Sample records for tanso kotei gijutsu

  1. Algorithm development for the TIR bands of GOSAT-2/TANSO-FTS-2: lessons from GOSAT/TANSO-FTS TIR CO2 and CH4 measurement

    NASA Astrophysics Data System (ADS)

    Saitoh, N.; Yamada, A.; Itatsu, T.; Imasu, R.; Shiomi, K.; Niwa, Y.

    2017-12-01

    Greenhouse Gases Observing Satellite-2 (GOSAT-2), the successor of GOSAT, is planned to be launched in a year or so later. Thermal and Near Infrared Sensor for Carbon Observation (TANSO)-Fourier Transform Spectrometer-2 (FTS-2) on board the GOSAT-2 has two bands in the thermal infrared (TIR) region from 5.6 to 14.3 μm. We have developed an algorithm to retrieve CO2 and CH4 vertical profiles from the GOSAT/TANSO-FTS TIR band [Saitoh et al., 2009; 2016] and performed validation analysis for the TANSO-FTS TIR CO2 and CH4 products. Saitoh et al. [2016, 2017] showed that TANSO-FTS TIR V1 CO2 data had a seasonal- and regional-dependent negative bias in the upper troposphere and lower stratosphere and a consistent negative bias in the lower and middle troposphere. Holl et al. [2016], Zou et al. [2016], and Olsen et al. [2017] evaluated the data quality of the TANSO-FTS TIR V1 CH4 product through intercomparisons between TANSO-FTS and other satellite-borne and ground-based instruments; their results were generally consistent with comparison results of the V1 CH4 product with aircraft CH4 data [Saitoh et al., in preparation]. GOSAT/TANSO-FTS TIR N2O data, a by-product of the TIR V1 CH4 data, captured enhancement of N2O concentrations over the Mediterranean Sea associated with Asian monsoon circulation in spite of low signal-to-noise ratio (SNR) of TANSO-FTS 7-μm CH4 band [Kangah et al., 2017]. The SNR of the TIR bands of GOSAT-2/TANSO-FTS-2 are expected to be larger than that of TANSO-FTS especially at the 7-μm CH4 band. Based on the TANSO-FTS TIR V1 algorithm, we are now developing a retrieval algorithm for CO2, CH4, and other trace gases from the two TIR bands of GOSAT-2/TANSO-FTS-2. We have performed retrieval simulations using outputs from the Nonhydrostatic Icosahedral Atmospheric Model (NICAM)-based Transport Model (TM) [Niwa et al., 2011; 2017], which will be used as a priori data for the retrieval processing of GOSAT-2/TANSO-FTS-2.

  2. Characterization of TANSO-FTS on GOSAT

    NASA Astrophysics Data System (ADS)

    Suto, H.; Kuze, A.; Kaneko, Y.; Hamazaki, T.

    2006-12-01

    In order to measure the global column concentration of carbon dioxide (CO2) and methane (CH4), the Green house gases Observing SATellite (GOSAT) will be planning to launch at August in 2008. To estimate and demonstrate the performance of TANSO-FTS (Thermal And Near infrared Sensor for carbon Observation Fourier-Transform Spectrometer) through the filed and laboratory experiments, the Bread Board Model (BBM) for TANSO-FTS has been developed. The BBM has three narrow bands detectable regions; 0.76, 1.6 and 2micrion (band1,2 and 3) with +/-2.5cm maximum optical path difference. The Signal to Noise ratio (SNR), response and the instrumental line shape (ILS) have been determined in the laboratory by introducing the light emitted from the black body, Ar lamp, and the tunable diode laser. The measured values of full width at half maximum (FWHM) are 0.35, 0.25, 0.24 cm-1 for band1, 2 and 3, respectively. Also, the measured ILS has good correlation with the calculated one, and the parameterization of off-axis effect has been investigated. The developed method will be applied to determine the characterization of Engineering Model (EM) and Proto Flight Model (PFM) of TANSO. In this presentation, the characterization of TANSO-BBM and the preliminary results of performance test as well as TANSO-EM will be reported.

  3. One-year operation of TANSO-FTS on GOSAT and follow-on mission feasibility

    NASA Astrophysics Data System (ADS)

    Shiomi, Kei; Nakajima, Masakatsu; Kuze, Akihiko; Takeshima, Toshiaki; Kawakami, Shuji; Suto, Hiroshi

    2017-11-01

    The Greenhouse gases Observing SATellite (GOSAT) was developed to contribute to monitoring of carbon dioxide and methane from space [1]. The mission objectives are global greenhouse gas measurements from space with precision of 1 % for CO2 and 2 % for CH4 in seasonal mean. The GOSAT carries Thermal And Near infrared Sensor for carbon Observation (TANSO) for precise measurement of greenhouse gases. Main instrument is Fourier Transfer Spectrometer (TANSO-FTS) to observe atmospheric absorption spectra of CO2 and CH4 with high spectral resolution of 0.2 cm-1, broad wavelength coverage of 0.76 - 14.3 microns, wide swath of 790 km and frequent revisit of 3 days. Cloud and Aerosol Imager (TANSO-CAI) is simultaneously on board for cloud detection and correction of optical thin cirrus and aerosol interference within the FTS instantaneous field of view. The GOSAT satellite was launched by H2A-15 rocket on January 23, 2009. The Level 1B products of calibrated spectra were released from September 2009 in public. The Level 2 products of CO2 and CH4 column densities were released from February 2010 [2]. The normal observation data is acquired over one year regularly from April 2009. The mission lifetime is 5 years.

  4. Assimilation of atmospheric methane products into the MACC-II system: from SCIAMACHY to TANSO and IASI

    NASA Astrophysics Data System (ADS)

    Massart, S.; Agusti-Panareda, A.; Aben, I.; Butz, A.; Chevallier, F.; Crevosier, C.; Engelen, R.; Frankenberg, C.; Hasekamp, O.

    2014-06-01

    The Monitoring Atmospheric Composition and Climate Interim Implementation (MACC-II) delayed-mode (DM) system has been producing an atmospheric methane (CH4) analysis 6 months behind real time since June 2009. This analysis used to rely on the assimilation of the CH4 product from the SCanning Imaging Absorption spectroMeter for Atmospheric CHartographY (SCIAMACHY) instrument onboard Envisat. Recently the Laboratoire de Météorologie Dynamique (LMD) CH4 products from the Infrared Atmospheric Sounding Interferometer (IASI) and the SRON Netherlands Institute for Space Research CH4 products from the Thermal And Near-infrared Sensor for carbon Observation (TANSO) were added to the DM system. With the loss of Envisat in April 2012, the DM system now has to rely on the assimilation of methane data from TANSO and IASI. This paper documents the impact of this change in the observing system on the methane tropospheric analysis. It is based on four experiments: one free run and three analyses from respectively the assimilation of SCIAMACHY, TANSO and a combination of TANSO and IASI CH4 products in the MACC-II system. The period between December 2010 and April 2012 is studied. The SCIAMACHY experiment globally underestimates the tropospheric methane by 35 part per billion (ppb) compared to the HIAPER Pole-to-Pole Observations (HIPPO) data and by 28 ppb compared the Total Carbon Column Observing Network (TCCON) data, while the free run presents an underestimation of 5 ppb and 1 ppb against the same HIPPO and TCCON data, respectively. The assimilated TANSO product changed in October 2011 from version v.1 to version v.2.0. The analysis of version v.1 globally underestimates the tropospheric methane by 18 ppb compared to the HIPPO data and by 15 ppb compared to the TCCON data. In contrast, the analysis of version v.2.0 globally overestimates the column by 3 ppb. When the high density IASI data are added in the tropical region between 30° N and 30° S, their impact is mainly

  5. Multi-layer Retrievals of Greenhouse Gases from a Combined Use of GOSAT TANSO-FTS SWIR and TIR

    NASA Astrophysics Data System (ADS)

    Kikuchi, N.; Kuze, A.; Kataoka, F.; Shiomi, K.; Hashimoto, M.; Suto, H.; Knuteson, R. O.; Iraci, L. T.; Yates, E. L.; Gore, W.; Tanaka, T.; Yokota, T.

    2016-12-01

    The TANSO-FTS sensor onboard GOSAT has three frequency bands in the shortwave infrared (SWIR) and the fourth band in the thermal infrared (TIR). Observations of high-resolution spectra of reflected sunlight in the SWIR are extensively utilized to retrieve column-averaged concentrations of the major greenhouse gases such as carbon dioxide (XCO2) and methane (XCH4). Although global XCO2 and XCH4 distribution retrieved from SWIR data can reduce the uncertainty in the current knowledge about sources and sinks of these gases, information on the vertical profiles would be more useful to constrain the surface flux and also to identify the local emission sources. Based on the degrees of freedom for signal, Kulawik et al. (2016, IWGGMS-12 presentation) shows that 2-layer information on the concentration of CO2 can be extracted from TANSO-FTS SWIR measurements, and the retrieval error is predicted to be about 5 ppm in the lower troposphere. In this study, we present multi-layer retrievals of CO2 and CH4 from a combined use of measurements of TANSO-FTS SWIR and TIR. We selected GOSAT observations at Railroad Valley Playa in Nevada, USA, which is a vicarious calibration site for TANSO-FTS, as we have various ancillary data including atmospheric temperature and humidity taken by a radiosonde, surface temperature, and surface emissivity with a ground based FTS. All of these data are useful especially for retrievals using TIR spectra. Currently, we use the 700-800 cm-1 and 1200-1300 cm-1 TIR windows for CO2 and CH4 retrievals, respectively, in addition to the SWIR bands. We found that by adding TIR windows, 3-layer information can be extracted, and the predicted retrieval error in the CO2 concentration was reduced about 1 ppm in the lower troposphere. We expect that the retrieval error could be further reduced by optimizing TIR windows and by reducing systematic forward model errors.

  6. Greenhouse gases observation from space: overview of TANSO and GOSAT

    NASA Astrophysics Data System (ADS)

    Hamazaki, Takashi

    2017-11-01

    Japan Aerospace Exploration Agency (JAXA) is developing Greenhouse gases Observing Satellite (GOSAT). GOSAT is the first satellite to monitor the columnar density of carbon dioxide and methane operationally from space. The GOSAT is the joint endeavor with JAXA, National Institute for Environmental Studies and Ministry of the Environment. The GOSAT will be launched with the H-IIA launch vehicle in early 2009. This paper shows the overview of GOSAT and its mission instrument, TANSO. Mission objectives, sensor and satellite design, its performance and summary of ground test results are also provided.

  7. Comparison of the GOSAT TANSO-FTS TIR CH volume mixing ratio vertical profiles with those measured by ACE-FTS, ESA MIPAS, IMK-IAA MIPAS, and 16 NDACC stations

    NASA Astrophysics Data System (ADS)

    Olsen, Kevin S.; Strong, Kimberly; Walker, Kaley A.; Boone, Chris D.; Raspollini, Piera; Plieninger, Johannes; Bader, Whitney; Conway, Stephanie; Grutter, Michel; Hannigan, James W.; Hase, Frank; Jones, Nicholas; de Mazière, Martine; Notholt, Justus; Schneider, Matthias; Smale, Dan; Sussmann, Ralf; Saitoh, Naoko

    2017-10-01

    The primary instrument on the Greenhouse gases Observing SATellite (GOSAT) is the Thermal And Near infrared Sensor for carbon Observations (TANSO) Fourier transform spectrometer (FTS). TANSO-FTS uses three short-wave infrared (SWIR) bands to retrieve total columns of CO2 and CH4 along its optical line of sight and one thermal infrared (TIR) channel to retrieve vertical profiles of CO2 and CH4 volume mixing ratios (VMRs) in the troposphere. We examine version 1 of the TANSO-FTS TIR CH4 product by comparing co-located CH4 VMR vertical profiles from two other remote-sensing FTS systems: the Canadian Space Agency's Atmospheric Chemistry Experiment FTS (ACE-FTS) on SCISAT (version 3.5) and the European Space Agency's Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) on Envisat (ESA ML2PP version 6 and IMK-IAA reduced-resolution version V5R_CH4_224/225), as well as 16 ground stations with the Network for the Detection of Atmospheric Composition Change (NDACC). This work follows an initial inter-comparison study over the Arctic, which incorporated a ground-based FTS at the Polar Environment Atmospheric Research Laboratory (PEARL) at Eureka, Canada, and focuses on tropospheric and lower-stratospheric measurements made at middle and tropical latitudes between 2009 and 2013 (mid-2012 for MIPAS). For comparison, vertical profiles from all instruments are interpolated onto a common pressure grid, and smoothing is applied to ACE-FTS, MIPAS, and NDACC vertical profiles. Smoothing is needed to account for differences between the vertical resolution of each instrument and differences in the dependence on a priori profiles. The smoothing operators use the TANSO-FTS a priori and averaging kernels in all cases. We present zonally averaged mean CH4 differences between each instrument and TANSO-FTS with and without smoothing, and we examine their information content, their sensitive altitude range, their correlation, their a priori dependence, and the variability within

  8. An advanced retrieval algorithm for greenhouse gases using polarization information measured by GOSAT TANSO-FTS SWIR I: Simulation study

    NASA Astrophysics Data System (ADS)

    Kikuchi, N.; Yoshida, Y.; Uchino, O.; Morino, I.; Yokota, T.

    2016-11-01

    We present an algorithm for retrieving column-averaged dry air mole fraction of carbon dioxide (XCO2) and methane (XCH4) from reflected spectra in the shortwave infrared (SWIR) measured by the TANSO-FTS (Thermal And Near infrared Sensor for carbon Observation Fourier Transform Spectrometer) sensor on board the Greenhouse gases Observing SATellite (GOSAT). The algorithm uses the two linear polarizations observed by TANSO-FTS to improve corrections to the interference effects of atmospheric aerosols, which degrade the accuracy in the retrieved greenhouse gas concentrations. To account for polarization by the land surface reflection in the forward model, we introduced a bidirectional reflection matrix model that has two parameters to be retrieved simultaneously with other state parameters. The accuracy in XCO2 and XCH4 values retrieved with the algorithm was evaluated by using simulated retrievals over both land and ocean, focusing on the capability of the algorithm to correct imperfect prior knowledge of aerosols. To do this, we first generated simulated TANSO-FTS spectra using a global distribution of aerosols computed by the aerosol transport model SPRINTARS. Then the simulated spectra were submitted to the algorithms as measurements both with and without polarization information, adopting a priori profiles of aerosols that differ from the true profiles. We found that the accuracy of XCO2 and XCH4, as well as profiles of aerosols, retrieved with polarization information was considerably improved over values retrieved without polarization information, for simulated observations over land with aerosol optical thickness greater than 0.1 at 1.6 μm.

  9. Testing forward model against OCO-2 and TANSO-FTS/GOSAT observed spectra in near infrared range

    NASA Astrophysics Data System (ADS)

    Zadvornykh, Ilya V.; Gribanov, Konstantin G.

    2015-11-01

    An existing software package FIRE-ARMS (Fine InfraRed Explorer for Atmospheric Remote MeasurementS) was modified by embedding vector radiative transfer model VLIDORT. Thus the program tool includes both thermal (TIR) and near infrared (NIR) regions. We performed forward simulation of near infrared spectra on the top of the atmosphere for outgoing radiation accounting multiple scattering in cloudless atmosphere. Simulated spectra are compared with spectra measured by TANSO-FTS/GOSAT and OCO-2 in the condition of cloudless atmosphere over Western Siberia. NCEP/NCAR reanalysis data were used to complete model atmosphere.

  10. Adaptation of an aerosol retrieval algorithm using multi-wavelength and multi-pixel information of satellites (MWPM) to GOSAT/TANSO-CAI

    NASA Astrophysics Data System (ADS)

    Hashimoto, M.; Takenaka, H.; Higurashi, A.; Nakajima, T.

    2017-12-01

    Aerosol in the atmosphere is an important constituent for determining the earth's radiation budget, so the accurate aerosol retrievals from satellite is useful. We have developed a satellite remote sensing algorithm to retrieve the aerosol optical properties using multi-wavelength and multi-pixel information of satellite imagers (MWPM). The method simultaneously derives aerosol optical properties, such as aerosol optical thickness (AOT), single scattering albedo (SSA) and aerosol size information, by using spatial difference of wavelegths (multi-wavelength) and surface reflectances (multi-pixel). The method is useful for aerosol retrieval over spatially heterogeneous surface like an urban region. In this algorithm, the inversion method is a combination of an optimal method and smoothing constraint for the state vector. Furthermore, this method has been combined with the direct radiation transfer calculation (RTM) numerically solved by each iteration step of the non-linear inverse problem, without using look up table (LUT) with several constraints. However, it takes too much computation time. To accelerate the calculation time, we replaced the RTM with an accelerated RTM solver learned by neural network-based method, EXAM (Takenaka et al., 2011), using Rster code. And then, the calculation time was shorternd to about one thouthandth. We applyed MWPM combined with EXAM to GOSAT/TANSO-CAI (Cloud and Aerosol Imager). CAI is a supplement sensor of TANSO-FTS, dedicated to measure cloud and aerosol properties. CAI has four bands, 380, 674, 870 and 1600 nm, and observes in 500 meters resolution for band1, band2 and band3, and 1.5 km for band4. Retrieved parameters are aerosol optical properties, such as aerosol optical thickness (AOT) of fine and coarse mode particles at a wavelenth of 500nm, a volume soot fraction in fine mode particles, and ground surface albedo of each observed wavelength by combining a minimum reflectance method and Fukuda et al. (2013). We will show

  11. Evaluation of bias in lower and middle tropospheric GOSAT/TANSO-FTS TIR V1.0 CO2 data through comparisons with aircraft and NICAM-TM CO2 data

    NASA Astrophysics Data System (ADS)

    Saitoh, N.; Hatta, H.; Imasu, R.; Shiomi, K.; Kuze, A.; Niwa, Y.; Machida, T.; Sawa, Y.; Matsueda, H.

