing the volume of oxalic acid needed for chemical cleaning is through more effective mechanical cleaning. Using a mineral acid to adjust the pH of the sludge prior to adding oxalic acid may also help to minimize the volume of oxalic acid used in chemical cleaning. If minimization of oxalic acid proves insufficient in reducing the volume of oxalate salts, several methods were found that could be used for oxalic acid destruction. For some waste tank heels, another acid or even caustic treatment (or pretreatment) might be more appropriate than the baseline oxalic acid cleaning process. Caustic treatment

  5. High day-to-day reliability in lower leg volume measured by water displacement.

    PubMed

    Pasley, Jeffrey D; O'Connor, Patrick J

    2008-07-01

    The day-to-day reliability of lower leg volume is poorly documented. This investigation determined the day-to-day reliability of lower leg volume (soleus and gastrocnemius) measured using water displacement. Thirty young adults (15 men and 15 women) had their right lower leg volume measured by water displacement on five separate occasions. The participants performed normal activities of daily living and were measured at the same time of day after being seated for 30 min. The results revealed a high day-to-day reliability for lower leg volume. The mean percentage change in lower leg volume across days compared to day 1 ranged between 0 and 0.37%. The mean within subjects coefficient of variation in lower leg volume was 0.72% and the coefficient of variation for the entire sample across days ranged from 5.66 to 6.32%. A two way mixed model intraclass correlation (30 subjects x 5 days) showed that the lower leg volume measurement was highly reliable (ICC = 0.972). Foot and total lower leg volumes showed similarly high reliability. Water displacement offers a cost effective and reliable solution for the measurement of lower leg edema across days.

  6. 33 CFR Appendix A to Part 157 - Damage Assumptions, Hypothetical Outflows, and Cargo Tank Size and Arrangements

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... section 2 of this Appendix; W i for a segregated ballast tank may be taken equal to zero; C i=Volume of a... segregated ballast tank may be taken equal to zero; EC15NO91.180 when b i is equal to or greater than t c, Ki is equal to zero; EC15NO91.181 when h i is equal to or greater than v s, Z i is equal to zero; b i...

  7. 33 CFR Appendix A to Part 157 - Damage Assumptions, Hypothetical Outflows, and Cargo Tank Size and Arrangements

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... section 2 of this Appendix; W i for a segregated ballast tank may be taken equal to zero; C i=Volume of a... segregated ballast tank may be taken equal to zero; EC15NO91.180 when b i is equal to or greater than t c, Ki is equal to zero; EC15NO91.181 when h i is equal to or greater than v s, Z i is equal to zero; b i...

  8. 33 CFR Appendix A to Part 157 - Damage Assumptions, Hypothetical Outflows, and Cargo Tank Size and Arrangements

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... section 2 of this Appendix; W i for a segregated ballast tank may be taken equal to zero; C i=Volume of a... segregated ballast tank may be taken equal to zero; EC15NO91.180 when b i is equal to or greater than t c, Ki is equal to zero; EC15NO91.181 when h i is equal to or greater than v s, Z i is equal to zero; b i...

  9. MEASUREMENT AND ANALYSIS OF ADSISTOR AND FIGARO GAS SENSORS USED FOR UNDERGROUND STORAGE TANK LEAK DETECTION

    EPA Science Inventory

    Two different sensor technologies and their properties were analyzed. he nalysis simulated a leak which occurs from an underground storage tank. igaro gas sensors and the Adsistor gas sensor were tested in simulated underground storage tank nvironments using the Carnegie Mellon R...

  10. Supporting document for the historical tank content estimate for AX-tank farm

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brevick, C.H., Westinghouse Hanford

    This Supporting Document provides historical in-depth characterization information on AX-Tank Farm, such as historical waste transfer and level data, tank physical information,temperature plots, liquid observation well plots, chemical analyte and radionuclide inventories for the Historical Tank Content Estimate Report for the northeast quadrant of the Hanford 200 East Area.

  11. 46 CFR 32.60-30 - Tank vessels with independent tanks-TB/ALL.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... tanks and hull structure can be made. (b) When an independent cargo tank is located in an enclosed space... be safeguarded as such as required by this subpart. (c) Cargo tanks independent of the hull structure shall be supported in saddles or on foundations of steel or other suitable material and securely...

  12. 46 CFR 32.60-30 - Tank vessels with independent tanks-TB/ALL.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... tanks and hull structure can be made. (b) When an independent cargo tank is located in an enclosed space... be safeguarded as such as required by this subpart. (c) Cargo tanks independent of the hull structure shall be supported in saddles or on foundations of steel or other suitable material and securely...

  13. 46 CFR 32.60-30 - Tank vessels with independent tanks-TB/ALL.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... tanks and hull structure can be made. (b) When an independent cargo tank is located in an enclosed space... be safeguarded as such as required by this subpart. (c) Cargo tanks independent of the hull structure shall be supported in saddles or on foundations of steel or other suitable material and securely...

  14. 46 CFR 32.60-30 - Tank vessels with independent tanks-TB/ALL.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... tanks and hull structure can be made. (b) When an independent cargo tank is located in an enclosed space... be safeguarded as such as required by this subpart. (c) Cargo tanks independent of the hull structure shall be supported in saddles or on foundations of steel or other suitable material and securely...

  15. 46 CFR 32.60-30 - Tank vessels with independent tanks-TB/ALL.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... tanks and hull structure can be made. (b) When an independent cargo tank is located in an enclosed space... be safeguarded as such as required by this subpart. (c) Cargo tanks independent of the hull structure shall be supported in saddles or on foundations of steel or other suitable material and securely...

  16. Results of Hg speciation testing on tank 39 and 1Q16 tank 50 samples

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bannochie, C. J.

    2016-03-07

    The Savannah River National Laboratory (SRNL) was tasked with preparing and shipping samples for Hg speciation by Eurofins Frontier Global Sciences, Inc. in Seattle, WA on behalf of the Savannah River Remediation (SRR) Mercury Task Team.i,ii The seventeenth shipment of samples was designated to include two Tank 39 samples and the 1Q16 Tank 50 Quarterly WAC sample. The surface Tank 39 sample was pulled at 262.1” from the tank bottom, and the depth Tank 39 sample was pulled at 95” from the tank bottom. The 1Q16 Tank 50 WAC sample was drawn from the 1-L variable depth sample received bymore » SRNL.« less

  17. 49 CFR 179.221 - Individual specification requirements applicable to tank car tanks consisting of an inner...

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) SPECIFICATIONS FOR TANK CARS Specifications for Non-Pressure Tank Car Tanks (Classes DOT-111AW and 115AW) § 179.221 Individual specification... to tank car tanks consisting of an inner container supported within an outer shell. 179.221 Section...

  18. 49 CFR 179.221 - Individual specification requirements applicable to tank car tanks consisting of an inner...

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) SPECIFICATIONS FOR TANK CARS Specifications for Non-Pressure Tank Car Tanks (Classes DOT-111AW and 115AW) § 179.221 Individual specification... to tank car tanks consisting of an inner container supported within an outer shell. 179.221 Section...

  19. Differences in Computed Individual-Tree Volumes Caused by Differences in Field Measurements

    Treesearch

    James A. Westfall

    2008-01-01

    Individual-tree volumes are primarily predicted using volume equations that rely on measured tree attributes. In the northeastern United States, the Forest Inventory and Analysis program determines tree volume using dbh, bole height, proportion of cull, and species information. These measurements are subject to variability due to a host of factors. The sensitivity of...

  20. Self-Interaction Chromatography of mAbs: Accurate Measurement of Dead Volumes.

    PubMed

    Hedberg, S H M; Heng, J Y Y; Williams, D R; Liddell, J M

    2015-12-01

    Measurement of the second virial coefficient B22 for proteins using self-interaction chromatography (SIC) is becoming an increasingly important technique for studying their solution behaviour. In common with all physicochemical chromatographic methods, measuring the dead volume of the SIC packed column is crucial for accurate retention data; this paper examines best practise for dead volume determination. SIC type experiments using catalase, BSA, lysozyme and a mAb as model systems are reported, as well as a number of dead column measurements. It was observed that lysozyme and mAb interacted specifically with Toyopearl AF-Formyl dead columns depending upon pH and [NaCl], invalidating their dead volume usage. Toyopearl AF-Amino packed dead columns showed no such problems and acted as suitable dead columns without any solution condition dependency. Dead volume determinations using dextran MW standards with protein immobilised SIC columns provided dead volume estimates close to those obtained using Toyopearl AF-Amino dead columns. It is concluded that specific interactions between proteins, including mAbs, and select SIC support phases can compromise the use of some standard approaches for estimating the dead volume of SIC columns. Two other methods were shown to provide good estimates for the dead volume.

  1. Investigation of thermolytic hydrogen generation rate of tank farm simulated and actual waste

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martino, C.; Newell, D.; Woodham, W.

    To support resolution of Potential Inadequacies in the Safety Analysis for the Savannah River Site (SRS) Tank Farm, Savannah River National Laboratory conducted research to determine the thermolytic hydrogen generation rate (HGR) with simulated and actual waste. Gas chromatography methods were developed and used with air-purged flow systems to quantify hydrogen generation from heated simulated and actual waste at rates applicable to the Tank Farm Documented Safety Analysis (DSA). Initial simulant tests with a simple salt solution plus sodium glycolate demonstrated the behavior of the test apparatus by replicating known HGR kinetics. Additional simulant tests with the simple salt solutionmore » excluding organics apart from contaminants provided measurement of the detection and quantification limits for the apparatus with respect to hydrogen generation. Testing included a measurement of HGR on actual SRS tank waste from Tank 38. A final series of measurements examined HGR for a simulant with the most common SRS Tank Farm organics at temperatures up to 140 °C. The following conclusions result from this testing.« less

  2. Gastric residual volume (GRV) and gastric contents measurement by refractometry.

    PubMed

    Chang, Wei-Kuo; McClave, Stephen A; Hsieh, Chung-Bao; Chao, You-Chen

    2007-01-01

    Traditional use of gastric residual volumes (GRVs), obtained by aspiration from a nasogastric tube, is inaccurate and cannot differentiate components of the gastric contents (gastric secretion vs delivered formula). The use of refractometry and 3 mathematical equations has been proposed as a method to calculate the formula concentration, GRV, and formula volume. In this paper, we have validated these mathematical equations so that they can be implemented in clinical practice. Each of 16 patients receiving a nasogastric tube had 50 mL of water followed by 100 mL of dietary formula (Osmolite HN, Abbott Laboratories, Columbus, OH) infused into the stomach. After mixing, gastric content was aspirated for the first Brix value (BV) measurement by refractometry. Then, 50 mL of water was infused into the stomach and a second BV was measured. The procedure of infusion of dietary formula (100 mL) and then water (50 mL) was repeated and followed by subsequent BV measurement. The same procedure was performed in an in vitro experiment. Formula concentration, GRV, and formula volume were calculated from the derived mathematical equations. The formula concentrations, GRVs, and formula volumes calculated by using refractometry and the mathematical equations were close to the true values obtained from both in vivo and in vitro validation experiments. Using this method, measurement of the BV of gastric contents is simple, reproducible, and inexpensive. Refractometry and the derived mathematical equations may be used to measure formula concentration, GRV, and formula volume, and also to serve as a tool for monitoring the gastric contents of patients receiving nasogastric feeding.

