Sample records for tank-to-wheel analysis tool

  1. A tank-to-wheel analysis tool for energy and emissions studies in road vehicles.

    PubMed

    Silva, C M; Gonçalves, G A; Farias, T L; Mendes-Lopes, J M C

    2006-08-15

    Currently, oil based fuels are the primary energy source of road transport. The growing need for oil independence and CO(2) mitigation has lead to the increasing importance of alternative fuel usage. CO(2) is produced not only as the fuel is used in the vehicle (tank-to-wheel contribution), but also upstream, from the fuel extraction to the refueling station (well-to-tank contribution), and the life cycle of the fuel production (well-to-wheel contribution) must be considered in order to analyse the global impact of the fuel utilization. A road vehicle tank-to-wheel analysis tool that may be integrated with well-to-tank models was developed in the present study. The integration in a demonstration case study allowed to perform a life cycle assessment concerning the utilization of diesel and natural gas fuels in a specific network line of a bus transit company operating in the city of Porto, Portugal.

  2. Analysis and control on changeable wheel tool system of hybrid grinding and polishing machine tool for blade finishing

    NASA Astrophysics Data System (ADS)

    He, Qiuwei; Lv, Xingming; Wang, Xin; Qu, Xingtian; Zhao, Ji

    2017-01-01

    Blade is the key component in the energy power equipment of turbine, aircraft engines and so on. Researches on the process and equipment for blade finishing become one of important and difficult point. To control precisely tool system of developed hybrid grinding and polishing machine tool for blade finishing, the tool system with changeable wheel for belt polishing is analyzed in this paper. Firstly, the belt length and wrap angle of each wheel in different position of tension wheel swing angle in the process of changing wheel is analyzed. The reasonable belt length is calculated by using MATLAB, and relationships between wrap angle of each wheel and cylinder expansion amount of contact wheel are obtained. Then, the control system for changeable wheel tool structure is developed. Lastly, the surface roughness of blade finishing is verified by experiments. Theoretical analysis and experimental results show that reasonable belt length and wheel wrap angle can be obtained by proposed analysis method, the changeable wheel tool system can be controlled precisely, and the surface roughness of blade after grinding meets the design requirements.

  3. Well-to-Wheels Analysis of Advanced Fuel/Vehicle Systems: A North American Study of Energy Use, Greenhouse Gas Emissions, and Criteria Pollutant Emissions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brinkman, Norman; Wang, Michael; Weber, Trudy

    An accurate assessment of future fuel/propulsion system options requires a complete vehicle fuel-cycle analysis, commonly called a well-to-wheels (WTW) analysis. This WTW study analyzes energy use and emissions associated with fuel production (or well-to-tank [WTT]) activities and energy use and emissions associated with vehicle operation (or tank-to-wheels [TTW]) activities.

  4. Rover Wheel-Actuated Tool Interface

    NASA Technical Reports Server (NTRS)

    Matthews, Janet; Ahmad, Norman; Wilcox, Brian

    2007-01-01

    A report describes an interface for utilizing some of the mobility features of a mobile robot for general-purpose manipulation of tools and other objects. The robot in question, now undergoing conceptual development for use on the Moon, is the All-Terrain Hex-Limbed Extra-Terrestrial Explorer (ATHLETE) rover, which is designed to roll over gentle terrain or walk over rough or steep terrain. Each leg of the robot is a six-degree-of-freedom general purpose manipulator tipped by a wheel with a motor drive. The tool interface includes a square cross-section peg, equivalent to a conventional socket-wrench drive, that rotates with the wheel. The tool interface also includes a clamp that holds a tool on the peg, and a pair of fold-out cameras that provides close-up stereoscopic images of the tool and its vicinity. The field of view of the imagers is actuated by the clamp mechanism and is specific to each tool. The motor drive can power any of a variety of tools, including rotating tools for helical fasteners, drills, and such clamping tools as pliers. With the addition of a flexible coupling, it could also power another tool or remote manipulator at a short distance. The socket drive can provide very high torque and power because it is driven by the wheel motor.

  5. Automated home cage observations as a tool to measure the effects of wheel running on cage floor locomotion.

    PubMed

    de Visser, Leonie; van den Bos, Ruud; Spruijt, Berry M

    2005-05-28

    This paper introduces automated observations in a modular home cage system as a tool to measure the effects of wheel running on the time distribution and daily organization of cage floor locomotor activity in female C57BL/6 mice. Mice (n = 16) were placed in the home cage system for 6 consecutive days. Fifty percent of the subjects had free access to a running wheel that was integrated in the home cage. Overall activity levels in terms of duration of movement were increased by wheel running, while time spent inside a sheltering box was decreased. Wheel running affected the hourly pattern of movement during the animals' active period of the day. Mice without a running wheel, in contrast to mice with a running wheel, showed a clear differentiation between novelty-induced and baseline levels of locomotion as reflected by a decrease after the first day of introduction to the home cage. The results are discussed in the light of the use of running wheels as a tool to measure general activity and as an object for environmental enrichment. Furthermore, the possibilities of using automated home cage observations for e.g. behavioural phenotyping are discussed.

  6. A dynamic wheel-rail impact analysis of railway track under wheel flat by finite element analysis

    NASA Astrophysics Data System (ADS)

    Bian, Jian; Gu, Yuantong; Murray, Martin Howard

    2013-06-01

    Wheel-rail interaction is one of the most important research topics in railway engineering. It involves track impact response, track vibration and track safety. Track structure failures caused by wheel-rail impact forces can lead to significant economic loss for track owners through damage to rails and to the sleepers beneath. Wheel-rail impact forces occur because of imperfections in the wheels or rails such as wheel flats, irregular wheel profiles, rail corrugations and differences in the heights of rails connected at a welded joint. A wheel flat can cause a large dynamic impact force as well as a forced vibration with a high frequency, which can cause damage to the track structure. In the present work, a three-dimensional finite element (FE) model for the impact analysis induced by the wheel flat is developed by the use of the FE analysis (FEA) software package ANSYS and validated by another validated simulation. The effect of wheel flats on impact forces is thoroughly investigated. It is found that the presence of a wheel flat will significantly increase the dynamic impact force on both rail and sleeper. The impact force will monotonically increase with the size of wheel flats. The relationships between the impact force and the wheel flat size are explored from this FEA and they are important for track engineers to improve their understanding of the design and maintenance of the track system.

  7. 29 CFR 1926.303 - Abrasive wheels and tools.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... and tools. (a) Power. All grinding machines shall be supplied with sufficient power to maintain the spindle speed at safe levels under all conditions of normal operation. (b) Guarding. (1) Grinding machines..., nut, and outer flange may be exposed on machines designed as portable saws. (c) Use of abrasive wheels...

  8. 29 CFR 1926.303 - Abrasive wheels and tools.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... and tools. (a) Power. All grinding machines shall be supplied with sufficient power to maintain the spindle speed at safe levels under all conditions of normal operation. (b) Guarding. (1) Grinding machines..., nut, and outer flange may be exposed on machines designed as portable saws. (c) Use of abrasive wheels...

  9. 29 CFR 1926.303 - Abrasive wheels and tools.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... and tools. (a) Power. All grinding machines shall be supplied with sufficient power to maintain the spindle speed at safe levels under all conditions of normal operation. (b) Guarding. (1) Grinding machines..., nut, and outer flange may be exposed on machines designed as portable saws. (c) Use of abrasive wheels...

  10. 3-Dimensional Analysis of Deformation of Disk Wheels and Transverse Force of Wheel Bolts

    NASA Astrophysics Data System (ADS)

    Kagiwada, Tadao; Harada, Hiroyuki

    Loosening of the wheel nuts, which fix the disk wheels of automobiles to the wheel hub, may be the cause of accidents where the wheel falls off while the automobile is running. When the transverse force of wheel bolts exceeds a certain proportion of the bolt shaft force, the wheel nut begins to loosen. Further, the force on the bolt shaft may also be influenced by the loads acting to the wheel through the moment caused by the offset of the wheel. This study determined the 3-dimensional deformation of the disk wheels and the transverse forces on the wheel bolt by 3-dimensional numerical analysis. The results established that the transverse force was influenced by the bolt shaft force caused by the bolt fastening and was superposed on that due to the load, and that it fluctuated greatly during the revolution of the wheel. This phenomenon may be a large factor in the loosening of wheel nuts.

  11. A simulation model for risk assessment of turbine wheels

    NASA Technical Reports Server (NTRS)

    Safie, Fayssal M.; Hage, Richard T.

    1991-01-01

    A simulation model has been successfully developed to evaluate the risk of the Space Shuttle auxiliary power unit (APU) turbine wheels for a specific inspection policy. Besides being an effective tool for risk/reliability evaluation, the simulation model also allows the analyst to study the trade-offs between wheel reliability, wheel life, inspection interval, and rejection crack size. For example, in the APU application, sensitivity analysis results showed that the wheel life limit has the least effect on wheel reliability when compared to the effect of the inspection interval and the rejection crack size. In summary, the simulation model developed represents a flexible tool to predict turbine wheel reliability and study the risk under different inspection policies.

  12. A simulation model for risk assessment of turbine wheels

    NASA Astrophysics Data System (ADS)

    Safie, Fayssal M.; Hage, Richard T.

    A simulation model has been successfully developed to evaluate the risk of the Space Shuttle auxiliary power unit (APU) turbine wheels for a specific inspection policy. Besides being an effective tool for risk/reliability evaluation, the simulation model also allows the analyst to study the trade-offs between wheel reliability, wheel life, inspection interval, and rejection crack size. For example, in the APU application, sensitivity analysis results showed that the wheel life limit has the least effect on wheel reliability when compared to the effect of the inspection interval and the rejection crack size. In summary, the simulation model developed represents a flexible tool to predict turbine wheel reliability and study the risk under different inspection policies.

  13. Dynamic analysis of elastic rubber tired car wheel breaking under variable normal load

    NASA Astrophysics Data System (ADS)

    Fedotov, A. I.; Zedgenizov, V. G.; Ovchinnikova, N. I.

    2017-10-01

    The purpose of the paper is to analyze the dynamics of the braking of the wheel under normal load variations. The paper uses a mathematical simulation method according to which the calculation model of an object as a mechanical system is associated with a dynamically equivalent schematic structure of the automatic control. Transfer function tool analyzing structural and technical characteristics of an object as well as force disturbances were used. It was proved that the analysis of dynamic characteristics of the wheel subjected to external force disturbances has to take into account amplitude and phase-frequency characteristics. Normal load variations impact car wheel braking subjected to disturbances. The closer slip to the critical point is, the higher the impact is. In the super-critical area, load variations cause fast wheel blocking.

  14. Analysis of wheel rim - Material and manufacturing aspects

    NASA Astrophysics Data System (ADS)

    Misra, Sheelam; Singh, Abhiraaj; James, Eldhose

    2018-05-01

    The tire in an automobile is supported by the rim of the wheel and its shape and dimensions should be adjusted to accommodate a specified tire. In this study, a tire of car wheel rim belonging to the disc wheel category is considered. Design is an important industrial operation used to define and specify the quality of the product. The design and modelling reduces the risk of damage involved in the manufacturing process. The design performed on this wheel rim is done on modelling software. After designing the model, it is imported for analysis purposes. The analysis software is used to calculate the different types of force, stresses, torque, and pressures acting upon the rim of the wheel and it reduces the time spent by a human for mathematical calculations. The analysis carried out considers two different materials namely structural steel and aluminium. Both materials are analyzed and their performance is noted.

  15. Free vibration analysis of composite railway wheels

    NASA Astrophysics Data System (ADS)

    Ganesan, N.; Ramesh, T. C.

    1992-02-01

    Composite materials have been finding increasing applications in the field of transportation. A U.S.A. patent suggesting the use of composite materials for railway wheels is the basis for this paper. In thispaper, the natural vibrations of railway wheels made of composite materials have been theoretically estimated by the finite element method and compared with those in wheels made of steel. A thick conical shell element with displacements in the axial, radial and circumferential directions has been used in the analysis. This element brings out the coupling between the different modes of vibration, and this aspect is important in the dynamic analysis of composite wheels. Three geometries of wheels and two materials (Kevlar-epoxy and graphite-epoxy) have been used in the study. For each of these materials, two fiber orientations (radial and circumferential) have been taken up and their natural frequencies determined.

  16. Green's functions for analysis of dynamic response of wheel/rail to vertical excitation

    NASA Astrophysics Data System (ADS)

    Mazilu, Traian

    2007-09-01

    An analytical model to simulate wheel/rail interaction using the Green's functions method is proposed in this paper. The model consists of a moving wheel on a discretely supported rail. Particularly for this model of rail, the bending and the longitudinal displacement are coupled due to the rail pad and a complex model of the rail pad is adopted. An efficient method for solving a time-domain analysis for wheel/rail interaction is presented. The method is based on the properties of the rail's Green functions and starting to these functions, a track's Green matrix is assembled for the numerical simulations of wheel/rail response due to three kinds of vertical excitations: the steady-state interaction, the rail corrugation and the wheel flat. The study points to influence of the worn rail—rigid contact—on variation in the wheel/rail contact force. The concept of pinned-pinned inhibitive rail pad is also presented.

  17. The Enlarged N.A.C.A. Tank, and Some of Its Work

    NASA Technical Reports Server (NTRS)

    Truscott, Starr

    1939-01-01

    The most conspicuous of the features of the enlarged N.A.C.A. tank are derived directly from those of the original tank and owe their present form not only to the reasons for their first use but also to the experience obtained with them. As in the original tank, there are: 1) A basin of great length (new 2,880 feet); 2) Rails made of structural H beams, without machining; 3) A towing carriage of very high speed (now 80 mph maximum); 4) Rubber tires on all the wheels, pneumatic on the running wheels and solid on the guide wheels.

  18. Aerodynamic analysis of an isolated vehicle wheel

    NASA Astrophysics Data System (ADS)

    Leśniewicz, P.; Kulak, M.; Karczewski, M.

    2014-08-01

    Increasing fuel prices force the manufacturers to look into all aspects of car aerodynamics including wheels, tyres and rims in order to minimize their drag. By diminishing the aerodynamic drag of vehicle the fuel consumption will decrease, while driving safety and comfort will improve. In order to properly illustrate the impact of a rotating wheel aerodynamics on the car body, precise analysis of an isolated wheel should be performed beforehand. In order to represent wheel rotation in contact with the ground, presented CFD simulations included Moving Wall boundary as well as Multiple Reference Frame should be performed. Sliding mesh approach is favoured but too costly at the moment. Global and local flow quantities obtained during simulations were compared to an experiment in order to assess the validity of the numerical model. Results of investigation illustrates dependency between type of simulation and coefficients (drag and lift). MRF approach proved to be a better solution giving result closer to experiment. Investigation of the model with contact area between the wheel and the ground helps to illustrate the impact of rotating wheel aerodynamics on the car body.

  19. Multi Objective Optimization of Multi Wall Carbon Nanotube Based Nanogrinding Wheel Using Grey Relational and Regression Analysis

    NASA Astrophysics Data System (ADS)

    Sethuramalingam, Prabhu; Vinayagam, Babu Kupusamy

    2016-07-01

    Carbon nanotube mixed grinding wheel is used in the grinding process to analyze the surface characteristics of AISI D2 tool steel material. Till now no work has been carried out using carbon nanotube based grinding wheel. Carbon nanotube based grinding wheel has excellent thermal conductivity and good mechanical properties which are used to improve the surface finish of the workpiece. In the present study, the multi response optimization of process parameters like surface roughness and metal removal rate of grinding process of single wall carbon nanotube (CNT) in mixed cutting fluids is undertaken using orthogonal array with grey relational analysis. Experiments are performed with designated grinding conditions obtained using the L9 orthogonal array. Based on the results of the grey relational analysis, a set of optimum grinding parameters is obtained. Using the analysis of variance approach the significant machining parameters are found. Empirical model for the prediction of output parameters has been developed using regression analysis and the results are compared empirically, for conditions of with and without CNT grinding wheel in grinding process.

  20. 49 CFR 174.67 - Tank car unloading.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 2 2013-10-01 2013-10-01 false Tank car unloading. 174.67 Section 174.67... and Loading Requirements § 174.67 Tank car unloading. For transloading operations, the following rules... least one wheel to prevent movement in any direction. If multiple tank cars are coupled together...

  1. 49 CFR 174.67 - Tank car unloading.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 2 2012-10-01 2012-10-01 false Tank car unloading. 174.67 Section 174.67... and Loading Requirements § 174.67 Tank car unloading. For transloading operations, the following rules... least one wheel to prevent movement in any direction. If multiple tank cars are coupled together...

  2. 49 CFR 174.67 - Tank car unloading.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 2 2014-10-01 2014-10-01 false Tank car unloading. 174.67 Section 174.67... and Loading Requirements § 174.67 Tank car unloading. For transloading operations, the following rules... least one wheel to prevent movement in any direction. If multiple tank cars are coupled together...

  3. 49 CFR 174.67 - Tank car unloading.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 2 2011-10-01 2011-10-01 false Tank car unloading. 174.67 Section 174.67... and Loading Requirements § 174.67 Tank car unloading. For transloading operations, the following rules... least one wheel to prevent movement in any direction. If multiple tank cars are coupled together...

  4. Aerodynamic Drag Analysis of 3-DOF Flex-Gimbal GyroWheel System in the Sense of Ground Test

    PubMed Central

    Huo, Xin; Feng, Sizhao; Liu, Kangzhi; Wang, Libin; Chen, Weishan

    2016-01-01

    GyroWheel is an innovative device that combines the actuating capabilities of a control moment gyro with the rate sensing capabilities of a tuned rotor gyro by using a spinning flex-gimbal system. However, in the process of the ground test, the existence of aerodynamic disturbance is inevitable, which hinders the improvement of the specification performance and control accuracy. A vacuum tank test is a possible candidate but is sometimes unrealistic due to the substantial increase in costs and complexity involved. In this paper, the aerodynamic drag problem with respect to the 3-DOF flex-gimbal GyroWheel system is investigated by simulation analysis and experimental verification. Concretely, the angular momentum envelope property of the spinning rotor system is studied and its integral dynamical model is deduced based on the physical configuration of the GyroWheel system with an appropriately defined coordinate system. In the sequel, the fluid numerical model is established and the model geometries are checked with FLUENT software. According to the diversity and time-varying properties of the rotor motions in three-dimensions, the airflow field around the GyroWheel rotor is analyzed by simulation with respect to its varying angular velocity and tilt angle. The IPC-based experimental platform is introduced, and the properties of aerodynamic drag in the ground test condition are obtained through comparing the simulation with experimental results. PMID:27941602

  5. Wheel-Sleeper Impact Model in Rail Vehicles Analysis

    NASA Astrophysics Data System (ADS)

    Brabie, Dan

    The current paper establishes the necessary prerequisites for studying post-derailment dynamic behavior of high-speed rail vehicles by means of multi-body system (MBS) software. A finite-element (FE) model of one rail vehicle wheel impacting a limited concrete sleeper volume is built in LS-DYNA. A novel simulation scheme is employed for obtaining the necessary wheel-sleeper impact data, transferred to the MBS code as pre-defined look-up tables of the wheel's impulse variation during impact. The FE model is tentatively validated successfully by comparing the indentation marks with one photograph from an authentic derailment for a continuous impact sequence over three subsequent sleepers. A post-derailment module is developed and implemented in the MBS simulation tool GENSYS, which detects the wheel contact with sleepers and applies valid longitudinal, lateral and vertical force resultants based on the existing impact conditions. The accuracy of the MBS code in terms of the wheels three-dimensional trajectory over 24 consecutive sleepers is successfully compared with its FE counterpart for an arbitrary impact scenario. An axle mounted brake disc is tested as an alternative substitute guidance mechanism after flange climbing derailments at 100 and 200 km/h on the Swedish high-speed tilting train X 2000. Certain combinations of brake disc geometrical parameters manage to stop the lateral deviation of the wheelsets in circular curve sections at high lateral track plane acceleration.

  6. Proposal to use vibration analysis steering components and car body to monitor, for example, the state of unbalance wheel

    NASA Astrophysics Data System (ADS)

    Janczur, R.

    2016-09-01

    The results of road tests of car VW Passat equipped with tires of size 195/65 R15, on the influence of the unbalancing front wheel on vibration of the parts of steering system, steering wheel and the body of the vehicle have been presented in this paper. Unbalances wheels made using weights of different masses, placed close to the outer edge of the steel rim and checked on the machine Hunter GSP 9700 for balancing wheels. The recorded waveforms vibration steering components and car body, at different constant driving speeds, subjected to spectral analysis to determine the possibility of isolating vibration caused by unbalanced wheel in various states and coming from good quality asphalt road surface. The results were discussed in terms of the possibility of identifying the state of unbalancing wheels and possible changes in radial stiffness of the tire vibration transmitted through the system driving wheel on the steering wheel. Vibration analysis steering components and car body, also in the longitudinal direction, including information from the CAN bus of the state of motion of the car, can be used to monitor the development of the state of unbalance wheel, tire damage or errors shape of brake discs or brake drums, causing pulsations braking forces.

  7. Study on design of light-weight super-abrasive wheel

    NASA Astrophysics Data System (ADS)

    Nohara, K.; Yanagihara, K.; Ogawa, M.

    2018-01-01

    Fixed-abrasive tool, also called a grinding wheel, is produced by furnacing abrasive compound which contains abrasive grains and binding powder such as vitrified materials or resins. Fixed-abrasive tool is installed on spindle of grinding machine. And it is given 1,800-2,000 min-1 of spindle rotation for the usage. The centrifugal fracture of the compound of fixed- abrasive tool is one of the careful respects in designing. In recent years, however, super-abrasive wheel as a fixed-abrasive tool has been developed and applied widely. One of the most characteristic respects is that metal is applied for the body of grinding-wheel. The strength to hold abrasive grain and the rigidity of wheel become stronger than those of general grinding wheel, also the lifespan of fixed-abrasive tool becomes longer. The weight of fixed-abrasive tool, however, becomes heavier. Therefore, when the super-abrasive wheel is used, the power consumption of spindle motor becomes larger. It also becomes difficult for the grinding-wheel to respond to sudden acceleration or deceleration. Thus, in order to reduce power consumption in grinding and to obtain quicker frequency response of super-abrasive wheel, the new wheel design is proposed. The design accomplishes 46% weight reduction. Acceleration that is one second quicker than that of conventional grinding wheel is obtained.

  8. Mobility performance analysis of an innovation lunar rover with diameter-variable wheel

    NASA Astrophysics Data System (ADS)

    Sun, Gang; Gao, Feng; Sun, Peng; Xu, Guoyan

    2007-11-01

    To achieve excellent mobility performance, a four-wheel, all-wheel drive lunar rover with diameter-variable wheel was presented, the wheel can be contracted and extended by the motor equipped in the wheel hub, accompanied with wheel diameter varying from 200mm to 390mm. The wheel sinkage and drawbar pull force were predicated with terramechanics formulae and lunar regolith mechanic parameters employed, furthermore, the slope traversability was investigated through quasi-static modeling mechanic analysis, also the obstacle resistance and the maximum negotiable obstacle height for different wheel radius were derived from the equations of static equilibrium of the rover. Analysis results show that for the innovation lunar rover presented, it will bring much better slope traveling stability and obstacle climbing capability than rovers with normal wheels, these will improve the rover mobility performance and stabilize the rover's frame, smooth the motion of sensors.

  9. 29 CFR 1926.303 - Abrasive wheels and tools.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... distance not to exceed one-eighth inch from the surface of the wheel. (3) Cup type wheels used for external grinding shall be protected by either a revolving cup guard or a band type guard in accordance with the...

  10. 29 CFR 1926.303 - Abrasive wheels and tools.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... distance not to exceed one-eighth inch from the surface of the wheel. (3) Cup type wheels used for external grinding shall be protected by either a revolving cup guard or a band type guard in accordance with the...

  11. Reaction Wheel Disturbance Modeling, Jitter Analysis, and Validation Tests for Solar Dynamics Observatory

    NASA Technical Reports Server (NTRS)

    Liu,Kuo-Chia; Maghami, Peiman; Blaurock, Carl

    2008-01-01

    The Solar Dynamics Observatory (SDO) aims to study the Sun's influence on the Earth by understanding the source, storage, and release of the solar energy, and the interior structure of the Sun. During science observations, the jitter stability at the instrument focal plane must be maintained to less than a fraction of an arcsecond for two of the SDO instruments. To meet these stringent requirements, a significant amount of analysis and test effort has been devoted to predicting the jitter induced from various disturbance sources. One of the largest disturbance sources onboard is the reaction wheel. This paper presents the SDO approach on reaction wheel disturbance modeling and jitter analysis. It describes the verification and calibration of the disturbance model, and ground tests performed for validating the reaction wheel jitter analysis. To mitigate the reaction wheel disturbance effects, the wheels will be limited to operate at low wheel speeds based on the current analysis. An on-orbit jitter test algorithm is also presented in the paper which will identify the true wheel speed limits in order to ensure that the wheel jitter requirements are met.

  12. Technics study on high accuracy crush dressing and sharpening of diamond grinding wheel

    NASA Astrophysics Data System (ADS)

    Jia, Yunhai; Lu, Xuejun; Li, Jiangang; Zhu, Lixin; Song, Yingjie

    2011-05-01

    Mechanical grinding of artificial diamond grinding wheel was traditional wheel dressing process. The rotate speed and infeed depth of tool wheel were main technics parameters. The suitable technics parameters of metals-bonded diamond grinding wheel and resin-bonded diamond grinding wheel high accuracy crush dressing were obtained by a mount of experiment in super-hard material wheel dressing grind machine and by analysis of grinding force. In the same time, the effect of machine sharpening and sprinkle granule sharpening was contrasted. These analyses and lots of experiments had extent instruction significance to artificial diamond grinding wheel accuracy crush dressing.

  13. Finite element analysis of a composite wheelchair wheel design

    NASA Technical Reports Server (NTRS)

    Ortega, Rene

    1994-01-01

    The finite element analysis of a composite wheelchair wheel design is presented. The design is the result of a technology utilization request. The designer's intent is to soften the riding feeling by incorporating a mechanism attaching the wheel rim to the spokes that would allow considerable deflection upon compressive loads. A finite element analysis was conducted to verify proper structural function. Displacement and stress results are presented and conclusions are provided.

  14. AORN ergonomic tool 7: pushing, pulling, and moving equipment on wheels.

    PubMed

    Waters, Thomas; Lloyd, John D; Hernandez, Edward; Nelson, Audrey

    2011-09-01

    Pushing and pulling equipment in and around the OR can place high shear force demands on perioperative team members' shoulder and back muscles and joints. These high forces may lead to work-related musculoskeletal disorders. AORN Ergonomic Tool 7: Pushing, Pulling, and Moving Equipment on Wheels can help perioperative team members assess the risk of pushing and pulling tasks in the perioperative setting. The tool provides evidence-based suggestions about when assistive devices should be used for these tasks and is based on current ergonomic safety concepts, scientific evidence, and knowledge of effective technology and procedures, including equipment and devices for safe patient handling. Published by Elsevier Inc.

  15. Tracked Vehicle Road Wheel Puller

    DTIC Science & Technology

    2009-02-01

    employed for removing smaller-size components, such as bolts and the like. U.S. Patent No. 5,410,792, issued to Freeman (3), discloses a caster wheel ...separation of the rubberized annular layer from the outer annular surface of the wheel . Figure 5 further illustrates a modification of the wheel puller...2001. 2. Rubino et al. Pulling Tool. U.S. Patent 5,479,688, 1996. 3. Freeman. Caster Wheel Axle Extraction Apparatus. U.S. Patent 5,410,792

  16. Bulk tank somatic cell counts analyzed by statistical process control tools to identify and monitor subclinical mastitis incidence.

    PubMed

    Lukas, J M; Hawkins, D M; Kinsel, M L; Reneau, J K

    2005-11-01

    The objective of this study was to examine the relationship between monthly Dairy Herd Improvement (DHI) subclinical mastitis and new infection rate estimates and daily bulk tank somatic cell count (SCC) summarized by statistical process control tools. Dairy Herd Improvement Association test-day subclinical mastitis and new infection rate estimates along with daily or every other day bulk tank SCC data were collected for 12 mo of 2003 from 275 Upper Midwest dairy herds. Herds were divided into 5 herd production categories. A linear score [LNS = ln(BTSCC/100,000)/0.693147 + 3] was calculated for each individual bulk tank SCC. For both the raw SCC and the transformed data, the mean and sigma were calculated using the statistical quality control individual measurement and moving range chart procedure of Statistical Analysis System. One hundred eighty-three herds of the 275 herds from the study data set were then randomly selected and the raw (method 1) and transformed (method 2) bulk tank SCC mean and sigma were used to develop models for predicting subclinical mastitis and new infection rate estimates. Herd production category was also included in all models as 5 dummy variables. Models were validated by calculating estimates of subclinical mastitis and new infection rates for the remaining 92 herds and plotting them against observed values of each of the dependents. Only herd production category and bulk tank SCC mean were significant and remained in the final models. High R2 values (0.83 and 0.81 for methods 1 and 2, respectively) indicated a strong correlation between the bulk tank SCC and herd's subclinical mastitis prevalence. The standard errors of the estimate were 4.02 and 4.28% for methods 1 and 2, respectively, and decreased with increasing herd production. As a case study, Shewhart Individual Measurement Charts were plotted from the bulk tank SCC to identify shifts in mastitis incidence. Four of 5 charts examined signaled a change in bulk tank SCC before

  17. Software For Design And Analysis Of Tanks And Cylindrical Shells

    NASA Technical Reports Server (NTRS)

    Luz, Paul L.; Graham, Jerry B.

    1995-01-01

    Skin-stringer Tank Analysis Spreadsheet System (STASS) computer program developed for use as preliminary design software tool that enables quick-turnaround design and analysis of structural domes and cylindrical barrel sections in propellant tanks or other cylindrical shells. Determines minimum required skin thicknesses for domes and cylindrical shells to withstand material failure due to applied pressures (ullage and/or hydrostatic) and runs buckling analyses on cylindrical shells and skin-stringers. Implemented as workbook program, using Microsoft Excel v4.0 on Macintosh II. Also implemented using Microsoft Excel v4.0 for Microsoft Windows v3.1 IBM PC.

  18. Durability Characteristics Analysis of Plastic Worm Wheel with Glass Fiber Reinforced Polyamide.

    PubMed

    Kim, Gun-Hee; Lee, Jeong-Won; Seo, Tae-Il

    2013-05-10

    Plastic worm wheel is widely used in the vehicle manufacturing field because it is favorable for weight lightening, vibration and noise reduction, as well as corrosion resistance. However, it is very difficult for general plastics to secure the mechanical properties that are required for vehicle gears. If the plastic resin is reinforced by glass fiber in the fabrication process of plastic worm wheel, it is possible to achieve the mechanical properties of metallic material levels. In this study, the mechanical characteristic analysis of the glass-reinforced plastic worm wheel, according to the contents of glass fiber, is performed by analytic and experimental methods. In the case of the glass fiber-reinforced resin, the orientation and contents of glass fibers can influence the mechanical properties. For the characteristic prediction of plastic worm wheel, computer-aided engineering (CAE) analysis processes such as structural and injection molding analysis were executed with the polyamide resin reinforcement glass fiber (25 wt %, 50 wt %). The injection mold for fabricating the prototype plastic worm wheel was designed and made to reflect the CAE analysis results. Finally, the durability of prototype plastic worm wheel fabricated by the injection molding process was evaluated by the experimental method and the characteristics according to the glass fiber contents.

  19. Durability Characteristics Analysis of Plastic Worm Wheel with Glass Fiber Reinforced Polyamide

    PubMed Central

    Kim, Gun-Hee; Lee, Jeong-Won; Seo, Tae-Il

    2013-01-01

    Plastic worm wheel is widely used in the vehicle manufacturing field because it is favorable for weight lightening, vibration and noise reduction, as well as corrosion resistance. However, it is very difficult for general plastics to secure the mechanical properties that are required for vehicle gears. If the plastic resin is reinforced by glass fiber in the fabrication process of plastic worm wheel, it is possible to achieve the mechanical properties of metallic material levels. In this study, the mechanical characteristic analysis of the glass-reinforced plastic worm wheel, according to the contents of glass fiber, is performed by analytic and experimental methods. In the case of the glass fiber-reinforced resin, the orientation and contents of glass fibers can influence the mechanical properties. For the characteristic prediction of plastic worm wheel, computer-aided engineering (CAE) analysis processes such as structural and injection molding analysis were executed with the polyamide resin reinforcement glass fiber (25 wt %, 50 wt %). The injection mold for fabricating the prototype plastic worm wheel was designed and made to reflect the CAE analysis results. Finally, the durability of prototype plastic worm wheel fabricated by the injection molding process was evaluated by the experimental method and the characteristics according to the glass fiber contents. PMID:28809248

  20. Fluid Mechanics of a High Performance Racing Bicycle Wheel

    NASA Astrophysics Data System (ADS)

    Mercat, Jean-Pierre; Cretoux, Brieuc; Huat, Francois-Xavier; Nordey, Benoit; Renaud, Maxime; Noca, Flavio

    2013-11-01

    In 2012, MAVIC released the most aerodynamic bicycle wheel on the market, the CXR 80. The french company MAVIC has been a world leader for many decades in the manufacturing of bicycle wheels for competitive events such as the Olympic Games and the Tour de France. Since 2010, MAVIC has been in a research partnership with the University of Applied Sciences in Geneva, Switzerland, for the aerodynamic development of bicycle wheels. While most of the development up to date has been performed in a classical wind tunnel, recent work has been conducted in an unusual setting, a hydrodynamic towing tank, in order to achieve low levels of turbulence and facilitate quantitative flow visualization (PIV). After a short introduction on the aerodynamics of bicycle wheels, preliminary fluid mechanics results based on this novel setup will be presented.

  1. Reaction Wheel Disturbance Model Extraction Software - RWDMES

    NASA Technical Reports Server (NTRS)

    Blaurock, Carl

    2009-01-01

    The RWDMES is a tool for modeling the disturbances imparted on spacecraft by spinning reaction wheels. Reaction wheels are usually the largest disturbance source on a precision pointing spacecraft, and can be the dominating source of pointing error. Accurate knowledge of the disturbance environment is critical to accurate prediction of the pointing performance. In the past, it has been difficult to extract an accurate wheel disturbance model since the forcing mechanisms are difficult to model physically, and the forcing amplitudes are filtered by the dynamics of the reaction wheel. RWDMES captures the wheel-induced disturbances using a hybrid physical/empirical model that is extracted directly from measured forcing data. The empirical models capture the tonal forces that occur at harmonics of the spin rate, and the broadband forces that arise from random effects. The empirical forcing functions are filtered by a physical model of the wheel structure that includes spin-rate-dependent moments (gyroscopic terms). The resulting hybrid model creates a highly accurate prediction of wheel-induced forces. It accounts for variation in disturbance frequency, as well as the shifts in structural amplification by the whirl modes, as the spin rate changes. This software provides a point-and-click environment for producing accurate models with minimal user effort. Where conventional approaches may take weeks to produce a model of variable quality, RWDMES can create a demonstrably high accuracy model in two hours. The software consists of a graphical user interface (GUI) that enables the user to specify all analysis parameters, to evaluate analysis results and to iteratively refine the model. Underlying algorithms automatically extract disturbance harmonics, initialize and tune harmonic models, and initialize and tune broadband noise models. The component steps are described in the RWDMES user s guide and include: converting time domain data to waterfall PSDs (power spectral

  2. High frequency vibration characteristics of electric wheel system under in-wheel motor torque ripple

    NASA Astrophysics Data System (ADS)

    Mao, Yu; Zuo, Shuguang; Wu, Xudong; Duan, Xianglei

    2017-07-01

    With the introduction of in-wheel motor, the electric wheel system encounters new vibration problems brought by motor torque ripple excitation. In order to analyze new vibration characteristics of electric wheel system, torque ripple of in-wheel motor based on motor module and vector control system is primarily analyzed, and frequency/order features of the torque ripple are discussed. Then quarter vehicle-electric wheel system (QV-EWS) dynamics model based on the rigid ring tire assumption is established and the main parameters of the model are identified according to tire free modal test. Modal characteristics of the model are further analyzed. The analysis indicates that torque excitation of in-wheel motor is prone to arouse horizontal vibration, in which in-phase rotational, anti-phase rotational and horizontal translational modes of electric wheel system mainly participate. Based on the model, vibration responses of the QV-EWS under torque ripple are simulated. The results show that unlike vertical low frequency (lower than 20 Hz) vibration excited by road roughness, broadband torque ripple will arouse horizontal high frequency (50-100 Hz) vibration of electric wheel system due to participation of the three aforementioned modes. To verify the theoretical analysis, the bench experiment of electric wheel system is conducted and vibration responses are acquired. The experiment demonstrates the high frequency vibration phenomenon of electric wheel system and the measured order features as well as main resonant frequencies agree with simulation results. Through theoretical modeling, analysis and experiments this paper reveals and explains the high frequency vibration characteristics of electric wheel system, providing references for the dynamic analysis, optimal design of QV-EWS.

  3. Tank 241-C-112 vapor sampling and analysis tank characterization report. Revision 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huckaby, J.L.

    1995-05-31

    Tank 241-C-112 headspace gas and vapor samples were collected and analyzed to help determine the potential risks to tank farm workers due to fugitive emissions from the tank. The drivers and objectives of waste tank headspace sampling and analysis are discussed in {open_quotes}Program Plan for the Resolution of Tank Vapor Issues.{close_quotes} Tank 241-C-112 was vapor sampled in accordance with {open_quotes}Data Quality Objectives for Generic In-Tank Health and Safety Issue Resolution.{close_quotes}

  4. Three dimensional modeling and dynamic analysis of four-wheel-steering vehicles

    NASA Astrophysics Data System (ADS)

    Hu, Haiyan; Han, Qiang

    2003-02-01

    The paper presents a nonlinear dynamic model of 9 degrees of freedom for four-wheel-steering vehicles. Compared with those in previous studies, this model includes the pitch and roll of the vehicle body, the motion of 4 wheels in the accelerating or braking process, the nonlinear coupling of vehicle body and unsprung part, as well as the air drag and wind effect. As a result, the model can be used for the analysis of various maneuvers of the four-wheel-steering vehicles. In addition, the previous models can be considered as a special case of this model. The paper gives some case studies for the dynamic performance of a four-wheel-steering vehicle under step input and saw-tooth input of steering angle applied on the front wheels, respectively.

  5. Mission Analysis and Orbit Control of Interferometric Wheel Formation Flying

    NASA Astrophysics Data System (ADS)

    Fourcade, J.

    Flying satellite in formation requires maintaining the specific relative geometry of the spacecraft with high precision. This requirement raises new problem of orbit control. This paper presents the results of the mission analysis of a low Earth observation system, the interferometric wheel, patented by CNES. This wheel is made up of three receiving spacecraft, which follow an emitting Earth observation radar satellite. The first part of this paper presents trades off which were performed to choose orbital elements of the formation flying which fulfils all constraints. The second part presents orbit positioning strategies including reconfiguration of the wheel to change its size. The last part describes the station keeping of the formation. Two kinds of constraints are imposed by the interferometric system : a constraint on the distance between the wheel and the radar satellite, and constraints on the distance between the wheel satellites. The first constraint is fulfilled with a classical chemical station keeping strategy. The second one is fulfilled using pure passive actuators. Due to the high stability of the relative eccentricity of the formation, only the relative semi major axis had to be controlled. Differential drag due to differential attitude motion was used to control relative altitude. An autonomous orbit controller was developed and tested. The final accuracy is a relative station keeping better than few meters for a wheel size of one kilometer.

  6. Utilization of wheel dop based on ergonomic aspects

    NASA Astrophysics Data System (ADS)

    Widiasih, Wiwin; Murnawan, Hery; Setiawan, Danny

    2017-06-01

    Time is an important thing in life. People need a tool or equipment to measure time which is divided into two types, namely clock and watch. Everyone needs those kinds of tool. It becomes an opportunity for manufacturer to build a business. However, establishing a business by depending on the demand is not enough, it is necessary to take a consideration of making innovation. Innovation is a difficult thing to find out, but it is not impossible to do it. By creating an innovative product, it can be a strategy to win the competitive market. This study aimed to create an innovative product based on the ergonomic aspects, which was by utilizing wheel dop. This methodology consisted of pre-study, planning and product development, and product analysis. This product utilized wheel dop and was made based on the ergonomic aspects.

  7. Thermal modal analysis of novel non-pneumatic mechanical elastic wheel based on FEM and EMA

    NASA Astrophysics Data System (ADS)

    Zhao, Youqun; Zhu, Mingmin; Lin, Fen; Xiao, Zhen; Li, Haiqing; Deng, Yaoji

    2018-01-01

    A combination of Finite Element Method (FEM) and Experiment Modal Analysis (EMA) have been employed here to characterize the structural dynamic response of mechanical elastic wheel (ME-Wheel) operating under a specific thermal environment. The influence of high thermal condition on the structural dynamic response of ME-Wheel is investigated. The obtained results indicate that the EMA results are in accordance with those obtained using the proposed Finite Element (FE) model, indicting the high reliability of this FE model applied in analyzing the modal of ME-Wheel working under practical thermal environment. It demonstrates that the structural dynamic response of ME-Wheel operating under a specific thermal condition can be predicted and evaluated using the proposed analysis method, which is beneficial for the dynamic optimization design of the wheel structure to avoid tire temperature related vibration failure and improve safety of tire.

  8. Numerical Methods for the Analysis of Power Transformer Tank Deformation and Rupture Due to Internal Arcing Faults

    PubMed Central

    Yan, Chenguang; Hao, Zhiguo; Zhang, Song; Zhang, Baohui; Zheng, Tao

    2015-01-01

    Power transformer rupture and fire resulting from an arcing fault inside the tank usually leads to significant security risks and serious economic loss. In order to reveal the essence of tank deformation or explosion, this paper presents a 3-D numerical computational tool to simulate the structural dynamic behavior due to overpressure inside transformer tank. To illustrate the effectiveness of the proposed method, a 17.3MJ and a 6.3MJ arcing fault were simulated on a real full-scale 360MVA/220kV oil-immersed transformer model, respectively. By employing the finite element method, the transformer internal overpressure distribution, wave propagation and von-Mises stress were solved. The numerical results indicate that the increase of pressure and mechanical stress distribution are non-uniform and the stress tends to concentrate on connecting parts of the tank as the fault time evolves. Given this feature, it becomes possible to reduce the risk of transformer tank rupture through limiting the fault energy and enhancing the mechanical strength of the local stress concentrative areas. The theoretical model and numerical simulation method proposed in this paper can be used as a substitute for risky and costly field tests in fault overpressure analysis and tank mitigation design of transformers. PMID:26230392

  9. Numerical Methods for the Analysis of Power Transformer Tank Deformation and Rupture Due to Internal Arcing Faults.

    PubMed

    Yan, Chenguang; Hao, Zhiguo; Zhang, Song; Zhang, Baohui; Zheng, Tao

    2015-01-01

    Power transformer rupture and fire resulting from an arcing fault inside the tank usually leads to significant security risks and serious economic loss. In order to reveal the essence of tank deformation or explosion, this paper presents a 3-D numerical computational tool to simulate the structural dynamic behavior due to overpressure inside transformer tank. To illustrate the effectiveness of the proposed method, a 17.3 MJ and a 6.3 MJ arcing fault were simulated on a real full-scale 360MVA/220kV oil-immersed transformer model, respectively. By employing the finite element method, the transformer internal overpressure distribution, wave propagation and von-Mises stress were solved. The numerical results indicate that the increase of pressure and mechanical stress distribution are non-uniform and the stress tends to concentrate on connecting parts of the tank as the fault time evolves. Given this feature, it becomes possible to reduce the risk of transformer tank rupture through limiting the fault energy and enhancing the mechanical strength of the local stress concentrative areas. The theoretical model and numerical simulation method proposed in this paper can be used as a substitute for risky and costly field tests in fault overpressure analysis and tank mitigation design of transformers.

  10. PCB Analysis Plan for Tank Archive Samples

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NGUYEN, D.M.

    2001-03-22

    This analysis plan specifies laboratory analysis, quality assurance/quality control (QA/QC), and data reporting requirements for analyzing polychlorinated biphenyls (PCB) concentrations in archive samples. Tank waste archive samples that are planned for PCB analysis are identified in Nguyen 2001. The tanks and samples are summarized in Table 1-1. The analytical data will be used to establish a PCB baseline inventory in Hanford tanks.

  11. Body weight manipulation, reinforcement value and choice between sucrose and wheel running: a behavioral economic analysis.

    PubMed

    Belke, Terry W; Pierce, W David

    2009-02-01

    Twelve female Long-Evans rats were exposed to concurrent variable (VR) ratio schedules of sucrose and wheel-running reinforcement (Sucrose VR 10 Wheel VR 10; Sucrose VR 5 Wheel VR 20; Sucrose VR 20 Wheel VR 5) with predetermined budgets (number of responses). The allocation of lever pressing to the sucrose and wheel-running alternatives was assessed at high and low body weights. Results showed that wheel-running rate and lever-pressing rates for sucrose and wheel running increased, but the choice of wheel running decreased at the low body weight. A regression analysis of relative consumption as a function of relative price showed that consumption shifted toward sucrose and interacted with price differences in a manner consistent with increased substitutability. Demand curves showed that demand for sucrose became less elastic while demand for wheel running became more elastic at the low body weight. These findings reflect an increase in the difference in relative value of sucrose and wheel running as body weight decreased. Discussion focuses on the limitations of response rates as measures of reinforcement value. In addition, we address the commonalities between matching and demand curve equations for the analysis of changes in relative reinforcement value.

  12. The response of a high-speed train wheel to a harmonic wheel-rail force

    NASA Astrophysics Data System (ADS)

    Sheng, Xiaozhen; Liu, Yuxia; Zhou, Xin

    2016-09-01

    The maximum speed of China's high-speed trains currently is 300km/h and expected to increase to 350-400km/h. As a wheel travels along the rail at such a high speed, it is subject to a force rotating at the same speed along its periphery. This fast moving force contains not only the axle load component, but also many components of high frequencies generated from wheel-rail interactions. Rotation of the wheel also introduces centrifugal and gyroscopic effects. How the wheel responds is fundamental to many issues, including wheel-rail contact, traction, wear and noise. In this paper, by making use of its axial symmetry, a special finite element scheme is developed for responses of a train wheel subject to a vertical and harmonic wheel-rail force. This FE scheme only requires a 2D mesh over a cross-section containing the wheel axis but includes all the effects induced by wheel rotation. Nodal displacements, as a periodic function of the cross-section angle 6, can be decomposed, using Fourier series, into a number of components at different circumferential orders. The derived FE equation is solved for each circumferential order. The sum of responses at all circumferential orders gives the actual response of the wheel.

  13. Leg pairs as virtual wheels

    NASA Astrophysics Data System (ADS)

    Howe, Russel; Duttweiler, Mark; Khanlian, Luke; Setrakian, Mark

    2005-05-01

    We propose the use of virtual wheels as the starting point of a new vehicle design. Each virtual wheel incorporates a pair of simple legs that, by simulating the rotary motion and ground contact of a traditional wheel, combine many of the benefits of legged and wheeled motion. We describe the use of virtual wheels in the design of a robotic mule, presenting an analysis of the mule's mobility the results of our efforts to model and build such a device.

  14. Wheel Unloading of Rail Vehicles Due to Track Twist

    DOT National Transportation Integrated Search

    1986-02-01

    An analysis is presented describing the effect that track twist has on the loads carried by the wheels of a rail car. Wheel unloading is determined as a function of the difference in crosslevel between the truck centers of the car. The different vehi...

  15. Investigation of diamond wheel topography in Elliptical Ultrasonic Assisted Grinding (EUAG) of monocrystal sapphire using fractal analysis method.

    PubMed

    Wang, Qiuyan; Zhao, Wenxiang; Liang, Zhiqiang; Wang, Xibin; Zhou, Tianfeng; Wu, Yongbo; Jiao, Li

    2018-03-01

    The wear behaviors of grinding wheel have significant influence on the work-surface topography. However, a comprehensive and quantitative method is lacking for evaluating the wear conditions of grinding wheel. In this paper, a fractal analysis method is used to investigate the wear behavior of resin-bonded diamond wheel in Elliptical Ultrasonic Assisted Grinding (EUAG) of monocrystal sapphire, and a series of experiments on EUAG and conventional grinding (CG) are performed. The results show that the fractal dimension of grinding wheel topography is highly correlated to the wear behavior, i.e., grain fracture, grain pullout, and wheel loading. An increase in cutting edge density on the wheel surface results in an increase of the fractal dimension, but an increase in the grain pullout and wheel loading results in a decrease in the fractal dimension. The wheel topography in EUAG has a higher fractal dimension than that in CG before 60 passes due to better self-sharpening behavior, and then has a smaller fractal dimension because of more serious wheel loadings after 60 passes. By angle-dependent distribution analysis of profile fractal dimensions, the wheel surface topography is transformed from isotropic to anisotropic. These indicated that the fractal analysis method could be further used in monitoring of a grinding wheel performance in EUAG. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. In-wheel hub SRM simulation and analysis

    NASA Astrophysics Data System (ADS)

    Sager, Milton W., III

    Is it feasible to replace the conventional gasoline engine and subsequent drive system in a motorcycle with an electric switched reluctance motor (SRM) by placing the SRM inside the rear wheel, thereby removing the need for things such as a clutch, chain, transmission, gears and sprockets? The goal of this thesis is to study the theoretical aspect of prototyping and analyzing an in-wheel electric hub motor to replace the standard gasoline engine traditionally found on motorcycles. With the recent push for clean energy, electric vehicles are becoming more common. All currently produced electric motorcycles use conventional, prefabricated electric motors connected to the traditional sprocket and chain design. This greatly restricts the efficiency and range of these motorcycles. My design stands apart by turning the rear wheel into a SRM which uses electromagnets around a non-magnetic core to convert electrical energy into mechanical force driving the rear wheel. To my knowledge, there is currently no motorcycle designed with an in-wheel hub SRM. A three-phase SRM and a five-phase SRM will be simulated and analyzed using MATLAB with Simulink. Factors such as friction, weight, power, etc. will be taken into account in order to create a realistic simulation as if it were inside the rear wheel of a motorcycle. Since time and finances will not allow for a full scale build, a scaled model three-phase SRM will be attempted for demonstration purposes.

  17. Colossal Tooling Design: 3D Simulation for Ergonomic Analysis

    NASA Technical Reports Server (NTRS)

    Hunter, Steve L.; Dischinger, Charles; Thomas, Robert E.; Babai, Majid

    2003-01-01

    The application of high-level 3D simulation software to the design phase of colossal mandrel tooling for composite aerospace fuel tanks was accomplished to discover and resolve safety and human engineering problems. The analyses were conducted to determine safety, ergonomic and human engineering aspects of the disassembly process of the fuel tank composite shell mandrel. Three-dimensional graphics high-level software, incorporating various ergonomic analysis algorithms, was utilized to determine if the process was within safety and health boundaries for the workers carrying out these tasks. In addition, the graphical software was extremely helpful in the identification of material handling equipment and devices for the mandrel tooling assembly/disassembly process.

  18. Analysis of Tank PMD Rewetting Following Thrust Resettling

    NASA Astrophysics Data System (ADS)

    Weislogel, M. M.; Sala, M. A.; Collicott, S. H.

    2002-10-01

    Recent investigations have successfully demonstrated closed-form analytical solutions of spontaneous capillary flows in idealized cylindrical containers with interior corners. In this report, the theory is extended and applied to complex containers modeling spacecraft fuel tanks employing propellant management devices (PMDs). The specific problem investigated is one of spontaneous rewetting of a typical partially filled liquid fuel/cryogen tank with PMD after thrust resettling. The transients of this flow impact the logistics of orbital maneuvers and potentially tank thermal control. The general procedure to compute the initial condition (mean radius of curvature for the interface) for the closed-form transient flows is first outlined then solved for several 'complex' cylindrical tanks exhibiting symmetry. The utility and limitations of the technique as a design tool are discussed in a summary, which also highlights comparisons with NASA flight data of a model propellant tank with PMD.

  19. Analysis of Tank PMD Rewetting Following Thrust Resettling

    NASA Technical Reports Server (NTRS)

    Weislogel, M. M.; Sala, M. A.; Collicott, S. H.; Rame, Enrique (Technical Monitor)

    2002-01-01

    Recent investigations have successfully demonstrated closed-form analytical solutions of spontaneous capillary flows in idealized cylindrical containers with interior corners. In this report, the theory is extended and applied to complex containers modeling spacecraft fuel tanks employing propellant management devices (PMDs). The specific problem investigated is one of spontaneous rewetting of a typical partially filled liquid fuel/cryogen tank with PMD after thrust resettling. The transients of this flow impact the logistics of orbital maneuvers and potentially tank thermal control. The general procedure to compute the initial condition (mean radius of curvature for the interface) for the closed-form transient flows is first outlined then solved for several 'complex' cylindrical tanks exhibiting symmetry. The utility and limitations of the technique as a design tool are discussed in a summary, which also highlights comparisons with NASA flight data of a model propellant tank with PMD.

  20. Looking south at a chemical mixing tank for boiler feedwater. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Looking south at a chemical mixing tank for boiler feedwater. - Wheeling-Pittsburgh Steel Corporation, Allenport Works, Boiler House, Route 88 on West bank of Monongahela River, Allenport, Washington County, PA

  1. UT Biomedical Informatics Lab (BMIL) probability wheel

    NASA Astrophysics Data System (ADS)

    Huang, Sheng-Cheng; Lee, Sara; Wang, Allen; Cantor, Scott B.; Sun, Clement; Fan, Kaili; Reece, Gregory P.; Kim, Min Soon; Markey, Mia K.

    A probability wheel app is intended to facilitate communication between two people, an "investigator" and a "participant", about uncertainties inherent in decision-making. Traditionally, a probability wheel is a mechanical prop with two colored slices. A user adjusts the sizes of the slices to indicate the relative value of the probabilities assigned to them. A probability wheel can improve the adjustment process and attenuate the effect of anchoring bias when it is used to estimate or communicate probabilities of outcomes. The goal of this work was to develop a mobile application of the probability wheel that is portable, easily available, and more versatile. We provide a motivating example from medical decision-making, but the tool is widely applicable for researchers in the decision sciences.

