Sample records for tannins phenolic compounds

  1. Extracts of Phenolic Compounds from Seeds of Three Wild Grapevines—Comparison of Their Antioxidant Activities and the Content of Phenolic Compounds

    PubMed Central

    Weidner, Stanisław; Powałka, Anna; Karamać, Magdalena; Amarowicz, Ryszard

    2012-01-01

    Phenolic compounds were extracted from three wild grapevine species: Vitis californica, V. riparia and V. amurensis seeds using 80% methanol or 80% acetone. The total content of phenolic compounds was determined utilizing the Folin-Ciocalteu’s phenol reagent while the content of tannins was assayed with the vanillin and BSA precipitation methods. Additionally, the DPPH free radical scavenging activity and the reduction power of the extracts were measured. The RP-HPLC method was applied to identify the phenolic compounds in the extracts, such as phenolic acids and catechins. The seeds contained large amounts of tannins, catechins and gallic acid and observable quantities of p-coumaric acid. The total content of phenolic compounds and tannins was similar in the extracts from V. californica and V. riparia seeds. However, the total content of total phenolic compounds and tannins in the extracts from V. californica and V. riperia seeds were about two-fold higher than that in the extracts from V. amurensis seeds. Extracts from seeds of the American species (V. californica and V. riparia) contained similarly high concentrations of tannins, whereas extracts from seeds of V. amurensis had approximately half that amount of these compounds. The content of catechin and epicatechin was similar in all extracts. The highest DPPH• anti-radical scavenging activity was observed in the acetonic and methanolic extracts of V. californica and V. riparia seeds— while the acetonic extract from the V. californica seeds was the strongest reducing agent. PMID:22489161

  2. Influence of rice straw polyphenols on cellulase production by Trichoderma reesei.

    PubMed

    Zheng, Wei; Zheng, Qin; Xue, Yiyun; Hu, Jiajun; Gao, Min-Tian

    2017-06-01

    In this study, we found that during cellulase production by Trichoderma reesei large amounts of polyphenols were released from rice straw when the latter was used as the carbon source. We identified and quantified the phenolic compounds in rice straw and investigated the effects of the phenolic compounds on cellulase production by T. reesei. The phenolic compounds of rice straw mainly consisted of phenolic acids and tannins. Coumaric acid (CA) and ferulic acid (FA) were the predominant phenolic acids, which inhibited cellulase production by T. reesei. When the concentrations of CA and FA in the broth increased to 0.06 g/L, cellulase activity decreased by 23% compared with that in the control culture. Even though the rice straw had a lower tannin than phenolic acid content, the tannins had a greater inhibitory effect than the phenolic acids on cellulase production by T. reesei. Tannin concentrations greater than 0.3 g/L completely inhibited cellulase production. Thus, phenolic compounds, especially tannins are the major inhibitors of cellulase production by T. reesei. Therefore, we studied the effects of pretreatments on the release of phenolic compounds. Ball milling played an important role in the release of FA and CA, and hot water extraction was highly efficient in removing tannins. By combining ball milling with extraction by water, the 2-fold higher cellulase activity than in the control culture was obtained. Copyright © 2017 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  3. Biochemical changes in phenols, flavonoids, tannins, vitamin E, β-carotene and antioxidant activity during soaking of three white sorghum varieties

    PubMed Central

    Afify, Abd El-Moneim MR; El-Beltagi, Hossam S; El-Salam, Samiha M Abd; Omran, Azza A

    2012-01-01

    Objective To investigate the changes in total phenols, flavonoids, tannins, vitamin E, β-carotene and antioxidant activity during soaking of three white sorghum varieties. Methods The changes in total phenols, total flavonoids, tannins, phenolic acids compounds, flavonoid components, vitamin E, β-carotene and antioxidant activity during soaking of sorghum grains were determined. Results Total phenols, total flavonoids, tannins, vitamin E, β-carotene and antioxidant activity in raw sorghum were ranged from 109.21 to 116.70, 45.91 to 54.69, 1.39 to 21.79 mg/100 g, 1.74 to 5.25, 0.54 to 1.19 mg/kg and 21.72% to 27.69% and 25.29% to 31.97%, respectively. The above measured compounds were significantly decreased after soaking. p-Hydroxybenzoic acid, vanillic acid, syringic acid and cinnamic acid represent the major phenolic acids in Dorado variety. While ferulic acid, p-coumaric acid, gallic acid and caffeic acid represent the major phenolic acids in Shandaweel-6. On the other hand, protocatechuic acid represents the major phenolic acids in Giza-15. Regarding flavonoids components, Dorado was the highest variety in kampferol and naringenin while Shandaweel-6 was the highest variety in luteolin, apigenin, hypersoid, quercetin and christen. Finally, Giza-15 was the highest variety in catechin. Phenolic acids, flavonoid compounds and antioxidant activities were decreased after soaking. Conclusions Sorghum varieties have moderate quantities from total phenols, total flavonoids, tannins, phenolic acids compounds, flavonoid components, vitamin E, β-carotene and antioxidant activity which decreased after soaking. PMID:23569898

  4. Biochemical changes in phenols, flavonoids, tannins, vitamin E, β-carotene and antioxidant activity during soaking of three white sorghum varieties.

    PubMed

    Afify, Abd El-Moneim M R; El-Beltagi, Hossam S; El-Salam, Samiha M Abd; Omran, Azza A

    2012-03-01

    To investigate the changes in total phenols, flavonoids, tannins, vitamin E, β-carotene and antioxidant activity during soaking of three white sorghum varieties. The changes in total phenols, total flavonoids, tannins, phenolic acids compounds, flavonoid components, vitamin E, β-carotene and antioxidant activity during soaking of sorghum grains were determined. Total phenols, total flavonoids, tannins, vitamin E, β-carotene and antioxidant activity in raw sorghum were ranged from 109.21 to 116.70, 45.91 to 54.69, 1.39 to 21.79 mg/100 g, 1.74 to 5.25, 0.54 to 1.19 mg/kg and 21.72% to 27.69% and 25.29% to 31.97%, respectively. The above measured compounds were significantly decreased after soaking. p-Hydroxybenzoic acid, vanillic acid, syringic acid and cinnamic acid represent the major phenolic acids in Dorado variety. While ferulic acid, p-coumaric acid, gallic acid and caffeic acid represent the major phenolic acids in Shandaweel-6. On the other hand, protocatechuic acid represents the major phenolic acids in Giza-15. Regarding flavonoids components, Dorado was the highest variety in kampferol and naringenin while Shandaweel-6 was the highest variety in luteolin, apigenin, hypersoid, quercetin and christen. Finally, Giza-15 was the highest variety in catechin. Phenolic acids, flavonoid compounds and antioxidant activities were decreased after soaking. Sorghum varieties have moderate quantities from total phenols, total flavonoids, tannins, phenolic acids compounds, flavonoid components, vitamin E, β-carotene and antioxidant activity which decreased after soaking.

  5. Phenolic compounds in chestnut (Castanea sativa Mill.) heartwood. Effect of toasting at cooperage.

    PubMed

    Sanz, Miriam; Cadahía, Estrella; Esteruelas, Enrique; Muñoz, Angel Ma; Fernández de Simón, Brígida; Hernández, Teresa; Estrella, Isabel

    2010-09-08

    The phenolic and tannic composition of heartwood extracts from Castanea sativa Mill., before and after toasting in cooperage, were studied using HPLC-DAD and HPLC-DAD/ESI-MS, and some low molecular weight phenolic compounds and hydrolyzable tannins were found. The low molecular weight phenolic compounds were lignin constituents as the acids gallic, protocatechuic, vanillic, syringic, ferulic, and ellagic, the aldehydes protocatechuic, vanillic, syringic, coniferylic, and sinapic, and the coumarin scopoletin. Their patterns were somewhat different those of oak because oak does not contain compounds such protocatechuic acid and aldehyde and is composed of much lower amounts of gallic acid than chestnut. Vescalagin and castalagin were the main ellagitannins, and acutissimin was tentatively identified for the first time in this wood. Moreover, some gallotannins were tentatively identified, including different isomers of di, tri, tetra, and pentagalloyl glucopyranose, and di and trigalloyl-hexahydroxydiphenoyl glucopyranose, comprising 20 different compounds, as well as some ellagic derivatives such as ellagic acid deoxyhexose, ellagic acid dimer dehydrated, and valoneic acid dilactone. These ellagic derivatives as well as some galloyl and hexahydroxydiphenoyl derivatives were tentatively identified for the first time in this wood. The profile of tannins was therefore different from that of oak wood because oak only contains tannins of the ellagitannins type. Seasoned and toasted chestnut wood showed a very different balance between lignin derivatives and tannins because toasting resulted in the degradation of tannins and the formation of low molecular weight phenolic compounds from lignin degradation. Moreover, the different toasting levels provoked different balances between tannins and lignin constituents because the intensity of lignin and tannin degradation was in relation to the intensity of toasting.

  6. Removing tannins from medicinal plant extracts using an alkaline ethanol precipitation process: a case study of Danshen injection.

    PubMed

    Gong, Xingchu; Li, Yao; Qu, Haibin

    2014-11-14

    The alkaline ethanol precipitation process is investigated as an example of a technique for the removal of tannins extracted from Salviae miltiorrhizae Radix et Rhizoma for the manufacture of Danshen injection. More than 90% of the tannins can be removed. However, the recoveries of danshensu, rosmarinic acid, and salvianolic acid B were less than 60%. Total tannin removal increased as the refrigeration temperature decreased or the amount of NaOH solution added increased. Phenolic compound recoveries increased as refrigeration temperature increased or the amount of NaOH solution added decreased. When operated at a low refrigeration temperature, a relative high separation selectivity can be realized. Phenolic compound losses and tannin removal were mainly caused by precipitation. The formation of phenol salts, whose solubility is small in the mixture of ethanol and water used, is probably the reason for the precipitation. A model considering dissociation equilibrium and dissolution equilibrium was established. Satisfactory correlation results were obtained for phenolic compound recoveries and total tannin removal. Two important parameters in the model, which are the water content and pH value of alkaline supernatant, are suggested to be monitored and controlled to obtain high batch-to-batch consistency.

  7. Seasonal variation in the content of hydrolyzable tannins, flavonoid glycosides, and proanthocyanidins in oak leaves.

    PubMed

    Salminen, Juha-Pekka; Roslin, Tomas; Karonen, Maarit; Sinkkonen, Jari; Pihlaja, Kalevi; Pulkkinen, Pertti

    2004-09-01

    Oaks have been one of the classic model systems in elucidating the role of polyphenols in plant-herbivore interactions. This study provides a comprehensive description of seasonal variation in the phenolic content of the English oak (Quercus robur). Seven different trees were followed over the full course of the growing season, and their foliage repeatedly sampled for gallic acid, 9 individual hydrolyzable tannins, and 14 flavonoid glycosides, as well as for total phenolics, total proanthocyanidins, carbon, and nitrogen. A rare dimeric ellagitannin, cocciferin D2, was detected for the first time in leaves of Q. robur, and relationships between the chemical structures of individual tannins were used to propose a biosynthetic pathway for its formation. Overall, hydrolyzable tannins were the dominant phenolic group in leaves of all ages. Nevertheless, young oak leaves were much richer in hydrolyzable tannins and flavonoid glycosides than old leaves, whereas the opposite pattern was observed for proanthocyanidins. However, when quantified as individual compounds, hydrolyzable tannins and flavonoid glycosides showed highly variable seasonal patterns. This large variation in temporal trends among compounds, and a generally weak correlation between the concentration of any individual compound and the total concentration of phenolics, as quantified by the Folin-Ciocalteau method, leads us to caution against the uncritical use of summary quantifications of composite phenolic fractions in ecological studies.

  8. Antioxidative and antiradical properties of plant phenolics.

    PubMed

    Sroka, Zbigniew

    2005-01-01

    The plant phenolic compounds such as flavonoids, tannins and phenolic acids appeared to be strong antiradical and antioxidant compounds. The number of hydroxy groups and the presence of a 2,3-double bond and orthodiphenolic structure enhance antiradical and antioxidative activity of flavonoids. The glycosylation, blocking the 3-OH group in C-ring, lack of a hydroxy group or the presence of only a methoxy group in B-ring have a decreasing effect on antiradical or antioxidative activity of these compounds. Tannins show strong antioxidative properties. Some tannins in red wine or gallate esters were proved to have antioxidative effect in vivo. The number of hydroxy groups connected with the aromatic ring, in ortho or para position relative to each other, enhance antioxidative and antiradical activity of phenolic acids. The substitution of a methoxy group in ortho position to the OH in monophenols seems to favour the antioxidative activity of the former.

  9. Genetics and Biochemistry of Zero-Tannin Lentils.

    PubMed

    Mirali, Mahla; Purves, Randy W; Stonehouse, Rob; Song, Rui; Bett, Kirstin; Vandenberg, Albert

    2016-01-01

    The zero-tannin trait in lentil is controlled by a single recessive gene (tan) that results in a phenotype characterized by green stems, white flowers, and thin, transparent, or translucent seed coats. Genes that result in zero-tannin characteristics are useful for studies of seed coat pigmentation and biochemical characters because they have altered pigmentation. In this study, one of the major groups of plant pigments, phenolic compounds, was compared among zero-tannin and normal phenotypes and genotypes of lentil. Biochemical data were obtained by liquid chromatography-mass spectrometry (LC-MS). Genomic sequencing was used to identify a candidate gene for the tan locus. Phenolic compound profiling revealed that myricetin, dihydromyricetin, flavan-3-ols, and proanthocyanidins are only detected in normal lentil phenotypes and not in zero-tannin types. The molecular analysis showed that the tan gene encodes a bHLH transcription factor, homologous to the A gene in pea. The results of this study suggest that tan as a bHLH transcription factor interacts with the regulatory genes in the biochemical pathway of phenolic compounds starting from flavonoid-3',5'-hydroxylase (F3'5'H) and dihydroflavonol reductase (DFR).

  10. Chemical composition and antibacterial activities of lupin seeds extracts.

    PubMed

    Lampart-Szczapa, Eleonora; Siger, Aleksander; Trojanowska, Krystyna; Nogala-Kalucka, Małgorzata; Malecka, Maria; Pacholek, Bogdan

    2003-10-01

    Determination of influence of lupin natural phenolic compounds on antibacterial properties of its seeds was carried out. Raw material were seeds of Lupinus albus, L. luteus, and L. angustifolius. The methods included the determination of the content of proteins, total phenolic compounds, free phenolic acids, and tannins as well as antibacterial properties with ethanol extracts. The content of total phenolic compounds was smaller in testas than in cotyledons and the highest levels are observed in bitter cultivars of Lupinus albus cv. Bac and L. angustifolius cv. Mirela. Lupin tannins mainly occurred in cotyledons of the white lupin, predominantly in the bitter cultivar Bac. Free phenolic acids were mainly found in testas. Only extracts from the testas displayed antibacterial properties, which excludes the possibility of alkaloid influence on the results. The results suggest that inhibition of test bacteria growth depended mainly upon the content of the total phenolic compounds.

  11. Dietary quebracho tannins are not absorbed, but increase the antioxidant capacity of liver and plasma in sheep.

    PubMed

    López-Andrés, Patricia; Luciano, Giuseppe; Vasta, Valentina; Gibson, Trevor M; Biondi, Luisa; Priolo, Alessandro; Mueller-Harvey, Irene

    2013-08-01

    A total of sixteen lambs were divided into two groups and fed two different diets. Of these, eight lambs were fed a control diet (C) and eight lambs were fed the C diet supplemented with quebracho tannins (C+T). The objective of the present study was to assess whether dietary quebracho tannins can improve the antioxidant capacity of lamb liver and plasma and if such improvement is due to a direct transfer of phenolic compounds or their metabolites, to the animal tissues. Feed, liver and plasma samples were purified by solid-phase extraction (SPE) and analysed by liquid chromatography-MS for phenolic compounds. Profisitinidin compounds were identified in the C+T diet. However, no phenolic compounds were found in lamb tissues. The liver and the plasma from lambs fed the C+T diet displayed a greater antioxidant capacity than tissues from lambs fed the C diet, but only when samples were not purified with SPE. Profisetinidin tannins from quebracho seem not to be degraded or absorbed in the gastrointestinal tract. However, they induced antioxidant effects in animal tissues.

  12. Antioxidant Activity of a Red Lentil Extract and Its Fractions

    PubMed Central

    Amarowicz, Ryszard; Estrella, Isabell; Hernández, Teresa; Dueñas, Montserrat; Troszyńska, Agnieszka; Agnieszka, Kosińska; Pegg, Ronald B.

    2009-01-01

    Phenolic compounds were extracted from red lentil seeds using 80% (v/v) aqueous acetone. The crude extract was applied to a Sephadex LH-20 column. Fraction 1, consisting of sugars and low-molecular-weight phenolics, was eluted from the column by ethanol. Fraction 2, consisting of tannins, was obtained using acetone-water (1:1; v/v) as the mobile phase. Phenolic compounds present in the crude extract and its fractions demonstrated antioxidant and antiradical activities as revealed from studies using a β-carotene-linoleate model system, the total antioxidant activity (TAA) method, the DPPH radical-scavenging activity assay, and a reducing power evaluation. Results of these assays showed the highest values when tannins (fraction 2) were tested. For instance, the TAA of the tannin fraction was 5.85 μmol Trolox® eq./mg, whereas the crude extract and fraction 1 showed 0.68 and 0.33 μmol Trolox® eq./mg, respectively. The content of total phenolics in fraction 2 was the highest (290 mg/g); the tannin content, determined using the vanillin method and expressed as absorbance units at 500 nm per 1 g, was 129. There were 24 compounds identified in the crude extract using an HPLC-ESI-MS method: quercetin diglycoside, catechin, digallate procyanidin, and p-hydroxybenzoic were the dominant phenolics in the extract. PMID:20054484

  13. Reaction of formaldehyde with phenols: a computational chemistry study.

    Treesearch

    Tohru Mitsunaga; Anthony H. Conner; Charles G. Hill

    2001-01-01

    Phenolic resins are important adhesives used by the forest products industry. The phenolic compounds in these resins are derived primarily from petrochemical sources. Alternate sources of phenolic compounds include tannins, lignins, biomass pyrolysis products, and coal gasification products. Because of variations in their chemical structures, the reactivities of these...

  14. Characterization of condensed tannins and carbohydrates in hot water bark extracts of European softwood species.

    PubMed

    Bianchi, Sauro; Kroslakova, Ivana; Janzon, Ron; Mayer, Ingo; Saake, Bodo; Pichelin, Frédéric

    2015-12-01

    Condensed tannins extracted from European softwood bark are recognized as alternatives to synthetic phenolics. The extraction is generally performed in hot water, leading to simultaneous extraction of other bark constituents such as carbohydrates, phenolic monomers and salts. Characterization of the extract's composition and identification of the extracted tannins' molecular structure are needed to better identify potential applications. Bark from Silver fir (Abies alba [Mill.]), European larch (Larix decidua [Mill.]), Norway spruce (Picea abies [Karst.]), Douglas fir (Pseudotsuga menziesii [Mirb.]) and Scots pine (Pinus sylvestris [L.]) were extracted in water at 60°C. The amounts of phenolic monomers, condensed tannins, carbohydrates, and inorganic compounds in the extract were determined. The molecular structures of condensed tannins and carbohydrates were also investigated (HPLC-UV combined with thiolysis, MALDI-TOF mass spectrometry, anion exchange chromatography). Distinct extract compositions and tannin structures were found in each of the analysed species. Procyanidins were the most ubiquitous tannins. The presence of phenolic glucosides in the tannin oligomers was suggested. Polysaccharides such as arabinans, arabinogalactans and glucans represented an important fraction of all extracts. Compared to traditionally used species (Mimosa and Quebracho) higher viscosities as well as faster chemical reactivities are expected in the analysed species. The most promising species for a bark tannin extraction was found to be larch, while the least encouraging results were detected in pine. A better knowledge of the interaction between the various extracted compounds is deemed an important matter for investigation in the context of industrial applications of such extracts. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Predicting the reactivity of phenolic compounds with formaldehyde. II, continuation of an ab initio study.

    Treesearch

    Tohru Mitsunaga; Anthony H. Conner; Charles G. Jr. Hill

    2002-01-01

    Phenol–formaldehyde resins are important adhesives used by the forest products industry. The phenolic compounds in these resins are derived primarily from petrochemical sources. Alternate sources of phenolic compounds include tannins, lignins, biomass pyrolysis products, and coal gasification products. Because of variations in their chemical structures, the...

  16. Low molecular-weight phenols in Tannat wines made by alternative winemaking procedures.

    PubMed

    Favre, Guzmán; Peña-Neira, Álvaro; Baldi, Cecilia; Hernández, Natalia; Traverso, Sofía; Gil, Graciela; González-Neves, Gustavo

    2014-09-01

    Low molecular weight phenols of Tannat red wines produced by Traditional Maceration (TM), Prefermentative Cold Maceration (PCM), Maceration Enzyme (ENZ) and grape-Seed Tannins additions (ST), were performed and discussed. Alternatives to TM increased wine phenolic contents but unequally, ST increased mainly smaller flavans-3-ol, PCM anthocyanins and ENZ proanthocyanidins (up to 2250 mg/L). However low molecular weight flavan-3-ols remained below 9 mg/L in all wines, showing that there is not necessarily a correspondence between wine richness in total tannins and flavan-3-ols contents at low molecular weight. PCM wines had particularly high concentrations of tyrosol and tryptophol, yeast metabolism derived compounds. The use of grape-seed enological tannins did not increase grape seed derived phenolic compounds such as gallic acid. Caftaric acid was found in concentrations much higher than those reported in other grape varieties. Wine phenolic content and composition was considerably affected by the winemaking procedures tested. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Effect of phenolic aldehydes and flavonoids on growth and inactivation of Oenococcus oeni and Lactobacillus hilgardii.

    PubMed

    Figueiredo, Ana Rita; Campos, Francisco; de Freitas, Víctor; Hogg, Tim; Couto, José António

    2008-02-01

    The aim of this work was to investigate the effect of wine phenolic aldehydes, flavonoids and tannins on growth and viability of strains of Oenococcus oeni and Lactobacillus hilgardii. Cultures were grown in ethanol-containing MRS/TJ medium supplemented with different concentrations of phenolic aldehydes or flavonoids and monitored spectrophotometrically. The effect of tannins was evaluated by monitoring the progressive inactivation of cells in ethanol-containing phosphate buffer supplemented with grape seed extracts with different molecular weight tannins. Of the phenolic aldehydes tested, sinapaldehyde, coniferaldehyde, p-hydroxybenzaldehyde, 3,4-dihydroxybenzaldehyde and 3,4,5-trihydroxybenzaldehyde significantly inhibited the growth of O. oeni VF, while vanillin and syringaldehyde had no effect at the concentrations tested. Lact. hilgardii 5 was only inhibited by sinapaldehyde and coniferaldehyde. Among the flavonoids, quercetin and kaempferol exerted an inhibitory effect especially on O. oeni VF. Myricetin and the flavan-3-ols studied (catechin and epicatechin) did not affect considerably the growth of both strains. Condensed tannins (particularly tetramers and pentamers) were found to strongly affect cell viability, especially in the case of O. oeni VF. In general, this strain was found to be more sensitive than Lact. hilgardii 5 to the phenolic compounds studied. This work contributes to the knowledge of the effect of different phenolic compounds on the activity of wine lactic acid bacteria, which, especially in the case of aldehydes and of different molecular weight fractions of tannins, is very scarce.

  18. Characterization of Phenolic Compounds in Wine Lees

    PubMed Central

    Zhijing, Ye; Shavandi, Amin; Harrison, Roland; Bekhit, Alaa El-Din A.

    2018-01-01

    The effect of vinification techniques on phenolic compounds and antioxidant activity of wine lees are poorly understood. The present study investigated the antioxidant activity of white and red wine lees generated at early fermentation and during aging. In this study, the total phenol content (TPC), total tannin content (TTC), mean degree of polymerization (mDP), and antioxidant activities of five white and eight red wine lees samples from different vinification backgrounds were determined. The results showed that vinification techniques had a significant (p < 0.05) impact on total phenol and tannin content of the samples. White wine lees had high mDP content compared with red ones. Catechin (50–62%) and epicatechin contents were the predominant terminal units of polymeric proanthocyanidin extracted from examined samples. Epigallocatechin was the predominant extension unit of white wine lees, whereas epicatechin was the predominant compound in red wine marc. The ORAC (oxygen radical absorbance capacity) assay was strongly correlated with the DPPH (α,α-diphenyl-β-picrylhydrazyl) assay, and the results showed the strong antioxidant activities associated with red wine lees (PN > 35 mg Trolox/g FDM) (PN: Pinot noir lees; FDM: Freeze-dried Material). This study indicates that tannin is one of the major phenolic compounds available in wine lees that can be useful in human and animal health applications. PMID:29587406

  19. Characterization of Phenolic Compounds in Wine Lees.

    PubMed

    Zhijing, Ye; Shavandi, Amin; Harrison, Roland; Bekhit, Alaa El-Din A

    2018-03-25

    The effect of vinification techniques on phenolic compounds and antioxidant activity of wine lees are poorly understood. The present study investigated the antioxidant activity of white and red wine lees generated at early fermentation and during aging. In this study, the total phenol content (TPC), total tannin content (TTC), mean degree of polymerization (mDP), and antioxidant activities of five white and eight red wine lees samples from different vinification backgrounds were determined. The results showed that vinification techniques had a significant ( p < 0.05) impact on total phenol and tannin content of the samples. White wine lees had high mDP content compared with red ones. Catechin (50-62%) and epicatechin contents were the predominant terminal units of polymeric proanthocyanidin extracted from examined samples. Epigallocatechin was the predominant extension unit of white wine lees, whereas epicatechin was the predominant compound in red wine marc. The ORAC (oxygen radical absorbance capacity) assay was strongly correlated with the DPPH (α, α-diphenyl-β-picrylhydrazyl) assay, and the results showed the strong antioxidant activities associated with red wine lees (PN > 35 mg Trolox/g FDM) (PN: Pinot noir lees; FDM: Freeze-dried Material). This study indicates that tannin is one of the major phenolic compounds available in wine lees that can be useful in human and animal health applications.

  20. Phenolic acids, hydrolyzable tannins, and antioxidant activity of geopropolis from the stingless bee Melipona fasciculata Smith.

    PubMed

    Dutra, Richard Pereira; Abreu, Bruno Vinicius de Barros; Cunha, Mayara Soares; Batista, Marisa Cristina Aranha; Torres, Luce Maria Brandão; Nascimento, Flavia Raquel Fernandes; Ribeiro, Maria Nilce Sousa; Guerra, Rosane Nassar Meireles

    2014-03-26

    Geopropolis is a mixture of plant resins, waxes, and soil produced by the stingless bee Melipona fasciculata Smith. This paper describes the antioxidant activity and chemical composition of geopropolis produced by M. fasciculata. The total phenolic content determined with the Folin-Ciocalteu reagent was highest in the ethyl acetate fraction and hydroalcoholic extract. Antioxidant activity was assayed by the in vitro DPPH, ABTS, and FRAP assays. The hydroalcoholic extract and fractions of geopropolis, except for the hexane fraction, exhibited antioxidant activity against DPPH, ABTS, and FRAP. The phenolic compounds were identified by HPLC-DAD-MS on the basis of the evaluation of their UV-vis absorption maxima (λmax) and mass spectral analysis. Eleven compounds belonging to the classes of phenolic acids and hydrolyzable tannins (gallotannins and ellagitannins) were tentatively identified. These compounds are responsible for the antioxidant activity and high phenolic content of geopropolis produced by M. fasciculata.

  1. Analysis of phenolic compounds in different parts of pomegranate (Punica granatum) fruit by HPLC-PDA-ESI/MS and evaluation of their antioxidant activity: application to different Italian varieties.

    PubMed

    Russo, Marina; Fanali, Chiara; Tripodo, Giusy; Dugo, Paola; Muleo, Rosario; Dugo, Laura; De Gara, Laura; Mondello, Luigi

    2018-06-01

    The analysis of pomegranate phenolic compounds belonging to different classes in different fruit parts was performed by high-performance liquid chromatography coupled with photodiode array and mass spectrometry detection. Two different separation methods were optimized for the analysis of anthocyanins and hydrolyzable tannins along with phenolic acids and flavonoids. Two C 18 columns, core-shell and fully porous particle stationary phases, were used. The parameters for separation of phenolic compounds were optimized considering chromatographic resolution and analysis time. Thirty-five phenolic compounds were found, and 28 of them were tentatively identified as belonging to four different phenolic compound classes; namely, anthocyanins, phenolic acids, hydrolyzable tannins, and flavonoids. Quantitative analysis was performed with a mixture of nine phenolic compounds belonging to phenolic compound classes representative of pomegranate. The method was then fully validated in terms of retention time precision, expressed as the relative standard deviation, limit of detection, limit of quantification, and linearity range. Phenolic compounds were analyzed directly in pomegranate juice, and after solvent extraction with a mixture of water and methanol with a small percentage of acid in peel and pulp samples. The accuracy of the extraction method was also assessed, and satisfactory values were obtained. Finally, the method was used to study identified analytes in pomegranate juice, peel, and pulp of six different Italian varieties and one international variety. Differences in phenolic compound profiles among the different pomegranate parts were observed. Pomegranate peel samples showed a high concentration of phenolic compounds, ellagitannins being the most abundant ones, with respect to pulp and juice samples for each variety. With the same samples, total phenols and antioxidant activity were evaluated through colorimetric assays, and the results were correlated among them.

  2. Bioactive compounds and antioxidant activity analysis of Malaysian pineapple cultivars

    NASA Astrophysics Data System (ADS)

    Chiet, Chong Hang; Zulkifli, Razauden Mohamed; Hidayat, Topik; Yaakob, Harisun

    2014-03-01

    Pineapple industry is one of the important agricultural sectors in Malaysia with 76 cultivars planted throughout the country. This study aims to generate useful nutritional information as well as evaluating antioxidant properties of different pineapple commercial cultivars in Malaysia. The bioactive compound content and antioxidant capacity of `Josapine', `Morris' and `Sarawak' pineapple (Ananas comosus) were studied. The pineapple varieties were collected at commercial maturity stage (20-40% yellowish of fruit peel) and the edible portion of the fruit was used as sample for evaluation. The bioactive compound of the fruit extracts were evaluated by total phenolic and tannin content assay while the antioxidant capacity was determined by ferric reducing antioxidant power (FRAP). From the results obtained, total phenolic and tannin content was highest for `Josapine' followed by `Morris' and `Sarawak'. With respect to FRAP, `Josapine' showed highest reducing capacity, followed by `Morris' and then `Sarawak' having the least value. The bioactive compounds content are positively correlated with the antioxidant capacities of the pineapple extracts. This result indicates that the total phenolics and tannin content present in the pineapples may contribute to the antioxidant capacity of the pineapples.

  3. Tannin-Metal Interactions in Soils: An Incubation-Extraction Approach in Hill-Land Environments

    NASA Astrophysics Data System (ADS)

    Gonzalez, J. M.; Halvorson, J. J.

    2007-12-01

    Tannins, plant polyphenols known to react with proteins, metals and soil organic matter, are commonly found in the vegetation growing in Appalachian hill-lands. Establishing silvopastoral grazing systems in these environments is a means for improving productivity however the fate of tannins in soils and, in particular, the effect on solubility/mobility of metals in soils is poorly understood. Soils from forest and pasture systems were sampled from two depths, treated with tannic acid or related phenolic compounds, and analyzed for metals in solution. The amount of Mn and Ca detected in solution varied among the different phenolic treatments, highest for gallic acid, and was also influenced by depth and land use. As expected, the Ca content in solution was correlated with the electrical conductivity (EC) and the Mn content was correlated with the redox potential in solution. Interestingly, the EC was also correlated with both Mn content and redox potential. The higher Ca content found in solution may result from the low pH of the phenolic compounds. The higher Mn in solution may result from the redox reaction of Mn (IV) oxides with the phenolic compounds, producing soluble Mn2+ and quinones. These quinones are very reactive compounds that can self-polymerize and/or copolymerize with other biomolecules, such as amino-containing compounds and carbohydrates, to form humic-like substances. Successful management of silvopastures, requires an understanding of factors that affect the quality and quantity of plant secondary compounds like tannins entering soil not only to increase forage productivity but also to enhance formation/stabilization of soil organic matter to increase nutrient cycling and reduce the toxicity risk of some metals such as Mn.

  4. Tannin structural elucidation and quantitative ³¹P NMR analysis. 1. Model compounds.

    PubMed

    Melone, Federica; Saladino, Raffaele; Lange, Heiko; Crestini, Claudia

    2013-10-02

    Tannins and flavonoids are secondary metabolites of plants that display a wide array of biological activities. This peculiarity is related to the inhibition of extracellular enzymes that occurs through the complexation of peptides by tannins. Not only the nature of these interactions, but more fundamentally also the structure of these heterogeneous polyphenolic molecules are not completely clear. This first paper describes the development of a new analytical method for the structural characterization of tannins on the basis of tannin model compounds employing an in situ labeling of all labile H groups (aliphatic OH, phenolic OH, and carboxylic acids) with a phosphorus reagent. The ³¹P NMR analysis of ³¹P-labeled samples allowed the unprecedented quantitative and qualitative structural characterization of hydrolyzable tannins, proanthocyanidins, and catechin tannin model compounds, forming the foundations for the quantitative structural elucidation of a variety of actual tannin samples described in part 2 of this series.

  5. Study on tannin–metal interaction in aqueous solution using spectrophotometric titration and micelle-mediated separation/atomic absorption spectrometry

    USDA-ARS?s Scientific Manuscript database

    Tannins, including hydrolysable and condensed tannins, are important secondary metabolites of vascular plants and are a major plant-derived carbon source in the environment. Due to the many phenolic hydroxyl groups characteristic of tannins, these compounds have been long been thought to play signi...

  6. Effect of concentration temperature on some bioactive compounds and antioxidant proprieties of date syrup.

    PubMed

    Abbès, Fatma; Besbes, Souhail; Brahim, Bchir; Kchaou, Wissal; Attia, Hamadi; Blecker, Christophe

    2013-08-01

    The effect of the concentration temperature on the antioxidant activity, carotenoid and phenolic compounds of date syrup was investigated. Date juice was concentrated at 100  and at "60  in vacuum". After concentration, total phenolic, tannin, non-tannin, flavonoid and carotenoid content were determined spectrophotometrically and high-performance liquid chromatography was used for determination of 5-Hydroxymethyl-2-furfuraldehyde content. The antioxidant activity of date syrup was evaluated by various antioxidant methods including total antioxidant, 2,2-diphenyl-1-picrylhydrazyl free radical scavenging test, ferric reducing antioxidant power and β-carotene bleaching. All date syrups showed strong antioxidant activity accompanied by high total phenolic contents. Results showed that concentration at 100  significantly enhanced the antioxidant activities and total phenolic contents of date syrups compared to vacuum concentration at 60 . A good correlation between the antioxidant activity and total phenolic content and flavonoid was observed.

  7. Phenolic acids and methylxanthines composition and antioxidant properties of mate (Ilex paraguariensis) residue.

    PubMed

    Vieira, Manoela A; Maraschin, Marcelo; Pagliosa, Cristiane M; Podestá, Rossana; de Simas, Karina N; Rockenbach, Ismael Ivan; Amboni, Renata D de M C; Amante, Edna R

    2010-04-01

    Ilex paraguariensis is known to contain compounds with antioxidant properties, such as phenolic acids, and its stimulant properties are attributed to methylxanthines, such as caffeine. The aims of this study were to evaluate the phenolic, methylxanthinic, and tannin composition of a mate residue (mate powder), to compare the quali-quantitative phenolic composition and the antioxidant potential of extracts obtained from distinct solvent systems. Among the extracts prepared with different solvents, the 80% methanol extract showed the highest total polyphenol content (11.51 g/100 g) and antioxidant activity. HPLC analysis showed that 4,5 dicaffeoylquinic acid is the major component of the phenolic fraction of mate powder. The caffeine, theobromine, and tannin contents in mate powder were 1.01, 0.10, and 0.29 g/100 g, respectively. Consumption of mate powder would significantly contribute to antioxidant and stimulant intake, providing high amounts of phenolic acids, tannins, and methylxanthines with biological effects potentially beneficial for human health. This article contributes to the minimization of residues in yerba-mate processing.

  8. Selected chemical compounds in firm and mellow persimmon fruit before and after the drying process.

    PubMed

    Senica, Mateja; Veberic, Robert; Grabnar, Jana Jurhar; Stampar, Franci; Jakopic, Jerneja

    2016-07-01

    Persimmon is a seasonal fruit and only available in fresh form for a short period of each year. In addition to freezing, drying is the simplest substitute for the fresh fruit and accessible throughout the year. The effect of mellowing and drying was evaluated in 'Tipo' persimmon, an astringent cultivar. 'Tipo' firm fruit contained high levels of tannins (1.1 mg g(-1) DW), which were naturally decreased to 0.2 mg g(-1) DW after mellowing. The drying process greatly impacted the contents of carotenoids, total phenols, individual phenolics, tannins, organic acids, sugars and colour parameters in firm and mellow fruit. The reduction of tannins, phenolic compounds and organic acids were accompanied by the increase of sugars and carotenoids, improving the colour of the analysed samples. These results showed that the drying process improved the quality of persimmon products and extended their shelf life. © 2015 Society of Chemical Industry. © 2015 Society of Chemical Industry.

  9. α-Glucosidase inhibitory hydrolyzable tannins from Eugenia jambolana seeds.

    PubMed

    Omar, Raed; Li, Liya; Yuan, Tao; Seeram, Navindra P

    2012-08-24

    Three new hydrolyzable tannins including two gallotannins, jamutannins A (1) and B (2), and an ellagitannin, iso-oenothein C (3), along with eight known phenolic compounds were isolated from the seeds of Eugenia jambolana fruit. The structures were elucidated on the basis of spectroscopic data analysis. All compounds isolated were evaluated for α-glucosidase inhibitory effects compared to the clinical drug acarbose.

  10. Degradation of Malaysian peatlands decreases levels of phenolics in soil and in leaves of Macaranga pruinosa

    NASA Astrophysics Data System (ADS)

    Yule, Catherine; Lim, Yau; Lim, Tse

    2016-04-01

    Indo-Malaysian tropical peat swamp forests (PSF) sequester enormous stores of carbon in the form of phenolic compounds, particularly lignin as well as tannins. These phenolic compounds are crucial for ecosystem functioning in PSF through their inter-related roles in peat formation and plant defenses. Disturbance of PSF causes destruction of the peat substrate, but the specific impact of disturbance on phenolic compounds in peat and its associated vegetation has not previously been examined. A scale was developed to score peatland degradation based on the three major human impacts that affect tropical PSF - logging, drainage and fire. The objectives of this study were to compare the amount of phenolic compounds in Macaranga pruinosa, a common PSF tree, and in the peat substrate along a gradient of peatland degradation from pristine peat swamp forest to cleared, drained and burnt peatlands. We examined phenolic compounds in M. pruinosa and in peat and found that levels of total phenolic compounds and total tannins decrease in the leaves of M.pruinosa and also in the surface peat layers with an increase in peatland degradation. We conclude that waterlogged conditions preserve the concentration of phenolic compounds in peat, and that even PSF that has been previously logged but which has recovered a full canopy cover will have high levels of total phenolic content (TPC) in peat. High levels of TPC in peat and in the flora are vital for the inhibition of decomposition of organic matter and this is crucial for the accretion of peat and the sequestration of carbon. Thus regional PSF flourish despite the phenolic rich, toxic, waterlogged, nutrient poor, conditions, and reversal of such conditions is a sign of degradation.

  11. Phenolic antioxidants from green tea produced from Camellia crassicolumna Var. multiplex.

    PubMed

    Liu, Qing; Zhang, Ying-Jun; Yang, Chong-Ren; Xu, Mei

    2009-01-28

    Camellia crassicolumna var. multiplex (Chang et Tan) Ming belonging to Camellia sect. Thea (Theaceae), is endemic to the southeastern area of Yunnan province, China, where the leaves have been commonly used for making tea and beverages consumed widely. HPLC analysis showed that there was no caffeine or theophylline contained in the leaves; however, thin layer chromatography (TLC) analysis suggested the abundant existence of phenolic compounds. Further detailed chemical investigation of the green tea produced from the leaves of the plant led to the identification of 18 phenolic compounds, including four flavan-3-ols (1-4), six flavonol glycosides (5-10), three hydrolyzable tannins (11-13), two chlorogenic acid derivatives (14, 15), and three simple phenolic compounds (16-18). The isolated compounds were evaluated for their antioxidant activities by 1,1'-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging and tyrosinase inhibitory assays. Most of them exhibited significant DPPH radical scavenging activities, whereas flavan-3-ols and hydrolyzable tannins showed stronger inhibitory activities on tyrosinase. The results suggest that C. crassicolumna could be an ideal plant resource for a noncaffeine beverage.

  12. Variability in the composition of phenolic compounds in winter-dormant Salix pyrolifolia in relation to plant part and age.

    PubMed

    Lavola, Anu; Maukonen, Merja; Julkunen-Tiitto, Riitta

    2018-06-12

    The phenolic phytochemicals of winter-dormant Salix pyrolifolia were determined from the vegetative buds, and the bark and wood of different-aged twigs by HPLC-DAD and UHPLC-QTOF-MS analyses. All the plant parts were composed of salicylate glucosides and the other Salix-specific, simple phenolic glucosides as well as of phenolic acids, flavonoids and the high molecular-weight condensed tannins. The flavonoid composition was most diverse in buds and they also contained a large amount of chlorogenic acid (5-caffeoylquinic acid IUPAC), while salicylate glucosides and simple phenolic glucosides predominated in bark. The wooden interior part of the twigs contained fewer components and the lowest concentrations of compounds. Salicortin was the main compound in winter-dormant S. pyrolifolia (over 10% of bark biomass), but the concentrations of picein, salireposide, isosalipurposide, catechin and condensed tannins were also high. The flavonoid composition was highly naringenin- and quercetin-biassed. The composition of phytochemicals was organ-specific and remained relatively similar between different-aged trees. However, there were compound-specific fluctuations in the concentrations of phytochemicals with the age of the trees and within plant parts. Generally, the one-year-old plants differed from the older trees in their high concentration of condensed tannins in all the plant parts studied and in the highest concentration of isosalipurposide in bark, while the total amounts of salicylate glucosides in plant parts, and of naringenin glucosides in buds, tended to be highest in 20 year-old-trees. Copyright © 2018 Elsevier Ltd. All rights reserved.

  13. Inhibition of trypsin by condensed tannins and wine.

    PubMed

    Gonçalves, Rui; Soares, Susana; Mateus, Nuno; de Freitas, Victor

    2007-09-05

    Phenolic compounds are abundant vegetable secondary metabolites in the human diet. The ability of procyanidin oligomers and wine polyphenols to inhibit trypsin activity was studied using a versatile and reliable in vitro method. The hydrolysis of the chromogenic substrate N-benzoyl-d,l-arginine-p-nitroanilide (BApNA) by trypsin was followed by spectrophotometry in the presence and absence of condensed tannins and wine. A clear relationship between the degree of polymerization of procyanidins and enzymatic inhibition was observed. Trypsin activity inhibition was also detected in several types of wine. In general, the inhibition increased with the concentration of phenolic compounds in wines. These results may be relevant when considering these compounds as antinutritional factors, thereby contributing to a reduced absorption of nutrients.

  14. Verifying the botanical authenticity of commercial tannins through sugars and simple phenols profiles.

    PubMed

    Malacarne, Mario; Nardin, Tiziana; Bertoldi, Daniela; Nicolini, Giorgio; Larcher, Roberto

    2016-09-01

    Commercial tannins from several botanical sources and with different chemical and technological characteristics are used in the food and winemaking industries. Different ways to check their botanical authenticity have been studied in the last few years, through investigation of different analytical parameters. This work proposes a new, effective approach based on the quantification of 6 carbohydrates, 7 polyalcohols, and 55 phenols. 87 tannins from 12 different botanical sources were analysed following a very simple sample preparation procedure. Using Forward Stepwise Discriminant Analysis, 3 statistical models were created based on sugars content, phenols concentration and combination of the two classes of compounds for the 8 most abundant categories (i.e. oak, grape seed, grape skin, gall, chestnut, quebracho, tea and acacia). The last approach provided good results in attributing tannins to the correct botanical origin. Validation, repeated 3 times on subsets of 10% of samples, confirmed the reliability of this model. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Defensive strategies in Geranium sylvaticum. Part 1: organ-specific distribution of water-soluble tannins, flavonoids and phenolic acids.

    PubMed

    Tuominen, Anu; Toivonen, Eija; Mutikainen, Pia; Salminen, Juha-Pekka

    2013-11-01

    A combination of high-resolution mass spectrometry and modern HPLC column technology, assisted by diode array detection, was used for accurate characterization of water-soluble polyphenolic compounds in the pistils, stamens, petals, sepals, stems, leaves, roots and seeds of Geranium sylvaticum. The organs contained a large variety of polyphenols, five types of tannins (ellagitannins, proanthocyanidins, gallotannins, galloyl glucoses and galloyl quinic acids) as well as flavonoids and simple phenolic acids. In all, 59 compounds were identified. Geraniin and other ellagitannins dominated in all the green photosynthetic organs. The other organs seem to produce distinctive polyphenol groups: pistils accumulated gallotannins; petals acetylglucose derivatives of galloylglucoses; stamens kaempferol glycosides, and seeds and roots accumulated proanthocyanidins. The intra-plant distribution of the different polyphenol groups may reflect the different functions and importance of various types of tannins as the defensive chemicals against herbivory. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. Chemical and sensory evaluation of Bordeaux wines (Cabernet-Sauvignon and Merlot) and correlation with wine age.

    PubMed

    Chira, Kleopatra; Pacella, Nicola; Jourdes, Michael; Teissedre, Pierre-Louis

    2011-06-15

    Wine quality study was carried out with 24 vintages of Cabernet-Sauvignon (CS) and 7 vintages of Merlot (M) produced by two different Bordeaux wine-growing areas. Proanthocyanidin monomers and oligomers were identified and quantified by HPLC-UV-Fluo. Percentage of galloylation (%G), of prodelphinidins (%P) as well as mean degree of polymerisation (mDP) were also determined. Total phenolic compounds, total anthocyanins, total tannins, hue, CI (colour intensity), titratable acidity, ethanol level and pH were evaluated. Sensory analysis concerning astringency and bitterness intensity was also performed. Total phenolic compounds, total anthocyanins, total tannins, tannin monomers, hue, CI, % G, % P, mDP and astringency intensity differentiate both wines (M and CS) according to vintage. Correlations between wine age and: mDP, hue, astringency and tannin monomers (C+EC) are obtained. Qualitative tannin characterisation is established by correlation between astringency and mDP (R(2)=0.509, p=0.051, CS; R(2)=0.780, p=0.000M). In addition, mDP decreases significantly during ageing (R(2)=0.796, p=0.000; CS and R(2)=0.946, p=0.000; M). Scale patterns between wine mDP and tannin perception (astringency) are proposed. Copyright © 2010 Elsevier Ltd. All rights reserved.

  17. Wine phenolic compounds influence the production of volatile phenols by wine-related lactic acid bacteria.

    PubMed

    Silva, I; Campos, F M; Hogg, T; Couto, J A

    2011-08-01

    To evaluate the effect of wine phenolic compounds on the production of volatile phenols (4-vinylphenol [4VP] and 4-ethylphenol [4EP]) from the metabolism of p-coumaric acid by lactic acid bacteria (LAB). Lactobacillus plantarum, Lactobacillus collinoides and Pediococcus pentosaceus were grown in MRS medium supplemented with p-coumaric acid, in the presence of different phenolic compounds: nonflavonoids (hydroxycinnamic and benzoic acids) and flavonoids (flavonols and flavanols). The inducibility of the enzymes involved in the p-coumaric acid metabolism was studied in resting cells. The hydroxycinnamic acids tested stimulated the capacity of LAB to synthesize volatile phenols. Growth in the presence of hydroxycinnamic acids, especially caffeic acid, induced the production of 4VP by resting cells. The hydroxybenzoic acids did not significantly affect the behaviour of the studied strains. Some of the flavonoids showed an effect on the production of volatile phenols, although strongly dependent on the bacterial species. Relatively high concentrations (1 g l(-1) ) of tannins inhibited the synthesis of 4VP by Lact. plantarum. Hydroxycinnamic acids were the main compounds stimulating the production of volatile phenols by LAB. The results suggest that caffeic and ferulic acids induce the synthesis of the cinnamate decarboxylase involved in the metabolism of p-coumaric acid. On the other hand, tannins exert an inhibitory effect. This study highlights the capacity of LAB to produce volatile phenols and that this activity is markedly influenced by the phenolic composition of the medium. © 2011 The Authors. Journal of Applied Microbiology © 2011 The Society for Applied Microbiology.

  18. Tannins: current knowledge of food sources, intake, bioavailability and biological effects.

    PubMed

    Serrano, José; Puupponen-Pimiä, Riitta; Dauer, Andreas; Aura, Anna-Marja; Saura-Calixto, Fulgencio

    2009-09-01

    Tannins are a unique group of phenolic metabolites with molecular weights between 500 and 30 000 Da, which are widely distributed in almost all plant foods and beverages. Proanthocyanidins and hydrolysable tannins are the two major groups of these bioactive compounds, but complex tannins containing structural elements of both groups and specific tannins in marine brown algae have also been described. Most literature data on food tannins refer only to oligomeric compounds that are extracted with aqueous-organic solvents, but a significant number of non-extractable tannins are usually not mentioned in the literature. The biological effects of tannins usually depend on their grade of polymerisation and solubility. Highly polymerised tannins exhibit low bioaccessibility in the small intestine and low fermentability by colonic microflora. This review summarises a new approach to analysis of extractable and non-extractable tannins, major food sources, and effects of storage and processing on tannin content and bioavailability. Biological properties such as antioxidant, antimicrobial and antiviral effects are also described. In addition, the role of tannins in diabetes mellitus has been discussed.

  19. Phenolic content and antioxidant activity of Primitivo wine: comparison among winemaking technologies.

    PubMed

    Baiano, A; Terracone, C; Gambacorta, G; La Notte, E

    2009-04-01

    The aim of this study was to assess the influence of 9 winemaking technologies (traditional, delestage, saignée, delayed punching-down, addition of grape seed tannins, addition of ellagic-skin-seed tannins, heating of must-wine, cryo-maceration, and prolonged maceration) on the phenolic content and antioxidant activity of Primitivo musts and wines. Three methods for the determination of the antioxidant activity were compared: DPPH, beta-carotene bleaching assay, and ABTS. Oenological parameters and composition of the phenolic fraction of 1-y-aged wines was also determined. The addition of tannins allowed the increase of the phenolic content of musts and wines in a greater amount than the other technologies. The results concerning the antioxidant activity depended on the method applied. Concerning musts, the DPPH assay did not highlight great differences among technologies, whereas the addition of tannins allowed the obtainment of the highest antioxidant activity according to beta-carotene and ABTS assays. The wine aging determined an increase of the antioxidant activity, independently on the method applied. Wine obtained through traditional technology, saignée, and addition of tannins showed the highest antioxidant activities according to DPPH and beta-carotene. The highest correlation coefficients (0.961 and 0.932) were calculated between phenolic content and ABTS values of musts whereas the lowest values (0.413 and 0.517) were calculated between phenolic content and ABTS values of wines. Wines produced through traditional technology were the richest in anthocyanins. The addition of tannins allowed to obtain high content in monomeric anthocyanins, flavonoids, flavans reactive to vanillin, and coumaroylated malvidin and a low content in acetylated malvidin. Practical Applications: It is well known that a moderate consumption (equivalent to 2 glasses per day) of red wine is actually recommended since it appears associated with a decreased incidence of cardiovascular diseases. The mechanisms involved in this protective effect are not completely understood although they appear related to the presence of phenolic compounds. To increase the intake of these compounds without increase of the wine consumption, it is necessary to improve their extraction during maceration. This study could represent a helpful tool for wineries aimed to know the way to increase the antioxidant content of their wines, thus changing them in functional beverages and prolonging their shelf life.

  20. Organic matter characteristics in boreal forest soils under stands of silver birch, Norway spruce, and Norway spruce with a mixture of silver birch

    NASA Astrophysics Data System (ADS)

    Smolander, A.; Kitunen, V.

    2012-04-01

    The aim was to study how tree species and a tree species mixture affect microbial C and N transformations and two major plant secondary compound groups, terpenes and phenolic compounds in soil. The study site was a tree-species experiment in middle-eastern part of Finland containing plots of 43-year-old silver birch, Norway spruce and Norway spruce with a mixture of silver birch (22 and 37 % birch of the total stem number). Soil was podzol and humus type mor. Samples were taken from the organic layer. C and N in the microbial biomass, rates of C mineralization (CO2 evolution), net N mineralization and nitrification, and concentrations of total water-soluble phenolic compounds, condensed tannins and different kind of terpenes were measured. Amounts of C and N in the microbial biomass and the rates of C mineralization and net N mineralization were all lower under spruce than birch, and particularly net N mineralization was stimulated by birch mixture. Concentrations of total water-soluble phenolic compounds were on a similar level, irrespective of tree species. However, there were less low-molecular-weight phenolics and more high-molecular-weight phenolics under spruce than birch. Concentrations of condensed tannins and both sesqui- and diterpenes were all higher under spruce than birch but the concentrations of triterpenes were similar in all soils. The difference between tree species was greatest with monoterpenes which were measured from both organic layer and soil atmosphere: high concentrations under spruce and negligible under birch. Birch mixture tended to decrease the concentrations of condensed tannins and mono-, sesqui- and diterpenes.

  1. Aspen phenylpropanoid genes' expression levels correlate with genets' tannin richness and vary both in responses to soil nitrogen and associations with phenolic profiles.

    PubMed

    Decker, Vicki H G; Bandau, Franziska; Gundale, Michael J; Cole, Christopher T; Albrectsen, Benedicte R

    2017-02-01

    Condensed tannin (CT) contents of European aspen (Populus tremula L.) vary among genotypes, and increases in nitrogen (N) availability generally reduce plants' tannin production in favor of growth, through poorly understood mechanisms. We hypothesized that intrinsic tannin production rates may co-vary with gene expression responses to soil N and resource allocation within the phenylpropanoid pathway (PPP). Thus, we examined correlations between soil N levels and both expression patterns of eight PPP genes (measured by quantitative-reverse transcription PCR) and foliar phenolic compounds (measured by liquid chromatography-mass spectrometry) in young aspen genets with intrinsically extreme CT levels. Monitored phenolics included salicinoids, lignins, flavones, flavonols, CT precursors and CTs. The PPP genes were consistently expressed more strongly in high-CT trees. Low N supplements reduced expression of genes throughout the PPP in all genets, while high N doses restored expression of genes at the beginning and end of the pathway. These PPP changes were not reflected in pools of tannin precursors, but varying correlations between gene expression and foliar phenolic pools were detected in young and mature leaves, suggesting that processes linking gene expression and the resulting phenolics vary spatially and temporally. Precursor fluxes suggested that CT-related metabolic rate or sink controls are linked to intrinsic carbon allocation strategies associated with N responses. Overall, we found more negative correlations (indicative of allocation trade-offs) between PPP gene expression and phenolic products following N additions in low-CT plants than in high-CT plants. The tannin-related expression dynamics suggest that, in addition to defense, relative tannin levels may also be indicative of intraspecific variations in the way aspen genets respond to soil fertility. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  2. Defensive strategies in Geranium sylvaticum, Part 2: Roles of water-soluble tannins, flavonoids and phenolic acids against natural enemies.

    PubMed

    Tuominen, Anu

    2013-11-01

    Geranium sylvaticum is a common herbaceous plant in Fennoscandia, which has a unique phenolic composition. Ellagitannins, proanthocyanidins, galloylglucoses, gallotannins, galloyl quinic acids and flavonoids possess variable distribution in its different organs. These phenolic compounds are thought to have an important role in plant-herbivore interactions. The aim of this study was to quantify these different water-soluble phenolic compounds and measure the biological activity of the eight organs of G. sylvaticum. Compounds were characterized and quantified using HPLC-DAD/MS, in addition, total proanthocyanidins were determined by BuOH-HCl assay and total phenolics by the Folin-Ciocalteau method. Two in vitro biological activity measurements were used: the prooxidant activity was measured by the browning assay and antioxidant activity by the 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging assay. Organ extracts were fractionated using column chromatography on Sephadex LH-20 and the activities of fractions was similarly measured to evaluate which polyphenol groups contributed the most to the biological activity of each organ. The data on the activity of fractions were examined by multivariate data analysis. The water-soluble extracts of leaves and pistils, which contained over 30% of the dry weight as ellagitannins, showed the highest pro-oxidant activity among the organ extracts. Fraction analysis revealed that flavonoids and galloyl quinic acids also exhibited high pro-oxidant activity. In contrast, the most antioxidant active organ extracts were those of the main roots and hairy roots that contained high amounts of proanthocyanidins in addition to ellagitannins. Analysis of the fractions showed that especially ellagitannins and galloyl quinic acids have high antioxidant activity. We conclude that G. sylvaticum allocates a significant amount of tannins in those plant parts that are important to the fitness of the plant and susceptible to natural enemies, i.e. pistil and leaf tannins protect against insect herbivores and root tannins against soil pathogens. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. Tannins and extracts of fruit byproducts: antibacterial activity against foodborne bacteria and antioxidant capacity.

    PubMed

    Widsten, Petri; Cruz, Cristina D; Fletcher, Graham C; Pajak, Marta A; McGhie, Tony K

    2014-11-19

    The shelf life of fresh fish and meat transported over long distances could be extended by using plant-based extracts to control spoilage bacteria. The goals of the present study were to identify plant-based extracts that effectively suppress the main spoilage bacteria of chilled fish and lamb and to assess their antioxidant capacity. The phenolic compounds in wood-based tannins and extracts isolated from byproducts of the fruit processing industry were identified and/or quantified. The total phenol content, but not the flavonoid to total phenol ratio, was strongly associated with higher antibacterial activity against several fish and lamb spoilage bacteria in zone of inhibition and minimum inhibitory concentration assays as well as greater antioxidant capacity in the DPPH (2,2-diphenyl-1-picrylhydrazyl) radical assay. The most promising compounds in both cases, and thus good candidates for antibacterial packaging or antioxidant dietary supplements, were mango seed extract and tannic acid containing mostly polygalloyl glucose type phenols.

  4. Bioactive compounds, RP-HPLC analysis of phenolics, and antioxidant activity of some Portuguese shrub species extracts.

    PubMed

    Luís, Angelo; Domingues, Fernanda; Duarte, Ana Paula

    2011-12-01

    In the ecosystem of Serra Da Estrela, some plant species have the potential to be used as raw material for extraction of bioactive products. The goal of this work was to determine the phenolic, flavonoid, tannin and alkaloid contents of the methanolic extracts of some shrubs (Echinospartum ibericum, Pterospartum tridentatum, Juniperus communis, Ruscus aculeatus, Rubus ulmifolius, Hakea sericea, Cytisus multiflorus, Crataegus monogyna, Erica arborea and Ipomoea acuminata), and then to correlate the phenolic compounds and flavonoids with the antioxidant activity of each extract. The Folin-Ciocalteu's method was used for the determination of total phenols, and tannins were then precipitated with polyvinylpolypyrrolidone (PVPP); a colorimetric method with aluminum chloride was used for the determination of flavonoids, and a Dragendorff's reagent method was used for total alkaloid estimation. The 2,2-diphenyl-1-picrylhydrazyl (DPPH) and beta-carotene bleaching tests were used to assess the antioxidant activity of extracts. The identification of phenolic compounds present in extracts was performed using RP-HPLC. A positive linear correlation between antioxidant activity index and total phenolic content of methanolic extracts was observed. The RP-HPLC procedure showed that the most common compounds were ferulic and ellagic acids and quercetin. Most of the studied shrubs have significant antioxidant properties that are probably due to the existence of phenolic compounds in the extracts. It is noteworthy to emphasize that for Echinospartum ibericum, Hakea sericea and Ipomoea acuminata, to the best of our knowledge, no phytochemical studies have been undertaken nor their use in traditional medicine been described.

  5. Tannins and Antioxidant Activities of the Walnut (Juglans regia) Pellicle.

    PubMed

    Yin, Tian-Peng; Cai, Le; Chen, Yang; Li, Ying; Wang, Ya-Rong; Liu, Chuan-Shui; Ding, Zhong-Tao

    2015-12-01

    The total phenolic content and antioxidant activities of the acetone extract and derived fractions from the walnut (Juglans regia) pellicle were estimated. The BuOH fraction exhibited the strongest antioxidant activity with the highest phenolic content. A phytochemical investigation of this fraction led to the isolation of three tannins, 2,3-hexahydroxydiphenoylglucose (1), pedunculagin (2) and 2,3,4,6-tetragalloylglucose (3). Pedunculagin showed high content and powerful activity, which implied that this compound plays an important role in the antioxidant activity of the walnut pellicle.

  6. Effect of flash release treatment on phenolic extraction and wine composition.

    PubMed

    Morel-Salmi, Cécile; Souquet, Jean-Marc; Bes, Magali; Cheynier, Véronique

    2006-06-14

    The flash release (FR) process, consisting of rapidly heating the grapes and then applying strong vacuum, has been proposed to increase the polyphenol content of red wines. Its impact on polyphenol extraction kinetics and on the polyphenol composition of red juice and wines was studied over two seasons on different grape varieties (Grenache, Mourvedre, Carignan). The FR process allows fast extraction of all phenolic compounds (hydroxycinnamic acids, flavonols, anthocyanins, catechins, proanthocyanidins) and can be used to produce polyphenol-enriched grape juices. However, the concentration of all polyphenols dramatically decreased throughout fermentation when pressing was achieved immediately after FR. The FR wines made with pomace maceration were also enriched in polyphenols compared to the corresponding control wines. Increasing the duration of high-temperature exposure in the FR treatment further increased extraction of phenolic compounds but also accelerated their conversion to derived species. The tannin-to-anthocyanin ratio was particularly low in the wine fermented in the liquid phase, higher after FR than in the control, and even higher after longer heating. FR resulted in an increased tannin-to-anthocyanin ratio and an increased conversion of anthocyanins to tannin-anthocyanin adducts showing the same color properties as anthocyanins. The tannin-to-anthocyanin ratio was particularly low in the wine fermented in the liquid phase that also contained larger amounts of orange sulfite bleaching-resistant pigments.

  7. Determination of phenolic compounds derived from hydrolysable tannins in biological matrices by RP-HPLC.

    PubMed

    Díez, María Teresa; García del Moral, Pilar; Resines, José Antonio; Arín, María Jesús

    2008-08-01

    An RP-HPLC method for the determination of four phenolic compounds: gallic acid (GA), pyrogallol (PY), resorcinol (RE) and ellagic acid (EA), derived from hydrolysable tannins is reported. Separation was achieved on a SunFire C18 (250 x 4.6 mm id, 5 microm) column at 40 degrees C with gradient elution. UV detection at 280 nm was applied. The developed method was validated in terms of linearity, accuracy and precision. Satisfactory repeatability and between day precision were noticed with RSD values lower than 3%. Recoveries from different biological samples ranged from 91.50 to 105.25%. The LODs were estimated as 1.70 mg/L for PY, 1.68 mg/L for GA, 1.52 mg/L for RE and 0.98 mg/L for EA with a 20 microL injection volume. The method was applied for the determination of these compounds in oak leaves and in ruminal fluid and urine samples taken from beef cattle fed with oak leaves. The proposed method could be used in ruminant nutrition studies to verify the effect that a diet rich in tannins have on ruminal fermentation and to determine the toxicity of these compounds.

  8. Isolation and structure of whiskey polyphenols produced by oxidation of oak wood ellagitannins.

    PubMed

    Fujieda, Miho; Tanaka, Takashi; Suwa, Yoshihide; Koshimizu, Seiichi; Kouno, Isao

    2008-08-27

    Three new phenolic compounds named whiskey tannins A and B and carboxyl ellagic acid were isolated from commercial Japanese whiskey, along with gallic acid, ellagic acid, brevifolin carboxylic acid, three galloyl glucoses, a galloyl ester of phenolic glucoside, 2,3-(S)-hexahydroxydiphenoylglucose, and castacrenin B. Whiskey tannins A and B were oxidation products of a major oak wood ellagitannin, castalagin, in which the pyrogallol ring at the glucose C-1 position of castalagin was oxidized to a cyclopentenone moiety. These tannins originated from ellagitannins contained in the oak wood used for barrel production; however, the original oak wood ellagitannins were not detected in the whiskey. To examine whether the whiskey tannins were produced during the charring process of barrel production, pyrolysis products of castalagin were investigated. Dehydrocastalagin and a new phenolcarboxylic acid trislactone having an isocoumarin structure were isolated, along with castacrenin F and ellagic acid. However, whiskey tannins were not detected in the products.

  9. Phenolic composition and antioxidant potential of grain legume seeds: A review.

    PubMed

    Singh, Balwinder; Singh, Jatinder Pal; Kaur, Amritpal; Singh, Narpinder

    2017-11-01

    Legumes are a good source of bioactive phenolic compounds which play significant roles in many physiological as well as metabolic processes. Phenolic acids, flavonoids and condensed tannins are the primary phenolic compounds that are present in legume seeds. Majority of the phenolic compounds are present in the legume seed coats. The seed coat of legume seeds primarily contains phenolic acids and flavonoids (mainly catechins and procyanidins). Gallic and protocatechuic acids are common in kidney bean and mung bean. Catechins and procyanidins represent almost 70% of total phenolic compounds in lentils and cranberry beans (seed coat). The antioxidant activity of phenolic compounds is in direct relation with their chemical structures such as number as well as position of the hydroxyl groups. Processing mostly leads to the reduction of phenolic compounds in legumes owing to chemical rearrangements. Phenolic content also decreases due to leaching of water-soluble phenolic compounds into the cooking water. The health benefits of phenolic compounds include acting as anticarcinogenic, anti-thrombotic, anti-ulcer, anti-artherogenic, anti-allergenic, anti-inflammatory, antioxidant, immunemodulating, anti-microbial, cardioprotective and analgesic agents. This review provides comprehensive information of phenolic compounds identified in grain legume seeds along with discussing their antioxidant and health promoting activities. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. The bioactive compounds and antioxidant activity of ethanol and ethyl ecetate extracts of Candi Banana (Musa paradisiaca)

    NASA Astrophysics Data System (ADS)

    Laeliocattleya, R. A.; Estiasih, T.; Griselda, G.; Muchlisyiyah, J.

    2018-03-01

    Banana has various benefits for health. One local variety of banana is candi banana (Musa paradisiaca). The aim of this research was to study the content of the bioactive compounds of phenolics, flavonoids, tannin, carotenoids and the antioxidant activity of extract ethanol and ethyl acetate of candi banana. Powdered candi banana was extracted using ethanol and ethyl acetate in an ultrasonic bath. The results showed that the content of phenolics, flavonoids, tannin and carotenoids in ethanol extract were 58.76 ± 3.19 mg/kg, 416.08 ± 18.79 mg/kg, 209.83 ± 15.87 mg/kg and 74.55 ± 4.31 mg/kg, respectively. The content of phenolics, flavonoids, tannin and carotenoids in ethyl acetate extract were 0.83 ± 0.12 mg/kg, 4.31 ± 0.66 mg/kg, 49.97 ± 2.43 mg/kg and 304.40 ± 16.62 mg/kg. While the antioxidant activity (IC50) of ethanol extract and ethyl acetate were 3374.13 ± 123.46 ppm and 40318.19 ± 1014.90 ppm. This research showed that type of solvents of ethanol and ethyl acetate affected the content of bioactive compounds and antioxidant activity of candi banana. The antioxidant activity of ethanol extract was higher than that of ethyl acetate extract. It showed that ethanol was a better solvent than ethyl acetate to extract bioactive compounds in candi banana.

  11. Dehydration of jambolan [Syzygium cumini (L.)] juice during foam mat drying: Quantitative and qualitative changes of the phenolic compounds.

    PubMed

    Iasnaia Maria de Carvalho, Tavares; Nogueira, Tuany Yuri Kuboyama; Mauro, Maria Aparecida; Gómez-Alonso, Sergio; Gomes, Eleni; Da-Silva, Roberto; Hermosín-Gutiérrez, Isidro; Lago-Vanzela, Ellen Silva

    2017-12-01

    Jambolan [Syzygium cumini (L.)] berries are a popular fruit in Brazil, renowned for their high phenolic compound (PC) content. These PCs have antioxidant, antibacterial, and other characteristics that may be beneficial to human health. The objective of the study was to evaluate the quantitative and qualitative changes of the main phenolic compounds (PCs) (anthocyanins, flavonols, and hydrolysable tannins) in the jambolan fruit, the produced fruit juice, and in the corresponding dehydrated powders obtained by foam mat drying (60, 70, and 80°C) and lyophilization (control). The PCs were analyzed using high-performance liquid chromatography with a diode array detection coupled with an electrospray ionization mass spectrometry (HPLC-DAD-ESI-MS n ). Juice production resulted in a more pronounced degradation of anthocyanins than flavonols, and facilitated the extraction of hydrolysable tannins. Elevation of the dehydration temperature negatively impacted the anthocyanin content of the products; on the other hand, the flavonols and hydrolysable tannins were more sensitive to oxidation and heating time during dehydration, respectively, than dehydration temperature. In summary, it can be concluded that processing at 70°C is most suitable, in light of the least loss of nutritional quality of the product with processing time. This study directly informs further investigations into preparation of high-quality jambolan fruit products. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Differential Gene Expression by Lactobacillus plantarum WCFS1 in Response to Phenolic Compounds Reveals New Genes Involved in Tannin Degradation.

    PubMed

    Reverón, Inés; Jiménez, Natalia; Curiel, José Antonio; Peñas, Elena; López de Felipe, Félix; de Las Rivas, Blanca; Muñoz, Rosario

    2017-04-01

    Lactobacillus plantarum is a lactic acid bacterium that can degrade food tannins by the successive action of tannase and gallate decarboxylase enzymes. In the L. plantarum genome, the gene encoding the catalytic subunit of gallate decarboxylase ( lpdC , or lp_2945 ) is only 6.5 kb distant from the gene encoding inducible tannase ( L. plantarum tanB [ tanB Lp ], or lp_2956 ). This genomic context suggests concomitant activity and regulation of both enzymatic activities. Reverse transcription analysis revealed that subunits B ( lpdB , or lp_0271 ) and D ( lpdD , or lp_0272 ) of the gallate decarboxylase are cotranscribed, whereas subunit C ( lpdC , or lp_2945 ) is cotranscribed with a gene encoding a transport protein ( gacP , or lp_2943 ). In contrast, the tannase gene is transcribed as a monocistronic mRNA. Investigation of knockout mutations of genes located in this chromosomal region indicated that only mutants of the gallate decarboxylase (subunits B and C), tannase, GacP transport protein, and TanR transcriptional regulator ( lp_2942 ) genes exhibited altered tannin metabolism. The expression profile of genes involved in tannin metabolism was also analyzed in these mutants in the presence of methyl gallate and gallic acid. It is noteworthy that inactivation of tanR suppresses the induction of all genes overexpressed in the presence of methyl gallate and gallic acid. This transcriptional regulator was also induced in the presence of other phenolic compounds, such as kaempferol and myricetin. This study complements the catalog of L. plantarum expression profiles responsive to phenolic compounds, which enable this bacterium to adapt to a plant food environment. IMPORTANCE Lactobacillus plantarum is a bacterial species frequently found in the fermentation of vegetables when tannins are present. L. plantarum strains degrade tannins to the less-toxic pyrogallol by the successive action of tannase and gallate decarboxylase enzymes. The genes encoding these enzymes are located close to each other in the chromosome, suggesting concomitant regulation. Proteins involved in tannin metabolism and regulation, such GacP (gallic acid permease) and TanR (tannin transcriptional regulator), were identified by differential gene expression in knockout mutants with mutations in genes from this region. This study provides insights into the highly coordinated mechanisms that enable L. plantarum to adapt to plant food fermentations. Copyright © 2017 American Society for Microbiology.

  13. Differential Gene Expression by Lactobacillus plantarum WCFS1 in Response to Phenolic Compounds Reveals New Genes Involved in Tannin Degradation

    PubMed Central

    Reverón, Inés; Jiménez, Natalia; Curiel, José Antonio; Peñas, Elena; López de Felipe, Félix; de las Rivas, Blanca

    2017-01-01

    ABSTRACT Lactobacillus plantarum is a lactic acid bacterium that can degrade food tannins by the successive action of tannase and gallate decarboxylase enzymes. In the L. plantarum genome, the gene encoding the catalytic subunit of gallate decarboxylase (lpdC, or lp_2945) is only 6.5 kb distant from the gene encoding inducible tannase (L. plantarum tanB [tanBLp], or lp_2956). This genomic context suggests concomitant activity and regulation of both enzymatic activities. Reverse transcription analysis revealed that subunits B (lpdB, or lp_0271) and D (lpdD, or lp_0272) of the gallate decarboxylase are cotranscribed, whereas subunit C (lpdC, or lp_2945) is cotranscribed with a gene encoding a transport protein (gacP, or lp_2943). In contrast, the tannase gene is transcribed as a monocistronic mRNA. Investigation of knockout mutations of genes located in this chromosomal region indicated that only mutants of the gallate decarboxylase (subunits B and C), tannase, GacP transport protein, and TanR transcriptional regulator (lp_2942) genes exhibited altered tannin metabolism. The expression profile of genes involved in tannin metabolism was also analyzed in these mutants in the presence of methyl gallate and gallic acid. It is noteworthy that inactivation of tanR suppresses the induction of all genes overexpressed in the presence of methyl gallate and gallic acid. This transcriptional regulator was also induced in the presence of other phenolic compounds, such as kaempferol and myricetin. This study complements the catalog of L. plantarum expression profiles responsive to phenolic compounds, which enable this bacterium to adapt to a plant food environment. IMPORTANCE Lactobacillus plantarum is a bacterial species frequently found in the fermentation of vegetables when tannins are present. L. plantarum strains degrade tannins to the less-toxic pyrogallol by the successive action of tannase and gallate decarboxylase enzymes. The genes encoding these enzymes are located close to each other in the chromosome, suggesting concomitant regulation. Proteins involved in tannin metabolism and regulation, such GacP (gallic acid permease) and TanR (tannin transcriptional regulator), were identified by differential gene expression in knockout mutants with mutations in genes from this region. This study provides insights into the highly coordinated mechanisms that enable L. plantarum to adapt to plant food fermentations. PMID:28115379

  14. Retention of tannin-C is associated with decreased soluble-N and increased cation exchange capacity in a broad range of soils

    USDA-ARS?s Scientific Manuscript database

    Phenolic plant compounds, called tannins, can be retained by soil and affect nutrient cycling but have been studied in only a few soils. Soils (0-10 cm) from locations across the United States and Canada were treated with water (Control) or solutions containing procyanidin, catechin, tannic acid, ß-...

  15. Chemical Composition and, Cellular Evaluation of the Antioxidant Activity of Desmodium adscendens Leaves.

    PubMed

    Muanda, François Nsemi; Bouayed, Jaouad; Djilani, Abdelouaheb; Yao, Chunyan; Soulimani, Rachid; Dicko, Amadou

    2011-01-01

    Desmodium adscendens plant is widely used as juice or tea in various parts of the world against a wide range of diseases. This study determines the quality and the quantity of polyphenols, flavonoids, anthocyanins, and tannins in D. adscendens leaves by UV-spectrophotometry and RP-HPLC methods. In addition, the antioxidant capacity of these phenolic compounds is evaluated by ABTS (2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic)), DPPH (2,2-diphenyl-1 picrylhydrazyl), and Cellular tests. D. adscendens leaves are mainly composite of flavonoid compounds with 12.8 mg of catechin equivalent (CE)/g dw. The amounts of total polyphenol compounds are 11.1 mg of gallic acid equivalent (GAE)/g dw. The quantity of total anthocyanin and total tannin compounds is not considerable 0.0182 mg CgE/g dw and 0.39 mg CE/g dw, respectively. A direct correlation between phenolic compounds and antioxidant activity is observed (R(2) = 0.96). The RP-HPLC analyses reveal that the main phenolic compound identified in the methanol-water extract is quercetrin dihydrat (2.11 mg/mL). According to the results, it is observed that D. adscendens leaves possess a considerable scavenging antioxidant and antiradical capacity, therefore these antioxidant properties might increase the therapeutic value of this medicinal plant.

  16. Effect of the storage time and temperature on phenolic compounds of sorghum grain and flour.

    PubMed

    Oliveira, Kênia Grasielle de; Queiroz, Valéria Aparecida Vieira; Carlos, Lanamar de Almeida; Cardoso, Leandro de Morais; Pinheiro-Sant'Ana, Helena Maria; Anunciação, Pamella Cristine; Menezes, Cícero Beserra de; Silva, Ernani Clarete da; Barros, Frederico

    2017-02-01

    This study evaluated the effect of storage temperature (4, 25 and 40°C) and time on the color and contents of 3-deoxyanthocyanins, total anthocyanins, total phenols and tannins of sorghum stored for 180days. Two genotypes SC319 (grain and flour) and TX430 (bran and flour) were analyzed. The SC319 flour showed luteolinidin and apigeninidin contents higher than the grain and the TX430 bran had the levels of all compounds higher than the flour. The storage temperature did not affect most of the analyzed variables. The content of most of the compounds reduced during the first 60days when they became stable. At day 180, the retention of the compounds in the genotypes SC319 and TX430 ranged from 56.1-77.9% and 67.3-80.1% (3-deoxyanthocyanins), 88.4-93.8% and 84.6-96.8% (total anthocyanins) and 86.7-86.8 and 89.4-100% (phenols) respectively. The retention of tannins ranged from 56.6 to 85.3%. The color of samples remained stable for 120days. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Phenolic Antioxidants from the Leaves of Camellia pachyandra Hu.

    PubMed

    Gao, Da-Fang; Xu, Min; Yang, Chong-Ren; Xu, Mei; Zhang, Ying-Jun

    2010-08-11

    Camellia pachyandra Hu. is a species in Camellia sect. Heterogenea (Theaceae), whose leaves have been used for making tea and consumed by the local people living in Yunnan province, China. This is the first investigation of the chemical constituents in the leaves of C. pachyandra, from which 22 phenolic compounds including nine hydrolyzable tannins (1-9), 11 flavonol glycosides (10-20), and two simple phenolics (21, 22) were isolated. It was noted that the leaves of the title plant contained no caffeine and no catechin, whereas hydrolyzable tannins were found to be the major constituents, of which the content of ellagitannin 5 reached to 3.7%. All the isolates were evaluated for their antioxidant activities by DPPH radical scavenging and tyrosinase inhibitory assays. Though the secondary metabolites without caffeine and catechins are different from the commonly consumed tea plants, the results suggested that the leaves of C. pachyandra, rich in hydrolyzable tannins as potent antioxidants, could be developed as an ideal resource for a natural beverage without caffeine.

  18. Quantitative analysis of red wine tannins using Fourier-transform mid-infrared spectrometry.

    PubMed

    Fernandez, Katherina; Agosin, Eduardo

    2007-09-05

    Tannin content and composition are critical quality components of red wines. No spectroscopic method assessing these phenols in wine has been described so far. We report here a new method using Fourier transform mid-infrared (FT-MIR) spectroscopy and chemometric techniques for the quantitative analysis of red wine tannins. Calibration models were developed using protein precipitation and phloroglucinolysis as analytical reference methods. After spectra preprocessing, six different predictive partial least-squares (PLS) models were evaluated, including the use of interval selection procedures such as iPLS and CSMWPLS. PLS regression with full-range (650-4000 cm(-1)), second derivative of the spectra and phloroglucinolysis as the reference method gave the most accurate determination for tannin concentration (RMSEC = 2.6%, RMSEP = 9.4%, r = 0.995). The prediction of the mean degree of polymerization (mDP) of the tannins also gave a reasonable prediction (RMSEC = 6.7%, RMSEP = 10.3%, r = 0.958). These results represent the first step in the development of a spectroscopic methodology for the quantification of several phenolic compounds that are critical for wine quality.

  19. An Overview of Plant Phenolic Compounds and Their Importance in Human Nutrition and Management of Type 2 Diabetes.

    PubMed

    Lin, Derong; Xiao, Mengshi; Zhao, Jingjing; Li, Zhuohao; Xing, Baoshan; Li, Xindan; Kong, Maozhu; Li, Liangyu; Zhang, Qing; Liu, Yaowen; Chen, Hong; Qin, Wen; Wu, Hejun; Chen, Saiyan

    2016-10-15

    In this paper, the biosynthesis process of phenolic compounds in plants is summarized, which include the shikimate, pentose phosphate and phenylpropanoid pathways. Plant phenolic compounds can act as antioxidants, structural polymers (lignin), attractants (flavonoids and carotenoids), UV screens (flavonoids), signal compounds (salicylic acid, flavonoids) and defense response chemicals (tannins, phytoalexins). From a human physiological standpoint, phenolic compounds are vital in defense responses, such as anti-aging, anti-inflammatory, antioxidant and anti-proliferative activities. Therefore, it is beneficial to eat such plant foods that have a high antioxidant compound content, which will cut down the incidence of certain chronic diseases, for instance diabetes, cancers and cardiovascular diseases, through the management of oxidative stress. Furthermore, berries and other fruits with low-amylase and high-glucosidase inhibitory activities could be thought of as candidate food items in the control of the early stages of hyperglycemia associated with type 2 diabetes.

  20. Baccharis pteronioides toxicity

    USDA-ARS?s Scientific Manuscript database

    Baccharis pteronioides DC. occasionally poisons livestock in the southwestern United States. Various toxins including diterpenic lactones, sesquiterpenes , flavonoids, saponins, tannins, phenolic compounds and essential oils have been isolated and described from several Baccharis species, but none...

  1. Influence of pressure cooking on antioxidant activity of wild (Ensete superbum) and commercial banana (Musa paradisiaca var. Monthan) unripe fruit and flower.

    PubMed

    Sasipriya, Gopalakrishnan; Maria, Cherian Lintu; Siddhuraju, Perumal

    2014-10-01

    Banana is a highly nutritious fruit crop consumed by many people's worldwide while endangered species are consumed by limited peoples and their health benefits are not explored. The unripe fruits and flowers of wild and commercial banana are consumed by peoples after cooking only. Hence, the present study was undertaken to evaluate and compare the effect of pressure cooking on antioxidant activity of wild and commercial banana species. The raw and processed samples were extracted with 70 % acetone. Except wild flower, thermal processing enhanced the content of phenolics, tannins, flavonoids, DPPH, ABTS, FRAP, hydroxyl and peroxidation activity than raw. Wild species presented higher phenolics, tannins, DPPH, ABTS and FRAP activity than commercial ones. Except few samples, wild species and commercial species exhibit similar activity in superoxide, hydroxyl and peroxidation activity. FRAP (r (2)  = 0.922; 0.977) and hydroxyl (r (2)  = 0.773; 0.744) activities were dependent on phenolics and tannin content whereas tannins may be responsible for DPPH scavenging activity (r (2)  = 0.745). Thermal processing enhanced the antioxidant activity might be due to the release of bound phenolics from cell wall and oxidation and polymerisation of compounds present in it. This wild species may be an alternative to commercial ones and will be valuable to consumers for protecting from chronic diseases.

  2. Antioxidant activity and phenolic compositions of lentil (Lens culinaris var. Morton) extract and its fractions

    PubMed Central

    Zou, Yanping; Chang, Sam K.C.; Gu, Yan; Qian, Steven Y.

    2011-01-01

    Phenolic compounds were extracted from Morton lentils using acidified aqueous acetone. The crude Morton extract (CME) was applied onto a macroresin column and desorbed by aqueous methanol to obtain a semi-purified Morton extract (SPME). The SPME was further fractionated over Sephadex LH-20 column into five main fractions (Fr I – Fr V). The phytochemical contents such as total phenolic content (TPC), total flavonoid content (TFC), and condensed tannin content (CTC) of the CME, SPME, and its fractions were examined by colorimetric methods. Antioxidant activity of extracts and fractions were screened by DPPH scavenging activity, trolox equivalent antioxidant capacity (TEAC), ferric reduced antioxidant power (FRAP), and oxygen radical absorbing capacity (ORAC) methods. In addition, the compositions of active fractions were determined by HPLC-DAD and HPLC-MS methods. Results showed that fraction enriched in condensed tannins (Fr V) exhibited significantly higher value of TPC, CTC and higher antioxidant activity as compared to the crude extract, SPME and low-molecular-weight fractions (Fr I – IV). Eighteen compounds existed in those fractions, and seventeen were tentatively identified by UV and MS spectra. HPLC-MS analysis revealed Fr II contained mainly kaempferol glycoside, Fr III and Fr IV mainly contained flavonoid glycosides, and Fr V was composed of condensed tannins. The results suggested that extract of Morton lentils is a promising source of antioxidant phenolics, and may be used as a dietary supplement for health promotion. PMID:21332205

  3. Consequences of plant phenolic compounds for productivity and health of ruminants.

    PubMed

    Waghorn, Garry C; McNabb, Warren C

    2003-05-01

    Plant phenolic compounds are diverse in structure but are characterised by hydroxylated aromatic rings (e.g. flavan-3-ols). They are categorised as secondary metabolites, and their function in plants is often poorly understood. Many plant phenolic compounds are polymerised into larger molecules such as the proanthocyanidins (PA; condensed tannins) and lignins. Only the lignins, PA, oestrogenic compounds and hydrolysable tannins will be considered here. Lignins slow the physical and microbial degradation of ingested feed, because of resilient covalent bonding with hemicellulose and cellulose, rather than any direct effects on the rumen per se. The PA are prevalent in browse and are expressed in the foliage of some legumes (e.g. Lotus spp.), but rarely in grasses. They reduce the nutritive value of poor-quality diets, but can also have substantial benefits for ruminant productivity and health when improved temperate forages are fed. Beneficial effects are dependent on the chemical and physical structure, and concentration of the PA in the diet, but they have been shown to improve live-weight gain, milk yield and protein concentration, and ovulation rate. They prevent bloat in cattle, reduce gastrointestinal nematode numbers, flystrike and CH4 production. Some phenolic compounds (e.g. coumestans) cause temporary infertility, whilst those produced by Fusarium fungi found in pasture, silage or stored grains can cause permanent infertility. The HT may be toxic because products of their metabolism can cause liver damage and other metabolic disorders.

  4. Effect of five enological practices and of the general phenolic composition on fermentation-related aroma compounds in Mencia young red wines.

