Sample records for tantalum tungsten rhenium

  1. Clustering of transmutation elements tantalum, rhenium and osmium in tungsten in a fusion environment

    NASA Astrophysics Data System (ADS)

    You, Yu-Wei; Kong, Xiang-Shan; Wu, Xuebang; Liu, C. S.; Fang, Q. F.; Chen, J. L.; Luo, G.-N.

    2017-08-01

    The formation of transmutation solute-rich precipitates has been reported to seriously degrade the mechanical properties of tungsten in a fusion environment. However, the underlying mechanisms controlling the formation of the precipitates are still unknown. In this study, first-principles calculations are therefore performed to systemically determine the stable structures and binding energies of solute clusters in tungsten consisting of tantalum, rhenium and osmium atoms as well as irradiation-induced vacancies. These clusters are known to act as precursors for the formation of precipitates. We find that osmium can easily segregate to form clusters even in defect-free tungsten alloys, whereas extremely high tantalum and rhenium concentrations are required for the formation of clusters. Vacancies greatly facilitate the clustering of rhenium and osmium, while tantalum is an exception. The binding energies of vacancy-osmium clusters are found to be much higher than those of vacancy-tantalum and vacancy-rhenium clusters. Osmium is observed to strongly promote the formation of vacancy-rhenium clusters, while tantalum can suppress the formation of vacancy-rhenium and vacancy-osmium clusters. The local strain and electronic structure are analyzed to reveal the underlying mechanisms governing the cluster formation. Employing the law of mass action, we predict the evolution of the relative concentration of vacancy-rhenium clusters. This work presents a microscopic picture describing the nucleation and growth of solute clusters in tungsten alloys in a fusion reactor environment, and thereby explains recent experimental phenomena.

  2. Tungsten-reinforced tantalum

    NASA Technical Reports Server (NTRS)

    Bacigalupi, R. J.; Breitwieser, R.

    1972-01-01

    Method is described for producing tungsten-reinforced tantalum, a material possessing the high temperature strength of tungsten and room temperature ductility and weldability of tantalum. This material is produced by bonding together and overlaying structure of tungsten wires with chemical vapor deposited tantalum.

  3. Thermal shock and erosion resistant tantalum carbide ceramic material

    NASA Technical Reports Server (NTRS)

    Honeycutt, L., III; Manning, C. R. (Inventor)

    1978-01-01

    Ceramic tantalum carbide artifacts with high thermal shock and mechanical erosion resistance are provided by incorporating tungsten-rhenium and carbon particles in a tantalum carbide matrix. The mix is sintered by hot pressing to form the ceramic article which has a high fracture strength relative to its elastic modulus and thus has an improved thermal shock and mechanical erosion resistance. The tantalum carbide is preferable less than minus 100 mesh, the carbon particles are preferable less than minus 100 mesh, and the tungsten-rhenium particles are preferable elongate, having a length to thickness ratio of at least 2/1. Tungsten-rhenium wire pieces are suitable as well as graphite particles.

  4. Solution and diffusion of hydrogen isotopes in tungsten-rhenium alloy

    NASA Astrophysics Data System (ADS)

    Ren, Fei; Yin, Wen; Yu, Quanzhi; Jia, Xuejun; Zhao, Zongfang; Wang, Baotian

    2017-08-01

    Rhenium is one of the main transmutation elements forming in tungsten under neutron irradiation. Therefore, it is essential to understand the influence of rhenium impurity on hydrogen isotopes retention in tungsten. First-principle calculations were used to study the properties of hydrogen solution and diffusion in perfect tungsten-rhenium lattice. The interstitial hydrogen still prefers the tetrahedral site in presence of rhenium, and rhenium atom cannot act directly as a trapping site of hydrogen. The presence of rhenium in tungsten raises the solution energy and the real normal modes of vibration on the ground state and the transition state, compared to hydrogen in pure tungsten. Without zero point energy corrections, the presence of rhenium decreases slightly the migration barrier. It is found that although the solution energy would tend to increase slightly with the rising of the concentration of rhenium, but which does not influence noticeably the solution energy of hydrogen in tungsten-rhenium alloy. The solubility and diffusion coefficient of hydrogen in perfect tungsten and tungsten-rhenium alloy have been estimated, according to Sievert's law and harmonic transition state theory. The results show the solubility of hydrogen in tungsten agrees well the experimental data, and the presence of Re would decrease the solubility and increase the diffusivity for the perfect crystals.

  5. Thermocouples of tantalum and rhenium alloys for more stable vacuum-high temperature performance

    NASA Technical Reports Server (NTRS)

    Morris, J. F. (Inventor)

    1977-01-01

    Thermocouples of the present invention provide stability and performance reliability in systems involving high temperatures and vacuums by employing a bimetallic thermocouple sensor wherein each metal of the sensor is selected from a group of metals comprising tantalum and rhenium and alloys containing only those two metals. The tantalum, rhenium thermocouple sensor alloys provide bare metal thermocouple sensors having advantageous vapor pressure compatibilities and performance characteristics. The compatibility and physical characteristics of the thermocouple sensor alloys of the present invention result in improved emf, temperature properties and thermocouple hot junction performance. The thermocouples formed of the tantalum, rhenium alloys exhibit reliability and performance stability in systems involving high temperatures and vacuums and are adaptable to space propulsion and power systems and nuclear environments.

  6. Inter-diffusion analysis of joint interface of tungsten-rhenium couple

    NASA Astrophysics Data System (ADS)

    Hua, Y. F.; Li, Z. X.; Zhang, X.; Du, J. H.; Huang, C. L.; Du, M. H.

    2011-09-01

    The tungsten-rhenium couple was prepared by using glow plasma physical vapor deposition (PVD) on the isotropic fine grained graphite (IG) substrates. Diffusion anneals of the tungsten-rhenium couple were conducted at the temperature from 1100 °C to 1400 °C to investigate the inter-diffusion behaviors. The results showed that the thickness of the inter-diffusion zone increased with increasing annealing temperature. The relationship between the inter-diffusion coefficient and the annealing temperature accorded with the Arrhenius manner. The value of inter-diffusion activation energies was 189 kJ/mole (1.96 eV). The service time of tungsten-rhenium multilayer diffusion barrier was limited by the inter-diffusion for rhenium and tungsten rather than the diffusion of carbon in rhenium.

  7. A study of scandia and rhenium doped tungsten matrix dispenser cathode

    NASA Astrophysics Data System (ADS)

    Wang, Jinshu; Li, Lili; Liu, Wei; Wang, Yanchun; Zhao, Lei; Zhou, Meiling

    2007-10-01

    Scandia and rhenium doped tungsten powders were prepared by solid-liquid doping combined with two-step reduction method. The experimental results show that scandia was distributed evenly on the surface of tungsten particles. The addition of scandia and rhenium could decrease the particle size of doped tungsten, for example, the tungsten powders doped with Sc 2O 3 and Re had the average size of about 50 nm in diameter. By using this kind of powder, scandia and rhenium doped tungsten matrix with the sub-micrometer sized tungsten grains was obtained. This kind of matrix exhibited good anti-bombardment insensitivity at high temperature. The emission property result showed that high space charge limited current densities of more than 60 A/cm 2 at 900 °C could be obtained for this cathode. A Ba-Sc-O multilayer about 100 nm in thickness formed at the surface of cathode after activation led to the high emission property.

  8. Stability of Tungsten-Rhenium Thermocouples in the Range from 0 °C to 1500 °C

    NASA Astrophysics Data System (ADS)

    Ogura, H.; Izuchi, M.; Tamba, J.

    2011-12-01

    The effect of exposure up to 1500 °C on emf values of type C (95 % tungsten 5 % rhenium vs. 74 % tungsten 26 % rhenium) thermocouples were evaluated. Three thermocouples consisting of thermocouple wires of 0.5 mm diameter, twin-bore beryllia tubes, and tantalum sheaths were prepared. After three type C thermocouples were calibrated in the range from 0 °C to 1550 °C, which confirmed insignificant difference among them, the drifts of two among them were measured at the palladium-carbon (Pd-C) eutectic point (1492 °C). They indicated a similar tendency, where the emf of thermocouples increased rapidly within the first 30 h, and after that, decreased gradually. To investigate the mechanism of the drift, the inhomogeneities of thermocouples were examined at 160 °C using a water heat-pipe furnace during the drift measurements at the Pd-C eutectic point. It was found that the increase of emf within the first 30 h exposure at around 1500 °C was caused by the emf change due to inhomogeneity above 700 °C, and after that, the decrease of emf was caused by that around 1400 °C.