    2016-12-01

    Thermal and Near Infrared Sensor for Carbon Observation (TANSO)-Fourier Transform Spectrometer (FTS) on board the Greenhouse Gases Observing Satellite (GOSAT) has been observing carbon dioxide (CO2) concentrations in several atmospheric layers in the thermal infrared (TIR) band since its launch on 23 January 2009. We have compared TANSO-FTS TIR Version 1 (V1) CO2 data from 2010 to 2012 and CO2 data obtained by the Continuous CO2 Measuring Equipment (CME) installed on several JAL aircraft in the framework of the Comprehensive Observation Network for TRace gases by AIrLiner (CONTRAIL) project to evaluate bias in the TIR CO2 data in the lower and middle troposphere. Here, we have regarded the CME data obtained during the ascent and descent flights over several airports as part of CO2 vertical profiles there. The comparisons showed that the TIR V1 CO2 data had a negative bias against the CME CO2 data; the magnitude of the bias varied depending on season and latitude. We have estimated bias correction values for the TIR V1 lower and middle tropospheric CO2 data in each latitude band from 40°S to 60°N in each season on the basis of the comparisons with the CME CO2 profiles in limited areas over airports, applied the bias correction values to the TIR V1 CO2 data, and evaluated the quality of the bias-corrected TIR CO2 data globally through comparisons with CO2 data taken from the Nonhydrostatic Icosahedral Atmospheric Model (NICAM)-based Transport Model (TM). The bias-corrected TIR CO2 data showed a better agreement with the NICAM-TM CO2 than the original TIR data, which suggests that the bias correction values estimated in the limited areas are basically applicable to global TIR CO2 data. We have compared XCO2 data calculated from both the original and bias-corrected TIR CO2 data with TANSO-FTS SWIR and NICAM-TM XCO2 data; both the TIR XCO2 data agreed with SWIR and NICAM-TM XCO2 data within 1% except over the Sahara desert and strong source and sink regions.

  12. Multispectral information for gas and aerosol retrieval from TANSO-FTS instrument

    NASA Astrophysics Data System (ADS)

    Herbin, H.; Labonnote, L. C.; Dubuisson, P.

    2012-11-01

    The Greenhouse gases Observing SATellite (GOSAT) mission and in particular TANSO-FTS instrument has the advantage to measure simultaneously the same field of view in different spectral ranges with a high spectral resolution. These features are promising to improve, not only, gaseous retrieval in clear sky or scattering atmosphere, but also to retrieve aerosol parameters. Therefore, this paper is dedicated to an Information Content (IC) analysis of potential synergy between thermal infrared, shortwave infrared and visible, in order to obtain a more accurate retrieval of gas and aerosol. The latter is based on Shannon theory and used a sophisticated radiative transfer algorithm developed at "Laboratoire d'Optique Atmosphérique", dealing with multiple scattering. This forward model can be relied to an optimal estimation method, which allows simultaneously retrieving gases profiles and aerosol granulometry and concentration. The analysis of the information provided by the spectral synergy is based on climatology of dust, volcanic ash and biomass burning aerosols. This work was conducted in order to develop a powerful tool that allows retrieving simultaneously not only the gas concentrations but also the aerosol characteristics by selecting the so called "best channels", i.e. the channels that bring most of the information concerning gas and aerosol. The methodology developed in this paper could also be used to define the specifications of future high spectral resolution mission to reach a given accuracy on retrieved parameters.

  13. Examination about the Impact of Thin Clouds in IFOV of GOSAT TANSO-FTS on Estimates of XCO2 in the Amazon

    NASA Astrophysics Data System (ADS)

    Oishi, Y.; Kamei, A.; Murakami, K.; Dupuy, E.; Yokota, Y.; Hiraki, K.; Ninomiya, K.; Saito, M.; Yoshida, Y.; Morino, I.; Nakajima, T. Y.; Yokota, T.; Matsunaga, T.

    2013-12-01

    Greenhouse gases Observing SATellite (GOSAT) was launched in 2009 to measure the global atmospheric CO2 and CH4 concentrations. GOSAT is equipped with two sensors: the Thermal And Near-infrared Sensor for carbon Observation-Fourier Transform Spectrometer (TANSO-FTS) and the Cloud and Aerosol Imager (TANSO-CAI). The presence of clouds in the instantaneous field-of-view (IFOV) of the FTS leads to incorrect estimates of the CO2 or CH4 concentration. To deal with this problem, the FTS data which are suspected to be cloud-contaminated must be identified and rejected. As a result, there are very few remaining FTS data in the region of tropical rainforest such as the Amazon. In the meanwhile the feasibility studies of GOSAT-2 started for more precise monitoring of atmospheric greenhouse gases than GOSAT in 2011. To improve the accuracy of estimates of the column-averaged dry air mole fraction of atmospheric CO2 (XCO2), we need to understand the present situation about cloud screening in the rain forest regions and to examine the cloud-contaminated data whose processing might be possible with improvement of instruments or algorithms. In this study we evaluated the impact of thin clouds on estimates of the XCO2 using an atmospheric radiative transfer code, which can simulate the spectrum at the top of the atmosphere under thin cloud conditions. First, we decided the input parameters, among which relative position of the sun and satellite to observation point, surface reflectance using cloud-free GOSAT data products in the Amazon, FTS L1B data products (radiance spectral data), FTS L2 data products (CO2 column abundance data), and CAI L3 data products (clear-sky reflectance data). The evaluation was performed by comparing depths of the CO2 absorption lines in output radiation spectra with varying CO2 concentrations and cloud conditions, cloud type, cloud optical depth, and cloud top altitude. We will present our latest results.

  14. GOSAT CO2 retrieval results using TANSO-CAI aerosol information over East Asia

    NASA Astrophysics Data System (ADS)

    KIM, M.; Kim, W.; Jung, Y.; Lee, S.; Kim, J.; Lee, H.; Boesch, H.; Goo, T. Y.

    2015-12-01

    In the satellite remote sensing of CO2, incorrect aerosol information could induce large errors as previous studies suggested. Many factors, such as, aerosol type, wavelength dependency of AOD, aerosol polarization effect and etc. have been main error sources. Due to these aerosol effects, large number of data retrieved are screened out in quality control, or retrieval errors tend to increase if not screened out, especially in East Asia where aerosol concentrations are fairly high. To reduce these aerosol induced errors, a CO2 retrieval algorithm using the simultaneous TANSO-CAI aerosol information is developed. This algorithm adopts AOD and aerosol type information as a priori information from the CAI aerosol retrieval algorithm. The CO2 retrieval algorithm based on optimal estimation method and VLIDORT, a vector discrete ordinate radiative transfer model. The CO2 algorithm, developed with various state vectors to find accurate CO2 concentration, shows reasonable results when compared with other dataset. This study concentrates on the validation of retrieved results with the ground-based TCCON measurements in East Asia and the comparison with the previous retrieval from ACOS, NIES, and UoL. Although, the retrieved CO2 concentration is lower than previous results by ppm's, it shows similar trend and high correlation with previous results. Retrieved data and TCCON measurements data are compared at three stations of Tsukuba, Saga, Anmyeondo in East Asia, with the collocation criteria of ±2°in latitude/longitude and ±1 hours of GOSAT passing time. Compared results also show similar trend with good correlation. Based on the TCCON comparison results, bias correction equation is calculated and applied to the East Asia data.

  15. GOSAT/TANSO-FTS Measurement of Volcanic and Geothermal CO2 Emissions

    NASA Astrophysics Data System (ADS)

    Schwandner, Florian M.; Carn, Simon A.; Newhall, Christopher G.

    2010-05-01

    volcanic CO2 anomalies using GOSAT and correlation with Aura/OMI, AIRS, and ASTER determined SO2 fluxes and ground based monitoring of CO2 and other geophysical and geochemical parameters. This will provide the ground work for future higher spatial resolution satellite missions. This is a joint effort from two GOSAT-IBUKI data application projects: "Satellite-Borne Quantification of Carbon Dioxide Emissions from Volcanoes and Geothermal Areas" (PI Schwandner), and "Application of GOSAT/TANSO-FTS to the Measurement of Volcanic CO2 Emissions" (PI Carn).

  16. Validation of XCO2 derived from SWIR of GOSAT TANSO-FTS with aircraft measurement data

    NASA Astrophysics Data System (ADS)

    Inoue, M.; Morino, I.; Uchino, O.; Miyamoto, Y.; Yoshida, Y.; Yokota, T.; Machida, T.; Sawa, Y.; Matsueda, H.; Sweeney, C.; Tans, P. P.; Andrews, A. E.; Patra, P. K.

    2011-12-01

    Column-averaged mixing ratios of carbon dioxide (XCO2) are retrieved from the Short-Wavelength InfraRed (SWIR) spectrum of Thermal And Near-infrared Sensor for carbon Observation - Fourier Transform Spectrometer (TANSO-FTS) onboard the Greenhouse gases Observing SATellite (GOSAT). They are compared with the aircraft data measured by the Comprehensive Observation Network for TRace gases by AIrLiner (CONTRAIL) project, National Oceanic and Atmospheric Administration (NOAA), and National Institute for Environmental Studies (NIES). Because limited aircraft measurement was conducted within a few hours of the GOSAT overpass time, we prepared temporally interpolated aircraft-based XCO2 data by fitting with the function that contains yearly trend and annual/semiannual sinusoidal variations to compare with GOSAT XCO2. As for the GOSAT XCO2 data, those retrieved within ±2 degrees or ±5 degrees latitude/longitude box centered at each observation site were used. In order to compare the aircraft data with the satellite data, the GOSAT column averaging kernels (CAK) should be taken into account to calculate the aircraft-based XCO2. However, it is hard to apply GOSAT CAK with temporally interpolated aircraft data. Therefore, we evaluated the GOSAT CAK impact on the aircraft-based XCO2 calculation by using CONTRAIL data over Narita (35.8N, 140.4E) where the maximum temporally match-upped data are available. The difference in the aircraft-based XCO2 with and without GOSAT CAK is lower by approximately 0.3 ppm. Here, we made a comparison between GOSAT XCO2 and aircraft-based XCO2 without GOSAT CAK. Although GOSAT data are underestimated by approximately 7-9 ppm for comparison in every site, there is a good correlation between both datasets in some sites, such as high-latitude regions of North America, Europe, Siberia, and ocean regions. A direct comparison between GOSAT and aircraft XCO2 at all observation sites shows that GOSAT SWIR XCO2 is biased low by about 8 ppm.

  17. Observations of tropospheric trace gases from GOSAT thermal infrared spectra

    NASA Astrophysics Data System (ADS)

    Ohyama, Hirofumi; Shiomi, Kei; Kawakami, Shuji; Nakajima, Masakatsu; Maki, Takashi; Deushi, Makoto

    2013-04-01

    Thermal And Near infrared Sensor for carbon Observation-Fourier Transform Spectrometer (TANSO-FTS), which is one of the sensors onboard the Greenhouse gases Observing SATellite (GOSAT), measures the sunlight backscattered by the Earth's surface and atmosphere as well as the thermal radiance emitted from the Earth. Atmospheric trace gases such as ozone (O3), water vapor (H2O and HDO), methanol (CH3OH) and ammonia (NH3) are derived from the thermal infrared spectral radiance recorded with the TANSO-FTS by an optimal estimation retrieval approach. TANSO-FTS total ozone columns are compared with Dobson spectrophotometer and Ozone Monitoring Instrument (OMI) data. The TANSO-FTS total ozone retrievals exhibit a positive bias of 3-4% with a root-mean-square difference of 2-6% compared to the Dobson and OMI measurements. We compare TANSO-FTS tropospheric ozone columns to those from ozonesonde data as well as from a three-dimensional chemical-climate model (MRI-CCM2). The TANSO-FTS data have high correlations with the ozonesonde data. The seasonal trends of the retrieved tropospheric ozone are consistent with those of the ozonesonde data. The spatial distribution of the tropospheric ozone from the TANSO-FTS and MRI-CCM2 shows good agreement, especially in the high-level tropospheric ozone regions. We also retrieve tropospheric H2O and HDO profiles simultaneously, accounting for the cross correlations between the water isotopes. The joint retrieval results in precise estimation of the isotope ratio by partial cancellation of systematic errors common to both H2O and HDO. The retrieved profiles and columns are compared with radiosonde, GPS, and ground-based high-resolution FTS data. The temporal and spatial variations of the precipitable water and the isotope ratio are consistent with those of the validation data. Finally, air pollutants such as CH3OH and NH3 are retrieved using the retrieved ozone and water vapor. We present the latitudinal and seasonal variations of CH3OH

  18. Discussion of vicarious calibration of GOSAT/TANSO-CAI UV-band (380nm) and aerosol retrieval in wildfire region in the OCO-2 and GOSAT observation campaign at Railroad Valley in 2016

    NASA Astrophysics Data System (ADS)

    Hashimoto, M.; Kuze, A.; Bruegge, C. J.; Shiomi, K.; Kataoka, F.; Kikuchi, N.; Arai, T.; Kasai, K.; Nakajima, T.

    2016-12-01

    The GOSAT (Greenhouse Gases Observing Satellite) / TANSO-CAI (Cloud and Aerosol Imager, CAI) is an imaging sensor to measure cloud and aerosol properties and observes reflected sunlight from the atmosphere and surface of the ground. The sensor has four bands from near ultraviolet (near-UV) to shortwave infrared, 380, 674, 870 and 1600nm. The field of view size is 0.5 km for band-1 through band-3, and 1.5km for band-4. Band-1 (380nm) is one of unique function of the CAI. The near-UV observation offers several advantages for the remote sensing of aerosols over land: Low reflectance of most surfaces; Sensitivity to absorbing aerosols; Absorption of trace gases is weak (Höller et al., 2004). CAI UV-band is useful to distinguish absorbing aerosol (smoke) from cloud. GOSAT-2/TANSO-CAI-2 that will be launched in the future also has UV-bands, 340 and 380nm. We carried out an experiment to calibrate CAI UV-band radiance using data taken in a field campaign of OCO-2 and GOSAT at Railroad Valley in 2016. The campaign period is June 27 to July 3 in 2016. We measured surface reflectance by using USB4000 Spectrometer with 74-UV collimating lens (Ocean Optics) and Spectralon (Labsphere). USB4000 is a UV spectrometer, and its measurement range from 300 to 520nm. We simulated CAI UV-band radiance using a vector type of radiation transfer code, i.e. including polarization calculation, pstar3 (Ota et al., 2010) using measured surface reflectance and atmospheric data, pressure and relative humidity by radiosonde in the same campaign, and aerosol optical depth by AERONET, etc. Then, we evaluated measured UV radiances with the simulated data. We show the result of vicarious calibration of CAI UV-band in the campaign, and discuss about this method for future sensor, CAI-2. Around the campaign period, there was wildfire around Los Angeles, and aerosol optical thickness (AOT) observed by AERONET at Rail Road valley and Caltech sites is also high. We tried to detect and retrieve aerosol

  19. The current status of the mission instruments of GOSAT-2

    NASA Astrophysics Data System (ADS)

    Nakajima, Masakatsu; Yajima, Yukie; Hashimoto, Makiko; Shiomi, Kei; Suto, Hiroshi; Imai, Hiroko

    2017-04-01

    The GOSAT-2 is the successor satellite to the GOSAT which is the satellite dedicated to the measurements of the greenhouse gases such as carbon dioxide and methane. GOSAT was launched in January of 2009 and has been operated for about seven years. The development of the GOSAT-2 has been continued for three years, and currently the proto-flight model is under manufacturing. The mission instruments of the GOSAT-2 are TANSO-FTS-2 and TANSO-CAI-2. TANSO-FTS-2 is the Fourier Transform Spectrometer observing greenhouse gases such as Carbon Dioxide and Methane and TANSO-CAI-2 is the imager observing the aerosols and clouds to compensate the TANSO-FTS-2 data and to grasp the movements of the aerosols such as PM2.5. The mission instruments will adopt the same kinds of instruments as GOSAT. But some improvements will be carried. Based on the results of the critical design, the manufacturing of the proto-flight model was started and through the manufacturing, the gap has emerged between the design and manufacturing. Especially, the results of the polarization sensitivity of the TANSO-CAI-2 was lower than 3% which is the requirements and the results of the test manufacturing has shown that it has been over than 40%. The root cause of this anomaly was that the thickness of the anti-reflecting coating had varied from place to place. Therefore the design of the thickness of the anti-reflecting coating has been changed with consideration for the difference of the thickness of the coat between the center and edge of the lens. And we could meet the polarization sensitivity requirement. In this presentation, the root cause and the investigation process of the polarization sensitivity anomaly will be presented as well as the current status of the manufacturing of the mission instruments of GOSAT-2.

  20. Validation of GOSAT/TANSO-FTS TIR V01.00 CO2 and CH4 products

    NASA Astrophysics Data System (ADS)

    Saitoh, N.; Kimoto, S.; Sugimura, R.; Imasu, R.; Kawakami, S.; Shiomi, K.; Machida, T.; Sawa, Y.; Matsuda, H.

    2014-12-01

    Greenhouse Gases Observing Satellite (GOSAT) has been making observations continuously for more than five years since its launch on 23 January 2009. Thermal and Near-infrared Sensor for Carbon Observation Fourier Transform Spectrometer (TANSO-FTS) on board the GOSAT simultaneously observes column abundances and profiles of CO2 and CH4 in the same field of view, from the shortwave infrared (SWIR) and thermal infrared (TIR) bands, respectively. We have just released the latest TIR CO2 and CH4 products, V01.00, to registered researchers. To validate the data quality of the V01.00 TIR CO2 product, we compared the TIR data with CO2 data obtained by Continuous CO2 Measuring Equipment (CME) on board JAL aircraft in Comprehensive Observation Network for Trace gases by Airliner (CONTRAIL) project. The aircraft CO2 data obtained during the level flights were compared with the V01.00 TIR upper tropospheric CO2 data. The CONTRAIL CO2 "profile" data obtained during the ascending and descending flights over several airports were compared with the TIR CO2 profiles. In the profile comparisons, we applied the TIR averaging kernel functions to the coincident CONTRAIL CO2 profiles. The V01.00 upper atmospheric CO2 data agreed to the CONTRAIL level flight CO2 data on average within 0.5-1%. Some TIR CO2 data showed relatively large differences from the nearest aircraft data, which suggests the existence of several problems such as L1B spectral calibration and nighttime cloud detection issues. The TIR V01.00 CO2 profile data from 9 to 13 km showed better agreement to CONTRAIL CO2 data than the a priori. However, the TIR CO2 data at around and below 5 km had low bias of 1-1.5%. The TIR V01.00 CH4 data generally showed reasonable latitudinal distributions as the previous version. In the Antarctic, unexpected high amounts of CH4 were seen in upper troposphere and lower stratosphere in autumn. This is probably because of the problem of simultaneously retrieved ozone concentration.