    PubMed

    Añón, Ana; López, Jorge F; Hernando, Diego; Orriols, Ignacio; Revilla, Eugenio; Losada, Manuel M

    2014-04-01

    The effects of five technological procedures and of the contents of total anthocyanins and condensed tannins on 19 fermentation-related aroma compounds of young red Mencia wines were studied. Multifactor ANOVA revealed that levels of those volatiles changed significantly over the length of storage in bottles and, to a lesser extent, due to other technological factors considered; total anthocyanins and condensed tannins also changed significantly as a result of the five practices assayed. Five aroma compounds possessed an odour activity value >1 in all wines, and another four in some wines. Linear correlation among volatile compounds and general phenolic composition revealed that total anthocyanins were highly related to 14 different aroma compounds. Multifactor ANOVA, considering the content of total anthocyanins as a sixth random factor, revealed that this parameter affected significantly the contents of ethyl lactate, ethyl isovalerate, 1-pentanol and ethyl octanoate. Thus, the aroma of young red Mencia wines may be affected by levels of total anthocyanins. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. Relationship between red wine grades and phenolics. 1. Tannin and total phenolics concentrations.

    PubMed

    Mercurio, Meagan D; Dambergs, Robert G; Cozzolino, Daniel; Herderich, Markus J; Smith, Paul A

    2010-12-08

    Measuring chemical composition is a common approach to support decisions about allocating foods and beverages to grades related to market value. Red wine is a particularly complex beverage, and multiple compositional attributes are needed to account for its sensory properties, including measurement of key phenolic components such as anthocyanins, total phenolics, and tannin, which are related to color and astringency. Color has been shown to relate positively to red wine grade; however, little research has been presented that explores the relationship between astringency-related components such as total phenolic or tannin concentration and wine grade. The aim of this research has been to investigate the relationship between the wine grade allocations of commercial wineries and total phenolic and tannin concentrations, respectively, in Australian Shiraz and Cabernet Sauvignon wines. Total phenolic and tannin concentrations were determined using the methyl cellulose precipitable (MCP) tannin assay and then compared to wine grade allocations made by winemaker panels during the companies' postvintage allocation process. Data were collected from wines produced by one Australian wine company over the 2005, 2006, and 2007 vintages and by a further two companies in 2007 (total wines = 1643). Statistical analysis revealed a positive trend toward higher wine grade allocation and wines that had higher concentrations of both total phenolics and tannin, respectively. This research demonstrates that for these companies, in general, Cabernet Sauvignon and Shiraz wines allocated to higher market value grades have higher total phenolics and higher tannin concentrations and suggests that these compositional parameters should be considered in the development of future multiparameter decision support systems for relevant commercial red wine grading processes. In addition, both tannin and total phenolics would ideally be included because although, in general, a positive relationship exists between the two parameters, this relationship does not hold for all wine styles.

  6. Effect of cultivar and variety on phenolic compounds and antioxidant activity of cherry wine.

    PubMed

    Xiao, Zuobing; Fang, Lingling; Niu, Yunwei; Yu, Haiyan

    2015-11-01

    To compare the influence of cultivar and variety on the phenolic compounds and antioxidant activity (AA) of cherry wines, total phenolic (TP), total flavonoid (TF), total anthocyanin (TA), total tannin (TT), five individual phenolic acids, and AA were determined. An ultra-performance liquid chromatography tandem mass spectrometry (HPLC-DAD/ESI-MS) method was developed for the determination of gallic acid (GAE), p-hydroxybenzoic acid (PHB), chlorogenic acid (CHL), vanillic acid (VAN), and caffeic acid (CAF). A principal component analysis (PCA) and a cluster analysis (CA) were used to analyze differences related to cultivar and variety. The TP, TF, TA, TT, and AA of samples sourced from the Shandong province of China were higher than those from the Jiangsu province. The PCA and CA results showed that phenolic compounds in cherry wines were closely related to cultivar and variety and that cultivar had more influence on the phenolic compounds of cherry wines than variety. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Phenolic Compounds of Pomegranate Byproducts (Outer Skin, Mesocarp, Divider Membrane) and Their Antioxidant Activities.

    PubMed

    Ambigaipalan, Priyatharini; de Camargo, Adriano Costa; Shahidi, Fereidoon

    2016-08-31

    Pomegranate peel was separated into outer leathery skin (PS), mesocarp (PM), and divider membrane (PD), and its phenolic compounds were extracted as free (F), esterified (E), and insoluble-bound (B) forms for the first time. The total phenolic content followed the order PD > PM > PS. ABTS(•+), DPPH, and hydroxyl radical scavenging activities and metal chelation were evaluated. In addition, pomegranate peel extracts showed inhibitory effects against α-glucosidase activity, lipase activity, and cupric ion-induced LDL-cholesterol oxidation as well as peroxyl and hydroxyl radical-induced DNA scission. Seventy-nine phenolic compounds were identified using HPLC-DAD-ESI-MS(n) mainly in the form of insoluble-bound. Thirty compounds were identified for the first time. Gallic acid was the major phenolic compound in pomegranate peel, whereas kaempferol 3-O-glucoside was the major flavonoid. Moreover, ellagic acid and monogalloyl-hexoside were the major hydrolyzable tannins, whereas the dominant proanthocyanidin was procyanidin dimers. Proanthocyanidins were detected for the first time.

  8. Spectrophotometric Analysis of Phenolic Compounds in Grapes and Wines.

    PubMed

    Aleixandre-Tudo, Jose Luis; Buica, Astrid; Nieuwoudt, Helene; Aleixandre, Jose Luis; du Toit, Wessel

    2017-05-24

    Phenolic compounds are of crucial importance for red wine color and mouthfeel attributes. A large number of enzymatic and chemical reactions involving phenolic compounds take place during winemaking and aging. Despite the large number of published analytical methods for phenolic analyses, the values obtained may vary considerably. In addition, the existing scientific knowledge needs to be updated, but also critically evaluated and simplified for newcomers and wine industry partners. The most used and widely cited spectrophotometric methods for grape and wine phenolic analysis were identified through a bibliometric search using the Science Citation Index-Expanded (SCIE) database accessed through the Web of Science (WOS) platform from Thompson Reuters. The selection of spectrophotometry was based on its ease of use as a routine analytical technique. On the basis of the number of citations, as well as the advantages and disadvantages reported, the modified Somers assay appears as a multistep, simple, and robust procedure that provides a good estimation of the state of the anthocyanins equilibria. Precipitation methods for total tannin levels have also been identified as preferred protocols for these types of compounds. Good reported correlations between methods (methylcellulose precipitable vs bovine serum albumin) and between these and perceived red wine astringency, in combination with the adaptation to high-throughput format, make them suitable for routine analysis. The bovine serum albumin tannin assay also allows for the estimation of the anthocyanins content with the measurement of small and large polymeric pigments. Finally, the measurement of wine color using the CIELab space approach is also suggested as the protocol of choice as it provides good insight into the wine's color properties.

  9. Phenolic contents and antioxidant activities of major Australian red wines throughout the winemaking process.

    PubMed

    Ginjom, Irine R; D'Arcy, Bruce R; Caffin, Nola A; Gidley, Michael J

    2010-09-22

    Three Australian red wine types (Shiraz, Cabernet Sauvignon, and Merlot) were analyzed for antioxidant activity and a range of phenolic component contents using various spectral methods. More than half of the total phenolic compounds were tannins, whereas monomeric anthocyanins and flavonols were present in much lesser amounts (<10%). The evolution of phenolic contents and the respective antioxidant activities in wine samples from all stages of winemaking showed progressive changes toward those of commercial wines. The antioxidant activity of the wines in DPPH and ABTS assays was positively correlated with total phenolic contents and tannins. Comparisons of the three wine varieties based on their individual phenolic component groups and antioxidant activities showed limited differences between the different varieties. However, when all of the variables were combined in a principal component analysis, variety differentiation was observed. The three varieties of red wines all contained similar and high concentrations of antioxidants despite differences in grape variety/maturity and winemaking process, suggesting that related health benefits would accrue from all of the red wines studied.

  10. Bioaccessibility and potential bioavailability of phenolic compounds from achenes as a new target for strawberry breeding programs.

    PubMed

    Ariza, María Teresa; Reboredo-Rodríguez, Patricia; Cervantes, Lucía; Soria, Carmen; Martínez-Ferri, Elsa; González-Barreiro, Carmen; Cancho-Grande, Beatriz; Battino, Maurizio; Simal-Gándara, Jesús

    2018-05-15

    Strawberry is a major natural source of bioactive compounds. Botanically, strawberry is an aggregate fruit consisting of a fleshy floral receptacle that bears a cluster of real dry fruits (achenes). Existing knowledge on the phenolic composition of achenes and its contribution to that of the whole fruit is limited. Also, the gastric and intestinal bioavailability of phenols is poorly known. In this work, a combination of spectrophotometric and HPLC-DAD methods was used to analyse the phenolic composition of whole fruits and achenes before and after in vitro digestion. Five different phenol families were identified. Also, achenes were found to contribute a sizeable fraction of phenolic acids and hydrolysable tannins in the whole fruit. Because the mere presence of phenolic compounds in a food matrix does not ensure their ready absorption and bioavailability, polyphenol potential bioavailability could be an effective selection criterion for strawberry breeding programs aimed at improving dietary healthiness. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Influence of berry ripeness on accumulation, composition and extractability of skin and seed flavonoids in cv. Sangiovese (Vitis vinifera L.).

    PubMed

    Allegro, Gianluca; Pastore, Chiara; Valentini, Gabriele; Muzzi, Enrico; Filippetti, Ilaria

    2016-10-01

    The anthocyanin and tannin concentration and composition of Vitis vinifera L. cv. Sangiovese berries were investigated from post-veraison to harvest. Exhaustive extraction with methanol and acetone was performed to determine the total flavonoid concentration, while a model hydroalcoholic solution was used to prepare extracts representing the winemaking process. The aim of this study was to improve the knowledge of the phenolic maturity of Sangiovese grape. The total anthocyanin concentration increased during ripening, but the quantity of extractable anthocyanins increased more rapidly than the total. The total skin tannin concentration declined from post-veraison to harvest, whereas the extractable portion increased, with little difference in the composition of the fractions. Both the total and extractable seed tannin concentration diminished rapidly just after veraison, and only small fluctuations were detected until harvest. These results indicate that the extractability of anthocyanins and skin tannins increases during ripening, whereas there is no clear trend for seed tannins during the same period. This is the first survey to study the behavior of phenolic compounds during different steps of ripening of Sangiovese grape. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  12. [Study of antioxidant activity of phenolic compounds from some species of Georgian flora].

    PubMed

    Alaniia, M; Shalashvili, K; Sagareishvili, T; Kavtaradze, N; Sutiashvili, M

    2013-09-01

    The antioxidant activity of extracts obtained from different parts of Georgian flora species Hamamelis virginiana L., Astragalus caucasicus Pall., Astragalus microcephalus Willd., Vitis vinifera L., Rhododendron ponticum L., Rhododendron Ungernii Trautv., Ginkgo biloba L., Salvia officinalis L., Querqus iberica Stev., Maclura aurantiaca Nutt., Cotinus coggygria Ledeb., Fraxinus ornus L., Urtica dioica L., Rhododendron caucasicum Pall., Pueraria hirsuta Matsum., Geranium pusillum L., Astragalus Tanae Sosn., Pinus silvestris L. has been studied. Comparison with ethylentetraacetate and α-tocopherole revealed high efficacy of all extracts studied. 45 individual phenolic compounds were isolated and described by chemical examination of biologically active objects. Common sage (Salvia officinalis) extract turned out as the most active (200 %). The chemical study revealed the dominant content of condensed tannins and low molecular phenolic compounds, which may be attributed to the high antioxidant activity. Biologically active antiatherosclerotic food additive "Salbin" was developed on the basis of Common sage - Salvia officinalis L. phenolic compounds.

  13. [Comparative study of different extraction methods and assays of tannins in some pteridophytes].

    PubMed

    Laurent, S

    1975-10-01

    Various processes of extraction and quantitative analysis of a condensed tannin in a plant extract, which also includes some chlorogenic acids, have been examined. 60% methanol, at 50 degrees C, proved the most efficient extraction solvent. Several methods of analysis have been tried. The measure of the colour intensity obtained by the action of sulphuric vanilline on flavanols cannot be used because it depends on the tannin condensation stage. It is impossible to separate tannin from chlorogenic acids using the methods of adsorption by skin or nylon powders, or precipitation by polyvinylpyrrolidone. Only paper chromatography, followed by the distinct elution of the various phenolic compounds, allows the tannin evaluation by subtraction; but owing to the variability of the results, many more experiments are necessary. Some other processes are being studied.

  14. Effect of elicitors on the evolution of grape phenolic compounds during the ripening period.

    PubMed

    Gómez-Plaza, Encarna; Bautista-Ortín, Ana B; Ruiz-García, Yolanda; Fernández-Fernández, José I; Gil-Muñoz, Rocío

    2017-02-01

    The effect of the application of benzothiadiazole (BTH) and methyl jasmonate (MeJ) at veraison on the phenolic composition of grapes from three varieties (Monastrell, Syrah and Merlot) was studied during the ripening period, using HPLC techniques to measure flavonols, anthocyanins and tannins. The effects of the treatments differed in the three varieties, and the maximum concentration of phenolic compounds was not always reached at the end of the ripening period but some days before harvest. At the end of ripening both treated Syrah grapes only differed from control grapes in the flavonol concentration, whereas MeJ-treated Merlot grapes presented higher anthocyanin and skin tannin contents than the control and BTH-treated grapes. Only the anthocyanin content was significantly higher in treated Monastrell grapes at the moment of harvest. The results indicate that the moment of elicitor treatment should be more studied since differences between treated and control grapes were, in general greater several days before harvest in all three varieties. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  15. Phenolic antioxidants from green tea produced from Camellia taliensis.

    PubMed

    Gao, Da-Fang; Zhang, Ying-Jun; Yang, Chong-Ren; Chen, Ke-Ke; Jiang, Hong-Jian

    2008-08-27

    The chemical constituents of green tea prepared from the leaves of Camellia taliensis (W. W. Smith) Melchior (Theaceae) were investigated for the first time. Of these, 19 phenolic compounds including 8 hydrolyzable tannins (1-8), 6 catechin derivatives (9-14), 3 quinic acid aromatic esters (15-17), and 2 simple phenolics (18, 19) were identified, along with caffeine (20). Their antioxidant activities were evaluated by DPPH radical scavenging and tyrosinase inhibitory assays. Moreover, the chemical composition was compared with that in the cultivated tea plant, C. sinensis var. assamica, by HPLC analysis. It was noted that C. taliensis has similar chemical features with the cultivated tea plant; that is, both of them contain rich flavan-3-ols and caffeine. In addition, there are abundant hydrolyzable tannins as specific characteristic constituents contained in the leaves of C. taliensis. Therein, 1,2-di-O-galloyl-4,6-O-(S)-hexahydroxydiphenoyl-beta-D-glucopyranose (8), as a major compound in C. taliensis, showed remarkable antioxidant activity. The results suggested that C. taliensis could be a valuable plant resource for the production of tea.

  16. Synergistic inhibition of Haemonchus contortus exsheathment by flavonoid monomers and condensed tannins

    PubMed Central

    Klongsiriwet, Chaweewan; Quijada, Jessica; Williams, Andrew R.; Mueller-Harvey, Irene; Williamson, Elizabeth M.; Hoste, Hervé

    2015-01-01

    This study investigated the separate and combined anthelmintic (AH) effects of different phenolic compounds, including condensed tannins and flavonoids, all of which are known to occur in willow leaves, a potentially valuable dry season feed. A range of contrasting model tannins, which span the whole range of willow tannins, were isolated from tilia flowers, goat willow leaves, black currant leaves and red currant leaves. All together, the tested compounds represented the major tannin types (procyanidins and prodelphinidins) and flavonoid types (flavonols, flavones and flavanones). The larval exsheathment inhibition assay (LEIA) was used to assess their in vitro effects on Haemonchus contortus third stage larvae. Arbutin, vanillic acid, and taxifolin proved to be ineffective whereas naringenin, quercetin and luteolin were highly effective at 250 μM concentrations. Procyanidin (PC) tannins tended to be less active than prodelphinidin tannins (PD). Experiments with combinations of tannins and quercetin or luteolin revealed for the first time the existence of synergistic AH effects between tannins and flavonoid monomers. They also provided evidence that synergistic effects appear to occur at slightly lower concentrations of PC than PD. This suggests that the AH activity of condensed tannins can be significantly enhanced by the addition of quercetin or luteolin. This information may prove useful for plant breeding or selection and for designing optimal feed mixtures. PMID:26199861

  17. Segregation and Alteration of Phenolic and Aliphatic Components of Root and Leaf Litter by Detritivores and Microbes

    NASA Astrophysics Data System (ADS)

    Filley, T. R.; Altmann, J.; Szlavecz, K. A.; Kalbitz, K.; Gamblin, D.; Nierop, K.

    2012-12-01

    The physical and microbial transformation of plant detritus in the litter layer and soil is accompanied by chemical separation of progressively soluble fractions and their movement into the rhizosphere driving subsequent soil processes. We investigated the combined action of specific detritivores, microbial decay, and leaching on the chemical separation of plant aromatic and aliphatic components from root, wood, and leaf tissue using 13C-TMAH thermochemolysis. This method enabled the simultaneous analysis of hydrolyzable tannin and lignin fragments, substituted fatty acids, and condensed tannin composition and revealed process-specific chemical transformations to plant secondary compounds. Long-term incubation and field sampling demonstrated how plant residues are progressively leached of the water soluble, oxidized fragments generated through decay. The residues appeared only slightly altered, in the case of brown rot wood, or enriched in aliphatic fragments, in the case of leaf and root tissue. Water extractable fractions were always selectively dominated by polyphenolics, either as demethylated lignin or tannins, and nearly devoid of aliphatic materials, despite high concentrations in the starting materials. Additionally, for plant materials with high tannin contents, such as pine needles, consumption and passage through some arthropod guts revealed what appeared to be microbially-mediated methylation of phenols, and a loss of tannins in leachates. These findings are indications for an in-situ phenol detoxification mechanism. This research provides important information regarding the links between biochemical decay and the chemical nature of organic matter removed and remaining in the soil profile.

  18. [Characteristics of the composition of Caucasian blackberry (Rubus caucasicus L.) leaves as a raw material for tea production].

    PubMed

    Melkadze, R G; Chichkovani, N Sh; Kakhniashvili, E Z

    2008-01-01

    The composition of Caucasian blackberry (Rubus caucasicus L.) six-leaf shoot was studied. The weight of the stem reached 50% of the total weight of the shoot. The content of moisture, extractive substances, and phenolic compounds was minimal at the beginning and end of the vegetation season. Phenolic compounds were represented by catechins, leukoanthocyanidins, and flavonols. The most abundant phenolic compounds in all parts of the blackberry shoot were leukoanthocyanidins, which accounted for approximately 50% of all compounds of this class. Phenolic compounds accumulated most actively in July and August. The average content of free amino acids in the blackberry leaf during the vegetation season was 26.68 mg/g. Among the total free amino acids, eleven have been identified, five of which proved to be essential (His, Arg, Met, Leu, Val) and accounted for 40% of the total amount of amino acids. The oxidability of acetone extract of the blackberry leaf was compared to the oxidability of total phenolic compounds and tea tannin. The tea product obtained from the blackberry leaf had good organoleptic parameters and a saturated extractive complex.

  19. Comparison of content in phenolic compounds, polyphenol oxidase, and peroxidase in grains of fifty sorghum varieties from burkina faso.

    PubMed

    Dicko, Mamoudou H; Hilhorst, Riet; Gruppen, Harry; Traore, Alfred S; Laane, Colja; van Berkel, Willem J H; Voragen, Alphons G J

    2002-06-19

    Analysis of fifty sorghum [Sorghum bicolor (L.) Moench] varieties used in Burkina Faso showed that they have different contents of phenolic compounds, peroxidase (POX), and polyphenol oxidase (PPO). Most of the varieties (82%) had a tannin content less than 0.25% (w/w). POX specific activity was higher than the monophenolase and o-diphenolase specific activities of PPO. For POX, there was a diversity of isoforms among varieties. No clear correlation could be made between the quantitative composition of the grain in phenolics, PPO, and POX, and resistance of plant to pathogens. In general, varieties good for a thick porridge preparation ("tô") had low phenolic compounds content and a medium POX activity. From the red varieties, those used for local beer ("dolo") had a high content in phenolic compounds and PPO, and a low POX activity. The variety considered good for couscous had a low POX content. The characteristics might be useful as selection markers for breeding for specific applications.

  20. Effect of phenolic compounds, ethyl alcohol, and sodium metabisulphite on the lytic activity of phage PL-1 on a Lactobacillus casei S strain.

    PubMed

    Lee, A; Eschenbruch, R; Waller, J

    1985-09-01

    The effect of phenolic compounds, ethyl alcohol, and sodium metabisulphite on the lytic activity of virulent bacteriophage PL-1 on a Lactobacillus casei S strain isolated from a lactic acid beverage fermentation was investigated. Catechin, caffeic, and gallic acids, commercially produced red, white, and champagne tannins, ethyl alcohol, and sodium metabisulphite inhibited plaque formation. Catechin, caffeic, and gallic acids were the most effective inhibitors of plaque formation. Commercially supplied oenocyanin was not effective.

  1. Phenolic profiles and antioxidant activity of Turkish Tombul hazelnut samples (natural, roasted, and roasted hazelnut skin).

    PubMed

    Pelvan, Ebru; Olgun, Elmas Öktem; Karadağ, Ayşe; Alasalvar, Cesarettin

    2018-04-01

    The phenolic profiles and antioxidant status of hazelnut samples [natural (raw) hazelnut, roasted hazelnut, and roasted hazelnut skin] were compared. Free and bound (ester-linked and glycoside-linked) phenolic acids were examined using liquid chromatography-tandem mass spectrometry (LC-MS/MS). Comprehensive identification of phenolics was carried out using Q-exactive hybrid quadrupole-orbitrap mass spectrometer (Q-OT-MS). Samples were also assessed for their total phenolics and antioxidant activities using three different assays. Ten free and bound phenolic acids were quantified in hazelnut samples. Roasted hazelnut skin contained the highest content of total phenolic acids, followed by natural and roasted hazelnuts. The majority of phenolic acids were present in the bound form. Using a Q-OT-MS, 22 compounds were tentatively identified, 16 of which were identified for the first time in hazelnut samples. The newly identified compounds consisted of flavonoids, phenolic acids and related compounds, hydrolysable tannins and related compounds, and other phenolics. Three antioxidant assays demonstrated similar trends that roasted hazelnut skin rendered the highest activity. The present work suggests that roasted hazelnut skin is a rich source of phenolics and can be considered as a value-added co-product for use as functional food ingredient and antioxidant. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Interactions between yeast lees and wine polyphenols during simulation of wine aging. II. Analysis of desorbed polyphenol compounds from yeast lees.

    PubMed

    Mazauric, Jean-Paul; Salmon, Jean-Michel

    2006-05-31

    In the first part of this work, the analysis of the polyphenolic compounds remaining in the wine after different contact times with yeast lees during simulation of red wine aging was undertaken. To achieve a more precise view of the wine polyphenols adsorbed on lees during red wine aging and to establish a clear balance between adsorbed and remnant polyphenol compounds, the specific analysis of the chemical composition of the adsorbed polyphenolic compounds (condensed tannins and anthocyanins) after their partial desorbtion from yeast lees by denaturation treatments was realized in the second part of the study. The total recovery of polyphenol compounds from yeast lees was not complete, since a rather important part of the initial wine colored polyphenols, especially those with a dominant blue color component, remained strongly adsorbed on yeast lees, as monitored by color tristimulus and reflectance spectra measurements. All anthocyanins were recovered at a rather high percentage (about 62%), and it was demonstrated that they were not adsorbed in relation with their sole polarity. Very few monomeric phenolic compounds were extracted from yeast lees. With the use of drastic denaturing treatments, the total recovery of condensed tannins reached 83%. Such tannins extracted from yeast lees exhibited very high polymeric size and a rather high percentage of galloylated residues by comparison with initial wine tannins, indicating that nonpolar tannins were preferentially desorbed from yeast lees by the extraction treatments.

  3. Yeast effects on Pinot noir wine phenolics, color, and tannin composition.

    PubMed

    Carew, Anna L; Smith, Paul; Close, Dugald C; Curtin, Chris; Dambergs, Robert G

    2013-10-16

    Extraction and stabilization of wine phenolics can be challenging for wine makers. This study examined how yeast choice affected phenolic outcomes in Pinot noir wine. Five yeast treatments were applied in replicated microvinification, and wines were analyzed by UV-visible spectrophotometry. At bottling, yeast treatment Saccharomyces cerevisiae RC212 wine had significantly higher concentrations of total pigment, free anthocyanin, nonbleachable pigment, and total tannin and showed high color density. Some phenolic effects were retained at 6 months' bottle age, and RC212 and S. cerevisae EC1118 wines showed increased mean nonbleachable pigment concentrations. Wine tannin composition analysis showed three treatments were associated with a higher percentage of trihydroxylated subunits (skin tannin indicator). A high degree of tannin polymerization was observed in wines made with RC212 and Torulaspora delbruekii , whereas tannin size by gel permeation chromatography was higher only in the RC212 wines. The results emphasize the importance of yeast strain choice for optimizing Pinot noir wine phenolics.

  4. Condensed tannins. Structure of the "phenolic scids"

    Treesearch

    Peter E. Laks; Richard W. Hemingway

    1987-01-01

    Conifer bark-derived condensed tannins can be used in formulating adhesives. Under some extraction conditions and during normal adhesive formulation, the tannin is exposed to strongly alkaline conditions. Alkaline rearrangement results in partial or total rearrangement of tannins of the procyanidin class to "phenolic acids" which have less phloroglucinol...

  5. Western Spruce Budworm Consumption-Effects of Host Species and Foliage Chemistry

    Treesearch

    Michael R. Wagner; Elizabeth A.  Blake

    1983-01-01

    Feeding efficiencies and growth rates of western spruce budworm larvae varied among hosts tested. Pupae attained normal size regardless of host species. Candidate defensive compounds (tannins and phenols) varied only slightly with the vigor of the host. The relationship between these defensive compounds and measures of larvae growth were not entirely consistent with...

  6. Comprehensive characterization of phenolic and other polar compounds in the seed and seed coat of avocado by HPLC-DAD-ESI-QTOF-MS.

    PubMed

    Figueroa, Jorge G; Borrás-Linares, Isabel; Lozano-Sánchez, Jesús; Segura-Carretero, Antonio

    2018-03-01

    Avocado seed and seed coat are important by-products from avocado industrialization, with important functional properties. The aim of the present study was to determine the phenolic profile and other polar compounds of avocado seed and seed coat using accelerated solvent extraction (ASE) and liquid chromatography coupled to Ultra-High-Definition Accurate-Mass Q-TOF. In this research 84 compounds were identified, within eight subclass group, among these 45 phenolic compounds were identified for first time in avocado seed. Condensed tannins, phenolic acids and flavonoids were the most representative groups in both samples. As far as we are concerned, this is the first time that avocado seed coat has been studied regarding its phenolic compounds using such a powerful instrumental technique. In addition, the radical-scavenging activities were analysed in order to estimate the antioxidant potential of extracts. These results point out that avocado seed and seed coat constitute a source of bioactive ingredients for its use in the food, cosmetic or pharmaceutical sector. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Major phenolic and volatile compounds and their influence on sensorial aspects in stem-contact fermentation winemaking of Primitivo red wines.

    PubMed

    Suriano, S; Alba, V; Di Gennaro, D; Basile, T; Tamborra, M; Tarricone, L

    2016-08-01

    In red winemaking de-stemming is crucial since the stems contain polymeric phenolic compounds responsible for the astringency of wine. Wine such as Primitivo has low phenolic constituents and tannins and stems affect aroma, taste body and olfactory characteristics. The aim of the study was to evaluate the effects of presence of stems during fermentation on polyphenolic, volatile compounds and sensory characteristics of wine. Primitivo grapes vinified in presence of different percentage of stems: 100 % de-stemmed (D100), 75 % de-stemmed (D75) and 50 % de-stemmed (D50). Results confirmed that the wines vinified in presence of stems were higher in tannins, flavans, to vanillin and proanthocyanidins, colour intensity with lower anthocyanins. The presence of stems during fermentation conferred more structure and flavour to wines. They facilitated must aeration thus promoting synthesis of higher alcohols and ethyl esters by yeast. In particular, a higher content of hexan-1-ol, hex-3-en-1-ol and 2-phenyl ethanol in D50 and D75 gave the wines that suggest green grass, herb and floral. Wine from D75 seemed to be better than D50 in terms of volatile compounds as well as fruity, floral and balsamic components preserved, without any unpleasant taste of long chain fatty acids found in D50.

  8. Determining the binding affinities of phenolic compounds to proteins by quenching of the intrinsic tryptophan fluorescence.

    PubMed

    Rawel, Harshadrai M; Frey, Simone K; Meidtner, Karina; Kroll, Jürgen; Schweigert, Florian J

    2006-08-01

    The noncovalent binding of selected phenolic compounds (chlorogenic-, ferulic-, gallic acid, quercetin, rutin, and isoquercetin) to proteins (HSA, BSA, soy glycinin, and lysozyme) was studied by an indirect method applying the quenching of intrinsic tryptophan fluorescence. From the data obtained, the binding constants were calculated by nonlinear regression (one site binding; y = Bx/k + x). It has been reported that tannins inhibit human salivary amylase and that these complexes may reduce the development of cariogenic plaques. Further, amylase contains two tryptophan residues in its active site. Therefore, in a second part of the study involving 31 human subjects, evidence was sought for noncovalent interactions between the phenols of green tea and saliva proteins as measured by the fluorescence intensity. Amylase activity was determined before and after the addition of green tea to saliva of 31 subjects. Forty percent of the subjects showed an increase in amylase activity contrary to studies reporting only a decrease in activity. The interactions of tannin with amylase result in a decrease of its activity. It still remains to be elucidated why amylase does not react uniformly under conditions of applying green tea to saliva. Further, in terms of using phenols as caries inhibitors this finding should be of importance.

  9. Light as a regulator of structural and chemical leaf defenses against insects in two Prunus species

    NASA Astrophysics Data System (ADS)

    Mąderek, Ewa; Zadworny, Marcin; Mucha, Joanna; Karolewski, Piotr

    2017-11-01

    Light is a key factor influencing competition between species, and the mechanisms by which trees overcome insect outbreaks can be associated with alternation of the leaves structure, which then prevent or promotes their susceptibility to herbivores. It was predicted that leaf tissue anatomy would likely be different in sun and shade leaves, with a gradual decline of leaves resistance coupled with reduction of accessible light. We quantified anatomical patterns and the distribution of defence compounds (phenols, total tannins, catechol tannins) within heavily grazed leaves of Prunus padus, native in Europe and Prunus serotina, an invasive to Central Europe. Both species were strongly attacked by folivorous insects when shrubs grew in the shade. In the sun, however only P. padus leaves were grazed, but P. serotina leaves were almost unaffected. We identified that anatomical characteristics are not linked to different P. padus and P. serotina leaf vulnerability to insects. Furthermore, the staining of defence compounds of P. serotina leaves grown in full sun revealed that the palisade mesophyll cells had a higher content of phenolic compounds and catechol tannins. Thus, our results indicate that a specific distribution of defence compounds, but not the anatomical relationships between palisade and spongy mesophyll, may be beneficial for P. serotina growth outside its natural range. The identified pattern of defence compounds distribution is linked to a lower susceptibility of P. serotina leaves to herbivores, and is associated with its invasiveness. This likely reflects that P. serotina is a stronger competitor than P. padus, especially at high sunlit sites i.e. gaps in the forest.

  10. Seasonal, gender and regional variations in total phenolic, flavonoid, and condensed tannins contents and in antioxidant properties from Pistacia atlantica ssp. leaves.

    PubMed

    Ben Ahmed, Ziyad; Yousfi, Mohamed; Viaene, Johan; Dejaegher, Bieke; Demeyer, Kristiaan; Mangelings, Debby; Vander Heyden, Yvan

    2017-12-01

    The widespread use of Pistacia atlantica Desf. ssp. (Anacardiaceae) in traditional medicine can be partly attributed to the content of its secondary metabolites, in particular, the phenolic compounds. The effects of harvest period, growing region and gender on the phenolic compounds, flavonoids and condensed tannins contents were studied, as well as on the antioxidant activities of P. atlantica leaves in order to provide a scientific basis for optimal collection. Leaves were collected monthly from April to October 2010 in two Algerian sites. The powdered leaves were used for preparing the ethyl acetate extract. Contents of total phenolics (TPC), flavonoids (FC) and condensed tannins (CTC) were determined spectrophotometrically. Antioxidant activity was evaluated through radical scavenging activity (RSA) of 2,2-diphenyl-1-picrylhydrazyl (250 μM) and the reducing power capacity (RPC) determination by K 3 Fe(CN) 6 (1%). The TPC was found to vary from 79 ± 13 to 259 ± 8 mg gallic acid equivalents/g of dry weight (DW) during the study period. The RSA and RPC varied between 262 ± 18 and 675 ± 21 mg Ascorbic Acid Equivalent (AAE)/g DW, and from 259 ± 16 to 983 ± 20 mg AAE/g DW, respectively. A seasonal pattern was observed consisting of a decrease in TPC content and RPC from spring to autumn. The FC, CTC and RSA did not show a seasonal pattern. Our findings showed that secondary metabolite content and antioxidant activities of P. atlantica leaves were more influenced by harvest time and growing region than by gender.

  11. Relationships between harvest time and wine composition in Vitis vinifera L. cv. Cabernet Sauvignon 1. Grape and wine chemistry.

    PubMed

    Bindon, Keren; Varela, Cristian; Kennedy, James; Holt, Helen; Herderich, Markus

    2013-06-01

    The study aimed to quantify the effects of grape maturity on wine alcohol, phenolics, flavour compounds and polysaccharides in Vitis vinifera L. cv Cabernet Sauvignon. Grapes were harvested at juice soluble solids from 20 to 26 °Brix which corresponded to a range of wine ethanol concentrations between 12% and 15.5%. Grape anthocyanin and skin tannin concentration increased as ripening progressed, while seed tannin declined. In the corresponding wines, monomeric anthocyanin and wine tannin concentration increased with harvest date, consistent with an enhanced extraction of skin-derived phenolics. In wines, there was an observed increase in yeast-derived metabolites, including volatile esters, dimethyl sulfide, glycerol and mannoproteins with harvest date. Wine volatiles which were significantly influenced by harvest date were isobutyl methoxypyrazine, C(6) alcohols and hexyl acetate, all of which decreased as ripening progressed. The implications of harvest date for wine composition is discussed in terms of both grape composition and yeast metabolism. Copyright © 2012 Elsevier Ltd. All rights reserved.

  12. Relationship between red wine grade and phenolics. 2. Tannin composition and size.

    PubMed

    Kassara, Stella; Kennedy, James A

    2011-08-10

    Commercial red wines ( Vitis vinifera L. cv. Shiraz) produced during the 2009 vintage underwent winemaker assessment for allocation grade soon after production. The wines were then subjected to phenolic analysis to measure wine color (total anthocyanin, SO(2) nonbleachable pigment, and wine color density) and tannins (concentration, composition, and average degree of polymerization). A positive relationship was found between wine phenolic concentration and projected bottle price. Tannin compositional analysis suggested that there was specifically a relationship between wine grade and skin-derived tannins. These results suggest that maximization of skin tannin concentration and/or proportion is related to an increase in projected wine bottle price.

  13. Phenolic Compounds and Expression of 4CL Genes in Silver Birch Clones and Pt4CL1a Lines

    PubMed Central

    Sutela, Suvi; Hahl, Terhi; Tiimonen, Heidi; Aronen, Tuija; Ylioja, Tiina; Laakso, Tapio; Saranpää, Pekka; Chiang, Vincent; Julkunen-Tiitto, Riitta; Häggman, Hely

    2014-01-01

    A small multigene family encodes 4-coumarate:CoA ligases (4CLs) catalyzing the CoA ligation of hydroxycinnamic acids, a branch point step directing metabolites to a flavonoid or monolignol pathway. In the present study, we examined the effect of antisense Populus tremuloides 4CL (Pt4CL1) to the lignin and soluble phenolic compound composition of silver birch (Betula pendula) Pt4CL1a lines in comparison with non-transgenic silver birch clones. The endogenous expression of silver birch 4CL genes was recorded in the stems and leaves and also in leaves that were mechanically injured. In one of the transgenic Pt4CL1a lines, the ratio of syringyl (S) and guaiacyl (G) lignin units was increased. Moreover, the transcript levels of putative silver birch 4CL gene (Bp4CL1) were reduced and contents of cinnamic acid derivatives altered. In the other two Pt4CL1a lines changes were detected in the level of individual phenolic compounds. However, considerable variation was found in the transcript levels of silver birch 4CLs as well as in the concentration of phenolic compounds among the transgenic lines and non-transgenic clones. Wounding induced the expression of Bp4CL1 and Bp4CL2 in leaves in all clones and transgenic lines, whereas the transcript levels of Bp4CL3 and Bp4CL4 remained unchanged. Moreover, minor changes were detected in the concentrations of phenolic compounds caused by wounding. As an overall trend the wounding decreased the flavonoid content in silver birches and increased the content of soluble condensed tannins. The results indicate that by reducing the Bp4CL1 transcript levels lignin composition could be modified. However, the alterations found among the Pt4CL1a lines and the non-transgenic clones were within the natural variation of silver birches, as shown in the present study by the clonal differences in the transcripts levels of 4CL genes, soluble phenolic compounds and condensed tannins. PMID:25502441

  14. Content of polyphenol compound in mangrove and macroalga extracts

    NASA Astrophysics Data System (ADS)

    Takarina, N. D.; Patria, M. P.

    2017-07-01

    Polyphenol or phenolic are compounds containing one or more hydroxyl group of the aromatic ring [1]. These compounds have some activities like antibacterial, antiseptic, and antioxidants. Natural resources like mangrove and macroalga were known containing these compounds. The purpose of the research was to investigate polyphenol content in mangrove and macroalga. Materials used in this research were mangrove (Avicennia sp.) leaves and the whole part of macroalga (Caulerpa racemosa). Samples were dried for 5 days then macerated in order to get an extract. Maceration were done using methanol for 48 hours (first) and 24 hours (second) continously. Polyphenol content was determined using phytochemical screening on both extracts. The quantitative test was carried out to determine catechin and tannin as polyphenol compound. The result showed that catechin was observed in both extracts while tannin in mangrove extract only. According to quantitative test, mangrove has a higher content of catechin and tannin which were 12.37-13.44 % compared to macroalga which was 2.57-4.58 %. Those indicated that both materials can be the source of polyphenol compound with higher content on mangrove. Moreover, according to this result, these resources can be utilized for advanced studies and human needs like medical drug.

  15. Identification of phenolic antioxidants and bioactives of pomegranate seeds following juice extraction using HPLC-DAD-ESI-MSn.

    PubMed

    Ambigaipalan, Priyatharini; de Camargo, Adriano Costa; Shahidi, Fereidoon

    2017-04-15

    Phenolics from free and hydrolyzed fractions of pomegranate juice (PJ) and seeds (PS) were evaluated. In general, total phenolic contents and scavenging of ABTS + , DPPH and hydroxyl radicals, as well as metal chelation of the soluble fraction from PS, were higher than those for PJ. Insoluble-bound phenolics from PS accounted for up to 27% of total scavenging capacity (free+esterified+insoluble-bound). Phenolic acids (13), monomeric flavonoids (8), hydrolysable tannins (12), proanthocyanidin (1) and anthocyanins (12) were tentatively characterized using HPLC-DAD-ESI-MS n . Several compounds were identified for the first time in PJ or PS. The inhibition of DNA damage (induced by hydroxyl and peroxyl radicals), copper-induced LDL-cholesterol peroxidation, as well as alpha-glucosidase and lipase activities were demonstrated, therefore supporting the potential exploitation of PJ and PS as sources of bioactive compounds. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Evaluation of antioxidant activity, total phenolics, total flavonoids and LC-MS/MS characterisation of phenolic constituents in Stachys lavandulifolia.

    PubMed

    Rahimi Khoigani, Soroush; Rajaei, Ahmad; Goli, Sayed Amir Hossein

    2017-02-01

    The aim of this study was to evaluate phenolics profile and antioxidant activity of Stachys lavandulifolia. Total phenolics (TP), total flavonoids (TF), DPPH• assay (IC50), ferric ion reducing antioxidant power (FRAP) and total antioxidant capacity (TAC) of the methanolic extract were measured. The content of TP, TF, IC50, FRAP and TAC, were obtained as 16.59 gallic acid equiv./g dry matter (DM), 4.48 mg quercetin equiv./g DM, 2.07 (μg/mL), 0.014 (absorbance/mg phenolic) and 14.61 (mg BHT equiv./g DM), respectively. The results showed that S. lavandulifolia, compared to other species of Stachys, had moderate TP content with desirable antioxidant activity. Subsequently, 59 various phenolic compounds were identified and confirmed in the methanolic extract of S. lavandulifolia using high mass accuracy by MS2 experiments. The compounds consisted of 6 hydroxybenzoic acids and hydroxybenzoic aldehydes, 9 hydroxycinnamic acids, 1 coumarin, 32 flavonoids, 3 lignans, 2 stilbenes, 3 tannins and 3 other phenolics.

  17. Phenolic Compounds from Olea europaea L. Possess Antioxidant Activity and Inhibit Carbohydrate Metabolizing Enzymes In Vitro.

    PubMed

    Dekdouk, Nadia; Malafronte, Nicola; Russo, Daniela; Faraone, Immacolata; De Tommasi, Nunziatina; Ameddah, Souad; Severino, Lorella; Milella, Luigi

    2015-01-01

    Phenolic composition and biological activities of fruit extracts from Italian and Algerian Olea europaea L. cultivars were studied. Total phenolic and tannin contents were quantified in the extracts. Moreover 14 different phenolic compounds were identified, and their profiles showed remarkable quantitative differences among analysed extracts. Moreover antioxidant and enzymatic inhibition activities were studied. Three complementary assays were used to measure their antioxidant activities and consequently Relative Antioxidant Capacity Index (RACI) was used to compare and easily describe obtained results. Results showed that Chemlal, between Algerian cultivars, and Coratina, among Italian ones, had the highest RACI values. On the other hand all extracts and the most abundant phenolics were tested for their efficiency to inhibit α-amylase and α-glucosidase enzymes. Leccino, among all analysed cultivars, and luteolin, among identified phenolic compounds, were found to be the best inhibitors of α-amylase and α-glucosidase enzymes. Results demonstrated that Olea europaea fruit extracts can represent an important natural source with high antioxidant potential and significant α-amylase and α-glucosidase inhibitory effects.

  18. Phenolic Compounds from Olea europaea L. Possess Antioxidant Activity and Inhibit Carbohydrate Metabolizing Enzymes In Vitro

    PubMed Central

    Dekdouk, Nadia; Malafronte, Nicola; Russo, Daniela; Faraone, Immacolata; Ameddah, Souad; Severino, Lorella

    2015-01-01

    Phenolic composition and biological activities of fruit extracts from Italian and Algerian Olea europaea L. cultivars were studied. Total phenolic and tannin contents were quantified in the extracts. Moreover 14 different phenolic compounds were identified, and their profiles showed remarkable quantitative differences among analysed extracts. Moreover antioxidant and enzymatic inhibition activities were studied. Three complementary assays were used to measure their antioxidant activities and consequently Relative Antioxidant Capacity Index (RACI) was used to compare and easily describe obtained results. Results showed that Chemlal, between Algerian cultivars, and Coratina, among Italian ones, had the highest RACI values. On the other hand all extracts and the most abundant phenolics were tested for their efficiency to inhibit α-amylase and α-glucosidase enzymes. Leccino, among all analysed cultivars, and luteolin, among identified phenolic compounds, were found to be the best inhibitors of α-amylase and α-glucosidase enzymes. Results demonstrated that Olea europaea fruit extracts can represent an important natural source with high antioxidant potential and significant α-amylase and α-glucosidase inhibitory effects. PMID:26557862

  19. Tannin analysis of chestnut bark samples (Castanea sativa Mill.) by HPLC-DAD-MS.

    PubMed

    Comandini, Patrizia; Lerma-García, María Jesús; Simó-Alfonso, Ernesto Francisco; Toschi, Tullia Gallina

    2014-08-15

    In the present investigation, an HPLC-DAD/ESI-MS method for the complete analysis of tannins and other phenolic compounds of different commercial chestnut bark samples was developed. A total of seven compounds (vescalin, castalin, gallic acid, vescalagin, 1-O-galloyl castalagin, castalagin and ellagic acid) were separated and quantified, being 1-O-galloyl castalagin tentatively identified and found for the first time in chestnut bark samples. Thus, this method provided information regarding the composition and quality of chestnut bark samples, which is required since these samples are commercialised due to their biochemical properties as ingredients of food supplements. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Characterization of phenolic compounds of thorny and thornless blackberries.

    PubMed

    Kolniak-Ostek, Joanna; Kucharska, Alicja Z; Sokół-Łętowska, Anna; Fecka, Izabela

    2015-03-25

    The aim of this study was to identify and compare the contents of phenolic acids, tannins, anthocyanins, and flavonoid glycosides in thorny and thornless blackberries. Five thorny and nine thornless cultivars were used for this study. Thirty-five phenolic compounds were determined in the examined fruits, and one phenolic acid, three ellagic acid derivatives, one anthocyanin, and six flavonols were characterized for the first time in blackberries. The thornless fruits were characterized by a higher content of anthocyanins (mean = 171.23 mg/100 g FW), ellagitannins (mean = 3.65 mg/100 g FW), and ellagic acid derivatives (mean = 2.49 mg/100 g FW), in comparison to thorny ones. At the same time, in thorny fruits, the contents of hydroxycinnamic acids (mean = 1.42 mg/100 g FW) and flavonols (mean = 5.70 mg/100 g FW) were higher.

  1. Enhancement of Calibrachoa growth, secondary metabolites and bioactivity using seaweed extracts.

    PubMed

    Elansary, Hosam O; Norrie, Jeff; Ali, Hayssam M; Salem, Mohamed Z M; Mahmoud, Eman A; Yessoufou, Kowiyou

    2016-09-02

    Calibrachoa x hybrida (Solanaceae) cultivars are widely used in North and South America as ornamental plants. Their potential as a source of antimicrobial compounds might be enhanced by seaweed extract (SWE) applications. SWE of Ascophyllum nodosum were applied at 5 and 7 ml/L as a soil drench or foliar spray on Calibrachoa cultivars of Superbells® 'Dreamsicle' (CHSD) and Superbells® 'Frost Fire' (CHSF). The total phenolics, tannins and antioxidants composition as well as specific flavonols in leaf extracts were determined. Further, the chemical composition of SWE was assessed. The drench and foliar SWE treatments significantly enhanced Calibrachoa cultivars leaf number and area, dry weight, plant height, antioxidant capacity as well as phenolic, flavonols and tannin content. The increased growth and composition of phenols, flavonols and tannins was attributed to the stimulatory effects of SWE mineral composition. The antifungal activity of Calibrachoa cultivars was significantly enhanced following SWE treatments and the minimum inhibitory concentration (MIC) and minimum fungicidal concentration (MFC) were in the range of 0.07-0.31 mg/ml and from 0.16 to 0.56 mg/ml, respectively. Moreover, antibacterial activity was significantly increased and the MIC and minimum bactericidal concentration (MBC) measurements were in the range of 0.06-0.23 mg/ml and from 0.10 to 0.44 mg/ml, respectively. The most sensitive fungus to SWE treatments was C. albicans and the most sensitive bacterium was E. cloacae. The results suggest that enhanced antifungal and antibacterial activities might be attributed to significant increases of phenolic, flavonols and tannin contents, which ultimately enhance the potential of Calibrachoa as a natural source of alternative antibiotics.

  2. Characterization of the polyphenolic composition of purple loosestrife (Lythrum salicaria).

    PubMed

    Rauha, J P; Wolfender, J L; Salminen, J P; Pihlaja, K; Hostettmann, K; Vuorela, H

    2001-01-01

    Phenolic compounds of purple loosestrife (Lythrum salicaria L.) were analysed by the use of liquid chromatography-mass spectrometry (LC/MS) equipped with atmospheric pressure chemical ionisation (APCI) and electrospray ionisation (ESI). The presence of vitexin and orientin as well as their isomers, isovitexin and isoorientin, were confirmed using ion trap multiple stage LC/MS3 analysis. Several phenolic acids and tannins were also detected. Ellagitannins, vescalagin and pedunculagin, are reported from the plant for the first time.

  3. Formaldehyde condensation products of model phenols for conifer bark tannins

    Treesearch

    Richard W. Hemingway; Gerald W. McGraw

    1978-01-01

    Gel permeation chromatography of the condensation products of phenols and formaldehyde proved effective in understanding the reactions of condensed tannins with formaldehyde. Rates of condensation of phloroglucinols, resorcinols, catechols, (+)catechins, and (-)epicatechin were examined to determine if methylol-tannins from southern pine bark could be prepared as resin...

  4. Formaldehyde condensation products of model phenols for conifer bark tannins

    Treesearch

    R.W. Hemingway; G.W. McGraw

    1978-01-01

    Gel permeation chromatograpy of the condensation products of phenols and formaldehyde proved effective in understanding the reactions of condensed tannins with formaldehyde. Rates of condensation of phloroglucinols, resorcinols, catechols, (+)catechin, and (-)epicatechin were examined to determine if methylol-tannins from southern pine bark could be prepared as resin...

  5. Characterization of polyphenols and antioxidant potential of white grape pomace byproducts (Vitis vinifera L.).

    PubMed

    González-Centeno, María Reyes; Jourdes, Michael; Femenia, Antoni; Simal, Susana; Rosselló, Carmen; Teissedre, Pierre-Louis

    2013-11-27

    A detailed assessment of the total phenolic and total tannin contents, the monomeric and oligomeric flavan-3-ol composition, the proanthocyanidin profile, and the antioxidant potential of the grape pomace byproducts (considered as a whole, both skins and seeds), derived from four white grape varieties (Vitis vinifera L.), was performed. Significant differences (p < 0.05) of the total phenolic content, total tannin content, and antioxidant capacity of grape pomace byproducts were observed among the different grape varieties studied. For the first time in the literature, the particular flavan-3-ol composition of the four grape varieties investigated was described for the whole fraction of their grape pomace byproducts. The phenolic composition and antioxidant capacity of grape pomaces were compared to those of their corresponding stems. The global characterization of these white grape varieties provided a basis for an integrated exploitation of both winemaking byproducts as potential, inexpensive, and easily available sources of bioactive compounds for the pharmaceutical, cosmetic, and food industries.

  6. A review of molecular mechanisms of the anti-leukemic effects of phenolic compounds in honey.

    PubMed

    Abubakar, Murtala B; Abdullah, Wan Zaidah; Sulaiman, Siti Amrah; Suen, Ang Boon

    2012-11-15

    Hematologic malignancies constitute about 9% of all new cases of cancers as reported via the GLOBOCAN series by International Agency for Research on Cancer (IARC) in 2008. So far, the conventional therapeutic and surgical approaches to cancer therapy have not been able to curtail the rising incidence of cancers, including hematological malignancies, worldwide. The last decade has witnessed great research interest in biological activities of phenolic compounds that include anticancer, anti-oxidation and anti-inflammation, among other things. A large number of anticancer agents combat cancer through cell cycle arrest, induction of apoptosis and differentiation, as well as through inhibition of cell growth and proliferation, or a combination of two or more of these mechanisms. Various phenolic compounds from different sources have been reported to be promising anticancer agents by acting through one of these mechanisms. Honey, which has a long history of human consumption both for medicinal and nutritional uses, contains a variety of phenolic compounds such as flavonoids, phenolic acids, coumarins and tannins. This paper presents a review on the molecular mechanisms of the anti-leukemic activity of various phenolic compounds on cell cycle, cell growth and proliferation and apoptosis, and it advocates that more studies should be conducted to determine the potential role of honey in both chemoprevention and chemotherapy in leukemia.

  7. Evidence for functional heterogeneity both between and within four sources of condensed tannin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Asquith, T.N.

    1985-01-01

    Condensed tannins are polymers of flavan-3-ols that are produced by many plants in a wide variety of tissues. The ability of these compounds to actively precipitate proteins has been linked to nutritional deficiencies in many animals. Four purified tannins (quebracho, wattle, pinto bean and sorghum) were compared to chemical assays and astringency towards (/sup 14/C)-BSA. Quebracho and wattle tannins were much less astringent and had longer chain lengths that sorghum or pinto bean tannins. Quebracho tannin had a very high affinity for salivary proline-rich glycoproteins (PRPs) and pinto bean tannin alone had a measurable affinity for soybean trypsin inhibitor. Thismore » suggests that tannin/protein interactions in vivo may be very specific. Protein bound carbohydrate enhanced the binding of PRPs to tanning and conferred specificity on the interactions. Carbohydrate also increases the solubility of protein/tanning complexes, which may aid the animal in eliminating the complexes. (/sup 125/I)-labeled condensed tannin was shown to retain the ability to discriminate between high and low affinity proteins. (/sup 125/I)-labeled phenols were isolated from livers and kidneys of rats fed (/sup 125/I)-labeled tannin. The techniques described in this thesis should be widely applicable to studying in vivo functions of condensed tannins.« less

  8. Conversion of phenolic constituents in aqueous Hamamelis virginiana leaf extracts during fermentation.

    PubMed

    Duckstein, Sarina M; Lorenz, Peter; Stintzing, Florian C

    2012-01-01

    Hamamelis virginiana, known for its high level of tannins and other phenolics is widely used for treatment of dermatological disorders. Although reports on hydroalcoholic and aqueous extracts from Hamamelis leaf and bark exist, knowledge on fermented leaf preparations and the underlying conversion processes are still scant. Aqueous Hamamelis leaf extracts were monitored during fermentation and maturation in order to obtain an insight into the bioconversion of tannins and other phenolics. Aliquots taken during the production period were investigated by HPLC-DAD-MS/MS as well as GC-MS after derivatisation into the corresponding trimethylsilyl compounds. In Hamamelis leaf extracts, the main constituents exhibited changes during the observational period of 6 months. By successive depside bond cleavage, the gallotannins were completely transformed into gallic acid after 1 month. Although not completely, kaempferol and quercetin glycosides were also converted during 6 months to yield their corresponding aglycones. Following C-ring fission, phloroglucinol was formed from the A-ring of both flavonols. The B-ring afforded 3-hydroxybenzoic acid from quercetin and 3,4-dihydroxybenzoic acid as well as 2-(4-hydroxyphenyl)-ethanol from kaempferol. Interestingly, hydroxycinnamic acids remained almost stable in the same time range. The present study broadens the knowledge on conversion processes in aqueous fermented extracts containing tannins, flavonol glycosides and hydroxycinnamic acids. In particular, the analogy between the microbial metabolism of phenolics from fermented Hamamelis extracts, fermented sourdough by heterofermentative lactic acid bacteria or conversion of phenolics by the human microbial flora is indicated. Copyright © 2012 John Wiley & Sons, Ltd.

  9. Rapid estimation of the oxidative activities of individual phenolics in crude plant extracts.

    PubMed

    Vihakas, Matti; Pälijärvi, Maija; Karonen, Maarit; Roininen, Heikki; Salminen, Juha-Pekka

    2014-07-01

    Previous studies of purified phenolic compounds have revealed that some phenolics, especially ellagitannins, can autoxidise under alkaline conditions, which predominate in the midgut of lepidopteran larvae. To facilitate screening for the pro-oxidant activities of all types of phenolic compounds from crude plant extracts, we developed a method that combined our recent spectrophotometric bioactivity method with an additional chromatographic step via UPLC-DAD-MS. This method allowed us to estimate the total pro-oxidant capacities of crude extracts from 12 plant species and to identify the individual phenolic compounds that were responsible for the detected activities. It was found that the pro-oxidant capacities of the plant species (i.e., the concentrations of the easily-oxidised phenolics) varied from 0 to 57 mg/g dry wt, representing from 0% to 46% of the total phenolics from different species. UPLC-DAD-MS analysis revealed that most flavonol and flavone glycosides were only slightly affected by alkaline conditions, thus indicating their low pro-oxidant activity. Interestingly, myricetin-type compounds differed from the other flavonoids, as their concentrations decreased strongly due to alkaline incubation. The same effect was detected for hydrolysable tannins and prodelphinidins, suggesting that a pyrogallol sub-structure could be a key structural component that partially explains their easy oxidation at high pH. Other types of phenolic compounds, such as hydroxycinnamic acids, were relatively active, as well. These findings demonstrate that this method displays the potential to identify most of the active and inactive pro-oxidant phenolic compounds in various plant species. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Anti-Escherichia coli activity of extracts from Schinus terebinthifolius fruits and leaves.

    PubMed

    da Silva, Jessica H S; Simas, Naomi K; Alviano, Celuta S; Alviano, Daniela S; Ventura, José A; de Lima, Eliandro J; Seabra, Sergio H; Kuster, Ricardo M

    2018-06-01

    Ethanol extracts obtained from Schinus terebinthifolius Raddi fruits and leaves were active against Escherichia coli with MIC of 78 μg mL -1 for both extracts. Phytochemical analyses revealed a major presence of phenolic acids, tannins, fatty acids and acid triterpenes in the leaves and phenolic acids, fatty acids, acid triterpenes and biflavonoids in the fruits. Major compounds isolated from the plant, such as the acid triterpene schinol, the phenolic acid derivative ethyl gallate and the biflavonoids agathisflavone and tetrahydroamentoflavone, showed very little activity against E. coli. Bioautography of the ethanol extracts on silica gel plate showed inhibition zones for E. coli. They were removed from the plate and the compounds identified as a mixture of myristic, pentadecanoic, palmitic, heptadecanoic, stearic, nonadecanoic, eicosanoic, heneicosanoic and behenic fatty acids.

  11. Flavan hetero-dimers in the Cymbopogon citratus infusion tannin fraction and their contribution to the antioxidant activity.

    PubMed

    Costa, Gustavo; González-Manzano, Susana; González-Paramás, Ana; Figueiredo, Isabel Vitória; Santos-Buelga, Celestino; Batista, Maria Teresa

    2015-03-01

    Cymbopogon citratus (lemongrass) leaf infusion, a commonly used ingredient in Asian, African and Latin American cuisines, is also used in traditional medicine for the treatment of several pathological conditions; however, little is known about their bioactive compounds. Recent studies revealed the crucial role of the phenolic compounds namely flavonoids and tannins on the infusion bioactivity. Flavonoids have already been characterized; however the tannin fraction of lemongrass infusion is still uncharted. The aim of the present work is to characterize this fraction, and to evaluate its contribution to the antioxidant potential of this plant. Chemical characterization was achieved by HPLC-DAD-ESI/tandem MS and the antioxidant activity was evaluated using DPPH, ABTS and FRAP assays. Hetero-dimeric flavan structures have been described for the first time in lemongrass consisting of apigeniflavan or luteoliflavan units linked to a flavanone, either naringenin or eriodictyol, which may occur as aglycone or glycosylated forms. The antioxidant capacity of the fraction containing these compounds was significantly higher than the infusion, indicating its potential as a source of natural antioxidants.

  12. Different phenolic compounds activate distinct human bitter taste receptors.

    PubMed

    Soares, Susana; Kohl, Susann; Thalmann, Sophie; Mateus, Nuno; Meyerhof, Wolfgang; De Freitas, Victor

    2013-02-20

    Bitterness is a major sensory attribute of several common foods and beverages rich in polyphenol compounds. These compounds are reported as very important for health as chemopreventive compounds, but they are also known to taste bitter. In this work, the activation of the human bitter taste receptors, TAS2Rs, by six polyphenol compounds was analyzed. The compounds chosen are present in a wide range of plant-derived foods and beverages, namely, red wine, beer, tea, and chocolate. Pentagalloylglucose (PGG) is a hydrolyzable tannin, (-)-epicatechin is a precursor of condensed tannins, procyanidin dimer B3 and trimer C2 belong to the condensed tannins, and malvidin-3-glucoside and cyanidin-3-glucoside are anthocyanins. The results show that the different compounds activate different combinations of the ~25 TAS2Rs. (-)-Epicatechin activated three receptors, TAS2R4, TAS2R5, and TAS2R39, whereas only two receptors, TAS2R5 and TAS2R39, responded to PGG. In contrast, malvidin-3-glucoside and procyanidin trimer stimulated only one receptor, TAS2R7 and TAS2R5, respectively. Notably, tannins are the first natural agonists found for TAS2R5 that display high potency only toward this receptor. The catechol and/or galloyl groups appear to be important structural determinants that mediate the interaction of these polyphenolic compounds with TAS2R5. Overall, the EC(50) values obtained for the different compounds vary 100-fold, with the lowest values for PGG and malvidin-3-glucoside compounds, suggesting that they could be significant polyphenols responsible for the bitterness of fruits, vegetables, and derived products even if they are present in very low concentrations.

  13. Analysis of total phenolic, flavonoids, anthocyanins and tannins content in Romanian red wines: prediction of antioxidant activities and classification of wines using artificial neural networks.

    PubMed

    Hosu, Anamaria; Cristea, Vasile-Mircea; Cimpoiu, Claudia

    2014-05-01

    Wine is one of the most consumed beverages over the world containing large quantities of polyphenolic compounds. These compounds are responsible for quality of red wines, influencing the antioxidant activity, astringency, bitterness and colour, their composition in wine being influenced by the varieties, the vintage and the wineries. The aim of the present work is to build software instruments intended to work as data-mining tools for predicting valuable properties of wine and for revealing different wine classes. The developed ANNs are able to reveal the relationships between the concentration of total phenolic, flavonoids, anthocyanins, and tannins content, associated to the antioxidant activity, and the wine distinctive classes determined by the wine variety, harvesting year or winery. The presented ANNs proved to be reliable software tools for assessment or validation of the wine essential characteristics and authenticity and may be further used to establish a database of analytical characteristics of wines. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. Gamma Radiation Effects on Peanut Skin Antioxidants

    PubMed Central

    de Camargo, Adriano Costa; de Souza Vieira, Thais Maria Ferreira; Regitano-D’Arce, Marisa Aparecida Bismara; Calori-Domingues, Maria Antonia; Canniatti-Brazaca, Solange Guidolin

    2012-01-01

    Peanut skin, which is removed in the peanut blanching process, is rich in bioactive compounds with antioxidant properties. The aims of this study were to measure bioactive compounds in peanut skins and evaluate the effect of gamma radiation on their antioxidant activity. Peanut skin samples were treated with 0.0, 5.0, 7.5, or 10.0 kGy gamma rays. Total phenolics, condensed tannins, total flavonoids, and antioxidant activity were evaluated. Extracts obtained from the peanut skins were added to refined-bleached-deodorized (RBD) soybean oil. The oxidative stability of the oil samples was determined using the Oil Stability Index method and compared to a control and synthetic antioxidants (100 mg/kg BHT and 200 mg/kg TBHQ). Gamma radiation changed total phenolic content, total condensed tannins, total flavonoid content, and the antioxidant activity. All extracts, gamma irradiated or not, presented increasing induction period (h), measured by the Oil Stability Index method, when compared with the control. Antioxidant activity of the peanut skins was higher than BHT. The present study confirmed that gamma radiation did not affect the peanut skin extracts’ antioxidative properties when added to soybean oil. PMID:22489142

  15. Antioxidant and biological properties of bioactive phenolic compounds from Quercus suber L.

    PubMed

    Fernandes, Ana; Fernandes, Iva; Cruz, Luís; Mateus, Nuno; Cabral, Miguel; de Freitas, Victor

    2009-12-09

    Phenolic compounds, namely, hydrolyzable tannins and low molecular weight phenolic compounds, were isolated and purified from Portuguese cork from Quercus suber L. Some of these compounds were studied to evaluate their antioxidant activity, including free-radical scavenging capacity (DPPH method) and reducing capacity (FRAP method). All compounds tested showed significant antioxidant activity, namely, antiradical and reducing properties. The antiradical capacity seemed to increase with the presence of galloyl groups. Regarding the reducing capacity, this structure-activity relationship was not so clear. These compounds were also studied to evaluate the growth inhibitory effect on the estrogen responsive human breast cancer cell line (ER+) MCF-7 and two other colon cancer cell lines (Caco-2 and HT-29). Generally, all the compounds tested exhibited, after a continuous exposure during a 48 h period, a dose-dependent growth inhibitory effect. Relative inhibitory activity was primarily related to the number of phenolic hydroxyl groups (galloyl and HHDP moieties) found in the active structures, with more groups generally conferring increased effects, except for HHDP-di-galloyl-glucose. Mongolicain B showed a greater potential to inhibit the growth of the three cell lines tested, identical to the effect observed with castalagin. Since these compounds are structurally related with each other, this activity might be based within the C-glycosidic ellagitannin moiety.

  16. Levels of Tannins and Flavonoids in Medicinal Plants: Evaluating Bioprospecting Strategies

    PubMed Central

    Siqueira, Clarissa Fernanda de Queiroz; Cabral, Daniela Lyra Vasconcelos; Peixoto Sobrinho, Tadeu José da Silva; de Amorim, Elba Lúcia Cavalcanti; de Melo, Joabe Gomes; Araújo, Thiago Antônio de Sousa; de Albuquerque, Ulysses Paulino

    2012-01-01

    There are several species of plants used by traditional communities in the Brazilian semiarid. An approach used in the search for natural substances that possess therapeutic value is ethnobotany or ethnopharmacology. Active substances that have phenolic groups in their structure have great pharmacological potential. To establish a quantitative relationship between the species popularly considered to be antimicrobial, antidiabetic, and antidiarrheal, the contents of tannins and flavonoids were determined. The plant selection was based on an ethnobotanical survey conducted in a community located in the municipality of Altinho, northeastern Brazil. For determination of tannin content was utilized the technique of radial diffusion, and for flavonoids, an assay based on the complexation of aluminum chloride. The group of plants with antimicrobial indications showed a higher content of tannins compared to the control groups. The results evidence suggests a possible relationship between these compounds and the observed activity. PMID:21969842

  17. Inactivation of tannins in milled sorghum grain through steeping in dilute NaOH solution.

    PubMed

    Adetunji, Adeoluwa I; Duodu, Kwaku G; Taylor, John R N

    2015-05-15

    Steeping milled sorghum in up to 0.4% NaOH was investigated as a method of tannin inactivation. NaOH steeping substantially reduced assayable total phenols and tannins in both Type III and Type II sorghums and with Type III sorghum caused a 60-80% reduction in α-amylase inhibition compared to a 20% reduction by water steeping. NaOH treatment also reduced starch liquefaction time and increased free amino nitrogen. Type II tannin sorghum did not inhibit α-amylase and consequently the NaOH treatment had no effect. HPLC and LC-MS of the tannin extracts indicated a general trend of increasing proanthocyanidin/procyanidin size with increasing NaOH concentration and steeping time, coupled with a reduction in total area of peaks resolved. These show that the NaOH treatment forms highly polymerised tannin compounds, too large to assay and to interact with the α-amylase. NaOH pre-treatment of Type III sorghums could enable their utilisation in bioethanol production. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Effect of micro-oxygenation on color and anthocyanin-related compounds of wines with different phenolic contents.

    PubMed

    Cano-López, Marta; Pardo-Mínguez, Francisco; Schmauch, Gregory; Saucier, Cedric; Teissedre, Pierre-Louis; López-Roca, Jose María; Gómez-Plaza, Encarna

    2008-07-23

    Several factors may affect the results obtained when micro-oxygenation is applied to red wines, the most important being the moment of application, the doses of oxygen, and the wine phenolic characteristics. In this study, three red wines, made from Vitis vinifera var. Monastrell (2005 vintage) and with different phenolic characteristics, were micro-oxygenated to determine as to how this technique affected the formation of new pigments in the wines and their chromatic characteristics. The results indicated that the different wines were differently affected by micro-oxygenation. In general, the micro-oxygenated wines had a higher percentage of new anthocyanin-derived pigments, being that this formation is more favored in the wines with the highest total phenol content. These compounds, in turn, significantly increased the wine color intensity. The wine with the lowest phenolic content was less influenced by micro-oxygenation, and the observed evolution in the degree of polymerization of tannins suggested that it might have suffered overoxygenation.

  19. Bioactive Compounds and Antioxidant Activity in Different Types of Berries

    PubMed Central

    Skrovankova, Sona; Sumczynski, Daniela; Mlcek, Jiri; Jurikova, Tunde; Sochor, Jiri

    2015-01-01

    Berries, especially members of several families, such as Rosaceae (strawberry, raspberry, blackberry), and Ericaceae (blueberry, cranberry), belong to the best dietary sources of bioactive compounds (BAC). They have delicious taste and flavor, have economic importance, and because of the antioxidant properties of BAC, they are of great interest also for nutritionists and food technologists due to the opportunity to use BAC as functional foods ingredients. The bioactive compounds in berries contain mainly phenolic compounds (phenolic acids, flavonoids, such as anthocyanins and flavonols, and tannins) and ascorbic acid. These compounds, either individually or combined, are responsible for various health benefits of berries, such as prevention of inflammation disorders, cardiovascular diseases, or protective effects to lower the risk of various cancers. In this review bioactive compounds of commonly consumed berries are described, as well as the factors influencing their antioxidant capacity and their health benefits. PMID:26501271

  20. 1H and 13C-NMR studies on phenol-formaldehyde prepolymers for tannin-based adhesives

    Treesearch

    Gerald W. McGraw; Lawerence L. Lanucci; Seiji Ohara; Richard W. Hemingway

    1989-01-01

    The number average structure and the molecular weight distribution of phenol-formaldehyde prepolymers for use in synthesis of tannin-based adhesive resins were determined with 1H and 13C-NMR spectroscopy and gel permeation chromatography of acetylated resins. These methods were used to determine differences in phenol-...

  1. A Review of Molecular Mechanisms of the Anti-Leukemic Effects of Phenolic Compounds in Honey

    PubMed Central

    Abubakar, Murtala B.; Abdullah, Wan Zaidah; Sulaiman, Siti Amrah; Suen, Ang Boon

    2012-01-01

    Hematologic malignancies constitute about 9% of all new cases of cancers as reported via the GLOBOCAN series by International Agency for Research on Cancer (IARC) in 2008. So far, the conventional therapeutic and surgical approaches to cancer therapy have not been able to curtail the rising incidence of cancers, including hematological malignancies, worldwide. The last decade has witnessed great research interest in biological activities of phenolic compounds that include anticancer, anti-oxidation and anti-inflammation, among other things. A large number of anticancer agents combat cancer through cell cycle arrest, induction of apoptosis and differentiation, as well as through inhibition of cell growth and proliferation, or a combination of two or more of these mechanisms. Various phenolic compounds from different sources have been reported to be promising anticancer agents by acting through one of these mechanisms. Honey, which has a long history of human consumption both for medicinal and nutritional uses, contains a variety of phenolic compounds such as flavonoids, phenolic acids, coumarins and tannins. This paper presents a review on the molecular mechanisms of the anti-leukemic activity of various phenolic compounds on cell cycle, cell growth and proliferation and apoptosis, and it advocates that more studies should be conducted to determine the potential role of honey in both chemoprevention and chemotherapy in leukemia. PMID:23203111

  2. Conventional and unconventional extraction methods applied to the plant, Thymus serpyllum L

    NASA Astrophysics Data System (ADS)

    Đukić, D.; Mašković, P.; Vesković Moračanin, S.; Kurćubić, V.; Milijašević, M.; Babić, J.

    2017-09-01

    This study deals with the application of two conventional and three non-conventional extraction approaches for isolation of bioactive compounds from the plant Thymus serpyllum L. The extracts obtained were tested regarding their chemical profile (content of phenolics, flavonoids, condensed tannins, gallotannins and anthocyanins) and antioxidant activities. Subcritical water extract of Thymus serpyllum L. generally had the highest concentrations of the chemical bioactive compounds examined and the best antioxidant properties.

  3. Potential of mangrove Avicennia rumphiana extract as an antioxidant agent using multilevel extraction

    NASA Astrophysics Data System (ADS)

    Sulmartiwi, L.; Pujiastuti, D. Y.; Tjahjaningsih, W.; Jariyah

    2018-04-01

    Avicennia rumphiana is one of abundant mangrove found in Indonesia. Multilevel extraction methods were simultaneously conducted to screen the antioxidant activity from mangrove. The leaves, fruits and barks were consequently extracted using n-hexane, ethyl acetate and ethanol. The presence of phenolic, flavonoids and tannins compounds were characterized by quantitative and qualitative phytochemical assay as well as the antioxidant activity was examined using DPPH-free radical scavenging assay. The phytochemical test revealed that all of the extracts showed positive result. The fruits extract exhibited the highest phenolic, flavonoid and tannin (23.86 mg/g, 13.77 mg/g and 74.63 mg/g), respectively. The extracts were further confirmed for antioxidant using IC50 value and revealed that ethyl acetate extract has antioxidant activity better than n-hexane and ethyl acetate extract. Furthermore, this study indicated that mangrove Avicennia rumphiana could be subsequently explored for other biological activities due to their potential secondary metabolites.

  4. Analytical traceability of melon (Cucumis melo var reticulatus): proximate composition, bioactive compounds, and antioxidant capacity in relation to cultivar, plant physiology state, and seasonal variability.

    PubMed

    Maietti, Annalisa; Tedeschi, Paola; Stagno, Caterina; Bordiga, Matteo; Travaglia, Fabiano; Locatelli, Monica; Arlorio, Marco; Brandolini, Vincenzo

    2012-06-01

    Two morphologically different cultivars of Italian melons (Baggio and Giusto) were characterized considering samples harvested in different times, at the beginning (BPP) and at the end of the physiological plant production period (EPP). Proximate composition, protein, minerals, pH, phenolic content, antioxidant capacity, ascorbic acid, carotenoids, condensed tannins, and flavonoids were measured, showing a significant decrease in EPP samples (phenolics, antioxidant capacity, condensed tannins, and flavonoids); ascorbic acid decreased in Giusto cv, carotenoids in Baggio cv. Mineral content increased in either the cultivars (EPP samples). Year-to-year difference was significantly highlighted; the plant growing cycle significantly affected the chemotype. Despite these effects, the Principal Component Analysis (PCA) permitted the discrimination of Baggio from Giusto cv, and the discrimination of BPP from EPP samples as well. © 2012 Institute of Food Technologists®

  5. In vitro antioxidant, antifungal and antibacterial activities of five international Calibrachoa cultivars.

    PubMed

    Elansary, Hosam O; Yessoufou, Kowiyou

    2016-06-01

    The total phenolic, flavonoid and tannin contents in leaf extracts of Calibrachoa x hybrida (C.h.) (Solanaceae) international cultivars, as well as their overall antioxidant activities using DPPH and linoleic acid assays, were investigated. Furthermore, the antifungal and the antibacterial activities were examined against a wide spectrum of micro-organisms. DPPH and linoleic acid assays ranged from 62.1 to 80.1% and of 74.1-93.4%, respectively. C.h. Superbells® Trailing Rose (CHST), C.h. Superbells® Frost Fire, C.h. Superbells® Strawberry Punch, C.h. Superbells® Dreamsicle and C.h. Superbells® Plum (CHSP) varied in their antifungal and the antibacterial activities against a wide spectrum of micro-organisms. CHSP exhibited the highest antioxidant, antifungal and antibacterial activities followed by CHST. These activities might be attributed to the presence of phenolic, flavonoid and tannin compounds, indicating that these cultivars might be potential sources of therapeutic substances.

  6. Is guava phenolic metabolism influenced by elevated atmospheric CO2?

    PubMed

    Mendes de Rezende, Fernanda; Pereira de Souza, Amanda; Silveira Buckeridge, Marcos; Maria Furlan, Cláudia

    2015-01-01

    Seedlings of Psidium guajava cv. Pedro Sato were distributed into four open-top chambers: two with ambient CO(2) (∼390 ppm) and two with elevated CO(2) (∼780 ppm). Monthly, five individuals of each chamber were collected, separated into root, stem and leaves and immediately frozen in liquid nitrogen. Chemical parameters were analyzed to investigate how guava invests the surplus carbon. For all classes of phenolic compounds analyzed only tannins showed significant increase in plants at elevated CO(2) after 90 days. There was no significant difference in dry biomass, but the leaves showed high accumulation of starch under elevated CO(2). Results suggest that elevated CO(2) seems to be favorable to seedlings of P. guajava, due to accumulation of starch and tannins, the latter being an important anti-herbivore substance. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Nutrient retention and fate of iron-binding phenolic compounds during the injera processing of tannin-free and high-tannin sorghum.

    PubMed

    Seyoum, Yohannes; Retta, Negussie; Baye, Kaleab

    2016-03-30

    Traits such as bird-, insect- and mould-resistance are the focus in selecting improved sorghum varieties, but this often increases the tannin content, which can negatively affect iron bioavailability. The grain characteristics, nutrient retention, and the fate of iron-binding polyphenols (IBPs) during injera processing, an Ethiopian traditional fermented pancake, were investigated using agriculturally improved tannin-free (TFC) and high-tannin (HTC) sorghum cultivars. The HTC had significantly higher IBP contents than the TFC (P < 0.05). Decortication led to iron (24-27%), calcium (18-43%), IBP (catechol 35-41%, galloyl 35-42%), and tannin (12-35%) losses. Sourdough fermentation reduced the IBP and tannin concentrations in HTC, but had no effect on the IBP concentrations in TFC. The modified injera processing that included pre-soaking resulted in the highest IBP reductions (galloyl 73% and catechol 71%). Nutrient retention in HTC and TFC processing was different. Including a pre-soaking step during injera processing of HTC could counter the negative effects of IBP on iron absorption, while benefiting from the agronomic features of HTC. © 2015 Society of Chemical Industry.

  8. Plant phenolics and their potential role in mitigating iron overload disorder in wild animals.

    PubMed

    Lavin, Shana R

    2012-09-01

    Phenolic compounds are bioactive chemicals found in all vascular plants but are difficult to characterize and quantify, and comparative analyses on these compounds are challenging due to chemical structure complexity and inconsistent laboratory methodologies employed historically. These chemicals can elicit beneficial or toxic effects in consumers, depending on the compound, dose and the species of the consumer. In particular, plant phenolic compounds such as tannins can reduce the utilization of iron in mammalian and avian consumers. Multiple zoo-managed wild animal species are sensitive to iron overload, and these species tend to be offered diets higher in iron than most of the plant browse consumed by these animals in the wild and in captivity. Furthermore, these animals likely consume diets higher in polyphenols in the wild as compared with in managed settings. Thus, in addition to reducing dietary iron concentrations in captivity, supplementing diets with phenolic compounds capable of safely chelating iron in the intestinal lumen may reduce the incidence of iron overload in these animal species. It is recommended to investigate various sources and types of phenolic compounds for use in diets intended for iron-sensitive species. Candidate compounds should be screened both in vitro and in vivo using model species to reduce the risk of toxicity in target species. In particular, it would be important to assess potential compounds in terms of 1) biological activity including iron-binding capacity, 2) accessibility, 3) palatability, and 4) physiological effects on the consumer, including changes in nutritional and antioxidant statuses.

  9. Release of Polyphenols Is the Major Factor Influencing the Bioconversion of Rice Straw to Lactic Acid.

    PubMed

    Chen, Xingxuan; Xue, Yiyun; Hu, Jiajun; Tsang, Yiu Fai; Gao, Min-Tian

    2017-11-01

    In this study, we found that p-coumaric acid (p-CA), ferulic acid (FA), and condensed tannins were released from rice straw during saccharification. The presence of polyphenols prolonged the lag phase and lowered the productivity of lactic acid. p-CA was identified as a key inhibitor. Tannins had a lower inhibitory effect than p-CA; FA had little inhibitory effect. Acid, alkaline, and ball milling pretreatments elicited different levels of polyphenol release from rice straw. Due to the different levels of polyphenol release in the pretreatment step, the enzymatic hydrolysates contained different concentrations of polyphenols. Compared with fermentation with a synthetic medium, fermentation with the hydrolysates of ball-milled rice straw provided much lower productivity and yield of lactic acid due to the presence of polyphenols. Removal of these compounds played an important role in lactic acid fermentation. When rice straw was alkaline pretreated, the hydrolysates contained few phenolic compounds, resulting in high productivity and yield of lactic acid (1.8 g/L/h and 26.7 g/100 g straw), which were comparable to those in a synthetic medium. This indicates that there is a correlation between removal of phenolic compounds and efficiency in lactic acid fermentation.

  10. Interactions between yeast lees and wine polyphenols during simulation of wine aging: I. Analysis of remnant polyphenolic compounds in the resulting wines.

    PubMed

    Mazauric, Jean-Paul; Salmon, Jean-Michel

    2005-07-13

    Wine aging on yeast lees is a traditional enological practice used during the manufacture of wines. This technique has increased in popularity in recent years for the aging of red wines. Although wine polyphenols interact with yeast lees to a limited extent, such interactions have a large effect on the reactivity toward oxygen of wine polyphenolic compounds and yeast lees. Various domains of the yeast cell wall are protected by wine polyphenols from the action of extracellular hydrolytic enzymatic activities. Polysaccharides released during autolysis are thought to exert a significant effect on the sensory qualities of wine. We studied the chemical composition of polyphenolic compounds remaining in solution or adsorbed on yeast lees after various contact times during the simulation of wine aging. The analysis of the remnant polyphenols in the wine indicated that wine polyphenols adsorption on yeast lees follows biphasic kinetics. An initial and rapid fixation is followed by a slow, constant, and saturating fixation that reaches its maximum after about 1 week. Only very few monomeric phenolic compounds remained adsorbed on yeast lees, and no preferential adsorption of low or high polymeric size tannins occurred. The remnant condensed tannins in the wine contained fewer epigallocatechin units than the initial tannins, indicating that polar condensed tannins were preferentially adsorbed on yeast lees. Conversely, the efficiency of anthocyanin adsorption on yeast lees was unrelated to its polarity.

  11. A core-shell column approach to a comprehensive high-performance liquid chromatography phenolic analysis of Vitis vinifera L. and interspecific hybrid grape juices, wines, and other matrices following either solid phase extraction or direct injection.

    PubMed

    Manns, David C; Mansfield, Anna Katharine

    2012-08-17

    Four high-throughput reverse-phase chromatographic protocols utilizing two different core-shell column chemistries have been developed to analyze the phenolic profiles of complex matrices, specifically targeting juices and wines produced from interspecific hybrid grape cultivars. Following pre-fractionation via solid-phase extraction or direct injection, individual protocols were designed to resolve, identify and quantify specific chemical classes of compounds including non-anthocyanin monomeric phenolics, condensed tannins following acid hydrolysis, and anthocyanins. Detection levels ranging from 1.2 ppb to 27.5 ppb, analyte %RSDs ranging from 0.04 to 0.38, and linear ranges of quantitation approaching five orders of magnitude were achieved using conventional HPLC instrumentation. Using C(18) column chemistry, the non-anthocyanin monomeric protocol effectively separated a set of 16 relevant phenolic compounds comprised flavan-3-ols, hydroxycinnamic acids, and flavonols in under 14 min. The same column was used to develop a 15-min protocol for hydrolyzed condensed tannin analysis. Two anthocyanin protocols are presented, one utilizing the same C(18) column, best suited for anthocyanidin and monoglucoside analysis, the other utilizing a pentafluorophenyl chemistry optimized to effectively separate complex mixtures of coexisting mono- and diglucoside anthocyanins. These protocols and column chemistries have been used initially to explore a wide variety of complex phenolic matrices, including red and white juices and wines produced from Vitis vinifera and interspecific hybrid grape cultivars, juices, teas, and plant extracts. Each protocol displayed robust matrix responses as written, yet are flexible enough to be easily modified to suit specifically tailored analytical requirements. Copyright © 2012 Elsevier B.V. All rights reserved.

  12. Phytochemical and Antibacterial Investigations of the Extracts and Fractions from the Stem Bark of Hymenaea stigonocarpa Mart. ex Hayne and Effect on Ultrastructure of Staphylococcus aureus Induced by Hydroalcoholic Extract

    PubMed Central

    Dimech, Gustavo Santiago; Soares, Luiz Alberto Lira; Ferreira, Magda Assunção; de Oliveira, Anne Gabrielle Vasconcelos; Carvalho, Maria da Conceição; Ximenes, Eulália Azevedo

    2013-01-01

    The aim of this study was to investigate the antimicrobial activity of different extracts and fractions obtained from Hymenaea stigonocarpa stem barks. The cyclohexanic, ethyl acetate, ethanol, aqueous, and hydroalcoholic extracts were obtained by maceration. The hydroalcoholic extract was partitioned, which resulted in the ethyl acetate and aqueous fractions. All extracts and fractions were subjected to phytochemical screening and evaluation of total phenol and tannin contents. An HPLC-DAD and ultrastructural alterations analysis were performed. Terpenes and coumarins were detected in the cyclohexanic extract. Flavonoids and condensed tannins were present in the other extracts and fractions. The extracts with the highest contents of tannins, ethanol (EE), hydroalcoholic (HE), and aqueous fraction (AF) showed also the highest antimicrobial activity. The MIC values ranged from 64 to 526 µg/mL. The chromatographic fingerprints suggest the presence of astilbin and other flavonoids in EE and HE. Presence of the thick cell wall, undulating outer layer, abnormal septa, and leakage of the cytoplasmic contents and absence of cell wall and cell lyses were the main alterations observed on Staphylococcus aureus ATCC 33591 after treatment with the Hymenaea stigonocarpa hydroalcoholic extract. The presence of phenolic compounds like flavonoids and tannins is possibly the reason for the antimicrobial activity. PMID:24396311

  13. Effect of addition of commercial grape seed tannins on phenolic composition, chromatic characteristics, and antioxidant activity of red wine.

    PubMed

    Neves, Ana C; Spranger, Maria I; Zhao, Yuqing; Leandro, Maria C; Sun, Baoshan

    2010-11-24

    The effect of addition of grape seed tannins on the phenolic composition, chromatic characteristics, and antioxidant activity of red wine was studied. Two highly pure commercial grape seed tannins (GSE100 and GSE300) were selected, and their phenolic compositions were determined. Two types of red wines were made with Castelão/Tinta Miúda (3/2, w/w) grapevine varieties by fermentation on skin using two different maceration times, which correspond to the wines rich and poor in polyphenols, respectively. Each of these wines was used for experimentation with the addition of GSE100 and GSE300 before and immediately after alcoholic fermentation. Phenolic composition, chromatic characteristics, and antioxidant activity of the finished red wines were analyzed by HPLC-DAD, CIElab 76 convention, and DPPH radical test, respectively. The results showed that the addition of grape seed tannins had obvious effects of increasing color intensity and antioxidant activity only in the wines poor in polyphenols. Although GSE300 contained much higher amounts of di- and trimer procyanidins and a lower amount of polymeric proanthocyanidins, it provided effects of increasing the color intensity and antioxidant activity of the wines poor in polyphenols similar to those of GSE100. Furthermore, GSE100 released more gallic acid to wines than GSE300, although no gallic acid was detected in GSE100. Tannins added after alcoholic fermentation had a better effect on phenolic composition of red wine than tannins added before alcoholic fermentation.

  14. Determination of total iron-reactive phenolics, anthocyanins and tannins in wine grapes of skins and seeds based on near-infrared hyperspectral imaging.