  9. Fabrication of a tantalum-clad tungsten target for LANSCE

    NASA Astrophysics Data System (ADS)

    Nelson, A. T.; O'Toole, J. A.; Valicenti, R. A.; Maloy, S. A.

    2012-12-01

    Development of a solid state bonding technique suitable to clad tungsten targets with tantalum was completed to improve operation of the Los Alamos Neutron Science Centers spallation target. Significant deterioration of conventional bare tungsten targets has historically resulted in transfer of tungsten into the cooling system through corrosion resulting in increased radioactivity outside the target and reduction of delivered neutron flux. The fabrication method chosen to join the tantalum cladding to the tungsten was hot isostatic pressing (HIP) given the geometry constraints of a cylindrical assembly and previous success demonstrated at KENS. Nominal HIP parameters of 1500 °C, 200 MPa, and 3 h were selected based upon previous work. Development of the process included significant surface engineering controls and characterization given tantalums propensity for oxide and carbide formation at high temperatures. In addition to rigorous acid cleaning implemented at each step of the fabrication process, a three layer tantalum foil gettering system was devised such that any free oxygen and carbon impurities contained in the argon gas within the HIP vessel was mitigated to the extent possible before coming into contact with the tantalum cladding. The result of the numerous controls and refined techniques was negligible coarsening of the native Ta2O5 surface oxide, no measureable oxygen diffusion into the tantalum bulk, and no detectable carburization despite use of argon containing up to 5 ppm oxygen and up to 40 ppm total CO, CO2, or organic contaminants. Post bond characterization of the interface revealed continuous bonding with a few microns of species interdiffusion.

  10. Efficacy of Tantalum Tungsten Alloys for Diffusion Barrier Applications

    NASA Astrophysics Data System (ADS)

    Smathers, D. B.; Aimone, P. R.

    2017-12-01

    Traditionally either Niobium, Tantalum or a combination of both have been used as diffusion barriers in Nb3Sn Multi-filament wire. Vanadium has also been used successfully but the ultimate RRR of the copper is limited unless an external shell of Niobium is included. Niobium is preferred over Tantalum when alternating current losses are not an issue as the Niobium will react to form Nb3Sn. Pure Tantalum tends to deform irregularly requiring extra starting thickness to ensure good barrier qualities. Our evaluations showed Tantalum lightly alloyed with 3 wt% Tungsten is compatible with the wire drawing process while deforming as well as or better than pure Niobium. Ta3wt%W has been processed as a single barrier and as a distributed barrier to fine dimensions. In addition, the higher modulus and strength of the Tantalum Tungsten alloy improves the overall tensile properties of the wire.

  11. Constitutive behavior of tantalum and tantalum-tungsten alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, S.R.; Gray, G.T. III

    1996-10-01

    The effects of strain rate, temperature, and tungsten alloying on the yield stress and the strain-hardening behavior of tantalum were investigated. The yield and flow stresses of unalloyed Ta and tantalum-tungsten alloys were found to exhibit very high rate sensitivities, while the hardening rates in Ta and Ta-W alloys were found to be insensitive to strain rate and temperature at lower temperatures or at higher strain rates. This behavior is consistent with the observation that overcoming the intrinsic Peierls stress is shown to be the rate-controlling mechanism in these materials at low temperatures. The dependence of yield stress on temperaturemore » and strain rate was found to decrease, while the strain-hardening rate increased with tungsten alloying content. The mechanical threshold stress (MTS) model was adopted to model the stress-strain behavior of unalloyed Ta and the Ta-W alloys. Parameters for the constitutive relations for Ta and the Ta-W alloys were derived for the MTS model, the Johnson-Cook (JC), and the Zerilli-Armstrong (ZA) models. The results of this study substantiate the applicability of these models for describing the high strain-rate deformation of Ta and Ta-W alloys. The JC and ZA models, however, due to their use of a power strain-hardening law, were found to yield constitutive relations for Ta and Ta-W alloys that are strongly dependent on the range of strains for which the models were optimized.« less

  12. Tungsten-rhenium thin film thermocouples for SiC-based ceramic matrix composites

    NASA Astrophysics Data System (ADS)

    Tian, Bian; Zhang, Zhongkai; Shi, Peng; Zheng, Chen; Yu, Qiuyue; Jing, Weixuan; Jiang, Zhuangde

    2017-01-01

    A tungsten-rhenium thin film thermocouple is designed and fabricated, depending on the principle of thermal-electric effect caused by the high temperature. The characteristics of thin film thermocouples in different temperatures are investigated via numerical analysis and analog simulation. The working mechanism and thermo-electric features of the thermocouples are analyzed depending on the simulation results. Then the thin film thermocouples are fabricated and calibrated. The calibration results show that the thin film thermocouples based on the tungsten-rhenium material achieve ideal static characteristics and work well in the practical applications.

  13. Quantitative experimental determination of the solid solution hardening potential of rhenium, tungsten and molybdenum in single-crystal nickel-based superalloys

    DOE PAGES

    Fleischmann, Ernst; Miller, Michael K.; Affeldt, Ernst; ...

    2015-01-31

    Here, the solid-solution hardening potential of the refractory elements rhenium, tungsten and molybdenum in the matrix of single-crystal nickel-based superalloys was experimentally quantified. Single-phase alloys with the composition of the nickel solid-solution matrix of superalloys were cast as single crystals, and tested in creep at 980 °C and 30–75 MPa. The use of single-phase single-crystalline material ensures very clean data because no grain boundary or particle strengthening effects interfere with the solid-solution hardening. This makes it possible to quantify the amount of rhenium, tungsten and molybdenum necessary to reduce the creep rate by a factor of 10. Rhenium is moremore » than two times more effective for matrix strengthening than either tungsten or molybdenum. The existence of rhenium clusters as a possible reason for the strong strengthening effect is excluded as a result of atom probe tomography measurements. If the partitioning coefficient of rhenium, tungsten and molybdenum between the γ matrix and the γ' precipitates is taken into account, the effectiveness of the alloying elements in two-phase superalloys can be calculated and the rhenium effect can be explained.« less

  14. METHOD OF FORMING TANTALUM SILICIDE ON TANTALUM SURFACES

    DOEpatents

    Bowman, M.G.; Krikorian, N.H.

    1961-10-01

    A method is described for forming a non-corrosive silicide coating on tantalum. The coating is made through the heating of trirhenium silicides in contact with the tantalum object to approximately 1400 deg C at which temperature trirhenium silicide decomposes into rhenium and gaseous silicons. The silicon vapor reacts with the tantalum surface to form a tantalum silicide layer approximately 10 microns thick. (AEC)

  15. Development of high temperature materials for solid propellant rocket nozzle applications. [tantalum carbides-tungsten fiber composites

    NASA Technical Reports Server (NTRS)

    Manning, C. R., Jr.; Honeycutt, L., III

    1974-01-01

    Evaluation of tantalum carbide-tungsten fiber composites has been completed as far as weight percent carbon additions and weight percent additions of tungsten fiber. Extensive studies were undertaken concerning Young's Modulus and fracture strength of this material. Also, in-depth analysis of the embrittling effects of the extra carbon additions on the tungsten fibers has been completed. The complete fabrication procedure for the tantalum carbide-tungsten fiber composites with extra carbon additions is given. Microprobe and metallographic studies showed the effect of extra carbon on the tungsten fibers, and evaluation of the thermal shock parameter fracture strength/Young's Modulus is included.

  16. Electrotransport and diffusivity of molybdenum, rhenium, tungsten, and zirconium in beta-thorium

    NASA Technical Reports Server (NTRS)

    Schmidt, F. A.; Beck, M. S.; Rehbein, D. K.; Conzemius, R. J.; Carlson, O. N.

    1984-01-01

    The electric mobilities, diffusivities, and effective valences were determined for molybdenum, rhenium, tungsten, and zirconium in beta-thorium. All four solutes migrated in the same direction as the electron flow. Rhenium and molybdenum were found to be very mobile, with tungsten somewhat slower. Zirconium was found to move at a rate near that of the self-diffusion of beta-thorium, viz., about 10 to the -11th sq m/s at 1500 C. The electromigration velocities showed a similar trend. A comparison was made between experimental data obtained by scanning laser mass spectrometry and theoretical transport equations for two purification experiments. Good agreement was obtained with both the concentration profile predicted by DeGroot and the purification ratio predicted by Verhoeven.