  3. Liquid volume measurement method for the picoliter to nanoliter volume range based on quartz crystal microbalance technology

    NASA Astrophysics Data System (ADS)

    Liang, Dong; Zhang, Jin; Thanikhatla Govindaiah, Muniyogeshbabu; Tanguy, Laurent; Ernst, Andreas; Zengerle, Roland; Koltay, Peter

    2014-09-01

    In this article, a quantitative liquid volume measurement method for the sub-nanoliter range using a quartz crystal microbalance (QCM) is described and experimentally analyzed. The primary measurement device to determine the volume of small liquid droplets is a QCM sensor coated with a surface-attached hydrogel to improve the mechanical coupling of the liquid to the sensor surface. An experimental evaluation of measured volumes in the range of 3 nl to 15 nl in normal room conditions has been performed with three identical sensors prepared with a PDMAA-1%MaBP hydrogel coating with a thickness of 1.5 µm ± 0.12 µm. A linearity of R2 more than 0.87, an average coefficient of variation (CV) within one experimental run of 5.7%, a mean absolute relative bias of 5.5%, and a sensor-to-sensor variation of 6.3% have been experimentally determined. The feasibility of this method has also been experimentally proven for the picoliter volume range down to 200 pl, with an average CV of 5.3% and a mean absolute relative bias of 6.5%. Furthermore, a stability evaluation consisting of 10 experimental series with approximately 150 measurements over the course of one week has been performed. This evaluation showed that the experimental setup, although exhibiting highly consistent performance within one measurement run, is not yet reproducible enough for long-term and repeated use because of undefined swelling and crack formation in the hydrogel layer. The low reproducibility implies a relatively high expanded uncertainty, with k = 2 according to the JCGM ‘Evaluation of Measurement Data—Guide to the Expression of Uncertainty in Measurement’ (GUM) for the total measurement method of approximately 3.82 nl when measuring a 10 nl liquid droplet. Nevertheless, the QCM method as described here contributes to significant progress beyond the state-of-the-art that might allow new opportunities for precise measurement of sub-nanoliter liquid volumes.

  4. Study on Calculation of Liquid Level And Storage of Tanks for LNG-fueled Vessels

    NASA Astrophysics Data System (ADS)

    Li, Kun; Wang, Guoqing; Liu, Chang

    2018-01-01

    As the ongoing development of the application of LNG as a clean energy in waterborne transport industry, the fleet scale of LNG-fueled vessels enlarged and the safety operation has attracted more attention in the industry. Especially the accurate detection of liquid level of LNG tanks is regarded as an important issue to ensure a safe and stable operation of LNG-fueled ships and a key parameter to keep the proper functioning of marine fuel storage system, supply system and safety control system. At present, detection of LNG tank liquid level mainly adopts differential pressure detection method. Liquid level condition could be found from the liquid level reference tables. However in practice, since LNG-fueled vessels are generally not in a stationary state, liquid state within the LNG tanks will constantly change, the detection of storage of tanks only by reference to the tables will cause deviation to some extent. By analyzing the temperature under different pressure, the effects of temperature change on density and volume integration calculation, a method of calculating the liquid level and storage of LNG tanks is put forward making the calculation of liquid level and actual storage of LNG tanks more accurately and providing a more reliable basis for the calculation of energy consumption level and operation economy for LNG-fueled vessels.

  5. Assessment of volume and leak measurements during CPAP using a neonatal lung model.

    PubMed

    Fischer, H S; Roehr, C C; Proquitté, H; Wauer, R R; Schmalisch, G

    2008-01-01

    Although several commercial devices are available which allow tidal volume and air leak monitoring during continuous positive airway pressure (CPAP) in neonates, little is known about their measurement accuracy and about the influence of air leaks on volume measurement. The aim of this in vitro study was the validation of volume and leak measurement under CPAP using a commercial ventilatory device, taking into consideration the clinical conditions in neonatology. The measurement accuracy of the Leoni ventilator (Heinen & Löwenstein, Germany) was investigated both in a leak-free system and with leaks simulated using calibration syringes (2-10 ml, 20-100 ml) and a mechanical lung model. Open tubes of variable lengths were connected for leak simulation. Leak flow was measured with the flow-through technique. In a leak-free system the mean relative volume error +/-SD was 3.5 +/- 2.6% (2-10 ml) and 5.9 +/- 0.7% (20-60 ml), respectively. The influence of CPAP level, driving flow, respiratory rate and humidification of the breathing gas on the volume error was negligible. However, an increasing F(i)O(2) caused the measured tidal volume to increase by up to 25% (F(i)O(2) = 1.0). The relative error +/- SD of the leak measurements was -0.2 +/- 11.9%. For leaks > 19%, measured tidal volume was underestimated by more than 10%. In conclusion, the present in vitro study showed that the Leoni allowed accurate volume monitoring under CPAP conditions similar to neonates. Air leaks of up to 90% of patient flow were reliably detected. For an F(i)O(2) > 0.4 and for leaks > 19%, a numerical correction of the displayed volume should be performed.

  6. A distributed fluid level sensor suitable for monitoring fuel load on board a moving fuel tank

    NASA Astrophysics Data System (ADS)

    Arkwright, John W.; Parkinson, Luke A.; Papageorgiou, Anthony W.

    2018-02-01

    A temperature insensitive fiber Bragg grating sensing array has been developed for monitoring fluid levels in a moving tank. The sensors are formed from two optical fibers twisted together to form a double helix with pairs of fiber Bragg gratings located above one another at the points where the fibers are vertically disposed. The sensing mechanism is based on a downwards deflection of the section of the double helix containing the FBGs which causes the tension in the upper FBG to decrease and the tension in the lower FBG to increase with concomitant changes in Bragg wavelength in each FBG. Changes in ambient temperature cause a common mode increase in Bragg wavelength, thus monitoring the differential change in wavelength provides a temperature independent measure of the applied pressure. Ambient temperature can be monitored simultaneously by taking the average wavelength of the upper and lower FBGs. The sensors are able to detect variations in pressure with resolutions better than 1 mmH2O and when placed on the bottom of a tank can be used to monitor fluid level based on the recorded pressure. Using an array of these sensors located along the bottom of a moving tank it was possible to monitor the fluid level at multiple points and hence dynamically track the total fluid volume in the tank. The outer surface of the sensing array is formed from a thin continuous Teflon sleeve, making it suitable for monitoring the level of volatile fluids such as aviation fuel and gasoline.

  7. 49 CFR 173.315 - Compressed gases in cargo tanks and portable tanks.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    .... (b) of this section See par. (b) of this section DOT-51, MC-330, MC-331 100. Carbon dioxide...-338 275; see Note 11. Hexafluoropropylene 110 See Note 7 DOT-51, MC-330, MC-331 250. Hydrogen chloride... as specified for MC 331 cargo tanks. Note 3: If cargo tanks and portable tank containers for carbon...

  8. 49 CFR 173.315 - Compressed gases in cargo tanks and portable tanks.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    .... (b) of this section See par. (b) of this section DOT-51, MC-330, MC-331 100. Carbon dioxide...-338 275; see Note 11. Hexafluoropropylene 110 See Note 7 DOT-51, MC-330, MC-331 250. Hydrogen chloride... as specified for MC 331 cargo tanks. Note 3: If cargo tanks and portable tank containers for carbon...

  9. 49 CFR 173.315 - Compressed gases in cargo tanks and portable tanks.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    .... (b) of this section See par. (b) of this section DOT-51, MC-330, MC-331 100. Carbon dioxide...-338 275; see Note 11. Hexafluoropropylene 110 See Note 7 DOT-51, MC-330, MC-331 250. Hydrogen chloride... as specified for MC 331 cargo tanks. Note 3: If cargo tanks and portable tank containers for carbon...

  10. 49 CFR 173.315 - Compressed gases in cargo tanks and portable tanks.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    .... (b) of this section See par. (b) of this section DOT-51, MC-330, MC-331 100. Carbon dioxide...-338 275; see Note 11. Hexafluoropropylene 110 See Note 7 DOT-51, MC-330, MC-331 250. Hydrogen chloride... as specified for MC 331 cargo tanks. Note 3: If cargo tanks and portable tank containers for carbon...

  11. Research on liquid sloshing performance in vane type tank under microgravity

    NASA Astrophysics Data System (ADS)

    Hu, Q.; Li, Y.; Liu, J. T.; Liang, J. Q.

    2016-05-01

    Propellant management device (PMD) in vane type tank mainly comprises of vane type structure parts, whose performance of restraining liquid sloshing should satisfy spacecraft requirements of high stabilization and fast orbital maneuver. Aiming at liquid sloshing performance in vane type tank under microgravity environment, gas-liquid flow model based on the volume of fluid (VOF) method was put forward, and via numerical simulation liquid sloshing performances of vane type PMD with anti-sloshing baffles and without anti-sloshing baffles in microgravity were analyzed and compared. Simulation results reveal that liquid sloshing performance of vane type PMD with anti-sloshing baffles is markedly superior vane type PMD without anti-sloshing baffles and the baffles make liquid surface become stable fast. Then by comparing between results of microgravity experiments and results of numerical simulations, they are very similar. According to present research, vane type PMD with antisloshing baffles has better effects on restraining liquid sloshing and is able to restrain observably propellant sloshing in tanks in order to satisfy spacecraft requirements of high stabilization and fast orbital maneuver.

  12. LH tank installation

    NASA Image and Video Library

    2011-07-25

    Stennis Space Center employees marked another construction milestone July 25 with installation of the 85,000-gallon liquid hydrogen tank atop the A-3 Test Stand. The 300-foot-tall stand is being built to test next-generation rocket engines that could carry humans into deep space once more. The liquid hydrogen tank and a 35,000-gallon liquid oxygen tank installed atop the steel structure earlier in June will provide fuel propellants for testing the engines.

  13. Entropy generation minimization for the sloshing phenomenon in half-full elliptical storage tanks

    NASA Astrophysics Data System (ADS)

    Saghi, Hassan

    2018-02-01

    In this paper, the entropy generation in the sloshing phenomenon was obtained in elliptical storage tanks and the optimum geometry of tank was suggested. To do this, a numerical model was developed to simulate the sloshing phenomenon by using coupled Reynolds-Averaged Navier-Stokes (RANS) solver and the Volume-of-Fluid (VOF) method. The RANS equations were discretized and solved using the staggered grid finite difference and SMAC methods, and the available data were used for the model validation. Some parameters consisting of maximum free surface displacement (MFSD), maximum horizontal force exerted on the tank perimeter (MHF), tank perimeter (TP), and total entropy generation (Sgen) were introduced as design criteria for elliptical storage tanks. The entropy generation distribution provides designers with useful information about the causes of the energy loss. In this step, horizontal periodic sway motions as X =amsin(ωt) were applied to elliptical storage tanks with different aspect ratios namely ratios of large diameter to small diameter of elliptical storage tank (AR). Then, the effect of am and ω was studied on the results. The results show that the relation between MFSD and MHF is almost linear relative to the sway motion amplitude. Moreover, the results show that an increase in the AR causes a decrease in the MFSD and MHF. The results, also, show that the relation between MFSD and MHF is nonlinear relative to the sway motion angular frequency. Furthermore, the results show that an increase in the AR causes that the relation between MFSD and MHF becomes linear relative to the sway motion angular frequency. In addition, MFSD and MHF were minimized in a sway motion with a 7 rad/s angular frequency. Finally, the results show that the elliptical storage tank with AR =1.2-1.4 is the optimum section.