    PubMed

    Zhang, Ni; Liu, Xu; Jin, Xiaoduo; Li, Chen; Wu, Xuan; Yang, Shuqin; Ning, Jifeng; Yanne, Paul

    2017-12-15

    Phenolics contents in wine grapes are key indicators for assessing ripeness. Near-infrared hyperspectral images during ripening have been explored to achieve an effective method for predicting phenolics contents. Principal component regression (PCR), partial least squares regression (PLSR) and support vector regression (SVR) models were built, respectively. The results show that SVR behaves globally better than PLSR and PCR, except in predicting tannins content of seeds. For the best prediction results, the squared correlation coefficient and root mean square error reached 0.8960 and 0.1069g/L (+)-catechin equivalents (CE), respectively, for tannins in skins, 0.9065 and 0.1776 (g/L CE) for total iron-reactive phenolics (TIRP) in skins, 0.8789 and 0.1442 (g/L M3G) for anthocyanins in skins, 0.9243 and 0.2401 (g/L CE) for tannins in seeds, and 0.8790 and 0.5190 (g/L CE) for TIRP in seeds. Our results indicated that NIR hyperspectral imaging has good prospects for evaluation of phenolics in wine grapes. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Impact of high hydrostatic pressure and pasteurization on the structure and the extractability of bioactive compounds of persimmon “Rojo Brillante”.

    PubMed

    Hernández-Carrión, M; Vázquez-Gutiérrez, J L; Hernando, I; Quiles, A

    2014-01-01

    Rojo Brillante is an astringent oriental persimmon variety with high levels of bioactive compounds such as soluble tannins, carotenoids, phenolic acids, and dietary fiber. The purpose of this study was to investigate the effects of high hydrostatic pressure (HHP) and pasteurization on the structure of the fruit and on the extractability of certain bioactive compounds. The microstructure was studied using light microscopy, transmission electron microscopy, and low temperature scanning electron microscopy, and certain physicochemical properties (carotenoid and total soluble tannin content, antioxidant activity, fiber content, color, and texture properties) were measured. The structural changes induced by HHP caused a rise in solute circulation in the tissues that could be responsible for the increased carotenoid level and the unchanged antioxidant activity in comparison with the untreated persimmon. In contrast, the changes that took place during pasteurization lowered the tannin content and antioxidant activity. Consequently, HHP treatment could improve the extraction of potentially bioactive compoundsxsts from persimmons. A high nutritional value ingredient to be used when formulating new functional foods could be obtained using HHP. © 2013 Institute of Food Technologists®

  16. Exploitation of dietary tannins to improve rumen metabolism and ruminant nutrition.

    PubMed

    Patra, Amlan K; Saxena, Jyotisna

    2011-01-15

    Tannins (hydrolysable and condensed tannin) are polyphenolic polymers of relatively high molecular weight with the capacity to form complexes mainly with proteins due to the presence of a large number of phenolic hydroxyl groups. They are widely distributed in nutritionally important forage trees, shrubs and legumes, cereals and grains, which are considered as anti-nutritional compounds due to their adverse effects on intake and animal performance. However, tannins have been recognised to modulate rumen fermentation favourably such as reducing protein degradation in the rumen, prevention of bloat, inhibition of methanogenesis and increasing conjugated linoleic acid concentrations in ruminant-derived foods. The inclusion of tannins in diets has been shown to improve body weight and wool growth, milk yields and reproductive performance. However, the beneficial effects on rumen modulation and animal performance have not been consistently observed. This review discusses the effects of tannins on nitrogen metabolism in the rumen and intestine, and microbial populations (bacteria, protozoa, fungi and archaea), metabolism of tannins, microbial tolerance mechanisms to tannins, inhibition of methanogenesis, ruminal biohydrogenation processes and performance of animals. The discrepancies of responses of tannins among different studies are attributed to the different chemical structures (degree of polymerisation, procyanidins to propdelphinidins, stereochemistry and C-C bonding) and concentrations of tannins, and type of diets. An establishment of structure-activity relationship would be required to explain differences among studies and obtain consistent beneficial tannin effects. Copyright © 2010 Society of Chemical Industry.

  17. Effect of yeast strain and some nutritional factors on tannin composition and potential astringency of model wines.

    PubMed

    Rinaldi, Alessandra; Blaiotta, Giuseppe; Aponte, Maria; Moio, Luigi

    2016-02-01

    Nine Saccharomyces cerevisiae cultures, isolated from different sources, were tested for their ability to reduce tannins reactive towards salivary proteins, and potentially responsible for wine astringency. Strains were preliminary genetically characterized and evaluated for physiological features of technological interest. Laboratory-scale fermentations were performed in three synthetic media: CT) containing enological grape tannin; CTP) CT supplemented with organic nitrogen sources; CTPV) CTP supplemented with vitamins. Adsorption of total tannins, tannins reactive towards salivary proteins, yellow pigments, phenolics having antioxidant activity, and total phenols, characterizing the enological tannin, was determined by spectrophotometric methods after fermentation. The presence of vitamins and peptones in musts greatly influenced the adsorption of tannins reactive towards salivary proteins (4.24 g/L gallic acid equivalent), thus promoting the reduction of the potential astringency of model wines. With reference to the different phenolic classes, yeast strains showed different adsorption abilities. From a technological point of view, the yeast choice proved to be crucial in determining changes in gustative and mouthfeel profile of red wines and may assist winemakers to modulate colour and astringency of wine. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Identification of Phenolic Compounds in Red and Green Pistachio (Pistacia vera L.) Hulls (Exo- and Mesocarp) by HPLC-DAD-ESI-(HR)-MS(n).

    PubMed

    Erşan, Sevcan; Güçlü Üstündağ, Özlem; Carle, Reinhold; Schweiggert, Ralf M

    2016-07-06

    Phenolic constituents of the nonlignified red and green pistachio hulls (exo- and mesocarp) were assessed by HPLC-DAD-ESI-MS(n) as well as by HR-MS. A total of 66 compounds was identified in the respective aqueous methanolic extracts. Among them, gallic acid, monogalloyl glucoside, monogalloyl quinic acid, penta-O-galloyl-β-d-glucose, hexagalloyl hexose, quercetin 3-O-galactoside, quercetin 3-O-glucoside, quercetin 3-O-glucuronide, and (17:1)-, (13:0)-, and (13:1)-anacardic acids were detected at highest signal intensity. The main difference between red and green hulls was the presence of anthocyanins in the former ones. Differently galloylated hydrolyzable tannins, anthocyanins, and minor anacardic acids were identified for the first time. Pistachio hulls were thus shown to be a source of structurally diverse and potentially bioactive phenolic compounds. They therefore represent a valuable byproduct of pistachio processing having potential for further utilization as raw material for the recovery of pharmaceutical, nutraceutical, and chemical products.

  19. Phenolic Compounds and Antioxidant Activity of Different Organs of Potentilla fruticosa L. from Two Main Production Areas of China.

    PubMed

    Yu, Danmeng; Pu, Wenjun; Li, Dengwu; Wang, Dongmei; Liu, Qiaoxiao; Wang, Yongtao

    2016-09-01

    This report compared the phenolic compounds and antioxidant activity of the leaves, flowers, and stems of Potentilla fruticosa L. collected from two main production areas of P. R. China (Taibai Mountains and the Qinghai Huzhu Northern Mountains). The results indicated that there were significant differences in the phenol contents and antioxidant activities among the different organs and between the two productions. High-performance liquid-chromatography analysis indicated that hyperoside, (+)-catechin, ellagic acid, and rutin were the primary compounds in leaves and flowers; for stems, the content of six phenolic compounds, from two productions, were the lowest. The 1,1-diphenyl-2-picryl hydrazyl (DPPH), 2,2-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) di-ammonium salt (ABTS), ferric reducing power (FRAP), lipid peroxidation assays, and microbial test system (MTS) were used to evaluate the antioxidant activity. The results demonstrated that the leaves from two productions exhibited powerful antioxidant activity than other organs, which did not significantly differ from that of the positive control (rutin), followed by the flowers and stems. The correlation between the content of phytochemicals and the antioxidant activities of different organs showed that the total phenol, tannin, hyperoside, and (+)-catechin contents may influence the antioxidant activity, and these compounds can be used as markers for the quality control of P. fruticosa. © 2016 Wiley-VHCA AG, Zürich.

  20. Phenolic compounds in ectomycorrhizal interaction of lignin modified silver birch

    PubMed Central

    Sutela, Suvi; Niemi, Karoliina; Edesi, Jaanika; Laakso, Tapio; Saranpää, Pekka; Vuosku, Jaana; Mäkelä, Riina; Tiimonen, Heidi; Chiang, Vincent L; Koskimäki, Janne; Suorsa, Marja; Julkunen-Tiitto, Riitta; Häggman, Hely

    2009-01-01

    Background The monolignol biosynthetic pathway interconnects with the biosynthesis of other secondary phenolic metabolites, such as cinnamic acid derivatives, flavonoids and condensed tannins. The objective of this study is to evaluate whether genetic modification of the monolignol pathway in silver birch (Betula pendula Roth.) would alter the metabolism of these phenolic compounds and how such alterations, if exist, would affect the ectomycorrhizal symbiosis. Results Silver birch lines expressing quaking aspen (Populus tremuloides L.) caffeate/5-hydroxyferulate O-methyltransferase (PtCOMT) under the 35S cauliflower mosaic virus (CaMV) promoter showed a reduction in the relative expression of a putative silver birch COMT (BpCOMT) gene and, consequently, a decrease in the lignin syringyl/guaiacyl composition ratio. Alterations were also detected in concentrations of certain phenolic compounds. All PtCOMT silver birch lines produced normal ectomycorrhizas with the ectomycorrhizal fungus Paxillus involutus (Batsch: Fr.), and the formation of symbiosis enhanced the growth of the transgenic plants. Conclusion The down-regulation of BpCOMT in the 35S-PtCOMT lines caused a reduction in the syringyl/guaiacyl ratio of lignin, but no significant effect was seen in the composition or quantity of phenolic compounds that would have been caused by the expression of PtCOMT under the 35S or UbB1 promoter. Moreover, the detected alterations in the composition of lignin and secondary phenolic compounds had no effect on the interaction between silver birch and P. involutus. PMID:19788757

  1. Analysis of Phenolic Compounds and Antioxidant Abilities of Extracts from Germinating Vitis californica Seeds Submitted to Cold Stress Conditions and Recovery after the Stress

    PubMed Central

    Weidner, Stanisław; Chrzanowski, Sebastian; Karamać, Magdalena; Król, Angelika; Badowiec, Anna; Mostek, Agnieszka; Amarowicz, Ryszard

    2014-01-01

    The material for this study consisted of stratified seeds of Vitis californica submitted to germination under optimum conditions (+25 °C) or under chill stress (+10 °C), also followed by recovery. It has been determined that the germinating seeds contain considerable amounts of tannins, catechins as well as phenolic acids such as gallic, p-coumaric, caffeic and ferulic acids. Gallic acid appeared in the highest amount in the germinating seeds (from 42.40–204.00 µg/g of fresh weight (FW)), followed by caffeic acid (from 6.62–20.13 µg/g FW), p-coumaric acid (from 2.59–5.41 µg/g FW), and ferulic acid (from 0.56–0.92 µg/g FW). The phenolic acids occurred mostly in the ester form. Under chill stress, the germinating seeds were determined to contain an elevated total amount of phenolics, as well as raised levels of condensed tannins, catechins, gallic acid, and gafeic acid. The levels of p-coumoric and ferulic acids were found to have decreased. In extracts isolated from a sample exposed to low temperature, increased antioxidant activity and reduction potential were also demonstrated. Tissue of the germinating seeds which underwent post-stress recovery was found to have less total phenolics. PMID:25222557

  2. Analysis of hydrolyzable tannins and other phenolic compounds in emblic leafflower (Phyllanthus emblica L.) fruits by high performance liquid chromatography-electrospray ionization mass spectrometry.

    PubMed

    Yang, Baoru; Kortesniemi, Maaria; Liu, Pengzhan; Karonen, Maarit; Salminen, Juha-Pekka

    2012-09-05

    Phenolic compounds were extracted from dried emblic leafflower (Phyllanthus emblica L.) fruits with methanol and separated by Sephadex LH-20 column chromatography. The raw extracts and fractions were analyzed with HPLC coupled with diode array UV spectroscopy, electrospray ionization mass spectrometry, and tandem mass spectrometry. Mucic acid gallate, mucic acid lactone gallate, monogalloylglucose, gallic acid, digalloylglucose, putranjivain A, galloyl-HHDP-glucose, elaeocarpusin, and chebulagic acid were suggested to be the most abundant compounds in the crude methanol extracts of the fruits. In addition, 144 peaks were detected, of which 67 were tentatively identified mostly as ellagitannins, flavonoids, and simple gallic acid derivatives in the fractions. The results indicated the presence of neochebulagic acid, isomers of neochebuloyl galloylglucose, chebuloyl neochebuloyl galloylglucose, ellagic acid glycosides, quercetin glycosides, and eriodictyol coumaroyl glycosides in the fruits. The study provides a systematic report of the retention data and characteristics of UV, MS, and MS/MS spectra of the phenolic compounds in the fruits of emblic leafflower. The fruits of two varieties (Ping Dan No 1 and Fruity) from Guangxi Province differed from those of wild Tian Chuan emblic leafflower from Fujian Province in the content and profile of phenolic compounds.

  3. Application of insoluble fibers in the fining of wine phenolics.

    PubMed

    Guerrero, Raúl F; Smith, Paul; Bindon, Keren A

    2013-05-08

    The application of animal-derived proteins as wine fining agents has been subject to increased regulation in recent years. As an alternative to protein-based fining agents, insoluble plant-derived fibers have the capacity to adsorb red wine tannins. Changes in red wine tannin were analyzed following application of fibers derived from apple and grape and protein-based fining agents. Other changes in wine composition, namely, color, monomeric phenolics, metals, and turbidity, were also determined. Wine tannin was maximally reduced by application of an apple pomace fiber and a grape pomace fiber (G4), removing 42 and 38%, respectively. Potassium caseinate maximally removed 19% of wine tannin, although applied at a lower dose. Fibers reduced anthocyanins, total phenolics, and wine color density, but changes in wine hue were minor. Proteins and apple fiber selectively removed high molecular mass phenolics, whereas grape fibers removed those of both high and low molecular mass. The results show that insoluble fibers may be considered as alternative fining agents for red wines.

  4. Hormaphis hamamelidis fundatrices benefit by manipulating phenolic metabolism of their host.

    PubMed

    Rehill, Brian J; Schultz, Jack C

    2012-05-01

    We investigated the pattern and potential adaptive value of phenolic concentrations in galls induced by the aphid Hormaphis hamamelidis on leaves of Hamamelis virginiana. By the time that founding females began reproduction, galls had higher concentrations of condensed tannins and lower concentrations of hydrolyzable tannins than leaves. Galled and ungalled leaf laminas never differed significantly in any phenolic measure. Condensed tannin concentrations also were positively related to the number of offspring per gall when gall dry weight, another important correlate of fecundity, was accounted for. This could indicate the prior sink strength of the gall. Polyphenols may act as a repository for excess carbon drawn to the gall by increased sink strength, or be an indication of the fundatrix' ability to manipulate host physiology. This study is the first to demonstrate a tangible, quantitative association between phenolic accumulation in galls and gall-former reproductive performance, and illustrates that condensed tannins may play roles other than plant defense.

  5. [Effect of processing on the antioxidant capacity of the plum (Prunus domestica)].

    PubMed

    Valero, Yolmar; Colina, Jhoana; Ineichen, Emilio

    2012-12-01

    Fruits are considered sources of antioxidant compounds whose properties could impair due to processing. The objective of this work was to determine the effect of blanching and osmotic dehydration on the total polyphenols content, tannins and antioxidant capacity of plums (Prunus domestica) in yellow and red varieties. The total phenolic content in plums was determined according to the Folin-Ciocalteu assay and tannins were determined by vanillin assay. The antiradical efficiency (AE) and ferric reducing power (FRP) were used to estimate the total antioxidant capacity. The content of total polyphenols and tannins were higher in the red plum. The content of polyphenols in the pulp was higher that the peel while for tannins the opposite was observed in both varieties. The red plum had higher antioxidant capacity. The AE was low and slow kinetics for the two varieties. There was a linear correlation between polyphenols and tannins with antiradical efficiency; however, there was no correlation with the reducing power. The total polyphenols content was increased with blanching, while the tannins and the AE decreased, ferric reducing power is unaffected. For osmotic dehydration, the tannins and the AE were decreased, while the total polyphenols content and ferric reducing power are unaffected. It is recommended the blanched as an alternative to consumption and conservation in the plum.

  6. Relative contribution of phytates, fibers, and tannins to low iron and zinc in vitro solubility in pearl millet (Pennisetum glaucum) flour and grain fractions.

    PubMed

    Lestienne, Isabelle; Caporiccio, Bertrand; Besançon, Pierre; Rochette, Isabelle; Trèche, Serge

    2005-10-19

    In vitro digestions were performed on pearl millet flours with decreased phytate contents and on two dephytinized or nondephytinized pearl millet grain fractions, a decorticated fraction, and a bran fraction with low and high fiber and tannin contents, respectively. Insoluble residues of these digestions were then incubated with buffer or enzymatic solutions (xylanases and/or phytases), and the quantities of indigestible iron and zinc released by these different treatments were determined. In decorticated pearl millet grain, iron was chelated by phytates and by insoluble fibers, whereas zinc was almost exclusively chelated by phytates. In the bran of pearl millet grain, a high proportion of iron was chelated by iron-binding phenolic compounds, while the rest of iron as well as the majority of zinc were chelated in complexes between phytates and fibers. The low effect of phytase action on iron and zinc solubility of bran of pearl millet grain shows that, in the case of high fiber and tannin contents, the chelating effect of these compounds was higher than that of phytates.

  7. Chemo-sensory approach for the identification of chemical compounds driving green character in red wines.

    PubMed

    Sáenz-Navajas, María-Pilar; Arias, Ignacio; Ferrero-Del-Teso, Sara; Fernández-Zurbano, Purificación; Escudero, Ana; Ferreira, Vicente

    2018-07-01

    The present work seeks to define the "green character" of red wines and characterise the groups of molecules potentially involved in that perception. Fifty-four wines were screened by wine experts for different levels of green character. Six different phenolic fractions were obtained by liquid chromatography (LC) and further submitted to sensory and chemical characterisation. The volatile fraction was screened by semipreparative LC, Gas Chromatography-Olfactometry (GC-O) and quantitative analysis. The green character was linked to vegetal aroma, astringency, green and dry tannins according to experts of the Somontano region. Non-volatile fractions containing tannins with mean degree of polymerisation of ten and smaller anthocyanin-derivative pigments (

  8. Phenolics and essential mineral profile of organic acid pretreated unripe banana flour.

    PubMed

    Anyasi, Tonna A; Jideani, Afam I O; Mchau, Godwin R A

    2018-02-01

    Banana fruit (Musa spp) though rich in essential minerals, has also been implicated for the presence of phytochemicals which nonetheless beneficial, can also act as mineral inhibitors when in forms such as phenolic compounds, phytates and tannins. This study assayed the essential macro and trace minerals as well as phenolic compounds present in unripe banana flour (UBF) obtained from the pulp of four different cultivars. Unripe banana flour was processed by oven drying in a forced air oven dryer at 70°C upon pretreatment with ascorbic, citric and lactic acid. Organic acid pretreatment was done separately on each unripe banana cultivar at concentrations of 10, 15 and 20g/L. Phenolic compounds were profiled using liquid chromatography mass spectrometry electrospray ion (LC-MS-ESI) while essential minerals were determined using inductively coupled plasma atomic emission spectroscopy (ICP-AES) and mass spectroscopy (ICP-MS) respectively. Results of LC-MS-ESI assay of phenolics revealed the presence of flavonoids: epicatechin and myricetin 3-O-rhamnosyl-glucoside in varying concentrations in UBF. Essential mineral profile indicated that Zinc had the least occurrence of 3.55mg/kg (p<0.05), while potassium was the most abundant mineral at 14746.73mg/kg in UBF of all four banana cultivars. Correlation between phenolic compounds and essential minerals using Pearson's Correlation Coefficient test revealed weak and inverse association between flavonoids and most macro and trace minerals present in UBF samples. Organic acid pretreatment thus exhibited little effect on phenolics and essential minerals of UBF samples, though, inhibitory influence of phenolic compounds was recorded on essential minerals. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  9. Development of polyphenolic nanoparticles for biomedical applications

    NASA Astrophysics Data System (ADS)

    Cheng, Huaitzung Andrew

    Polymeric nanoparticles have a wide range of applications, particularly as drug delivery and diagnostic agents, and tannins have been regarded as a promising building block for redox and pH responsive systems. Tannins are a class of naturally occurring polyphenols commonly produced by plants and are found in many of our consumables like teas, spices, fresh fruits, and vegetables. Many of the health benefits associated with these foods are a result of their high tannin contents and the many different types of tannins found in various plants have demonstrated therapeutic potentials for conditions ranging from cardiovascular disease and diabetes to ulcers and cancer. Diets rich in tannins have been associated with lower blood pressure in patients with hypertension. The plurality of phenols in tannins also makes them powerful antioxidants and as a result, there is a lot of interest in taking advantage of their self-assembling abilities to make redox and pH responsive drug delivery systems. However, the benefit of natural tannins is limited by their instability in physiological conditions. Furthermore, there is limited control over molecular weight and reactivity of the phenolic content of plant extracts. Herein we report the novel synthesis of pseudotannins with control over molecular weight and reactivity of phenolic moieties. These pseudotannins have can form nanoscale interpolymer complexes under physiological conditions and have demonstrated antioxidative potential. Furthermore, pseudotannin IPCs have been shown to be responsive to physiologically relevant oxidation as well as the ability to easily incorporate cell targeting peptides, fluorescent tags, and MRI contrast agents. The work presented here describes how pseudotannins would be ideally suited to minimally invasive techniques for diagnosing atherosclerotic plaques and targeting triple negative breast cancer. We demonstrate that pseudotannin can very easily and quickly form nanoscale particles that are small enough to be uptaken into mammalian cells. Furthermore, by self-assembling with gadolinium, pseudotannins can effectively attenuate the signal of gadolinium based MRI contrast agents. This in conjunction with oxidation responsive decomplexation could be a viable option for diagnosing the severity and risk of rupture of atherosclerotic plaques. Also, we demonstrate that pegylated compounds can easily be incorporated into pseudotannin nanoparticles to impart cell targeting functionality. The subsequent uptake of pseudotannin nanoparticles into breast cancer cells demonstrated the ability to increase their sensitivity to UV radiation. The creation of synthetic tannin-like polymers leads to directly to making a variety of self-assembling, stimuli responsive, and bioactive nanoparticles well-suited for various biomedical applications.

  10. Effect of Fermentation and Cooking on Soluble and Bound Phenolic Profiles of Finger Millet Sour Porridge.

    PubMed

    Gabaza, Molly; Shumoy, Habtu; Muchuweti, Maud; Vandamme, Peter; Raes, Katleen

    2016-10-12

    The aim of this study was to evaluate the soluble and bound phenolic content of finger millet and the impact of process induced changes on phenolic profiles of their sour porridge. Finger millet porridge and intermediate products were collected from four groups of households in the Hwedza communal area, Zimbabwe, after which soluble and bound phenolic compounds (PC) including condensed tannins (CT) were quantified. Bound PC and CT contributed 95% of the total PC and CT. The CT were only detected in the red varieties. Major individual PC identified were catechin occurring in the soluble fraction only, while ferulic, sinapic, and salicylic acid were mainly present in the bound fraction. Fermentation and cooking caused a more than 2-fold increase in soluble PC, CT, and individual PC. Improved traditional processing techniques optimized for improved bioavailability and health benefits of phenolics are highly relevant for the low income populations.

  11. Chemical Characterization and Release of Polyphenols from Pecan Nut Shell [Carya illinoinensis (Wangenh) C. Koch] in Zein Microparticles for Bioactive Applications.

    PubMed

    Kureck, Itamara; Policarpi, Priscila de Brito; Toaldo, Isabela Maia; Maciel, Matheus Vinícius de Oliveira Brisola; Bordignon-Luiz, Marilde T; Barreto, Pedro Luiz Manique; Block, Jane Mara

    2018-05-03

    The pecan nut [Carya illinoinensis (Wangenh) C. Koch] is a natural source of polyphenols with antioxidant properties. In this study, the encapsulation of aqueous and hydroalcoholic extracts of pecan nut shell were evaluated for the release of bioactive compounds and antioxidant potential in order to explore food applications using zein as encapsulating agent. The extracts showed high contents of total phenolics, condensed tannins and high antioxidant activity. Concentrations of proanthocyanidins were 9-fold higher in hydroalcoholic extracts. The LC-DAD analysis showed that catechins were the major phenolic compounds in samples, with epigallocatechin levels up to 138.62 mg mL -1 . Zein microparticles loaded with aqueous extract released 2.3 times more phenolic compounds than the hydroalcoholic extracts and the DSC thermograms showed that extracts of pecan nut shell remained thermally stable up to 240 °C. The zein microcapsules obtained in this study were efficiently encapsulated and represent an interesting additive due its high antioxidant capacity, physicochemical characteristics and morphology. The use of zein microparticles combined with natural extracts constitute a step forward in the improvement of current technology for delivering phenolic compounds with applications in functional foods and nutraceuticals.

  12. Effect of drying on the bioactive compounds, antioxidant, antibacterial and antityrosinase activities of pomegranate peel.

    PubMed

    Mphahlele, Rebogile R; Fawole, Olaniyi A; Makunga, Nokwanda P; Opara, Umezuruike L

    2016-05-26

    The use of pomegranate peel is highly associated with its rich phenolic concentration. Series of drying methods are recommended since bioactive compounds are highly sensitive to thermal degradation. The study was conducted to evaluate the effects of drying on the bioactive compounds, antioxidant as well as antibacterial and antityrosinase activities of pomegranate peel. Dried pomegranate peels with the initial moisture content of 70.30 % wet basis were prepared by freeze and oven drying at 40, 50 and 60 °C. Difference in CIE-LAB, chroma (C*) and hue angle (h°) were determined using colorimeter. Individual polyphenol retention was determined using LC-MS and LC-MS(E) while total phenolics concentration (TPC), total flavonoid concentration (TFC), total tannins concentration (TTC) and vitamin C concentration were measured using colorimetric methods. The antioxidant activity was measured by radical scavenging activity (RSA) and ferric reducing antioxidant power (FRAP). Furthermore, the antibacterial activity of methanolic peel extracts were tested on Gram negative (Escherichia coli and Klebsiella pneumonia) and Gram positive bacteria (Staphylococcus aureus and Bacillus subtilis) using the in vitro microdilution assays. Tyrosinase enzyme inhibition was investigated against monophenolase (tyrosine) and diphenolase (DOPA), with arbutin as positive controls. Oven drying at 60 °C resulted in high punicalin concentration (888.04 ± 141.03 mg CE/kg dried matter) along with poor red coloration (high hue angle). Freeze dried peel contained higher catechin concentration (674.51 mg/kg drying matter) + catechin and -epicatechin (70.56 mg/kg drying matter) compared to oven dried peel. Furthermore, freeze dried peel had the highest total phenolic, tannin and flavonoid concentrations compared to oven dried peel over the temperature range studied. High concentration of vitamin C (31.19 μg AAE/g dried matter) was observed in the oven dried (40 °C) pomegranate peel. Drying at 50 °C showed the highest inhibitory activity with the MIC values of 0.10 mg/ml against Gram positive (Staphylococcus aureus and Bacillus subtili. Likewise, the extracts dried at 50 °C showed potent inhibitory activity concentration (22.95 mg/ml) against monophenolase. Principal component analysis showed that the peel colour characteristics and bioactive compounds isolated the investigated drying method. The freeze and oven dried peel extracts exhibited a significant antibacterial and antioxidant activities. The freeze drying method had higher total phenolic, tannin and flavonoid concentration therefore can be explored as a feasible method for processing pomegranate peel to ensure retention of the maximum amount of their naturally occurring bioactive compounds. Not relevant for this study.

  13. Dynamic Changes in Phenolics and Antioxidant Capacity during Pecan (Carya illinoinensis) Kernel Ripening and Its Phenolics Profiles.

    PubMed

    Jia, Xiaodong; Luo, Huiting; Xu, Mengyang; Zhai, Min; Guo, Zhongren; Qiao, Yushan; Wang, Liangju

    2018-02-16

    Pecan ( Carya illinoinensis ) kernels have a high phenolics content and a high antioxidant capacity compared to other nuts-traits that have attracted great interest of late. Changes in the total phenolic content (TPC), condensed tannins (CT), total flavonoid content (TFC), five individual phenolics, and antioxidant capacity of five pecan cultivars were investigated during the process of kernel ripening. Ultra-performance liquid chromatography coupled with quadruple time-of-flight mass (UPLC-Q/TOF-MS) was also used to analyze the phenolics profiles in mixed pecan kernels. TPC, CT, TFC, individual phenolics, and antioxidant capacity were changed in similar patterns, with values highest at the water or milk stages, lowest at milk or dough stages, and slightly varied at kernel stages. Forty phenolics were tentatively identified in pecan kernels, of which two were first reported in the genus Carya , six were first reported in Carya illinoinensis , and one was first reported in its kernel. The findings on these new phenolic compounds provide proof of the high antioxidant capacity of pecan kernels.

  14. Castanea sativa Mill. Flowers amongst the Most Powerful Antioxidant Matrices: A Phytochemical Approach in Decoctions and Infusions

    PubMed Central

    Carocho, Márcio; Barros, Lillian; Bento, Albino; Morales, Patricia; Ferreira, Isabel C. F. R.

    2014-01-01

    Infusions and decoction of chestnut tree flowers have been used for different medical purposes, but their phytochemical profile and antioxidant activity are still mostly unknown. Herein, decoctions and infusions of flowers from the two most appreciated chestnut cultivars (longal and judia) in Trás-os-Montes, Portugal, were prepared and characterized with regard to their content in free sugars, organic acids, and phenolic compounds, such as flavonoids and hydrolyzable tannins, and their antioxidant activity. Overall, the decoction of the cultivar judia was the sample with both the highest quantity of flavonoids and antioxidant activity. The phenolic compound with the highest abundance in all samples was trigalloyl-HHDP-glucoside, followed by pentagalloyl glucoside. The sample with the highest quantity of total phenolic compounds was judia infusion, closely followed by longal decoction, which also gave the highest quantities of ellagitannins. Regarding sugars and organic acids, the profiles were more similar. These results corroborate ancestral claims of the health benefits of infusions and decoctions of chestnut flowers. PMID:24822186

  15. Antioxidant and antimicrobial phenolic compounds from extracts of cultivated and wild-grown Tunisian Ruta chalepensis.

    PubMed

    Ouerghemmi, Ines; Bettaieb Rebey, Iness; Rahali, Fatma Zohra; Bourgou, Soumaya; Pistelli, Luisa; Ksouri, Riadh; Marzouk, Brahim; Saidani Tounsi, Moufida

    2017-04-01

    The antioxidant and antibacterial activities of phenolic compounds from cultivated and wild Tunisian Ruta chalepensis L. leaves, stems, and flowers were assessed. The leaves and the flowers exhibited high but similar total polyphenol, flavonoid, and tannin content. Moreover, two organs showed strong, although not significantly different, total antioxidant activity, 2,2-diphenyl-1-picrylhydrazyl scavenging ability, and reducing power. Investigation of the phenolic composition showed that vanillic acid and coumarin were the major compounds in the two organs, with higher percentages in the cultivated organs than in the spontaneous organs. Furthermore, R. chalepensis extracts showed marked antibacterial properties against human pathogen strains, and the activity was organ- and origin-dependent. Spontaneous stems had the strongest activity against Pseudomonas aeruginosa. From these results, it was concluded that domestication of Ruta did not significantly affect its chemical composition and consequently the possibility of using R. chalpensis organs as a potential source of natural antioxidants and as an antimicrobial agent in the food industry. Copyright © 2016. Published by Elsevier B.V.

  16. A simple method to separate red wine nonpolymeric and polymeric phenols by solid-phase extraction.

    PubMed

    Pinelo, Manuel; Laurie, V Felipe; Waterhouse, Andrew L

    2006-04-19

    Simple polyphenols and tannins differ in the way that they contribute to the organoleptic profile of wine and their effects on human health. Very few straightforward techniques to separate red wine nonpolymeric phenols from the polymeric fraction are available in the literature. In general, they are complex, time-consuming, and generate large amounts of waste. In this procedure, the separation of these compounds was achieved using C18 cartridges, three solvents with different elution strengths, and pH adjustments of the experimental matrices. Two full factorial 2(3) experimental designs were performed to find the optimal critical variables and their values, allowing for the maximization of tannin recovery and separation efficiency (SE). Nonpolymeric phenols such as phenolic acids, monomers, and oligomers of flavonol and flavan-3-ols and anthocyanins were removed from the column by means of an aqueous solvent followed by ethyl acetate. The polymeric fraction was then eluted with a combination of methanol/acetone/water. The best results were attained with 1 mL of wine sample, a 10% methanol/water solution (first eluant), ethyl acetate (second eluant), and 66% acetone/water as the polymeric phenols-eluting solution (third eluant), obtaining a SE of ca. 90%. Trials with this method on fruit juices also showed high separation efficiency. Hence, this solid-phase extraction method has been shown to be a simple and efficient alternative for the separation of nonpolymeric phenolic fractions and the polymeric ones, and this method could have important applications to sample purification prior to biological testing due to the nonspecific binding of polymeric phenolics to nearly all enzymes and receptor sites.

  17. Phytomedical investigation of Najas minor All. in the view of the chemical constituents

    PubMed Central

    Topuzovic, Marina D.; Radojevic, Ivana D.; Dekic, Milan S.; Radulovic, Niko S.; Vasic, Sava M.; Comic, Ljiljana R.; Licina, Braho Z.

    2015-01-01

    Plants are an abundant natural source of effective antibiotic compounds. Phytomedical investigations of certain plants haven't still been conducted. One of them is Najas minor (N. minor), an aquatic plant with confirmed allelopathy. Research conducted in this study showed the influence of water and ethyl acetate extracts of N. minor on microorganisms, in the view of chemical profiling of volatile constituents and the concentrations of total phenols, flavonoids and tannins. Antimicrobial activity was defined by determining minimum inhibitory and minimum microbicidal concentrations using microdilution method. Influence on bacterial biofilm formation was performed by tissue culture plate method. The total phenolics, flavonoids and condensed tannins were determined by Folin-Ciocalteu, aluminum chloride and butanol-HCl colorimetric methods. Chemical profiling of volatile constituents was investigated by GC and GC-MS. Water extract didn't have antimicrobial activity below 5000 µg/mL. Ethyl acetate extract has shown strong antimicrobial activity on G+ bacteria - Staphylococcus aureus PMFKGB12 and Bacillus subtilis (MIC < 78.13 µg/mL). The best antibiofilm activity was obtained on Escherichia coli ATCC25922 (BIC50 at 719 µg/mL). Water extract had higher yield. Ethyl acetate extract had a significantly greater amount of total phenolics, flavonoids and tannins. As major constituent hexahydrofarnesyl acetone was identified. The ethyl acetate extract effected only G+ bacteria, but the biofilm formation of G-bacteria was suppressed. There was a connection between those in vivo and in vitro effects against pathogenic bacterial biofilm formation. All of this points to a so far unexplored potential of N. minor. PMID:26535038

  18. The use of a tannin crude extract from Cistus ladanifer L. to protect soya-bean protein from degradation in the rumen.

    PubMed

    Dentinho, M T P; Moreira, O C; Pereira, M S; Bessa, R J B

    2007-06-01

    Cistus ladanifer L. (CL) is a perennial shrub abundant in dry woods and dry land of Mediterranean zone, with high level of tannins. Tannins bind to protein, preventing its degradation in the digestive compartments. This tannin/protein complex may be advantageous when partially protecting good-quality feed protein from excessive rumen protein degradation. The objective of this trial was to use a CL phenol crude extract to prevent excessive rumen degradation of soya-bean meal protein. The phenolic compounds were extracted using an acetone/water solution (70:30, v/v). Soya-bean meal was then treated with this crude CL extract, containing 640 g of total phenols (TP) per kg of dry matter (DM), in order to obtain mixtures with 0, 12.5, 25, 50, 100 and 150 g of TP per kg DM. Three rumen-cannulated rams were used to assess in sacco rumen degradability of DM and nitrogen (N). The three-step in vitro procedure was used to determine intestinal digestibility. Increasing extract concentrations quadratically decreased the N-soluble fraction a (R2 = 0.96, P = 0.0001) and increased the non-soluble degradable fraction b (R2 = 0.92, P = 0.005). The rate of degradation c linearly decreased with CL extract doses (R2 = 0.44, P = 0.0065). For the effective rumen degradability of N, a linear reduction (R2 = 0.94, P < 0.0001) was observed. The in vitro intestinal digestibility of protein (ivID) quadratically decreased (R2 = 0.99, P < 0.0001) with TP inclusion and the rumen undegradable protein (RUP) showed a quadratic increase (R2 = 0.94, P = 0.0417). Total intestinal protein availability, computed from the RUP and ivID, linearly decreased with TP inclusion level (R2 = 0.45, P = 0.0033).

  19. Development of functional spaghetti enriched in bioactive compounds using barley coarse fraction obtained by air classification.

    PubMed

    Verardo, Vito; Gómez-Caravaca, Ana Maria; Messia, Maria Cristina; Marconi, Emanuele; Caboni, Maria Fiorenza

    2011-09-14

    Barley byproducts obtained by air classification have been used to produce a different barley functional spaghetti, which were compared to different commercial whole semolina samples. Total, insoluble, and soluble fiber and β-glucan contents of the barley spaghetti were found to be greater than those of commercial samples. Furthermore, it was proved that barley spaghetti reached the FDA requirements, which could allow these pastas to deserve the health claims "good source of dietary fiber" and "may reduce the risk of heart disease". When the barley coarse fraction was used, a flavan-3-ols enrichment and an increase of antioxidant activity were reported, while commercial samples showed the absence of flavan-3-ols and a higher presence of phenolic acids and tannins. Whole semolina commercial spaghetti had a significantly higher content of phenolic acids than semolina spaghetti samples. Besides, it was observed that when vital gluten was added to the spaghetti formulation, phenolic compounds were blocked in the gluten network and were partially released during the cooking process.

  20. Polyphenol and Ellagitannin Constituents of Jabuticaba (Myrciaria cauliflora) and Chemical Variability at Different Stages of Fruit Development.

    PubMed

    Pereira, Luciane Dias; Barbosa, João Marcos Gonçalves; Ribeiro da Silva, Antonio Jorge; Ferri, Pedro Henrique; Santos, Suzana Costa

    2017-02-15

    A new ellagitannin named cauliflorin (1), seven known hydrolyzable tannins (2-8), and six known phenolics (9-14) were isolated from jabuticaba. Compounds 2-8 had not been previously isolated from M. cauliflora fruits. The jabuticaba fruit was analyzed at four developmental stages for ellagitannins 1, 3, 7, and 8, phenolic acids 11 and 12, anthocyanins, organic acids, and sugars via HPLC-UV-DAD and NMRq. The content of ellagitannins and organic acids declined during fruit development, whereas at full ripeness sugar and anthocyanin levels underwent a sharp increase and were mainly constituted by fructose and cyanidin-3-O-glucose, respectively. Ellagitannins' profile varied considerably among fruit tissues, with pedunculagin (3), castalagin (7), and vescalagin (8) mostly concentrated in jabuticaba seeds, whereas cauliflorin (1) and anthocyanins accumulated in the peels. Changes in jabuticaba's phenolic compound contents were mostly influenced by fruit part (peel, pulp, and seed) rather than by degree of ripeness.

  1. Polyphenols in foods are more complex than often thought.

    PubMed

    Cheynier, Véronique

    2005-01-01

    Dietary polyphenols show a great diversity of structures, ranging from rather simple molecules (monomers and oligomers) to polymers. Higher-molecular-weight structures (with molecular weights of > 500) are usually designated as tannins, which refers to their ability to interact with proteins. Among them, condensed tannins (proanthocyanidins) are particularly important because of their wide distribution in plants and their contributions to major food qualities. All phenolic compounds are highly unstable and rapidly transformed into various reaction products when the plant cells are damaged (for instance, during food processing), thus adding to the complexity of dietary polyphenol composition. The polyphenol composition of plant-derived foods and beverages depends on that of the raw material used but also on the extraction process and subsequent biochemical and chemical reactions of plant polyphenols. The occurrence of specific tannin-like compounds (ie, thearubigins and theaflavins) arising from enzymatic oxidation is well documented in black tea. Various chemical reactions involving anthocyanins and/or flavanols have been demonstrated to occur during red wine aging. Current knowledge regarding the reaction mechanisms involved in some of these processes and the structures of the resulting products is reviewed. Their effects on organoleptic and nutritional quality are also discussed.

  2. Astringency, bitterness and color changes in dry red wines before and during oak barrel aging: An updated phenolic perspective review.

    PubMed

    Li, Si-Yu; Duan, Chang-Qing

    2018-01-30

    To understand effects of using oak barrels on the astringency, bitterness and color of dry red wines, phenolic reactions in wines before and after barrel aging are reviewed in this paper, which has been divided into three sections. The first section includes an introduction to chemical reactivities of grape-derived phenolic compounds, a summary of the phenolic reactions that occur in dry red wines before barrel aging, and a discussion of the effects of these reactions on wine astringency, bitterness and color. The second section introduces barrel types that determine the oak barrel constituents in wines (primarily oak aldehydes and ellagitannins) and presents reactions between the oak constituents and grape-derived phenolic compounds that may modulate wine astringency, bitterness and color. The final section illustrates the chemical differences between basic oxidation and over-oxidation in wines, discusses oxygen consumption kinetics in wines during barrel aging by comparing different oxygen consumption kinetics observed previously by others, and speculates on the possible preliminary phenolic reactions that occur in dry red wines during oak barrel aging that soften tannins and stabilize pigments via basic oxidation. Additionally, sulfur dioxide (SO 2 ) addition during barrel aging and suitability of adopting oak barrels for aging wines are briefly discussed.

  3. Nutrient content, in vitro ruminal fermentation characteristics and methane reduction potential of tropical tannin-containing leaves.

    PubMed

    Bhatta, Raghavendra; Saravanan, Mani; Baruah, Luna; Sampath, Koratekere T

    2012-12-01

    Plant tannins as rumen modifiers are better than chemicals or antibiotic-based modifiers since these compounds are natural products which are environmentally friendly and therefore have a better acceptance with regard to feed safety issues. Tropical plants containing phenols such as tannins were found to suppress or eliminate protozoa from the rumen and reduce methane and ammonia production. The screening of these plants is an important step in the identification of new compounds and feed additives which might contribute to mitigate rumen methanogenesis. The present study was carried out to determine the efficacy of tannins from tropical tree leaves for their methane reduction properties. Activity of tannins, as represented by the increase in gas volume with the addition of polyethylene glycol (PEG)-6000 as a tannin binder (tannin bioassay) was highest in Ficus bengalensis (555%), followed by Azardirachta indica (78.5%). PEG addition did not alter (P > 0.05) methane percentage in Ficus racemosa, Glyricidia maculata, Leucena leucocephala, Morus alba and Semaroba glauca, confirming that tannins in these samples did not affect methanogenesis. The increase (P < 0.05) in protozoa population with PEG was maximal in Ficus religiosa (50), followed by Moringa oleifera (31.2), Azardirachta indica (29.9) and Semaroba glauca (27.5). There was no change (P > 0.05) in the protozoa population in Autocarpus integrifolia, Ficus bengalensis, Jatropha curcus, Morus alba and Sesbania grandiflora, demonstrating that methane reduction observed in these samples per se was not due to defaunation effect of the tannin. The increase in total volatile fatty acid concentration in samples with PEG ranged from 0.6% to > 70%. The highest increase (%) in NH(3)-N was recorded in Azardirachta indica (67.4), followed by Ficus mysoriensis (35.7) and Semaroba glauca (32.6) leaves, reflecting strong protein binding properties of tannin. The results of our study established that in vitro methanogenesis was not essentially related to the density of protozoa population. Tropical tree leaves containing tannins such as Autocarpus integrifolia, Jatropha curcus and Sesbania grandiflora have the potential to suppress methanogenesis. Therefore tannins contained in these plants could be of interest in the development of new additives in ruminant nutrition. Copyright © 2012 Society of Chemical Industry.

  4. Phenolic Profiles, Phytchemicals and Mineral Content of Decoction and Infusion of Opuntia ficus-indica Flowers.

    PubMed

    Ammar, Imene; Ennouri, Monia; Bouaziz, Mohamed; Ben Amira, Amal; Attia, Hamadi

    2015-12-01

    Opuntia flowers are a natural source of biologically active compounds and they have been used as medicinal plant for a long time. Despite the various uses reported for the decoction and infusion of these flowers, their characterization has been discarded. In this study, the decoction and infusion prepared from Opuntia ficus-indica were analyzed with respect to their content in minerals and phytochemicals in order to evaluate its nutritional characteristics. The obtained data proved that these preparations are a rich source of minerals mainly K and Ca. Moreover, the phytochemical analysis revealed that they have important polyphenols, flavonoids and tannins contents with the infusion that presented the highest polyphenol levels. LC-MS analyses of decoction and infusion allowed the characterization of 20 phenolic compounds. It is mainly identified by the presence of flavonols glycosides.

  5. Characterization of virgin walnut oils and their residual cakes produced from different varieties.

    PubMed

    Ojeda-Amador, Rosa M; Salvador, María Desamparados; Gómez-Alonso, Sergio; Fregapane, Giuseppe

    2018-06-01

    This study addresses the composition and properties of different walnut varieties (Chandler, Hartley and Lara), in particular their virgin oils and residual cakes obtained by screw pressing employing different cultivars. Among nuts, walnut (Juglans regia L.) exhibits interesting nutritional value, mainly due to their high content in linoleic acid, phenolic and tocopherol compounds, which show antioxidant and other healthy properties. Valuable results related to fatty acid profile and minor components were observed. Virgin walnut oil is a rich source in linoleic acid (60-62%) and γ-tocopherol (517-554 mg/kg). Moreover, walnuts show a very high content in total phenolic compounds (10,045-12,474 mg/kg; as gallic acid), which contribute to a great antioxidant activity (105-170 mmol/kg for DPPH, and 260-393 mmol/kg for ORAC), being the hydrolysable tannins (2132-4204 mg/kg) and flavanols (796-2433 mg/kg) their main phenolic groups. Aldehydes account for the highest contribution to aromatic volatiles in virgin walnut oil (about 35% of total). As expected, polar phenolic compounds concentrate in the residual cake, after the separation of the oily phase, reaching a content of up to 19,869 mg/kg, leading to potential added value and applications as source of bioactive compounds to this by-product. Copyright © 2018 Elsevier Ltd. All rights reserved.

  6. Antioxidant capacity, polyphenolic content and tandem HPLC-DAD-ESI/MS profiling of phenolic compounds from the South American berries Luma apiculata and L. chequén.

    PubMed

    Simirgiotis, Mario J; Bórquez, Jorge; Schmeda-Hirschmann, Guillermo

    2013-08-15

    Native Myrtaceae fruits were gathered by South American Amerindians as a food source. At present, there is still some regional consume of the small berries from trees belonging to genus Luma that occurs in southern Chile and Argentina. The aerial parts and berries from Luma apiculata and Luma chequen were investigated for phenolic constituents and antioxidant capacity. A high performance electrospray ionisation mass spectrometry method was developed for the rapid identification of phenolics in polar extracts from both species. Thirty-one phenolic compounds were detected and 27 were identified or tentatively characterised based on photodiode array UV-vis spectra (DAD), ESI-MS-MS spectrometric data and spiking experiments with authentic standards. Twelve phenolic compounds were detected in L. apiculata fruits and 12 in the aerial parts while L. chequen yielded 10 compounds in fruits and 16 in aerial parts, respectively. From the compounds occurring in both Luma species, seven were identified as tannins or their monomers, 15 were flavonol derivatives and five were anthocyanins. The whole berry and aerial parts extracts presented high antioxidant capacity in the DPPH assay (IC50 of 10.41±0.02 and 2.44±0.03 μg/mL for L. apiculata, 12.89±0.05 and 3.22±0.05 for L. chequen, respectively), which can be related to the diverse range of phenolics detected. The antioxidant capacity together with the high polyphenolic contents and compounds identified can support at least in part, their use as botanical drugs. From the compounds identified in both species, 3-O-(6″-O-galloyl)-hexose derivatives of myricetin, quercetin, laricitrin and isorhamnetin are reported for the first time for the genus Luma. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Pressurized hot water extraction (PHWE) for the green recovery of bioactive compounds and steviol glycosides from Stevia rebaudiana Bertoni leaves.

    PubMed

    Bursać Kovačević, Danijela; Barba, Francisco J; Granato, Daniel; Galanakis, Charis M; Herceg, Zoran; Dragović-Uzelac, Verica; Putnik, Predrag

    2018-07-15

    Stevia rebaudiana Bertoni leaves are a natural source of diterpenic glycosides, and various bioactive compounds. The objectives were to characterize antioxidants and steviol glycosides in the extracts obtained from Stevia after "green" pressurized hot water extraction (PHWE). PHWE extracts were obtained at different temperatures (100, 130, 160 °C); static extraction times (5 and 10 min), and cycle numbers (1, 2, 3) using a constant pressure of 10.34 MPa. Temperature was the most important parameter for extraction, where the highest recoveries of all bioactive compounds (except for carotenoids) were at 160 °C. Extracts obtained at longer static times had more steviol glycosides, condensed tannins, and chlorophyll A. Higher amounts of total phenols, condensed tannins, and steviol glycosides were obtained under higher cycle numbers. This study indicated that PHWE is useful for recovering polar and nonpolar antioxidants and steviol glycosides. PHWE may be a suitable technique for scale-up to industrial applications. Copyright © 2018 Elsevier Ltd. All rights reserved.

  8. Antioxidant activity of pomegranate juice and its relationship with phenolic composition and processing.

    PubMed

    Gil, M I; Tomás-Barberán, F A; Hess-Pierce, B; Holcroft, D M; Kader, A A

    2000-10-01

    The antioxidant activity of pomegranate juices was evaluated by four different methods (ABTS, DPPH, DMPD, and FRAP) and compared to those of red wine and a green tea infusion. Commercial pomegranate juices showed an antioxidant activity (18-20 TEAC) three times higher than those of red wine and green tea (6-8 TEAC). The activity was higher in commercial juices extracted from whole pomegranates than in experimental juices obtained from the arils only (12-14 TEAC). HPLC-DAD and HPLC-MS analyses of the juices revealed that commercial juices contained the pomegranate tannin punicalagin (1500-1900 mg/L) while only traces of this compound were detected in the experimental juice obtained from arils in the laboratory. This shows that pomegranate industrial processing extracts some of the hydrolyzable tannins present in the fruit rind. This could account for the higher antioxidant activity of commercial juices compared to the experimental ones. In addition, anthocyanins, ellagic acid derivatives, and hydrolyzable tannins were detected and quantified in the pomegranate juices.

  9. Tannin diagenesis in mangrove leaves from a tropical estuary: A novel molecular approach

    USGS Publications Warehouse

    Hernes, P.J.; Benner, R.; Cowie, G.L.; Goi, M.A.; Bergamaschi, B.A.; Hedges, J.I.

    2001-01-01

    Molecular-level condensed tannin analyses were conducted on a series of mangrove (Rhizophora mangle) leaves at various stages of decomposition in a tropical estuary. Total molecular tannin yields ranged from 0.5% ash-free dry weight (AFDW) in the most highly degraded black leaves (6-7 weeks in the water) up to >7% AFDW in fresh leaves (80% procyanidin (PC) with the remainder being prodelphinidin (PD). PD tannin, with its higher degree of hydroxylation, proved to be more labile than PC tannin. Average chain length of condensed tannin (degree of polymerization) exhibited an initial increase in response to leaching, but later decreased in the subsequent shift toward abiotic or microbially mediated chemical reactions. Several trends point toward a possible condensation reaction in which tannin plays a role in nitrogen immobilization. These include an apparent inverse correlation between molecular tannin and nitrogen, a positive correlation between molecular tannin and percent basic amino acids, 13C-NMR data indicating transformation of tannin as opposed to remineralization, and 13C-NMR data showing loss of condensed tannin B-ring phenolic carbons coupled with preservation of A-ring phenolic carbon. In addition to condensed tannin, the molecular method used also yielded several triterpenoids. Triterpenoids accounted for up to 3.5% AFDW of the leaf material and exhibited a threefold increase between yellow senescent leaves entering the estuary and black leaves. This trend is likely due to the weakening of protective cuticular membranes during leaf decomposition, which leads to increased yields in the acidic conditions used for tannin analyses. Copyright ?? 2001 Elsevier Science Ltd.

  10. Effects of Fat and Protein Levels on Foraging Preferences of Tannin in Scatter-Hoarding Rodents

    PubMed Central

    Wang, Bo; Chen, Jin

    2012-01-01

    Both as consumers and dispersers of seeds, scatter-hoarding rodents often play an important role in the reproductive ecology of many plant species. However, the seeds of many plant species contain tannins, which are a diverse group of water-soluble phenolic compounds that have a high affinity for proteins. The amount of tannins in seeds is expected to affect rodent foraging preferences because of their major impact on rodent physiology and survival. However, variable results have been obtained in studies that evaluated the effects of tannin on rodent foraging behavior. Hence, in this study, we aimed to explain these inconsistent results and proposed that a combination of seed traits might be important in rodent foraging behavior, because it is difficult to distinguish between the effects of individual traits on rodent foraging behavior and the interactions among them. By using a novel artificial seed system, we manipulated seed tannin and fat/protein levels to examine directly the univariate effects of each component on the seed preferences of free-ranging forest rats (Apodemus latronum and Apodemus chevrieri) during the behavioral process of scatter hoarding. Our results showed that both tannin and fat/protein had significant effects on rodent foraging behavior. Although only a few interactive effects of tannin and fat/protein were recorded, higher concentrations of both fat and protein could attenuate the exclusion of seeds with higher tannin concentrations by rodents, thus influencing seed fate. Furthermore, aside from the concentrations of tannin, fat, and protein, numerous other traits of plant seeds may also influence rodent foraging behavior. We suggest that by clarifying rodent foraging preferences, a better understanding of the evolution of plant seed traits may be obtained because of their strong potential for selective pressure. PMID:22808217

  11. Wine phenolics.

    PubMed

    Waterhouse, Andrew L

    2002-05-01

    Wine contains many phenolic substances, most of which originate in the grape berry. The phenolics have a number of important functions in wine, affecting the tastes of bitterness and astringency, especially in red wine. Second, the color of red wine is caused by phenolics. Third, the phenolics are the key wine preservative and the basis of long aging. Lastly, since phenolics oxidize readily, they are the component that suffers owing to oxidation and the substance that turns brown in wine (and other foods) when exposed to air. Wine phenolics include the non-flavonoids: hydroxycinnamates, hydroxybenzoates and the stilbenes; plus the flavonoids: flavan-3-ols, the flavonols, and the anthocyanins. While polymeric condensed tannins and pigmented tannins constitute the majority of wine phenolics, their large size precludes absorption and thus they are not likely to have many health effects (except, perhaps, in the gut). The total amount of phenols found in a glass of red wine is on the order of 200 mg versus about 40 mg in a glass of white wine.

  12. Phenolic compositions of 50 and 30 year sequences of Australian red wines: the impact of wine age.

    PubMed

    McRae, Jacqui M; Dambergs, Robert G; Kassara, Stella; Parker, Mango; Jeffery, David W; Herderich, Markus J; Smith, Paul A

    2012-10-10

    The phenolic composition of red wine impacts upon the color and mouthfeel and thus quality of the wine. Both of these characteristics differ depending on the age of a wine, with the purple of young wines changing to brick red and the puckering or aggressive astringency softening in older wines. This study investigated the color parameters, tannin concentrations and tannin composition of a 50 year series of Cabernet Sauvignon wines from a commercial label as well as 30 year series of Cabernet Sauvignon and Shiraz wines from a separate commercial label to assess the impact of wine age on phenolic composition and concentration. The wine color density in wines of 40 to 50 years old was around 5 AU compared with 16 AU of wine less than 12 months old, which correlated well with the concentration of non-bleachable pigments and pigmented polymers. Conversely, the anthocyanin concentrations in 10 year old wines were substantially lower than that of recently bottled wines (around 100 mg/L compared with 627 mg/L, respectively), adding further evidence that non-bleachable pigments including pigmented polymers play a much larger role in long-term wine color than anthocyanins. No age-related trend was observed for tannin concentration, indicating that the widely noted softer astringency of older red wines cannot necessarily be directly related to lower concentrations of soluble wine tannin and is potentially a consequence of changes in tannin structure. Wine tannins from older wines were generally larger than tannins from younger wines and showed structural changes consistent with oxidation.

  13. Investigation on the phenolic constituents in Hamamelis virginiana leaves by HPLC-DAD and LC-MS/MS.

    PubMed

    Duckstein, Sarina M; Stintzing, Florian C

    2011-08-01

    Aqueous and acetone/water extracts from Hamamelis virginiana leaves were investigated to obtain a thorough insight into their phenolic composition. To secure compound integrity, a gentle extraction method including the exclusion of light was used. Liquid chromatography tandem mass spectrometry (LC-MS/MS) analyses yielded a fingerprint including 27 phenolic constituents. Quantification of the key compounds on an equivalent basis by high-performance liquid chromatography diode-array detection (HPLC-DAD) showed that gallotannins consisting of six to 11 galloyl units constitute the main fraction, whereas procyanidins and catechin represented only a minor part. Closer inspection revealed that both extracts possess virtually the same galloyl hexose distribution, and the octagalloyl hexose represents the major tannin constituent. Additionally, eight flavonol glycosides and their corresponding aglycones quercetin and kaempferol, as well as three chlorogenic acid isomers and other hydroxycinnamic acids, were identified. Moreover, stability studies on the aqueous extract (5 °C, dark; room temperature, dark; room temperature, light) revealed that the phenolic profile underwent changes when exposed to light. Especially the gallotannins proved to be considerably unstable which may result in phytochemically altered Hamamelis leaf extracts upon transport and storage.

  14. Separation and purification of four phenolic compounds from persimmon by high-speed counter-current chromatography.

    PubMed

    Peng, Jinming; Li, Kaikai; Zhu, Wei; Deng, Xiangyi; Li, Chunmei

    2018-01-01

    An efficient method was established by high-speed counter-current chromatography (HSCCC) for preparation of four phenolic compounds from the depolymerization products of persimmon tannin. Using the two solvent systems of n-hexane/ethyl acetate/water (3:17:20, v/v/v) and ethyl acetate/methanol/water (50:1:50, v/v/v), the preparative isolation was successfully performed by a two-step separation. The yields of one run (150mg crude sample) for gallic acid, methyl gallate, and epigallocatechin-3-gallate-(4β→8, 2β→O→7)-epigallocatechin-3-gallate dimer (A-type EGCG dimer) were 4.7, 44.2 and 5.9mg, respectively. In addition, 4.6mg epicatechin-3-gallate-(4β→8, 2β→O→7)-epicatechin-3-gallate dimer (A-type ECG dimer) was obtained by further preparative high-performance liquid chromatography (prep-HPLC). The purities of these compounds were all above 95.0% and their structures were identified by HPLC/ESI-MS. We found that HSCCC had definite advantages for the preparation of dimeric procyanidins compared with previous methods. Furthermore, it was shown that the four phenolic compounds possessed greater antioxidant activities than Trolox. Copyright © 2017. Published by Elsevier B.V.

  15. Effect of Sterilization Process and Storage on the Antioxidative Properties of Runner Bean.

    PubMed

    Wołosiak, Rafał; Drużyńska, Beata; Piecyk, Małgorzata; Majewska, Ewa; Worobiej, Elwira

    2018-06-11

    In this study, we investigated the effect of standard preservation of bean seeds on changes in contents and activity of their selected components: dry matter, ash, different forms of nitrogen, composition of protein fractions; total phenolics and condensed tannins; ability to chelate iron(II) ions; antiradical activity against ABTS •+ and DPPH • ; and capability for inhibiting autoxidation and enzymatic oxidation of linoleic acid. The conducted technological process caused various changes in contents of nitrogen forms and partial loss of phenolic compounds. The antiradical and antioxidative activity of the extracts decreased significantly, while an increase was observed in their ability to chelate Fe(II). These changes were due to the migration of active compounds to the brine, and to their structural transformations and degradation. Longer storage of the sterilized product caused restoration of part of the antiradical activity of the seeds.

  16. UNUSUAL PHENOLIC COMPOUNDS CONTRIBUTE TO ECOPHYSIOLOGICAL PERFORMANCE IN THE PURPLE-COLORED GREEN ALGA ZYGOGONIUM ERICETORUM (ZYGNEMATOPHYCEAE, STREPTOPHYTA) FROM A HIGH-ALPINE HABITAT

    PubMed Central

    Aigner, Siegfried; Remias, Daniel; Karsten, Ulf; Holzinger, Andreas

    2013-01-01

    The filamentous green alga Zygogonium ericetorum (Zygnematophyceae, Streptophyta) was collected in a high-alpine rivulet in Tyrol, Austria. Two different morphotypes of this alga were found: a purple morph with a visible purple vacuolar content and a green morph lacking this coloration. These morphotypes were compared with respect to their secondary metabolites, ultrastructure, and ecophysiological properties. Colorimetric tests with aqueous extracts of the purple morph indicated the presence of soluble compounds such as phenolics and hydrolyzable tannins. High-performance liquid chromatography-screening showed that Z. ericetorum contained several large phenolic peaks with absorption maxima at ∼280 nm and sometimes with minor maxima at ∼380 nm. Such compounds are uncommon for freshwater green microalgae, and could contribute to protect the organism against increased UV and visible (VIS) irradiation. The purple Z. ericetorum contained larger amounts (per dry weight) of the putative phenolic substances than the green morph; exposure to irradiation may be a key factor for accumulation of these phenolic compounds. Transmission electron microscopy of the purple morph showed massive vacuolization with homogenous medium electron-dense content in the cell periphery, which possibly contains the secondary compounds. In contrast, the green morph had smaller, electron-translucent vacuoles. The ecophysiological data on photosynthesis and desiccation tolerance indicated that increasing photon fluence densities led to much higher relative electron transport rates (rETR) in the purple than in the green morph. These data suggest that the secondary metabolites in the purple morph are important for light acclimation in high-alpine habitats. However, the green morph recovered better after 4 d of rehydration following desiccation stress. PMID:25810559

  17. Identification of a Collagenase-Inhibiting Flavonoid from Alchemilla vulgaris Using NMR-Based Metabolomics.

    PubMed

    Mandrone, Manuela; Coqueiro, Aline; Poli, Ferruccio; Antognoni, Fabiana; Choi, Young Hae

    2018-05-24

    This paper describes the use of 1 H NMR profiling and chemometrics in order to facilitate the selection of medicinal plants as potential sources of collagenase inhibitors. A total of 49 plants with reported ethnobotanical uses, such as the healing of wounds and burns, treatment of skin-related diseases, rheumatism, arthritis, and bone diseases, were initially chosen as potential candidates. The in vitro collagenase inhibitory activity of hydroalcoholic extracts of these plants was tested. Moreover, their phytochemical profiles were analyzed by 1 H NMR and combined with the inhibitory activity data by an orthogonal partial least squares model. The results showed a correlation between the bioactivity and the concentration of phenolics, including flavonoids, phenylpropanoids, and tannins, in the extracts. Considering the eventual false-positive effect on the bioactivity given by tannins, a tannin removal procedure was performed on the most active extracts. After this procedure, Alchemilla vulgaris was the most persistently active, proving to owe its activity to compounds other than tannins. Thus, this plant was selected as the most promising and further investigated through bioassay-guided fractionation, which resulted in the isolation of a flavonoid, quercetin-3- O - β -glucuronide, as confirmed by NMR and HRMS spectra. This compound showed not only a higher activity than other flavonoids with the same aglycone moiety, but was also higher than doxycycline (positive control), the only Federal Drug Administration-approved collagenase inhibitor. The approach employed in this study, namely the integration of metabolomics and bioactivity-guided fractionation, showed great potential as a tool for plant selection and identification of bioactive compounds in natural product research. Georg Thieme Verlag KG Stuttgart · New York.

  18. Fate of tannins in Corsican pine litter.

    PubMed

    Nierop, Klaas G J; Verstraten, Jacobus M

    2006-12-01

    Tannins are ubiquitous in higher plants and also in litter and soils where they affect many biogeochemical processes. Despite this well-recognized role, their fate in litter and mineral soils is hardly known, as often only trace amounts, if any, are measured. In this study, we conducted an incubation experiment with Corsican pine litter to which known amounts of tannic acid (TA) or condensed tannins (CTs) from Corsican pine were added. Using Folin-Ciocalteu as a measure for total phenolics and HCl-butanol as an assay specific for CTs, acetone/water extractable phenolics and tannins decreased with time towards very low levels. Application of thermally assisted hydrolysis and methylation to litter before and after acetone/water extraction revealed that TA concentration decreased. By contrast, CTs remained to a great extent in the litter and could not be extracted suggesting that they were tightly bound.

  19. Addressing Facts and Gaps in the Phenolics Chemistry of Winery By-Products.

    PubMed

    Machado, Nelson F L; Domínguez-Perles, Raúl

    2017-02-14

    Grape and wine phenolics display a noticeable structural diversity, encompassing distinct compounds ranging from simple molecules to oligomers, as well as polymers usually designated as tannins. Since these compounds contribute critically to the organoleptic properties of wines, their analysis and quantification are of primordial importance for winery industry operators. Besides, the occurrence of these compounds has been also extensively described in winery residues, which have been pointed as a valuable source of bioactive phytochemicals presenting potential for the development of new added value products that could fit the current market demands. Therefore, the cumulative knowledge generated during the last decades has allowed the identification of the most promising compounds displaying interesting biological functions, as well as the chemical features responsible for the observed bioactivities. In this regard, the present review explores the scope of the existing knowledge, concerning the compounds found in these winery by-products, as well as the chemical features presumably responsible for the biological functions already identified. Moreover, the present work will hopefully pave the way for further actions to develop new powerful applications to these materials, thus, contributing to more sustainable valorization procedures and the development of newly obtained compounds with enhanced biological properties.

  20. A role for anthocyanin in determining wine tannin concentration in Shiraz.

    PubMed

    Kilmister, Rachel L; Mazza, Marica; Baker, Nardia K; Faulkner, Peta; Downey, Mark O

    2014-01-01

    Four wines were made to investigate the effect of different anthocyanin and tannin fruit concentrations on wine phenolics and colour. Wines that were made from fruit with high anthocyanin concentration had high tannin concentrations regardless of the concentration of tannin in fruit, while wines made from fruit with low anthocyanin also had low tannin concentration. It was found that fruit anthocyanin concentration correlated with wine tannin concentration, wine colour and polymeric pigment formation. Anthocyanin concentration might be a key component for increasing tannin solubility and extraction into wine and the formation of polymeric pigments. Industry implications include managing tannin and anthocyanin fruit concentration for targeting tannin extraction and polymeric pigment formation in wine. Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.

  1. Multidirectional characterisation of chemical composition and health-promoting potential of Rosa rugosa hips.

    PubMed

    Olech, Marta; Nowak, Renata; Pecio, Łukasz; Łoś, Renata; Malm, Anna; Rzymowska, Jolanta; Oleszek, Wiesław

    2017-03-01

    Rugosa rose provides one of the largest hips frequently used in the preparation of pharmaceutical and food products. The aim of work was to conduct multidirectional study of biological activity and chemical composition of Rosa rugosa hips. Antiradical, cytotoxic (against cervical and breast cancer cell lines), antibacterial (against eight bacterial strains) and antifungal potential of the species in question was evaluated. Total contents of phenolics, phenolic acids, flavonoids, tannins, carotenoids and ascorbic acid were determined. LC-ESI-MS/MS analysis was performed in order to investigate closely phenolic acids and flavonoid glycosides. As a result, interesting selective cytotoxic effects on cervical (HeLa) and breast cancer (T47D) cell lines, significant antiradical activity (EC 50 2.45 mg mg -1 DPPH • ) and moderate antimicrobial potential (MIC 0.625-1.25 mg mL -1 ) were observed. Nine phenolic acids and 11 flavonoid glycosides were qualitatively and quantitatively determined, including 7 compounds previously not reported in R. rugosa hips.

  2. Characterization of microbial metabolism of Syrah grape products in an in vitro colon model using targeted and non-targeted analytical approaches.

    PubMed

    Aura, Anna-Marja; Mattila, Ismo; Hyötyläinen, Tuulia; Gopalacharyulu, Peddinti; Cheynier, Veronique; Souquet, Jean-Marc; Bes, Magali; Le Bourvellec, Carine; Guyot, Sylvain; Orešič, Matej

    2013-03-01

    Syrah red grapes are used in the production of tannin-rich red wines. Tannins are high molecular weight molecules, proanthocyanidins (PAs), and poorly absorbed in the upper intestine. In this study, gut microbial metabolism of Syrah grape phenolic compounds was investigated. Syrah grape pericarp was subjected to an enzymatic in vitro digestion model, and red wine and grape skin PA fraction were prepared. Microbial conversion was screened using an in vitro colon model with faecal microbiota, by measurement of short-chain fatty acids by gas chromatography (GC) and microbial phenolic metabolites using GC with mass detection (GC-MS). Red wine metabolites were further profiled using two-dimensional GC mass spectrometry (GCxGC-TOFMS). In addition, the effect of PA structure and dose on conversion efficiency was investigated by GC-MS. Red wine exhibited a higher degree of C1-C3 phenolic acid formation than PA fraction or grape pericarp powders. Hydroxyphenyl valeric acid (flavanols and PAs as precursors) and 3,5-dimethoxy-4-hydroxybenzoic acid (anthocyanin as a precursor) were identified from the red wine metabolite profile. In the absence of native grape pericarp or red wine matrix, the isolated PAs were found to be effective in the dose-dependent inhibition of microbial conversions and short-chain fatty acid formation. Metabolite profiling was complementary to targeted analysis. The identified metabolites had biological relevance, because the structures of the metabolites resembled fragments of their grape phenolic precursors or were in agreement with literature data.

  3. Characterization of phenolic compounds in Brazilian pepper (Schinus terebinthifolius Raddi) exocarp.

    PubMed

    Feuereisen, Michelle M; Hoppe, Julia; Zimmermann, Benno F; Weber, Fabian; Schulze-Kaysers, Nadine; Schieber, Andreas

    2014-07-02

    The objective of this study was to characterize the phenolic composition of Brazilian pepper (Schinus terebinthifolius Raddi) exocarp extract. Using UHPLC-DAD-MS/MS analysis, four anthocyanins, three biflavonoids, gallic acid, and two types of hydrolyzable tannins (galloyl glucoses, galloyl shikimic acids) were tentatively identified. The structure of the so far unknown 7-O-methylpelargonidin 3-O-β-D-galactopyranoside was elucidated by 2D NMR. Within the group of gallotannins, galloyl shikimic acids with uncommon degrees of galloylation (tetra- to hexagalloyl shikimic acids) were detected. Among the biflavonoids, I3',II8-biapigenin (amentoflavone), I6,II8-biapigenin (agathisflavone), and II-2,3-dihydro-I3',II8-biapigenin were identified, which have already been described for Anacardiaceae. From the results of the present study together with previous findings on the phenolic profile of other Anacardiaceae plants, it is concluded that 7-methoxylated flavonoids are a chemotaxonomic trait frequently found in this family.

  4. Physico-mechanical properties of plywood bonded with ecological adhesives from Acacia mollissima tannins and lignosulfonates

    NASA Astrophysics Data System (ADS)

    Rhazi, Naima; Oumam, Mina; Sesbou, Abdessadek; Hannache, Hassan; Charrier-El Bouhtoury, Fatima

    2017-06-01

    The objective of this research was to develop ecological adhesives for bonding plywood panels using lignosulfonates, a common waste product of the wood pulp industry, and natural tannin extracted from Moroccan bark of Acacia mollissima using different process. Natural tannin and lignin were used in wood adhesives formulation to substitute resins based on phenol and formaldehyde. To achieve this, the lignosulfonates were glyoxalated to enhance their reactivity and the used tannins obtained by three different extraction methods were compared with commercial mimosa tannin. The proportion of Acacia mollissima tannins and lignosulfonates, the pressing time, the pressing temperature, and the pressure used were studied to improve mechanical properties, and bonding quality of plywood panel. The properties of plywood panels produced with these adhesives were tested in accordance with normative tests. Thus, the tensile strength, and the shear strength were measured. The results showed that the performance of the plywood panels made using biobased tannin adhesives was influenced by physical conditions such as pressure, press temperature as well as by chemical conditions, such as the tannin-lignin ratio. It exhibited excellent mechanical properties comparable to commercially available phenol-formaldehyde plywood adhesives. This study showed that biobased adhesives formulations presented good and higher mechanical performance and no formaldehyde emission. Contribution to the topical issue "Materials for Energy harvesting, conversion and storage II (ICOME 2016)", edited by Jean-Michel Nunzi, Rachid Bennacer and Mohammed El Ganaoui

  5. Transgenic upregulation of the condensed tannin pathway in poplar leads to a dramatic shift in leaf palatability for two tree-feeding Lepidoptera.

    PubMed

    Boeckler, G Andreas; Towns, Megan; Unsicker, Sybille B; Mellway, Robin D; Yip, Lynn; Hilke, Ines; Gershenzon, Jonathan; Constabel, C Peter

    2014-02-01

    Transgenic hybrid aspen (Populus tremula x tremuloides) overexpressing the MYB134 tannin regulatory gene show dramatically enhanced condensed tannin (proanthocyanidin) levels, as well as shifts in other phenolic metabolites. A series of insect bioassays with forest tent caterpillars (Malacosoma disstria) and gypsy moth (Lymantria dispar) caterpillars was carried out to determine how this metabolic shift affects food preference and performance of generalist tree-feeding lepidopterans. Both species showed a distinct preference for the high-tannin MYB134 overexpressor plants, and L. dispar performance was enhanced relative to controls. L. dispar reached greater pupal weight and showed reduced time to pupation when reared on the MYB134 overexpressing poplar. These results were unexpected since enhanced condensed tannin levels were predicted to act as feeding deterrents. However, the data may be explained by the observed decrease in the salicinoids (phenolic glycosides) salicortin and tremulacin that accompanied the upregulation of the condensed tannins in the transgenics. We conclude that for these two lepidopteran species, condensed tannin levels are unlikely to be a major determinant of caterpillar food preference or performance. However, our experiments show that overexpression of a single regulatory gene in transgenic aspen can have a significant impact on herbivorous insects.

  6. Phenolic antioxidants (hydrolyzable tannins, flavonols, and anthocyanins) identified by LC-ESI-MS and MALDI-QIT-TOF MS from Rosa chinensis flowers.

    PubMed

    Cai, Yi-Zhong; Xing, Jie; Sun, Mei; Zhan, Zhao-Qi; Corke, Harold

    2005-12-28

    Rosa chinensis (Yuejihua) is a well-known ornamental plant, and its flowers are commonly used in traditional Chinese medicine. Methanolic crude extracts of dried R. chinensis flowers were used for simultaneous determination of phenolic constituents by liquid chromatography-mass spectrometry (LC-MS) and matrix-assisted laser desorption/ionization quadrupole ion trap time-of-flight mass spectrometry (MALDI-QIT-TOF MS). A total of 36 known and unknown phenolics were identified as hydrolyzable tannins, flavonols, and anthocyanins, mainly including gallotannins (mono-, di-, or trigalloylglucopyranosides), ellagitannins, quercetin, quercetin/kaempferol mono- and diglycosides, and cyanidin/pelargonidin diglycosides. MALDI-QIT-TOF MS was applied not only to verify most phenolics isolated and identified by LC-MS but also to tentatively identify two ellagitannins (rugosins B and C) not isolated and unidentified by LC-MS. This study is the first to demonstrate the rapid and successful use of MALDI-QIT-TOF MS and LC-MS to directly and simultaneously identify phenolics in the crude extracts of R. chinensis flowers without any purification. The antioxidant activity of the crude extracts from R. chinensis flowers was also measured with three assay methods. The results showed that the phenolic antioxidants from R. chinensis flowers exhibited very strong radical scavenging effect and antioxidant power. High levels of flavonols and hydrolyzable tannins might be important bioactive principles in the dried R. chinensis flowers.

  7. Pre-fermentative cold maceration, saignée, and various thermal treatments as options for modulating volatile aroma and phenol profiles of red wine.

    PubMed

    Lukić, Igor; Budić-Leto, Irena; Bubola, Marijan; Damijanić, Kristijan; Staver, Mario

    2017-06-01

    The effects of six maceration treatments on volatile aroma and phenol composition of Teran red wine were studied: standard maceration (control C), cold pre-fermentation maceration (CPM), saignée (S), pre-fermentation heating with extended maceration (PHT) or juice fermentation (PHP), and post-fermentation heating (POH). PHP wine contained the highest amounts of esters, fatty acids and anthocyanins, and the lowest content of other phenols. Alternative treatments decreased higher alcohols in relation to control C. CPM treatment lowered the extraction of seed tannins, exhibited the highest acetaldehyde, ethyl acetate and C 6 -compounds levels, and had increased ester levels in relation to control C. POH wine contained the highest concentration of total phenols, flavonoids, monomeric, oligomeric and polymeric flavanols, and color intensity and hue. S and PHT wines contained lower amount of total phenols, but higher than in C and CPM wines. The calculated Odor Activity Values were used to establish significant differences between the treatments. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Photosynthetic capacity is negatively correlated with the concentration of leaf phenolic compounds across a range of different species

    PubMed Central

    Sumbele, Sally; Fotelli, Mariangela N.; Nikolopoulos, Dimosthenis; Tooulakou, Georgia; Liakoura, Vally; Liakopoulos, Georgios; Bresta, Panagiota; Dotsika, Elissavet; Adams, Mark A.; Karabourniotis, George

    2012-01-01

    Background and aims Phenolic compounds are the most commonly studied of all secondary metabolites because of their significant protective–defensive roles and their significant concentration in plant tissues. However, there has been little study on relationships between gas exchange parameters and the concentration of leaf phenolic compounds (total phenolics (TP) and condensed tannins (CT)) across a range of species. Therefore, we addressed the question: is there any correlation between photosynthetic capacity (Amax) and TP and CT across species from different ecosystems in different continents? Methodology A plethora of functional and structural parameters were measured in 49 plant species following different growth strategies from five sampling sites located in Greece and Australia. The relationships between several leaf traits were analysed by means of regression and principal component analysis. Principal results The results revealed a negative relationship between TP and CT and Amax among the different plant species, growth strategies and sampling sites, irrespective of expression (with respect to mass, area or nitrogen content). Principal component analysis showed that high concentrations of TP and CT are associated with thick, dense leaves with low nitrogen. This leaf type is characterized by low growth, Amax and transpiration rates, and is common in environments with low water and nutrient availability, high temperatures and high light intensities. Therefore, the high TP and CT in such leaves are compatible with the protective and defensive functions ascribed to them. Conclusions Our results indicate a functional integration between carbon gain and the concentration of leaf phenolic compounds that reflects the trade-off between growth and defence/protection demands, depending on the growth strategy adopted by each species. PMID:23050073

  9. Photosynthetic capacity is negatively correlated with the concentration of leaf phenolic compounds across a range of different species.

    PubMed

    Sumbele, Sally; Fotelli, Mariangela N; Nikolopoulos, Dimosthenis; Tooulakou, Georgia; Liakoura, Vally; Liakopoulos, Georgios; Bresta, Panagiota; Dotsika, Elissavet; Adams, Mark A; Karabourniotis, George

    2012-01-01

    Phenolic compounds are the most commonly studied of all secondary metabolites because of their significant protective-defensive roles and their significant concentration in plant tissues. However, there has been little study on relationships between gas exchange parameters and the concentration of leaf phenolic compounds (total phenolics (TP) and condensed tannins (CT)) across a range of species. Therefore, we addressed the question: is there any correlation between photosynthetic capacity (A(max)) and TP and CT across species from different ecosystems in different continents? A plethora of functional and structural parameters were measured in 49 plant species following different growth strategies from five sampling sites located in Greece and Australia. The relationships between several leaf traits were analysed by means of regression and principal component analysis. The results revealed a negative relationship between TP and CT and A(max) among the different plant species, growth strategies and sampling sites, irrespective of expression (with respect to mass, area or nitrogen content). Principal component analysis showed that high concentrations of TP and CT are associated with thick, dense leaves with low nitrogen. This leaf type is characterized by low growth, A(max) and transpiration rates, and is common in environments with low water and nutrient availability, high temperatures and high light intensities. Therefore, the high TP and CT in such leaves are compatible with the protective and defensive functions ascribed to them. Our results indicate a functional integration between carbon gain and the concentration of leaf phenolic compounds that reflects the trade-off between growth and defence/protection demands, depending on the growth strategy adopted by each species.

  10. Effects of gamma radiation on total phenolics, trypsin and tannin inhibitors in soybean grains

    NASA Astrophysics Data System (ADS)

    de Toledo, T. C. F.; Canniatti-Brazaca, S. G.; Arthur, V.; Piedade, S. M. S.

    2007-10-01

    The objective was determining possible radiation-induced alterations (with doses of 2, 4 and 8 kGy) in raw or cooked grains from five soybean cultivars through the analysis of some antinutrient. Total phenolic ranged from 2.46 to 10.83 mg/g, the trypsin inhibited from 18.19 to 71.64 UTI/g and tannins from 0.01 to 0.39 mg/g. All the antinutrient studied underwent reduction with increases in the doses and cooking process was effective too.

  11. In Vitro Control of Uropathogenic Microorganisms with the Ethanolic Extract from the Leaves of Cochlospermum regium (Schrank) Pilger.

    PubMed

    Leme, Danny Ellen Meireles; Rodrigues, Allan Belarmino; de Almeida-Apolonio, Adriana Araújo; Dantas, Fabiana Gomes da Silva; Negri, Melyssa Fernanda Norman; Svidzinski, Terezinha Inez Estivalet; Mota, Jonas da Silva; Cardoso, Claudia Andrea Lima; de Oliveira, Kelly Mari Pires

    2017-01-01

    The roots of Cochlospermum regium , popularly known as "algodãozinho-do-cerrado," are used for the treatment of genitourinary infections. However, the removal of their subterranean structures results in the death of the plant, and the use of the leaves becomes a viable alternative. Therefore, the antimicrobial activity of Cochlospermum regium leaf's ethanolic extract and its action on the biofilm formation of microorganisms associated with urinary infection were evaluated. The total phenolic compounds, flavoids, and tannins were quantified using the reagents Folin-Ciocalteu, aluminum chloride, and vanillin, respectively. The antimicrobial activity was evaluated by the broth microdilution method and the effect of the extract in the biofilm treatment was measured by the drop plate method. Cytotoxicity was evaluated by the method based on the reduction of MTS and the mutagenicity by the Ames test. The ethanolic extract of C. regium leaves presented 87.4 mg/EQ of flavonoids, 167.2 mg/EAG of total phenolic compounds, and 21.7 mg/ECA of condensed tannins. It presented reduction of the biofilm formation for E. coli and C. tropicalis and antimicrobial action of 1 mg/mL and 0.5 mg/mL, respectively. The extract showed no cytotoxicity and mutagenicity at the concentrations tested. This study demonstrated that C. regium leaves are a viable option for the treatment of genitourinary infections and for the species preservation.

  12. In Vitro Control of Uropathogenic Microorganisms with the Ethanolic Extract from the Leaves of Cochlospermum regium (Schrank) Pilger

    PubMed Central

    Leme, Danny Ellen Meireles; Rodrigues, Allan Belarmino; de Almeida-Apolonio, Adriana Araújo; Dantas, Fabiana Gomes da Silva; Svidzinski, Terezinha Inez Estivalet; Mota, Jonas da Silva; Cardoso, Claudia Andrea Lima

    2017-01-01

    The roots of Cochlospermum regium, popularly known as “algodãozinho-do-cerrado,” are used for the treatment of genitourinary infections. However, the removal of their subterranean structures results in the death of the plant, and the use of the leaves becomes a viable alternative. Therefore, the antimicrobial activity of Cochlospermum regium leaf's ethanolic extract and its action on the biofilm formation of microorganisms associated with urinary infection were evaluated. The total phenolic compounds, flavoids, and tannins were quantified using the reagents Folin-Ciocalteu, aluminum chloride, and vanillin, respectively. The antimicrobial activity was evaluated by the broth microdilution method and the effect of the extract in the biofilm treatment was measured by the drop plate method. Cytotoxicity was evaluated by the method based on the reduction of MTS and the mutagenicity by the Ames test. The ethanolic extract of C. regium leaves presented 87.4 mg/EQ of flavonoids, 167.2 mg/EAG of total phenolic compounds, and 21.7 mg/ECA of condensed tannins. It presented reduction of the biofilm formation for E. coli and C. tropicalis and antimicrobial action of 1 mg/mL and 0.5 mg/mL, respectively. The extract showed no cytotoxicity and mutagenicity at the concentrations tested. This study demonstrated that C. regium leaves are a viable option for the treatment of genitourinary infections and for the species preservation. PMID:29375642

  13. Immunosuppressive phenolic compounds from Hydnora abyssinica A. Braun.

    PubMed

    Koko, Waleed S; Mesaik, Mohamed A; Ranjitt, Rosa; Galal, Mohamed; Choudhary, Muhammad I

    2015-11-09

    Hydnora abyssinica (HA) A. Braun is an endemic Sudanese medicinal plant traditionally used as anti-inflammatory and against many infectious diseases. However, it proved to be very rich in phenols and tannins, so the present study was undertaken to investigate the immunomodulatory potential of the whole plant ethanolic extract and its isolated compounds. Lymphocyte proliferation, chemiluminescence and superoxide reduction assays were used for immunomodulatory evaluation. While, MTT (3-(4, 5-dimethylthazol-2-yl)-2, 5-diphenyl tetrazonium bromide) test was performed on 3 T3 cell line clone in order to evaluate the cytoxicity effect of the extracts and isolated compounds of phenolic derivatives which were carried out by chromotographic techniques. Catechin, (1), tyrosol (2) and benzoic acid, 3, 4, dihydroxy-, ethyl ester (3) compounds were isolated from HA ethanolic extract which revealed potent immunosuppressive activity against reactive oxygen species from both polymorph nuclear cells (PMNs) (45-90 % inhibition) and mononuclear cells (MNCs) (30 -65 % inhibition), T lymphocyte proliferation assay (70-93 % inhibition) as well as potent inhibitory effect against superoxide production (42-71 % inhibition) at concentrations of 6.25-100 μg/mL. Catechin (1) was found the most potent immunosuppressive agent among all constituents examined. These results can support the traditional uses of H. abyssinica extracts as anti-inflammatory and immunosuppressive and further investigations of the mode of action and other pharmacological studies are highly desirable.