  17. Heat of combustion of tantalum-tungsten oxide thermite composites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cervantes, Octavio G.; Department of Chemical Engineering and Materials Science, University of California, Davis, CA 95616; Kuntz, Joshua D.

    2010-12-15

    The heat of combustion of two distinctly synthesized stoichiometric tantalum-tungsten oxide energetic composites was investigated by bomb calorimetry. One composite was synthesized using a sol-gel (SG) derived method in which micrometric-scale tantalum is immobilized in a tungsten oxide three-dimensional nanostructured network structure. The second energetic composite was made from the mixing of micrometric-scale tantalum and commercially available (CA) nanometric tungsten oxide powders. The energetic composites were consolidated using the spark plasma sintering (SPS) technique under a 300 MPa pressure and at temperatures of 25, 400, and 500 C. For samples consolidated at 25 C, the density of the CA compositemore » is 61.65 {+-} 1.07% in comparison to 56.41 {+-} 1.19% for the SG derived composite. In contrast, the resulting densities of the SG composite are higher than the CA composite for samples consolidated at 400 and 500 C. The theoretical maximum density for the SG composite consolidated to 400 and 500 C are 81.30 {+-} 0.58% and 84.42 {+-} 0.62%, respectively. The theoretical maximum density of the CA composite consolidated to 400 and 500 C are 74.54 {+-} 0.80% and 77.90 {+-} 0.79%, respectively. X-ray diffraction analyses showed an increase of pre-reaction of the constituents with an increase in the consolidation temperature. The increase in pre-reaction results in lower stored energy content for samples consolidated to 400 and 500 C in comparison to samples consolidated at 25 C. (author)« less

  18. Superhard Rhenium/Tungsten Diboride Solid Solutions.

    PubMed

    Lech, Andrew T; Turner, Christopher L; Lei, Jialin; Mohammadi, Reza; Tolbert, Sarah H; Kaner, Richard B

    2016-11-02

    Rhenium diboride (ReB 2 ), containing corrugated layers of covalently bonded boron, is a superhard metallic compound with a microhardness reaching as high as 40.5 GPa (under an applied load of 0.49 N). Tungsten diboride (WB 2 ), which takes a structural hybrid between that of ReB 2 and AlB 2 , where half of the boron layers are planar (as in AlB 2 ) and half are corrugated (as in ReB 2 ), has been shown not to be superhard. Here, we demonstrate that the ReB 2 -type structure can be maintained for solid solutions of tungsten in ReB 2 with tungsten content up to a surprisingly large limit of nearly 50 atom %. The lattice parameters for the solid solutions linearly increase along both the a- and c-axes with increasing tungsten content, as evaluated by powder X-ray and neutron diffraction. From micro- and nanoindentation hardness testing, all of the compositions within the range of 0-48 atom % W are superhard, and the bulk modulus of the 48 atom % solid solution is nearly identical to that of pure ReB 2 . These results further indicate that ReB 2 -structured compounds are superhard, as has been predicted from first-principles calculations, and may warrant further studies into additional solid solutions or ternary compounds taking this structure type.

  19. Synthesis, Consolidation and Characterization of Sol-gel Derived Tantalum-Tungsten Oxide Thermite Composites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cervantes, O

    2010-06-01

    Energetic composite powders consisting of sol-gel (SG) derived nanostructured tungsten oxide were produced with various amounts of micrometer-scale tantalum fuel metal. Such energetic composite powders were ignition-tested and results show that the powders are not sensitive to friction, spark and/or impact ignition. Initial consolidation experiments, using the High Pressure Spark Plasma Sintering (HPSPS) technique, on the SG derived nanostructured tungsten oxide produced samples with higher relative density than can be achieved with commercially available tungsten oxide. The SG derived nanostructured tungsten oxide with immobilized tantalum fuel metal (Ta - WO3) energetic composite was consolidated to a density of 9.17 g·cm-3more » or 93% relative density. In addition, those samples were consolidated without significant pre-reaction of the constituents, thus retaining their stored chemical energy.« less

  20. Tantalum-tungsten oxide thermite composites prepared by sol-gel synthesis and spark plasma sintering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuntz, Joshua D.; Gash, Alexander E.; Cervantes, Octavio G.

    2010-08-15

    Energetic composite powders consisting of sol-gel derived nanostructured tungsten oxide were produced with various amounts of micrometer-scale tantalum fuel metal. Such energetic composite powders were ignition-tested and the results show that the powders are not sensitive to friction, spark and/or impact ignition. Initial consolidation experiments, using the High-Pressure Spark Plasma Sintering (HPSPS) technique, on the sol-gel derived nanostructured tungsten oxide produced samples with higher relative density than can be achieved with commercially available tungsten oxide. The sol-gel derived nanostructured tungsten oxide with immobilized tantalum fuel metal (Ta-WO{sub 3}) energetic composite was consolidated to a density of 9.17 g cm{sup -3}more » or 93% relative density. In addition, those samples were consolidated without significant pre-reaction of the constituents, thus retaining their stored chemical energy. (author)« less

  1. Tantalum-Tungsten Oxide Thermite Composite Prepared by Sol-Gel Synthesis and Spark Plasma Sintering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cervantes, O; Kuntz, J; Gash, A

    2009-02-13

    Energetic composite powders consisting of sol-gel derived nanostructured tungsten oxide were produced with various amounts of micrometer-scale tantalum fuel metal. Such energetic composite powders were ignition tested and results show that the powders are not sensitive to friction, spark and/or impact ignition. Initial consolidation experiments, using the High Pressure Spark Plasma Sintering (HPSPS) technique, on the sol-gel derived nanostructured tungsten oxide produced samples with higher relative density than can be achieved with commercially available tungsten oxide. The sol-gel derived nanostructured tungsten oxide with immobilized tantalum fuel metal (Ta - WO{sub 3}) energetic composite was consolidated to a density of 9.17more » g.cm{sup -3} or 93% relative density. In addition those parts were consolidated without significant pre-reaction of the constituents, thus the sample retained its stored chemical energy.« less

  2. Thermal expansion method for lining tantalum alloy tubing with tungsten

    NASA Technical Reports Server (NTRS)

    Watson, G. K.; Whittenberger, J. D.; Mattson, W. F.

    1973-01-01

    A differential-thermal expansion method was developed to line T-111 (tantalum - 8 percent tungsten - 2 percent hafnium) tubing with a tungsten diffusion barrier as part of a fuel element fabrication study for a space power nuclear reactor concept. This method uses a steel mandrel, which has a larger thermal expansion than T-111, to force the tungsten against the inside of the T-111 tube. Variables investigated include lining temperature, initial assembly gas size, and tube length. Linear integrity increased with increasing lining temperature and decreasing gap size. The method should have more general applicability where cylinders must be lined with a thin layer of a second material.

  3. Effect of silicon, tantalum, and tungsten doping and polarization on bioactivity of hydroxyapatite

    NASA Astrophysics Data System (ADS)

    Dhal, Jharana

    Hydroxyapatite (HAp) ceramics has important applications as bone graft because of the structural and compositional similarities with bone tissue. However, inferior osteogenic capacity to bone and poor mechanical properties have been identified to be major disadvantages of synthetic HAp compared to the living bone tissue. The objective of the current study is to evaluate the effect of doping with higher valent cations (Tungsten, tantalum, and silicon) and polarization or combination of both on change in property of doped HAp and subsequent impact its bioactivity. In vitro study with human osteoblast cells was used to investigate the influences of doping and polarization on bone cell-materials interactions. The bioactivity of doped HAp was compared with pure HAp. Effect of doping and polarization on the change in HAp was investigated by monitoring change in mineral phases, stored charge, and activation energy of HAp. Activation energy of depolarization was used to explain the possible mechanism of polarization in doped samples. Bioactivity of HAp increased when doped with tantalum and tungsten. Polarization further increased the bioactivity of tungsten- and tantalum-doped samples. Increase in bioactivity on polarized and doped samples was attributed to increase in surface energy and increase in surface wettability. Whereas, an increase in bioactivity on doped unpolarized surface was attributed to change in microstructure. Polarized charge calculated from TSDC indicates that polarized charge decreases on tantalum- and tungsten-doped HAp. The decrease in polarized charge was attributed to the presence of significant amount of different phases that may hinder the ionic motion in doped samples. However, for silicon-doped HAp, TSDC study showed no difference in the mechanism of polarization between doped and undoped samples. Increase in silicon doping decreased the grain size though mechanism is not affected by grain size. Total stored charge decreased with increase in

  4. Divergent electronic structures of isoelectronic metalloclusters: tungsten(II) halides and rhenium(III) chalcogenide halides.