  1. Design and qualification of the interferometer for the GOSAT-2 spectrometer

    NASA Astrophysics Data System (ADS)

    Montembault, Yan; Moreau, Louis; Roux, Michel; Buijs, Henry; Soucy, Marc-André

    2016-10-01

    GOSAT-2 is the successor of the Greenhouse gases Observing SATellite (GOSAT, "IBUKI") launched in 2009 by Japan Aerospace Exploration Agency (JAXA). GOSAT-2 will continue and enhance space borne measurements of greenhouse gases started by GOSAT and monitor the impacts of climate change and human activities on the carbon cycle. It will also contribute to climate science and climate change related policies. The GOSAT-2 spacecraft will carry two earth observation instruments: FTS-2, the second generation of the TANSO-FTS and CAI-2, a Cloud and Aerosol Imager. Mitsubishi Electric Corporation is the prime contractor of GOSAT-2. Harris is the subcontractor of the spectrometer. ABB, who successfully designed, manufactured, and delivered the interferometer for the TANSO-FTS instrument for GOSAT, is currently delivering the modulator for the FTS-2 instrument to Mitsubishi Electric Corporation. Built on the TANSO-FTS heritage, FTS-2 is a thermal and near infrared sensor for carbon observation based on a Fourier transform spectrometer featuring larger optical throughput than TANSO-FTS. This paper presents an overview of the design of the FTS-2 interferometer as well as key qualification and performance verification activities conducted on the interferometer flight model.

  2. Characteristics of Four-years of GOSAT/TANSO-FTS TIR V1.0 CO2 and CH4 Products

    NASA Astrophysics Data System (ADS)

    Saitoh, N.; Kimoto, S.; Sugimura, R.; Imasu, R.; Shiomi, K.; Kuze, A.; Kataoka, F.; Knuteson, R. O.; Machida, T.; Sawa, Y.; Matsuda, H.

    2015-12-01

    Greenhouse Gases Observing Satellite (GOSAT) was launched on 23 January 2009, and has continued to make global observations, including both nadir and off-nadir measurements, for more than six years since its launch. The thermal infrared (TIR) band of Thermal and Near-infrared Sensor for Carbon Observation Fourier Transform Spectrometer (TANSO-FTS) on board the GOSAT has observed CO2 and CH4 profiles. We have analyzed the four-year data from 2010 through 2013 of the latest released version of the TIR Level 2 (L2) CO2 and CH4 products (V1.0). Comparisons of the TIR upper atmospheric CO2 product with CO2 data from Comprehensive Observation Network for Trace Gases by Airliner (CONTRAIL) aircraft measurements show that the growth rate estimated from the TIR CO2 data is slightly lower than that from the CONTRAIL data. Overall, the TIR V1.0 CO2 product has better quality in the upper troposphere and lower stratosphere than the a priori judging from comparisons with the collocated aircraft data. In spring and summer, however, the quality of the TIR L2 CO2 products became slightly worse than in the other seasons, especially in the low and northern-mid latitudes. This is because the corresponding a priori had a larger bias and the TIR Level 1B (L1B) radiance spectra might have a larger bias in the spring-summer seasons. Here, we have tested several types of correction methods to modify the L1B spectral bias, and then compared CO2 and CH4 concentrations retrieved after applying spectral bias correction factors with coincident CONTRAIL and HIAPER Pole-to-Pole Observation (HIPPO) aircraft data. The comparison results suggest that the L1B spectral bias correction factor should be changed depending on wavelength. In addition, it should be expressed as a function of on-board internal calibration blackbody temperatures. This is because they are weak season-dependent parameters; they were clearly lower in spring and summer.

  3. The results of the critical design of the mission instruments of GOSAT-2

    NASA Astrophysics Data System (ADS)

    Yajima, Yukie; Suto, Hiroshi; Yotsumoto, Kazuhiko; Miyakawa, Takehiro; Hashimoto, Makiko; Shiomi, Kei; Nakajima, Masakatsu; Hirabayashi, Takeshi

    2016-04-01

    The GOSAT-2 is the successor satellite to the GOSAT which is the satellite dedicated to the measurements of the greenhouse gases such as carbon dioxide and methane. GOSAT was launched in January of 2009 and has been operated for about seven years. The development of the GOSAT-2 has been continued for two years, and through the preliminary and critical design phase the detail of the design of the mission instruments were fixed as well as the bus system design. The mission instruments of the GOSAT-2 are TANSO-FTS-2 and TANSO-CAI-2. TANSO-FTS-2 is the Fourier Transform Spectrometer observing greenhouse gases such as Carbon Dioxide and Methane and TANSO-CAI-2 is the imager observing the aerosols and clouds to compensate the TANSO-FTS-2 data and to grasp the movements of the aerosols such as PM2.5. The mission instruments will adopt the same kinds of instruments as GOSAT. But some improvements will be carried. Based on the results of the preliminary design, the design had been refined in the critical design phase and the results of the design meets all of the requirements on the mission instruments derived from the mission requirements to understand CO2 and CH4 sources and sinks and carbon cycle precisely. To improve the measurement accuracy, the signal to noise ratio will be increased by the extension of the aperture size from 64mm to 73mm and cooling the after optics as well as the thermal detectors. And to increase the number of the useful data, GOSAT-2 will equip the function to avoid the clouds during the observation using the images obtained by the monitor camera in FTS. To observe the carbon monoxide, the 2.3μm observation channel will be added. This function will be realized by the extension of the 2.0μm observation band to 2.3μm. The pointing angle in the along track direction will be extend from 20 degrees of GOSAT to 40 degrees to expand the observation area over the ocean where the sun glint is observed. This will make it possible to increase the number

  4. New approaches to removing cloud shadows and evaluating the 380 nm surface reflectance for improved aerosol optical thickness retrievals from the GOSAT/TANSO-Cloud and Aerosol Imager

    NASA Astrophysics Data System (ADS)

    Fukuda, Satoru; Nakajima, Teruyuki; Takenaka, Hideaki; Higurashi, Akiko; Kikuchi, Nobuyuki; Nakajima, Takashi Y.; Ishida, Haruma

    2013-12-01

    satellite aerosol retrieval algorithm was developed to utilize a near-ultraviolet band of the Greenhouse gases Observing SATellite/Thermal And Near infrared Sensor for carbon Observation (GOSAT/TANSO)-Cloud and Aerosol Imager (CAI). At near-ultraviolet wavelengths, the surface reflectance over land is smaller than that at visible wavelengths. Therefore, it is thought possible to reduce retrieval error by using the near-ultraviolet spectral region. In the present study, we first developed a cloud shadow detection algorithm that uses first and second minimum reflectances of 380 nm and 680 nm based on the difference in Rayleigh scattering contribution for these two bands. Then, we developed a new surface reflectance correction algorithm, the modified Kaufman method, which uses minimum reflectance data at 680 nm and the NDVI to estimate the surface reflectance at 380 nm. This algorithm was found to be particularly effective at reducing the aerosol effect remaining in the 380 nm minimum reflectance; this effect has previously proven difficult to remove owing to the infrequent sampling rate associated with the three-day recursion period of GOSAT and the narrow CAI swath of 1000 km. Finally, we applied these two algorithms to retrieve aerosol optical thicknesses over a land area. Our results exhibited better agreement with sun-sky radiometer observations than results obtained using a simple surface reflectance correction technique using minimum radiances.

  5. Bias assessment of lower and middle tropospheric CO2 concentrations of GOSAT/TANSO-FTS TIR version 1 product

    NASA Astrophysics Data System (ADS)

    Saitoh, Naoko; Kimoto, Shuhei; Sugimura, Ryo; Imasu, Ryoichi; Shiomi, Kei; Kuze, Akihiko; Niwa, Yosuke; Machida, Toshinobu; Sawa, Yousuke; Matsueda, Hidekazu

    2017-10-01

    CO2 observations in the free troposphere can be useful for constraining CO2 source and sink estimates at the surface since they represent CO2 concentrations away from point source emissions. The thermal infrared (TIR) band of the Thermal and Near Infrared Sensor for Carbon Observation (TANSO) Fourier transform spectrometer (FTS) on board the Greenhouse Gases Observing Satellite (GOSAT) has been observing global CO2 concentrations in the free troposphere for about 8 years and thus could provide a dataset with which to evaluate the vertical transport of CO2 from the surface to the upper atmosphere. This study evaluated biases in the TIR version 1 (V1) CO2 product in the lower troposphere (LT) and the middle troposphere (MT) (736-287 hPa), on the basis of comparisons with CO2 profiles obtained over airports using Continuous CO2 Measuring Equipment (CME) in the Comprehensive Observation Network for Trace gases by AIrLiner (CONTRAIL) project. Bias-correction values are presented for TIR CO2 data for each pressure layer in the LT and MT regions during each season and in each latitude band: 40-20° S, 20° S-20° N, 20-40° N, and 40-60° N. TIR V1 CO2 data had consistent negative biases of 1-1.5 % compared with CME CO2 data in the LT and MT regions, with the largest negative biases at 541-398 hPa, partly due to the use of 10 µm CO2 absorption band in conjunction with 15 and 9 µm absorption bands in the V1 retrieval algorithm. Global comparisons between TIR CO2 data to which the bias-correction values were applied and CO2 data simulated by a transport model based on the Nonhydrostatic ICosahedral Atmospheric Model (NICAM-TM) confirmed the validity of the bias-correction values evaluated over airports in limited areas. In low latitudes in the upper MT region (398-287 hPa), however, TIR CO2 data in northern summer were overcorrected by these bias-correction values; this is because the bias-correction values were determined using comparisons mainly over airports in

  6. Validation of YCAR algorithm over East Asia TCCON sites

    NASA Astrophysics Data System (ADS)

    Kim, W.; Kim, J.; Jung, Y.; Lee, H.; Goo, T. Y.; Cho, C. H.; Lee, S.

    2016-12-01

    In order to reduce the retrieval error of TANSO-FTS column averaged CO2 concentration (XCO2) induced by aerosol, we develop the Yonsei university CArbon Retrieval (YCAR) algorithm using aerosol information from TANSO-Cloud and Aerosol Imager (TANSO-CAI), providing simultaneous aerosol optical depth properties for the same geometry and optical path along with the FTS. Also we validate the retrieved results using ground-based TCCON measurement. Particularly this study first utilized the measurements at Anmyeondo, the only TCCON site located in South Korea, which can improve the quality of validation in East Asia. After the post screening process, YCAR algorithms have higher data availability by 33 - 85 % than other operational algorithms (NIES, ACOS, UoL). Although the YCAR algorithm has higher data availability, regression analysis with TCCON measurements are better or similar to other algorithms; Regression line of YCAR algorithm is close to linear identity function with RMSE of 2.05, bias of - 0.86 ppm. According to error analysis, retrieval error of YCAR algorithm is 1.394 - 1.478 ppm at East Asia. In addition, spatio-temporal sampling error of 0.324 - 0.358 ppm for each single sounding retrieval is also analyzed with Carbon Tracker - Asia data. These results of error analysis reveal the reliability and accuracy of latest version of our YCAR algorithm. Both XCO2 values retrieved using YCAR algorithm on TANSO-FTS and TCCON measurements show the consistent increasing trend about 2.3 - 2.6 ppm per year. Comparing to the increasing rate of global background CO2 amount measured in Mauna Loa, Hawaii (2 ppm per year), the increasing trend in East Asia shows about 30% higher trend due to the rapid increase of CO2 emission from the source region.

  7. The total column of CO2 and CH4 measured with a compact Fourier transform spectrometer at NASA Armstrong Flight Research Center and Railroad Valley, Nevada, USA

    NASA Astrophysics Data System (ADS)

    Kawakami, S.; Shiomi, K.; Suto, H.; Kuze, A.; Hillyard, P. W.; Tanaka, T.; Podolske, J. R.; Iraci, L. T.; Albertson, R. T.

    2014-12-01

    The total columns of carbon dioxide (XCO2) and methane (XCH4) were measured with a compact Fourier transform spectrometer (FTS) at NASA Armstrong Flight Research Center (AFRC) and Railroad Valley, Nevada, USA (RRV) during a vicarious calibration campaign in June 2014. The campaign was performed to estimate changes in the radiometric response of the Thermal and Near Infrared Sensor for carbon Observations Fourier Transform Spectrometer (TANSO-FTS) and the Cloud and Aerosol Imager (TANSO-CAI) aboard Greenhouse gases Observing SATellite (GOSAT). TANSO-FTS measures spectra of radiance scattered by the Earth surface with high- and medium-gain depending on the surface reflectance. At high reflectance areas, such as deserts over north Africa and Australia, TANSO-FTS collects spectra with medium-gain. There was differences on atmospheric pressure and XCO2 retrieved from spectra obtained between high-gain and medium-gain. Because the retrieved products are useful for evaluating the difference of spectral qualities between high- and medium-gain, this work is an attempt to collect validation data for spectra with medium-gain of TANSO-FTS at remote and desert area with a compact and medium-spectral resolution instrument. As a compact FTS, EM27/SUN was used. It was manufactured and newly released on April 1, 2014 by Bruker. It is robust and operable in a high temperature environment. It was housed in a steel box to protect from dust and rain and powered by Solar panels. It can be operated by such a remote and desert area, like a RRV. Over AFRC and RRV, vertical profiles of CO2 and CH4 were measured using the Alpha Jet research aircraft as part of the Alpha Jet Atmospheric eXperiment (AJAX) of ARC, NASA. The values were calibrated to standard gases. To make the results comparable to WMO (World Meteorological Organization) standards, the retrieved XCO2 and XCH4 values are divided by a calibration factor. This values were determined by comparisons with in situ profiles measured by

  8. Progress status of the GOSAT and GOSAT-2 SWIR L2 products

    NASA Astrophysics Data System (ADS)

    Yoshida, Y.; Oshio, H.; Kamei, A.; Morino, I.; Uchino, O.; Saito, M.; Noda, H.; Matsunaga, T.

    2017-12-01

    The Greenhouse gases Observing SATellite (GOSAT) has been operating for more than eight years, and the column-averaged dry air mole fractions of carbon dioxide, methane, and water vapor (XCO2, XCH4, and XH2O; hereafter called Xgas) have been retrieved globally from the Short-Wavelength InfraRed (SWIR) spectral data (0.76 μm, 1.6 μm, and 2.0 μm bands) observed with Thermal And Near-infrared Sensor for carbon Observation Fourier Transform Spectrometer (TANSO-FTS) onboard GOSAT. Xgas are simultaneously retrieved using a so-called full-physics retrieval method. The retrieval results are released as the FTS SWIR L2 product and available via GOSAT Data Archive Service (GDAS; https://data2.gosat.nies.go.jp/). During the TANSO-FTS operation, several issues were found, and some of them made small changes to the characteristics of the spectral data. Therefore, current SWIR L2 product has several minor versions as V02.xx to distinguish possible retrieval quality difference. To provide long-term uniform quality spectra, JAXA reprocessed whole spectral data as FTS L1B V201.202. We have been re-evaluating the characteristics of the new spectral data, and results will be reflected to the next major version up of the SWIR L2 products (V03). As a successor mission to the GOSAT, GOSAT-2 is planned to be launched in FY2018. According to the latest design of the TANSO-FTS-2 (FTS onboard the GOSAT-2), its SNR is higher than or almost equal to the TANSO-FTS, and its spectral range is expanded to cover the 2.3 μm carbon monoxide (CO) band. The SWIR L2 retrieval algorithm for GOSAT-2 is developing based on the latest retrieval algorithm for GOSAT. Our preliminary sensitivity test based on the designed specification shows that the SNR improvement in SWIR bands reduces the retrieval random error (precision) about 15% for XCO2 and 35% for XCH4 than those of GOSAT. In addition to the full-physics based XCO2, XCH4, XH2O, and XCO products, we are planning to provide the proxy-based XCH4

  9. Methane Flux Estimation from Point Sources using GOSAT Target Observation: Detection Limit and Improvements with Next Generation Instruments

    NASA Astrophysics Data System (ADS)

    Kuze, A.; Suto, H.; Kataoka, F.; Shiomi, K.; Kondo, Y.; Crisp, D.; Butz, A.

    2017-12-01

    Atmospheric methane (CH4) has an important role in global radiative forcing of climate but its emission estimates have larger uncertainties than carbon dioxide (CO2). The area of anthropogenic emission sources is usually much smaller than 100 km2. The Thermal And Near infrared Sensor for carbon Observation Fourier-Transform Spectrometer (TANSO-FTS) onboard the Greenhouse gases Observing SATellite (GOSAT) has measured CO2 and CH4 column density using sun light reflected from the earth's surface. It has an agile pointing system and its footprint can cover 87-km2 with a single detector. By specifying pointing angles and observation time for every orbit, TANSO-FTS can target various CH4 point sources together with reference points every 3 day over years. We selected a reference point that represents CH4 background density before or after targeting a point source. By combining satellite-measured enhancement of the CH4 column density and surface measured wind data or estimates from the Weather Research and Forecasting (WRF) model, we estimated CH4emission amounts. Here, we picked up two sites in the US West Coast, where clear sky frequency is high and a series of data are available. The natural gas leak at Aliso Canyon showed a large enhancement and its decrease with time since the initial blowout. We present time series of flux estimation assuming the source is single point without influx. The observation of the cattle feedlot in Chino, California has weather station within the TANSO-FTS footprint. The wind speed is monitored continuously and the wind direction is stable at the time of GOSAT overpass. The large TANSO-FTS footprint and strong wind decreases enhancement below noise level. Weak wind shows enhancements in CH4, but the velocity data have large uncertainties. We show the detection limit of single samples and how to reduce uncertainty using time series of satellite data. We will propose that the next generation instruments for accurate anthropogenic CO2 and CH

  10. GOSAT TIR radiometric validation toward simultaneous GHG column and profile observation

    NASA Astrophysics Data System (ADS)

    Kataoka, F.; Knuteson, R. O.; Kuze, A.; Shiomi, K.; Suto, H.; Saitoh, N.