  14. Gamma radiation effects on phenolics, antioxidants activity and in vitro digestion of pistachio ( Pistachia vera) hull

    NASA Astrophysics Data System (ADS)

    Behgar, M.; Ghasemi, S.; Naserian, A.; Borzoie, A.; Fatollahi, H.

    2011-09-01

    The effect of gamma radiation (10, 20, 30, 40, 50 and 60 kGy) on tannin, total phenolics, antioxidants activity and in vitro digestion of pistachio hulls has been investigated in this study. The possibility of using the radial diffusion method based on software measurement of the rings area has also been investigated in this study. The software based method in radial diffusion method showed a higher r2 (0.995) value when compared to the traditional method. Irradiation reduced the tannin content ( P<0.01) and activity of antioxidants ( P<0.05) of pistachio hull extracts but increased the total phenolic content ( P<0.05). There was no effect of gamma irradiation on the in vitro digestion of the pistachio hull. Irradiation decreased the digestion rate of the pistachio hull at the dose of 40 kGy when compared to the control. This study showed that gamma irradiation decreased tannin and antioxidants activity of pistachio hull.

  15. Hamamelitannin from witch hazel (Hamamelis virginiana) displays specific cytotoxic activity against colon cancer cells.

    PubMed

    Sánchez-Tena, Susana; Fernández-Cachón, María L; Carreras, Anna; Mateos-Martín, M Luisa; Costoya, Noelia; Moyer, Mary P; Nuñez, María J; Torres, Josep L; Cascante, Marta

    2012-01-27

    Hamamelis virginiana (witch hazel) bark is a rich source of condensed and hydrolyzable tannins reported to exert a protective action against colon cancer. The present study characterizes different witch hazel tannins as selective cytotoxic agents against colon cancer. To cover the structural diversity of the tannins that occur in H. virginiana bark, the hydrolyzable tannins, hamamelitannin and pentagalloylglucose, together with a proanthocyanidin-rich fraction (F800H4) were selected for the study. Treatment with these compounds reduced tumor viability and induced apoptosis, necrosis, and S-phase arrest in the cell cycle of HT29 cells, with hamamelitannin being the most efficient. Owing to polyphenol-mediated H(2)O(2) formation in the incubation media, the antiproliferative effect was determined in the presence and absence of catalase to rule out any such interference. The presence of catalase significantly changed the IC(50) only for F800H4. Furthermore, at concentrations that inhibit the growth of HT29 cells by 50%, hamamelitannin had no harmful effects on NCM460 normal colonocytes, whereas pentagalloylglucose inhibited both cancerous and normal cell growth. Using the TNPTM assay, we identified a highly reactive phenolic position in hamamelitannin, which may explain its efficacy at inhibiting colon cancer growth.

  16. Maceration with stems contact fermentation: effect on proanthocyanidins compounds and color in Primitivo red wines.

    PubMed

    Suriano, Serafino; Alba, Vittorio; Tarricone, Luigi; Di Gennaro, Domenico

    2015-06-15

    Three Primitivo (Vitis vinifera, cv.) red wines were microvinified by means of different winemaking technologies: no stem-contact fermentation destemming 100% of grapes (D100); stem-contact fermentation destemming 75%, 50% of grapes (D75-D50) respectively. The objectives of this work were to improve proanthocyanidins content in wine, to monitor the relationships between anthocyanins/tannins and to detect the effects on the polymerization state of polyphenols after 12 months storage of wines. D100 showed higher anthocyanins content but lower color intensity and phenolic compounds content with respect to the theses D75 and D50, the last two showing lower anthocyanins content due their partial adsorption by grape stems during the fermentation. D75 gave the best results in terms of anthocyanins/color intensity balance and showed a better wine tannin component with respect to D50. Moreover after 12 months storage D50 reached a more advanced and stable polymerization state of colored pigments than the other wines. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Antiproliferative activity in tumor cell lines, antioxidant capacity and total phenolic, flavonoid and tannin contents of Myrciaria floribunda.

    PubMed

    Tietbohl, Luis A C; Oliveira, Adriana P; Esteves, Ricardo S; Albuquerque, Ricardo D D G; Folly, Diogo; Machado, Francisco P; Corrêa, Arthur L; Santos, Marcelo G; Ruiz, Ana L G; Rocha, Leandro

    2017-01-01

    Myrciaria floribunda (H. West ex Willd.) O. Berg, Myrtaceae, is a native plant species of the Atlantic Rain Forest, from north to south of Brazil. The lyophilized ethyl acetate extract from the leaves of M. floribunda was investigated for its antiproliferative activity in tumor cell lines, antioxidant capacity and its total phenolic, flavonoid and tannin contents. Antiproliferative activity was tested in vitro against seven human cancer cells and against immortalized human skin keratinocytes line (HaCat, no cancer cell). Antioxidant activity was determined using 1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging and oxygen radical absorbing capacity (ORAC) assays and total phenolic, flavonoid and tannin contents were determined by spectrophotometric techniques. Ethyl acetate extract of M. floribunda exhibited antiproliferative activity against cancer cell lines with total growth inhibition (TGI) between 69.70 and 172.10 µg/mL. For HaCat cell, TGI value was 213.60 µg/mL. M. floribunda showed a strong antioxidant potential: EC50 of 45.89±0.42 µg/mL and 0.55±0.05 mmol TE/g for DPPH and ORAC, respectively. Total phenolic content was 0.23±0.013g gallic acid equivalents (GAE)/g extract and exhibited 13.10±1.60% of tannins content. The content of flavonoid was 24.08±0.44% expressed as rutin equivalents. These results provide a direction for further researches about the antitumoral potential of M. floribunda.

  18. Fate of phytochemicals during malting and fermentation of type III tannin sorghum and impact on product biofunctionality.

    PubMed

    Kayodé, A P Polycarpe; Mertz, Christian; Guyot, Jean-Pierre; Brat, Pierre; Mouquet-Rivier, Claire

    2013-02-27

    The aim of the present study was to assess the effects of sorghum bioprocessing into Gowé on iron bioavailability and antioxidant properties of the final products. Gowé is an African sour beverage, whose process combines malting and fermenting of sorghum grains. The effects of the durations of germination and fermentation on the phytochemicals were evaluated using a central composite design. The antioxidant capacity and iron bioavailability of the derived flour were also evaluated. During the germination process, the tannin content of the grain decreased from 429.5 to 174.1 mg/100 g DM, while the total phenolic content increased from 300.3 to 371.5 mg GAE/100 g DM. The phenolic acid contents of the flour were significantly modified as a result of the durations of germination and fermentation. Both germination and fermentation enhanced the antioxidant capacity of sorghum flour, and antioxidant characteristics were significantly correlated with the levels of total phenolics, tannins, and phenolic acids. Phytate content of sorghum grain decreased drastically from 1003 to 369.1 mg/100 g DM when the duration of germination or fermentation increased. This was associated with an increase in the bioavailability of iron.

  19. Phylogeny Explains Variation in The Root Chemistry of Eucalyptus Species.

    PubMed

    Senior, John K; Potts, Brad M; Davies, Noel W; Wooliver, Rachel C; Schweitzer, Jennifer A; Bailey, Joseph K; O'Reilly-Wapstra, Julianne M

    2016-10-01

    Plants are dependent on their root systems for survival, and thus are defended from belowground enemies by a range of strategies, including plant secondary metabolites (PSMs). These compounds vary among species, and an understanding of this variation may provide generality in predicting the susceptibility of forest trees to belowground enemies and the quality of their organic matter input to soil. Here, we investigated phylogenetic patterns in the root chemistry of species within the genus Eucalyptus. Given the known diversity of PSMs in eucalypt foliage, we hypothesized that (i) the range and concentrations of PSMs and carbohydrates in roots vary among Eucalyptus species, and (ii) that phylogenetic relationships explain a significant component of this variation. To test for interspecific variation in root chemistry and the influence of tree phylogeny, we grew 24 Eucalyptus species representing two subgenera (Eucalyptus and Symphyomyrtus) in a common garden for two years. Fine root samples were collected from each species and analyzed for total phenolics, condensed tannins, carbohydrates, terpenes, and formylated phloroglucinol compounds. Compounds displaying significant interspecific variation were mapped onto a molecular phylogeny and tested for phylogenetic signal. Although all targeted groups of compounds were present, we found that phenolics dominated root defenses and that all phenolic traits displayed significant interspecific variation. Further, these compounds displayed a significant phylogenetic signal. Overall, our results suggest that within these representatives of genus Eucalyptus, more closely related species have more similar root chemistry, which may influence their susceptibility to belowground enemies and soil organic matter accrual.

  20. Wines in contact with oak wood: the impact of the variety (Carménère and Cabernet Sauvignon), format (barrels, chips and staves) and aging time on the phenolic composition.

    PubMed

    Laqui-Estaña, Jaime; López-Solís, Remigio; Peña-Neira, Álvaro; Medel-Marabolí, Marcela; Obreque-Slier, Elías

    2018-06-13

    This study characterized the flavonoid and non-flavonoid phenolic composition of Carménère and Cabernet Sauvignon wines that were in contact with barrels, chips and staves during a 12-month aging period. The wines were evaluated by spectrophotometric (for total phenols, anthocyanins and tannins, colorant intensity, hue, CIElab parameters and fractionation into mono-, oligo- and polymer of proanthocyanidins) and HPLC-DAD analyses (for ellagitannins, gallotannins, anthocyanins and low molecular weight phenols). Wines in contact with oak wood presented a strong enrichment with non-flavonoid compounds, such as caffeic, gallic, ellagic acids and ellagitannins. Wines in contact with staves stood out for the increased presence of total phenols, vanillic acid and higher color intensity, while wines aged in contact with chips showed large contents of proanthocyanidin gallates. Wines aged in barrels exhibited high contents of ellagitannins and ethyl gallates. The effect of wood on the phenolic composition was mostly associated to the original and intrinsic characteristics of each grape variety. Extraction of phenolic compounds from oak wood during wine aging is closely related to the wood format, grape variety (Carménère or Cabernet Sauvignon) and aging time. The final effect of wood on wine would be related not just to the transference of polyphenols from wood but also to structural modifications of grape polyphenols. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  1. Systematic and Empirical Study of the Dependence of Polyphenol Recovery from Apricot Pomace on Temperature and Solvent Concentration Levels

    PubMed Central

    Cheaib, Dina; Rajha, Hiba N.; Maroun, Richard G.; Louka, Nicolas

    2018-01-01

    This work aims to study the impact of solvent mixture (between 0 and 50% ethanol/water mixture) and temperature (between 25°C and 75°C) levels on the solid-liquid extraction of phenolic compounds (quantity and bioactivity) from apricot pomace. Results show that the mean augmentation of 1% ethanol in the range [0–12%] enhances by three times the extraction of polyphenols compared to the same augmentation in the range [0–50%]. Similarly, the mean augmentation of 1°Celcius in the range [0–25°Celcius] enhances by two times the extraction of polyphenols compared to the same augmentation in the range [0–75°Celcius]. Moreover, 1% of ethanol exhibited a greater impact on the phenolic compound extraction than 1°Celsius. The response surface methodology showed that the optimal extraction condition was reached with 50% ethanol/water at 75°C giving a total phenolic content (TPC) of 9.8 mg GAE/g DM, a flavonoids content (FC) of 8.9 mg CE/g DM, a tannin content (TC) of 4.72 mg/L, and an antiradical activity (AA) of 44%. High-performance liquid chromatography (HPLC) analysis showed that polyphenols were influenced by the selectivity of the solvent as well as the properties of each phenolic compound. Apricot pomace extracts could therefore be used as natural bioactive molecules for many industrial applications. PMID:29618957

  2. New strategies for drug discovery in tropical forests based on ethnobotanical and chemical ecological studies.

    PubMed

    Albuquerque, Ulysses Paulino; Ramos, Marcelo Alves; Melo, Joabe Gomes

    2012-03-06

    Hypotheses from ethnobotany and chemical ecology can increase our ability to predict the pharmaceutical potential of tropical flora. In order to illustrate how bioprospecting studies can benefit from the incorporation of these hypotheses, especially in tropical dry forests, we discuss evidence from ethnobotanical studies that examine hypotheses about the ecology of plant defense against herbivory. We focus on two hypotheses regarding defense patterns in plants-the plant apparency hypothesis and the resource availability hypothesis-and analyze how these can help us understand the use of medicinal plants by traditional communities. The evidence suggests that medicinal plants in the dry forest are a rich source of drugs in which phenolic compounds, especially tannins, are directly responsible for the therapeutic activity. Phenolic compounds and their potential therapeutic activity are likely good candidates for bioprospecting efforts. We believe that following strategies to link ethnobotanical and chemical ecological approaches will increase the efficiency of bioprospecting studies in tropical forests. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  3. Antioxidant potential of hydro-methanolic extract of Prasium majus L: an in vitro study.

    PubMed

    Chaouche, T M; Haddouchi, F; Ksouri, R; Medini, F; El-Haci, I A; Boucherit, Z; Sekkal, F Z; Atik-Bekara, F

    2013-11-01

    Phytochemicals are extensively found at different levels in many medicinal plants. To investigate the phenolic compound content and in vitro antioxidant activity of hydro-methanolic extract from Prasium majus L. (Lamiaceae). The present investigation comprises, estimation of total polyphenol, flavonoid, tannin, in vitro antioxidant assays such as total antioxidant capacity, DPPH, ABTS, beta-carotene and ferric reducing power. P. majus exhibited 64.25 mg GAE g(-1) extract of polyphenol phenol content and better scavenging activity of DPPH (IC50 = 7.95 microg mL(-1)), ABTS*+ (IC50 = 373.78 microg mL(-1)) and beta-carotene (IC50 = 122.56 microg mL(-1)). Our results clearly demonstrated that hydro-methanolic extract P. majus has antioxidant capacity. Therefore is a valuable source of natural antioxidants.

  4. Inhibitory activity of phenolic-rich pistachio green hull extract-enriched pasta on key type 2 diabetes relevant enzymes and glycemic index.

    PubMed

    Lalegani, Sajjad; Ahmadi Gavlighi, Hassan; Azizi, Mohammad Hossein; Amini Sarteshnizi, Roghayeh

    2018-03-01

    Phenolic compounds as agro-industrial by-products have been associated with health benefits since they exhibit high antioxidant activity and anti-diabetic properties. In this study, polyphenol-rich extract from pistachio green hull (PGH) was evaluated for antioxidant activity and its ability to inhibit α-amylase and α-glucosidase activity in vitro. The effect of PGH extract powder on in vitro starch digestibility was also evaluated. The results showed that PGH had stronger antioxidant activity than Trolox. The inhibitory effect of PGH extract against α-amylase from porcine pancreas was dose dependent and the IC 50 value was ~174μgGAE/mL. The crude PGH extract was eight times more potent on baker yeast α-glucosidase activity (IC 50 ~6μgGAE/mL) when compared to acarbose, whereas the IC 50 value of PGH extract against rat intestinal maltase activity obtained ~2.6mgGAE/mL. The non-tannin fraction of PGH extract was more effective against α-glucosidase than tannin fraction whereas the α-amylase inhibitor was concentrated in the tannin fraction. In vitro starch digestibility and glycemic index (GI) of pasta sample supplemented with PGH extract powder (1.5%) was significantly lower than the control pasta. The IC 50 value of PGH extract obtained from cooked pasta against α-amylase and α-glucosidase was increased. These results have important implications for the processing of PGH for food industry application and therefore could comply with glucose control diets. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. [Review in the studies on tannins activity of cancer prevention and anticancer].

    PubMed

    Li, Haixia; Wang, Zhao; Liu, Yanze

    2003-06-01

    This paper reviewed the biological activities of tannins in cancer prevention and anticancer, and mainly discussed related mechanisms. The results suggest that tannins, whether total tannins or pure tannin compound, have remarkable activity in cancer prevention and anticancer. It has wealthy foreground for developing new cancer prevention agents and/or new anticancer drugs screening among tannin compounds.

  6. Tannin structural elucidation and quantitative ³¹P NMR analysis. 2. Hydrolyzable tannins and proanthocyanidins.

    PubMed

    Melone, Federica; Saladino, Raffaele; Lange, Heiko; Crestini, Claudia

    2013-10-02

    An unprecedented analytical method that allows simultaneous structural and quantitative characterization of all functional groups present in tannins is reported. In situ labeling of all labile H groups (aliphatic and phenolic hydroxyls and carboxylic acids) with a phosphorus-containing reagent (Cl-TMDP) followed by quantitative ³¹P NMR acquisition constitutes a novel fast and reliable analytical tool for the analysis of tannins and proanthocyanidins with significant implications for the fields of food and feed analyses, tannery, and the development of natural polyphenolics containing products.

  7. Effect of green tea catechins and hydrolyzable tannins on benzo[a]pyrene-induced DNA adducts and structure-activity relationship.

    PubMed

    Cao, Pengxiao; Cai, Jian; Gupta, Ramesh C

    2010-04-19

    Green tea catechins and hydrolyzable tannins are gaining increasing attention as chemopreventive agents. However, their mechanism of action is poorly understood. We investigated the effects of four green tea catechins and two hydrolyzable tannins on microsome-induced benzo[a]pyrene (BP)-DNA adducts and the possible structure-activity relationship. BP (1 microM) was incubated with rat liver microsomes and DNA in the presence of the test compound (1-200 microM) or vehicle. The purified DNA was analyzed by (32)P-postlabeling. The inhibitory activity of the catechins was in the following descending order: epigallocatechin gallate (IC(50) = 16 microM) > epicatechin gallate (24 microM) > epigallocatechin (146 microM) > epicatechin (462 microM), suggesting a correlation between the number of adjacent aromatic hydroxyl groups in the molecular structure and their potencies. Tannic acid (IC(50) = 4 microM) and pentagalloglucose (IC(50) = 26 microM) elicited as much DNA adduct inhibitory activity as the catechins or higher presumably due to the presence of more functional hydroxyl groups. To determine if the activity of these compounds was due to direct interaction of phenolic groups with electrophilic metabolite(s) of BP, DNA was incubated with anti-benzo[a]pyrene-7,8-diol-9,10-epoxide (anti-BPDE) (0.5 microM) in the presence of test compounds (200 microM) or vehicle. Significant inhibition of DNA adduct formation was found (tannic acid > pentagalloglucose > epigallocatechin gallate > epicatechin gallate). This notion was confirmed by analysis of the reaction products of anti-BPDE with the catechins and pentagalloglucose by electrospray ionization mass spectrometry and liquid chromatography-mass spectrometry. In conclusion, our data demonstrate that green tea catechins and the hydrolyzable tannins are highly effective in inhibiting BP-DNA adduct formation at least, in part, due to direct interaction of adjacent hydroxyl groups in their structures and that the activity is higher with an increasing number of functional hydroxyl groups.

  8. Effect of Green Tea Catechins and Hydrolyzable Tannins on Benzo[a]pyrene-Induced DNA Adducts and Structure–Activity Relationship

    PubMed Central

    Cao, Pengxiao; Cai, Jian; Gupta, Ramesh C.

    2016-01-01

    Green tea catechins and hydrolyzable tannins are gaining increasing attention as chemopreventive agents. However, their mechanism of action is poorly understood. We investigated the effects of four green tea catechins and two hydrolyzable tannins on microsome-induced benzo[a]pyrene (BP)–DNA adducts and the possible structure–activity relationship. BP (1 μM) was incubated with rat liver microsomes and DNA in the presence of the test compound (1–200 μM) or vehicle. The purified DNA was analyzed by 32P-postlabeling. The inhibitory activity of the catechins was in the following descending order: epigallocatechin gallate (IC50 = 16 μM) > epicatechin gallate (24 μM) > epigallocatechin (146 μM) > epicatechin (462 μM), suggesting a correlation between the number of adjacent aromatic hydroxyl groups in the molecular structure and their potencies. Tannic acid (IC50 = 4 μM) and pentagalloglucose (IC50 = 26 μM) elicited as much DNA adduct inhibitory activity as the catechins or higher presumably due to the presence of more functional hydroxyl groups. To determine if the activity of these compounds was due to direct interaction of phenolic groups with electrophilic metabolite(s) of BP, DNA was incubated with anti-benzo[a]pyrene-7,8-diol-9,10-epoxide (anti-BPDE) (0.5 μM) in the presence of test compounds (200 μM) or vehicle. Significant inhibition of DNA adduct formation was found (tannic acid > pentagalloglucose > epigallocatechin gallate > epicatechin gallate). This notion was confirmed by analysis of the reaction products of anti-BPDE with the catechins and pentagalloglucose by electrospray ionization mass spectrometry and liquid chromatography–mass spectrometry. In conclusion, our data demonstrate that green tea catechins and the hydrolyzable tannins are highly effective in inhibiting BP–DNA adduct formation at least, in part, due to direct interaction of adjacent hydroxyl groups in their structures and that the activity is higher with an increasing number of functional hydroxyl groups. PMID:20218540

  9. Polyphenolic profile as a useful tool to identify the wood used in wine aging.

    PubMed

    Sanz, Miriam; Fernández de Simón, Brígida; Cadahía, Estrella; Esteruelas, Enrique; Muñoz, Angel Ma; Hernández, Ma Teresa; Estrella, Isabel

    2012-06-30

    Although oak wood is the main material used in cooperage, other species are being considered as possible sources of wood for the production of wines and their derived products. In this work we have compared the phenolic composition of acacia (Robinia pseudoacacia), chestnut (Castanea sativa), cherry (Prunus avium) and ash (Fraxinus excelsior and F. americana) heartwoods, by using HPLC-DAD/ESI-MS/MS (some of these data have been showed in previous paper), as well as the changes that toasting intensity at cooperage produce in each polyphenolic profile. Before toasting, each wood shows a different and specific polyphenolic profile, with both qualitative and quantitative differences among them. Toasting notably changed these profiles, in general, proportionally to toasting intensity and led to a minor differentiation among species in toasted woods, although we also found phenolic markers in toasted woods. Thus, methyl syringate, benzoic acid, methyl vanillate, p-hydroxybenzoic acid, 3,4,5-trimethylphenol and p-coumaric acid, condensed tannins of the procyanidin type, and the flavonoids naringenin, aromadendrin, isosakuranetin and taxifolin will be a good tool to identify cherry wood. In acacia wood the chemical markers will be the aldehydes gallic and β-resorcylic and two not fully identified hydroxycinnamic compounds, condensed tannins of the prorobinetin type, and when using untoasted wood, dihydrorobinetin, and in toasted acacia wood, robinetin. In untoasted ash wood, the presence of secoiridoids, phenylethanoid glycosides, or di and oligolignols will be a good tool, especially oleuropein, ligstroside and olivil, together verbascoside and isoverbascoside in F. excelsior, and oleoside in F. americana. In toasted ash wood, tyrosol, syringaresinol, cyclolovil, verbascoside and olivil, could be used to identify the botanical origin. In addition, in ash wood, seasoned and toasted, neither hydrolysable nor condensed tannins were detected. Lastly, in chestnut wood, gallic and ellagic acids and hydrolysable tannins of both the gallotannin and ellagitannin type, can be used as chemical markers. Copyright © 2011 Elsevier B.V. All rights reserved.

  10. Changes in the quality of chromophoric dissolved organic matter leached from senescent leaf litter during the early decomposition.

    PubMed

    Nishimura, Satoshi; Maie, Nagamitsu; Baba, Mitsuhisa; Sudo, Takahiro; Sugiura, Toshihiro; Shima, Eikichi

    2012-01-01

    Chromophoric dissolved organic matter (CDOM) leached from leaf litter is a major source of humus in mineral soil of forest ecosystems. While their functions and refractoriness depend on the physicochemical structure, there is little information on the quality of CDOM, especially for that leached in the very early stages of litter decomposition when a large amount of dissolved organic matter (DOM) is leached. This study aimed to better understand the variations/changes in the composition of CDOM leached from senescent leaf litter from two tree species during the early stage of decomposition. Leaf litter from a conifer tree (Japanese cedar, D. Don) and a deciduous broad-leaved tree (Konara oak, Thunb.) were incubated in columns using simulated rainfall events periodically for a total of 300 d at 20°C. The quality of CDOM was investigated based on the fluorescence properties by using a combination of excitation-emission matrix fluorescence (EEM) and parallel factor analysis (PARAFAC). In addition, the phenolic composition of DOM was investigated at a molecular level by thermally assisted hydrolysis and methylation-gas chromatography-mass spectrometry (THM-GC-MS) in the presence of tetramethylammonium hydroxide (TMAH). The EEM was statistically decomposed into eight fluorescence components (two tannin/peptide-like peaks, one protein-like peak, and five humic-like peaks). A significant contribution of tannin/peptide-like peaks was observed at the beginning of incubation, but these peaks decreased quickly and humic-like peaks increased within 1 mo of incubation. The composition of humic-like peaks was different between tree species and changed over the incubation period. Since tannin-derived phenolic compounds were detected in the DOM collected after 254 d of incubation on THM-GC-MS, it was suggested that tannins partially changed its structure, forming various humic-like peaks during the early decomposition. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  11. Heavy Metal-Free Tannin from Bark for Sustainable Energy Storage.

    PubMed

    Mukhopadhyay, Alolika; Jiao, Yucong; Katahira, Rui; Ciesielski, Peter N; Himmel, Michael; Zhu, Hongli

    2017-12-13

    A novel renewable cathode made from earth abundant, low-cost materials can contribute to the intermittent storage needs of renewable energy-based society. In this work, we report for the first-time tannin from Nature as a cathode material. Our approach exploits the charge storage mechanism of the redox active quinone moiety. Tannins extracted from tree bark using environmental friendly aqueous solvents have the highest phenol content (5.56 mol g -1 ) among all the natural phenolic biopolymers, 5000 times higher than lignin. Tannins coupled with a conductive polymer polypyrrole acquire high specific capacitance values of 370 F g -1 at 0.5 A g -1 as well as excellent rate performance of 196 F g -1 at 25 A g -1 . Additionally, we employed carbonized wood as an electrode substrate to produce a sustainable electrochemical device with dramatically improved performance compared to conventional devices. The high surface area provided by the well-aligned, cellular porosity of wood-derived substrate combined with the high mobility of ions and electrons in the carbonized cell walls and deposited tannin can achieve an areal capacitance of 4.6 F cm -2 at 1 mA cm -2 , which is 1.5 times higher than activated wood carbon.

  12. Pharmacological and phytochemical screening of Palestinian traditional medicinal plants Erodium laciniatum and Lactuca orientalis.

    PubMed

    Jaradat, Nidal; AlMasri, Motasem; Zaid, Abdel Naser; Othman, Dua'a Ghazi

    2017-09-01

    Various epidemiological studies showed that herbal remedies containing polyphenols may protect against various diseases such as cancers, vascular diseases and inflammatory pathologies. Currently, such groups of bioactive compounds have become a subject of many antimicrobials and antioxidant investigations. Accordingly, the current study aimed to conduct biological and phytochemical screening for two Palestinian traditional medicinal plants, Erodium laciniatum and Lactuca orientalis. Current plants phytoconstituents and their antioxidant activities were evaluated by using standard phytochemical methods; meanwhile, antimicrobial activities were estimated by using several types of American Type Culture Collection and multidrug resistant clinical isolates by using agar diffusion well-variant, agar diffusion disc-variant and broth microdilution methods. Phytochemical screenings showed that L. orientalis and E. laciniatum contain mixtures of secondary and primary metabolites Moreover, total flavonoid, tannins and phenols content in E. laciniatum extract were higher than the L. orientalis extracts with almost the same antioxidant potentials. Additionally, both plants organic and aqueous extracts showed various potentials of antimicrobial activity Conclusions: Overall, the studied species have a mixture of phytochemicals, flavonoids, phenols and tannins also have antioxidant and antimicrobial activities which approved their folk uses in treatments of infectious and Alzheimer diseases and simultaneously can be used as therapeutic agents in the pharmaceutical industries.

  13. Chemical Characterization and Biological Activities of Phenolic-Rich Fraction from Cauline Leaves of Isatis tinctoria L. (Brassicaceae) Growing in Sicily, Italy.

    PubMed

    Miceli, Natalizia; Filocamo, Angela; Ragusa, Salvatore; Cacciola, Francesco; Dugo, Paola; Mondello, Luigi; Celano, Marilena; Maggisano, Valentina; Taviano, Maria Fernanda

    2017-08-01

    The present work focused on the evaluation of the antioxidant and cytotoxic activities of the phenolic-rich fraction (ItJ-EAF) obtained from cauline leaves collected in January from Isatis tinctoria L. (Brassicaceae) growing wild around Acireale (Sicily, Italy). The total phenolic, flavonoid, and condensed tannin contents of the fraction were determined spectrophotometrically, whereas the phenolic profile was assessed by HPLC-PDA/ESI-MS analysis. A total of 20 compounds were positively identified and twelve out of them were never previously reported in I. tinctoria leaves. The fraction exhibited good radical scavenging activity in DPPH test (IC 50  = 0.6657 ± 0.0024 mg/ml) and reducing power (3.87 ± 0.71 ASE/ml), whereas, it neither showed chelating activity nor was able to counteract H 2 O 2 induced oxidative stress damage in Escherichia coli. The antiproliferative effect was evaluated in vitro on two human anaplastic thyroid carcinoma cell lines (CAL-62 and 8505C) by MTT assay. At the highest tested concentration ItJ-EAF significantly reduced (80%) the growth of CAL-62 cells. No cytotoxicity against Artemia salina was observed. It can be concluded that I. tinctoria cauline leaves represent a source of phenolic compounds which could be potentially used as chemopreventive or adjuvant agents against cancer. © 2017 Wiley-VHCA AG, Zurich, Switzerland.

  14. Effect of extraction solvents on the biomolecules and antioxidant properties of Scorzonera undulata (Asteraceae): Application of factorial design optimization phenolic extraction.

    PubMed

    Athmouni, Khaled; Belghith, Taheni; Bellassouad, Khaled; Feki, Abdelfattah El; Ayadi, Habib

    2015-01-01

    Phenolic compounds were extracted and isolated from S. undulata roots. Sample of roots from E. hirta was tested for phenolic compounds, and in vitro antioxidant activity by diphenyl-1-picrylhydrazyl (DPPH) assay, ABTS, FRAP and reducing power was measured using cyano- ferrate method. The methanolic fraction exhibited the highest total phenol content (6.12 ±0.11 mg AGE/g DW). On the other hand, the highest flavonoids concentration was observed in ethyl acetate fraction (2.90 ±0.05 mg CE/g DW) in addition to anthocyanins (28.56 ±3.96 mg/l). Besides, the highest level of tannins content was measured in the polar aprotic solvent ethyl acetate extract (3.25 ±0.06 mg CE/g DW). The different extracts of S. undulata were evaluated for their radical scavenging activities by means of the DPPH assay. The strongest scavenging activity was observed in methanolic fraction scavenged radicals effectively with IC   values of 0.14 ±0.02 mg/ml. Similarly, the potassium ferricyanide reduction (FRAP) and ABTS•+ of methanol extract. On the other hand, the total reducing power of ethyl acetate extract was found higher than of other extracts. This paper presents the application of the design-of experiment method for optimizing the extraction of phenolic content using methanol solvent. The resulting regression model has shown that the effect of temperature is not statistically significant (with >95% certainty), while that of agitation speed is. The two main effects are contributed by the solvent concentration and the maceration period. Our results clearly showed that the extraction of phenolic compounds and their antioxidant capacity is significantly affected by solvent combinations. S. undulata presented the highest total phenolic content, total flavonoids content and antioxidant capacity values. The resulting regression model has shown that the effect of temperature is not statistically significant (with >95% certainty), while that of agitation speed is.

  15. Influence of rye flour enzymatic biotransformation on the antioxidant capacity and transepithelial transport of phenolic acids.

    PubMed

    de Lima, Fabíola Aliaga; Martins, Isabela Mateus; Faria, Ana; Calhau, Conceição; Azevedo, Joana; Fernandes, Iva; Mateus, Nuno; Macedo, Gabriela Alves

    2018-03-01

    Phenolic acids have been reported to play a role on the antioxidant activity and other important biological activities. However, as most polyphenolics in food products are either bound to cellular matrices or present as free polymeric forms, the way they are absorbed has not been totally clear until now. Hydrolytic enzymes may act to increase functionalities in polyphenolic-rich foods, enhancing the bioaccessibility of phenolic compounds and minerals from whole grains. The aim of this study was to evaluate the action of tannin acyl hydrolase (tannase) on the total phenols, phenolic acid profile, antioxidant capacity and in vitro bioaccessibility of phenolic acids found in whole rye flour (RF). Besides increasing total phenols and the antioxidant capacity, tannase treatment increased the amounts of ferulic, sinapic and vanillic acids identified in RF, evidencing a new type of feruloyl esterase catalytic action of tannase. Vanillic and sinapic acids in tannase-treated whole rye flour (RFT) were higher than RF after in vitro gastrointestinal digestion, and higher amounts of transported vanillic acid through the Caco-2 monolayer were detected in RFT. However, the bioaccessibility and the transport efficiency of RF phenolic acids were higher than RFT. Underutilized crops like rye and rye-derived products may be an important source of phenolic acids. The tannase biotransformation, even influencing the total phenolics and antioxidant capacity of RF, did not increase the bioaccessibility of phenolic acids under the experimental conditions of this study.

  16. Long-term experimental warming, shading and nutrient addition affect the concentration of phenolic compounds in arctic-alpine deciduous and evergreen dwarf shrubs.

    PubMed

    Hansen, Anja H; Jonasson, Sven; Michelsen, Anders; Julkunen-Tiitto, Riitta

    2006-02-01

    Environmental changes are likely to alter the chemical composition of plant tissues, including content and concentrations of secondary compounds, and thereby affect the food sources of herbivores. After 10 years of experimental increase of temperature, nutrient levels and light attenuation in a sub-arctic, alpine ecosystem, we investigated the effects on carbon based secondary compounds (CBSC) and nitrogen in one dominant deciduous dwarf shrub, Salix herbacea x polaris and two dominant evergreen dwarf shrubs, Cassiope tetragona and Vaccinium vitis-idaea throughout one growing season. The main aims were to compare the seasonal course and treatment effects on CBSC among the species, life forms and leaf cohorts and to examine whether the responses in different CBSC were consistent across compounds. The changes in leaf chemistry both during the season and in response to the treatments were higher in S. herbacea x polaris than in the corresponding current year's leaf cohort of the evergreen C. tetragona. The changes were also much higher than in the 1-year-old leaves of the two evergreens probably due to differences in dilution and turnover of CBSC in growing and mature leaves paired with different rates of allocation. Most low molecular weight phenolics in the current year's leaves decreased in all treatments. Condensed tannins and the tannin-to-N ratio, however, either increased or decreased, and the strength and even direction of the responses varied among the species and leaf cohorts, supporting views of influential factors additional to resource-based or developmental controls, as e.g. species specific or genetic controls of CBSC. The results indicate that there is no common response to environmental changes across species and substances. However, the pronounced treatment responses imply that the quality of the herbivore forage is likely to be strongly affected in a changing arctic environment, although both the direction and strength of the responses will be different among plant species, tissue types and substances.

  17. Evaluation of the effect of Cassia surattensis Burm. f., flower methanolic extract on the growth and morphology of Aspergillus niger.

    PubMed

    Sumathy, V; Zakaria, Z; Chen, Y; Latha, L Y; Jothy, S L; Vijayarathna, S; Sasidharan, S

    2013-06-01

    Cassia (C.) surattensis Burm. f. (Leguminosae), a medicinal herb native to tropical equatorial Asia, was commonly used in folk medicine to treat various diseases. The aim of the present study is to investigate the effects of methanolic flower extract of C. surattensis against Aspergillus (A.) niger. Antifungal activity of C. surattensis flower extract was studied by using agar disc diffusion method, broth dilution method, percentage of hyphal growth inhibition and scanning electron microscopy (SEM) observation. The extract exhibited good antifungal activity with zone of inhibition 15 mm and minimum inhibitory concentration (MIC) 6.25 mg/ml. The flower extract exhibited considerable antifungal activity against A. niger with a IC50 of 2.49 mg/ml on the hyphal growth. In scanning electron microscopy (SEM) squashed, collapsed, empty and deformation of hyphae were the major changes observed. Shrunken conidiophores were the obvious alteration on the spores. Morphological alterations observed on A. niger caused by the flower extract could be the contribution of chemical compounds present in the Cassia flower. Phytochemical screening reveals the presence of carbohydrate, tannins, saponins and phenols in the extract. The amount of tannin, total phenolics and flavonoids were estimated to be 55.14 ± 3.11 mg/g, 349.87 ± 5.41 mg/g gallic acid equivalent and 89.64 ± 3.21 mg/g catechin equivalent respectively. C. surattensis flower extract potently inhibited the growth of A. niger and are, therefore, excellent candidates for use as the lead compounds for the development of novel antifungal agents.

  18. Influence of bottle storage time on colour, phenolic composition and sensory properties of sweet red wines.

    PubMed

    Marquez, Ana; Serratosa, Maria P; Merida, Julieta

    2014-03-01

    Changes in colour and phenolic composition in sweet red wines made from Merlot, Syrah and Tempranillo grapes were studied in order to assess the influence of bottle storage over a period of 12months. For this purpose, wine colour parameters, sensory analysis and concentrations of monomeric anthocyanins, pyranoanthocyanins, methylmethine-mediated condensation adducts, flavan3-ol derivatives and flavonols were measured. Hue increased and red colours decreased with the storage time, particularly over the first 3months. The concentrations of low molecular weight flavan-3-ol derivatives decreased with time due to the effect of their conversion into tannins of high molecular weight. In addition, the glycosylated flavonols decreased through hydrolysis to give the corresponding aglycones. Overall, the concentration of phenolic compounds decreased markedly with storage time, whereas the antioxidant activity in the wines remained constant throughout. A panel of expert tasters judged the colour, aroma and flavour of all initial and final wines to be acceptable. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. Anthocyanins influence tannin-cell wall interactions.

    PubMed

    Bautista-Ortín, Ana Belén; Martínez-Hernández, Alejandro; Ruiz-García, Yolanda; Gil-Muñoz, Rocío; Gómez-Plaza, Encarna

    2016-09-01

    The rate of tannin extraction was studied in a vinification of red grapes and the results compared with another vinification made with white grapes fermented as for typical red wine, in the presence of skins and seeds. Even though the grapes presented a quite similar skin and seed tannin content, the differences in tannin concentration between both vinifications was very large, despite the fact that the only apparent difference between the phenolic composition of both wines was the anthocyanin content. This suggests that anthocyanins play an important role in tannin extractability, perhaps because they affect the extent of the tannin-cell wall interaction, a factor that largely controls the resulting quantity of tannins in wines. To confirm this observation, the effect of anthocyanins on the tannin extractability from grape seeds and skin and on the interaction between tannins and grape cell walls suspended in model solutions were studied. The results indicated that anthocyanins favored skin and seed tannin extraction and that there is a competition for the adsorption sites between anthocyanins and tannins that increases the tannin content when anthocyanins are present. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Spectroscopy analysis of phenolic and sugar patterns in a food grade chestnut tannin.

    PubMed

    Ricci, A; Lagel, M-C; Parpinello, G P; Pizzi, A; Kilmartin, P A; Versari, A

    2016-07-15

    Tannin of chestnut (Castanea sativa Mill.) wood, commonly used in winemaking was characterised with a spectroscopy qualitative approach that revealed its phenolic composition: several vibrational diagnostic bands assigned using the Attenuated Total Reflectance-Infrared Spectroscopy, and fragmentation patterns obtained using the Laser-Desorption-Ionization Time-of-Flight technique evidenced polygalloylglucose, e.g. castalagin/vescalagin-like structures as the most representative molecules, together with sugar moieties. The implication of these findings on winemaking application and the potential influence of the chemical structure on the sensory properties of wine are discussed. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Antioxidant, antimalarial and antimicrobial activities of tannin-rich fractions, ellagitannins and phenolic acids from Punica granatum L.

    PubMed

    Reddy, Muntha K; Gupta, Sashi K; Jacob, Melissa R; Khan, Shabana I; Ferreira, Daneel

    2007-05-01

    The Punica granatum L. (pomegranate) by-product POMx was partitioned between water, EtOAc and n-BuOH, and the EtOAc and n-BuOH extracts were purified by XAD-16 and Sephadex LH-20 column chromatography to afford ellagic acid (1), gallagic acid (2), punicalins (3), and punicalagins (4). Compounds 1 - 4 and the mixture of tannin fractions (XAD-16 eluates) were evaluated for antioxidant, antiplasmodial, and antimicrobial activities in cell-based assays. The mixture of tannins (TPT), XAD-EtOAc, XAD-H2O, XAD-PJ and XAD-BuOH, exhibited IC50 values against reactive oxygen species (ROS) generation at 0.8 - 19 microg/mL. Compounds 1 - 4 showed IC50 values of 1.1, 3.2, 2.3 and 1.4 microM, respectively, against ROS generation and no toxicity up to 31.25 microg/mL against HL-60 cells. Gallagic acid (2) and punicalagins (4) exhibited antiplasmodial activity against Plasmodium falciparum D6 and W2 clones with IC50 values of 10.9, 10.6, 7.5 and 8.8 microM, respectively. Fractions XAD-EtOAc, XAD-BuOH, XAD-H2O and XAD-PJ compounds 1 - 4 revealed antimicrobial activity when assayed against Escherichia coli, Pseudomonas aeruginosa, Candida albicans, Cryptococcus neoformans, methicillin-resistant Staphylococcus aureus (MRSA), Aspergillus fumigatus and Mycobacterium intracellulare. Compounds 2 and 4 showed activity against P. aeruginosa, C. neoformans, and MRSA. This is the first report on the antioxidant, antiplasmodial and antimicrobial activities of POMx isolates, including structure-activity relationships (SAR) of the free radical inhibition activity of compounds 1 - 4. Our results suggest a beneficial effect from the daily intake of POMx and pomegranate juice (PJ) as dietary supplements to augment the human immune system's antioxidant, antimalarial and antimicrobial capacities.

  2. Total Phenolic, Phenolic Acid, Anthocyanin, Flavan-3-ol, and Flavonol Profiles and Antioxidant Properties of Pinto and Black Beans ( Phaseolus vulgaris L.) as Affected by Thermal Processing.

    PubMed

    Xu, Baojun; Chang, Sam K C

    2009-06-10

    The effects of boiling and steaming processes at atmospheric and high pressures on the phenolic components and antioxidant properties of pinto and black beans were investigated. In comparison to the original raw beans, all processing methods caused significant (p < 0.05) decreases in total phenolic content (TPC), total flavonoid content (TFC), condensed tannin content (CTC), monomeric anthocyanin content (MAC), DPPH free-radical scavenging activity (DPPH), ferric-reducing antioxidant power (FRAP), and oxygen radical absorbing capacity (ORAC) values in both pinto and black beans. Steaming processing resulted in a greater retention of TPC, DPPH, FRAP, and ORAC values than the boiling processes in both pinto and black beans. To further investigate how thermal processing affected phenolic compositions and to elucidate the contribution of individual phenolic compounds to antioxidant properties, phenolic acids, anthocyanins, flavan-3-ols, and flavonols were quantitatively analyzed by high-performance liquid chromatography (HPLC). All thermal processing significantly (p < 0.05) affected individual phenolic acids, anthocyanins, flavan-3-ols, and flavonols, significantly (p < 0.05) reduced total phenolic acid contents in both pinto and black beans and total flavonol contents in pinto beans, and dramatically reduced anthocyanin contents in black beans. Phenolic acids and flavonols may play important roles on the overall antioxidant activities of pinto beans, while anthocyanins, flavan-3-ols, and flavonols may play important roles on the overall antioxidant activities of black beans.

  3. 40 CFR 721.10666 - Quaternary ammonium compounds, bis(fattyalkyl) dimethyl, salts with tannins (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...(fattyalkyl) dimethyl, salts with tannins (generic). 721.10666 Section 721.10666 Protection of Environment..., bis(fattyalkyl) dimethyl, salts with tannins (generic). (a) Chemical substance and significant new... compounds, bis(fattyalkyl) dimethyl, salts with tannins (PMN P-12-437) is subject to reporting under this...

  4. 40 CFR 721.10666 - Quaternary ammonium compounds, bis(fattyalkyl) dimethyl, salts with tannins (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...(fattyalkyl) dimethyl, salts with tannins (generic). 721.10666 Section 721.10666 Protection of Environment..., bis(fattyalkyl) dimethyl, salts with tannins (generic). (a) Chemical substance and significant new... compounds, bis(fattyalkyl) dimethyl, salts with tannins (PMN P-12-437) is subject to reporting under this...

  5. Assessment of phytochemicals, antioxidant, anti-lipid peroxidation and anti-hemolytic activity of extract and various fractions of Maytenus royleanus leaves.

    PubMed

    Shabbir, Maria; Khan, Muhammad Rashid; Saeed, Naima

    2013-06-22

    Maytenus royleanus is traditionally used in gastro-intestinal disorders. The aim of this study was to evaluate the methanol extract of leaves and its derived fractions for various antioxidant assays and for its potential against lipid peroxidation and hemolytic activity. Various parameters including scavenging of free-radicals (DPPH, ABTS, hydroxyl and superoxide radical), hydrogen peroxide scavenging, Fe3+ to Fe2+ reducing capacity, total antioxidant capacity, anti-lipid peroxidation and anti-hemolytic activity were investigated. Methanol extract and its derived fractions were also subjected for chemical constituents. LC-MS was also performed on the methanol extract. Qualitative analysis of methanol extract exhibited the presence of alkaloids, anthraquinones, cardiac glycosides, coumarins, flavonoids, saponins, phlobatannins, tannins and terpenoids. LC-MS chromatogram indicated the composition of diverse compounds including flavonoids, phenolics and phytoestrogens. Methanol extract, its ethyl acetate and n-butanol fractions constituted the highest amount of total phenolic and flavonoid contents and showed a strong correlation coefficient with the IC50 values for the scavenging of DPPH, hydrogen peroxide radicals, superoxide radicals, anti-lipid peroxidation and anti-hemolytic efficacy. Moreover, n-butanol fraction showed the highest scavenging activity for ABTS radicals and for reduction of Fe3+ to Fe2+. Present results suggested the therapeutic potential of Maytenus royleanus leaves, in particular, methanol extract, ethyl acetate and n-butanol fraction as therapeutic agent against free-radical associated damages. The protective potential of the extract and or fraction may be attributed due to the high concentration of phenolic, flavonoid, tannins and terpenoids.

  6. Antioxidant activity and phytochemical constituent of two plants used to manage foot and mouth disease in the Far North Region of Cameroon

    PubMed Central

    Vougat, Ronald Romuald Bebey Ngom; Foyet, Harquin Simplice; Ziebe, Roland; Garabed, Rebecca B.

    2015-01-01

    Aim: Plants used in the Far North Region of Cameroon by livestock farmers to manage foot and mouth disease (FMD) in cattle and the phytochemical composition and antioxidant potentials of two of them (Boscia senegalensis [BS] and Tapinanthus dodoneifolius [TD]) were investigated in this study. Materials and Methods: Ethno veterinary data were collected from 325 livestock farmers using semi-structured interviews from September 2011 to April 2012. The 2,2-diphenyl-picrylhydrazyl radical scavenging activity and total phenolic content (TPC) were first performed with five different solvents to choose the best extract of each plant based on these two factors. To achieve our aim, the ferric iron reducing activity, hydroxyl radical scavenging activity (HRSA), free radical scavenging activity (FRSA), vitamin E and iron content were analyzed on extracts selected using current techniques. Results: The results showed that 12 plants of 8 different families are regularly used by farmers to manage FMD. It also demonstrated that acetone extract of TD and methanolic extract of BS are the extracts which showed the best total antioxidant activity (AA) and the best TPC. In general, TD show the best AA during the HRSA and FRSA analysis compared with BS. Similarly, TD content more phenolic compounds and tannins than BS. Both plants contain proteins, saponins, tannins, phenols, alkaloid, and polyphenols which are known to have many biological activities. Conclusion: These results support the AA of both plants and can justify their use by herders to treat FMD which is often followed by many secondary diseases. PMID:26401383

  7. Antioxidant, Anti-Inflammatory, and Antitumor Activities of Cultured Mycelia and Fruiting Bodies of the Elm Oyster Mushroom, Hypsizygus ulmarius (Agaricomycetes).

    PubMed

    Greeshma, Panavalappil; Ravikumar, Korattuvalappil S; Neethu, Mangalathmelathil N; Pandey, Meera; Zuhara, Karattuthodi Fathimathu; Janardhanan, Kainoor K

    2016-01-01

    Ethanoic extracts from the fruiting bodies and mycelia of the elm oyster mushroom, Hypsizygus ulmarius, were evaluated for their antioxidant, anti-inflammatory, and antitumor properties. Ethnolic extracts of fruiting body and mycelia showed 88%, 85%, 71%, and 85%, 65%, 70% 2,2-diphenyl-1-picrylhydrazyl, hydroxyl (DPPH) and 2,2'-azinobis (3-ethyl benzothiazolin-6-sulfonic acid) (ABTS) radical-scavenging activities, respectively, at a concentration of 1000 µg/mL. The anti-inflammatory activity was determined using carrageenan- and formalin- induced paw edema models. Diclofenac was used as the standard drug. In both models, the mycelia extract showed higher activity than the fruiting body extract. The antitumor effect of the extracts against Dalton's Lymphoma Ascites cell-line-induced tumors showed significant antitumor activity. Mycochemical analysis confirmed the presence of many pharmacologically active compounds such as phenol, alkaloids, proteins, tannins, and polysaccharides. Among these, polysaccharides and phenolic compounds were present at a higher concentration in both extracts. These compounds might be largely responsible for the mushroom's medicinal properties. The results of this study indicate that H. ulmarius possesses significant antioxidant, anti-inflammatory, and antitumor properties.

  8. Presence of tannins in sorghum grains is conditioned by different natural alleles of Tannin1

    PubMed Central

    Wu, Yuye; Li, Xianran; Xiang, Wenwen; Zhu, Chengsong; Lin, Zhongwei; Wu, Yun; Li, Jiarui; Pandravada, Satchidanand; Ridder, Dustan D.; Bai, Guihua; Wang, Ming L.; Trick, Harold N.; Bean, Scott R.; Tuinstra, Mitchell R.; Tesso, Tesfaye T.; Yu, Jianming

    2012-01-01

    Sorghum, an ancient old-world cereal grass, is the dietary staple of over 500 million people in more than 30 countries in the tropics and semitropics. Its C4 photosynthesis, drought resistance, wide adaptation, and high nutritional value hold the promise to alleviate hunger in Africa. Not present in other major cereals, such as rice, wheat, and maize, condensed tannins (proanthocyanidins) in the pigmented testa of some sorghum cultivars have been implicated in reducing protein digestibility but recently have been shown to promote human health because of their high antioxidant capacity and ability to fight obesity through reduced digestion. Combining quantitative trait locus mapping, meta-quantitative trait locus fine-mapping, and association mapping, we showed that the nucleotide polymorphisms in the Tan1 gene, coding a WD40 protein, control the tannin biosynthesis in sorghum. A 1-bp G deletion in the coding region, causing a frame shift and a premature stop codon, led to a nonfunctional allele, tan1-a. Likewise, a different 10-bp insertion resulted in a second nonfunctional allele, tan1-b. Transforming the sorghum Tan1 ORF into a nontannin Arabidopsis mutant restored the tannin phenotype. In addition, reduction in nucleotide diversity from wild sorghum accessions to landraces and cultivars was found at the region that codes the highly conserved WD40 repeat domains and the C-terminal region of the protein. Genetic research in crops, coupled with nutritional and medical research, could open the possibility of producing different levels and combinations of phenolic compounds to promote human health. PMID:22699509

  9. Chemical composition and the nutritive value of pistachio epicarp (in situ degradation and in vitro gas production techniques).

    PubMed

    Bakhshizadeh, Somayeh; Taghizadeh, Akbar; Janmohammadi, Hossein; Alijani, Sadegh

    2014-01-01

    The nutritive value of pistachio epicarp (PE) was evaluated by in situ and in vitro techniques. Chemical analysis indicated that PE was high in crude protein (11.30%) and low in neutral detergent fiber (26.20%). Total phenols, total tannins, condensed tannins and hydrolysable tannins contents in PE were 8.29%, 4.48%, 0.49% and 3.79%, respectively. Ruminal dry matter and crude protein degradation after 48 hr incubation were 75.21% and 82.52%, respectively. The gas production volume at 48 hr for PE was 122.47 mL g(-1)DM. As a whole, adding polyethylene glycol (PEG) to PE increased (p < 0.05) gas production volumes, organic matter digestibility and the metabolizable energy that illustrated inhibitory effect of phenolics on rumen microbial fermentation and the positive influence of PEG on digestion PE. The results showed that PE possessed potentials to being used as feed supplements.

  10. Heavy Metal-Free Tannin from Bark for Sustainable Energy Storage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mukhopadhyay, Alolika; Jiao, Yucong; Katahira, Rui

    A novel renewable cathode made from earth abundant, low-cost materials can contribute to the intermittent storage needs of renewable energy-based society. In this work, we report for the first-time tannin from Nature as a cathode material. Our approach exploits the charge storage mechanism of the redox active quinone moiety. Tannins extracted from tree bark using environmental friendly aqueous solvents have the highest phenol content (5.56 mol g -1) among all the natural phenolic biopolymers, 5000 times higher than lignin. Tannins coupled with a conductive polymer polypyrrole acquire high specific capacitance values of 370 F g -1 at 0.5 A gmore » -1 as well as excellent rate performance of 196 F g -1 at 25 A g -1. Additionally, we employed carbonized wood as an electrode substrate to produce a sustainable electrochemical device with dramatically improved performance compared to conventional devices. The high surface area provided by the well-aligned, cellular porosity of wood-derived substrate combined with the high mobility of ions and electrons in the carbonized cell walls and deposited tannin can achieve an areal capacitance of 4.6 F cm -2 at 1 mA cm -2, which is 1.5 times higher than activated wood carbon.« less

  11. Heavy Metal-Free Tannin from Bark for Sustainable Energy Storage

    DOE PAGES

    Mukhopadhyay, Alolika; Jiao, Yucong; Katahira, Rui; ...

    2017-11-30

    A novel renewable cathode made from earth abundant, low-cost materials can contribute to the intermittent storage needs of renewable energy-based society. In this work, we report for the first-time tannin from Nature as a cathode material. Our approach exploits the charge storage mechanism of the redox active quinone moiety. Tannins extracted from tree bark using environmental friendly aqueous solvents have the highest phenol content (5.56 mol g -1) among all the natural phenolic biopolymers, 5000 times higher than lignin. Tannins coupled with a conductive polymer polypyrrole acquire high specific capacitance values of 370 F g -1 at 0.5 A gmore » -1 as well as excellent rate performance of 196 F g -1 at 25 A g -1. Additionally, we employed carbonized wood as an electrode substrate to produce a sustainable electrochemical device with dramatically improved performance compared to conventional devices. The high surface area provided by the well-aligned, cellular porosity of wood-derived substrate combined with the high mobility of ions and electrons in the carbonized cell walls and deposited tannin can achieve an areal capacitance of 4.6 F cm -2 at 1 mA cm -2, which is 1.5 times higher than activated wood carbon.« less

  12. Tannins and Tannin-Related Derivatives Enhance the (Pseudo-)Halogenating Activity of Lactoperoxidase.

    PubMed

    Gau, Jana; Prévost, Martine; Van Antwerpen, Pierre; Sarosi, Menyhárt-Botond; Rodewald, Steffen; Arnhold, Jürgen; Flemmig, Jörg

    2017-05-26

    Several hydrolyzable tannins, proanthocyanidins, tannin derivatives, and a tannin-rich plant extract of tormentil rhizome were tested for their potential to regenerate the (pseudo-)halogenating activity, i.e., the oxidation of SCN - to hypothiocyanite - OSCN, of lactoperoxidase (LPO) after hydrogen peroxide-mediated enzyme inactivation. Measurements were performed using 5-thio-2-nitrobenzoic acid in the presence of tannins and related substances in order to determine kinetic parameters and to trace the LPO-mediated - OSCN formation. The results were combined with docking studies and molecular orbital analysis. The - OSCN-regenerating effect of tannin derivatives relates well with their binding properties toward LPO as well as their occupied molecular orbitals. Especially simple compounds like ellagic acid or methyl gallate and the complex plant extract were found as potent enzyme-regenerating compounds. As the (pseudo-)halogenating activity of LPO contributes to the maintenance of oral bacterial homeostasis, the results provide new insights into the antibacterial mode of action of tannins and related compounds. Furthermore, chemical properties of the tested compounds that are important for efficient enzyme-substrate interaction and regeneration of the - OSCN formation by LPO were identified.

  13. Genotypic Tannin Levels in Populus tremula Impact the Way Nitrogen Enrichment Affects Growth and Allocation Responses for Some Traits and Not for Others

    PubMed Central

    Bandau, Franziska; Decker, Vicki Huizu Guo; Gundale, Michael J.; Albrectsen, Benedicte Riber

    2015-01-01

    Plant intraspecific variability has been proposed as a key mechanism by which plants adapt to environmental change. In boreal forests where nitrogen availability is strongly limited, nitrogen addition happens indirectly through atmospheric N deposition and directly through industrial forest fertilization. These anthropogenic inputs of N have numerous environmental consequences, including shifts in plant species composition and reductions in plant species diversity. However, we know less about how genetic differences within plant populations determine how species respond to eutrophication in boreal forests. According to plant defense theories, nitrogen addition will cause plants to shift carbon allocation more towards growth and less to chemical defense, potentially enhancing vulnerability to antagonists. Aspens are keystone species in boreal forests that produce condensed tannins to serve as chemical defense. We conducted an experiment using ten Populus tremula genotypes from the Swedish Aspen Collection that express extreme levels of baseline investment into foliar condensed tannins. We investigated whether investment into growth and phenolic defense compounds in young plants varied in response to two nitrogen addition levels, corresponding to atmospheric N deposition and industrial forest fertilization. Nitrogen addition generally caused growth to increase, and tannin levels to decrease; however, individualistic responses among genotypes were found for height growth, biomass of specific tissues, root:shoot ratios, and tissue lignin and N concentrations. A genotype’s baseline ability to produce and store condensed tannins also influenced plant responses to N, although this effect was relatively minor. High-tannin genotypes tended to grow less biomass under low nitrogen levels and more at the highest fertilization level. Thus, the ability in aspen to produce foliar tannins is likely associated with a steeper reaction norm of growth responses, which suggests a higher plasticity to nitrogen addition, and potentially an advantage when adapting to higher concentrations of soil nitrogen. PMID:26488414

  14. Genotypic Tannin Levels in Populus tremula Impact the Way Nitrogen Enrichment Affects Growth and Allocation Responses for Some Traits and Not for Others.

    PubMed

    Bandau, Franziska; Decker, Vicki Huizu Guo; Gundale, Michael J; Albrectsen, Benedicte Riber

    2015-01-01

    Plant intraspecific variability has been proposed as a key mechanism by which plants adapt to environmental change. In boreal forests where nitrogen availability is strongly limited, nitrogen addition happens indirectly through atmospheric N deposition and directly through industrial forest fertilization. These anthropogenic inputs of N have numerous environmental consequences, including shifts in plant species composition and reductions in plant species diversity. However, we know less about how genetic differences within plant populations determine how species respond to eutrophication in boreal forests. According to plant defense theories, nitrogen addition will cause plants to shift carbon allocation more towards growth and less to chemical defense, potentially enhancing vulnerability to antagonists. Aspens are keystone species in boreal forests that produce condensed tannins to serve as chemical defense. We conducted an experiment using ten Populus tremula genotypes from the Swedish Aspen Collection that express extreme levels of baseline investment into foliar condensed tannins. We investigated whether investment into growth and phenolic defense compounds in young plants varied in response to two nitrogen addition levels, corresponding to atmospheric N deposition and industrial forest fertilization. Nitrogen addition generally caused growth to increase, and tannin levels to decrease; however, individualistic responses among genotypes were found for height growth, biomass of specific tissues, root:shoot ratios, and tissue lignin and N concentrations. A genotype's baseline ability to produce and store condensed tannins also influenced plant responses to N, although this effect was relatively minor. High-tannin genotypes tended to grow less biomass under low nitrogen levels and more at the highest fertilization level. Thus, the ability in aspen to produce foliar tannins is likely associated with a steeper reaction norm of growth responses, which suggests a higher plasticity to nitrogen addition, and potentially an advantage when adapting to higher concentrations of soil nitrogen.

  15. Preliminary nutritional and biological potential of Artocarpus heterophyllus L. shell powder.

    PubMed

    Sharma, Anubhuti; Gupta, Priti; Verma, A K

    2015-03-01

    Artocarpus heterophyllus shell powder was investigated in terms of its nutritional and biological potential. A thorough examination of shell powder demonstrated its potential as a source of minerals, β carotene and dietary fiber, which were assessed gravimetrically & spectrophotometrically. This showed 3.05 ± 0.19 g 100 g(-1) DW of alkaloids followed by saponins and tannins. Three different extracts; acetone, methanol, & mix solvent were used to evaluate phenolic & flavonoid content, antioxidant & antimicrobial activity, GC/MS screening and quantitative analysis of polyphenols. Among all, the methanol extract showed highest antioxidant activity evaluated by DPPH, FRAP & ABTS assays and was significantly correlated with phenolic and flavonoid contents. Phenolic & flavonoid content was found to be 158 ± 0.34 mg (GAE) and 10.0 ± 0.64 mg (CE) respectively. The results of antimicrobial activity showed that L. monocytogenes was more susceptible to all extracts followed by other microorganisms. Catechin, ascorbic & chlorogenic acids were identified as major polyphenols analyzed by LC-MS/MS. GC/MS analysis showed that it contains a variety of compounds with different therapeutic activities. The study revealed that A. heterophyllus shell is a good source of natural antioxidants & other bioactive compounds and can be used in cosmetics, medicines and functional food application.

  16. Tannins from Canarium album with potent antioxidant activity*

    PubMed Central

    Zhang, Liang-liang; Lin, Yi-ming

    2008-01-01

    The contents of total phenolics and extractable condensed tannins in the leaves, twigs and stem bark of Canarium album were determined. The structural heterogeneity of condensed tannins from stem bark was characterized by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) and nuclear magnetic resonance (NMR) analyses. The results show the predominance of signals representative of procyanidins and prodelphinidins. In addition, epicatechin and epigallocatechin polymers with galloylated procyanidin or prodelphinidin were also observed. The tannins were screened for their potential antioxidant activities using 1,1-diphenyl-2-picrylhydrazyl (DPPH) and ferric reducing/antioxidant power (FRAP) model systems. Tannins extracted from leaves, twigs and stem bark all showed a very good DPPH radical scavenging activity and ferric reducing power. PMID:18500781

  17. Tannins from Canarium album with potent antioxidant activity.

    PubMed

    Zhang, Liang-liang; Lin, Yi-ming

    2008-05-01

    The contents of total phenolics and extractable condensed tannins in the leaves, twigs and stem bark of Canarium album were determined. The structural heterogeneity of condensed tannins from stem bark was characterized by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) and nuclear magnetic resonance (NMR) analyses. The results show the predominance of signals representative of procyanidins and prodelphinidins. In addition, epicatechin and epigallocatechin polymers with galloylated procyanidin or prodelphinidin were also observed. The tannins were screened for their potential antioxidant activities using 1,1-diphenyl-2-picrylhydrazyl (DPPH) and ferric reducing/antioxidant power (FRAP) model systems. Tannins extracted from leaves, twigs and stem bark all showed a very good DPPH radical scavenging activity and ferric reducing power.

  18. Antioxidant properties and phenolic profile characterization by LC-MS/MS of selected Tunisian pomegranate peels.

    PubMed

    Abid, Mouna; Yaich, Héla; Cheikhrouhou, Salma; Khemakhem, Ibtihel; Bouaziz, Mohamed; Attia, Hamadi; Ayadi, M A

    2017-08-01

    Antioxidant contents and activities of different extracts from four Tunisian pomegranate peels, locally called "Acide", "Gabsi", "Nebli" and "Tounsi", were studied. Peels samples were extracted with three solvents (water, ethanol and acetone). For each extract, the total phenol contents and antioxidant activity were evaluated. The highest values of polyphenol, tannins, flavonoids and anthocyanins were recorded in the acetone extract of Acide ecotype with 304.6 mg gallic acid equivalent/g; 292.23 mg gallic acid equivalent/g; 15.46 mg Quercetin/g and 54.51 mg cy-3-glu/100 g, respectively. The acetone extract of Acide ecotype also showed the highest free radical-scavenging and reducing power activity compared to other extracts. Besides, the phytochemical analysis by LC-MS/MS revealed a high content of ellagitannins with punicalagin and punicalagin derivatives as the major compounds that might be responsible for promising antioxidant activity of pomegranate peel extracts. Two compounds (Castalagin derivative and Galloyl-bis-HHDP-hex derivative) were detected only in "Acide" ecotype in important contents.

  19. Phytochemical analysis and in vitro antioxidant acitivity of hydroalcoholic seed extract of Nymphaea nouchali Burm. f.

    PubMed Central

    Parimala, Mabel; Shoba, Francis Gricilda

    2013-01-01

    Objective To evaluate the phytochemical constituents and the antioxidant activity of hydroalcoholic extract of Nymphaea nouchali seed locally prescribed as a diet for diabetes mellitus. Methods The antioxidant and free radical scavenging activity of hydroalcoholic extract of the plant was assessed against 1,1 diphenyl-2-picryl hydrazyl (DPPH), nitric oxide and lipid peroxidation using standard protocols. Total phenolics, flavonoids and tannins were also determined. Results Phytochemical analysis revealed the presence of phenols, flavones, tannins, protein, reducing sugars, glycosides, saponins, alkaloids and steroids. The activities of plant extract against DPPH, nitric oxide and lipid peroxidation was concentration dependent with IC50 value of 42.82, 23.58 and 54.65 µg/mL respectively. The total antioxidant capacity was high with 577.73 mg vitamin E/g of the extract and showed a moderately high vitamin C content of 197.22 mg/g. The total tannin content of hydroalcoholic seed extract was high (195.84 GE/g), followed by phenolics (179.56 GE/g) and flavonoids (23.55 QE/g). Conclusion Our findings provide evidence that the crude extract of Nymphaea nouchali is a potential source of natural antioxidants and this justifies its use in folkloric medicine.

  20. Bioactive compounds and antioxidant activities of some cereal milling by-products.

    PubMed

    Smuda, Sayed Saad; Mohsen, Sobhy Mohamed; Olsen, Karsten; Aly, Mohamed Hassan

    2018-03-01

    The present study was performed to evaluate the phytochemicals profiles of some cereal milling by-products such as wheat (bran, germ and shorts), rice (bran, germ and husk) and corn (bran, germ and germ meal) to assess their potentiality as bioactive compounds sources. Distilled water, ethanol, methanol, and acetone separately were used as solvents for the extraction of phytochemicals compounds. The antioxidant activity (AOA), total phenolics content (TPC), and total flavonoids content (TFC) of the extracts were investigated using various in vitro assays. The results showed that tannins content was ranged from 113.4 to 389.5 (mg/100 g sample).The study revealed that TPC and TFC of cereal by-products extracts were significantly different for various solvents. TPC content varied from 366.1 to 1924.9 mg/100 g and TFC content varied from 139.3 to 681.6 mg/100 g. High carotenoids content was observed for corn germ meal and minimum for wheat bran. Distilled water, ethanol and methanol extracts showed significantly different antioxidant activity. Significant variations were observed with regard to AOA of different cereal by-products by using various solvents. The ethanol and methanol were observed to be the best solvents to extract phenolic compounds and antioxidant activity, while acetone extract showed less efficiency. Also, the cereal milling by-products were rich in bioactive compounds and could be used as a value added products.

  1. Nutritive value and qualitative assessment of secondary compounds in seeds of eight tropical browse, shrub and pulse legumes.

    PubMed

    Babayemi, O J; Demeyer, D; Fievez, V

    2004-01-01

    Seeds of four tropical multipurpose trees (Albizia saman, Albizia lebbeck, Albizia rhizonse, Leucaena leucocephala), two shrubs (Tephrosia candida, Tephrosia bracteolata) and two pulse legume (Lablab purpureus, Canavalia ensiformis) were chemically analysed for dry matter (DM), ash, crude protein (CP), neutral detergent fibre (NDF) and ether extract (EE). Qualitative evaluation of secondary metabolites (saponins, phenols, steroids, and alkaloids) was elucidated. The DM, ash, CP, NDF and EE ranged between 88.9-93.6 %, 3.0-5.4 %, 24.8-38.2 %, 22.1-46.9 % and 2.0-17.0 % respectively. All seed species contained at least one group of secondary plant metabolites and steroids were common to all except C. ensiformis that was not implicated for any. A. lebbeck and A. rhizonse showed low saponin content. Indications for water soluble tannins were reported for L. leucocephala while the two species of Tephrosia contained flavonoids or condensed tannins. The study suggested the potentials of the legumes seed species as a feed source for ruminants.

  2. Inhibitory effect of red koji extracts on mushroom tyrosinase.

    PubMed

    Wu, Li-Chen; Chen, Yun-Chen; Ho, Ja-An Annie; Yang, Chung-Shi

    2003-07-16

    Red koji has been recognized as a cholesterol-lowering diet supplement because of it contains fungi metabolites, monacolins, which reduce cholesterol synthesis by inhibiting HMG-CoA reductase. In this study, water extracts of red koji were loaded onto a C(18) cartridge, and the acetonitrile eluate was collected as test fraction. Red koji water extracts and its C(18) cartridge acetonitrile eluent had total phenols concentrations of 5.57 and 1.89 mg/g of red koji and condensed tannins concentrations of 2.71 and 1.20 mg/g of red koji, respectively. Both exhibited an antioxidant activity and an inhibitory activity to mushroom tyrosinase. The higher antioxidant activity of the red koji acetonitrile eluent was due to the existence of a high percentage of condensed tannins. The results from the kinetic study for inhibition of mushroom tyrosinase by red koji extracts showed that the compounds in the extracts competitively inhibited the oxidation of tyrosine catalyzed by mushroom tyrosinase with an ID(50) of 5.57 mg/mL.

  3. Compositional Changes in Foliage Phenolics with Plant Age, a Natural Experiment in Boreal Forests.

    PubMed

    Wam, Hilde Karine; Stolter, Caroline; Nybakken, Line

    2017-09-01

    The composition of plant secondary metabolites (PSMs) extensively impacts ecosystem functioning. It is vital that we understand temporal patterns in the plants' allocation of resources to PSMs, particularly those influenced by human activity. Existing data are insufficient in the long-term perspective of perennial plants (age or ontogeny). We analysed phenolic concentrations in foliage from birch (Betula pubescens Ehr.) considered to be undamaged and growing on 5, 10 and 15 years old clear-cuts in two boreal forest landscapes in Norway, sampled at the peak of the growing season. In sum, low molecular weight phenolic concentrations decreased with age. Apart from one apigenin glycoside, the low molecular weight phenolics co-varied similarly at all ages, suggesting a lack of temporal compound-specific prioritisation of this group. In contrast, the concentration of MeOH-soluble condensed tannins increased with age. The compositional shift fits well with several hypotheses that may provide proximate explanations for age patterns in PSM allocations, including both resource constraints and external pressures. Regardless of these explanations, our study adds an important perennial perspective (plant age) to temporal PSM patterns already well-known in boreal plant phenology (foliage age).

  4. The phytochemical composition and antioxidant actions of tree nuts

    PubMed Central

    Bolling, Bradley W; McKay, Diane L; Blumberg, Jeffrey B

    2016-01-01

    In addition to being a rich source of several essential vitamins and minerals, mono- and polyunsaturated fatty acids, and fiber, most tree nuts provide an array of phytochemicals that may contribute to the health benefits attributed to this whole food. Although many of these constituents remain to be fully identified and characterized, broad classes include the carotenoids, hydrolyzable tannins, lignans, naphthoquinones, phenolic acids, phytosterols, polyphenols, and tocopherols. These phytochemicals have been shown to possess a range of bioactivity, including antioxidant, antiproliferative, anti-inflammatory, antiviral, and hypocholesterolemic properties. This review summarizes the current knowledge of the carotenoid, phenolic, and tocopherol content of tree nuts and associated studies of their antioxidant actions in vitro and in human studies. Tree nuts are a rich source of tocopherols and total phenols and contain a wide variety of flavonoids and proanthocyanidins. In contrast, most tree nuts are not good dietary sources of carotenoids and stilbenes. Phenolic acids are present in tree nuts but a systematic survey of the content and profile of these compounds is lacking. A limited number of human studies indicate these nut phytochemicals are bioaccessible and bioavailable and have antioxidant actions in vivo. PMID:20199996

  5. Exploring the biological activity of condensed tannins and nutritional value of tree and shrub leaves from native species of the Argentinean Dry Chaco.

    PubMed

    García, Elisa M; Cherry, Nicole; Lambert, Barry D; Muir, James P; Nazareno, Mónica A; Arroquy, Jose I

    2017-11-01

    Tropical tree or shrub leaves are an important source of nutrients for ruminants and a potential source of biologically active compounds that may affect ruminal metabolism of nutrients. Therefore, eight woody species from the native flora of Argentinean Dry Chaco, rich in secondary compounds such as condensed tannins (CT), were assessed for their nutritional value, CT fractions and in vitro true digestibility of dry matter, as well as biological activity (BA). Differences among species were found in contents of total phenol, protein-precipitating phenols (PPP), bound proteins to PPP (BP) and BP/PPP (P < 0.0001). The BP/PPP ratio reveals differences among species in potential BA as indicated by protein precipitation. The major CT of each species were isolated and purified for use as a standard. Although Schinopsis balansae had the most (P ≤ 0.05) total CT (19.59% DM), Caesalpinia paraguariensis had greater (P ≤ 0.05) BA with the most PPP (530.21% dry matter). Larrea divaricata, at 0.97, followed by Acacia aroma, at 0.89, had CT with the highest (P ≤ 0.05) BP/PPP ratios, followed by Prosopis alba (0.59). There were differences in nutritive value and bioactivity among species. Those with the greatest CT were not necessarily those with the most BA. Caesalpinia paraguariensis, S. balansae and L. divaricata were the most promising species as native forage CT sources. Cercidiurm praecox (20.87% CP; 18.14% acid detergent fiber) and Prosopis nigra (19.00% CP; 27.96% acid detergent fiber) showed the best (P ≤ 0.05) nutritive values. According to their nutritive traits, these species might be complementary in grass-based ruminant diets. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  6. Germination under Moderate Salinity Increases Phenolic Content and Antioxidant Activity in Rapeseed (Brassica napus var oleifera Del.) Sprouts.

    PubMed

    Falcinelli, Beatrice; Sileoni, Valeria; Marconi, Ombretta; Perretti, Giuseppe; Quinet, Muriel; Lutts, Stanley; Benincasa, Paolo

    2017-08-19

    The use of sprouts in the human diet is becoming more and more widespread because they are tasty and high in bioactive compounds and antioxidants, with related health benefits. In this work, we sprouted rapeseed under increasing salinity to investigate the effect on free and bound total phenolics (TP), non-flavonoids (NF), tannins (TAN), phenolic acids (PAs), and antioxidant activity. Seeds were incubated at 0, 25, 50, 100, 200 mM NaCl until early or late sprout stage, i.e., before or after cotyledon expansion, respectively. Sprouting and increasing salinity slightly decreased the bound fractions of TP, NF, TAN, PAs, while it increased markedly the free ones and their antioxidant activity. Further increases were observed in late sprouts. Moderate salinity (25-50 mM NaCl) caused the highest relative increase in phenolic concentration while it slightly affected sprout growth. On the contrary, at higher NaCl concentrations, sprouts grew slowly (100 mM NaCl) or even died before reaching the late sprout stage (200 mM). Overall, moderate salinity was the best compromise to increase phenolic content of rapeseed sprouts. The technique may be evaluated for transfer to other species as a cheap and feasible way to increase the nutritional value of sprouts.

  7. Antibacterial and Antimetastatic Potential of Diospyros lycioides Extract on Cervical Cancer Cells and Associated Pathogens

    PubMed Central

    Bagla, V. P.; Lubisi, V. Z.; Ndiitwani, T.; Mokgotho, M. P.; Mampuru, L.; Mbazima, V.

    2016-01-01

    Cervical cancer is among the most prevalent forms of cancer in women worldwide. Diospyros lycioides was extracted using hexane, ethyl acetate, acetone, and methanol and finger print profiles were determined. The leaf material was tested for the presence of flavonoids, tannins, saponins, terpenoids, and cardiac glycosides using standard chemical methods and the presence of flavonoids and phenolics using thin layer chromatography. The total phenolic content was determined using Folin-Ciocalteu procedure. The four extracts were tested for antibacterial activity using bioautography against Staphylococcus aureus, Enterococcus faecalis, Pseudomonas aeruginosa, and Escherichia coli. The acetone extract with the highest number of antibacterial and antioxidant compounds was assessed for its cytotoxicity on BUD-8 cells using the real-time xCELLigence system and its potential effects on metastatic cervical cancer (HeLa) cell migration and invasion were assessed using wound healing migration and invasion assays. The leaf extract tested positive for flavonoids, tannins, and terpenoids while the four different extracts tested in the antimicrobial assay contained constituents active against one or more of the organisms tested, except E. coli. The cytotoxicity of the acetone extract in real-time was concentration-dependent with potent ability to suppress the migration and invasion of HeLa cells. The finding demonstrates the acetone extract to contain constituents with antibacterial and antimetastatic effects on cervical cancer cells. PMID:27239210

  8. Effect of processing on the biochemical contents of Acanthus montanus (Nees) T. Anderson (Acanthaceae) leaves.

    PubMed

    Igwe, Andrew; Eleazu, Chinedum

    2018-03-01

    The effect of processing on the biochemical contents of Acanthus montanus leaves was investigated. The moisture, crude protein, lipid, fiber, ash, and total carbohydrate contents of the raw vegetable were 59.15, 1.85, 2.32, 3.76, 2.04, and 34.65 g/100 g, respectively. The saponin, alkaloid, tannin, flavonoid, phenol, and anthocyanin contents of the raw vegetable were 5.35, 4.04, 1.10, 3.53, 2.87, and 1.27 g/100 g, respectively, while it contained 2.65 mg/100 g calcium, 1.14 mg/100 g magnesium, 7.66 mg/100 g potassium, 350.75 μg/g vitamin A, 50.87 mg/100 g vitamin C, and 0.25% titratable acidity. There were significant reductions ( p  < .05) in the protein, lipid, fiber, ash, saponin, alkaloid, tannin, phenol, anthocyanin, calcium, magnesium, potassium, vitamin A, vitamin C, and titratable acidity of the boiled or boiled + sun-dried A. montanus leaves; significant elevation of the moisture contents but significant reduction of the total carbohydrate contents of the boiled; and significant reduction of the moisture contents of the boiled + sun-dried vegetable compared with the raw. There were significant increases ( p  < .05) in the total carbohydrate contents of the boiled + sun-dried leaves; significant reductions ( p  < .05) in the moisture, saponin, alkaloid, and vitamins A and C contents of the sun-dried vegetable; and no significant differences ( p  > .05) in the lipid, calcium, potassium, and ash, but significant increases ( p  < .05) in the protein, crude fiber, total carbohydrates, tannins, flavonoids, phenols, anthocyanin, magnesium, and titratable acidity of the sun-dried vegetable when compared with the raw. Sun drying alone either retained or enhanced the release of some important bioactive compounds in A. montanus leaves. Furthermore, the reduced moisture content of the sun-dried vegetable together with its increased titratable acidity will make the sun-dried vegetable uninhabitable for microorganisms, thereby increasing its shelf life.

  9. Fatty acids, essential oil and phenolics composition of Silybum marianum seeds and their antioxidant activities.

    PubMed

    Mhamdi, Baya; Abbassi, Feten; Smaoui, Abderrazak; Abdelly, Chedly; Marzouk, Brahim

    2016-05-01

    The presentstudydescribes the biochemical evaluation of Silybum marianum seed. The analysis of essential oil composition of Silybum marianum seed by Gas Chromatography-Mass Spectrometry GC-MS showed the presence of14 volatile components with the predominance of γ-cadinene (49.8%) and α-pinene (24.5%). Whereas, the analysis of fatty acids composition, showed the predominance of linoleic (50.5%) and oleic (30.2%) acids. Silybum marainum presented also an important polyphenol contents with 29mgGAE/g DW, a good antiradical activity (CI(50)=39μg/ml) but a lower reducing power ability. Flavonoid and condensed tannin contents were about 3.39mg EC/g DW and 1.8mg EC/gDW, respectively. The main phenolic compounds identified by RP-HPLC, were silybin A (12.2%), silybin B (17.67%), isosilybin A (21.9%), isosilybin B (12.8%), silychristin (7.9%) andsilydianin (7.5%).

  10. Evolution of Sangiovese Wines With Varied Tannin and Anthocyanin Ratios During Oxidative Aging

    PubMed Central

    Gambuti, Angelita; Picariello, Luigi; Rinaldi, Alessandra; Moio, Luigi

    2018-01-01

    Changes in phenolic compounds, chromatic characteristics, acetaldehyde, and protein-reactive tannins associated with oxidative aging were studied in Sangiovese wines with varied tannin T/anthocyanin A ratios. For this purpose, three Sangiovese vineyards located in Tuscany were considered in the 2016 vintage. To obtain wines with different T/A ratios, two red wines were produced from each vinification batch: a free run juice with a lower T/A ratio and a marc pressed wine with a higher T/A ratio. An overall of six wines with T/A ratios ranging between 5 and 23 were produced. An oxidation treatment (four saturation cycles) was applied to each wine. Average and initial oxygen consumption rates (OCR) were positively correlated to VRF/mA (vanilline reactive flavans/monomeric anthocyanins) and T/A ratios while OCRs were negatively related to the wine content in monomeric and total anthocyanins. The higher the A content was, the greater the loss of total and free anthocyanins. A significant lower production of polymeric pigments was detected in all pressed wines with respect to the correspondant free run one. A gradual decrease of tannin reactivity toward saliva proteins after the application of oxygen saturation cycles was detected. The results obtained in this experiment indicate that VRF/mA and T/A ratios are among the fundamental parameters to evaluate before choosing the antioxidant protection to be used and the right oxidation level to apply for a longer shelf-life of red wine. PMID:29600246

  11. Evolution of Sangiovese Wines with Varied Tannin and Anthocyanin Ratios during Oxidative Aging

    NASA Astrophysics Data System (ADS)

    Gambuti, Angelita; Picariello, Luigi; Rinaldi, Alessandra; Moio, Luigi

    2018-03-01

    Changes in phenolic compounds, chromatic characteristics, acetaldehyde, and protein-reactive tannins associated with oxidative aging were studied in Sangiovese wines with varied tannin T/anthocyanin A ratios. For this purpose, three Sangiovese vineyards located in Tuscany were considered in the 2016 vintage. To obtain wines with different T/A ratios, two red wines were produced from each vinification batch: a free run juice with a lower T/A ratio and a marc pressed wine with a higher T/A ratio. An overall of 6 wines with T/A ratios ranging between 5 and 23 were produced. An oxidation treatment (four saturation cycles) was applied to each wine. Average and initial oxygen consumption rates (OCR) were positively correlated to VRF/mA (vanilline reactive flavans/monomeric anthocyanins) and T/A ratios while OCRs were negatively related to the wine content in monomeric and total anthocyanins. The higher the A content was, the greater the loss of total and free anthocyanins. A significant lower production of polymeric pigments was detected in all pressed wines with respect to the correspondant free run one. A gradual decrease of tannin reactivity towards saliva proteins after the application of oxygen saturation cycles was detected. The results obtained in this experiment indicate that VRF/mA and T/A ratios are among the fundamental parameters to evaluate before choosing the antioxidant protection to be used and the right oxidation level to apply for a longer shelf-life of red wine.

  12. Evolution of Sangiovese Wines With Varied Tannin and Anthocyanin Ratios During Oxidative Aging.

    PubMed

    Gambuti, Angelita; Picariello, Luigi; Rinaldi, Alessandra; Moio, Luigi

    2018-01-01

    Changes in phenolic compounds, chromatic characteristics, acetaldehyde, and protein-reactive tannins associated with oxidative aging were studied in Sangiovese wines with varied tannin T/anthocyanin A ratios. For this purpose, three Sangiovese vineyards located in Tuscany were considered in the 2016 vintage. To obtain wines with different T/A ratios, two red wines were produced from each vinification batch: a free run juice with a lower T/A ratio and a marc pressed wine with a higher T/A ratio. An overall of six wines with T/A ratios ranging between 5 and 23 were produced. An oxidation treatment (four saturation cycles) was applied to each wine. Average and initial oxygen consumption rates (OCR) were positively correlated to VRF/mA (vanilline reactive flavans/monomeric anthocyanins) and T/A ratios while OCRs were negatively related to the wine content in monomeric and total anthocyanins. The higher the A content was, the greater the loss of total and free anthocyanins. A significant lower production of polymeric pigments was detected in all pressed wines with respect to the correspondant free run one. A gradual decrease of tannin reactivity toward saliva proteins after the application of oxygen saturation cycles was detected. The results obtained in this experiment indicate that VRF/mA and T/A ratios are among the fundamental parameters to evaluate before choosing the antioxidant protection to be used and the right oxidation level to apply for a longer shelf-life of red wine.

  13. Syzygium cumini (L.) skeels: a prominent source of bioactive molecules against cardiometabolic diseases.

    PubMed

    Chagas, Vinicyus Teles; França, Lucas Martins; Malik, Sonia; Paes, Antonio Marcus de Andrade

    2015-01-01

    Syzygium cumini (Myrtaceae) is a worldwide medicinal plant traditionally used in herbal medicines due to its vaunted properties against cardiometabolic disorders, which include: antihyperglycemic, hypolipemiant, antiinflammatory, cardioprotective, and antioxidant activities. These properties have been attributed to the presence of bioactive compounds such as phenols, flavonoids, and tannins in different parts of the plant, albeit the knowledge on their mechanisms of action is scarce. This mini-review highlights the cardiometabolic properties of S. cumini by correlating its already identified phytochemicals with their described mechanisms of action. Data herein compiled show that some compounds target multiple metabolic pathways; thereby, becoming potential pharmacological tools. Moreover, the lack of clinical trials on S. cumini usage makes it a fruitful field of interest for both scientific community and pharmaceutical industry.

  14. Syzygium cumini (L.) skeels: a prominent source of bioactive molecules against cardiometabolic diseases

    PubMed Central

    Chagas, Vinicyus Teles; França, Lucas Martins; Malik, Sonia; Paes, Antonio Marcus de Andrade

    2015-01-01

    Syzygium cumini (Myrtaceae) is a worldwide medicinal plant traditionally used in herbal medicines due to its vaunted properties against cardiometabolic disorders, which include: antihyperglycemic, hypolipemiant, antiinflammatory, cardioprotective, and antioxidant activities. These properties have been attributed to the presence of bioactive compounds such as phenols, flavonoids, and tannins in different parts of the plant, albeit the knowledge on their mechanisms of action is scarce. This mini-review highlights the cardiometabolic properties of S. cumini by correlating its already identified phytochemicals with their described mechanisms of action. Data herein compiled show that some compounds target multiple metabolic pathways; thereby, becoming potential pharmacological tools. Moreover, the lack of clinical trials on S. cumini usage makes it a fruitful field of interest for both scientific community and pharmaceutical industry. PMID:26578965

  15. Melilotus albus and Dorycnium herbaceum extracts as source of phenolic compounds and their antimicrobial, antibiofilm, and antioxidant potentials.