  2. B11-: a moving subnanoscale tank tread

    NASA Astrophysics Data System (ADS)

    Wang, Ying-Jin; Zhao, Xiao-Yun; Chen, Qiang; Zhai, Hua-Jin; Li, Si-Dian

    2015-09-01

    We present a concept that an elongated, planar boron cluster can serve as a ``tank tread'' at the sub-nanometer scale, a novel propulsion system for potential nanomachines. Density functional calculations at the PBE0/6-311+G* level for the global-minimum B11-C2v (1A1) and B11C2v (2B2) structures along the soft in-plane rotational mode allow the identification of their corresponding B11-C2v and B11C2v transition states, with small rotational energy barriers of 0.42 and 0.55 kcal mol-1, respectively. The energy barriers are refined to 0.35 and 0.60 kcal mol-1 at the single-point CCSD(T) level, suggesting that the clusters are structurally fluxional at room temperature. Molecular dynamics simulations show that B11- and B11 behave exactly like a tank tread, in which the peripheral B9 ring rotates almost freely around the B2 core. A full turn of rotation may be accomplished in around 2 ps. In contrast to molecular wheels or Wankel motors, the peripheral boron atoms in the tank tread behave as a flexible chain gliding around, rather than as a rigid wheel rotation. This finding is beyond imagination, which expands the concepts of molecular wheels and Wankel motors.We present a concept that an elongated, planar boron cluster can serve as a ``tank tread'' at the sub-nanometer scale, a novel propulsion system for potential nanomachines. Density functional calculations at the PBE0/6-311+G* level for the global-minimum B11-C2v (1A1) and B11C2v (2B2) structures along the soft in-plane rotational mode allow the identification of their corresponding B11-C2v and B11C2v transition states, with small rotational energy barriers of 0.42 and 0.55 kcal mol-1, respectively. The energy barriers are refined to 0.35 and 0.60 kcal mol-1 at the single-point CCSD(T) level, suggesting that the clusters are structurally fluxional at room temperature. Molecular dynamics simulations show that B11- and B11 behave exactly like a tank tread, in which the peripheral B9 ring rotates almost freely

  3. Front and Back Movement Analysis of a Triangle-Structured Three-Wheeled Omnidirectional Mobile Robot by Varying the Angles between Two Selected Wheels.

    PubMed

    Mohanraj, A P; Elango, A; Reddy, Mutra Chanakya

    2016-01-01

    Omnidirectional robots can move in all directions without steering their wheels and it can rotate clockwise and counterclockwise with reference to their axis. In this paper, we focused only on front and back movement, to analyse the square- and triangle-structured omnidirectional robot movements. An omnidirectional mobile robot shows different performances with the different number of wheels and the omnidirectional mobile robot's chassis design. Research is going on in this field to improve the accurate movement capability of omnidirectional mobile robots. This paper presents a design of a unique device of Angle Variable Chassis (AVC) for linear movement analysis of a three-wheeled omnidirectional mobile robot (TWOMR), at various angles (θ) between the wheels. Basic mobility algorithm is developed by varying the angles between the two selected omnidirectional wheels in TWOMR. The experiment is carried out by varying the angles (θ = 30°, 45°, 60°, 90°, and 120°) between the two selected omniwheels and analysing the movement of TWOMR in forward direction and reverse direction on a smooth cement surface. Respectively, it is compared to itself for various angles (θ), to get its advantages and weaknesses. The conclusion of the paper provides effective movement of TWOMR at a particular angle (θ) and also the application of TWOMR in different situations.

  4. Vehicle wheel drag coefficient in relation to travelling velocity - CFD analysis

    NASA Astrophysics Data System (ADS)

    Leśniewicz, P.; Kulak, M.; Karczewski, M.

    2016-10-01

    In order to understand the aerodynamic losses associated with a rotating automobile wheel, a detailed characteristics of the drag coefficient in relation to the applied velocity are necessary. Single drag coefficient value is most often reported for the commercially available vehicles, much less is revealed about the influence of particular car components on the energy consumption in various driving cycles. However, detailed flow potential losses determination is desired for performance estimation. To address these needs, the numerical investigation of an isolated wheel is proposed herein.

  5. Determining Wheel-Soil Interaction Loads Using a Meshfree Finite Element Approach Assisting Future Missions with Rover Wheel Design

    NASA Technical Reports Server (NTRS)

    Contreras, Michael T.; Peng, Chia-Yen; Wang, Dongdong; Chen, Jiun-Shyan

    2012-01-01

    A wheel experiencing sinkage and slippage events poses a high risk to rover missions as evidenced by recent mobility challenges on the Mars Exploration Rover (MER) project. Because several factors contribute to wheel sinkage and slippage conditions such as soil composition, large deformation soil behavior, wheel geometry, nonlinear contact forces, terrain irregularity, etc., there are significant benefits to modeling these events to a sufficient degree of complexity. For the purposes of modeling wheel sinkage and slippage at an engineering scale, meshfree finite element approaches enable simulations that capture sufficient detail of wheel-soil interaction while remaining computationally feasible. This study demonstrates some of the large deformation modeling capability of meshfree methods and the realistic solutions obtained by accounting for the soil material properties. A benchmark wheel-soil interaction problem is developed and analyzed using a specific class of meshfree methods called Reproducing Kernel Particle Method (RKPM). The benchmark problem is also analyzed using a commercially available finite element approach with Lagrangian meshing for comparison. RKPM results are comparable to classical pressure-sinkage terramechanics relationships proposed by Bekker-Wong. Pending experimental calibration by future work, the meshfree modeling technique will be a viable simulation tool for trade studies assisting rover wheel design.

  6. Mobility analysis, simulation, and scale model testing for the design of wheeled planetary rovers

    NASA Technical Reports Server (NTRS)

    Lindemann, Randel A.; Eisen, Howard J.

    1993-01-01

    The use of computer based techniques to model and simulate wheeled rovers on rough natural terrains is considered. Physical models of a prototype vehicle can be used to test the correlation of the simulations in scaled testing. The computer approaches include a quasi-static planar or two dimensional analysis and design tool based on the traction necessary for the vehicle to have imminent mobility. The computer program modeled a six by six wheel drive vehicle of original kinematic configuration, called the Rocker Bogie. The Rocker Bogie was optimized using the quasi-static software with respect to its articulation parameters prior to fabrication of a prototype. In another approach used, the dynamics of the Rocker Bogie vehicle in 3-D space was modeled on an engineering workstation using commercial software. The model included the complex and nonlinear interaction of the tire and terrain. The results of the investigation yielded numerical and graphical results of the rover traversing rough terrain on the earth, moon, and Mars. In addition, animations of the rover excursions were also generated. A prototype vehicle was then used in a series of testbed and field experiments. Correspondence was then established between the computer models and the physical model. The results indicated the utility of the quasi-static tool for configurational design, as well as the predictive ability of the 3-D simulation to model the dynamic behavior of the vehicle over short traverses.

  7. Inflight Performance of Cassini Reaction Wheel Bearing Drag in 1997-2013

    NASA Technical Reports Server (NTRS)

    Lee, Allan Y.; Wang, Eric K.

    2013-01-01

    As the first spacecraft to achieve orbit at Saturn in 2004, Cassini has collected science data throughout its four-year prime mission (2004-08), and has since been approved for a first and second extended missions through September 2017. Cassini is a three-axis stabilized spacecraft. It uses reaction wheels to achieve high level of spacecraft pointing stability that is needed during imaging operations of several science instruments. The Cassini flight software makes in-flight estimates of reaction wheel bearing drag torque and made them available to the mission operations team. These telemetry data are being trended for the purpose of monitoring the long-term health of the reaction wheel bearings. Anomalous drag torque signatures observed over the past 15 years are described in this paper. One of these anomalous drag conditions is bearing cage instability that appeared (and disappeared) spontaneously and unpredictably. Cage instability is an uncontrolled vibratory motion of the bearing cage that can produce high-impact forces internal to the bearing that will cause intermittent and erratic torque transients. Characteristics of the observed cage instabilities and other drag torque "spikes" are described in this paper. In day-to-day operations, the reaction wheels' rates must be neither too high nor too low. To protect against operating the wheels in any undesirable conditions (such as prolonged low spin rate operations), a ground software tool named Reaction Wheel Bias Optimization Tool (RBOT) was developed for the management of the wheels. Disciplined and long-term use of this ground software has led to significant reduction in the daily consumption rate of the wheels' low spin rate dwell time. Flight experience on the use of this ground software tool as well as other lessons learned on the management of Cassini reaction wheels is given in this paper.

  8. Effects of genetic background and environmental novelty on wheel running as a rewarding behaviour in mice.

    PubMed

    de Visser, Leonie; van den Bos, Ruud; Stoker, Astrid K; Kas, Martien J H; Spruijt, Berry M

    2007-02-27

    Recent studies suggest running wheel activity to be naturally rewarding and reinforcing; considering the shared neuro-behavioural characteristics with drug-induced reward situations, wheel running behaviour gains interest as a tool to study mechanisms underlying reward-sensitivity. Previously, we showed that wheel running has the potential to disrupt the daily organization of home cage behaviour in female C57BL/6 [de Visser L, van den Bos R, Spruijt BM. Automated home cage observations as a tool to measure the effects of wheel running on cage floor locomotion. Behav Brain Res 2005;160:382-8]. In the present study, we investigated the effects of novelty-induced stress on wheel running and its impact on home cage behaviour in male C57BL/6 and DBA/2 mice. Our aim was to determine whether wheel running may be used as a tool to study both genetic and environmentally induced differences in sensitivity to rewarding behaviour in mice. One group of male mice was placed in an automated home cage observation system for 2 weeks with a wheel integrated in the cage. A second group of mice was allowed to habituate to this cage for 1 week before a running wheel was introduced. Results showed a pronounced sensitising effect of novelty on the level of wheel running in C57Bl/6 mice but not in DBA mice. Overall levels of wheel running were higher in DBA/2 mice. Furthermore, wheel running affected circadian rhythmicity in DBA/2 mice but not in C57BL/6 mice. From these findings we tentatively suggest that wheel running behaviour could serve as a tool to study the interaction between genetic and environmental factors in sensitivity to rewarding behaviour in mice. As it is displayed spontaneously and easy to monitor, wheel running may be well suitable to be included in high-throughput phenotyping assays.

  9. Grinding Wheel Profile

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This graphic dubbed by engineers as the 'Grinding Wheel Profile' is the detective's tool used by the Opportunity team to help them understand one of the processes that formed the interior of a rock called 'McKittrick.' Scientists are looking for clues as to how layers, grains and minerals helped create this rock, and the engineers who built the rock abrasion tool (RAT) wanted to ensure that their instrument's handiwork did not get confused with natural processes.

    In the original microscopic image underlaying the graphics, engineers and scientists noticed 'layers' or 'scratches' on the spherical object nicknamed 'blueberry' in the lower right part of the image. The designers of the rock abrasion tool noticed that the arc length and width of the scratches were similar to the shape and size of the rock abrasion tool's grinding wheel, which is made out of a pad of diamond teeth.

    The scrapes on the bottom right blueberry appear to be caused by the fact that the berry got dislodged slightly and its surface was scraped with the grinding pad. In this image, the largest yellow circle is the overall diameter of the hole ground by the rock abrasion tool and the largest yellow rectangular shape is the area of the grinding wheel bit. The smaller yellow semi-circle is the path that the center of the grinding tool follows. The orange arrow arcing around the solid yellow circle (center of grinding tool) indicates the direction that the grinding tool spins around its own center at 3,000 revolutions per minute. The tool simultaneously spins in an orbit around the center of the hole, indicated by the larger orange arrow to the left.

    The grinding tool is 22 millimeters (0.9 inches) in length and the actual grinding surface, which consists of the diamond pad, is 1.5 millimeters (0.06 inches) in length, indicated by the two smaller rectangles. You can see that the smaller bottom rectangle fits exactly the width of the scrape marks.

    The grooves on the blueberry are also the

  10. Front and Back Movement Analysis of a Triangle-Structured Three-Wheeled Omnidirectional Mobile Robot by Varying the Angles between Two Selected Wheels

    PubMed Central

    Mohanraj, A. P.; Elango, A.; Reddy, Mutra Chanakya

    2016-01-01

    Omnidirectional robots can move in all directions without steering their wheels and it can rotate clockwise and counterclockwise with reference to their axis. In this paper, we focused only on front and back movement, to analyse the square- and triangle-structured omnidirectional robot movements. An omnidirectional mobile robot shows different performances with the different number of wheels and the omnidirectional mobile robot's chassis design. Research is going on in this field to improve the accurate movement capability of omnidirectional mobile robots. This paper presents a design of a unique device of Angle Variable Chassis (AVC) for linear movement analysis of a three-wheeled omnidirectional mobile robot (TWOMR), at various angles (θ) between the wheels. Basic mobility algorithm is developed by varying the angles between the two selected omnidirectional wheels in TWOMR. The experiment is carried out by varying the angles (θ = 30°, 45°, 60°, 90°, and 120°) between the two selected omniwheels and analysing the movement of TWOMR in forward direction and reverse direction on a smooth cement surface. Respectively, it is compared to itself for various angles (θ), to get its advantages and weaknesses. The conclusion of the paper provides effective movement of TWOMR at a particular angle (θ) and also the application of TWOMR in different situations. PMID:26981585

  11. TANK48 CFD MODELING ANALYSIS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, S.

    2011-05-17

    The process of recovering the waste in storage tanks at the Savannah River Site (SRS) typically requires mixing the contents of the tank to ensure uniformity of the discharge stream. Mixing is accomplished with one to four dual-nozzle slurry pumps located within the tank liquid. For the work, a Tank 48 simulation model with a maximum of four slurry pumps in operation has been developed to estimate flow patterns for efficient solid mixing. The modeling calculations were performed by using two modeling approaches. One approach is a single-phase Computational Fluid Dynamics (CFD) model to evaluate the flow patterns and qualitativemore » mixing behaviors for a range of different modeling conditions since the model was previously benchmarked against the test results. The other is a two-phase CFD model to estimate solid concentrations in a quantitative way by solving the Eulerian governing equations for the continuous fluid and discrete solid phases over the entire fluid domain of Tank 48. The two-phase results should be considered as the preliminary scoping calculations since the model was not validated against the test results yet. A series of sensitivity calculations for different numbers of pumps and operating conditions has been performed to provide operational guidance for solids suspension and mixing in the tank. In the analysis, the pump was assumed to be stationary. Major solid obstructions including the pump housing, the pump columns, and the 82 inch central support column were included. The steady state and three-dimensional analyses with a two-equation turbulence model were performed with FLUENT{trademark} for the single-phase approach and CFX for the two-phase approach. Recommended operational guidance was developed assuming that local fluid velocity can be used as a measure of sludge suspension and spatial mixing under single-phase tank model. For quantitative analysis, a two-phase fluid-solid model was developed for the same modeling conditions as the

  12. Rotating Wheel Wake

    NASA Astrophysics Data System (ADS)

    Lombard, Jean-Eloi; Xu, Hui; Moxey, Dave; Sherwin, Spencer

    2016-11-01

    For open wheel race-cars, such as Formula One, or IndyCar, the wheels are responsible for 40 % of the total drag. For road cars, drag associated to the wheels and under-carriage can represent 20 - 60 % of total drag at highway cruise speeds. Experimental observations have reported two, three or more pairs of counter rotating vortices, the relative strength of which still remains an open question. The near wake of an unsteady rotating wheel. The numerical investigation by means of direct numerical simulation at ReD =400-1000 is presented here to further the understanding of bifurcations the flow undergoes as the Reynolds number is increased. Direct numerical simulation is performed using Nektar++, the results of which are compared to those of Pirozzoli et al. (2012). Both proper orthogonal decomposition and dynamic mode decomposition, as well as spectral analysis are leveraged to gain unprecedented insight into the bifurcations and subsequent topological differences of the wake as the Reynolds number is increased.

  13. IceTop tank response to muons

    NASA Astrophysics Data System (ADS)

    Demirörs, L.; Beimforde, M.; Eisch, J.; Madsen, J.; Niessen, P.; Spiczak, G.M.; Stoyanov, S.; Tilav, S

    The calibration of the surface air shower array of IceCube - IceTop is based on identifying and understanding the muon response of each IceTop tank. Special calibration runs are carried out throughout the year and are supplemented with austral season measurements with tagging telescope for vertical muons. The vertical equivalent muon (VEM) charge value of each tank is determined and monitored by keeping track of its variation with time and temperature. We also study muons that stop and decay in the tank. The energy spectrum of the electrons from muon decay (Michel spectrum) is well known with maximum energy of 53 MeV. This energy is usually deposited inside the tank and can also be used as a calibration tool. We use both these spectra and compare them to a Monte Carlo simulation to gain a better understanding of the tank properties.

  14. Pump-to-Wheels Methane Emissions from the Heavy-Duty Transportation Sector.

    PubMed

    Clark, Nigel N; McKain, David L; Johnson, Derek R; Wayne, W Scott; Li, Hailin; Akkerman, Vyacheslav; Sandoval, Cesar; Covington, April N; Mongold, Ronald A; Hailer, John T; Ugarte, Orlando J

    2017-01-17

    Pump-to-wheels (PTW) methane emissions from the heavy-duty (HD) transportation sector, which have climate change implications, are poorly documented. In this study, methane emissions from HD natural gas fueled vehicles and the compressed natural gas (CNG) and liquefied natural gas (LNG) fueling stations that serve them were characterized. A novel measurement system was developed to quantify methane leaks and losses. Engine related emissions were characterized from twenty-two natural gas fueled transit buses, refuse trucks, and over-the-road (OTR) tractors. Losses from six LNG and eight CNG stations were characterized during compression, fuel delivery, storage, and from leaks. Cryogenic boil-off pressure rise and pressure control venting from LNG storage tanks were characterized using theoretical and empirical modeling. Field and laboratory observations of LNG storage tanks were used for model development and evaluation. PTW emissions were combined with a specific scenario to view emissions as a percent of throughput. Vehicle tailpipe and crankcase emissions were the highest sources of methane. Data from this research are being applied by the authors to develop models to forecast methane emissions from the future HD transportation sector.

  15. Railway bogie vibration analysis by mathematical simulation model and a scaled four-wheel railway bogie set

    NASA Astrophysics Data System (ADS)

    Visayataksin, Noppharat; Sooklamai, Manon

    2018-01-01

    The bogie is the part that connects and transfers all the load from the vehicle body onto the railway track; interestingly the interaction between wheels and rails is the critical point for derailment of the rail vehicles. However, observing or experimenting with real bogies on rail vehicles is impossible due to the operational rules and safety concerns. Therefore, this research aimed to develop a vibration analysis set for a four-wheel railway bogie by constructing a four-wheel bogie with scale of 1:4.5. The bogie structures, including wheels and axles, were made from an aluminium alloy, equipped with springs and dampers. The bogie was driven by an electric motor using 4 round wheels instead of 2 straight rails, with linear velocity between 0 to 11.22 m/s. The data collected from the vibration analysis set was compared to the mathematical simulation model to investigate the vibration behavior of the bogie, especially the hunting motion. The results showed that vibration behavior from a scaled four-wheel railway bogie set significantly agreed with the mathematical simulation model in terms of displacement and hunting frequency. The critical speed of the wheelset was found by executing the mathematical simulation model at 13 m/s.

  16. Thermal Modeling and Analysis of a Cryogenic Tank Design Exposed to Extreme Heating Profiles

    NASA Technical Reports Server (NTRS)

    Stephens, Craig A.; Hanna, Gregory J.

    1991-01-01

    A cryogenic test article, the Generic Research Cryogenic Tank, was designed to qualitatively simulate the thermal response of transatmospheric vehicle fuel tanks exposed to the environment of hypersonic flight. One-dimensional and two-dimensional finite-difference thermal models were developed to simulate the thermal response and assist in the design of the Generic Research Cryogenic Tank. The one-dimensional thermal analysis determined the required insulation thickness to meet the thermal design criteria and located the purge jacket to eliminate the liquefaction of air. The two-dimensional thermal analysis predicted the temperature gradients developed within the pressure-vessel wall, estimated the cryogen boiloff, and showed the effects the ullage condition has on pressure-vessel temperatures. The degree of ullage mixing, location of the applied high-temperature profile, and the purge gas influence on insulation thermal conductivity had significant effects on the thermal behavior of the Generic Research Cryogenic Tank. In addition to analysis results, a description of the Generic Research Cryogenic Tank and the role it will play in future thermal structures and transatmospheric vehicle research at the NASA Dryden Flight Research Facility is presented.

  17. Structural Analysis of Helios Filament-Wound Tanks Subjected to Internal Pressure and Cooling

    NASA Technical Reports Server (NTRS)

    Ko, William L

    2005-01-01

    A finite-element stress analysis is performed on Helios filament-wound hydrogen tanks to examine the stress field and effect of end dome geometry on the stress field. Each tank is composed of a central circular cylindrical section with either geodesic or hemispherical end domes, which have metallic polar bosses. The tanks are subjected to combined and separate internal pressure and temperature loading conditions, and the stress contributions of each loading component are examined. The tank-wall-polar-boss interfacial meridional tensile stress in the hemispherical dome is found to be approximately 27 percent lower than that in the geodesic dome. The effects of both material anisotropy and the aluminum lining on the intensities of tensile meridional stress at the tank-wall-polar-boss bonding interface are examined.

  18. Characterizing Wheel-Soil Interaction Loads Using Meshfree Finite Element Methods: A Sensitivity Analysis for Design Trade Studies

    NASA Technical Reports Server (NTRS)

    Contreras, Michael T.; Trease, Brian P.; Bojanowski, Cezary; Kulakx, Ronald F.

    2013-01-01

    A wheel experiencing sinkage and slippage events poses a high risk to planetary rover missions as evidenced by the mobility challenges endured by the Mars Exploration Rover (MER) project. Current wheel design practice utilizes loads derived from a series of events in the life cycle of the rover which do not include (1) failure metrics related to wheel sinkage and slippage and (2) performance trade-offs based on grouser placement/orientation. Wheel designs are rigorously tested experimentally through a variety of drive scenarios and simulated soil environments; however, a robust simulation capability is still in development due to myriad of complex interaction phenomena that contribute to wheel sinkage and slippage conditions such as soil composition, large deformation soil behavior, wheel geometry, nonlinear contact forces, terrain irregularity, etc. For the purposes of modeling wheel sinkage and slippage at an engineering scale, meshfree nite element approaches enable simulations that capture su cient detail of wheel-soil interaction while remaining computationally feasible. This study implements the JPL wheel-soil benchmark problem in the commercial code environment utilizing the large deformation modeling capability of Smooth Particle Hydrodynamics (SPH) meshfree methods. The nominal, benchmark wheel-soil interaction model that produces numerically stable and physically realistic results is presented and simulations are shown for both wheel traverse and wheel sinkage cases. A sensitivity analysis developing the capability and framework for future ight applications is conducted to illustrate the importance of perturbations to critical material properties and parameters. Implementation of the proposed soil-wheel interaction simulation capability and associated sensitivity framework has the potential to reduce experimentation cost and improve the early stage wheel design proce

  19. ILC TARGET WHEEL RIM FRAGMENT/GUARD PLATE IMPACT ANALYSIS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hagler, L

    2008-07-17

    A positron source component is needed for the International Linear Collider Project. The leading design concept for this source is a rotating titanium alloy wheel whose spokes rotate through an intense localized magnetic field. The system is composed of an electric motor, flexible motor/drive-shaft coupling, stainless steel drive-shaft, two Plumber's Block tapered roller bearings, a titanium alloy target wheel, and electromagnet. Surrounding the target wheel and magnet is a steel frame with steel guarding plates intended to contain shrapnel in case of catastrophic wheel failure. Figure 1 is a layout of this system (guard plates not shown for clarity). Thismore » report documents the FEA analyses that were performed at LLNL to help determine, on a preliminary basis, the required guard plate thickness for three potential plate steels.« less

  20. TANK 26 EVAPORATOR FEED PUMP TRANSFER ANALYSIS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tamburello, D; Si Lee, S; Richard Dimenna, R

    2008-09-30

    The transfer of liquid salt solution from Tank 26 to an evaporator is to be accomplished by activating the evaporator feed pump, located approximately 72 inches above the sludge layer, while simultaneously turning on the downcomer. Previously, activation of the evaporator feed pump was an isolated event without any other components running at the same time. An analysis of the dissolved solution transfer has been performed using computational fluid dynamics methods to determine the amount of entrained sludge solids pumped out of the tank to the evaporator with the downcomer turned on. The analysis results showed that, for the maximummore » and minimum supernate levels in Tank 26 (252.5 and 72 inches above the sludge layer, respectively), the evaporator feed pump will entrain between 0.05 and 0.1 wt% sludge solids weight fraction into the eductor, respectively. Lower tank liquid levels, with respect to the sludge layer, result in higher amounts of sludge entrainment due to the increased velocity of the plunging jets from the downcomer and evaporator feed pump bypass as well as decreased dissipation depth.« less

  1. Wheel/Rail Noise and Vibration : Volume 2. Applications to Control of Wheel/Rail Noise.

    DOT National Transportation Integrated Search

    1975-05-01

    The final reports are reported of a project to develop a basic understanding of urban transit wheel/rail noise control measures. Analytical models of impedance, response, radiation efficiency, and directivity of wheels and rails are presented and com...

  2. CFD analysis of aircraft fuel tanks thermal behaviour

    NASA Astrophysics Data System (ADS)

    Zilio, C.; Longo, G. A.; Pernigotto, G.; Chiacchio, F.; Borrelli, P.; D'Errico, E.

    2017-11-01

    This work is carried out within the FP7 European research project TOICA (Thermal Overall Integrated Conception of Aircraft, http://www.toica-fp7.eu/). One of the tasks foreseen for the TOICA project is the analysis of fuel tanks as possible heat sinks for future aircrafts. In particular, in the present paper, commercial regional aircraft is considered as case study and CFD analysis with the commercial code STAR-CCM+ is performed in order to identify the potential capability to use fuel stored in the tanks as a heat sink for waste heat dissipated by other systems. The complex physical phenomena that characterize the heat transfer inside liquid fuel, at the fuel-ullage interface and inside the ullage are outlined. Boundary conditions, including the effect of different ground and flight conditions, are implemented in the numerical simulation approach. The analysis is implemented for a portion of aluminium wing fuel tank, including the leading edge effects. Effect of liquid fuel transfer among different tank compartments and the air flow in the ullage is included. According to Fuel Tank Flammability Assessment Method (FTFAM) proposed by the Federal Aviation Administration, the results are exploited in terms of exponential time constants and fuel temperature difference to the ambient for the different cases investigated.

  3. Mechanical Design Engineering Enabler Project wheel and wheel drives

    NASA Technical Reports Server (NTRS)

    Nutt, Richard E.; Couch, Britt K.; Holley, John L., Jr.; Garris, Eric S.; Staut, Paul V.

    1992-01-01

    Our group was assigned the responsibility of designing the wheel and wheel drive system for a proof-of-concept model of the lunar-based ENABLER. ENABLER is a multi-purpose, six wheeled vehicle designed to lift and transport heavy objects associated with the construction of a lunar base. The resulting design was based on the performance criteria of the ENABLER. The drive system was designed to enable the vehicle to achieve a speed of 7 mph on a level surface, climb a 30 percent grade, and surpass a one meter high object and one meter wide crevice. The wheel assemblies were designed to support the entire weight of the vehicle on two wheels. The wheels were designed to serve as the main component of the vehicle's suspension and will provide suitable traction for lunar-type surfaces. The expected performance of the drive system for the ENABLER was influenced by many mechanical factors. The expected top speed on a level sandy surface is 4 mph instead of the desired 7 mph. This is due to a lack of necessary power at the wheels. The lack of power resulted from dimension considerations that allowed only an eight horsepower engine and also from mechanical inefficiencies of the hydraulic system. However, the vehicle will be able to climb a 30 percent grade, surpass a one meter high object and one meter wide crevice. The wheel assemblies will be able to support the entire weight of the vehicle on two wheels. The wheels will also provide adequate suspension for the vehicle and sufficient traction for lunar-type surfaces.

  4. Two Dimensional Viscoelastic Stress Analysis of a Prototypical JIMO Turbine Wheel

    NASA Technical Reports Server (NTRS)

    Gayda, John; Gabb, Timothy

    2005-01-01

    The designers of the Jupiter Icy Moons Orbiter (JIMO) are investigating the potential of nuclear powered-electric propulsion technology to provide deep space propulsion. In one design scenario a closed-Brayton-cycle power converter is used to convert thermal energy from a nuclear reactor to electrical power for the spacecraft utilizing an inert gas as the working fluid to run a turboalternator as described in L.S. Mason, "A Power Conversion for the Jupiter Icy Moons Orbiter," Journal of Propulsion and Power, vol. 20, no. 5, pp. 902-910. A key component in the turboalternator is the radial flow turbine wheel which may be fabricated from a cast superalloy. This turbine wheel is envisioned to run continuously over the life of the mission, which is anticipated to be about ten years. This scenario places unusual material requirements on the turbine wheel. Unlike the case of terrestrial turbine engines, fatigue, associated with start-up and shut-down of the engine, foreign-object damage, and corrosion issues are insignificant and thus creep issues become dominate. The purpose of this paper is to present estimates for creep growth of a prototypical JIMO turbine wheel over a ten year life. Since an actual design and bill of materials does not exist, the results presented in this paper are based on preliminary concepts which are likely to evolve over time. For this reason, as well as computational efficiency, a simplified 2-D, in lieu of a 3-D, viscoelastic, finite element model of a prototypical turbine wheel will be utilized employing material properties for the cast superalloy MAR-M247. The creep data employed in this analysis are based on preliminary data being generated at NASA Glenn Research Center.

  5. Customer loads of two-wheeled vehicles

    NASA Astrophysics Data System (ADS)

    Gorges, C.; Öztürk, K.; Liebich, R.

    2017-12-01

    Customer usage profiles are the most unknown influences in vehicle design targets and they play an important role in durability analysis. This publication presents a customer load acquisition system for two-wheeled vehicles that utilises the vehicle's onboard signals. A road slope estimator was developed to reveal the unknown slope resistance force with the help of a linear Kalman filter. Furthermore, an automated mass estimator was developed to consider the correct vehicle loading. The mass estimation is performed by an extended Kalman filter. Finally, a model-based wheel force calculation was derived, which is based on the superposition of forces calculated from measured onboard signals. The calculated wheel forces were validated by measurements with wheel-load transducers through the comparison of rainflow matrices. The calculated wheel forces correspond with the measured wheel forces in terms of both quality and quantity. The proposed methods can be used to gather field data for improved vehicle design loads.

  6. Analysis of multiple tank car releases in train accidents.

    PubMed

    Liu, Xiang; Liu, Chang; Hong, Yili

    2017-10-01

    There are annually over two million carloads of hazardous materials transported by rail in the United States. The American railroads use large blocks of tank cars to transport petroleum crude oil and other flammable liquids from production to consumption sites. Being different from roadway transport of hazardous materials, a train accident can potentially result in the derailment and release of multiple tank cars, which may result in significant consequences. The prior literature predominantly assumes that the occurrence of multiple tank car releases in a train accident is a series of independent Bernoulli processes, and thus uses the binomial distribution to estimate the total number of tank car releases given the number of tank cars derailing or damaged. This paper shows that the traditional binomial model can incorrectly estimate multiple tank car release probability by magnitudes in certain circumstances, thereby significantly affecting railroad safety and risk analysis. To bridge this knowledge gap, this paper proposes a novel, alternative Correlated Binomial (CB) model that accounts for the possible correlations of multiple tank car releases in the same train. We test three distinct correlation structures in the CB model, and find that they all outperform the conventional binomial model based on empirical tank car accident data. The analysis shows that considering tank car release correlations would result in a significantly improved fit of the empirical data than otherwise. Consequently, it is prudent to consider alternative modeling techniques when analyzing the probability of multiple tank car releases in railroad accidents. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Investigating Functions with a Ferris Wheel

    ERIC Educational Resources Information Center

    Johnson, Heather Lynn; Hornbein, Peter; Azeem, Sumbal

    2016-01-01

    The authors provide a dynamic Ferris wheel computer activity that teachers can use as an instructional tool to help students investigate functions. They use a student's work to illustrate how students can use relationships between quantities to further their thinking about functions.

  8. Tank 26 Evaporator Feed Pump Transfer Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tamburello, David; Dimenna, Richard; Lee, Si

    2009-02-11

    The transfer of liquid salt solution from Tank 26 to an evaporator is to be accomplished by activating the evaporator feed pump, located approximately 72 inches above the sludge layer, while simultaneously turning on the downcomer. Previously, activation of the evaporator feed pump was an isolated event without any other components running at the same time. An analysis of the dissolved solution transfer has been performed using computational fluid dynamics methods to determine the amount of entrained sludge solids pumped out of the tank to the evaporator with the downcomer turned on. The analysis results showed that, for the maximummore » and minimum supernate levels in Tank 26 (252.5 and 72 inches above the sludge layer, respectively), the evaporator feed pump will entrain between 0.03 and 0.1 wt% sludge undissolved solids weight fraction into the eductor, respectively, and therefore are an order of magnitude less than the 1.0 wt% undissolved solids loading criteria to feed the evaporator. Lower tank liquid levels, with respect to the sludge layer, result in higher amounts of sludge entrainment due to the increased velocity of the plunging jets from the downcomer and evaporator feed pump bypass as well as decreased dissipation depth. Revision 1 clarifies the analysis presented in Revision 0 and corrects a mathematical error in the calculations for Table 4.1 in Revision 0. However, the conclusions and recommendations of the analysis do not change for Revision 1.« less

  9. Effect of short-term prefeeding and body weight on wheel running and responding reinforced by the opportunity to run in a wheel.

    PubMed

    Belke, Terry W; Pierce, W David; Jensen, K

    2004-07-30

    A biobehavioural analysis of activity anorexia suggests that the motivation for physical activity is regulated by food supply and body weight. In the present experiment, food allocation was varied within subjects by prefeeding food-deprived rats 0, 5, 10 and 15 g of food before sessions of lever pressing for wheel-running reinforcement. The experiment assessed the effects of prefeeding on rates of wheel running, lever pressing, and postreinforcement pausing. Results showed that prefeeding animals 5 g of food had no effect. Prefeeding 10 g of food reduced lever pressing for wheel running and rates of wheel running without a significant change in body weight; the effect was, however, transitory. Prefeeding 15 g of food increased the animals' body weights, resulting in a sustained decrease of wheel running and lever pressing, and an increase in postreinforcement pausing. Overall the results indicate that the motivation for physical activity is regulated by changes in local food supply, but is sustained only when there is a concomitant change in body weight.

  10. Optimization of Angular-Momentum Biases of Reaction Wheels

    NASA Technical Reports Server (NTRS)

    Lee, Clifford; Lee, Allan

    2008-01-01

    RBOT [RWA Bias Optimization Tool (wherein RWA signifies Reaction Wheel Assembly )] is a computer program designed for computing angular momentum biases for reaction wheels used for providing spacecraft pointing in various directions as required for scientific observations. RBOT is currently deployed to support the Cassini mission to prevent operation of reaction wheels at unsafely high speeds while minimizing time in undesirable low-speed range, where elasto-hydrodynamic lubrication films in bearings become ineffective, leading to premature bearing failure. The problem is formulated as a constrained optimization problem in which maximum wheel speed limit is a hard constraint and a cost functional that increases as speed decreases below a low-speed threshold. The optimization problem is solved using a parametric search routine known as the Nelder-Mead simplex algorithm. To increase computational efficiency for extended operation involving large quantity of data, the algorithm is designed to (1) use large time increments during intervals when spacecraft attitudes or rates of rotation are nearly stationary, (2) use sinusoidal-approximation sampling to model repeated long periods of Earth-point rolling maneuvers to reduce computational loads, and (3) utilize an efficient equation to obtain wheel-rate profiles as functions of initial wheel biases based on conservation of angular momentum (in an inertial frame) using pre-computed terms.

  11. Characterizing the Performance of the Wheel Electrostatic Spectrometer

    NASA Technical Reports Server (NTRS)

    Johansen, M. R.; Mackey, P. J.; Holbert, E.; Clements, J. S.; Calle, C. I.

    2013-01-01

    A Wheel Electrostatic Spectrometer has been developed as a surveying tool to be incorporated into a Martian rover design. Electrostatic sensors with various protruding cover insulators are embedded into a prototype rover wheel. When these insulators come into contact with a surface, a charge develops on the cover insulator through tribocharging. A charge spectrum is created by analyzing the accumulated charge on each of the dissimilar cover insulators. This charge spectrum can be used to determine differences in Martian regolith properties. In this study, we analyzed the repeatability of the measurements for this sensor package and found that the sensor repeatability lies within one standard deviation of the noise in the signal. In addition, we tested the need for neutralizing the surface charge on the cover insulators and discovered a need to discharge the sensor cover insulators after each revolution. Future work includes an electronics redesign to reduce noise and a Martian pressure static elimination tool that can be used to neutralize the charge on the sensor cover insulators after each wheel revolution.

  12. Wheel brakes and their application to aircraft

    NASA Technical Reports Server (NTRS)

    Dowty, G H

    1928-01-01

    The advantages to be gained from braking have not been ignored, and in the search for a suitable method many schemes have been suggested and tried. Some of the methods discussed in this paper include: 1) increasing the height of the landing gear; 2) air brakes of various forms; 3) sprags on tail skid and axle; and 4) wheel brakes. This report focuses on the design of wheel brakes and wheel brake controls.

  13. Simulation of 7050 Wrought Aluminum Alloy Wheel Die Forging and its Defects Analysis based on DEFORM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang Shiquan; Yi Youping; Zhang Yuxun

    2010-06-15

    Defects such as folding, intercrystalline cracking and flow lines outcrop are very likely to occur in the forging of aluminum alloy. Moreover, it is difficult to achieve the optimal set of process parameters just by trial and error within an industrial environment. In producing 7050 wrought aluminum alloy wheel, a rigid-plastic finite element method (FEM) analysis has been performed to optimize die forging process. Processing parameters were analyzed, focusing on the effects of punch speed, friction factor and temperature. Meanwhile, mechanism as well as the evolution with respect to the defects of the wrought wheel was studied in details. Frommore » an analysis of the results, isothermal die forging was proposed for producing 7050 aluminum alloy wheel with good mechanical properties. Finally, verification experiment was carried out on hydropress.« less

  14. Apollo oxygen tank stratification analysis, volume 2

    NASA Technical Reports Server (NTRS)

    Barton, J. E.; Patterson, H. W.

    1972-01-01

    An analysis of flight performance of the Apollo 15 cryogenic oxygen tanks was conducted with the variable grid stratification math model developed earlier in the program. Flight conditions investigated were the CMP-EVA and one passive thermal control period which exhibited heater temperature characteristics not previously observed. Heater temperatures for these periods were simulated with the math model using flight acceleration data. Simulation results (heater temperature and tank pressure) compared favorably with the Apollo 15 flight data, and it was concluded that tank performance was nominal. Math model modifications were also made to improve the simulation accuracy. The modifications included the addition of the effects of the tank wall thermal mass and an improved system flow distribution model. The modifications improved the accuracy of simulated pressure response based on comparisons with flight data.

  15. Numerical analysis of the dynamic interaction between wheel set and turnout crossing using the explicit finite element method

    NASA Astrophysics Data System (ADS)

    Xin, L.; Markine, V. L.; Shevtsov, I. Y.

    2016-03-01

    A three-dimensional (3-D) explicit dynamic finite element (FE) model is developed to simulate the impact of the wheel on the crossing nose. The model consists of a wheel set moving over the turnout crossing. Realistic wheel, wing rail and crossing geometries have been used in the model. Using this model the dynamic responses of the system such as the contact forces between the wheel and the crossing, crossing nose displacements and accelerations, stresses in rail material as well as in sleepers and ballast can be obtained. Detailed analysis of the wheel set and crossing interaction using the local contact stress state in the rail is possible as well, which provides a good basis for prediction of the long-term behaviour of the crossing (fatigue analysis). In order to tune and validate the FE model field measurements conducted on several turnouts in the railway network in the Netherlands are used here. The parametric study including variations of the crossing nose geometries performed here demonstrates the capabilities of the developed model. The results of the validation and parametric study are presented and discussed.

  16. Art on Wheels.

    ERIC Educational Resources Information Center

    Szekely, George

    2002-01-01

    Discusses the use of wheels in children's art. Focuses on collecting wheels, ideas for decorating different artworks with wheels, and objects that can move on wheels. Sees wheels as an inspiration for children's art, reflecting on the use of this object in the art classroom. (CMK)

  17. Voluntary Wheel Running in Mice

    PubMed Central

    Goh, Jorming; Ladiges, Warren

    2015-01-01

    Voluntary wheel running in the mouse is used to assess physical performance and endurance and to model exercise training as a way to enhance health. Wheel running is a voluntary activity in contrast to other experimental exercise models in mice, which rely on aversive stimuli to force active movement. The basic protocol consists of allowing mice to run freely on the open surface of a slanted plastic saucer-shaped wheel placed inside a standard mouse cage. Rotations are electronically transmitted to a USB hub so that frequency and rate of running can be captured to a software program for data storage and analysis for variable time periods. Mice are individually housed so that accurate recordings can be made for each animal. Factors such as mouse strain, gender, age, and individual motivation, which affect running activity, must be considered in the design of experiments using voluntary wheel running. PMID:26629772

  18. The Goal Wheel: Adapting Navajo Philosophy and the Medicine Wheel to Work with Adolescents

    ERIC Educational Resources Information Center

    Garner, Holly; Bruce, Mary Alice; Stellern, John

    2011-01-01

    The purpose of this article is to describe a group counseling model that is based on the indigenous medicine wheel as well as Navajo philosophy by which to help troubled adolescents restore harmony and balance in their lives, through establishing goals and sequential steps to accomplish these goals. The authors call this model the Goal Wheel. A…

  19. On-machine precision preparation and dressing of ball-headed diamond wheel for the grinding of fused silica

    NASA Astrophysics Data System (ADS)

    Chen, Mingjun; Li, Ziang; Yu, Bo; Peng, Hui; Fang, Zhen

    2013-09-01

    In the grinding of high quality fused silica parts with complex surface or structure using ball-headed metal bonded diamond wheel with small diameter, the existing dressing methods are not suitable to dress the ball-headed diamond wheel precisely due to that they are either on-line in process dressing which may causes collision problem or without consideration for the effects of the tool setting error and electrode wear. An on-machine precision preparation and dressing method is proposed for ball-headed diamond wheel based on electrical discharge machining. By using this method the cylindrical diamond wheel with small diameter is manufactured to hemispherical-headed form. The obtained ball-headed diamond wheel is dressed after several grinding passes to recover geometrical accuracy and sharpness which is lost due to the wheel wear. A tool setting method based on high precision optical system is presented to reduce the wheel center setting error and dimension error. The effect of electrode tool wear is investigated by electrical dressing experiments, and the electrode tool wear compensation model is established based on the experimental results which show that the value of wear ratio coefficient K' tends to be constant with the increasing of the feed length of electrode and the mean value of K' is 0.156. Grinding experiments of fused silica are carried out on a test bench to evaluate the performance of the preparation and dressing method. The experimental results show that the surface roughness of the finished workpiece is 0.03 μm. The effect of the grinding parameter and dressing frequency on the surface roughness is investigated based on the measurement results of the surface roughness. This research provides an on-machine preparation and dressing method for ball-headed metal bonded diamond wheel used in the grinding of fused silica, which provides a solution to the tool setting method and the effect of electrode tool wear.

  20. Lift to Drag Ratio Analysis in Magnetic Levitation with an Electrodynamic Wheel

    NASA Astrophysics Data System (ADS)

    Gutarra-Leon, Angel; Cordrey, Vincent; Majewski, Walerian

    Our experiments explored inductive magnetic levitation (MagLev) using simple permanent magnets and conductive tracks. Our investigations used a circular Halbach array with a 1 Tesla variable magnetic field on the outer rim of the ring. Such a system is usually called an Electrodynamic Wheel (EDW). Rotating this wheel around a horizontal axis above or below a flat conducting surface should induce eddy currents in said surface through the variable magnetic flux. The eddy currents produce, in turn, their own magnetic fields, which interact with the magnets of the EDW. We constructed a four-inch diameter Electrodynamic Wheel using twelve Neodymium permanent magnets and demonstrated that the magnetic interactions produce both lift and drag forces on the EDW. These forces can be used for levitation and propulsion of the EDW to produce magnetic levitation without coils and complex control circuitry. We achieved full levitation of the non-magnetic aluminum and copper plates. Our results confirm the expected behavior of lift to drag ratio as proportional to (L/R) ω, with L and R being the inductance and resistance of the track plate, and ω being the angular velocity of the magnetic flux. Supported by grants from the Virginia Academy of Science, Society of Physics Students, Virginia Community College System, and the NVCC Educational Foundation.

  1. Study of the Correlation between the Performances of Lunar Vehicle Wheels Predicted by the Nepean Wheeled Vehicle Performance Model and Test Data

    NASA Technical Reports Server (NTRS)

    Wong, J. Y.; Asnani, V. M.

    2008-01-01

    This paper describes the results of a study of the correlation between the performances of wheels for lunar vehicles predicted using the Nepean wheeled vehicle performance model (NWVPM), developed under the auspices of Vehicle Systems Development Corporation, Ottawa, Canada, and the corresponding test data presented in Performance evaluation of wheels for lunar vehicles , Technical Report M-70-2, prepared for George C. Marshall Space Flight Center, National Aeronautics and Space Administration (NASA), USA, by the US Army Engineer Waterways Experiment Station (WES). The NWVPM was originally developed for design and performance evaluation of terrestrial off-road wheeled vehicles. The purpose of this study is to assess the potential of the NWVPM for evaluating wheel candidates for the new generation of extra-terrestrial vehicles. Two versions of a wire-mesh wheel and a hoop-spring wheel, which were considered as candidates for lunar roving vehicles for the NASA Apollo program in the late 1960s, together with a pneumatic wheel were examined in this study. The tractive performances of these wheels and of a 464 test vehicle with the pneumatic wheels on air-dry sand were predicted using the NWVPM and compared with the corresponding test data obtained under Earth s gravity and previously documented in the above-named report. While test data on wheel or vehicle performances obtained under Earth s gravity may not necessarily be representative of those on extra-terrestrial bodies, because of the differences in gravity and in environmental conditions, such as atmospheric pressure, it is still a valid approach to use test data obtained under Earth s gravity to evaluate the predictive capability of the NWVPM and its potential applications to predicting wheel or wheeled rover performances on extra-terrestrial bodies. Results of this study show that, using the ratio (P20/W) of the drawbar pull to normal load at 20 per cent slip as a performance indicator, there is a reasonable

  2. Origami Wheel Transformer: A Variable-Diameter Wheel Drive Robot Using an Origami Structure.

    PubMed

    Lee, Dae-Young; Kim, Sa-Reum; Kim, Ji-Suk; Park, Jae-Jun; Cho, Kyu-Jin

    2017-06-01

    A wheel drive mechanism is simple, stable, and efficient, but its mobility in unstructured terrain is seriously limited. Using a deformable wheel is one of the ways to increase the mobility of a wheel drive robot. By changing the radius of its wheels, the robot becomes able to pass over not only high steps but also narrow gaps. In this article, we propose a novel design for a variable-diameter wheel using an origami-based soft robotics design approach. By simply folding a patterned sheet into a wheel shape, a variable-diameter wheel was built without requiring lots of mechanical parts and a complex assembly process. The wheel's diameter can change from 30 to 68 mm, and it is light in weight at about 9.7 g. Although composed of soft materials (fabrics and films), the wheel can bear more than 400 times its weight. The robot was able to change the wheel's radius in response to terrain conditions, allowing it to pass over a 50-mm gap when the wheel is shrunk and a 50-mm step when the wheel is enlarged.

  3. Aircraft Wheel Life Assessment

    DTIC Science & Technology

    1993-07-01

    L"tV. bM) ~2. REOTDAEJ M YEAN AE CVNE & T AL ND SUBTI. ,5 PU 0010125 AIRCRAFT WHEEL LIFE ASSESSMENT - 13 43105 "s TA 01 B. F. SPENCER, JR., D. J...methodology is the finite element program ANTWIL (ANalysis of Tire-Wheel Interface Loads) [Kandarpa et al ., 1991) which recovers the pressure...to deter- mine the propagation behavior of cracks in the bead seat region [Enneking, 1987; Lawler, et al ., 1989]. While the results of the effort

  4. Tank System Integrated Model: A Cryogenic Tank Performance Prediction Program

    NASA Technical Reports Server (NTRS)

    Bolshinskiy, L. G.; Hedayat, A.; Hastings, L. J.; Sutherlin, S. G.; Schnell, A. R.; Moder, J. P.

    2017-01-01

    Accurate predictions of the thermodynamic state of the cryogenic propellants, pressurization rate, and performance of pressure control techniques in cryogenic tanks are required for development of cryogenic fluid long-duration storage technology and planning for future space exploration missions. This Technical Memorandum (TM) presents the analytical tool, Tank System Integrated Model (TankSIM), which can be used for modeling pressure control and predicting the behavior of cryogenic propellant for long-term storage for future space missions. Utilizing TankSIM, the following processes can be modeled: tank self-pressurization, boiloff, ullage venting, mixing, and condensation on the tank wall. This TM also includes comparisons of TankSIM program predictions with the test data andexamples of multiphase mission calculations.

  5. Estimation of actual residual stresses due to braking and contact loading of rail vehicle wheels

    DOT National Transportation Integrated Search

    1996-03-01

    A finite element formulation for shakedown stress analysis of rail vehicle wheels is presented, based on a hypothesis that the shakedown state is axisymmetric. The method can be used to estimate shakedown stresses in wheels subjected to combined mech...

  6. Risk of Motor Vehicle Accidents Related to Sleepiness at the Wheel: A Systematic Review and Meta-Analysis.

    PubMed

    Bioulac, Stéphanie; Franchi, Jean-Arthur Micoulaud; Arnaud, Mickael; Sagaspe, Patricia; Moore, Nicholas; Salvo, Francesco; Philip, Pierre

    2017-10-01

    Sleepiness at the wheel is widely believed to be a cause of motor vehicle accidents. Nevertheless, a systematic review of studies investigating this relationship has not yet been published. The objective of this study was to quantify the relationship between sleepiness at the wheel and motor vehicle accidents. A systematic review was performed using Medline, Scopus, and ISI Web of Science. The outcome measure of interest was motor vehicle accident defined as involving four- or two-wheeled vehicles in road traffic, professional and nonprofessional drivers, with or without objective consequences. The exposure was sleepiness at the wheel defined as self-reported sleepiness at the wheel. Studies were included if they provided adjusted risk estimates of motor vehicle accidents related to sleepiness at the wheel. Risk estimates and 95% confidence intervals (95% CIs) were extracted and pooled as odds ratios (ORs) using a random-effect model. Heterogeneity was quantified using Q statistics and the I2 index. The potential causes of heterogeneity were investigated using meta-regressions. Ten cross-sectional studies (51,520 participants), six case-control studies (4904 participants), and one cohort study (13,674 participants) were included. Sleepiness at the wheel was associated with an increased risk of motor vehicle accidents (pooled OR 2.51 [95% CI 1.87; 3.39]). A significant heterogeneity was found between the individual risk estimates (Q = 93.21; I2 = 83%). Sleepiness at the wheel increases the risk of motor vehicle accidents and should be considered when investigating fitness to drive. Further studies are required to explore the nature of this relationship. PROSPERO 2015 CRD42015024805. © Sleep Research Society 2017. Published by Oxford University Press on behalf of the Sleep Research Society. All rights reserved. For permissions, please e-mail journals.permissions@oup.com.

  7. Voluntary Wheel Running in Mice.

    PubMed

    Goh, Jorming; Ladiges, Warren

    2015-12-02

    Voluntary wheel running in the mouse is used to assess physical performance and endurance and to model exercise training as a way to enhance health. Wheel running is a voluntary activity in contrast to other experimental exercise models in mice, which rely on aversive stimuli to force active movement. This protocol consists of allowing mice to run freely on the open surface of a slanted, plastic saucer-shaped wheel placed inside a standard mouse cage. Rotations are electronically transmitted to a USB hub so that frequency and rate of running can be captured via a software program for data storage and analysis for variable time periods. Mice are individually housed so that accurate recordings can be made for each animal. Factors such as mouse strain, gender, age, and individual motivation, which affect running activity, must be considered in the design of experiments using voluntary wheel running. Copyright © 2015 John Wiley & Sons, Inc.

  8. Preliminary Thermal Stress Analysis of a High-Pressure Cryogenic Storage Tank

    NASA Technical Reports Server (NTRS)

    Baker, J. Mark

    2003-01-01

    The thermal stresses on a cryogenic storage tank strongly affect the condition of the tank and its ability to withstand operational stresses. These thermal stresses also affect the growth of any surface damage that might occur in the tank walls. These stresses are particularly of concern during the initial cooldown period for a new tank placed into service, and during any subsequent thermal cycles. A preliminary thermal stress analysis of a high-pressure cryogenic storage tank was performed. Stresses during normal operation were determined, as well as the transient temperature distribution. An elastic analysis was used to determine the thermal stresses in the inner wall based on the temperature data. The results of this elastic analysis indicate that the inner wall of the storage tank will experience thermal stresses of approximately 145,000 psi (1000 MPa). This stress level is well above the room-temperature yield strength of 304L stainless steel, which is about 25,000 psi (170 MPa). For this preliminary analysis, several important factors have not yet been considered. These factors include increased strength of 304L stainless steel at cryogenic temperatures, plastic material behavior, and increased strength due to strain hardening. In order to more accurately determine the thermal stresses and their affect on the tank material, further investigation is required, particularly in the area of material properties and their relationship to stress.

  9. Using wheel availability to shape running behavior of the rat towards improved behavioral and neurobiological outcomes.

    PubMed

    Basso, Julia C; Morrell, Joan I

    2017-10-01

    Though voluntary wheel running (VWR) has been used extensively to induce changes in both behavior and biology, little attention has been given to the way in which different variables influence VWR. This lack of understanding has led to an inability to utilize this behavior to its full potential, possibly blunting its effects on the endpoints of interest. We tested how running experience, sex, gonadal hormones, and wheel apparatus influence VWR in a range of wheel access "doses". VWR increases over several weeks, with females eventually running 1.5 times farther and faster than males. Limiting wheel access can be used as a tool to motivate subjects to run but restricts maximal running speeds attained by the rodents. Additionally, circulating gonadal hormones regulate wheel running behavior, but are not the sole basis of sex differences in running. Limitations from previous studies include the predominate use of males, emphasis on distance run, variable amounts of wheel availability, variable light-dark cycles, and possible food and/or water deprivation. We designed a comprehensive set of experiments to address these inconsistencies, providing data regarding the "microfeatures" of running, including distance run, time spent running, running rate, bouting behavior, and daily running patterns. By systematically altering wheel access, VWR behavior can be finely tuned - a feature that we hypothesize is due to its positive incentive salience. We demonstrate how to maximize VWR, which will allow investigators to optimize exercise-induced changes in their behavioral and/or biological endpoints of interest. Published by Elsevier B.V.