    2015-12-01

    The Greenhouse gases Observing SATellite (GOSAT) was launched on January 2009 and continues its operation for more than six years. The thermal and near infrared sensor for carbon observation Fourier-Transform Spectrometer (TANSO-FTS) onboard GOSAT measures greenhouse gases (GHG), such as CO2 and CH4, with wide and high resolution spectra from shortwave infrared (SWIR) to thermal infrared (TIR). This instrument has the advantage of being able to measure simultaneously the same field of view in different spectral ranges. The combination of column-GHG form SWIR band and vertical profile-GHG from TIR band provide better understanding and distribution of GHG, especially in troposphere. This work describes the radiometric validation and sensitivity analysis of TANSO-FTS TIR spectra, especially CO2, atmospheric window and CH4 channels with forward calculation. In this evaluation, we used accurate in-situ dataset of the HIPPO (HIAPER Pole-to-Pole Observation) airplane observation data and GOSAT vicarious calibration and validation campaign data in Railroad Valley, NV. The HIPPO aircraft campaign had taken accurate atmospheric vertical profile dataset (T, RH, O3, CO2, CH4, N2O, CO) approximately pole-to-pole from the surface to the tropopause over the ocean. We implemented these dataset for forward calculation and made the spectral correction model with respect to wavenumber and internal calibration blackbody temperature The GOSAT vicarious calibration campaign have conducted every year since 2009 near summer solstice in Railroad Valley, where high-temperature desert site. In this campaign, we have measured temperature and humidity by a radiosonde and CO2, CH4 and O3 profile by the AJAX airplane at the time of the GOSAT overpass. Sometimes, the GHG profiles over the Railroad Valley show the air mass advection in mid-troposphere depending on upper wind. These advections bring the different concentration of GHG in lower and upper troposphere. Using these cases, we made

  11. [On the notes of the Xinkan Huangdimingtangjiujing (see text for symbol) in the possession of the National Diet Library].

    PubMed

    Amano, Yosuke

    2014-12-01

    This paper analyzes the notes of Xinkan huangdimingtangjiujing which are in the possession of the National Diet Library, particularly referring to those notes which include "master said", or "master's theory". Some of those are found in the answers from Manase Dosan (see text for symbol) to Hata Soha (see text for symbol) collected in the Kotei meido kyukyo hushin shosho (see text for symbol) which is the record of the question and answer letters between Manase Dosan and Hata Soha. This research indicates that this volume has a close relation to the acupuncture research of Dosan's or Soha's school. And it indicates that the "master" in the Notes of Xinkan huangdimingtangjiujing refers to Dosan. Acupuncture research has been flourishing since the Edo era and has compiled a lot of volumes on acupuncture. This volume contains some pioneering pieces of this research done in the Azuchi Momoyama era by Dosan and Soha, and is a precious material, showing that some of the state of affairs of the research done in that age still remains today.

  12. The Greenhouse Gas Climate Change Initiative (GHG-CCI): comparative validation of GHG-CCI SCIAMACHY/ENVISAT and TANSO-FTS/GOSAT CO2 and CH4 retrieval algorithm products with measurements from the TCCON

    NASA Astrophysics Data System (ADS)

    Dils, B.; Buchwitz, M.; Reuter, M.; Schneising, O.; Boesch, H.; Parker, R.; Guerlet, S.; Aben, I.; Blumenstock, T.; Burrows, J. P.; Butz, A.; Deutscher, N. M.; Frankenberg, C.; Hase, F.; Hasekamp, O. P.; Heymann, J.; De Mazière, M.; Notholt, J.; Sussmann, R.; Warneke, T.; Griffith, D.; Sherlock, V.; Wunch, D.

    2014-06-01

    Column-averaged dry-air mole fractions of carbon dioxide and methane have been retrieved from spectra acquired by the TANSO-FTS (Thermal And Near-infrared Sensor for carbon Observations-Fourier Transform Spectrometer) and SCIAMACHY (Scanning Imaging Absorption Spectrometer for Atmospheric Cartography) instruments on board GOSAT (Greenhouse gases Observing SATellite) and ENVISAT (ENVIronmental SATellite), respectively, using a range of European retrieval algorithms. These retrievals have been compared with data from ground-based high-resolution Fourier transform spectrometers (FTSs) from the Total Carbon Column Observing Network (TCCON). The participating algorithms are the weighting function modified differential optical absorption spectroscopy (DOAS) algorithm (WFMD, University of Bremen), the Bremen optimal estimation DOAS algorithm (BESD, University of Bremen), the iterative maximum a posteriori DOAS (IMAP, Jet Propulsion Laboratory (JPL) and Netherlands Institute for Space Research algorithm (SRON)), the proxy and full-physics versions of SRON's RemoTeC algorithm (SRPR and SRFP, respectively) and the proxy and full-physics versions of the University of Leicester's adaptation of the OCO (Orbiting Carbon Observatory) algorithm (OCPR and OCFP, respectively). The goal of this algorithm inter-comparison was to identify strengths and weaknesses of the various so-called round- robin data sets generated with the various algorithms so as to determine which of the competing algorithms would proceed to the next round of the European Space Agency's (ESA) Greenhouse Gas Climate Change Initiative (GHG-CCI) project, which is the generation of the so-called Climate Research Data Package (CRDP), which is the first version of the Essential Climate Variable (ECV) "greenhouse gases" (GHGs). For XCO2, all algorithms reach the precision requirements for inverse modelling (< 8 ppm), with only WFMD having a lower precision (4.7 ppm) than the other algorithm products (2.4-2.5 ppm

  13. Three-dimensional Distribution of Greenhouse Gas Concentrations over Megacities Observed by GOSAT

    NASA Astrophysics Data System (ADS)

    Kikuchi, N.; Kuze, A.; Kataoka, F.; Shiomi, K.; Hashimoto, M.; Suto, H.; Knuteson, R. O.; Iraci, L. T.; Yates, E. L.; Gore, W.; Tanaka, T.

    2017-12-01

    Since the launch in January 2009, TANSO-FTS onboard GOSAT continues to observe the global distribution of carbon dioxide (CO2) and methane (CH4) concentrations. The regular grid observation is the standard observation mode, because a reduction of the uncertainty in the surface fluxes of CO2 and CH4in a subcontinental scale is one of the prime objectives of GOSAT. To meet an increasing demand for monitoring the anthropogenic emission of the greenhouses gases from large cities, GOSAT has carried out extensive target mode observations over several megacities since 2016. Although the footprint of TANSO-FTS is relatively large, the flexible pointing mechanism enables us to cover a city and the surrounding area at the same time. Another advantage of GOSAT TANSO-FTS is that it measures both SWIR and TIR spectra at the same footprint. By adding TIR windows to the existing SWIR retrieval algorithm, we can get the degrees of freedom larger than 2 for CO2 concentrations. This means that we can retrieve not only the column averaged concentration of CO2 (XCO2), but also the two-layer structure of CO2 concentrations, independent of the a priori constraint. In this study, we present three-dimensional distributions of CO2 and CH4 retrieved from GOSAT observations over several megacities including New York City. Fig. 1 shows the seasonal variation of XCO2 over New York City in 2016 covered by 16 footprints of GOSAT observations. A three-dimensional representation of CO2 concentrations is shown in Fig. 2 observed on September 15, 2016. In this example, CO2 concentrations were lower in the lower atmosphere in most of GOSAT footprints, indicating that CO2 was depleted in the lower atmosphere as expected for the summer season. In the winter season, the CO2 concentrations were enhanced in the lower atmosphere as shown in Fig. 3. This example indicates that GOSAT can detect variations in both the column and the vertical structure of CO2 over megacities. Similar analyses are underway for

  14. The impact of the use of different satellite data as training data against GOSAT-2 CAI-2 L2 cloud discrimination

    NASA Astrophysics Data System (ADS)

    Oishi, Y.; Ishida, H.; Nakajima, T. Y.

    2016-12-01

    Greenhouse gases Observing SATellite-2 (GOSAT-2) will be launched in fiscal 2017 to determine atmospheric concentrations of greenhouse gases, such as CO2, CH4, and CO. GOSAT-2 will be equipped with two sensors: the Thermal and Near-infrared Sensor for Carbon Observation (TANSO)-Fourier Transform Spectrometer-2 (FTS-2) and TANSO-Cloud and Aerosol Imager-2 (CAI-2). CAI-2 is a push-broom imaging sensor that has forward- and backward-looking bands for observing the optical properties of aerosols and clouds, and for monitoring the status of urban air pollution and transboundary air pollution over oceans. An important role of CAI-2 is to perform cloud discrimination in each direction. The Cloud and Aerosol Unbiased Decision Intellectual Algorithm (CLAUDIA1), which applies sequential threshold tests to features, has been used in GOSAT CAI L2 cloud flag processing. If CLAUDIA1 used with CAI-2, it is necessary to optimize the thresholds in accordance with CAI-2. Meanwhile, CLAUDIA3 using support vector machines (SVM), which is a supervised pattern recognition method, was developed for GOSAT-2 CAI-2 L2 cloud discrimination processing. Thus, CLAUDIA3 can automatically find the optimized boundary between clear and cloudy. Improvement of the CLAUDIA3 used with CAI (CLAUDIA3-CAI) has carried out and is still continuing. In this study we compared results of CLAUDIA3-CAI using Terra MODIS data and GOSAT CAI data as training data to clarify the impact of the use of different satellite data as training data against GOSAT-2 CAI-2 L2 cloud discrimination. We will present our latest results.

  15. Assessment of Global Carbon Dioxide Concentration Using MODIS and GOSAT Data

    PubMed Central

    Guo, Meng; Wang, Xiufeng; Li, Jing; Yi, Kunpeng; Zhong, Guosheng; Tani, Hiroshi

    2012-01-01

    Carbon dioxide (CO2) is the most important greenhouse gas (GHG) in the atmosphere and is the greatest contributor to global warming. CO2 concentration data are usually obtained from ground observation stations or from a small number of satellites. Because of the limited number of observations and the short time series of satellite data, it is difficult to monitor CO2 concentrations on regional or global scales for a long time. The use of the remote sensing data such as the Advanced Very High Resolution Radiometer (AVHRR) or Moderate Resolution Imaging Spectroradiometer (MODIS) data can overcome these problems, particularly in areas with low densities of CO2 concentration watch stations. A model based on temperature (MOD11C3), vegetation cover (MOD13C2 and MOD15A2) and productivity (MOD17A2) of MODIS (which we have named the TVP model) was developed in the current study to assess CO2 concentrations on a global scale. We assumed that CO2 concentration from the Thermal And Near infrared Sensor for carbon Observation (TANSO) aboard the Greenhouse gases Observing SATellite (GOSAT) are the true values and we used these values to check the TVP model accuracy. The results indicate that the accuracy of the TVP model is different in different continents: the greatest Pearson’s correlation coefficient (R2) was 0.75 in Eurasia (RMSE = 1.16) and South America (RMSE = 1.17); the lowest R2 was 0.57 in Australia (RMSE = 0.73). Compared with the TANSO-observed CO2 concentration (XCO2), we found that the accuracy throughout the World is between −2.56∼3.14 ppm. Potential sources of TVP model uncertainties were also analyzed and identified. PMID:23443383

  16. Extraction and Analysis of Regional Emission and Absorption Events of Greenhouse Gases with GOSAT and OCO-2

    NASA Astrophysics Data System (ADS)

    Kasai, K.; Shiomi, K.; Konno, A.; Tadono, T.; Hori, M.

    2016-12-01

    Global observation of greenhouse gases such as carbon dioxide (CO2) and methane (CH4) with high spatio-temporal resolution and accurate estimation of sources and sinks are important to understand greenhouse gases dynamics. Greenhouse Gases Observing Satellite (GOSAT) has observed column-averaged dry-air mole fractions of CO2 (XCO2) and CH4 (XCH4) over 7 years since January 2009 with wide swath but sparse pointing. Orbiting Carbon Observatory-2 (OCO-2) has observed XCO2 jointly on orbit since July 2014 with narrow swath but high resolution. We use two retrieved datasets as GOSAT observation data. One is ACOS GOSAT/TANSO-FTS Level 2 Full Product by NASA/JPL, and the other is NIES TANSO-FTS L2 column amount (SWIR). By using these GOSAT datasets and OCO-2 L2 Full Product, the biases among datasets, local sources and sinks, and temporal variability of greenhouse gases are clarified. In addition, CarbonTracker, which is a global model of atmospheric CO2 and CH4 developed by NOAA/ESRL, are also analyzed for comparing between satellite observation data and atmospheric model data. Before analyzing these datasets, outliers are screened by using quality flag, outcome flag, and warn level in land or sea parts. Time series data of XCO2 and XCH4 are obtained globally from satellite observation and atmospheric model datasets, and functions which express typical inter-annual and seasonal variation are fitted to each spatial grid. Consequently, anomalous events of XCO2 and XCH4 are extracted by the difference between each time series dataset and the fitted function. Regional emission and absorption events are analyzed by time series variation of satellite observation data and by comparing with atmospheric model data.

  17. A spatio-temporal analysis for regional enhancements of greenhouse gas concentration with GOSAT and OCO-2

    NASA Astrophysics Data System (ADS)

    Kasai, K.; Shiomi, K.; Konno, A.; Tadono, T.; Hori, M.

    2017-12-01

    Global observation of greenhouse gases such as carbon dioxide (CO2) and methane (CH4) with high spatio-temporal resolution and accurate estimation of sources and sinks are important to understand greenhouse gases dynamics. Greenhouse Gases Observing Satellite (GOSAT) has observed column-averaged dry-air mole fractions of CO2 (XCO2) and CH4 (XCH4) over 8 years since January 2009 with 3-day repeat cycle. Orbiting Carbon Observatory-2 (OCO-2) has observed XCO2 on orbit since July 2014 with 16-day repeat cycle. The objective of this study investigates regional enhancements of greenhouse gases concentrations using GOSAT and OCO-2 data. We use two retrieved datasets as GOSAT observation data. One is ACOS GOSAT/TANSO-FTS Level 2 Standard Product B7.3 by NASA/JPL, and the other is NIES TANSO-FTS SWIR L2 Product V02. As OCO-2 observation data, OCO-2 Operational L2 Data Version 7 is used. ODIAC dataset is also used for classification of regional enhancements into anthropogenic and biogenic sources. Before analyzing these datasets, outliers are screened by using "quality flag", "outcome flag" and "warn level" in land or water parts, and the "M-gain" data observed by GOSAT are removed. Then, the monthly mean XCO2 and XCH4 of all greenhouse gases datasets is calculated from the daily mean XCO2 and XCH4 to correct the weight by the difference in the number of observation points. Biases among datasets are assessed by comparing the monthly mean XCO2 and XCH4. Also, anomalies of XCO2 and XCH4 are computed by subtracting the monthly mean from individual observations. The positive and negative anomalies are candidates for regional enhancements and uptake, respectively. To detect the regional enhancements from the satellite observation datasets, the results of spatio-temporal analysis of the anomalies are also reported.

  18. Assessment of global carbon dioxide concentration using MODIS and GOSAT data.

    PubMed

    Guo, Meng; Wang, Xiufeng; Li, Jing; Yi, Kunpeng; Zhong, Guosheng; Tani, Hiroshi

    2012-11-26

    Carbon dioxide (CO(2)) is the most important greenhouse gas (GHG) in the atmosphere and is the greatest contributor to global warming. CO(2) concentration data are usually obtained from ground observation stations or from a small number of satellites. Because of the limited number of observations and the short time series of satellite data, it is difficult to monitor CO(2) concentrations on regional or global scales for a long time. The use of the remote sensing data such as the Advanced Very High Resolution Radiometer (AVHRR) or Moderate Resolution Imaging Spectroradiometer (MODIS) data can overcome these problems, particularly in areas with low densities of CO(2) concentration watch stations. A model based on temperature (MOD11C3), vegetation cover (MOD13C2 and MOD15A2) and productivity (MOD17A2) of MODIS (which we have named the TVP model) was developed in the current study to assess CO(2) concentrations on a global scale. We assumed that CO(2) concentration from the Thermal And Near infrared Sensor for carbon Observation (TANSO) aboard the Greenhouse gases Observing SATellite (GOSAT) are the true values and we used these values to check the TVP model accuracy. The results indicate that the accuracy of the TVP model is different in different continents: the greatest Pearson's correlation coefficient (R2) was 0.75 in Eurasia (RMSE = 1.16) and South America (RMSE = 1.17); the lowest R2 was 0.57 in Australia (RMSE = 0.73). Compared with the TANSO-observed CO(2) concentration (XCO(2)), we found that the accuracy throughout the World is between -2.56~3.14 ppm. Potential sources of TVP model uncertainties were also analyzed and identified.

  19. [Development of analysis software package for the two kinds of Japanese fluoro-d-glucose-positron emission tomography guideline].