  14. Measuring pedestrian volumes and conflicts. Volume 1, Pedestrian volume sampling

    DOT National Transportation Integrated Search

    1987-12-01

    This final report presents the findings, conclusions, and recommendations of the study conducted to develop a model to predict pedestrian volumes using small sampling schemes. This research produced four pedestrian volume prediction models (i.e., 1-,...

  15. 39. DIABLO POWERHOUSE: GRAVITY LUBRICATING OIL TANKS. THESE TANKS ARE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    39. DIABLO POWERHOUSE: GRAVITY LUBRICATING OIL TANKS. THESE TANKS ARE LOCATED AT ROOF LEVEL AT THE NORTHEAST REAR CORNER OF DIABLO POWERHOUSE, 1989. - Skagit Power Development, Diablo Powerhouse, On Skagit River, 6.1 miles upstream from Newhalem, Newhalem, Whatcom County, WA

  16. Development of a new model for batch sedimentation and application to secondary settling tanks design.

    PubMed

    Karamisheva, Ralica D; Islam, M A

    2005-01-01

    Assuming that settling takes place in two zones (a constant rate zone and a variable rate zone), a model using four parameters accounting for the nature of the water-suspension system has been proposed for describing batch sedimentation processes. The sludge volume index (SVI) has been expressed in terms of these parameters. Some disadvantages of the SVI application as a design parameter have been pointed out, and it has been shown that a relationship between zone settling velocity and sludge concentration is more consistent for describing the settling behavior and for design of settling tanks. The permissible overflow rate has been related to the technological parameters of secondary settling tank by simple working equations. The graphical representations of these equations could be used to optimize the design and operation of secondary settling tanks.

  17. 9 CFR 316.14 - Marking tank cars and tank trucks used in transportation of edible products.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 9 Animals and Animal Products 2 2010-01-01 2010-01-01 false Marking tank cars and tank trucks used in transportation of edible products. 316.14 Section 316.14 Animals and Animal Products FOOD SAFETY... CONTAINERS § 316.14 Marking tank cars and tank trucks used in transportation of edible products. Each tank...

  18. Measurement of Crystalline Lens Volume During Accommodation in a Lens Stretcher

    PubMed Central

    Marussich, Lauren; Manns, Fabrice; Nankivil, Derek; Maceo Heilman, Bianca; Yao, Yue; Arrieta-Quintero, Esdras; Ho, Arthur; Augusteyn, Robert; Parel, Jean-Marie

    2015-01-01

    Purpose To determine if the lens volume changes during accommodation. Methods The study used data acquired on 36 cynomolgus monkey lenses that were stretched in a stepwise fashion to simulate disaccommodation. At each step, stretching force and dioptric power were measured and a cross-sectional image of the lens was acquired using an optical coherence tomography system. Images were corrected for refractive distortions and lens volume was calculated assuming rotational symmetry. The average change in lens volume was calculated and the relation between volume change and power change, and between volume change and stretching force, were quantified. Linear regressions of volume-power and volume-force plots were calculated. Results The mean (±SD) volume in the unstretched (accommodated) state was 97 ± 8 mm3. On average, there was a small but statistically significant (P = 0.002) increase in measured lens volume with stretching. The mean change in lens volume was +0.8 ± 1.3 mm3. The mean volume-power and volume-load slopes were −0.018 ± 0.058 mm3/D and +0.16 ± 0.40 mm3/g. Conclusions Lens volume remains effectively constant during accommodation, with changes that are less than 1% on average. This result supports a hypothesis that the change in lens shape with accommodation is accompanied by a redistribution of tissue within the capsular bag without significant compression of the lens contents or fluid exchange through the capsule. PMID:26161985

  19. Measurement of Crystalline Lens Volume During Accommodation in a Lens Stretcher.

    PubMed

    Marussich, Lauren; Manns, Fabrice; Nankivil, Derek; Maceo Heilman, Bianca; Yao, Yue; Arrieta-Quintero, Esdras; Ho, Arthur; Augusteyn, Robert; Parel, Jean-Marie

    2015-07-01

    To determine if the lens volume changes during accommodation. The study used data acquired on 36 cynomolgus monkey lenses that were stretched in a stepwise fashion to simulate disaccommodation. At each step, stretching force and dioptric power were measured and a cross-sectional image of the lens was acquired using an optical coherence tomography system. Images were corrected for refractive distortions and lens volume was calculated assuming rotational symmetry. The average change in lens volume was calculated and the relation between volume change and power change, and between volume change and stretching force, were quantified. Linear regressions of volume-power and volume-force plots were calculated. The mean (± SD) volume in the unstretched (accommodated) state was 97 ± 8 mm3. On average, there was a small but statistically significant (P = 0.002) increase in measured lens volume with stretching. The mean change in lens volume was +0.8 ± 1.3 mm3. The mean volume-power and volume-load slopes were -0.018 ± 0.058 mm3/D and +0.16 ± 0.40 mm3/g. Lens volume remains effectively constant during accommodation, with changes that are less than 1% on average. This result supports a hypothesis that the change in lens shape with accommodation is accompanied by a redistribution of tissue within the capsular bag without significant compression of the lens contents or fluid exchange through the capsule.

  20. Measuring household consumption and waste in unmetered, intermittent piped water systems

    NASA Astrophysics Data System (ADS)

    Kumpel, Emily; Woelfle-Erskine, Cleo; Ray, Isha; Nelson, Kara L.

    2017-01-01

    Measurements of household water consumption are extremely difficult in intermittent water supply (IWS) regimes in low- and middle-income countries, where water is delivered for short durations, taps are shared, metering is limited, and household storage infrastructure varies widely. Nonetheless, consumption estimates are necessary for utilities to improve water delivery. We estimated household water use in Hubli-Dharwad, India, with a mixed-methods approach combining (limited) metered data, storage container inventories, and structured observations. We developed a typology of household water access according to infrastructure conditions based on the presence of an overhead storage tank and a shared tap. For households with overhead tanks, container measurements and metered data produced statistically similar consumption volumes; for households without overhead tanks, stored volumes underestimated consumption because of significant water use directly from the tap during delivery periods. Households that shared taps consumed much less water than those that did not. We used our water use calculations to estimate waste at the household level and in the distribution system. Very few households used 135 L/person/d, the Government of India design standard for urban systems. Most wasted little water even when unmetered, however, unaccounted-for water in the neighborhood distribution systems was around 50%. Thus, conservation efforts should target loss reduction in the network rather than at households.

  1. Self-pressurization of a flightweight liquid hydrogen storage tank subjected to low heat flux

    NASA Technical Reports Server (NTRS)

    Hasan, M. M.; Lin, C. S.; Vandresar, N. T.

    1991-01-01

    Results are presented for an experimental investigation of self-pressurization and thermal stratification of a 4.89 cu m liquid hydrogen (LH2) storage tank subjected to low heat flux (0.35, 2.0, and 3.5 W/sq m) under normal gravity conditions. Tests were performed at fill levels of 83 to 84 percent (by volume). The LH2 tank was representative of future spacecraft tankage, having a low mass-to-volume ratio and high performance multilayer thermal insulation. Results show that the pressure rise rate and thermal stratification increase with increasing heat flux. At the lowest heat flux, the pressure rise rate is comparable to the homogenous rate, while at the highest heat flux, the rate is more than three times the homogeneous rate. It was found that initial conditions have a significant impact on the initial pressure rise rate. The quasi-steady pressure rise rates are nearly independent of the initial condition after an initial transient period has passed.

  2. 49 CFR 179.201-3 - Lined tanks.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Specifications for Non-Pressure Tank Car Tanks (Classes DOT-111AW and 115AW) § 179.201-3 Lined tanks. (a) Rubber... the service temperatures. (b) Before a tank car tank is lined with rubber, or other rubber compound, a... suitable for the service temperatures. (f) Polyvinyl chloride lined tanks. Tank car tanks or each...

  3. Sea cucumbers reduce chromophoric dissolved organic matter in aquaculture tanks.

    PubMed

    Sadeghi-Nassaj, Seyed Mohammad; Catalá, Teresa S; Álvarez, Pedro A; Reche, Isabel

    2018-01-01

    Mono-specific aquaculture effluents contain high concentrations of nutrients and organic matter, which affect negatively the water quality of the recipient ecosystems. A fundamental feature of water quality is its transparency. The fraction of dissolved organic matter that absorbs light is named chromophoric dissolved organic matter (CDOM). A sustainable alternative to mono-specific aquaculture is the multitrophic aquaculture that includes species trophically complementary named "extractive" species that uptake the waste byproducts. Sea cucumbers are recognized as efficient extractive species due to the consumption of particulate organic matter (POM). However, the effects of sea cucumbers on CDOM are still unknown. During more than one year, we monitored CDOM in two big-volume tanks with different trophic structure. One of the tanks (-holothurian) only contained around 810 individuals of Anemonia sulcata , whereas the other tank (+holothurian) also included 90 individuals of Holothuria tubulosa and Holothuria forskali . We routinely analyzed CDOM absorption spectra and determined quantitative (absorption coefficients at 325 nm) and qualitative (spectral slopes) optical parameters in the inlet waters, within the tanks, and in their corresponding effluents. To confirm the time-series results, we also performed three experiments. Each experiment consisted of two treatments: +holothurians (+H) and -holothurians (-H). We set up three +H tanks with 80 individuals of A. sulcata and 10 individuals of H. tubulosa in each tank and four -H tanks that contained only 80 individuals of A. sulcata . In the time-series, absorption coefficients at 325 nm ( a 325 ) and spectral slopes from 275 to 295 nm ( S 275-295 ) were significantly lower in the effluent of the +holothurian tank (average: 0.33 m -1 and 16 µm -1 , respectively) than in the effluent of the -holothurian tank (average: 0.69 m -1 and 34 µm -1 , respectively), the former being similar to those found in the inlet

  4. LOX tank installation

    NASA Image and Video Library

    2011-06-08

    Construction of the A-3 Test Stand at Stennis Space Center continued June 8 with installation of a 35,000-gallon liquid oxygen tank atop the steel structure. The stand is being built to test next-generation rocket engines that will carry humans into deep space once more. The LOX tank and a liquid hydrogen tank to be installed atop the stand later will provide propellants for testing the engines. The A-3 Test Stand is scheduled for completion and activation in 2013.

  5. A technique for fast and accurate measurement of hand volumes using Archimedes' principle.

    PubMed

    Hughes, S; Lau, J

    2008-03-01

    A new technique for measuring hand volumes using Archimedes principle is described. The technique involves the immersion of a hand in a water container placed on an electronic balance. The volume is given by the change in weight divided by the density of water. This technique was compared with the more conventional technique of immersing an object in a container with an overflow spout and collecting and weighing the volume of overflow water. The hand volume of two subjects was measured. Hand volumes were 494 +/- 6 ml and 312 +/- 7 ml for the immersion method and 476 +/- 14 ml and 302 +/- 8 ml for the overflow method for the two subjects respectively. Using plastic test objects, the mean difference between the actual and measured volume was -0.3% and 2.0% for the immersion and overflow techniques respectively. This study shows that hand volumes can be obtained more quickly than the overflow method. The technique could find an application in clinics where frequent hand volumes are required.