    PubMed

    Stefanović, Olgica D; Tešić, Jelena D; Čomić, Ljiljana R

    2015-09-01

    Melilotus albus Medic. and Dorycnium herbaceum Vill. (Fabaceae) acetone, ethyl acetate, and ethanol extracts were investigated for their in vitro antimicrobial, antibiofilm, and antioxidant activity with quantification of phenolic compound contents. In general, D. herbaceum extracts showed better antibacterial and antioxidant activity than M. albus extracts. Bacteria Bacillus subtilis, Staphylococcus aureus ATCC 25923, Pseudomonas aeruginosa, and Proteus mirabilis were the most susceptible with the minimum inhibitory concentrations (MICs), determined by microdilution method, between 1.25-10 mg/mL. Antifungal activity was lower with the detectable MICs at 10 mg/mL and 20 mg/mL. The plant extracts, using the crystal violet assay, inhibit P. aeruginosa biofilm formation in concentration range from 5 mg/mL to 20 mg/mL whereas the effect on mature bacterial biofilm was lower. The antioxidant activity was evaluated using 2, 2-diphenyl-1-picrylhydrazyl (DPPH) radicals scavenging and reducing power model systems. The intensity of DPPH radicals scavenging activity, expressed as half maximal effective concentration (EC 50 ) values, was from 84.33 μg/mL to >1000 μg/mL. The extracts demonstrated reduced power in a concentration-dependent manner, with ethanol extract as the most active. The total phenols, flavonoids, and proanthocyanidins were determined spectrophotometrically while total extractable tannins were obtained by precipitation method. The phenolic compounds showed differences in their total contents depending on solvents polarities and plant species. Although the plants M. albus and D. herbaceum have not yet been fully explored, these results contribute better understanding of their biotic properties and potential application as antimicrobial and antioxidant agents. Copyright © 2015. Published by Elsevier B.V.

  16. Biological degradation of tannins in sericea lespedeza (Lespedeza cuneata) by the white rot fungi Ceriporiopsis subvermispora and Cyathus stercoreus analyzed by solid-state 13C nuclear magnetic resonance spectroscopy.

    PubMed Central

    Gamble, G R; Akin, D E; Makkar, H P; Becker, K

    1996-01-01

    Leaves of sericea lespedeza exhibit a high proportion of condensed tannin, resulting in poor forage quality. The white rot fungi Ceriporiopsis subvermispora and Cyathus sterocoreus are known to preferentially degrade lignin in a variety of plants and were evaluated for their ability to degrade condensed tannin from sericea leaves with the aim of improving digestibility. Relative levels of condensed tannin, cutin, pectin, and cellulose were monitored as a function of fungal treatment by solid-state cross-polarization and magic angle spinning 13C nuclear magnetic resonance spectroscopy. Total soluble phenolics, soluble tannins, and soluble and insoluble proanthocyanidin levels in fungus-treated and control samples were measured by established chemical techniques. Results indicate that both species of fungus preferentially degrade condensed tannin and that C. subvermispora is markedly superior to C. stercoreus in this capacity. PMID:8837414

  17. [Concentrations of alkaloids, cyanogenic glycosides, polyphenols and saponins in selected medicinal plants from Ecuador and their relationship with acute toxicity against Artemia salina].

    PubMed

    Jaramillo Jaramillo, Carmita; Jaramillo Espinoza, Anyi; D'Armas, Haydelba; Troccoli, Luis; Rojas de Astudillo, Luisa

    2016-09-01

    Alkaloids, polyphenols, cyanogenic glycosides and saponins are among the main chemical compounds synthesized by plants but not considered essential for their basic metabolism. These compounds have different functions in plants, and have been recognized with medicinal and pharmacological properties. In this research, concentrations of the mentioned secondary metabolites were determined in the medicinal plants Artemisia absinthium, Cnidoscolus aconitifolius, Parthenium hysterophorus, Piper carpunya and Taraxacum officinale, from Ecuador, and related with cytotoxic effects against Artemia salina. Alcoholic and aqueous extracts from leaves of these selected plants were prepared at different concentrations. To assess cytotoxicity of these extracts, different bioassays with A. salina were undertaken, and the mortality rates and LC50 were obtained. Besides, concentrations of alkaloids, cyanogenic glycosides, phenols, tannins and saponins were determined by spectrophotometric methods; this constituted the first report of quantification of secondary metabolites in the selected plants from Ecuador. T. officinale had the highest concentration of total phenols (22.30 ± 0.23 mg/g) and tannins (11.70 ± 0.10 mg/g), C. aconitifolius of cyanogenic glycosides (5.02 ± 0.37 µg/g) and P. hysterophorus of saponins (6.12 ± 0.02 mg/g). Tannins values obtained were not adverse to their consumption. Alcoholic and aqueous extracts of selected plants had hemolytic activity depending on the concentration of saponins. Although the values of cyanogenic glycosides were permissible, it was necessary to monitor the presence of this metabolite in plants to minimize health problems. LC50 values ranged from extremely toxic (3.37 µg/mL) to highly toxic (274.34 μg/mL), in P. carpunya and T. officinale, respectively. From correlation analysis, it was observed that increase values of alkaloids concentrations had highly significant (p<0.001) acute toxicity against A. salina, while at a higher polyphenol concentration the level of plants cytotoxicity decreased significantly (p<0.001). The results of principal component analysis showed that saponins apparently were in synergy with polyphenols to decrease cytotoxicity, but antagonize with alkaloids and cyanogenic glycosides, indicating that these secondary metabolites present variability in the mechanisms of action against A. salina, as cytotoxic compounds. These results also demonstrate that polyphenols and saponins can be lethal at low concentrations, demonstrating the potential of brine shrimp bioassay as a model to evaluate plant extracts containing low concentrations of chemical compounds with high polarities. The significant positive correlation between cytotoxicity and concentration of alkaloids confirmed by the bioassay of brine shrimp can be useful to identify promising sources of antitumor compounds, and to evaluate tolerable limits not affecting other benign cells. Contents of secondary metabolites found in the selected plants confer them great pharmacologic values.

  18. Report: Comparison of qualitative, quantitative analysis and antioxidant potential between wild and cultivated Borago officinalis leaves from palestine.

    PubMed

    Abu-Qaoud, Hassan; Shawarb, Nuha; Hussen, Fatima; Jaradat, Nidal; Shtaya, Munqez

    2018-05-01

    Borago officinalis plant is an important plant of high medicinal and nutritional values. This study designed to evaluate antioxidant activity, screen the existence of phytogenic chemical compounds and to determine the total flavonoid and phenol contents of wild and cultivated Borago officinalis. Total flavonoid contents of the wild and cultivated Borago officinalis were determined by using rutin reference standard method and total phenols determined by using Folin Ciocalteu's method while antioxidant activity evaluated by using 2, 2-diphenyl-1-picryl-hydrazyl-hydrate assay. Phytochemical analyses indicated the presence of carbohydrate, phenols, flavonoids, phytosteroids tannins and volatile oil. The total flavonoid content of the methanolic extract from the wild borage plant was 22.4mg RU/g this value was reduced to 13.1mg RU/g for the cultivated methanolic extract as well as the total phenols contents was dropped from 5.21mg GA/g to 2.37mg GA/g methanolic extracts. Total tannins content of the wild growing borage plant was 13.7mg GA/g methanolic extract. This value was higher in the cultivated borage with 21.33mg GA/g methanolic extract. The wild leaves extract had IC 50 =6.3μg/mL for wild leaves extract was closer to IC 50 value of Trolox (standard reference with high antioxidant activity), while the cultivated leaves extract had higher IC 50 = 8.7μg/mL which mean lower antioxidant activity than the wild growing one. The data of this study showed that the extracts of Borago officinalis possess antioxidant and free radical scavenging activities. Variation was clear between wild and cultivated species, these findings propose that such plant extract could have a wide range of applications in both food and pharmaceutical industries. Therefore, more research is necessary to investigate different cultural practices on the efficiency of borage plant.

  19. Tannin profile of different Monastrell wines and its relation to projected market prices.

    PubMed

    Gómez-Plaza, Encarna; Olmos, Oscar; Bautista-Ortín, Ana Belén

    2016-08-01

    This study focuses on the differences or similarities in tannin composition and concentration in Monastrell wines from different wineries from the same geographic area and, within each winery, from wines elaborated based on different projected market prices, to determine whether there is any relationship between the wine tannin composition and the projected price. The tannin composition of the different wines, all of them analyzed at the same point during winemaking, indicated that those elaborated as premium wines presented higher phenol and tannin contents. The mean degree of polymerization of these wines was also positively related with the projected price, which agreed with the results obtained by size exclusion chromatography, that showed that wines with high projected prices had a higher proportion of polymeric tannins, suggesting that techniques favoring the extraction of skin tannins were mostly used in those wines projected as premium wines, probably looking for greater mouthfeel complexity. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Contribution of species-specific chemical signatures to soil organic matter in Kohala, HI.

    NASA Astrophysics Data System (ADS)

    Stewart, C. E.; Amatangelo, K.; Neff, J. C.

    2008-12-01

    Soil organic matter (SOM) inherits much of its chemical structure from the dominant vegetation, including phenolic (lignin-derived), aromatic, and aliphatic (cutin and wax-derived) compounds. The Hawaiian fern species Dicranopteris decomposes more slowly than the angiosperm, Cheirodendron due to high concentrations of recalcitrant C compounds. These aliphatic fern leaf waxes are well-preserved and may comprise a large portion of the recalcitrant organic matter in these soils. Our objective was to determine the chemical signature of fern and angiosperm vegetation types and trace the preservation or loss of those compounds into the soil. We collected live tissue, litter, roots, and soil (<53 μm) from five dominant vegetation types including two angiosperms Cheirodendron and Metrosideros, two basal ferns Dicranopteris and Cibotium and a polypod fern Diplazium in Kohala, HI. We characterized them via TMAH-pyrolysis-gas chromatography-mass spectrometry. We found distinct chemical differences between angiosperm and fern vegetation; angiosperm contained more G- and S-derived lignin structures and the fern species contained greater relative abundances of P-derived lignin and tannin-derivatives. There was a general decrease of lignin-derived phenolic compounds from live to litter to soils and an increase in more recalcitrant, aromatic and aliphatic C. Recalcitrant fern-derived cutin and leaf waxes (alkene and alkanes structures) were evident in the soils, but clear species differences were not observed. Although ferns contain distinct lipid and wax-derived compounds, soils developed under fern do not appear to accumulate these compounds in SOM.

  1. Plant secondary metabolites and gut health: the case for phenolic acids.

    PubMed

    Russell, Wendy; Duthie, Garry

    2011-08-01

    Plant-based diets contain a plethora of secondary metabolites that may impact on health and disease prevention. Much attention has been focused on the potential bioactivity and nutritional relevance of several classes of phytochemicals such as flavonoids, carotenoids, phyto-oestrogens and glucosinolates. Less attention has been paid to simple phenolic acids that are widely found in fruit, vegetables, herbs, spices and beverages. Daily intakes may exceed 100 mg. In addition, bacteria in the gut can perform reactions that transform more complex plant phenolics such as anthocyanins, procyanidins, flavanones, flavonols, tannins and isoflavones into simple phenolic metabolites. The colon is thus a rich source of potentially active phenolic acids that may impact both locally and systemically on gut health. Both the small and large intestine (colon) contain absorption sites for phenolic acids but low post-prandial concentrations in plasma indicate minimal absorption early in the gastrointestinal tract and/or rapid hepatic metabolism and excretion. Therefore, any bioactivity that contributes to gut health may predominantly occur in the colon. Several phenolic acids affect the expression and activity of enzymes involved in the production of inflammatory mediators of pathways thought to be important in the development of gut disorders including colon cancer. However, at present, we remain largely ignorant as to which of these compounds are beneficial to gut health. Until we can elucidate which pro-inflammatory and potentially carcinogenetic changes in gene expression can be moderated by simple phenolic acids, it is not possible to recommend specific plant-based foods rich in particular phenolics to optimise gut health.

  2. Exploring mouthfeel in model wines: Sensory-to-instrumental approaches.

    PubMed

    Laguna, Laura; Sarkar, Anwesha; Bryant, Michael G; Beadling, Andrew R; Bartolomé, Begoña; Victoria Moreno-Arribas, M

    2017-12-01

    Wine creates a group of oral-tactile stimulations not related to taste or aroma, such as astringency or fullness; better known as mouthfeel. During wine consumption, mouthfeel is affected by ethanol content, phenolic compounds and their interactions with the oral components. Mouthfeel arises through changes in the salivary film when wine is consumed. In order to understand the role of each wine component, eight different model wines with/without ethanol (8%), glycerol (10g/L) and commercial tannins (1g/L) were described using a trained panel. Descriptive analysis techniques were used to train the panel and measure the intensity of the mouthfeel attributes. Alongside, the suitability of different instrumental techniques (rheology, particle size, tribology and microstructure, using Transmission Electron Microscopy (TEM)) to measure wine mouthfeel sensation was investigated. Panelists discriminated samples based on their tactile-related components (ethanol, glycerol and tannins) at the levels found naturally in wine. Higher scores were found for all sensory attributes in the samples containing ethanol. Sensory astringency was associated mainly with the addition of tannins to the wine model and glycerol did not seem to play a discriminating role at the levels found in red wines. Visual viscosity was correlated with instrumental viscosity (R=0.815, p=0.014). Hydrodynamic diameter of saliva showed an increase in presence of tannins (almost 2.5-3-folds). However, presence of ethanol or glycerol decreased hydrodynamic diameter. These results were related with the sensory astringency and earthiness as well as with the formation of nano-complexes as observed by TEM. Rheologically, the most viscous samples were those containing glycerol or tannins. Tribology results showed that at a boundary lubrication regime, differences in traction coefficient lubrication were due by the presence of glycerol. However, no differences in traction coefficients were observed in presence/absence of tannins. It is therefore necessary to use an integrative approach that combines complementary instrumental techniques for mouthfeel perception characterization. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Blessings in disguise: a review of phytochemical composition and antimicrobial activity of plants belonging to the genus Eryngium.

    PubMed

    Erdem, Sinem Aslan; Nabavi, Seyed Fazel; Orhan, Ilkay Erdogan; Daglia, Maria; Izadi, Morteza; Nabavi, Seyed Mohammad

    2015-12-14

    Medicinal and edible plants play a crucial role in the prevention and/or mitigation of different human diseases from ancient times to today. In folk medicine, there are different plants used for infectious disease treatment. During the past two decades, much attention has been paid to plants as novel alternative therapeutic agents for the treatment of infectious diseases due to their bioactive natural compounds such as phenol, flavonoids, tannins, etc. The genus Eryngium (Apiaceae) contains more than 250 flowering plant species, which are commonly used as edible and medicinal plants in different countries. In fact, some genus Eryngium species are used as spices and are cultivated throughout the world and others species are used for the treatment of hypertension, gastrointestinal problems, asthma, burns, fevers, diarrhea, malaria, etc. Phytochemical analysis has shown that genus Eryngium species are a rich source of flavonoids, tannins, saponins, and triterpenoids. Moreover, eryngial, one the most important and major compounds of genus Eryngium plant essential oil, possesses a significant antibacterial effect. Thus, the objective of this review is to critically review the scientific literature on the phytochemical composition and antibacterial effects of the genus Eryngium plants. In addition, we provide some information about traditional uses, cultivation, as well as phytochemistry.

  4. Fresh from the Ornamental Garden: Hips of Selected Rose Cultivars Rich in Phytonutrients.

    PubMed

    Cunja, Vlasta; Mikulic-Petkovsek, Maja; Weber, Nika; Jakopic, Jerneja; Zupan, Anka; Veberic, Robert; Stampar, Franci; Schmitzer, Valentina

    2016-02-01

    Morphological parameters (size, weight, color), the content of sugars, organic acids, lycopene, β-carotene, and phenolics were determined in hips of Rosa canina (RCA), Rosa sweginzowii (RSW), Rosa rugosa (RUG), and selected ornamental Rosa cultivars Fru Dagmar Hastrup (FDH), Repandia (REP), Veilchenblau (RVB), Aloha (RAL), Bonica (BON), and Golden Gate (RGG). Although traditionally used RCA hips contained the highest amount of cyanidin-3-glucoside (83 μg/g DW) and were the reddest (h° = 17.5), they did not stand out in other analyzed parameters. RGG climber had the biggest hips (8.86 g), which also contained highest sugar levels (50.9 g/100 g DW). RAL stood out as the cultivar rich in organic acids (33.9 g/100 g DW), mainly because of high quinic acid content (17.6 g/100g DW). FDH and RSW hips were characterized by particularly high ascorbic acid levels (4325 mg/100 g DW and 4711 mg/100 g DW). Other ornamental cultivars contained low amounts of ascorbic acid compared to the analyzed species. The phenolic profile was species/cultivars-specific. The greatest diversity of phenolic compounds was detected in RUG and FDH hips (55 and 54 different tentatively identified compounds with HPLC/MS). Flavanols represented the main phenolic class in most of the investigated species/cultivars and RGG hips contained the highest amount of catechin and proanthocyandin derivatives (15855 μg/g DW). Altogether RAL hips contained the highest quantity of phenolics (44746 μg/g DW) mainly due to high levels of hydrolysable tannins compared to other species/cultivars. Although small, hips of BON and REP were most abundant regarding β-carotene and lycopene content, respectively. © 2016 Institute of Food Technologists®

  5. Content of Selected Minerals and Active Ingredients in Teas Containing Yerba Mate and Rooibos.

    PubMed

    Rusinek-Prystupa, Elżbieta; Marzec, Zbigniew; Sembratowicz, Iwona; Samolińska, Wioletta; Kiczorowska, Bożena; Kwiecień, Małgorzata

    2016-07-01

    The study aimed to determine the content of selected elements: sodium, potassium, copper, zinc, iron, manganese and active ingredients such as phenolic acids and tannins in teas containing Yerba Mate and Rooibos cultivated in various areas. The study material comprised six samples of Yerba Mate teas and of Rooibos teas, both tea bags and leaves, purchased in Puławy and online via Allegro. In total, 24 samples were tested. Yerba Mate was particularly abundant in Mn and Fe. The richest source of these elements was Yerba Mate Yer-Vita (2261.3 mg · kg(-1) d.m.) and (691.6 mg · kg(-1) d.m.). The highest content of zinc was determined in Yerba Mate Amanda with lime (106.0 mg · kg(-1) d.m.), while copper was most abundant in Yerba Mate Big-Active cocoa and vanilla (14.05 mg · kg(-1) d.m.). In Rooibos, the content of sodium was several times higher than in Yerba Mate. A clear difference was observed in the content of minerals in dry weight of the examined products, which could be a result of both the taxonomic distinctness and the origin of the raw material. Leaf teas turned out to be a better source of tannins; on the other hand, tea bags contained substantially more phenolic acids. The richest source of phenolic acids was Yer-Vita in bags (1.8 %), and the highest amount of tannins was recorded in the leaf tea Green Goucho caramel and dark chocolate (9.04 g · 100 g(-1) d.m.). In Rooibos products, the highest content of phenolic acids was recorded in tea bags (Savannah with honey and vanilla 0.96 %), and tannins in (Lord Nelson with strawberry and cream 7.99 g · 100 g (-1) d.m.).

  6. Adaptations of quaking aspen for defense against damage by herbivores and related environmental agents

    Treesearch

    Richard L. Lindroth

    2001-01-01

    Quaking aspen (Populus tremuloides) employs two major systems of defense against damage by environmental agents: chemical defense and tolerance. Aspen accumulates appreciable quantities of phenolic glycosides (salicylates) and condensed tannins in most tissues and accumulates coniferyl benzoate in flower buds. Phenolic glycosides are toxic and/or deterrent to pathogens...

  7. Investigation of the effect of gelatine, egg albumin and cross-flow microfiltration on the phenolic composition of Pinotage wine.

    PubMed

    Oberholster, A; Carstens, L M; du Toit, W J

    2013-06-01

    The effect of fining and cross-flow microfiltration on the phenolic composition of red wine was investigated. Both gelatine (G) and egg albumin (EA) fining decreased the mean degree of polymerisation (mDP) of tannin significantly by 26.4% and 25.2%, respectively, compared to the control (C). Cross-flow microfiltration (CF) also decreased the mDP significantly by 25%. Thus, the fining agents and cross-flow microfiltration selectively removed the highly polymerised phenols. After 3.5 months of bottle ageing, differences between the different treatments and the control decreased. CF had the most significant effect on the flavan-3-ol and polymeric phenol (tannin) content of the wines compared to the control followed by G fining. CF and EA treatments significantly decreased the total pigment content compared to C. CF was also the only treatment that could be distinguished from the other treatments by sensory analysis. All treatments improved clarity of the wines with cross-flow microfiltration having the largest effect. Copyright © 2012 Elsevier Ltd. All rights reserved.

  8. Genome-wide analysis of the structural genes regulating defense phenylpropanoid metabolism in Populus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tschaplinski, Timothy J; Tsai, Chung-Jui; Harding, Scott A

    Salicin-based phenolic glycosides, hydroxycinnamate derivatives and flavonoid-derived condensed tannins comprise up to one-third of Populus leaf dry mass. Genes regulating the abundance and chemical diversity of these substances have not been comprehensively analysed in tree species exhibiting this metabolically demanding level of phenolic metabolism. Here, shikimate-phenylpropanoid pathway genes thought to give rise to these phenolic products were annotated from the Populus genome, their expression assessed by semiquantitative or quantitative reverse transcription polymerase chain reaction (PCR), and metabolic evidence for function presented. Unlike Arabidopsis, Populus leaves accumulate an array of hydroxycinnamoyl-quinate esters, which is consistent with broadened function of the expandedmore » hydroxycinnamoyl-CoA transferase gene family. Greater flavonoid pathway diversity is also represented, and flavonoid gene families are larger. Consistent with expanded pathway function, most of these genes were upregulated during wound-stimulated condensed tannin synthesis in leaves. The suite of Populus genes regulating phenylpropanoid product accumulation should have important application in managing phenolic carbon pools in relation to climate change and global carbon cycling.« less

  9. The effects of defoliation-induced delayed changes in silver birch foliar chemistry on gypsy moth fitness, immune response, and resistance to baculovirus infection.

    PubMed

    Martemyanov, Vyacheslav V; Dubovskiy, Ivan M; Rantala, Markus J; Salminen, Juha-Pekka; Belousova, Irina A; Pavlushin, Sergey V; Bakhvalov, Stanislav A; Glupov, Victor V

    2012-03-01

    We tested the effects of defoliation-induced changes in silver birch, Betula pendula, foliar chemistry (delayed induced resistance, DIR) on the fitness and immune defense of the gypsy moth, Lymantria dispar. We measured larval developmental time, pupal weight, rate of survival to the adult stage, and five characteristics of larval immune defense: (1) encapsulation response; (2) phenoloxidase activity; (3) hemocyte concentration and (4) lysozyme-like activity in the hemolymph; and (5) resistance to infection by L. dispar nucleopolyhedrovirus (LdMNPV). The latter is an entomopathogenic baculovirus that often causes epizootics during outbreaks of L. dispar. We also measured the involvement of foliage non-tannin phenolic compounds in resistance of B. pendula to herbivory as well as the relationship between the compounds we identified and L. dispar development, growth, and survival. Leaves of B. pendula with previous defoliation history contained increased levels of myricetin glycoside, two flavonoid aglycones (acacetin and tetrahydroxy-flavone dimethyl ether), as well as one unidentified simple phenolic. The concentrations of two glycosides of quercetin, as well as the content of one unidentified flavonoid glycoside were significantly decreased under defoliation treatment. DIR of B. pendula retarded larval growth rate and increased lysozyme-like activity in the hemolymph, but did not affect encapsulation response, phenoloxidase activity, or hemocyte count. We did not find any DIR-mediated tritrophic interactions among birch, gypsy moth, and LdMNPV. After viral inoculation, the mean hemocyte counts in larvae reared on an individual tree correlated significantly with the survival of larvae reared on that same tree, indicating that hemocyte density in hemolymph might be associated with resistance to viral infection. We found a strong positive correlation between the concentration of 1-(4″-hydroxyphenyl)-3'-oxopropyl-β-D-glucopyranose and L. dispar survival rate, which may indicate an unlikely role of this dominant non-tannin phenolic in B. pendula defense against L. dispar. Our study also shows that several immune characteristics of insects that function as barriers against different groups of parasites are differently affected by plant induced defenses. This underscores the importance of considering multiple factors when characterizing barriers to insect immunity.

  10. Anti-inflammatory, anticholinesterase, antioxidant and phytochemical properties of medicinal plants used for pain-related ailments in South Africa.

    PubMed

    Fawole, O A; Amoo, S O; Ndhlala, A R; Light, M E; Finnie, J F; Van Staden, J

    2010-02-03

    Extracts of seven South African medicinal plants used traditionally for the treatment of pain-related ailments were evaluated. The study was aimed at evaluating medicinal and therapeutic potentials of the investigated traditional medicinal plants. Plant extracts were evaluated for anti-inflammatory activity and other pharmacological properties such as anticholinesterase and antioxidant activities. Phytochemical analysis of total phenolic contents, condensed tannins, gallotannins and flavonoids in the aqueous methanol extracts of the medicinal plants were also carried out. The evaluation of anti-inflammatory activity of 50% methanol (50% MeOH), petroleum ether (PE), dichloromethane (DCM) and ethanol (EtOH) plant extracts was done against cyclooxygenase-1 and -2 (COX-1 and COX-2) enzymes. 50% MeOH, PE, DCM and EtOH extracts were tested for acetylcholinesterase (AChE) inhibition, while 50% MeOH extracts were tested for 2,2-diphenyl-1-picryl hydrazyl (DPPH) radical scavenging activity and ferric-reducing power in the antioxidant assays. Total phenolic compounds, condensed tannins, gallotannins and flavonoids were quantitatively determined using spectrophotometric methods. At the screening assay concentration (0.25 microg/microl), 13 extracts showed good COX-1 inhibitory activity (>50%), while good activity was observed in 15 extracts against COX-2 enzyme. All the extracts of Crinum moorei (bulbs) showed good inhibition against both COX-1 and COX-2 enzymes. Though not significantly different (P=0.05), the highest COX-1 percentage inhibition (100%) was shown by Aloe ferox leaf PE and Colocasia antiquorum tuber DCM extracts, while Colocasia antiquorum tuber PE extract exhibited the highest (92.7%) percentage inhibition against COX-2. Crinum moorei bulb DCM extract showed the lowest EC(50) value (2.9 microg/ml) in the AChE assay. In addition, good to moderate bioactivities were observed in some extracts of Aloe ferox (leaves), Crinum moorei (bulbs) and Pycnostachys reticulata (leaves) in all the assays. The presence and/or amounts of phenolic compounds varied with plant species. The results obtained in this study validate the use of the investigated medicinal plants in South African traditional medicine for pain-related ailments. Copyright 2009 Elsevier Ireland Ltd. All rights reserved.

  11. Comparison of fortified, sfursat, and passito wines produced from fresh and dehydrated grapes of aromatic black cv. Moscato nero (Vitis vinifera L.).

    PubMed

    Ossola, Carolina; Giacosa, Simone; Torchio, Fabrizio; Río Segade, Susana; Caudana, Alberto; Cagnasso, Enzo; Gerbi, Vincenzo; Rolle, Luca

    2017-08-01

    Moscato nero d'Acqui is an Italian aromatic black winegrape variety characterized by a low content of anthocyanins (mostly tri-substituted), a satisfactory content of high molecular mass tannins, and a fair amount of terpenes. The grapes were subjected to a postharvest dehydration process under controlled thermohygrometric conditions (16-18°C, 55-70 RH%, 0.6m/s air speed) with the aim to produce three different special wine types (fortified, sfursat, and passito) from fresh, partially dehydrated (27°Brix), and withered (36°Brix) grapes, respectively. Chemical traits of produced grapes and wines were then evaluated through spectrophotometric, HPLC, and GC-MS methods. Increased contents of skin phenolic compounds and reduced extractable contents of seed phenolic compounds were observed as dehydration progressed. Few significant differences were found in the anthocyanin profile of grapes, although the relative abundance of coumaroylated anthocyanins was higher in dehydrated grapes. The predominant free volatile compound found in grapes was geraniol, which decreased with increasing water loss, whereas the contents of major glycosylated volatile compounds increased even above the concentration effect. The changes in the phenolic composition among wines agreed with those among grape skins. Fortified wines were chromatically unsatisfactory probably due to the low content of total anthocyanins, whereas sfursat and passito wines meet good chromatic characteristics as a result of the concentration effect during grape dehydration. Fortified and sfursat wines had free aroma profiles richer in 2-phenylethanol and citronellol, whereas passito wines were mainly composed of 2-phenylethanol and 2-phenylethyl acetate, citronellol being the predominant terpenol in all the wine types studied. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Antioxidant activity of raw, cooked and Rhizopus oligosporus fermented beans of Canavalia of coastal sand dunes of Southwest India.

    PubMed

    Niveditha, Vedavyas R; Sridhar, Kandikere R

    2014-11-01

    The raw and processed (cooked and cooked + solid-state fermented with Rhizopus oligosporus) split beans of two landraces of coastal sand dune wild legumes (Canavalia cathartica and Canavalia maritima) of the southwest coast of India were examined for bioactive compounds (total phenolics, tannins and vitamin C) and antioxidant potential (total antioxidant activity, ferrous-ion chelating capacity, DPPH free radical-scavenging activity and reducing activity). One-way ANOVA revealed significant elevation of bioactive compounds as well as antioxidant activities in fermented beans compared to raw and cooked beans in both legumes (p < 0.001). The EC50 values in fermented beans of both legumes were significantly lowest compared to raw and cooked beans (p < 0.001). In principal component analysis, total phenolics along with antioxidant activities (total antioxidant, ferrous-ion chelating and free radical-scavenging activities) of fermented beans of C. cathartica, while total antioxidant and free radical-scavenging activities of fermented beans of C. maritima were clustered. The present study demonstrated that split beans of coastal sand dune Canavalia fermented by R. oligosporus endowed with high bioactive principles as well as antioxidant potential and thus serve as future nutraceutical source.

  13. Bio-antioxidants - a chemical base of their antioxidant activity and beneficial effect on human health.

    PubMed

    Kancheva, V D; Kasaikina, O T

    2013-01-01

    The paradox of aerobic life is that higher eukaryotic organisms cannot exist without oxygen, yet oxygen is inherently dangerous to their existence. Autoxidation of organic substances frequently occurs via free radical mechanism which generates different active radicals and peroxides OH(•), O2 (•-), LO2 (•), HOOH, LOOH, so called reactive oxygen species (ROS), which appear to be responsible for oxygen toxicity. To survive in such an unfriendly oxygen environment, living organisms generate - or obtain from food - a variety of water- and lipid-soluble antioxidant compounds. Biologically active compounds with antioxidant potential, i.e. bio-antioxidants (natural and their synthetic analogues) have a wide range of applications. They are important drugs, antibiotics, agrochemical substitutes, and food preservatives. Many of the drugs today are synthetic modifications of naturally obtained substances. This review presents information about the chemical base of antioxidant activities and beneficial effects on human health of known and new bio-antioxidants. There is abundant literature on the phenolic antioxidants and tocopherols in particular. In this review the following bio-antioxidants are considered: A) Carotenoids, B) Cathecholamines, C) Phospholipids, D) Chalcones, E) Coumarins, F) Phenolic acids, G) Flavonoids, H) Lignans, and I) Tannins.

  14. New flavan-3-ol dimer from green tea produced from Camellia taliensis in the Ai-Lao mountains of Southwest China.

    PubMed

    Zhu, Li-Fang; Xu, Min; Zhu, Hong-Tao; Wang, Dong; Yang, Shi-Xiong; Yang, Chong-Ren; Zhang, Ying-Jun

    2012-12-12

    Camellia taliensis (W. W. Smith) Melchior, belonging to the genus Camellia sect. Thea (Theaceae), is an endemic species distributed from the west and southwest of Yunnan province, China, to the north of Myanmar. Known as a wild tea tree, its leaves have been used commonly for producing tea beverages by the local people of its growing area. One new flavan-3-ol dimer, talienbisflavan A (1), was isolated from green tea prepared from the leaves of C. taliensis collected from the east side of the Ai-Lao mountains, Yuanjiang county of Yunnan province, China. In addition, five hydrolyzable tannins (2-6), five flavonols and flavonol glycosides (9-13), three flavan-3-ols (14-16), nine simple phenolic compounds and glycosides (7, 8, and 17-23), and caffeine (24) were identified. Their structures were determined by detailed spectroscopic analysis. All of the isolated phenolic compounds were tested for their antioxidant activities by DPPH and ABTS(+) radical scavenging assays. The contents of its main chemical compositions were also compared with those collected from the Lincang area of Yunnan province by high-performance liquid chromatography analysis.

  15. Changes in the structural composition and reactivity of Acer rubrum leaf litter tannins exposed to warming and altered precipitation: climatic stress-induced tannins are more reactive.

    PubMed

    Tharayil, Nishanth; Suseela, Vidya; Triebwasser, Daniella J; Preston, Caroline M; Gerard, Patrick D; Dukes, Jeffrey S

    2011-07-01

    • Climate change could increase the frequency with which plants experience abiotic stresses, leading to changes in their metabolic pathways. These stresses may induce the production of compounds that are structurally and biologically different from constitutive compounds. • We studied how warming and altered precipitation affected the composition, structure, and biological reactivity of leaf litter tannins in Acer rubrum at the Boston-Area Climate Experiment, in Massachusetts, USA. • Warmer and drier climatic conditions led to higher concentrations of protective compounds, including flavonoids and cutin. The abundance and structure of leaf tannins also responded consistently to climatic treatments. Drought and warming in combination doubled the concentration of total tannins, which reached 30% of leaf-litter DW. This treatment also produced condensed tannins with lower polymerization and a greater proportion of procyanidin units, which in turn reduced sequestration of tannins by litter fiber. Furthermore, because of the structural flexibility of these tannins, litter from this treatment exhibited five times more enzyme (β-glucosidase) complexation capacity on a per-weight basis. Warmer and wetter conditions decreased the amount of foliar condensed tannins. • Our finding that warming and drought result in the production of highly reactive tannins is novel, and highly relevant to climate change research as these tannins, by immobilizing microbial enzymes, could slow litter decomposition and thus carbon and nutrient cycling in a warmer, drier world. © 2011 The Authors. New Phytologist © 2011 New Phytologist Trust.

  16. Condensed Tannins from Longan Bark as Inhibitor of Tyrosinase: Structure, Activity, and Mechanism.

    PubMed

    Chai, Wei-Ming; Huang, Qian; Lin, Mei-Zhen; Ou-Yang, Chong; Huang, Wen-Yang; Wang, Ying-Xia; Xu, Kai-Li; Feng, Hui-Ling

    2018-01-31

    In this study, the content, structure, antityrosinase activity, and mechanism of longan bark condensed tannins were evaluated. The findings obtained from mass spectrometry demonstrated that longan bark condensed tannins were mixtures of procyanidins, propelargonidins, prodelphinidins, and their acyl derivatives (galloyl and p-hydroxybenzoate). The enzyme analysis indicated that these mixtures were efficient, reversible, and mixed (competitive is dominant) inhibitor of tyrosinase. What's more, the mixtures showed good inhibitions on proliferation, intracellular enzyme activity and melanogenesis of mouse melanoma cells (B 16 ). From molecular docking, the results showed the interactions between inhibitors and tyrosinase were driven by hydrogen bond, electrostatic, and hydrophobic interactions. In addition, high levels of total phenolic and extractable condensed tannins suggested that longan bark might be a good source of tyrosinase inhibitor. This study would offer theoretical basis for the development of longan bark condensed tannins as novel food preservatives and medicines of skin diseases.

  17. Total Phenol Content and In Vitro Antioxidant Potential of Helicanthus elastica (Desr.) Danser-A Less-explored Indian Mango Mistletoe

    PubMed Central

    Sunil Kumar, Koppala Narayana; Saraswathy, Ariyamuthu; Amerjothy, Swaminathan; Susan, Thomas; Ravishankar, Basaviah

    2014-01-01

    Natural products are an important source of antioxidant molecules like tannins, phenolic compounds, flavonoids, etc., Helicanthus elastica (Desr.) Danser (Loranthaceae) is one such plant belonging to the category of mistletoe, and grows commonly on the mango trees in India. In the present study, an attempt has been made to assess the antioxidant properties of the plant. Ethanol extract of H. elastica growing on mango tree was studied using different in vitro models. Shade-dried whole plant material was extracted with ethanol by cold percolation. Fifty milligrams of the alcohol extract of H. elastica was weighed and dissolved in 10 ml of methanol. The resultant 5 mg/ml solution was suitably diluted to obtain different concentrations. Total phenol content, reducing power assay, and scavenging of free radicals like nitric oxide, hydroxyl, hydrogen peroxide, and 1,1-diphenyl-2-picrylhydrazyl were studied by standardized in vitro chemical methods using ascorbic acid as the standard. The total phenol content of the plant was found to be 1.89% w/w. The extract showed good reducing power as well as scavenging of free radicals (nitric oxide, hydroxyl, superoxide anion, and hydrogen peroxide) at concentrations ranging from 5 to 100 μg/ml. The study revealed the antioxidant potential of H. elastica. PMID:25379473

  18. Regulated deficit irrigation alters anthocyanins, tannins and sensory properties of cabernet sauvignon grapes and wines.

    PubMed

    Casassa, Luis Federico; Keller, Markus; Harbertson, James F

    2015-04-29

    Four regulated deficit irrigation (RDI) regimes were applied to Cabernet Sauvignon grapes, which were analyzed for phenolics and also made into wine over three consecutive growing seasons. Relative to an industry standard regime (IS), yield was reduced over the three years by 37% in a full-deficit (FD) regime and by 18% in an early deficit (ED) regime, whereas no yield reduction occurred with a late deficit (LD) regime. Relative to IS, skin anthocyanin concentration (fresh weight basis) was 18% and 24% higher in ED and FD, respectively, whereas no effect was seen in LD. Seed tannin concentration was 3% and 8% higher in ED and FD, respectively, relative to the other two RDI regimes, whereas seed tannin content (amount per berry) was higher in IS than in FD. There were no practically relevant effects on the basic chemistry of the wines. The finished wines showed concentrations of tannins and anthocyanins that generally mirrored observed differences in skin and seed phenolic concentrations, although these were amplified in FD wines. Descriptive sensory analysis of the 2008 wines showed that FD wines were the most saturated in color, with higher purple hue, roughness, dryness and harshness, followed by ED wines, whereas IS and LD wines were less saturated in color and with higher brown and red hues. Overall, FD and ED seemed to yield fruit and wine with greater concentrations of phenolics than IS and LD, with the additional advantage of reducing water usage. However, these apparent benefits need to be balanced out with reductions in crop yields and potential long-term effects associated with pre-véraison water deficits.

  19. The gall wasp Leptocybe invasa (Hymenoptera: Eulophidae) stimulates different chemical and phytohormone responses in two Eucalyptus varieties that vary in susceptibility to galling.

    PubMed

    Li, X Q; Liu, Y Z; Guo, W F; Solanki, M K; Yang, Z D; Xiang, Y; Ma, Z C; Wen, Y G

    2017-09-01

    Gall-inducing insects produce various types of galls on plants, but little is known about the gall-induction mechanism of these galling insects. The gall wasp Leptocybe invasa Fisher & LaSalle (Hymenoptera: Eulophidae) forms galls of different sizes on several Eucalyptus species. To clarify the physiological responses of Eucalyptus to L. invasa infestation, we measured the dynamics of nitrogen (N), carbon (C), total phenolics, total tannins and four types of phytohormones (zeatin [Z] + zeatin riboside [ZR], gibberellins [GA], indole-3-acetic acid [IAA] and abscisic acid [ABA]) in galled and ungalled leaf tissues of two Eucalyptus horticultural varieties (DH201-2 [Eucalyptus grandis × Eucalyptus camaldulensis] and EA [Eucalyptus exserta]) with different susceptibility to galling throughout the larval developmental stages. Nitrogen, total phenolics, tannins and four kinds of phytohormones strongly accumulated in tissues galled by L. invasa (especially during early larval feeding stages). While N, Z + ZR and GA levels were higher, tannins and ABA levels were lower in the galled tissues on the highly susceptible variety. Nitrogen, total phenolics, GA, Z + ZR and IAA levels in the galled tissues gradually decreased during gall development, but ABA and tannins conversely increased in the galled tissues of the less susceptible variety. Our results suggest that the effects of gall-inducing insects on plants depend not only on the susceptibility of the plant infested but also on the developmental stage of galled tissues. Gall formation process is thus synergistically influenced by both gall-inducing insect and plant genotypes. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  20. Effects of tannins on fruit selection in three southern African frugivorous birds.

    PubMed

    Zungu, Manqoba M; Downs, Colleen T

    2015-02-01

    Tannins are common secondary compounds in plant material and are known for their ability to bind to protein which reduces nitrogen availability in the diet. In fruits, these compounds are responsible for their astringency which is thought to result in reduced food intake. In this study, the repellent effects of tannins were examined in three species of frugivorous birds: red-winged starlings Onychognathus morio, speckled mousebirds Colius striatus and Cape white-eyes Zosterops virens. Birds were fed artificial fruit diets containing varying levels of tannins in paired choice tests with the amount of food eaten by birds used to determine preference. Red-winged starlings were attracted to the control diet, indifferent to the medium tannin diet and deterred by the high tannin diet whereas speckled mousebirds and Cape white-eyes were not deterred at all concentrations. The discrepancy in the results was attributed to differences in taste sensitivity, tolerance levels and detoxification mechanisms of secondary compounds between species. Because fruit selection and ultimately fruit removal rates affect plant community composition, the disparity in the results suggests that frugivorous birds do not contribute equally to plant community dynamics. However, plant secondary compounds in fruits are diverse and their effects are similarly diverse and there is potential that different groups of secondary compounds generate disparate effects. Similar studies on other types of secondary compounds may thus contribute towards a broader understanding of the role of secondary compounds in mediating fruit-frugivore interactions. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Recovery of uranium from seawater by immobilized tannin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sakaguchi, T.; Nakajima, A.

    1987-06-01

    Tannin compounds having multiple adjacent hydroxy groups have an extremely high affinity for uranium. To prevent the leaching of tannins into water and to improve the adsorbing characteristics of these compounds, the authors tried to immobilize tannins. The immobilized tannin has the most favorable features for uranium recovery; high selective adsorption ability to uranium, rapid adsorption rate, and applicability in both column and batch systems. The immobilized tannin can recover uranium from natural seawater with high efficiency. About 2530 ..mu..g uranium is adsorbed per gram of this adsorbent within 22 h. Depending on the concentration in seawater, an enrichment ofmore » up to 766,000-fold within the adsorbent is possible. Almost all uranium adsorbed is easily desorbed with a very dilute acid. Thus, the immobilized tannin can be used repeatedly in the adsorption-desorption process.« less

  2. Analysis of phytochemical constituents of Eucalyptus citriodora L. responsible for antifungal activity against post-harvest fungi.

    PubMed

    Javed, S; Shoaib, A; Mahmood, Z; Mushtaq, S; Iftikhar, S

    2012-01-01

    In vitro antifungal activity and phytochemical constituents of essential oil, aqueous, methanol and chloroform extract of Eucalyptus citriodora Hook leaves were investigated. A qualitative phytochemical analysis was performed for the detection of alkaloids, cardiac glycosides, flavonoids, saponins, sterols, tannins and phenols. Methanolic extract holds all identified biochemical constituents except for the tannin. While these biochemical constituents were found to be absent in essential oil, aqueous and chloroform extracts with the exception of sterols, cardiac glycosides and phenols in essential oil and sterols and phenols in aqueous and chloroform extracts. Antimycotic activity of four fractions of E. citriodora was investigated through agar-well diffusion method against four post-harvest fungi, namely, Aspergillus flavus Link ex Gray, Aspergillus fumigatus Fres., Aspergillus nidulans Eidam ex Win and Aspergillus terreus Thom. The results revealed maximum fungal growth inhibition by methanolic extract (14.5%) followed by essential oil (12.9%), chloroform extract (10.15%) and aqueous extract (10%).

  3. Hypotheses on the effects of enological tannins and total red wine phenolic compounds on Oenococcus oeni.

    PubMed

    Chasseriaud, Laura; Krieger-Weber, Sibylle; Déléris-Bou, Magali; Sieczkowski, Nathalie; Jourdes, Michael; Teissedre, Pierre Louis; Claisse, Olivier; Lonvaud-Funel, Aline

    2015-12-01

    Lot of articles report on the impact of polyphenols on wine lactic acid bacteria, but it is clear that the results still remain confusing, because the system is complicated both in term of chemical composition and of diversity of strains. In addition, red wines polyphenols are multiple, complex and reactive molecules. Moreover, the final composition of wine varies according to grape variety and to extraction during winemaking. Therefore it is nearly impossible to deduce their effects on bacteria from experiments in oversimplified conditions. In the present work, effect of tannins preparations, currently considered as possible technological adjuvants, was assessed on growth and malolactic fermentation for two malolactic starters. Experiments were conducted in a laboratory medium and in a white wine. Likewise, impact of total polyphenolic extracts obtained from different grape variety red wines was evaluated in the white wine as culture medium. As expected growth and activity of both strains were affected whatever the additions. Results suggest some interpretations to the observed impacts on bacterial populations. Influence of tannins should be, at least partly, due to redox potential change. Results on wine extracts show the need for investigating the bacterial metabolism of some galloylated molecules. Indeed, they should play on bacterial physiology and probably affect the sensory qualities of wines. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Phytochemical screening, total phenolic, total flavonoids contents and antioxidant activity of cinchona ledgeriana leaves ethanol extract

    NASA Astrophysics Data System (ADS)

    Sundowo, Andini; Artanti, Nina; Hanafi, M.; Minarti, Primahana, Gian

    2017-11-01

    C ledgeriana is a medicinal plant that contains alkaloids, especially on the barks for commercial production of quinine as antimalarial. The main alkaloids in this plant are cinchonine, cinchonidine, quinine and quinidine. Besides for antiamalarial this plant is also commonly used to treat whooping cough, influenza and dysentery. Compare to other medicinal plants, nowadays only very few studies were conducted in Cinchona species. Our current study aims to determine the content of phytochemical, total phenol and total flavonoids from C. ledgeriana leaves 70% ethanol extract. The extraction was performed by maceration method using 70% ethanol solvent and then fractionated into hexane, ethylacetate and butanol. Phytochemical screening was performed to determine the content of alkaloids, flavonoids, terpenoids, tannins and saponins. Total phenol and flavonoid contents of the extract were determined by Folin-Ciocalteu and alumunium chloride colorimetric methods using gallic acid and quercetin as standards. The antioxidant activity was determined by using 2, 2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activity. The results of phytochemical screening showed that the 70% ethanol extract of C. ledgeriana leaves contained alkaloids, flavonoids, terpenoids, tannins and saponins. The total phenol and total flavonoids analysis showed that ethyl acetate fraction had the highest total phenol (40.23%) and total flavonoids (65.34%).

  5. Fermentation and dry fractionation increase bioactivity of cloudberry (Rubus chamaemorus).

    PubMed

    Puupponen-Pimiä, Riitta; Nohynek, Liisa; Juvonen, Riikka; Kössö, Tuija; Truchado, Pilar; Westerlund-Wikström, Benita; Leppänen, Tiina; Moilanen, Eeva; Oksman-Caldentey, Kirsi-Marja

    2016-04-15

    Phenolic composition and bioactivity of cloudberry was modified by bioprocessing, and highly bioactive fractions were produced by dry fractionation of the press cake. During fermentation polymeric ellagitannins were partly degraded into ellagic acid derivatives. Phenolic compounds were differentially distributed in seed coarse and fine fractions after dry fractionation process. Tannins concentrated in fine fraction, and flavonol derivatives were mainly found in coarse fraction. Ellagic acid derivatives were equally distributed between the dry fractions. Fermentation and dry fractionation increased statistically significantly anti-adhesion and anti-inflammatory activity of cloudberry. The seed fine fraction showed significant inhibition of P fimbria-mediated haemagglutination assay of uropathogenic Escherichia coli. The seed coarse fraction significantly reduced NO and IL-6 production and iNOS expression in activated macrophages. Fermentation did not affect antimicrobial activity, but slight increase in activity was detected in dry fractions. The results indicate the potential of cloudberry in pharma or health food applications. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Chemical characterization and bioactive properties of aqueous and organic extracts of Geranium robertianum L.

    PubMed

    Graça, V C; Barros, Lillian; Calhelha, Ricardo C; Dias, Maria Inês; Carvalho, Ana Maria; Santos-Buelga, Celestino; Santos, P F; Ferreira, Isabel C F R

    2016-09-14

    Geranium robertianum L. has been used in folk medicine and herbalism practice for the treatment of various conditions, but the study of its bioactivity has been barely addressed. Although its phytochemical composition has received some attention, contributions to the nutritional composition are practically unknown. Herein, G. robertianum gathered in Trás-os-Montes, Northeastern Portugal, was chemically characterized regarding nutritional parameters, and the antioxidant activity and cytotoxicity against several human tumor cell lines and non-tumor porcine liver primary cells of several aqueous and organic extracts were evaluated. G. robertianum showed to be an equilibrated valuable herb, rich in carbohydrates and proteins, and poor in fat, providing sugars, tocopherols, organic and essential fatty acids. Amongst the extracts, the acetone one showed the highest total phenol and total flavonoid contents, as well as the greatest antioxidant and cytotoxic activities. This extract showed to contain hydrolysable tannins (e.g. geraniin and castalagin/vescalagin), as the main phenolic compounds.

  7. A comparative study of the antihyaluronidase, antiurease, antioxidant, antimicrobial and physicochemical properties of different unifloral degrees of chestnut (Castanea sativa Mill.) honeys.

    PubMed

    Kolayli, Sevgi; Can, Zehra; Yildiz, Oktay; Sahin, Huseyin; Karaoglu, Sengul Alpay

    2016-01-01

    This study was planned to investigate some physicochemical and anti-inflammatory, antioxidant, antimicrobial properties of three different degrees of unifloral characters of chestnut honeys. Antihyaluronidase, antiurease and antimicrobial activities were evaluated as anti-inflammatory characteristics. Total phenolic contents, flavonoids, tannins, phenolic profiles, ferric-reducing antioxidant power (FRAP), scavenging activities of 2,2'-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid (ABTS + ) and 2,2-diphenyl-1-picrylhydrazyl (DPPH) radicals were evaluated as antioxidant properties. Color, optical rotation, conductivity, moisture, pH and ash content were evaluated as physicochemical parameters, and some sugars content, prolin, diastase, HMF and minerals (Na, K, Ca, P, Fe, Cu and Zn) were evaluated as chemical and biochemical parameters. All studied physicochemical and biological active properties were changed in line with the unifloral character of the chestnut honeys. A higher unifloral character was found associated with greater apitherapeutic capacity of the honey, as well as biological active compounds.

  8. Seasonal photosynthate allocation and leaf chemistry in relation to herbivory in the coast live oak, Quercus agrifolia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mauffette, Y.

    1987-01-01

    The coast live oak (Quercus agrifolia Nee) is an evergreen tree species distributed along the coastal range of California. The seasonal photosynthate allocation and leaf chemistry were studied on fifteen oak trees from spring 1982 to spring 1984. Branches of Q. agrifolia were labeled with /sup 14/CO/sub 2/ at monthly intervals, to determine photosynthate allocation to growth and to defensive compounds throughout the year. Labeled leaves were chemically analyzed to determine the activity present in various metabolic fractions (sugar, lipid, starch, phenolic, tannin, protein, organic and amino acid, and cell wall material). The utilization of photosynthate for the different chemicalmore » fractions varied during the seasons. New leaves allocated a significant proportion of carbon to phenolics early in the growing season, whereas later in the season more carbon was allocated to cell wall material. Old leaves maintained more consistent allocation patterns throughout seasons, and a large proportion of carbon was devoted to storage products.« less

  9. Phytochemical screening and antioxidant capacity of the aerial parts of Thymelaea hirsuta L.

    PubMed Central

    Amari, Nesrine Ouda; Bouzouina, Mohamed; Berkani, Abdellah; Lotmani, Brahim

    2014-01-01

    Objective To assess antioxidant activities of different aerial parts of Thymelaea hirsuta (T. hirsuta) from west Algeria, and to search for new sources of safe and inexpensive antioxidants. Methods Samples of leaves, stems and flowers from T. hirsuta were tested for total phenolic content, flavonoids content, and evaluation its total antioxidant activity, were done using the spectrophotometric analyses. Results Results of preliminary phytochemical screening of leaf, flower and stem of T. hirsuta revealed the presence of tannins, alkaloids, steroids, saponins, coumarins, reducteurs compound and anthraquinones. The total phenolics and flavonoids were estimated. The aqueous extracts of the aerial parts of T. hirsuta showed potent in vitro antioxydant activities using various models viz, DPPH scavenging assay, ferric reducing antioxidant power (FRAP) and ABTS radical scavenging activity. Conclusions On the basis of the results obtained, T. hirsuta extracts are rich sources of natural antioxidants appears to be an alternative to synthetic antioxidants and this justifies its therapeutic usage.

  10. Filamentous fungi as a source of natural antioxidants.

    PubMed

    Smith, Helen; Doyle, Sean; Murphy, Richard

    2015-10-15

    Ten species of filamentous fungi grown in submerged flask cultures were investigated for antioxidant capacity. Effective antioxidant activity was demonstrated in terms of β-carotene/linoleic acid bleaching, radical scavenging, reduction of metal ions and chelating abilities against ferrous ions. Different extraction methods affected antioxidant activities through their effect on biologically active compounds produced in fungal mycelia. The methanolic extract of each fungus was typically more effective in antioxidant properties. Phenolic content was established in the range of 0.44-9.33 mg/g, flavonoid contents were in the range of 0.02-3.90 mg/g and condensed tannin contents were in the range of 1.77-18.83 mg/g. Total phenol content of each extract was attributed to overall antioxidant capacity (r ⩾ 0.883-1.000). Submerged cultivation of Grifola frondosa, Monascus purpureus, Pleurotus spp., Lentinula edodes and Trametes versicolor proved to be an effective method for the production of natural antioxidants. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Honey shows potent inhibitory activity against the bovine testes hyaluronidase.

    PubMed

    Kolayli, Sevgi; Sahin, Huseyin; Can, Zehra; Yildiz, Oktay; Sahin, Kübra

    2016-08-01

    The purpose of this study was to investigate the anti-hyaluronidase activities of honeys from different botanical origins honeys in order to determine their anti-inflammatory properties. The total phenolic contents, total flavonoids and total tannin levels of six types of honey, chestnut, oak, heather, pine, buckwheat and mixed blossom, were determined. Concentration-related inhibition values were tested turbidimetrically on bovine testis hyaluronidase (BTHase) as IC50 (mg/mL). All honeys exhibited various concentration-dependent degrees of inhibition against BTHase. Inhibition values varied significantly depending on honeys' levels of phenolic contents, flavonoid and tannin. The honeys with the highest anti-hyaluronidase activity were oak, chestnut and heather. In conclusion, polyphenol-rich honeys have high anti-hyaluronidase activity, and these honeys have high protective and complementary potential against hyaluronidase-induced anti-inflammatory failures.

  12. Gelled compositions and well treating

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Swanson, B.L.

    1984-04-03

    Gelled compositions suitable as fracture fluids and water diversion agents comprising water, a polymeric viscosifier, an aldehyde component, and at least one phenolic component such as resorcinol, catechol, and the like, as well as selected oxidized phenolic materials such as 1,4-benzoquinone of natural or synthetic origin and natural and modified tannins. The gelled compositions can additionally contain gel stabilizers and chemical buffering agents.

  13. Gelled compositions and well treating

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Swanson, B.L.

    1981-01-20

    Gelled compositions suitable as fracture fluids and water diversion agents comprising water, a polymeric viscosifier, an aldehyde component, and at least one phenolic component such as resorcinol, catechol, and the like, as well as selected oxidized phenolic materials such as 1,4-benzoquinone of natural or synthetic origin and natural and modified tannins. The gelled compositions can additionally contain gel stabilizers and chemical buffering agents.

  14. The impact of wine components on fractionation of Cu and Fe in model wine systems: Macromolecules, phenolic and sulfur compounds.

    PubMed

    Kontoudakis, Nikolaos; Smith, Mark; Guo, Anque; Smith, Paul A; Scollary, Geoffrey R; Wilkes, Eric N; Clark, Andrew C

    2017-08-01

    A variety of techniques have been developed with the ability to measure different forms of metals in wine with the ultimate aim of providing a more accurate indicator of metal induced spoilage of wine. This study was conducted in order to identify which wine components influence the measurement of Cu and Fe in their fractionated and/or electrochemically active forms. The measurement techniques involved detection of labile Cu by stripping potentiometry and fractionation of Cu and Fe by sequential solid phase extraction, with detection by inductively coupled plasma-optical emission spectroscopy. The wine components assessed included those extracted from wine (red wine tannin, white wine protein, white wine polysaccharide, red wine polyphenol, white wine polyphenol), and commercially available monomeric compounds, including phenolic compounds and sulfur-containing compounds. For Cu, only hydrogen sulfide, which is known to induce the formation of Cu(I) sulfide, showed any appreciable influence on the fractionation and electrochemical detection of Cu. This form of Cu was also identified as the major component of red and white wines. For Fe, the fractionation was different for red versus white wine, and influenced significantly by extracted red wine polyphenol, (-)-epicatechin, gallic acid and tartaric acid. The wine components showed more influence on Fe at pH4.00 compared to pH3.25. These results enable a targeted use of these techniques in the assessment of metal-induced spoilage of wine. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Chemical composition of barks from Quercus faginea trees and characterization of their lipophilic and polar extracts.

    PubMed

    Ferreira, Joana P A; Miranda, Isabel; Sousa, Vicelina B; Pereira, Helena

    2018-01-01

    The bark from Quercus faginea mature trees from two sites was chemically characterized for the first time. The barks showed the following composition: ash 14.6%, total extractives 13.2%, suberin 2.9% and lignin 28.2%. The polysaccharides were composed mainly of glucose and xylose (50.3% and 35.1% of all monosaccharides respectively) with 4.8% of uronic acids. The suberin composition was: ω-hydroxyacids 46.3% of total compounds, ɑ,ω-alkanoic diacids 22.3%, alkanoic acids 5.9%, alkanols 6.7% and aromatics 6.9% (ferulic acid 4.0%). Polar extracts (ethanol-water) had a high phenolic content of 630.3 mg of gallic acid equivalents (GAE)/g of extract, condensed tannins 220.7 mg of catechin equivalents (CE)/g extract, and flavonoids 207.7 mg CE/g of extract. The antioxidant activity was very high corresponding to 1567 mg Trolox equivalents/g of extract, and an IC50 of 2.63 μg extract/ml. The lipophilic extracts were constituted mainly by glycerol and its derivatives (12.3% of all compounds), alkanoic acids (27.8%), sterols (11.5%) and triterpenes (17.8%). In view of an integrated valorization, Quercus faginea barks are interesting sources of polar compounds including phenols and polyphenols with possible interesting bioactivities, while the sterols and triterpenes contained in the lipophilic extracts are also valuable bioactive compounds or chemical intermediates for specific high-value market niches, such as cosmetics, pharmaceuticals and biomedicine.

  16. Chemical composition of barks from Quercus faginea trees and characterization of their lipophilic and polar extracts

    PubMed Central

    2018-01-01

    The bark from Quercus faginea mature trees from two sites was chemically characterized for the first time. The barks showed the following composition: ash 14.6%, total extractives 13.2%, suberin 2.9% and lignin 28.2%. The polysaccharides were composed mainly of glucose and xylose (50.3% and 35.1% of all monosaccharides respectively) with 4.8% of uronic acids. The suberin composition was: ω-hydroxyacids 46.3% of total compounds, ɑ,ω-alkanoic diacids 22.3%, alkanoic acids 5.9%, alkanols 6.7% and aromatics 6.9% (ferulic acid 4.0%). Polar extracts (ethanol-water) had a high phenolic content of 630.3 mg of gallic acid equivalents (GAE)/g of extract, condensed tannins 220.7 mg of catechin equivalents (CE)/g extract, and flavonoids 207.7 mg CE/g of extract. The antioxidant activity was very high corresponding to 1567 mg Trolox equivalents/g of extract, and an IC50 of 2.63 μg extract/ml. The lipophilic extracts were constituted mainly by glycerol and its derivatives (12.3% of all compounds), alkanoic acids (27.8%), sterols (11.5%) and triterpenes (17.8%). In view of an integrated valorization, Quercus faginea barks are interesting sources of polar compounds including phenols and polyphenols with possible interesting bioactivities, while the sterols and triterpenes contained in the lipophilic extracts are also valuable bioactive compounds or chemical intermediates for specific high-value market niches, such as cosmetics, pharmaceuticals and biomedicine. PMID:29763441

  17. Hydrolyzable Tannins, Flavonol Glycosides, and Phenolic Acids Show Seasonal and Ontogenic Variation in Geranium sylvaticum.

    PubMed

    Tuominen, Anu; Salminen, Juha-Pekka

    2017-08-09

    The seasonal variation of polyphenols in the aboveground organs and roots of Geranium sylvaticum in four populations was studied using UPLC-DAD-ESI-QqQ-MS/MS. The content of the main compound, geraniin, was highest (16% of dry weight) in the basal leaves after the flowering period but stayed rather constant throughout the growing season. Compound-specific mass spectrometric methods revealed the different seasonal patterns in minor polyphenols. Maximum contents of galloylglucoses and flavonol glycosides were detected in the small leaves in May, whereas the contents of further modified ellagitannins, such as ascorgeraniin and chebulagic acid, increased during the growing season. In flower organs, the polyphenol contents differed significantly between ontogenic phases so that maximum amounts were typically found in the bud phase, except in pistils the amount of gallotannins increased significantly in the fruit phase. These results can be used in evaluating the role of polyphenols in plant-herbivore interactions or in planning the best collection times of G. sylvaticum for compound isolation purposes.

  18. Effect of Genotype on the Sprouting of Pomegranate (Punica granatum L.) Seeds as a Source of Phenolic Compounds from Juice Industry by-Products.

    PubMed

    Falcinelli, Beatrice; Marconi, Ombretta; Maranghi, Stefano; Lutts, Stanley; Rosati, Adolfo; Famiani, Franco; Benincasa, Paolo

    2017-12-01

    Pomegranate (Punica granatum L.) fruits are used mainly by the juice industry, for which seeds are a by-product to be disposed of, though they could potentially be a source of bioactive compounds. In this work, germination (total germination percentage, G; mean germination time, MGT; time to reach 80% of germination, TG80; seedling shoot length, fresh weight and dry matter), and nutritional value (total phenolics, TP; total flavonoids, TF; total non-tannins, TNT; antioxidant activities) of pomegranate seeds and sprouts were determined on four commercial pomegranate cultivars (Akko, Dente di Cavallo, Mollar de Elche and Wonderful). Seeds were removed from ripe fruits and incubated in plastic trays containing sterile cotton wetted with distilled water. Sprout shoots were harvested when they reached the complete cotyledon expansion, i.e., the ready-to-eat stage. Akko showed the best germination performance (G = 98%; MGT = 14 days after sowing, DAS; TG80 = 16 DAS), followed by Mollar de Elche. Sprouting dramatically increased TP, TF, TNT and antioxidant activity in all genotypes, with the highest values recorded in Mollar de Elche and Dente di Cavallo. Overall, based on germination performance, Akko and Mollar de Elche would be the best cultivars for sprouting. Sprouting pomegranate seeds appears to be a suitable way of utilizing by-products of the juice industry to obtain bioactive compounds.

  19. Antioxidant potential, tannin and polyphenol contents of seed and pericarp of three Coffea species.

    PubMed

    Patay, Éva Brigitta; Sali, Nikolett; Kőszegi, Tamás; Csepregi, Rita; Balázs, Viktória Lilla; Németh, Tibor Sebastian; Németh, Tibor; Papp, Nóra

    2016-04-01

    To investigate the antioxidant activity, total phenolic and total tannin content of the pericarp and the seed of Coffea benghalensis (C. benghalensis) and Coffea liberica compared to Coffea arabica (C. arabica). The antioxidant potential, total tannin and polyphenol contents of the immature and mature seed and pericarp of C. benghalensis and Coffea liberica were quantified and compared to C. arabica. Enhanced chemiluminescence (ECL), 2,2-diphenyl-1-picrylhydrazyl (DPPH), oxygen radical absorbance capacity, Folin-Ciocalteau method and total tannin content assays were used. Trolox equivalent (TE/g plant material) values obtained by ECL and DPPH methods showed loose correlation (r(2) = 0.587) while those measured by oxygen radical absorbance capacity assay were higher without correlation in each plant. A closer correlation was detected between the ECL method and the percentage antioxidant activity of the DPPH technique (r(2) = 0.610 7) in each species, however the immature pericarp of C. benghalensis showed much higher DPPH scavenging potential than was seen in the ECL assay. The immature pericarp of C. benghalensis expressed the highest tannin and polyphenol content, and a high polyphenol level was also detected in the immature seed of C. arabica. The immature pericarp of Bengal and Liberian coffees showed the largest amount of phenolic contents. The obtained data highlight the potential role of C. benghalensis as a new source of natural antioxidants and polyphenols compared to C. arabica. Copyright © 2016 Hainan Medical College. Production and hosting by Elsevier B.V. All rights reserved.

  20. Role of species diversity and secondary compound complementarity on diet selection of Mediterranean shrubs by goats.

    PubMed

    Rogosic, Jozo; Estell, Richard E; Skobic, Dragan; Martinovic, Anita; Maric, Stanislava

    2006-06-01

    Goats foraging on Mediterranean shrubs containing secondary compounds (toxins) may consume a variety of shrubs that contain different phytotoxins, thereby increasing shrub intake and avoiding toxicosis. We conducted eight experiments to examine whether goats offered different mixtures of shrubs containing different phytotoxins (tannins and saponins) would consume more shrub biomass than goats offered one shrub a single phytotoxin (tannin or saponin). In the first three experiments, goats fed a mixture of three tannin-rich shrubs (Quercus ilex, Arbutus unedo, and Pistacia lentiscus) ate more foliage than goats offered only one shrub (23.2 vs. 10.7 g/kg BW; 25.2 vs. 13.4 g/kg BW, and 27.9 vs. 7.9 g/kg BW), regardless of tannin concentration in individual shrub species. Goats also consumed more foliage when offered the same three tannin-rich shrubs than when offered the saponin-rich shrub Hedera helix (25.4 vs. 8.0 g/kg BW). However, goats offered a mixture of the same three tannin-rich shrubs consumed less foliage than goats offered a mixture of two shrubs containing tannins and saponins: Quercus and Hedera (21.6 vs. 27.1 g/kg BW), Arbutus and Hedera (21.8 vs. 27.1 g/kg BW), and Pistacia and Hedera (19.7 vs. 22.0 g/kg BW). Comparison of intake of shrubs containing only tannins or saponins to intake of shrubs containing both tannins and saponins indicated that goats consumed more total biomass when fed with shrubs with both classes of compounds than with either tannins or saponins alone. Our results suggest that goats can increase intake of Mediterranean shrubs high in secondary compounds by selecting those with different classes of phytotoxins. Simultaneous ingestion of shrubs containing tannins and saponins may promote chemical interactions that inhibit toxic effects of these phytotoxins in the intestinal tract. In addition to complementary interactions between tannins and saponins, biological diversity within Mediterranean maquis vegetation also plays a positive role in increasing shrub intake by goats.

  1. Isolation and characterization of an anaerobic ruminal bacterium capable of degrading hydrolyzable tannins.

    PubMed Central

    Nelson, K E; Pell, A N; Schofield, P; Zinder, S

    1995-01-01

    An anaerobic diplococcoid bacterium able to degrade hydrolyzable tannins was isolated from the ruminal fluid of a goat fed desmodium (Desmodium ovalifolium), a tropical legume which contains levels as high as 17% condensed tannins. This strain grew under anaerobic conditions in the presence of up to 30 g of tannic acid per liter and tolerated a range of phenolic monomers, including gallic, ferulic, and p-coumaric acids. The predominant fermentation product from tannic acid breakdown was pyrogallol, as detected by high-performance liquid chromatography and mass spectrometry. Tannic acid degradation was dependent on the presence of a sugar such as glucose, fructose, arabinose, sucrose, galactose, cellobiose, or soluble starch as an added carbon and energy source. The strain also demonstrated resistance to condensed tannins up to a level of 4 g/liter. PMID:7574640

  2. Tannins from Hamamelis virginiana bark extract: characterization and improvement of the antiviral efficacy against influenza A virus and human papillomavirus.

    PubMed

    Theisen, Linda L; Erdelmeier, Clemens A J; Spoden, Gilles A; Boukhallouk, Fatima; Sausy, Aurélie; Florin, Luise; Muller, Claude P

    2014-01-01

    Antiviral activity has been demonstrated for different tannin-rich plant extracts. Since tannins of different classes and molecular weights are often found together in plant extracts and may differ in their antiviral activity, we have compared the effect against influenza A virus (IAV) of Hamamelis virginiana L. bark extract, fractions enriched in tannins of different molecular weights and individual tannins of defined structures, including pseudotannins. We demonstrate antiviral activity of the bark extract against different IAV strains, including the recently emerged H7N9, and show for the first time that a tannin-rich extract inhibits human papillomavirus (HPV) type 16 infection. As the best performing antiviral candidate, we identified a highly potent fraction against both IAV and HPV, enriched in high molecular weight condensed tannins by ultrafiltration, a simple, reproducible and easily upscalable method. This ultrafiltration concentrate and the bark extract inhibited early and, to a minor extent, later steps in the IAV life cycle and tannin-dependently inhibited HPV attachment. We observed interesting mechanistic differences between tannin structures: High molecular weight tannin containing extracts and tannic acid (1702 g/mol) inhibited both IAV receptor binding and neuraminidase activity. In contrast, low molecular weight compounds (<500 g/mol) such as gallic acid, epigallocatechin gallate or hamamelitannin inhibited neuraminidase but not hemagglutination. Average molecular weight of the compounds seemed to positively correlate with receptor binding (but not neuraminidase) inhibition. In general, neuraminidase inhibition seemed to contribute little to the antiviral activity. Importantly, antiviral use of the ultrafiltration fraction enriched in high molecular weight condensed tannins and, to a lesser extent, the unfractionated bark extract was preferable over individual isolated compounds. These results are of interest for developing and improving plant-based antivirals.

  3. Tannins from Hamamelis virginiana Bark Extract: Characterization and Improvement of the Antiviral Efficacy against Influenza A Virus and Human Papillomavirus

    PubMed Central

    Theisen, Linda L.; Erdelmeier, Clemens A. J.; Spoden, Gilles A.; Boukhallouk, Fatima; Sausy, Aurélie; Florin, Luise; Muller, Claude P.

    2014-01-01

    Antiviral activity has been demonstrated for different tannin-rich plant extracts. Since tannins of different classes and molecular weights are often found together in plant extracts and may differ in their antiviral activity, we have compared the effect against influenza A virus (IAV) of Hamamelis virginiana L. bark extract, fractions enriched in tannins of different molecular weights and individual tannins of defined structures, including pseudotannins. We demonstrate antiviral activity of the bark extract against different IAV strains, including the recently emerged H7N9, and show for the first time that a tannin-rich extract inhibits human papillomavirus (HPV) type 16 infection. As the best performing antiviral candidate, we identified a highly potent fraction against both IAV and HPV, enriched in high molecular weight condensed tannins by ultrafiltration, a simple, reproducible and easily upscalable method. This ultrafiltration concentrate and the bark extract inhibited early and, to a minor extent, later steps in the IAV life cycle and tannin-dependently inhibited HPV attachment. We observed interesting mechanistic differences between tannin structures: High molecular weight tannin containing extracts and tannic acid (1702 g/mol) inhibited both IAV receptor binding and neuraminidase activity. In contrast, low molecular weight compounds (<500 g/mol) such as gallic acid, epigallocatechin gallate or hamamelitannin inhibited neuraminidase but not hemagglutination. Average molecular weight of the compounds seemed to positively correlate with receptor binding (but not neuraminidase) inhibition. In general, neuraminidase inhibition seemed to contribute little to the antiviral activity. Importantly, antiviral use of the ultrafiltration fraction enriched in high molecular weight condensed tannins and, to a lesser extent, the unfractionated bark extract was preferable over individual isolated compounds. These results are of interest for developing and improving plant-based antivirals. PMID:24498245

  4. The role of condensed tannins in animal production: advances, limitations and future directions

    USDA-ARS?s Scientific Manuscript database

    Tannins represent one of the most abundant polyphenolic compounds in plants, second only to lignin. Tannins exist as a multitude of chemically unique entities in nature. The most commonly occurring tannins are typically divided into two major classes based on chemical structure: hydrolysable or cond...

  5. The effect of feed moisture and temperature on tannin content, antioxidant and antimicrobial activities of extruded chestnuts.

    PubMed

    Obiang-Obounou, Brice Wilfried; Ryu, Gi Hyung

    2013-12-15

    This study focuses on the effect of extrusion processing on tannin reduction, phenolic content, flavonoid content, antioxidant and anitimicrobial activity. Extrusion temperature (120 and 140 °C) and feed moisture (25% and 28%) were used on the tannin content, antioxidant and antimicrobial activities. Extrusion cooking reduced tannin content up to 78%, and improved antioxidant activity from 12.89% to 21.17% in a concentration dependant manner without affecting its antimicrobial activity that varied from 250 to 500 mg. The time-kill assay confirmed the ability of extruded chestnut to reduce Pseudomonas aeruginosa count below detectable limit that reduced the original inoculum by 3log10 CFU/mL. Overall, the results showed that extrusion cooking might serve as a tool for tannin reduction and could improve the antioxidant and antimicrobial properties of chestnut, which might be helpful for chestnut related products in the food industry. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. Comparison of nutritional properties of Stinging nettle (Urtica dioica) flour with wheat and barley flours.

    PubMed

    Adhikari, Bhaskar Mani; Bajracharya, Alina; Shrestha, Ashok K

    2016-01-01

    Stinging nettle (Urtica dioica. L) is a wild, unique herbaceous perennial flowering plant with Stinging hairs. It has a long history of use as a food sources as a soup or curries, and also used as a fiber as well as a medicinal herb. The current aim was to analyze the composition and bioactive compounds in Nepalese Stinging nettle. Chemical analysis showed the relatively higher level of crude protein (33.8%), crude fiber (9.1%), crude fat (3.6%), total ash (16.2%), carbohydrate (37.4%), and relatively lower energy value (307 kcal/100 g) as compared to wheat and barley flours. Analysis of nettle powder showed significantly higher level of bioactive compounds: phenolic compounds as 129 mg Gallic acid equivalent/g; carotenoid level 3497 μg/g; tannin 0.93 mg/100 g; anti-oxidant activity 66.3 DPPH inhibition (%), as compared to wheat and barley. This study further established that nettle plants as very good source of energy, proteins, high fiber, and a range of health benefitting bioactive compounds.

  7. The Occurrence of Flavonoids and Related Compounds in Cedrus brevifolia A. Henry ex Elwes & A. Henry Needles. Inhibitory Potencies on Lipoxygenase, Linoleic Acid Lipid Peroxidation and Antioxidant Activity

    PubMed Central

    Douros, Andreas; Nikolaou, Konstantinos; Skaltsa, Helen

    2017-01-01

    The phytochemical analysis of the polar extracts of Cedrus brevifolia needles yielded 20 compounds, namely from the methanol extract we isolated three flavonoids (1–3), one hydrolysable tannin (4), eleven phenolic derivatives (5–15) and one apocarotenoid (16), while from the methanol: water (5:1) extract we isolated four flavonoids (17–20). Chemical structures of all isolated compounds were determined by 1D, 2D-NMR (1 Dimension, 2 Dimensions Nuclear Magnetic Resonance) and UV-Vis (Ultraviolet-Visible) spectroscopy. Furthermore, the antioxidant potentials and the anti-inflammatory activities of both crude extracts and isolates were evaluated through DPPH radical scavenging capability, linoleic acid lipid peroxidation inhibition, and soybean LOX inhibition assays. This is the first report on the chemical profile of C. brevifolia needles. Catechin was the main compound derived from the methanol extract. According to our results, 4-O-β-d-glucopyranyl trans-p-coumaric acid and taxifolin were the most active ingredients. PMID:29280942

  8. Gelled compositions and well treating

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Swanson, B.L.

    1982-04-06

    Gelled compositions are disclosed suitable as fracture fluids and water diversion agents comprising water, a polymeric viscosifier, an aldehyde component, and at least one phenolic component such as resorcinol, catechol, and the like, as well as selected oxidized phenolic materials such as 1,4-benzoquinone of natural or synthetic origin and natural and modified tannins. The gelled compositions can additionally contain gel stabilizers and chemical buffering agents.

  9. Phenolic profile, antioxidant capacity of five Ziziphus spina-christi (L.) Willd provenances and their allelopathic effects on Trigonella foenum-graecum L. and Lens culinaris L. seeds.

    PubMed

    Elaloui, M; Ghazghazi, H; Ennajah, A; Manaa, S; Guezmir, W; Karray, N B; Laamouri, A

    2017-05-01

    The aim of this work was to evaluate some secondary metabolites, antioxidant activity of methanolic leaf extracts of five Ziziphus spina-christi provenances (INRGREF, Tozeur, Degueche, Nafta and Kebelli) and their allelopathic effects on Trigonella foenum-graecum and Lens culinaris. Leaves were collected during 2013 and 2014. Total phenols, flavonoids, tannins and antioxidant activity were evaluated using the Folin ciocalteux, Aluminum trichloride, vanillin and scavenging activity on 22-diphenyl-1-picrylhydrazyl (DPPH) radical methods, respectively. Total phenols, tannins and flavonoids were present, at levels of 57.41 mg GAE/g DW, 31.98 mg RE/g DW and 14.68 μg CE/g DW, respectively. The high antioxidant activity (0.086 μg/mL) was noted in kebelli provenance (2013). The highest germination, plumule and radicle lengths of tested species were observed in INRGREF provenance. Z. spina-christi leaf extracts may be suggested in foods and pharmaceutical industries. Leaf extracts could also provide a natural herbicide with a positive impact on the environment.

  10. Cultivar Diversity of Grape Skin Polyphenol Composition and Changes in Response to Drought Investigated by LC-MS Based Metabolomics

    PubMed Central

    Pinasseau, Lucie; Vallverdú-Queralt, Anna; Verbaere, Arnaud; Roques, Maryline; Meudec, Emmanuelle; Le Cunff, Loïc; Péros, Jean-Pierre; Ageorges, Agnès; Sommerer, Nicolas; Boulet, Jean-Claude; Terrier, Nancy; Cheynier, Véronique

    2017-01-01

    Phenolic compounds represent a large family of plant secondary metabolites, essential for the quality of grape and wine and playing a major role in plant defense against biotic and abiotic stresses. Phenolic composition is genetically driven and greatly affected by environmental factors, including water stress. A major challenge for breeding of grapevine cultivars adapted to climate change and with high potential for wine-making is to dissect the complex plant metabolic response involved in adaptation mechanisms. A targeted metabolomics approach based on ultra high-performance liquid chromatography coupled to triple quadrupole mass spectrometry (UHPLC-QqQ-MS) analysis in the Multiple Reaction Monitoring (MRM) mode has been developed for high throughput profiling of the phenolic composition of grape skins. This method enables rapid, selective, and sensitive quantification of 96 phenolic compounds (anthocyanins, phenolic acids, stilbenoids, flavonols, dihydroflavonols, flavan-3-ol monomers, and oligomers…), and of the constitutive units of proanthocyanidins (i.e., condensed tannins), giving access to detailed polyphenol composition. It was applied on the skins of mature grape berries from a core-collection of 279 Vitis vinifera cultivars grown with or without watering to assess the genetic variation for polyphenol composition and its modulation by irrigation, in two successive vintages (2014–2015). Distribution of berry weights and δ13C values showed that non irrigated vines were subjected to a marked water stress in 2014 and to a very limited one in 2015. Metabolomics analysis of the polyphenol composition and chemometrics analysis of this data demonstrated an influence of water stress on the biosynthesis of different polyphenol classes and cultivar differences in metabolic response to water deficit. Correlation networks gave insight on the relationships between the different polyphenol metabolites and related biosynthetic pathways. They also established patterns of polyphenol response to drought, with different molecular families affected either positively or negatively in the different cultivars, with potential impact on grape and wine quality. PMID:29163566

  11. Multifunctional porous solids derived from tannins

    NASA Astrophysics Data System (ADS)

    Celzard, Alain; Fierro, Vanessa; Pizzi, Antonio; Zhao, Weigang

    2013-03-01

    Tannins are extremely valuable, non toxic, wood extractives combining reactivity towards aldehydes, low cost, natural origin and easy handling. When polymerized in the presence of suitable chemicals including blowing agent, ultra lightweight rigid tannin-based foams are obtained. If pyrolyzed under inert gas, reticulated carbon foams having the same pore structure and the same density are obtained. The most remarkable features of tannin-based foams are the following: mechanical resistance similar to, or higher than, that of commercial phenolic foams, tuneable pore size and permeability, infusibility, very low thermal conductivity, cheapness, ecological character, high resistance to flame and to chemicals. Carbon foams have even better properties and are also electrically conducting. Consequently, various applications are suggested for organic foams: cores of sandwich composite panels, sound and shock absorbers and thermal insulators, whereas carbon foams can be used as porous electrodes, filters for molten metals and corrosive chemicals, catalyst supports and adsorbents.

  12. Influence of tannin content in Terminalia catappa leaves extracts resulted from maceration extraction on decreasing corrosion rate for mild steel in 1M H2SO4

    NASA Astrophysics Data System (ADS)

    Pramudita, M.; Sukirno; Nasikin, M.

    2018-04-01

    The ability of natural compounds as corrosion inhibitors is necessary to obtain safe corrosion inhibitors for the environment. The tannin compounds derived from plant extract has the ability to decrease the corrosion rate. The purpose of this research is to find the ability of tannin compounds in Terminalia catappa leaves extracts to decrease corrosion rate on mild steel. Terminalia catappa leaves that have been mashed in ethanol solvent extraction using maceration with the variable time 2.4 and 6 days. Mild steel that has been on the sandpaper and cleaned then soak into the 1 M H2SO4. Terminalia catappa leaves extract concentration used is 0, 250, 500, 500, 750, 1000 ppm, the immersion time is 3.6 and 9 hours. Calculating of corrosion rate is used the weight loss method, the analysis of the tannin concentration using GC-MS. The results indicate that highest tannin content equal to 7.23% in 6 days maceration time. The result showed that the corrosion rate was reduced in the presence of tannin content in Terminalia catappa leaves extract.

  13. Potential mechanisms for the effects of tea extracts on the attachment, biofilm formation and cell size of Streptococcus mutans.

    PubMed

    Wang, Yi; Lee, Sui M; Dykes, Gary A

    2013-01-01

    Tea can inhibit the attachment of Streptococcus mutans to surfaces and subsequent biofilm formation. Five commercial tea extracts were screened for their ability to inhibit attachment and biofilm formation by two strains of S. mutans on glass and hydroxyapatite surfaces. The mechanisms of these effects were investigated using scanning electron microscopy (SEM) and phytochemical screening. The results indicated that extracts of oolong tea most effectively inhibited attachment and extracts of pu-erh tea most effectively inhibited biofilm formation. SEM images showed that the S. mutans cells treated with extracts of oolong tea, or grown in medium containing extracts of pu-erh tea, were coated with tea components and were larger with more rounded shapes. The coatings on the cells consisted of flavonoids, tannins and indolic compounds. The ratio of tannins to simple phenolics in each of the coating samples was ∼3:1. This study suggests potential mechanisms by which tea components may inhibit the attachment and subsequent biofilm formation of S. mutans on tooth surfaces, such as modification of cell surface properties and blocking of the activity of proteins and the structures used by the bacteria to interact with surfaces.

  14. Antioxidant activity of commercial food grade tannins exemplified in a wine model.

    PubMed

    Ricci, Arianna; Olejar, Kenneth J; Parpinello, Giuseppina P; Mattioli, Alessia U; Teslić, Nemanja; Kilmartin, Paul A; Versari, Andrea

    2016-12-01

    Although commercial tannins are widely used in foods and beverages, an improved understanding of the structure and composition of vegetable tannins is needed to promote the exploitation of agri-food by-products and waste and their valorisation in more sustainable industrial applications. This study aims to characterise the phytochemical composition and antioxidant activity of 13 food grade tannins using multiple analytical approaches, including spectrophotometry and HPLC-ECD to determine the amount of targeted polyphenolic compounds. Moreover, the antioxidant activity of tannins was assessed in terms of radical scavenging activity (DPPH• assay), reducing power (FRAP assay), and redox properties (cyclic voltammetry, CV). A statistical univariate and multivariate correlation analysis was performed on 17 parameters including tannin content (range: 0.71-1.62 mM), gallic acid, (+)-catechin, syringic acid and (‒)-epicatechin. The compositional profile of tannins was related to their chemical moiety, antioxidant activity and the botanical origin of the extracts. In particular, the CV signal at 500 mV was highly correlated with DPPH• value due to the catechol ring of flavonoids and trigalloyl moieties of gallic acid-based compounds. Practical examples of tannins application in winemaking are discussed.

  15. Fungi from industrial tannins: potential application in biotransformation and bioremediation of tannery wastewaters.

    PubMed

    Prigione, Valeria; Trocini, Bruno; Spina, Federica; Poli, Anna; Romanisio, Davide; Giovando, Samuele; Varese, Giovanna Cristina

    2018-05-01

    Tannins are a complex family of polyphenolic compounds, widely distributed in the plant kingdom where they act as growth inhibitors towards many microorganisms including bacteria, yeasts, and fungi. Tannins are one of the major components of tannery wastewaters and may cause serious environmental pollution. In the present study, four different tannins (the hydrolysable chestnut ellagitannin and tara gallotannin and the condensed quebracho and wattle tannins) were characterized from a mycological point of view with the aim of selecting fungal strains capable of growing in the presence of high tannin concentration and thus potentially useful in industrial biotransformations of these compounds or in the bioremediation of tannery wastewaters. A total of 125 isolates of filamentous fungi belonging to 10 species and four genera (Aspergillus, Paecilomyces, Penicillium, and Talaromyces) were isolated from the tannin industrial preparations. Miniaturized biotransformation tests were set up with 10 fungal strains and the high-performance liquid chromatography (HPLC) analysis pointed out a strong activity of all the tested fungi on both chestnut and tara tannins. Two strains (Aspergillus tubingensis MUT 990 and Paecilomyces variotii MUT 1125), tested against a real tannery wastewater, were particularly efficient in chemical oxygen demand (COD) and tannin removal (> 60%), with a detoxification above 74%. These results indicate that these fungi are potentially exploitable in the treatment of tannery wastewaters.