    PubMed

    Gray, Thomas G

    2009-03-02

    Same but different: DFT calculations on hexanuclear tungsten(II) halide clusters [W(6)X(8)X'(6)](2-) (X, X'=Cl, Br, I) indicate a breakdown in the isoelectronic analogy between themselves and the isostructural rhenium(III) chalcogenide clusters [Re(6)S(8)X(6)](4-) (see figure).The hexanuclear tungsten(II) halide clusters and the sulfido-halide clusters of rhenium(III) are subsets of a broad system of 24-electron metal-metal bonded assemblies that share a common structure. Tungsten(II) halide clusters and rhenium(III) sulfide clusters luminesce from triplet excited states upon ultraviolet or visible excitation; emission from both cluster series has been extensively characterized elsewhere. Reported here are density-functional theory studies of the nine permutations of [W(6)X(8)X'(6)](2-) (X, X'=Cl, Br, I). Ground-state properties including geometries, harmonic vibrational frequencies, and orbital energy-level diagrams, have been calculated. Comparison is made to the sulfide clusters of rhenium(III), of which [Re(6)S(8)Cl(6)](4-) is representative. [W(6)X(8)X'(6)](2-) and [Re(6)S(8)Cl(6)](4-) possess disparate electronic structures owing to the greater covalency of the metal-sulfur bond and hence of the [Re(6)S(8)](2+) core. Low-lying virtual orbitals are raised in energy in [Re(6)S(8)Cl(6)](4-) with the result that the LUMO+7 (or LUMO+8 in some cases) of tungsten(II) halide clusters is the LUMO of [Re(6)S(8)Cl(6)](4-) species. An inversion of the HOMO and HOMO-1 between the two cluster series also occurs. Time-dependent density-functional calculations using asymptotically correct functionals do not recapture the experimentally observed periodic trend in [W(6)X(14)](2-) luminescence (E(em) increasing in the order [W(6)Cl(14)](2-) < [W(6)Br(14)](2-) < [W(6)I(14)](2-)), predicting instead that emission energies decrease with incorporation of the heavier halides. This circumstance is either a gross failure of the time-dependent formalism of DFT or it indicates extensive

  5. Accelerator Production and Separations for High Specific Activity Rhenium-186

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jurisson, Silvia S.; Wilbur, D. Scott

    2016-04-01

    Tungsten and osmium targets were evaluated for the production of high specific activity rhenium-186. Rhenium-186 has potential applications in radiotherapy for the treatment of a variety of diseases, including targeting with monoclonal antibodies and peptides. Methods were evaluated using tungsten metal, tungsten dioxide, tungsten disulfide and osmium disulfide. Separation of the rhenium-186 produced and recycling of the enriched tungsten-186 and osmium-189 enriched targets were developed.

  6. Isolation of tungsten and tantalum isotopes without supports from. cap alpha. -particle-irradiated hafnium targets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gasita, S.M.; Iota, B.Z.; Malachkov, A.G.

    1985-11-01

    An extraction procedure has been developed for successive isolation of tungsten (/sup 178/W and /sup 181/W) and tantalum (/sup 179/Ta and /sup 182/Ta) isotopes without supports from ..cap alpha..particle-irradiated hafnium targets. The target, irradiated on a cyclotron, is dissolved in hydrofluoric acid. Tantalum isotopes are extracted with tributyl phosphate (TBP) from 1-5 M HF and are then reextracted with a 1:1 ammonia solution, and hydrofluoric acid is removed by heating. Tungsten isotopes are extracted with a chloroform solution or N-benzoyl-N-phenylhydroxylamine (BPHA) from 11-12 M H/sub 2/SO/sub 4/ or ..cap alpha..-benzoin oxime from 4.5-5.5 M H/sub 2/SO/sub 4/ and are thenmore » reextracted with a l:l ammonia solution. The yield of tungsten isotopes is not less than 95%, and the content of radioactive impurities of other isotopes is not more than 0.1%.« less

  7. METHOD OF MAKING TUNGSTEN FILAMENTS

    DOEpatents

    Frazer, J.W.

    1962-12-18

    A method of making tungsten filaments is described in which the tungsten is completely free of isotope impurities in the range of masses 234 to 245 for use in mass spectrometers. The filament comprises a tantalum core generally less than 1 mil in diameter having a coating of potassium-free tantalum-diffused tungsten molecularly bonded thereto. In the preferred process of manufacture a short, thin tantalum filament is first mounted between terminal posts mounted in insulated relation through a backing plate. The tungsten is most conveniently vapor plated onto the tantalum by a tungsten carbonyl vapor decomposition method having a critical step because of the tendency of the tantalum to volatilize at the temperature of operntion of the filament. The preferred recipe comprises volatilizing tantalum by resistance henting until the current drops by about 40%, cutting the voltage back to build up the tungsten, and then gradually building the temperature back up to balance the rate of tungsten deposition with the rate of tantalum volatilization. (AEC)

  8. SPS Fabrication of Tungsten-Rhenium Alloys in Support of NTR Fuels Development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jonathan A. Webb; Indrajit Charit; Cory Sparks

    Abstract. Tungsten metal slugs were fabricated via Spark Plasma Sintering (SPS) of powdered metals at temperatures ranging from 1575 K to 1975 K and hold times of 5 minutes to 30 minutes, using powders with an average diameter of 7.8 ?m. Sintered tungsten specimens were found to have relative densities ranging from 83 % to 94 % of the theoretical density for tungsten. Consolidated specimens were also tested for their Vickers Hardness Number (VHN), which was fitted as a function of relative density; the fully consolidated VHN was extrapolated to be 381.45 kg/mm2. Concurrently, tungsten and rhenium powders with averagemore » respective diameters of 0.5 ?m and 13.3 ?m were pre-processed either by High-Energy-Ball-Milling (HEBM) or by homogeneous mixing to yield W-25at.%Re mixtures. The powder batches were sintered at temperatures of 1975 K and 2175 K for hold times ranging from 0 minutes to 60 minutes yielding relative densities ranging from 94% to 97%. The combination of HEBM and sintering showed a significant decrease in the inter-metallic phases compared to that of the homogenous mixing and sintering.« less

  9. INTERACTION OF INTERSTITIAL CLUSTERS WITH RHENIUM, OSMIUM, AND TANTALUM IN TUNGSTEN

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Setyawan, Wahyu; Nandipati, Giridhar; Kurtz, Richard J.

    2016-09-01

    In the previous semi annual report, we explored the stability of interstitial clusters in W up to size seven. In this report, we study the binding of those clusters to Re, Os, and Ta atoms. For each cluster size, the three most stable configurations are considered to average the binding property. The average binding energy to a Re decreases from 0.79 eV for a size-1 cluster (a [111] dumbbell) to 0.65 eV for a size-7 cluster. For Os, the binding decreases from 1.61 eV for a [111] dumbbell to 1.34 eV for a size-7 cluster. Tantalum is repulsive to interstitialmore » clusters with binding energy ranges from -0.61 eV for a [111] dumbbell to -0.5 eV for a size-7 cluster.« less

  10. In vivo comparison of tantalum, tungsten, and bismuth enteric contrast agents to complement intravenous iodine for double-contrast dual-energy CT of the bowel

    PubMed Central

    Rathnayake, Samira; Mongan, John; Torres, Andrew S.; Colborn, Robert; Gao, Dong-Wei; Yeh, Benjamin M; Fu, Yanjun

    2016-01-01

    To assess the ability of dual-energy CT (DECT) to separate intravenous contrast of bowel wall from intraluminal contrast, we scanned 16 rabbits on a clinical DECT scanner: n=3 using only iodinated intravenous contrast; and n=13 double-contrast enhanced scans using iodinated intravenous contrast and experimental enteric non-iodinated contrast agents in the bowel lumen (5 bismuth-, 4 tungsten-, and 4 tantalum-based). Representative image pairs from conventional CT images and DECT iodine density maps of small bowel (116 pairs from 232 images) were viewed by four abdominal imaging attending radiologists to independently score each comparison pair on a visual analog scale (−100 to +100%) for: 1) preference in small bowel wall visualization; and 2) preference in completeness of intraluminal enteric contrast subtraction. Median small bowel wall visualization was scored 39 and 42 percentage points (95% CI: 30–44% and 36–45%, p<0.001 both) higher at double-contrast DECT than at conventional CT with enteric tungsten and tantalum contrast, respectively. Median small bowel wall visualization at double-contrast DECT was scored 29 and 35 percentage points (95% CI: 20–35% and 33–39%, p<0.001 both) higher with enteric tungsten and tantalum, respectively, than with bismuth contrast. Median completeness of intraluminal enteric contrast subtraction in double-contrast DECT iodine density maps was scored 28 and 29 percentage points (95% CI: 15–31% and 28–33%, p<0.001 both) higher with enteric tungsten and tantalum, respectively, than with bismuth contrast. Results suggest that in vivo double-contrast DECT with iodinated intravenous and either tantalum- or tungsten-based enteric contrast provide better visualization of small bowel than conventional CT. PMID:26892945