  6. Volume measurement of the leg with the depth camera for quantitative evaluation of edema

    NASA Astrophysics Data System (ADS)

    Kiyomitsu, Kaoru; Kakinuma, Akihiro; Takahashi, Hiroshi; Kamijo, Naohiro; Ogawa, Keiko; Tsumura, Norimichi

    2017-02-01

    Volume measurement of the leg is important in the evaluation of leg edema. Recently, method for measurement by using a depth camera is proposed. However, many depth cameras are expensive. Therefore, we propose a method using Microsoft Kinect. We obtain a point cloud of the leg by Kinect Fusion technique and calculate the volume. We measured the volume of leg for three healthy students during three days. In each measurement, the increase of volume was confirmed from morning to evening. It is known that the volume of leg is increased in doing office work. Our experimental results meet this expectation.

  7. A Safe, Self-Calibrating, Wireless System for Measuring Volume of Any Fuel at Non-Horizontal Orientation

    NASA Technical Reports Server (NTRS)

    Woodward, Stanley E.; Taylor, Bryant D.

    2010-01-01

    A system for wirelessly measuring the volume of fluid in tanks at non-horizontal orientation is predicated upon two technologies developed at Langley Research Center. The first is a magnetic field response recorder that powers and interrogates magnetic field response sensors [ Magnetic Field Response Measurement Acquisition System, (LAR-16908), NASA Tech Briefs, Vol. 30, No. 6 (June 2006), page 28]. Magnetic field response sensors are a class of sensors that are powered via oscillating magnetic fields and when electrically active respond with their own magnetic fields whose attributes are dependent upon the magnitude of the physical quantity being measured. The response recorder facilitates the use of the second technology, which is a magnetic field response fluid-level sensor ["Wireless Fluid- Level Sensors for Harsh Environments," (LAR-17155), NASA Tech Briefs, Vol. 33, No. 4 (April 2009), page 30]. The method for powering and interrogating the sensors allows them to be completely encased in materials (Fig. 1) that are chemically resilient to the fluid being measured, thereby facilitating measurement of substances (e.g., acids, petroleum, cryogenic, caustic, and the like) that would normally destroy electronic circuitry. When the sensors are encapsulated, no fluid (or fluid vapor) is exposed to any electrical component of the measurement system. There is no direct electrical line from the vehicle or plant power into a fuel container. The means of interrogating and powering the sensors can be completely physically and electrically isolated from the fuel and vapors by placing the sensor on the other side of an electrically non-conductive bulkhead (Fig. 2). These features prevent the interrogation system and its electrical components from becoming an ignition source.

  8. Computing volume potentials for noninvasive imaging of cardiac excitation.

    PubMed

    van der Graaf, A W Maurits; Bhagirath, Pranav; van Driel, Vincent J H M; Ramanna, Hemanth; de Hooge, Jacques; de Groot, Natasja M S; Götte, Marco J W

    2015-03-01

    In noninvasive imaging of cardiac excitation, the use of body surface potentials (BSP) rather than body volume potentials (BVP) has been favored due to enhanced computational efficiency and reduced modeling effort. Nowadays, increased computational power and the availability of open source software enable the calculation of BVP for clinical purposes. In order to illustrate the possible advantages of this approach, the explanatory power of BVP is investigated using a rectangular tank filled with an electrolytic conductor and a patient specific three dimensional model. MRI images of the tank and of a patient were obtained in three orthogonal directions using a turbo spin echo MRI sequence. MRI images were segmented in three dimensional using custom written software. Gmsh software was used for mesh generation. BVP were computed using a transfer matrix and FEniCS software. The solution for 240,000 nodes, corresponding to a resolution of 5 mm throughout the thorax volume, was computed in 3 minutes. The tank experiment revealed that an increased electrode surface renders the position of the 4 V equipotential plane insensitive to mesh cell size and reduces simulated deviations. In the patient-specific model, the impact of assigning a different conductivity to lung tissue on the distribution of volume potentials could be visualized. Generation of high quality volume meshes and computation of BVP with a resolution of 5 mm is feasible using generally available software and hardware. Estimation of BVP may lead to an improved understanding of the genesis of BSP and sources of local inaccuracies. © 2014 Wiley Periodicals, Inc.

  9. Recommended high-tank temperatures for maintenance of high-tank backup support, Revision 3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Greager, O.H.

    1964-05-20

    Purpose of this note is to recommend revised curves for the high-tank temperature required to maintain adequate high-tank backup support at the six small reactors. Compliance with the conditions shown on these curves will ensure adequate high-tank flow rates following the simultaneous loss of electric and steam power.

  10. Optimization and evaluation of a bottom substrate denitrification tank for nitrate removal from a recirculating aquaculture system.

    PubMed

    Pungrasmi, Wiboonluk; Playchoom, Cholticha; Powtongsook, Sorawit

    2013-08-01

    A bottom substrate denitrification tank for a recirculating aquaculture system was developed. The laboratory scale denitrification tank was an 8 L tank (0.04 m2 tank surface area), packed to a depth of 5 cm with a bottom substrate for natural denitrifying bacteria. An aquarium pump was used for gentle water mixing in the tank; the dissolved oxygen in the water was maintained in aerobic conditions (e.g. > 2 mg/L) while anoxic conditions predominated only at the bottom substrate layer. The results showed that, among the four substrates tested (soil, sand, pumice stone and vermiculite), pumice was the most preferable material. Comparing carbon supplementation using methanol and molasses, methanol was chosen as the carbon source because it provided a higher denitrification rate than molasses. When methanol was applied at the optimal COD:N ratio of 5:1, a nitrate removal rate of 4591 +/- 133 mg-N/m2 tank bottom area/day was achieved. Finally, nitrate removal using an 80 L denitrification tank was evaluated with a 610 L recirculating tilapia culture system. Nitrate treatment was performed by batch transferring high nitrate water from the nitrification tank into the denitrification tank and mixing with methanol at a COD:N ratio of 5:1. The results from five batches of nitrate treatment revealed that nitrate was successfully removed from water without the accumulation of nitrite and ammonia. The average nitrate removal efficiency was 85.17% and the average denitrification rate of the denitrification tank was 6311 +/- 945 mg-N/m2 tank bottom area/day or 126 +/- 18 mg-N/L of pumice packing volume/day.

  11. HANFORD DOUBLE SHELL TANK (DST) THERMAL & SEISMIC PROJECT BUCKLING EVALUATION METHODS & RESULTS FOR THE PRIMARY TANKS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    MACKEY, T.C.

    2006-03-17

    This report documents a detailed buckling evaluation of the primary tanks in the Hanford double shell waste tanks. The analysis is part of a comprehensive structural review for the Double-Shell Tank Integrity Project. This work also provides information on tank integrity that specifically responds to concerns raise by the Office of Environment, Safety, and Health (ES&H) Oversight (EH-22) during a review (in April and May 2001) of work being performed on the double-shell tank farms, and the operation of the aging waste facility (AWF) primary tank ventilation system.

  12. 49 CFR 179.220 - General specifications applicable to nonpressure tank car tanks consisting of an inner container...

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... tank car tanks consisting of an inner container supported within an outer shell (class DOT-115). 179... AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) SPECIFICATIONS FOR TANK CARS Specifications for Non-Pressure Tank Car Tanks (Classes DOT-111AW and 115AW) § 179.220...

  13. Are tidal volume measurements in neonatal pressure-controlled ventilation accurate?

    PubMed

    Chow, Lily C; Vanderhal, Andre; Raber, Jorge; Sola, Augusto

    2002-09-01

    Bedside pulmonary mechanics monitors (PMM) have become useful in ventilatory management in neonates. These monitors are used more frequently due to recent improvements in data-processing capabilities. PMM devices are often part of the ventilator or are separate units. The accuracy and reliability of these systems have not been carefully evaluated. We compared a single ventilatory parameter, tidal volume (V(t)), as measured by several systems. We looked at two freestanding PMMs: the Ventrak Respiratory Monitoring System (Novametrix, Wallingford, CT) and the Bicore CP-100 Neonatal Pulmonary Monitor (Allied Health Care Products, Riverside, CA), and three ventilators with built-in PMM: the VIP Bird Ventilator (Bird Products Corp., Palm Springs, CA), Siemens Servo 300A (Siemens-Elema AB, Solna, Sweden), and Drager Babylog 8000 (Drager, Inc., Chantilly, VA). A calibrated syringe (Hans Rudolph, Inc., Kansas City, MO) was used to deliver tidal volumes of 4, 10, and 20 mL to each ventilator system coupled with a freestanding PMM. After achieving steady state, six consecutive V(t) readings were taken simultaneously from the freestanding PMM and each ventilator. In a second portion of the bench study, we used pressure-control ventilation and measured exhaled tidal volume (V(te)) while ventilating a Bear Test Lung with the same three ventilators. We adjusted peak inspiratory pressure (PIP) under controlled conditions to achieve the three different targeted tidal volumes on the paired freestanding PMM. Again, six V(te) measurements were recorded for each tidal volume. Means and standard deviations were calculated.The percentage difference in measurement of V(t) delivered by calibrated syringe varied greatly, with the greatest discrepancy seen in the smallest tidal volumes, by up to 28%. In pressure control mode, V(te) as measured by the Siemens was significantly overestimated by 20-95%, with the biggest discrepancy at the smallest V(te), particularly when paired with the Bicore

  14. Final Report One-Twelfth-Scale Mixing Experiments to Characterize Double-Shell Tank Slurry Uniformity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bamberger, Judith A.; Liljegren, Lucia M.; Enderlin, Carl W.