    PubMed

    Matsumoto, Keiichi; Endo, Keigo

    2013-06-01

    Two kinds of Japanese guidelines for the data acquisition protocol of oncology fluoro-D-glucose-positron emission tomography (FDG-PET)/computed tomography (CT) scans were created by the joint task force of the Japanese Society of Nuclear Medicine Technology (JSNMT) and the Japanese Society of Nuclear Medicine (JSNM), and published in Kakuigaku-Gijutsu 27(5): 425-456, 2007 and 29(2): 195-235, 2009. These guidelines aim to standardize PET image quality among facilities and different PET/CT scanner models. The objective of this study was to develop a personal computer-based performance measurement and image quality processor for the two kinds of Japanese guidelines for oncology (18)F-FDG PET/CT scans. We call this software package the "PET quality control tool" (PETquact). Microsoft Corporation's Windows(™) is used as the operating system for PETquact, which requires 1070×720 image resolution and includes 12 different applications. The accuracy was examined for numerous applications of PETquact. For example, in the sensitivity application, the system sensitivity measurement results were equivalent when comparing two PET sinograms obtained from the PETquact and the report. PETquact is suited for analysis of the two kinds of Japanese guideline, and it shows excellent spec to performance measurements and image quality analysis. PETquact can be used at any facility if the software package is installed on a laptop computer.

  20. GOSAT TIR spectral validation with High/Low temperature target using Aircraft base-FTS S-HIS

    NASA Astrophysics Data System (ADS)

    Kataoka, F.; Knuteson, R.; Taylor, J. K.; Kuze, A.; Shiomi, K.; Suto, H.; Yoshida, J.

    2017-12-01

    The Greenhouse gases Observing SATellite (GOSAT) was launched on January 2009. The GOSAT is equipped with TANSO-FTS (Fourier-Transform Spectrometer), which observe reflected solar radiation from the Earth's surface with shortwave infrared (SWIR) band and thermal emission from the Earth's surface and atmosphere with thermal infrared (TIR) band. The TIR band cover wide spectral range (650 - 1800 [cm-1]) with a high spectral resolution (0.2 [cm-1]). The TIR spectral information provide vertical distribution of CO2 and CH4. GOSAT has been operation more than eight years. In this long operation, GOSAT had experienced two big accidents; Rotation of one of the solar paddles stopped and sudden TANSO-FTS operation stop in May 2014 and cryocooler shutdown and restart in August - September 2015. These events affected the operation condition of the TIR photo-conductive (PC)-MCT detector. FTS technology using multiplex wide spectra needs wide dynamic range. PC detector has nonlinearity. Its correction needs accurate estimation of time-dependent offset. In current TIR Level 1B product version (V201), the non-photon level offset (Vdc_offset) estimated from on-orbit deep space calibration data and pre-launch background radiation model. But the background radiation and detector temperature have changed after cryocooler shutdown events. These changes are too small to detect from onboard temperature sensors. The next TIR Level 1B product uses cross calibration data together with deep space calibration data and instrument radiation model has been updated. This work describes the evaluation of new TIR Level 1B spectral quality with aircraft-based FTS; Scanning High-resolution Interferometer Sounder (S-HIS). The S-HIS mounted on the high-altitude ER-2 aircraft and flew at about 20km altitude. Because the observation geometry of GOSAT and S-HIS are quite different, we used the double difference method using atmospheric transfer model. GOSAT TIR band cover wide dynamic range, so we check

  1. Progress of Validation of GOSAT Standard Products

    NASA Astrophysics Data System (ADS)

    Uchino, Osamu

    2010-05-01

    Isamu Morino, Tomoaki Tanaka, Yuki Miyamoto, Yukio Yoshida, Tatsuya Yokota, Toshinobu Machida National Institute for Environmental Studies, Tsukuba, Ibaraki, Japan Debra Wunch, Paul Wennberg Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, California, USA Geoffrey Toon Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA Thorsten Warneke, Justus Notholt Institute of Environmental Physics, University of Bremen, Bremen, Germany David Griffith, Nicholas Deutscher Department of Chemistry, University of Wollongong, Wollongong New South Wales, Australia Vanessa Sherlock National Institute of Water and Atmospheric Research, Lauder, Central Otago, New Zealand Hidekazu Matsueda, Yousuke Sawa Meteorological Research Institute, 1-1 Nagamine, Tsukuba, Ibaraki 305-0052, Japan Colm Sweeney, Pieter Tans Earth System Research Laboratory, NOAA, Boulder, USA The Greenhouse gases Observing SATellite (GOSAT), launched on 23 January 2009, is the world's first satellite dedicated to measuring the concentrations of the two major greenhouse gases, carbon dioxide (CO2) and methane (CH4), from space. The data measured with the Thermal And Near-infrared Sensor for carbon Observation Fourier Transform Spectrometer (TANSO-FTS) and the Cloud and Aerosol Imager (TANSO-CAI) are processed into several types of data products. Column abundances of CO2 and CH4 (TANSO-FTS SWIR L2 data product) are retrieved from the FTS L1B spectral data. Validation of the FTS Level 2 data product is critical since the data is used for generating the FTS Level 3 (global distributions of column-averaged mixing ratio data of XCO2 and XCH4) and the FTS Level 4 (regional CO2 fluxes and three dimensional distribution of CO2 calculated from the estimated fluxes) products. The reference data to be used for validating abundances are required to have uncertainties of less than 1.0 % (0.3 % or 1 ppm is desirable) for CO2 and 2.0 % for CH4. Ground

  2. Overview of Japanese Earth observation programs

    NASA Astrophysics Data System (ADS)

    Shimoda, Haruhisa; Honda, Yoshiaki

    2017-09-01

    Five programs, i.e. ASTER, GOSAT, GCOM-W1, GPM and ALOS-2 are going on in Japanese Earth Observation programs. ASTER has lost its short wave infrared channels. AMSR-E stopped its operation, but it started its operation from Sep. 2012 with slow rotation speed. It finally stopped on December 2015. GCOM-W1 was launched on 18, May, 2012 and is operating well as well as GOSAT. ALOS (Advanced Land Observing Satellite) was successfully launched on 24th Jan. 2006. ALOS carries three instruments, i.e., PRISM (Panchromatic Remote Sensing Instrument for Stereo Mapping), AVNIR-2 (Advanced Visible and Near Infrared Radiometer), and PALSAR (Phased Array L band Synthetic Aperture Radar). Unfortunately, ALOS has stopped its operation on 22nd, April, 2011 by power loss. GOSAT (Greenhouse Gas Observation Satellite) was successfully launched on 29, January, 2009. GOSAT carries 2 instruments, i.e. a green house gas sensor (TANSO-FTS) and a cloud/aerosol imager (TANSO-CAI). The main sensor is a Fourier transform spectrometer (FTS) and covers 0.76 to 15 μm region with 0.2 to 0.5 cm-1 resolution. SMILES (Superconducting Millimeter wave Emission Spectrometer) was launched on September 2009 to ISS and started the observation, but stopped its operation on April 2010. GPM (Global Precipitation Mission) core satellite was launched on Feb. 2014. GPM is a joint project with NASA and carries two instruments. JAXA has developed DPR (Dual frequency Precipitation Radar) which is a follow on of PR on TRMM. ALOS F/O satellites are divided into two satellites, i.e. SAR and optical satellites. The first one of ALOS F/O is called ALOS 2 and carries L-band SAR. It was launched on May 2014. JAXA is planning to launch follow on of optical sensors. It is now called Advanced Optical Satellite and the planned launch date is fiscal 2019. Other future satellites are GCOM-C1 (ADEOS-2 follow on), GOSAT-2 and EarthCare. GCOM-C1 will be launched on 2017 and GOSAT-2 will be launched on fiscal 2018. Another project

  3. Filling-in of Far-Red and Near-Infrared Solar Lines by Terrestrial and Atmospheric Effects: Simulations and Space-Based Observations from SCIAMACHY and GOSAT

    NASA Technical Reports Server (NTRS)

    Joiner, J.; Yoshida, Y.; Vasilkov, A. P.; Middleton, E. M.; Campbell, P. K. E.; Yoshida, Y.; Kuse, A.; Corp, L. A.

    2012-01-01

    resolution of 0.54 nm. GOSAT has two instrument packages: the Thermal And Near-infrared Sensor for carbon Observation-Fourier Transform Spectrometer (TANSO-FTS) and the Cloud and Aerosol Imager (CAI). We use TANSO-FTS band 1, which extends from approximately 758 to 775nm and we use cloud fraction derived from the CAI. We compare satellite-derived fluorescence with the Enhanced Vegetation Index (EVI), an Aqua/MODIS-derived vegetation reflectance-based index that indicates relative greenness and is used to infer photosynthetic function.

  4. Filling-in of Far-Red and Near-Infrared Solar Lines by Terrestrial and Atmospheric Effects: Simulations and Space-Based Observations from SCHIAMACHY and GOSAT

    NASA Technical Reports Server (NTRS)

    Joiner, J.; Yoshida, Y.; Vasilkov, A. P.; Middleton, E. M.; Campbell, P. K. E.; Kuze, A.; Corp, L. A.

    2012-01-01

    spectral resolution of 0.54 nm. GOSAT has two instrument packages: the Thermal And Near-infrared Sensor for carbon Observation-Fourier Transform Spectrometer (TANSO-FTS) and the Cloud and Aerosol Imager (CAI). We use TANSO-FTS band 1, which extends from approximately 758 to 775 mn and we use cloud fraction derived from the CAL We compare satellite-derived fluorescence with the Enhanced Vegetation Index (EVI), an Aqua/MODIS-derived vegetation reflectance-based index that indicates relative greenness and is used to infer photosynthetic function.

  5. Introduction to the special issue on molecular spectroscopy, atmospheric composition and climate change

    NASA Astrophysics Data System (ADS)

    Boudon, Vincent; Sears, Trevor; Coheur, Pierre-François

    2018-06-01

    Changes to the Earth's climate system resulting from modification of the atmosphere caused by both anthropogenic and natural effects are one of the great long-term threats to our society. In order to measure and understand the drivers of these changes, quantitative field measurements combined with precise and accurate laboratory data are needed. The Kyoto Protocol [1], signed in 1997, focused the scientific community on the need for data aimed at developing a better understanding of the physics and chemistry of molecular and aerosol species that lead to long-term climate change. The results have been impressive. Continuous and extensive concentration measurements are now being performed from the ground, e.g. the TCCON network, from balloons and airplanes and, of course, from space (e.g. ACE-Scisat, TANSO-GOSAT, IASI-Metop, OCO-2, Sentinel-5P, …). With the observing system now in place the concentration profiles of a suite of species, including greenhouse gases, aerosol precursors and others are measured with increasing precision over large areas of the Earth, leading to a much more complete understanding of the radiative forcing budget.

  6. Preliminary verification for application of a support vector machine-based cloud detection method to GOSAT-2 CAI-2

    NASA Astrophysics Data System (ADS)

    Oishi, Yu; Ishida, Haruma; Nakajima, Takashi Y.; Nakamura, Ryosuke; Matsunaga, Tsuneo

    2018-05-01

    The Greenhouse Gases Observing Satellite (GOSAT) was launched in 2009 to measure global atmospheric CO2 and CH4 concentrations. GOSAT is equipped with two sensors: the Thermal And Near infrared Sensor for carbon Observations (TANSO)-Fourier transform spectrometer (FTS) and TANSO-Cloud and Aerosol Imager (CAI). The presence of clouds in the instantaneous field of view of the FTS leads to incorrect estimates of the concentrations. Thus, the FTS data suspected to have cloud contamination must be identified by a CAI cloud discrimination algorithm and rejected. Conversely, overestimating clouds reduces the amount of FTS data that can be used to estimate greenhouse gas concentrations. This is a serious problem in tropical rainforest regions, such as the Amazon, where the amount of useable FTS data is small because of cloud cover. Preparations are continuing for the launch of the GOSAT-2 in fiscal year 2018. To improve the accuracy of the estimates of greenhouse gases concentrations, we need to refine the existing CAI cloud discrimination algorithm: Cloud and Aerosol Unbiased Decision Intellectual Algorithm (CLAUDIA1). A new cloud discrimination algorithm using a support vector machine (CLAUDIA3) was developed and presented in another paper. Although the use of visual inspection of clouds as a standard for judging is not practical for screening a full satellite data set, it has the advantage of allowing for locally optimized thresholds, while CLAUDIA1 and -3 use common global thresholds. Thus, the accuracy of visual inspection is better than that of these algorithms in most regions, with the exception of snow- and ice-covered surfaces, where there is not enough spectral contrast to identify cloud. In other words, visual inspection results can be used as truth data for accuracy evaluation of CLAUDIA1 and -3. For this reason visual inspection can be used for the truth metric for the cloud discrimination verification exercise. In this study, we compared CLAUDIA1-CAI and

  7. Development of a remote sensing algorithm to retrieve atmospheric aerosol properties using multiwavelength and multipixel information

    NASA Astrophysics Data System (ADS)

    Hashimoto, Makiko; Nakajima, Teruyuki

    2017-06-01

    We developed a satellite remote sensing algorithm to retrieve the aerosol optical properties using satellite-received radiances for multiple wavelengths and pixels. Our algorithm utilizes spatial inhomogeneity of surface reflectance to retrieve aerosol properties, and the main target is urban aerosols. This algorithm can simultaneously retrieve aerosol optical thicknesses (AOT) for fine- and coarse-mode aerosols, soot volume fraction in fine-mode aerosols (SF), and surface reflectance over heterogeneous surfaces such as urban areas that are difficult to obtain by conventional pixel-by-pixel methods. We applied this algorithm to radiances measured by the Greenhouse Gases Observing Satellite/Thermal and Near Infrared Sensor for Carbon Observations-Cloud and Aerosol Image (GOSAT/TANSO-CAI) at four wavelengths and were able to retrieve the aerosol parameters in several urban regions and other surface types. A comparison of the retrieved AOTs with those from the Aerosol Robotic Network (AERONET) indicated retrieval accuracy within ±0.077 on average. It was also found that the column-averaged SF and the aerosol single scattering albedo (SSA) underwent seasonal changes as consistent with the ground surface measurements of SSA and black carbon at Beijing, China.

  8. GOSAT and OCO-2 Inter-comparison on Measured Spectral Radiance and Retrieved Carbon Dioxide

    NASA Astrophysics Data System (ADS)

    Kataoka, F.; Kuze, A.; Shiomi, K.; Suto, H.; Crisp, D.; Bruegge, C. J.; Schwandner, F. M.

    2016-12-01

    TANSO-FTS onboard GOSAT and grating spectrometer on OCO-2 use different measurement techniques to measure carbon dioxide (CO2) and molecular oxygen (O2). Both instruments observe sunlight reflected from the Earth's surface in almost the same spectral range. As a first step in cross calibrating these two instruments, we compared spectral radiance observations within the three short wave infrared (SWIR) spectral bands centered on the O2 A-band (O2A), the weak CO2 band near 1.6 microns (Weak-CO2) and 2.06 micons (Strong-CO2) bands at temporally coincident and spatially collocated points. In this work, we reconciled the different size of the footprints and evaluated at various types of surface targets such as ocean, desert and forest. For radiometric inter-comparisons, we consider long term instrument sensitivity degradation in orbit and differences in viewing geometry and associated differences in surface bidirectional reflectance distribution function (BRDF). Measured spectral radiances agree very well within 5% for all bands. This presentation will summarize these comparisons of GOSAT and OCO-2 spectral radiance observations and associated estimates of carbon dioxide and related parameters retrieved with the same algorithm at matchup points. We will also discuss instrument related uncertainties from various target observations.

  9. Validation of XCO2 derived from SWIR spectra of GOSAT TANSO-FTS with aircraft measurement data

    NASA Astrophysics Data System (ADS)

    Inoue, M.; Morino, I.; Uchino, O.; Miyamoto, Y.; Yoshida, Y.; Yokota, T.; Machida, T.; Sawa, Y.; Matsueda, H.; Sweeney, C.; Tans, P. P.; Andrews, A. E.; Biraud, S. C.; Tanaka, T.; Kawakami, S.; Patra, P. K.

    2013-10-01

    Column-averaged dry air mole fractions of carbon dioxide (XCO2) retrieved from Greenhouse gases Observing SATellite (GOSAT) Short-Wavelength InfraRed (SWIR) observations were validated with aircraft measurements by the Comprehensive Observation Network for TRace gases by AIrLiner (CONTRAIL) project, the National Oceanic and Atmospheric Administration (NOAA), the US Department of Energy (DOE), the National Institute for Environmental Studies (NIES), the HIAPER Pole-to-Pole Observations (HIPPO) program, and the GOSAT validation aircraft observation campaign over Japan. To calculate XCO2 based on aircraft measurements (aircraft-based XCO2), tower measurements and model outputs were used for additional information near the surface and above the tropopause, respectively. Before validation, we investigated the impacts of GOSAT SWIR column averaging kernels (CAKs) and the shape of a priori profiles on the aircraft-based XCO2 calculation. The differences between aircraft-based XCO2 with and without the application of GOSAT CAK were evaluated to be less than ±0.4 ppm at most, and less than ±0.1 ppm on average. Therefore, we concluded that the GOSAT CAK produces only a minor effect on the aircraft-based XCO2 calculation in terms of the overall uncertainty of GOSAT XCO2. We compared GOSAT data retrieved within ±2 or ±5° latitude/longitude boxes centered at each aircraft measurement site to aircraft-based data measured on a GOSAT overpass day. The results indicated that GOSAT XCO2 over land regions agreed with aircraft-based XCO2, except that the former is biased by -0.68 ppm (-0.99 ppm) with a standard deviation of 2.56 ppm (2.51 ppm), whereas the averages of the differences between the GOSAT XCO2 over ocean and the aircraft-based XCO2 were -1.82 ppm (-2.27 ppm) with a standard deviation of 1.04 ppm (1.79 ppm) for ±2° (±5°) boxes.

  10. Validation of XCH4 derived from SWIR spectra of GOSAT TANSO-FTS with aircraft measurement data

    NASA Astrophysics Data System (ADS)

    Inoue, M.; Morino, I.; Uchino, O.; Miyamoto, Y.; Saeki, T.; Yoshida, Y.; Yokota, T.; Sweeney, C.; Tans, P. P.; Biraud, S. C.; Machida, T.; Pittman, J. V.; Kort, E. A.; Tanaka, T.; Kawakami, S.; Sawa, Y.; Tsuboi, K.; Matsueda, H.