  11. Submersion criticality safety of tungsten-rhenium urania cermet fuel for space propulsion and power applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    A.E. Craft; R. C. O'Brien; S. D. Howe

    Nuclear thermal rockets are the preferred propulsion technology for a manned mission to Mars, and tungsten–uranium oxide cermet fuels could provide significant performance and cost advantages for nuclear thermal rockets. A nuclear reactor intended for use in space must remain subcritical before and during launch, and must remain subcritical in launch abort scenarios where the reactor falls back to Earth and becomes submerged in terrestrial materials (including seawater, wet sand, or dry sand). Submersion increases reflection of neutrons and also thermalizes the neutron spectrum, which typically increases the reactivity of the core. This effect is typically very significant for compact,more » fast-spectrum reactors. This paper provides a submersion criticality safety analysis for a representative tungsten/uranium oxide fueled reactor with a range of fuel compositions. Each submersion case considers both the rhenium content in the matrix alloy and the uranium oxide volume fraction in the cermet. The inclusion of rhenium significantly improves the submersion criticality safety of the reactor. While increased uranium oxide content increases the reactivity of the core, it does not significantly affect the submersion behavior of the reactor. There is no significant difference in submersion behavior between reactors with rhenium distributed within the cermet matrix and reactors with a rhenium clad in the coolant channels. The combination of the flooding of the coolant channels in submersion scenarios and the presence of a significant amount of spectral shift absorbers (i.e. high rhenium concentration) further decreases reactivity for short reactor cores compared to longer cores.« less

  12. High strength forgeable tantalum base alloy

    NASA Technical Reports Server (NTRS)

    Buckman, R. W., Jr.

    1975-01-01

    Increasing tungsten content of tantalum base alloy to 12-15% level will improve high temperature creep properties of existing tantalum base alloys while retaining their excellent fabrication and welding characteristics.

  13. Development of tungsten-tantalum generator

    NASA Technical Reports Server (NTRS)

    Leblanc, A.; Babich, J.; Jhingran, S. G.

    1985-01-01

    The purpose of this project was to develop a useable tungsten (W)/tantalum (Ta) generator. Ta-178 is formed following the decay of its parent, W-178 (half-life: 21.7d) and has a half life of 9.3 minutes in turn yielding stable Hf-178. The decay of the parent isotope (W-178) occurs entirely by electron capture to the 9.3 minute Ta-178 state, without feeding the high spin Ta-178 isomer (half life 2.2 hours). In Ta-178 decay, 99.2% of the disintegrations proceed by electron capture and 0.18% by positron emission. Electron capture results in a 61.2% branch to the ground state of Hf-178 and 33.7% to the first excited state at 93 1KeV. The most prominent features of the radionuclide's energy spectrum are the hafnium characteristic radiation peaks with energies between 54.6 and 65.0 KeV. The radiation exposure dose of Ta-118 was calculated to be approximately one-twentieth that of Tc-99m on a per millicurie basis. A twenty-fold reduction in radiation exposure from Ta-178 compared with Tc-99m means that the usual administered dose can be increased three or four times, greatly increasing statistical accuracy while reducing radiation exposure by a factor of five.

  14. Rhenium Rocket Manufacturing Technology

    NASA Technical Reports Server (NTRS)

    1997-01-01

    The NASA Lewis Research Center's On-Board Propulsion Branch has a research and technology program to develop high-temperature (2200 C), iridium-coated rhenium rocket chamber materials for radiation-cooled rockets in satellite propulsion systems. Although successful material demonstrations have gained much industry interest, acceptance of the technology has been hindered by a lack of demonstrated joining technologies and a sparse materials property data base. To alleviate these concerns, we fabricated rhenium to C-103 alloy joints by three methods: explosive bonding, diffusion bonding, and brazing. The joints were tested by simulating their incorporation into a structure by welding and by simulating high-temperature operation. Test results show that the shear strength of the joints degrades with welding and elevated temperature operation but that it is adequate for the application. Rhenium is known to form brittle intermetallics with a number of elements, and this phenomena is suspected to cause the strength degradation. Further bonding tests with a tantalum diffusion barrier between the rhenium and C-103 is planned to prevent the formation of brittle intermetallics.

  15. Conflict minerals in the compute sector: estimating extent of tin, tantalum, tungsten, and gold use in ICT products.

    PubMed

    Fitzpatrick, Colin; Olivetti, Elsa; Miller, Reed; Roth, Richard; Kirchain, Randolph

    2015-01-20

    Recent legislation has focused attention on the supply chains of tin, tungsten, tantalum, and gold (3TG), specifically those originating from the eastern part of the Democratic Republic of Congo. The unique properties of these so-called “conflict minerals” lead to their use in many products, ranging from medical devices to industrial cutting tools. This paper calculates per product use of 3TG in several information, communication, and technology (ICT) products such as desktops, servers, laptops, smart phones, and tablets. By scaling up individual product estimates to global shipment figures, this work estimates the influence of the ICT sector on 3TG mining in covered countries. The model estimates the upper bound of tin, tungsten, tantalum, and gold use within ICT products to be 2%, 0.1%, 15%, and 3% of the 2013 market share, respectively. This result is projected into the future (2018) based on the anticipated increase in ICT device production.

  16. A tungsten-rhenium interatomic potential for point defect studies

    NASA Astrophysics Data System (ADS)

    Setyawan, Wahyu; Gao, Ning; Kurtz, Richard J.

    2018-05-01

    A tungsten-rhenium (W-Re) classical interatomic potential is developed within the embedded atom method interaction framework. A force-matching method is employed to fit the potential to ab initio forces, energies, and stresses. Simulated annealing is combined with the conjugate gradient technique to search for an optimum potential from over 1000 initial trial sets. The potential is designed for studying point defects in W-Re systems. It gives good predictions of the formation energies of Re defects in W and the binding energies of W self-interstitial clusters with Re. The potential is further evaluated for describing the formation energy of structures in the σ and χ intermetallic phases. The predicted convex-hulls of formation energy are in excellent agreement with ab initio data. In pure Re, the potential can reproduce the formation energies of vacancies and self-interstitial defects sufficiently accurately and gives the correct ground state self-interstitial configuration. Furthermore, by including liquid structures in the fit, the potential yields a Re melting temperature (3130 K) that is close to the experimental value (3459 K).

  17. Radiopharmaceutical composition containing tantalum-178 and process therefor

    DOEpatents

    Neirinckx, Rudi D.; Holman, B. Leonard; Davis, Michael A.; Harris, Gale I.

    1989-05-16

    A physiologically acceptable solution of tantalum-178 having an activity of 0.1 to 200 millicuries per milliliter of tantalum-178 solution is provided. The solution is obtained from tungsten-178 bound to a column of an anion exchange resin which forms tantalum-178 in situ by eluting the column with a hydrochloric acid solution containing hydrogen peroxide to form an acidic solution of tantalum-178. The acidic solution of tantalum-178 then is neutralized.

  18. Activation energy of tantalum-tungsten oxide thermite reactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cervantes, Octavio G.; Munir, Zuhair A.; Chemical Engineering and Materials Science, University of California, Davis, CA

    2011-01-15

    The activation energy of a sol-gel (SG) derived tantalum-tungsten oxide thermite composite was determined using the Kissinger isoconversion method. The SG derived powder was consolidated using the high-pressure spark plasma sintering (HPSPS) technique at 300 and 400 C. The ignition temperatures were investigated under high heating rates (500-2000 C min{sup -1}). Such heating rates were required in order to ignite the thermite composite. Samples consolidated at 300 C exhibit an abrupt change in temperature response prior to the main ignition temperature. This change in temperature response is attributed to the crystallization of the amorphous WO{sub 3} in the SG derivedmore » Ta-WO{sub 3} thermite composite and not to a pre-ignition reaction between the constituents. Ignition temperatures for the Ta-WO{sub 3} thermite ranged from approximately 465 to 670 C. The activation energies of the SG derived Ta-WO{sub 3} thermite composite consolidated at 300 and 400 C were determined to be 38{+-} 2 kJ mol{sup -1} and 57 {+-} 2 kJ mol{sup -1}, respectively. (author)« less

  19. Semimicrodetermination of tantalum with selenous acid

    USGS Publications Warehouse

    Grimaldi, F.S.; Schnepfe, M.M.