    The objectives of these 1/12-scale scoping experiments were to: Determine which of the dimensionless parameters discussed in Bamberger and Liljegren (1994) affect the maximum concentration that can be suspended during jet mixer pump operation in the full-scale double-shell tanks; Develop empirical correlations to predict the nozzle velocity required for jet mixer pumps to suspend the contents of full-scale double-shell tanks; Apply the models to predict the nozzle velocity required to suspend the contents of Tank 241 AZ-101; Obtain experimental concentration data to compare with the TEMPEST( )(Trent and Eyler 1989) computational modeling predictions to guide further code development; Analyze themore » effects of changing nozzle diameter on exit velocity (U0) and U0D0 (the product of the exit velocity and nozzle diameter) required to suspend the contents of a tank. The scoping study experimentally evaluated uniformity in a 1/12-scale experiment varying the Reynolds number, Froude number, and gravitational settling parameter space. The initial matrix specified only tests at 100% U0D0 and 25% U0D0. After initial tests were conducted with small diameter, low viscosity simulant this matrix was revised to allow evaluation of a broader range of U0D0s. The revised matrix included full factorial test between 100% and 50% U0D0 and two half-factorial tests at 75% and 25% U0D0. Adding points at 75% U0D0 and 50% U0D0 allowed evaluation curvature. Eliminating points at 25% U0D0 decreased the testing time by several weeks. Test conditions were achieved by varying the simulant viscosity, the mean particle size, and the jet nozzle exit velocity. Concentration measurements at sampling locations throughout the tank were used to assess the degree of uniformity achieved during each test. Concentration data was obtained using a real time ultrasonic attenuation probe and discrete batch samples. The undissolved solids concentration at these locations was analyzed to determine whether

  15. Polymer/Silicate Nanocomposites Used to Manufacture Gas Storage Tanks With Reduced Permeability

    NASA Technical Reports Server (NTRS)

    Campbell, Sandi G.; Johnston, Chris

    2004-01-01

    Over the past decade, there has been considerable research in the area of polymer-layered silicate nanocomposites. This research has shown that the dispersion of small amounts of an organically modified layered silicate improves the polymer strength, modulus, thermal stability, and barrier properties. There have been several reports on the dispersion of layered silicates in an epoxy matrix. Potential enhancements to the barrier properties of epoxy/silicate nanocomposites make this material attractive for low permeability tankage. Polymer matrix composites (PMCs) have several advantages for cryogenic storage tanks. They are lightweight, strong, and stiff; therefore, a smaller fraction of a vehicle's potential payload capacity is used for propellant storage. Unfortunately, the resins typically used to make PMC tanks have higher gas permeability than metals. This can lead to hydrogen loss through the body of the tank instead of just at welds and fittings. One approach to eliminate this problem is to build composite tanks with thin metal liners. However, although these tanks provide good permeability performance, they suffer from a substantial mismatch in the coefficient of thermal expansion, which can lead to failure of the bond between the liner and the body of the tank. Both problems could be addressed with polymersilicate nanocomposites, which exhibit reduced hydrogen permeability, making them potential candidates for linerless PMC tanks. Through collaboration with Northrop Grumman and Michigan State University, nanocomposite test tanks were manufactured for the NASA Glenn Research Center, and the helium permeability was measured. An organically modified silicate was prepared at Michigan State University and dispersed in an epoxy matrix (EPON 826/JeffamineD230). The epoxy/silicate nanocomposites contained either 0 or 5 wt% of the organically modified silicate. The tanks were made by filament winding carbon fibers with the nanocomposite resin. Helium permeability

  16. 46 CFR 154.439 - Tank design.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Tank design. 154.439 Section 154.439 Shipping COAST... SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES Design, Construction and Equipment Independent Tank Type A § 154.439 Tank design. An independent tank type A must meet the deep tank standard of the...

  17. 46 CFR 154.439 - Tank design.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 5 2011-10-01 2011-10-01 false Tank design. 154.439 Section 154.439 Shipping COAST... SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES Design, Construction and Equipment Independent Tank Type A § 154.439 Tank design. An independent tank type A must meet the deep tank standard of the...

  18. The effect of impeller type on silica sol formation in laboratory scale agitated tank

    NASA Astrophysics Data System (ADS)

    Nurtono, Tantular; Suprana, Yayang Ade; Latif, Abdul; Dewa, Restu Mulya; Machmudah, Siti; Widiyastuti, Winardi, Sugeng

    2016-02-01

    The multiphase polymerization reaction of the silica sol formation produced from silicic acid and potassium hydroxide solutions in laboratory scale agitated tank was studied. The reactor is equipped with four segmental baffle and top entering impeller. The inside diameter of reactor is 9 cm, the baffle width is 0.9 cm, and the impeller position is 3 cm from tank bottom. The diameter of standard six blades Rushton and three blades marine propeller impellers are 5 cm. The silicic acid solution was made from 0.2 volume fraction of water glass (sodium silicate) solution in which the sodium ion was exchanged by hydrogen ion from cation resin. The reactor initially filled with 286 ml silicic acid solution was operated in semi batch mode and the temperature was kept constant in 60 °C. The 3 ml/minute of 1 M potassium hydroxide solution was added into stirred tank and the solution was stirred. The impeller rotational speed was varied from 100 until 700 rpm. This titration was stopped if the solution in stirred tank had reached the pH of 10-The morphology of the silica particles in the silica sol product was analyzed by Scanning Electron Microscope (SEM). The size of silica particles in silica sol was measured based on the SEM image. The silica particle obtained in this research was amorphous particle and the shape was roughly cylinder. The flow field generated by different impeller gave significant effect on particle size and shape. The smallest geometric mean of length and diameter of particle (4.92 µm and 2.42 µm, respectively) was generated in reactor with marine propeller at 600 rpm. The reactor with Rushton impeller produced particle which the geometric mean of length and diameter of particle was 4.85 µm and 2.36 µm, respectively, at 150 rpm.

  19. Dual-energy X-ray absorptiometry–based body volume measurement for 4-compartment body composition123

    PubMed Central

    Wilson, Joseph P; Mulligan, Kathleen; Fan, Bo; Sherman, Jennifer L; Murphy, Elizabeth J; Tai, Viva W; Powers, Cassidy L; Marquez, Lorena; Ruiz-Barros, Viviana

    2012-01-01

    Background: Total body volume (TBV), with the exclusion of internal air voids, is necessary to quantify body composition in Lohman's 4-compartment (4C) model. Objective: This investigation sought to derive a novel, TBV measure with the use of only dual-energy X-ray absorptiometry (DXA) attenuation values for use in Lohman's 4C body composition model. Design: Pixel-specific masses and volumes were calculated from low- and high-energy attenuation values with the use of first principle conversions of mass attenuation coefficients. Pixel masses and volumes were summed to derive body mass and total body volume. As proof of concept, 11 participants were recruited to have 4C measures taken: DXA, air-displacement plethysmography (ADP), and total body water (TBW). TBV measures with the use of only DXA (DXA-volume) and ADP-volume measures were compared for each participant. To see how body composition estimates were affected by these 2 methods, we used Lohman's 4C model to quantify percentage fat measures for each participant and compared them with conventional DXA measures. Results: DXA-volume and ADP-volume measures were highly correlated (R2 = 0.99) and showed no statistically significant bias. Percentage fat by DXA volume was highly correlated with ADP-volume percentage fat measures and DXA software-reported percentage fat measures (R2 = 0.96 and R2 = 0.98, respectively) but were slightly biased. Conclusions: A novel method to calculate TBV with the use of a clinical DXA system was developed, compared against ADP as proof of principle, and used in Lohman's 4C body composition model. The DXA-volume approach eliminates many of the inherent inaccuracies associated with displacement measures for volume and, if validated in larger groups of participants, would simplify the acquisition of 4C body composition to a single DXA scan and TBW measure. PMID:22134952

  20. Effect of perfluorocarbon (perfluorooctyl bromide) vapor on tidal volume measurement during partial liquid ventilation.

    PubMed

    Davies, Mark W; Dunster, Kimble R

    2002-05-01

    To compare measured tidal volumes with and without perfluorocarbon (perfluorooctyl bromide) vapor, by using tidal volumes in the range suitable for neonates ventilated with partial liquid ventilation. We also aimed to determine the correction factor needed to calculate tidal volumes measured in the presence of perfluorooctyl bromide vapor. Prospective, experimental study. Neonatal research laboratory. Reproducible tidal volumes from 5 to 30 mL were produced with a rodent ventilator and drawn from humidifier chambers immersed in a water bath at 37 degrees C. Control tidal volumes were drawn from a chamber containing oxygen and water vapor, and the perfluorocarbon tidal volumes were drawn from a chamber containing oxygen, water vapor, and perfluorooctyl bromide vapor. Tidal volumes were measured by a VenTrak respiratory mechanics monitor with a neonatal flow sensor and a Dräger pneumotachometer attached to a Dräger neonatal ventilator. All tidal volumes measured with perfluorooctyl bromide vapor were increased compared with control. The VenTrak-measured tidal volumes increased by 1.8% to 3.5% (an overall increase of 2.2%). The increase was greater with the Dräger hot-wire anemometer: from 2.4% to 6.1% (an overall increase of 5.9%). Regression equations for mean control tidal volumes (response, Y) vs. mean perfluorooctyl bromide tidal volumes (predictor, X) are as follows: for the VenTrak, Y = -0.026 + (0.978 x X), r =.9999, p <.0001; and for the Dräger, Y = 0.251 + (0.944 x X), r =.9996, p <.0001. The presence of perfluorooctyl bromide vapor in the gas flowing through pneumotachometers gives falsely high tidal volume measurements. An estimate of the true tidal volume allowing for the presence of perfluorooctyl bromide vapor can be made from regression equations. Any calculation of lung mechanics must take into account the effect of perfluorooctyl bromide vapor on the measurement of tidal volume.

  1. Measuring Pressure Volume Loops in the Mouse.

    PubMed

    Townsend, DeWayne

    2016-05-02

    Understanding the causes and progression of heart disease presents a significant challenge to the biomedical community. The genetic flexibility of the mouse provides great potential to explore cardiac function at the molecular level. The mouse's small size does present some challenges in regards to performing detailed cardiac phenotyping. Miniaturization and other advancements in technology have made many methods of cardiac assessment possible in the mouse. Of these, the simultaneous collection of pressure and volume data provides a detailed picture of cardiac function that is not available through any other modality. Here a detailed procedure for the collection of pressure-volume loop data is described. Included is a discussion of the principles underlying the measurements and the potential sources of error. Anesthetic management and surgical approaches are discussed in great detail as they are both critical to obtaining high quality hemodynamic measurements. The principles of hemodynamic protocol development and relevant aspects of data analysis are also addressed.

  2. Buying pulpwood by weight as compared with volume measure

    Treesearch

    Michael A. Taras

    1956-01-01

    During the past few years several pulp and paper companies in the Southeast have started to purchase pulpwood by weight rather thanby volume. The trend toward buying by weight is strong and getting stronger. This conversion from volume to weight measurement of pulpwood brings up many questions. For instance, is the weight basis fair to both buyer and seller? What are...

  3. 46 CFR 153.266 - Tank linings.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 5 2012-10-01 2012-10-01 false Tank linings. 153.266 Section 153.266 Shipping COAST... LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Design and Equipment Cargo Tanks § 153.266 Tank linings. A tank lining must be: (a) At least as elastic as the tank material; and (b) Applied or...

  4. 46 CFR 153.266 - Tank linings.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Tank linings. 153.266 Section 153.266 Shipping COAST... LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Design and Equipment Cargo Tanks § 153.266 Tank linings. A tank lining must be: (a) At least as elastic as the tank material; and (b) Applied or...

  5. 46 CFR 153.266 - Tank linings.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 5 2013-10-01 2013-10-01 false Tank linings. 153.266 Section 153.266 Shipping COAST... LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Design and Equipment Cargo Tanks § 153.266 Tank linings. A tank lining must be: (a) At least as elastic as the tank material; and (b) Applied or...

  6. 46 CFR 153.266 - Tank linings.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 5 2014-10-01 2014-10-01 false Tank linings. 153.266 Section 153.266 Shipping COAST... LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Design and Equipment Cargo Tanks § 153.266 Tank linings. A tank lining must be: (a) At least as elastic as the tank material; and (b) Applied or...