    2014-09-01

    Column-averaged dry-air mole fractions of methane (XCH4), retrieved from Greenhouse gases Observing SATellite (GOSAT) short-wavelength infrared (SWIR) spectra, were validated by using aircraft measurement data from the National Oceanic and Atmospheric Administration (NOAA), the US Department of Energy (DOE), the National Institute for Environmental Studies (NIES), the HIAPER Pole-to-Pole Observations (HIPPO) program, and the GOSAT validation aircraft observation campaign over Japan. In the calculation of XCH4 from aircraft measurements (aircraft-based XCH4), other satellite data were used for the CH4 profiles above the tropopause. We proposed a data-screening scheme for aircraft-based XCH4 for reliable validation of GOSAT XCH4. Further, we examined the impact of GOSAT SWIR column averaging kernels (CAK) on the aircraft-based XCH4 calculation and found that the difference between aircraft-based XCH4 with and without the application of the GOSAT CAK was less than ±9 ppb at maximum, with an average difference of -0.5 ppb. We compared GOSAT XCH4 Ver. 02.00 data retrieved within ±2° or ±5° latitude-longitude boxes centered at each aircraft measurement site with aircraft-based XCH4 measured on a GOSAT overpass day. In general, GOSAT XCH4 was in good agreement with aircraft-based XCH4. However, over land, the GOSAT data showed a positive bias of 1.5 ppb (2.0 ppb) with a standard deviation of 14.9 ppb (16.0 ppb) within the ±2° (±5°) boxes, and over ocean, the average bias was 4.1 ppb (6.5 ppb) with a standard deviation of 9.4 ppb (8.8 ppb) within the ±2° (±5°) boxes. In addition, we obtained similar results when we used an aircraft-based XCH4 time series obtained by curve fitting with temporal interpolation for comparison with GOSAT data.

  11. Combined multispectral/hyperspectral remote sensing of tropospheric aerosols for quantification of their direct radiative effect

    NASA Astrophysics Data System (ADS)

    McGarragh, Gregory R.

    sensitivity and optimal estimation based information content study that explores the use of measurements made by a MODIS type instrument combined with measurements made by an instrument similar to GOSAT TANSO-FTS which supplies hyperspectral measurements of intensity and polarization in the O2 A-band and the 1.61- and 2.06-mu CO 2 bands. It is found that the use of the hyperspectral bands provides a means to separate the effects of the surface and aerosol absorption from effects related to aerosol single scattering parameters. The amount of information increases significantly when the CO2 bands are included rather than just the more traditional O2 A-band, when polarization measurements are included, and when measurements are made at multiple view angles. We then present a retrieval using co-located observations of MODIS and GOSAT TANSO-FTS which are both also co-located with AERONET sites for validation purposes. We introduce an optimal estimation retrieval and perform this retrieval on our co-located observations. We choose a complete state vector to maximize the use of the information in our measurements and use an a priori constraint and regularization to arrive at a stable solution. In addition to the retrieved parameters, we also calculate a self contained estimation of the retrieval error. Validation with AERONET, for retrievals using MODIS plus TANSO-FTS measurements of intensity and polarization in all three bands indicate accuracies within 15% for optical thickness, 10% for fine mode mean radius, 35% for coarse mode mean radius, 15% for the standard deviation of fine mode mean radius, 25% for the standard deviation of the coarse mode mean radius, 0.04 for the real part of the index of refraction, and 0.05 for single scattering albedo. In addition to the retrieved parameters, we also validate the estimated retrieval error and find that the estimations have distributions that are tighter and within the broader distributions of real errors relative to AERONET. The third

  12. The Expected Performance from the NASA OCO-2 Mission

    NASA Astrophysics Data System (ADS)

    Crisp, D.; Eldering, A.; Gunson, M. R.; Pollock, H.

    2013-12-01

    The NASA Orbiting Carbon Observatory-2 (OCO-2) will be launched from Vandenberg Air Force Base on a Delta-II 7320 launch vehicle as early as 1 July 2014. Once deployed in the 705-km Afternoon Constellation (A-Train), it will collect the measurements needed to estimate the column-averaged, atmospheric carbon dioxide (CO2) dry air mole fraction (XCO2) with improved precision, resolution, and coverage. The OCO-2 spacecraft carries and points a 3-channel, imaging, grating spectrometer that collects high resolution spectra of reflected sunlight in the 765 nm O2 A-band and in the CO2 bands centered near 1610 and 2060 nm. These spectral ranges overlap those used by the Japanese Greenhouse gases Observing SATellite (GOSAT) TANSO-FTS, the current standard in space-based XCO2 measurements. The OCO-2 instrument performance was extensively characterized during pre-launch testing, facilitating comparisons with the TANSO-FTS. OCO-2 has slightly lower spectral resolution, but the far wings of its instrument line shape functions decay more rapidly, such that it yields similar spectral contrast within O2 and CO2 bands. The instruments have similar continuum signal to noise ratios (SNR) for bright scenes, but the OCO-2 instrument has higher SNR at low light levels associated with absorption lines or dark surfaces. The OCO-2 spectrometers will collect 24 soundings per second, yielding up to a million soundings per day over the sunlit hemisphere. For routine operations, the OCO-2 instrument boresight will be pointed at the local nadir or at the 'glint spot,' where sunlight is specularly reflected from the surface. Nadir observations provide the best spatial resolution and are expected to yield more cloud-free soundings. Glint observations will have much better SNR over dark, ocean surfaces. The nominal plan is to alternate between glint and nadir observations on successive 16-day ground-track repeat cycles, so that the entire sunlit hemisphere is sampled in both modes at 32-day

  13. Preparation of pyrolytic carbon coating on graphite for inhibiting liquid fluoride salt and Xe135 penetration for molten salt breeder reactor

    NASA Astrophysics Data System (ADS)

    Song, Jinliang; Zhao, Yanling; He, Xiujie; Zhang, Baoliang; Xu, Li; He, Zhoutong; Zhang, DongSheng; Gao, Lina; Xia, Huihao; Zhou, Xingtai; Huai, Ping; Bai, Shuo

    2015-01-01

    A fixed-bed deposition method was used to prepare rough laminar pyrolytic carbon coating (RLPyC) on graphite for inhibiting liquid fluoride salt and Xe135 penetration during use in molten salt breeder reactor. The RLPyC coating possessed a graphitization degree of 44% and had good contact with graphite substrate. A high-pressure reactor was constructed to evaluate the molten salt infiltration in the isostatic graphite (IG-110, TOYO TANSO CO., LTD.) and RLPyC coated graphite under 1.01, 1.52, 3.04, 5.07 and 10.13 × 105 Pa for 12 h. Mercury injection and molten-salt infiltration experiments indicated the porosity and the salt-infiltration amount of 18.4% and 13.5 wt% under 1.52 × 105 Pa of IG-110, which was much less than 1.2% and 0.06 wt% under 10.13 × 105 Pa of the RLPyC, respectively. A vacuum device was constructed to evaluate the Xe135 penetration in the graphite. The helium diffusion coefficient of RLPyC coated graphite was 2.16 × 10-12 m2/s, much less than 1.21 × 10-6 m2/s of the graphite. Thermal cycle experiment indicated the coatings possessed excellent thermal stability. The coated graphite could effectively inhibit the liquid fluoride salt and Xe135 penetration.

  14. Improving molten fluoride salt and Xe135 barrier property of nuclear graphite by phenolic resin impregnation process

    NASA Astrophysics Data System (ADS)

    He, Zhao; Lian, Pengfei; Song, Yan; Liu, Zhanjun; Song, Jinliang; Zhang, Junpeng; Feng, Jing; Yan, Xi; Guo, Quangui

    2018-02-01

    A densification process has been conducted on isostatic graphite (IG-110, TOYO TANSO CO., Ltd., Japan) by impregnating phenolic resin to get the densified isostatic graphite (D-IG-110) with pore diameter of nearly 11 nm specifically for molten salt reactor application. The microstructure, mechanical, thermophysical and other properties of graphite were systematically investigated and compared before and after the densification process. The molten fluoride salt and Xe135 penetration in the graphite were evaluated in a high-pressure reactor and a vacuum device, respectively. Results indicated that D-IG-110 exhibited improved properties including infiltration resistance to molten fluoride salt and Xe135 as compared to IG-110 due to its low porosity of 2.8%, the average pore diameter of 11 nm and even smaller open pores on the surface of the graphite. The fluoride salt infiltration amount of IG-110 was 13.5 wt% under 1.5 atm and tended to be saturated under 3 atm with the fluoride salt occupation of 14.8 wt%. As to the D-IG-110, no salts could be detected even up to 10 atm attempted loading. The helium diffusion coefficient of D-IG-110 was 6.92 × 10-8 cm2/s, significantly less than 1.21 × 10-2 cm2/s of IG-110. If these as-produced properties for impregnated D-IG-110 could be retained during MSR operation, the material could prove effective at inhibiting molten fluoride salt and Xe135 inventories in the graphite.

  15. Status of Initial Assessment of Physical and Mechanical Properties of Graphite Grades for NGNP Appkications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Strizak, Joe P; Burchell, Timothy D; Windes, Will

    2011-12-01

    Current candidate graphite grades for the core structures of NGNP include grades NBG-17, NBG-18, PCEA and IG-430. Both NBG-17 and NBG-18 are manufactured using pitch coke, and are vibrationally molded. These medium grain products are produced by SGL Carbon SAS (France). Tayo Tanso (Japan) produces IG-430 which is a petroleum coke, isostatically molded, nuclear grade graphite. And PCEA is a medium grain, extruded graphite produced by UCAR Carbon Co. (USA) from petroleum coke. An experimental program has been initiated to develop physical and mechanical properties data for these current candidate graphites. The results will be judged against the requirements formore » nuclear grade graphites set forth in ASTM standard D 7219-05 "Standard Specification for Isotropic and Near-isotropic Nuclear Graphites". Physical properties data including thermal conductivity and coefficient of thermal expansion, and mechanical properties data including tensile, compressive and flexural strengths will be obtained using the established test methods covered in D-7219 and ASTM C 781-02 "Standard Practice for Testing Graphite and Boronated Graphite Components for High-Temperature Gas-Cooled Nuclear Reactors". Various factors known to effect the properties of graphites will be investigated. These include specimen size, spatial location within a graphite billet, specimen orientation (ag and wg) within a billet, and billet-to-billet variations. The current status of the materials characterization program is reported herein. To date billets of the four graphite grades have been procured, and detailed cut up plans for obtaining the various specimens have been prepared. Particular attention has been given to the traceability of each specimen to its spatial location and orientation within a billet.« less

  16. Impact of line parameter database and continuum absorption on GOSAT TIR methane retrieval

    NASA Astrophysics Data System (ADS)

    Yamada, A.; Saitoh, N.; Nonogaki, R.; Imasu, R.; Shiomi, K.; Kuze, A.

    2017-12-01

    The current methane retrieval algorithm (V1) at wavenumber range from 1210 cm-1 to 1360 cm-1 including CH4 ν 4 band from the thermal infrared (TIR) band of Thermal and Near-infrared Sensor for Carbon Observation Fourier Transform Spectrometer (TANSO-FTS) onboard Greenhouse Gases Observing Satellite (GOSAT) uses LBLRTM V12.1 with AER V3.1 line database and MT CKD 2.5.2 continuum absorption model to calculate optical depth. Since line parameter databases have been updated and the continuum absorption may have large uncertainty, the purpose of this study is to assess the impact on {CH}4 retrieval from the choice of line parameter databases and the uncertainty of continuum absorption. We retrieved {CH}4 profiles with replacement of line parameter database from AER V3.1 to AER v1.0, HITRAN 2004, HITRAN 2008, AER V3.2, or HITRAN 2012 (Rothman et al. 2005, 2009, and 2013. Clough et al., 2005), we assumed 10% larger continuum absorption coefficients and 50% larger temperature dependent coefficient of continuum absorption based on the report by Paynter and Ramaswamy (2014). We compared the retrieved CH4 with the HIPPO CH4 observation (Wofsy et al., 2012). The difference from HIPPO observation of AER V3.2 was the smallest and 24.1 ± 45.9 ppbv. The differences of AER V1.0, HITRAN 2004, HITRAN 2008, and HITRAN 2012 were 35.6 ± 46.5 ppbv, 37.6 ± 46.3 ppbv, 32.1 ± 46.1 ppbv, and 35.2 ± 46.0 ppbv, respectively. Maximum {CH}4 retrieval differences were -0.4 ppbv at the layer of 314 hPa when we used 10% larger absorption coefficients of {H}2O foreign continuum. Comparing AER V3.2 case to HITRAN 2008 case, the line coupling effect reduced difference by 8.0 ppbv. Line coupling effects were important for GOSAT TIR {CH}4 retrieval. Effects from the uncertainty of continuum absorption were negligible small for GOSAT TIR CH4 retrieval.

  17. FTIR Calibration Methods and Issues

    NASA Astrophysics Data System (ADS)

    Perron, Gaetan

    Over the past 10 years, several space-borne FTIR missions were launched for atmospheric research, environmental monitoring and meteorology. One can think of the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) launched by the European Space Agency, the Atmospheric Chemistry Experiment (ACE) launched by the Canadian Space Agency, the Tropospheric Emission Spectrometer (TES) launched by NASA and the Infrared Atmospheric Sounding Interferometer (IASI) launched by Eumetsat in Europe. Others are near to be launched, namely the Cross-track Infrared Sounder (CrIS) from the Integrated Program Of- fice in the United States and the Thermal And Near infrared Sensor for carbon Observation (TANSO) from the Japan Aerospace Exploration Agency. Moreover, several missions under definition foresee the use of this technology as sensor, e.g. Meteosat Third Generation (MTG), Eumetsat Polar System (EPS) and the Premier mission, one of the six candidates of the next ESA Earth Explorer Core Mission. In order to produce good quality products, calibration is essential. Calibrated data is the output of three main sub-systems that are tightly coupled: the instrument, the calibration targets and the level 1B processor. Calibration requirements must be carefully defined and propagated to each sub-system. Often, they are carried out by different parties which add to the complexity. Under budget and schedule pressure, some aspects are sometimes neglected and jeopardized final quality. For space-borne FTIR, level 1B outputs are spectra that are radiometrically, spectrally calibrated and geolocated. Radiometric calibration means to assign an intensity value in units to the y-axis. Spectral calibration means to assign to the x-axis the proper frequency value in units. Finally, geolocated means to assign a target position over the earth geoid i.e. longitude, latitude and altitude. This paper will present calibration methods and issues related to space-borne FTIR missions, e.g. two

  18. Greenhouse gas observations from space: The GHG-CCI project of ESA's Climate Change Initiative

    NASA Astrophysics Data System (ADS)

    Buchwitz, Michael; Noël, Stefan; Bergamaschi, Peter; Boesch, Hartmut; Bovensmann, Heinrich; Notholt, Justus; Schneising, Oliver; Hasekamp, Otto; Reuter, Maximilian; Parker, Robert; Dils, Bart; Chevallier, Frederic; Zehner, Claus; Burrows, John

    2012-07-01

    The GHG-CCI project (http://www.esa-ghg-cci.org) is one of several projects of ESA's Climate Change Initiative (CCI), which will deliver various Essential Climate Variables (ECVs). The goal of GHG-CCI is to deliver global satellite-derived data sets of the two most important anthropogenic greenhouse gases (GHGs) carbon dioxide (CO2) and methane (CH4) suitable to obtain information on regional CO2 and CH4 surface sources and sinks as needed for better climate prediction. The GHG-CCI core ECV data products are column-averaged mole fractions of CO2 and CH4, XCO2 and XCH4, retrieved from SCIAMACHY on ENVISAT and TANSO on GOSAT. Other satellite instruments will be used to provide constraints in upper layers such as IASI, MIPAS, and ACE-FTS. Which of the advanced algorithms, which are under development, will be the best for a given data product still needs to be determined. For each of the 4 GHG-CCI core data products - XCO2 and XCH4 from SCIAMACHY and GOSAT - several algorithms are being further developed and the corresponding data products are inter-compared to identify which data product is the most appropriate. This includes comparisons with corresponding data products generated elsewhere, most notably with the operational data products of GOSAT generated at NIES and the NASA/ACOS GOSAT XCO2 product. This activity, the so-called "Round Robin exercise", will be performed in the first two years of this project. At the end of the 2 year Round Robin phase (end of August 2012) a decision will be made which of the algorithms performs best. The selected algorithms will be used to generate the first version of the ECV GHG. In the last six months of this 3 year project the resulting data products will be validated and made available to all interested users. In the presentation and overview about this project will be given focussing on the latest results.

  19. Greenhouse Gas CCI Project (GHG-CCI): Overview and current status

    NASA Astrophysics Data System (ADS)

    Buchwitz, M.; Burrows, J. P.; Reuter, M.; Schneising, O.; Noel, S.; Bovensmann, H.; Notholt, J.; Boesch, H.; Parker, R.; Hasekamp, O. P.; Guerlet, S.; Aben, I.; Lichtenberg, G.; Crevoisier, C. D.; Chedin, A.; Stiller, G. P.; Laeng, A.; Butz, A.; Blumenstock, T.; Orphal, J.; Sussmann, R.; De Maziere, M. M.; Dils, B.; Brunner, D.; Popp, C. T.; Buchmann, B.; Chevallier, F.; Bergamaschi, P. M.; Frankenberg, C.; Zehner, C.