  10. Mission analysis report for single-shell tank leakage mitigation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cruse, J.M.

    1994-09-01

    This document provides an analysis of the leakage mitigation mission applicable to past and potential future leakage from the Hanford Site`s 149 single-shell high-level waste tanks. This mission is a part of the overall missions of the Westinghouse Hanford Company Tank Waste Remediation System division to remediate the tank waste in a safe and acceptable manner. Systems engineers principles are being applied to this effort. Mission analysis supports early decision making by clearly defining program objectives. This documents identifies the initial conditions and acceptable final conditions, defines the programmatic and physical interfaces and constraints, estimates the resources to carry outmore » the mission, and establishes measures of success. The results of the mission analysis provide a consistent basis for subsequent systems engineering work.« less

  11. Integrated modeling and design for realizing a two-wheeled wheelchair for disabled.

    PubMed

    Altalmas, Tareq; Aula, Abqori; Ahmad, Salmiah; Tokhi, M O; Akmeliawati, Rini

    2016-01-01

    Two-wheeled wheelchairs are considered highly nonlinear and complex systems. The systems mimic a double-inverted pendulum scenario and will provide better maneuverability in confined spaces and also to reach higher level of height for pick and place tasks. The challenge resides in modeling and control of the two-wheeled wheelchair to perform comparably to a normal four-wheeled wheelchair. Most common modeling techniques have been accomplished by researchers utilizing the basic Newton's Laws of motion and some have used 3D tools to model the system where the models are much more theoretical and quite far from the practical implementation. This article is aimed at closing the gap between the conventional mathematical modeling approaches where the integrated 3D modeling approach with validation on the actual hardware implementation was conducted. To achieve this, both nonlinear and a linearized model in terms of state space model were obtained from the mathematical model of the system for analysis and, thereafter, a 3D virtual prototype of the wheelchair was developed, simulated, and analyzed. This has increased the confidence level for the proposed platform and facilitated the actual hardware implementation of the two-wheeled wheelchair. Results show that the prototype developed and tested has successfully worked within the specific requirements established.

  12. The Matsu Wheel: A Cloud-Based Framework for Efficient Analysis and Reanalysis of Earth Satellite Imagery

    NASA Technical Reports Server (NTRS)

    Patterson, Maria T.; Anderson, Nicholas; Bennett, Collin; Bruggemann, Jacob; Grossman, Robert L.; Handy, Matthew; Ly, Vuong; Mandl, Daniel J.; Pederson, Shane; Pivarski, James; hide

    2016-01-01

    Project Matsu is a collaboration between the Open Commons Consortium and NASA focused on developing open source technology for cloud-based processing of Earth satellite imagery with practical applications to aid in natural disaster detection and relief. Project Matsu has developed an open source cloud-based infrastructure to process, analyze, and reanalyze large collections of hyperspectral satellite image data using OpenStack, Hadoop, MapReduce and related technologies. We describe a framework for efficient analysis of large amounts of data called the Matsu "Wheel." The Matsu Wheel is currently used to process incoming hyperspectral satellite data produced daily by NASA's Earth Observing-1 (EO-1) satellite. The framework allows batches of analytics, scanning for new data, to be applied to data as it flows in. In the Matsu Wheel, the data only need to be accessed and preprocessed once, regardless of the number or types of analytics, which can easily be slotted into the existing framework. The Matsu Wheel system provides a significantly more efficient use of computational resources over alternative methods when the data are large, have high-volume throughput, may require heavy preprocessing, and are typically used for many types of analysis. We also describe our preliminary Wheel analytics, including an anomaly detector for rare spectral signatures or thermal anomalies in hyperspectral data and a land cover classifier that can be used for water and flood detection. Each of these analytics can generate visual reports accessible via the web for the public and interested decision makers. The result products of the analytics are also made accessible through an Open Geospatial Compliant (OGC)-compliant Web Map Service (WMS) for further distribution. The Matsu Wheel allows many shared data services to be performed together to efficiently use resources for processing hyperspectral satellite image data and other, e.g., large environmental datasets that may be analyzed for

  13. A mechanical model for deformable and mesh pattern wheel of lunar roving vehicle

    NASA Astrophysics Data System (ADS)

    Liang, Zhongchao; Wang, Yongfu; Chen, Gang (Sheng); Gao, Haibo

    2015-12-01

    As an indispensable tool for astronauts on lunar surface, the lunar roving vehicle (LRV) is of great significance for manned lunar exploration. An LRV moves on loose and soft lunar soil, so the mechanical property of its wheels directly affects the mobility performance. The wheels used for LRV have deformable and mesh pattern, therefore, the existing mechanical theory of vehicle wheel cannot be used directly for analyzing the property of LRV wheels. In this paper, a new mechanical model for LRV wheel is proposed. At first, a mechanical model for a rigid normal wheel is presented, which involves in multiple conventional parameters such as vertical load, tangential traction force, lateral force, and slip ratio. Secondly, six equivalent coefficients are introduced to amend the rigid normal wheel model to fit for the wheels with deformable and mesh-pattern in LRV application. Thirdly, the values of the six equivalent coefficients are identified by using experimental data obtained in an LRV's single wheel testing. Finally, the identified mechanical model for LRV's wheel with deformable and mesh pattern are further verified and validated by using additional experimental results.

  14. Computer numerically controlled (CNC) aspheric shaping with toroidal Wheels (Abstract Only)

    NASA Astrophysics Data System (ADS)

    Ketelsen, D.; Kittrell, W. C.; Kuhn, W. M.; Parks, R. E.; Lamb, George L.; Baker, Lynn

    1987-01-01

    Contouring with computer numerically controlled (CNC) machines can be accomplished with several different tool geometries and coordinated machine axes. To minimize the number of coordinated axes for nonsymmetric work to three, it is common practice to use a spherically shaped tool such as a ball-end mill. However, to minimize grooving due to the feed and ball radius, it is desirable to use a long ball radius, but there is clearly a practical limit to ball diameter with the spherical tool. We have found that the use of commercially available toroidal wheels permits long effective cutting radii, which in turn improve finish and minimize grooving for a set feed. In addition, toroidal wheels are easier than spherical wheels to center accurately. Cutting parameters are also easier to control because the feed rate past the tool does not change as the slope of the work changes. The drawback to the toroidal wheel is the more complex calculation of the tool path. Of course, once the algorithm is worked out, the tool path is as easily calculated as for a spherical tool. We have performed two experiments with the Large Optical Generator (LOG) that were ideally suited to three-axis contouring--surfaces that have no axis of rotational symmetry. By oscillating the cutting head horizontally or vertically (in addition to the motions required to generate the power of the surface) , and carefully coordinating those motions with table rotation, the mostly astigmatic departure for these surfaces is produced. The first experiment was a pair of reflector molds that together correct the spherical aberration of the Arecibo radio telescope. The larger of these was 5 m in diameter and had a 12 cm departure from the best-fit sphere. The second experiment was the generation of a purely astigmatic surface to demonstrate the feasibility of producing axially symmetric asphe.rics while mounted and rotated about any off-axis point. Measurements of the latter (the first experiment had relatively

  15. Omnidirectional wheel

    NASA Technical Reports Server (NTRS)

    Blumrich, J. F. (Inventor)

    1974-01-01

    The apparatus consists of a wheel having a hub with radially disposed spokes which are provided with a plurality of circumferential rim segments. These rim segments carry, between the spokes, rim elements which are rigid relative to their outer support surfaces, and defined in their outer contour to form a part of the circle forming the wheel diameter. The rim segments have provided for each of the rim elements an independent drive means selectively operable when the element is in ground contact to rotatably drive the rim element in a direction of movement perpendicularly lateral to the normal plane of rotation and movement of the wheel. This affords the wheel omnidirectional movement.

  16. Pre-exposure to wheel running disrupts taste aversion conditioning.

    PubMed

    Salvy, Sarah-Jeanne; Pierce, W David; Heth, Donald C; Russell, James C

    2002-05-01

    When rats are given access to a running wheel after drinking a flavored solution, they subsequently drink less of that flavor solution. It has been suggested that running produces a conditioned taste aversion (CTA). This study explored whether CTA is eliminated by prior exposure to wheel running [i.e., unconditioned stimulus (UCS) pre-exposure effect]. The rats in the experimental group (UW) were allowed to wheel run for 1 h daily for seven consecutive days of pre-exposure. Rats in the two other groups had either access to locked wheels (LW group) or were maintained in their home cages (HC group) during the pre-exposure days. All rats were then exposed to four paired and four unpaired trials using a "ABBAABBA" design. Conditioning trials were composed of one flavored liquid followed by 60-min access to wheel running. For the unpaired trials, rats received a different flavor not followed by the opportunity to run. All rats were then initially tested for water consumption followed by tests of the two flavors (paired or unpaired) in a counterbalanced design. Rats in the UW group show no CTA to the liquid paired with wheel running, whereas LW and HC groups developed CTA. These results indicate that pre-exposure to wheel running (i.e., the UCS), eliminates subsequent CTA.

  17. HANFORD DOUBLE SHELL TANK THERMAL AND SEISMIC PROJECT SEISMIC ANALYSIS IN SUPPORT OF INCREASED LIQUID LEVEL IN 241-AP TANK FARMS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    TC MACKEY; FG ABATT; MW RINKER

    2009-01-14

    The essential difference between Revision 1 and the original issue of this report is in the spring constants used to model the anchor bolt response for the anchor bolts that tie the steel dome of the primary tank to the concrete tank dome. Consequently, focus was placed on the changes in the anchor bolt responses, and a full reevaluation of all tank components was judged to be unnecessary. To confirm this judgement, primary tank stresses from the revised analysis of the BES-BEC case are compared to the original analysis and it was verified that the changes are small, as expected.

  18. Integration of uniform design and quantum-behaved particle swarm optimization to the robust design for a railway vehicle suspension system under different wheel conicities and wheel rolling radii

    NASA Astrophysics Data System (ADS)

    Cheng, Yung-Chang; Lee, Cheng-Kang

    2017-10-01

    This paper proposes a systematic method, integrating the uniform design (UD) of experiments and quantum-behaved particle swarm optimization (QPSO), to solve the problem of a robust design for a railway vehicle suspension system. Based on the new nonlinear creep model derived from combining Hertz contact theory, Kalker's linear theory and a heuristic nonlinear creep model, the modeling and dynamic analysis of a 24 degree-of-freedom railway vehicle system were investigated. The Lyapunov indirect method was used to examine the effects of suspension parameters, wheel conicities and wheel rolling radii on critical hunting speeds. Generally, the critical hunting speeds of a vehicle system resulting from worn wheels with different wheel rolling radii are lower than those of a vehicle system having original wheels without different wheel rolling radii. Because of worn wheels, the critical hunting speed of a running railway vehicle substantially declines over the long term. For safety reasons, it is necessary to design the suspension system parameters to increase the robustness of the system and decrease the sensitive of wheel noises. By applying UD and QPSO, the nominal-the-best signal-to-noise ratio of the system was increased from -48.17 to -34.05 dB. The rate of improvement was 29.31%. This study has demonstrated that the integration of UD and QPSO can successfully reveal the optimal solution of suspension parameters for solving the robust design problem of a railway vehicle suspension system.

  19. TankSIM: A Cryogenic Tank Performance Prediction Program

    NASA Technical Reports Server (NTRS)

    Bolshinskiy, L. G.; Hedayat, A.; Hastings, L. J.; Moder, J. P.; Schnell, A. R.; Sutherlin, S. G.

    2015-01-01

    Accurate prediction of the thermodynamic state of the cryogenic propellants in launch vehicle tanks is necessary for mission planning and successful execution. Cryogenic propellant storage and transfer in space environments requires that tank pressure be controlled. The pressure rise rate is determined by the complex interaction of external heat leak, fluid temperature stratification, and interfacial heat and mass transfer. If the required storage duration of a space mission is longer than the period in which the tank pressure reaches its allowable maximum, an appropriate pressure control method must be applied. Therefore, predictions of the pressurization rate and performance of pressure control techniques in cryogenic tanks are required for development of cryogenic fluid long-duration storage technology and planning of future space exploration missions. This paper describes an analytical tool, Tank System Integrated Model (TankSIM), which can be used for modeling pressure control and predicting the behavior of cryogenic propellant for long-term storage for future space missions. It is written in the FORTRAN 90 language and can be compiled with any Visual FORTRAN compiler. A thermodynamic vent system (TVS) is used to achieve tank pressure control. Utilizing TankSIM, the following processes can be modeled: tank self-pressurization, boiloff, ullage venting, and mixing. Details of the TankSIM program and comparisons of its predictions with test data for liquid hydrogen and liquid methane will be presented in the final paper.

  20. Mechanical design and simulation of two-wheeled wheelchair using solidworks

    NASA Astrophysics Data System (ADS)

    Altalmas, T. M.; Ahmad, S.; Aula, A.; Akmeliawati, R.; Sidek, S. N.

    2013-12-01

    This article is presented a new design of two-wheeled wheelchair that can balance on two wheels to make it suitable in the narrow areas, especially in the domestic environments; it has the ability to extend the height of the chair to help the user to act independently in the life for example, in the library to pick and put books on the shelves. The 3D model has been built up using SolidWorks Software. Nowadays, SolidWorks environment is considered as a powerful tool that is helping designer to design products and attain its performance before physical prototype stage. SolidWorks simulation model has been employed to test the frame of the wheelchair under the weight of the human body and the upper part of the wheelchair. The static analysis has been done on the frame using steel and aluminium; however the aluminium material has been selected due to its light weight

  1. A predictive wheel-soil interaction model for planetary rovers validated in testbeds and against MER Mars rover performance data

    NASA Astrophysics Data System (ADS)

    Richter, L.; Ellery, A.; Gao, Y.; Michaud, S.; Schmitz, N.; Weiss, S.

    Successful designs of vehicles intended for operations on planetary objects outside the Earth demand, just as for terrestrial off-the-road vehicles, a careful assessment of the terrain relevant for the vehicle mission and predictions of the mobility performance to allow rational trade-off's to be made for the choice of the locomotion concept and sizing. Principal issues driving the chassis design for rovers are the stress-strain properties of the planetary surface soil, the distribution of rocks in the terrain representing potential obstacles to movement, and the gravity level on the celestial object in question. Thus far, planetary rovers have been successfully designed and operated for missions to the Earth's moon and to the planet Mars, including NASA's Mars Exploration Rovers (MER's) `Spirit' and `Opportunity' being in operation on Mars since their landings in January 2004. Here we report on the development of a wheel-soil interaction model with application to wheel sizes and wheel loads relevant to current and near-term robotic planetary rovers, i.e. wheel diameters being between about 200 and 500 mm and vertical quasistatic wheel loads in operation of roughly 100 to 200 N. Such a model clearly is indispensable for sizings of future rovers to analyse the aspect of rover mobility concerned with motion across soils. This work is presently funded by the European Space Agency (ESA) as part of the `Rover Chassis Evaluation Tools' (RCET) effort which has developed a set of S/W-implemented models for predictive mobility analysis of rovers in terms of movement on soils and across obstacles, coupled with dedicated testbeds to validate the wheel-soil models. In this paper, we outline the details of the wheel-soil modelling performed within the RCET work and present comparisons of predictions of wheel performance (motion resistance, torque vs. slip and drawbar pull vs. slip) for specific test cases with the corresponding measurements performed in the RCET single wheel

  2. A novel instrumented multipeg running wheel system, Step-Wheel, for monitoring and controlling complex sequential stepping in mice

    PubMed Central

    Nagata, Masatoshi; Yanagihara, Dai; Tomioka, Ryohei; Utsumi, Hideko; Kubota, Yasuo; Yagi, Takeshi; Graybiel, Ann M.; Yamamori, Tetsuo

    2011-01-01

    Motor control is critical in daily life as well as in artistic and athletic performance and thus is the subject of intense interest in neuroscience. Mouse models of movement disorders have proven valuable for many aspects of investigation, but adequate methods for analyzing complex motor control in mouse models have not been fully established. Here, we report the development of a novel running-wheel system that can be used to evoke simple and complex stepping patterns in mice. The stepping patterns are controlled by spatially organized pegs, which serve as footholds that can be arranged in adjustable, ladder-like configurations. The mice run as they drink water from a spout, providing reward, while the wheel turns at a constant speed. The stepping patterns of the mice can thus be controlled not only spatially, but also temporally. A voltage sensor to detect paw touches is attached to each peg, allowing precise registration of footfalls. We show that this device can be used to analyze patterns of complex motor coordination in mice. We further demonstrate that it is possible to measure patterns of neural activity with chronically implanted tetrodes as the mice engage in vigorous running bouts. We suggest that this instrumented multipeg running wheel (which we name the Step-Wheel System) can serve as an important tool in analyzing motor control and motor learning in mice. PMID:21525375

  3. A novel instrumented multipeg running wheel system, Step-Wheel, for monitoring and controlling complex sequential stepping in mice.

    PubMed

    Kitsukawa, Takashi; Nagata, Masatoshi; Yanagihara, Dai; Tomioka, Ryohei; Utsumi, Hideko; Kubota, Yasuo; Yagi, Takeshi; Graybiel, Ann M; Yamamori, Tetsuo

    2011-07-01

    Motor control is critical in daily life as well as in artistic and athletic performance and thus is the subject of intense interest in neuroscience. Mouse models of movement disorders have proven valuable for many aspects of investigation, but adequate methods for analyzing complex motor control in mouse models have not been fully established. Here, we report the development of a novel running-wheel system that can be used to evoke simple and complex stepping patterns in mice. The stepping patterns are controlled by spatially organized pegs, which serve as footholds that can be arranged in adjustable, ladder-like configurations. The mice run as they drink water from a spout, providing reward, while the wheel turns at a constant speed. The stepping patterns of the mice can thus be controlled not only spatially, but also temporally. A voltage sensor to detect paw touches is attached to each peg, allowing precise registration of footfalls. We show that this device can be used to analyze patterns of complex motor coordination in mice. We further demonstrate that it is possible to measure patterns of neural activity with chronically implanted tetrodes as the mice engage in vigorous running bouts. We suggest that this instrumented multipeg running wheel (which we name the Step-Wheel System) can serve as an important tool in analyzing motor control and motor learning in mice.

  4. Development and testing of a new system for assessing wheel-running behaviour in rodents.

    PubMed

    Chomiak, Taylor; Block, Edward W; Brown, Andrew R; Teskey, G Campbell; Hu, Bin

    2016-05-05

    Wheel running is one of the most widely studied behaviours in laboratory rodents. As a result, improved approaches for the objective monitoring and gathering of more detailed information is increasingly becoming important for evaluating rodent wheel-running behaviour. Here our aim was to develop a new quantitative wheel-running system that can be used for most typical wheel-running experimental protocols. Here we devise a system that can provide a continuous waveform amenable to real-time integration with a high-speed video ideal for wheel-running experimental protocols. While quantification of wheel running behaviour has typically focused on the number of revolutions per unit time as an end point measure, the approach described here allows for more detailed information like wheel rotation fluidity, directionality, instantaneous velocity, and acceleration, in addition to total number of rotations, and the temporal pattern of wheel-running behaviour to be derived from a single trace. We further tested this system with a running-wheel behavioural paradigm that can be used for investigating the neuronal mechanisms of procedural learning and postural stability, and discuss other potentially useful applications. This system and its ability to evaluate multiple wheel-running parameters may become a useful tool for screening new potentially important therapeutic compounds related to many neurological conditions.

  5. Diamond machine tool face lapping machine

    DOEpatents

    Yetter, H.H.

    1985-05-06

    An apparatus for shaping, sharpening and polishing diamond-tipped single-point machine tools. The isolation of a rotating grinding wheel from its driving apparatus using an air bearing and causing the tool to be shaped, polished or sharpened to be moved across the surface of the grinding wheel so that it does not remain at one radius for more than a single rotation of the grinding wheel has been found to readily result in machine tools of a quality which can only be obtained by the most tedious and costly processing procedures, and previously unattainable by simple lapping techniques.

  6. An integrated method for the emotional conceptualization and sensory characterization of food products: The EmoSensory® Wheel.

    PubMed

    Schouteten, Joachim J; De Steur, Hans; De Pelsmaeker, Sara; Lagast, Sofie; De Bourdeaudhuij, Ilse; Gellynck, Xavier

    2015-12-01

    Although acceptability is commonly used to examine liking for food products, more studies now emphasize the importance of measuring consumers' conceptualizations, such as emotions for food products. It is also important to identify how consumers perceive the sensory attributes of food products, as illustrated by the increasing involvement of consumers in product characterization. The objective of this paper is to examine the use of a wheel-format questionnaire to obtain both an emotional and sensory profiles for food products using a hands-on consumer tool. Terms selected were product-specific and the rate-all-that-apply (RATA) approach was used as a scaling technique. Three different experiments demonstrated that the EmoSensory® Wheel could discriminate within and between food product categories. The added value of the RATA approach was illustrated in the sample discrimination for some food products when using the weighted attribute scores for analysis. The tool was used in both blind and informed conditions to illustrate its applicability across different experimental designs. In general, the respondents did not find the task tedious when using the wheel-questionnaire format, demonstrating the potential for collecting information in a more facile way. Although further studies with other food products are needed, this paper shows the potential for using this wheel format to obtain information about consumers' emotional and sensory profiling of food products. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Influence of polygonal wear of railway wheels on the wheel set axle stress

    NASA Astrophysics Data System (ADS)

    Wu, Xingwen; Chi, Maoru; Wu, Pingbo

    2015-11-01

    The coupled vehicle/track dynamic model with the flexible wheel set was developed to investigate the effects of polygonal wear on the dynamic stresses of the wheel set axle. In the model, the railway vehicle was modelled by the rigid multibody dynamics. The wheel set was established by the finite element method to analyse the high-frequency oscillation and dynamic stress of wheel set axle induced by the polygonal wear based on the modal stress recovery method. The slab track model was taken into account in which the rail was described by the Timoshenko beam and the three-dimensional solid finite element was employed to establish the concrete slab. Furthermore, the modal superposition method was adopted to calculate the dynamic response of the track. The wheel/rail normal forces and the tangent forces were, respectively, determined by the Hertz nonlinear contact theory and the Shen-Hedrick-Elkins model. Using the coupled vehicle/track dynamic model, the dynamic stresses of wheel set axle with consideration of the ideal polygonal wear and measured polygonal wear were investigated. The results show that the amplitude of wheel/rail normal forces and the dynamic stress of wheel set axle increase as the vehicle speeds rise. Moreover, the impact loads induced by the polygonal wear could excite the resonance of wheel set axle. In the resonance region, the amplitude of the dynamic stress for the wheel set axle would increase considerably comparing with the normal conditions.

  8. Bladed wheels damage detection through Non-Harmonic Fourier Analysis improved algorithm

    NASA Astrophysics Data System (ADS)

    Neri, P.

    2017-05-01

    Recent papers introduced the Non-Harmonic Fourier Analysis for bladed wheels damage detection. This technique showed its potential in estimating the frequency of sinusoidal signals even when the acquisition time is short with respect to the vibration period, provided that some hypothesis are fulfilled. Anyway, previously proposed algorithms showed severe limitations in cracks detection at their early stage. The present paper proposes an improved algorithm which allows to detect a blade vibration frequency shift due to a crack whose size is really small compared to the blade width. Such a technique could be implemented for condition-based maintenance, allowing to use non-contact methods for vibration measurements. A stator-fixed laser sensor could monitor all the blades as they pass in front of the spot, giving precious information about the wheel health. This configuration determines an acquisition time for each blade which become shorter as the machine rotational speed increases. In this situation, traditional Discrete Fourier Transform analysis results in poor frequency resolution, being not suitable for small frequency shift detection. Non-Harmonic Fourier Analysis instead showed high reliability in vibration frequency estimation even with data samples collected in a short time range. A description of the improved algorithm is provided in the paper, along with a comparison with the previous one. Finally, a validation of the method is presented, based on finite element simulations results.

  9. A Feasability Study of the Wheel Electrostatic Spectrometer

    NASA Technical Reports Server (NTRS)

    Johansen, Michael Ryan; Phillips, James Ralph; Kelley, Joshua David; Mackey, Paul J.; Holbert, Eirik; Clements, Gregory R.; Calle, Carlos I.

    2014-01-01

    Mars rover missions rely on time-consuming, power-exhausting processes to analyze the Martian regolith. A low power electrostatic sensor in the wheels of a future Mars rover could be used to quickly determine when the rover is driving over a different type of regolith. The Electrostatics and Surface Physics Laboratory at NASA's Kennedy Space Center developed the Wheel Electrostatic Spectrometer as a feasibility study to investigate this option. In this paper, we discuss recent advances in this technology to increase the repeatability of the tribocharging experiments, along with supporting data. In addition, we discuss the development of a static elimination tool optimized for Martian conditions.

  10. Fatigue based design and analysis of wheel hub for Student formula car by Simulation Approach

    NASA Astrophysics Data System (ADS)

    Gowtham, V.; Ranganathan, A. S.; Satish, S.; Alexis, S. John; Siva kumar, S.

    2016-09-01

    In the existing design of Wheel hub used for Student formula cars, the brake discs cannot be removed easily since the disc is mounted in between the knuckle and hub. In case of bend or any other damage to the disc, the replacement of the disc becomes difficult. Further using OEM hub and knuckle that are used for commercial vehicles will result in increase of unsprung mass, which should be avoided in Student formula cars for improving the performance. In this design the above mentioned difficulties have been overcome by redesigning the hub in such a way that the brake disc could be removed easily by just removing the wheel and the caliper and also it will have reduced weight when compared to existing OEM hub. A CAD Model was developed based on the required fatigue life cycles. The forces acting on the hub were calculated and linear static structural analysis was performed on the wheel hub for three different materials using ANSYS Finite Element code V 16.2. The theoretical fatigue strength was compared with the stress obtained from the structural analysis for each material.

  11. Accountability Tanks Calibration Data Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wendelberger, James G.; Salazar, William Richard; Finstad, Casey Charles

    2017-04-25

    MET-1 utilizes tanks to store plutonium in solution. The Nuclear Material Control & Accountability group at LANL requires that MET-1 be able to determine the amount of SNM remaining in solution in the tanks for accountability purposes. For this reason it is desired to determine how well various operators may read the volume of liquid left in the tank with the tank measurement device (glass column or slab). The accuracy of the measurement is then compared to the current SAFE-NMCA acceptance criteria for lean and rich plutonium solutions to determine whether or not the criteria are reasonable and may bemore » met.« less

  12. Development and validation of a wear model for the analysis of the wheel profile evolution in railway vehicles

    NASA Astrophysics Data System (ADS)

    Auciello, J.; Ignesti, M.; Malvezzi, M.; Meli, E.; Rindi, A.

    2012-11-01

    The numerical wheel wear prediction in railway applications is of great importance for different aspects, such as the safety against vehicle instability and derailment, the planning of wheelset maintenance interventions and the design of an optimal wheel profile from the wear point of view. For these reasons, this paper presents a complete model aimed at the evaluation of the wheel wear and the wheel profile evolution by means of dynamic simulations, organised in two parts which interact with each other mutually: a vehicle's dynamic model and a model for the wear estimation. The first is a 3D multibody model of a railway vehicle implemented in SIMPACK™, a commercial software for the analysis of mechanical systems, where the wheel-rail interaction is entrusted to a C/C++user routine external to SIMPACK, in which the global contact model is implemented. In this regard, the research on the contact points between the wheel and the rail is based on an innovative algorithm developed by the authors in previous works, while normal and tangential forces in the contact patches are calculated according to Hertz's theory and Kalker's global theory, respectively. Due to the numerical efficiency of the global contact model, the multibody vehicle and the contact model interact directly online during the dynamic simulations. The second is the wear model, written in the MATLAB® environment, mainly based on an experimental relationship between the frictional power developed at the wheel-rail interface and the amount of material removed by wear. Starting from a few outputs of the multibody simulations (position of contact points, contact forces and rigid creepages), it evaluates the local variables, such as the contact pressures and local creepages, using a local contact model (Kalker's FASTSIM algorithm). These data are then passed to another subsystem which evaluates, by means of the considered experimental relationship, both the material to be removed and its distribution along

  13. Model Predictive Control considering Reachable Range of Wheels for Leg / Wheel Mobile Robots

    NASA Astrophysics Data System (ADS)

    Suzuki, Naito; Nonaka, Kenichiro; Sekiguchi, Kazuma

    2016-09-01

    Obstacle avoidance is one of the important tasks for mobile robots. In this paper, we study obstacle avoidance control for mobile robots equipped with four legs comprised of three DoF SCARA leg/wheel mechanism, which enables the robot to change its shape adapting to environments. Our previous method achieves obstacle avoidance by model predictive control (MPC) considering obstacle size and lateral wheel positions. However, this method does not ensure existence of joint angles which achieves reference wheel positions calculated by MPC. In this study, we propose a model predictive control considering reachable mobile ranges of wheels positions by combining multiple linear constraints, where each reachable mobile range is approximated as a convex trapezoid. Thus, we achieve to formulate a MPC as a quadratic problem with linear constraints for nonlinear problem of longitudinal and lateral wheel position control. By optimization of MPC, the reference wheel positions are calculated, while each joint angle is determined by inverse kinematics. Considering reachable mobile ranges explicitly, the optimal joint angles are calculated, which enables wheels to reach the reference wheel positions. We verify its advantages by comparing the proposed method with the previous method through numerical simulations.

  14. A Study on Wheel Sinkage and Rolling Resistance with variations in wheel geometry for Plain and Lugged wheels on TRI -1 Soil Simulant

    NASA Astrophysics Data System (ADS)

    Gireesh Kumar, Pala; Jayalekshmi, S.

    2018-03-01

    Wheel-soil Interaction studies are gaining momentum in the field of Terramechanics, but the basis is Terzaghi’s bearing capacity equation. For the current study, on a lunar soil simulant TRI – 1, two plain rigid wheels are considered, i.e., small wheel (dia. of 210 mm and width of 50 mm) and large wheel (dia. 160 mm and width 32 mm). Also, different number of lugs (N = 8, 12, 16) with various lug heights (h = 5 mm, 10 mm, 15 mm) are used. In this paper, the variation of wheel sinkages from experiments obtained for various wheel weights are examined and presented. The parameter, Coefficient of rolling resistance (CRR) is determined for various cases. Hence, rolling resistance was determined and examined from the obtained CRR for all cases. Among the cases examined, the large wheel with weight 67.44 N for plain wheels and weight 67.85 N for lugged wheel (no. of lugs = 16, and height of lugs = 5 mm) registered better mobility. Similarly, for small wheel with weight 52.189 N for plain wheel and weight 52.481 N for lugged wheel (no. of lugs = 16, and height of lugs = 5 mm) registered better mobility, a lesser rolling resistance for these cases.

  15. High-Clearance Six-Wheel Suspension

    NASA Technical Reports Server (NTRS)

    Bickler, Donald B.

    1992-01-01

    Multilevered suspension system gives body of vehicle high clearance and allows wheels to be steered independently. Suspension linkages above wheels enable body to skim over obstacles as high as wheel. Levers and independently steered wheels enable vehicle to climb steps 1 1/2 wheel diameters high and cross gaps 1 3/4 wide. Adaptable to off-the-road recreational vehicles, military scout vehicles, and robotic emergency vehicles.

  16. Stabilizing Wheels For Rover Vehicle

    NASA Technical Reports Server (NTRS)

    Collins, Earl R., Jr.

    1990-01-01

    Proposed articulated, normally-four-wheeled vehicle holds extra pair of wheels in reserve. Deployed to lengthen wheelbase on slopes, thereby making vehicle more stable, and to aid vehicle in negotiating ledge or to right vehicle if turned upside down. Extra wheels are drive wheels mounted on arms so they pivot on axis of forward drive wheels. Both extra wheels and arms driven by chains, hydraulic motors, or electric motors. Concept promises to make remotely controlled vehicles more stable and maneuverable in such applications as firefighting, handling hazardous materials, and carrying out operations in dangerous locations.

  17. Experimental heat and mass transfer of the separated and coupled rotating desiccant wheel and heat wheel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Enteria, Napoleon; Yoshino, Hiroshi; Mochida, Akashi

    The experimental evaluation of the separated and coupled rotating desiccant wheel and heat wheel is reported. The study aims to investigate the performance of the desiccant wheel and of the heat wheel both when operated separately and jointly. The performance evaluation of the desiccant wheel is based on its moisture removal capacity (MRC), moisture removal regeneration (MRR), and moisture mass balance (MMB). In addition, the study used the total energy balance (TEB), sensible coefficient of performance (COP{sub Sensible}), latent coefficient of performance (COP{sub Latent}) and, total coefficient of performance (COP{sub Total}). The performance of the heat wheel is based onmore » its effectiveness. The COP{sub Sensible}, COP{sub Latent} and, COP{sub Total} are used in the performance evaluation of the coupled desiccant wheel and heat wheel. The general results of the study show that the MRC, MRR and MMB coupled with the TEB, COP{sub Latent}, COP{sub Sensible} and COP{sub Total} predict adequately the performance of the desiccant wheel. In addition, the coupled operation of the desiccant wheel and heat wheel, contributed to the reduction of the external thermal energy requirement for the regeneration of the desiccant wheel. This study can be applied in other researches seeking evaluation of the desiccant wheel, heat wheel, and their combined operation. Moreover, the data presented here are significant for the desiccant wheel benchmarking and for evaluation of the desiccant wheel models. (author)« less

  18. Design of a compliant wheel for a miniature rover to be used on Mars

    NASA Astrophysics Data System (ADS)

    Carroll, Mark; Johnson, Jess; Yong, Jimmy

    1991-12-01

    The Jet Propulsion Laboratory has identified the need for a compliant wheel for a miniature martian rover vehicle. This wheel must meet requirements of minimum mass, linear radial deflection, and reliability in cryogenic conditions over a five year lifespan. Additionally, axial and tangential deflections must be no more than 10 percent of the radial value. The team designed a wheel by use of finite element and dimensionless parameter analysis. Due to the complex geometry of the wheel, a finite element model describing its behavior was constructed to investigate different wheel configurations. Axial and tangential deflections were greatly reduced but did not meet design criteria. A composite material was selected for its high strength, toughness, fatigue resistance, and damping characteristics. The team chose a Kevlar fiber filled thermoplastic composite. This report is divided into four primary sections. First, the introduction section gives background information, defines the task, and discusses the scope and limitations of the project. Second, the alternative designs section introduces alternative design solutions, addresses advantages and disadvantages of each, and identifies the parameters used to determine the best design. Third, the design solution section introduces the methods used to evaluate the alternates, and gives a description of the design process used. Finally, the conclusion and recommendations section evaluates the wheel design, and offers recommendations pertaining to improvement of the design solution.

  19. Design of a compliant wheel for a miniature rover to be used on Mars

    NASA Technical Reports Server (NTRS)

    Carroll, Mark; Johnson, Jess; Yong, Jimmy

    1991-01-01

    The Jet Propulsion Laboratory has identified the need for a compliant wheel for a miniature martian rover vehicle. This wheel must meet requirements of minimum mass, linear radial deflection, and reliability in cryogenic conditions over a five year lifespan. Additionally, axial and tangential deflections must be no more than 10 percent of the radial value. The team designed a wheel by use of finite element and dimensionless parameter analysis. Due to the complex geometry of the wheel, a finite element model describing its behavior was constructed to investigate different wheel configurations. Axial and tangential deflections were greatly reduced but did not meet design criteria. A composite material was selected for its high strength, toughness, fatigue resistance, and damping characteristics. The team chose a Kevlar fiber filled thermoplastic composite. This report is divided into four primary sections. First, the introduction section gives background information, defines the task, and discusses the scope and limitations of the project. Second, the alternative designs section introduces alternative design solutions, addresses advantages and disadvantages of each, and identifies the parameters used to determine the best design. Third, the design solution section introduces the methods used to evaluate the alternates, and gives a description of the design process used. Finally, the conclusion and recommendations section evaluates the wheel design, and offers recommendations pertaining to improvement of the design solution.

  20. The Fatigue Life Prediction of Train Wheel Rims Containing Spherical Inclusions

    NASA Astrophysics Data System (ADS)

    Li, Yajie; Chen, Huanguo; Cai, Li; Chen, Pei; Qian, Jiacheng; Wu, Jianwei

    2018-03-01

    It is a common phenomenon that fatigue crack initiation occurs frequently in the inclusions of wheel rims. Research on the fatigue life of wheel rims with spherical inclusions is of great significance on the reliability of wheels. To find the danger point and working condition of a wheel, the stress state of the wheel rim with spherical inclusions was analyzed using the finite element method. Results revealed that curve conditions are dangerous. The critical plane method, based on the cumulative fatigue damage theory, was used to predict the fatigue life of the wheel rim and whether it contained spherical inclusions or not under curve conditions. It was found that the fatigue life of the wheel rim is significantly shorter when the wheel rim contains spherical inclusions. Analysis of the results can provide a theoretical basis and technical support for train operations and maintenance.

  1. TANK 32 EVAPORATOR FEED PUMP TRANSFER ANALYSIS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tamburello, D; Richard Dimenna, R; Si Lee, S

    2009-01-27

    The transfer of liquid salt solution from Tank 32 to an evaporator is to be accomplished by activating the evaporator feed pump, with the supernate surface at a minimum height of approximately 74.4 inches above the sludge layer, while simultaneously turning on the downcomer with a flow rate of 110 gpm. Previously, activation of the evaporator feed pump was an isolated event without any other components running at the same time. An analysis of the dissolved solution transfer has been performed using computational fluid dynamics (CFD) methods to determine the amount of entrained sludge solids pumped out of the tankmore » toward the evaporator with the downcomer turned on. The analysis results shows that, for the minimum tank liquid level of 105 inches above the tank bottom (which corresponds to a liquid depth of 74.4 inches above the sludge layer), the evaporator feed pump will contain less than 0.1 wt% sludge solids in the discharge stream, which is an order of magnitude less than the 1.0 wt% undissolved solids (UDS) loading criteria to feed the evaporator. Lower liquid levels with respect to the sludge layer will result in higher amounts of sludge entrainment due to the increased plunging jet velocity from the downcomer disturbing the sludge layer.« less

  2. Allen figure and broken wheel visual acuity measurement in preschool children.

    PubMed

    Schmidt, P P

    1992-02-01

    In a masked investigation, 34 preschool children (n = 34, 19 females and 15 males) between the ages of 3 and 5 years (mean age = 4.1 years) enrolled in Project Headstart had their monocular and binocular visual acuity measured using the Broken Wheel and Allen figure methods. The results showed that 1) a greater range in acuity values was found with the Allen figure than Broken Wheel test, despite the identical Snellen equivalent acuity levels and similar probability of guessing criteria used for both Broken Wheel and Allen figure acuity measurement e.g., no strong statistical correlation (rOD = +0.22, rOS = -0.11 and rOU = +0.04; rho OD = +0.22, rho OS = -0.11, rho OU = 0.00) for the two tests was found; and 2) the Broken Wheel test appeared to discriminate between 20/30 and 20/40 acuity performance more consistently than did Allen figure and in a way not attributable to chance (p less than or equal to 0.003). In a separate evaluation, the Broken Wheel test showed consistency in the acuity measured. Broken Wheel acuity measurement, even with an average variation of +/- 5.6 percent from the corresponding Snellen standard, appears to be a valuable clinical tool to measure acuity in young children.

  3. Wheel Installation

    NASA Image and Video Library

    2010-07-07

    In this picture, the Curiosity rover sports a set of six new wheels. The wheels were installed on June 28 and 29 in the Spacecraft Assembly Facility at NASA Jet Propulsion Laboratory, Pasadena, Calif.

  4. Habituation contributes to the decline in wheel running within wheel-running reinforcement periods.

    PubMed

    Belke, Terry W; McLaughlin, Ryan J

    2005-02-28

    Habituation appears to play a role in the decline in wheel running within an interval. Aoyama and McSweeney [Aoyama, K., McSweeney, F.K., 2001. Habituation contributes to within-session changes in free wheel running. J. Exp. Anal. Behav. 76, 289-302] showed that when a novel stimulus was presented during a 30-min interval, wheel-running rates following the stimulus increased to levels approximating those earlier in the interval. The present study sought to assess the role of habituation in the decline in running that occurs over a briefer interval. In two experiments, rats responded on fixed-interval 30-s schedules for the opportunity to run for 45 s. Forty reinforcers were completed in each session. In the first experiment, the brake and chamber lights were repeatedly activated and inactivated after 25 s of a reinforcement interval had elapsed to assess the effect on running within the remaining 20 s. Presentations of the brake/light stimulus occurred during nine randomly determined reinforcement intervals in a session. In the second experiment, a 110 dB tone was emitted after 25 s of the reinforcement interval. In both experiments, presentation of the stimulus produced an immediate decline in running that dissipated over sessions. No increase in running following the stimulus was observed in the first experiment until the stimulus-induced decline dissipated. In the second experiment, increases in running were observed following the tone in the first session as well as when data were averaged over several sessions. In general, the results concur with the assertion that habituation plays a role in the decline in wheel running that occurs within both long and short intervals. (c) 2004 Elsevier B.V. All rights reserved.

  5. New method for stock-tank oil compositional analysis.

    PubMed

    McAndrews, Kristine; Nighswander, John; Kotzakoulakis, Konstantin; Ross, Paul; Schroeder, Helmut

    2009-01-01

    A new method for accurately determining stock-tank oil composition to normal pentatriacontane using gas chromatography is developed and validated. The new method addresses the potential errors associated with the traditional equipment and technique employed for extended hydrocarbon gas chromatography outside a controlled laboratory environment, such as on an offshore oil platform. In particular, the experimental measurement of stock-tank oil molecular weight with the freezing point depression technique and the use of an internal standard to find the unrecovered sample fraction are replaced with correlations for estimating these properties. The use of correlations reduces the number of necessary experimental steps in completing the required sample preparation and analysis, resulting in reduced uncertainty in the analysis.

  6. Habituation contributes to within-session changes in free wheel running.

    PubMed Central

    Aoyama, K; McSweeney, F K

    2001-01-01

    Three experiments tested the hypothesis that habituation contributes to the regulation of wheel running. Rats ran in a wheel for 30-min sessions. Experiment 1 demonstrated spontaneous recovery. Rats ran more and the within-session decreases in running were smaller after 2 days of wheel deprivation than after 1 day. Experiment 2 demonstrated dishabituation. Running rate increased immediately after the termination of a brief extra event (application of the brake or flashing of the houselight). Experiment 3 demonstrated stimulus specificity. Rats completed the second half of the session in either the same wheel as the first half, or a different wheel. Second-half running was faster in the latter case. Within-session patterns of running were well described by equations that describe data from the habituation, motivation, and operant literatures. These results suggest that habituation contributes to the regulation of running. In fact, habituation provides a better explanation for the termination of wheel running than fatigue, the variable to which this termination is usually attributed. Overall, the present findings are consistent with the proposition that habituation and sensitization contribute to the regulation of several forms of motivated behavior. PMID:11768712

  7. Lightweight design and analysis of automobile wheel based on bending and radial loads

    NASA Astrophysics Data System (ADS)

    Jiang, X.; Lyu, R.; Fukushima, Y.; Otake, M.; Ju, D. Y.

    2018-06-01

    Lightweighting of automobile vehicle is a significant application trends, using magnesium alloy wheels is a valuable way. This article discusses design of a new model of automobile wheel. Then bending test and radial test finite element model were established. Considering three different materials namely magnesium alloy, aluminium alloy and steel, the stress and strain performances of each material can be obtained. Through evaluating and analyzing model in bending test and radial test, we obtained the reasonable and superior results for magnesium alloy wheel. The results of the equivalent stress and deformation were compared, the magnesium alloy wheel practicality has been confirmed. This research predicts the reliability of the structural design, some valuable references are provided for the design and development of magnesium alloy wheel.

  8. Groove refinishing tool

    DOEpatents

    Kellogg, Harvey J.; Holm, Robert O.

    1983-01-01

    A groove refinishing tool which utilizes a finishing wheel which is controlled by an air grinder motor. The air grinder motor is mounted on a main body section which is pivotally attached to a shoe element. The shoe element contains guide pins which guide the shoe element on the groove to be refinished. Application of pressure on the main body element compresses a weight counterbalance spring to extend the finishing wheel through the shoe element to refinish the groove surface. A window is provided for viewing the refinishing operation. Milling operations can also be performed by replacing the finishing wheel with a milling wheel.

  9. Energy efficiency analysis: biomass-to-wheel efficiency related with biofuels production, fuel distribution, and powertrain systems.

    PubMed

    Huang, Wei-Dong; Zhang, Y-H Percival

    2011-01-01

    Energy efficiency analysis for different biomass-utilization scenarios would help make more informed decisions for developing future biomass-based transportation systems. Diverse biofuels produced from biomass include cellulosic ethanol, butanol, fatty acid ethyl esters, methane, hydrogen, methanol, dimethyether, Fischer-Tropsch diesel, and bioelectricity; the respective powertrain systems include internal combustion engine (ICE) vehicles, hybrid electric vehicles based on gasoline or diesel ICEs, hydrogen fuel cell vehicles, sugar fuel cell vehicles (SFCV), and battery electric vehicles (BEV). We conducted a simple, straightforward, and transparent biomass-to-wheel (BTW) analysis including three separate conversion elements--biomass-to-fuel conversion, fuel transport and distribution, and respective powertrain systems. BTW efficiency is a ratio of the kinetic energy of an automobile's wheels to the chemical energy of delivered biomass just before entering biorefineries. Up to 13 scenarios were analyzed and compared to a base line case--corn ethanol/ICE. This analysis suggests that BEV, whose electricity is generated from stationary fuel cells, and SFCV, based on a hydrogen fuel cell vehicle with an on-board sugar-to-hydrogen bioreformer, would have the highest BTW efficiencies, nearly four times that of ethanol-ICE. In the long term, a small fraction of the annual US biomass (e.g., 7.1%, or 700 million tons of biomass) would be sufficient to meet 100% of light-duty passenger vehicle fuel needs (i.e., 150 billion gallons of gasoline/ethanol per year), through up to four-fold enhanced BTW efficiencies by using SFCV or BEV. SFCV would have several advantages over BEV: much higher energy storage densities, faster refilling rates, better safety, and less environmental burdens.

  10. Energy Efficiency Analysis: Biomass-to-Wheel Efficiency Related with Biofuels Production, Fuel Distribution, and Powertrain Systems

    PubMed Central

    Huang, Wei-Dong; Zhang, Y-H Percival

    2011-01-01

    Background Energy efficiency analysis for different biomass-utilization scenarios would help make more informed decisions for developing future biomass-based transportation systems. Diverse biofuels produced from biomass include cellulosic ethanol, butanol, fatty acid ethyl esters, methane, hydrogen, methanol, dimethyether, Fischer-Tropsch diesel, and bioelectricity; the respective powertrain systems include internal combustion engine (ICE) vehicles, hybrid electric vehicles based on gasoline or diesel ICEs, hydrogen fuel cell vehicles, sugar fuel cell vehicles (SFCV), and battery electric vehicles (BEV). Methodology/Principal Findings We conducted a simple, straightforward, and transparent biomass-to-wheel (BTW) analysis including three separate conversion elements -- biomass-to-fuel conversion, fuel transport and distribution, and respective powertrain systems. BTW efficiency is a ratio of the kinetic energy of an automobile's wheels to the chemical energy of delivered biomass just before entering biorefineries. Up to 13 scenarios were analyzed and compared to a base line case – corn ethanol/ICE. This analysis suggests that BEV, whose electricity is generated from stationary fuel cells, and SFCV, based on a hydrogen fuel cell vehicle with an on-board sugar-to-hydrogen bioreformer, would have the highest BTW efficiencies, nearly four times that of ethanol-ICE. Significance In the long term, a small fraction of the annual US biomass (e.g., 7.1%, or 700 million tons of biomass) would be sufficient to meet 100% of light-duty passenger vehicle fuel needs (i.e., 150 billion gallons of gasoline/ethanol per year), through up to four-fold enhanced BTW efficiencies by using SFCV or BEV. SFCV would have several advantages over BEV: much higher energy storage densities, faster refilling rates, better safety, and less environmental burdens. PMID:21765941

  11. An alternative to FASTSIM for tangential solution of the wheel-rail contact

    NASA Astrophysics Data System (ADS)

    Sichani, Matin Sh.; Enblom, Roger; Berg, Mats

    2016-06-01

    In most rail vehicle dynamics simulation packages, tangential solution of the wheel-rail contact is gained by means of Kalker's FASTSIM algorithm. While 5-25% error is expected for creep force estimation, the errors of shear stress distribution, needed for wheel-rail damage analysis, may rise above 30% due to the parabolic traction bound. Therefore, a novel algorithm named FaStrip is proposed as an alternative to FASTSIM. It is based on the strip theory which extends the two-dimensional rolling contact solution to three-dimensional contacts. To form FaStrip, the original strip theory is amended to obtain accurate estimations for any contact ellipse size and it is combined by a numerical algorithm to handle spin. The comparison between the two algorithms shows that using FaStrip improves the accuracy of the estimated shear stress distribution and the creep force estimation in all studied cases. In combined lateral creepage and spin cases, for instance, the error in force estimation reduces from 18% to less than 2%. The estimation of the slip velocities in the slip zone, needed for wear analysis, is also studied. Since FaStrip is as fast as FASTSIM, it can be an alternative for tangential solution of the wheel-rail contact in simulation packages.

  12. Reinventing the wheel: comparison of two wheel cage styles for assessing mouse voluntary running activity.

    PubMed

    Seward, T; Harfmann, B D; Esser, K A; Schroder, E A

    2018-04-01

    Voluntary wheel cage assessment of mouse activity is commonly employed in exercise and behavioral research. Currently, no standardization for wheel cages exists resulting in an inability to compare results among data from different laboratories. The purpose of this study was to determine whether the distance run or average speed data differ depending on the use of two commonly used commercially available wheel cage systems. Two different wheel cages with structurally similar but functionally different wheels (electromechanical switch vs. magnetic switch) were compared side-by-side to measure wheel running data differences. Other variables, including enrichment and cage location, were also tested to assess potential impacts on the running wheel data. We found that cages with the electromechanical switch had greater inherent wheel resistance and consistently led to greater running distance per day and higher average running speed. Mice rapidly, within 1-2 days, adapted their running behavior to the type of experimental switch used, suggesting these running differences are more behavioral than due to intrinsic musculoskeletal, cardiovascular, or metabolic limits. The presence of enrichment or location of the cage had no detectable impact on voluntary wheel running. These results demonstrate that mice run differing amounts depending on the type of cage and switch mechanism used and thus investigators need to report wheel cage type/wheel resistance and use caution when interpreting distance/speed run across studies. NEW & NOTEWORTHY The results of this study highlight that mice will run different distances per day and average speed based on the inherent resistance present in the switch mechanism used to record data. Rapid changes in running behavior for the same mouse in the different cages demonstrate that a strong behavioral factor contributes to classic exercise outcomes in mice. Caution needs to be taken when interpreting mouse voluntary wheel running activity to

  13. Working with the superabrasives industry to optimize tooling for grinding brittle materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taylor, J.S.; Piscotty, M.A.; Blaedel, K.L.

    1996-05-01

    The optics manufacturing industry is undertaking a significant modernization, as computer-numeric-controlled (CNC) equipment is joining or replacing open-loop equipment and hand lapping/polishing on the shop floor. Several prototype CNC lens grinding platforms employing ring tools are undergoing development and demonstration at the Center for Optics Manufacturing in Rochester, NY, and several machine tool companies have CNC product lines aimed at the optics industry. Benefits to using CNC ring tool grinding equipment include: essentially unlimited flexibility in selecting radii of curvature without special radiused tooling, the potential for CIM linkages to CAD workstations, and the cultural shift from craftsmen with undocumentedmore » procedures to CNC machine operators employing computerized routines for process control. In recent years, these developments, have inspired a number of US optics companies to invest in CNC equipment and participate in process development activities involving bound diamond tooling. This modernization process,extends beyond large optics companies that have historically embraced advanced equipment, to also include smaller optical shops where a shift to CNC equipment requires a significant company commitment. This paper addresses our efforts to optimize fine grinding wheels to support the new generation of CNC equipment. We begin with a discussion of how fine grinding fits into the optical production process, and then describe an initiative for improving the linkage between optics industry and the grinding wheel industry. For the purposes of this paper, we define fine wheels to have diamond sizes below 20 micrometers, which includes wheels used for what is sometimes called medium grinding (e.g. 10-20 micrometers diamond) and for fine grinding (e.g. 2-4 micrometers diamond).« less

  14. Dynamic interaction of rotating momentum wheels with spacecraft elements

    NASA Astrophysics Data System (ADS)

    Shankar Narayan, S.; Nair, P. S.; Ghosal, Ashitava

    2008-09-01

    In modern spacecraft with the requirement of increased accuracy of payloads, the on-orbit structural dynamic behavior of spacecraft is increasingly influencing the design and performance of spacecraft. During the integrated spacecraft testing of one of the satellites, a strong coupling between rotating momentum wheels and an earth sensor was detected. This resulted in corruption of the earth sensor data at certain wheel speeds. This paper deals with the dynamic coupling problem of a rotating momentum wheel with its support brackets affecting other subsystems of spacecraft. As part of this investigation, extensive modal tests and vibration tests were carried out on the momentum wheel bracket assembly with wheels in stationary and rotating conditions. It was found that the effects of gyroscopic forces arising out of rotating wheels are significant and this aspect needs to be taken into account while designing the mounting brackets. Results of analysis and tests were used to redesign the bracket leading to a significant reduction in the interaction and associated problems. A procedure for design of a support structure using a low-order mathematical model is also shown.

  15. Portrait of an Aging Wheel

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This plot maps the increasing amounts of energy needed to spin Spirit's right front wheel drive, which has been showing signs of age. The wheel has now traveled six times farther than its design life. Since Spirit's 126th day on Mars, this wheel has required additional electric current to run at normal speeds, as indicated with blue diamonds on this graph. Efforts to improve the situation by redistributing the lubricant in the wheel with heat and rest were only mildly successful (pink squares). To cope with the condition, rover planners have come up with a creative solution: they will drive the rover backwards using five of six wheels. The sixth wheel will be activated only when the terrain demands it.