  7. 46 CFR 153.266 - Tank linings.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 5 2011-10-01 2011-10-01 false Tank linings. 153.266 Section 153.266 Shipping COAST... LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Design and Equipment Cargo Tanks § 153.266 Tank linings. A tank lining must be: (a) At least as elastic as the tank material; and (b) Applied or...

  8. 49 CFR 238.423 - Fuel tanks.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 4 2014-10-01 2014-10-01 false Fuel tanks. 238.423 Section 238.423 Transportation....423 Fuel tanks. (a) External fuel tanks. Each type of external fuel tank must be approved by FRA's Associate Administrator for Safety upon a showing that the fuel tank provides a level of safety at least...

  9. 49 CFR 238.423 - Fuel tanks.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 4 2011-10-01 2011-10-01 false Fuel tanks. 238.423 Section 238.423 Transportation....423 Fuel tanks. (a) External fuel tanks. Each type of external fuel tank must be approved by FRA's Associate Administrator for Safety upon a showing that the fuel tank provides a level of safety at least...

  10. 49 CFR 238.423 - Fuel tanks.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 4 2013-10-01 2013-10-01 false Fuel tanks. 238.423 Section 238.423 Transportation....423 Fuel tanks. (a) External fuel tanks. Each type of external fuel tank must be approved by FRA's Associate Administrator for Safety upon a showing that the fuel tank provides a level of safety at least...

  11. 49 CFR 238.423 - Fuel tanks.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 4 2012-10-01 2012-10-01 false Fuel tanks. 238.423 Section 238.423 Transportation....423 Fuel tanks. (a) External fuel tanks. Each type of external fuel tank must be approved by FRA's Associate Administrator for Safety upon a showing that the fuel tank provides a level of safety at least...

  12. A feasibility study of limb volume measuring systems

    NASA Technical Reports Server (NTRS)

    Lafferty, J. F.; Carter, W. M.

    1974-01-01

    Evaluation of the various techniques by which limb volume can be measured indicates that the odometric (electromechanical) method and the reflective scanner (optical) have a high probability of meeting the specifications of the LBNP experiments. Both of these methods provide segmental measurements from which the cross sectional area of the limb can be determined.

  13. VIEW OF PDP TANK TOP, LEVEL 0’, WITH LTR TANK ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    VIEW OF PDP TANK TOP, LEVEL 0’, WITH LTR TANK TOP ON LEFT, LOOKING NORTHEAST. CRANE AND VERTICAL HOISTING ELEMENTS AT TOP - Physics Assembly Laboratory, Area A/M, Savannah River Site, Aiken, Aiken County, SC

  14. Bioimpedance Measurement of Segmental Fluid Volumes and Hemodynamics

    NASA Technical Reports Server (NTRS)

    Montgomery, Leslie D.; Wu, Yi-Chang; Ku, Yu-Tsuan E.; Gerth, Wayne A.; DeVincenzi, D. (Technical Monitor)

    2000-01-01

    Bioimpedance has become a useful tool to measure changes in body fluid compartment volumes. An Electrical Impedance Spectroscopic (EIS) system is described that extends the capabilities of conventional fixed frequency impedance plethysmographic (IPG) methods to allow examination of the redistribution of fluids between the intracellular and extracellular compartments of body segments. The combination of EIS and IPG techniques was evaluated in the human calf, thigh, and torso segments of eight healthy men during 90 minutes of six degree head-down tilt (HDT). After 90 minutes HDT the calf and thigh segments significantly (P < 0.05) lost conductive volume (eight and four percent, respectively) while the torso significantly (P < 0.05) gained volume (approximately three percent). Hemodynamic responses calculated from pulsatile IPG data also showed a segmental pattern consistent with vascular fluid loss from the lower extremities and vascular engorgement in the torso. Lumped-parameter equivalent circuit analyses of EIS data for the calf and thigh indicated that the overall volume decreases in these segments arose from reduced extracellular volume that was not completely balanced by increased intracellular volume. The combined use of IPG and EIS techniques enables noninvasive tracking of multi-segment volumetric and hemodynamic responses to environmental and physiological stresses.

  15. Thyroid Volume and Its Relation to Anthropometric Measures in a Healthy Cuban Population

    PubMed Central

    Turcios, Silvia; Lence-Anta, Juan J.; Santana, Jose-Luis; Pereda, Celia M.; Velasco, Milagros; Chappe, Mae; Infante, Idalmis; Bustillo, Marlene; García, Anabel; Clero, Enora; Maillard, Stephane; Rodriguez, Regla; Xhaard, Constance; Ren, Yan; Rubino, Carole; Ortiz, Rosa M.; de Vathaire, Florent

    2015-01-01

    Objectives The aim of this study was to describe the thyroid volume in healthy adults by ultrasound and to correlate this volume with some anthropometric measures and other differentiated thyroid cancer risk factors. Study Design Thyroid volume and anthropometric measures were recorded in a sample of 100 healthy adults, including 21 men and 79 women aged 18-50 years, living in a non-iodine-deficient area of Havana city. Results The average thyroid volume was 6.6 ± 0.26 ml; it was higher in men (7.3 ml) than in women (6.4 ml; p = 0.15). In the univariate analysis, thyroid volume was correlated with all anthropometric measures, but in the multivariate analysis, body surface area was found to be the only significant anthropometric parameter. Thyroid volume was also higher in current or former smokers and in persons with blood group AB or B. Conclusion Specific reference values of thyroid volume as a function of body surface area could be used for evaluating thyroid volume in clinical practice. The relation between body surface area and thyroid volume is coherent with what is known about the relation of thyroid volume to thyroid cancer risk, but the same is not true about the relation between thyroid volume and smoking habit. PMID:25960963

  16. Measured and Calculated Volumes of Wetland Depressions

    EPA Pesticide Factsheets

    Measured and calculated volumes of wetland depressionsThis dataset is associated with the following publication:Wu, Q., and C. Lane. Delineation and quantification of wetland depressions in the Prairie Pothole Region of North Dakota. WETLANDS. The Society of Wetland Scientists, McLean, VA, USA, 36(2): 215-227, (2016).

  17. Experimental Determination and Thermodynamic Modeling of Electrical Conductivity of SRS Waste Tank Supernate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pike, J.; Reboul, S.

    2015-06-01

    SRS High Level Waste Tank Farm personnel rely on conductivity probes for detection of incipient overflow conditions in waste tanks. Minimal information is available concerning the sensitivity that must be achieved such that that liquid detection is assured. Overly sensitive electronics results in numerous nuisance alarms for these safety-related instruments. In order to determine the minimum sensitivity required of the probe, Tank Farm Engineering personnel need adequate conductivity data to improve the existing designs. Little or no measurements of liquid waste conductivity exist; however, the liquid phase of the waste consists of inorganic electrolytes for which the conductivity may bemore » calculated. Savannah River Remediation (SRR) Tank Farm Facility Engineering requested SRNL to determine the conductivity of the supernate resident in SRS waste Tank 40 experimentally as well as computationally. In addition, SRNL was requested to develop a correlation, if possible, that would be generally applicable to liquid waste resident in SRS waste tanks. A waste sample from Tank 40 was analyzed for composition and electrical conductivity as shown in Table 4-6, Table 4-7, and Table 4-9. The conductivity for undiluted Tank 40 sample was 0.087 S/cm. The accuracy of OLI Analyzer™ was determined using available literature data. Overall, 95% of computed estimates of electrical conductivity are within ±15% of literature values for component concentrations from 0 to 15 M and temperatures from 0 to 125 °C. Though the computational results are generally in good agreement with the measured data, a small portion of literature data deviates as much as ±76%. A simplified model was created that can be used readily to estimate electrical conductivity of waste solution in computer spreadsheets. The variability of this simplified approach deviates up to 140% from measured values. Generally, this model can be applied to estimate the conductivity within a factor of two. The

  18. Thermographic Methods of Detecting Insulation Voids in Large Cryogenic Tanks

    NASA Technical Reports Server (NTRS)

    Arens, Ellen; Nurge, Mark; Youngquist, Robert; Starr, Stanley

    2010-01-01

    Four very large (900Kgal) cryogenic liquid hydrogen and oxygen storage tanks at Kennedy Space Center's LC-39 launch pads were constructed in 1965 to support the Apollo/Saturn V Program and continue to support the Space Shuttle Program. These double-walled spherical tanks with powdered insulation in the annular region, have received minimal refurbishment or even inspection over the years. Intrusively inspecting these tanks would mean a significant down time to the program as the cryogenic liquid and the perlite insulation would have to be removed which would be a significant task and long-term schedule disruption. A study of the tanks was performed to determine the extent to which performance and structural information could be revealed without intrusive inspection. Thermal images of the tanks were taken over a variety of environmental conditions to determine the best conditions under which to compare and use thermography as a health monitoring technique as the tanks continue to age. The settling and subsequent compaction of insulation is a serious concern for cryogenic tanks. Comparison of images from the tanks reveals significant variations in the insulation in the annual regions and point to the use of thermography as a way to monitor for insulation migration and possible compaction. These measurements, when combined with mathematical models of historical boil-off data provide key insight to the condition of the vessels. Acceptance testing methods for new tanks, before they are filled with cryogenic commodity (and thereby thermally cycled), are needed and we explore how thermography can be used to accomplish this.

  19. Using large volume samplers for the monitoring of particle bound micro pollutants in rivers

    NASA Astrophysics Data System (ADS)

    Kittlaus, Steffen; Fuchs, Stephan

    2015-04-01

    The requirements of the WFD as well as substance emission modelling at the river basin scale require stable monitoring data for micro pollutants. The monitoring concepts applied by the local authorities as well as by many scientists use single sampling techniques. Samples from water bodies are usually taken in volumes of about one litre and depending on predetermined time steps or through discharge thresholds. For predominantly particle bound micro pollutants the small sample size of about one litre results in a very small amount of suspended particles. To measure micro pollutant concentrations in these samples is demanding and results in a high uncertainty of the measured concentrations, if the concentration is above the detection limit in the first place. In many monitoring programs most of the measured values were below the detection limit. This results in a high uncertainty if river loads were calculated from these data sets. The authors propose a different approach to gain stable concentration values for particle bound micro pollutants from river monitoring: A mixed sample of about 1000 L was pumped in a tank with a dirty-water pump. The sampling usually is done discharge dependant by using a gauge signal as input for the control unit. After the discharge event is over or the tank is fully filled, the suspended solids settle in the tank for 2 days. After this time a clear separation of water and solids can be shown. A sample (1 L) from the water phase and the total mass of the settled solids (about 10 L) are taken to the laboratory for analysis. While the micro pollutants can't hardly be detected in the water phase, the signal from the sediment is high above the detection limit, thus certain and very stable. From the pollutant concentration in the solid phase and the total tank volume the initial pollutant concentration in the sample can be calculated. If the concentration in the water phase is detectable, it can be used to correct the total load. This

  20. The UASB reactor as an alternative for the septic tank for on-site sewage treatment.

    PubMed

    Coelho, A L S S; do Nascimento, M B H; Cavalcanti, P F F; van Haandel, A C

    2003-01-01

    Although septic tanks are amply used for on site sewage treatment, these units have serious drawbacks: the removal efficiency of organic material and suspended solids is low, the units are costly and occupy a large area and operational cost is high due to the need for periodic desludging. In this paper an innovative variant of the UASB reactor is proposed as an alternative for the septic tank. This alternative has several important advantages in comparison with the conventional septic tank: (1) Although the volume of the UASB reactor was about 4 times smaller than the septic tank, its effluent quality was superior, even though small sludge particles were present, (2) desludging of the UASB reactor is unnecessary and even counterproductive, as the sludge mass guarantees proper performance, (3) the UASB reactor is easily transportable (compact and light) and therefore can be produced in series, strongly reducing construction costs and (4) since the concentration of colloids in the UASB effluent is much smaller than in the ST effluent, it is expected that the infiltration of the effluent will be much less problematic.