    1958-01-01

    Tantalum is separated and determined gravimetrically by precipitation with selenous acid from a highly acidic solution containing oxalic and tartaric acids. The method is selective for the determination of up to 30 mg. of tantalum pentoxide, and tolerates relatively large amounts of scandium, yttrium, cerium, titanium, zirconium, thorium, vanadium, niobium, molybdenum, tungsten, uranium, iron, aluminum, gallium, tin, lead, antimony, and bismuth. The separation of tantalum from niobium and titanium is not strictly quantitative, and correction is made colorimetrically for the small amounts of niobium and titanium co-precipitating with the tantalum. The method was applied to the determination of tantalum in tantaloniobate ores.

  20. Use of a Tantalum Liner to Reduce Bore Erosion and Increase Muzzle Velocity in Two-Stage Light Gas Guns

    NASA Technical Reports Server (NTRS)

    Bogdanoff, David W.

    2015-01-01

    Muzzle velocities and gun erosion predicted by earlier numerical simulations of two stage light gas guns with steel gun tubes were in good agreement with experimental values. In a subsequent study, simulations of high performance shots were repeated with rhenium (Re) gun tubes. Large increases in muzzle velocity (2 - 4 km/sec) were predicted for Re tubes. In addition, the hydrogen-produced gun tube erosion was, in general, predicted to be zero with Re tubes. Tantalum (Ta) has some mechanical properties superior to those of Re. Tantalum has a lower modulus of elasticity than Re for better force transmission from the refractory metal liner to an underlying thick wall steel tube. Tantalum also has greater ductility than Re for better survivability during severe stress/strain cycles. Also, tantalum has been used as a coating or liner in military powder guns with encouraging results. Tantalum has, however, somewhat inferior thermal properties to those of rhenium, with a lower melting point and lower density and thermal conductivity. The present study was undertaken to see to what degree the muzzle velocity gains of rhenium gun tubes (over steel tubes) could be achieved with tantalum gun tubes. Nine high performance shots were modeled with a new version of our CFD gun code for steel, rhenium and tantalum gun tubes. For all except the highest velocity shot, the results with Ta tubes were nearly identical with those for Re tubes. Even for the highest velocity shot, the muzzle velocity gain over a steel tube using Ta was 82% of the gain obtained using Re. Thus, the somewhat inferior thermal properties of Ta (when compared to those of Re) translate into only very slightly poorer overall muzzle velocity performance. When this fact is combined with the superior mechanical properties of Ta and the encouraging performance of Ta liners/coatings in military powder guns, tantalum is to be preferred over Re as a liner/coating material for two stage light gas guns to increase muzzle

  1. A Review of the Science and Technology of Cathodes from the Viewpoint of Spacecraft TWT Applications

    DTIC Science & Technology

    1980-06-01

    thermionic emitters for various applications. Of the pure metals, only tungsten , rhenium , and tantalum have sufficiently high melting temperatures to yield...the activation process. These ele- ments, carbon , zirconium, magnesium, manganese, aluminum, silicon, and, perhaps, tungsten , were originally added to...in the cavity. The porous tungsten plug has a density between 73 to 83% of the maxi- mum theoretical density of tungsten . The carbonates are

  2. A tungsten-rhenium interatomic potential for point defect studies

    DOE PAGES

    Setyawan, Wahyu; Gao, Ning; Kurtz, Richard J.

    2018-05-28

    A tungsten-rhenium (W-Re) classical interatomic potential is developed within the embedded atom method (EAM) interaction framework. A force-matching method is employed to fit the potential to ab initio forces, energies, and stresses. Simulated annealing is combined with the conjugate gradient technique to search for an optimum potential from over 1000 initial trial sets. The potential is designed for studying point defects in W-Re systems. It gives good predictions of the formation energies of Re defects in W and the binding energies of W self-interstitial clusters with Re. The potential is further evaluated for describing the formation energy of structures inmore » the σ and χ intermetallic phases. The predicted convex-hulls of formation energy are in excellent agreement with ab initio data. In pure Re, the potential can reproduce the formation energies of vacancy and self-interstitial defects sufficiently accurately, and gives the correct ground state self-interstitial configuration. Furthermore, by including liquid structures in the fit, the potential yields a Re melting temperature (3130 K) that is close to the experimental value (3459 K).« less

  3. A tungsten-rhenium interatomic potential for point defect studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Setyawan, Wahyu; Gao, Ning; Kurtz, Richard J.

    A tungsten-rhenium (W-Re) classical interatomic potential is developed within the embedded atom method (EAM) interaction framework. A force-matching method is employed to fit the potential to ab initio forces, energies, and stresses. Simulated annealing is combined with the conjugate gradient technique to search for an optimum potential from over 1000 initial trial sets. The potential is designed for studying point defects in W-Re systems. It gives good predictions of the formation energies of Re defects in W and the binding energies of W self-interstitial clusters with Re. The potential is further evaluated for describing the formation energy of structures inmore » the σ and χ intermetallic phases. The predicted convex-hulls of formation energy are in excellent agreement with ab initio data. In pure Re, the potential can reproduce the formation energies of vacancy and self-interstitial defects sufficiently accurately, and gives the correct ground state self-interstitial configuration. Furthermore, by including liquid structures in the fit, the potential yields a Re melting temperature (3130 K) that is close to the experimental value (3459 K).« less

  4. Tungsten wire and tubing joined by nickel brazing

    NASA Technical Reports Server (NTRS)

    1965-01-01

    Thin tungsten wire and tungsten tubing are brazed together using a contacting coil of nickel wire heated to its melting point in an inert-gas atmosphere. This method is also effective for brazing tungsten to tungsten-rhenium parts.

  5. The effect of low energy helium ion irradiation on tungsten-tantalum (W-Ta) alloys under fusion relevant conditions

    NASA Astrophysics Data System (ADS)

    Gonderman, S.; Tripathi, J. K.; Novakowski, T. J.; Sizyuk, T.; Hassanein, A.

    2017-08-01

    Currently, tungsten remains the best candidate for plasma-facing components (PFCs) for future fusion devices because of its high melting point, low erosion, and strong mechanical properties. However, continued investigation has shown tungsten to undergo severe morphology changes under fusion-like conditions. These results motivate the study of innovative PFC materials which are resistant to surface morphology evolution. The goal of this work is to examine tungsten-tantalum (W-Ta) alloys, a potential PFC material, and their response to low energy helium ion irradiation. Specifically, W-Ta samples are exposed to 100 eV helium irradiations with a flux of 1.15 × 1021 ions m-2 s-1, at 873 K, 1023 K, and 1173 K for 1 h duration. Scanning electron microscopy (SEM) reveals significant changes in surface deterioration due to helium ion irradiation as a function of both temperature and tantalum concentration in W-Ta samples. X-Ray Diffraction (XRD) studies show a slight lattice parameter expansion in W-Ta alloy samples compared to pure W samples. The observed lattice parameter expansion in W-Ta alloy samples (proportional to increasing Ta wt.% concentrations) reflect significant differences observed in the evolution of surface morphology, i.e., fuzz development processes for both increasing Ta wt.% concentration and target temperature. These results suggest a correlation between the observed morphology differences and the induced crystal structure change caused by the presence of tantalum. Shifts in the XRD peaks before and after 100 eV helium irradiation with a flux of 1.15 × 1021 ions m-2 s-1, 1023 K, for 1 h showed a significant difference in the magnitude of the shift. This has suggested a possible link between the atomic spacing of the material and the accumulated damage. Ongoing research is needed on W-Ta alloys and other innovative materials for their application as irradiation resistant materials in future fusion or irradiation environments.

  6. Addition of oxygen to and distribution of oxides in tantalum alloy T-111 at low concentrations

    NASA Technical Reports Server (NTRS)

    Stecura, S.