  16. Estimation of total phenolic content, in-vitro antioxidant and anti-inflammatory activity of flowers of Moringa oleifera

    PubMed Central

    Alhakmani, Fatma; Kumar, Sokindra; Khan, Shah Alam

    2013-01-01

    Objective To evaluate and compare the antioxidant potential and anti-inflammatory activity of ethanolic extract of flowers of Moringa oleifera (M. oleifera) grown in Oman. Methods Flowers of M. oleifera were collected in the month of December 2012 and identified by a botanist. Alcoholic extract of the dry pulverized flowers of M. oleifera were obtained by cold maceration method. The ethanolic flower extract was subjected to preliminary phytochemical screening as the reported methods. Folin-Ciocalteu reagent was used to estimate total phenolic content. DPPH was used to determine in-vitro antioxidant activity and anti-inflammatory activity of flowers was investigated by protein denaturation method. Results Phytochemical analysis of extract showed presence of major classes of phytochemicals such as tannins, alkaloids, flavonoids, cardiac glycosides etc. M. oleifera flowers were found to contain 19.31 mg/g of gallic acid equivalent of total phenolics in dry extract but exhibited moderate antioxidant activity. The anti-inflammatory activity of plant extract was significant and comparable with the standard drug diclofenac sodium. Conclusions The results of our study suggest that flowers of M. oleifera possess potent anti-inflammatory activity and are also a good source of natural antioxidants. Further study is needed to identify the chemical compounds responsible for their anti-inflammatory activity. PMID:23905019

  17. Chemical composition and vasodilatation induced by Cuphea carthagenensis preparations.

    PubMed

    Krepsky, Patricia Baier; Isidório, Raquel Geralda; de Souza Filho, José Dias; Côrtes, Steyner França; Braga, Fernão Castro

    2012-08-15

    The aerial parts of Cuphea carthagenensis (Jacq.) J.F. Macbride (Lythraceae) are traditionally employed in Brazil to treat cardiovascular diseases. The aim of this study was to compare preparations of C. carthagenensis aerial parts (aqueous and ethanol extracts, together with derived fractions) with regard to their total phenolic contents and in vitro vasodilating activity. The main flavonoids found in the extracts were isolated and identified as quercetin derivatives. The extracts and fractions showed similar HPLC profiles with the presence of quercetin-5-O-β-glucopyranoside, quercetin-3-O-α-arabinofuranoside and quercetin-3-sulfate in all of them, but marked differences in the contents of flavonoids, proanthocyanidins, tannis and total phenolics. Excepting the aqueous extract, all assayed preparations elicited vasodilatation on pre-contracted rat aortic rings in the range of pIC(50) 4.53±0.03 to 4.98±0.06. Polynomial regression analysis demonstrated the relationship between vasodilating activity and the contents of flavonoids (r(2)=0.5190), proanthocyanidins (r(2)=0.8016), tannins (r(2)=0.8041) and total phenolics (r(2)=0.6226), suggesting the participation of these compounds in the pharmacological effect and their potential use as chemical markers for the species. Copyright © 2012 Elsevier GmbH. All rights reserved.

  18. The swarming motility of Pseudomonas aeruginosa is blocked by cranberry proanthocyanidins and other tannin-containing materials.

    PubMed

    O'May, Che; Tufenkji, Nathalie

    2011-05-01

    Bacterial motility plays a key role in the colonization of surfaces by bacteria and the subsequent formation of resistant communities of bacteria called biofilms. Derivatives of cranberry fruit, predominantly condensed tannins called proanthocyanidins (PACs) have been reported to interfere with bacterial adhesion, but the effects of PACs and other tannins on bacterial motilities remain largely unknown. In this study, we investigated whether cranberry PAC (CPAC) and the hydrolyzable tannin in pomegranate (PG; punicalagin) affected the levels of motilities exhibited by the bacterium Pseudomonas aeruginosa. This bacterium utilizes flagellum-mediated swimming motility to approach a surface, attaches, and then further spreads via the surface-associated motilities designated swarming and twitching, mediated by multiple flagella and type IV pili, respectively. Under the conditions tested, both CPAC and PG completely blocked swarming motility but did not block swimming or twitching motilities. Other cranberry-containing materials and extracts of green tea (also rich in tannins) were also able to block or impair swarming motility. Moreover, swarming bacteria were repelled by filter paper discs impregnated with many tannin-containing materials. Growth experiments demonstrated that the majority of these compounds did not impair bacterial growth. When CPAC- or PG-containing medium was supplemented with surfactant (rhamnolipid), swarming motility was partially restored, suggesting that the effective tannins are in part acting by a rhamnolipid-related mechanism. Further support for this theory was provided by demonstrating that the agar surrounding tannin-induced nonswarming bacteria was considerably less hydrophilic than the agar area surrounding swarming bacteria. This is the first study to show that natural compounds containing tannins are able to block P. aeruginosa swarming motility and that swarming bacteria are repelled by such compounds.

  19. The Swarming Motility of Pseudomonas aeruginosa Is Blocked by Cranberry Proanthocyanidins and Other Tannin-Containing Materials▿

    PubMed Central

    O'May, Che; Tufenkji, Nathalie

    2011-01-01

    Bacterial motility plays a key role in the colonization of surfaces by bacteria and the subsequent formation of resistant communities of bacteria called biofilms. Derivatives of cranberry fruit, predominantly condensed tannins called proanthocyanidins (PACs) have been reported to interfere with bacterial adhesion, but the effects of PACs and other tannins on bacterial motilities remain largely unknown. In this study, we investigated whether cranberry PAC (CPAC) and the hydrolyzable tannin in pomegranate (PG; punicalagin) affected the levels of motilities exhibited by the bacterium Pseudomonas aeruginosa. This bacterium utilizes flagellum-mediated swimming motility to approach a surface, attaches, and then further spreads via the surface-associated motilities designated swarming and twitching, mediated by multiple flagella and type IV pili, respectively. Under the conditions tested, both CPAC and PG completely blocked swarming motility but did not block swimming or twitching motilities. Other cranberry-containing materials and extracts of green tea (also rich in tannins) were also able to block or impair swarming motility. Moreover, swarming bacteria were repelled by filter paper discs impregnated with many tannin-containing materials. Growth experiments demonstrated that the majority of these compounds did not impair bacterial growth. When CPAC- or PG-containing medium was supplemented with surfactant (rhamnolipid), swarming motility was partially restored, suggesting that the effective tannins are in part acting by a rhamnolipid-related mechanism. Further support for this theory was provided by demonstrating that the agar surrounding tannin-induced nonswarming bacteria was considerably less hydrophilic than the agar area surrounding swarming bacteria. This is the first study to show that natural compounds containing tannins are able to block P. aeruginosa swarming motility and that swarming bacteria are repelled by such compounds. PMID:21378043

  20. Combined biodegradation and ozonation for removal of tannins and dyes for the reduction of pollution loads.

    PubMed

    Kanagaraj, James; Mandal, Asit Baran

    2012-01-01

    Tannins and dyes pose major threat to the environment by generating huge pollution problem. Biodegradation of wattle extract, chrome tannin and dye compounds using suitable fungal culture namely Aspergillus niger, Penicillium sp. were carried out. In addition to these, ozone treatment was carried out to get higher degradation rate. The results were monitored by carrying out chemical oxygen demand (COD), total organic carbon (TOC), and UV-Vis analysis. The results showed that wattle extract (vegetable tannin) gave better biodegradation rate than dye and chromium compounds. Biodegradation plus ozone showed degradation rates of 92-95%, 94-95%, and 85-87% for the wattle extract, dyes, chromium compounds, respectively. UV-Vis showed that there were no peaks observed for biodegraded samples indicating better degradation rates as compared to the control samples. FT-IR spectra analysis suggested that the formation of flavanoid derivatives, chromic oxide and NH(2) compounds during degradation of wattle extract, chromium and dye compounds, respectively, at the peaks of 1,601-1,629 cm(-1), 1,647 cm(-1), and 1,610-1,680 cm(-1). The present investigation shows that combination of biodegradation with ozone is the effective method for the removal of dyes and tannins. The biodegradation of the said compounds in combination with ozonation showed better rate of degradation than by chemical methods. The combination of biodegradation with ozone helps to reduce pollution problems in terms of COD, TOC, total dissolved solids and total suspended solids.

  1. Anti-enteric bacterial activity and phytochemical analysis of the seed kernel extract of Mangifera indica Linnaeus against Shigella dysenteriae (Shiga, corrig.) Castellani and Chalmers.

    PubMed

    Rajan, S; Thirunalasundari, T; Jeeva, S

    2011-04-01

    To evaluate the phytochemical and anti-bacterial efficacy of the seed kernel extract of Mangifera indica (M. indica) against the enteropathogen, Shigella dysenteriae (S. dysenteriae), isolated from the diarrhoeal stool specimens. The preliminary phytochemical screening was performed by the standard methods as described by Harborne. Cold extraction method was employed to extract the bioactive compounds from mango seed kernel. Disc diffusion method was adopted to screen antibacterial activity. Minimum inhibitory concentration (MIC) was evaluated by agar dilution method. The crude extracts were partially purified by thin layer chromatography (TLC) and the fractions were analyzed by high performance thin layer chromatography (HPTLC) to identify the bioactive compounds. Phytochemical scrutiny of M. indica indicated the presence of phytochemical constituents such as alkaloids, gums, flavanoids, phenols, saponins, steroids, tannins and xanthoproteins. Antibacterial activity was observed in two crude extracts and various fractions viz. hexane, benzene, chloroform, methanol and water. MIC of methanol fraction was found to be (95±11.8) μg/mL. MIC of other fractions ranged from 130-380 μg/mL. The present study confirmed that each crude extracts and fractions of M. indica have significant antimicrobial activity against the isolated pathogen S. dysenteriae. The antibacterial activity may be due to the phytochemical constituents of the mango seed kernel. The phytochemical tannin could be the reason for its antibacterial activity. Copyright © 2011 Hainan Medical College. Published by Elsevier B.V. All rights reserved.

  2. Proximate and phytochemical of Cola nitida and Cola acuminata.

    PubMed

    Dewole, E A; Dewumi, D F A; Alabi, J Y T; Adegoke, A

    2013-11-15

    The aim of the research was to examine Cola nitida and Cola acuminata for their phytochemical and proximate compositions. Presence of secondary metabolites do provide information about the plants for their potentials as a lead candidates for the novel drug discovery. The proximate analysis was done using the method of Association of Official Analytical Chemists (AOAC) and the phytochemical analysis was done using methods of Markkar and Goodchild for tannin, Brunner for saponin, Harbone for alkaloid and Bohm and Koupai-Abyazani for flavonoid. The proximate results showed that the moisture content of Cola acuminata and Cola nitida were in the range of 9.73-9.81%, ash 2.72-2.21%, fat 3.02-2.20%, protein 19.14-15.24%, crude fiber 7.30-4.18% and carbohydrate 58.09 66.45%. Cola acuminate has more protein content, ash and fat than Cola nitida. The result of phytochemical analysis showed that Cola acuminata has more alkaloids (2.22%), tannin (6.46%) and saponin (8.06%) than Cola nitida. The phenol contents of the two kola nuts were the same range 0.27%, the flavonoid were in the range of 0.12-0.14%. The presence of secondary metabolites in these plants are indications that if well researched, novel bioactive compounds can be discovered in them as there are worldwide efforts by scientists looking for new bioactive compounds to combat various ailments which have developed high resistant to already known antibiotics.

  3. Mechanical properties, phenolic composition and extractability indices of Barbera grapes of different soluble solids contents from several growing areas.

    PubMed

    Torchio, Fabrizio; Cagnasso, Enzo; Gerbi, Vincenzo; Rolle, Luca

    2010-02-15

    Phenolic compounds, extractable from grape skins and seeds, have a notable influence on the quality of red wines. Many studies have clearly demonstrated the relationship between the phenolic composition of the grape at harvest time and its influence on the phenolic composition of the red wine produced. In many previous works the evolution of phenolic composition and relative extractability was normally studied on grapes sampled at different times during ripening, but at the same date the physiological characteristics of grape berries in a vineyard are often very heterogeneous. Therefore, the main goal of the study is to investigate the differences among mechanical properties, phenolic composition and relative extractability of Vitis vinifera L. cv Barbera grape berries, harvested at the same date from several vineyards, and calibrated according to their density at three levels of soluble solids (A=235+/-8, B=252+/-8 and C=269+/-8 g L(-1) sugar) with the aim of studying the influence of ripeness stages and growing locations on these parameters. Results on mechanical properties showed that the thickness of the berry skin (Sp(sk)) was the parameter most affected by the different level of sugars in the pulp, while different skin hardnesses, evaluated by the break skin force (F(sk)), were related to the cultivation sites. The latter were also observed to influence the mechanical characteristics of seeds. Generally, the anthocyanin content increased with the level of soluble solids, while the increase in the tannin content of the berry skin and seeds was less marked. However, significant changes in flavanols reactive to vanillin in the seeds were found. The cellular maturity index (EA%) was little influenced by the soluble solids content of grapes. Copyright 2009 Elsevier B.V. All rights reserved.

  4. Octanol-water partition coefficients for predicting the effects of tannins in ruminant nutrition.

    PubMed

    Mueller-Harvey, Irene; Mlambo, Victor; Sikosana, Joe L N; Smith, Tim; Owen, Emyr; Brown, Ron H

    2007-07-11

    Tannins can cause beneficial or harmful nutritional effects, but their great diversity has until now prevented a rational distinction between tannin structures and their nutritional responses. An attempt has been made to study this problem by examining the octanol-water solubilities of tannins. A relatively simple HPLC method has been developed for screening mixtures of plant tannins for their octanol-water partition coefficients (Kow coefficients). Tannins were isolated from the fruits and leaves of different Acacia, Calliandra, Dichrostachys, and Piliostigma species, which are known to produce beneficial or harmful effects. The Kow coefficients of these tannins ranged from 0.061 to 13.9, average coefficients of variation were 9.2% and recoveries were 107%. Acacia nilotica fruits and leaves had the highest Kow coefficients, that is, 2.0 and 13.9, respectively. These A. nilotica products also have high concentrations of tannins. The combined effects of high octanol solubilities and high tannin concentrations may explain their negative effects on animal nutrition and health. It is known that compounds with high octanol solubilities are more easily absorbed into tissues, and it is, therefore, proposed that such compounds are more likely to cause toxicity problems especially if consumed in large quantities. According to the literature, tannins in human foods tend to have low Kow coefficients, and this was confirmed for the tannins in Piliostigma thonningii fruits. Therefore, unconventional feeds or browse products should be screened not only for their tannin concentrations but also for low octanol-water partition coefficients in order to identify nutritionally safe feeds and to avoid potentially toxic feeds.

  5. Hydrolyzable tannins of tamaricaceous plants. V. Structures of monomeric-trimeric tannins and cytotoxicity of macrocyclic-type tannins isolated from Tamarix nilotica (1).

    PubMed

    Orabi, Mohamed A A; Taniguchi, Shoko; Sakagami, Hiroshi; Yoshimura, Morio; Yoshida, Takashi; Hatano, Tsutomu

    2013-05-24

    Three new ellagitannin monomers, nilotinins M5-M7 (1-3), a dimer, nilotinin D10 (4), and a trimer, nilotinin T1 (5), together with three known dimers, hirtellin D (7) and tamarixinins B (8) and C (9), and a trimer, hirtellin T2 (6), were isolated from Tamarix nilotica dried leaves. The structures of the tannins were elucidated by intensive spectroscopic methods and chemical conversions into known tannins. The new trimer (5) is a unique macrocyclic type whose monomeric units are linked together by an isodehydrodigalloyl and two dehydrodigalloyl moieties. Additionally, dimeric and trimeric macrocyclic-type tannins isolated from T. nilotica in this study were assessed for possible cytotoxic activity against four human tumor cell lines. Tumor-selective cytotoxicities of the tested compounds were higher than those of synthetic and natural potent cytotoxic compounds, including polyphenols, and comparable with those of 5-fluorouracil and melphalan.

  6. Quantitative and Qualitative Analysis of Phenolic and Flavonoid Content in Moringa oleifera Lam and Ocimum tenuiflorum L.

    PubMed Central

    Sankhalkar, Sangeeta; Vernekar, Vrunda

    2016-01-01

    Background: Number of secondary compounds is produced by plants as natural antioxidants. Moringa oleifera Lam. and Ocimum tenuiflorum L. are known for their wide applications in food and pharmaceutical industry. Objective: To compare phenolic and flavonoid content in M. oleifera Lam and O. tenuiflorum L. by quantitative and qualitative analysis. Materials and Methods: Phenolic and flavonoid content were studied spectrophotometrically and by paper chromatography in M. oleifera Lam. and O. tenuiflorum L. Results: Higher phenolic and flavonoid content were observed in Moringa leaf and flower. Ocimum flower showed higher phenolic content and low flavonoid in comparison to Moringa. Flavonoids such as biflavonyl, flavones, glycosylflavones, and kaempferol were identified by paper chromatography. Phytochemical analysis for flavonoid, tannins, saponins, alkaloids, reducing sugars, and anthraquinones were tested positive for Moringa and Ocimum leaf as well as flower. Conclusions: In the present study higher phenolic and flavonoid content, indicated the natural antioxidant nature of Moringa and Ocimum signifying their medicinal importance. SUMMARY Moringa oleifera Lam. and Ocimum tenuiflorum L. are widly grown in India and are known for their medicinal properties. Number of secondary metabolites like phenolics and flavonoids are known to be present in both the plants. The present study was conducted with an objective to qualitatively and quantitatively compare the phenolics and flavanoids in these two medicinally important plants.Quantitation of total phenolics and flavanoids was done by spectrophotometrically while qualitative analysis was perfomed by paper chromatography and by phytochemical tests. Our results have shown higher phenolics and flavanoid content in Moringa leaf and flower. However, higher phenolic content was absent in Ocimum flower compared to that of Moringa. Phytochemical analysis of various metabolites such as flavonoids, tanins, sapponins, alkaloids, anthraquinones revealed that both the plant extracts were rich sources of secondary metabolites and thus tested positive for the above tests. Various flavanoids and Phenolics were identified by paper chromatography based on their Rf values and significant colors. From the above study we conclude that Moringa and Ocimum are rich in natural antioxidants hence are potent source in pharmaceutical industry. PMID:26941531

  7. Quantitative and Qualitative Analysis of Phenolic and Flavonoid Content in Moringa oleifera Lam and Ocimum tenuiflorum L.

    PubMed

    Sankhalkar, Sangeeta; Vernekar, Vrunda

    2016-01-01

    Number of secondary compounds is produced by plants as natural antioxidants. Moringa oleifera Lam. and Ocimum tenuiflorum L. are known for their wide applications in food and pharmaceutical industry. To compare phenolic and flavonoid content in M. oleifera Lam and O. tenuiflorum L. by quantitative and qualitative analysis. Phenolic and flavonoid content were studied spectrophotometrically and by paper chromatography in M. oleifera Lam. and O. tenuiflorum L. Higher phenolic and flavonoid content were observed in Moringa leaf and flower. Ocimum flower showed higher phenolic content and low flavonoid in comparison to Moringa. Flavonoids such as biflavonyl, flavones, glycosylflavones, and kaempferol were identified by paper chromatography. Phytochemical analysis for flavonoid, tannins, saponins, alkaloids, reducing sugars, and anthraquinones were tested positive for Moringa and Ocimum leaf as well as flower. In the present study higher phenolic and flavonoid content, indicated the natural antioxidant nature of Moringa and Ocimum signifying their medicinal importance. Moringa oleifera Lam. and Ocimum tenuiflorum L. are widly grown in India and are known for their medicinal properties. Number of secondary metabolites like phenolics and flavonoids are known to be present in both the plants. The present study was conducted with an objective to qualitatively and quantitatively compare the phenolics and flavanoids in these two medicinally important plants.Quantitation of total phenolics and flavanoids was done by spectrophotometrically while qualitative analysis was perfomed by paper chromatography and by phytochemical tests. Our results have shown higher phenolics and flavanoid content in Moringa leaf and flower. However, higher phenolic content was absent in Ocimum flower compared to that of Moringa. Phytochemical analysis of various metabolites such as flavonoids, tanins, sapponins, alkaloids, anthraquinones revealed that both the plant extracts were rich sources of secondary metabolites and thus tested positive for the above tests. Various flavanoids and Phenolics were identified by paper chromatography based on their Rf values and significant colors. From the above study we conclude that Moringa and Ocimum are rich in natural antioxidants hence are potent source in pharmaceutical industry.

  8. Biological activity and chemical profile of Lavatera thuringiaca L. extracts obtained by different extraction approaches.

    PubMed

    Mašković, Pavle Z; Veličković, Vesna; Đurović, Saša; Zeković, Zoran; Radojković, Marija; Cvetanović, Aleksandra; Švarc-Gajić, Jaroslava; Mitić, Milan; Vujić, Jelena

    2018-01-01

    Lavatera thuringiaca L. is herbaceous perennial plant from Malvaceae family, which is known for its biological activity and richness in polyphenolic compounds. Despite this, the information regarding the biological activity and chemical profile is still insufficient. Aim of this study was to investigate biological potential and chemical profile of Lavatera thuringiaca L., as well as influence of applied extraction technique on them. Two conventional and four non-conventional extraction techniques were applied in order to obtain extracts rich in bioactive compound. Extracts were further tested for total phenolics, flavonoids, condensed tannins, gallotannins and anthocyanins contents using spectrophotometric assays. Polyphenolic profile was established using HPLC-DAD analysis. Biological activity was investigated regarding antioxidant, cytotoxic and antibacterial activities. Four antioxidant assays were applied as well as three different cell lines for cytotoxic and fifteen bacterial strain for antibacterial activity. Results showed that subcritical water extraction (SCW) dominated over the other extraction techniques, where SCW extract exhibited the highest biological activity. Study indicates that plant Lavatera thuringiaca L. may be used as a potential source of biologically compounds. Copyright © 2017 Elsevier GmbH. All rights reserved.

  9. Identification of a highly active tannase enzyme from the oral pathogen Fusobacterium nucleatum subsp. polymorphum.

    PubMed

    Tomás-Cortázar, Julen; Plaza-Vinuesa, Laura; de Las Rivas, Blanca; Lavín, José Luis; Barriales, Diego; Abecia, Leticia; Mancheño, José Miguel; Aransay, Ana M; Muñoz, Rosario; Anguita, Juan; Rodríguez, Héctor

    2018-02-26

    Tannases are tannin-degrading enzymes that have been described in fungi and bacteria as an adaptative mechanism to overcome the stress conditions associated with the presence of these phenolic compounds. We have identified and expressed in E. coli a tannase from the oral microbiota member Fusobacterium nucleatum subs. polymorphum (TanB Fnp ). TanB Fnp is the first tannase identified in an oral pathogen. Sequence analyses revealed that it is closely related to other bacterial tannases. The enzyme exhibits biochemical properties that make it an interesting target for industrial use. TanB Fnp has one of the highest specific activities of all bacterial tannases described to date and shows optimal biochemical properties such as a high thermal stability: the enzyme keeps 100% of its activity after prolonged incubations at different temperatures up to 45 °C. TanB Fnp also shows a wide temperature range of activity, maintaining above 80% of its maximum activity between 22 and 55 °C. The use of a panel of 27 esters of phenolic acids demonstrated activity of TanB Fnp only against esters of gallic and protocatechuic acid, including tannic acid, gallocatechin gallate and epigallocatechin gallate. Overall, TanB Fnp possesses biochemical properties that make the enzyme potentially useful in biotechnological applications. We have identified and characterized a metabolic enzyme from the oral pathogen Fusobacterium nucleatum subsp. polymorphum. The biochemical properties of TanB Fnp suggest that it has a major role in the breakdown of complex food tannins during oral processing. Our results also provide some clues regarding its possible participation on bacterial survival in the oral cavity. Furthermore, the characteristics of this enzyme make it of potential interest for industrial use.

  10. Chemical profile and in vivo hypoglycemic effects of Syzygium jambos, Costus speciosus and Tapeinochilos ananassae plant extracts used as diabetes adjuvants in Puerto Rico.

    PubMed

    Gavillán-Suárez, Jannette; Aguilar-Perez, Alexandra; Rivera-Ortiz, Natalie; Rodríguez-Tirado, Karla; Figueroa-Cuilan, Wanda; Morales-Santiago, Lorelein; Maldonado-Martínez, Gerónimo; Cubano, Luis A; Martínez-Montemayor, Michelle M

    2015-07-22

    The increasing numbers of people who use plant-based remedies as alternative or complementary medicine call for the validation of less known herbal formulations used to treat their ailments. Since Puerto Rico has the highest rate of Type 2 diabetes within all the states and territories of the United States, and Puerto Ricans commonly use plants as diabetes adjuvants, it is important to study the plants' physiological effects, and identify their bioactive compounds to understand their role in modulation of blood glucose levels. We present the phytochemical profiles and hypoglycemic effects of Tapeinochilus ananassae, Costus speciosus and Syzygium jambos. Phytochemicals in methanolic and aqueous extracts were analyzed by thin layer chromatography (TLC). Alkaloids (Bromocresol green, λ=470 nm), flavonoids (AlCl3, λ=415 nm), saponins (DNS, λ=760 nm), tannins (FeCl3/K4Fe(CN)6, λ=395 nm) and phenolics (Folin-Ciocalteau, λ=765 nm) were quantified. Male C57BLKS/J (db/db) and C57BL/J (ob/ob) genetically obese mice were orally gavaged with aqueous extracts of lyophilized plant decoctions for 10 wks. Our results show that T. ananassae had significantly greater amounts of flavonoids and tannins, while S. jambos showed the greatest concentration of phenolics and C. speciosus exhibited higher amounts of alkaloids. C57BLKS/J db/db treated with plant extracts show better glucose modulation when the extracts are administered in complement with an insulin injection. Finally, C57BL/J ob/ob mice on T. ananassae and S. jambos treatments show better blood glucose modulation over time. These results document for the first time the chemical profile of T. ananassae and provide evidence for a potential anti-diabetic efficacy of T. ananassae and S. jambos.

  11. Toxicity and biodegradability of olive mill wastewaters in batch anaerobic digestion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hamdi, M.

    1992-11-01

    The anaerobic biodegradability and toxicity of olive mill wastewaters (OMW) were studied in batch anaerobic digestion experiments. Anaerobic digestion of OMW or the supernatant of its centrifugation, the methane production was achieved at up to 5-15% (V/V) dilution corresponding to only 5-20 g/L COD. The washed suspended solids of OMW were toxic at up to 80 g/L COD; however, the kinetic of biodegradability of OMW or the supernatant was faster than for suspended solids, which are constituted mealy of cellulose and lignin. The darkly colored polyphenols induce the problem of biodegradation of OMW, whereas the long chain fatty acids (LCFA),more » tannins and simple phenolic compounds are responsible for its toxicity for methanogenic bacteria. 26 refs., 4 figs., 1 tab.« less

  12. Seeds of Peganum Harmala L. chemical analysis, antimalarial and antioxidant activities, and cytotoxicity against human breast cancer cells.

    PubMed

    Chabir, Naziha; Ibrahim, Hany; Romdhane, Hany; Valentin, Alexis; Moukarzel, Beatrice; Mars, Mohamed; Bouajila, Jalloul

    2014-01-01

    The present study evaluated the levels of total phenolics, flavonoids, tannins and anthocyanins from Peganum harmala L. seeds and determined their antioxidant, antiplasmodial and anticancer potentials. Antioxidant activity was determined by DPPH and ABTS assays. Extracts of P. harmala seeds from Oudref and Djerba (two places in Tunisia) were obtained by successive extraction solvents: petroleum ether, chloroform, ethyl acetate, ethanol and water. Their composition was evaluated for phenolics (gallic acid equivalent 2.48 to 72.52 g/kg), tannins (catechin equivalent 0 to 25.27 g/kg), anthocyanins (cyanidin equivalent 0 to 20.56 mg/kg) and flavonoids (quercetin equivalent 0 to 3.12 g/kg). Ethanolic extract exerted the highest activities against a chloroquine-resistant strain of Plasmodium falciparum (IC₅₀=23 mg/L), against human breast cancer cells MCF7 (IC₅₀=32 mg/L) and against free radical (IC₅₀=19.09±3.07 mg/L). Correlations were studied between each chemical family and the three activities. Total phenolics content exhibited the highest correlation with antiplasmodial activity (R²=0.92) and with anticancer activity (R²=0.86), respectively.

  13. Biodegradable alternative for removing toxic compounds from sugarcane bagasse hemicellulosic hydrolysates for valorization in biorefineries.

    PubMed

    Silva-Fernandes, T; Santos, J C; Hasmann, F; Rodrigues, R C L B; Izario Filho, H J; Felipe, M G A

    2017-11-01

    Among the major challenges for hemicellulosic hydrolysate application in fermentative processes, there is the presence of toxic compounds generated during the pretreatment of the biomass, which can inhibit microbial growth. Therefore, the development of efficient, biodegradable and cost-effective detoxification methods for lignocellulosic hydrolysates is crucial. In this work, two tannin-based biopolymers (called A and B) were tested in the detoxification of sugarcane bagasse hydrolysate for subsequent fermentation by Candida guilliermondii. The effects of biopolymer concentration, pH, temperature, and contact time were studied using a 2 4 experimental design for both biopolymers. Results revealed that the biopolymer concentration and the pH were the most significant factors in the detoxification step. Biopolymer A removed phenolics, 5-hydroxymethylfurfural, and nickel from the hydrolysate more efficiently than biopolymer B, while biopolymer B was efficient to remove chromium at 15% (v/v). Detoxification enhanced the fermentation of sugarcane bagasse hydrolysate, and the biopolymers showed different influences on the process. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Phytochemical Constituents, Health Benefits, and Industrial Applications of Grape Seeds: A Mini-Review

    PubMed Central

    Zhang, Hongxia

    2017-01-01

    Grapes are one of the most widely grown fruits and have been used for winemaking since the ancient Greek and Roman civilizations. Grape seeds are rich in proanthocyanidins which have been shown to possess potent free radical scavenging activity. Grape seeds are a complex matrix containing 40% fiber, 16% oil, 11% proteins, and 7% complex phenols such as tannins. Grape seeds are rich sources of flavonoids and contain monomers, dimers, trimers, oligomers, and polymers. The monomeric compounds includes (+)-catechins, (−)-epicatechin, and (−)-epicatechin-3-O-gallate. Studies have reported that grape seeds exhibit a broad spectrum of pharmacological properties against oxidative stress. Their potential health benefits include protection against oxidative damage, and anti-diabetic, anti-cholesterol, and anti-platelet functions. Recognition of such health benefits of proanthocyanidins has led to the use of grape seeds as a dietary supplement by the consumers. This paper summarizes the studies of the phytochemical compounds, pharmacological properties, and industrial applications of grape seeds. PMID:28914789

  15. Biopharmaceutical potentials of Prosopis spp. (Mimosaceae, Leguminosa).

    PubMed

    Henciya, Santhaseelan; Seturaman, Prabha; James, Arthur Rathinam; Tsai, Yi-Hong; Nikam, Rahul; Wu, Yang-Chang; Dahms, Hans-Uwe; Chang, Fang Rong

    2017-01-01

    Prosopis is a commercially important plant genus, which has been used since ancient times, particularly for medicinal purposes. Traditionally, Paste, gum, and smoke from leaves and pods are applied for anticancer, antidiabetic, anti-inflammatory, and antimicrobial purposes. Components of Prosopis such as flavonoids, tannins, alkaloids, quinones, or phenolic compounds demonstrate potentials in various biofunctions, such as analgesic, anthelmintic, antibiotic, antiemetic, microbial antioxidant, antimalarial, antiprotozoal, antipustule, and antiulcer activities; enhancement of H + , K + , ATPases; oral disinfection; and probiotic and nutritional effects; as well as in other biopharmaceutical applications, such as binding abilities for tablet production. The compound juliflorine provides a cure in Alzheimer disease by inhibiting acetylcholine esterase at cholinergic brain synapses. Some indirect medicinal applications of Prosopis spp. are indicated, including antimosquito larvicidal activity, chemical synthesis by associated fungal or bacterial symbionts, cyanobacterial degradation products, "mesquite" honey and pollens with high antioxidant activity, etc. This review will reveal the origins, distribution, folk uses, chemical components, biological functions, and applications of different representatives of Prosopis. Copyright © 2016. Published by Elsevier B.V.

  16. Analysis of phytochemical profile of Terminalia arjuna bark extract with antioxidative and antimicrobial properties

    PubMed Central

    Mandal, Shreya; Patra, Arpita; Samanta, Animesh; Roy, Suchismita; Mandal, Arpita; Mahapatra, Tapasi Das; Pradhan, Shrabani; Das, Koushik; Nandi, Dilip Kumar

    2013-01-01

    Objective To investigate phytochemical screening, antimicrobial activity and qualitative thin layer chromatographic separation of flavonoid components, antioxidant activity and total flavonoid compound of Terminalia arjuna. Methods For phytochemical screening, some common and available standard tests were done. Antimicrobial bioassay was done through agar well diffusion method. Detection of antioxidant activity and flavonoid compounds were done through thin layer chromatography. Total antioxidant activity was measured by 2, 2-diphenyl-1-picrylhydrazyl (DPPH) in colorimetric method. Aluminum chloride colorimetric method was used for total flavonoid determination. Results Phytochemical screening showed the active compounds presence in high concentration, such as phytosterol, lactones, flavonoids, phenolic compounds and tannins and glycosides. The antimicrobial activity of extract showed that greater inhibition zone against Gram negative bacteria than Gram positive bacteria. This methanolic extract showed a promising antioxidant activity, as absorption of DPPH redicles decreased in DPPH free radical scavenging assay. Flavonoids components having antioxidant property present in the methanol extract at a level of 199.00 mg quercetin equivalent/g of dried methanol extract in colorimetric method. Conclusions The Terminalia arjuna bark extract revealed the presence of bio-active constituents which are known to exhibit medicinal as well as physiological activities. PMID:24093787

  17. GC-MS analysis of bio-active compounds in methanolic extract of Lactuca runcinata DC

    PubMed Central

    Kanthal, Lakshmi Kanta; Dey, Akalanka; Satyavathi, K.; Bhojaraju, P.

    2014-01-01

    Background: The presence of phytochemical constitutes has been reported from species of the Compositae (Asteraceae). Hitherto no reports exist on the phytochemical components and biological activity of Lactuca runcinata DC. Objective: The present study was designed to determine the bioactive compounds in the whole plant methanol extract of Lactuca runcinata. Materials and Methods: Phytochemical screening of the entire herb of Lactuca runcinata DC revealed the presence of some bio-active components. Gas chromatography-mass spectrometry (GC-MS) analysis of the whole plant methanol extract of Lactuca runcinata was performed on a GC-MS equipment (Thermo Scientific Co.) Thermo GC-TRACE ultra ver.: 5.0, Thermo MS DSQ II. Results: The phytochemical tests showed the presence of alkaloids, cardiac glycosides, flavonoids, phenols, phlobatannin, reducing sugars, saponins, steroids, tannins, terpenoids, volatile oils, carbohydrates, and protein/amino acids in methanolic extract of L. runcinata. The GC-MS analysis has shown the presence of different phytochemical compounds in the methanolic extract of Lactuca runcinata. A total of 21 compounds were identified representing 84.49% of total methanolic extract composition. Conclusion: From the results, it is evident that Lactuca runcinata contains various phytocomponents and is recommended as a plant of phytopharmaceutical importance. PMID:24497744

  18. Phenolation of ±catechin with mineral acids. II. Identification of new reaction products

    Treesearch

    Weiling Peng; Anthony H. Conner; Richard W. Hemingway

    1997-01-01

    To investigate the reactions that occur in the flavanoid unit during the liquefaction of tannin in phenol, the phenolysis of ±catechin was studied using either H2SO4, HCl, or BF3 2H2O as acid catalyst. In addition to 2-[3-(3,4-dihydroxyphenyl)-2-hydroxy-3-(4-hydroxyphenyl)propyl]-1,3,5-benzenetriol (1) and 2-[(3,4-dihydroxyphenyl)(4-hydroxyphenyl)methyl]-2,3-dihydro-4,...

  19. Chemical Composition and Bioactivities of Two Common Chaenomeles Fruits in China: Chaenomeles speciosa and Chaenomeles sinensis.

    PubMed

    Miao, Jing; Zhao, Chengcheng; Li, Xia; Chen, Xuetao; Mao, Xinhui; Huang, Hanhan; Wang, Tingting; Gao, Wenyuan

    2016-08-01

    Contents of total flavonoids, total phenolics, total triterpenes, total condensed tannin and total saponins in peels, flesh and endocarps of Chaenomeles speciosa (CSP) and Chaenomeles sinensis (CSS) were determined by colorimetric method, while 5 phenolics (vanillic, gallic, chlorogenic, ferulic and p-coumaric acids), 2 triterpenes (oleanolic and ursolic acids), and 3 flavonoids (rutin, catechin and epicatechin) were identified and quantified by high-performance liquid chromatography-mass spectrometry (HPLC-MS) and HPLC, and antioxidant and α-glucosidase inhibitory activities of them also were evaluated as well as their digestive characteristics. In the correlation analysis, total phenolics, vanillic acid, catechin, ursolic acid and oleanolic acid all contribute to DPPH(·) scavenge capacity, gallic acid contributes to total ferric reducing antioxidant power, while total triterpenes, total saponins, chlorogenic acid and ferullic acid contribute to α-glucosidase inhibitory activity. In the principal component analysis, endocarps of CSP and CSS both show better quality than their peels and flesh, respectively. In vitro digestion can increase contents of total flavonoids, total condensed tannin and total saponins, while contents of total phenolics and total triterpenes decreased greatly. Our study would contribute to the full use of discarded parts of the 2 Chaenomeles and be helpful to establish a good foundation for further research of CSP and CSS. © 2016 Institute of Food Technologists®

  20. Interaction of gut microflora with tannins in feeds.

    PubMed

    Goel, Gunjan; Puniya, A K; Aguilar, C N; Singh, Kishan

    2005-11-01

    Tannins (hydrolyzable and condensed) are water-soluble polyphenolic compounds that exert antinutritional effects on ruminants by forming complexes with dietary proteins. They limit nitrogen supply to animals, besides inhibiting the growth and activity of ruminal microflora. However, some gastrointestinal microbes are able to break tannin-protein complexes while preferentially degrading hydrolyzable tannins (HTs). Streptococcus gallolyticus, Lonepinella koalarum and Selenomonas ruminantium are the dominant bacterial species that have the ability to degrade HTs. These tanninolytic microorganisms possess tannin-degrading ability and have developed certain mechanisms to tolerate tannins in feeds. Hence, selection of efficient tanninolytic microbes and transinoculation among animals for long-term benefits become areas of intensive interest. Here, we review the effects of tannins on ruminants, the existence and significance of tannin-degrading microorganisms in diverse groups of animals and the mechanisms that tannin-degrading microorganisms have developed to counter the toxic effects of tannin.

  1. Interaction of gut microflora with tannins in feeds

    NASA Astrophysics Data System (ADS)

    Goel, Gunjan; Puniya, A. K.; Aguilar, C. N.; Singh, Kishan

    2005-11-01

    Tannins (hydrolyzable and condensed) are water-soluble polyphenolic compounds that exert antinutritional effects on ruminants by forming complexes with dietary proteins. They limit nitrogen supply to animals, besides inhibiting the growth and activity of ruminal microflora. However, some gastrointestinal microbes are able to break tannin-protein complexes while preferentially degrading hydrolyzable tannins (HTs). Streptococcus gallolyticus, Lonepinella koalarum and Selenomonas ruminantium are the dominant bacterial species that have the ability to degrade HTs. These tanninolytic microorganisms possess tannin-degrading ability and have developed certain mechanisms to tolerate tannins in feeds. Hence, selection of efficient tanninolytic microbes and transinoculation among animals for long-term benefits become areas of intensive interest. Here, we review the effects of tannins on ruminants, the existence and significance of tannin-degrading microorganisms in diverse groups of animals and the mechanisms that tannin-degrading microorganisms have developed to counter the toxic effects of tannin.

  2. Three-dimensional structure and dynamics of wine tannin-saliva protein complexes. A multitechnique approach.

    PubMed

    Simon, Cécile; Barathieu, Karine; Laguerre, Michel; Schmitter, Jean-Marie; Fouquet, Eric; Pianet, Isabelle; Dufourc, Erick J

    2003-09-09

    The interactions between the B3 (catechin-4alpha,8-catechin) red wine tannin and the human salivary protein fragment IB7(14) (SPPGKPQGPPPQGG) were monitored by (1)H magic angle spinning NMR, circular dichroism, electrospray ionization mass spectrometry, and molecular modeling. It is found that the secondary structure of IB7(14) is made of a type II helix (collagen helix) and random coil. The central glycine 8 appears to act as a flexible rotula separating two helix II regions. Three tannin molecules tightly complex the peptide, without modifying its secondary structure, but seem to reduce its conformational dynamics. The binding dissociation constant is in the millimolar range. B3 tannins with a "tweezers" conformation bind to the hydrophilic side of the saliva peptide, suggesting that the principal driving forces toward association are governed by hydrogen bonding between the carbonyl functions of proline residues and both the phenol and catechol OH groups. These findings are further discussed in the frame of an astringency phenomenon.

  3. The Using Of Fenolic Compounds Of Pluchea indica (L.) Less. Leaves Extracts As A Bioinsecticide And Bioherbicide

    NASA Astrophysics Data System (ADS)

    Yuliani; Rahayu, Y. S.

    2018-01-01

    Pluchea indica (L.) Less. produces secondary metabolites such as lignans, terpenes, phenylpropanoids, benzoids, tannins, flavonoids, and hydroquinone phenols, used to protect plants against various herbivores, and pathogenic microorganisms, and are used as bioherbicides for weed control. The purpose of this study is to describe the effect of phenolic compounds of leaf extract of Pluchea indica (L.) Less. to the mortality of Spodoptera litura (LC 50 and LC 80) and its effect for seed germination inhibitor of Amaranthus spinosus. The research design was Randomized Completely Design (RCD) with one factor i.e concentration.Test of methanol extract bioactivity on instar two S. litura using five levels of concentrations 0%, 6%, 8%, 10% and 12%, whereas in plants Amaranthus spinoususe lower concentrations 0%, 0,125%, 0,50% and 1%. The parameters measured the mortality of S. litura and the seed germination of A. spinosus which included percentage of germination and germination rate. The results show that the biopesticide developed from plants Pluchea indica can result in mortality 81.90% of S. litura at a concentration of 12%, with LC 50 of 4.00 ± 0.60 % and LC 80 of 9.88 ± 0.61% . As for the seed germination of plants, the higher concentration of P. indica leaf extract resulted higher inhibition on seed germination of Amaranthus spinosus

  4. Hepatitis C virus inhibitory hydrolysable tannins from the fruits of Terminalia chebula.

    PubMed

    Ajala, Olusegun S; Jukov, Azzaya; Ma, Chao-Mei

    2014-12-01

    Two new hydrolysable tannins, chebumeinin A (1) and chebumeinin B (2), together with eight known related compounds (3-10), were isolated from the fruits of Terminalia chebula. The new compounds were structurally determined by analysis of their spectroscopic data and the known compounds characterized by comparing their spectroscopic data with literature values. All isolates were evaluated by an HCV protease inhibition assay, and some compounds were found to be potently active. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Relation ofSpodoptera eridania choice to tannins and protein oflotus corniculatus.

    PubMed

    Briggs, M A

    1990-05-01

    Plant secondary compounds such as tannins may influence herbivore choice. To determine if herbivory was influenced by tannin concentration,Spodoptera eridania larvae were given a choice ofLotus corniculatus plants whose chemical profiles were altered by fertilization. Herbivores chose plants that had been grown with symbiotic nitrogen fixation as their only nitrogen source more often than fertilized plants. Choice was related to protein concentration, but not to tannin concentration.

  6. White grape pomace extracts, obtained by a sequential enzymatic plus ethanol-based extraction, exert antioxidant, anti-tyrosinase and anti-inflammatory activities.

    PubMed

    Ferri, Maura; Rondini, Greta; Calabretta, Maria Maddalena; Michelini, Elisa; Vallini, Veronica; Fava, Fabio; Roda, Aldo; Minnucci, Giordano; Tassoni, Annalisa

    2017-10-25

    The present work aimed at optimizing a two-step enzymatic plus solvent-based process for the recovery of bioactive compounds from white grape (Vitis vinifera L., mix of Trebbiano and Verdicchio cultivars) pomace, the winemaking primary by-product. Phenolic compounds solubilised by water enzyme-assisted and ethanol-based extractions of wet (WP) and dried (DP) pomace were characterised for composition and tested for antioxidant, anti-tyrosinase and anti-inflammatory bioactivities. Ethanol treatment led to higher phenol yields than water extraction, while DP samples showed the highest capacity of releasing polyphenols, most probably as a positive consequence of the pomace drying process. Different compositions and bioactivities were observed between water and ethanol extracts and among different treatments and for the first time the anti-tyrosinase activity of V. vinifera pomace extracts, was here reported. Enzymatic treatments did not significantly improve the total amount of solubilised compounds; Celluclast in DP led to the recovery of extracts enriched in specific compounds, when compared to control. The best extracts (enzymatic plus ethanol treatment total levels) were obtained from DP showing significantly higher amounts of polyphenols, flavonoids, flavanols and tannins and exerted higher antioxidant and anti-tyrosinase activities than WP total extracts. Conversely, anti-inflammatory capacity was only detected in water (with and without enzyme) extracts, with WP samples showing on average a higher activity than DP. The present findings demonstrate that white grape pomace constitute a sustainable source for the extraction of phytochemicals that might be exploited as functional ingredients in the food, nutraceutical, pharmaceutical or cosmetic industries. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Assessing the influence of biogeographical region and phylogenetic history on chemical defences and herbivory in Quercus species.

    PubMed

    Moreira, Xoaquín; Abdala-Roberts, Luis; Galmán, Andrea; Francisco, Marta; Fuente, María de la; Butrón, Ana; Rasmann, Sergio

    2018-06-07

    Biogeographical factors and phylogenetic history are key determinants of inter-specific variation in plant defences. However, few studies have conducted broad-scale geographical comparisons of plant defences while controlling for phylogenetic relationships, and, in doing so, none have separated constitutive from induced defences. This gap has limited our understanding of how historical or large-scale processes mediate biogeographical patterns in plant defences since these may be contingent upon shared evolutionary history and phylogenetic constraints. We conducted a phylogenetically-controlled experiment testing for differences in constitutive leaf chemical defences and their inducibility between Palearctic and Nearctic oak species (Quercus, total 18 species). We induced defences in one-year old plants by inflicting damage by gypsy moth larvae (Lymantria dispar), estimated the amount of leaf area consumed, and quantified various groups of phenolic compounds. There was no detectable phylogenetic signal for constitutive or induced levels of most defensive traits except for constitutive condensed tannins, as well as no phylogenetic signal in leaf herbivory. We did, however, find marked differences in defence levels between oak species from each region: Palearctic species had higher levels of constitutive condensed tannins, but less constitutive lignins and less constitutive and induced hydrolysable tannins compared with Nearctic species. Additionally, Palearctic species had lower levels of leaf damage compared with Nearctic species. These differences in leaf damage, lignins and hydrolysable (but not condensed) tannins were lost after accounting for phylogeny, suggesting that geographical structuring of phylogenetic relationships mediated biogeographical differences in defences and herbivore resistance. Together, these findings suggest that historical processes and large-scale drivers have shaped differences in allocation to constitutive defences (and in turn resistance) between Palearctic and Nearctic oaks. Moreover, although evidence of phylogenetic conservatism in the studied traits is rather weak, shared evolutionary history appears to mediate some of these biogeographical patterns in allocation to chemical defences. Copyright © 2018 Elsevier Ltd. All rights reserved.

  8. Association between modification of phenolic profiling and development of wine color during alcohol fermentation.

    PubMed

    Li, Si-Yu; Liu, Pei-Tong; Pan, Qiu-Hong; Shi, Ying; Duan, Chang-Qing

    2015-04-01

    To solve the problem of wine color instability in western China, different additives (the maceration enzymes Vinozym G and Ex-color, yeasts VR5 and Red Star, and commercial tannins) were added during alcoholic fermentation of Syrah (Vitis vinifera L.). The phenolic profile and color characteristics of wine were examined using high performance liquid chromatography mass spectrometry and CIELAB, respectively. The results showed that the combination of the enzyme Ex-color with the Red Star yeast eased the release of non-anthocyanins from grape berries into wine, whereas the use of enzyme Vinozym G and VR5 yeast enhanced the concentration of anthocyanins and achieved a higher red hue (a* value) and a lower yellow hue (b* value) in the wine. The addition of commercial tannins greatly promoted the level of gallic acid in the wine and led to a relatively higher concentration of anthocyanins. Partial least-squares regression analysis was used to find out the major phenolics, which were in close relation with color parameters; principal component analysis was used to evaluate the contribution of different winemaking techniques to wine color. The combination of these 2 analytic methods indicated that Vinozym G and VR5 yeast together with commercial tannins should be an appropriate combination to enhance the stability of wine color during alcohol fermentation, which was related to a significant increase in cyanidin-3-O-(6-O-acetyl)-glucoside, cyanidin-3-O-(6-O-coumaryl)-glucoside, trans-peonidin-3-O-(6-O-coumaryl)-glucoside, trans-malvidin-3-O-(6-O-coumaryl)-glucoside, and malvidin-3-O-(6-O-acetyl)-glucoside-pyruvic acid, all of which played an important role in stabilizing wine color. © 2015 Institute of Food Technologists®

  9. Foamable compositions and formations treatment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clampitt, R.L.

    1981-11-17

    Thermally stable foamable gelled compositions are disclosed suitable for postprimary oil recovery e.g., steam- or gas-foamed systems comprising water, a surfactant, a polymeric viscosifier, an aldehyde component, and at least one phenolic component such as resorcinol, catechol, and the like, as well as selected oxidized phenolic materials such as 1,4-benzoquinone of natural or synthetic origin and natural and modified tannins. The gel compositions can additionally contain gel stabilizers such as sulfomethylated quebracho (Smq) and chemical buffering agents such as sodium bicarbonate.

  10. Chemical composition and biological activities of Helicteres vegae and Heliopsis sinaloensis.

    PubMed

    Olivas-Quintero, Sandra; López-Angulo, Gabriela; Montes-Avila, Julio; Díaz-Camacho, Sylvia Páz; Vega-Aviña, Rito; López-Valenzuela, José Ángel; Salazar-Salas, Nancy Yareli; Delgado-Vargas, Francisco

    2017-12-01

    Helicteres vegae Cristóbal (Sterculiaceae) (Hv) and Heliopsis sinaloensis B.L. Turner (Asteraceae) (Hs) are endangered and poorly studied plant species; related plants have been used against chronic-degenerative and infectious diseases. Therefore, Hv and Hs could be sources of bioactive compounds against these illnesses. To determine the chemical composition and biological activities (antioxidant, antimutagenic and antimicrobial) of Hv and Hs leaves (L) and stems (S). Methanol extracts (ME) of each plant/tissue were evaluated for their phytochemicals; phenolics (HPLC-DAD-ESI-MS); antioxidant activity (AA) (0.125-4 mg/mL) (DPPH, ABTS, ORAC and β-carotene discoloration); antimutagenicity (0.5 and 1 mg/plate) (Ames assay, tester strain Salmonella enterica serovar Typhimurium YG1024, 1-nitropyrene as mutagen); activity against human pathogens (1 mg/mL); and toxicity (0.01-2 mg/mL) (Artemia salina assay). All ME showed flavonoids and triterpenes/steroids. The ME-SHv had the highest content of total phenolics (TP) (2245.82 ± 21.45 mg GAE/100 g d.w.) and condensed tannins (603.71 ± 1.115 mg CE/100 g d.w.). The compounds identified were flavonoids (kaempferol 7-O-coumaroylhexoside, and two kaempferol 7-O-rhamnosylhexosides) and phenolics [rosmarinic acid, and 3'-O-(8″-Z-caffeoyl) rosmarinic acid]. The ME-LHs showed the highest content of flavonoids (357.88 mg RE/g d.w.) and phenolic acids (238.58 mg CAE/g d.w.) by HPLC. The ME-SHv showed the highest AA. All ME were strong antimutagens (63.3-85.7%). Only the Hs extracts were toxic (ME-LHs, LC 50  = 94.9 ± 1.7 μg/mL; ME-SHs, LC 50  = 89.03 ± 4.42 μg/mL). Both Hv and Hs are potential sources of preventive and therapeutic agents against chronic-degenerative diseases.

  11. High throughput analysis of red wine and grape phenolics-adaptation and validation of methyl cellulose precipitable tannin assay and modified Somers color assay to a rapid 96 well plate format.

    PubMed

    Mercurio, Meagan D; Dambergs, Robert G; Herderich, Markus J; Smith, Paul A

    2007-06-13

    The methyl cellulose precipitable (MCP) tannin assay and a modified version of the Somers and Evans color assay were adapted to high-throughput (HTP) analysis. To improve efficiency of the MCP tannin assay, a miniaturized 1 mL format and a HTP format using 96 well plates were developed. The Somers color assay was modified to allow the standardization of pH and ethanol concentrations of wine samples in a simple one-step dilution with a buffer solution, thus removing inconsistencies between wine matrices prior to analysis and allowing for its adaptation to a HTP format. Validation studies showed that all new formats were efficient, and results were reproducible and analogous to the original formats.

  12. Arbuscular Mycorrhizal Fungi Increase the Phenolic Compounds Concentration in the Bark of the Stem of Libidibia Ferrea in Field Conditions

    PubMed Central

    dos Santos, Emanuela Lima; Alves da Silva, Francineyde; Barbosa da Silva, Fábio Sérgio

    2017-01-01

    Background: Libidibia ferrea is a species particular to the caatinga presenting medicinal properties for containing bioactive compounds. The use of Arbuscular Mycorrhizal Fungi (AMF) can increase the production of biomolecules in the legume leaves; however, no light has been shed on the role of symbiosis in maximizing metabolites production in the bark of L. ferrea stem. Objective: The aim was to select AMF that are efficient at increasing the production of phenolic compounds with medicinal properties in the bark of the L. ferrea stem. Methods: The experiment was designed in randomized blocks with four inoculation treatments (plants pre-inoculated with Claroideoglomus etunicatum, with Gigaspora albida, with Acaulospora longula, and non-inoculated plants – control) with six repetitions. Thirteen months after the transplanting, the plants were pruned and the bark of the stem was collected; subsequently, this plant material was dried in a chamber. After the drying process, fractions of the bark of the stem were macerated in methanol. The extracts were further used for analyses of the biomolecules. Results: The flavonoids concentration had an increase of, respectively, 236% and 186% in relation to the control for the treatments with A. longula and C. etunicatum; plants inoculated with A. longula had an increase of 47% in total tannins concentration compared with the non-inoculated control – a benefit that the proanthocyanidins did not present. Conclusion: Applying inoculation with A. longula may be an alternative to increase the production of biomolecules of the secondary metabolism in the bark of the L. ferrea stem in field conditions. PMID:29204223

  13. Augmentation of chemical and organoleptic properties in Syzygium cumini wine by incorporation of grape seeds during vinification.

    PubMed

    VenuGopal, K S; Cherita, Chris; Anu-Appaiah, K A

    2018-03-01

    The role of grape seed tannins on improving organoleptic properties and its involvement in color stabilization in red wine are well established. The addition of grape seeds as the source of condensed tannins in fruit wine may provide a solution for its color instability and improvement of sensory attributes. Syzgium cumini is traditionally known for its therapeutic properties. In the current study, the influence of yeasts and grape seed addition during fermentation on the chromatic, phenolic and sensory attributes of the wine was accessed. Grape seed addition improved the color characteristics of wine and increased overall phenolic composition. Analysis by HPLC revealed 6 major anthocyanins, among which 3, 5-diglucoside form of delphidin and petunidin was found to be the major components. Cluster and PLSR analysis explained the impact of seed addition on the yeasts, as well as on the perception of panelists, with bitterness and astringency as the dominating attributes. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Chemical and sensory characterization of DOC red wines from Marche (Italy) related to vintage and grape cultivars.

    PubMed

    Boselli, Emanuele; Boulton, Roger B; Thorngate, John H; Frega, Natale G

    2004-06-16

    Monomeric phenols, color and copigmentation parameters, pigments with different chemical structure, tannin, glucose, fructose, glycerol, ethanol, and organic acids were determined in DOC red wines from Marche (Italy), obtained during three different vintages ranging from 1996 to 2000. The intensity of the bitter and astringent tastes of the wines was determined with panel tastings. Lacrima di Morro and Vernaccia di Serrapetrona (obtained from local cultivars) were different from Rosso Piceno, Rosso Piceno Superiore, and Rosso Conero (produced from different percentages of Sangiovese and Montepulciano). Vernaccia, a red, sweet, "spumante" wine, was an outlier. Lacrima showed a low tannin content, a high content of small pigments and phenols, and a high ratio of copigmented color, which persisted after 3 years of aging. The chemical determinations accounted for a high percentage of variability of measured panel astringency, copigmented color, and measured wine absorbance at 520 nm. It was not possible to create a predictive model for bitterness.

  15. Biological activity and microscopic characterization of Lythrum salicaria L

    PubMed Central

    2013-01-01

    Background There are several plants have been used worldwide in the folk medicine with high incidence for treatment of human disorders, of which Lythrum salicaria belongs to the Lythraceae family has traditionally reputation for some medicinal usage and recently many biological and pharmacological activity of the plant have been studied. Methods In this study, microscopic characterizations of the aerial parts of the plant were determined. Moreover, the plant extract (aqueous methanol 80%) was subjected to an anti-diabetic activity test (in a rat model of streptozocin induced diabetes), anti-Helicobacter pylori (using disc diffusion method) along with antioxidant activity against DPPH (stable free radical) tests. Besides, total flavonoids, phenols, tannins, as well as polysaccharides contents have been assessed using spectroscopic methods. Results The microscopic properties of the plant fragments revealed anomocytic stomata, conical shape trichomes, and abundant spherical pollen grains as a characteristic pattern for the aerial parts of the plant. The extract of the plant at concentration of 15 g/kg showed mild lowering activity on blood glucose level to 12.6% and 7.3% after 2 and 3 h of administration. Additionally, clinically isolated H. pylori strain was inhibited with the plant extract at concentration of 500 mg/mL (zone of inhibition: 17 ± 0.08 mm). Moreover, IC50 values for DPPH inhibition of the plant extract, vitamin E, BHA were examined as 13.5, 14.2, and 7.8 μg/mL, respectively. Total flavonoids, phenols, tannin, and polysaccharides contents of the extract were successfully evaluated as 5.8 ± 0.4 μg QE/mg EXT, 331 ± 3.7 μg GAE/mg EXT, 340 ± 2.3 μg TAE/mg EXT, 21 ± 0.2 μg GE/mg EXT, respectively. Conclusions The results suggested that L. salicaria has low anti-diabetic and anti-Helicobacter pylori effects, but high antioxidant activity, just the same as positive standard (vitamin E), which might be attributed to the high content of phenolic compounds in the extract. PMID:23885663

  16. Effects of dietary tannin source on performance, feed efficiency, ruminal fermentation, and carcass and non-carcass traits in steers fed a high-grain diet

    USDA-ARS?s Scientific Manuscript database

    Tannins are polyphenolic secondary plant compounds that have been shown to affect microbial activity to impact fermentation, protein degradation, methane production, and potential to mitigate foodborne pathogens. This study was conducted to examine the effects of source of tannin (condensed, CT, vs....

  17. Free radical scavenging and total antioxidant capacity of root extracts of Anchomanes difformis Engl. (Araceae).

    PubMed

    Aliyu, Abubakar B; Ibrahim, Mohammed A; Musa, Aliyu M; Musa, Aisha O; Kiplimo, Joyce J; Oyewale, Adebayo O

    2013-01-01

    Antioxidants activities from plants sources have attracted a wide range of interest across the world in recent times. This is due to growing concern for safe and alternative sources of antioxidants. The free radical scavenging activity using 1,1-diphenyl-2-picrylhydrazyl radical (DPPH), reducing power assay, total antioxidant capacity of the phosphomolybdenum method and the total phenolics content using the Folin-Ciocalteu reagent were carried out on the acetone, n-butanol and methanol root extracts of Anchomanes difformis. The results of the total phenolics content expressed in mg/100 g of gallic acid equivalent (GAE) showed that the n-butanol extract has significantly (p < 0.05) higher phenolics content (381 +/- 1.13) than the methanol and acetone extracts. All the extracts displayed strong concentration dependent radical scavenging activity. It was also observed that the n-butanol extract showed higher activity of 70.87% and 78.59% at low concentrations of 31.25 microg/mL and 62.5 microg/mL, respectively, than methanol and acetone extracts. The results also showed that the n-butanol extract has strongest reducing ability which is comparable to that of gallic acid at all the concentrations tested. Phytochemical screening on the extracts revealed the presence of flavonoids, saponins, and tannins. The results suggest that n-butanol extract of the plant is very rich in antioxidant compounds worthy of further investigations.

  18. In vitro antimicrobial activity on clinical microbial strains and antioxidant properties of Artemisia parviflora

    PubMed Central

    2012-01-01

    Background Artemisia parviflora leaf extracts were evaluated for potential antimicrobial and antioxidant properties. Antimicrobial susceptibility assay was performed against ten standard reference bacterial strains. Antioxidant activity was analyzed using the ferric thiocyanate and 2, 2-Diphenyl-1-Picrylhydrazyl (DPPH) assays. Radical scavenging activity and total phenolic content were compared. Phytochemical analyses were performed to identify the major bioactive constitution of the plant extract. Results Hexane, methanol and ethyl acetate extracts of A. parviflora leaves exhibited good activity against the microorganisms tested. The n-hexane extract of A. parviflora showed high inhibition of the growth of Pseudomonas aeruginosa, Escherichia coli and Shigella flexneri. Methanol extract showed strong radical scavenging and antioxidant activity, other extracts showed moderate antioxidant activity. The major derivatives present in the extracts are of terpenes, steroids, phenols, flavonoids, tannins and volatile oil. Conclusions The results obtained with n-hexane extract were particularly significant as it strongly inhibited the growth of P. aeruginosa, E. coli and S. flexneri. The major constituent of the n-hexane extract was identified as terpenes. Strong antioxidant activity could be observed with all the individual extracts. The antimicrobial and antioxidant property of the extracts were attributed to the secondary metabolites, terpenes and phenolic compounds present in A. parviflora and could be of considerable interest in the development of new drugs. PMID:23171441

  19. Is there a negative association between the content of condensed tannins, total phenols, and total tannins of tropical plant extracts and in vitro anthelmintic activity against Haemonchus contortus eggs?

    PubMed

    Castañeda-Ramírez, G S; Torres-Acosta, J F J; Sandoval-Castro, C A; González-Pech, P G; Parra-Tabla, V P; Mathieu, C

    2017-12-01

    In vitro studies using plant extracts suggest a relationship between their polyphenol contents and their anthelmintic (AH) activity against Haemonchus contortus. High polyphenol content appears to increase the efficacy of plant extracts against H. contortus as assessed by the larval exsheathment inhibition assay (LEIA) while appearing to reduce the AH efficacy measured using the egg hatch assay (EHA). In addition, some plants lack AH activity. Therefore, the present study investigated the relationship between the contents of condensed tannins (CT), total phenols (TP), and total tannins (TT) in methanol:water extracts (70:30) obtained from ten tropical plant species consumed by small ruminants as well as their AH activity against H. contortus evaluated by LEIA and EHA. Extracts of Acacia collinsii, Lysiloma latisiliquum, Havardia albicans, Senegalia gaumeri, Mimosa bahamensis, Piscidia piscipula, Acacia pennatula, Gymnopodium floribundum, Leucaena leucocephala, and Bunchosia swartziana were examined. Positive correlations were found between the effective concentration 50% (EC 50 ) (EHA) of extracts and their CT (r = 0.6809, P < 0.05, n = 10) and TP (r = 0.9152, P < 0.05, n = 10) content, suggesting that their concentration negatively affected AH activity against eggs. Based on the LEIA, there was no significant association between the EC 50 and the CT, TP, or TT of all extracts evaluated. Thus, if sheep and goats consume a complex feed mixture with high amounts of CT, TP, and TT, it might be difficult to observe an AH effect against H. contortus egg hatching. However, the AH effect upon L 3 establishment might be feasible.

  20. Intrapopulation Genotypic Variation of Foliar Secondary Chemistry during Leaf Senescence and Litter Decomposition in Silver Birch (Betula pendula)

    PubMed Central

    Paaso, Ulla; Keski-Saari, Sarita; Keinänen, Markku; Karvinen, Heini; Silfver, Tarja; Rousi, Matti; Mikola, Juha

    2017-01-01

    Abundant secondary metabolites, such as condensed tannins, and their interpopulation genotypic variation can remain through plant leaf senescence and affect litter decomposition. Whether the intrapopulation genotypic variation of a more diverse assortment of secondary metabolites equally persists through leaf senescence and litter decomposition is not well understood. We analyzed concentrations of intracellular phenolics, epicuticular flavonoid aglycones, epicuticular triterpenoids, condensed tannins, and lignin in green leaves, senescent leaves and partly decomposed litter of silver birch, Betula pendula. Broad-sense heritability (H2) and coefficient of genotypic variation (CVG) were estimated for metabolites in senescent leaves and litter using 19 genotypes selected from a B. pendula population in southern Finland. We found that most of the secondary metabolites remained through senescence and decomposition and that their persistence was related to their chemical properties. Intrapopulation H2 and CVG for intracellular phenolics, epicuticular flavonoid aglycones and condensed tannins were high and remarkably, increased from senescent leaves to decomposed litter. The rank of genotypes in metabolite concentrations was persistent through litter decomposition. Lignin was an exception, however, with a diminishing genotypic variation during decomposition, and the concentrations of lignin and condensed tannins had a negative genotypic correlation in the senescent leaves. Our results show that secondary metabolites and their intrapopulation genotypic variation can for the most part remain through leaf senescence and early decomposition, which is a prerequisite for initial litter quality to predict variation in litter decomposition rates. Persistent genotypic variation also opens an avenue for selection to impact litter decomposition in B. pendula populations through acting on their green foliage secondary chemistry. The negative genotypic correlations and diminishing heritability of lignin concentrations may, however, counteract this process. PMID:28694813

  1. Intrapopulation Genotypic Variation of Foliar Secondary Chemistry during Leaf Senescence and Litter Decomposition in Silver Birch (Betula pendula).

    PubMed

    Paaso, Ulla; Keski-Saari, Sarita; Keinänen, Markku; Karvinen, Heini; Silfver, Tarja; Rousi, Matti; Mikola, Juha

    2017-01-01

    Abundant secondary metabolites, such as condensed tannins, and their interpopulation genotypic variation can remain through plant leaf senescence and affect litter decomposition. Whether the intrapopulation genotypic variation of a more diverse assortment of secondary metabolites equally persists through leaf senescence and litter decomposition is not well understood. We analyzed concentrations of intracellular phenolics, epicuticular flavonoid aglycones, epicuticular triterpenoids, condensed tannins, and lignin in green leaves, senescent leaves and partly decomposed litter of silver birch, Betula pendula . Broad-sense heritability ( H 2 ) and coefficient of genotypic variation ( CV G ) were estimated for metabolites in senescent leaves and litter using 19 genotypes selected from a B. pendula population in southern Finland. We found that most of the secondary metabolites remained through senescence and decomposition and that their persistence was related to their chemical properties. Intrapopulation H 2 and CV G for intracellular phenolics, epicuticular flavonoid aglycones and condensed tannins were high and remarkably, increased from senescent leaves to decomposed litter. The rank of genotypes in metabolite concentrations was persistent through litter decomposition. Lignin was an exception, however, with a diminishing genotypic variation during decomposition, and the concentrations of lignin and condensed tannins had a negative genotypic correlation in the senescent leaves. Our results show that secondary metabolites and their intrapopulation genotypic variation can for the most part remain through leaf senescence and early decomposition, which is a prerequisite for initial litter quality to predict variation in litter decomposition rates. Persistent genotypic variation also opens an avenue for selection to impact litter decomposition in B. pendula populations through acting on their green foliage secondary chemistry. The negative genotypic correlations and diminishing heritability of lignin concentrations may, however, counteract this process.

  2. Determination of free, esterified, glycosylated and insoluble-bound phenolics composition in the edible part of araticum fruit (Annona crassiflora Mart.) and its by-products by HPLC-ESI-MS/MS.

    PubMed

    Arruda, Henrique Silvano; Pereira, Gustavo Araujo; de Morais, Damila Rodrigues; Eberlin, Marcos Nogueira; Pastore, Glaucia Maria

    2018-04-15

    Phenolics present in the free, esterified, glycosylated and insoluble-bound forms of araticum pulp, peel and seed were for the first time characterized and quantified using HPLC-ESI-MS/MS. Levels of total phenolics, flavonoids, condensed tannins and antioxidant activities from araticum fruit followed the order peel > pulp > seed. Overall, insoluble-bound and esterified phenolics were the dominant forms of phenolics from araticum fruit parts and the highest contributors to their antioxidant activities. Extracts were found to contain contrasting levels of phenolics that were specific to each fruit part. From 10 phenolics quantified in araticum fruit, catechin and epicatechin were the major ones from pulp and peel, whereas seed displayed caffeic acid, catechin and epicatechin as its main phenolics. Araticum fruit was found to provide a good source of phenolics, and the full exploitation of this fruit may find applications in the food, cosmetic and pharmaceutical industries. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Evaluation of enzymes inhibition activities of medicinal plant from Burkina Faso.

    PubMed

    Bangou, Mindiédiba Jean; Kiendrebeogo, Martin; Meda, Nâg-Tiero Roland; Coulibaly, Ahmed Yacouba; Compaoré, Moussa; Zeba, Boukaré; Millogo-Rasolodimby, Jeanne; Nacoulma, Odile Germaine

    2011-01-15

    The aim of the present study was to evaluate some enzymes inhibitory effects of 11 plant species belonging to 9 families from Burkina Faso. Methanolic extracts were used for their Glutathione-s-transferase (GST), Acetylcholinesterase (AChE), Carboxylesterase (CES) and Xanthine Oxidase (XO) inhibitory activities at final concentration of 100 microg mL(-1). The total phenolics, flavonoids and tannins were also determined spectrophotometrically using Folin-Ciocalteu, AlCl3 and ammonium citrate iron reagents, respectively. Among the 11 species tested, the best inhibitory percentages were found with Euphorbia hirta, Sclerocarya birrea and Scoparia dulcis (inhibition > 40%) followed by Annona senegalensis, Annona squamosa, Polygala arenaria and Ceratotheca sesamoides (inhibition > 25%). The best total phenolic and tannin contents were found with S. birrea with 56.10 mg GAE/100 mg extract and 47.75 mg TAE/100 mg extract, respectively. E hirta presented the higher total flavonoids (9.96 mg QE/100 mg extract). It's was found that Sclerocarya birrea has inhibited all enzymes at more than 30% and this activity is correlated to total tannins contents. Contrary to S. birrea, the enzymatic activities of E. hirta and S. dulcis are correlated to total flavonoids contents. Present findings suggest that the methanolic extracts of those plant species are potential inhibitors of GST, AChE, CES and XO and confirm their traditional uses in the treatment of mental disorders, gout, painful inflammations and cardiovascular diseases.

  4. Antioxidant and anti-glycation activities correlates with phenolic composition of tropical medicinal herbs.

    PubMed

    Ramkissoon, J S; Mahomoodally, M F; Ahmed, N; Subratty, A H

    2013-07-01

    To determine the contribution of total phenolic content (TPC) in glycation inhibitory activity of common tropical medicinal food and spices with potential antioxidative properties. In vitro glucose-bovine serum albumin (BSA) assay was used. Ethanolic extracts of ten common household condiments/herbs (Allium sativum, Zingiber officinale, Thymus vulgaris, Petroselinum crispum, Murraya koenigii Spreng, Mentha piperita L., Curcuma longa L., Allium cepa L., Allium fistulosum and Coriandrum sativum L.) were evaluated for antioxidative activity by 2,2-diphenyl-2-picrylhydrazyl (DPPH), and ferric reducing antioxidant power (FRAP) and the TPC, flavonoid and tannins content were determined. Findings showed good correlation between TPC/DPPH (r = 0.8), TPC/FRAP (r = 0.8), TPC/anti-glycation (r = 0.9), DPPH/anti-glycation (r = 0.6), FRAP/anti-glycation (r = 0.9), Flavonoid/anti-glycation (r = 0.7) and Tannins/anti-glycation (r = 0.8) and relatively fair correlation for TPC/Flavonoids (r = 0.5) and TPC/Tannins (r = 0.5). Results imply that these plants are potential sources of natural antioxidants which have free radical scavenging activity and might be used for reducing oxidative stress. The positive glycation inhibitory and antioxidative activities of these tropical herbs suggest a possible role in targeting ageing, diabetic complications and oxidative stress related diseases. Copyright © 2013 Hainan Medical College. Published by Elsevier B.V. All rights reserved.

  5. Domestication and defence: Foliar tannins and C/N ratios in cassava and a close wild relative

    NASA Astrophysics Data System (ADS)

    Mondolot, Laurence; Marlas, Amandine; Barbeau, Damien; Gargadennec, Annick; Pujol, Benoît; McKey, Doyle

    2008-09-01

    Plant domestication is accompanied by shifts in resource allocation, as a result of farmer selection for genotypes that give high yields in agricultural habitats. Relaxed natural selection for chemical and physical defences in these habitats could facilitate resource allocation to yield. We compared the concentrations of tannins, and C/N ratios, which are often correlated with investment in cell-wall compounds, in leaves of landraces of domesticated cassava ( Manihot esculenta) and a close wild relative in French Guiana. Foliar concentrations of tannins were about 1.9 times higher in the wild relative than in domesticated cassava. Histochemical analyses showed that tannins were present in nearly all palisade and spongy parenchyma cells of the wild taxon, but in only some cells of these tissues in M. esculenta. C/N ratios were also 1.9 times higher in leaves of the wild relative than in those of domesticated cassava. Tannins accounted for only a small proportion of total carbon, and the higher C/N ratio in wild than in domesticated cassava may reflect higher investment in carbon-containing compounds additional to tannins, such as cell-wall compounds. The divergence in these traits between cassava and this close wild relative mirrors a broad pattern observed in wild plant species across habitats varying in resource availability. One explanation for our results is that domestication in cassava may have favoured a shift from a resource conservation strategy to a resource acquisition strategy.

  6. Impact of Altitudes and Habitats on Valerenic Acid, Total Phenolics, Flavonoids, Tannins, and Antioxidant Activity of Valeriana jatamansi.

    PubMed

    Jugran, Arun K; Bahukhandi, Amit; Dhyani, Praveen; Bhatt, Indra D; Rawal, Ranbeer S; Nandi, Shyamal K

    2016-07-01

    The changes in total phenolics, flavonoids, tannins, valerenic acid, and antioxidant activity were assessed in 25 populations of Valeriana jatamansi sampled from 1200 to 2775 m asl and four habitat types of Uttarakhand, West Himalaya. Significant (p < 0.05) variations in total phenolics, flavonoids, valerenic acid, and antioxidant activity in aerial and root portions and across the populations were observed. Antioxidant activity measured by three in vitro antioxidant assays, i.e., 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic) (ABTS) radical scavenging, 2,2'-diphenyl-1-picryylhydrazyl (DPPH) free radical scavenging, and ferric-reducing antioxidant power (FRAP) assays, showed significant (p < 0.05) differences across the populations. However, no clear pattern was found in phytochemicals across the altitudinal range. Among habitat types, (pine, oak, mixed forest, and grassy land), variation in phytochemical content and antioxidant activity were observed. Equal class ranking, neighbor-joining cluster analysis, and principal component analysis (PCA) identified Talwari, Jaberkhet, Manjkhali, and Khirshu populations as promising sources with higher phytochemicals and antioxidant activity. The results recommended that the identified populations with higher value of phytochemicals and antioxidants can be utilized for mass multiplication and breeding program to meet the domestic as well as commercial demand.

  7. Identification of hydrolyzable tannins (punicalagin, punicalin and geraniin) as novel inhibitors of hepatitis B virus covalently closed circular DNA

    PubMed Central

    Liu, Chunlan; Cai, Dawei; Zhang, Lin; Tang, Wei; Yan, Ran

    2017-01-01

    The development of new agents to target HBV cccDNA is urgently needed because of the limitations of current available drugs for treatment of hepatitis B. By using a cell-based assay in which the production of HBeAg is in a cccDNA-dependent manner, we screened a compound library derived from Chinese herbal remedies for inhibitors against HBV cccDNA. Three hydrolyzable tannins, specifically punicalagin, punicalin and geraniin, emerged as novel anti-HBV agents. These compounds significantly reduced the production of secreted HBeAg and cccDNA in a dose-dependent manner in our assay, without dramatic alteration of viral DNA replication. Furthermore, punicalagin did not affect precore/core promoter activity, pgRNA transcription, core protein expression, or HBsAg secretion. By employing the cell-based cccDNA accumulation and stability assay, we found that these tannins significantly inhibited the establishment of cccDNA and modestly facilitated the degradation of preexisting cccDNA. Collectively, our results suggest that hydrolyzable tannins inhibit HBV cccDNA production via a dual mechanism through preventing the formation of cccDNA and promoting cccDNA decay, although the latter effect is rather minor. These hydrolyzable tannins may serve as lead compounds for the development of new agents to cure HBV infection. PMID:27591143

  8. Garnacha Tintorera-based sweet wines: chromatic properties and global phenolic composition by means of UV-Vis spectrophotometry.

    PubMed

    Figueiredo-González, M; Cancho-Grande, B; Simal-Gándara, J

    2013-09-01

    Valdeorras (the N.W. corner of Spain) wants to promote the production and marketing of new sweet wines. The present work represents the first study on sweet wines manufactured with red grapes Vitis vinifera L. Garnacha Tintorera, a teinturier cultivar. Two different red sweet wines were elaborated: the first one was made with dried grapes; Vitis vinifera L. Garnacha Tintorera has excellent potential to produce wines from raisined grapes; the second one, a fortified sweet wine aged in oak barrels. Different red Garnacha Tintorera-based wines (a dry base wine, GBW; a naturally sweet wine, GNSW; and a fortified sweet wine, GFSW) were characterized. Chromatic characteristics and phenolic compounds were established by spectrophotometric methods in order to assess the technology of Garnacha Tintorera-based sweet wines. High molecular weight brown polymers, produced during the grape drying process and isolated from sweet wines by the dialysis process, were responsible for the brown colour of sweet wines. As a consequence, yellowness of sweet wines was also higher which was confirmed by colorimetric indexes. With respect to phenolic content, GFSW presented the lowest content because the maceration-alcoholic fermentation was stopped through the addition of alcohol before the diffusion of red pigments from skins to must was complete. GNSW presented the highest phenolic content due to the concentration effect resulting from evaporation of water from the grapes. Anthocyanins of sweet wines were polymerised in great extent. The percentage of polymerised tannins was sufficient to guarantee the aging process of sweet wines. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. Screening of Bioactive Compounds of Medicinal Mushrooms Collected on Tunisian Territory.

    PubMed

    Khadhri, Ayda; Aouadhi, Chedia; Aschi-Smiti, Samira

    2017-01-01

    This study is, to our knowledge, the first to investigate the pharmacological importance of wild Tunisian mushrooms. Ethanolic extracts of 5 Tunisian mushrooms-Phellinus torulosus, Fomes fomentarius, Trametes versicolor, Pisolithus albus, and Fomitopsis pinicola-were collected from the Kroumirie Region (North Tunisia). The dry basidomes of mushrooms were extracted using ethanol and evaluated for total polyphenol, flavonoid, flavonol, tannin, proanthocyanidin, and anthocyanin content. In addition, their antioxidant activities were determined using 3 assays (testing 2,2-diphenyl-1-picrylhydrazyl [DPPH] radical scavenging, the reducing power of iron, and the iron-chelating power). Their antimicrobial activities were assessed against 8 bacterial species. The results revealed the presence of significant differences between the secondary metabolites and biological activities of the different tested extracts. In addition, significant correlations were observed between antioxidant activities and phenolic contents. Crude ethanol extracts prepared from basidomes of F. fomentarius and Ph. torulosus have higher total phenolic content and antioxidant activity per the DPPH and metal-chelating activity assays. The reducing power assay showed that the ethanolic extract of F. pinicola had the highest activity. Ethanolic extracts of the 5 mushrooms have antibacterial activity against the evaluated strains.

  10. Evaluation of phenolic composition, antioxidant, anti-inflammatory and anticancer activities of Polygonatum verticillatum (L.).

    PubMed

    Kumar Singh, Sandeep; Patra, Arjun

    2018-04-18

    Polygonatum verticillatum (L.) All. (Ruscaceae), one of the Ashtawarga plants, is widely used for treatment of various ailments. The present study was undertaken to determine the phenolic composition, antioxidant, anti-inflammatory and anticancer activities of several extracts (petroleum ether, dichloromethane, chloroform, ethanol, and aqueous) from the rhizomes of the plant. Coarsely powdered dry rhizome was successively extracted with different solvents of increasing polarity (petroleum ether, dichloromethane, chloroform, ethanol and water). The phenolic compositions, in terms of total phenolic content (TPC), total flavonoid content (TFC) and total condensed tannin content (TTC), were evaluated with the Folin-Ciocalteu assay, aluminum chloride colorimetric assay and vanillin spectrophotometric assay, respectively. Total antioxidant capacity, 1,1-diphenyl-2-picrylhydrazyl and 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) assays were used to assess the antioxidant potential of each extract. A protein denaturation model and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay were used to evaluate in vitro anti-inflammatory and anticancer activities, respectively. Gas chromatography-mass spectrometry (GC/MS) analysis was carried out to demonstrate various phytoconstituents in each extract. Correlation studies were also performed between phenolic composition (TPC, TFC and TTC) and different biological activities. Ethanol extract showed maximum TPC (0.126 mg/g, gallic acid equivalent in dry sample), TFC (0.094 mg/g, rutin equivalent in dry sample) and TTC (29.32 mg/g, catechin equivalent in dry sample), as well as antioxidant and anti-inflammatory properties. Chloroform extract exhibited the strongest cytotoxicity against the human breast cancer cell line, MCF-7. GC/MS analysis revealed the presence of 90 different phytoconstituents among the extracts. Antioxidant and anti-inflammatory activities had a positive correlation with TPC, TFC and TTC. However, the anticancer activity showed a negative correlation with TPC, TFC and TTC. From the present study, it can be concluded that P. verticillatum possessed remarkable antioxidant, anti-inflammatory, and anticancer activities, which could be due to different secondary metabolites of the plant. Phenolic compounds are likely responsible for antioxidant and anti-inflammatory activities. However, flavonoids and other compounds might contribute to the anticancer potential of the plant. Copyright © 2018 Shanghai Changhai Hospital. Published by Elsevier B.V. All rights reserved.

  11. Isolation and Purification of Condensed Tannin from the Leaves and Branches of Prunus cerasifera and Its Structure and Bioactivities.

    PubMed

    Song, Wei; Qin, Shao-Tong; Fang, Fei-Xiang; Gao, Zhen-Jiang; Liang, Dan-Dan; Liu, Lu-Lu; Tian, Hong-Tao; Yang, Hai-Bo

    2018-06-01

    Prunus cerasifera has a rich resource and a weak utilization rate and its biological functions have been investigated. We found that the contents of total phenol (TP) in leaves and branches of Prunus cerasifera were 117.8 ± 8.8 and 100.04 ± 0.9 mg/g, respectively; the contents of soluble condensed tannin (SCT) were 73.95 ± 0.9 and 78.65 ± 4.1 mg/g, respectively; the structure of SCT containing afzelechin/epiafzelechin, catechin/epicatechin, and atechin/epicatechin as the main units and the SCT from leaves and branches exhibited better anti-tyrosinase and antioxidant activities. This study could clarify Prunus cerasifera condensed tannin resource availability and lay a theoretical foundation for its development as a natural antioxidant and tyrosinase inhibitor.

  12. Coriariin M, a trimeric hydrolysable tannin with dehydrodigalloyl and valoneoyl groups as linking units, and accompanying dimeric hydrolysable tannins from Coriaria japonica.

    PubMed

    Shimozu, Yuuki; Hirai, Takayasu; Hatano, Tsutomu

    2018-07-01

    Three oligomeric hydrolysable tannins, coriariins K, L, and M, which were previously undescribed, together with five known hydrolysable tannins were isolated from dried leaves of Coriaria japonica. Their structures were determined based on 1D and 2D NMR spectroscopy, HR-ESI-MS, and ECD spectroscopy experiments. Among the isolated compounds, coriariin M has a unique trimer structure where both dehydrodigalloyl and valoneoyl group linkages were found between the hydrolysable tannin monomers. Dimeric hydrolysable tannins coriariins K and L, having a dehydrodigalloyl group as the linking unit, were structurally related to coriariin A, the main hydrolysable tannin of this plant species. Additionally, the complexation of the eight hydrolysable tannins isolated in this study with bovine serum albumin (BSA) to form water-soluble macromolecules was analyzed using native polyacrylamide gel electrophoresis (PAGE). A comparison of the behaviors of the oligomeric hydrolysable tannins suggested the participation of the hexahydroxydiphenoyl group and the importance of the molecular sizes of the hydrolysable tannins in the formation of macromolecules. Copyright © 2018 Elsevier Ltd. All rights reserved.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Higuchi, T.

    A textbook containing 22 chapters by various authors covers the structure of wood, the localization of polysaccharides and lignins in wood cell walls, metabolism and synthetic function of cambial tissue, cell organelles and their function in the biosynthesis of cell wall components, biosynthesis of plant cell wall polysaccharides, lignin, cutin, suberin and associated waxes, phenolic acids and monolignols, quinones, flavonoids, tannins, stilbenes and terpenoid wood extractives, the occurrence of extractives, the metabolism of phenolic acids, wood degradation by micro-organisms and fungi, and biodegradation of cellulose, hemicelluloses, lignin, and aromatic extractives of wood. An index is included.