  1. 11. Station Accumulator Tanks, view to the northeast. The tanks ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    11. Station Accumulator Tanks, view to the northeast. The tanks are visible along the right side of photograph, opposite a wall of the Unit 1 turbine pit. - Washington Water Power Clark Fork River Cabinet Gorge Hydroelectric Development, Powerhouse, North Bank of Clark Fork River at Cabinet Gorge, Cabinet, Bonner County, ID

  2. Heated Aluminum Tanks Resist Corrosion

    NASA Technical Reports Server (NTRS)

    Johnson, L. E.

    1983-01-01

    Simple expedient of heating foam-insulated aluminum alloy tanks prevents corrosion by salt-laden moisture. Relatively-small temperature difference between such tank and surrounding air will ensure life of tank is extended by many years.

  3. The effect of perfluorocarbon vapour on the measurement of respiratory tidal volume during partial liquid ventilation.

    PubMed

    Davies, M W; Dunster, K R

    2000-08-01

    During partial liquid ventilation perfluorocarbon vapour is present in the exhaled gases. The volumes of these gases are measured by pneumotachometers. Error in measuring tidal volumes will give erroneous measurement of lung compliance during partial liquid ventilation. We aim to compare measured tidal volumes with and without perfluorocarbon vapour using tidal volumes suitable for use in neonates. Tidal volumes were produced with a 100 ml calibration syringe from 20 to 100 ml and with a calibrated Harvard rodent ventilator from 2.5 to 20 ml. Control tidal volumes were drawn from a humidifier chamber containing water vapour and the PFC tidal volumes were drawn from a humidifier chamber containing water and perfluorocarbon (FC-77) vapour. Tidal volumes were measured by a fixed orifice, target, differential pressure flowmeter (VenTrak) or a hot-wire anenometer (Bear Cub) placed between the calibration syringe or ventilator and the humidifier chamber. All tidal volumes measured with perfluorocarbon vapour were increased compared with control (ANOVA p < 0.001 and post t-test p < 0.0001). Measured tidal volume increased from 7 to 16% with the fixed orifice type flow-meter, and from 35 to 41% with the hot-wire type. In conclusion, perfluorocarbon vapour flowing through pneumotachometers gives falsely high tidal volume measurements. Calculation of lung compliance must take into account the effect of perfluorocarbon vapour on the measurement of tidal volume.

  4. Assessment of Tank 241-S-112 Liquid Waste Mixing in Tank 241-SY-101

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Onishi, Yasuo; Trent, Donald S.; Wells, Beric E.

    The objectives of this study were to evaluate mixing of liquid waste from Tank 241-S-112 with waste in Tank 241-SY-101 and to determine the properties of the resulting waste for the cross-site transfer to avoid potential double-shell tank corrosion and pipeline plugging. We applied the time-varying, three-dimensional computer code TEMPEST to Tank SY-101 as it received the S-112 liquid waste. The model predicts that temperature variations in Tank SY-101 generate a natural convection flow that is very slow, varying from about 7 x 10{sup -5} to 1 x 10{sup -3} ft/sec (0.3 to about 4 ft/hr) in most areas. Thus,more » natural convection would eventually mix the liquid waste in SY-101 but would be very slow to achieve nearly complete mixing. These simulations indicate that the mixing of S-112 and SY-101 wastes in Tank SY-101 is a very slow process, and the density difference between the two wastes would further limit mixing. It is expected to take days or weeks to achieve relatively complete mixing in Tank SY-101.« less

  5. Reduced nutrient pollution in a rural stream following septic tank upgrade and installation of runoff retention measures.

    PubMed

    Ockenden, M C; Quinton, J N; Favaretto, N; Deasy, C; Surridge, B

    2014-07-01

    Surface water quality in the UK and much of Western Europe has improved in recent decades, in response to better point source controls and the regulation of fertilizer, manure and slurry use. However, diffuse sources of pollution, such as leaching or runoff of nutrients from agricultural fields, and micro-point sources including farmyards, manure heaps and septic tank sewerage systems, particularly systems without soil adsorption beds, are now hypothesised to contribute a significant proportion of the nutrients delivered to surface watercourses. Tackling such sources in an integrated manner is vital, if improvements in freshwater quality are to continue. In this research, we consider the combined effect of constructing small field wetlands and improving a septic tank system on stream water quality within an agricultural catchment in Cumbria, UK. Water quality in the ditch-wetland system was monitored by manual sampling at fortnightly intervals (April-October 2011 and February-October 2012), with the septic tank improvement taking place in February 2012. Reductions in nutrient concentrations were observed through the catchment, by up to 60% when considering total phosphorus (TP) entering and leaving a wetland with a long residence time. Average fluxes of TP, soluble reactive phosphorus (SRP) and ammonium-N (NH4-N) at the head of the ditch system in 2011 (before septic tank improvement) compared to 2012 (after septic tank improvement) were reduced by 28%, 9% and 37% respectively. However, TP concentration data continue to show a clear dilution with increasing flow, indicating that the system remained point source dominated even after the septic tank improvement.

  6. Water quality characterisation of rainwater in tanks at different times and locations.

    PubMed

    Kus, B; Kandasamy, Jaya; Vigneswaran, S; Shon, H K

    2010-01-01

    Rainwater collected from ten domestic roofs in Sydney and from one in Wollongong, a town south of Sydney, Australia was analysed to determine the water quality and to compare against the Australian Drinking Water Guidelines (ADWG) to determine its suitability as a potable water supply. The pollutants analysed were 13 heavy metals, 8 salts & minerals, pH, ammonia, orthophosphate, conductivity, water hardness, turbidity, total suspended solids, Total dissolved salts & Bicarbonate. The results indicate that the rainwater tested complied to most of the parameters specified in the ADWG. Molecular weight distribution of organic matter from one of the domestic rainwater tanks was analysed in terms of the effects of aging and roof contact. Molecular weight distribution of organic matter in rainwater showed prominent peaks at 37,500 daltons may be due to biopolymers, 850 Da to humic substances, 500 Da to building blocks, 220 Da to low MW acids, and less than 220 Da to amphiphilics. The findings also indicate that the first flush volumes that by-passed the tank can have a significant influence on the water quality in the rainwater tank.

  7. Experimental and analytical study of cryogenic propellant boiloff to develop and verify alternate pressurization concepts for Space Shuttle external tank using a scaled down tank

    NASA Technical Reports Server (NTRS)

    Akyuzlu, K. M.; Jones, S.; Meredith, T.

    1993-01-01

    Self pressurization by propellant boiloff is experimentally studied as an alternate pressurization concept for the Space Shuttle external tank (ET). The experimental setup used in the study is an open flow system which is composed of a variable area test tank and a recovery tank. The vacuum jacketed test tank is geometrically similar to the external LOx tank for the Space Shuttle. It is equipped with instrumentation to measure the temperature and pressure histories within the liquid and vapor, and viewports to accommodate visual observations and Laser-Doppler Anemometry measurements of fluid velocities. A set of experiments were conducted using liquid Nitrogen to determine the temperature stratification in the liquid and vapor, and pressure histories of the vapor during sudden and continuous depressurization for various different boundary and initial conditions. The study also includes the development and calibration of a computer model to simulate the experiments. This model is a one-dimensional, multi-node type which assumes the liquid and the vapor to be under non-equilibrium conditions during the depressurization. It has been tested for a limited number of cases. The preliminary results indicate that the accuracy of the simulations is determined by the accuracy of the heat transfer coefficients for the vapor and the liquid at the interface which are taken to be the calibration parameters in the present model.

  8. In-tank recirculating arsenic treatment system

    DOEpatents

    Brady, Patrick V [Albuquerque, NM; Dwyer, Brian P [Albuquerque, NM; Krumhansl, James L [Albuquerque, NM; Chwirka, Joseph D [Tijeras, NM

    2009-04-07

    A low-cost, water treatment system and method for reducing arsenic contamination in small community water storage tanks. Arsenic is removed by using a submersible pump, sitting at the bottom of the tank, which continuously recirculates (at a low flow rate) arsenic-contaminated water through an attached and enclosed filter bed containing arsenic-sorbing media. The pump and treatment column can be either placed inside the tank (In-Tank) by manually-lowering through an access hole, or attached to the outside of the tank (Out-of-Tank), for easy replacement of the sorption media.

  9. Measuring stone volume - three-dimensional software reconstruction or an ellipsoid algebra formula?

    PubMed

    Finch, William; Johnston, Richard; Shaida, Nadeem; Winterbottom, Andrew; Wiseman, Oliver

    2014-04-01

    To determine the optimal method for assessing stone volume, and thus stone burden, by comparing the accuracy of scalene, oblate, and prolate ellipsoid volume equations with three-dimensional (3D)-reconstructed stone volume. Kidney stone volume may be helpful in predicting treatment outcome for renal stones. While the precise measurement of stone volume by 3D reconstruction can be accomplished using modern computer tomography (CT) scanning software, this technique is not available in all hospitals or with routine acute colic scanning protocols. Therefore, maximum diameters as measured by either X-ray or CT are used in the calculation of stone volume based on a scalene ellipsoid formula, as recommended by the European Association of Urology. In all, 100 stones with both X-ray and CT (1-2-mm slices) were reviewed. Complete and partial staghorn stones were excluded. Stone volume was calculated using software designed to measure tissue density of a certain range within a specified region of interest. Correlation coefficients among all measured outcomes were compared. Stone volumes were analysed to determine the average 'shape' of the stones. The maximum stone diameter on X-ray was 3-25 mm and on CT was 3-36 mm, with a reasonable correlation (r = 0.77). Smaller stones (<9 mm) trended towards prolate ellipsoids ('rugby-ball' shaped), stones of 9-15 mm towards oblate ellipsoids (disc shaped), and stones >15 mm towards scalene ellipsoids. There was no difference in stone shape by location within the kidney. As the average shape of renal stones changes with diameter, no single equation for estimating stone volume can be recommended. As the maximum diameter increases, calculated stone volume becomes less accurate, suggesting that larger stones have more asymmetric shapes. We recommend that research looking at stone clearance rates should use 3D-reconstructed stone volumes when available, followed by prolate, oblate, or scalene ellipsoid formulas depending on the