  16. Thermal Analysis on Cryogenic Liquid Hydrogen Tank on an Unmanned Aerial Vehicle System

    NASA Technical Reports Server (NTRS)

    Wang, Xiao-Yen; Harpster, George; Hunter, James

    2007-01-01

    Thermal analyses are performed on the liquid hydrogen (LH2) tank designed for an unmanned aerial vehicle (UAV) powered by solar arrays and a regenerative proton-exchange membrane (PEM) fuel cell. A 14-day cruise mission at a 65,000 ft altitude is considered. Thermal analysis provides the thermal loads on the tank system and the boiling-off rates of LH2. Different approaches are being considered to minimize the boiling-off rates of the LH2. It includes an evacuated multilayer insulation (MLI) versus aerogel insulation on the LH2 tank and aluminum versus stainless steel spacer rings between the inner and outer tank. The resulting boil-off rates of LH2 provided by the one-dimensional model and three-dimensional finite element analysis (FEA) on the tank system are presented and compared to validate the results of the three-dimensional FEA. It concludes that heat flux through penetrations by conduction is as significant as that through insulation around the tank. The tank system with MLI insulation and stainless steel spacer rings result in the lowest boiling-off rate of LH2.

  17. Harsh medicine. [retail wheeling experiment in Michigan and side effects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Studness, C.M.

    1993-07-15

    Retailing wheeling's harmful side-effects may surface in a Michigan experiment. In the final analysis, the debate over retail wheeling is about whether there will be direct price competition in the electric power industry. Retail wheeling would extend to the electric power market the same freedom of choice among customers that is present elsewhere in the economy. It would provide a mechanism through which competition could enforce an efficient allocation of resources. It also undoubtedly would eliminate most of the huge discrepancies that exist between so many neighboring service areas. It is unlikely that permitting retail wheeling would actually result inmore » much wheeling or loss of load. Utilities will no doubt meet the threat of the loss of load by cutting rates to hold their customers. Hence, the primary effect would be on the pricing of electricity, not the wheeling of power. The retail wheeling experiment under consideration in Michigan can become an important step toward making the utility industry more efficient for the nation and more equitable for ratepayers. Unfortunately, it also is potentially unfair to the utilities involved. A retail wheeling experiment in one state is likely to put those utilities at risk for competitive attack, but is unlikely to give those utilities the countervailing power to use retail wheeling elsewhere to market their power. Fairness and economic efficiency require that retail wheeling exist everywhere, and that is is accessible to utilities as well as non-utilities.« less

  18. The Influence of Wheel/Rail Contact Conditions on the Microstructure and Hardness of Railway Wheels

    PubMed Central

    Davis, Claire

    2014-01-01

    The susceptibility of railway wheels to wear and rolling contact fatigue damage is influenced by the properties of the wheel material. These are influenced by the steel composition, wheel manufacturing process, and thermal and mechanical loading during operation. The in-service properties therefore vary with depth below the surface and with position across the wheel tread. This paper discusses the stress history at the wheel/rail contact (derived from dynamic simulations) and observed variations in hardness and microstructure. It is shown that the hardness of an “in-service” wheel rim varies significantly, with three distinct effects. The underlying hardness trend with depth can be related to microstructural changes during manufacturing (proeutectoid ferrite fraction and pearlite lamellae spacing). The near-surface layer exhibits plastic flow and microstructural shear, especially in regions which experience high tangential forces when curving, with consequentially higher hardness values. Between 1 mm and 7 mm depth, the wheel/rail contacts cause stresses exceeding the material yield stress, leading to work hardening, without a macroscopic change in microstructure. These changes in material properties through the depth of the wheel rim would tend to increase the likelihood of crack initiation on wheels toward the end of their life. This correlates with observations from several train fleets. PMID:24526883

  19. Sensitivity Analysis of Weather Variables on Offsite Consequence Analysis Tools in South Korea and the United States.

    PubMed

    Kim, Min-Uk; Moon, Kyong Whan; Sohn, Jong-Ryeul; Byeon, Sang-Hoon

    2018-05-18

    We studied sensitive weather variables for consequence analysis, in the case of chemical leaks on the user side of offsite consequence analysis (OCA) tools. We used OCA tools Korea Offsite Risk Assessment (KORA) and Areal Location of Hazardous Atmospheres (ALOHA) in South Korea and the United States, respectively. The chemicals used for this analysis were 28% ammonia (NH₃), 35% hydrogen chloride (HCl), 50% hydrofluoric acid (HF), and 69% nitric acid (HNO₃). The accident scenarios were based on leakage accidents in storage tanks. The weather variables were air temperature, wind speed, humidity, and atmospheric stability. Sensitivity analysis was performed using the Statistical Package for the Social Sciences (SPSS) program for dummy regression analysis. Sensitivity analysis showed that impact distance was not sensitive to humidity. Impact distance was most sensitive to atmospheric stability, and was also more sensitive to air temperature than wind speed, according to both the KORA and ALOHA tools. Moreover, the weather variables were more sensitive in rural conditions than in urban conditions, with the ALOHA tool being more influenced by weather variables than the KORA tool. Therefore, if using the ALOHA tool instead of the KORA tool in rural conditions, users should be careful not to cause any differences in impact distance due to input errors of weather variables, with the most sensitive one being atmospheric stability.

  20. DEVELOPMENT OF TECHNOLOGY TO REMOTELY NAVIGATE VERTICAL PIPE ARRAYS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krementz, D.; Immel, D.; Vrettos, N.

    Situations exist around the Savannah River Site (SRS) and the Department of Energy (DOE) complex where it is advantageous to remotely navigate vertical pipe arrays. Specific examples are waste tanks in the SRS Tank Farms, which contain horizontal cooling coils at the tank bottom, vertical cooling coils throughout and a limited number of access points or ''risers''. These factors limit accessibility to many parts of these tanks by conventional means. Pipe Traveler technology has been developed to address these issues. The Pipe Traveler addresses these issues by using the vertical cooling coils as its medium of travel. The unit operatesmore » by grabbing a pipe using dual grippers located on either side of the equipment. Once securely attached to the pipe a drive wheel is extended to come in contact with the pipe. Rotation of the drive wheel causes the unit to rotate around the pipe. This action is continued until the second set of grippers is aligned with the next pipe. Extension pistons are actuated to extend the second set of grippers in contact with a second pipe. The second set of grippers is then actuated to grasp the pipe. The first set of grippers releases the original pipe and the process is repeated until the unit reaches its desired location. Once at the tool deployment location the desired tool may be used. The current design has proven the concept of pipe-to-pipe navigation. Testing of the Pipe Traveler has proven its ability to transfer itself from one pipe to another.« less

  1. Tank 241-AX-104 upper vadose zone cone penetrometer demonstration sampling and analysis plan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    FIELD, J.G.

    1999-02-02

    This sampling and analysis plan (SAP) is the primary document describing field and laboratory activities and requirements for the tank 241-AX-104 upper vadose zone cone penetrometer (CP) demonstration. It is written in accordance with Hanford Tank Initiative Tank 241-AX-104 Upper Vadose Zone Demonstration Data Quality Objective (Banning 1999). This technology demonstration, to be conducted at tank 241-AX-104, is being performed by the Hanford Tanks Initiative (HTI) Project as a part of Tank Waste Remediation System (TWRS) Retrieval Program (EM-30) and the Office of Science and Technology (EM-50) Tanks Focus Area. Sample results obtained as part of this demonstration will providemore » additional information for subsequent revisions to the Retrieval Performance Evaluation (RPE) report (Jacobs 1998). The RPE Report is the result of an evaluation of a single tank farm (AX Tank Farm) used as the basis for demonstrating a methodology for developing the data and analyses necessary to support making tank waste retrieval decisions within the context of tank farm closure requirements. The RPE includes a study of vadose zone contaminant transport mechanisms, including analysis of projected tank leak characteristics, hydrogeologic characteristics of tank farm soils, and the observed distribution of contaminants in the vadose zone in the tank farms. With limited characterization information available, large uncertainties exist as to the nature and extent of contaminants that may exist in the upper vadose zone in the AX Tank Farm. Traditionally, data has been collected from soils in the vadose zone through the installation of boreholes and wells. Soil samples are collected as the bore hole is advanced and samples are screened on site and/or sent to a laboratory for analysis. Some in-situ geophysical methods of contaminant analysis can be used to evaluate radionuclide levels in the soils adjacent to an existing borehole. However, geophysical methods require compensation for

  2. Applied design methodology for lunar rover elastic wheel

    NASA Astrophysics Data System (ADS)

    Cardile, Diego; Viola, Nicole; Chiesa, Sergio; Rougier, Alessandro

    2012-12-01

    In recent years an increasing interest in the Moon surface operations has been experienced. In the future robotic and manned missions of Moon surface exploration will be fundamental in order to lay the groundwork for more ambitious space exploration programs. Surface mobility systems will be the key elements to ensure an efficient and safe Moon exploration. Future lunar rovers are likely to be heavier and able to travel longer distances than the previously developed Moon rover systems. The Lunar Roving Vehicle (LRV) is the only manned rover, which has so far been launched and used on the Moon surface. Its mobility system included flexible wheels that cannot be scaled to the heavier and longer range vehicles. Thus the previously developed wheels are likely not to be suitable for the new larger vehicles. Taking all these considerations into account, on the basis of the system requirements and assumptions, several wheel concepts have been discussed and evaluated through a trade-off analysis. Semi-empirical equations have been utilized to predict the wheel geometrical characteristics, as well as to estimate the motion resistances and the ability of the system to generate thrust. A numerical model has also been implemented, in order to define more into the details the whole wheel design, in terms of wheel geometry and physical properties. As a result of the trade-off analysis, the ellipse wheel concept has shown the best behavior in terms of stiffness, mass budget and dynamic performance. The results presented in the paper have been obtained in cooperation with Thales Alenia Space-Italy and Sicme motori, in the framework of a regional program called STEPS . STEPS-Sistemi e Tecnologie per l'EsPlorazione Spaziale is a research project co-financed by Piedmont Region and firms and universities of the Piedmont Aerospace District in the ambit of the P.O.R-F.E.S.R. 2007-2013 program.

  3. Analysis of the attenuation of railway squeal noise by preloaded rings inserted in wheels.

    PubMed

    Brunel, J F; Dufrénoy, P; Charley, J; Demilly, F

    2010-03-01

    Squeal from railway wheels occurring in short radius curves produces a very intense and highly annoying noise in the range 400-8000 Hz. When the excitation, due to lateral forces acting on the wheel, cannot be avoided, additional systems can be added on the wheel to limit acoustic emission. A very economical approach is the use of metal rings inserted into grooves machined in the wheels. Unfortunately the effectiveness of these so called damping rings varies from one wheel to another and for different rings. Because the mechanisms of attenuation are not well understood, these variations have not to date been explained. The aim of this paper is to clarify the attenuation mechanisms for damping rings especially for the first three axial wheel modes, which are the predominant sound radiated ones in curve passage and for which the effectiveness of the treatment is lower. It has been generally assumed that friction between the ring and the groove has been the mechanism for squeal noise attenuation. Here it is shown that the vibration attenuation is due to modal coupling between the wheel and the ring. The validity of this proposed mechanism is investigated using experimental measurements and theoretical and numerical models. The results presented here will provide an avenue for optimization of the damping ring noise control treatment to obtain significant levels of squeal noise attenuation notably for the first three axial modes.

  4. Determination of Steering Wheel Angles during CAR Alignment by Image Analysis Methods

    NASA Astrophysics Data System (ADS)

    Mueller, M.; Voegtle, T.

    2016-06-01

    Optical systems for automatic visual inspections are of increasing importance in the field of automation in the industrial domain. A new application is the determination of steering wheel angles during wheel track setting of the final inspection of car manufacturing. The camera has to be positioned outside the car to avoid interruptions of the processes and therefore, oblique images of the steering wheel must be acquired. Three different approaches of computer vision are considered in this paper, i.e. a 2D shape-based matching (by means of a plane to plane rectification of the oblique images and detection of a shape model with a particular rotation), a 3D shape-based matching approach (by means of a series of different perspectives of the spatial shape of the steering wheel derived from a CAD design model) and a point-to-point matching (by means of the extraction of significant elements (e.g. multifunctional buttons) of a steering wheel and a pairwise connection of these points to straight lines). The HALCON system (HALCON, 2016) was used for all software developments and necessary adaptions. As reference a mechanical balance with an accuracy of 0.1° was used. The quality assessment was based on two different approaches, a laboratory test and a test during production process. In the laboratory a standard deviation of ±0.035° (2D shape-based matching), ±0.12° (3D approach) and ±0.029° (point-to-point matching) could be obtained. The field test of 291 measurements (27 cars with varying poses and angles of the steering wheel) results in a detection rate of 100% and ±0.48° (2D matching) and ±0.24° (point-to-point matching). Both methods also fulfil the request of real time processing (three measurements per second).

  5. 49 CFR 179.100 - General specifications applicable to pressure tank car tanks.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... car tanks. 179.100 Section 179.100 Transportation Other Regulations Relating to Transportation...) SPECIFICATIONS FOR TANK CARS Specifications for Pressure Tank Car Tanks (Classes DOT-105, 109, 112, 114 and 120) § 179.100 General specifications applicable to pressure tank car tanks. ...

  6. 49 CFR 179.100 - General specifications applicable to pressure tank car tanks.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... car tanks. 179.100 Section 179.100 Transportation Other Regulations Relating to Transportation...) SPECIFICATIONS FOR TANK CARS Specifications for Pressure Tank Car Tanks (Classes DOT-105, 109, 112, 114 and 120) § 179.100 General specifications applicable to pressure tank car tanks. ...

  7. 49 CFR 179.100 - General specifications applicable to pressure tank car tanks.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... car tanks. 179.100 Section 179.100 Transportation Other Regulations Relating to Transportation... REGULATIONS SPECIFICATIONS FOR TANK CARS Specifications for Pressure Tank Car Tanks (Classes DOT-105, 109, 112, 114 and 120) § 179.100 General specifications applicable to pressure tank car tanks. ...

  8. 49 CFR 179.100 - General specifications applicable to pressure tank car tanks.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... car tanks. 179.100 Section 179.100 Transportation Other Regulations Relating to Transportation...) SPECIFICATIONS FOR TANK CARS Specifications for Pressure Tank Car Tanks (Classes DOT-105, 109, 112, 114 and 120) § 179.100 General specifications applicable to pressure tank car tanks. ...

  9. Running Wheel for Earthworms

    PubMed Central

    Wilson, W. Jeffrey; Johnson, Brandon A.

    2016-01-01

    We describe the construction and use of a running wheel responsive to the movement of the earthworm. The wheel employs readily available, inexpensive components and is easily constructed. Movement of the wheel can be monitored visually or via standard behavioral laboratory computer interfaces. Examples of data are presented, and possibilities for use in the teaching classroom are discussed. PMID:27385934

  10. Shear rate analysis of water dynamic in the continuous stirred tank

    NASA Astrophysics Data System (ADS)

    Tulus; Mardiningsih; Sawaluddin; Sitompul, O. S.; Ihsan, A. K. A. M.

    2018-02-01

    Analysis of mixture in a continuous stirred tank reactor (CSTR) is an important part in some process of biogas production. This paper is a preliminary study of fluid dynamic phenomenon in a continuous stirred tank numerically. The tank is designed in the form of cylindrical tank equipped with a stirrer. In this study, it is considered that the tank is filled with water. Stirring is done with a stirring speed of 10rpm, 15rpm, 20rpm, and 25rpm. Mathematical modeling of stirred tank is derived. The model is calculated by using the finite element method that are calculated using CFD software. The result shows that the shear rate is high on the front end portion of the stirrer. The maximum shear rate tend to a stable behaviour after the stirring time of 2 second. The relation between the speed and the maximum shear rate is in the form of linear equation.

  11. Thickness-Independent Ultrasonic Imaging Applied to Abrasive Cut-Off Wheels: An Advanced Aerospace Materials Characterization Method for the Abrasives Industry. A NASA Lewis Research Center Technology Transfer Case History

    NASA Technical Reports Server (NTRS)

    Roth, Don J.; Farmer, Donald A.

    1998-01-01

    Abrasive cut-off wheels are at times unintentionally manufactured with nonuniformity that is difficult to identify and sufficiently characterize without time-consuming, destructive examination. One particular nonuniformity is a density variation condition occurring around the wheel circumference or along the radius, or both. This density variation, depending on its severity, can cause wheel warpage and wheel vibration resulting in unacceptable performance and perhaps premature failure of the wheel. Conventional nondestructive evaluation methods such as ultrasonic c-scan imaging and film radiography are inaccurate in their attempts at characterizing the density variation because a superimposing thickness variation exists as well in the wheel. In this article, the single transducer thickness-independent ultrasonic imaging method, developed specifically to allow more accurate characterization of aerospace components, is shown to precisely characterize the extent of the density variation in a cut-off wheel having a superimposing thickness variation. The method thereby has potential as an effective quality control tool in the abrasives industry for the wheel manufacturer.

  12. Automatic Mechetronic Wheel Light Device

    DOEpatents

    Khan, Mohammed John Fitzgerald

    2004-09-14

    A wheel lighting device for illuminating a wheel of a vehicle to increase safety and enhance aesthetics. The device produces the appearance of a "ring of light" on a vehicle's wheels as the vehicle moves. The "ring of light" can automatically change in color and/or brightness according to a vehicle's speed, acceleration, jerk, selection of transmission gears, and/or engine speed. The device provides auxiliary indicator lights by producing light in conjunction with a vehicle's turn signals, hazard lights, alarm systems, and etc. The device comprises a combination of mechanical and electronic components and can be placed on the outer or inner surface of a wheel or made integral to a wheel or wheel cover. The device can be configured for all vehicle types, and is electrically powered by a vehicle's electrical system and/or battery.

  13. Thermal Insulation System Analysis Tool (TISTool) User's Manual. Version 1.0.0

    NASA Technical Reports Server (NTRS)

    Johnson, Wesley; Fesmire, James; Leucht, Kurt; Demko, Jonathan

    2010-01-01

    The Thermal Insulation System Analysis Tool (TISTool) was developed starting in 2004 by Jonathan Demko and James Fesmire. The first edition was written in Excel and Visual BasIc as macros. It included the basic shapes such as a flat plate, cylinder, dished head, and sphere. The data was from several KSC tests that were already in the public literature realm as well as data from NIST and other highly respectable sources. More recently, the tool has been updated with more test data from the Cryogenics Test Laboratory and the tank shape was added. Additionally, the tool was converted to FORTRAN 95 to allow for easier distribution of the material and tool. This document reviews the user instructions for the operation of this system.

  14. Seal Analysis for the Ares-I Upper Stage Fuel Tank Manhole Cover

    NASA Technical Reports Server (NTRS)

    Phillips, Dawn R.; Wingate, Robert J.

    2010-01-01

    Techniques for studying the performance of Naflex pressure-assisted seals in the Ares-I Upper Stage liquid hydrogen tank manhole cover seal joint are explored. To assess the feasibility of using the identical seal design for the Upper Stage as was used for the Space Shuttle External Tank manhole covers, a preliminary seal deflection analysis using the ABAQUS commercial finite element software is employed. The ABAQUS analyses are performed using three-dimensional symmetric wedge finite element models. This analysis technique is validated by first modeling a heritage External Tank liquid hydrogen tank manhole cover joint and correlating the results to heritage test data. Once the technique is validated, the Upper Stage configuration is modeled. The Upper Stage analyses are performed at 1.4 times the expected pressure to comply with the Constellation Program factor of safety requirement on joint separation. Results from the analyses performed with the External Tank and Upper Stage models demonstrate the effects of several modeling assumptions on the seal deflection. The analyses for Upper Stage show that the integrity of the seal is successfully maintained.

  15. Thermal Imaging for Inspection of Large Cryogenic Tanks

    NASA Technical Reports Server (NTRS)

    Arens, Ellen

    2012-01-01

    The end of the Shuttle Program provides an opportunity to evaluate and possibly refurbish launch support infrastructure at the Kennedy Space Center in support of future launch vehicles. One major infrastructure element needing attention is the cryogenic fuel and oxidizer system and specifically the cryogenic fuel ground storage tanks located at Launch Complex 39. These tanks were constructed in 1965 and served both the Apollo and Shuttle Programs and will be used to support future launch programs. However, they have received only external inspection and minimal refurbishment over the years as there were no operational issues that warranted the significant time and schedule disruption required to drain and refurbish the tanks while the launch programs were ongoing. Now, during the break between programs, the health of the tanks is being evaluated and refurbishment is being performed as necessary to maintain their fitness for future launch programs. Thermography was used as one part of the inspection and analysis of the tanks. This paper will describe the conclusions derived from the thermal images to evaluate anomalous regions in the tanks, confirm structural integrity of components within the annular region, and evaluate the effectiveness of thermal imaging to detect large insulation voids in tanks prior to filling with cryogenic fluid. The use of thermal imaging as a tool to inspect unfilled tanks will be important if the construction of additional storage tanks is required to fuel new launch vehicles.

  16. Modeling of the motion of automobile elastic wheel in real-time for creation of wheeled vehicles motion control electronic systems

    NASA Astrophysics Data System (ADS)

    Balakina, E. V.; Zotov, N. M.; Fedin, A. P.

    2018-02-01

    Modeling of the motion of the elastic wheel of the vehicle in real-time is used in the tasks of constructing different models in the creation of wheeled vehicles motion control electronic systems, in the creation of automobile stand-simulators etc. The accuracy and the reliability of simulation of the parameters of the wheel motion in real-time when rolling with a slip within the given road conditions are determined not only by the choice of the model, but also by the inaccuracy and instability of the numerical calculation. It is established that the inaccuracy and instability of the calculation depend on the size of the step of integration and the numerical method being used. The analysis of these inaccuracy and instability when wheel rolling with a slip was made and recommendations for reducing them were developed. It is established that the total allowable range of steps of integration is 0.001.0.005 s; the strongest instability is manifested in the calculation of the angular and linear accelerations of the wheel; the weakest instability is manifested in the calculation of the translational velocity of the wheel and moving of the center of the wheel; the instability is less at large values of slip angle and on more slippery surfaces. A new method of the average acceleration is suggested, which allows to significantly reduce (up to 100%) the manifesting of instability of the solution in the calculation of all parameters of motion of the elastic wheel for different braking conditions and for the entire range of steps of integration. The results of research can be applied to the selection of control algorithms in vehicles motion control electronic systems and in the testing stand-simulators

  17. ADM. Tanks: from left to right: fuel oil tank, fuel ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    ADM. Tanks: from left to right: fuel oil tank, fuel pump house (TAN-611), engine fuel tank, water pump house, water storage tank. Camera facing northwest. Not edge of shielding berm at left of view. Date: November 25, 1953. INEEL negative no. 9217 - Idaho National Engineering Laboratory, Test Area North, Scoville, Butte County, ID

  18. Wheel running in the wild.

    PubMed

    Meijer, Johanna H; Robbers, Yuri

    2014-07-07

    The importance of exercise for health and neurogenesis is becoming increasingly clear. Wheel running is often used in the laboratory for triggering enhanced activity levels, despite the common objection that this behaviour is an artefact of captivity and merely signifies neurosis or stereotypy. If wheel running is indeed caused by captive housing, wild mice are not expected to use a running wheel in nature. This however, to our knowledge, has never been tested. Here, we show that when running wheels are placed in nature, they are frequently used by wild mice, also when no extrinsic reward is provided. Bout lengths of running wheel behaviour in the wild match those for captive mice. This finding falsifies one criterion for stereotypic behaviour, and suggests that running wheel activity is an elective behaviour. In a time when lifestyle in general and lack of exercise in particular are a major cause of disease in the modern world, research into physical activity is of utmost importance. Our findings may help alleviate the main concern regarding the use of running wheels in research on exercise.

  19. Tire-rim interface pressure of a commercial vehicle wheel under radial loads: theory and experiment

    NASA Astrophysics Data System (ADS)

    Wan, Xiaofei; Shan, Yingchun; Liu, Xiandong; He, Tian; Wang, Jiegong

    2017-11-01

    The simulation of the radial fatigue test of a wheel has been a necessary tool to improve the design of the wheel and calculate its fatigue life. The simulation model, including the strong nonlinearity of the tire structure and material, may produce accurate results, but often leads to a divergence in calculation. Thus, a simplified simulation model in which the complicated tire model is replaced with a tire-wheel contact pressure model is used extensively in the industry. In this paper, a simplified tire-rim interface pressure model of a wheel under a radial load is established, and the pressure of the wheel under different radial loads is tested. The tire-rim contact behavior affected by the radial load is studied and analyzed according to the test result, and the tire-rim interface pressure extracted from the test result is used to evaluate the simplified pressure model and the traditional cosine function model. The results show that the proposed model may provide a more accurate prediction of the wheel radial fatigue life than the traditional cosine function model.

  20. Two wheeled lunar dumptruck

    NASA Technical Reports Server (NTRS)

    Brus, Michael R.; Haleblain, Ray; Hernandez, Tomas L.; Jensen, Paul E.; Kraynick, Ronald L.; Langley, Stan J.; Shuman, Alan G.

    1988-01-01

    The design of a two wheel bulk material transport vehicle is described in detail. The design consists of a modified cylindrical bowl, two independently controlled direct drive motors, and two deformable wheels. The bowl has a carrying capacity of 2.8 m (100 ft) and is constructed of aluminum. The low speed, high HP motors are directly connected to the wheels, thus yielding only two moving parts. The wheels, specifically designed for lunar applications, utilize the chevron tread pattern for optimum traction. The vehicle is maneuvered by varying the relative angular velocities of the wheels. The bulk material being transported is unloaded by utilizing the motors to oscillate the bowl back and forth to a height at which dumping is achieved. The analytical models were tested using a scaled prototype of the lunar transport vehicle. The experimental data correlated well with theoretical predictions. Thus, the design established provides a feasible alternative for the handling of bulk material on the moon.

  1. Opposed Bellows Would Expel Contents Of Tank

    NASA Technical Reports Server (NTRS)

    Whitaker, Willie

    1994-01-01

    Proposed storage tank contains two pairs of opposed bellows used to expel its contents. Storage and expulsion volumes of tank same as those of older version of tank equipped with single bellows. Four bellows offer greater stability. Applications include automobile cooling systems and gasoline-powered tools like chain saws and leaf blowers.

  2. 27 CFR 27.174 - Tank cars and tank trucks to be sealed.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2012-04-01 2012-04-01 false Tank cars and tank trucks... Tank cars and tank trucks to be sealed. Where a shipment of distilled spirits from customs custody to the distilled spirits plant is made in a tank car or tank truck, all openings affording access to the...

  3. 27 CFR 27.174 - Tank cars and tank trucks to be sealed.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2011-04-01 2011-04-01 false Tank cars and tank trucks... Tank cars and tank trucks to be sealed. Where a shipment of distilled spirits from customs custody to the distilled spirits plant is made in a tank car or tank truck, all openings affording access to the...

  4. 27 CFR 27.174 - Tank cars and tank trucks to be sealed.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2014-04-01 2014-04-01 false Tank cars and tank trucks... Tank cars and tank trucks to be sealed. Where a shipment of distilled spirits from customs custody to the distilled spirits plant is made in a tank car or tank truck, all openings affording access to the...

  5. 49 CFR 179.400 - General specification applicable to cryogenic liquid tank car tanks.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... liquid tank car tanks. 179.400 Section 179.400 Transportation Other Regulations Relating to... MATERIALS REGULATIONS SPECIFICATIONS FOR TANK CARS Specification for Cryogenic Liquid Tank Car Tanks and... liquid tank car tanks. ...

  6. Tread buildup on railroad wheels.

    DOT National Transportation Integrated Search

    2015-04-01

    Based on the results of wheel slide tests and an inspection of wheels, the root cause of tread buildup (TBU) was identified as : wheel slide caused by excessive brake force. During the tests, TBU accumulated to the greatest heights under dry conditio...

  7. 49 CFR 570.10 - Wheel assemblies.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 6 2010-10-01 2010-10-01 false Wheel assemblies. 570.10 Section 570.10 Transportation Other Regulations Relating to Transportation (Continued) NATIONAL HIGHWAY TRAFFIC SAFETY... Pounds or Less § 570.10 Wheel assemblies. (a) Wheel integrity. A tire rim, wheel disc, or spider shall...

  8. 49 CFR 570.63 - Wheel assemblies.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 6 2013-10-01 2013-10-01 false Wheel assemblies. 570.63 Section 570.63 Transportation Other Regulations Relating to Transportation (Continued) NATIONAL HIGHWAY TRAFFIC SAFETY... 10,000 Pounds § 570.63 Wheel assemblies. (a) Wheel integrity. A tire rim, wheel disc or spider shall...

  9. 49 CFR 570.10 - Wheel assemblies.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 6 2014-10-01 2014-10-01 false Wheel assemblies. 570.10 Section 570.10 Transportation Other Regulations Relating to Transportation (Continued) NATIONAL HIGHWAY TRAFFIC SAFETY... Pounds or Less § 570.10 Wheel assemblies. (a) Wheel integrity. A tire rim, wheel disc, or spider shall...

  10. 49 CFR 570.63 - Wheel assemblies.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 6 2014-10-01 2014-10-01 false Wheel assemblies. 570.63 Section 570.63 Transportation Other Regulations Relating to Transportation (Continued) NATIONAL HIGHWAY TRAFFIC SAFETY... 10,000 Pounds § 570.63 Wheel assemblies. (a) Wheel integrity. A tire rim, wheel disc or spider shall...

  11. 49 CFR 570.63 - Wheel assemblies.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 6 2012-10-01 2012-10-01 false Wheel assemblies. 570.63 Section 570.63 Transportation Other Regulations Relating to Transportation (Continued) NATIONAL HIGHWAY TRAFFIC SAFETY... 10,000 Pounds § 570.63 Wheel assemblies. (a) Wheel integrity. A tire rim, wheel disc or spider shall...

  12. 49 CFR 570.10 - Wheel assemblies.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 6 2013-10-01 2013-10-01 false Wheel assemblies. 570.10 Section 570.10 Transportation Other Regulations Relating to Transportation (Continued) NATIONAL HIGHWAY TRAFFIC SAFETY... Pounds or Less § 570.10 Wheel assemblies. (a) Wheel integrity. A tire rim, wheel disc, or spider shall...

  13. 49 CFR 570.10 - Wheel assemblies.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 6 2011-10-01 2011-10-01 false Wheel assemblies. 570.10 Section 570.10 Transportation Other Regulations Relating to Transportation (Continued) NATIONAL HIGHWAY TRAFFIC SAFETY... Pounds or Less § 570.10 Wheel assemblies. (a) Wheel integrity. A tire rim, wheel disc, or spider shall...

  14. 49 CFR 570.10 - Wheel assemblies.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 6 2012-10-01 2012-10-01 false Wheel assemblies. 570.10 Section 570.10 Transportation Other Regulations Relating to Transportation (Continued) NATIONAL HIGHWAY TRAFFIC SAFETY... Pounds or Less § 570.10 Wheel assemblies. (a) Wheel integrity. A tire rim, wheel disc, or spider shall...

  15. Why Wheels Work.

    ERIC Educational Resources Information Center

    Stepp, Richard D.

    1982-01-01

    Discusses how the wheel works. The inherent mechanical advantage of wheel-and-axle system is that it reduced the distance the load-bearing surfaces have to slip relative to one another when the whole apparatus advances some given distance reducing (with leverage) the force needed to propel the system. (Author/JN)

  16. Microgravity Propellant Tank Geyser Analysis and Prediction

    NASA Technical Reports Server (NTRS)

    Thornton, Randall J.; Hochstein, John I.; Turner, James E. (Technical Monitor)

    2001-01-01

    An established correlation for geyser height prediction of an axial jet inflow into a microgravity propellant tank was analyzed and an effort to develop an improved correlation was made. The original correlation, developed using data from ethanol flow in small-scale drop tower tests, uses the jet-Weber number and the jet-Bond number to predict geyser height. A new correlation was developed from the same set of experimental data using the jet-Weber number and both the jet-Bond number and tank-Bond number to describe the geyser formation. The resulting correlation produced nearly a 40% reduction in geyser height predictive error compared to the original correlation with experimental data. Two additional tanks were computationally modeled in addition to the small-scale tank used in the drop tower testing. One of these tanks was a 50% enlarged small-scale tank and the other a full-scale 2 m radius tank. Simulations were also run for liquid oxygen and liquid hydrogen. Results indicated that the new correlation outperformed the original correlation in geyser height prediction under most circumstances. The new correlation has also shown a superior ability to recognize the difference between flow patterns II (geyser formation only) and III (pooling at opposite end of tank from the bulk fluid region).

  17. Robotic Two-Wheeled Vehicle

    NASA Technical Reports Server (NTRS)

    Edlund, Jeffrey E. (Inventor); Burdick, Joel (Inventor); Abad-Manterola, Pablo (Inventor); Matthews, Jaret B. (Inventor); Nesnas, Issa A. D. (Inventor)

    2014-01-01

    A robotic two-wheeled vehicle comprising a connection body interposed between the two wheels are described. A drum can be coaxially located in a central region of the connection body and can support a hollow arm projecting radially from the drum. A tether can be inserted in the arm and connected to a second drum. Instruments and sensors can be accommodated in a case housed inside each wheel.

  18. Robotic Two-Wheeled Vehicle

    NASA Technical Reports Server (NTRS)

    Nesnas, Issa A. D. (Inventor); Matthews, Jaret B. (Inventor); Edlund, Jeffrey E. (Inventor); Burdick, Joel (Inventor); Abad-Manterola, Pablo (Inventor)

    2013-01-01

    A robotic two-wheeled vehicle comprising a connection body interposed between the two wheels are described. A drum can be coaxially located in a central region of the connection body and can support a hollow arm projecting radially from the drum. A tether can be inserted in the arm and connected to a second drum. Instruments and sensors can be accommodated in a case housed inside each wheel.

  19. 49 CFR 179.101 - Individual specification requirements applicable to pressure tank car tanks.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... to pressure tank car tanks. 179.101 Section 179.101 Transportation Other Regulations Relating to... MATERIALS REGULATIONS SPECIFICATIONS FOR TANK CARS Specifications for Pressure Tank Car Tanks (Classes DOT... tank car tanks. Editorial Note: At 66 FR 45186, Aug. 28, 2001, an amendment published amending a table...

  20. 49 CFR 179.400 - General specification applicable to cryogenic liquid tank car tanks.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... liquid tank car tanks. 179.400 Section 179.400 Transportation Other Regulations Relating to... (CONTINUED) SPECIFICATIONS FOR TANK CARS Specification for Cryogenic Liquid Tank Car Tanks and Seamless Steel Tanks (Classes DOT-113 and 107A) § 179.400 General specification applicable to cryogenic liquid tank car...

  1. 49 CFR 179.400 - General specification applicable to cryogenic liquid tank car tanks.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... liquid tank car tanks. 179.400 Section 179.400 Transportation Other Regulations Relating to... (CONTINUED) SPECIFICATIONS FOR TANK CARS Specification for Cryogenic Liquid Tank Car Tanks and Seamless Steel Tanks (Classes DOT-113 and 107A) § 179.400 General specification applicable to cryogenic liquid tank car...

  2. 49 CFR 179.400 - General specification applicable to cryogenic liquid tank car tanks.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... liquid tank car tanks. 179.400 Section 179.400 Transportation Other Regulations Relating to... (CONTINUED) SPECIFICATIONS FOR TANK CARS Specification for Cryogenic Liquid Tank Car Tanks and Seamless Steel Tanks (Classes DOT-113 and 107A) § 179.400 General specification applicable to cryogenic liquid tank car...

  3. Grinding Wheel System

    DOEpatents

    Malkin, Stephen; Gao, Robert; Guo, Changsheng; Varghese, Biju; Pathare, Sumukh

    2003-08-05

    A grinding wheel system includes a grinding wheel with at least one embedded sensor. The system also includes an adapter disk containing electronics that process signals produced by each embedded sensor and that transmits sensor information to a data processing platform for further processing of the transmitted information.

  4. Grinding Wheel System

    DOEpatents

    Malkin, Stephen; Gao, Robert; Guo, Changsheng; Varghese, Biju; Pathare, Sumukh

    2006-01-10

    A grinding wheel system includes a grinding wheel with at least one embedded sensor. The system also includes an adapter disk containing electronics that process signals produced by each embedded sensor and that transmits sensor information to a data processing platform for further processing of the transmitted information.

  5. 49 CFR 230.114 - Wheel centers.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ..., following the repair, the crankpin and axle shall remain tight in the wheel. Banding of the hub is permitted... 49 Transportation 4 2013-10-01 2013-10-01 false Wheel centers. 230.114 Section 230.114... Tenders Wheels and Tires § 230.114 Wheel centers. (a) Filling blocks and shims. Driving and trailing wheel...

  6. 49 CFR 230.114 - Wheel centers.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ..., following the repair, the crankpin and axle shall remain tight in the wheel. Banding of the hub is permitted... 49 Transportation 4 2014-10-01 2014-10-01 false Wheel centers. 230.114 Section 230.114... Tenders Wheels and Tires § 230.114 Wheel centers. (a) Filling blocks and shims. Driving and trailing wheel...

  7. 49 CFR 230.114 - Wheel centers.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ..., following the repair, the crankpin and axle shall remain tight in the wheel. Banding of the hub is permitted... 49 Transportation 4 2012-10-01 2012-10-01 false Wheel centers. 230.114 Section 230.114... Tenders Wheels and Tires § 230.114 Wheel centers. (a) Filling blocks and shims. Driving and trailing wheel...

  8. 49 CFR 230.114 - Wheel centers.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ..., following the repair, the crankpin and axle shall remain tight in the wheel. Banding of the hub is permitted... 49 Transportation 4 2011-10-01 2011-10-01 false Wheel centers. 230.114 Section 230.114... Tenders Wheels and Tires § 230.114 Wheel centers. (a) Filling blocks and shims. Driving and trailing wheel...

  9. 49 CFR 230.114 - Wheel centers.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ..., following the repair, the crankpin and axle shall remain tight in the wheel. Banding of the hub is permitted... 49 Transportation 4 2010-10-01 2010-10-01 false Wheel centers. 230.114 Section 230.114... Tenders Wheels and Tires § 230.114 Wheel centers. (a) Filling blocks and shims. Driving and trailing wheel...

  10. Computation of wheel-rail contact force for non-mapping wheel-rail profile of Translohr tram

    NASA Astrophysics Data System (ADS)

    Ji, Yuanjin; Ren, Lihui; Zhou, Jinsong

    2017-09-01

    Translohr tram has steel wheels, in V-like arrangements, as guide wheels. These operate over the guide rails in inverted-V arrangements. However, the horizontal and vertical coordinates of the guide wheels and guide rails are not always mapped one-to-one. In this study, a simplified elastic method is proposed in order to calculate the contact points between the wheels and the rails. By transforming the coordinates, the non-mapping geometric relationship between wheel and rail is converted into a mapping relationship. Considering the Translohr tram's multi-point contact between the guide wheel and the guide rail, the elastic-contact hypothesis take into account the existence of contact patches between the bodies, and the location of the contact points is calculated using a simplified elastic method. In order to speed up the calculation, a multi-dimensional contact table is generated, enabling the use of simulation for Translohr tram running on curvatures with different radii.

  11. Tank 12H Acidic Chemical Cleaning Sample Analysis And Material Balance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martino, C. J.; Reboul, S. H.; Wiersma, B. J.

    2013-11-08

    A process of Bulk Oxalic Acid (BOA) chemical cleaning was performed for Tank 12H during June and July of 2013 to remove all or a portion of the approximately 4400 gallon sludge heel. Three strikes of oxalic acid (nominally 4 wt% or 2 wt%) were used at 55°C and tank volumes of 96- to 140-thousand gallons. This report details the sample analysis of a scrape sample taken prior to BOA cleaning and dip samples taken during BOA cleaning. It also documents a rudimentary material balance for the Tank 12H cleaning results.

  12. Development of a High Level Waste Tank Inspection System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Appel, D.K.; Loibl, M.W.; Meese, D.C.

    1995-03-21

    The Westinghouse Savannah River Technology Center was requested by it`s sister site, West Valley Nuclear Service (WVNS), to develop a remote inspection system to gather wall thickness readings of their High Level Waste Tanks. WVNS management chose to take a proactive approach to gain current information on two tanks t hat had been in service since the early 70`s. The tanks contain high level waste, are buried underground, and have only two access ports to an annular space between the tank and the secondary concrete vault. A specialized remote system was proposed to provide both a visual surveillance and ultrasonicmore » thickness measurements of the tank walls. A magnetic wheeled crawler was the basis for the remote delivery system integrated with an off-the-shelf Ultrasonic Data Acquisition System. A development program was initiated for Savannah River Technology Center (SRTC) to design, fabricate, and test a remote system based on the Crawler. The system was completed and involved three crawlers to perform the needed tasks, an Ultrasonic Crawler, a Camera Crawler, and a Surface Prep Crawler. The crawlers were computer controlled so that their operation could be done remotely and their position on the wall could be tracked. The Ultrasonic Crawler controls were interfaced with ABB Amdata`s I-PC, Ultrasonic Data Acquisition System so that thickness mapping of the wall could be obtained. A second system was requested by Westinghouse Savannah River Company (WSRC), to perform just ultrasonic mapping on their similar Waste Storage Tanks; however, the system needed to be interfaced with the P-scan Ultrasonic Data Acquisition System. Both remote inspection systems were completed 9/94. Qualifications tests were conducted by WVNS prior to implementation on the actual tank and tank development was achieved 10/94. The second inspection system was deployed at WSRC 11/94 with success, and the system is now in continuous service inspecting the remaining high level waste tanks

  13. Thermal model development and validation for rapid filling of high pressure hydrogen tanks

    DOE PAGES

    Johnson, Terry A.; Bozinoski, Radoslav; Ye, Jianjun; ...

    2015-06-30

    This paper describes the development of thermal models for the filling of high pressure hydrogen tanks with experimental validation. Two models are presented; the first uses a one-dimensional, transient, network flow analysis code developed at Sandia National Labs, and the second uses the commercially available CFD analysis tool Fluent. These models were developed to help assess the safety of Type IV high pressure hydrogen tanks during the filling process. The primary concern for these tanks is due to the increased susceptibility to fatigue failure of the liner caused by the fill process. Thus, a thorough understanding of temperature changes ofmore » the hydrogen gas and the heat transfer to the tank walls is essential. The effects of initial pressure, filling time, and fill procedure were investigated to quantify the temperature change and verify the accuracy of the models. In this paper we show that the predictions of mass averaged gas temperature for the one and three-dimensional models compare well with the experiment and both can be used to make predictions for final mass delivery. Furthermore, due to buoyancy and other three-dimensional effects, however, the maximum wall temperature cannot be predicted using one-dimensional tools alone which means that a three-dimensional analysis is required for a safety assessment of the system.« less

  14. Wheeled and Tracked Vehicle Endurance Testing

    DTIC Science & Technology

    2014-10-02

    Vehicle (ATV) 10 10 50 30 Fire Trucks - Crash and Rescue, Brush, Structural 49/56/50 22/16/50 - 29/28/0 a Wheeled Combat 30 40 15 15 Roboticb - 30 50... Wheeled Light W-M = Wheeled Medium W-H = Wheeled Heavy LM-TT = Light/Medium Truck H-TT = Heavy Truck Tractor/Trailer M = Motorcycle FT = Fire ...TYPE Final 3. DATES COVERED (From - To) 4. TITLE AND SUBTITLE Test Operations Procedure (TOP) 02-2-506A Wheeled and Tracked Vehicle Endurance

  15. Wheel speed management control system for spacecraft

    NASA Technical Reports Server (NTRS)

    Goodzeit, Neil E. (Inventor); Linder, David M. (Inventor)

    1991-01-01

    A spacecraft attitude control system uses at least four reaction wheels. In order to minimize reaction wheel speed and therefore power, a wheel speed management system is provided. The management system monitors the wheel speeds and generates a wheel speed error vector. The error vector is integrated, and the error vector and its integral are combined to form a correction vector. The correction vector is summed with the attitude control torque command signals for driving the reaction wheels.

  16. STATISTICAL ANALYSIS OF TANK 5 FLOOR SAMPLE RESULTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shine, E.

    2012-03-14

    Sampling has been completed for the characterization of the residual material on the floor of Tank 5 in the F-Area Tank Farm at the Savannah River Site (SRS), near Aiken, SC. The sampling was performed by Savannah River Remediation (SRR) LLC using a stratified random sampling plan with volume-proportional compositing. The plan consisted of partitioning the residual material on the floor of Tank 5 into three non-overlapping strata: two strata enclosed accumulations, and a third stratum consisted of a thin layer of material outside the regions of the two accumulations. Each of three composite samples was constructed from five primarymore » sample locations of residual material on the floor of Tank 5. Three of the primary samples were obtained from the stratum containing the thin layer of material, and one primary sample was obtained from each of the two strata containing an accumulation. This report documents the statistical analyses of the analytical results for the composite samples. The objective of the analysis is to determine the mean concentrations and upper 95% confidence (UCL95) bounds for the mean concentrations for a set of analytes in the tank residuals. The statistical procedures employed in the analyses were consistent with the Environmental Protection Agency (EPA) technical guidance by Singh and others [2010]. Savannah River National Laboratory (SRNL) measured the sample bulk density, nonvolatile beta, gross alpha, radionuclide, inorganic, and anion concentrations three times for each of the composite samples. The analyte concentration data were partitioned into three separate groups for further analysis: analytes with every measurement above their minimum detectable concentrations (MDCs), analytes with no measurements above their MDCs, and analytes with a mixture of some measurement results above and below their MDCs. The means, standard deviations, and UCL95s were computed for the analytes in the two groups that had at least some measurements above

  17. Statistical Analysis of Tank 5 Floor Sample Results

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shine, E. P.

    2013-01-31

    Sampling has been completed for the characterization of the residual material on the floor of Tank 5 in the F-Area Tank Farm at the Savannah River Site (SRS), near Aiken, SC. The sampling was performed by Savannah River Remediation (SRR) LLC using a stratified random sampling plan with volume-proportional compositing. The plan consisted of partitioning the residual material on the floor of Tank 5 into three non-overlapping strata: two strata enclosed accumulations, and a third stratum consisted of a thin layer of material outside the regions of the two accumulations. Each of three composite samples was constructed from five primarymore » sample locations of residual material on the floor of Tank 5. Three of the primary samples were obtained from the stratum containing the thin layer of material, and one primary sample was obtained from each of the two strata containing an accumulation. This report documents the statistical analyses of the analytical results for the composite samples. The objective of the analysis is to determine the mean concentrations and upper 95% confidence (UCL95) bounds for the mean concentrations for a set of analytes in the tank residuals. The statistical procedures employed in the analyses were consistent with the Environmental Protection Agency (EPA) technical guidance by Singh and others [2010]. Savannah River National Laboratory (SRNL) measured the sample bulk density, nonvolatile beta, gross alpha, and the radionuclide1, elemental, and chemical concentrations three times for each of the composite samples. The analyte concentration data were partitioned into three separate groups for further analysis: analytes with every measurement above their minimum detectable concentrations (MDCs), analytes with no measurements above their MDCs, and analytes with a mixture of some measurement results above and below their MDCs. The means, standard deviations, and UCL95s were computed for the analytes in the two groups that had at least some

  18. Statistical Analysis Of Tank 5 Floor Sample Results

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shine, E. P.

    2012-08-01

    Sampling has been completed for the characterization of the residual material on the floor of Tank 5 in the F-Area Tank Farm at the Savannah River Site (SRS), near Aiken, SC. The sampling was performed by Savannah River Remediation (SRR) LLC using a stratified random sampling plan with volume-proportional compositing. The plan consisted of partitioning the residual material on the floor of Tank 5 into three non-overlapping strata: two strata enclosed accumulations, and a third stratum consisted of a thin layer of material outside the regions of the two accumulations. Each of three composite samples was constructed from five primarymore » sample locations of residual material on the floor of Tank 5. Three of the primary samples were obtained from the stratum containing the thin layer of material, and one primary sample was obtained from each of the two strata containing an accumulation. This report documents the statistical analyses of the analytical results for the composite samples. The objective of the analysis is to determine the mean concentrations and upper 95% confidence (UCL95) bounds for the mean concentrations for a set of analytes in the tank residuals. The statistical procedures employed in the analyses were consistent with the Environmental Protection Agency (EPA) technical guidance by Singh and others [2010]. Savannah River National Laboratory (SRNL) measured the sample bulk density, nonvolatile beta, gross alpha, and the radionuclide, elemental, and chemical concentrations three times for each of the composite samples. The analyte concentration data were partitioned into three separate groups for further analysis: analytes with every measurement above their minimum detectable concentrations (MDCs), analytes with no measurements above their MDCs, and analytes with a mixture of some measurement results above and below their MDCs. The means, standard deviations, and UCL95s were computed for the analytes in the two groups that had at least some

  19. Development and validation of quasi-steady-state heat pump water heater model having stratified water tank and wrapped-tank condenser

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shen, Bo; Nawaz, Kashif; Baxter, Van D.

    Heat pump water heater systems (HPWH) introduce new challenges for design and modeling tools, because they require vapor compression system balanced with a water storage tank. In addition, a wrapped-tank condenser coil has strong coupling with a stratified water tank, which leads HPWH simulation to a transient process. To tackle these challenges and deliver an effective, hardware-based HPWH equipment design tool, a quasi-steady-state HPWH model was developed based on the DOE/ORNL Heat Pump Design Model (HPDM). Two new component models were added via this study. One is a one-dimensional stratified water tank model, an improvement to the open-source EnergyPlus watermore » tank model, by introducing a calibration factor to account for bulk mixing effect due to water draws, circulations, etc. The other is a wrapped-tank condenser coil model, using a segment-to-segment modeling approach. In conclusion, the HPWH system model was validated against available experimental data. After that, the model was used for parametric simulations to determine the effects of various design factors.« less

  20. Development and validation of quasi-steady-state heat pump water heater model having stratified water tank and wrapped-tank condenser

    DOE PAGES

    Shen, Bo; Nawaz, Kashif; Baxter, Van D.; ...

    2017-10-31

    Heat pump water heater systems (HPWH) introduce new challenges for design and modeling tools, because they require vapor compression system balanced with a water storage tank. In addition, a wrapped-tank condenser coil has strong coupling with a stratified water tank, which leads HPWH simulation to a transient process. To tackle these challenges and deliver an effective, hardware-based HPWH equipment design tool, a quasi-steady-state HPWH model was developed based on the DOE/ORNL Heat Pump Design Model (HPDM). Two new component models were added via this study. One is a one-dimensional stratified water tank model, an improvement to the open-source EnergyPlus watermore » tank model, by introducing a calibration factor to account for bulk mixing effect due to water draws, circulations, etc. The other is a wrapped-tank condenser coil model, using a segment-to-segment modeling approach. In conclusion, the HPWH system model was validated against available experimental data. After that, the model was used for parametric simulations to determine the effects of various design factors.« less

  1. Energy-Absorbing, Lightweight Wheels

    NASA Technical Reports Server (NTRS)

    Waydo, Peter

    2003-01-01

    Improved energy-absorbing wheels are under development for use on special-purpose vehicles that must traverse rough terrain under conditions (e.g., extreme cold) in which rubber pneumatic tires would fail. The designs of these wheels differ from those of prior non-pneumatic energy-absorbing wheels in ways that result in lighter weights and more effective reduction of stresses generated by ground/wheel contact forces. These wheels could be made of metals and/or composite materials to withstand the expected extreme operating conditions. As shown in the figure, a wheel according to this concept would include an isogrid tire connected to a hub via spring rods. The isogrid tire would be a stiff, lightweight structure typically made of aluminum. The isogrid aspect of the structure would both impart stiffness and act as a traction surface. The hub would be a thin-walled body of revolution having a simple or compound conical or other shape chosen for structural efficiency. The spring rods would absorb energy and partially isolate the hub and the supported vehicle from impact loads. The general spring-rod configuration shown in the figure was chosen because it would distribute contact and impact loads nearly evenly around the periphery of the hub, thereby helping to protect the hub against damage that would otherwise be caused by large loads concentrated onto small portions of the hub.

  2. 49 CFR 179.101 - Individual specification requirements applicable to pressure tank car tanks.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... to pressure tank car tanks. 179.101 Section 179.101 Transportation Other Regulations Relating to... (CONTINUED) SPECIFICATIONS FOR TANK CARS Specifications for Pressure Tank Car Tanks (Classes DOT-105, 109, 112, 114 and 120) § 179.101 Individual specification requirements applicable to pressure tank car...

  3. 49 CFR 179.101 - Individual specification requirements applicable to pressure tank car tanks.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... to pressure tank car tanks. 179.101 Section 179.101 Transportation Other Regulations Relating to... (CONTINUED) SPECIFICATIONS FOR TANK CARS Specifications for Pressure Tank Car Tanks (Classes DOT-105, 109, 112, 114 and 120) § 179.101 Individual specification requirements applicable to pressure tank car...

  4. 49 CFR 179.101 - Individual specification requirements applicable to pressure tank car tanks.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... to pressure tank car tanks. 179.101 Section 179.101 Transportation Other Regulations Relating to... (CONTINUED) SPECIFICATIONS FOR TANK CARS Specifications for Pressure Tank Car Tanks (Classes DOT-105, 109, 112, 114 and 120) § 179.101 Individual specification requirements applicable to pressure tank car...

  5. A web-based electronic patient record (ePR) system for data integration in movement analysis research on wheel-chair users to minimize shoulder pain

    NASA Astrophysics Data System (ADS)

    Deshpande, Ruchi R.; Requejo, Philip; Sutisna, Erry; Wang, Ximing; Liu, Margaret; McNitt-Gray, Sarah; Ruparel, Puja; Liu, Brent J.

    2012-02-01

    Patients confined to manual wheel-chairs are at an added risk of shoulder injury. There is a need for developing optimal bio-mechanical techniques for wheel-chair propulsion through movement analysis. Data collected is diverse and in need of normalization and integration. Current databases are ad-hoc and do not provide flexibility, extensibility and ease of access. The need for an efficient means to retrieve specific trial data, display it and compare data from multiple trials is unmet through lack of data association and synchronicity. We propose the development of a robust web-based ePR system that will enhance workflow and facilitate efficient data management.