  14. Interaction of α-synuclein with Rhus typhina tannin - Implication for Parkinson's disease.

    PubMed

    Sekowski, Szymon; Ionov, Maksim; Abdulladjanova, Nodira; Makhmudov, Rustam; Mavlyanov, Saidmukhtar; Milowska, Katarzyna; Bryszewska, Maria; Zamaraeva, Maria

    2017-07-01

    The etiology of Parkinson's disease (PD) relates to α-synuclein, a small protein with the ability to aggregate and form Lewy bodies. One of its prevention strategies is inhibition of α-synuclein oligomerization. We have investigated the interaction of α-synuclein and human serum albumin with 3,6-bis-О-di-О-galloyl-1,2,4-tri-О-galloyl-β-d-glucose (a tannin isolated from the plant Rhus typhina). Using fluorescence spectroscopy method we found that this tannin interacts strongly with α-synuclein forming complexes. Circular dichroism analysis showed a time-dependent inhibition of α-synuclein aggregation in the presence of the tannin. On the other hand, 3,6-bis-О-di-О-galloyl-1,2,4-tri-О-galloyl-β-d-glucose had a much stronger interaction with human serum albumin than α-synuclein. The calculated binding constant for tannin-protein interaction was considerably higher for albumin than α-synuclein. This tannin interacted with albumin through a "sphere of action" mechanism. The results lead to the conclusion that 3,6-bis-О-di-О-galloyl-1,2,4-tri-О-galloyl-β-d-glucose is a potent preventive compound against Parkinson's disease. However, this tannin interacts very strongly with human serum albumin, significantly reducing the bioavailability of this compound. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Does Initial Leaf Chemistry Affect the Contribution of Insects, Fungi, and Bacteria to Leaf Breakdown in a Lowland Tropical Stream?

    NASA Astrophysics Data System (ADS)

    Ardon, M.; Pringle, C. M.

    2005-05-01

    We examined effects of initial leaf chemistry of six common riparian species on the relative contribution of fungi, bacteria, and invertebrates to leaf breakdown in a lowland stream in Costa Rica. We hypothesized that fungi and bacteria would contribute more to the breakdown of species with low concentrations of secondary (tannins and phenolics) and structural (cellulose and lignin) compounds, while invertebrates would be more important in the processing of species with high concentrations of secondary and structural compounds. We incubated single species leaf bags of six common riparian species, representing a range in secondary and structural compounds, in a third-order stream at La Selva Biological Station, Costa Rica. We measured leaf chemistry during the breakdown process. We determined fungal biomass using ergosterol methods, bacteria using DAPI counts, and invertebrate biomass using length-weight regressions. We then used biomass estimates for each group to determine their contribution to the overall breakdown process. Breakdown rates ranged from very fast (Trema integerima, k = 0.23 day-1) to slow (Zygia longifolia , k = 0.011 day-1). While analyses are still under way, preliminary results support our initial hypothesis that fungi contribute more to the break down of leaves from tree species with low concentrations of secondary and structural compounds.

  16. Pine Bark and Green Tea Concentrated Extracts: Antioxidant Activity and Comprehensive Characterization of Bioactive Compounds by HPLC–ESI-QTOF-MS

    PubMed Central

    Cádiz-Gurrea, María de la Luz; Fernández-Arroyo, Salvador; Segura-Carretero, Antonio

    2014-01-01

    The consumption of polyphenols has frequently been associated with low incidence of degenerative diseases. Most of these natural antioxidants come from fruits, vegetables, spices, grains and herbs. For this reason, there has been increasing interest in identifying plant extract compounds. Polymeric tannins and monomeric flavonoids, such as catechin and epicatechin, in pine bark and green tea extracts could be responsible for the higher antioxidant activities of these extracts. The aim of the present study was to characterize the phenolic compounds in pine bark and green tea concentrated extracts using high-performance liquid chromatography coupled to electrospray ionization mass spectrometry (HPLC–ESI-QTOF-MS). A total of 37 and 35 compounds from pine bark and green tea extracts, respectively, were identified as belonging to various structural classes, mainly flavan-3-ol and its derivatives (including procyanidins). The antioxidant capacity of both extracts was evaluated by three complementary antioxidant activity methods: Trolox equivalent antioxidant capacity (TEAC), ferric reducing antioxidant power (FRAP) and oxygen radical absorbance capacity (ORAC). Higher antioxidant activity values by each method were obtained. In addition, total polyphenol and flavan-3-ol contents, which were determined by Folin–Ciocalteu and vanillin assays, respectively, exhibited higher amounts of gallic acid and (+)-catechin equivalents. PMID:25383680

  17. Analysis of phytochemical profile of Terminalia arjuna bark extract with antioxidative and antimicrobial properties.

    PubMed

    Mandal, Shreya; Patra, Arpita; Samanta, Animesh; Roy, Suchismita; Mandal, Arpita; Mahapatra, Tapasi Das; Pradhan, Shrabani; Das, Koushik; Nandi, Dilip Kumar

    2013-12-01

    To investigate phytochemical screening, antimicrobial activity and qualitative thin layer chromatographic separation of flavonoid components, antioxidant activity and total flavonoid compound of Terminalia arjuna. For phytochemical screening, some common and available standard tests were done. Antimicrobial bioassay was done through agar well diffusion method. Detection of antioxidant activity and flavonoid compounds were done through thin layer chromatography. Total antioxidant activity was measured by 2, 2-diphenyl-1-picrylhydrazyl (DPPH) in colorimetric method. Aluminum chloride colorimetric method was used for total flavonoid determination. Phytochemical screening showed the active compounds presence in high concentration, such as phytosterol, lactones, flavonoids, phenolic compounds and tannins and glycosides. The antimicrobial activity of extract showed that greater inhibition zone against Gram negative bacteria than Gram positive bacteria. This methanolic extract showed a promising antioxidant activity, as absorption of DPPH redicles decreased in DPPH free radical scavenging assay. Flavonoids components having antioxidant property present in the methanol extract at a level of 199.00 mg quercetin equivalent/g of dried methanol extract in colorimetric method. The Terminalia arjuna bark extract revealed the presence of bio-active constituents which are known to exhibit medicinal as well as physiological activities. Copyright © 2013 Asian Pacific Tropical Biomedical Magazine. Published by Elsevier B.V. All rights reserved.

  18. Pine bark and green tea concentrated extracts: antioxidant activity and comprehensive characterization of bioactive compounds by HPLC-ESI-QTOF-MS.

    PubMed

    de la Luz Cádiz-Gurrea, María; Fernández-Arroyo, Salvador; Segura-Carretero, Antonio

    2014-11-06

    The consumption of polyphenols has frequently been associated with low incidence of degenerative diseases. Most of these natural antioxidants come from fruits, vegetables, spices, grains and herbs. For this reason, there has been increasing interest in identifying plant extract compounds. Polymeric tannins and monomeric flavonoids, such as catechin and epicatechin, in pine bark and green tea extracts could be responsible for the higher antioxidant activities of these extracts. The aim of the present study was to characterize the phenolic compounds in pine bark and green tea concentrated extracts using high-performance liquid chromatography coupled to electrospray ionization mass spectrometry (HPLC-ESI-QTOF-MS). A total of 37 and 35 compounds from pine bark and green tea extracts, respectively, were identified as belonging to various structural classes, mainly flavan-3-ol and its derivatives (including procyanidins). The antioxidant capacity of both extracts was evaluated by three complementary antioxidant activity methods: Trolox equivalent antioxidant capacity (TEAC), ferric reducing antioxidant power (FRAP) and oxygen radical absorbance capacity (ORAC). Higher antioxidant activity values by each method were obtained. In addition, total polyphenol and flavan-3-ol contents, which were determined by Folin-Ciocalteu and vanillin assays, respectively, exhibited higher amounts of gallic acid and (+)-catechin equivalents.

  19. Complex Mixture-Associated Hormesis and Toxicity: The Case of Leather Tanning Industry

    PubMed Central

    Pagano, Giovanni; Castello, Giuseppe; Gallo, Marialuisa; Borriello, Ilaria; Guida, Marco

    2008-01-01

    A series of studies investigated the toxicities of tannery-derived complex mixtures, i.e. vegetable tannin (VT) from Acacia sp. or phenol-based synthetic tannin (ST), and waste-water from tannin-based vs. chromium-based tanneries. Toxicity was evaluated by multiple bioassays including developmental defects and loss of fertilization rate in sea urchin embryos and sperm (Paracentrotus lividus and Sphaerechinus granularis), and algal growth inhibition (Dunaliella tertiolecta and Selenastrum capricornutum). Both VT and ST water extracts resulted in hormetic effects at concentrations ranging 0.1 to 0.3%, and toxicity at levels ≥1%, both in sea urchin embryo and sperm, and in algal growth bioassays. When comparing tannin-based tannery wastewater (TTW) vs. chromium-based tannery effluent (CTE), a hormesis to toxicity trend was observed for TTW both in terms of developmental and fertilization toxicity in sea urchins, and in algal growth inhibition, with hormetic effects at 0.1 to 0.2% TTW, and toxicity at TTW levels ≥1%. Unlike TTW, CTE showed a monotonic toxicity increase from the lowest tested level (0.1%) and CTE toxicity at higher levels was significantly more severe than TTW-induced toxicity. The results support the view that leather production utilizing tannins might be regarded as a more environmentally friendly procedure than chromium-based tanning process. PMID:19088903

  20. Complex mixture-associated hormesis and toxicity: the case of leather tanning industry.

    PubMed

    Pagano, Giovanni; Castello, Giuseppe; Gallo, Marialuisa; Borriello, Ilaria; Guida, Marco

    2008-01-01

    A series of studies investigated the toxicities of tannery-derived complex mixtures, i.e. vegetable tannin (VT) from Acacia sp. or phenol-based synthetic tannin (ST), and waste-water from tannin-based vs. chromium-based tanneries. Toxicity was evaluated by multiple bioassays including developmental defects and loss of fertilization rate in sea urchin embryos and sperm (Paracentrotus lividus and Sphaerechinus granularis), and algal growth inhibition (Dunaliella tertiolecta and Selenastrum capricornutum). Both VT and ST water extracts resulted in hormetic effects at concentrations ranging 0.1 to 0.3%, and toxicity at levels > or =1%, both in sea urchin embryo and sperm, and in algal growth bioassays. When comparing tannin-based tannery wastewater (TTW) vs. chromium-based tannery effluent (CTE), a hormesis to toxicity trend was observed for TTW both in terms of developmental and fertilization toxicity in sea urchins, and in algal growth inhibition, with hormetic effects at 0.1 to 0.2% TTW, and toxicity at TTW levels > or =1%. Unlike TTW, CTE showed a monotonic toxicity increase from the lowest tested level (0.1%) and CTE toxicity at higher levels was significantly more severe than TTW-induced toxicity. The results support the view that leather production utilizing tannins might be regarded as a more environmentally friendly procedure than chromium-based tanning process.

  1. Dual Stimulus-Dependent Effect of Oenothera paradoxa Extract on the Respiratory Burst in Human Leukocytes: Suppressing for Escherichia coli and Phorbol Myristate Acetate and Stimulating for Formyl-Methionyl-Leucyl-Phenylalanine

    PubMed Central

    Burzynska-Pedziwiatr, Izabela; Bukowiecka-Matusiak, Malgorzata; Wojcik, Marzena; Machala, Waldemar; Bienkiewicz, Malgorzata; Spolnik, Grzegorz; Danikiewicz, Witold; Wozniak, Lucyna Alicja

    2014-01-01

    Although a growing body of evidence suggests that plant polyphenols can modulate human immune responses, their simultaneous action on monocyte and neutrophil oxidative burst is currently poorly understood. Based on the hypothesis that various polyphenols contained in plant extracts might affect the oxidative burst of phagocytes, we evaluated the effects of ethanolic O. paradoxa extract polyphenols on monocyte and neutrophil oxidative burst in vitro activated by different stimuli, including opsonized bacteria E. coli, phorbol 12-myristate 13-acetate (PMA), and formyl-methionyl-leucyl-phenylalanine (fMLP). Samples were analyzed by the dihydrorhodamine flow cytometry assay. Our results showed that the extract repressed significantly and dose-dependently reactive oxygen species production in both cell types stimulated with E. coli and PMA (P < 0.05) and its inhibitory efficiency was stimulus- and cell-type-dependent. Interestingly, there was significant stimulatory effect of the extract on bursting phagocytes induced by fMLP (P < 0.05). Additionally, several flavonoids and phenolic compounds as well as penta-galloyl-β-(D)-glucose (PGG), the representative of hydrolyzable tannins, were identified in the 60% extract by high-performance liquid chromatography (HPLC) coupled to electrospray ionization in negative ion mode. In summary, the ethanolic O. paradoxa extract, rich in flavonoids and phenolic compounds, exhibits dual stimulus-dependent effect on the respiratory burst in human leukocytes; hence, it might affect immune responses in humans. PMID:25298860

  2. Dual stimulus-dependent effect of Oenothera paradoxa extract on the respiratory burst in human leukocytes: suppressing for Escherichia coli and phorbol myristate acetate and stimulating for formyl-methionyl-leucyl-phenylalanine.

    PubMed

    Burzynska-Pedziwiatr, Izabela; Bukowiecka-Matusiak, Malgorzata; Wojcik, Marzena; Machala, Waldemar; Bienkiewicz, Malgorzata; Spolnik, Grzegorz; Danikiewicz, Witold; Wozniak, Lucyna Alicja

    2014-01-01

    Although a growing body of evidence suggests that plant polyphenols can modulate human immune responses, their simultaneous action on monocyte and neutrophil oxidative burst is currently poorly understood. Based on the hypothesis that various polyphenols contained in plant extracts might affect the oxidative burst of phagocytes, we evaluated the effects of ethanolic O. paradoxa extract polyphenols on monocyte and neutrophil oxidative burst in vitro activated by different stimuli, including opsonized bacteria E. coli, phorbol 12-myristate 13-acetate (PMA), and formyl-methionyl-leucyl-phenylalanine (fMLP). Samples were analyzed by the dihydrorhodamine flow cytometry assay. Our results showed that the extract repressed significantly and dose-dependently reactive oxygen species production in both cell types stimulated with E. coli and PMA (P < 0.05) and its inhibitory efficiency was stimulus- and cell-type-dependent. Interestingly, there was significant stimulatory effect of the extract on bursting phagocytes induced by fMLP (P < 0.05). Additionally, several flavonoids and phenolic compounds as well as penta-galloyl-β-(D)-glucose (PGG), the representative of hydrolyzable tannins, were identified in the 60% extract by high-performance liquid chromatography (HPLC) coupled to electrospray ionization in negative ion mode. In summary, the ethanolic O. paradoxa extract, rich in flavonoids and phenolic compounds, exhibits dual stimulus-dependent effect on the respiratory burst in human leukocytes; hence, it might affect immune responses in humans.

  3. Using combined optimization, GC-MS and analytical technique to analyze the germination effect on phenolics, dietary fibers, minerals and GABA contents of Kodo millet (Paspalum scrobiculatum).

    PubMed

    Sharma, Seema; Saxena, Dharmesh C; Riar, Charanjit S

    2017-10-15

    A central composite rotatable design was applied to study the effects of soaking time, germination time and temperature on the responses; total phenolics, total flavonoids and antioxidant activity for the biochemical enhancement of bioactive components of Kodo millet. The optimum conditions for producing germinated Kodo millet flour of highest TPC (83.01mgGAE/100g), TFC (87.53mgRUE/g) and AoxA (91.34%), were soaking time (13.81h), germination temperature (38.75°C) and germination time (35.82h). Protein increased significantly form, 6.7 to 7.9%, dietary fibers from 35.30 to 38.34g/100g, minerals from 232.82 to 251.73mg/100g, GABA contents from 9.36 to 47.43mg/100g, whereas phytates and tannins decreased from 1.344 to 0.997mol/kg and 1.603 to 0.234mg/100g respectively, in optimized germinated Kodo millet sample. Six new bioactive compounds [n-propyl-9,12,15-octadecatrienoate (0.86%), pregan,20-one-2hydroxy,5,6,epox-15-methyl (3.45%), hexa-decanoicacid (8.19%), 9,O-ctadecenoicacid (5.00%), butyl-6,9,12,15-octadecatetraenoate (4.03%), hexadecanoicacid-methylester (1.43%)], synthesized as a result of germination under optimum conditions in the Kodo millet depicted the germination potential of millets as a source of valuable bioactive compounds. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Phytochemistry and Pharmacology of Berberis Species

    PubMed Central

    Mokhber-Dezfuli, Najmeh; Saeidnia, Soodabeh; Gohari, Ahmad Reza; Kurepaz-Mahmoodabadi, Mahdieh

    2014-01-01

    The genus Berberis (Berberidaceae) includes about 500 species worldwide, some of which are widely cultivated in the north-eastern regions of Iran. This genus consists of spiny deciduous evergreen shrubs, characterized by yellow wood and flowers. The cultivation of seedless barberry in South Khorasan goes back to two hundred years ago. Medicinal properties for all parts of these plants have been reported, including: Antimicrobial, antiemetic, antipyretic, antioxidant, anti-inflammatory, anti-arrhythmic, sedative, anti-cholinergic, cholagogic, anti-leishmaniasis, and anti-malaria. The main compounds found in various species of Berberis, are berberine and berbamine. Phytochemical analysis of various species of this genus revealed the presence of alkaloids, tannins, phenolic compounds, sterols and triterpenes. Although there are some review articles on Berberis vulgaris (as the most applied species), there is no review on the phytochemical and pharmacological activities of other well-known species of the genus Berberis. For this reason, the present review mainly focused on the diverse secondary metabolites of various species of this genus and the considerable pharmacological and biological activities together with a concise story of the botany and cultivation. PMID:24600191

  5. Chemical and sensory characterisation of Sangiovese red wines: comparison between biodynamic and organic management.

    PubMed

    Parpinello, Giuseppina Paola; Rombolà, Adamo Domenico; Simoni, Marco; Versari, Andrea

    2015-01-15

    The effects of biodynamic production practices on composition and sensory attributes of Sangiovese wines were examined for 2 years (2009 and 2010) in a vineyard that was converted from organic (ORG) to biodynamic (BDN) viticulture. During the first year (2009), the BDN wines were characterised by low alcohol strength, colour intensity, total polyphenols, monomeric anthocyanins and catechin. Conversely, the second year BDN wines differed from the organic wines in terms of total polyphenols and phenolic compounds, including polymeric pigments, co-pigmentation, tannins and iron-reactive polyphenols. The effect of management practices, harvest and their interaction was analysed for each compound. Positive interaction was observed for total acidity, volatile acidity, cyanidin-3-glucoside, protocatechuic acid, (+)-catechin, quercetin and trans-resveratrol. ORG wine initially showed a more complex aroma profile; however, the differences were almost indistinguishable during the second year. Trained panellists highlighted differences in colour intensity between ORG and BDN wines although no preference was found by consumers. The concentrations of ochratoxin A and biogenic amines were far below the health-hazardous threshold. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Anti-gout Potential of Malaysian Medicinal Plants.

    PubMed

    Abu Bakar, Fazleen I; Abu Bakar, Mohd F; Rahmat, Asmah; Abdullah, Norazlin; Sabran, Siti F; Endrini, Susi

    2018-01-01

    Gout is a type of arthritis that causes painful inflammation in one or more joints. In gout, elevation of uric acid in the blood triggers the formation of crystals, causing joint pain. Malaysia is a mega-biodiversity country that is rich in medicinal plants species. Therefore, its flora might offer promising therapies for gout. This article aims to systematically review the anti-gout potential of Malaysian medicinal plants. Articles on gout published from 2000 to 2017 were identified using PubMed, Scopus, ScienceDirect, and Google Scholar with the following keyword search terms: "gout," "medicinal plants," "Malaysia," "epidemiology," " in vitro," and " in vivo ." In this study, 85 plants were identified as possessing anti-gout activity. These plants had higher percentages of xanthine oxidase inhibitory activity (>85%); specifically, the Momordica charantia, Chrysanthemum indicum, Cinnamomum cassia, Kaempferia galanga, Artemisia vulgaris , and Morinda elliptica had the highest values, due to their diverse natural bioactive compounds, which include flavonoids, phenolics, tannin, coumarins, luteolin, and apigenin. This review summarizes the anti-gout potential of Malaysian medicinal plants but the mechanisms, active compounds, pharmacokinetics, bioavailability, and safety of the plants still remain to be elucidated.

  7. Bioactive constituents in pulses and their health benefits.

    PubMed

    Singh, Balwinder; Singh, Jatinder Pal; Shevkani, Khetan; Singh, Narpinder; Kaur, Amritpal

    2017-03-01

    Pulses are good sources of bioactive compounds such as polyphenols, phytosterols and non-digestible carbohydrates that play important physiological as well as metabolic roles. These compounds vary in concentration amongst different pulse species and varieties. Pulse seed coats are rich in water-insoluble fibres and polyphenols (having high antioxidant activities), while cotyledons contain higher soluble fibres, oligosaccharides, slowly digestible and resistant starch content. Ferulic acid is the most abundant phenolic acid present in pulses, while flavonol glycosides, anthocyanins and tannins are responsible for the seed coat colour. Sitosterol (most abundant), stigmasterol, and campesterol are the major phytosterols present in pulses. Pulse fibres, resistant starch and oligosaccharides function as probiotics and possess several other health benefits such as anti-inflammatory, anti-tumour, and reduce glucose as well as lipid levels. Beans and peas contain higher amounts of oligosaccharides than other pulses. Processing methods affect resistant starch, polyphenol composition and generally increase antioxidant activities of different pulses. In this review, the current information on pulse polyphenols, phytosterols, resistant starch, dietary fibre, oligosaccharides, antioxidant and associated health benefits are discussed.

  8. Polyphenolic profile of butterhead lettuce cultivar by ultrahigh performance liquid chromatography coupled online to UV-visible spectrophotometry and quadrupole time-of-flight mass spectrometry.

    PubMed

    Viacava, Gabriela E; Roura, Sara I; López-Márquez, Diana M; Berrueta, Luis A; Gallo, Blanca; Alonso-Salces, Rosa M

    2018-09-15

    In the present study, the butterhead lettuce cultivar was analyzed by ultrahigh performance liquid chromatography (UHPLC) coupled online to diode array detection (DAD), electrospray ionization (ESI) and quadrupole time-of-flight mass spectrometry (QToF/MS) in the positive and negative ion mode in order to characterize its polyphenolic profile for the first time. The instrument acquisition mode MS E was used to collect automatic and simultaneous information of exact mass at high and low collision energies of precursor ions as well as other ions produced as a result of their fragmentation. One hundred eleven phenolic compounds were identified in the acidified hydromethanolic extract of freeze-dried leaves of butterhead lettuce cultivar: 40 hydroxycinnamic acid derivatives, 21 hydroxybenzoic acid derivatives, 2 hydroxyphenylacetic acid derivatives, 18 flavonols, 9 flavones, one flavanone, 7 coumarins, one hydrolysable tannin and 12 lignans. Forty-seven of these compounds have been tentatively identified for the first time in lettuce. Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. Study on Leucaena leocochepala seed during fermentation : sensory characteristic and changes on anti nutritional compounds and mimosine level

    NASA Astrophysics Data System (ADS)

    Nursiwi, A.; Ishartani, D.; Sari, AM; Nisyah, K.

    2018-01-01

    Lamtoro (Leucaena leucocephala) seed is one of the leguminosae which have high level of protein but it contains toxic compound such as mimosine and some anti nutritional compounds such as phitic acid and tannin. The objectives of the research was to investigate the sensory characteristic and the changes onanti nutritional compounds and mimosine level in Leucaena leucochepala seed during fermentation. Lamtoro tempeh processing was carried out by boiling the seed, crushing to separate the hull, soaking, boiling, and fermentation. The best concentration inoculum in lamtoro tempeh processing was determined by hedonic test. Fermentation was carried out in 36 hours and every 6 hours mimosine, tannin, and phitic acid content was analyzed. From hedonic test, inoculum concentration of 1% was used in lamtoro tempeh processing. During 36 hours fermentation, phytic acid content and mimosine content was decreased significantly, from 0.0558 % to 0.0453 % and from 0.00393 % to 0.00173 % respectively. Whereas tannin content was increased signifacantly, from 0.0822 % to 0.00173 %.

  10. Identification of hydrolyzable tannins (punicalagin, punicalin and geraniin) as novel inhibitors of hepatitis B virus covalently closed circular DNA.

    PubMed

    Liu, Chunlan; Cai, Dawei; Zhang, Lin; Tang, Wei; Yan, Ran; Guo, Haitao; Chen, Xulin

    2016-10-01

    The development of new agents to target HBV cccDNA is urgently needed because of the limitations of current available drugs for treatment of hepatitis B. By using a cell-based assay in which the production of HBeAg is in a cccDNA-dependent manner, we screened a compound library derived from Chinese herbal remedies for inhibitors against HBV cccDNA. Three hydrolyzable tannins, specifically punicalagin, punicalin and geraniin, emerged as novel anti-HBV agents. These compounds significantly reduced the production of secreted HBeAg and cccDNA in a dose-dependent manner in our assay, without dramatic alteration of viral DNA replication. Furthermore, punicalagin did not affect precore/core promoter activity, pgRNA transcription, core protein expression, or HBsAg secretion. By employing the cell-based cccDNA accumulation and stability assay, we found that these tannins significantly inhibited the establishment of cccDNA and modestly facilitated the degradation of preexisting cccDNA. Collectively, our results suggest that hydrolyzable tannins inhibit HBV cccDNA production via a dual mechanism through preventing the formation of cccDNA and promoting cccDNA decay, although the latter effect is rather minor. These hydrolyzable tannins may serve as lead compounds for the development of new agents to cure HBV infection. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Effect of tannins on the in vitro growth of Clostridium perfringens.

    PubMed

    Elizondo, Ana M; Mercado, Elsa C; Rabinovitz, Bettina C; Fernandez-Miyakawa, Mariano E

    2010-10-26

    Vegetable tannins are water-soluble polyphenolic compounds of varying molecular weights that occur abundantly in nature. The diet of many free-ranging wild animals contains significant amounts of tannins. Also, commercial tannins are used in animal industry as food additives to improve animal performance. In order to further determine the capacity of tannins to inhibit the development of intestinal diseases produced by Clostridium pefringens, we evaluated here the effect of tannins from quebracho, chestnut or combinations of both on C. perfringens and their toxins. The C. perfringens (types A, B, C, D and E) growth obtained from the intestine of healthy and diseased animals was reduced in a dose-dependent manner in the presence of quebracho tannins, chestnut tannins, combinations of both or a commercial formula based in these tannins. Although the minimal inhibitory concentration of both tannins varied between isolates, no statistically significant differences were observed between isolates from healthy or sick animals. Comparative analysis showed that the concentrations of quebracho tannin inhibiting the growth of C. perfringens were higher than chestnut tannin. In fact, antibacterial effect of quebracho tannin was increased up to 20 times with the addition of 25% of chestnut tannin and 85 times with 75% of chestnut tannin. Antibacterial activity of the commercial product was up to ~50 times higher than quebracho tannin alone. Quebracho tannin showed partial bactericidal activity, whereas chestnut tannin activity was stronger. Both tannins were able to reduce the alpha toxin lecithinase activity and epsilon toxin cytotoxicity in MDCK cells. These results suggest that tannin-supplemented diet could be useful to prevent some clostridial diseases. Copyright © 2010 Elsevier B.V. All rights reserved.

  12. Fermentation Characteristics, Tannin Contents and In vitro Ruminal Degradation of Green Tea and Black Tea By-products Ensiled at Different Temperatures.

    PubMed

    Kondo, Makoto; Hirano, Yoshiaki; Kita, Kazumi; Jayanegara, Anuraga; Yokota, Hiro-Omi

    2014-07-01

    Green and black tea by-products, obtained from ready-made tea industry, were ensiled at 10°C, 20°C, and 30°C. Green tea by-product silage (GTS) and black tea by-product silage (BTS) were opened at 5, 10, 45 days after ensiling. Fermentation characteristics and nutrient composition, including tannins, were monitored and the silages on day 45 were subjected to in vitro ruminal fermentation to assess anti-nutritive effects of tannins using polyethylene glycol (PEG) as a tannin-binding agent. Results showed that the GTS and BTS silages were stable and fermented slightly when ensiled at 10°C. The GTS stored at 20°C and 30°C showed rapid pH decline and high acetic acid concentration. The BTS was fermented gradually with moderate change of pH and acid concentration. Acetic acid was the main acid product of fermentation in both GTS and BTS. The contents of total extractable phenolics and total extractable tannins in both silages were unaffected by storage temperatures, but condensed tannins in GTS were less when stored at high temperature. The GTS showed no PEG response on in vitro gas production, and revealed only a small increase by PEG on NH3-N concentration. Storage temperature of GTS did not affect the extent of PEG response to both gas production and NH3-N concentration. On the other hand, addition of PEG on BTS markedly increased both the gas production and NH3-N concentration at any ensiled temperature. It can be concluded that tannins in both GTS and BTS suppressed rumen fermentation, and tannins in GTS did more weakly than that in BTS. Ensiling temperature for both tea by-products did not affect the tannin's activity in the rumen.

  13. The Best Extraction Technique for Kaempferol and Quercetin Isolation from Guava Leaves (Psidium guajava)

    NASA Astrophysics Data System (ADS)

    Batubara, I.; Suparto, I. H.; Wulandari, N. S.

    2017-03-01

    Guava leaves contain various compounds that have biological activity such as kaempferol and quercetin as anticancer. Twelve extraction techniques were performed to obtain the best extraction technique to isolate kaempferol and quercetin from the guava leaves. Toxicity of extracts was tested against Artemia salina larvae. All extracts were toxic (LC50 value less than 1000 ppm) except extract of direct soxhletation on guava leaves, and extract of sonication and soxhletation using n-hexane. The extract with high content of total phenols and total flavonoids, low content of tannins, intense color of spot on thin layer chromatogram was selected for high performance liquid chromatography analysis. Direct sonication of guava leaves was chosen as the best extraction technique with kampferol and quercetin content of 0.02% and 2.15%, respectively. In addition to high content of kaempferol and quercetin, direct sonication was chosen due to the shortest extraction time, lesser impurities and high toxicity.

  14. Inhibitory activity of synthesized acetylated Procyanidin B1 analogs against HeLa S3 cells proliferation.

    PubMed

    Okamoto, Syuhei; Ishihara, Sayaka; Okamoto, Taisuke; Doi, Syoma; Harui, Kota; Higashino, Yusuke; Kawasaki, Takashi; Nakajima, Noriyuki; Saito, Akiko

    2014-02-04

    Proanthocyanidins, also known as condensed tannins and/or oligomeric flavonoids, occur in many edible plants and have various interesting biological activities. Previously, we reported a synthetic method for the preparation of various procyanidins in pure form and described their biological activities. Here, we describe the synthesis of procyanidin B1 acetylated analogs and discuss their inhibition activities against HeLa S3 cell proliferation. Surprisingly, the lower-unit acetylated procyanidin B1 strongly inhibited the proliferation of HeLa S3 cells. This molecule showed much stronger inhibitory activity than did epigallocatechin-3-O-gallate (EGCG), green tea polyphenol, and dimeric compounds that included EGCG as a unit. This result suggests that the phenolic hydroxyl groups of the upper-units in flavan-3-ols are important for their inhibitory activity against cancer cell proliferation and that a hydrophobic lower unit dimer enhances this activity.

  15. A Review on Potential Mechanisms of Terminalia chebula in Alzheimer's Disease

    PubMed Central

    Afshari, Amir R.; Sadeghnia, Hamid R.; Mollazadeh, Hamid

    2016-01-01

    The current management of Alzheimer's disease (AD) focuses on acetylcholinesterase inhibitors (AChEIs) and NMDA receptor antagonists, although outcomes are not completely favorable. Hence, novel agents found in herbal plants are gaining attention as possible therapeutic alternatives. The Terminalia chebula (Family: Combretaceae) is a medicinal plant with a wide spectrum of medicinal properties and is reported to contain various biochemicals such as hydrolysable tannins, phenolic compounds, and flavonoids, so it may prove to be a good therapeutic alternative. In this research, we reviewed published scientific literature found in various databases: PubMed, Science Direct, Scopus, Web of Science, Scirus, and Google Scholar, with the keywords: T. chebula, AD, neuroprotection, medicinal plant, antioxidant, ellagitannin, gallotannin, gallic acid, chebulagic acid, and chebulinic acid. This review shows that T. chebula extracts and its constituents have AChEI and antioxidant and anti-inflammatory effects, all of which are currently relevant to the treatment of Alzheimer's disease. PMID:26941792

  16. Inhibition of α-amylase and glucoamylase by tannins extracted from cocoa, pomegranates, cranberries, and grapes.

    PubMed

    Barrett, Ann; Ndou, Tshinanne; Hughey, Christine A; Straut, Christine; Howell, Amy; Dai, Zifei; Kaletunc, Gonul

    2013-02-20

    Proanthocyanidins and ellagitannins, referred to as "tannins", exist in many plant sources. These compounds interact with proteins due to their numerous hydroxyl groups, which are suitable for hydrophobic associations. It was hypothesized that tannins could bind to the digestive enzymes α-amylase and glucoamylase, thereby inhibiting starch hydrolysis. Slowed starch digestion can theoretically increase satiety by modulating glucose "spiking" and depletion that occurs after carbohydrate-rich meals. Tannins were isolated from extracts of pomegranate, cranberry, grape, and cocoa and these isolates tested for effectiveness to inhibit the activity of α-amylase and glucoamylase in vitro. The compositions of the isolates were confirmed by NMR and LC/MS analysis, and tannin-protein interactions were investigated using relevant enzyme assays and differential scanning calorimetry (DSC). The results demonstrated inhibition of each enzyme by each tannin, but with variation in magnitude. In general, larger and more complex tannins, such as those in pomegranate and cranberry, more effectively inhibited the enzymes than did less polymerized cocoa tannins. Interaction of the tannins with the enzymes was confirmed through calorimetric measurements of changes in enzyme thermal stability.

  17. Intransience of functional components and distinctive properties of amla (Indian gooseberry) ice cream during short-term storage.

    PubMed

    Goraya, Rajpreet Kaur; Bajwa, Usha

    2018-05-01

    Inclusion of processed amla have been found to enhance the functional properties and nutritional value of ice cream by augmenting the fiber content, total phenols, tannins, ascorbic acid and antioxidant activity. The present investigation assessed the changes in these constituents, color values (L, a* and b*), melting rate, sensory scores and microbiological quality of ice cream containing amla shreds, pulp, preserve, candy and powder during 60 days' storage at - 18 to - 20 °C. The total solids increased slightly whereas the antioxidant activity, total phenols, ascorbic acid and tannins decreased on storage. The L values declined whereas a* and b* values amplified, the rate of change being highest in candy containing sample followed by preserve. The first drip time of all the samples increased whereas melting rate decreased. The overall acceptability scores declined non significantly. Standard plate count of all the ice cream samples decreased significantly whereas yeast and molds were not detected throughout the storage. The psychrophiles were not spotted up to 30 days, thereafter, a small increase was observed.

  18. The influence of interactions among phenolic compounds on the antiradical activity of chokeberries (Aronia melanocarpa).

    PubMed

    Jakobek, Lidija; Seruga, Marijan; Krivak, Petra

    2011-06-01

    In the present work, interactions between phenolic compounds from chokeberries and their influence on the antiradical activity was studied. Three fractions were isolated from chokeberries containing different classes of phenolic compounds. The first fraction contained a major part of phenolic acids and flavonols, the second anthocyanins, and the third insoluble phenols and proanthocyanidins. The phenolic compound content was determined using high-performance liquid chromatography, and the antiradical activity using the DPPH test. In order to evaluate the effects of interactions between phenolic compounds on the antiradical activity, the antiradical activity of individual phenolic fractions was compared with that obtained by mixing phenolic fractions. Phenolic mixtures showed the decrease in the antiradical activity in comparison with the individual phenolic fractions. These results suggest the existence of complex interactions among phenolic compounds that caused the decrease of the antiradical activity. Interactions among chokeberry phenols promoted a negative synergism.

  19. Comparison of Aquitaine and Rioja Red Wines: Characterization of Their Phenolic Composition and Evolution from 2000 to 2013.

    PubMed

    Quaglieri, Cindy; Prieto-Perea, Noelia; Berrueta, Luis Angel; Gallo, Blanca; Rasines-Perea, Zurine; Jourdes, Michael; Teissedre, Pierre-Louis

    2017-01-24

    Wine chemical analysis was carried out on 194 commercial blended red wines produced by two major wine-growing areas-the Aquitaine (France) and Rioja (Spain) regions-in order to compare the wines of both regions. Anthocyanins and derived pigments, tannins and derivatives were identified and quantified by HPLC-DAD-ESI-MS/MS (high pressure liquid chromatography coupled to diode array detector and mass spectrometry using the electrospray ionization interface). Mean degree of polymerization (mDP) was determined. The influence of the wine-growing region and the predominance of the properties of some grape varieties used are confirmed by the significant differences observed between both regions. Rioja and Bordeaux "generic" (Bordeaux and Bordeaux-Supérieur appellations) red wines showed the highest anthocyanic content and the highest mDP, as these wines are in a majority made from Merlot (Bordeaux "generic") and Tempranillo (Rioja). On the contrary, Bordeaux "specific" regions (Blayais, Médoc, Graves, and Libournais) showed the red wines with the highest total phenolic content and tannin concentration, as the predominant grape variety used is Cabernet Sauvignon. A principal component analysis (PCA) and a hierarchical ascendant classification (HAC) suggesting patterns between the chemical parameters and the distribution of the red wines in three groups were proposed. The comparison of the two wine-growing areas also reveals some similarities between the various grape varieties used. A general effect of a progressive decrease in anthocyanins, anthocyanin-derived pigment and tannins is observed for older wines.

  20. Phytochemical Composition, Antioxidant and Xanthine Oxidase Inhibitory Activities of Amaranthus cruentus L. and Amaranthus hybridus L. Extracts

    PubMed Central

    Nana, Fernand W.; Hilou, Adama; Millogo, Jeanne F.; Nacoulma, Odile G.

    2012-01-01

    This paper describes a preliminary assessment of the nutraceutical value of Amaranthus cruentus (A. cruentus) and Amaranthus hybridus (A. hybridus), two food plant species found in Burkina Faso. Hydroacetonic (HAE), methanolic (ME), and aqueous extracts (AE) from the aerial parts were screened for in vitro antioxidant and xanthine oxidase inhibitory activities. Phytochemical analyses revealed the presence of polyphenols, tannins, flavonoids, steroids, terpenoids, saponins and betalains. Hydroacetonic extracts have shown the most diversity for secondary metabolites. The TLC analyses of flavonoids from HAE extracts showed the presence of rutin and other unidentified compounds. The phenolic compound contents of the HAE, ME and AE extracts were determined using the Folin–Ciocalteu method and ranged from 7.55 to 10.18 mg Gallic acid equivalent GAE/100 mg. Tannins, flavonoids, and flavonols ranged from 2.83 to 10.17 mg tannic acid equivalent (TAE)/100 mg, 0.37 to 7.06 mg quercetin equivalent (QE) /100 mg, and 0.09 to 1.31 mg QE/100 mg, respectively. The betacyanin contents were 40.42 and 6.35 mg Amaranthin Equivalent/100 g aerial parts (dry weight) in A. cruentus and A. hybridus, respectively. Free-radical scavenging activity expressed as IC50 (DPPH method) and iron reducing power (FRAP method) ranged from 56 to 423 µg/mL and from 2.26 to 2.56 mmol AAE/g, respectively. Xanthine oxidase inhibitory activities of extracts of A. cruentus and A. hybridus were 3.18% and 38.22%, respectively. The A. hybridus extract showed the best antioxidant and xanthine oxidase inhibition activities. The results indicated that the phytochemical contents of the two species justify their traditional uses as nutraceutical food plants. PMID:24281664

  1. Soil Types Effect on Grape and Wine Composition in Helan Mountain Area of Ningxia

    PubMed Central

    Wang, Rui; Sun, Quan; Chang, Qingrui

    2015-01-01

    Different soil types can significantly affect the composition of wine grapes and the final wine product. In this study, the effects of soil types on the composition of Cabernet Sauvignon grapes and wine produced in the Helan Mountains were evaluated. Three different representative soil types—aeolian, sierozem and irrigation silting soil were studied. The compositions of grapes and wines were measured, and in addition, the weights of 100-berry samples were determined. The grapes that grown on the aeolian and sierozem soils matured sooner than those grown on the irrigation silting soil. The highest sugar content, total soluble solids content, sugar to acid ratio and anthocyanin content were found in the grapes that grown on the aeolian soil. The wine produced from this soil had improved chroma and tone and higher-quality phenols. The grapes grown on the sierozem soil had the highest total phenol and tannin contents, which affected the wine composition. The grapes grown on the irrigation silting soil had higher acidities, but the remaining indices were lower. In addition, the grapes grown on the aeolian soil resulted in wines with better chroma and aroma. The sierozem soil was beneficial for the formation of wine tannins and phenols and significantly affected the wine composition. The quality of the grapes from the irrigation silting soil was relatively low, resulting in lower-quality wine. PMID:25706126

  2. Soil types effect on grape and wine composition in Helan Mountain area of Ningxia.

    PubMed

    Wang, Rui; Sun, Quan; Chang, Qingrui

    2015-01-01

    Different soil types can significantly affect the composition of wine grapes and the final wine product. In this study, the effects of soil types on the composition of Cabernet Sauvignon grapes and wine produced in the Helan Mountains were evaluated. Three different representative soil types--aeolian, sierozem and irrigation silting soil were studied. The compositions of grapes and wines were measured, and in addition, the weights of 100-berry samples were determined. The grapes that grown on the aeolian and sierozem soils matured sooner than those grown on the irrigation silting soil. The highest sugar content, total soluble solids content, sugar to acid ratio and anthocyanin content were found in the grapes that grown on the aeolian soil. The wine produced from this soil had improved chroma and tone and higher-quality phenols. The grapes grown on the sierozem soil had the highest total phenol and tannin contents, which affected the wine composition. The grapes grown on the irrigation silting soil had higher acidities, but the remaining indices were lower. In addition, the grapes grown on the aeolian soil resulted in wines with better chroma and aroma. The sierozem soil was beneficial for the formation of wine tannins and phenols and significantly affected the wine composition. The quality of the grapes from the irrigation silting soil was relatively low, resulting in lower-quality wine.

  3. Intestinal α-glucosidase and some pancreatic enzymes inhibitory effect of hydroalcholic extract of Moringa stenopetala leaves.

    PubMed

    Toma, Alemayehu; Makonnen, Eyasu; Mekonnen, Yelamtsehay; Debella, Asfaw; Addisakwattana, Sirichai

    2014-06-03

    Moringa stenopetala has been used in traditional health systems to treat diabetes mellitus. One of the successful methods to prevent of the onset of diabetes is to control postprandial hyperglycemia by the inhibition of α-glucosidase and pancreatic α-amylase activities, resulting in the aggressive delay of the carbohydrate digestion of absorbable monosaccharides. The aim of the present study is to investigate the effect of the extract of the leaves of Moringa stenopetala on α-glucosidase, pancreatic α-amylase, pancreatic lipase, and pancreatic cholesterol esterase activities, and, therefore find out the relevance of the plant in controlling blood sugar and lipid levels. The dried leaves of Moringa stenopetala were extracted with hydroalcoholic solvent and dried using rotary vapor under reduced pressure. The dried extracts were determined for the total phenolic compounds, flavonoid content and condensed tannins content by using Folin-Ciocateu's reagent, AlCl3 and vanillin assay, respectively. The dried extract of plant-based food was further quantified with respect to intestinal α-glucosidase (maltase and sucrase) inhibition and pancreatic α-amylase inhibition by glucose oxidase method and dinitrosalicylic (DNS) reagent, respectively. The phytochemical analysis indicated that flavonoid, total phenolic, and condensed tannin contents in the extract were 71.73 ± 2.48 mg quercetin equivalent/g of crude extract, 79.81 ± 2.85 mg of gallic acid equivalent/g of crude extract, 8.82 ± 0.77 mg catechin equivalent/g of crude extract, respectively. The extract inhibited intestinal sucrase more than intestinal maltase with IC50 value of 1.47 ± 0.19 mg/ml. It also slightly inhibited pancreatic α-amylase, pancreatic lipase and pancreatic cholesterol esterase. The result demonstrated the beneficial biochemical effects of Moringa stenopetala by inhibiting intestinal α-glucosidase, pancreatic cholesterol esterase and pancreatic lipase activities. A daily supplement intake of the leaves of Moringa stenopetala may help in reducing hyperglycemia and hyperlipidemia.

  4. Investigation of chitosan-phenolics systems as wood adhesives.

    PubMed

    Peshkova, Svetlana; Li, Kaichang

    2003-04-24

    Chitosan-phenolics systems were investigated as wood adhesives. Adhesion between two pieces of wood veneer developed only when all three components-chitosan, a phenolic compound, and laccase-were present. For the adhesive systems containing a phenolic compound with only one phenolic hydroxyl group, adhesive strengths were highly dependent upon the chemical structures of phenolic compounds used in the system and the relative oxidation rates of the phenolic compounds by laccase. The adhesive strengths were also directly related to the viscosity of the adhesive systems. However, for the adhesive systems containing a phenolic compound with two or three phenolic hydroxyl groups adjacent to each other, no correlations among adhesive strengths, relative oxidation rates of the phenolic compounds by laccase, and viscosities were observed. The adhesion mechanisms of these chitosan-phenolics systems were proposed to be similar to those of mussel adhesive proteins.

  5. Stability and oxidation products of hydrolysable tannins in basic conditions detected by HPLC/DAD-ESI/QTOF/MS.

    PubMed

    Tuominen, Anu; Sundman, Terhi

    2013-01-01

    Hydrolysable tannins occur in plants that are used for food or medicine by humans or herbivores. Basic conditions can alter the structures of tannins, that is, the oxidation of phenolic groups can lead to the formation of toxic quinones. Previously, these labile quinones and other oxidation products have been studied with colorimetric or electron paramagnetic resonance methods, which give limited information about products. To study the stability and oxidation products of hydrolysable tannins in basic conditions using HPLC with a diode-array detector (DAD) combined with electrospray ionisation (ESI) and quadrupole time-of-flight (QTOF) MS. Three galloyl glucoses, four galloyl derivatives with different polyols and three ellagitannins were purified from plants. The incubation reactions of tannins were monitored by HPLC/DAD at five pH values and in reduced oxygen conditions. Reaction products were identified based on UV spectra and mass spectral fragmentation obtained with the high-resolution HPLC/DAD-ESI/QTOF/MS. The use of a base-resistant HPLC column enabled injections without the sample pre-treatment and thus detection of short-lived products. Hydrolysable tannins were unstable in basic conditions and half-lives were mostly less than 10 min at pH 10. Degradation rates were faster at pH 11 but slower at milder pH. The HPLC analyses revealed that various products were formed and identified to be the result of hydrolysis, deprotonation and oxidation. Interestingly, the main hydrolysis product was ellagic acid; it was also formed from galloyl glucoses that do not contain oxidatively coupled galloyl groups in their initial structures. HPLD/DAD-ESI/QTOF/MS was an efficient method for the identification of polyphenol oxidation products and showed how different pH conditions determine the fate of hydrolysable tannins. Copyright © 2013 John Wiley & Sons, Ltd.

  6. Hydrolyzable tannins with the hexahydroxydiphenoyl unit and the m-depsidic link: HPLC-DAD-MS identification and model synthesis.

    PubMed

    Arapitsas, Panagiotis; Menichetti, Stefano; Vincieri, Franco F; Romani, Annalisa

    2007-01-10

    This study was designed to develop efficient analytical tools for the difficult HPLC-DAD-MS identification of hydrolyzable tannins in natural tissue extracts. Throughout the study of the spectroscopic characteristics of properly synthesized stereodefined standards, it was observed that the UV-vis spectra of compounds with the m-depsidic link showed a characteristic shoulder at 300 nm, consistent with the simple glucogalloyl esters, whereas compounds with the hexahydroxydiphenoyl (HHDP) unit gave a diagnostic fragmentation pattern, caused by a spontaneous lactonization in the mass spectrometer. These observations were confirmed by HPLC-DAD-MS analyses of tannic acid and raspberry extracts, which are rich in hydrolyzable tannins with the m-depsidic link and the HHDP unit, respectively.

  7. Preparation and CO 2 adsorption properties of soft-templated mesoporous carbons derived from chestnut tannin precursors

    DOE PAGES

    Nelson, Kimberly M.; Mahurin, Shannon Mark; Mayes, Richard T.; ...

    2015-10-09

    This paper presents a soft templating approach for mesoporous carbon using the polyphenolic heterogeneous biomass, chestnut tannin, as the carbon precursor. By varying synthesis parameters such as tannin:surfactant ratio, cross-linker, reaction time and acid catalyst, the pore structure could be controllably modulated from lamellar to a more ordered hexagonal array. Carbonization at 600 °C under nitrogen produced a bimodal micro-mesoporous carbonaceous material exhibiting enhanced hydrogen bonding with the soft template, similar to that shown by soft-templating of phenolic-formaldehyde resins, allowing for a tailorable pore size. By utilizing the acidic nature of chestnut tannin (i.e. gallic and ellagic acid), hexagonal-type mesostructuresmore » were formed without the use of an acid catalyst. The porous carbon materials were activated with ammonia to increase the available surface area and incorporate nitrogen-containing functionality which led to a maximum CO 2 adsorption capacity at 1 bar of 3.44 mmol/g and 2.27 mmol/g at 0 °C and 25 °C, respectively. The ammonia-activated carbon exhibited multiple peaks in the adsorption energy distribution which indicates heterogeneity of adsorption sites for CO 2 capture.« less

  8. A modified method for determining tannin-protein precipitation capacity using accelerated solvent extraction (ASE) and microplate gel filtration.

    PubMed

    McArt, Scott H; Spalinger, Donald E; Kennish, John M; Collins, William B

    2006-06-01

    The protein precipitation assay used by Robbins et al., (1987) Ecology 68:98-107 has been shown to predict successfully the reduction in protein availability to some ruminants due to tannins. The procedure, however, is expensive and laborious, which limits its utility, especially for quantitative ecological or nutritional applications where large numbers of assays may be required. We have modified the method to decrease its cost and increase laboratory efficiency by: (1) automating the extraction by using Accelerated Solvent Extraction (ASE); and (2) by scaling and automating the precipitation reaction, chromatography, and spectrometry with microplate gel filtration and an automated UV-VIS microplate spectrometer. ASE extraction is shown to be as effective at extracting tannins as the hot methanol technique. Additionally, the microplate assay is sensitive and precise. We show that the results from the new technique correspond in a nearly 1:1 relationship to the results of the previous technique. Hence, this method could reliably replace the older method with no loss in relevance to herbivore protein digestion. Moreover, the ASE extraction technique should be applicable to other tannin-protein precipitation assays and possibly other phenolic assays.

  9. Determination of some selected secondary metabolites and their invitro antioxidant activity in commercially available Ethiopian tea (Camellia sinensis).

    PubMed

    Bizuayehu, Dereje; Atlabachew, Minaleshewa; Ali, Mirtachew Tihar

    2016-01-01

    Eight brands of tea (Camellia sinensis),which are cultivated and commercially available in Ethiopian market, were analyzed for estimation of their total secondary metabolites (polyphenols, flavonoids and tannins) content and free radical scavenging activity which is expressed on dry weight basis. In this present study, the total polyphenols, tannin and flavonoid contents were studied spectrophotometrically using Folin-Dennis, Folin-Dennis/protein precipitation and aluminium chloride methods respectively. The free radical scavenging activity was determined by using DPPH radical assay. Results of the analysis revealed that the total polyphenol content varied from 21.3 ± 0.24 to 31.6 ± 0.31 mg of gallic acid equivalent/g of dry matter. Total flavonoids content in the tea samples varied from 8.17 ± 0.68 to 23.2 ± 0.68 mg of catechin equivalent/g of dry weight and tannin content varied from 5.64 ± 0.39 7.45 ± 0.27 mg tannic acid equivalent/g of dry weight basis. The free radical scavenging activity among the tea brand samples ranged from 28.8 ± 1.86 to 80.0 ± 0.63 mg ascorbic acid equivalent/g and the half maximal inhibitory concentration (IC50%) values varied from 7.3 ± 1.35 to 64.0 ± 2.81 µg/mL of extract. The correlation between the antioxidant activity with total polyphenol content (R = 0.91325), with flavonoids (R = 0.80658) and with tannin (R = 0.73125) was calculated and maximum correlation value was found between polyphenol content and the free radical scavenging activity of the tea samples. The results in this study also revealed that green tea had the higher polyphenolic content and found to have the most promising antioxidant activity. This study further confirmed that Ethiopia tea is reach in phenolic compounds as compared to some overseas tea cultivars/varieties.

  10. Direct scavenging of nitric oxide and superoxide by green tea.

    PubMed

    Nakagawa, T; Yokozawa, T

    2002-12-01

    In the present study, we investigated the free radical scavenging effects of green tea extract and green tea tannin mixture and its components using a nitric oxide (NO) and superoxide (O(2)(-)) generating system in vitro. Green tea extract showed direct scavenging activity against NO and O(2)(-) and green tea tannin mixture, at the same concentration, showed high scavenging activity. Comparison of the activities of seven pure compounds isolated from green tea tannin mixture showed that (-)-epigallocatechin 3-O-gallate (EGCg), (-)-gallocatechin 3-O-gallate (GCg) and (-)-epicatechin 3-O-gallate (ECg) had higher scavenging activities than (-)-epigallocatechin (EGC), (+)-gallocatechin (GC), (-)-epicatechin (EC) and (+)-catechin (C), showing the importance of the structure of flavan-3-ol linked to gallic acid for this activity. Among the gallate-free tannins, EGC and GC were more effective O(2)(-) scavengers than EC and C, indicating the O-trihydroxy structure in the B ring is an important determinant of such activity. However, this structure did not affect the NO scavenging activity. These findings confirm that green tea tannin has excellent antioxidant properties, which may be involved in the beneficial effect of this compound.

  11. The Effects of Pre-Fermentative Addition of Oenological Tannins on Wine Components and Sensorial Qualities of Red Wine.

    PubMed

    Chen, Kai; Escott, Carlos; Loira, Iris; Del Fresno, Juan Manuel; Morata, Antonio; Tesfaye, Wendu; Calderon, Fernando; Benito, Santiago; Suárez-Lepe, Jose Antonio

    2016-10-31

    Today in the wine industry, oenological tannins are widely used to improve wine quality and prevent oxidation in wine aging. With the development of tannin products, new oenological tannins are developed with many specific functions, such as modifying antioxidant effect, colour stabilization and aroma modifications. The aim of this work is to investigate effects of pre-fermentative addition of oenological tannins on wine colour, anthocyanins, volatile compounds and sensorial properties. In this case, Syrah juice was extracted with classic flash thermovinification from fresh must in order to release more colour and tannins. Three types of oenological tannins, which are, respectively, derived from grape skin, seed ( Vitis vinifera ) and French oak ( Quercus robur and Querrus petraea ), were selected to carry out the experiments with seven treatments. Results indicated that tannin treatments significantly improved wine aroma complexity and sensorial properties. However, the concentration of some stable pigments such as Vitisin A, Vitisin A-Ac and Vitisin B was negatively affected by tannin additions. Nevertheless, by means of cluster analysis and principal component analysis, it was observed that higher alcohols were significantly promoted by grape seed tannin while most anthocyanins can be improved by addition of grape tannins. In conclusion, low amount of oenological tannin derived from grape seed is a promising method to be applied especially for young red wine making.

  12. Activity, purification, and analysis of condensed tannins

    USDA-ARS?s Scientific Manuscript database

    As a class of plant polyphenolic compounds contained in some forages (i.e., sanfoin, big trefoil, birdfoot trefoil), condensed tannins (CTs), also referred to as proanthocyanidins (PAs), exhibit a variety of biological effects on ruminants and on the dairy farm nitrogen cycle. Interest in CTs stems ...

  13. BIOLOGICALLY ACTIVE COMPOUNDS IN SOME FLOWERING PLANTS.

    DTIC Science & Technology

    and were analyzed chemically for the presence or absence of alkaloids, saponins, tannins , and flavonoids. Twenty-five species of plants, representing...19 families and 25 genera, were used. Pharmacological activity, mostly depressant, was recorded for 10 of the 25 plants. Tannins were present in 22

  14. Anti-inflammatory Hydrolyzable Tannins from Myricaria bracteata.

    PubMed

    Liu, Jia-Bao; Ding, Ya-Si; Zhang, Ying; Chen, Jia-Bao; Cui, Bao-Song; Bai, Jin-Ye; Lin, Ming-Bao; Hou, Qi; Zhang, Pei-Cheng; Li, Shuai

    2015-05-22

    Twelve hydrolyzable tannins were obtained from the twigs of Myricaria bracteata, including two new hellinoyl-type dimers, bracteatinins D1 (1) and D2 (2); a new hellinoyl-type trimer, bracteatinin T1 (3); two known monomers, nilotinin M4 (4) and 1,3-di-O-galloyl-4,6-O-(aS)-hexahydroxydiphenoyl-β-d-glucose (5); six known dimers, tamarixinin A (6), nilotinin D8 (7), hirtellins A (10), B (9), and E (8), and isohirtellin C (11); and a known trimer, hirtellin T3 (12). The structures of the tannins were elucidated by spectroscopic data analysis and comparisons to known tannins. All compounds were evaluated as free radical scavengers using 1,1-diphenyl-2-picrylhydrazyl and hydroxy radicals and compared to the activity of BHT and Trolox. Compound 6 showed a significant anti-inflammatory effect on croton oil-induced ear edema in mice (200 mg/kg, inhibition rate 69.8%) and on collagen-induced arthritis in DBA/1 mice (20 mg/kg, inhibition rate 46.0% at day 57).

  15. Distribution and potential ecological risk of 50 phenolic compounds in three rivers in Tianjin, China.

    PubMed

    Zhong, Wenjue; Wang, Donghong; Wang, Zijian

    2018-04-01

    Phenolic compounds widely exist in the surface water of many countries; however, few studies have simultaneously analyzed and evaluated broad-spectrum phenolic compounds in various components of the water environment. Therefore this study analyzed the distribution and potential ecological risk of 50 phenolic compounds in the surface water, sediment and suspended particulate matter of three important rivers in Tianjin, the main heavy industry city with high pollution in China. The qualitative results show that phenolic pollution existed extensively in the three rivers and the kinds of phenolic compounds in the water were relatively higher than in both sediment and suspended particulate matter. The quantitative results show that the phenolic pollution in the wet-season samples was serious than dry-season samples. Meanwhile, total concentrations of phenolic compounds in three components from the Dagu Drainage River (DDR) were all much higher than those in the Beitang Drainage River (BDR) and Yongdingxin River (YDXR). The highest total concentrations of phenolic compounds in three components all appeared in wet-season samples in DDR, and the highest total concentration was 1354 μg/L in surface water, 719 μg/kg dw in suspended particulate matter and 2937 μg/kg dw in sediment, respectively. The ecological risk of phenolic compounds in surface water was evaluated using the quotient method, and phenolic compounds with risk quotient (RQ) > 1 (RQ > 0.3 for YDXR) were identified as priority pollutants. Five kinds of phenolic compounds were identified as priority phenolic compounds in BDR, and the order of risk was 2-cresol > 2,4-xylenol > 2-sec-butylphenol > 2-naphthol > 3-cresol. Six kinds of phenolic compounds were identified as priority phenolic compounds in DDR, and the order of risk was 2-naphthol > p-chloro-m-xylenol > 4-cresol > 3-cresol > 2,4-xylenol > 2,3,6-Trimethylphenol. In YDXR, only phenol, 2-naphthol and 2,4-xylenol were identified as priority phenolic compounds. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Interactions between grape skin cell wall material and commercial enological tannins. Practical implications.

    PubMed

    Bautista-Ortín, Ana Belén; Cano-Lechuga, Mario; Ruiz-García, Yolanda; Gómez-Plaza, Encarna

    2014-01-01

    Commercial enological tannins were used to investigate the role that cell wall material plays in proanthocyanidin adsorption. Insoluble cell wall material, prepared from the skin of Vitis vinifera L. cv. Monastrell berries, was combined with solutions containing six different commercial enological tannins (proanthocyanidin-type tannins). Analysis of the proanthocyanidins in the solution, after fining with cell wall material, using phloroglucinolysis and size exclusion chromatography, provided quantitative and qualitative information on the non-adsorbed compounds. Cell wall material showed strong affinity for the proanthocyanidins, one of the commercial tannins being bound up to 61% in the experiment. Comparison of the molecular mass distribution of the commercial enological tannins in solution, before and after fining, suggested that cell walls affinity for proanthocyanidins was more related with the proanthocyanidin molecular mass than with their percentage of galloylation. These interactions may have some enological implications, especially as regards the time of commercial tannins addition to the must/wine. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. Condensed tannin-sulfonate derivatives in cold-setting wood-laminating adhesives

    Treesearch

    Roland E. Kreibich; Richard W. Hemingway

    1987-01-01

    Extraction of southern pine bark with 4.0 percent sodium sulfite and 0.4-percent sodium carbonate(based on ovendry bark weight) gives epicatechin-(4β)-sulfonate and oligomeric procyanidin-4-sulfonatee that show great promise to replace about 50 percent of the phenol-resorcinol-formaldehyde resin in coldsetting wood-laminating adhesives. Bonds in Douglas-fir...

  18. Sequencing procyanidin oligomers by fast atom bombardment mass spectrometry

    Treesearch

    Joseph J. Karchesy; Richard W. Hemingway; L. Yeap Foo; Elisabeth Barofsky; Douglas F. Barofsky

    1986-01-01

    Polymeric procyanidins (condensed tannins) are present in a wide distribution of plants, occurring in particularly high concentrations in some barks, leaves, and fruits (1). These phenolic polymers complex with proteins and therefore inhibit enzyme activity (2), are important contributors to the flavor of foods (3, 4), and influence the nutritional value of plants (5,6...

  19. Preliminary Phytochemical Studies.

    PubMed

    2016-01-01

    Plants are the natural producers of medicinal agents like alkaloids, flavonoids, tannins, and phenolics. These phytocompounds alone or in combination act as a therapeutic agent in various disease complications. Various chemical reagents are used to determine the major phytochemicals present in plant parts. Protocols involved in screening of alkaloids, carbohydrates, glycosides, saponins, phytosterols, fixed oils, and fats are shown in this chapter.

  20. Condensed tannins: Desulfonation of hydrox-benzylsufonic acids related to proanthocyanidin derivatives.

    Treesearch

    Gerald W. McGraw; Peter E. Laks; Richard W. Hemingway

    1988-01-01

    Studies on the desulfonation of 2,4,6-trihydroxybenzylsufonic acid and sodium epicatechin-(4β)-sulfonate showed that suflonates to α a phloroglucinol ring are good leaving groups at ambient temperature and pH greater than 8.0. In contrast, hydroxybenzylsufonic acids with resorcinol or phenol hydroxl functionality resist desulfonation even at pH 12 and...

  1. Influence of Various Phenolic Compounds on Properties of Gelatin Film Prepared from Horse Mackerel Trachurus japonicus Scales.

    PubMed

    Le, Thuy; Maki, Hiroki; Okazaki, Emiko; Osako, Kazufumi; Takahashi, Kigen

    2018-06-15

    Influence of various phenolic compounds on physical properties and antioxidant activity of gelatin film from horse mackerel Trachurus japonicus scales was investigated. Tensile strength (TS) of the film was enhanced whereas elongation at break was declined by adding 1% to 5% phenolic compounds. Rutin was the most effective to improve the TS compared to the other tested phenolic compounds including ferulic acid, caffeic acid, gallic acid, and catechin. Gelatin films with the phenolic compounds showed the excellent UV barrier properties. FTIR spectra exhibited that wavenumber of amide-A band of films decreased with formation of hydrogen bonding between amino groups of gelatin and hydroxyl groups of the phenolic compounds. Gelatin film incorporated with rutin which has the largest number of hydroxyl groups among the tested compounds demonstrated the lowest wavenumber for the amide-A peak. It is indicated that hydroxyl groups contained in the phenolic compounds contribute to formation of hydrogen bonds involved in improvement of the mechanical properties of the films. The incorporation of the phenolic compounds with gelatin films also led to the increasing of total phenolic contents and DPPH radical scavenging activities. Thus, it is concluded that phenolic compounds can promote the quality of gelatin film. Properties of gelatin film derived from horse mackerel scales can be improved by adding of phenolic compounds. Phenolic compounds containing a large number of hydroxyl groups should be selected to enhance physical properties of the gelatin film. A biodegradable film prepared from horse mackerel gelatin incorporated with phenolic compounds, which has good physical properties and antioxidant properties, can solve environmental problems caused by synthetic plastic materials. © 2018 Institute of Food Technologists®.

  2. Pre-fermentation addition of grape tannin increases the varietal thiols content in wine.

    PubMed

    Larcher, Roberto; Tonidandel, Loris; Román Villegas, Tomás; Nardin, Tiziana; Fedrizzi, Bruno; Nicolini, Giorgio

    2015-01-01

    The recent finding that grape tannin may contain significant amount of S-glutathionylated (GSH-3MH) and S-cysteinylated (Cys-3MH) precursors of the varietal thiols 3-mercapto-1-hexanol and 3-mercaptohexyl acetate, characteristic of Sauvignon blanc wines, offers new opportunities for enhancing the tropical aroma in fermented beverages. In this study this new hypothesis was investigated: Müller Thurgau (17 samples) and Sauvignon blanc (15 samples) grapes were fermented with and without addition of a selected grape tannin. As expected, the tannin-added juices were higher in precursors, and they produced wines with increased free thiols. Preliminary informal sensory tests confirmed that in particular the Sauvignon wines produced with the tannin addition were often richer with increased "fruity/green" notes than the corresponding reference wines. This outcome confirms that grape tannin addition prior to fermentation can fortify the level of these compounds. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Antioxidant activities of ethanol extracts and fractions of Crescentia cujete leaves and stem bark and the involvement of phenolic compounds

    PubMed Central

    2014-01-01

    Background Antioxidant compounds like phenols and flavonoids scavenge free radicals and thus inhibit the oxidative mechanisms that lead to control degenerative and other diseases. The aim of this study was to investigate the antioxidant activity in vitro, total phenolic and flavonoid contents in ethanol extracts and fractions of Crescentia cujete leaves and stem bark. Methods Crescentia cujete leaves and bark crude ethanol extract (CEE) and their partitionates petroleum ether (PEF), chloroform (CHF), ethyl acetate (EAF) and aqueous (AQF) were firstly prepared. Different established testing methods, such as 1, 1-diphenyl-2-picryl hydrazyl (DPPH) radical, ferric reducing power (FRP), and total antioxidant capacity (TAC) assays were used to detect the antioxidant activity. Further, the total yield, total phenolic (TPC) and total flavonoid contents (TFC) of CEE and all the fractions were determined. Ethanol extracts of both leaves and stem bark were also subjected to preliminary phytochemical screening to detect the presence of secondary metabolites, using standard phytochemical methods (Thin layer chromatography and spray reagents). Results Phytochemical screening of crude ethanol extract of both leaves and stem bark revealed the presence of steroids, flavonoids, saponins, tannins, glycosides and terpenoids. All the fractions and CEE of leaves and bark exhibited antioxidant activities, however, EAF of leaves showing the highest antioxidant activity based on the results of DPPH, FRP and TAC assay tests. The above fraction has shown the significant DPPH scavenging activity (IC50 = 8.78 μg/ml) when compared with standard ascorbic acid (IC50 =7.68 μg/ml). The TAC and FRP activities increased with increasing crude extract/fractions content. The TPC (371.23 ± 15.77 mg GAE/g extract) and TFC (144.64 ± 5.82 mg QE/g extract) of EAF of leaves were found significantly higher as compared to other solvent fractions for both leaves and bark. TPC were highly correlated with the antioxidant activity (R2 = 0.9268 and 0.8515 in DPPH test for leaves and bark, respectively). Conclusion The results of the study show that leaves of C. cujete possesses significant free radical scavenging properties compared with stem bark and a clear correlation exists between the antioxidant activity and phenolic content. PMID:24495381

  4. Evaluation of Antioxidant Properties, Phenolic Compounds, Anthelmintic, and Cytotoxic Activities of Various Extracts Isolated from Nepeta cadmea: An Endemic Plant for Turkey.

    PubMed

    Kaska, Arzu; Deniz, Nahide; Çiçek, Mehmet; Mammadov, Ramazan

    2018-05-10

    Nepeta cadmea Boiss. is a species endemic to Turkey that belongs to the Nepeta genus. Several species of this genus are used in folk medicine. This study was designed to investigate the phenolic compounds, antioxidant, anthelmintic, and cytotoxic activities of various extracts (ethanol, methanol, acetone, and water) of N. cadmea. The antioxidant activities of these extracts were analyzed using scavenging methods (DPPH, ABTS, and H 2 O 2 scavenging activity), the β-carotene/linoleic acid test system, the phosphomolybdenum method, and metal chelating activity. Among the 4 different extracts of N. cadmea that were evaluated, the water extract showed the highest amount of radical scavenging (DPPH, 25.54 μg/mL and ABTS, 14.51 μg/mL) and antioxidant activities (β-carotene, 86.91%). In the metal chelating and H 2 O 2 scavenging activities, the acetone extract was statistically different from the other extracts. For the phosphomolybdenum method, the antioxidant capacity of the extracts was in the range of 8.15 to 80.40 μg/mg. The phenolic content of the ethanol extract was examined using HPLC and determined some phenolics: epicatechin, chlorogenic, and caffeic acids. With regard to the anthelmintic properties, dose-dependent activity was observed in each of the extracts of N. cadmea. All the extracts exhibited high cytotoxic activities. The results will provide additional information for further studies on the biological activities of N. cadmea, while also helping us to understand the importance of this species. Furthermore, based on the results obtained, N. cadmea may be considered as a potentially useful supplement for the human diet, as well as a natural antioxidant for medicinal applications. The plants of the Nepeta genus have been extensively used as traditional herbal medicines. Nepeta cadmea Boiss., one of the species belonging to the Nepeta genus, is a species endemic to Turkey. In our study, we demonstrated the antioxidant capacities, total phenolic, flavonoid, tannin content, anthelmintic, and cytotoxic activities of various extracts of Nepeta cadmea. The present study could well supply valuable data for future investigations and further information on the potential use of this endemic plant for humans, in both dietary and pharmacological applications. © 2018 Institute of Food Technologists®.

  5. Antioxidants and sensory properties of the infusions of wild passiflora from Brazilian savannah: potential as functional beverages.

    PubMed

    Pineli, Lívia de L de O; Rodrigues, Juliana da S Q; Costa, Ana M; de Lima, Herbert C; Chiarello, Marileusa D; Melo, Lauro

    2015-05-01

    The study of biodiversity for species recovery and sustainable use has encouraged research with plants from Brazilian savannah. We aimed to characterize chemical and sensory properties of infusions of passifloras, due to their potential as functional beverages. Infusions and hydroalcoholic extracts of four species of wild passifloras, three varieties of Passiflora edulis and a commercial passiflora tea were evaluated for total phenolics (TPs), total flavonoids (TFs), condensed tannins (CTs), and antioxidant activity (DPPH and FRAP). Free-choice Profile and acceptance, compared with green tea, were performed for sensory characterization. In general, infusions had higher levels of TPs and CTs than hydroalcoholic extracts, which in turn had higher levels of TFs. Infusion of P. nitida showed higher amounts of TPs and antioxidant activity. Acceptance of passiflora infusions was similar or higher than that of green tea, except for P. alata. P. setacea presented a sensory profile similar to other commercial teas and higher acceptance by a group of consumers. Passiflora infusions showed different degrees of suitability as acceptable functional beverage. Identification of phenolics and other bitter compounds is needed to understand the intense bitterness of P. alata, as it did not present the highest contents of TPs, CTs and TFs. © 2014 Society of Chemical Industry.

  6. Antioxidant and antiapoptotic activities of Calotropis procera latex on Catfish (Clarias gariepinus) exposed to toxic 4-nonylphenol.

    PubMed

    Sayed, Alaa El-Din H; Mohamed, Nadia H; Ismail, Mady A; Abdel-Mageed, Wael M; Shoreit, Ahmed A M

    2016-06-01

    Calotropis procera L. is known as medicinal plant. The Phytochemical analyzes of its latex revealed that it possessed antioxidants, namely terpenes, phenolic compounds and cardenolides, flavonoids and saponins, while tannins, alkaloids and resin were absent in moderate to high concentration. In the present study, the role of latex of Calotropis procera as antioxidant and antiapoptotic was reported. To carry out this aim, fishes were exposed to 100 µg l(-1) 4-nonylphenol as chemical pollutant. The enzymes, superoxidase dismutase, catalase, acetlycholinstrase (AchE), glutathione s-transferase, cortisol, G6PDH) and apoptotic cells increased significantly (p<0.05) accompanied by irregular disturbance of (Na(+), K(+)) ions in the presence of 4-nonylphenol. On the other hand, these enzymes, ions, and apoptotic cells decreased normally and significantly (p<0.05) in the presence of latex. Total phenol content, total capacity antioxidant, reducing power decrease significantly (p<0.05) in the presence of 4-nonylphenol and increase normally in the presence of latex. Latex was used for the first time to protect catfish after 4-nonylphenol exposure. Our study confirms that crude latex of Calotropis procera possessed antioxidant and antiapoptotic activities against the toxicity of 4-Nonylphenol. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Phytochemical and biological evaluation of some Sargassum species from Persian Gulf

    PubMed Central

    Mehdinezhad, Negin; Ghannadi, Alireza; Yegdaneh, Afsaneh

    2016-01-01

    Sea algae are widely consumed in the world. There are several seaweeds including brown algae which are authorized for human consumption. These plants contain important phytochemical constituents and have various potential biological activities. The present study investigated the presence of phytochemical constituents and total phenolic quantity of the seaweeds Sargassum angustifolium, Sargassum oligocystum and Sargassum boveanum. Cytotoxicity of seaweeds was tested against HT-29, HeLa and MCF-7 cell lines. Antioxidant potential of these 3 Sargassum species was also analyzed. Cytotoxicity was characterized by IC50 of human cancer cell lines using sulforhodamine assay. Antioxidant activities were evaluated using 2,2-diphenyl-1- picrylhydrazil. The analysis revealed that tannins, saponins, sterols and triterpenes were the most abundant compounds in these Sargassum species while cyanogenic and cardiac glycosides were the least ones. Sargassum angustifolium had the highest content of total phenolics (0.061 mg/g) and showed the highest antioxidant activity (IC50 = 0.231). Cytotoxic results showed that all species could inhibit cell growth effectively, especially MCF-7 cell line (IC50 = 67.3, 56.9, 60.4 for S. oligocystum, S. angustifolium and S. boveanum respectively). Considerable phytochemicals and moderate cytotoxic activity of S. angustifolium, S. oligocystum and S. boveanum make them appropriate candidate for further studies and identification of their bioactive principles. PMID:27499794

  8. Phytochemical and biological evaluation of some Sargassum species from Persian Gulf.

    PubMed

    Mehdinezhad, Negin; Ghannadi, Alireza; Yegdaneh, Afsaneh

    2016-01-01

    Sea algae are widely consumed in the world. There are several seaweeds including brown algae which are authorized for human consumption. These plants contain important phytochemical constituents and have various potential biological activities. The present study investigated the presence of phytochemical constituents and total phenolic quantity of the seaweeds Sargassum angustifolium, Sargassum oligocystum and Sargassum boveanum. Cytotoxicity of seaweeds was tested against HT-29, HeLa and MCF-7 cell lines. Antioxidant potential of these 3 Sargassum species was also analyzed. Cytotoxicity was characterized by IC50 of human cancer cell lines using sulforhodamine assay. Antioxidant activities were evaluated using 2,2-diphenyl-1- picrylhydrazil. The analysis revealed that tannins, saponins, sterols and triterpenes were the most abundant compounds in these Sargassum species while cyanogenic and cardiac glycosides were the least ones. Sargassum angustifolium had the highest content of total phenolics (0.061 mg/g) and showed the highest antioxidant activity (IC50 = 0.231). Cytotoxic results showed that all species could inhibit cell growth effectively, especially MCF-7 cell line (IC50 = 67.3, 56.9, 60.4 for S. oligocystum, S. angustifolium and S. boveanum respectively). Considerable phytochemicals and moderate cytotoxic activity of S. angustifolium, S. oligocystum and S. boveanum make them appropriate candidate for further studies and identification of their bioactive principles.

  9. Pulse seed germination improves antioxidative activity of phenolic compounds in stripped soybean oil-in-water emulsions.

    PubMed

    Xu, Minwei; Jin, Zhao; Peckrul, Allen; Chen, Bingcan

    2018-06-01

    The purpose of this study was to investigate antioxidative activity of phenolic compounds extracted from germinated pulse seed including chickpeas, lentils and yellow peas. Phenolic compounds were extracted at different germination time and total phenolic content was examined by Folin Ciocalteu's reaction. Antioxidative activity of extracts was characterized by in vitro assay including 2, 2-diphenyl-1-picrylhydrazyl radical scavenging capacity (DPPH), oxygen radical absorbance capacity (ORAC), iron-binding assay, and in stripped soybean oil-in-water emulsions. The results suggested that germination time is critical for phenolic compounds production. The form variation of phenolic compounds influenced the antioxidative activity of phenolic compounds both in vitro assay and in emulsion systems. Soluble bound phenolic compounds showed higher antioxidative ability in emulsion system with the order of chickpea > yellow pea > lentil. On the basis of these results, soluble bound phenolic compounds may be considered as a promising natural antioxidant to prevent lipid oxidation in foods. Copyright © 2018 Elsevier Ltd. All rights reserved.

  10. Effect of tannins on growth performance and intestinal ecosystem in weaned piglets.

    PubMed

    Biagia, Giacomo; Cipollini, Irene; Paulicks, Brigitte R; Roth, Franz X

    2010-04-01

    Tannins are natural polyphenolic compounds that can reduce digestibility of dietary protein but also display antibacterial effects. The present study investigated, in vitro and in vivo, the effect of different levels of tannins (using a chestnut wood extract containing 75% tannins) on growth performance, intestinal microbiota and wall morphology in piglets. During a 24 h in vitro caecal fermentation, the utilisation of tannins at 0.75, 1.5, 3, and 6 g/l significantly reduced total gas production and concentrations of ammonia and volatile fatty acids and increased viable counts of enterococci and coliforms. When fed to piglets at 1.13, 2.25, and 4.5 g/kg, tannins significantly improved feed efficiency and reduced caecal concentrations of ammonia, iso-butyric, and iso-valeric acid. Viable counts of lactobacilli tended to be increased by tannins in the jejunum, while bacterial caecal counts were not affected. Depth of ileal crypts tended to decrease in piglets fed tannins at 2.25 and 4.5 g/kg. The present study showed that feeding weaned piglets with a tannin-rich wood extract can result in improved feed efficiency and reduction of intestinal bacterial proteolytic reactions. The growth-enhancing effect that tannins had on enterococci and coliforms under in vitro conditions deserves further investigation.

  11. Fermentation Characteristics, Tannin Contents and In vitro Ruminal Degradation of Green Tea and Black Tea By-products Ensiled at Different Temperatures

    PubMed Central

    Kondo, Makoto; Hirano, Yoshiaki; Kita, Kazumi; Jayanegara, Anuraga; Yokota, Hiro-omi

    2014-01-01

    Green and black tea by-products, obtained from ready-made tea industry, were ensiled at 10°C, 20°C, and 30°C. Green tea by-product silage (GTS) and black tea by-product silage (BTS) were opened at 5, 10, 45 days after ensiling. Fermentation characteristics and nutrient composition, including tannins, were monitored and the silages on day 45 were subjected to in vitro ruminal fermentation to assess anti-nutritive effects of tannins using polyethylene glycol (PEG) as a tannin-binding agent. Results showed that the GTS and BTS silages were stable and fermented slightly when ensiled at 10°C. The GTS stored at 20°C and 30°C showed rapid pH decline and high acetic acid concentration. The BTS was fermented gradually with moderate change of pH and acid concentration. Acetic acid was the main acid product of fermentation in both GTS and BTS. The contents of total extractable phenolics and total extractable tannins in both silages were unaffected by storage temperatures, but condensed tannins in GTS were less when stored at high temperature. The GTS showed no PEG response on in vitro gas production, and revealed only a small increase by PEG on NH3-N concentration. Storage temperature of GTS did not affect the extent of PEG response to both gas production and NH3-N concentration. On the other hand, addition of PEG on BTS markedly increased both the gas production and NH3-N concentration at any ensiled temperature. It can be concluded that tannins in both GTS and BTS suppressed rumen fermentation, and tannins in GTS did more weakly than that in BTS. Ensiling temperature for both tea by-products did not affect the tannin’s activity in the rumen. PMID:25050034

  12. UPLC-PDA-Q/TOF-MS Profile of Polyphenolic Compounds of Liqueurs from Rose Petals (Rosa rugosa).

    PubMed

    Cendrowski, Andrzej; Ścibisz, Iwona; Kieliszek, Marek; Kolniak-Ostek, Joanna; Mitek, Marta

    2017-10-27

    Polyphenolic compounds, as a secondary metabolite of plants, possess great nutritional and pharmacological potential. Herein, we applied the green analytical method to study the nutrient profile of Rosa rugosa petals and liqueurs manufactured from them. Using the fast and validated ultra performance liquid chromatography-photodiode detector-quadrupole/time of flight-mass spectrometry (UPLC-PDA-Q/TOF-MS) method, we confirm the presence of the following compounds: phenolic acids, flavonols, flavan-3-ols and hydrolisable tannins (gallotannins and ellagitannins). R. rugosa petals contains up to 2175.43 mg polyphenols per 100 g fresh weight, therein 1517.01 mg ellagitannins per 100 g fresh weight. Liqueurs, traditionally manufactured from said petals using a conventional extraction method (maceration), also contain polyphenols in significant amounts (from 72% to 96% corresponding to percentage of theoretical polyphenol content in the used petals), therein ellagitannins amount to 69.7% on average. We confirmed that traditional maceration, most common for the isolation of polyphenols, is still suitable for the food industry due to its using aqueous ethanol, a common bio-solvent, easily available in high purity and completely biodegradable. Therefore R. rugosa used as a food may be considered as an ellagitannin-rich plant of economic importance. Manufactured rose liqueurs were stable and kept all their properties during the whole period of aging.

  13. Plantago maxima leaves extract inhibits adipogenic action of a high-fat diet in female Wistar rats.

    PubMed

    Tinkov, Alexey A; Nemereshina, Olga N; Popova, Elizaveta V; Polyakova, Valentina S; Gritsenko, Viktor A; Nikonorov, Alexandr A

    2014-04-01

    The primary objective of this study is to investigate the content of biologically active compounds producing an antioxidant effect in Plantago maxima and their influence on main mechanisms of dietary obesity development. Biologically active compounds in P. maxima were tested using paper chromatography. In in vivo experiment, high-fat-fed Wistar rats obtained P. maxima water extract for 3 months. Morphometric parameters, weight gain, serum adipokines, and cytokines, as well as oxidative stress biomarkers in rats’ tissues were evaluated. Gut microflora was also examined. Plantago maxima leaves used in the experiment contained significant amount of flavonoids, iridoids, phenol carboxylic acids, and tannins and ascorbic acid. Our in vivo experiment data demonstrate that P. maxima water extract prevents excessive adiposity in a diet-induced model. P. maxima consumption reduced serum leptin (twofold), macrophage chemoattractant protein-1 (sevenfold), tumornecrosis factor-α (25%), and interleukine-6 (26%) levels. P. maxima water extract decreased adipose tissue oxidative stress biomarkers in rats fed a high-fat diet. In addition, increased bacterial growth in the diet-induced obesity model was reversed by the P. maxima extract treatment. Plantago maxima water extract possessed antiadipogenic, antidiabetic, antiinflammatory, antioxidant activity, and normalized gut microflora in a rat model of diet-induced excessive adiposity due to a high content of biologically active compounds.

  14. Holoptelea integrifolia (Roxb.) Planch: A Review of Its Ethnobotany, Pharmacology, and Phytochemistry

    PubMed Central

    Ganie, Showkat Ahmad; Yadav, Surender Singh

    2014-01-01

    Holoptelea integrifolia (Ulmaceae) is a versatile medicinal plant used in various indigenous systems of medicine for curing routine healthcare maladies. It is traditionally used in the treatment and prevention of several ailments like leprosy, inflammation, rickets, leucoderma, scabies, rheumatism, ringworm, eczema, malaria, intestinal cancer, and chronic wounds. In vitro and in vivo pharmacological investigations on crude extracts and isolated compounds showed antibacterial, antifungal, analgesic, antioxidant, anti-inflammatory, anthelmintic, antidiabetic, antidiarrhoeal, adaptogenic, anticancer, wound healing, hepatoprotective, larvicidal, antiemetic, CNS depressant, and hypolipidemic activities. Phytochemical analysis showed the presence of terpenoids, sterols, saponins, tannins, proteins, carbohydrates, alkaloids, phenols, flavonoids, glycosides, and quinines. Numerous compounds including Holoptelin-A, Holoptelin-B, friedlin, epifriedlin, β-amyrin, stigmasterol, β-sitosterol, 1, 4-napthalenedione, betulin, betulinic acid, hexacosanol, and octacosanol have been identified and isolated from the plant species. The results of several studies indicated that H. integrifolia may be used as an effective therapeutic remedy in the prevention and treatment of various ailments. However, further studies on chemical constituents and their mechanisms in exhibiting certain biological activities are needed. In addition, study on the toxicity of the crude extracts and the compounds isolated from this plant should be assessed to ensure their eligibility to be used as source of modern medicines. PMID:24949441

  15. Comprehensive Characterization of Extractable and Nonextractable Phenolic Compounds by High-Performance Liquid Chromatography-Electrospray Ionization-Quadrupole Time-of-Flight of a Grape/Pomegranate Pomace Dietary Supplement.

    PubMed

    Pérez-Ramírez, Iza F; Reynoso-Camacho, Rosalía; Saura-Calixto, Fulgencio; Pérez-Jiménez, Jara

    2018-01-24

    Grape and pomegranate are rich sources of phenolic compounds, and their derived products could be used as ingredients for the development of functional foods and dietary supplements. However, the profile of nonextractable or macromolecular phenolic compounds in these samples has not been evaluated. Here, we show a comprehensive characterization of extractable and nonextractable phenolic compounds of a grape/pomegranate pomace dietary supplement using high-performance liquid chromatography-electrospray ionization-quadrupole time-of-flight (HPLC-ESI-QTOF) and matrix-assisted laser desorption/ionization (MALDI)-TOF techniques. The main extractable phenolic compounds were several anthocyanins (principally malvidin 3-O-glucoside) as well as gallotannins and gallagyl derivatives; some phenolic compounds were reported in grape or pomegranate for the first time. Additionally, there was a high proportion of nonextractable phenolic compounds, including vanillic acid, and dihydroxybenzoic acid. Unidentified polymeric structures were detected by MALDI-TOF MS analysis. This study shows that mixed grape and pomegranate pomaces are a source of different classes of phenolic compounds including a high proportion of nonextractable phenolic compounds.