  10. Measurement of testicular volume in smaller testes: how accurate is the conventional orchidometer?

    PubMed

    Lin, Chih-Chieh; Huang, William J S; Chen, Kuang-Kuo

    2009-01-01

    The aim of this study was to evaluate the accuracy of different methods, including the Seager orchidometer (SO) and ultrasonography (US), for assessing testicular volume of smaller testes (testes volume less than 18 mL). Moreover, the equations used for the calculations--the Hansen formula (length [L] x width [W](2) x 0.52, equation A), the prolate ellipsoid formula (L x W x height [H] x 0.52, equation B), and the Lambert equation (L x W x H x 0.71, equation C)--were also examined and compared with the gold standard testicular volume obtained by water displacement (Archimedes principle). In this study, 30 testes from 15 men, mean age 75.3 (+/-8.3) years, were included. They all had advanced prostate cancer and were admitted for orchiectomy. Before the procedure, all the testes were assessed using SO and US. The dimensions were then input into each equation to obtain the volume estimates. The testicular volume by water displacement was 8.1 +/- 3.5 mL. Correlation coefficients (R(2)) of the 2 different methods (SO, US) to the gold standard were 0.70 and 0.85, respectively. The calculated testicular volumes were 9.2 +/- 3.9 mL (measured by SO, equation A), 11.9 +/- 5.2 mL (measured by SO, equation C), 7.3 +/- 4.2 mL (measured by US, equation A), 6.5 +/- 3.3 mL (measured by US, equation B) and 8.9 +/- 4.5 mL (measured by US, equation C). Only the mean size measured by US and volume calculated with the Hansen equation (equation A) and the mean size measured by US and volume calculated with the Lambert equation (equation C) showed no significant differences when compared with the volumes estimated by water displacement (mean difference 0.81 mL, P = .053, and 0.81 mL, P = .056, respectively). Based on our measurements, we categorized testicular volume by different cutoff values (7.0 mL, 7.5 mL, 8.0 mL, and 8.5 mL) to calculate a new constant for use in the Hansen equation. The new constant was 0.59. We then reexamined the equations using the new 0.59 constant, and found

  11. A method to directly measure maximum volume of fish stomachs or digestive tracts

    USGS Publications Warehouse

    Burley, C.C.; Vigg, S.

    1989-01-01

    A new method for measuring maximum stomach or digestive tract volume of fish incorporates air injection at constant pressure with water displacement to measure directly the internal volume of a stomach or analogous structure. The method was tested with coho salmon, Oncorhynchus kisutch (Walbaum), which has a true stomach, and northern squawfish, Ptychocheilus oregonensis(Richardson), which has a modified foregut as a functional analogue. Both species were collected during July-October 1987 from the Columbia River, U.S.A. Relationships between fish weight (= volume) and maximum volume of the digestive organ were best fitted for coho salmon by an allometric model and for northern squawfish by an exponential model. Least squares regression analysis of individual measurements showed less variability in the volume of coho salmon stomachs (R2= 0.85) than in the total digestive tracts (R2= 0.55) and foreguts (R2= 0.61) of northern squawfish, relative to fish size. Compared to previous methods, the new technique has the advantage of accurately measuring the internal volume of a wide range of digestive organ shapes and sizes.

  12. Characterization of Slosh Damping for Ortho-Grid and Iso-Grid Internal Tank Structures

    NASA Technical Reports Server (NTRS)

    Westra, Douglas G.; Sansone, Marco D.; Eberhart, Chad J.; West, Jeffrey S.

    2016-01-01

    Grid stiffened tank structures such as Ortho-Grid and Iso-Grid are widely used in cryogenic tanks for providing stiffening to the tank while reducing mass, compared to tank walls of constant cross-section. If the structure is internal to the tank, it will positively affect the fluid dynamic behavior of the liquid propellant, in regard to fluid slosh damping. As NASA and commercial companies endeavor to explore the solar system, vehicles will by necessity become more mass efficient, and design margin will be reduced where possible. Therefore, if the damping characteristics of the Ortho-Grid and Iso-Grid structure is understood, their positive damping effect can be taken into account in the systems design process. Historically, damping by internal structures has been characterized by rules of thumb and for Ortho-Grid, empirical design tools intended for slosh baffles of much larger cross-section have been used. There is little or no information available to characterize the slosh behavior of Iso-Grid internal structure. Therefore, to take advantage of these structures for their positive damping effects, there is much need for obtaining additional data and tools to characterize them. Recently, the NASA Marshall Space Flight Center conducted both sub-scale testing and computational fluid dynamics (CFD) simulations of slosh damping for Ortho-Grid and Iso-Grid tanks for cylindrical tanks containing water. Enhanced grid meshing techniques were applied to the geometrically detailed and complex Ortho-Grid and Iso-Grid structures. The Loci-STREAM CFD program with the Volume of Fluid Method module for tracking and locating the water-air fluid interface was used to conduct the simulations. The CFD simulations were validated with the test data and new empirical models for predicting damping and frequency of Ortho-Grid and Iso-Grid structures were generated.

  13. The preliminary exploration of 64-slice volume computed tomography in the accurate measurement of pleural effusion.

    PubMed

    Guo, Zhi-Jun; Lin, Qiang; Liu, Hai-Tao; Lu, Jun-Ying; Zeng, Yan-Hong; Meng, Fan-Jie; Cao, Bin; Zi, Xue-Rong; Han, Shu-Ming; Zhang, Yu-Huan

    2013-09-01

    Using computed tomography (CT) to rapidly and accurately quantify pleural effusion volume benefits medical and scientific research. However, the precise volume of pleural effusions still involves many challenges and currently does not have a recognized accurate measuring. To explore the feasibility of using 64-slice CT volume-rendering technology to accurately measure pleural fluid volume and to then analyze the correlation between the volume of the free pleural effusion and the different diameters of the pleural effusion. The 64-slice CT volume-rendering technique was used to measure and analyze three parts. First, the fluid volume of a self-made thoracic model was measured and compared with the actual injected volume. Second, the pleural effusion volume was measured before and after pleural fluid drainage in 25 patients, and the volume reduction was compared with the actual volume of the liquid extract. Finally, the free pleural effusion volume was measured in 26 patients to analyze the correlation between it and the diameter of the effusion, which was then used to calculate the regression equation. After using the 64-slice CT volume-rendering technique to measure the fluid volume of the self-made thoracic model, the results were compared with the actual injection volume. No significant differences were found, P = 0.836. For the 25 patients with drained pleural effusions, the comparison of the reduction volume with the actual volume of the liquid extract revealed no significant differences, P = 0.989. The following linear regression equation was used to compare the pleural effusion volume (V) (measured by the CT volume-rendering technique) with the pleural effusion greatest depth (d): V = 158.16 × d - 116.01 (r = 0.91, P = 0.000). The following linear regression was used to compare the volume with the product of the pleural effusion diameters (l × h × d): V = 0.56 × (l × h × d) + 39.44 (r = 0.92, P = 0.000). The 64-slice CT volume-rendering technique can

  14. 40 CFR 1051.515 - How do I test my fuel tank for permeation emissions?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 33 2011-07-01 2011-07-01 false How do I test my fuel tank for... Procedures § 1051.515 How do I test my fuel tank for permeation emissions? Measure permeation emissions by... make sure not to overestimate the surface area. (3) Fill the fuel tank with the test fuel specified in...

  15. 40 CFR 1051.515 - How do I test my fuel tank for permeation emissions?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 32 2010-07-01 2010-07-01 false How do I test my fuel tank for... Procedures § 1051.515 How do I test my fuel tank for permeation emissions? Measure permeation emissions by... make sure not to overestimate the surface area. (3) Fill the fuel tank with the test fuel specified in...

  16. 40 CFR 1051.515 - How do I test my fuel tank for permeation emissions?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 34 2013-07-01 2013-07-01 false How do I test my fuel tank for... Procedures § 1051.515 How do I test my fuel tank for permeation emissions? Measure permeation emissions by... make sure not to overestimate the surface area. (3) Fill the fuel tank with the test fuel specified in...

  17. 40 CFR 1051.515 - How do I test my fuel tank for permeation emissions?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 34 2012-07-01 2012-07-01 false How do I test my fuel tank for... Procedures § 1051.515 How do I test my fuel tank for permeation emissions? Measure permeation emissions by... make sure not to overestimate the surface area. (3) Fill the fuel tank with the test fuel specified in...

  18. 40 CFR 1051.515 - How do I test my fuel tank for permeation emissions?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 33 2014-07-01 2014-07-01 false How do I test my fuel tank for... Procedures § 1051.515 How do I test my fuel tank for permeation emissions? Measure permeation emissions by... make sure not to overestimate the surface area. (3) Fill the fuel tank with the test fuel specified in...

  19. Hydrogenotrophic methanogenesis is the dominant methanogenic pathway in neotropical tank bromeliad wetlands.

    PubMed

    Martinson, Guntars O; Pommerenke, Bianca; Brandt, Franziska B; Homeier, Jürgen; Burneo, Juan I; Conrad, Ralf

    2018-02-01

    Several thousands of tank bromeliads per hectare of neotropical forest create a unique wetland ecosystem that emits substantial amounts of CH 4 . Tank bromeliads growing in the forest canopy (functional type-II tank bromeliads) were found to emit more CH 4 than tank bromeliads growing on the forest floor (functional type-I tank bromeliads) but the reasons for this difference and the underlying microbial CH 4 -cycling processes have not been studied. Therefore, we characterized archaeal communities in bromeliad tanks of the two different functional types in a neotropical montane forest of southern Ecuador using terminal-restriction fragment length polymorphism (T-RFLP) and performed tank-slurry incubations to measure CH 4 production potential, stable carbon isotope fractionation and pathway of CH 4 formation. The archaeal community composition was dominated by methanogens and differed between bromeliad functional types. Hydrogenotrophic Methanomicrobiales were the dominant methanogens and hydrogenotrophic methanogenesis was the dominant methanogenic pathway among all bromeliads. The relative abundance of aceticlastic Methanosaetaceae and the relative contribution of aceticlastic methanogenesis increased in type-I tank bromeliads probably due to more oxic conditions in type-I than in type-II bromeliads leading to the previously observed lower in situ CH 4 emissions from type-I tank bromeliads but to higher CH 4 production potentials in type-I tank bromeliad slurries. © 2017 Society for Applied Microbiology and John Wiley & Sons Ltd.

  20. Comparison of in vivo 3D cone-beam computed tomography tooth volume measurement protocols.

    PubMed

    Forst, Darren; Nijjar, Simrit; Flores-Mir, Carlos; Carey, Jason; Secanell, Marc; Lagravere, Manuel

    2014-12-23

    The objective of this study is to analyze a set of previously developed and proposed image segmentation protocols for precision in both intra- and inter-rater reliability for in vivo tooth volume measurements using cone-beam computed tomography (CBCT) images. Six 3D volume segmentation procedures were proposed and tested for intra- and inter-rater reliability to quantify maxillary first molar volumes. Ten randomly selected maxillary first molars were measured in vivo in random order three times with 10 days separation between measurements. Intra- and inter-rater agreement for all segmentation procedures was attained using intra-class correlation coefficient (ICC). The highest precision was for automated thresholding with manual refinements. A tooth volume measurement protocol for CBCT images employing automated segmentation with manual human refinement on a 2D slice-by-slice basis in all three planes of space possessed excellent intra- and inter-rater reliability. Three-dimensional volume measurements of the entire tooth structure are more precise than 3D volume measurements of only the dental roots apical to the cemento-enamel junction (CEJ).