  6. Wheel liner design for improved sound and structural performances

    NASA Astrophysics Data System (ADS)

    Oltean, Alexandru; Diaconescu, Claudiu; Tabacu, Ştefan

    2017-10-01

    Vehicle noise is composed mainly of wheel-road noise and noise from the power unit. At low speeds power unit noise dominates while at high speeds wheel-road noise dominates as wheel-road noise level increases approximately logarithmically with speed. The wheel liner is designed as a component of the vehicle that has a multiple role. It has to prevent the dirt or water from the road surface that are engaged by the wheel to access the engine/front bay. Same time it has the important role to reduce perceived noised in the passenger’s compartment that comes from the wheel-road interaction. Progress in plastic injection moulding technology allowed for new structures to be developed - nonwoven materials in combination with a PP based carrier structure which benefits from a cell structure caused by MuCell injection moulding. The results are light parts with increased sound absorption performances. An adapted combination of materials and production processes can provide the solution for stiff yet soundproofing structures valued for modern vehicles. Sound absorption characteristics of materials used for wheel liners applications were reported in this study. Different polypropylene and polyester fibre-based thermally bonded nonwovens varying in weight and thickness were investigated. Having as a background the performances of the nonwoven material the microcellular structure was part of the analysis. Acoustical absorptive behaviour was explained by analysing the results obtained using the impedance tube and correlating with the knowledge of materials structure.

  7. 49 CFR 215.103 - Defective wheel.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... less; (d) A wheel rim, flange, plate, or hub area on the car has a crack or break; (e) A wheel on the... 49 Transportation 4 2012-10-01 2012-10-01 false Defective wheel. 215.103 Section 215.103... § 215.103 Defective wheel. A railroad may not place or continue in service a car, if— (a) A wheel flange...

  8. 49 CFR 215.103 - Defective wheel.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... less; (d) A wheel rim, flange, plate, or hub area on the car has a crack or break; (e) A wheel on the... 49 Transportation 4 2011-10-01 2011-10-01 false Defective wheel. 215.103 Section 215.103... § 215.103 Defective wheel. A railroad may not place or continue in service a car, if— (a) A wheel flange...

  9. 49 CFR 215.103 - Defective wheel.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... less; (d) A wheel rim, flange, plate, or hub area on the car has a crack or break; (e) A wheel on the... 49 Transportation 4 2010-10-01 2010-10-01 false Defective wheel. 215.103 Section 215.103... § 215.103 Defective wheel. A railroad may not place or continue in service a car, if— (a) A wheel flange...

  10. 49 CFR 215.103 - Defective wheel.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... less; (d) A wheel rim, flange, plate, or hub area on the car has a crack or break; (e) A wheel on the... 49 Transportation 4 2014-10-01 2014-10-01 false Defective wheel. 215.103 Section 215.103... § 215.103 Defective wheel. A railroad may not place or continue in service a car, if— (a) A wheel flange...

  11. 49 CFR 215.103 - Defective wheel.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... less; (d) A wheel rim, flange, plate, or hub area on the car has a crack or break; (e) A wheel on the... 49 Transportation 4 2013-10-01 2013-10-01 false Defective wheel. 215.103 Section 215.103... § 215.103 Defective wheel. A railroad may not place or continue in service a car, if— (a) A wheel flange...

  12. Analysis and test of low profile aluminum aerospace tank dome

    NASA Technical Reports Server (NTRS)

    Ahmed, R.; Wilhelm, J. M.

    1993-01-01

    In order to increase the structural performance of cryogenic tanks, the aerospace industry is beginning to employ low-profile bulkheads in new generation launch vehicle designs. This report details the analysis and test of one such dome made from 2219 aluminum. Such domes have two potential failure modes under internal pressure, general tensile failure and hoop compression buckling (in regions near the equator). The test determined the buckling load and ultimate tensile load of the hardware and showed that both compared well with the analysis predictions. This effort was conducted under the auspices of NASA and the General Dynamics Cryogenic Tank Technology Program (CTTP).

  13. Analysis and test of low profile aluminum aerospace tank dome

    NASA Astrophysics Data System (ADS)

    Ahmed, R.; Wilhelm, J. M.

    1993-12-01

    In order to increase the structural performance of cryogenic tanks, the aerospace industry is beginning to employ low-profile bulkheads in new generation launch vehicle designs. This report details the analysis and test of one such dome made from 2219 aluminum. Such domes have two potential failure modes under internal pressure, general tensile failure and hoop compression buckling (in regions near the equator). The test determined the buckling load and ultimate tensile load of the hardware and showed that both compared well with the analysis predictions. This effort was conducted under the auspices of NASA and the General Dynamics Cryogenic Tank Technology Program (CTTP).

  14. Research on Wheel Steel Welding Cracks Caused by Quenching Stress

    NASA Astrophysics Data System (ADS)

    Guan-nan, Li

    Wheel steel products of Han Steel occurred welding cracking when using in a wheel factory, by analyzing the crack in the wheel steel weld cracking with microstructure analysis and spectrum analysis, test results showed the grain in heat affect zone serious grow, and the user at the end of the flash-butt quenched from a high temperature to room temperature at welding seam, larger cooling rate to generate sufficiently large quenching stress, increased the risk of cracking along the grain boundary. When the stress reaches a certain level, there will be a greater area of the grain cracks at the location of welding seam, eventually leading to weld cracking. We develop measures for improvement to solving this problem, we suggest that the cooling mode at welding seam should be slow cooling or air cooling after the rim welding process, welding current range is 7800 9500 amps, upsetting time is 0.2 seconds, these measures can improve the welding quality of wheel steel products and reduce the risk of welding cracks.

  15. Considerations on the use of elastic wheels to the urban transport vehicles

    NASA Astrophysics Data System (ADS)

    Sebesan, Ioan; Arsene, Sorin; Manea, Ion

    2018-03-01

    To minimize dynamic wheel-rail interaction efforts a condition is that the unassembled mass of the vehicle is as small as possible. The elastic wheel by its construction fulfills these conditions - she has interposed between the crown and the body of the wheel, the elastic rubber elements. In this way, it can be considered that the unsupported mass is represented only by the mass of the wheel crown. Additionally, this elasticity also has a reduction effect on rolling noise. This feature makes it suitable for use on urban transport vehicles.

  16. Tank characterization report for double-shell tank 241-AW-105

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sasaki, L.M.

    1997-06-05

    One of the major functions of the Tank Waste Remediation System (TWRS) is to characterize wastes in support of waste management and disposal activities at the Hanford Site. Analytical data from sampling and analysis, along with other available information about a tank, are compiled and maintained in a tank characterization report (TCR). This report and its appendices serve as the TCR for double-shell tank 241-AW-105. The objectives of this report are to use characterization data in response to technical issues associated with tank 241-AW-105 waste; and to provide a standard characterization of this waste in terms of a best-basis inventorymore » estimate. The response to technical issues is summarized in Section 2.0, and the best-basis inventory estimate is presented in Section 3.0. Recommendations regarding safety status and additional sampling needs are provided in Section 4.0. Supporting data and information are contained in the appendices. This report supports the requirements of the Hanford Federal Facility Agreement and Consent Order milestone Characterization. information presented in this report originated from sample analyses and known historical sources. While only the results of a recent sampling event will be used to fulfill the requirements of the data quality objectives (DQOs), other information can be used to support or question conclusions derived from these results. Historical information for tank 241-AW-105 is provided in Appendix A, including surveillance information, records pertaining to waste transfers and tank operations, and expected tank contents derived from a process knowledge model. The recent sampling event listed, as well as pertinent sample data obtained before 1996, are summarized in Appendix B along with the sampling results. The results of the 1996 grab sampling event satisfied the data requirements specified in the sampling and analysis plan (SAP) for this tank. In addition, the tank headspace flammability was measured, which

  17. Test-Analysis Correlation for Space Shuttle External Tank Foam Impacting RCC Wing Leading Edge Component Panels

    NASA Technical Reports Server (NTRS)

    Lyle, Karen H.

    2008-01-01

    The Space Shuttle Columbia Accident Investigation Board recommended that NASA develop, validate, and maintain a modeling tool capable of predicting the damage threshold for debris impacts on the Space Shuttle Reinforced Carbon-Carbon (RCC) wing leading edge and nosecap assembly. The results presented in this paper are one part of a multi-level approach that supported the development of the predictive tool used to recertify the shuttle for flight following the Columbia Accident. The assessment of predictive capability was largely based on test analysis comparisons for simpler component structures. This paper provides comparisons of finite element simulations with test data for external tank foam debris impacts onto 6-in. square RCC flat panels. Both quantitative displacement and qualitative damage assessment correlations are provided. The comparisons show good agreement and provided the Space Shuttle Program with confidence in the predictive tool.

  18. Preliminary Design and Investigation of Integrated Compressor with Composite Material Wheel

    NASA Astrophysics Data System (ADS)

    Wang, Jifeng; Müller, Norbert

    2012-06-01

    An integrated water vapor compressor with composite material wheel is developed and strength analysis using FEM is presented. The design of wound composite material allows for integrating all rotating parts of the drive that may simply reduce to only the rotor of the electrical motor, since no drive shaft is required anymore. This design can reduce the number of parts and mass, which is convenient for engineers to maintain the compressor. The electrical motors are brushless DC motors operating through a frequency drive and apply a torque on the wheels through the materials bonded in the wheel shrouds. This system allows a large amount of compression to be produced in a multi-stage compression setup. To determine the stress and vibration characteristics of this integrated compressor, numerical analysis is carried out using FEM. The simulation result shows that the integrated compressor with composite material wheel can be used in a chiller system where water as a refrigerant.

  19. Wheel-type magnetic refrigerator

    DOEpatents

    Barclay, J.A.

    1983-10-11

    The disclosure is directed to a wheel-type magnetic refrigerator capable of cooling over a large temperature range. Ferromagnetic or paramagnetic porous materials are layered circumferentially according to their Curie temperature. The innermost layer has the lowest Curie temperature and the outermost layer has the highest Curie temperature. The wheel is rotated through a magnetic field perpendicular to the axis of the wheel and parallel to its direction of rotation. A fluid is pumped through portions of the layers using inner and outer manifolds to achieve refrigeration of a thermal load. 7 figs.

  20. Wheel-type magnetic refrigerator

    DOEpatents

    Barclay, John A.

    1983-01-01

    The disclosure is directed to a wheel-type magnetic refrigerator capable of cooling over a large temperature range. Ferromagnetic or paramagnetic porous materials are layered circumferentially according to their Curie temperature. The innermost layer has the lowest Curie temperature and the outermost layer has the highest Curie temperature. The wheel is rotated through a magnetic field perpendicular to the axis of the wheel and parallel to its direction of rotation. A fluid is pumped through portions of the layers using inner and outer manifolds to achieve refrigeration of a thermal load.

  1. Wheel-type magnetic refrigerator

    DOEpatents

    Barclay, J.A.

    1982-01-20

    The disclosure is directed to a wheel-type magnetic refrigerator capable of cooling over a large temperature range. Ferromagnetic or paramagnetic porous materials are layered circumferentially according to their Curie temperature. The innermost layer has the lowest Curie temperature and the outermost layer has the highest Curie temperature. The wheel is rotated through a magnetic field perpendicular to the axis of the wheel and parallel to its direction of rotation. A fluid is pumped through portions of the layers using inner and outer manifolds to achieve refrigeration of a thermal load.

  2. ANALYSIS OF SAMPLES FROM TANK 5F CHEMICAL CLEANING

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Poirier, M.; Fink, S.

    2011-03-07

    The Savannah River Site (SRS) is preparing Tank 5F for closure. The first step in preparing the tank for closure is mechanical sludge removal. Following mechanical sludge removal, SRS performed chemical cleaning with oxalic acid to remove the sludge heel. Personnel are currently assessing the effectiveness of the chemical cleaning. SRS personnel collected liquid samples during chemical cleaning and submitted them to Savannah River National Laboratory (SRNL) for analysis. Following chemical cleaning, they collected a solid sample (also known as 'process sample') and submitted it to SRNL for analysis. The authors analyzed these samples to assess the effectiveness of themore » chemical cleaning process. The conclusions from this work are: (1) With the exception of iron, the dissolution of sludge components from Tank 5F agreed with results from the actual waste demonstration performed in 2007. The fraction of iron removed from Tank 5F by chemical cleaning was significantly less than the fraction removed in the SRNL demonstrations. The likely cause of this difference is the high pH following the first oxalic acid strike. (2) Most of the sludge mass remaining in the tank is iron and nickel. (3) The remaining sludge contains approximately 26 kg of barium, 37 kg of chromium, and 37 kg of mercury. (4) Most of the radioactivity remaining in the residual material is beta emitters and {sup 90}Sr. (5) The chemical cleaning removed more than {approx} 90% of the uranium isotopes and {sup 137}Cs. (6) The chemical cleaning removed {approx} 70% of the neptunium, {approx} 83% of the {sup 90}Sr, and {approx} 21% of the {sup 60}Co. (7) The chemical cleaning removed less than 10% of the plutonium, americium, and curium isotopes. (8) The chemical cleaning removed more than 90% of the aluminium, calcium, and sodium from the tank. (9) The cleaning operations removed 61% of lithium, 88% of non-radioactive strontium, and 65% of zirconium. The {sup 90}Sr and non-radioactive strontium were

  3. Four-Wheel Vehicle Suspension System

    NASA Technical Reports Server (NTRS)

    Bickler, Donald B.

    1990-01-01

    Four-wheel suspension system uses simple system of levers with no compliant components to provide three-point suspension of chassis of vehicle while maintaining four-point contact with uneven terrain. Provides stability against tipping of four-point rectangular base, without rocking contact to which rigid four-wheel frame susceptible. Similar to six-wheel suspension system described in "Articulated Suspension Without Springs" (NPO-17354).

  4. Characterizing the Perfonnance of the Wheel Electrostatic Spectrometer

    NASA Technical Reports Server (NTRS)

    Johansen, Michael R.; Mackey, P. J.; Holbert, E.; Clements, J. S.; Calle, C. I.

    2013-01-01

    A Wheel Electrostatic Spectrometer has been developed as a surveying tool to be incorporated into a planetary rover design. Electrostatic sensors with various protruding cover insulators are embedded into a prototype rover wheel. When these insulators come into contact with a surface, a charge develops on the cover insulator through tribocharging. A charge spectrum is created by analyzing the accumulated charge on each of the dissimilar cover insulators. We eventually intend to prove charge spectra can be used o determine differences in planetary regolith properties. We tested the effects of residual surface charge on the cover insulators and discovered a need to discharge the sensor cover insulators after each revolution. We proved the repeatability of the measurements for this sensor package and found that the sensor repeatability lies within one standard deviation of the noise in the signal.

  5. Thermal-Structural Optimization of Integrated Cryogenic Propellant Tank Concepts for a Reusable Launch Vehicle

    NASA Technical Reports Server (NTRS)

    Johnson, Theodore F.; Waters, W. Allen; Singer, Thomas N.; Haftka, Raphael T.

    2004-01-01

    A next generation reusable launch vehicle (RLV) will require thermally efficient and light-weight cryogenic propellant tank structures. Since these tanks will be weight-critical, analytical tools must be developed to aid in sizing the thickness of insulation layers and structural geometry for optimal performance. Finite element method (FEM) models of the tank and insulation layers were created to analyze the thermal performance of the cryogenic insulation layer and thermal protection system (TPS) of the tanks. The thermal conditions of ground-hold and re-entry/soak-through for a typical RLV mission were used in the thermal sizing study. A general-purpose nonlinear FEM analysis code, capable of using temperature and pressure dependent material properties, was used as the thermal analysis code. Mechanical loads from ground handling and proof-pressure testing were used to size the structural geometry of an aluminum cryogenic tank wall. Nonlinear deterministic optimization and reliability optimization techniques were the analytical tools used to size the geometry of the isogrid stiffeners and thickness of the skin. The results from the sizing study indicate that a commercial FEM code can be used for thermal analyses to size the insulation thicknesses where the temperature and pressure were varied. The results from the structural sizing study show that using combined deterministic and reliability optimization techniques can obtain alternate and lighter designs than the designs obtained from deterministic optimization methods alone.

  6. PowerWheel - A new look at waterwheels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weisman, R.N.; Broome, K.R.; Mayo, H.A.

    1995-12-31

    The PowerWheel is an advanced overshot water wheel, designed to generate electric power at drop structures on canals or on overflow spillways. Unlike the wheels of the 18th and 19th century which were designed to have maximum efficiency at a single flow rate, the current applications demand a wheel that can operate efficiently over a wide range of flows. The prototype PowerWheel will have a width to diameter ratio of 3 or more, in contrast to the wheels of the 19th century, which had large diameters and narrow widths. A model PowerWheel was built of plexiglass and delivered for testingmore » to the Imbt Hydraulics Laboratory at Lehigh University. The wheel has a diameter of 3.5 ft and is 16 in wide. The wheel contains 20 buckets and the bucket depth can be varied from a shallow depth of 4 in to a mid depth of 7 in to 10 in for the deep bucket. The blades have a rather simple geometry with a 4 in radius quarter circle at the outside of the wheel and then straight to the bottom of the bucket. The flume in which the wheel was tested has a width of 18 in. A hole was cut in the head box of the flume and a delivery chute was connected to the head box. The position of the chute can readily be moved up or down in relation to the wheel; for a fixed position of the chute on the head box, the slope of the chute can be changed because the chute was attached to the head box with a piano hinge. The laboratory flow system can deliver flow up to 6 cfs through a calibrated Venturi meter. The PowerWheel was subjected to flows ranging from 0.3 to 3.5 cfs.« less

  7. Propulsion Wheel Motor for an Electric Vehicle

    NASA Technical Reports Server (NTRS)

    Herrera, Eduardo (Inventor); Farrell, Logan Christopher (Inventor); Guo, Raymond (Inventor); Junkin, Lucien Q. (Inventor); Bluethmann, William J. (Inventor); Vitale, Robert L. (Inventor); Weber, Steven J. (Inventor); Lee, Chunhao J. (Inventor); Eggleston, IV, Raymond Edward (Inventor); Figuered, Joshua M. (Inventor); hide

    2016-01-01

    A wheel assembly for an electric vehicle includes a wheel rim that is concentrically disposed about a central axis. A propulsion-braking module is disposed within an interior region of the wheel rim. The propulsion-braking module rotatably supports the wheel rim for rotation about the central axis. The propulsion-braking module includes a liquid cooled electric motor having a rotor rotatable about the central axis, and a stator disposed radially inside the rotor relative to the central axis. A motor-wheel interface hub is fixedly attached to the wheel rim, and is directly attached to the rotor for rotation with the rotor. The motor-wheel interface hub directly transmits torque from the electric motor to the wheel rim at a 1:1 ratio. The propulsion-braking module includes a drum brake system having an electric motor that rotates a cam device, which actuates the brake shoes.

  8. Tire/wheel concept

    NASA Technical Reports Server (NTRS)

    Harper, P. M., Sr. (Inventor)

    1981-01-01

    A tire and wheel assembly is disclosed in which a low profile pneumatic tire (having sidewalls which deflect inwardly under load) and a wheel (having a rim featuring a narrow central channel and extended rim flanges) form the combination. The extended rim flanges support the tire sidewalls under static and dynamic loading conditions to produce a combination particularly suited to aircraft applications.

  9. Design sensitivity analysis and optimization tool (DSO) for sizing design applications

    NASA Technical Reports Server (NTRS)

    Chang, Kuang-Hua; Choi, Kyung K.; Perng, Jyh-Hwa

    1992-01-01

    The DSO tool, a structural design software system that provides the designer with a graphics-based menu-driven design environment to perform easy design optimization for general applications, is presented. Three design stages, preprocessing, design sensitivity analysis, and postprocessing, are implemented in the DSO to allow the designer to carry out the design process systematically. A framework, including data base, user interface, foundation class, and remote module, has been designed and implemented to facilitate software development for the DSO. A number of dedicated commercial software/packages have been integrated in the DSO to support the design procedures. Instead of parameterizing an FEM, design parameters are defined on a geometric model associated with physical quantities, and the continuum design sensitivity analysis theory is implemented to compute design sensitivity coefficients using postprocessing data from the analysis codes. A tracked vehicle road wheel is given as a sizing design application to demonstrate the DSO's easy and convenient design optimization process.

  10. A rational fraction polynomials model to study vertical dynamic wheel-rail interaction

    NASA Astrophysics Data System (ADS)

    Correa, N.; Vadillo, E. G.; Santamaria, J.; Gómez, J.

    2012-04-01

    This paper presents a model designed to study vertical interactions between wheel and rail when the wheel moves over a rail welding. The model focuses on the spatial domain, and is drawn up in a simple fashion from track receptances. The paper obtains the receptances from a full track model in the frequency domain already developed by the authors, which includes deformation of the rail section and propagation of bending, elongation and torsional waves along an infinite track. Transformation between domains was secured by applying a modified rational fraction polynomials method. This obtains a track model with very few degrees of freedom, and thus with minimum time consumption for integration, with a good match to the original model over a sufficiently broad range of frequencies. Wheel-rail interaction is modelled on a non-linear Hertzian spring, and consideration is given to parametric excitation caused by the wheel moving over a sleeper, since this is a moving wheel model and not a moving irregularity model. The model is used to study the dynamic loads and displacements emerging at the wheel-rail contact passing over a welding defect at different speeds.

  11. A third-order approximation method for three-dimensional wheel-rail contact

    NASA Astrophysics Data System (ADS)

    Negretti, Daniele

    2012-03-01

    Multibody train analysis is used increasingly by railway operators whenever a reliable and time-efficient method to evaluate the contact between wheel and rail is needed; particularly, the wheel-rail contact is one of the most important aspects that affects a reliable and time-efficient vehicle dynamics computation. The focus of the approach proposed here is to carry out such tasks by means of online wheel-rail elastic contact detection. In order to improve efficiency and save time, a main analytical approach is used for the definition of wheel and rail surfaces as well as for contact detection, then a final numerical evaluation is used to locate contact. The final numerical procedure consists in finding the zeros of a nonlinear function in a single variable. The overall method is based on the approximation of the wheel surface, which does not influence the contact location significantly, as shown in the paper.

  12. Contamination of the GOES-K filter wheel cooler

    NASA Astrophysics Data System (ADS)

    Sanders, Jack T., Jr.; Rosecrans, Glenn P.

    1998-10-01

    The Geostationary Operational Environmental Satellite (GOES) Sounder instrument uses radiant coolers to reduce the operating temperature of the detectors and filter wheel. GOES resides in an equatorial orbit 36,000 kilometers above the earth, and is stationary with respect to it. During the year, all sides of the spacecraft are exposed to the sun; the filter wheel emitter and detector radiators must be shielded form it to adequately cooled these components for nominal operations.Mirror Optical Solar Reflectors are used too reject sunlight before it can strike the radiators. Molecular outgassing from the Sounder instrument cavity, the filter wheel module, and the Sounder vacuum cooler housing have been demonstrated through mass transport modeling to contaminate the filter wheel sunshield panels during the in- orbit Radiant Cooler bakeout. Excessive molecular and particulate contamination can increase solar energy scatter, increase thermal emittance, and increase solar absorptance; all of which can increase the temperature of the components they serve, thus degrading nominal operations. After the GOES-K spacecraft thermal vacuum test, a haze was observed on and around the entrance aperture, and on the inside faces the filter wheel cooler sunshield. This paper documents the inspections, testing, and analysis used to: a) locate the likely sources for the contaminants, b) predict molecular contaminant accumulation on the filter wheel sunshields during the in-orbit bakeout, c) estimate the thermal effects from molecular build-up, and d) assess proposed hardware modifications and show the selection rationale used to maintain functionality for the GOES-K Sounder instrument.

  13. 49 CFR 179.101 - Individual specification requirements applicable to pressure tank car tanks.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... to pressure tank car tanks. 179.101 Section 179.101 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) SPECIFICATIONS FOR TANK CARS Specifications for Pressure Tank Car Tanks (Classes DOT-105, 109...

  14. 49 CFR 179.201 - Individual specification requirements applicable to non-pressure tank car tanks.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... to non-pressure tank car tanks. 179.201 Section 179.201 Transportation Other Regulations Relating to... (CONTINUED) SPECIFICATIONS FOR TANK CARS Specifications for Non-Pressure Tank Car Tanks (Classes DOT-111AW and 115AW) § 179.201 Individual specification requirements applicable to non-pressure tank car tanks. ...

  15. 49 CFR 179.201 - Individual specification requirements applicable to non-pressure tank car tanks.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... to non-pressure tank car tanks. 179.201 Section 179.201 Transportation Other Regulations Relating to... (CONTINUED) SPECIFICATIONS FOR TANK CARS Specifications for Non-Pressure Tank Car Tanks (Classes DOT-111AW and 115AW) § 179.201 Individual specification requirements applicable to non-pressure tank car tanks. ...

  16. 49 CFR 179.201 - Individual specification requirements applicable to non-pressure tank car tanks.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... to non-pressure tank car tanks. 179.201 Section 179.201 Transportation Other Regulations Relating to... (CONTINUED) SPECIFICATIONS FOR TANK CARS Specifications for Non-Pressure Tank Car Tanks (Classes DOT-111AW and 115AW) § 179.201 Individual specification requirements applicable to non-pressure tank car tanks. ...

  17. Broken rims in railroad wheels.

    DOT National Transportation Integrated Search

    2014-12-01

    Broken wheels are one of the most common types of equipment-caused train accidents. The failure of rail car wheel rims, which : are usually the result of shattered rims or vertical split rims (VSR), are the leading cause of wheel-related accidents, a...

  18. 49 CFR 179.201 - Individual specification requirements applicable to non-pressure tank car tanks.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... to non-pressure tank car tanks. 179.201 Section 179.201 Transportation Other Regulations Relating to... MATERIALS REGULATIONS SPECIFICATIONS FOR TANK CARS Specifications for Non-Pressure Tank Car Tanks (Classes... car tanks. ...

  19. An investigation into the mechanism of the polygonal wear of metro train wheels and its effect on the dynamic behaviour of a wheel/rail system

    NASA Astrophysics Data System (ADS)

    Jin, Xuesong; Wu, Lei; Fang, Jianying; Zhong, Shuoqiao; Ling, Liang

    2012-12-01

    This paper presents a detailed investigation conducted into the mechanism of the polygonal wear of metro train wheels through extensive experiments conducted at the sites. The purpose of the experimental investigation is to determine from where the resonant frequency that causes the polygonal wear of the metro train wheels originates. The experiments include the model tests of a vehicle and its parts and the tracks, the dynamic behaviour test of the vehicle in operation and the observation test of the polygonal wear development of the wheels. The tracks tested include the viaducts and the tunnel tracks. The structure model tests show that the average passing frequency of a polygonal wheel is approximately close to the first bending resonant frequency of the wheelset that is found by the wheelset model test and verified by the finite element analysis of the wheelset. Also, the dynamic behaviour test of the vehicle in operation indicates the main frequencies of the vertical acceleration vibration of the axle boxes, which are dominant in the vertical acceleration vibration of the axle boxes and close to the passing frequency of a polygonal wheel, which shows that the first bending resonant frequency of the wheelset is very exciting in the wheelset operation. The observation test of the polygonal wear development of the wheels indicates an increase in the rate of the polygonal wear of the wheels after their re-profiling. This paper also describes the dynamic models used for the metro vehicle coupled with the ballasted track and the slab track to analyse the effect of the polygonal wear of the wheels on the wheel/rail normal forces.

  20. Using wheel temperature detector technology to monitor railcar brake system effectiveness.

    DOT National Transportation Integrated Search

    2013-12-01

    Wheel temperature detector technology has been used extensively in the railroad industry for the past several decades. The : technology has traditionally been used to identify wheels with elevated temperatures. There is currently a movement in the : ...

  1. Zero-moment point determination of worst-case manoeuvres leading to vehicle wheel lift

    NASA Astrophysics Data System (ADS)

    Lapapong, S.; Brown, A. A.; Swanson, K. S.; Brennan, S. N.

    2012-01-01

    This paper proposes a method to evaluate vehicle rollover propensity based on a frequency-domain representation of the zero-moment point (ZMP). Unlike other rollover metrics such as the static stability factor, which is based on the steady-state behaviour, and the load transfer ratio, which requires the calculation of tyre forces, the ZMP is based on a simplified kinematic model of the vehicle and the analysis of the contact point of the vehicle relative to the edge of the support polygon. Previous work has validated the use of the ZMP experimentally in its ability to predict wheel lift in the time domain. This work explores the use of the ZMP in the frequency domain to allow a chassis designer to understand how operating conditions and vehicle parameters affect rollover propensity. The ZMP analysis is then extended to calculate worst-case sinusoidal manoeuvres that lead to untripped wheel lift, and the analysis is tested across several vehicle configurations and compared with that of the standard Toyota J manoeuvre.

  2. Magnetically suspended reaction wheel assembly

    NASA Technical Reports Server (NTRS)

    Stocking, G.

    1984-01-01

    The magnetically suspended reaction wheel assembly (MSRWA) is the product of a development effort funded by the Air Force Materials Laboratory (AFML) at Wright Patterson AFB. The specific objective of the project was to establish the manufacturing processes for samarium cobalt magnets and demonstrate their use in a space application. The development was successful on both counts. The application portion of the program, which involves the magnetically suspended reaction wheel assembly, is emphasized. The requirements for the reaction wheel were based on the bias wheel requirements of the DSP satellite. The tasks included the design, fabrication, and test of the unit to the DSP program qualification requirements.

  3. Magnetically suspended reaction wheel assembly

    NASA Astrophysics Data System (ADS)

    Stocking, G.

    1984-11-01

    The magnetically suspended reaction wheel assembly (MSRWA) is the product of a development effort funded by the Air Force Materials Laboratory (AFML) at Wright Patterson AFB. The specific objective of the project was to establish the manufacturing processes for samarium cobalt magnets and demonstrate their use in a space application. The development was successful on both counts. The application portion of the program, which involves the magnetically suspended reaction wheel assembly, is emphasized. The requirements for the reaction wheel were based on the bias wheel requirements of the DSP satellite. The tasks included the design, fabrication, and test of the unit to the DSP program qualification requirements.

  4. Energy analysis of electric vehicles using batteries or fuel cells through well-to-wheel driving cycle simulations

    NASA Astrophysics Data System (ADS)

    Campanari, Stefano; Manzolini, Giampaolo; Garcia de la Iglesia, Fernando

    This work presents a study of the energy and environmental balances for electric vehicles using batteries or fuel cells, through the methodology of the well to wheel (WTW) analysis, applied to ECE-EUDC driving cycle simulations. Well to wheel balances are carried out considering different scenarios for the primary energy supply. The fuel cell electric vehicles (FCEV) are based on the polymer electrolyte membrane (PEM) technology, and it is discussed the possibility to feed the fuel cell with (i) hydrogen directly stored onboard and generated separately by water hydrolysis (using renewable energy sources) or by conversion processes using coal or natural gas as primary energy source (through gasification or reforming), (ii) hydrogen generated onboard with a fuel processor fed by natural gas, ethanol, methanol or gasoline. The battery electric vehicles (BEV) are based on Li-ion batteries charged with electricity generated by central power stations, either based on renewable energy, coal, natural gas or reflecting the average EU power generation feedstock. A further alternative is considered: the integration of a small battery to FCEV, exploiting a hybrid solution that allows recovering energy during decelerations and substantially improves the system energy efficiency. After a preliminary WTW analysis carried out under nominal operating conditions, the work discusses the simulation of the vehicles energy consumption when following standardized ECE-EUDC driving cycle. The analysis is carried out considering different hypothesis about the vehicle driving range, the maximum speed requirements and the possibility to sustain more aggressive driving cycles. The analysis shows interesting conclusions, with best results achieved by BEVs only for very limited driving range requirements, while the fuel cell solutions yield best performances for more extended driving ranges where the battery weight becomes too high. Results are finally compared to those of conventional internal

  5. Logistics Process Analysis ToolProcess Analysis Tool

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    2008-03-31

    LPAT is the resulting integrated system between ANL-developed Enhanced Logistics Intra Theater Support Tool (ELIST) sponsored by SDDC-TEA and the Fort Future Virtual Installation Tool (sponsored by CERL). The Fort Future Simulation Engine was an application written in the ANL Repast Simphony framework and used as the basis for the process Anlysis Tool (PAT) which evolved into a stand=-along tool for detailed process analysis at a location. Combined with ELIST, an inter-installation logistics component was added to enable users to define large logistical agent-based models without having to program. PAT is the evolution of an ANL-developed software system called Fortmore » Future Virtual Installation Tool (sponsored by CERL). The Fort Future Simulation Engine was an application written in the ANL Repast Simphony framework and used as the basis for the Process Analysis Tool(PAT) which evolved into a stand-alone tool for detailed process analysis at a location (sponsored by the SDDC-TEA).« less

  6. 49 CFR 179.100 - General specifications applicable to pressure tank car tanks.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... car tanks. 179.100 Section 179.100 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) SPECIFICATIONS FOR TANK CARS Specifications for Pressure Tank Car Tanks (Classes DOT-105, 109, 112, 114 and 120...

  7. NICMOS Filter Wheel Test

    NASA Astrophysics Data System (ADS)

    Malhotra, Sangeeta

    2003-07-01

    This is an engineering test to verify the aliveness, functionality, operability, and electro-mechanical calibration of the NICMOS filter wheel motors and assembly after NCS restart in August 2003. This test has been designed to obviate concerns over possible deformation or breakage of the fitter wheel "soda-straw" shafts due to excess rotational drag torque and/or bending moments which may be imparted due to changes in the dewar metrology from warm-up/cool-down. This test should be executed after the NCS {and filter wheel housing} has reached and approximately equilibrated to its nominal Cycle 11 operating temperature.

  8. Wheel/Rail Noise and Vibration : Volume 1. Mechanics of Wheel Rail Noise Generation.

    DOT National Transportation Integrated Search

    1975-05-01

    The final reports are reported of a project to develop a basic understanding of urban transit wheel/rail noise control measures. Analytical models of impedance, response, radiation efficiency, and directivity of wheels and rails are presented and com...

  9. Tank 30 and 37 Supernatant Sample Cross-Check and Evaporator Feed Qualification Analysis-2012

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oji, L. N.

    2013-03-07

    This report summarizes the analytical data reported by the F/H and Savannah River National Laboratories for the 2012 cross-check analysis for high level waste supernatant liquid samples from SRS Tanks 30 and 37. The intent of this Tank 30 and 37 sample analyses was to perform cross-checks against routine F/H Laboratory analyses (corrosion and evaporator feed qualification programs) using samples collected at the same time from both tanks as well as split samples from the tanks.

  10. Stress Reconstruction Analysis of Wheel Saw Cut Tests and Evaluation of Reconstruction Procedure

    DOT National Transportation Integrated Search

    1993-09-01

    The report is the fourth in a series of engineering studies on railroad vehicle wheel performance. The results of saw cut tests performed on one new and one used wheel designed for a fleet of multiple unit (MU) power cars are summarized and analyzed....

  11. A Nontoxic Barlow's Wheel

    NASA Astrophysics Data System (ADS)

    Daffron, John A.; Greenslade, Thomas B.

    2015-01-01

    Barlow's wheel has been a favorite demonstration since its invention by Peter Barlow (1776-1862) in 1822.1 In the form shown in Fig. 1, it represents the first electric motor. The interaction between the electric current passing from the axle of the wheel to the rim and the magnetic field produced by the U-magnet produces a torque that turns the wheel. The original device used mercury to provide electrical contact to the rim, and the dangers involved with the use of this heavy metal have caused the apparatus to disappear from the lecture hall.

  12. Four-wheel dual braking for automobiles

    NASA Technical Reports Server (NTRS)

    Edwards, H. B.

    1981-01-01

    Each master cylinder applies braking power to all four wheels unlike conventional systems where cylinder operates only two wheels. If one master system fails because of fluid loss, other stops car by braking all four wheels although at half force.

  13. Multi-disciplinary optimization of railway wheels

    NASA Astrophysics Data System (ADS)

    Nielsen, J. C. O.; Fredö, C. R.

    2006-06-01

    A numerical procedure for multi-disciplinary optimization of railway wheels, based on Design of Experiments (DOE) methodology and automated design, is presented. The target is a wheel design that meets the requirements for fatigue strength, while minimizing the unsprung mass and rolling noise. A 3-level full factorial (3LFF) DOE is used to collect data points required to set up Response Surface Models (RSM) relating design and response variables in the design space. Computationally efficient simulations are thereafter performed using the RSM to identify the solution that best fits the design target. A demonstration example, including four geometric design variables in a parametric finite element (FE) model, is presented. The design variables are wheel radius, web thickness, lateral offset between rim and hub, and radii at the transitions rim/web and hub/web, but more variables (including material properties) can be added if needed. To improve further the performance of the wheel design, a constrained layer damping (CLD) treatment is applied on the web. For a given load case, compared to a reference wheel design without CLD, a combination of wheel shape and damping optimization leads to the conclusion that a reduction in the wheel component of A-weighted rolling noise of 11 dB can be achieved if a simultaneous increase in wheel mass of 14 kg is accepted.

  14. Nocturnal to Diurnal Switches with Spontaneous Suppression of Wheel-Running Behavior in a Subterranean Rodent

    PubMed Central

    Tachinardi, Patricia; Tøien, Øivind; Valentinuzzi, Veronica S.; Buck, C. Loren; Oda, Gisele A.

    2015-01-01

    Several rodent species that are diurnal in the field become nocturnal in the lab. It has been suggested that the use of running-wheels in the lab might contribute to this timing switch. This proposition is based on studies that indicate feed-back of vigorous wheel-running on the period and phase of circadian clocks that time daily activity rhythms. Tuco-tucos (Ctenomys aff. knighti) are subterranean rodents that are diurnal in the field but are robustly nocturnal in laboratory, with or without access to running wheels. We assessed their energy metabolism by continuously and simultaneously monitoring rates of oxygen consumption, body temperature, general motor and wheel running activity for several days in the presence and absence of wheels. Surprisingly, some individuals spontaneously suppressed running-wheel activity and switched to diurnality in the respirometry chamber, whereas the remaining animals continued to be nocturnal even after wheel removal. This is the first report of timing switches that occur with spontaneous wheel-running suppression and which are not replicated by removal of the wheel. PMID:26460828

  15. An indentation depth-force sensing wheeled probe for abnormality identification during minimally invasive surgery.

    PubMed

    Liu, H; Puangmali, P; Zbyszewski, D; Elhage, O; Dasgupta, P; Dai, J S; Seneviratne, L; Althoefer, K

    2010-01-01

    This paper presents a novel wheeled probe for the purpose of aiding a surgeon in soft tissue abnormality identification during minimally invasive surgery (MIS), compensating the loss of haptic feedback commonly associated with MIS. Initially, a prototype for validating the concept was developed. The wheeled probe consists of an indentation depth sensor employing an optic fibre sensing scheme and a force/torque sensor. The two sensors work in unison, allowing the wheeled probe to measure the tool-tissue interaction force and the rolling indentation depth concurrently. The indentation depth sensor was developed and initially tested on a homogenous silicone phantom representing a good model for a soft tissue organ; the results show that the sensor can accurately measure the indentation depths occurring while performing rolling indentation, and has good repeatability. To validate the ability of the wheeled probe to identify abnormalities located in the tissue, the device was tested on a silicone phantom containing embedded hard nodules. The experimental data demonstrate that recording the tissue reaction force as well as rolling indentation depth signals during rolling indentation, the wheeled probe can rapidly identify the distribution of tissue stiffness and cause the embedded hard nodules to be accurately located.

  16. Reaction wheels for kinetic energy storage

    NASA Astrophysics Data System (ADS)

    Studer, P. A.

    1984-11-01

    In contrast to all existing reaction wheel implementations, an order of magnitude increase in speed can be obtained efficiently if power to the actuators can be recovered. This allows a combined attitude control-energy storage system to be developed with structure mounted reaction wheels. The feasibility of combining reaction wheels with energy storage wwheels is demonstrated. The power required for control torques is a function of wheel speed but this energy is not dissipated; it is stored in the wheel. The I(2)R loss resulting from a given torque is shown to be constant, independent of the design speed of the motor. What remains, in order to efficiently use high speed wheels (essential for energy storage) for control purposes, is to reduce rotational losses to acceptable levels. Progress was made in permanent magnet motor design for high speed operation. Variable field motors offer more control flexibility and efficiency over a broader speed range.

  17. Reaction wheels for kinetic energy storage

    NASA Technical Reports Server (NTRS)

    Studer, P. A.

    1984-01-01

    In contrast to all existing reaction wheel implementations, an order of magnitude increase in speed can be obtained efficiently if power to the actuators can be recovered. This allows a combined attitude control-energy storage system to be developed with structure mounted reaction wheels. The feasibility of combining reaction wheels with energy storage wwheels is demonstrated. The power required for control torques is a function of wheel speed but this energy is not dissipated; it is stored in the wheel. The I(2)R loss resulting from a given torque is shown to be constant, independent of the design speed of the motor. What remains, in order to efficiently use high speed wheels (essential for energy storage) for control purposes, is to reduce rotational losses to acceptable levels. Progress was made in permanent magnet motor design for high speed operation. Variable field motors offer more control flexibility and efficiency over a broader speed range.

  18. Experimental investigation into the mechanism of the polygonal wear of electric locomotive wheels

    NASA Astrophysics Data System (ADS)

    Tao, Gongquan; Wang, Linfeng; Wen, Zefeng; Guan, Qinghua; Jin, Xuesong

    2018-06-01

    Experiments were conducted at field sites to investigate the mechanism of the polygonal wear of electric locomotive wheels. The polygonal wear rule of electric locomotive wheels was obtained. Moreover, two on-track tests have been carried out to investigate the vibration characteristics of the electric locomotive's key components. The measurement results of wheels out-of-round show that most electric locomotive wheels exhibit polygonal wear. The main centre wavelength in the 1/3 octave bands is 200 mm and/or 160 mm. The test results of vibration characteristics indicate that the dominating frequency of the vertical acceleration measured on the axle box is approximately equal to the passing frequency of a polygonal wheel, and does not vary with the locomotive speed during the acceleration course. The wheelset modal analysis using the finite element method (FEM) indicates that the first bending resonant frequency of the wheelset is quite close to the main vibration frequency of the axle box. The FEM results are verified by the experimental modal analysis of the wheelset. Moreover, different plans were designed to verify whether the braking system and the locomotive's adhesion control have significant influence on the wheel polygon or not. The test results indicate that they are not responsible for the initiation of the wheel polygon. The first bending resonance of the wheelset is easy to be excited in the locomotive operation and it is the root cause of wheel polygon with centre wavelength of 200 mm in the 1/3 octave bands.

  19. Evaluation of Low Hazardous Air Pollutant Thermoset Adhesives for the Application of Rubber-to-Metal Bonding on Army Tank Pads and Road Wheels

    DTIC Science & Technology

    2011-09-01

    Department of the Army. Track Shoe Rebuild; SOP 39; Red River Army Depot, Texarkana , Texas, July 2, 2002. 3. Operational Directorate, Department...of the Army. Rebuild of Wheel, Solid Rubber Tire; SOP 47; Red River Army Depot, Texarkana , Texas, July 15, 2002. 4. Chemcentral Corporation

  20. Wind wheel electric power generator

    NASA Technical Reports Server (NTRS)

    Kaufman, J. W. (Inventor)

    1980-01-01

    Wind wheel electric power generator apparatus includes a housing rotatably mounted upon a vertical support column. Primary and auxiliary funnel-type, venturi ducts are fixed onto the housing for capturing wind currents and conducting to a bladed wheel adapted to be operatively connected with the generator apparatus. Additional air flows are also conducted onto the bladed wheel; all of the air flows positively effecting rotation of the wheel in a cumulative manner. The auxiliary ducts are disposed at an acute angle with respect to the longitudinal axis of the housing, and this feature, together with the rotatability of the housing and the ducts, permits capture of wind currents within a variable directional range.

  1. Thermal Analysis of Reinforced Concrete Tank for Conditioning Wood by FEM Method

    NASA Astrophysics Data System (ADS)

    Błaszczyński, Tomasz; Babiak, Michał; Wielentejczyk, Przemysław

    2017-10-01

    The article introduces the analysis of a RC tank for conditioning wood carried out using the FEM (Finite Element Method). A temperature gradient distribution increase resulting from the influence of hot liquid filling the tank was defined. Values of gradients in border sections of the tank walls and the bottom were defined on the basis of the isotherm method. The obtained results were compared with empirical formulas from literature. Strength analyses were also carried out. Additionally, the problematic aspects of elongated monolithic tanks for liquids were introduced, especially regarding large temperature gradients and the means of necessary technical solutions. The use of the FEM method for designing engineering objects is, nowadays, an irreplaceable solution. In the case of the discussed tank, a spatial model of the construction mapping its actual performance was constructed in order to correctly estimate the necessary dimensions of wall and bottom sections, as well as reinforcement.

  2. Control of a Wheeled Transport Robot with Two Steerable Wheels

    NASA Astrophysics Data System (ADS)

    Larin, V. B.

    2017-09-01

    The control of a system with one actuator failed is studied. The problem of control of a wheeled transport robot with two steerable wheels of which the rear one is stuck (its drive has failed) is solved. An algorithm for controlling the system in this situation is proposed. The effectiveness of the algorithm is demonstrated by way of an example.

  3. Modelling, validation and analysis of a three-dimensional railway vehicle-track system model with linear and nonlinear track properties in the presence of wheel flats

    NASA Astrophysics Data System (ADS)

    Uzzal, R. U. A.; Ahmed, A. K. W.; Bhat, R. B.

    2013-11-01

    This paper presents dynamic contact loads at wheel-rail contact point in a three-dimensional railway vehicle-track model as well as dynamic response at vehicle-track component levels in the presence of wheel flats. The 17-degrees of freedom lumped mass vehicle is modelled as a full car body, two bogies and four wheelsets, whereas the railway track is modelled as two parallel Timoshenko beams periodically supported by lumped masses representing the sleepers. The rail beam is also supported by nonlinear spring and damper elements representing the railpad and ballast. In order to ensure the interactions between the railpads, a shear parameter beneath the rail beams has also been considered into the model. The wheel-rail contact is modelled using nonlinear Hertzian contact theory. In order to solve the coupled partial and ordinary differential equations of the vehicle-track system, modal analysis method is employed. Idealised Haversine wheel flats with the rounded corner are included in the wheel-rail contact model. The developed model is validated with the existing measured and analytical data available in the literature. The nonlinear model is then employed to investigate the wheel-rail impact forces that arise in the wheel-rail interface due to the presence of wheel flats. The validated model is further employed to investigate the dynamic responses of vehicle and track components in terms of displacement, velocity, and acceleration in the presence of single wheel flat.

  4. Engineering Analysis Studies for Preliminary Design of Lightweight Cryogenic Hydrogen Tanks in UAV Applications

    NASA Technical Reports Server (NTRS)

    Sullivan, Roy M.; Palko, Joseph L.; Tornabene, Robert T.; Bednarcyk, Brett A.; Powers, Lynn M.; Mital, Subodh K.; Smith, Lizalyn M.; Wang, Xiao-Yen J.; Hunter, James E.

    2006-01-01

    A series of engineering analysis studies were conducted to investigate the potential application of nanoclay-enhanced graphite/epoxy composites and polymer cross-linked silica aerogels in cryogenic hydrogen storage tank designs. This assessment focused on the application of these materials in spherical tank designs for unmanned aeronautic vehicles with mission durations of 14 days. Two cryogenic hydrogen tank design concepts were considered: a vacuum-jacketed design and a sandwiched construction with an aerogel insulating core. Analyses included thermal and structural analyses of the tank designs as well as an analysis of hydrogen diffusion to specify the material permeability requirements. The analyses also provided material property targets for the continued development of cross-linked aerogels and nanoclay-enhanced graphite/epoxy composites for cryogenic storage tank applications. The results reveal that a sandwiched construction with an aerogel core is not a viable design solution for a 14-day mission. A vacuum-jacketed design approach was shown to be far superior to an aerogel. Aerogel insulation may be feasible for shorter duration missions. The results also reveal that the application of nanoclay-enhanced graphite/epoxy should be limited to the construction of outer tanks in a vacuum-jacketed design, since a graphite/epoxy inner tank does not provide a significant weight savings over aluminum and since the ability of nanoclay-enhanced graphite/epoxy to limit hydrogen permeation is still in question.

  5. Mercury Dispersion Modeling And Purge Ventilation Stack Height Determination For Tank 40H

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rivera-Giboyeaux, A.

    2017-05-19

    The SRNL Atmospheric Technologies Group performed an analysis for mercury emissions from H-Tank Farm - Tank 40 ventilation system exhaust in order to assess whether the Short Term Exposure Limit (STEL), or Threshold Limit Value (TLV) levels for mercury will be exceeded during bulk sludge slurry mixing and sludge removal operations. The American Meteorological Society/Environmental Protection Agency Regulatory Model (AERMOD) was used as the main dispersion modelling tool for this analysis. The results indicated that a 45-foot stack is sufficient to raise the plume centerline from the Tank 40 release to prevent mercury exposure problems for any of the stackmore » discharge scenarios provided. However, a 42-foot stack at Tank 40 is sufficient to prevent mercury exposure concerns in all emission scenarios except the 50 mg/m 3 release. At a 42-foot stack height, values exceeding the exposure standards are only measured on receptors located above 34 feet.« less

  6. Wheel Diameter and Speedometer Reading

    NASA Astrophysics Data System (ADS)

    Murray, Clifton

    2010-09-01

    Most introductory physics students have seen vehicles with nonstandard wheel diameters; some may themselves drive "low-rider" cars or "big-wheel" pickup trucks. But how does changing wheel diameter affect speedometer readout for a given speed? Deriving the answer can be followed readily by students who have been introduced to rotation, and it makes a good illustration of how reasoning in physics can lead to a result that is useful outside the classroom.

  7. 14 CFR Appendix D to Part 23 - Wheel Spin-Up and Spring-Back Loads

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... (0.80 may be used); F Vmax=maximum vertical force on wheel (pounds)=n j W e, where W e and n j are... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Wheel Spin-Up and Spring-Back Loads D.... D Appendix D to Part 23—Wheel Spin-Up and Spring-Back Loads D23.1 Wheel spin-up loads. (a) The...

  8. 14 CFR Appendix D to Part 23 - Wheel Spin-Up and Spring-Back Loads

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... (0.80 may be used); F Vmax=maximum vertical force on wheel (pounds)=n j W e, where W e and n j are... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Wheel Spin-Up and Spring-Back Loads D.... D Appendix D to Part 23—Wheel Spin-Up and Spring-Back Loads D23.1 Wheel spin-up loads. (a) The...

  9. 14 CFR Appendix D to Part 23 - Wheel Spin-Up and Spring-Back Loads

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... (0.80 may be used); F Vmax=maximum vertical force on wheel (pounds)=n j W e, where W e and n j are... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Wheel Spin-Up and Spring-Back Loads D.... D Appendix D to Part 23—Wheel Spin-Up and Spring-Back Loads D23.1 Wheel spin-up loads. (a) The...

  10. 14 CFR Appendix D to Part 23 - Wheel Spin-Up and Spring-Back Loads

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... (0.80 may be used); F Vmax=maximum vertical force on wheel (pounds)=n j W e, where W e and n j are... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Wheel Spin-Up and Spring-Back Loads D.... D Appendix D to Part 23—Wheel Spin-Up and Spring-Back Loads D23.1 Wheel spin-up loads. (a) The...

  11. 14 CFR Appendix D to Part 23 - Wheel Spin-Up and Spring-Back Loads

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... (0.80 may be used); F Vmax=maximum vertical force on wheel (pounds)=n j W e, where W e and n j are... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Wheel Spin-Up and Spring-Back Loads D.... D Appendix D to Part 23—Wheel Spin-Up and Spring-Back Loads D23.1 Wheel spin-up loads. (a) The...

  12. Analysis of full-scale tank car shell impact tests

    DOT National Transportation Integrated Search

    2007-09-11

    This paper describes analyses of a railroad tank car : impacted at its side by a ram car with a rigid punch. This : generalized collision, referred to as a shell impact, is examined : using nonlinear finite element analysis (FEA) and threedimensional...

  13. High levels of wheel running protect against behavioral sensitization to cocaine.

    PubMed

    Renteria Diaz, Laura; Siontas, Dora; Mendoza, Jose; Arvanitogiannis, Andreas

    2013-01-15

    Although there is no doubt that the direct action of stimulant drugs on the brain is necessary for sensitization to their behavioral stimulating effects, several experiments indicate that drug action is often not sufficient to produce sensitization. There is considerable evidence that many individual characteristics and experiential variables can modulate the behavioral and neural changes that are seen following repeated exposure to stimulant drugs. In the work presented here, we examined whether chronic wheel running would modulate behavioral sensitization to cocaine, and whether any such influence was contingent on individual differences in wheel running. We found that a 5- or 10-week experience with wheel running protects against behavioral sensitization to cocaine but only in animals with a natural tendency to run the most. Understanding the mechanism underlying the modulating effect of wheel running on behavioral sensitization may have important implications for future studies on the link between drug-induced behavioral and neural adaptations. Copyright © 2012 Elsevier B.V. All rights reserved.

  14. Wheeled hopping robot

    DOEpatents

    Fischer, Gary J [Albuquerque, NM

    2010-08-17

    The present invention provides robotic vehicles having wheeled and hopping mobilities that are capable of traversing (e.g. by hopping over) obstacles that are large in size relative to the robot and, are capable of operation in unpredictable terrain over long range. The present invention further provides combustion powered linear actuators, which can include latching mechanisms to facilitate pressurized fueling of the actuators, as can be used to provide wheeled vehicles with a hopping mobility.

  15. Three dimensional, non-linear, finite element analysis of compactable soil interaction with a hyperelastic wheel

    NASA Astrophysics Data System (ADS)

    Chiroux, Robert Charles

    The objective of this research was to produce a three dimensional, non-linear, dynamic simulation of the interaction between a hyperelastic wheel rolling over compactable soil. The finite element models developed to produce the simulation utilized the ABAQUS/Explicit computer code. Within the simulation two separate bodies were modeled, the hyperelastic wheel and a compactable soil-bed. Interaction between the bodies was achieved by allowing them to come in contact but not to penetrate the contact surface. The simulation included dynamic loading of a hyperelastic, rubber tire in contact with compactable soil with an applied constant angular velocity or torque, including a tow load, applied to the wheel hub. The constraints on the wheel model produced a straight and curved path. In addition the simulation included a shear limit between the tire and soil allowing for the introduction of slip. Soil properties were simulated using the Drucker-Prager, Cap Plasticity model available within the ABAQUS/Explicit program. Numerical results obtained from the three dimensional model were compared with related experimental data and showed good correlation for similar conditions. Numerical and experimental data compared well for both stress and wheel rut formation depth under a weight of 5.8 kN and a constant angular velocity applied to the wheel hub. The simulation results provided a demonstration of the benefit of three-dimensional simulation in comparison to previous two-dimensional, plane strain simulations.