    2011-12-01

    The GHG-CCI project is one of several projects of ESA's Climate Change Initiative (CCI), which will deliver various Essential Climate Variables (ECVs). The goal of GHG-CCI is to deliver global satellite-derived data sets of the two most important anthropogenic greenhouse gases (GHGs) carbon dioxide (CO2) and methane (CH4) suitable to obtain information on regional CO2 and CH4 surface sources and sinks as needed for better climate prediction. The GHG-CCI core ECV data products are column-averaged mole fractions of CO2 and CH4, i.e., XCO2 and XCH4, retrieved from SCIAMACHY on ENVISAT and TANSO on GOSAT. Other satellite instruments will be used to provide constraints in upper layers such as IASI, MIPAS, and ACE-FTS. Which of the advanced algorithms, which are under development, will be the best for a given data product still needs to be determined. For each of the 4 GHG-CCI core data products - XCO2 and XCH4 from SCIAMACHY and GOSAT - several algorithms will be further developed and the corresponding data products will be inter-compared to identify which data product is the most appropriate. This includes comparisons with corresponding data products generated elsewhere, most notably with the operational data products of GOSAT generated at NIES and the NASA/ACOS GOSAT XCO2 product. This activity, the so-called "Round Robin exercise", will be performed in the first two years of this project. At the end of the 2 year Round Robin phase a decision will be made which of the algorithms performs best. The selected algorithms will be used to generate the first version of the ECV GHG. In the last six months of this 3 year project the resulting data products will be validated and made available to all interested users. In the presentation and overview about this project will be given. Focus will be on a discussion and intercomparison of the various data products focusing on CO2.

  20. The GHG-CCI Project to Deliver the Essential Climate Variable Greenhouse Gases: Current status

    NASA Astrophysics Data System (ADS)

    Buchwitz, M.; Boesch, H.; Reuter, M.

    2012-04-01

    The GHG-CCI project (http://www.esa-ghg-cci.org) is one of several projects of ESA's Climate Change Initiative (CCI), which will deliver various Essential Climate Variables (ECVs). The goal of GHG-CCI is to deliver global satellite-derived data sets of the two most important anthropogenic greenhouse gases (GHGs) carbon dioxide (CO2) and methane (CH4) suitable to obtain information on regional CO2 and CH4 surface sources and sinks as needed for better climate prediction. The GHG-CCI core ECV data products are column-averaged mole fractions of CO2 and CH4, XCO2 and XCH4, retrieved from SCIAMACHY on ENVISAT and TANSO on GOSAT. Other satellite instruments will be used to provide constraints in upper layers such as IASI, MIPAS, and ACE-FTS. Which of the advanced algorithms, which are under development, will be the best for a given data product still needs to be determined. For each of the 4 GHG-CCI core data products - XCO2 and XCH4 from SCIAMACHY and GOSAT - several algorithms are bing further developed and the corresponding data products are inter-compared to identify which data product is the most appropriate. This includes comparisons with corresponding data products generated elsewhere, most notably with the operational data products of GOSAT generated at NIES and the NASA/ACOS GOSAT XCO2 product. This activity, the so-called "Round Robin exercise", will be performed in the first two years of this project. At the end of the 2 year Round Robin phase (end of August 2012) a decision will be made which of the algorithms performs best. The selected algorithms will be used to generate the first version of the ECV GHG. In the last six months of this 3 year project the resulting data products will be validated and made available to all interested users. In the presentation and overview about this project will be given focussing on the latest results.

  1. Satellite-derived methane hotspot emission estimates using a fast data-driven method

    NASA Astrophysics Data System (ADS)

    Buchwitz, Michael; Schneising, Oliver; Reuter, Maximilian; Heymann, Jens; Krautwurst, Sven; Bovensmann, Heinrich; Burrows, John P.; Boesch, Hartmut; Parker, Robert J.; Somkuti, Peter; Detmers, Rob G.; Hasekamp, Otto P.; Aben, Ilse; Butz, André; Frankenberg, Christian; Turner, Alexander J.

    2017-05-01

    Methane is an important atmospheric greenhouse gas and an adequate understanding of its emission sources is needed for climate change assessments, predictions, and the development and verification of emission mitigation strategies. Satellite retrievals of near-surface-sensitive column-averaged dry-air mole fractions of atmospheric methane, i.e. XCH4, can be used to quantify methane emissions. Maps of time-averaged satellite-derived XCH4 show regionally elevated methane over several methane source regions. In order to obtain methane emissions of these source regions we use a simple and fast data-driven method to estimate annual methane emissions and corresponding 1σ uncertainties directly from maps of annually averaged satellite XCH4. From theoretical considerations we expect that our method tends to underestimate emissions. When applying our method to high-resolution atmospheric methane simulations, we typically find agreement within the uncertainty range of our method (often 100 %) but also find that our method tends to underestimate emissions by typically about 40 %. To what extent these findings are model dependent needs to be assessed. We apply our method to an ensemble of satellite XCH4 data products consisting of two products from SCIAMACHY/ENVISAT and two products from TANSO-FTS/GOSAT covering the time period 2003-2014. We obtain annual emissions of four source areas: Four Corners in the south-western USA, the southern part of Central Valley, California, Azerbaijan, and Turkmenistan. We find that our estimated emissions are in good agreement with independently derived estimates for Four Corners and Azerbaijan. For the Central Valley and Turkmenistan our estimated annual emissions are higher compared to the EDGAR v4.2 anthropogenic emission inventory. For Turkmenistan we find on average about 50 % higher emissions with our annual emission uncertainty estimates overlapping with the EDGAR emissions. For the region around Bakersfield in the Central Valley we

  2. Effect of Reacting Surface Density on the Overall Graphite Oxidation Rate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chang H. Oh; Eung Kim; Jong Lim

    2009-05-01

    Graphite oxidation in an air-ingress accident is presently a very important issue for the reactor safety of the very high temperature gas cooled-reactor (VHTR), the concept of the next generation nuclear plant (NGNP) because of its potential problems such as mechanical degradation of the supporting graphite in the lower plenum of the VHTR might lead to core collapse if the countermeasure is taken carefully. The oxidation process of graphite has known to be affected by various factors, including temperature, pressure, oxygen concentration, types of graphite, graphite shape and size, flow distribution, etc. However, our recent study reveals that the internalmore » pore characteristics play very important roles in the overall graphite oxidation rate. One of the main issues regarding graphite oxidation is the potential core collapse problem that may occur following the degradation of graphite mechanical strength. In analyzing this phenomenon, it is very important to understand the relationship between the degree of oxidization and strength degradation. In addition, the change of oxidation rate by graphite oxidation degree characterization by burn-off (ratio of the oxidized graphite density to the original density) should be quantified because graphite strength degradation is followed by graphite density decrease, which highly affects oxidation rates and patterns. Because the density change is proportional to the internal pore surface area, they should be quantified in advance. In order to understand the above issues, the following experiments were performed: (1)Experiment on the fracture of the oxidized graphite and validation of the previous correlations, (2) Experiment on the change of oxidation rate using graphite density and data collection, (3) Measure the BET surface area of the graphite. The experiments were performed using H451 (Great Lakes Carbon Corporation) and IG-110 (Toyo Tanso Co., Ltd) graphite. The reason for the use of those graphite materials is

  3. GHG Emission Source Observations of Western U.S. using the GOSAT Agile Pointing System

    NASA Astrophysics Data System (ADS)

    Kuze, A.; Shiomi, K.; Suto, H.; Kikuchi, N.; Hashimoto, M.; Kataoka, F.; Bruegge, C. J.; Schwandner, F. M.; Hedelius, J.; Iraci, L. T.; Yates, E. L.; Tanaka, T.; Gore, W.; Leifer, I.; Crisp, D.

    2016-12-01

    transportation. We will also discuss the dependence of information content on sun and viewing geometry. Reference: A. Kuze, et al., "Update on GOSAT TANSO-FTS performance, operations, and data products after more than 6 years in space," Atmos. Meas. Tech., 9, 2445-2461, (2016).

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carroll, Mark C.

    High-purity graphite is the core structural material of choice in the Very High Temperature Reactor (VHTR) design, a graphite-moderated, helium-cooled configuration capable of producing thermal energy for power generation as well as process heat for industrial applications that require temperatures higher than the outlet temperatures of present nuclear reactors. The Baseline Graphite Characterization Program is establishing accurate as-manufactured mechanical and physical property distributions in nuclear-grade graphites by providing comprehensive data that captures the level of variation in measured values. In addition to providing a thorough comparison between these values in different graphite grades, the program is also carefully tracking individualmore » specimen source, position, and orientation information in order to provide comparisons both in specific properties and in the associated variability between different lots, different billets, and different positions from within a single billet. This report is a preliminary comparison between each of the grades of graphite that are considered “candidate” grades from four major international graphite producers. These particular grades (NBG-18, NBG-17, PCEA, IG-110, and 2114) are the major focus of the evaluations presently underway on irradiated graphite properties through the series of Advanced Graphite Creep (AGC) experiments. NBG-18, a medium-grain pitch coke graphite from SGL from which billets are formed via vibration molding, was the favored structural material in the pebble-bed configuration. NBG-17 graphite from SGL is essentially NBG-18 with the grain size reduced by a factor of two. PCEA, petroleum coke graphite from GrafTech with a similar grain size to NBG-17, is formed via an extrusion process and was initially considered the favored grade for the prismatic layout. IG-110 and 2114, from Toyo Tanso and Mersen (formerly Carbone Lorraine), respectively, are fine-grain grades produced via an

  5. Impact of line parameter database, continuum absorption, full grind configuration, and L1B update on GOSAT TIR methane retrieval

    NASA Astrophysics Data System (ADS)

    Yamada, A.; Saitoh, N.; Nonogaki, R.; Imasu, R.; Shiomi, K.; Kuze, A.

    2016-12-01

    The thermal infrared (TIR) band of Thermal and Near-infrared Sensor for Carbon Observation Fourier Transform Spectrometer (TANSO-FTS) onboard Greenhouse Gases Observing Satellite (GOSAT) observes CH4 profile at wavenumber range from 1210 cm-1 to 1360 cm-1 including CH4 ν4 band. The current retrieval algorithm (V1.0) uses LBLRTM V12.1 with AER V3.1 line database to calculate optical depth. LBLRTM V12.1 include MT_CKD 2.5.2 model to calculate continuum absorption. The continuum absorption has large uncertainty, especially temperature dependent coefficient, between BPS model and MT_CKD model in the wavenumber region of 1210-1250 cm-1(Paynter and Ramaswamy, 2014). The purpose of this study is to assess the impact on CH4 retrieval from the line parameter databases and the uncertainty of continuum absorption. We used AER v1.0 database, HITRAN2004 database, HITRAN2008 database, AER V3.2 database, and HITRAN2012 database (Rothman et al. 2005, 2009, and 2013. Clough et al., 2005). AER V1.0 database is based on HITRAN2000. The CH4 line parameters of AER V3.1 and V3.2 databases are developed from HITRAN2008 including updates until May 2009 with line mixing parameters. We compared the retrieved CH4 with the HIPPO CH4 observation (Wofsy et al., 2012). The difference of AER V3.2 was the smallest and 24.1 ± 45.9 ppbv. The differences of AER V1.0, HITRAN2004, HITRAN2008, and HITRAN2012 were 35.6 ± 46.5 ppbv, 37.6 ± 46.3 ppbv, 32.1 ± 46.1 ppbv, and 35.2 ± 46.0 ppbv, respectively. Compare AER V3.2 case to HITRAN2008 case, the line coupling effect reduced difference by 8.0 ppbv. Median values of Residual difference from HITRAN2008 to AER V1.0, HITRAN2004, AER V3.2, and HITRAN2012 were 0.6 K, 0.1 K, -0.08 K, and 0.08 K, respectively, while median values of transmittance difference were less than 0.0003 and transmittance differences have small wavenumber dependence. We also discuss the retrieval error from the uncertainty of the continuum absorption, the test of full grid

  6. Inverse modelling of CH4 emissions for 2010-2011 using different satellite retrieval products from GOSAT and SCIAMACHY

    NASA Astrophysics Data System (ADS)

    Alexe, M.; Bergamaschi, P.; Segers, A.; Detmers, R.; Butz, A.; Hasekamp, O.; Guerlet, S.; Parker, R.; Boesch, H.; Frankenberg, C.; Scheepmaker, R. A.; Dlugokencky, E.; Sweeney, C.; Wofsy, S. C.; Kort, E. A.

    2015-01-01

    At the beginning of 2009 new space-borne observations of dry-air column-averaged mole fractions of atmospheric methane (XCH4) became available from the Thermal And Near infrared Sensor for carbon Observations-Fourier Transform Spectrometer (TANSO-FTS) instrument on board the Greenhouse Gases Observing SATellite (GOSAT). Until April 2012 concurrent {methane (CH4) retrievals} were provided by the SCanning Imaging Absorption spectroMeter for Atmospheric CartograpHY (SCIAMACHY) instrument on board the ENVironmental SATellite (ENVISAT). The GOSAT and SCIAMACHY XCH4 retrievals can be compared during the period of overlap. We estimate monthly average CH4 emissions between January 2010 and December 2011, using the TM5-4DVAR inverse modelling system. In addition to satellite data, high-accuracy measurements from the Cooperative Air Sampling Network of the National Oceanic and Atmospheric Administration Earth System Research Laboratory (NOAA ESRL) are used, providing strong constraints on the remote surface atmosphere. We discuss five inversion scenarios that make use of different GOSAT and SCIAMACHY XCH4 retrieval products, including two sets of GOSAT proxy retrievals processed independently by the Netherlands Institute for Space Research (SRON)/Karlsruhe Institute of Technology (KIT), and the University of Leicester (UL), and the RemoTeC "Full-Physics" (FP) XCH4 retrievals available from SRON/KIT. The GOSAT-based inversions show significant reductions in the root mean square (rms) difference between retrieved and modelled XCH4, and require much smaller bias corrections compared to the inversion using SCIAMACHY retrievals, reflecting the higher precision and relative accuracy of the GOSAT XCH4. Despite the large differences between the GOSAT and SCIAMACHY retrievals, 2-year average emission maps show overall good agreement among all satellite-based inversions, with consistent flux adjustment patterns, particularly across equatorial Africa and North America. Over North

  7. Assessing systematic errors in GOSAT CO2 retrievals by comparing assimilated fields to independent CO2 data

    NASA Astrophysics Data System (ADS)

    Baker, D. F.; Oda, T.; O'Dell, C.; Wunch, D.; Jacobson, A. R.; Yoshida, Y.; Partners, T.

    2012-12-01

    Measurements of column CO2 concentration from space are now being taken at a spatial and temporal density that permits regional CO2 sources and sinks to be estimated. Systematic errors in the satellite retrievals must be minimized for these estimates to be useful, however. CO2 retrievals from the TANSO instrument aboard the GOSAT satellite are compared to similar column retrievals from the Total Carbon Column Observing Network (TCCON) as the primary method of validation; while this is a powerful approach, it can only be done for overflights of 10-20 locations and has not, for example, permitted validation of GOSAT data over the oceans or deserts. Here we present a complementary approach that uses a global atmospheric transport model and flux inversion method to compare different types of CO2 measurements (GOSAT, TCCON, surface in situ, and aircraft) at different locations, at the cost of added transport error. The measurements from any single type of data are used in a variational carbon data assimilation method to optimize surface CO2 fluxes (with a CarbonTracker prior), then the corresponding optimized CO2 concentration fields are compared to those data types not inverted, using the appropriate vertical weighting. With this approach, we find that GOSAT column CO2 retrievals from the ACOS project (version 2.9 and 2.10) contain systematic errors that make the modeled fit to the independent data worse. However, we find that the differences between the GOSAT data and our prior model are correlated with certain physical variables (aerosol amount, surface albedo, correction to total column mass) that are likely driving errors in the retrievals, independent of CO2 concentration. If we correct the GOSAT data using a fit to these variables, then we find the GOSAT data to improve the fit to independent CO2 data, which suggests that the useful information in the measurements outweighs the negative impact of the remaining systematic errors. With this assurance, we compare

  8. Consistent satellite XCO 2 retrievals from SCIAMACHY and GOSAT using the BESD algorithm

    DOE PAGES

    Heymann, J.; Reuter, M.; Hilker, M.; ...

    2015-02-13

    Consistent and accurate long-term data sets of global atmospheric concentrations of carbon dioxide (CO 2) are required for carbon cycle and climate related research. However, global data sets based on satellite observations may suffer from inconsistencies originating from the use of products derived from different satellites as needed to cover a long enough time period. One reason for inconsistencies can be the use of different retrieval algorithms. We address this potential issue by applying the same algorithm, the Bremen Optimal Estimation DOAS (BESD) algorithm, to different satellite instruments, SCIAMACHY on-board ENVISAT (March 2002–April 2012) and TANSO-FTS on-board GOSAT (launched inmore » January 2009), to retrieve XCO 2, the column-averaged dry-air mole fraction of CO 2. BESD has been initially developed for SCIAMACHY XCO 2 retrievals. Here, we present the first detailed assessment of the new GOSAT BESD XCO 2 product. GOSAT BESD XCO 2 is a product generated and delivered to the MACC project for assimilation into ECMWF's Integrated Forecasting System (IFS). We describe the modifications of the BESD algorithm needed in order to retrieve XCO 2 from GOSAT and present detailed comparisons with ground-based observations of XCO 2 from the Total Carbon Column Observing Network (TCCON). We discuss detailed comparison results between all three XCO 2 data sets (SCIAMACHY, GOSAT and TCCON). The comparison results demonstrate the good consistency between the SCIAMACHY and the GOSAT XCO 2. For example, we found a mean difference for daily averages of −0.60 ± 1.56 ppm (mean difference ± standard deviation) for GOSAT-SCIAMACHY (linear correlation coefficient r = 0.82), −0.34 ± 1.37 ppm ( r = 0.86) for GOSAT-TCCON and 0.10 ± 1.79 ppm ( r = 0.75) for SCIAMACHY-TCCON. The remaining differences between GOSAT and SCIAMACHY are likely due to non-perfect collocation (±2 h, 10° × 10° around TCCON sites), i.e., the observed air masses are not exactly identical, but

  9. Proton irradiated graphite grades for a long baseline neutrino facility experiment

    NASA Astrophysics Data System (ADS)

    Simos, N.; Nocera, P.; Zhong, Z.; Zwaska, R.; Mokhov, N.; Misek, J.; Ammigan, K.; Hurh, P.; Kotsina, Z.