    1975-01-01

    Oxygen was added at 820 and 990 C at an oxygen pressure of about .0003 torr. The technique permitted predetermined and reproducible oxygen doping of the tantalum alloy (T-111). Based on the temperature dependency of the doping reaction, it was concluded that the initial rates of oxygen pickup are probably controlled by solution of oxygen into the T-111 lattice. Although hafnium oxides are more stable than those of tantalum or tungsten, analyses of extracted residues indicate that the tantalum and tungsten oxides predominate in the as-doped specimens, presumably because of the higher concentrations of tantalum and tungsten in the alloy. However, high-temperature annealing promotes gettering of dissolved oxygen and oxygen from other oxides to form hafnium oxides. Small amounts of tantalum and tungsten oxides were still present after high temperature annealing. Tungsten oxide (WO3) volatilizes slightly from the surface of T-111 at 990 C but not at 820 C. The vaporization of WO3 has no apparent effect on the doping reaction.

  7. Low Cost, Net Shape Fabrication of Rhenium and High Temperature Materials for Rocket Engine Components

    DTIC Science & Technology

    2001-03-01

    tungsten thin wall nozzle liner removed from reusable mandrel. b) W and Re rocket, nozzle inserts (2 inserts per mandrel) for Air Force. Rhenium PPI...compares the fabrication time for the VPS nozzles with equivalent carbon / carbon composite (C/C) and forged tungsten materials. Table 5: Comparison of...UNCLASSIFIED Defense Technical Information Center Compilation Part Notice ADPO1 1181 TITLE: Low Cost, Net Shape Fabrication of Rhenium and High

  8. Mechanical properties of electron-beam-melted molybdenum and dilute molybdenum-rhenium alloys

    NASA Technical Reports Server (NTRS)

    Klopp, W. D.; Witzke, W. R.

    1972-01-01

    A study of molybdenum and three dilute molybdenum-rhenium alloys was undertaken to determine the effects of rhenium on the low temperature ductility and other mechanical properties of molybdenum. Alloys containing 3.9, 5.9, and 7.7 atomic percent rhenium exhibited lower ductile-brittle transition temperatures than did the unalloyed molybdenum. The maximum improvement in the annealed condition was observed for molybdenum - 7.7 rhenium, which had a ductile-brittle transition temperature approximately 200 C (360 F) lower than that for unalloyed molybdenum. Rhenium additions also increased the low and high temperature tensile strengths and the high temperature creep strength of molybdenum. The mechanical behavior of dilute molybdenum-rhenium alloys is similar to that observed for dilute tungsten-rhenium alloys.

  9. Neutron displacement cross-sections for tantalum and tungsten at energies up to 1 GeV

    NASA Astrophysics Data System (ADS)

    Broeders, C. H. M.; Konobeyev, A. Yu.; Villagrasa, C.

    2005-06-01

    The neutron displacement cross-section has been evaluated for tantalum and tungsten at energies from 10 -5 eV up to 1 GeV. The nuclear optical model, the intranuclear cascade model combined with the pre-equilibrium and evaporation models were used for the calculations. The number of defects produced by recoil atoms nuclei in materials was calculated by the Norgett, Robinson, Torrens model and by the approach combining calculations using the binary collision approximation model and the results of the molecular dynamics simulation. The numerical calculations were done using the NJOY code, the ECIS96 code, the MCNPX code and the IOTA code.

  10. Method of producing microporous joints in metal bodies

    DOEpatents

    Danko, Joseph C.

    1982-01-01

    Tungsten is placed in contact with either molybdenum, tantalum, niobium, vanadium, rhenium, or other metal of atoms having a different diffusion coefficient than tungsten. The metals are heated so that the atoms having the higher diffusion coefficient migrate to the metal having the lower diffusion rate, leaving voids in the higher diffusion coefficient metal. Heating is continued until the voids are interconnected.

  11. TUNGSTEN BRONZE RELATED NON-NOBLE ELECTROCATALYSTS.

    DTIC Science & Technology

    FUEL CELLS, *CATALYSTS), (*OXYGEN, *ELECTRODES), (* SILICIDES , ELECTRODES), (*CARBIDES, ELECTRODES), (*TUNGSTEN COMPOUNDS, *ELECTROCHEMISTRY...CATALYSTS, TITANIUM COMPOUNDS, ZIRCONIUM COMPOUNDS, VANADIUM COMPOUNDS, NIOBIUM COMPOUNDS, TUNGSTEN COMPOUNDS, TANTALUM COMPOUNDS, MOLYBDENUM COMPOUNDS, SULFURIC ACID, CRYSTAL GROWTH, SODIUM COMPOUNDS

  12. Monte Carlo Criticality Analysis of Simple Geometrics COntaining Tungsten Rhenium Alloys Engrained with Uranium Dioxide and Uranium Mononitride

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jonathan A. Webb; Indrajit Charit

    2011-08-01

    The critical mass and dimensions of simple geometries containing highly enriched uraniumdioxide (UO2) and uraniummononitride (UN) encapsulated in tungsten-rhenium alloys are determined using MCNP5 criticality calculations. Spheres as well as cylinders with length to radius ratios of 1.82 are computationally built to consist of 60 vol.% fuel and 40 vol.% metal matrix. Within the geometries the uranium is enriched to 93 wt.% uranium-235 and the rhenium content within the metal alloy was modeled over a range of 0 to 30 at.%. The spheres containing UO2 were determined to have a critical radius of 18.29 cm to 19.11 cm and amore » critical mass ranging from 366 kg to 424 kg. The cylinders containing UO2 were found to have a critical radius ranging from 17.07 cm to 17.844 cm with a corresponding critical mass of 406 kg to 471 kg. Spheres engrained with UN were determined to have a critical radius ranging from 14.82 cm to 15.19 cm and a critical mass between 222 kg and 242 kg. Cylinders which were engrained with UN were determined to have a critical radius ranging from 13.811 cm to 14.155 cm with a corresponding critical mass of 245 kg to 267 kg. The critical geometries were also computationally submerged in a neutronaically infinite medium of fresh water to determine the effects of rhenium addition on criticality accidents due to water submersion. The monte carlo analysis demonstrated that rhenium addition of up to 30 at.% can reduce the excess reactivity due to water submersion by up to $5.07 for UO2 fueled cylinders, $3.87 for UO2 fueled spheres and approximately $3.00 for UN fueled spheres and cylinders.« less

  13. Gleeble Testing of Tungsten Samples

    DTIC Science & Technology

    2013-02-01

    as a diffusion barrier to prevent the tungsten samples from fusing to the tungsten carbide inserts at elevated temperatures. After the anvils were...anvils with removable tungsten carbide inserts. The inserts were 19.05 mm (0.75 in) in diameter and 25.4 mm (1 in) long; they were purchased from...rhenium are shown in tables 6 and 7 and figure 7. The sample tested at 1300 °C, T4, partially embedded into the tungsten carbide (WC) inserts during

  14. Activation Energy of Tantalum-Tungsten Oxide Thermite Reaction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cervantes, O; Kuntz, J; Gash, A

    2010-02-25

    The activation energy of a high melting temperature sol-gel (SG) derived tantalum-tungsten oxide thermite composite was determined using the Kissinger isoconversion method. The SG derived powder was consolidated using the High Pressure Spark Plasma Sintering (HPSPS) technique to 300 and 400 C to produce pellets with dimensions of 5 mm diameter by 1.5 mm height. A custom built ignition setup was developed to measure ignition temperatures at high heating rates (500-2000 C {center_dot} min{sup -1}). Such heating rates were required in order to ignite the thermite composite. Unlike the 400 C samples, results show that the samples consolidated to 300more » C undergo an abrupt change in temperature response prior to ignition. This change in temperature response has been attributed to the crystallization of the amorphous WO{sub 3} in the SG derived Ta-WO{sub 3} thermite composite and not to a pre-ignition reaction between the constituents. Ignition temperatures for the Ta-WO{sub 3} thermite ranged from approximately 465-670 C. The activation energy of the SG derived Ta-WO{sup 3} thermite composite consolidated to 300 and 400 C were determined to be 37.787 {+-} 1.58 kJ {center_dot} mol{sup -1} and 57.381 {+-} 2.26 kJ {center_dot} mol{sup -1}, respectively.« less

  15. High-strength tungsten alloy with improved ductility

    NASA Technical Reports Server (NTRS)

    Klopp, W. D.; Raffo, P. L.; Rubenstein, L. S.; Witzke, W. R.

    1967-01-01

    Alloy combines superior strength at elevated temperatures with improved ductility at lower temperatures relative to unalloyed tungsten. Composed of tungsten, rhenium, hafnium, and carbon, the alloy is prepared by consumable electrode vacuum arc-melting and can be fabricated into rod, plate, and sheet.