  16. Tank 241-AZ-101 Mixer Pump Test Vapor Sampling and Analysis Plan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    TEMPLETON, A.M.

    2000-03-06

    This sampling and analysis plan (SAP) identifies characterization objectives pertaining to sample collection, laboratory analytical evaluation, and reporting requirements for vapor samples obtained during the operation of mixer pumps in tank 241-AZ-101. The primary purpose of the mixer pump test (MPT) is to demonstrate that the two 300 horsepower mixer pumps installed in tank 241-AZ-101 can mobilize the settled sludge so that it can be retrieved for treatment and vitrification. Sampling will be performed in accordance with Tank 241-AZ-101 Mixer Pump Test Data Quality Objective (Banning 1999) and Data Quality Objectives for Regulatory Requirements for Hazardous and Radioactive Air Emissionsmore » Sampling and Analysis (Mulkey 1999). The sampling will verify if current air emission estimates used in the permit application are correct and provide information for future air permit applications.« less

  17. Tank 241-AZ-101 Mixer Pump Test Vapor Sampling and Analysis Plan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    TEMPLETON, A.M.

    2000-01-31

    This sampling and analysis plan (SAP) identifies characterization objectives pertaining to sample collection, laboratory analytical evaluation, and reporting requirements for vapor samples obtained during the operation of mixer pumps in tank 241-AZ-101. The primary purpose of the mixer pump test (MPT) is to demonstrate that the two 300 horsepower mixer pumps installed in tank 241-AZ-101 can mobilize the settled sludge so that it can be retrieved for treatment and vitrification Sampling will be performed in accordance with Tank 241-AZ-101 Mixer Pump Test Data Quality Objective (Banning 1999) and Data Quality Objectives for Regulatory Requirements for Hazardous and Radioactive Air Emissionsmore » Sampling and Analysis (Mulkey 1999). The sampling will verify if current air emission estimates used in the permit application are correct and provide information for future air permit applications.« less

  18. Tank 241-AZ-101 Mixer Pump Test Vapor Sampling and Analysis Plan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    TEMPLETON, A.M.

    2000-04-10

    This sampling and analysis plan (SAP) identifies characterization objectives pertaining to sample collection, laboratory analytical evaluation, and reporting requirements for vapor samples obtained during the operation of mixer pumps in tank 241-AZ-101. The primary purpose of the mixer pump test (MPT) is to demonstrate that the two 300 horsepower mixer pumps installed in tank 241-AZ-101 can mobilize the settled sludge so that it can be retrieved for treatment and vitrification. Sampling will be performed in accordance with Tank 241-AZ-101 Mixer Pump Test Data Quality Objective (Banning 1999) and Data Quality Objectives for Regulatory Requirements for Hazardous and Radioactive Air Emissionsmore » Sampling and Analysis (Mulkey 1999). The sampling will verify if current air emission estimates used in the permit application are correct and provide information for future air permit applications.« less

  19. Wheel inspection system environment.

    DOT National Transportation Integrated Search

    2008-11-18

    International Electronic Machines Corporation (IEM) has developed and is now marketing a state-of-the-art Wheel Inspection System Environment (WISE). WISE provides wheel profile and dimensional measurements, i.e. rim thickness, flange height, flange ...

  20. Fault detection method for railway wheel flat using an adaptive multiscale morphological filter

    NASA Astrophysics Data System (ADS)

    Li, Yifan; Zuo, Ming J.; Lin, Jianhui; Liu, Jianxin

    2017-02-01

    This study explores the capacity of the morphology analysis for railway wheel flat fault detection. A dynamic model of vehicle systems with 56 degrees of freedom was set up along with a wheel flat model to calculate the dynamic responses of axle box. The vehicle axle box vibration signal is complicated because it not only contains the information of wheel defect, but also includes track condition information. Thus, how to extract the influential features of wheels from strong background noise effectively is a typical key issue for railway wheel fault detection. In this paper, an algorithm for adaptive multiscale morphological filtering (AMMF) was proposed, and its effect was evaluated by a simulated signal. And then this algorithm was employed to study the axle box vibration caused by wheel flats, as well as the influence of track irregularity and vehicle running speed on diagnosis results. Finally, the effectiveness of the proposed method was verified by bench testing. Research results demonstrate that the AMMF extracts the influential characteristic of axle box vibration signals effectively and can diagnose wheel flat faults in real time.

  1. Modelling of Dynamics of a Wheeled Mobile Robot with Mecanum Wheels with the use of Lagrange Equations of the Second Kind

    NASA Astrophysics Data System (ADS)

    Hendzel, Z.; Rykała, Ł.

    2017-02-01

    The work presents the dynamic equations of motion of a wheeled mobile robot with mecanum wheels derived with the use of Lagrange equations of the second kind. Mecanum wheels are a new type of wheels used in wheeled mobile robots and they consist of freely rotating rollers attached to the circumference of the wheels. In order to derive dynamic equations of motion of a wheeled mobile robot, the kinetic energy of the system is determined, as well as the generalised forces affecting the system. The resulting mathematical model of a wheeled mobile robot was generated with the use of Maple V software. The results of a solution of inverse and forward problems of dynamics of the discussed object are also published.

  2. Electronic 4-wheel drive control device

    NASA Technical Reports Server (NTRS)

    Hayato, S.; Takanori, S.; Shigeru, H.; Tatsunori, S.

    1984-01-01

    The internal rotation torque generated during operation of a 4-wheel drive vehicle is reduced using a control device whose clutch is attached to one part of the rear-wheel drive shaft. One torque sensor senses the drive torque associated with the rear wheel drive shaft. A second sensor senses the drive torque associated with the front wheel drive shaft. Revolution count sensors sense the revolutions of each drive shaft. By means of a microcomputer, the engagement of the clutch is changed to insure that the ratio of the torque sensors remains constant.

  3. STATISTICAL ANALYSIS OF TANK 19F FLOOR SAMPLE RESULTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harris, S.

    2010-09-02

    Representative sampling has been completed for characterization of the residual material on the floor of Tank 19F as per the statistical sampling plan developed by Harris and Shine. Samples from eight locations have been obtained from the tank floor and two of the samples were archived as a contingency. Six samples, referred to in this report as the current scrape samples, have been submitted to and analyzed by SRNL. This report contains the statistical analysis of the floor sample analytical results to determine if further data are needed to reduce uncertainty. Included are comparisons with the prior Mantis samples resultsmore » to determine if they can be pooled with the current scrape samples to estimate the upper 95% confidence limits (UCL95%) for concentration. Statistical analysis revealed that the Mantis and current scrape sample results are not compatible. Therefore, the Mantis sample results were not used to support the quantification of analytes in the residual material. Significant spatial variability among the current scrape sample results was not found. Constituent concentrations were similar between the North and South hemispheres as well as between the inner and outer regions of the tank floor. The current scrape sample results from all six samples fall within their 3-sigma limits. In view of the results from numerous statistical tests, the data were pooled from all six current scrape samples. As such, an adequate sample size was provided for quantification of the residual material on the floor of Tank 19F. The uncertainty is quantified in this report by an UCL95% on each analyte concentration. The uncertainty in analyte concentration was calculated as a function of the number of samples, the average, and the standard deviation of the analytical results. The UCL95% was based entirely on the six current scrape sample results (each averaged across three analytical determinations).« less

  4. The Development of Lightweight Commercial Vehicle Wheels Using Microalloying Steel

    NASA Astrophysics Data System (ADS)

    Lu, Hongzhou; Zhang, Lilong; Wang, Jiegong; Xuan, Zhaozhi; Liu, Xiandong; Guo, Aimin; Wang, Wenjun; Lu, Guimin

    Lightweight wheels can reduce weight about 100kg for commercial vehicles, and it can save energy and reduce emission, what's more, it can enhance the profits for logistics companies. The development of lightweight commercial vehicle wheels is achieved by the development of new steel for rim, the process optimization of flash butt welding, and structure optimization by finite element methods. Niobium micro-alloying technology can improve hole expansion rate, weldability and fatigue performance of wheel steel, and based on Niobium micro-alloying technology, a special wheel steel has been studied whose microstructure are Ferrite and Bainite, with high formability and high fatigue performance, and stable mechanical properties. The content of Nb in this new steel is 0.025% and the hole expansion rate is ≥ 100%. At the same time, welding parameters including electric upsetting time, upset allowance, upsetting pressure and flash allowance are optimized, and by CAE analysis, an optimized structure has been attained. As a results, the weight of 22.5in×8.25in wheel is up to 31.5kg, which is most lightweight comparing the same size wheels. And its functions including bending fatigue performance and radial fatigue performance meet the application requirements of truck makers and logistics companies.

  5. OCILOW-Wheeled Platform Controls Executable Set

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jansen, John F.

    2005-11-30

    The OCILOW Controls Executable Set is the complete set of machine executable instructions to control the motion of wheeled platforms that incorporate Off-Centered In-Line Omni-directional Wheels (OCILOW). The controls utilize command signals for the desired motion of the platform (X, Y and Theta) and calculate and control the steering and rolling motion required of each OCILOW wheels to achieve the desired translational and rotational platform motion. The controls utilize signals from the wheel steering and rolling resolvers, and from three load cells located at each wheels, to coordinate the motion of all wheels, while respecting their non-holonomic constraints (i.e., keepingmore » internal stresses and slippage due to possible errors, uneven floors, bumps, misalignment, etc. bounded). The OCILOW Controls Executable Set, which is copyrighted here, is an embodiment of the generic OCILOW algorithms (patented separately) developed specifically for controls of the Proof-of-Principle-Transporter (POP-T) system that has been developed to demonstrate the overall OCILOW controls feasibility and capabilities.« less

  6. Propulsion and Levitation with a Large Electrodynamic Wheel

    NASA Astrophysics Data System (ADS)

    Gaul, Nathan; Lane, Hannah

    We constructed an electrodynamic wheel using a motorized bicycle wheel with a radius of 12 inches and 36 one-inch cube magnets attached to the rim of the wheel. The radial magnetic field on the outside of the wheel was maximized by arranging the magnets into a series of Halbach arrays which amplify the field on one side of the array and reduce it on the other side. Rotating the wheel produces a rapidly oscillating magnetic field. When a conductive metal ``track'' is placed in this area of strong magnetic flux, eddy currents are produced in the track. These eddy currents create magnetic fields that interact with the magnetic fields from the electrodynamic wheel. The interaction of the magnetic fields produces lift and drag forces on the track which were measured with force gauges. Measurements were taken at a variety of wheel speeds, and the results were compared to the theoretical prediction that there should be a linear relationship between the lift and drag forces with increasing wheel speed. Partial levitation was achieved with the current electrodynamic wheel. In the future, the wheel will be upgraded to include 72 magnets rather than 36 magnets. This will double the frequency at which the magnetic field oscillates, increasing the magnetic flux. Electrodynamic wheels have applications to the transportation industry, since multiple electrodynamic wheels could be used on a vehicle to produce a lift and propulsion force over a conductive track.

  7. 29 CFR 1915.134 - Abrasive wheels.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... shall be so mounted as to maintain proper alignment with the wheel, and the guard and its fastenings... safety flanges are required, they shall be used only with wheels designed to fit the flanges. Only safety... wheels shall fit freely on the spindle and shall not be forced on. The spindle nut shall be tightened...

  8. 29 CFR 1915.134 - Abrasive wheels.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... shall be so mounted as to maintain proper alignment with the wheel, and the guard and its fastenings... safety flanges are required, they shall be used only with wheels designed to fit the flanges. Only safety... wheels shall fit freely on the spindle and shall not be forced on. The spindle nut shall be tightened...

  9. 29 CFR 1915.134 - Abrasive wheels.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... shall be so mounted as to maintain proper alignment with the wheel, and the guard and its fastenings... safety flanges are required, they shall be used only with wheels designed to fit the flanges. Only safety... wheels shall fit freely on the spindle and shall not be forced on. The spindle nut shall be tightened...

  10. Understanding wheel dynamics.

    PubMed

    Proffitt, D R; Kaiser, M K; Whelan, S M

    1990-07-01

    In five experiments, assessments were made of people's understandings about the dynamics of wheels. It was found that undergraduates make highly erroneous dynamical judgments about the motions of this commonplace event, both in explicit problem-solving contexts and when viewing ongoing events. These problems were also presented to bicycle racers and high-school physics teachers; both groups were found to exhibit misunderstandings similar to those of naive undergraduates. Findings were related to our account of dynamical event complexity. The essence of this account is that people encounter difficulties when evaluating the dynamics of any mechanical system that has more than one dynamically relevant object parameter. A rotating wheel is multidimensional in this respect: in addition to the motion of its center of mass, its mass distribution is also of dynamical relevance. People do not spontaneously form the essential multidimensional quantities required to adequately evaluate wheel dynamics.

  11. 49 CFR 179.201 - Individual specification requirements applicable to non-pressure tank car tanks.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... to non-pressure tank car tanks. 179.201 Section 179.201 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) SPECIFICATIONS FOR TANK CARS Specifications for Non-Pressure Tank Car Tanks (Classes DOT-111AW...

  12. Investigation of contact pressure and influence function model for soft wheel polishing.

    PubMed

    Rao, Zhimin; Guo, Bing; Zhao, Qingliang

    2015-09-20

    The tool influence function (TIF) is critical for calculating the dwell-time map to improve form accuracy. We present the TIF for the process of computer-controlled polishing with a soft polishing wheel. In this paper, the static TIF was developed based on the Preston equation. The pressure distribution was verified by the real removal spot section profiles. According to the experiment measurements, the pressure distribution simulated by Hertz contact theory was much larger than the real contact pressure. The simulated pressure distribution, which was modeled by the Winkler elastic foundation for a soft polishing wheel, matched the real contact pressure. A series of experiments was conducted to obtain the removal spot statistical properties for validating the relationship between material removal and processing time and contact pressure and relative velocity, along with calculating the fitted parameters to establish the TIF. The developed TIF predicted the removal character for the studied soft wheel polishing.

  13. A new solution method for wheel/rail rolling contact.

    PubMed

    Yang, Jian; Song, Hua; Fu, Lihua; Wang, Meng; Li, Wei

    2016-01-01

    To solve the problem of wheel/rail rolling contact of nonlinear steady-state curving, a three-dimensional transient finite element (FE) model is developed by the explicit software ANSYS/LS-DYNA. To improve the solving speed and efficiency, an explicit-explicit order solution method is put forward based on analysis of the features of implicit and explicit algorithm. The solution method was first applied to calculate the pre-loading of wheel/rail rolling contact with explicit algorithm, and then the results became the initial conditions in solving the dynamic process of wheel/rail rolling contact with explicit algorithm as well. Simultaneously, the common implicit-explicit order solution method is used to solve the FE model. Results show that the explicit-explicit order solution method has faster operation speed and higher efficiency than the implicit-explicit order solution method while the solution accuracy is almost the same. Hence, the explicit-explicit order solution method is more suitable for the wheel/rail rolling contact model with large scale and high nonlinearity.

  14. Analysis of seismic stability of large-sized tank VST-20000 with software package ANSYS

    NASA Astrophysics Data System (ADS)

    Tarasenko, A. A.; Chepur, P. V.; Gruchenkova, A. A.

    2018-05-01

    The work is devoted to the study of seismic stability of vertical steel tank VST-20000 with due consideration of the system response “foundation-tank-liquid”, conducted on the basis of the finite element method, modal analysis and linear spectral theory. The calculations are performed for the tank model with a high degree of detailing of metallic structures: shells, a fixed roof, a bottom, a reinforcing ring.

  15. Break in Raised Tread on Curiosity Wheel

    NASA Image and Video Library

    2017-03-21

    Two of the raised treads, called grousers, on the left middle wheel of NASA's Curiosity Mars rover broke during the first quarter of 2017, including the one seen partially detached at the top of the wheel in this image from the Mars Hand Lens Imager (MAHLI) camera on the rover's arm. This image was taken on March 19, 2017, as part of a set used by rover team members to inspect the condition of the rover's six wheels during the 1,641st Martian day, or sol, of Curiosity's work on Mars. Holes and tears in the wheels worsened significantly during 2013 as Curiosity was crossing terrain studded with sharp rocks on the route from near its 2012 landing site to the base of Mount Sharp. Team members have used MAHLI systematically since then to watch for when any of the zig-zag shaped grousers begin to break. The last prior set of wheel-inspection images from before Sol 1641 was taken on Jan. 27, 2017, (Sol 1591) and revealed no broken grousers. Longevity testing with identical aluminum wheels on Earth indicates that when three grousers on a given wheel have broken, that wheel has reached about 60 percent of its useful life. Curiosity has driven well over 60 percent of the amount needed for reaching all the geological layers planned as the mission's science destinations, so the start of seeing broken grousers is not expected to affect the mission's operations. Curiosity's six aluminum wheels are about 20 inches (50 centimeters) in diameter and 16 inches (40 centimeters) wide. Each of the six wheels has its own drive motor, and the four corner wheels also have steering motors. http://photojournal.jpl.nasa.gov/catalog/PIA21486

  16. F-Tank Farm Performance Assessment Updates through the Special Analysis Process at Savannah River Site - 12169

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Layton, Mark H.

    2012-07-01

    data will be evaluated through the Special Analysis process. The FTF Special Analyses process will be utilized to evaluate information regarding the final residual waste that will be grouted in place in the FTF Tanks and assess the potential impact the new inventory information has on the FTF PA assumptions and results. The Special Analysis can then be used to inform decisions regarding FTF tank closure documents. The purpose of this paper is to discuss the Special Analysis process and share insights gained while implementing this process. An example of an area of interest in the revision process is balancing continuous improvement versus configuration control of agreed upon methodologies. Other subjects to be covered include: 1) defining the scope of the revisions included in the Special Analysis, 2) determining which PA results should be addressed in the Special Analysis, and 3) deciding whether the Special Analysis should utilize more qualitative or quantitative assessments. For the SRS FTF, an FTF PA has been prepared to provide the technical basis and results to be used in subsequent documents to demonstrate compliance with the pertinent requirements for final closure of FTF. The FTF Special Analyses process will be utilized to evaluate the impact new information has on the FTF PA assumptions and results. The Special Analysis can then be used to inform decisions regarding FTF tank closure documents. In preparing SAs, it is crucial that the scope of the SA be well defined within the SA, since the specific scope will vary from SA to SA. Since the SAs are essentially addendums to the PA, the SA scope should utilize the PA as the baseline from which the SA scope is defined. The SA needs to focus on evaluating the change associated with the scope, and not let other changes interfere with the ability to perform that evaluation by masking the impact of the change. In preparing the SA, it is also important to let the scope determine whether the Special Analysis should

  17. Full drive-by-wire dynamic control for four-wheel-steer all-wheel-drive vehicles

    NASA Astrophysics Data System (ADS)

    Fahimi, Farbod

    2013-03-01

    Most of the controllers introduced for four-wheel-steer (4WS) vehicles are derived with the assumption that the longitudinal speed of the vehicle is constant. However, in real applications, the longitudinal speed varies, and the longitudinal, lateral, and yaw dynamics are coupled. In this paper, the longitudinal dynamics of the vehicle as well as its lateral and yaw motions are controlled simultaneously. This way, the effect of driving/braking forces of the tires on the lateral and yaw motions of the vehicle are automatically included in the control laws. To address the dynamic parameter uncertainty of the vehicle, a chatter-free variable structure controller is introduced. Elimination of chatter is achieved by introducing a dynamically adaptive boundary layer thickness. It is shown via simulations that the proposed control approach performs more robustly than the controllers developed based on dynamic models, in which longitudinal speed is assumed to be constant, and only lateral speed and yaw rate are used as system states. Furthermore, this approach supports all-wheel-drive vehicles. Front-wheel-drive or rear-wheel-drive vehicles are also supported as special cases of an all-wheel-drive vehicle.

  18. Apparatus and methods for aligning holes through wheels and spacers and stacking the wheels and spacers to form a turbine rotor

    DOEpatents

    Berry, Robert Randolph; Palmer, Gene David; Wilson, Ian David

    2000-01-01

    A gas turbine rotor stacking fixture includes upstanding bolts for reception in aligned bolt holes in superposed aft disk, wheels and spacers and upstanding alignment rods received in openings of the disk, wheels and spacers during the rotor stacking assembly. The axially registering openings enable insertion of thin-walled tubes circumferentially about the rim of the rotor, with tight tolerances to the openings to provide supply and return steam for cooling buckets. The alignment rods have radial dimensions substantially less than their dimensions in a circumferential direction to allow for radial opening misalignment due to thermal expansion, tolerance stack-up and wheel-to-spacer mismatch due to rabbet mechanical growth. The circumferential dimension of the alignment rods affords tightly toleranced alignment of the openings through which the cooling tubes are installed.

  19. Mars Pathfinder: The Wheel Abrasion Experiment

    NASA Technical Reports Server (NTRS)

    1996-01-01

    NASA Lewis Research Center's Wheel Abrasion Experiment (WAE) will measure the amount of wear on wheel surfaces of the Mars Pathfinder rover. WAE uses thin films of Al, Ni, and Pt (ranging in thickness from 200 to 1000 angstroms) deposited on black, anodized Al strips attached to the rover wheel. As the wheel moves across the martian surface, changes in film reflectivity will be monitored by reflected sunlight. These changes, measured as output from a special photodetector mounted on the rover chassis, will be due to abrasion of the metal films by martian surface sand, dust, and clay.

  20. Non-steady state modelling of wheel-rail contact problem

    NASA Astrophysics Data System (ADS)

    Guiral, A.; Alonso, A.; Baeza, L.; Giménez, J. G.

    2013-01-01

    Among all the algorithms to solve the wheel-rail contact problem, Kalker's FastSim has become the most useful computation tool since it combines a low computational cost and enough precision for most of the typical railway dynamics problems. However, some types of dynamic problems require the use of a non-steady state analysis. Alonso and Giménez developed a non-stationary method based on FastSim, which provides both, sufficiently accurate results and a low computational cost. However, it presents some limitations; the method is developed for one time-dependent creepage and its accuracy for varying normal forces has not been checked. This article presents the required changes in order to deal with both problems and compares its results with those given by Kalker's Variational Method for rolling contact.

  1. An Ultrasonic Wheel-Array Probe

    NASA Astrophysics Data System (ADS)

    Drinkwater, B. W.; Brotherhood, C. J.; Freemantle, R. J.

    2004-02-01

    This paper describes the development and modeling of an ultrasonic array wheel probe scanning system. The system operates at 10 MHz using a 64 element array transducer which is 50 mm in length and located in a fluid filled wheel. The wheel is coupled to the test structure dry, or with a small amount of liquid couplant. When the wheel is rolled over the surface of the test structure a defect map (C-Scan) is generated in real-time. The tyre is made from a soft, durable polymer which has very little acoustic loss. Two application studies are presented; the inspection of sealant layers in an aluminum aircraft wing structure and the detection of embedded defects in a thick section carbon composite sample.

  2. Mechanics of wheel-soil interaction

    NASA Technical Reports Server (NTRS)

    Houland, H. J.

    1973-01-01

    An approximate theory for wheel-soil interaction is presented which forms the basis for a practical solution to the problem. It is shown that two fundamental observations render the problem determinate: (1) The line of action of the resultant of radial stresses acting at the wheel soil interface approximately bisects the wheel-soil contact angle for all values of slip. (2) A shear stress surface can be hypothesized. The influence of soil inertia forces is also evaluated. A concept of equivalent cohesion is introduced which allows a convenient experimental comparison for both cohesive and frictional soils. This theory compares favorably with previous analyses and experimental data, and shows that soil inertia forces influencing the motion of a rolling wheel can be significant.

  3. TANK SPACE ALTERNATIVES ANALYSIS REPORT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    TURNER DA; KIRCH NW; WASHENFELDER DJ

    2010-04-27

    This report addresses the projected shortfall of double-shell tank (DST) space starting in 2018. Using a multi-variant methodology, a total of eight new-term options and 17 long-term options for recovering DST space were evaluated. These include 11 options that were previously evaluated in RPP-7702, Tank Space Options Report (Rev. 1). Based on the results of this evaluation, two near-term and three long-term options have been identified as being sufficient to overcome the shortfall of DST space projected to occur between 2018 and 2025.

  4. Performance of the Boeing LRV wheels in a lunar soil simulant. Report 2: Effects of speed, Wheel load, and soil

    NASA Technical Reports Server (NTRS)

    Melzer, K.

    1971-01-01

    Two nearly identical Boeing-GM wire-mesh Lunar Roving Vehicle (LRV) wheels were laboratory tested in a lunar soil simulant to determine the influence of wheel speed and acceleration, wheel load, presence of a fender, travel direction, and soil strength on the wheel performance. Constant-slip and three types of programmed-slip tests were conducted with a single-wheel dynamometer system. Test results indicated that performance of single LRV wheels in terms of pull coefficient, power number, and efficiency were not influenced by wheel speed and acceleration, travel direction, the presence of a fender, or wheel load. Of these variables, only load influenced sinkage, which increased with increasing load. For a given slip, the pull coefficient and power number increased with increasing soil strength. However, for a given pull coefficient or slope, slip was less in firmer soil; thus, the power number decreased and efficiency increased with increasing soil strength.

  5. [Fracture of the diaphyseal radius during Cyr wheel practice - an uncommon injury of wheel gymnastics].

    PubMed

    Kauther, M D; Rummel, S; Hussmann, B; Lendemans, S; Nast-Kolb, D; Wedemeyer, C

    2011-12-01

    The cyr wheel is a modified gymnastic wheel with only one ring that can lead to extreme forces on the gymnast. We report on a distal radius shaft fracture (AO 22 A 2.1) and a fracture of the styloid process of the ulna that occurred after holding on to a slipping Cyr wheel and exposition to high pressure on the lower arm. The fracture was fixed by screws and a plate. © Georg Thieme Verlag KG Stuttgart · New York.

  6. Tank characterization report for single-shell tank 241-U-110. Revision 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, T.M.; Jensen, L.

    1993-09-01

    Tank 241-U-110 (U-110) is a Hanford Site waste tank that was ;most recently sampled in November and December 1989. Analysis of the samples obtained from tank U-110 was conducted to support the characterization of the contents of this tank and to support Hanford Federal Facility Agreement and Consent Order milestone M-10-00 (Ecology, et al. 1992). Because of incomplete recovery of the waste during sampling, there may be bias in the results of this characterization report.

  7. 14 CFR Appendix N to Part 25 - Fuel Tank Flammability Exposure and Reliability Analysis

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... the performance of a flammability reduction means (FRM) if installed. (c) The following definitions... average fuel temperature within the fuel tank or different sections of the tank if the tank is subdivided... the flight time, and the post-flight time is a constant 30 minutes. (c) Flammable. With respect to a...

  8. 14 CFR Appendix N to Part 25 - Fuel Tank Flammability Exposure and Reliability Analysis

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... the performance of a flammability reduction means (FRM) if installed. (c) The following definitions... average fuel temperature within the fuel tank or different sections of the tank if the tank is subdivided... the flight time, and the post-flight time is a constant 30 minutes. (c) Flammable. With respect to a...

  9. 49 CFR 172.331 - Bulk packagings other than portable tanks, cargo tanks, tank cars and multi-unit tank car tanks.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 2 2012-10-01 2012-10-01 false Bulk packagings other than portable tanks, cargo tanks, tank cars and multi-unit tank car tanks. 172.331 Section 172.331 Transportation Other Regulations... packagings other than portable tanks, cargo tanks, tank cars and multi-unit tank car tanks. (a) Each person...

  10. 49 CFR 172.331 - Bulk packagings other than portable tanks, cargo tanks, tank cars and multi-unit tank car tanks.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Bulk packagings other than portable tanks, cargo tanks, tank cars and multi-unit tank car tanks. 172.331 Section 172.331 Transportation Other Regulations... packagings other than portable tanks, cargo tanks, tank cars and multi-unit tank car tanks. (a) Each person...

  11. 49 CFR 172.331 - Bulk packagings other than portable tanks, cargo tanks, tank cars and multi-unit tank car tanks.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 2 2014-10-01 2014-10-01 false Bulk packagings other than portable tanks, cargo tanks, tank cars and multi-unit tank car tanks. 172.331 Section 172.331 Transportation Other Regulations... packagings other than portable tanks, cargo tanks, tank cars and multi-unit tank car tanks. (a) Each person...

  12. 49 CFR 172.331 - Bulk packagings other than portable tanks, cargo tanks, tank cars and multi-unit tank car tanks.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 2 2011-10-01 2011-10-01 false Bulk packagings other than portable tanks, cargo tanks, tank cars and multi-unit tank car tanks. 172.331 Section 172.331 Transportation Other Regulations... packagings other than portable tanks, cargo tanks, tank cars and multi-unit tank car tanks. (a) Each person...

  13. 49 CFR 172.331 - Bulk packagings other than portable tanks, cargo tanks, tank cars and multi-unit tank car tanks.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 2 2013-10-01 2013-10-01 false Bulk packagings other than portable tanks, cargo tanks, tank cars and multi-unit tank car tanks. 172.331 Section 172.331 Transportation Other Regulations... packagings other than portable tanks, cargo tanks, tank cars and multi-unit tank car tanks. (a) Each person...

  14. Elastic-Plastic Thermal Stress Analysis of a High-Pressure Cryogenic Storage Tank

    NASA Technical Reports Server (NTRS)

    Barker, J. Mark; Field, Robert E. (Technical Monitor)

    2003-01-01

    The thermal stresses on a cryogenic storage tank contribute strongly to the state of stress of the tank material and its ability to withstand operational stresses. These thermal stresses also affect the growth of any surface damage that might occur in the tank walls. These stresses are particularly of concern during the initial cooldown period for a new tank placed into service, and during any subsequent thermal cycles. A previous preliminary elastic analysis showed that the thermal stress on the inner wall would reach approximately 1,000MPa (145,000 psi). This stress far exceeds the ASTM specified room temperature values for both yield (170MPa) and ultimate (485 MPa) strength for 304L stainless steel. The present analysis determines the thermal stresses using an elastic-plastic model. The commercial software application ANSYS was used to determine the transient spatial temperature profile and the associated spatial thermal stress profiles in a segment of a thick-walled vessel during a typical cooldown process. A strictly elastic analysis using standard material properties for 304L stainless steel showed that the maximum thermal stress on the inner and outer walls was approximately 960 MPa (tensile) and - 270 MPa (compressive) respectively. These values occurred early in the cooldown process, but at different times, An elastic-plastic analysis showed significantly reducing stress, as expected due to the plastic deformation of the material. The maximum stress for the inner wall was approximately 225 MPa (tensile), while the maximum stress for the outer wall was approximately - 130 MPa (compressive).

  15. Detumbling of a rigid spacecraft via torque wheel assisted gyroscopic motion

    NASA Astrophysics Data System (ADS)

    Lin, Yiing-Yuh; Wang, Chin-Tzuo

    2014-01-01

    A time and energy efficient two-part method for detumbling a rigid spacecraft using an onboard torque wheel and a set of three-axis magnetic torquer is presented in this paper. Part-1 of the method manipulates the speed of the wheel, whose spin axis is parallel to a designated body axis of a tumbling spacecraft, and induces a desired gyroscopic-like motion to align the designated axis with its total angular momentum, H. The procedure in effect detumbles the spacecraft to rotate about the designated axis and distributes H, which is conserved during this control period, between the body and the wheel. After the alignment is achieved, Part-2 control, activated with a specified momentum transfer parameter, η, can either quickly stop the body rotation by transferring its angular momentum to the wheel or offload most of the momentum into space, using the wheel and the magnetic torquer. Convergence criteria and control laws for both parts are derived from the Lyapunov stability analysis and the method of feedback linearization. The wheel performs as a momentum storing and transferring device regulating the angular momentum between the wheel and the body. It can also provide gyroscopic stiffness to stabilize the system while the magnetic torquer is offloading the momentum. Simulation results from the included cases indicate that significantly fast detumbling of the spacecraft can be achieved with Part-1 of the proposed method. The results also show that, under the same condition, either by transferring almost all H to the wheel or dumping it, the two-part method, with a chosen η and final residual momentum condition, requires much less time and energy needed than the B-dot method does. Moreover, the stability nature of the two-part method is heuristically substantiated as the wheel torques and the dipole moment were constrained in the simulation.

  16. Orbiter wheel and tire certification

    NASA Technical Reports Server (NTRS)

    Campbell, C. C., Jr.

    1985-01-01

    The orbiter wheel and tire development has required a unique series of certification tests to demonstrate the ability of the hardware to meet severe performance requirements. Early tests of the main landing gear wheel using conventional slow roll testing resulted in hardware failures. This resulted in a need to conduct high velocity tests with crosswind effects for assurance that the hardware was safe for a limited number of flights. Currently, this approach and the conventional slow roll and static tests are used to certify the wheel/tire assembly for operational use.

  17. A method for improved accuracy in three dimensions for determining wheel/rail contact points

    NASA Astrophysics Data System (ADS)

    Yang, Xinwen; Gu, Shaojie; Zhou, Shunhua; Zhou, Yu; Lian, Songliang

    2015-11-01

    Searching for the contact points between wheels and rails is important because these points represent the points of exerted contact forces. In order to obtain an accurate contact point and an in-depth description of the wheel/rail contact behaviours on a curved track or in a turnout, a method with improved accuracy in three dimensions is proposed to determine the contact points and the contact patches between the wheel and the rail when considering the effect of the yaw angle and the roll angle on the motion of the wheel set. The proposed method, with no need of the curve fitting of the wheel and rail profiles, can accurately, directly, and comprehensively determine the contact interface distances between the wheel and the rail. The range iteration algorithm is used to improve the computation efficiency and reduce the calculation required. The present computation method is applied for the analysis of the contact of rails of CHINA (CHN) 75 kg/m and wheel sets of wearing type tread of China's freight cars. In addition, it can be proved that the results of the proposed method are consistent with that of Kalker's program CONTACT, and the maximum deviation from the wheel/rail contact patch area of this two methods is approximately 5%. The proposed method, can also be used to investigate static wheel/rail contact. Some wheel/rail contact points and contact patch distributions are discussed and assessed, wheel and rail non-worn and worn profiles included.

  18. Dynamic Pressure Distribution due to Horizontal Acceleration in Spherical LNG Tank with Cylindrical Central Part

    NASA Astrophysics Data System (ADS)

    Ko, Dae-Eun; Shin, Sang-Hoon

    2017-11-01

    Spherical LNG tanks having many advantages such as structural safety are used as a cargo containment system of LNG carriers. However, it is practically difficult to fabricate perfectly spherical tanks of different sizes in the yard. The most effective method of manufacturing LNG tanks of various capacities is to insert a cylindrical part at the center of existing spherical tanks. While a simplified high-precision analysis method for the initial design of the spherical tanks has been developed for both static and dynamic loads, in the case of spherical tanks with a cylindrical central part, the analysis method available only considers static loads. The purpose of the present study is to derive the dynamic pressure distribution due to horizontal acceleration, which is essential for developing an analysis method that considers dynamic loads as well.

  19. All-wheel drive and winter-weather safety.

    DOT National Transportation Integrated Search

    2013-03-01

    It is frequently stated that people living in northern states, the so called Snowbelt of the United : States, benefit with respect to safety from driving all-wheel or four-wheel drive vehicles as : opposed to front or rear-wheel drive only. This stud...

  20. Wheelchair pushrim kinetics measurement: A method to cancel inaccuracies due to pushrim weight and wheel camber.

    PubMed

    Chénier, Félix; Aissaoui, Rachid; Gauthier, Cindy; Gagnon, Dany H

    2017-02-01

    The commercially available SmartWheel TM is largely used in research and increasingly used in clinical practice to measure the forces and moments applied on the wheelchair pushrims by the user. However, in some situations (i.e. cambered wheels or increased pushrim weight), the recorded kinetics may include dynamic offsets that affect the accuracy of the measurements. In this work, an automatic method to identify and cancel these offsets is proposed and tested. First, the method was tested on an experimental bench with different cambers and pushrim weights. Then, the method was generalized to wheelchair propulsion. Nine experienced wheelchair users propelled their own wheelchairs instrumented with two SmartWheels with anti-slip pushrim covers. The dynamic offsets were correctly identified using the propulsion acquisition, without needing a separate baseline acquisition. A kinetic analysis was performed with and without dynamic offset cancellation using the proposed method. The most altered kinetic variables during propulsion were the vertical and total forces, with errors of up to 9N (p<0.001, large effect size of 5). This method is simple to implement, fully automatic and requires no further acquisitions. Therefore, we advise to use it systematically to enhance the accuracy of existing and future kinetic measurements. Copyright © 2016 IPEM. Published by Elsevier Ltd. All rights reserved.

  1. Loss of stability of a railway wheel-set, subcritical or supercritical

    NASA Astrophysics Data System (ADS)

    Zhang, Tingting; Dai, Huanyun

    2017-11-01

    Most researches on railway vehicle stability analysis are focused on the codimension 1 (for short, codim 1) bifurcations like subcritical and supercritical Hopf bifurcation. The analysis of codim 1 bifurcation can be completed based on one bifurcation parameter. However, two bifurcation parameters should be considered to give a general view of the motion of the system when it undergoes a degenerate Hopf bifurcation. This kind of bifurcation named the generalised Hopf bifurcation belongs to the codimension 2 (for short, codim 2) bifurcations where two bifurcation parameters need to be taken into consideration. In this paper, we give a numerical analysis of the codim 2 bifurcations of a nonlinear railway wheel-set with the QR algorithm to calculate the eigenvalues of the linearised system incorporating the Golden Cut method and the shooting method to calculate the limit cycles around the Hopf bifurcation points. Here, we found the existence of a generalised Hopf bifurcation where a subcritical Hopf bifurcation turns into a supercritical one with the increase of the bifurcation parameters, which belong to the codim 2 bifurcations, in a nonlinear railway wheel-set model. Only the nonlinear wheel/rail interactive relationship has been taken into consideration in the lateral model that is formulated in this paper. The motion of the wheel-set has been investigated when the bifurcation parameters are perturbed in the neighbourhood of their critical parameters, and the influences of different parameters on critical values of the bifurcation parameters are also given. From the results, it can be seen that the bifurcation types of the wheel-set will change with a variation of the bifurcation parameters in the neighbourhood of their critical values.

  2. Fracture Resistance of Railroad Wheels

    DOT National Transportation Integrated Search

    1974-09-01

    The effects of manufacturing method, chemical composition, heat treatment, temperature, and loading rate on the plane strain fracture toughness KIC of railroad wheels have been determined. Carbon content of the wheels is shown to be the principal fac...

  3. Space Shuttle External Tank Project status

    NASA Technical Reports Server (NTRS)

    Davis, R. M.

    1980-01-01

    The External Tank Project is reviewed with emphasis on the DDT&E and production phases and the lightweight tank development. It is noted that the DDT&E phase is progressing well with the structural and ground vibration test article programs complete, the propulsion test article program progressing well, and the component qualification and verification testing 92% complete. New tools and facilities are being brought on line to support the increased build rate for the production phase. The lightweight tank, which will provide additional payload in orbit, is progressing to schedule with first delivery in early 1982.

  4. Ultimate strength analysis of inland tank barges

    DOT National Transportation Integrated Search

    1997-06-16

    In an effort to understand the cause of recent catastrophic failures of inland tank barges and reduce the possibility of future casualties, the Coast Guard Marine Safety Center (MSC) studied the buckling" phenomenon. In conclusion, inland tank barges...

  5. Damage Tolerance Analysis of a Pressurized Liquid Oxygen Tank

    NASA Technical Reports Server (NTRS)

    Forth, Scott C.; Harvin, Stephen F.; Gregory, Peyton B.; Mason, Brian H.; Thompson, Joe E.; Hoffman, Eric K.

    2006-01-01

    A damage tolerance assessment was conducted of an 8,000 gallon pressurized Liquid Oxygen (LOX) tank. The LOX tank is constructed of a stainless steel pressure vessel enclosed by a thermal-insulating vacuum jacket. The vessel is pressurized to 2,250 psi with gaseous nitrogen resulting in both thermal and pressure stresses on the tank wall. Finite element analyses were performed on the tank to characterize the stresses from operation. Engineering material data was found from both the construction of the tank and the technical literature. An initial damage state was assumed based on records of a nondestructive inspection performed on the tank. The damage tolerance analyses were conducted using the NASGRO computer code. This paper contains the assumptions, and justifications, made for the input parameters to the damage tolerance analyses and the results of the damage tolerance analyses with a discussion on the operational safety of the LOX tank.

  6. The use of a running wheel to measure activity in rodents: relationship to energy balance, general activity, and reward.

    PubMed

    Novak, Colleen M; Burghardt, Paul R; Levine, James A

    2012-03-01

    Running wheels are commonly employed to measure rodent physical activity in a variety of contexts, including studies of energy balance and obesity. There is no consensus on the nature of wheel-running activity or its underlying causes, however. Here, we will begin by systematically reviewing how running wheel availability affects physical activity and other aspects of energy balance in laboratory rodents. While wheel running and physical activity in the absence of a wheel commonly correlate in a general sense, in many specific aspects the two do not correspond. In fact, the presence of running wheels alters several aspects of energy balance, including body weight and composition, food intake, and energy expenditure of activity. We contend that wheel-running activity should be considered a behavior in and of itself, reflecting several underlying behavioral processes in addition to a rodent's general, spontaneous activity. These behavioral processes include defensive behavior, predatory aggression, and depression- and anxiety-like behaviors. As it relates to energy balance, wheel running engages several brain systems-including those related to the stress response, mood, and reward, and those responsive to growth factors-that influence energy balance indirectly. We contend that wheel-running behavior represents factors in addition to rodents' tendency to be physically active, engaging additional neural and physiological mechanisms which can then independently alter energy balance and behavior. Given the impact of wheel-running behavior on numerous overlapping systems that influence behavior and physiology, this review outlines the need for careful design and interpretation of studies that utilize running wheels as a means for exercise or as a measurement of general physical activity. Copyright © 2012 Elsevier Ltd. All rights reserved.

  7. The use of a running wheel to measure activity in rodents: Relationship to energy balance, general activity, and reward

    PubMed Central

    Levine, James A.

    2015-01-01

    Running wheels are commonly employed to measure rodent physical activity in a variety of contexts, including studies of energy balance and obesity. There is no consensus on the nature of wheel-running activity or its underlying causes, however. Here, we will begin by systematically reviewing how running wheel availability affects physical activity and other aspects of energy balance in laboratory rodents. While wheel running and physical activity in the absence of a wheel commonly correlate in a general sense, in many specific aspects the two do not correspond. In fact, the presence of running wheels alters several aspects of energy balance, including body weight and composition, food intake, and energy expenditure of activity. We contend that wheel-running activity should be considered a behavior in and of itself, reflecting several underlying behavioral processes in addition to a rodent's general, spontaneous activity. These behavioral processes include defensive behavior, predatory aggression, and depression- and anxiety-like behaviors. As it relates to energy balance, wheel running engages several brain systems—including those related to the stress response, mood, and reward, and those responsive to growth factors—that influence energy balance indirectly. We contend that wheel-running behavior represents factors in addition to rodents' tendency to be physically active, engaging additional neural and physiological mechanisms which can then independently alter energy balance and behavior. Given the impact of wheel-running behavior on numerous overlapping systems that influence behavior and physiology, this review outlines the need for careful design and interpretation of studies that utilize running wheels as a means for exercise or as a measurement of general physical activity. PMID:22230703

  8. Thermal fatigue performance of integrally cast automotive turbine wheels

    NASA Technical Reports Server (NTRS)

    Humphreys, V. E.; Hofer, K. E.

    1980-01-01

    Fluidized bed thermal fatigue testing was conducted on 16 integrally cast automotive turbine wheels for 1000-10,000 (600 sec total) thermal cycles at 935/50 C. The 16 wheels consisted of 14 IN-792 + 1% Hf and 2 gatorized AF2-1DA wheels; 6 of the IN-792 + Hf wheels contained crack arrest pockets inside the blade root flange. Temperature transients during the thermal cycling were measured in three calibration tests using either 18 or 30 thermocouples per wheel. Thermal cracking based on crack length versus accumulated cycles was greatest for unpocketed wheels developing cracks in 8-13 cycles compared to 75-250 cycles for unpocketed wheels. However, pocketed wheels survived up to 10,000 cycles with crack lengths less than 20 mm, whereas two unpocketed wheels developed 45 mm long cracks in 1000-2000 cycles.

  9. Rating Pregnancy Wheel Applications Using the APPLICATIONS Scoring System.

    PubMed

    Chyjek, Kathy; Farag, Sara; Chen, Katherine T

    2015-06-01

    To identify the top-rated pregnancy wheel applications (apps) using a newly developed APPLICATIONS scoring system. A list of pregnancy wheel apps was identified. Consumer-based and inaccurate apps were excluded. The APPLICATIONS scoring system was developed to rate the remaining apps. Application comprehensiveness was evaluated. Objective rating components included price, paid subscription, literature used, in-app purchases, connectivity to the Internet, advertisements, text search field, interdevice compatibility, and other components such as images or figures, videos, and special features. Subjective rating components were ease of navigation and subjective presentation. A complete list of 55 pregnancy wheel apps was created from three sources. Thirty-nine (71%) were consumer-based, inaccurate, or both, leaving 16 (29%) for analysis using the APPLICATIONS scoring system. More than two thirds of pregnancy wheel apps were excluded from our study secondary to being consumer-based, inaccurate, or both. This highlights the importance of identifying systematically, reviewing critically, and rating the thousands of available apps to health care providers to ensure accuracy and applicability. We propose that our APPLICATIONS scoring system be used to rate apps in all specialties with the goal of improving health care provider performance and thereby patient outcomes. III.

  10. Why Animals Run on Legs, Not on Wheels.

    ERIC Educational Resources Information Center

    Diamond, Jared

    1983-01-01

    Speculates why animals have not developed wheels in place of inefficient legs. One study cited suggests three reasons why animals are better off without wheels: wheels are efficient only on hard surfaces, limitation of wheeled motion due to vertical obstructions, and the problem of turning in spaces cluttered with obstacles. (JN)

  11. Analysis and control of high-speed wheeled vehicles

    NASA Astrophysics Data System (ADS)

    Velenis, Efstathios

    In this work we reproduce driving techniques to mimic expert race drivers and obtain the open-loop control signals that may be used by auto-pilot agents driving autonomous ground wheeled vehicles. Race drivers operate their vehicles at the limits of the acceleration envelope. An accurate characterization of the acceleration capacity of the vehicle is required. Understanding and reproduction of such complex maneuvers also require a physics-based mathematical description of the vehicle dynamics. While most of the modeling issues of ground-vehicles/automobiles are already well established in the literature, lack of understanding of the physics associated with friction generation results in ad-hoc approaches to tire friction modeling. In this work we revisit this aspect of the overall vehicle modeling and develop a tire friction model that provides physical interpretation of the tire forces. The new model is free of those singularities at low vehicle speed and wheel angular rate that are inherent in the widely used empirical static models. In addition, the dynamic nature of the tire model proposed herein allows the study of dynamic effects such as transients and hysteresis. The trajectory-planning problem for an autonomous ground wheeled vehicle is formulated in an optimal control framework aiming to minimize the time of travel and maximize the use of the available acceleration capacity. The first approach to solve the optimal control problem is using numerical techniques. Numerical optimization allows incorporation of a vehicle model of high fidelity and generates realistic solutions. Such an optimization scheme provides an ideal platform to study the limit operation of the vehicle, which would not be possible via straightforward simulation. In this work we emphasize the importance of online applicability of the proposed methodologies. This underlines the need for optimal solutions that require little computational cost and are able to incorporate real, unpredictable

  12. Free Access to Running Wheels Abolishes Hyperphagia in Human Growth Hormone Transgenic Rats

    PubMed Central

    KOMATSUDA, Mugiko; YAMANOUCHI, Keitaro; MATSUWAKI, Takashi; NISHIHARA, Masugi

    2014-01-01

    ABSTRACT Obesity is a major health problem, and increased food intake and decreased physical activity are considered as two major factors causing obesity. Previous studies show that voluntary exercise in a running wheel decreases not only body weight but also food intake of rats. We previously produced human growth hormone transgenic (TG) rats, which are characterized by severe hyperphagia and obesity. To gain more insight into the effects on physical activity to food consumption and obesity, we examined whether voluntary running wheel exercise causes inhibition of hyperphagia and alteration of body composition in TG rats. Free access to running wheels completely abolished hyperphagia in TG rats, and this effect persisted for many weeks as far as the running wheel is accessible. Unexpectedly, though the running distances of TG rats were significantly less than those of wild type rats, it was sufficient to normalize their food consumption. This raises the possibility that rearing environment, which enables them to access to a running wheel freely, rather than the amounts of physical exercises is more important for the maintenance of proper food intake. PMID:24717416

  13. Free access to running wheels abolishes hyperphagia in human growth hormone transgenic rats.

    PubMed

    Komatsuda, Mugiko; Yamanouchi, Keitaro; Matsuwaki, Takashi; Nishihara, Masugi

    2014-07-01

    Obesity is a major health problem, and increased food intake and decreased physical activity are considered as two major factors causing obesity. Previous studies show that voluntary exercise in a running wheel decreases not only body weight but also food intake of rats. We previously produced human growth hormone transgenic (TG) rats, which are characterized by severe hyperphagia and obesity. To gain more insight into the effects on physical activity to food consumption and obesity, we examined whether voluntary running wheel exercise causes inhibition of hyperphagia and alteration of body composition in TG rats. Free access to running wheels completely abolished hyperphagia in TG rats, and this effect persisted for many weeks as far as the running wheel is accessible. Unexpectedly, though the running distances of TG rats were significantly less than those of wild type rats, it was sufficient to normalize their food consumption. This raises the possibility that rearing environment, which enables them to access to a running wheel freely, rather than the amounts of physical exercises is more important for the maintenance of proper food intake.

  14. Prediction of Lunar Reconnaissance Orbiter Reaction Wheel Assembly Angular Momentum Using Regression Analysis

    NASA Technical Reports Server (NTRS)

    DeHart, Russell

    2017-01-01

    This study determines the feasibility of creating a tool that can accurately predict Lunar Reconnaissance Orbiter (LRO) reaction wheel assembly (RWA) angular momentum, weeks or even months into the future. LRO is a three-axis stabilized spacecraft that was launched on June 18, 2009. While typically nadir-pointing, LRO conducts many types of slews to enable novel science collection. Momentum unloads have historically been performed approximately once every two weeks with the goal of maintaining system total angular momentum below 70 Nms; however flight experience shows the models developed before launch are overly conservative, with many momentum unloads being performed before system angular momentum surpasses 50 Nms. A more accurate model of RWA angular momentum growth would improve momentum unload scheduling and decrease the frequency of these unloads. Since some LRO instruments must be deactivated during momentum unloads and in the case of one instrument, decontaminated for 24 hours there after a decrease in the frequency of unloads increases science collection. This study develops a new model to predict LRO RWA angular momentum. Regression analysis of data from October 2014 to October 2015 was used to develop relationships between solar beta angle, slew specifications, and RWA angular momentum growth. The resulting model predicts RWA angular momentum using input solar beta angle and mission schedule data. This model was used to predict RWA angular momentum from October 2013 to October 2014. Predictions agree well with telemetry; of the 23 momentum unloads performed from October 2013 to October 2014, the mean and median magnitude of the RWA total angular momentum prediction error at the time of the momentum unloads were 3.7 and 2.7 Nms, respectively. The magnitude of the largest RWA total angular momentum prediction error was 10.6 Nms. Development of a tool that uses the models presented herein is currently underway.

  15. View of tanks T18 and T19 with redwood tanks to ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View of tanks T18 and T19 with redwood tanks to right. Old rain shed (Building No. 43) can be seen behind the tanks. Ground catchment can be seen at left in background. - Hawaii Volcanoes National Park Water Collection System, Hawaii Volcanoes National Park, Volcano, Hawaii County, HI

  16. 77 FR 70478 - RG Steel Wheeling, LLC, Wheeling Office, A Division Of RG Steel, LLC, Including On-Site Leased...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-26

    ... DEPARTMENT OF LABOR Employment and Training Administration [TA-W-81,880: TA-A-81,880A] RG Steel Wheeling, LLC, Wheeling Office, A Division Of RG Steel, LLC, Including On-Site Leased Workers From Pro Unlimited and Green Energy Initiatives LLC, Including Workers Whose Wages Were Reported Through Severstal Wheeling, Wheeling, WV: Mountain State...

  17. The TreadWheel: A Novel Apparatus to Measure Genetic Variation in Response to Gently Induced Exercise for Drosophila

    PubMed Central

    Mendez, Sean; Watanabe, Louis; Hill, Rachel; Owens, Meredith; Moraczewski, Jason; Rowe, Glenn C.; Riddle, Nicole C.

    2016-01-01

    Obesity is one of the dramatic health issues affecting developed and developing nations, and exercise is a well-established intervention strategy. While exercise-by-genotype interactions have been shown in humans, overall little is known. Using the natural negative geotaxis of Drosophila melanogaster, an important model organism for the study of genetic interactions, a novel exercise machine, the TreadWheel, can be used to shed light on this interaction. The mechanism for inducing exercise with the TreadWheel is inherently gentle, thus minimizing possible confounding effects of other stressors. Using this machine, we were able to assess large cohorts of adult flies from eight genetic lines for their response to exercise after one week of training. We measured their triglyceride, glycerol, protein, glycogen, glucose content, and body weight, as well as their climbing ability and feeding behavior in response to exercise. Exercised flies showed decreased stored triglycerides, glycogen, and body weight, and increased stored protein and climbing ability. In addition to demonstrating an overall effect of TreadWheel exercise on flies, we found significant interactions of exercise with genotype, sex, or genotype-by-sex effects for most of the measured phenotypes. We also observed interaction effects between exercise, genotype, and tissue (abdomen or thorax) for metabolite profiles, and those differences can be partially linked to innate differences in the flies' persistence in maintaining activity during exercise bouts. In addition, we assessed gene expression levels for a panel of 13 genes known to be associated with respiratory fitness and found that many responded to exercise. With this study, we have established the TreadWheel as a useful tool to study the effect of exercise in flies, shown significant genotype-specific and sex-specific impacts of exercise, and have laid the ground work for more extensive studies of how genetics, sex, environment, and aging interact

  18. 49 CFR 230.113 - Wheels and tire defects.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... crack or break in the flange, tread, rim, plate, hub or brackets. (b) Flat spots. Wheels and tires may... 49 Transportation 4 2012-10-01 2012-10-01 false Wheels and tire defects. 230.113 Section 230.113... Tenders Wheels and Tires § 230.113 Wheels and tire defects. Steam locomotive and tender wheels or tires...