    2017-07-01

    In search of a low-Z pion production target for the Long Baseline Neutrino Facility (LBNF) of the Deep Underground Neutrino Experiment (DUNE) four graphite grades were irradiated with protons in the energy range of 140-180 MeV, to peak fluence of ˜6.1 ×1020 p /cm2 and irradiation temperatures between 120 - 200 °C . The test array included POCO ZXF-5Q, Toyo-Tanso IG 430, Carbone-Lorraine 2020 and SGL R7650 grades of graphite. Irradiation was performed at the Brookhaven Linear Isotope Producer. Postirradiation analyses were performed with the objective of (a) comparing their response under the postulated irradiation conditions to guide a graphite grade selection for use as a pion target and (b) understanding changes in physical and mechanical properties as well as microstructure that occurred as a result of the achieved fluence and in particular at this low-temperature regime where pion graphite targets are expected to operate. A further goal of the postirradiation evaluation was to establish a proton-neutron correlation damage on graphite that will allow for the use of a wealth of available neutron-based damage data in proton-based studies and applications. Macroscopic postirradiation analyses as well as energy dispersive x-ray diffraction of 200 KeV x rays at the NSLS synchrotron of Brookhaven National Laboratory were employed. The macroscopic analyses revealed differences in the physical and strength properties of the four grades with behavior however under proton irradiation that qualitatively agrees with that reported for graphite under neutrons for the same low temperature regime and in particular the increase of thermal expansion, strength and Young's modulus. The proton fluence level of ˜1020 cm-2 where strength reaches a maximum before it begins to decrease at higher fluences has been identified and it agrees with neutron-induced changes. X-ray diffraction analyses of the proton irradiated graphite revealed for the first time the similarity in

  10. The Carbon in Arctic Reservoirs Vulnerability Experiment (CARVE) FTS: Results From the 2012/13 Alaska Campaigns

    NASA Astrophysics Data System (ADS)

    kurosu, T. P.; Miller, C. E.; Dinardo, S.

    2013-12-01

    from TANSO/GOSAT as well as results from CARVE in situ measurements. CARVE Science Team: L. Bruhwiler, NOAA ESRL I. Fung, UC Berkeley C. Koven, Lawrence Berkeley Laboratory I. Leifer, UC Santa Barbara K. McDonald, CCNY J. Miller, NOAA ESRL W. Oechel, San Diego State University E. Podest, JPL J. Randerson, UC Irvine P. Rayner, Melbourne University D. Rider, JPL C. Sweeney, NOAA ESRL P. Wennberg, Caltech S. Wofsy, Harvard University R. Chang, Harvard University A. Karion, NOAA ESRL T. P. Kurosu, JPL N. Steiner, CCNY J. Henderson, AER J. Fisher, JPL

  11. Proton irradiated graphite grades for a long baseline neutrino facility experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Simos, N.; Nocera, P.; Zhong, Z.

    In search of a low-Z pion production target for the Long Baseline Neutrino Facility (LBNF) of the Deep Underground Neutrino Experiment (DUNE) four graphite grades were irradiated with protons in the energy range of 140–180 MeV, to peak fluence of ~6.1×10 20 p/cm 2 and irradiation temperatures between 120–200 °C. The test array included POCO ZXF-5Q, Toyo-Tanso IG 430, Carbone-Lorraine 2020 and SGL R7650 grades of graphite. Irradiation was performed at the Brookhaven Linear Isotope Producer. Postirradiation analyses were performed with the objective of (a) comparing their response under the postulated irradiation conditions to guide a graphite grade selection for use asmore » a pion target and (b) understanding changes in physical and mechanical properties as well as microstructure that occurred as a result of the achieved fluence and in particular at this low-temperature regime where pion graphite targets are expected to operate. A further goal of the postirradiation evaluation was to establish a proton-neutron correlation damage on graphite that will allow for the use of a wealth of available neutron-based damage data in proton-based studies and applications. Macroscopic postirradiation analyses as well as energy dispersive x-ray diffraction of 200 KeV x rays at the NSLS synchrotron of Brookhaven National Laboratory were employed. The macroscopic analyses revealed differences in the physical and strength properties of the four grades with behavior however under proton irradiation that qualitatively agrees with that reported for graphite under neutrons for the same low temperature regime and in particular the increase of thermal expansion, strength and Young’s modulus. The proton fluence level of ~10 20 cm -2 where strength reaches a maximum before it begins to decrease at higher fluences has been identified and it agrees with neutron-induced changes. X-ray diffraction analyses of the proton irradiated graphite revealed for the first time the

  12. Can satellite-based monitoring techniques be used to quantify volcanic CO2 emissions?

    NASA Astrophysics Data System (ADS)

    Schwandner, Florian M.; Carn, Simon A.; Kuze, Akihiko; Kataoka, Fumie; Shiomi, Kei; Goto, Naoki; Popp, Christoph; Ajiro, Masataka; Suto, Hiroshi; Takeda, Toru; Kanekon, Sayaka; Sealing, Christine; Flower, Verity

    2014-05-01

    Since 2010, we investigate and improve possible methods to regularly target volcanic centers from space in order to detect volcanic carbon dioxide (CO2) point source anomalies, using the Japanese Greenhouse gas Observing SATellite (GOSAT). Our long-term goals are: (a) better spatial and temporal coverage of volcano monitoring techniques; (b) improvement of the currently highly uncertain global CO2 emission inventory for volcanoes, and (c) use of volcanic CO2 emissions for high altitude, strong point source emission and dispersion studies in atmospheric science. The difficulties posed by strong relief, orogenic clouds, and aerosols are minimized by a small field of view, enhanced spectral resolving power, by employing repeat target mode observation strategies, and by comparison to continuous ground based sensor network validation data. GOSAT is a single-instrument Earth observing greenhouse gas mission aboard JAXA's IBUKI satellite in sun-synchronous polar orbit. GOSAT's Fourier-Transform Spectrometer (TANSO-FTS) has been producing total column XCO2 data since January 2009, at a repeat cycle of 3 days, offering great opportunities for temporal monitoring of point sources. GOSAT's 10 km field of view can spatially integrate entire volcanic edifices within one 'shot' in precise target mode. While it doesn't have any spatial scanning or mapping capability, it does have strong spectral resolving power and agile pointing capability to focus on several targets of interest per orbit. Sufficient uncertainty reduction is achieved through comprehensive in-flight vicarious calibration, in close collaboration between NASA and JAXA. Challenges with the on-board pointing mirror system have been compensated for employing custom observation planning strategies, including repeat sacrificial upstream reference points to control pointing mirror motion, empirical individualized target offset compensation, observation pattern simulations to minimize view angle azimuth. Since summer 2010

  13. Proton irradiated graphite grades for a long baseline neutrino facility experiment

    DOE PAGES

    Simos, N.; Nocera, P.; Zhong, Z.; ...

    2017-07-24

    In search of a low-Z pion production target for the Long Baseline Neutrino Facility (LBNF) of the Deep Underground Neutrino Experiment (DUNE) four graphite grades were irradiated with protons in the energy range of 140–180 MeV, to peak fluence of ~6.1×10 20 p/cm 2 and irradiation temperatures between 120–200 °C. The test array included POCO ZXF-5Q, Toyo-Tanso IG 430, Carbone-Lorraine 2020 and SGL R7650 grades of graphite. Irradiation was performed at the Brookhaven Linear Isotope Producer. Postirradiation analyses were performed with the objective of (a) comparing their response under the postulated irradiation conditions to guide a graphite grade selection for use asmore » a pion target and (b) understanding changes in physical and mechanical properties as well as microstructure that occurred as a result of the achieved fluence and in particular at this low-temperature regime where pion graphite targets are expected to operate. A further goal of the postirradiation evaluation was to establish a proton-neutron correlation damage on graphite that will allow for the use of a wealth of available neutron-based damage data in proton-based studies and applications. Macroscopic postirradiation analyses as well as energy dispersive x-ray diffraction of 200 KeV x rays at the NSLS synchrotron of Brookhaven National Laboratory were employed. The macroscopic analyses revealed differences in the physical and strength properties of the four grades with behavior however under proton irradiation that qualitatively agrees with that reported for graphite under neutrons for the same low temperature regime and in particular the increase of thermal expansion, strength and Young’s modulus. The proton fluence level of ~10 20 cm -2 where strength reaches a maximum before it begins to decrease at higher fluences has been identified and it agrees with neutron-induced changes. X-ray diffraction analyses of the proton irradiated graphite revealed for the first time the

  14. Retrieving CO2 from Orbiting Carbon Observatory-2 (OCO-2) Spectra

    NASA Astrophysics Data System (ADS)

    Crisp, David

    2014-06-01

    reflected sunlight in near infrared CO2 and O2 bands. However, this is among the most challenging space-based remote sensing applications because even the largest CO2 sources and sinks produce changes in the background XCO2 distribution no larger than 1%, and most are smaller 0.25% (˜1 ppm). This approach was pioneered by the European Space Agency's EnviSat SCIAMACHY and Japanese GOSAT TANSO-FTS instruments. These sensors have provided valuable insights into space based XCO2 measurement techniques, but still do not have the sensitivity, resolution, and coverage needed to quantify CO2 sources and sinks on regional scales. The Orbiting Carbon Observatory-2 (OCO-2) is the first NASA spacecraft designed to exploit this measurement approach. This spacecraft carries and points a 3channel, imaging, grating spectrometer that collects high resolution spectra of reflected sunlight in the 765 nm O2 A-band and in the 1610 and 2060 nm CO2 bands. Coincident O2 and CO2 spectra are combined into "soundings" that are analyzed with a full-physics retrieval algorithm to yield estimates of XCO2. Each spectrometer channel will collect 24 spectra per second, yielding up to a million soundings per day over the sunlit hemisphere. Between 10 and 30% of these soundings are expected to be sufficiently cloud free to yield full-column estimates of XCO2. OCO-2 is currently scheduled for launch from Space Launch Complex 2 at Vandenberg Air Force Base in California on a United Launch Alliance Delta-II 7320-10 Launch Vehicle at 02:56:44 AM PDT (12:56:44 GMT) on 1 July 2014. The nominal spacecraft checkout and orbit raising plan will take about 37 days to insert the observatory into the 705-km Afternoon Constellation (A-Train). This 98.8-minute, sun-synchronous orbit has a 98.2-degree inclination, a 1:36:30 PM mean ascending equator crossing time time, and a 16-day (233 orbit) ground track repeat cycle. Once in the A-Train, the instrument's optical bench and detectors will be cooled to their operating

  15. The Potential for Methane Isotopologue Channels in GOSAT-2

    NASA Astrophysics Data System (ADS)

    Malina, Edward; Yoshida, Yukio; Matsunaga, Tsuneo; Muller, Jan-Peter

    2017-04-01

    Of the major Greenhouse Gases (GHGs) currently considered as having a major impact on atmospheric chemistry, Methane is amongst the most important (IPCC, 2014). Methane concentration in the atmosphere has been documented to be rising steadily over the past century, aside from an unexplained short period in the middle of the last decade (Heimann., 2011), leading to renewed efforts to understand global atmospheric Methane. Atmospheric Methane is primarily composed of two key isotopologues, 12CH4 and 13CH4, which have a natural abundance of about 98% and 1.1% respectively. It is a well-established fact that different sources of Methane (i.e. biogenic sources such as methanogens, or non-biogenic such as industrial hydrocarbon burning) vary in the abundance of these isotopologues (Etiope, 2009). The global identification of the ratios of these isotopologues could vastly increase knowledge of global Methane sources, and shed some light on global Methane growth. GOSAT-2 due to be launched in 2018 is a follow on from the original GOSAT mission launched in 2009. GOSAT-2 aims to continue the legacy of GOSAT by providing global measurements of Methane and Carbon Dioxide on a global basis in order to monitor GHG emissions. GOSAT-2 in the context of this study has a significant advantage over GOSAT, which is the extension of the sensitivity of band 3 to 2330nm from 2080nm where significant numbers of Methane spectral lines are located. In this study we apply the well-established Information Content (IC) analysis techniques originally proposed by Rodgers (2000) to determine the potential benefit of retrieving total column Methane isotopologue concentrations assuming bands 2 and 3 of the GOSAT-2/TANSO-FTS-2 instrument. The value of such studies has been proven on multiple occasions and can provide guidance on appropriate potential retrieval setups. Due to the fact that there has been limited research in this area, no 'a priori' state vectors or Variance Covariance Matrices (VCMs

  16. Data Dissemination System Status and Plan for Jaxa's Earth Observation Satellite Data

    NASA Astrophysics Data System (ADS)

    Fuda, M.; Miura, S.

    2012-12-01

    Level 1, 2, 3 MOS-1b, -1 MES Level 0, 1, 2 VTI Level 0, 1, 2 GOSAT TANSO Level 1, 2, 3, 4 3. FUTURE PLAN For global earth observation spacecrafts, JAXA is now developing two dissemination systems, G-Portal and CATS-I. G-Portal will replace the EOIS and GCOM-W1DPSS including ALOS catalogue in AUIG. Users will be able to get the products of several spacecrafts in one stop service. G-Portal will be main dissemination system of the products for researches in GPM, GCOM-C1 and EarthCARE era. Other hand, CATS-I will disseminate Earth Observation product's catalogue for Japanese domestic key agencies, for example, Cabinet Office. CATS-I will also disseminate the catalogue for world key agencies and harvest the catalogue from other agencies with Catalogue Service for Web (CSW). JAXA will enlarge these G-Portal and CATS-I for future earth observation spacecrafts and these systems will be meet the demands of future users.

  17. The Global Search for Abiogenic GHGs, via Methane Isotopes and Ethane

    NASA Astrophysics Data System (ADS)

    Malina, Edward; Muller, Jan-Peter; Walton, David; Potts, Dale

    2015-04-01

    The importance of Methane as an anthropogenic Green House Gas (GHG) is well recognized in the scientific community, and is second only to Carbon Dioxide in terms of influence on the Earth's radiation budget (Parker, et al, 2011) suggesting that the ability to apportion the source of the methane (whether it is biogenic, abiogenic or thermogenic) has never been more important. It has been proposed (Etiope, 2009) that it may be possible to distinguish between a biogenic methane source (e.g. bacteria fermentation) and an abiogenic source (e.g. gas seepage or fugitive emissions) via the retrieval of the abundances of methane isotopes (12CH4 and 13CH4) and through the ratio of ethane (C2H6) to methane (CH4) concentrations. Using ultra fine spectroscopy (<0.2cm-1 spectral resolution) from Fourier Transform Spectrometers (FTS) based on the SCISAT-1 (ACE-FTS) and GOSAT (TANSO-FTS) we are developing a retrieval scheme to map global emissions of abiogenic and biogenic methane, and provide insight into how these variations in methane might drive atmospheric chemistry, focusing on the lower levels of the atmosphere. Using HiTran2012 simulations, we show that it is possible to distinguish between methane isotopes using the FTS based instruments on ACE and GOSAT, and retrieve the abundances in the Short Wave Infra-red (SWIR) at 1.65μm, 2.3μm, 3.3μm and Thermal IR, 7.8μm wavebands for methane, and the 3.3μm and 7μm wavebands for ethane. Initially we use the spectral line database HITRAN to determine the most appropriate spectral waveband to retrieve methane isotopes (and ethane) with minimal water vapour, CO2 and NO2 impact. Following this, we have evaluated the detectability of these trace gases using the more sophisticated Radiative Transfer Models (RTMs) SCIATRAN, the Oxford RFM and MODTRAN 5 in the SWIR, in order to determine the barriers to retrieving methane isotopes in both ACE (limb profile) and GOSAT (nadir measurements) instruments, including a preliminary

  18. Atmospheric CH4 and CO2 enhancements and biomass burning emission ratios derived from satellite observations of the 2015 Indonesian fire plumes

    NASA Astrophysics Data System (ADS)

    Parker, Robert J.; Boesch, Hartmut; Wooster, Martin J.; Moore, David P.; Webb, Alex J.; Gaveau, David; Murdiyarso, Daniel

    2016-08-01

    increases in regional greenhouse gas concentrations. CH4 is particularly enhanced, due to the dominance of smouldering combustion in peatland fires, with CH4 total column values typically exceeding 35 ppb above those of background "clean air" soundings. By examining the CH4 and CO2 excess concentrations in the fire-affected GOSAT observations, we determine the CH4 to CO2 (CH4 / CO2) fire emission ratio for the entire 2-month period of the most extreme burning (September-October 2015), and also for individual shorter periods where the fire activity temporarily peaks. We demonstrate that the overall CH4 to CO2 emission ratio (ER) for fires occurring in Indonesia over this time is 6.2 ppb ppm-1. This is higher than that found over both the Amazon (5.1 ppb ppm-1) and southern Africa (4.4 ppb ppm-1), consistent with the Indonesian fires being characterised by an increased amount of smouldering combustion due to the large amount of organic soil (peat) burning involved. We find the range of our satellite-derived Indonesian ERs (6.18-13.6 ppb ppm-1) to be relatively closely matched to that of a series of close-to-source, ground-based sampling measurements made on Kalimantan at the height of the fire event (7.53-19.67 ppb ppm-1), although typically the satellite-derived quantities are slightly lower on average. This seems likely because our field sampling mostly intersected smaller-scale peat-burning plumes, whereas the large-scale plumes intersected by the GOSAT Thermal And Near infrared Sensor for carbon Observation - Fourier Transform Spectrometer (TANSO-FTS) footprints would very likely come from burning that was occurring in a mixture of fuels that included peat, tropical forest and already-cleared areas of forest characterised by more fire-prone vegetation types than the natural rainforest biome (e.g. post-fire areas of ferns and scrubland, along with agricultural vegetation).The ability to determine large-scale ERs from satellite data allows the combustion behaviour of very