  16. A water availability gradient reveals the deficit level required to affect traits in potted juvenile Eucalyptus globulus

    PubMed Central

    Potts, Brad M.; Hovenden, Mark J.; Brodribb, Timothy J.; Davies, Noel W.; Rodemann, Thomas; McAdam, Scott A. M.; O’Reilly-Wapstra, Julianne M.

    2017-01-01

    Background and aims Drought leading to soil water deficit can have severe impacts on plants. Water deficit may lead to plant water stress and affect growth and chemical traits. Plant secondary metabolite (PSM) responses to water deficit vary between compounds and studies, with inconsistent reports of changes to PSM concentrations even within a single species. This disparity may result from experimental water deficit variation among studies, and so multiple water deficit treatments are used to fully assess PSM responses in a single species. Methods Juvenile Eucalyptus globulus were grown for 8 weeks at one of ten water deficit levels based on evapotranspiration from control plants (100 %). Treatments ranged from 90 % of control evapotranspiration (mild water deficit) to 0 % of control evapotranspiration (severe water deficit) in 10 % steps. Plant biomass, foliar abscisic acid (ABA) levels, Ψleaf, leaf C/N, selected terpenes and phenolics were quantified to assess responses to each level of water deficit relative to a control. Key Results Withholding ≥30 % water resulted in higher foliar ABA levels and withholding ≥40 % water reduced leaf water content. Ψleaf became more negative when ≥60 % water was withheld. Plant biomass was lower when ≥80 % water was withheld, and no water for 8 weeks (0 % water) resulted in plant death. The total oil concentration was lower and C/N was higher in dead and desiccated juvenile E. globulus leaves (0 % water). Concentrations of individual phenolic and terpene compounds, along with condensed tannin and total phenolic concentrations, remained stable regardless of water deficit or plant stress level. Conclusions These juvenile E. globulus became stressed with a moderate reduction in available water, and yet the persistent concentrations of most PSMs in highly stressed or dead plants suggests no PSM re-metabolization and continued ecological roles of foliar PSMs during drought. PMID:28073772

  17. Vulnerability of High-Quality Winegrowing to Climate Change in California

    NASA Astrophysics Data System (ADS)

    Cahill, K. N.; Field, C. B.; Matthews, M. A.; Lobell, D. B.

    2009-05-01

    We took an interdisciplinary approach to examine the climate sensitivity and adaptive capacity of both the ecological and social systems of winegrowing. In a three-year study, we used field, laboratory, modeling, and anthropological approaches to examine the vulnerability of the wine industry to climate change. We developed models of winegrape yields based on the effects of historical temperature and precipitation in California, and used these findings to project future yields under climate change. We examined the concentrations of phenolic compounds important to wine quality (anthocyanins and tannins) in Pinot noir grapes from across a range of mesoclimates. We found that increased concentrations of these phenolic compounds were correlated with cool temperatures in the fall the year before harvest, warm temperatures from budburst to bloom, and cool temperatures from bloom to veraison, and with lower light intensities in these highly sun-exposed vines. We also conducted interviews to examine the adaptation responses of winegrowers to environmental stresses. We found that growers undertake a wide variety of environmental management strategies in the vineyard, most of which are individual in nature, and either in response to an existing stress, or in anticipation of an imminent stress. Finally, we examined the potential adaptive capacity of the wine industry to climate change, based on its awareness of climate change, ability to react, and actual actions and barriers to action. We conclude that winegrowers have a fairly high adaptive capacity, but that successful adaptation in practice depends on including proactive and coordinated community responses, which are beginning to develop.

  18. Dimeric and trimeric hydrolyzable tannins from Quercus coccifera and Quercus suber.

    PubMed

    Ito, Hideyuki; Yamaguchi, Koji; Kim, Tae-Hoon; Khennouf, Seddik; Gharzouli, Kamel; Yoshida, Takashi

    2002-03-01

    Three new hydrolyzable tannins, cocciferins D(1) (1), D(2) (2), and T(1) (4), were isolated from the leaves of Quercus coccifera. Cocciferin D(2) (2) and two additional new tannins, cocciferins D(3) (3) and T(2) (5), were also obtained from the leaves of Quercus suber. Their oligomeric structures were elucidated on the basis of spectroscopic methods and chemical evidence. Compounds 2, 3, and 5 were rare oligomers possessing glucose cores with both open-chain and pyranose forms.

  19. Exogenously applied abscisic acid to Yan73 (V. vinifera) grapes enhances phenolic content and antioxidant capacity of its wine.

    PubMed

    Xi, Zhu-Mei; Meng, Jiang-Fei; Huo, Shan-Shan; Luan, Li-Ying; Ma, Li-Na; Zhang, Zhen-Wen

    2013-06-01

    Yan73 is a 'teinturier' red wine variety cultivated in China and widely used in winemaking to strengthen red wine colour. The objective of this study was to evaluate the effect of exogenous abscisic acid (ABA) applied to the grapevine cluster on the antioxidant capacity and phenolic content of the wine made from Yan73. Two hundred mg/l ABA was applied on Yan73 grapevine cluster during veraison. As they mature, these ABA-treated and untreated grape berries were transformed into wines, respectively, and the phenolic content and antioxidant capacity of these wines were compared. The results showed that phenolic content (total phenolics, tannins, flavonoids and anthocyanins) and antioxidant capacity were higher in the wine produced with ABA-treated Yan73 grapes than those in the wine from untreated grapes. Compared to Cabernet Sauvignon wine, Yan73 wine had higher phenolic content and stronger antioxidant capacity. These strongly suggest that exogenously applied ABA to Yan73 grapes can enhance phenolic content and antioxidant capacity of its wine, and Yan73 wine has the higher utilization value and potential for development.

  20. LC-MS analysis of phenolic compounds and antioxidant activity of buckwheat at different stages of malting.

    PubMed

    Terpinc, Petra; Cigić, Blaž; Polak, Tomaž; Hribar, Janez; Požrl, Tomaž

    2016-11-01

    The impact of malting on the profile of the phenolic compounds and the antioxidant properties of two buckwheat varieties was investigated. The highest relative increases in phenolic compounds were observed for isoorientin, orientin, and isovitexin, which are consequently major inducible phenolic compounds during malting. Only a minor relative increase was observed for the most abundant phenolic compound, rutin. The radical-scavenging activity of buckwheat seeds was evaluated using ABTS and DPPH assays. A considerable increase in total phenolic compounds and higher antioxidant activity were observed after 64h of germination, whereas kilning resulted in decreased total phenolic compounds and antioxidant activity. Higher antioxidant activities for extracts were found for buffered solvents than for pure methanol and water. Changes in the composition of the phenolic compounds and increased antioxidant content were confirmed by several methods, indicating that buckwheat malt can be used as a food rich in antioxidants. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. NMR studies on the conformation of polyflavanoids and their association with proteins

    Treesearch

    Richard W. Hemingway; Petrus J. Steynberg; Jan P. Steynberg; Tsutomu Hatano

    1999-01-01

    Polyflavanoids (also named condensed tannins or proanthocyanidins) make up approximately half of the dry weight of most commercial tree barks, are often found in even higher concentrations in nut shells, and are important constituents of the leaves of plants. The polyflavanoids rank second in abundance after lignin as a source of renewable phenolic materials. Most of...

  2. Proximate analysis and some antinutritional factor constituents in selected varieties of Jamaican yams (Dioscorea and Rajana spp.).

    PubMed

    McAnuff, Marie A; Omoruyi, Felix O; Sotelo-López, Angela; Asemota, Helen N

    2005-06-01

    Two wild (Dioscorea polygonoides and Rajana cordata) and seven cultivated varieties of Jamaican yams (Dioscorea spp.) were analyzed for their proximate composition and the levels of antinutritional factors. The protein level range was 47.8 +/- 2.6 to 88.0 +/- 2.5 g/kg dry weight. The lowest level was seen in D. cayenensis. The range for the dietary fiber content in the tubers was 16.3 +/- 0.7 to 63.5 +/- 0.4 g/kg dry weight. The wild yam varieties recorded higher levels. Saponins level was <600 mg/kg dry weight in all the tubers analyzed except for bitter yam (2962.5 +/- 60.5 mg/kg dry weight). Total phenol content ranged from 1.3 +/- 0.1 to 79.3 +/- 6.1 g/kg while total condensed tannin content ranged from 0.1 +/- 0.0 to 26.7 +/- 3.8 g/kg dry weight. Samples that showed high levels of phenols also had high levels of condensed tannins. All the samples analyzed contained low levels of lectins and no alkaloids were detected. The levels of antinutritional factors did not clearly delineate the wild varieties from the edible varieties.

  3. Synergistic anti-Campylobacter jejuni activity of fluoroquinolone and macrolide antibiotics with phenolic compounds

    PubMed Central

    Oh, Euna; Jeon, Byeonghwa

    2015-01-01

    The increasing resistance of Campylobacter to clinically important antibiotics, such as fluoroquinolones and macrolides, is a serious public health problem. The objective of this study is to investigate synergistic anti-Campylobacter jejuni activity of fluoroquinolones and macrolides in combination with phenolic compounds. Synergistic antimicrobial activity was measured by performing a checkerboard assay with ciprofloxacin and erythromycin in the presence of 21 phenolic compounds. Membrane permeability changes in C. jejuni by phenolic compounds were determined by measuring the level of intracellular uptake of 1-N-phenylnaphthylamine (NPN). Antibiotic accumulation assays were performed to evaluate the level of ciprofloxacin accumulation in C. jejuni. Six phenolic compounds, including p-coumaric acid, sinapic acid, caffeic acid, vanillic acid, gallic acid, and taxifolin, significantly increased the susceptibility to ciprofloxacin and erythromycin in several human and poultry isolates. The synergistic antimicrobial effect was also observed in ciprofloxacin- and erythromycin-resistant C. jejuni strains. The phenolic compounds also substantially increased membrane permeability and antibiotic accumulation in C. jejuni. Interestingly, some phenolic compounds, such as gallic acid and taxifolin, significantly reduced the expression of the CmeABC multidrug efflux pump. Phenolic compounds increased the NPN accumulation in the cmeB mutant, indicating phenolic compounds may affect the membrane permeability. In this study, we successfully demonstrated that combinational treatment of C. jejuni with antibiotics and phenolic compounds synergistically inhibits C. jejuni by impacting both antimicrobial influx and efflux. PMID:26528273

  4. Isolation and purification of condensed tannins from flamboyant tree and their antioxidant and antityrosinase activities.

    PubMed

    Feng, Hui-Ling; Tian, Ling; Chai, Wei-Ming; Chen, Xiao-Xin; Shi, Yan; Gao, Yu-Sen; Yan, Chong-Ling; Chen, Qing-Xi

    2014-05-01

    Flamboyant tree, a kind of medicinal plant, was studied as a source of condensed tannins. The antioxidant activities of the condensed tannins from the leaf, fruit, and stem bark of flamboyant tree were screened by ABTS radical and hydroxyl radical scavenging activity methods. The results indicated that these compounds possessed potent antioxidant activity. Their structures were then characterized by high-performance liquid chromatography-electrospray ionization mass spectrometry (HPLC-ESI-MS) after thiolytic degradation. The results showed that the leaf condensed tannins were composed of afzelechin/epiafzelechin, catechin/epicatechin, and gallocatechin/epigallocatechin, while the fruit and stem bark condensed tannins had afzelechin/epiafzelechin and catechin/epicatechin. In addition, the condensed tannins were evaluated for their antityrosinase ability. They were found to have significant antityrosinase activity. The IC50 values were 35 ± 2.0 and 40 ± 0.5 μg/ml for the condensed tannins of fruit and stem bark, respectively. Further, fluorescence quenching and copper interacting techniques were utilized to unravel the molecular mechanisms of the inhibition. The results showed that the hydroxyl group of the condensed tannins could chelate the dicopper center of the enzyme and interact with tryptophan residues. Our studies revealed that condensed tannins might be suitable for use in food, agriculture, cosmetic, nutraceutical, and pharmaceutical applications.

  5. Strawberry tannins inhibit IL-8 secretion in a cell model of gastric inflammation.

    PubMed

    Fumagalli, Marco; Sangiovanni, Enrico; Vrhovsek, Urska; Piazza, Stefano; Colombo, Elisa; Gasperotti, Mattia; Mattivi, Fulvio; De Fabiani, Emma; Dell'Agli, Mario

    2016-09-01

    In the present study we chemically profiled tannin-enriched extracts from strawberries and tested their biological properties in a cell model of gastric inflammation. The chemical and biological features of strawberry tannins after in vitro simulated gastric digestion were investigated as well. The anti-inflammatory activities of pure strawberry tannins were assayed to get mechanistic insights. Tannin-enriched extracts from strawberries inhibit IL-8 secretion in TNFα-treated human gastric epithelial cells by dampening the NF-κB signaling. In vitro simulated gastric digestion slightly affected the chemical composition and the biological properties of strawberry tannins. By using pure compounds, we found that casuarictin may act as a pure NF-κB inhibitor while agrimoniin inhibits IL-8 secretion also acting on other biological targets; in our system procyanidin B1 prevents the TNFα-induced effects without interfering with the NF-κB pathway. We conclude that strawberry tannins, even after in vitro simulated gastric digestion, exert anti-inflammatory activities at nutritionally relevant concentrations. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Effects of tannin source and concentration from tree leaves on two species of tadpoles.

    PubMed

    Earl, Julia E; Semlitsch, Raymond D

    2015-01-01

    Vegetation in and around freshwater ecosystems can affect aquatic organisms through the production of secondary compounds, which are retained in leaves after senescence and are biologically active. Tannins can be toxic to tadpoles, but the plant source of tannins and tannin concentration have been confounded in experimental designs in previous studies. To examine the effects of the concentration and source of tannins (tree species), we examined the effects of 4 factors on tadpole survival, growth, and development: tannin source (red oak [Quercus rubra], white oak [Quercus alba], or sugar maple [Acer saccharum]); tannin concentration (including a control); diet protein level; and tadpole species (American toad [Anaxyrus americanus] and spring peepers [Pseudacris crucifer]). Tannin source and concentration affected spring peeper survival, but American toads had uniformly high survival. Spring peepers had a lower survival rate in high tannin concentrations of oak leachate but a high survival rate in both concentrations of sugar maple leachate. These differences in survival did not correspond with changes in dissolved oxygen, and no effect of dietary protein level on tadpole performance was observed. The presence of plant leachate resulted in increased tadpole growth in both species, but the mechanism for this finding is unclear. The results of the present study show that tannin concentration and source are important factors for tadpole performance, adding further evidence that plant chemistry can affect aquatic organisms. © 2014 SETAC.

  7. Fermentation and enzyme treatments for sorghum

    PubMed Central

    Schons, Patrícia Fernanda; Battestin, Vania; Macedo, Gabriela Alves

    2012-01-01

    Sorghum (Sorghum bicolor Moench) is the fifth most produced cereal worldwide. However, some varieties of this cereal contain antinutritional factors, such as tannins and phytate that may form stable complexes with proteins and minerals which decreases digestibility and nutritional value. The present study sought to diminish antinutritional tannins and phytate present in sorghum grains. Three different treatments were studied for that purpose, using enzymes tannase (945 U/Kg sorghum), phytase (2640 U/Kg sorghum) and Paecilomyces variotii (1.6 X 107 spores/mL); A) Tannase, phytase and Paecilomyces variotii, during 5 and 10 days; B) An innovative blend made of tanase and phytase for 5 days followed by a Pv increase for 5 more days; C) a third treatment where the reversed order of B was used starting with Pv for 5 days and then the blend of tannase and phytase for 5 more days. The results have shown that on average the three treatments were able to reduce total phenols and both hydrolysable and condensed tannins by 40.6, 38.92 and 58.00 %, respectively. Phytase increased the amount of available inorganic phosphorous, on the average by 78.3 %. The most promising results concerning tannins and phytate decreases were obtained by the enzymes combination of tannase and phytase. The three treatments have shown effective on diminishing tannin and phytate contents in sorghum flour which leads us to affirm that the proposed treatments can be used to increase the nutritive value of sorghum grains destined for either animal feeds or human nutrition. PMID:24031807

  8. Further Highlighting on the Prevention of Oxidative Damage by Polyphenol-Rich Wine Extracts.

    PubMed

    Salucci, Sara; Burattini, Sabrina; Giordano, Francesco Maria; Lucarini, Simone; Diamantini, Giuseppe; Falcieri, Elisabetta

    2017-04-01

    Wine contains various polyphenols such as flavonoids, anthocyanins, and tannins. These molecules are responsible for the quality of wines, influencing their astringency, bitterness, and color and they are considered to have antioxidant activity. Polyphenols, extracted from grapes during the processes of vinification, could protect the body cells against reactive oxygen species level increase and could be useful to rescue several pathologies where oxidative stress represents the main cause. For that, in this study, red and white wine, provided by an Italian vinery (Marche region), have been analyzed. Chromatographic and morphofunctional analyses have been carried out for polyphenol extraction and to evaluate their protective effect on human myeloid U937 cells exposed to hydrogen peroxide. Both types of wines contained a mix of phenolic compounds with antioxidant properties and their content decreased, as expected, in white wine. Ultrastructural observations evidenced that wines, in particular red wine, strongly prevent mitochondrial damage and apoptotic cell death. In conclusion, the considered extracts show a relevant polyphenol content with strong antioxidant properties and abilities to prevent apoptosis. These findings suggest, for these compounds, a potential role in all pathological conditions where the body antioxidant system is overwhelmed.

  9. From Traditional Usage to Pharmacological Evidence: Systematic Review of Gunnera perpensa L.

    PubMed Central

    2016-01-01

    Gunnera perpensa is the only species of the genus Gunnera that has been recorded in Africa. Its leaves, rhizomes, roots, and stems are reported to possess diverse medicinal properties and used to treat or manage various human and animal diseases and ailments. Gunnera perpensa is an ingredient in many herbal concoctions and prescriptions which have been used to induce or augment labour, postnatal medication, to treat parasitic diseases, urinary complaints, kidney problems, general body pains, sexually transmitted infections, and many other diseases. Several classes of phytochemicals including alkaloids, benzoquinones, ellagic acids, flavonoids, phenols, proanthocyanidins, tannins, and minerals have been isolated from G. perpensa. Scientific studies on G. perpensa indicate that it has a wide range of pharmacological activities including acetylcholinesterase, anthelmintic, antibacterial, antifungal, antinociceptive, anti-inflammatory, antioxidant, antitumour, lactogenic, and uterotonic. Gunnera perpensa has a lot of potential as a possible source of pharmaceutical products for the treatment of a wide range of both human and animal diseases and ailments. Some of the chemical compounds isolated from G. perpensa have demonstrated various biological activities when investigated in in vitro assays. Future research should focus on the mechanisms of action of the isolated compounds, their efficacy, toxicity, and clinical relevance. PMID:28053640

  10. Elephantorrhiza elephantina: Traditional Uses, Phytochemistry, and Pharmacology of an Important Medicinal Plant Species in Southern Africa

    PubMed Central

    2017-01-01

    Elephantorrhiza elephantina is used in southern Africa as traditional remedy for a wide range of human diseases and ailments including dermatological diseases, gastrointestinal system disorders, sexual dysfunction, sexually transmitted infections, and wounds. The rhizome decoction of E. elephantina is widely used by small-scale farmers in Botswana and South Africa as ethnoveterinary medicine for cattle, goats, horses, pigs, poultry, and sheep. Several classes of phytochemical compounds including anthocyanidins, anthraquinones, esters, fatty acids, phenolic compounds, flavonoids, glycosides, polysterols, saponins, sugars, tannins, and triterpenoids have been isolated from E. elephantina. Scientific studies on E. elephantina indicate that it has a wide range of biological activities including anthelmintic, antibacterial, antifungal, anti-inflammatory and antinociceptive, antiplasmodial, antioxidant, antibabesial, and antirickettsial activities. Elephantorrhiza elephantina is a valuable source of traditional medicine in southern Africa that it is worth additional research attention because of its wide ethnomedicinal applications and promising biological activities. However, the current health-related information on E. elephantina is not sufficiently explored as diverse studies on its chemical and pharmacological activities are required to understand its mechanism of action and to characterize the metabolites responsible for these activities. PMID:28588639

  11. Anti-gout Potential of Malaysian Medicinal Plants

    PubMed Central

    Abu Bakar, Fazleen I.; Abu Bakar, Mohd F.; Rahmat, Asmah; Abdullah, Norazlin; Sabran, Siti F.; Endrini, Susi

    2018-01-01

    Gout is a type of arthritis that causes painful inflammation in one or more joints. In gout, elevation of uric acid in the blood triggers the formation of crystals, causing joint pain. Malaysia is a mega-biodiversity country that is rich in medicinal plants species. Therefore, its flora might offer promising therapies for gout. This article aims to systematically review the anti-gout potential of Malaysian medicinal plants. Articles on gout published from 2000 to 2017 were identified using PubMed, Scopus, ScienceDirect, and Google Scholar with the following keyword search terms: “gout,” “medicinal plants,” “Malaysia,” “epidemiology,” “in vitro,” and “in vivo.” In this study, 85 plants were identified as possessing anti-gout activity. These plants had higher percentages of xanthine oxidase inhibitory activity (>85%); specifically, the Momordica charantia, Chrysanthemum indicum, Cinnamomum cassia, Kaempferia galanga, Artemisia vulgaris, and Morinda elliptica had the highest values, due to their diverse natural bioactive compounds, which include flavonoids, phenolics, tannin, coumarins, luteolin, and apigenin. This review summarizes the anti-gout potential of Malaysian medicinal plants but the mechanisms, active compounds, pharmacokinetics, bioavailability, and safety of the plants still remain to be elucidated. PMID:29628890

  12. Direct anthelmintic effects of condensed tannins from diverse plant sources against Ascaris suum.

    PubMed

    Williams, Andrew R; Fryganas, Christos; Ramsay, Aina; Mueller-Harvey, Irene; Thamsborg, Stig M

    2014-01-01

    Ascaris suum is one of the most prevalent nematode parasites in pigs and causes significant economic losses, and also serves as a good model for A. lumbricoides, the large roundworm of humans that is ubiquitous in developing countries and causes malnutrition, stunted growth and compromises immunity to other pathogens. New treatment options for Ascaris infections are urgently needed, to reduce reliance on the limited number of synthetic anthelmintic drugs. In areas where Ascaris infections are common, ethno-pharmacological practices such as treatment with natural plant extracts are still widely employed. However, scientific validation of these practices and identification of the active compounds are lacking, although observed effects are often ascribed to plant secondary metabolites such as tannins. Here, we extracted, purified and characterised a wide range of condensed tannins from diverse plant sources and investigated anthelmintic effects against A. suum in vitro. We show that condensed tannins can have potent, direct anthelmintic effects against A. suum, as evidenced by reduced migratory ability of newly hatched third-stage larvae and reduced motility and survival of fourth-stage larvae recovered from pigs. Transmission electron microscopy showed that CT caused significant damage to the cuticle and digestive tissues of the larvae. Furthermore, we provide evidence that the strength of the anthelmintic effect is related to the polymer size of the tannin molecule. Moreover, the identity of the monomeric structural units of tannin polymers may also have an influence as gallocatechin and epigallocatechin monomers exerted significant anthelmintic activity whereas catechin and epicatechin monomers did not. Therefore, our results clearly document direct anthelmintic effects of condensed tannins against Ascaris and encourage further in vivo investigation to determine optimal strategies for the use of these plant compounds for the prevention and/or treatment of ascariosis.

  13. Direct Anthelmintic Effects of Condensed Tannins from Diverse Plant Sources against Ascaris suum

    PubMed Central

    Williams, Andrew R.; Fryganas, Christos; Ramsay, Aina; Mueller-Harvey, Irene; Thamsborg, Stig M.

    2014-01-01

    Ascaris suum is one of the most prevalent nematode parasites in pigs and causes significant economic losses, and also serves as a good model for A. lumbricoides, the large roundworm of humans that is ubiquitous in developing countries and causes malnutrition, stunted growth and compromises immunity to other pathogens. New treatment options for Ascaris infections are urgently needed, to reduce reliance on the limited number of synthetic anthelmintic drugs. In areas where Ascaris infections are common, ethno-pharmacological practices such as treatment with natural plant extracts are still widely employed. However, scientific validation of these practices and identification of the active compounds are lacking, although observed effects are often ascribed to plant secondary metabolites such as tannins. Here, we extracted, purified and characterised a wide range of condensed tannins from diverse plant sources and investigated anthelmintic effects against A. suum in vitro. We show that condensed tannins can have potent, direct anthelmintic effects against A. suum, as evidenced by reduced migratory ability of newly hatched third-stage larvae and reduced motility and survival of fourth-stage larvae recovered from pigs. Transmission electron microscopy showed that CT caused significant damage to the cuticle and digestive tissues of the larvae. Furthermore, we provide evidence that the strength of the anthelmintic effect is related to the polymer size of the tannin molecule. Moreover, the identity of the monomeric structural units of tannin polymers may also have an influence as gallocatechin and epigallocatechin monomers exerted significant anthelmintic activity whereas catechin and epicatechin monomers did not. Therefore, our results clearly document direct anthelmintic effects of condensed tannins against Ascaris and encourage further in vivo investigation to determine optimal strategies for the use of these plant compounds for the prevention and/or treatment of ascariosis. PMID:24810761

  14. Changes in hematology and serum biochemical profiles in lambs fed sericea lespedeza

    USDA-ARS?s Scientific Manuscript database

    Sericea lespedeza (SL; Lespedeza cuneata) is a legume rich in condensed tannins (CT) that can be grazed or fed to small ruminants for parasite control. Condensed tannins a secondary plant compound in SL may lead to unintended consequences such as changes in production. In our preliminary research, t...

  15. Fast atom bombardment mass spectrometry of condensed tannin sulfonate derivatives

    Treesearch

    J.J. Karchesy; L.Y. Foo; Richard W. Hemingway; E. Barofsky; D.F. Barofsky

    1989-01-01

    Condensed tannin sulfonate derivatives were studied by fast atom bombardment mass spectrometry (FAB-MS) to assess the feasibility of using this technique for determining molecular weight and structural information about these compounds. Both positive- and negative-ion spectra provided useful data with regard to molecular weight, cation species present, and presence of...

  16. Environment-friendly adhesives for surface bonding of wood-based flooring using natural tannin to reduce formaldehyde and TVOC emission.

    PubMed

    Kim, Sumin

    2009-01-01

    The objective of this research was to develop environment-friendly adhesives for face fancy veneer bonding of engineered flooring using the natural tannin form bark in the wood. The natural wattle tannin adhesive were used to replace UF resin in the formaldehyde-based resin system in order to reduce formaldehyde and volatile organic compound (VOC) emissions from the adhesives used between plywoods and fancy veneers. PVAc was added to the natural tannin adhesive to increase viscosity of tannin adhesive for surface bonding. For tannin/PVAc hybrid adhesives, 5%, 10%, 20% and 30% of PVAc to the natural tannin adhesives were added. tannin/PVAc hybrid adhesives showed better bonding than the commercial natural tannin adhesive with a higher level of wood penetration. The initial adhesion strength was sufficient to be maintained within the optimum initial tack range. The standard formaldehyde emission test (desiccator method), field and laboratory emission cell (FLEC) and VOC analyzer were used to determine the formaldehyde and VOC emissions from engineered flooring bonded with commercial the natural tannin adhesive and tannin/PVAc hybrid adhesives. By desiccator method and FLEC, the formaldehyde emission level of each adhesive showed the similar tendency. All adhesives satisfied the E(1) grade (below 1.5 mg/L) and E(0) grade (below 0.5 mg/L) with UV coating. VOC emission results by FLEC and VOC analyzer were different with the formaldehyde emission results. TVOC emission was slightly increased as adding PVAc.

  17. Development of methodology for identification the nature of the polyphenolic extracts by FTIR associated with multivariate analysis

    NASA Astrophysics Data System (ADS)

    Grasel, Fábio dos Santos; Ferrão, Marco Flôres; Wolf, Carlos Rodolfo

    2016-01-01

    Tannins are polyphenolic compounds of complex structures formed by secondary metabolism in several plants. These polyphenolic compounds have different applications, such as drugs, anti-corrosion agents, flocculants, and tanning agents. This study analyses six different type of polyphenolic extracts by Fourier transform infrared spectroscopy (FTIR) combined with multivariate analysis. Through both principal component analysis (PCA) and hierarchical cluster analysis (HCA), we observed well-defined separation between condensed (quebracho and black wattle) and hydrolysable (valonea, chestnut, myrobalan, and tara) tannins. For hydrolysable tannins, it was also possible to observe the formation of two different subgroups between samples of chestnut and valonea and between samples of tara and myrobalan. Among all samples analysed, the chestnut and valonea showed the greatest similarity, indicating that these extracts contain equivalent chemical compositions and structure and, therefore, similar properties.

  18. Exogenous acetaldehyde as a tool for modulating wine color and astringency during fermentation.

    PubMed

    Sheridan, Marlena K; Elias, Ryan J

    2015-06-15

    Wine tannins undergo modifications during fermentation and storage that can decrease their perceived astringency and increase color stability. Acetaldehyde acts as a bridging compound to form modified tannins and polymeric pigments that are less likely to form tannin-protein complexes than unmodified tannins. Red wines are often treated with oxygen in order to yield acetaldehyde, however this approach can lead to unintended consequences due to the generation of reactive oxygen species. The present study employs exogenous acetaldehyde at relatively low and high treatment concentrations during fermentation to encourage tannin modification without promoting potentially deleterious oxidation reactions. The high acetaldehyde treatment significantly increased polymeric pigments in the wine without increasing concentrations of free and sulfite-bound acetaldehyde. Protein-tannin precipitation was also significantly decreased with the addition of exogenous acetaldehyde. These results indicate a possible treatment of wines early in their production to increase color stability and lower astringency of finished wines. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Two novel dicarboxylic Acid derivatives and a new dimeric hydrolyzable tannin from walnuts.

    PubMed

    Ito, Hideyuki; Okuda, Takahiro; Fukuda, Toshiyuki; Hatano, Tsutomu; Yoshida, Takashi

    2007-02-07

    In addition to the 16 previously reported polyphenols including 3 new ellagitannins, 2 novel dicarboxylic acid derivatives, glansreginins A (1) and B (2), and a new dimeric hydrolyzable tannin, glansrin D (3), were isolated, together with 15 known compounds from walnuts, the seeds of Juglans regia. The structures of the new compounds were elucidated on the basis of 1D- and 2D-NMR analyses and chemical data. The antioxidant effect of these isolates was also evaluated by SOD-like and DPPH radical scavenging activities.

  20. Colonic catabolism of dietary phenolic and polyphenolic compounds from Concord grape juice.

    PubMed

    Stalmach, Angelique; Edwards, Christine A; Wightman, Jolynne D; Crozier, Alan

    2013-01-01

    After acute ingestion of 350 ml of Concord grape juice, containing 528 μmol of (poly)phenolic compounds, by healthy volunteers, a wide array of phase I and II metabolites were detected in the circulation and excreted in urine. Ingestion of the juice by ileostomists resulted in 40% of compounds being recovered intact in ileal effluent. The current study investigated the fate of these undigested (poly)phenolic compounds on reaching the colon. This was achieved through incubation of the juice using an in vitro model of colonic fermentation and through quantification of catabolites produced after colonic degradation and their subsequent absorption prior to urinary excretion by healthy subjects and ileostomy volunteers. A total of 16 aromatic and phenolic compounds derived from colonic metabolism of Concord grape juice (poly)phenolic compounds were identified by GC-MS in the faecal incubation samples. Thirteen urinary phenolic acids and aromatic compounds were excreted in significantly increased amounts after intake of the juice by healthy volunteers, whereas only two of these compounds were excreted in elevated amounts by ileostomists. The production of phenolic acids and aromatic compounds by colonic catabolism contributed to the bioavailability of Concord grape (poly)phenolic compounds to a much greater extent than phase I and II metabolites originating from absorption in the upper gastrointestinal tract. Catabolic pathways are proposed, highlighting the impact of colonic microbiota and subsequent phase II metabolism prior to excretion of phenolic compounds derived from (poly)phenolic compounds in Concord grape juice, which pass from the small to the large intestine.

  1. Recycling of phenolic compounds in Borneo's tropical peat swamp forests.

    PubMed

    Yule, Catherine M; Lim, Yau Yan; Lim, Tse Yuen

    2018-02-07

    Tropical peat swamp forests (TPSF) are globally significant carbon stores, sequestering carbon mainly as phenolic polymers and phenolic compounds (particularly as lignin and its derivatives) in peat layers, in plants, and in the acidic blackwaters. Previous studies show that TPSF plants have particularly high levels of phenolic compounds which inhibit the decomposition of organic matter and thus promote peat accumulation. The studies of phenolic compounds are thus crucial to further understand how TPSF function with respect to carbon sequestration. Here we present a study of cycling of phenolic compounds in five forests in Borneo differing in flooding and acidity, leaching of phenolic compounds from senescent Macaranga pruinosa leaves, and absorption of phenolics by M. pruinosa seedlings. The results of the study show that total phenolic content (TPC) in soil and leaves of three species of Macaranga were highest in TPSF followed by freshwater swamp forest and flooded limestone forest, then dry land sites. Highest TPC values were associated with acidity (in TPSF) and waterlogging (in flooded forests). Moreover, phenolic compounds are rapidly leached from fallen senescent leaves, and could be reabsorbed by tree roots and converted into more complex phenolics within the leaves. Extreme conditions-waterlogging and acidity-may facilitate uptake and synthesis of protective phenolic compounds which are essential for impeded decomposition of organic matter in TPSF. Conversely, the ongoing drainage and degradation of TPSF, particularly for conversion to oil palm plantations, reverses the conditions necessary for peat accretion and carbon sequestration.

  2. Climate Influences the Content and Chemical Composition of Foliar Tannins in Green and Senesced Tissues of Quercus rubra

    PubMed Central

    Top, Sara M.; Preston, Caroline M.; Dukes, Jeffrey S.; Tharayil, Nishanth

    2017-01-01

    Environmental stresses not only influence production of plant metabolites but could also modify their resorption during leaf senescence. The production-resorption dynamics of polyphenolic tannins, a class of defense compound whose ecological role extends beyond tissue senescence, could amplify the influence of climate on ecosystem processes. We studied the quantity, chemical composition, and tissue-association of tannins in green and freshly-senesced leaves of Quercus rubra exposed to different temperature (Warming and No Warming) and precipitation treatments (Dry, Ambient, Wet) at the Boston-Area Climate Experiment (BACE) in Massachusetts, USA. Climate influenced not only the quantity of tannins, but also their molecular composition and cell-wall associations. Irrespective of climatic treatments, tannin composition in Q. rubra was dominated by condensed tannins (CTs, proanthocyanidins). When exposed to Dry and Ambient*Warm conditions, Q. rubra produced higher quantities of tannins that were less polymerized. In contrast, under favorable conditions (Wet), tannins were produced in lower quantities, but the CTs were more polymerized. Further, even as the overall tissue tannin content declined, the content of hydrolysable tannins (HTs) increased under Wet treatments. The molecular composition of tannins influenced their content in senesced litter. Compared to the green leaves, the content of HTs decreased in senesced leaves across treatments, whereas the CT content was similar between green and senesced leaves in Wet treatments that produced more polymerized tannins. The content of total tannins in senesced leaves was higher in Warming treatments under both dry and ambient precipitation treatments. Our results suggest that, though climate directly influenced the production of tannins in green tissues (and similar patterns were observed in the senesced tissue), the influence of climate on tannin content of senesced tissue was partly mediated by the effect on the chemical composition of tannins. These different climatic impacts on leaves over the course of a growing season may alter forest dynamics, not only in decomposition and nutrient cycling dynamics, but also in herbivory dynamics. PMID:28559896

  3. Directional liquefaction of biomass for phenolic compounds and in situ hydrodeoxygenation upgrading of phenolics using bifunctional catalysts

    Treesearch

    Junfeng Feng; Chung-yun Hse; Kui Wang; Zhongzhi Yang; Jianchun Jiang; Junming Xu

    2017-01-01

    Phenolic compounds derived from biomass are important feedstocks for the sustainable production of hydrocarbon biofuels. Hydrodeoxygenation is an effective process to remove oxygen-containing functionalities in phenolic compounds. This paper reported a simple method for producing hydrocarbons by liquefying biomass and upgrading liquefied products. Three phenolic...

  4. Genetic evidence for direct sensing of phenolic compounds by the VirA protein of Agrobacterium tumefaciens.

    PubMed Central

    Lee, Y W; Jin, S; Sim, W S; Nester, E W

    1995-01-01

    The virulence (vir) genes of Agrobacterium tumefaciens are induced by low-molecular-weight phenolic compounds and monosaccharides through a two-component regulatory system consisting of the VirA and VirG proteins. However, it is not clear how the phenolic compounds are sensed by the VirA/VirG system. We tested the vir-inducing abilities of 15 different phenolic compounds using four wild-type strains of A. tumefaciens--KU12, C58, A6, and Bo542. We analyzed the relationship between structures of the phenolic compounds and levels of vir gene expression in these strains. In strain KU12, vir genes were not induced by phenolic compounds containing 4'-hydroxy, 3'-methoxy, and 5'-methoxy groups, such as acetosyringone, which strongly induced vir genes of the other three strains. On the other hand, vir genes of strain KU12 were induced by phenolic compounds containing only a 4'-hydroxy group, such as 4-hydroxyacetophenone, which did not induce vir genes of the other three strains. The vir genes of strains KU12, A6, and Bo542 were all induced by phenolic compounds containing 4'-hydroxy and 3'-methoxy groups, such as acetovanillone. By transferring different Ti plasmids into isogenic chromosomal backgrounds, we showed that the phenolic-sensing determinant is associated with Ti plasmid. Subcloning of Ti plasmid indicates that the virA locus determines which phenolic compounds can function as vir gene inducers. These results suggest that the VirA protein directly senses the phenolic compounds for vir gene activation. PMID:8618878

  5. Food processing strategies to enhance phenolic compounds bioaccessibility and bioavailability in plant-based foods.

    PubMed

    Ribas-Agustí, Albert; Martín-Belloso, Olga; Soliva-Fortuny, Robert; Elez-Martínez, Pedro

    2017-06-13

    Phenolic compounds are important constituents of plant-based foods, as their presence is related to protective effects on health. To exert their biological activity, phenolic compounds must be released from the matrix during digestion in an absorbable form (bioaccessible) and finally absorbed and transferred to the bloodstream (bioavailable). Chemical structure and matrix interactions are some food-related factors that hamper phenolic compounds bioaccessibility and bioavailability, and that can be counteracted by food processing. It has been shown that food processing can induce chemical or physical modifications in food that enhance phenolic compounds bioaccessibility and bioavailability. These changes include: (i) chemical modifications into more bioaccessible and bioavailable forms; (ii) cleavage of covalent or hydrogen bonds or hydrophobic forces that attach phenolic compounds to matrix macromolecules; (iii) damaging microstructural barriers such as cell walls that impede the release from the matrix; and (iv) create microstructures that protect phenolic compounds until they are absorbed. Indeed, food processing can produce degradation of phenolic compounds, however, it is possible to counteract it by modulating the operating conditions in favor of increased bioaccessibility and bioavailability. This review compiles the current knowledge on the effects of processing on phenolic compounds bioaccessibility or bioavailability, while suggesting new guidelines in the search of optimal processing conditions as a step forward towards the design of healthier foods.

  6. Phenolic Compounds in the Potato and Its Byproducts: An Overview

    PubMed Central

    Akyol, Hazal; Riciputi, Ylenia; Capanoglu, Esra; Caboni, Maria Fiorenza; Verardo, Vito

    2016-01-01

    The potato (Solanum tuberosum L.) is a tuber that is largely used for food and is a source of different bioactive compounds such as starch, dietary fiber, amino acids, minerals, vitamins, and phenolic compounds. Phenolic compounds are synthetized by the potato plant as a protection response from bacteria, fungi, viruses, and insects. Several works showed that these potato compounds exhibited health-promoting effects in humans. However, the use of the potato in the food industry submits this vegetable to different processes that can alter the phenolic content. Moreover, many of these compounds with high bioactivity are located in the potato’s skin, and so are eliminated as waste. In this review the most recent articles dealing with phenolic compounds in the potato and potato byproducts, along with the effects of harvesting, post-harvest, and technological processes, have been reviewed. Briefly, the phenolic composition, main extraction, and determination methods have been described. In addition, the “alternative” food uses and healthy properties of potato phenolic compounds have been addressed. PMID:27240356

  7. Phenolic compositions and antioxidant attributes of leaves and stems from three inbred varieties of Lycium chinense Miller harvested at various times.

    PubMed

    Liu, Shih-Chuan; Lin, Jau-Tien; Hu, Chao-Chin; Shen, Bo-Yan; Chen, Ting-Yo; Chang, Ya-Ling; Shih, Chia-Huing; Yang, Deng-Jye

    2017-01-15

    Antioxidant components and properties (assayed by scavenging DPPH radicals, TEAC, reducing power, and inhibiting Cu(2+)-induced human LDL oxidation) of leaves and stems from three inbred varieties of Lycium chinense Miller, namely ML01, ML02 and ML02-TY, harvested from January to April were studied. Their flavonoid and phenolic acid compositions were also analyzed by HPLC. For each variety, the leaves and stems collected in higher temperature month had higher contents of total phenol, total flavonoid and condensed tannin. Contents of these components in the samples collected in different months were in the order: April (22.3°C)>March (18.0°C)>January (15.6°C)>February (15.4°C). Antioxidant activities of the leaves and stems for all assays also showed similar trends. The samples from different varieties collected in the same month also possessed different phenolic compositions and contents and antioxidant activities. Their antioxidant activities were significantly correlated with flavonoid and phenolic contents. Copyright © 2016. Published by Elsevier Ltd.

  8. Effects of roasting temperature and duration on fatty acid composition, phenolic composition, Maillard reaction degree and antioxidant attribute of almond (Prunus dulcis) kernel.

    PubMed

    Lin, Jau-Tien; Liu, Shih-Chun; Hu, Chao-Chin; Shyu, Yung-Shin; Hsu, Chia-Ying; Yang, Deng-Jye

    2016-01-01

    Roasting treatment increased levels of unsaturated fatty acids (linoleic, oleic and elaidic acids) as well as saturated fatty acids (palmitic and stearic acids) in almond (Prunus dulcis) kernel oils with temperature (150 or 180 °C) and duration (5, 10 or 20 min). Nonetheless, higher temperature (200 °C) and longer duration (10 or 20 min) roasting might result in breakdown of fatty acids especially for unsaturated fatty acids. Phenolic components (total phenols, flavonoids, condensed tannins and phenolic acids) of almond kernels substantially lost in the initial phase; afterward these components gradually increased with roasting temperature and duration. Similar results also observed for their antioxidant activities (scavenging DPPH and ABTS(+) radicals and ferric reducing power). The changes of phenolic acid and flavonoid compositions were also determined by HPLC. Maillard reaction products (estimated with non-enzymatic browning index) also increased with roasting temperature and duration; they might also contribute to enhancing the antioxidant attributes. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. A comprehensive evaluation of three microfluidic chemiluminescence methods for the determination of the total phenolic contents in fruit juices.

    PubMed

    Al Haddabi, Buthaina; Al Lawati, Haider A J; Suliman, FakhrEldin O

    2017-01-01

    Three recently reported microfluidic chemiluminescence (MF-CL) methods (based on reactions with acidic permanganate enhanced by formaldehyde (KMnO4-COH), acidic cerium (IV) and rhodamine B (Ce-RB), and acidic cerium (IV) and rhodamine 6G (Ce-R6G) enhanced by SDS) for the determination of the total phenolic content (TPC) in juices were critically evaluated in terms of their selectivity. The evaluation was carried out using 86 analytes, including 22 phenolic compounds (phenolic acids and polyphenols), 6 known non-phenolic antioxidants, 9 amino acids and a number of proteins, carbohydrates, nucleotide bases, inorganic salts and other compounds. Each method was sensitive toward phenolic compounds (PCs). However, the KMnO4-COH CL system showed a higher sensitivity toward phenolic acids and also responded to non-phenolic antioxidants. The other two systems showed higher sensitivity toward polyphenolic compounds than to phenolic acids and did not responded to all other compounds including non-phenolic antioxidants. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. In vitro anthelmintic activity of five tropical legumes on the exsheathment and motility of Haemonchus contortus infective larvae.

    PubMed

    von Son-de Fernex, Elke; Alonso-Díaz, Miguel Angel; Valles-de la Mora, Braulio; Capetillo-Leal, Concepción M

    2012-08-01

    This study investigated the in vitro anthelmintic (AH) activity of five tropical legume plants [Arachis pintoi CIAT 22160 (A.p. 22160), Gliricidia sepium, Cratylia argentea (C.a. Yacapani), C. argentea CIAT 22386 (C.a. 22386), C. argentea Veranera (C.a. Veranera)] against Haemonchus contortus infective larvae and the role of tannins/polyphenolic compounds in the AH effect. Lyophilized leaf extracts of each plant were evaluated using the Larval Exsheathment Inhibition Assay (LEIA) and the larval migration inhibition assay (LMIA). The role of tannins/polyphenolic compounds in the AH effect was evaluated in both assays using polyethylene glycol (PEG) to remove tannins from the solutions. At the highest concentration (1200μg of extract/ml), A. pintoi 22160, C.a. Yacapani, C.a. Veranera and C.a. 22386 completely inhibited the exsheathment process of H. contortus (P<0.01). At the same concentration (1200μg of extract/ml), the inhibition of larval migration for C.a. 22386, C.a. Veranera and G. sepium was 66.0%, 35.9% and 39.2% (relative to the PBS control), respectively. In both bioassays (LEIA and LMIA), the AH effect shown by each plant was blocked after the addition of polyethylene glycol (PEG), corroborating the role of tannins/polyphenolic compounds. Copyright © 2012 Elsevier Inc. All rights reserved.

  11. Application of honeymoon cold-set adhesive systems for structural end joints in North America

    Treesearch

    Roland E. Kreibich; Richard W. Hemingway; William T. Nearn

    1993-01-01

    High quality, structural end joints can be cold-set at mill speed using a two-component honeymoon adhesive system composed of southern pine bark or pecan shell membrane tannin and a modified, commercially available. phenol-resorcinol-formaldehyde resin. Adhesive costs of a fully waterproof glueline are approximately $0.60/lb. of applied adhesive mix compared to $0.80/...

  12. In vitro anti-HIV and antioxidant activity of Hoodia gordonii (Apocynaceae), a commercial plant product.

    PubMed

    Kapewangolo, Petrina; Knott, Michael; Shithigona, Regina E K; Uusiku, Sylvia L; Kandawa-Schulz, Martha

    2016-10-24

    Hoodia gordonii products are widely commercialized for anti-obesity purposes; however, minimal research is available on the other health properties demonstrated by this popular herbal plant. H. gordonii crude extracts (ethanol and ethyl acetate) were assayed for in vitro anti-HIV-1 protease (PR), reverse transcriptase (RT) and integrase activity. The 2,2-diphenyl-1-picrylhydrazyl (DPPH) and reducing power assays were used for the antioxidant analysis. In addition, qualitative and quantitative phytochemical analyses of the extracts were determined using standard methods. H. gordonii extract demonstrated good inhibition against HIV RT with IC 50 values of 73.55 ± 0.04 and 69.81 ± 9.45 μg/mL for ethanol and ethyl acetate extracts, respectively. Both extracts also demonstrated inhibitory activity against HIV PR with IC 50 values of 97.29 ± 0.01 and 63.76 ± 9.01 μg/mL for ethanol and ethyl acetate extracts. In addition, H. gordonii also showed good antioxidant activity with IC 50 values of 124.6 ± 11.3 and 126.2 ± 3.15 μg/mL obtained for ethanol and ethyl acetate extracts, respectively. The reducing power of H. gordonii extracts increased as the concentration increased which confirmed the presence of antioxidants (reductants) in the extracts. Phytochemical screening of H. gordonii revealed the presence of phenolics, alkaloids, terpenes, steroids, cardiac glycosides and tannins in the ethanolic extract, while the ethyl acetate extract only showed the presence of phenolics, cardiac glycosides and steroids. The total phenolic content was 420 ± 0.17 and 319.9 ± 0.2 mg GAE/g for the ethanol and ethyl acetate extracts, respectively. The ethanol extract, which revealed the presence of tannins, had a tannin content of 330 ± 0.2 mg TAE/g extract. This data suggests that H. gordonii has good in vitro inhibition against selected HIV-1 enzymes as well as antioxidant properties, suggesting new potential uses for this commercial plant.

  13. Effect of tannin from Rhizophora apiculate as corrosion inhibitor for epoxy paint on mild steel

    NASA Astrophysics Data System (ADS)

    Idora, M. S. Noor; Quen, L. K.; Kang, H. S.

    2017-09-01

    There is a great concern to protect the steel surfaces from corrosion phenomenon in seawater environment. Several approaches have been proposed to introduce alternative new compounds in the paint which are green sources that can reduce environmental risks. The aim of this investigation was to enhance the protection properties of epoxy paint by providing an anticorrosive inhibitor for the paint. In this approach, the abilities of mangrove tannins, extracted from Rhizophora apiculata bark were studied. The inhibitive properties of mangrove tannins were evaluated by weight loss measurement, electrochemical impedance spectroscopy (EIS) and scanning electron microscope (SEM). Results shows the addition of mangrove tannin in the coating boosted the anticorrosive properties of the paint and represents valuable environmentally friendly of inhibitor.

  14. Impact of thermal processing on the activity of gallotannins and condensed tannins from Hamamelis virginiana used as functional ingredients in seafood.

    PubMed

    González, María Jesús; Torres, Josep Lluís; Medina, Isabel

    2010-04-14

    Phenolic extracts from witch hazel, Hamamelis virginiana, are efficient antioxidants against fish lipid peroxidation. The impact of fish thermal processes on the hydrolyzable polyphenols from this source was studied. H. virginiana polyphenols included 80% of hydrolyzable tannins, characterized by a mixture of glucose gallates containing from 5 to 10 units of gallic acid, hamamelitannin, and 20% of proanthocyanidins. Structural modifications of the polyphenols during thermal processes were determined by HPLC-MS. Changes in their reducing and free radical scavenging capacities as a result of high temperatures were also determined. Thermal processes triggered a significant breakdown of hydrolyzable tannins with 6-10 galloyl units to give pentagalloyl glucose (PGG). The release of high concentrations of free gallic acid especially in long-term thermally processed samples leads to an increase of the antioxidant ability of heated H. virginiana extracts. Such an increase was evidenced by an increment in the reducing and radical scavenging capacities as well as an improvement in the antioxidant effectiveness for inhibiting lipid oxidation of processed fatty fish muscle.

  15. Effects of irradiation in medicinal and eatable herbs

    NASA Astrophysics Data System (ADS)

    Koseki, Paula M.; Villavicencio, Anna Lúcia C. H.; Brito, Mônica S.; Nahme, Ligia C.; Sebastião, Kátia I.; Rela, Paulo R.; Almeida-Muradian, Ligia B.; Mancini-Filho, Jorge; Freitas, Paulo C. D.

    2002-03-01

    For ages, herbs have been used as medicine and food. Nowadays, the interest in phytotherapeutics is increasing as well as the consumer attention. Some biochemical compounds synthesized by plants as alkaloids, phenolics, flavonoids, essential oils, tannins and vitamins, influence the composition of these plant pharmacologicals, which may produce various reactions in the human body. The microbial contamination in these raw plant materials is common, and the radiation processing is one appropriate technique for the reduction of microorganism. In herbs used as food products, the changes in total β-carotene and flavonoids upon the radiation treatment were tested. The powdered and dehydrated herbs were irradiated with 60Co gamma rays applying doses of 0, 10, 20 and 30 kGy. The botanical species investigated were rosemary ( Rosmarinus officinalis Linné), watercress ( Nasturtium officinale R. Br), artichoke ( Cynara scolymus Linné) and sweet basil ( Ocimum basilicum Linné). The alterations in the active principles in the herbs following increasing doses of radiation were analyzed employing various methods of extraction and chromatography.

  16. Significance of wood extractives for wood bonding.

    PubMed

    Roffael, Edmone

    2016-02-01

    Wood contains primary extractives, which are present in all woods, and secondary extractives, which are confined in certain wood species. Extractives in wood play a major role in wood-bonding processes, as they can contribute to or determine the bonding relevant properties of wood such as acidity and wettability. Therefore, extractives play an immanent role in bonding of wood chips and wood fibres with common synthetic adhesives such as urea-formaldehyde-resins (UF-resins) and phenol-formaldehyde-resins (PF-resins). Extractives of high acidity accelerate the curing of acid curing UF-resins and decelerate bonding with alkaline hardening PF-resins. Water-soluble extractives like free sugars are detrimental for bonding of wood with cement. Polyphenolic extractives (tannins) can be used as a binder in the wood-based industry. Additionally, extractives in wood can react with formaldehyde and reduce the formaldehyde emission of wood-based panels. Moreover, some wood extractives are volatile organic compounds (VOC) and insofar also relevant to the emission of VOC from wood and wood-based panels.

  17. Phytochemical screening and chemical variability in volatile oils of aerial parts of Morinda morindoides.

    PubMed

    Kiazolu, J Boima; Intisar, Azeem; Zhang, Lingyi; Wang, Yun; Zhang, Runsheng; Wu, Zhongping; Zhang, Weibing

    2016-10-01

    Morinda morindoides is an important Liberian traditional medicine for the treatment of malaria, fever, worms etc. The plant was subjected to integrated approaches including phytochemical screening and gas chromatography mass spectrometry (GC-MS) analyses. Phytochemical investigation of the powdered plant revealed the presence of phenolics, tannins, flavonoids, saponins, terpenes, steroidal compounds and volatile oil. Steam distillation followed by GC-MS resulted in the identification of 47 volatiles in its aerial parts: 28 were in common including various bioactive volatiles. Major constituents of leaves were phytol (43.63%), palmitic acid (8.55%) and geranyl linalool (6.95%) and stem were palmitic acid (14.95%), eicosane (9.67%) and phytol (9.31%), and hence, a significant difference in the percentage composition of aerial parts was observed. To study seasonal changes, similarity analysis was carried out by calculating correlation coefficient (r) and vector angle cosine (z) that were more than 0.91 for stem-to-stem and leaf-to-leaf batches indicating considerable consistency.

  18. Antimicrobial activity and phytochemical characterization of Carya illinoensis.

    PubMed

    Bottari, Nathieli Bianchin; Lopes, Leonardo Quintana Soares; Pizzuti, Kauana; Filippi Dos Santos Alves, Camilla; Corrêa, Marcos Saldanha; Bolzan, Leandro Perger; Zago, Adriana; de Almeida Vaucher, Rodrigo; Boligon, Aline Augusti; Giongo, Janice Luehring; Baldissera, Matheus Dellaméa; Santos, Roberto Christ Vianna

    2017-03-01

    Carya illinoensis is a widespread species, belonging to the Juglandaceae family, commonly known as Pecan. Popularly, the leaves have been used in the treatment of smoking as a hypoglycemic, cleansing, astringent, keratolytic, antioxidant, and antimicrobial agent. The following research aimed to identify for the first time the phytochemical compounds present in the leaves of C. illinoensis and carry out the determination of antimicrobial activity of aqueous and ethanolic extracts. The antimicrobial activity was tested against 20 microorganisms by determining the minimum inhibitory concentration (MIC). Phenolic acids (gallic acid and ellagic acid), flavonoids (rutin), and tannins (catechins and epicatechins) were identified by HPLC-DAD and may be partially responsible for the antimicrobial activity against Gram-positive, Gram-negative, and yeast. The results showed MIC values between 25 mg/mL and 0.78 mg/mL. The extracts were also able to inhibit the production of germ tubes by Candida albicans. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Chemical Composition and Nutritive Benefits of Chicory (Cichorium intybus) as an Ideal Complementary and/or Alternative Livestock Feed Supplement

    PubMed Central

    Shale, Karabo

    2017-01-01

    Chicory is a perennial plant grown in different parts of the world, used as forage for livestock, as folklore remedies, or as a vegetable addition in human diets. There are several varieties of the chicory plant, known differently globally due to its numerous medicinal, culinary, and nutritional qualities. Most parts of the plant contain a potpourri of nutrients ranging within carbohydrates, proteins, vitamins, minerals, soluble fiber, trace elements, and bioactive phenolic compounds, which are responsible for the various nutritive, prophylactic, and therapeutic qualities of chicory. Inulin, coumarins, tannins, monomeric flavonoids, and sesquiterpene lactones are some of the major phytocompounds mostly found in chicory plants. The health-promoting activities attributed to chicory comprise, among others, anti-inflammatory, anticarcinogenic, antiviral, antibacterial, antimutagenic, antifungal, anthelmintic, immune-stimulating, and antihepatotoxic and its antioxidative qualities. As a versatile plant, chicory's chemical composition and use as a suitable livestock feed supplement or as an alternative feed ingredient (AFI) are thus reviewed. PMID:29387778

  20. Antioxidant, antimicrobial and urease inhibiting activities of methanolic extracts from Cyphostemma digitatum stem and roots.

    PubMed

    Khan, Rasool; Saif, Abdullah Qasem; Quradha, Mohammed Mansour; Ali, Jawad; Rauf, Abdur; Khan, Ajmal

    2016-01-01

    Cyphostemma digitatum stem and roots extracts were investigated for antioxidant, antimicrobial, urease inhibition potential and phytochemical analysis. Phytochemical screening of the roots and stem extract revealed the presence of secondary metabolites including flavonoids, alkaloids, coumarins, saponins, terpenoids, tannins, carbohydrates/reducing sugars and phenolic compounds. The methanolic extracts of the roots displayed highest antioxidant activity (93.518%) against DPPH while the crude methanolic extract of the stem showed highest antioxidant activity (66.163%) at 100 μg/mL concentration. The methanolic extracts of both stem and roots were moderately active or even found to be less active against the selected bacterial and fungal strains (Tables S2 and S3). The roots extract (methanol) showed significant urease enzyme inhibition activity (IC50 = 41.2 ± 0.66; 0.2 mg/mL) while the stem extract was found moderately active (IC50 = 401.1 ± 0.58; 0.2 mg/mL) against thiourea (IC50 = 21.011; 0.2 mg/mL).

  1. Isolation of phenolic compounds from hop extracts using polyvinylpolypyrrolidone: characterization by high-performance liquid chromatography-diode array detection-electrospray tandem mass spectrometry.

    PubMed

    Magalhães, Paulo J; Vieira, Joana S; Gonçalves, Luís M; Pacheco, João G; Guido, Luís F; Barros, Aquiles A

    2010-05-07

    The aim of the present work was the development of a suitable methodology for the separation and determination of phenolic compounds in the hop plant. The developed methodology was based on the sample purification by adsorption of phenolic compounds from the matrix to polyvinylpolypyrrolidone (PVPP) and subsequent desorption of the adsorbed polyphenols with acetone/water (70:30, v/v). At last, the extract was analyzed by HPLC-DAD and HPLC-ESI-MS/MS. The first phase of this work consisted of the study of the adsorption behavior of several classes of phenolic compounds (e.g. phenolic acids, flavonols, and flavanols) by PVPP in model solutions. It has been observed that the process of adsorption of the different phenolic compounds to PVPP (at low concentrations) is differentiated, depending on the structure of the compound (number of OH groups, aromatic rings, and stereochemistry hindrance). For example, within the phenolic acids class (benzoic, p-hydroxybenzoic, protocatechuic and gallic acids) the PVPP adsorption increases with the number of OH groups of the phenolic compound. On the other hand, the derivatization of OH groups (methylation and glycosylation) resulted in a greatly diminished binding. The use of PVPP revealed to be very efficient for adsorption of several phenolic compounds such as catechin, epicatechin, xanthohumol and quercetin, since high adsorption and recovery values were obtained. The methodology was further applied for the extraction and isolation of phenolic compounds from hops. With this methodology, it was possible to obtain high adsorption values (>or=80%) and recovery yield values (>or=70%) for the most important phenolic compounds from hops such as xanthohumol, catechin, epicatechin, quercetin and kaempferol glycosides, and in addition it allows the identification of about 30 phenolic compounds by HPLC-DAD and HPLC-ESI-MS/MS. Copyright (c) 2009 Elsevier B.V. All rights reserved.

  2. Condensed Tannins from Ficus virens as Tyrosinase Inhibitors: Structure, Inhibitory Activity and Molecular Mechanism

    PubMed Central

    Chai, Wei-Ming; Feng, Hui-Ling; Zhuang, Jiang-Xing; Chen, Qing-Xi

    2014-01-01

    Condensed tannins from Ficus virens leaves, fruit, and stem bark were isolated and their structures characterized by 13C nuclear magnetic resonance spectrometry, high performance liquid chromatography electrospray ionization mass spectrometry, and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. The results showed that the leaves, fruit, and stem bark condensed tannins were complex mixtures of homo- and heteropolymers of B-type procyanidins and prodelphinidins with degrees of polymerization up to hexamer, dodecamer, and pentadecamer, respectively. Antityrosinase activities of the condensed tannins were studied. The results indicated that the condensed tannins were potent tyrosinase inhibitors. The concentrations for the leaves, fruit, and stem bark condensed tannins leading to 50% enzyme activity were determined to be 131.67, 99.89, and 106.22 μg/ml on monophenolase activity, and 128.42, 43.07, and 74.27 μg/ml on diphenolase activity. The inhibition mechanism, type, and constants of the condensed tannins on the diphenolase activity were further investigated. The results indicated that the condensed tannins were reversible and mixed type inhibitors. Fluorescence quenching, copper interacting, and molecular docking techniques were utilized to unravel the molecular mechanisms of the inhibition. The results showed that the hydroxyl group on the B ring of the condensed tannins could chelate the dicopper irons of the enzyme. Moreover, the condensed tannins could reduce the enzyme product o-quinones into colourless compounds. These results would contribute to the development and design of antityrosinase agents. PMID:24637701

  3. Phenolic content variability and its chromosome location in tritordeum

    PubMed Central

    Navas-Lopez, José F.; Ostos-Garrido, Francisco J.; Castillo, Almudena; Martín, Antonio; Gimenez, Maria J.; Pistón, Fernando

    2014-01-01

    For humans, wheat is the most important source of calories, but it is also a source of antioxidant compounds that are involved in the prevention of chronic disease. Among the antioxidant compounds, phenolic acids have great potential to improve human health. In this paper we evaluate the effect of environmental and genetic factors on the phenolics content in the grain of a collection of tritordeums with different cytoplasm and chromosome substitutions. To this purpose, tritordeum flour was used for extraction of the free, conjugates and bound phenolic compounds. These phenolic compounds were identified and quantified by RP-HPLC and the results were analyzed by univariate and multivariate methods. This is the first study that describes the composition of phenolic acids of the amphiploid tritordeum. As in wheat, the predominant phenolic compound is ferulic acid. In tritordeum there is great variability for the content of phenolic compounds and the main factor which determines its content is the genotype followed by the environment, in this case included in the year factor. Phenolic acid content is associated with the substitution of chromosome DS1D(1Hch) and DS2D(2Hch), and the translocation 1RS/1BL in tritordeum. The results show that there is high potential for further improving the quality and quantity of phenolics in tritordeum because this amphiploid shows high variability for the content of phenolic compounds. PMID:24523725

  4. Comparative evaluation of maceration and ultrasonic-assisted extraction of phenolic compounds from fresh olives.

    PubMed

    Deng, Junlin; Xu, Zhou; Xiang, Chunrong; Liu, Jing; Zhou, Lijun; Li, Tian; Yang, Zeshen; Ding, Chunbang

    2017-07-01

    Ultrasonic-assisted extraction (UAE) and maceration extraction (ME) were optimized using response surface methodology (RSM) for total phenolic compounds (TPC) from fresh olives. The main phenolic compounds and antioxidant activity of TPC were also investigated. The optimized result for UAE was 22mL/g of liquid-solid ratio, 47°C of extraction temperature and 30min of extraction time, 7.01mg/g of yielding, and for ME was 24mL/g of liquid-solid ratio, 50°C of extraction temperature and 4.7h of extraction time, 5.18mg/g of yielding. The HPLC analysis revealed that the extracts by UAE and ME possessed 14 main phenolic compounds, and UAE exhibited more amounts of all phenols than ME. The most abundant phenolic compounds in olive extracts were hydroxytyrosol, oleuropein and rutin. Both extracts showed excellent antioxidant activity in a dose-dependent manner. Taken together, UAE could effectively increase the yield of phenolic compounds from olives. In addition these phenolic compounds could be used as a potential source of natural antioxidants. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Persimmon tannin represses 3T3-L1 preadipocyte differentiation via up-regulating expression of miR-27 and down-regulating expression of peroxisome proliferator-activated receptor-γ in the early phase of adipogenesis.

    PubMed

    Zou, Bo; Ge, Zhenzhen; Zhu, Wei; Xu, Ze; Li, Chunmei

    2015-12-01

    Currently, obesity has become a worldwide health problem. Adipocyte differentiation is closely associated with the onset of obesity. Our previous studies suggested that persimmon tannin might be a potent anti-adipogenic dietary bioactive compound. However, the mechanism of persimmon tannin on adipocyte differentiation is still unknown. The purpose of this study was to investigate the effect of persimmon tannin on adipogenic differentiation in 3T3-L1 preadipocytes and the underlying mechanisms. Adipogenic differentiation was induced by cocktail in the presence or absence of persimmon tannin. Intracellular lipid accumulation was determined by Oil red O staining and enzymatic colorimetric methods. Gene expression and protein levels were measured by real time RT-PCR and Western blot. Persimmon tannin inhibited intracellular lipid accumulation markedly, and the inhibitory effect was largely limited to the early stage of adipocyte differentiation. Persimmon tannin suppressed the expression of C/EBPα and peroxisome proliferator-activated receptor-γ (PPARγ), significantly. Furthermore, genes related to lipogenesis, such as sterol regulatory element-binding protein 1, were down-regulated by persimmon tannin. In addition, adipocyte fatty acid binding protein (aP2), which is a target gene of PPARγ, was suppressed by persimmon tannin notably. Correspondingly, the expression of miR-27a and miR-27b were up-regulated by persimmon tannin from Day 2 to Day 8 significantly. Persimmon tannin inhibited adipocyte differentiation through regulation of PPARγ, C/EBPα and miR-27 in early stage of adipogenesis.

  6. Optimization of high pressure bioactive compounds extraction from pansies (Viola × wittrockiana) by response surface methodology

    NASA Astrophysics Data System (ADS)

    Fernandes, Luana; Casal, Susana I. P.; Pereira, José A.; Ramalhosa, Elsa; Saraiva, Jorge A.

    2017-07-01

    Response surface methodology (RSM) was employed for the first time to optimize high pressure extraction (HPE) conditions of bioactive compounds from pansies, namely: pressure (X1: 0-500 MPa), time (X2: 5-15 min) and ethanol concentration (X3: 0-100%). Consistent fittings using second-order polynomial models were obtained for flavonoids, tannins, anthocyanins, total reducing capacity (TRC) and DPPH (2,2-diphenyl-1-picrylhydrazyl) radical scavenging activity. The optimum extraction conditions based on combination responses for TRC, tannins and anthocyanins were: X1 = 384 MPa, X2 = 15 min and X3 = 35% (v/v) ethanol, shortening the extraction time when compared to the classic method of stirring (approx. 24 h). When the optimum extraction conditions were applied, 65.1 mg of TRC, 42.8 mg of tannins and 56.15 mg of anthocyanins/g dried flower were obtained. Thus, HPE has shown to be a promising technique to extract bioactive compounds from pansies, by reducing the extraction time and by using green solvents (ethanol and water), for application in diverse industrial fields.

  7. Online solid-phase extraction with high-performance liquid chromatography and mass spectrometry for the determination of five tannins in traditional Chinese medicine injections.

    PubMed

    Sun, Meng; Lin, Yuanyuan; Zhang, Jie; Zheng, Shaohua; Wang, Sicen

    2016-03-01

    A rapid analytical method based on online solid-phase extraction with high-performance liquid chromatography and mass spectrometry has been established and applied to the determination of tannin compounds that may cause adverse effects in traditional Chinese medicine injections. Different solid-phase extraction sorbents have been compared and the elution buffer was optimized. The performance of the method was verified by evaluation of recovery (≥40%), repeatability (RSD ≤ 6%), linearity (r(2) ≥ 0.993), and limit of quantification (≤0.35 μg/mL). Five tannin compounds, gallic acid, cianidanol, gallocatechin gallate, ellagic acid, and penta-O-galloylglucose, were identified with concentrations ranging from 3.1-37.4 μg/mL in the analyzed traditional Chinese medicine injections. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Isoterchebulin and 4,6-O-isoterchebuloyl-D-glucose, novel hydrolyzable tannins from Terminalia macroptera.

    PubMed

    Conrad, J; Vogler, B; Reeb, S; Klaiber, I; Papajewski, S; Roos, G; Vasquez, E; Setzer, M C; Kraus, W

    2001-03-01

    Two new hydrolyzable tannins, isoterchebulin (1) and 4,6-O-isoterchebuloyl-D-glucose (2), together with six known tannins, 3-8, were isolated from the bark of Terminalia macroptera. Their structures were elucidated by extensive 1D and 2D NMR studies, MS, and chemical transformations. Biological activities of all compounds were evaluated against the snail Biomphalaria glabrata, the bacteria Bacillus subtilis and Pseudomonas fluorescens, the nematode Caenorhabditis elegans, and four cancer cell lines (Hep G2, MCF-7/S, MDA-MB-231, and 5637 cells). All compounds except 3 showed antimicrobial activities against B. subtilis (MIC 8-64 microg/mL), whereas only 1 was active against C. elegans (100 microg/mL) and B. glabrata(LC(100) = 60 microg/mL). 3 and 8 were toxic against 5637 cells with LC(50) = 84.66 and 41.40 microM, respectively.

  9. Development of methodology for identification the nature of the polyphenolic extracts by FTIR associated with multivariate analysis.

    PubMed

    Grasel, Fábio dos Santos; Ferrão, Marco Flôres; Wolf, Carlos Rodolfo

    2016-01-15

    Tannins are polyphenolic compounds of complex structures formed by secondary metabolism in several plants. These polyphenolic compounds have different applications, such as drugs, anti-corrosion agents, flocculants, and tanning agents. This study analyses six different type of polyphenolic extracts by Fourier transform infrared spectroscopy (FTIR) combined with multivariate analysis. Through both principal component analysis (PCA) and hierarchical cluster analysis (HCA), we observed well-defined separation between condensed (quebracho and black wattle) and hydrolysable (valonea, chestnut, myrobalan, and tara) tannins. For hydrolysable tannins, it was also possible to observe the formation of two different subgroups between samples of chestnut and valonea and between samples of tara and myrobalan. Among all samples analysed, the chestnut and valonea showed the greatest similarity, indicating that these extracts contain equivalent chemical compositions and structure and, therefore, similar properties. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Effect of solvent on the extraction of phenolic compounds and antioxidant capacity of hazelnut kernel.

    PubMed

    Fanali, Chiara; Tripodo, Giusy; Russo, Marina; Della Posta, Susanna; Pasqualetti, Valentina; De Gara, Laura

    2018-03-22

    Hazelnut kernel phenolic compounds were recovered applying two different extraction approaches, namely ultrasound-assisted solid/liquid extraction (UA-SLE) and solid-phase extraction (SPE). Different solvents were tested evaluating total phenolic compounds and total flavonoids contents together to antioxidant activity. The optimum extraction conditions, in terms of the highest value of total phenolic compounds extracted together to other parameters like simplicity and cost were selected for method validation and individual phenolic compounds analysis. The UA-SLE protocol performed using 0.1 g of defatted sample and 15 mL of extraction solvent (1 mL methanol/1 mL water/8 mL methanol 0.1% formic acid/5 mL acetonitrile) was selected. The analysis of hazelnut kernel individual phenolic compounds was obtained by HPLC coupled with DAD and MS detections. Quantitative analysis was performed using a mixture of six phenolic compounds belonging to phenolic classes' representative of hazelnut. Then, the method was fully validated and the resulting RSD% values for retention time repeatability were below 1%. A good linearity was obtained giving R 2 no lower than 0.997.The accuracy of the extraction method was also assessed. Finally, the method was applied to the analysis of phenolic compounds in three different hazelnut kernel varieties observing a similar qualitative profile with differences in the quantity of detected compounds. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Quantification of tannins and related polyphenols in commercial products of tormentil (Potentilla tormentilla).

    PubMed

    Fecka, Izabela; Kucharska, Alicja Zofia; Kowalczyk, Adam

    2015-01-01

    Potentilla tormentilla has many biological and pharmacological properties and can be used as an ingredient of some herbal medicines or beverages. The aim of this study was to evaluate the content of individual polyphenols, especially condensed and hydrolysable tannins in commercially available tormentil rhizomes and tinctures using chromatographic methods. A quantitative analysis (HPLC-PDA) was preceded by qualitative studies (UPLC-qTOF-MS/MS) and the isolation (CC) of the major tannin compounds. The tested plant material is characterised by a high content of tannins and related polyphenols, i.e. in rhizomes even at the level above 20% and in tinctures above 2%. The main components of tormentil rhizomes are procyanidin B3 (mean ~ 3.6%), procyanidin C2 (mean ~ 2.8%), agrimoniin (mean ~ 2.5%), 3-O-galloylquinic acid (mean ~ 1.7%), catechin (mean ~ 1.6%), other flavan-3-ol oligomers (mean ~ 0.5-1.1) and laevigatins (mean ~ 0.2-0.6%). Free ellagic acid and glycosides of ellagic and methylellagic acids are secondary components. Underground parts of tormentil are a source of oligomeric proanthocyanidins and ellagitannins, but in smaller quantity of gallotannins. Monogalloylquinic acids are new identified compounds, which had not been described in Potentilla tormentilla before we started our research. In the analysed tormentil tinctures agrimoniin concentration is lower in relation to other tannins. Copyright © 2015 John Wiley & Sons, Ltd.

  12. Plant phenolic compounds and oxidative stress: integrated signals in fungal-plant interactions.

    PubMed

    Shalaby, Samer; Horwitz, Benjamin A

    2015-08-01

    Upon invasion of a host, fungal pathogens are exposed to a variety of stresses. Plants release reactive oxygen species, and mount a variety of preformed and induced chemical defenses. Phenolic compounds are one example: they are ubiquitous in plants, and an invading pathogen encounters them already at the leaf surface, or for soil-borne pathogens, in the rhizosphere. Phenolic and related aromatic compounds show varying degrees of toxicity to cells. Some compounds are quite readily metabolized, and others less so. It was known already from classical studies that phenolic substrates induce the expression of the enzymes for their degradation. Recently, the ability to degrade phenolics was shown to be a virulence factor. Conversely, phenolic compounds can increase the effectiveness of antifungals. Phenolics are known antioxidants, yet they have been shown to elicit cellular responses that would usually be triggered to counter oxidant stress. Here, we review the evidence for a connection between the fungal response to phenolics as small-molecule signals, and the response to oxidants. The connections proposed here should enable genetic screens to identify specific fungal receptors for plant phenolics. Furthermore, understanding how the pathogen detects plant phenolic compounds as a stress signal may facilitate new antifungal strategies.

  13. Promoting effect of foliage sprayed zinc sulfate on accumulation of sugar and phenolics in berries of Vitis vinifera cv. Merlot growing on zinc deficient soil.

    PubMed

    Song, Chang-Zheng; Liu, Mei-Ying; Meng, Jiang-Fei; Chi, Ming; Xi, Zhu-Mei; Zhang, Zhen-Wen

    2015-02-02

    The effect of foliage sprayed zinc sulfate on berry development of Vitis vinifera cv. Merlot growing on arid zone Zn-deficient soils was investigated over two consecutive seasons, 2013 and 2014. Initial zinc concentration in soil and vines, photosynthesis at three berry developmental stages, berry weight, content of total soluble solids, titratable acidity, phenolics and expression of phenolics biosynthetic pathway genes throughout the stages were measured. Foliage sprayed zinc sulfate showed promoting effects on photosynthesis and berry development of vines and the promotion mainly occurred from veraison to maturation. Zn treatments enhanced the accumulation of total soluble solids, total phenols, flavonoids, flavanols, tannins and anthocyanins in berry skin, decreasing the concentration of titratable acidity. Furthermore, foliage sprayed zinc sulfate could significantly influence the expression of phenolics biosynthetic pathway genes throughout berry development, and the results of expression analysis supported the promotion of Zn treatments on phenolics accumulation. This research is the first comprehensive and detailed study about the effect of foliage sprayed Zn fertilizer on grape berry development, phenolics accumulation and gene expression in berry skin, providing a basis for improving the quality of grape and wine in Zn-deficient areas.

  14. Laccase enzyme detoxifies hydrolysates and improves biogas production from hemp straw and miscanthus.

    PubMed

    Schroyen, Michel; Van Hulle, Stijn W H; Holemans, Sander; Vervaeren, Han; Raes, Katleen

    2017-11-01

    The impact of various phenolic compounds, vanillic acid, ferulic acid, p-coumaric acid and 4-hydroxybenzoic acid on anaerobic digestion of lignocellulosic biomass (hemp straw and miscanthus) was studied. Such phenolic compounds have been known to inhibit biogas production during anaerobic digestion. The different phenolic compounds were added in various concentrations: 0, 100, 500, 1000 and 2000mg/L. A difference in inhibition of biomethane production between the phenolic compounds was noted. Hydrolysis rate, during anaerobic digestion of miscanthus was inhibited up to 50% by vanillic acid, while vanillic acid had no influence on the initial rate of biogas production during the anaerobic digestion of hemp straw. Miscanthus has a higher lignin concentration (12-30g/100gDM) making it less accessible for degradation, and in combination with phenolic compounds released after harsh pretreatments, it can cause severe inhibition levels during the anaerobic digestion, lowering biogas production. To counter the inhibition, lignin degrading enzymes can be used to remove or degrade the inhibitory phenolic compounds. The interaction of laccase and versatile peroxidase individually with the different phenolic compounds was studied to have insight in the polymerization of inhibitory compounds or breakdown of lignocellulose. Hemp straw and miscanthus were incubated with 0, 100 and 500mg/L of the different phenolic compounds for 0, 6 and 24h and pretreated with the lignin degrading enzymes. A laccase pretreatment successfully detoxified the substrate, while versatile peroxidase however was inhibited by 100mg/L of each of the individual phenolic compounds. Finally a combination of enzymatic detoxification and subsequent biogas production showed that a decrease in phenolic compounds by laccase treatment can considerably lower the inhibition levels of the biogas production. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Predicting the reactivity of adhesive starting materials

    Treesearch

    Anthony H. Conner

    1999-01-01

    Phenolic compounds are important in the production of bonded-wood products. Phenolic compounds in addition to phenol and resorcinol are potential alternative feedstocks for producing adhesives. The reactivity of a wide variety of phenolic compounds with formaldehyde was investigated using semi-empirical and ab initio computational chemistry methods...

  16. Saliva tannin interactions.

    PubMed

    Prinz, J F; Lucas, P W

    2000-11-01

    Many plant foods contain tannins, compounds that bind proteins, such as mammalian enzymes. Although described as tasteless, tannins can be detected orally by their astringency. However, the actual mechanism of oral detection and the effect of tannins on mastication and swallowing have been little investigated. Here, we show from in vitro tests that tannic acid, a common standard in tests used to detect tannins, significantly reduces the lubricating qualities of human saliva both by decreasing its viscosity and increasing friction, both factors lending support to the notion that astringency is a tactile phenomenon. From the literature, it is clear that this effect depends on the presence of salivary proline-rich proteins (PRP). In a mammalian context, ingestion of tannin-rich foods in a species with salivary PRP will be signalled by interference with bolus formation during mastication while the increase in friction may also be detectable and lead to increased tooth wear if the signal is ignored. In a human context, cross-cultural preferences for tannin-rich beverages such as tea, coffee and red wine at the end of meals may be explained by reduction in adhesion of food particles to the oral mucosa allowing their rapid oral clearance.

  17. [Polyphenolic compounds analysis and antioxidant activity in fruits of Prunus spinosa L.

    PubMed

    Varga, E; Domokos, E; Fogarasi, E; Steanesu, R; Fülöp, I; Croitoru, M D; Laczkó-Zöld, E

    2017-01-01

    Prunus spinosa L. (blackthorn, sloe) is a com- mon species in the wild flora of Europe. Marmalade, syrup, and alcoholic beverages have been prepared from fruits. In folk medicine they'are used due to the astringent effect. However there are few studies on these indigenous fruits. According to the literature they contain tannins, anthocyanins, sugars, vitamin C etc. Our objective is to determine the antioxidant activity as related to their phenolic composition. For this purpose we prepared extracts using methanol, methanol-water (1: 1) and water. The antioxidant activity was determined by DPPH method and by photochemiluminescens (PCL) method. The total polyphenols, total anthocyanins and flavonoids were determined by colorimetric methods. Individual polyphenols were identified by a RP-HPLC-UVIVIS method. The antioxidant activity decreased in the extracts as follows: methanol > methanol-water > water (IC₅₀= 1.33 mg/ml for DPPH; 11.94 μmol AAEIml for PCL > IC₅₀ = 1.87 mg/ml for DPPH; 10.35 μmol AAElml for PCL > IC₅₀ = 15.29 mg/ml for DPPH, 1.89 μmol AAElml for PCL) which is cor- related with the total polyphenol content (369 mg/100g > 244 mg1100g > 101 mg1100g) and total anthocyanin content (37.11 mg/100 g > 16.33 mg/100g > 7.76 mg/100g). The fla- vonoid content is similar in the three extracts (between 35.82 - 37.32 mg1100 g). The HPLC analysis shows high chloro- genic and neochlorogenic acid levels, followed by glycosides of quercetin. Our results demonstrated that blackthorn fruits are a rich source of phenolic compounds, with anti- oxidant activity, which are best extracted with methanol or methanol-water.

  18. Chemical composition and biological activities of extracts and essential oil of Boswellia dalzielii leaves.

    PubMed

    Kohoude, Midéko Justin; Gbaguidi, Fernand; Agbani, Pierre; Ayedoun, Marc-Abel; Cazaux, Sylvie; Bouajila, Jalloul

    2017-12-01

    Boswellia dalzielii Hutch. (Burseraceae) is an aromatic plant. The leaves are used for beverage flavouring. This study investigates the chemical composition and biological activities of various extracts. The essential oil was prepared via hydrodistillation. Identification and quantification were realized via GC-MS and GC-FID. Consecutive extractions (cyclohexane, dichloromethane, ethyl acetate and methanol) were carried out and various chemical groups (phenolics, flavonoids, tannins, antocyanins and sugar) were quantified. The volatile compounds of organic extracts were identified before and after derivatization. Antioxidant, antihyperuricemia, anti-Alzheimer, anti-inflammatory and anticancer activities were evaluated. In the essential oil, 50 compounds were identified, including 3-carene (27.72%) and α-pinene (15.18%). 2,5-Dihydroxy acetophenone and β-d-xylopyranose were identified in the methanol extract. Higher phenolic (315.97 g GAE/kg dry mass) and flavonoid (37.19 g QE/kg dry mass) contents were observed in the methanol extract. The methanol extract has presented remarkable IC 50  =   6.10 mg/L for antiDPPH, 35.10 mg/L for antixanthine oxidase and 28.01 mg/L for anti-5-lipoxygenase. For acetylcholinesterase inhibition, the best IC 50 (76.20 and 67.10 mg/L) were observed, respectively, with an ethyl acetate extract and the essential oil. At 50 mg/L, the dichloromethane extract inhibited OVCAR-3 cell lines by 65.10%, while cyclohexane extract inhibited IGROV-1 cell lines by 92.60%. Biological activities were fully correlated with the chemical groups of the extracts. The ethyl acetate and methanol extracts could be considered as potential alternatives for use in dietary supplements for the prevention or treatment of diseases because of these extracts natural antioxidant, antihyperuricemic and anti-inflammatory activities.

  19. Antioxidant and Anti-Adipogenic Activities of Trapa japonica Shell Extract Cultivated in Korea

    PubMed Central

    Lee, DooJin; Lee, Ok-Hwan; Choi, Geunpyo; Kim, Jong Dai

    2017-01-01

    Trapa japonica shell contains phenolic compounds such as tannins. Studies regarding the antioxidant and anti-adipogenic effects of Trapa japonica shell cultivated in Korea are still unclear. Antioxidant and anti-adipogenic activities were measured by in vitro assays such as 2,2-diphenyl-1-picrylhydrazy (DPPH) radical scavenging activity, 2,2′-azinobis( 3-ethylbenzothiazoline-6-sulphonic acid) (ABTS) radical scavenging activity, ferric reducing ability of plasma assay, reducing power, superoxide dismutase-like activity, and iron chelating ability in 3T3-L1 cells. We also measured the total phenol and flavonoids contents (TPC and TFC, respectively) in Trapa japonica shell extract. Our results show that TPC and TFC of Trapa japonica shell extract were 157.7±0.70 mg gallic acid equivalents/g and 25.0±1.95 mg quercetin equivalents/g, respectively. Trapa japonica shell extract showed strong antioxidant activities in a dose-dependent manner in DPPH and ABTS radical scavenging activities and other methods. Especially, the whole antioxidant activity test of Trapa japonica shell extract exhibited higher levels than that of butylated hydroxytoluene as a positive control. Furthermore, Trapa japonica shell extract inhibited lipid accumulation and reactive oxygen species production during the differentiation of 3T3-L1 preadipocytes. Trapa japonica shell extract possessed a significant antioxidant and anti-adipogenic property, which suggests its potential as a natural functional food ingredient. PMID:29333386

  20. Antioxidants Potential of the Filamentous Fungi (Mucor circinelloides)

    PubMed Central

    Hussain, Syed Ammar; Yang, Junhuan; Ijaz, Muhammad Umair; Liu, Qing; Song, Yuanda

    2017-01-01

    Three important strains of Mucor circinelloides grown in complete and minimal media for specified period (72 h, 120 h and 168 h) under submerged fermentation conditions were investigated for their potential antioxidants/secondary metabolite production. All mycelial extracts demonstrated effective antioxidant activities in terms of β-carotene/linoleic acid bleaching, radical scavenging, reduction of metal ions and chelating abilities against ferrous ions. Different extraction methods and solvent systems affected the recovery yield and antioxidant activities of the extracts significantly (p ≤ 0.05). Ethanolic extracts were found to be rich source of antioxidant components and subsequently more effective in antioxidant properties. Fermentation period and media used also significantly affected (p ≤ 0.05) the antioxidant production and the resulting antioxidant properties. The (ethanolic) extracts of all the strains from late exponential growth phase (120 h) showed highest antioxidant production with topmost reducing, chelating and radical scavenging capabilities. Strain MC277.49 was found to be the highest producer of antioxidants followed by MC108.16 and WJ11. Phenolic compounds were detected significantly in higher (p ≤ 0.05) amount succeeded by the condensed tannins and flavonoids. Total phenol content of each extract was attributed to overall antioxidant capacity. Submerged fermentation with nutritional stress conditions were found to be excellent way of producing surplus amount of natural antioxidants/secondary metabolites with their vast potential commercial application in food and pharmaceutical industries. PMID:28991177

Top