  19. 49 CFR 230.113 - Wheels and tire defects.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... crack or break in the flange, tread, rim, plate, hub or brackets. (b) Flat spots. Wheels and tires may... 49 Transportation 4 2010-10-01 2010-10-01 false Wheels and tire defects. 230.113 Section 230.113... Tenders Wheels and Tires § 230.113 Wheels and tire defects. Steam locomotive and tender wheels or tires...

  20. 49 CFR 230.113 - Wheels and tire defects.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... crack or break in the flange, tread, rim, plate, hub or brackets. (b) Flat spots. Wheels and tires may... 49 Transportation 4 2014-10-01 2014-10-01 false Wheels and tire defects. 230.113 Section 230.113... Tenders Wheels and Tires § 230.113 Wheels and tire defects. Steam locomotive and tender wheels or tires...

  1. 49 CFR 230.113 - Wheels and tire defects.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... crack or break in the flange, tread, rim, plate, hub or brackets. (b) Flat spots. Wheels and tires may... 49 Transportation 4 2013-10-01 2013-10-01 false Wheels and tire defects. 230.113 Section 230.113... Tenders Wheels and Tires § 230.113 Wheels and tire defects. Steam locomotive and tender wheels or tires...

  2. 49 CFR 230.113 - Wheels and tire defects.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... crack or break in the flange, tread, rim, plate, hub or brackets. (b) Flat spots. Wheels and tires may... 49 Transportation 4 2011-10-01 2011-10-01 false Wheels and tire defects. 230.113 Section 230.113... Tenders Wheels and Tires § 230.113 Wheels and tire defects. Steam locomotive and tender wheels or tires...

  3. STATISTICAL ANALYSIS OF TANK 18F FLOOR SAMPLE RESULTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harris, S.

    2010-09-02

    Representative sampling has been completed for characterization of the residual material on the floor of Tank 18F as per the statistical sampling plan developed by Shine [1]. Samples from eight locations have been obtained from the tank floor and two of the samples were archived as a contingency. Six samples, referred to in this report as the current scrape samples, have been submitted to and analyzed by SRNL [2]. This report contains the statistical analysis of the floor sample analytical results to determine if further data are needed to reduce uncertainty. Included are comparisons with the prior Mantis samples resultsmore » [3] to determine if they can be pooled with the current scrape samples to estimate the upper 95% confidence limits (UCL{sub 95%}) for concentration. Statistical analysis revealed that the Mantis and current scrape sample results are not compatible. Therefore, the Mantis sample results were not used to support the quantification of analytes in the residual material. Significant spatial variability among the current sample results was not found. Constituent concentrations were similar between the North and South hemispheres as well as between the inner and outer regions of the tank floor. The current scrape sample results from all six samples fall within their 3-sigma limits. In view of the results from numerous statistical tests, the data were pooled from all six current scrape samples. As such, an adequate sample size was provided for quantification of the residual material on the floor of Tank 18F. The uncertainty is quantified in this report by an upper 95% confidence limit (UCL{sub 95%}) on each analyte concentration. The uncertainty in analyte concentration was calculated as a function of the number of samples, the average, and the standard deviation of the analytical results. The UCL{sub 95%} was based entirely on the six current scrape sample results (each averaged across three analytical determinations).« less

  4. The Planning Wheel: Value Added Performance.

    ERIC Educational Resources Information Center

    Murk, Peter J.; Walls, Jeffrey L.

    The "Planning Wheel" is an evolution of the original Systems Approach Model (SAM) that was introduced in 1986 by Murk and Galbraith. Unlike most current planning models, which are linear in design and concept, the Planning Wheel bridges the gap between linear and nonlinear processes. The "Program Planning Wheel" is designed to…

  5. Analysis of Wheel/Rail Force and Flange Force During Steady State Curving of Rigid Trucks

    DOT National Transportation Integrated Search

    1980-09-01

    The wheel/rail dynamics interaction project being conducted as part of this program is directed toward reduction of maintenance costs and wheel/rail noise while providing acceptable ride quality and safety. This report describes the development of a ...

  6. Review and analysis of Hamburg Wheel Tracking device test data.

    DOT National Transportation Integrated Search

    2014-02-01

    The Hamburg Wheel Tracking Device (HWTD) test (TEX-242-F) and the Kansas Test Method KT-56 (KT-56), or : modified Lottman test, have been used in Kansas for the last 10 years or so to predict rutting and moisture damage potential of : Superpave mixes...

  7. Using Photogrammetry to Estimate Tank Waste Volumes from Video

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Field, Jim G.

    Washington River Protection Solutions (WRPS) contracted with HiLine Engineering & Fabrication, Inc. to assess the accuracy of photogrammetry tools as compared to video Camera/CAD Modeling System (CCMS) estimates. This test report documents the results of using photogrammetry to estimate the volume of waste in tank 241-C-I04 from post-retrieval videos and results using photogrammetry to estimate the volume of waste piles in the CCMS test video.

  8. Time Frequency Analysis of Spacecraft Propellant Tank Spinning Slosh

    NASA Technical Reports Server (NTRS)

    Green, Steven T.; Burkey, Russell C.; Sudermann, James

    2010-01-01

    Many spacecraft are designed to spin about an axis along the flight path as a means of stabilizing the attitude of the spacecraft via gyroscopic stiffness. Because of the assembly requirements of the spacecraft and the launch vehicle, these spacecraft often spin about an axis corresponding to a minor moment of inertia. In such a case, any perturbation of the spin axis will cause sloshing motions in the liquid propellant tanks that will eventually dissipate enough kinetic energy to cause the spin axis nutation (wobble) to grow further. This spinning slosh and resultant nutation growth is a primary design problem of spinning spacecraft and one that is not easily solved by analysis or simulation only. Testing remains the surest way to address spacecraft nutation growth. This paper describes a test method and data analysis technique that reveal the resonant frequency and damping behavior of liquid motions in a spinning tank. Slosh resonant frequency and damping characteristics are necessary inputs to any accurate numerical dynamic simulation of the spacecraft.

  9. Peculiarities of Clutch Forming Rails and Wheel Block Construction

    NASA Astrophysics Data System (ADS)

    Shiler, V. V.; Galiev, I. I.; Shiler, A. V.

    2018-03-01

    The clutch of the wheel and rail is significantly influenced by the design features of the standard wheel pair, which are manifested in the presence of "parasitic" slipping of the wheels along the rails during its movement. The purpose of the presented work is to evaluate new design solutions for wheel sets. The research was carried out using methods of comparative simulation modelling and physical prototyping. A new design of the wheel pair (block wheel pair) is proposed, which features an independent rotation of all surfaces of the wheels in contact with the rails. The block construction of the wheel pair forms open mechanical contours with the track gauge, which completely eliminates the "parasitic" slippage. As a result, in the process of implementing traction or braking forces, the coupling coefficient of the block construction of the wheel pair is significantly higher than that of existing structures. In addition, in the run-out mode, the resistance to movement of the block wheel pair is half as much. All this will allow one to significantly reduce the energy consumption for traction of trains, wear of track elements and crew, and to increase the speed and safety of train traffic.

  10. Progress toward a performance based specification for diamond grinding wheels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taylor, J.S.; Piscotty, M.S.; Blaedel, K.L.

    1996-11-12

    This work sought to improve the communication between users and makers of fine diamond grinding wheels. A promising avenue for this is to formulate a voluntary product standard that comprises performance indicators that bridge the gap between specific user requirements and the details of wheel formulations. We propose a set of performance specifiers of figures-of-merit, that might be assessed by straightforward and traceable testing methods, but do not compromise proprietary information of the wheel user of wheel maker. One such performance indicator might be wheel hardness. In addition we consider technologies that might be required to realize the benefits ofmore » optimized grinding wheels. A non-contact wheel-to- workpiece proximity sensor may provide a means of monitoring wheel wear and thus wheel position, for wheels that exhibit high wear rates in exchange for improved surface finish.« less

  11. Design and Optimization of Composite Gyroscope Momentum Wheel Rings

    NASA Technical Reports Server (NTRS)

    Bednarcyk, Brett A.; Arnold, Steven M.

    2007-01-01

    Stress analysis and preliminary design/optimization procedures are presented for gyroscope momentum wheel rings composed of metallic, metal matrix composite, and polymer matrix composite materials. The design of these components involves simultaneously minimizing both true part volume and mass, while maximizing angular momentum. The stress analysis results are combined with an anisotropic failure criterion to formulate a new sizing procedure that provides considerable insight into the design of gyroscope momentum wheel ring components. Results compare the performance of two optimized metallic designs, an optimized SiC/Ti composite design, and an optimized graphite/epoxy composite design. The graphite/epoxy design appears to be far superior to the competitors considered unless a much greater premium is placed on volume efficiency compared to mass efficiency.

  12. Thermal analysis elements of liquefied gas storage tanks

    NASA Astrophysics Data System (ADS)

    Yanvarev, I. A.; Krupnikov, A. V.

    2017-08-01

    Tasks of solving energy and resource efficient usage problems, both for oil producing companies and for companies extracting and transporting natural gas, are associated with liquefied petroleum gas technology development. Improving the operation efficiency of liquefied products storages provides for conducting structural, functional, and appropriate thermal analysis of tank parks in the general case as complex dynamic thermal systems.

  13. Home cage wheel running is an objective and clinically relevant method to assess inflammatory pain in male and female rats

    PubMed Central

    Kandasamy, Ram; Calsbeek, Jonas J.; Morgan, Michael M.

    2016-01-01

    Background The assessment of nociception in preclinical studies is undergoing a transformation from pain-evoked to pain-depressed tests to more closely mimic the effects of clinical pain. Many inflammatory pain-depressed behaviors (reward seeking, locomotion) have been examined, but these tests are limited because of confounds such as stress and difficulties in quantifying behavior. New Method The present study evaluates home cage wheel running as an objective method to assess the magnitude and duration of inflammatory pain in male and female rats. Results Injection of Complete Freund’s Adjuvant (CFA) into the right hindpaw to induce inflammatory pain almost completely inhibited wheel running for 2 days in males and females. Wheel running gradually returned to baseline levels within 12 days despite persistent mechanical hypersensitivity (von Frey test). Comparison with Existing Methods Continuously monitoring home cage wheel running improves on previous studies examining inflammatory pain-depressed wheel running because it is more sensitive to noxious stimuli, avoids the stress of removing the rat from its cage for testing, and provides a complete analysis of the time course for changes in nociception. Conclusions The present data indicate that home cage wheel running is a clinically relevant method to assess inflammatory pain in the rat. The decrease in activity caused by inflammatory pain and subsequent gradual recovery mimics the changes in activity caused by pain in humans. The tendency for pain-depressed wheel running to be greater in female than male rats is consistent with the tendency for women to be at greater risk of chronic pain than men. PMID:26891874

  14. An Evaluation of Reaction Wheel Emitted Vibrations for Large Space Telescope

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Emitted force and torque vibration were measured in three axes for three Sperry reaction wheels. Data were taken for both hard and soft mounts; tests were conducted at constant speeds and during runup-rundown over a 0 to 5000 rpm range. A FSC, 7 ft-lb-sec and HEAO, 30 ft-lb-sec ball bearing reaction wheel and a model magnetic bearing were tested. Data analysis was conducted to identify the principal resonances in the 10 to 120 Hz region. Although some particular phenomena remain unexplained, in general good agreement is attained between the analytical predictions and test data. Predictions were also made of the expected emitted vibrations for an LST sized ball bearing and magnetic bearing reaction wheel using engineering judgment and the test data obtained. Additional tests were also run on the 101H duplex bearing pairs used in the reaction wheel suspension to determine bearing stiffness characteristics in the pre-breakaway zero speed region.

  15. Angular Rate Sensing with GyroWheel Using Genetic Algorithm Optimized Neural Networks.

    PubMed

    Zhao, Yuyu; Zhao, Hui; Huo, Xin; Yao, Yu

    2017-07-22

    GyroWheel is an integrated device that can provide three-axis control torques and two-axis angular rate sensing for small spacecrafts. Large tilt angle of its rotor and de-tuned spin rate lead to a complex and non-linear dynamics as well as difficulties in measuring angular rates. In this paper, the problem of angular rate sensing with the GyroWheel is investigated. Firstly, a simplified rate sensing equation is introduced, and the error characteristics of the method are analyzed. According to the analysis results, a rate sensing principle based on torque balance theory is developed, and a practical way to estimate the angular rates within the whole operating range of GyroWheel is provided by using explicit genetic algorithm optimized neural networks. The angular rates can be determined by the measurable values of the GyroWheel (including tilt angles, spin rate and torque coil currents), the weights and the biases of the neural networks. Finally, the simulation results are presented to illustrate the effectiveness of the proposed angular rate sensing method with GyroWheel.

  16. Tank characterization report for single-shell tank 241-C-109

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Simpson, B.C.

    1997-05-23

    One of the major functions of the Tank Waste Remediation System (TWRS) is to characterize wastes in support of waste management and disposal activities at the Hanford Site. Analytical data from sampling and analysis, along with other available information about a tank, are compiled and maintained in a tank characterization report (TCR). This report and its appendices serve as the TCR for single-shell tank 241-C-109. The objectives of this report are: (1) to use characterization data in response to technical issues associated with tank 241 C-109 waste; and (2) to provide a standard characterization of this waste in terms ofmore » a best-basis inventory estimate. The response to technical issues is summarized in Section 2.0, and the best-basis inventory estimate is presented in Section 3.0. Recommendations regarding safety status and additional sampling needs are provided in Section 4.0. Supporting data and information are contained in the appendices.« less

  17. Analysis of torque transmitting behavior and wheel slip prevention control during regenerative braking for high speed EMU trains

    NASA Astrophysics Data System (ADS)

    Xu, Kun; Xu, Guo-Qing; Zheng, Chun-Hua

    2016-04-01

    The wheel-rail adhesion control for regenerative braking systems of high speed electric multiple unit trains is crucial to maintaining the stability, improving the adhesion utilization, and achieving deep energy recovery. There remain technical challenges mainly because of the nonlinear, uncertain, and varying features of wheel-rail contact conditions. This research analyzes the torque transmitting behavior during regenerative braking, and proposes a novel methodology to detect the wheel-rail adhesion stability. Then, applications to the wheel slip prevention during braking are investigated, and the optimal slip ratio control scheme is proposed, which is based on a novel optimal reference generation of the slip ratio and a robust sliding mode control. The proposed methodology achieves the optimal braking performance without the wheel-rail contact information. Numerical simulation results for uncertain slippery rails verify the effectiveness of the proposed methodology.

  18. Sensory description of marine oils through development of a sensory wheel and vocabulary.

    PubMed

    Larssen, W E; Monteleone, E; Hersleth, M

    2018-04-01

    The Omega-3 industry lacks a defined methodology and a vocabulary for evaluating the sensory quality of marine oils. This study was conducted to identify the sensory descriptors of marine oils and organize them in a sensory wheel for use as a tool in quality assessment. Samples of marine oils were collected from six of the largest producers of omega-3 products in Norway. The oils were selected to cover as much variation in sensory characteristics as possible, i.e. oils with different fatty acid content originating from different species. Oils were evaluated by six industry expert panels and one trained sensory panel to build up a vocabulary through a series of language sessions. A total of 184 aroma (odor by nose), flavor, taste and mouthfeel descriptors were generated. A sensory wheel based on 60 selected descriptors grouped together in 21 defined categories was created to form a graphical presentation of the sensory vocabulary. A selection of the oil samples was also evaluated by a trained sensory panel using descriptive analysis. Chemical analysis showed a positive correlation between primary and secondary oxidation products and sensory properties such as rancidity, chemical flavor and process flavor and a negative correlation between primary oxidation products and acidic. This research is a first step towards the broader objective of standardizing the sensory terminology related to marine oils. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. 14 CFR Appendix N to Part 25 - Fuel Tank Flammability Exposure and Reliability Analysis

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... flammability exposure time for a fuel tank. (k) Oxygen evolution occurs when oxygen dissolved in the fuel is... evolution from the fuel results in the fuel tank or compartment exceeding the inert level. The applicant must include any times when oxygen evolution from the fuel in the tank or compartment under evaluation...

  20. 14 CFR Appendix N to Part 25 - Fuel Tank Flammability Exposure and Reliability Analysis

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... flammability exposure time for a fuel tank. (k) Oxygen evolution occurs when oxygen dissolved in the fuel is... evolution from the fuel results in the fuel tank or compartment exceeding the inert level. The applicant must include any times when oxygen evolution from the fuel in the tank or compartment under evaluation...

  1. 14 CFR Appendix N to Part 25 - Fuel Tank Flammability Exposure and Reliability Analysis

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... flammability exposure time for a fuel tank. (k) Oxygen evolution occurs when oxygen dissolved in the fuel is... evolution from the fuel results in the fuel tank or compartment exceeding the inert level. The applicant must include any times when oxygen evolution from the fuel in the tank or compartment under evaluation...

  2. Geneva mechanism. [including star wheel and driver

    NASA Technical Reports Server (NTRS)

    Summers, R. H.; Kenney, R. L. (Inventor)

    1974-01-01

    An improved Geneva mechanism is characterized by a driven star-wheel having a segmented cam-follower surface. Star-wheel driver includes a restraining cam having a segmented cam surface for engaging the cam-follower surface of the star-wheel and antifriction rollers pinned to the restraining cam for engaging the cam-follower surface.

  3. Contoured tank outlets for draining of cylindrical tanks in low-gravity environment. [Lewis Research Center Zero Gravity Facility

    NASA Technical Reports Server (NTRS)

    Symons, E. P.

    1979-01-01

    An analysis is presented for defining the outlet contour of a hemispherical-bottomed cylindrical tank that will prevent vapor ingestion when the tank is drained. The analysis was used to design two small-scale tanks that were fabricated and then tested in a low gravity environment. The draining performance of the tanks was compared with that for a tank with a conventional outlet having a constant circular cross-sectional area, under identical conditions. Even when drained at off-design conditions, the contoured tank had less liquid residuals at vapor ingestion than the conventional outlet tank. Effects of outflow rate, gravitational environment, and fluid properties on the outlet contour are discussed. Two potential applications of outlet contouring are also presented and discussed.

  4. Reliability of Heart Rate Variability Analysis by Using Electrocardiogram Recorded Unrestrainedly from an Automobile Steering-Wheel

    NASA Astrophysics Data System (ADS)

    Osaka, Motohisa; Murata, Hiroshige; Tateoka, Katsuhiko; Katoh, Takao

    2007-07-01

    Some cases of traffic accidents are assumed to be due to the occurrences of cardiac events during driving, which are thought to be induced by imbalance of autonomic nervous activities. These can be measured by analyzing heart rate variability. Therefore, we developed a new system of steering-wheel electrocardiogram with a soft-ware to remove noises. We compared the trends of sympathetic and parasympathetic nerve activities measured from the steering-wheel electrocardiograms with those recorded simultaneously from chest leads. For each parameter of instantaneous heart rate, low- or high-frequency component of heart rate variability in all the cases, the trend from the steering-wheel electrocardiogram resembled that from the chest-lead electrocardiogram. In 3 of 7 subjects, the trend of LF/HF showed a strong relationship between the steering-wheel electrocardiogram and the chest-lead electrocardiogram. Our system will open doors to a new strategy to keep a driver out of a risk by notifying it while driving.

  5. Reimagining the Color Wheel

    ERIC Educational Resources Information Center

    Snyder, Jennifer

    2011-01-01

    Color wheels are a traditional project for many teachers. The author has used them in art appreciation classes for many years, but one problem she found when her pre-service art education students created colored wheels was that they were boring: simple circles, with pie-shaped pieces, which students either painted or colored in. This article…

  6. In-situ soil sensing for planetary micro-rovers with hybrid wheel-leg systems

    NASA Astrophysics Data System (ADS)

    Comin Cabrera, Francisco Jose

    Rover missions exploring other planets are tightly constrained regarding the trade-off between safety and traversal speed. Detecting and avoiding hazards during navigation is capital to preserve the mobility of a rover. Low traversal speeds are often enforced to assure that wheeled rovers do not become stuck in challenging terrain, hindering the performance and scientific return of the mission. Even such precautions do not guarantee safe navigation due to non-geometric hazards hidden in the terrain, such as sand traps beneath thin duricrusts. These issues motivate the research of the interaction with rough and sandy planetary terrains of conventional and innovative robot locomotion concepts. Hybrid wheel-legs combine the mechanical and control simplicity of wheeled locomotion with the enhanced mobility of legged locomotion. This concept has been rarely proposed for planetary exploration and the study of its interaction with granular terrains is at a very early stage. This research focuses on advancing the state-of-the-art of wheel-leg-soil interaction analysis and applying it through in-situ sensing to simultaneously improve the speed and safety of planetary rover missions. The semi-empirical approach used combines both theoretical modelling and experimental analysis of data obtained in laboratory and field analogues. A novel light-weight, low-power sensor system, capable of reliably detecting wheel-leg sinkage and slippage phenomena on-the-fly, is designed, implemented and tested both as part of a simplified single-wheel-leg test bed and integrated in a fully mobile micro-rover. Moreover, existing analytical models for the interaction between deformable terrain and heavily-loaded wheels or lightly-loaded legs are adapted to the generalised medium-loaded multi-legged wheel-leg case and combined into hybrid approaches for better accuracy, as validated against experimental data. Finally, the soil sensor system and analytical models proposed are used to develop and

  7. Composite overwrapped metallic tanks

    NASA Technical Reports Server (NTRS)

    Caudill, C. L.; Kirlin, R. L.

    1972-01-01

    Work is reported for fabricating and testing the fiberglass overwrapped titanium pressure vessel for cryogenic service. Difficulties encountered in the tank liner fabrication phase involved explosive forming, vacuum annealing, chemical milling and electron beam welding. While each of these processes and the nondestructive test methods employed are normally considered to be individually reliable, the combination of poor material together with fabrication and development reversals prevented the full achievement of the desired end results. Eight tanks plus a prototype and tool proofing article were produced. Six of the vessels failed during the hydrostatic sizing operation. One of the remaining tanks was hydrostatically pressurized to burst and the other was pressurized repeatedly at 75 F from 100 psi to the operating pressure until failure occurred. As a result, it is not possible to draw firm conclusions as to the true value of the design concept due to the problems encountered in the program.

  8. 11. Station Accumulator Tanks, view to the northeast. The tanks ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    11. Station Accumulator Tanks, view to the northeast. The tanks are visible along the right side of photograph, opposite a wall of the Unit 1 turbine pit. - Washington Water Power Clark Fork River Cabinet Gorge Hydroelectric Development, Powerhouse, North Bank of Clark Fork River at Cabinet Gorge, Cabinet, Bonner County, ID

  9. Inertia coupling analysis of a self-decoupled wheel force transducer under multi-axis acceleration fields.

    PubMed

    Feng, Lihang; Lin, Guoyu; Zhang, Weigong; Dai, Dong

    2015-01-01

    Wheel force transducer (WFT), which measures the three-axis forces and three-axis torques applied to the wheel, is an important instrument in the vehicle testing field and has been extremely promoted by researchers with great interests. The transducer, however, is typically mounted on the wheel of a moving vehicle, especially on a high speed car, when abruptly accelerating or braking, the mass/inertia of the transducer/wheel itself will have an extra effect on the sensor response so that the inertia/mass loads will also be detected and coupled into the signal outputs. The effect which is considered to be inertia coupling problem will decrease the sensor accuracy. In this paper, the inertia coupling of a universal WFT under multi-axis accelerations is investigated. According to the self-decoupling approach of the WFT, inertia load distribution is solved based on the principle of equivalent mass and rotary inertia, thus then inertia impact can be identified with the theoretical derivation. The verification is achieved by FEM simulation and experimental tests. Results show that strains in simulation agree well with the theoretical derivation. The relationship between the applied acceleration and inertia load for both wheel force and moment is the approximate linear, respectively. All the relative errors are less than 5% which are within acceptable and the inertia loads have the maximum impact on the signal output about 1.5% in the measurement range.

  10. Inertia Coupling Analysis of a Self-Decoupled Wheel Force Transducer under Multi-Axis Acceleration Fields

    PubMed Central

    Feng, Lihang; Lin, Guoyu; Zhang, Weigong; Dai, Dong

    2015-01-01

    Wheel force transducer (WFT), which measures the three-axis forces and three-axis torques applied to the wheel, is an important instrument in the vehicle testing field and has been extremely promoted by researchers with great interests. The transducer, however, is typically mounted on the wheel of a moving vehicle, especially on a high speed car, when abruptly accelerating or braking, the mass/inertia of the transducer/wheel itself will have an extra effect on the sensor response so that the inertia/mass loads will also be detected and coupled into the signal outputs. The effect which is considered to be inertia coupling problem will decrease the sensor accuracy. In this paper, the inertia coupling of a universal WFT under multi-axis accelerations is investigated. According to the self-decoupling approach of the WFT, inertia load distribution is solved based on the principle of equivalent mass and rotary inertia, thus then inertia impact can be identified with the theoretical derivation. The verification is achieved by FEM simulation and experimental tests. Results show that strains in simulation agree well with the theoretical derivation. The relationship between the applied acceleration and inertia load for both wheel force and moment is the approximate linear, respectively. All the relative errors are less than 5% which are within acceptable and the inertia loads have the maximum impact on the signal output about 1.5% in the measurement range. PMID:25723492

  11. 49 CFR 179.300 - General specifications applicable to multi-unit tank car tanks designed to be removed from car...

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... tank car tanks designed to be removed from car structure for filling and emptying (Classes DOT-106A and...) PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) SPECIFICATIONS FOR TANK CARS Specifications for Multi-Unit Tank Car Tanks (Classes DOT-106A and 110AW) § 179.300...

  12. 49 CFR 179.300 - General specifications applicable to multi-unit tank car tanks designed to be removed from car...

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... tank car tanks designed to be removed from car structure for filling and emptying (Classes DOT-106A and...) PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) SPECIFICATIONS FOR TANK CARS Specifications for Multi-Unit Tank Car Tanks (Classes DOT-106A and 110AW) § 179.300...

  13. Constructing a Celestial Calendar Wheel.

    ERIC Educational Resources Information Center

    Cousineau, Sarah M.

    1999-01-01

    Explains how to create a paper replica of the Bighorn Medicine Wheel, an ancient timepiece thought to have been constructed by the Lakota Indians around 1700 A.D. The Bighorn Wheel uses four key seasonal stars as well as the solstice sunrise and sunset to mark the passage of time through the summer. (WRM)

  14. CFD Extraction of Heat Transfer Coefficient in Cryogenic Propellant Tanks

    NASA Technical Reports Server (NTRS)

    Yang, H. Q.; West, Jeff

    2015-01-01

    Current reduced-order thermal model for cryogenic propellant tanks is based on correlations built for flat plates collected in the 1950's. The use of these correlations suffers from inaccurate geometry representation; inaccurate gravity orientation; ambiguous length scale; and lack of detailed validation. This study uses first-principles based CFD methodology to compute heat transfer from the tank wall to the cryogenic fluids and extracts and correlates the equivalent heat transfer coefficient to support reduced-order thermal model. The CFD tool was first validated against available experimental data and commonly used correlations for natural convection along a vertically heated wall. Good agreements between the present prediction and experimental data have been found for flows in laminar as well turbulent regimes. The convective heat transfer between the tank wall and cryogenic propellant, and that between the tank wall and ullage gas were then simulated. The results showed that the commonly used heat transfer correlations for either vertical or horizontal plate over-predict heat transfer rate for the cryogenic tank, in some cases by as much as one order of magnitude. A characteristic length scale has been defined that can correlate all heat transfer coefficients for different fill levels into a single curve. This curve can be used for the reduced-order heat transfer model analysis.

  15. Investigation of rail wheel steel crystallographic texture changes due to modification and thermomechanical treatment

    NASA Astrophysics Data System (ADS)

    Lychagina, T.; Nikolayev, D.; Sanin, A.; Tatarko, J.; Ullemeyer, K.

    2015-04-01

    In this work crystallographic texture for a set of rail wheel steel samples with different regimes of thermo-mechanical treatment and with and without modification by system Al-Mg-Si- Fe-C-Ca-Ti-Ce was measured by neutron diffraction. The texture measurements were carried out by using time-of-flight technique at SKAT diffractometer situated at IBR-2 reactor (Dubna, JINR, Russia). The three complete pole figures (110), (200), (211) of α-Fe phase in 5°×5°grid were extracted from a set of 1368 spectra measured for each sample. The samples were cut from rail wheel rim and from transitional zone (between rail wheel hub and wheel disk). It was concluded that the steel modification and some changes in the heat treatment modes of the rail wheels from the experimental (modified) and the conventional (non-modified) steel lead to reorientation of texture component.

  16. HANFORD DOUBLE SHELL TANK (DST) THERMAL & SEISMIC PROJECT BUCKLING EVALUATION METHODS & RESULTS FOR THE PRIMARY TANKS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    MACKEY, T.C.

    2006-03-17

    This report documents a detailed buckling evaluation of the primary tanks in the Hanford double shell waste tanks. The analysis is part of a comprehensive structural review for the Double-Shell Tank Integrity Project. This work also provides information on tank integrity that specifically responds to concerns raise by the Office of Environment, Safety, and Health (ES&H) Oversight (EH-22) during a review (in April and May 2001) of work being performed on the double-shell tank farms, and the operation of the aging waste facility (AWF) primary tank ventilation system.

  17. Responding for sucrose and wheel-running reinforcement: effect of pre-running.

    PubMed

    Belke, Terry W

    2006-01-10

    Six male albino Wistar rats were placed in running wheels and exposed to a fixed interval 30-s schedule that produced either a drop of 15% sucrose solution or the opportunity to run for 15s as reinforcing consequences for lever pressing. Each reinforcer type was signaled by a different stimulus. To assess the effect of pre-running, animals were allowed to run for 1h prior to a session of responding for sucrose and running. Results showed that, after pre-running, response rates in the later segments of the 30-s schedule decreased in the presence of a wheel-running stimulus and increased in the presence of a sucrose stimulus. Wheel-running rates were not affected. Analysis of mean post-reinforcement pauses (PRP) broken down by transitions between successive reinforcers revealed that pre-running lengthened pausing in the presence of the stimulus signaling wheel running and shortened pauses in the presence of the stimulus signaling sucrose. No effect was observed on local response rates. Changes in pausing in the presence of stimuli signaling the two reinforcers were consistent with a decrease in the reinforcing efficacy of wheel running and an increase in the reinforcing efficacy of sucrose. Pre-running decreased motivation to respond for running, but increased motivation to work for food.

  18. Grey-box modelling of aeration tank settling.

    PubMed

    Bechman, Henrik; Nielsen, Marinus K; Poulsen, Niels Kjølstad; Madsen, Henrik

    2002-04-01

    A model of the concentrations of suspended solids (SS) in the aeration tanks and in the effluent from these during Aeration tank settling (ATS) operation is established. The model is based on simple SS mass balances, a model of the sludge settling and a simple model of how the SS concentration in the effluent from the aeration tanks depends on the actual concentrations in the tanks and the sludge blanket depth. The model is formulated in continuous time by means of stochastic differential equations with discrete-time observations. The parameters of the model are estimated using a maximum likelihood method from data from an alternating BioDenipho waste water treatment plant (WWTP). The model is an important tool for analyzing ATS operation and for selecting the appropriate control actions during ATS, as the model can be used to predict the SS amounts in the aeration tanks as well as in the effluent from the aeration tanks.

  19. Maximum Torque and Momentum Envelopes for Reaction Wheel Arrays

    NASA Technical Reports Server (NTRS)

    Markley, F. Landis; Reynolds, Reid G.; Liu, Frank X.; Lebsock, Kenneth L.

    2009-01-01

    Spacecraft reaction wheel maneuvers are limited by the maximum torque and/or angular momentum that the wheels can provide. For an n-wheel configuration, the torque or momentum envelope can be obtained by projecting the n-dimensional hypercube, representing the domain boundary of individual wheel torques or momenta, into three dimensional space via the 3xn matrix of wheel axes. In this paper, the properties of the projected hypercube are discussed, and algorithms are proposed for determining this maximal torque or momentum envelope for general wheel configurations. Practical strategies for distributing a prescribed torque or momentum among the n wheels are presented, with special emphasis on configurations of four, five, and six wheels.

  20. Design of a robotic vehicle with self-contained intelligent wheels

    NASA Astrophysics Data System (ADS)

    Poulson, Eric A.; Jacob, John S.; Gunderson, Robert W.; Abbott, Ben A.

    1998-08-01

    The Center for Intelligent Systems has developed a small robotic vehicle named the Advanced Rover Chassis 3 (ARC 3) with six identical intelligent wheel units attached to a payload via a passive linkage suspension system. All wheels are steerable, so the ARC 3 can move in any direction while rotating at any rate allowed by the terrain and motors. Each intelligent wheel unit contains a drive motor, steering motor, batteries, and computer. All wheel units are identical, so manufacturing, programing, and spare replacement are greatly simplified. The intelligent wheel concept would allow the number and placement of wheels on the vehicle to be changed with no changes to the control system, except to list the position of all the wheels relative to the vehicle center. The task of controlling the ARC 3 is distributed between one master computer and the wheel computers. Tasks such as controlling the steering motors and calculating the speed of each wheel relative to the vehicle speed in a corner are dependent on the location of a wheel relative to the vehicle center and ar processed by the wheel computers. Conflicts between the wheels are eliminated by computing the vehicle velocity control in the master computer. Various approaches to this distributed control problem, and various low level control methods, have been explored.

  1. Control of Wheel/Rail Noise and Vibration

    DOT National Transportation Integrated Search

    1982-04-01

    An analytical model of the generation of wheel/rail noise has been developed and validated through an extensive series of field tests carried out at the Transportation Test Center using the State of the Art Car. A sensitivity analysis has been perfor...

  2. 49 CFR 179.200 - General specifications applicable to non-pressure tank car tanks (Class DOT-111).

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... tank car tanks (Class DOT-111). 179.200 Section 179.200 Transportation Other Regulations Relating to Transportation PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION HAZARDOUS MATERIALS REGULATIONS SPECIFICATIONS FOR TANK CARS Specifications for Non-Pressure Tank Car Tanks (Classes...

  3. Ultrasonic search wheel probe

    DOEpatents

    Mikesell, Charles R.

    1978-01-01

    A device is provided for reducing internal reflections from the tire of an ultrasonic search wheel probe or from within the material being examined. The device includes a liner with an anechoic chamber within which is an ultrasonic transducer. The liner is positioned within the wheel and includes an aperture through which the ultrasonic sound from the transducer is directed.

  4. Inorganic, Radioisotopic, and Organic Analysis of 241-AP-101 Tank Waste

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fiskum, S.K.; Bredt, P.R.; Campbell, J.A.

    2000-10-17

    Battelle received five samples from Hanford waste tank 241-AP-101, taken at five different depths within the tank. No visible solids or organic layer were observed in the individual samples. Individual sample densities were measured, then the five samples were mixed together to provide a single composite. The composite was homogenized and representative sub-samples taken for inorganic, radioisotopic, and organic analysis. All analyses were performed on triplicate sub-samples of the composite material. The sample composite did not contain visible solids or an organic layer. A subsample held at 10 C for seven days formed no visible solids.

  5. Space Art "Wheel of Optimism"

    NASA Image and Video Library

    2006-12-14

    Artist EV Day visited the Jet Propulsion Laboratory to learn about the Mars Exploration Rovers. She so intrigued the Mars scientists that she was given a sample rover wheel to work with in creating a piece of art titled "Wheel of Optimism" for NASA. Day took the wheel and created a Martian world within it complete with organic plantlife, rocks and a Martian landscape in the background. Day poetically grapples with the age old question of whether life on Mars exists or whether it is just an figment of our science fiction imaginations. Rover Tire, mixed media, 9-1/4 (diameter)x8 (depth). 2006. Copyrighted: For more information contact Curator, NASA Art Program.

  6. 49 CFR 179.200 - General specifications applicable to non-pressure tank car tanks (Class DOT-111).

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... tank car tanks (Class DOT-111). 179.200 Section 179.200 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) SPECIFICATIONS FOR TANK CARS Specifications for Non-Pressure Tank Car Tanks (Classes DOT-111AW...

  7. 49 CFR 179.200 - General specifications applicable to non-pressure tank car tanks (Class DOT-111).

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... tank car tanks (Class DOT-111). 179.200 Section 179.200 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) SPECIFICATIONS FOR TANK CARS Specifications for Non-Pressure Tank Car Tanks (Classes DOT-111AW...

  8. Maximum Torque and Momentum Envelopes for Reaction Wheel Arrays

    NASA Technical Reports Server (NTRS)

    Reynolds, R. G.; Markley, F. Landis

    2001-01-01

    Spacecraft reaction wheel maneuvers are limited by the maximum torque and/or angular momentum which the wheels can provide. For an n-wheel configuration, the torque or momentum envelope can be obtained by projecting the n-dimensional hypercube, representing the domain boundary of individual wheel torques or momenta, into three dimensional space via the 3xn matrix of wheel axes. In this paper, the properties of the projected hypercube are discussed, and algorithms are proposed for determining this maximal torque or momentum envelope for general wheel configurations. Practical implementation strategies for specific wheel configurations are also considered.

  9. SU-E-T-118: Analysis of Variability and Stability Between Two Water Tank Phantoms Utilizing Water Tank Commissioning Procedures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roring, J; Saenz, D; Cruz, W

    2015-06-15

    Purpose: The commissioning criteria of water tank phantoms are essential for proper accuracy and reproducibility in a clinical setting. This study outlines the results of mechanical and dosimetric testing between PTW MP3-M water tank system and the Standard Imaging Doseview 3D water tank system. Methods: Measurements were taken of each axis of movement on the tank using 30 cm calipers at 1, 5, 10, 50, 100, and 200 mm for accuracy and reproducibility of tank movement. Dosimetric quantities such as percent depth dose and dose profiles were compared between tanks using a 6 MV beam from a Varian 23EX LINAC.more » Properties such as scanning speed effects, central axis depth dose agreement with static measurements, reproducibility of measurements, symmetry and flatness, and scan time between tanks were also investigated. Results: Results showed high geometric accuracy within 0.2 mm. Central axis PDD and in-field profiles agreed within 0.75% between the tanks. These outcomes test many possible discrepancies in dose measurements across the two tanks and form a basis for comparison on a broader range of tanks in the future. Conclusion: Both 3D water scanning phantoms possess a high degree of spatial accuracy, allowing for equivalence in measurements regardless of the phantom used. A commissioning procedure when changing water tanks or upon receipt of a new tank is nevertheless critical to ensure consistent operation before and after the arrival of new hardware.« less

  10. Analysis of railroad tank car shell impacts using finite element method

    DOT National Transportation Integrated Search

    2008-04-22

    This paper examines impacts to the side of railroad tank : cars by a ram car with a rigid indenter using dynamic, : nonlinear finite element analysis (FEA). Such impacts are : referred to as shell impacts. Here, nonlinear means elasticplastic : mater...

  11. Characterization of a starch based desiccant wheel dehumidifier

    NASA Astrophysics Data System (ADS)

    Beery, Kyle Edward

    Starch, cellulose, and hemicellulose have an affinity for water, and adsorb water vapor from air. Materials made from combinations of these biobased sugar polymers also have been found to possess adsorptive properties. An interesting possible application of these starch-based adsorbents is the desiccant wheel dehumidifier. The desiccant wheel dehumidifier is used in conjunction with a standard air conditioning system. In this process, ambient air is passed through a stationary section while a wheel packed with desiccant rotates through that section. The desiccant adsorbs humidity (latent load) from the air, and the air conditioning system then cools the air (sensible load). Several starch based adsorbents were developed and tested for adsorptive capacity in a new high throughput screening system. The best formulations from the high throughput screening system, also taking into account economic considerations and structural integrity, were considered for use in the desiccant wheel dehumidifier. A suitable adsorbent was chosen and formulated into a matrix structure for the desiccant wheel system. A prototype desiccant wheel system was constructed and the performance was investigated under varying regeneration temperatures and rotation speeds. The results from the experiments showed that the starch based desiccant wheel dehumidification system does transfer moisture from the inlet process stream to the outlet regeneration stream. The DESSIM model was modified for the starch based adsorbent and compared to the experimental results. Also, the results when the wheel parameters were varied were compared to the predicted results from the model. The results given by the starch based desiccant wheel system show the desired proof of concept.

  12. LH2 fuel tank design for SSTO

    NASA Technical Reports Server (NTRS)

    Wright, Geoff

    1994-01-01

    This report will discuss the design of a liquid hydrogen fuel tank constructed from composite materials. The focus of this report is to recommend a design for a fuel tank which will be able to withstand all static and dynamic forces during manned flight. Areas of study for the design include material selection, material structural analysis, heat transfer, thermal expansion, and liquid hydrogen diffusion. A structural analysis FORTRAN program was developed for analyzing the buckling and yield characteristics of the tank. A thermal analysis Excel spreadsheet was created to determine a specific material thickness which will minimize heat transfer through the wall of the tank. The total mass of the tank was determined by the combination of both structural and thermal analyses. The report concludes with the recommendation of a layered material tank construction. The designed system will include exterior insulation, combination of metal and organize composite matrices and honeycomb.

  13. Filament wound metal lined propellant tanks for future Earth-to-orbit transports

    NASA Technical Reports Server (NTRS)

    Macconochie, Ian O.; Davis, Robert B.; Freeman, William T., Jr.

    1988-01-01

    For future Earth-to-orbit transport vehicles, reusability and lighter weights are sought for the main propellant tanks. To achieve this, a filament wound tank with a metal liner and an intermediate layer of foam-filled honeycomb is proposed. A hydrogen tank is used as an example. To accommodate mismatches in the expansion of liner and overwrap a design is proposed wherin the liner is configured so that the extension of the liner under pressure matches the expected contraction of the same liner due to the presence of a cryogen. In operation, the liner is pressurized at a rate such that the pressure strain matches the contraction due to decrease in temperature. As an alternate approach, compressive pre-stress is placed in the liner such that it will not separate from the overwrap. A finite element program is used to show stresses in the liner and overwrap for various tank pressures for the pre-stressed liner concept. A fracture mechanics analysis is made of the liners to determine tank life. The tank concept shown has a similar weight to the Shuttle external hydrogen tank, but the filament wound tank is expected to be reusable. Integration of the propellant tanks into a future transport vehicle is discussed.

  14. Assessment of Technologies for the Space Shuttle External Tank Thermal Protection System and Recommendations for Technology Improvement. Part 2; Structural Analysis Technologies and Modeling Practices

    NASA Technical Reports Server (NTRS)

    Knight, Norman F., Jr.; Nemeth, Michael P.; Hilburger, Mark W.

    2004-01-01

    A technology review and assessment of modeling and analysis efforts underway in support of a safe return to flight of the thermal protection system (TPS) for the Space Shuttle external tank (ET) are summarized. This review and assessment effort focuses on the structural modeling and analysis practices employed for ET TPS foam design and analysis and on identifying analysis capabilities needed in the short-term and long-term. The current understanding of the relationship between complex flight environments and ET TPS foam failure modes are reviewed as they relate to modeling and analysis. A literature review on modeling and analysis of TPS foam material systems is also presented. Finally, a review of modeling and analysis tools employed in the Space Shuttle Program is presented for the ET TPS acreage and close-out foam regions. This review includes existing simplified engineering analysis tools are well as finite element analysis procedures.

  15. Wheel/Rail Noise and Vibration Control

    DOT National Transportation Integrated Search

    1974-05-01

    Reported here are the interim results of a program under the UMTA Urban Rail Supporting Technology Program to develop a basic understanding of urban transit wheel/rail noise generation for application to the evaluation and improvement of wheel/rail n...

  16. Tank characterization report for single-shell tank 241-S-111

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Conner, J.M.

    1997-04-28

    One of the major functions of the Tank Waste Remediation System (TWRS) is to characterize wastes in support of waste management and disposal activities at the Hanford Site. Analytical data from sampling and analysis, along with other available information about a tank, are compiled and maintained in a tank characterization report (TCR). This report and its appendices serve as the TCR for single-shell tank 241-S-111. The objectives of this report are: (1) to use characterization data to address technical issues associated with tank 241-S-111 waste; and (2) to provide a standard characterization of this waste in terms of a best-basismore » inventory estimate. The response to technical issues is summarized in Section 2.0, and the best-basis inventory estimate is presented in Section 3.0. Recommendations regarding safety status and additional sampling needs are provided in Section 4.0. Supporting data and information are contained in the appendices. This report also supports the requirements of Hanford Federal Facility Agreement and Consent Order (Ecology et al. 1996) milestone M-44-10.« less

  17. Determining Spacecraft Reaction Wheel Friction Parameters

    NASA Technical Reports Server (NTRS)

    Sarani, Siamak

    2009-01-01

    Software was developed to characterize the drag in each of the Cassini spacecraft's Reaction Wheel Assemblies (RWAs) to determine the RWA friction parameters. This tool measures the drag torque of RWAs for not only the high spin rates (greater than 250 RPM), but also the low spin rates (less than 250 RPM) where there is a lack of an elastohydrodynamic boundary layer in the bearings. RWA rate and drag torque profiles as functions of time are collected via telemetry once every 4 seconds and once every 8 seconds, respectively. Intermediate processing steps single-out the coast-down regions. A nonlinear model for the drag torque as a function of RWA spin rate is incorporated in order to characterize the low spin rate regime. The tool then uses a nonlinear parameter optimization algorithm based on the Nelder-Mead simplex method to determine the viscous coefficient, the Dahl friction, and the two parameters that account for the low spin-rate behavior.

  18. Evaporator Feed Qualification Analysis Of Tank 38H And 43H Samples: January 2010 Through April 2013

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martino, C. J.; Coleman, C. J.

    2013-08-21

    This report provides the results of analyses that focused on the chemical species that pertain to the sodium aluminosilicate formation potential for archived Tank 38H and 43H subsurface samples from January 2010 through April 2013. Analyses included warm acid strike preparation followed by analysis of silicon, aluminum, and sodium and water dilution preparation followed by analysis for anions. The Tank 43H and 38H supernatant liquid silicon measurements for the January 2010 through April 2013 time period exhibit a slight increasing trend. Over this time period, the silicon concentration in the Tank 43H and Tank 38H samples averaged 179 mg/L andmore » 235 mg/L, respectively. Comparison of Tank 43H sample results from 2005 through April 2013 to the previously developed process control models indicates that the current formation of sodium aluminosilicate in the 2H system is due to the seeded direct precipitation of cancrinite and sodalite.« less

  19. On modelling the interaction between two rotating bodies with statistically distributed features: an application to dressing of grinding wheels

    NASA Astrophysics Data System (ADS)

    Spampinato, A.; Axinte, D. A.

    2017-12-01

    The mechanisms of interaction between bodies with statistically arranged features present characteristics common to different abrasive processes, such as dressing of abrasive tools. In contrast with the current empirical approach used to estimate the results of operations based on attritive interactions, the method we present in this paper allows us to predict the output forces and the topography of a simulated grinding wheel for a set of specific operational parameters (speed ratio and radial feed-rate), providing a thorough understanding of the complex mechanisms regulating these processes. In modelling the dressing mechanisms, the abrasive characteristics of both bodies (grain size, geometry, inter-space and protrusion) are first simulated; thus, their interaction is simulated in terms of grain collisions. Exploiting a specifically designed contact/impact evaluation algorithm, the model simulates the collisional effects of the dresser abrasives on the grinding wheel topography (grain fracture/break-out). The method has been tested for the case of a diamond rotary dresser, predicting output forces within less than 10% error and obtaining experimentally validated grinding wheel topographies. The study provides a fundamental understanding of the dressing operation, enabling the improvement of its performance in an industrial scenario, while being of general interest in modelling collision-based processes involving statistically distributed elements.

  20. Phenomena of Foamed Concrete under Rolling of Aircraft Wheels

    NASA Astrophysics Data System (ADS)

    Jiang, Chun-shui; Yao, Hong-yu; Xiao, Xian-bo; Kong, Xiang-jun; Shi, Ya-jie

    2014-04-01

    Engineered Material Arresting System (EMAS) is an effective technique to reduce hazards associated with aircraft overrunning runway. In order to ascertain phenomena of the foamed concrete used for EMAS under rolling of aircraft wheel, a specially designed experimental setup was built which employed Boeing 737 aircraft wheels bearing actual vertical loads to roll through the foamed concrete. A number of experiments were conducted upon this setup. It is discovered that the wheel rolls the concrete in a pure rolling manner and crushes the concrete downwards, instead of crushing it forward, as long as the concrete is not higher than the wheel axle. The concrete is compressed into powder in-situ by the wheel and then is brought to bottom of the wheel. The powder under the wheel is loose and thus is not able to sustain wheel braking. It is also found that after being rolled by the wheel the concrete exhibits either of two states, i.e. either 'crushed through' whole thickness of the concrete or 'crushed halfway', depending on combination of strength of the concrete, thickness of the concrete, vertical load the wheel carries, tire dimension and tire pressure. A new EMAS design concept is developed that if an EMAS design results in the 'crushed through' state for the main gears while the 'crushed halfway' state for the nose gear, the arresting bed would be optimal to accommodate the large difference in strength between the nose gear and the main gear of an aircraft.

  1. 49 CFR 179.221 - Individual specification requirements applicable to tank car tanks consisting of an inner...

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) SPECIFICATIONS FOR TANK CARS Specifications for Non-Pressure Tank Car Tanks (Classes DOT-111AW and 115AW) § 179.221 Individual specification... to tank car tanks consisting of an inner container supported within an outer shell. 179.221 Section...

  2. 49 CFR 179.221 - Individual specification requirements applicable to tank car tanks consisting of an inner...

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) SPECIFICATIONS FOR TANK CARS Specifications for Non-Pressure Tank Car Tanks (Classes DOT-111AW and 115AW) § 179.221 Individual specification... to tank car tanks consisting of an inner container supported within an outer shell. 179.221 Section...

  3. Proceedings - International Conference on Wheel/Rail Load and Displacement Measurement Techniques : January 19-20, 1981

    DOT National Transportation Integrated Search

    1981-09-01

    Measurement of wheel/rail characteristics generates information for improvement of design tools such as model validation, establishment of load spectra and vehicle/track system interaction. Existing and new designs are assessed from evaluation of veh...

  4. 49 CFR 229.75 - Wheels and tire defects.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... crack or break in the flange, tread, rim, plate, or hub. (l) A loose wheel or tire. (m) Fusion welding... 49 Transportation 4 2010-10-01 2010-10-01 false Wheels and tire defects. 229.75 Section 229.75....75 Wheels and tire defects. Wheels and tires may not have any of the following conditions: (a) A...

  5. 49 CFR 229.75 - Wheels and tire defects.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... crack or break in the flange, tread, rim, plate, or hub. (l) A loose wheel or tire. (m) Fusion welding... 49 Transportation 4 2012-10-01 2012-10-01 false Wheels and tire defects. 229.75 Section 229.75....75 Wheels and tire defects. Wheels and tires may not have any of the following conditions: (a) A...

  6. 49 CFR 229.75 - Wheels and tire defects.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... crack or break in the flange, tread, rim, plate, or hub. (l) A loose wheel or tire. (m) Fusion welding... 49 Transportation 4 2011-10-01 2011-10-01 false Wheels and tire defects. 229.75 Section 229.75....75 Wheels and tire defects. Wheels and tires may not have any of the following conditions: (a) A...

  7. 49 CFR 229.75 - Wheels and tire defects.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... crack or break in the flange, tread, rim, plate, or hub. (l) A loose wheel or tire. (m) Fusion welding... 49 Transportation 4 2014-10-01 2014-10-01 false Wheels and tire defects. 229.75 Section 229.75....75 Wheels and tire defects. Wheels and tires may not have any of the following conditions: (a) A...

  8. 49 CFR 229.75 - Wheels and tire defects.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... crack or break in the flange, tread, rim, plate, or hub. (l) A loose wheel or tire. (m) Fusion welding... 49 Transportation 4 2013-10-01 2013-10-01 false Wheels and tire defects. 229.75 Section 229.75....75 Wheels and tire defects. Wheels and tires may not have any of the following conditions: (a) A...

  9. 49 CFR 172.330 - Tank cars and multi-unit tank car tanks.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 2 2013-10-01 2013-10-01 false Tank cars and multi-unit tank car tanks. 172.330..., TRAINING REQUIREMENTS, AND SECURITY PLANS Marking § 172.330 Tank cars and multi-unit tank car tanks. (a... material— (1) In a tank car unless the following conditions are met: (i) The tank car must be marked on...

  10. 49 CFR 172.330 - Tank cars and multi-unit tank car tanks.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 2 2012-10-01 2012-10-01 false Tank cars and multi-unit tank car tanks. 172.330..., TRAINING REQUIREMENTS, AND SECURITY PLANS Marking § 172.330 Tank cars and multi-unit tank car tanks. (a... material— (1) In a tank car unless the following conditions are met: (i) The tank car must be marked on...

  11. 49 CFR 172.330 - Tank cars and multi-unit tank car tanks.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 2 2014-10-01 2014-10-01 false Tank cars and multi-unit tank car tanks. 172.330..., TRAINING REQUIREMENTS, AND SECURITY PLANS Marking § 172.330 Tank cars and multi-unit tank car tanks. (a... material— (1) In a tank car unless the following conditions are met: (i) The tank car must be marked on...

  12. Aerodynamic Drag Reduction Apparatus For Wheeled Vehicles In Ground Effect

    DOEpatents

    Ortega, Jason M.; Salari, Kambiz

    2005-12-13

    An apparatus for reducing the aerodynamic drag of a wheeled vehicle in a flowstream, the vehicle having a vehicle body and a wheel assembly supporting the vehicle body. The apparatus includes a baffle assembly adapted to be positioned upstream of the wheel assembly for deflecting airflow away from the wheel assembly so as to reduce the incident pressure on the wheel assembly.

  13. Risk of thoracic injury from direct steering wheel impact in frontal crashes.

    PubMed

    Chen, Rong; Gabler, Hampton C

    2014-06-01

    The combination of airbag and seat belt is considered to be the most effective vehicle safety system. However, despite the widespread availability of airbags and a belt use rate of more than 85%, US drivers involved in crashes continue to be at risk of serious thoracic injury. The objective of this study was to determine the influence of steering wheel deformation on driver injury risk in frontal automobile crash. The analysis is based on cases extracted from the National Automotive Sampling System Crashworthiness Data System database for case years 1993 to 2011. The approach was to compare the adjusted odds of frontal crash injury experienced by drivers in vehicles with and without steering wheel deformation. Among frontal crash cases with belted drivers, observable steering wheel deformation occurred in less than 4% of all cases but accounted for 30% of belted drivers with serious (Abbreviated Injury Scale [AIS] score, 3+) thoracic injuries. Similarly, steering wheel deformation occurred in approximately 13% of unbelted drivers but accounted for 60% of unbelted drivers with serious thoracic injuries. Belted drivers in frontal crashes with steering wheel deformation were found to have two times greater odds of serious thoracic injury. Unbelted drivers were found to have four times greater odds of serious thoracic injury in crashes with steering wheel deformation. In frontal crashes, steering wheel deformation was more likely to occur in unbelted drivers than belted drivers, as well as higher severity crashes and with heavier drivers. The results of the present study show that airbag deployment and seat belt restraint do not completely eliminate the possibility of steering wheel contact. Even with the most advanced restraint systems, there remains an opportunity for further reduction in thoracic injury by continued enhancement to the seat belt and airbag systems. Furthermore, the results showed that steering wheel deformation is an indicator of potential serious

  14. Biomechanics of liver injury by steering wheel loading.

    PubMed

    Lau, I V; Horsch, J D; Viano, D C; Andrzejak, D V

    1987-03-01

    Abdominal injury induced by steering wheel contact at a velocity of 32 km/hr was investigated using anesthetized swine as the surrogate on a Hyge sled. The lower rim of the wheel was positioned 5 cm below the xyphoid. By varying wheel stiffness, wheel orientation, and column angle, resultant abdominal injury ranged from fatal or critical to minor or none. Wheel stiffness was found to be the primary determinant of abdominal injury severity. The mechanism of abdominal injury was identified to be the rim impacting the abdomen and exceeding a combined velocity and compression sensitive tolerance limit. Abdominal injury occurred within the initial 15 ms of wheel contact before whole body movement of the surrogate of column compression, which were initiated by hub contact with the thorax. The severity of abdominal injury correlated with the peak viscous response which can be represented by the product of the instantaneous velocity of abdominal deformation and abdominal compression. It did not correlate with spinal acceleration.

  15. HANFORD DST THERMAL & SEISMIC PROJECT ANSYS BENCHMARK ANALYSIS OF SEISMIC INDUCED FLUID STRUCTURE INTERACTION IN A HANFORD DOUBLE SHELL PRIMARY TANK

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    MACKEY, T.C.

    M&D Professional Services, Inc. (M&D) is under subcontract to Pacific Northwest National Laboratories (PNNL) to perform seismic analysis of the Hanford Site Double-Shell Tanks (DSTs) in support of a project entitled ''Double-Shell Tank (DSV Integrity Project-DST Thermal and Seismic Analyses)''. The overall scope of the project is to complete an up-to-date comprehensive analysis of record of the DST System at Hanford in support of Tri-Party Agreement Milestone M-48-14. The work described herein was performed in support of the seismic analysis of the DSTs. The thermal and operating loads analysis of the DSTs is documented in Rinker et al. (2004). Themore » overall seismic analysis of the DSTs is being performed with the general-purpose finite element code ANSYS. The overall model used for the seismic analysis of the DSTs includes the DST structure, the contained waste, and the surrounding soil. The seismic analysis of the DSTs must address the fluid-structure interaction behavior and sloshing response of the primary tank and contained liquid. ANSYS has demonstrated capabilities for structural analysis, but the capabilities and limitations of ANSYS to perform fluid-structure interaction are less well understood. The purpose of this study is to demonstrate the capabilities and investigate the limitations of ANSYS for performing a fluid-structure interaction analysis of the primary tank and contained waste. To this end, the ANSYS solutions are benchmarked against theoretical solutions appearing in BNL 1995, when such theoretical solutions exist. When theoretical solutions were not available, comparisons were made to theoretical solutions of similar problems and to the results from Dytran simulations. The capabilities and limitations of the finite element code Dytran for performing a fluid-structure interaction analysis of the primary tank and contained waste were explored in a parallel investigation (Abatt 2006). In conjunction with the results of the global ANSYS

  16. 29 CFR 1915.134 - Abrasive wheels.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... shall be kept a distance not to exceed 1/8 inch from the surface of the wheel. (c) Cup type wheels used for external grinding shall be protected by either a revolving cup guard or a band type guard in...

  17. 29 CFR 1915.134 - Abrasive wheels.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... shall be kept a distance not to exceed 1/8 inch from the surface of the wheel. (c) Cup type wheels used for external grinding shall be protected by either a revolving cup guard or a band type guard in...

  18. 14 CFR 29.483 - One-wheel landing conditions.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false One-wheel landing conditions. 29.483 Section 29.483 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION... One-wheel landing conditions. For the one-wheel landing condition, the rotorcraft is assumed to be in...

  19. 14 CFR 27.483 - One-wheel landing conditions.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false One-wheel landing conditions. 27.483 Section 27.483 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION... One-wheel landing conditions. For the one-wheel landing condition, the rotorcraft is assumed to be in...

  20. 14 CFR 27.483 - One-wheel landing conditions.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false One-wheel landing conditions. 27.483 Section 27.483 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION... One-wheel landing conditions. For the one-wheel landing condition, the rotorcraft is assumed to be in...

  1. 14 CFR 29.483 - One-wheel landing conditions.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false One-wheel landing conditions. 29.483 Section 29.483 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION... One-wheel landing conditions. For the one-wheel landing condition, the rotorcraft is assumed to be in...

  2. Reusable Launch Vehicle Tank/Intertank Sizing Trade Study

    NASA Technical Reports Server (NTRS)

    Dorsey, John T.; Myers, David E.; Martin, Carl J.

    2000-01-01

    A tank and intertank sizing tool that includes effects of major design drivers, and which allows parametric studies to be performed, has been developed and calibrated against independent representative results. Although additional design features, such as bulkheads and field joints, are not currently included in the process, the improved level of fidelity has allowed parametric studies to be performed which have resulted in understanding of key tank and intertank design drivers, design sensitivities, and definition of preferred design spaces. The sizing results demonstrated that there were many interactions between the configuration parameters of internal/external payload, vehicle fineness ratio (half body angle), fuel arrangement (LOX-forward/LOX-aft), number of tanks, and tank shape/arrangement (number of lobes).

  3. 49 CFR 174.63 - Portable tanks, IM portable tanks, IBCs, Large Packagings, cargo tanks, and multi-unit tank car...

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 2 2014-10-01 2014-10-01 false Portable tanks, IM portable tanks, IBCs, Large Packagings, cargo tanks, and multi-unit tank car tanks. 174.63 Section 174.63 Transportation Other....63 Portable tanks, IM portable tanks, IBCs, Large Packagings, cargo tanks, and multi-unit tank car...

  4. 49 CFR 174.63 - Portable tanks, IM portable tanks, IBCs, Large Packagings, cargo tanks, and multi-unit tank car...

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Portable tanks, IM portable tanks, IBCs, Large Packagings, cargo tanks, and multi-unit tank car tanks. 174.63 Section 174.63 Transportation Other....63 Portable tanks, IM portable tanks, IBCs, Large Packagings, cargo tanks, and multi-unit tank car...

  5. 49 CFR 174.63 - Portable tanks, IM portable tanks, IBCs, Large Packagings, cargo tanks, and multi-unit tank car...

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 2 2011-10-01 2011-10-01 false Portable tanks, IM portable tanks, IBCs, Large Packagings, cargo tanks, and multi-unit tank car tanks. 174.63 Section 174.63 Transportation Other....63 Portable tanks, IM portable tanks, IBCs, Large Packagings, cargo tanks, and multi-unit tank car...

  6. 49 CFR 174.63 - Portable tanks, IM portable tanks, IBCs, Large Packagings, cargo tanks, and multi-unit tank car...

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 2 2013-10-01 2013-10-01 false Portable tanks, IM portable tanks, IBCs, Large Packagings, cargo tanks, and multi-unit tank car tanks. 174.63 Section 174.63 Transportation Other....63 Portable tanks, IM portable tanks, IBCs, Large Packagings, cargo tanks, and multi-unit tank car...

  7. 49 CFR 174.63 - Portable tanks, IM portable tanks, IBCs, Large Packagings, cargo tanks, and multi-unit tank car...

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 2 2012-10-01 2012-10-01 false Portable tanks, IM portable tanks, IBCs, Large Packagings, cargo tanks, and multi-unit tank car tanks. 174.63 Section 174.63 Transportation Other....63 Portable tanks, IM portable tanks, IBCs, Large Packagings, cargo tanks, and multi-unit tank car...

  8. Coordinated control of slip ratio for wheeled mobile robots climbing loose sloped terrain.

    PubMed

    Li, Zhengcai; Wang, Yang

    2014-01-01

    A challenging problem faced by wheeled mobile robots (WMRs) such as planetary rovers traversing loose sloped terrain is the inevitable longitudinal slip suffered by the wheels, which often leads to their deviation from the predetermined trajectory, reduced drive efficiency, and possible failures. This study investigates this problem using terramechanics analysis of the wheel-soil interaction. First, a slope-based wheel-soil interaction terramechanics model is built, and an online slip coordinated algorithm is designed based on the goal of optimal drive efficiency. An equation of state is established using the coordinated slip as the desired input and the actual slip as a state variable. To improve the robustness and adaptability of the control system, an adaptive neural network is designed. Analytical results and those of a simulation using Vortex demonstrate the significantly improved mobile performance of the WMR using the proposed control system.

  9. Suspension Parameter Measurements of Wheeled Military Vehicles

    DTIC Science & Technology

    2012-08-01

    suspension through the wheel pads. The SPIdER was designed so that in the future, with a modest amount of modification , it can be upgraded to include the...AND MOBILITY (P&M) MINI-SYMPOSIUM AUGUST 14-16, MICHIGAN SUSPENSION PARAMETER MEASUREMENTS OF WHEELED MILITARY VEHICLES Dale Andreatta Gary...was built to measure the suspension parameters of any military wheeled vehicle. This is part of an ongoing effort to model and predict vehicle

  10. Failure analysis of storage tank component in LNG regasification unit using fault tree analysis method (FTA)

    NASA Astrophysics Data System (ADS)

    Mulyana, Cukup; Muhammad, Fajar; Saad, Aswad H.; Mariah, Riveli, Nowo

    2017-03-01

    Storage tank component is the most critical component in LNG regasification terminal. It has the risk of failure and accident which impacts to human health and environment. Risk assessment is conducted to detect and reduce the risk of failure in storage tank. The aim of this research is determining and calculating the probability of failure in regasification unit of LNG. In this case, the failure is caused by Boiling Liquid Expanding Vapor Explosion (BLEVE) and jet fire in LNG storage tank component. The failure probability can be determined by using Fault Tree Analysis (FTA). Besides that, the impact of heat radiation which is generated is calculated. Fault tree for BLEVE and jet fire on storage tank component has been determined and obtained with the value of failure probability for BLEVE of 5.63 × 10-19 and for jet fire of 9.57 × 10-3. The value of failure probability for jet fire is high enough and need to be reduced by customizing PID scheme of regasification LNG unit in pipeline number 1312 and unit 1. The value of failure probability after customization has been obtained of 4.22 × 10-6.

  11. Force Characteristics in the Submerged and Planing Condition of a 1/5.78-Scale Model of a Hydro-Ski-Wheel Combination for the Grumman JRF-5 Airplane. TED No. NACA DE 357

    NASA Technical Reports Server (NTRS)

    Land, Norman S.; Pelz, Charles A.

    1952-01-01

    Force characteristics determined from tank tests of a 1/5.78 scale model of a hydro-ski-wheel combination for the Grumman JRF-5 airplane are presented. The model was tested in both the submerged and planing conditions over a range of trim, speed, and load sufficiently large to represent the most probable full-size conditions.

  12. Design and validation of an improved graphical user interface with the 'Tool ball'.

    PubMed

    Lee, Kuo-Wei; Lee, Ying-Chu

    2012-01-01

    The purpose of this research is introduce the design of an improved graphical user interface (GUI) and verifies the operational efficiency of the proposed interface. Until now, clicking the toolbar with the mouse is the usual way to operate software functions. In our research, we designed an improved graphical user interface - a tool ball that is operated by a mouse wheel to perform software functions. Several experiments are conducted to measure the time needed to operate certain software functions with the traditional combination of "mouse click + tool button" and the proposed integration of "mouse wheel + tool ball". The results indicate that the tool ball design can accelerate the speed of operating software functions, decrease the number of icons on the screen, and enlarge the applications of the mouse wheel. Copyright © 2011 Elsevier Ltd and The Ergonomics Society. All rights reserved.

  13. Control of wheeled mobile robot in restricted environment

    NASA Astrophysics Data System (ADS)

    Ali, Mohammed A. H.; En, Chang Yong

    2018-03-01

    This paper presents a simulation and practical control system for wheeled mobile robot in restricted environment. A wheeled mobile robot with 3 wheels is fabricated and controlled by proportional derivative active force control (PD-AFC) to move in a pre-planned restricted environment to maintain the tracking errors at zero level. A control system with two loops, outer by PD controller and inner loop by Active Force Control, are designed to control the wheeled mobile robot. Fuzzy logic controller is implemented in the Active force Control to estimate the inertia matrix that will be used to calculate the actual torque applied on the wheeled mobile robot. The mobile robot is tested in two different trajectories, namely are circular and straight path. The actual path and desired path are compared.

  14. Estimation of wheel-rail friction for vehicle certification

    NASA Astrophysics Data System (ADS)

    Petrov, Vladislav; Berg, Mats; Persson, Ingemar

    2014-08-01

    In certification of new rail vehicles with respect to running characteristics, a wide variety of operating conditions needs to be considered. However, in associated test runs the wheel-rail friction condition is difficult to handle because the friction coefficient needs to be fairly high and the friction is also generally hard to assess. This is an issue that has been studied in the European project DynoTRAIN and part of the results is presented in this paper. More specifically, an algorithm for estimating the wheel-rail friction coefficient at vehicle certification tests is proposed. Owing to lack of some measurement results, the algorithm here is evaluated in a simulation environment which is also an important step towards practical implementation. A quality measure of the friction estimate is suggested in terms of estimated wheel-rail spin and total creep. It is concluded that, tentatively, the total creep should exceed 0.006 and the spin should be less than 1.0 m-1 for the algorithm to give a good friction estimate. Sensitivity analysis is carried out to imitate measurement errors, but should be expanded in further work.

  15. An Improved Spectral Analysis Method for Fatigue Damage Assessment of Details in Liquid Cargo Tanks

    NASA Astrophysics Data System (ADS)

    Zhao, Peng-yuan; Huang, Xiao-ping

    2018-03-01

    Errors will be caused in calculating the fatigue damages of details in liquid cargo tanks by using the traditional spectral analysis method which is based on linear system, for the nonlinear relationship between the dynamic stress and the ship acceleration. An improved spectral analysis method for the assessment of the fatigue damage in detail of a liquid cargo tank is proposed in this paper. Based on assumptions that the wave process can be simulated by summing the sinusoidal waves in different frequencies and the stress process can be simulated by summing the stress processes induced by these sinusoidal waves, the stress power spectral density (PSD) is calculated by expanding the stress processes induced by the sinusoidal waves into Fourier series and adding the amplitudes of each harmonic component with the same frequency. This analysis method can take the nonlinear relationship into consideration and the fatigue damage is then calculated based on the PSD of stress. Take an independent tank in an LNG carrier for example, the accuracy of the improved spectral analysis method is proved much better than that of the traditional spectral analysis method by comparing the calculated damage results with the results calculated by the time domain method. The proposed spectral analysis method is more accurate in calculating the fatigue damages in detail of ship liquid cargo tanks.

  16. Stabilization of the wheel running phenotype in mice.

    PubMed

    Bowen, Robert S; Cates, Brittany E; Combs, Eric B; Dillard, Bryce M; Epting, Jessica T; Foster, Brittany R; Patterson, Shawnee V; Spivey, Thomas P

    2016-03-01

    Increased physical activity is well known to improve health and wellness by modifying the risks for many chronic diseases. Rodent wheel running behavior is a beneficial surrogate model to evaluate the biology of daily physical activity in humans. Upon initial exposure to a running wheel, individual mice differentially respond to the experience, which confounds the normal activity patterns exhibited in this otherwise repeatable phenotype. To promote phenotypic stability, a minimum seven-day (or greater) acclimation period is utilized. Although phenotypic stabilization is achieved during this 7-day period, data to support acclimation periods of this length are not currently available in the literature. The purpose of this project is to evaluate the wheel running response in C57BL/6j mice immediately following exposure to a running wheel. Twenty-eight male and thirty female C57BL/6j mice (Jackson Laboratory, Bar Harbor, ME) were acquired at eight weeks of age and were housed individually with free access to running wheels. Wheel running distance (km), duration (min), and speed (m∙min(-1)) were measured daily for fourteen days following initial housing. One-way ANOVAs were used to evaluate day-to-day differences in each wheel running character. Limits of agreement and mean difference statistics were calculated between days 1-13 (acclimating) and day 14 (acclimated) to assess day-to-day agreement between each parameter. Wheel running distance (males: F=5.653, p=2.14 × 10(-9); females: F=8.217, p=1.20 × 10(-14)), duration (males: F=2.613, p=0.001; females: F=4.529, p=3.28 × 10(-7)), and speed (males: F=7.803, p=1.22 × 10(-13); females: F=13.140, p=2.00 × 10(-16)) exhibited day-to-day differences. Tukey's HSD post-hoc testing indicated differences between early (males: days 1-3; females: days 1-6) and later (males: days >3; females: days >6) wheel running periods in distance and speed. Duration only exhibited an anomalous difference between wheel running on day 13

  17. A Generic Microdisturbanace Transmissibility Model For Reaction Wheels

    NASA Astrophysics Data System (ADS)

    Penate Castro, Jose; Seiler, Rene

    2012-07-01

    . Together, with the time and frequency domain representations of the local sources of the disturbance forces and moments (e.g. due to rotor unbalance), the new model enables adequate estimation of the disturbances at the mechanical interface of a reaction wheel with a transmissibility representation, furthermore the analysis of their propagation in a host structure and their effects on a payload item.

  18. Investigation of the effects of sliding on wheel tread damage

    DOT National Transportation Integrated Search

    2005-11-05

    Wheel tread spalling is the main source of damage to wheel treads and : a primary cause for wheel removals from service. Severe frictional : heating of the wheel-rail contact patch during sliding causes the : formation of martensite, a hard, brittle ...

  19. Rim seal for turbine wheel

    DOEpatents

    Glezer, Boris; Boyd, Gary L.; Norton, Paul F.

    1996-01-01

    A turbine wheel assembly includes a disk having a plurality of blades therearound. A ceramic ring is mounted to the housing of the turbine wheel assembly. A labyrinth rim seal mounted on the disk cooperates with the ceramic ring to seal the hot gases acting on the blades from the disk. The ceramic ring permits a tighter clearance between the labyrinth rim seal and the ceramic ring.

  20. A study on high-speed rolling contact between a wheel and a contaminated rail

    NASA Astrophysics Data System (ADS)

    Zhao, Xin; Wen, Zefeng; Zhu, Minhao; Jin, Xuesong

    2014-10-01

    A 3-D explicit finite element model is developed to investigate the transient wheel-rail rolling contact in the presence of rail contamination or short low adhesion zones (LAZs). A transient analysis is required because the wheel passes by a short LAZ very quickly, especially at high speeds. A surface-to-surface contact algorithm (by the penalty method) is employed to solve the frictional rolling contact between the wheel and the rail meshed by solid elements. The LAZ is simulated by a varying coefficient of friction along the rail. Different traction efforts and action of the traction control system triggered by the LAZ are simulated by applying a time-dependent driving torque to the wheel axle. Structural flexibilities of the vehicle-track system are considered properly. Analysis focuses on the contact forces, creepage, contact stresses and the derived frictional work and plastic deformation. It is found that the longitudinal contact force and the maximum surface shear stress in the contact patch become obviously lower in the LAZ and much higher as the wheel re-enters the dry rail section. Consequently, a higher wear rate and larger plastic flow are expected at the location where the dry contact starts to be rebuilt. In other words, contact surface damages such as wheel flats and rail burns may come into being because of the LAZ. Length of the LAZ, the traction level, etc. are varied. The results also show that local contact surface damages may still occur as the traction control system acts.

  1. Independent Orbiter Assessment (IOA): Analysis of the nose wheel steering subsystem

    NASA Technical Reports Server (NTRS)

    Mediavilla, Anthony Scott

    1986-01-01

    The results of the Independent Orbiter Assessment (IOA) of the Failure Modes and Effects Analysis (FMEA) and Critical Items List (CIL) are presented. The IOA approach features a top-down analysis of the hardware to determine failure modes, criticality, and potential critical items. To preserve independence, this analysis was accomplished without reliance upon the results contained within the NASA FMEA/CIL documentation. The independent analysis results for the Orbiter Nose Wheel Steering (NWS) hardware are documented. The NWS hardware provides primary directional control for the Orbiter vehicle during landing rollout. Each level of hardware was evaluated and analyzed for possible failure modes and effects. Criticality was assigned based upon the severity of the effect for each failure mode. The original NWS design was envisioned as a backup system to differential braking for directional control of the Orbiter during landing rollout. No real effort was made to design the NWS system as fail operational. The brakes have much redundancy built into their design but the poor brake/tire performance has forced the NSTS to upgrade NWS to the primary mode of directional control during rollout. As a result, a large percentage of the NWS system components have become Potential Critical Items (PCI).

  2. Analysis of stress concentration in the Dutton groove regions of the Super Lightweight External Tank

    NASA Astrophysics Data System (ADS)

    Ahmed, R.

    1995-05-01

    Because the 2195 aluminum-lithium material of the super lightweight external tank (SLWT ET) has a lower toughness than the 2219 aluminum used in previous ET's, careful attention must be paid to stress concentrations. This report details the analysis performed on some of the stress concentrations in the orthogrid panels of the liquid hydrogen tank.

  3. Nonlinear electromechanical modelling and dynamical behavior analysis of a satellite reaction wheel

    NASA Astrophysics Data System (ADS)

    Aghalari, Alireza; Shahravi, Morteza

    2017-12-01

    The present research addresses the satellite reaction wheel (RW) nonlinear electromechanical coupling dynamics including dynamic eccentricity of brushless dc (BLDC) motor and gyroscopic effects, as well as dry friction of shaft-bearing joints (relative small slip) and bearing friction. In contrast to other studies, the rotational velocity of the flywheel is considered to be controllable, so it is possible to study the reaction wheel dynamical behavior in acceleration stages. The RW is modeled as a three-phases BLDC motor as well as flywheel with unbalances on a rigid shaft and flexible bearings. Improved Lagrangian dynamics for electromechanical systems is used to obtain the mathematical model of the system. The developed model can properly describe electromechanical nonlinear coupled dynamical behavior of the satellite RW. Numerical simulations show the effectiveness of the presented approach.

  4. Power transmission device for four wheel drive vehicle

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Iwatsuki, T.; Kawamoto, M.; Kano, T.

    This patent describes a power transmission device with an improved differential motion limiting mechanism for a four wheel drive vehicle having automatic transmission means, front wheel differential gear means, differential motion limiting means and transfer unit means including center differential gear means, comprising: a first gear mount casing having a gear adapted to mesh with an output of a transmission; a differential motion limiting device arranged together with a front wheel differential gear in the first gear mount casing. The front wheel differential gear having a first diff-carrier and the differential motion limiting device comprising a hydraulic friction clutch formore » engaging and disengaging the first gear mount casing with the first diff-carrier of the front wheel differential gear; a second gear mount casing disposed coaxially with respect to the first gear mount casing; and a transfer unit including a center differential gear arranged in the second gear mount casing, the center differential gear comprising a second diff-carrier coupled with the first gear mount casing, a first side gear coupled with the first diff-carrier of the front wheel differential gear, and a second side gear coupled with the second gear mount casing for transmitting power to the rear wheels.« less

  5. Trajectories of Dop Points on a Machining Wheel During Grinding of High Quality Plane Surfaces

    NASA Astrophysics Data System (ADS)

    Petrikova, I.; Vrzala, R.; Kafka, J.

    The basic requirement for plane grinding synthetic monocrystals is uniform wear of the grinding tool. This article deals with the case where the grinding process is carried out by relative motion between the front faces of rotating wheels with parallel axes. The dop is attached by the end of the pendulous arm, which movement is controlled by a cam. Kinematic relations have been drawn for the relative motion of the dop points in the reference to the abrasive wheel. The aim of the work is set the methodology for finding out of uniformity respectively nonuniformity of the motion of dop points on the abrasive wheel. The computational program was compiled in MATLAB. The sums of the number of passes were performed in the transmission range of 0.4-1. The number of passes of selected points on the dop passed over areas of the square mash was computed. The density of trajectory passes depends on four factors: the speed of both wheels, the number of arm operating cycles, the angle of the arm swings and the cam shape. All these dependencies were investigated. The uniformity the density of passes is one of the criteria for setting the grinding machine.

  6. The Development of Wheels for the Lunar Roving Vehicle

    NASA Technical Reports Server (NTRS)

    Asnani, Vivake; Delap, Damon; Creager, Colin

    2009-01-01

    The Lunar Roving Vehicle (LRV) was developed for NASA s Apollo program so astronauts could cover a greater range on the lunar surface, carry more science instruments, and return more soil and rock samples than by foot. Because of the unique lunar environment, the creation of flexible wheels was the most challenging and time consuming aspect of the LRV development. Wheels developed for previous lunar systems were not sufficient for use with this manned vehicle; therefore, several new designs were created and tested. Based on criteria set by NASA, the choices were narrowed down to two: the wire mesh wheel developed by General Motors (GM), and the hoop spring wheel developed by the Bendix Corporation. Each of these underwent intensive mechanical, material, and terramechanical analyses, and in the end, the wire mesh wheel was chosen for the LRV. Though the wire mesh wheel was determined to be the best choice for its particular application, it may be insufficient towards achieving the objectives of future lunar missions that could require higher tractive capability, increased weight capacity, or extended life. Therefore lessons learned from the original LRV wheel development and suggestions for future Moon wheel projects are offered.

  7. Analysis of Adsorbed Natural Gas Tank Technology

    NASA Astrophysics Data System (ADS)

    Knight, Ernest; Schultz, Conrad; Rash, Tyler; Dohnke, Elmar; Stalla, David; Gillespie, Andrew; Sweany, Mark; Seydel, Florian; Pfeifer, Peter

    With gasoline being an ever decreasing finite resource and with the desire to reduce humanity's carbon footprint, there has been an increasing focus on innovation of alternative fuel sources. Natural gas burns cleaner, is more abundant, and conforms to modern engines. However, storing compressed natural gas (CNG) requires large, heavy gas cylinders, which limits space and fuel efficiency. Adsorbed natural gas (ANG) technology allows for much greater fuel storage capacity and the ability to store the gas at a much lower pressure. Thus, ANG tanks are much more flexible in terms of their size, shape, and weight. Our ANG tank employs monolithic nanoporous activated carbon as its adsorbent material. Several different configurations of this Flat Panel Tank Assembly (FPTA) along with a Fuel Extraction System (FES) were examined to compare with the mass flow rate demands of an engine.

  8. Friction Stir Weld Tooling Development for Application on the 2195 Al-Cu-Li Space Transportation System External Tank

    NASA Technical Reports Server (NTRS)

    Loftus, Zachary; Arbegast, W. J.; Hartley, P. J.

    1998-01-01

    Friction Stir Welding (FSW) is a new and innovative solid-state joining process which can be applied to difficult-to- weld aluminum alloys. However, the large forces involved with the process have posed a production tooling challenge. Lockheed Martin Michoud Space Systems has overcome many of these challenges on the Super Lightweight External Tank (ET) program. Utilizing Aluminum-Copper-Lithium alloy 2195 in the form of plate and extrusions, investigations of FSW process parameters have been completed. Major loading mechanisms are discussed in conjunction with deflection measurements. Since the ET program is a cryogenic application, a brief comparison of cryogenic material properties with room temperature material properties is offered for both FSW and fusion welds. Finally, a new approach to controlling the FSW process from a load perspective is introduced. Emphasis will be put on tooling development, as well as the impact of tooling design and philosophy on Friction Stir Weld success probability.

  9. 16 CFR 1512.12 - Requirements for wheel hubs.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 16 Commercial Practices 2 2011-01-01 2011-01-01 false Requirements for wheel hubs. 1512.12 Section... REGULATIONS REQUIREMENTS FOR BICYCLES Regulations § 1512.12 Requirements for wheel hubs. All bicycles (other... hub retention test, § 1512.18(j)(3), to assure that when the locking devices are released the wheel...

  10. 16 CFR 1512.12 - Requirements for wheel hubs.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 16 Commercial Practices 2 2010-01-01 2010-01-01 false Requirements for wheel hubs. 1512.12 Section... REGULATIONS REQUIREMENTS FOR BICYCLES Regulations § 1512.12 Requirements for wheel hubs. All bicycles (other... hub retention test, § 1512.18(j)(3), to assure that when the locking devices are released the wheel...

  11. Evaluation of bias in the Hamburg wheel tracking device.

    DOT National Transportation Integrated Search

    2013-09-01

    As the list of states adopting the Hamburg Wheel Tracking Device (HWTD) continues to grow, there is a need to evaluate how results are utilized. American Association of State Highway and Transportation Officials T 324 does not standardize the analysi...

  12. 46 CFR 153.281 - Piping to independent tanks.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Piping to independent tanks. 153.281 Section 153.281... Systems and Cargo Handling Equipment § 153.281 Piping to independent tanks. Piping for an independent cargo tank must penetrate the tank only through that part of the tank or dome extending above the...

  13. 46 CFR 153.281 - Piping to independent tanks.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 5 2012-10-01 2012-10-01 false Piping to independent tanks. 153.281 Section 153.281... Systems and Cargo Handling Equipment § 153.281 Piping to independent tanks. Piping for an independent cargo tank must penetrate the tank only through that part of the tank or dome extending above the...

  14. External Tank Liquid Hydrogen (LH2) Prepress Regression Analysis Independent Review Technical Consultation Report

    NASA Technical Reports Server (NTRS)

    Parsons, Vickie s.

    2009-01-01

    The request to conduct an independent review of regression models, developed for determining the expected Launch Commit Criteria (LCC) External Tank (ET)-04 cycle count for the Space Shuttle ET tanking process, was submitted to the NASA Engineering and Safety Center NESC on September 20, 2005. The NESC team performed an independent review of regression models documented in Prepress Regression Analysis, Tom Clark and Angela Krenn, 10/27/05. This consultation consisted of a peer review by statistical experts of the proposed regression models provided in the Prepress Regression Analysis. This document is the consultation's final report.

  15. 14 CFR 23.483 - One-wheel landing conditions.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false One-wheel landing conditions. 23.483... Ground Loads § 23.483 One-wheel landing conditions. For the one-wheel landing condition, the airplane is assumed to be in the level attitude and to contact the ground on one side of the main landing gear. In...

  16. Design and development of automatic sharia compliant wheelchair wheels cleaner

    NASA Astrophysics Data System (ADS)

    Shaari, Muhammad Farid; Rasli, Ibrahim Ismail Mohammad; Jamaludin, M. Z. Z. Wan; Isa, W. A. Mohamad; M., H.; Rashid, A. H. Abdul

    2017-04-01

    Sharia compliant wheelchair wheel cleaner was developed in order to assist the muslim Person with Disabilities (PWD) to pray in the mosque without leaving their wheelchair because of the filthy wheels. Though there are many wheelchair wheel cleaning system in the market, it is very rare to find sharia compliant cleaning system that applies sertu concept which is one of the cleaning and purification technique in Islamic practice. The sertu concept is based on 6:1 ratio that refers to the six times pipe water cleaning and one time soiled water cleaning. The development process consists of design stage, fabrication and system installation stage and followed by testing stage. During the design stage, the proposed prototype underwent design brainstorming, operation programming and structural simulation analysis. Once fabricated, the cleaner prototype underwent was tested. The results showed that the prototype can cater load up to 100kg with 1.31×10-6 mm shaft bending displacement. The water ejection timing varied approximately 3% compared to the program.

  17. Decrease in Ground-Run Distance of Small Airplanes by Applying Electrically-Driven Wheels

    NASA Astrophysics Data System (ADS)

    Kobayashi, Hiroshi; Nishizawa, Akira

    A new takeoff method for small airplanes was proposed. Ground-roll performance of an airplane driven by electrically-powered wheels was experimentally and computationally studied. The experiments verified that the ground-run distance was decreased by half with a combination of the powered driven wheels and propeller without increase of energy consumption during the ground-roll. The computational analysis showed the ground-run distance of the wheel-driven aircraft was independent of the motor power when the motor capability exceeded the friction between tires and ground. Furthermore, the distance was minimized when the angle of attack was set to the value so that the wing generated negative lift.

  18. Cause of Thermal Fatigue Cracking in Metroliner Wheels

    DOT National Transportation Integrated Search

    1977-03-01

    One new wheel and two used wheels (one with a thermal crack in the tread) were examined for mechanical properties, macrostructure, microstructure, and residual stresses. Similar examinations were conducted on three new wheels which were first subject...

  19. Wheels Don't Have to Be Round

    ERIC Educational Resources Information Center

    Laird, Shirley

    2012-01-01

    Every year, the author's eighth-graders do some projects on color mixing and color schemes. In this article, the author gives a twist to the basic color wheel. Using rough-draft paper the same size as the paper they would eventually work on, students were to figure out a way to divide it into six spaces. They were not limited to basic rectangles,…

  20. Coordinated Control of Slip Ratio for Wheeled Mobile Robots Climbing Loose Sloped Terrain

    PubMed Central

    Li, Zhengcai; Wang, Yang

    2014-01-01

    A challenging problem faced by wheeled mobile robots (WMRs) such as planetary rovers traversing loose sloped terrain is the inevitable longitudinal slip suffered by the wheels, which often leads to their deviation from the predetermined trajectory, reduced drive efficiency, and possible failures. This study investigates this problem using terramechanics analysis of the wheel-soil interaction. First, a slope-based wheel-soil interaction terramechanics model is built, and an online slip coordinated algorithm is designed based on the goal of optimal drive efficiency. An equation of state is established using the coordinated slip as the desired input and the actual slip as a state variable. To improve the robustness and adaptability of the control system, an adaptive neural network is designed. Analytical results and those of a simulation using Vortex demonstrate the significantly improved mobile performance of the WMR using the proposed control system. PMID:25276849

  1. Determination of level of antibodies to bovine virus diarrhoea virus (BVDV) in bulk tank milk as a tool in the diagnosis and prophylaxis of BVDV infections in dairy herds.

    PubMed

    Niskanen, R; Alenius, S; Larsson, B; Jacobsson, S O

    1991-01-01

    An indirect ELISA has been evaluated for determination of the level of antibodies to BVDV in individual milk samples and recently in bulk tank milk from dairy herds. As part of an epidemiological study, bulk milk and individual milk samples from all cows in 15 dairy herds were analysed for antibodies to BVDV two times one year apart. There was an excellent correlation between the level of antibodies in the bulk tank milk and the prevalence of BVDV antibody positive cows. The mean prevalence of BVDV antibody positive cows in the 15 dairy herds was 45.5% (188/413) at the first sampling and 46.2% (191/413) one year later. Seven of the herds had no, or only a low number of antibody positive cows. In contrast, between 52 to 100% of the cows in seven other herds were antibody positive to BVDV. In the 15th herd all cows without antibodies at the first sampling were antibody positive to BVDV one year later, indicating a recently introduced BVDV infection in this herd. Analysis of bulk milk samples for BVDV antibodies is now routinely used in Sweden as a tool in diagnosis and prophylaxis of BVDV infections in dairy herds. The importance and advantages of this diagnostic technique, that has made it possible to establish BVDV-free dairy herds, is discussed.

  2. Putting the Wheel into Motion: Designing a Career Development Program for University Students

    ERIC Educational Resources Information Center

    Mackie, Barbara; Thomas, Jan

    2005-01-01

    This case study outlines an approach to design a career development program for university students using an adaptation of "the wheel" (Amundson & Poehnell, 2004). Ten elements of the model are listed and some of the key questions, tools and strategies that support each element of the model are highlighted. Its application in a variety of group…

  3. Defining Toll Fee of Wheeling Renewable with Reference to a Gas Pipeline in Indonesia

    NASA Astrophysics Data System (ADS)

    Hakim, Amrullah

    2017-07-01

    Indonesia has a huge number of renewable energy sources (RE) however; the utilization of these is currently very low. The main challenge of power production is its alignment with consumption levels; supply should equal demand at all times. There is a strong initiative from corporations with high energy demand, compared to other sectors, to apply a renewable portfolio standard for their energy input, e.g. 15% of their energy consumption requirement must come from a renewable energy source. To support this initiative, the utilization of power wheeling will help large factories on industrial estates to source firm and steady renewables from remote sites. The wheeling renewable via PLN’s transmission line has been regulated under the Ministry Decree in 2015 however; the tariff or toll fee has not yet been defined. The potential project to apply wheeling renewable will obtain power supply from a geothermal power plant, with power demand from the scattered factories under one company. This is the concept driving the application of power wheeling in the effort to push the growth of renewable energy in Indonesia. Given that the capacity of PLN’s transmission line are normally large and less congested compared to distribution line, the wheeling renewable can accommodate the scattered factories locations which then results in the cheaper toll fee of the wheeling renewable. Defining the best toll fee is the main topic of this paper with comparison of the toll fee of the gas pipeline infrastructure in Indonesia, so that it can be applied massively to achieve COP21’s commitment.

  4. Toxoplasma gondii Antibodies in Bulk Tank Milk Samples of Caprine Dairy Herds.

    PubMed

    Gazzonis, Alessia Libera; Zanzani, Sergio Aurelio; Stradiotto, Katia; Olivieri, Emanuela; Villa, Luca; Manfredi, Maria Teresa

    2018-06-15

    A major public health issue, Toxoplasma gondii infection can affect humans mainly via the consumption of animal products from certain species, including small ruminants. Therefore, a regular monitoring of the infection in ovine and caprine populations is advisable for the control of human and animal toxoplasmosis. Antibody detection in individual and bulk tank milk may represent a valid alternative to serological analysis, being its collection easy and not affecting animal welfare. Many serological tools for milk analysis have already been validated for several parasites, including Apicomplexa. Thus, the aim of the present study was to obtain epidemiological data on T. gondii infection through the detection of antibodies in bulk tank milk of dairy goat herds from an important area for caprine dairy production (Northern Italy). The performance of a commercial ELISA was first evaluated for analysis on caprine milk samples, using a panel of serum-milk pairs of goats naturally infected by T. gondii. The analysis on bulk tank milk confirmed the presence of antibodies anti-T. gondii in 59% of the samples. Toxoplasma gondii antibody positivity was more frequently found in farms reared under extensive (64.9%) or semi-intensive systems (68.7%) in comparison to intensive farms (51.1%). Analysis on milk revealed to be a valid alternative to serological tests, being easily applied in large-scale epidemiological surveys and for continuous monitoring of T. gondii infection.

  5. Analysis of railroad tank car releases using a generalized binomial model.

    PubMed

    Liu, Xiang; Hong, Yili

    2015-11-01

    The United States is experiencing an unprecedented boom in shale oil production, leading to a dramatic growth in petroleum crude oil traffic by rail. In 2014, U.S. railroads carried over 500,000 tank carloads of petroleum crude oil, up from 9500 in 2008 (a 5300% increase). In light of continual growth in crude oil by rail, there is an urgent national need to manage this emerging risk. This need has been underscored in the wake of several recent crude oil release incidents. In contrast to highway transport, which usually involves a tank trailer, a crude oil train can carry a large number of tank cars, having the potential for a large, multiple-tank-car release incident. Previous studies exclusively assumed that railroad tank car releases in the same train accident are mutually independent, thereby estimating the number of tank cars releasing given the total number of tank cars derailed based on a binomial model. This paper specifically accounts for dependent tank car releases within a train accident. We estimate the number of tank cars releasing given the number of tank cars derailed based on a generalized binomial model. The generalized binomial model provides a significantly better description for the empirical tank car accident data through our numerical case study. This research aims to provide a new methodology and new insights regarding the further development of risk management strategies for improving railroad crude oil transportation safety. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Passive vibration isolation of reaction wheel disturbances using a low frequency flexible space platform

    NASA Astrophysics Data System (ADS)

    Kamesh, D.; Pandiyan, R.; Ghosal, Ashitava

    2012-03-01

    Reaction wheel assemblies (RWAs) are momentum exchange devices used in fine pointing control of spacecrafts. Even though the spinning rotor of the reaction wheel is precisely balanced to minimize emitted vibration due to static and dynamic imbalances, precision instrument payloads placed in the neighborhood can always be severely impacted by residual vibration forces emitted by reaction wheel assemblies. The reduction of the vibration level at sensitive payloads can be achieved by placing the RWA on appropriate mountings. A low frequency flexible space platform consisting of folded continuous beams has been designed to serve as a mount for isolating a disturbance source in precision payloads equipped spacecrafts. Analytical and experimental investigations have been carried out to test the usefulness of the low frequency flexible platform as a vibration isolator for RWAs. Measurements and tests have been conducted at varying wheel speeds, to quantify and characterize the amount of isolation obtained from the reaction wheel generated vibration. These tests are further extended to other variants of similar design in order to bring out the best isolation for given disturbance loads. Both time and frequency domain analysis of test data show that the flexible beam platform as a mount for reaction wheels is quite effective and can be used in spacecrafts for passive vibration control.

  7. C57 mice increase wheel-running behavior following stress: preliminary findings.

    PubMed

    Sibold, Jeremy S; Hammack, Sayamwong E; Falls, William A

    2011-10-01

    Exercise has been shown to reduce anxiety in both humans and animals. To date, there are few, if any studies that examine the effect of stress on self-selected exercise using an animal model. This study examined the effect of acute stress on wheel-running distance in mice. Forty 8-week-old, male C57BL/6J mice were randomly assigned to one of three groups: no stress + wheel-running experience, stress + wheel-running experience, or stress with no wheel-running experience. Stressed mice were exposed to foot shock in a brightly lit environment. Following treatment, wheel-running distances were observed for three hours. Stress significantly increased voluntary wheel-running in mice with wheel-running experience as compared to nonstressed controls and stressed mice with no wheel-running experience. These results suggest that mice familiar with wheel-running may self-select this exercise as a modality for the mitigation of accumulated anxiety.

  8. Analysis of heat conduction in a drum brake system of the wheeled armored personnel carriers

    NASA Astrophysics Data System (ADS)

    Puncioiu, A. M.; Truta, M.; Vedinas, I.; Marinescu, M.; Vinturis, V.

    2015-11-01

    This paper is an integrated study performed over the Braking System of the Wheeled Armored Personnel Carriers. It mainly aims to analyze the heat transfer process which is present in almost any industrial and natural process. The vehicle drum brake systems can generate extremely high temperatures under high but short duration braking loads or under relatively light but continuous braking. For the proper conduct of the special vehicles mission in rough terrain, we are talking about, on one hand, the importance of the possibility of immobilization and retaining position and, on the other hand, during the braking process, the importance movement stability and reversibility or reversibility, to an encounter with an obstacle. Heat transfer processes influence the performance of the braking system. In the braking phase, kinetic energy transforms into thermal energy resulting in intense heating and high temperature states of analyzed vehicle wheels. In the present work a finite element model for the temperature distribution in a brake drum is developed, by employing commercial finite element software, ANSYS. These structural and thermal FEA models will simulate entire braking event. The heat generated during braking causes distortion which modifies thermoelastic contact pressure distribution drum-shoe interface. In order to capture the effect of heat, a transient thermal analysis is performed in order to predict the temperature distribution transitional brake components. Drum brakes are checked both mechanical and thermal. These tests aim to establish their sustainability in terms of wear and the variation coefficient of friction between the friction surfaces with increasing temperature. Modeling using simulation programs led eventually to the establishment of actual thermal load of the mechanism of brake components. It was drawn the efficiency characteristic by plotting the coefficient of effectiveness relative to the coefficient of friction shoe-drum. Thus induced

  9. A miniature Marine Aerosol Reference Tank (miniMART) as a compact breaking wave analogue

    NASA Astrophysics Data System (ADS)

    Stokes, M. Dale; Deane, Grant; Collins, Douglas B.; Cappa, Christopher; Bertram, Timothy; Dommer, Abigail; Schill, Steven; Forestieri, Sara; Survilo, Mathew

    2016-09-01

    In order to understand the processes governing the production of marine aerosols, repeatable, controlled methods for their generation are required. A new system, the miniature Marine Aerosol Reference Tank (miniMART), has been designed after the success of the original MART system, to approximate a small oceanic spilling breaker by producing an evolving bubble plume and surface foam patch. The smaller tank utilizes an intermittently plunging jet of water produced by a rotating water wheel, into an approximately 6 L reservoir to simulate bubble plume and foam formation and generate aerosols. This system produces bubble plumes characteristic of small whitecaps without the large external pump inherent in the original MART design. Without the pump it is possible to easily culture delicate planktonic and microbial communities in the bulk water during experiments while continuously producing aerosols for study. However, due to the reduced volume and smaller plunging jet, the absolute numbers of particles generated are approximately an order of magnitude less than in the original MART design.

  10. The colour wheels of art, perception, science and physiology

    NASA Astrophysics Data System (ADS)

    Harkness, Nick

    2006-06-01

    Colour is not the domain of any one discipline be it art, philosophy, psychology or science. Each discipline has its own colour wheel and this presentation examines the origins and philosophies behind the colour circles of Art, Perception, Science and Physiology (after image) with reference to Aristotle, Robert Boyle, Leonardo da Vinci, Goethe, Ewald Hering and Albert Munsell. The paper analyses and discusses the differences between the four colour wheels using the Natural Colour System® notation as the reference for hue (the position of colours within each of the colour wheels). Examination of the colour wheels shows the dominance of blue in the wheels of art, science and physiology particularly at the expense of green. This paper does not consider the three-dimensionality of colour space its goal was to review the hue of a colour with regard to its position on the respective colour wheels.

  11. Nondestructive Evaluation of Foam Insulation for the External Tank Return to Flight

    NASA Technical Reports Server (NTRS)

    Walker, James L.; Richter, Joel D.

    2006-01-01

    Nondestructive evaluation methods have been developed to identify defects in the foam thermal protection system (TPS) of the Space Shuttle External Tank (ET). Terahertz imaging and backscatter radiography have been brought from prototype lab systems to production hardened inspection tools in just a few years. These methods have been demonstrated to be capable of detecting void type defects under many inches of foam which, if not repaired, could lead to detrimental foam loss. The evolution of these methods from lab tools to implementation on the ET will be discussed.

  12. Research on Walking Wheel Slippage Control of Live Inspection Robot

    NASA Astrophysics Data System (ADS)

    Yan, Yu; Liu, Xiaqing; Guo, Hao; Li, Jinliang; Liu, Lanlan

    2017-07-01

    To solve the problem of walking wheel slippage of a live inspection robot during walking or climbing, this paper analyzes the climbing capacity of the robot with a statics method, designs a pressing wheel mechanism, and presents a method of indirectly identifying walking wheel slippage by reading speed of the pressing wheel due to the fact that the linear speed of the pressing wheel and the walking wheel at the contract point is the same; and finds that the slippage state can not be controlled through accurate mathematical models after identifying the slippage state, whereas slippage can be controlled with fuzzy control. The experiment results indicate that due to design of the pressing wheel mechanism, friction force of the walking wheel is increased, and the climbing capability of the robot is improved. Within the range of climbing capability of the robot, gradient is the key factor that has influence on slippage of robot, and slippage can be effectively eliminated through the fuzzy control method proposed in this paper.

  13. Tank car accident data analysis

    DOT National Transportation Integrated Search

    1991-06-01

    This report presents the results of a study of accidents involving railroad tank cars. The study is part of an overall effort to provide improved safety of rail transportation at reduced life-cycle costs. A major goal of the study is to provide a tec...

  14. Space Shuttle external tank: Today - DDT & E: Tomorrow - Production

    NASA Technical Reports Server (NTRS)

    Norton, A. M.; Tanner, E. J.

    1979-01-01

    The External Tank (ET) is the structural backbone of the Space Shuttle. The ET is discussed relative to its role; its design as a highly efficient Shuttle element; the liquid oxygen tank - a thin shelled monocoque; the intertank - the forward structural connection; the liquid hydrogen tank structure - the connection with the Orbiter; the ET structural verification; the propulsion system - a variety of functions; the electrical subsystem; electrical subsystem qualification; the thermal protection system; and other related problems. To date the qualification programs have been extremely successful and are almost complete, and the first flight tank has been delivered. Tomorrow's objectives will concentrate on establishing the facilities, tools and processes to achieve a production rate of 24 ETs/year.

  15. Wheel running, voluntary ethanol consumption, and hedonic substitution.

    PubMed

    Ozburn, Angela Renee; Harris, R Adron; Blednov, Yuri A

    2008-08-01

    Few studies have examined the relationship between naturally rewarding behaviors and ethanol drinking behaviors in mice. Although natural and drug reinforcers activate similar brain circuitry, there is behavioral evidence suggesting food and drug rewards differ in perceived value. The primary goal of the present study was to investigate the relationships between naturally reinforcing stimuli and consumption of ethanol in ethanol preferring C57BL/6J mice. Mouse behaviors were observed after the following environmental manipulations: standard or enhanced environment, accessible or inaccessible wheel, and presence or absence of ethanol. Using a high-resolution volumetric drinking monitor and wheel running monitor, we evaluated whether alternating access to wheel running modified ethanol-related behaviors and whether alternating access to ethanol modified wheel running or subsequent ethanol-related behaviors. We found that ethanol consumption remains stable with alternating periods of wheel running. Wheel running increases in the absence of ethanol and decreases upon reintroduction of ethanol. Upon reintroduction of ethanol, an alcohol deprivation effect was seen. Collectively, the results support theories of hedonic substitution and suggest that female C57BL/6J mice express ethanol seeking and craving under these specific conditions.

  16. The development of an assessment tool for the mobility of lightweight autonomous vehicles on coastal terrain

    NASA Astrophysics Data System (ADS)

    Worley, Marilyn E.; Ren, Ping; Sandu, Corina; Hong, Dennis

    2007-04-01

    This study focuses on developing an assessment tool for the performance prediction of lightweight autonomous vehicles with varying locomotion platforms on coastal terrain involves three segments. A table based on the House of Quality shows the relationships - high, low, or adverse - between mission profile requirements and general performance measures and geometries of vehicles under consideration for use. This table, when combined with known values for vehicle metrics, provides information for an index formula used to quantitatively compare the mobility of a user-chosen set of vehicles, regardless of their methods of locomotion. To study novel forms of locomotion, and to compare their mobility and performance with more traditional wheeled and tracked vehicles, several new autonomous vehicles - bipedal, self-excited dynamic tripedal, active spoke-wheel - are currently under development. While the terramechanics properties of wheeled and tracked vehicles, such as the contact patch pressure distribution, have been understood and models have been developed for heavy vehicles, the feasibility of extrapolating them to the analysis of light vehicles is still under analysis. wheeled all-terrain vehicle and a lightweight autonomous tracked vehicle have been tested for effects of sand gradation, vehicle speed, and vehicle payload on measures of pressure and sinkage in the contact patch, and preliminary analysis is presented on the sinkage of the wheeled all-terrain vehicle. These three segments - development of the comparison matrix and indexing function, modeling and development of novel forms of locomotion, and physical experimentation of lightweight tracked and wheeled vehicles on varying terrain types for terramechanic model validation - combine to give an overall picture of mobility that spans across different forms of locomotion.

  17. Shock-absorbing caster wheel is simple and compact

    NASA Technical Reports Server (NTRS)

    Kindley, R. J.

    1968-01-01

    Compact shock-absorbing caster wheel mitigates or absorbs shock by a compressible tire which deforms into a cavity between its inner edge and the wheel hub. A tee-shaped annular ring embedded in the tire distributes loads more uniformly throughout both wheel and tire.

  18. 49 CFR 179.300 - General specifications applicable to multi-unit tank car tanks designed to be removed from car...

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 110AW). 179.300 Section 179.300 Transportation Other Regulations Relating to Transportation PIPELINE AND... SPECIFICATIONS FOR TANK CARS Specifications for Multi-Unit Tank Car Tanks (Classes DOT-106A and 110AW) § 179.300...

  19. Non-Circular Wheels: Reuleaux and Squares

    ERIC Educational Resources Information Center

    Mills, Allan

    2011-01-01

    Circular wheels are so familiar on vehicles of all types that it is seldom realized that alternatives do exist. This short non-mathematical article describes Reuleaux and square wheels that, rolling along appropriate tracks, can maintain a moving platform at a constant height. Easily made working models lend themselves to demonstrations at science…

  20. External Tank Program - Legacy of Success

    NASA Technical Reports Server (NTRS)

    Pilet, Jeffery C.; Diecidue-Conners, Dawn; Worden, Michelle; Guillot, Michelle; Welzyn, Kenneth

    2011-01-01

    The largest single element of Space Shuttle is the External Tank (ET), which serves as the structural backbone of the vehicle during ascent and provides liquid propellants to the Orbiter s three Main Engines. The ET absorbs most of the seven million pounds of thrust exerted by the Solid Rocket Boosters and Main Engines. The design evolved through several block changes, reducing weight each time. Because the tank flies to orbital velocity with the Space Shuttle Orbiter, minimization of weight is mandatory, to maximize payload performance. The initial configuration, the standard weight tank, weighed 76,000 pounds and was an aluminum 2219 structure. The light weight tank weighed 66,000 pounds and flew 86 missions. The super light weight tank weighed 58,500 pounds and was primarily an aluminum-lithium structure. The final configuration and low weight enabled system level performance sufficient for assembly of the International Space Station in a high inclination orbit, vital for international cooperation. Another significant challenge was the minimization of ice formation on the cryogenic tanks. This was essential due to the system configuration and the choice of ceramic thermal protection system materials on the Orbiter. Ice would have been a major debris hazard. Spray on foam insulation materials served multiple functions including thermal insulation, conditioning of cryogenic propellants, and thermal protection for the tank structure during ascent and entry. The tank is large, and unique manufacturing facilities, tooling, and handling, and transportation operations were developed. Weld processes and tooling evolved with the design as it matured through several block changes. Non Destructive Evaluation methods were used to assure integrity of welds and thermal protection system materials. The aluminum-lithium alloy was used near the end of the program and weld processes and weld repair techniques had to be refined. Development and implementation of friction stir