  16. Thermophysical Properties of Matter - The TPRC Data Series. Volume 4. Specific Heat - Metallic Elements and Alloys

    DTIC Science & Technology

    1971-01-01

    alloys— sodium — sodium alloya— solder—carbon ateels—chromium steels—silicon steels—tantalum—tantalum alloys—terbium—thallium—thallium alloys—thorium...Praseodymium 45 Rhenium 46 Rhodium 47 Rubidium 48 Ruthenium 4» Samarium 50 Scandium 51 Selenium 52 Silicon 5:i Silver 54 Sodium 55 Strontium 56...Potassium ♦ Sodium 111 Sodium * Potassium 112 TantalumTungsten 113 Thallium + Lead, PbTl| 114 Tin ♦ Bismuth 115 Tin ♦ Indium 116 Tin+ Lead 117

  17. Probing C-O bond activation on gas-phase transition metal clusters: Infrared multiple photon dissociation spectroscopy of Fe, Ru, Re, and W cluster CO complexes

    NASA Astrophysics Data System (ADS)

    Lyon, Jonathan T.; Gruene, Philipp; Fielicke, André; Meijer, Gerard; Rayner, David M.

    2009-11-01

    The binding of carbon monoxide to iron, ruthenium, rhenium, and tungsten clusters is studied by means of infrared multiple photon dissociation spectroscopy. The CO stretching mode is used to probe the interaction of the CO molecule with the metal clusters and thereby the activation of the C-O bond. CO is found to adsorb molecularly to atop positions on iron clusters. On ruthenium and rhenium clusters it also binds molecularly. In the case of ruthenium, binding is predominantly to atop sites, however higher coordinated CO binding is also observed for both metals and becomes prevalent for rhenium clusters containing more than nine atoms. Tungsten clusters exhibit a clear size dependence for molecular versus dissociative CO binding. This behavior denotes the crossover to the purely dissociative CO binding on the earlier transition metals such as tantalum.

  18. Towards understanding the mechanism of rhenium and osmium precipitation in tungsten and its implication for tungsten-based alloys

    NASA Astrophysics Data System (ADS)

    Li, Yu-Hao; Zhou, Hong-Bo; Deng, Huiqiu; Lu, Gang; Lu, Guang-Hong

    2018-07-01

    Using a first-principles method in combination with thermodynamic models, we investigate the interaction between rhenium/osmium (Re/Os) and defects to explore the mechanism of radiation-induced Re/Os precipitation in tungsten (W). We demonstrate that radiation-induced defects play a key role in the solute precipitation in W, especially for self-interstitial atoms (SIAs). The presence of SIAs can significantly reduce the total nucleation free energy change of Re/Os, and thus facilitate the nucleation of Re/Os in W. Further, SIA is shown to be easily trapped by Re/Os once overcoming a low energy barrier, forming a W-Re/Os mixed dumbbell. Such W-Re/Os dumbbell forms a high stable Re/Os-Re/Os dumbbell structure with the substitutional Re/Os atoms, which can serve as a trapping centre for subsequent interstitial-Re/Os, leading to the growth of Re/Os-rich clusters. Consequently, an interstitial-mediated migration and aggregation mechanism for Re/Os precipitation in W has been proposed. Our results reveale that the alloying elements-defects interaction has significantly effect on their behaviors under irradiation, which should be considered in the design of W-based alloys for future fusion devices.

  19. Topical Report Tantalum – 2.5% Tungsten Machinability Testing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    L. J. Lazarus

    2009-09-02

    Protection Association (NFPA). NFPA 484, Standard for Combustible Metals, Chapter 9 Tantalum and Annex E, supplemental Information on Tantalum require cutting oil be used when machining tantalum because it burns at such a high temperature that it breaks down the water in a water-based metalworking fluid (MWF). The NFPA guide devotes approximately 20 pages to this material. The Kansas City Plant (KCP) uses Fuchs Lubricants Ecocut Base 44 LVC as a MWF. This is a highly chlorinated oil with a high flash point (above 200° F). The chlorine is very helpful in preventing BUE (Built Up Edge) that occurs frequentlymore » with this very gummy material. The Ecocut is really a MWF additive that Fuchs uses to add chlorinated fats to other non-chlorinated MWF.« less

  20. High temperature surface effects of He + implantation in ICF fusion first wall materials

    NASA Astrophysics Data System (ADS)

    Zenobia, Samuel J.; Radel, R. F.; Cipiti, B. B.; Kulcinski, Gerald L.

    2009-06-01

    The first wall armor of the inertial confinement fusion reactor chambers must withstand high temperatures and significant radiation damage from target debris and neutrons. The resilience of multiple materials to one component of the target debris has been investigated using energetic (20-40 keV) helium ions generated in the inertial electrostatic confinement device at the University of Wisconsin. The materials studied include: single-crystalline, and polycrystalline tungsten, tungsten-coated tantalum-carbide 'foams', tungsten-rhenium alloy, silicon carbide, carbon-carbon velvet, and tungsten-coated carbon-carbon velvet. Steady-state irradiation temperatures ranged from 750 to 1250 °C with helium fluences between 5 × 10 17 and 1 × 10 20 He +/cm 2. The crystalline, rhenium alloyed, carbide foam, and powder metallurgical tungsten specimens each experienced extensive pore formation after He + irradiation. Flaking and pore formation occurred on silicon carbide samples. Individual fibers of carbon-carbon velvet specimens sustained erosion and corrugation, in addition to the roughening and rupturing of tungsten coatings after helium ion implantation.

  1. High heat flux properties of pure tungsten and plasma sprayed tungsten coatings

    NASA Astrophysics Data System (ADS)

    Liu, X.; Tamura, S.; Tokunaga, K.; Yoshida, N.; Noda, N.; Yang, L.; Xu, Z.

    2004-08-01

    High heat flux properties of pure tungsten and plasma sprayed tungsten coatings on carbon substrates have been studied by annealing and cyclic heat loading. The recrystallization temperature and an activation energy QR=126 kJ/mol for grain growth of tungsten coating by vacuum plasma spray (VPS) were estimated, and the microstructural changes of multi-layer tungsten and rhenium interface pre-deposited by physical vapor deposition (PVD) with anneal temperature were investigated. Cyclic load tests indicated that pure tungsten and VPS-tungsten coating could withstand 1000 cycles at 33-35 MW/m 2 heat flux and 3 s pulse duration, and inert gas plasma spray (IPS)-tungsten coating showed local cracks by 300 cycles but did not induce failure by further cycles. However, the failure of pure tungsten and VPS-tungsten coating by fatigue cracking was observed under higher heat load (55-60 MW/m 2) for 420 and 230 cycles, respectively.

  2. Ultraviolet spectrophotometric determination of tantalum with pyrogallol

    USGS Publications Warehouse

    Dinnin, J.I.

    1953-01-01

    In a search for a more rapid method for the determination of tantalum in rocks and minerals, an intensive study was made of the tantalum-pyrogallol reaction recommended by Platanov and Krivoshlikov, and a better modified spectrophotometric procedure is given. The improved method consists in measuring the absorbancy of the tantalum-pyrogallol complex at 325 m?? in 4N hydrochloric acid and a fixed concentration (0.0175M) of ammonium oxalate. Beer's law is followed for the concentration range up to 40 ?? per ml. Sensitivity in terms of molar absorbancy index is 4775. Most interferences are additive in character and readily correctable. Separations or major corrections are required in the presence of significant amounts of molybdenum, tungsten, antimony, and uranium. The method has been successfully applied to three ores previously analyzed by gravimetric techniques. The method affords greater speed, sensitivity, and reproducibility in the determination of tantalum in rocks and minerals. A more reliable technique for preparing standard solutions of tantalum has been developed.

  3. Monoclonal Antibodies Radiolabeling with Rhenium-188 for Radioimmunotherapy

    PubMed Central

    Martini, Petra; Pasquali, Micol

    2017-01-01

    Rhenium-188, obtained from an alumina-based tungsten-188/rhenium-188 generator, is actually considered a useful candidate for labeling biomolecules such as antibodies, antibody fragments, peptides, and DNAs for radiotherapy. There is a widespread interest in the availability of labeling procedures that allow obtaining 188Re-labeled radiopharmaceuticals for various therapeutic applications, in particular for the rhenium attachment to tumor-specific monoclonal antibodies (Mo)Abs for immunotherapy. Different approaches have been developed in order to obtain 188Re-radioimmunoconjugates in high radiochemical purity starting from the generator eluted [188Re]ReO4−. The aim of this paper is to provide a short overview on 188Re-labeled (Mo)Abs, focusing in particular on the radiolabeling methods, quality control of radioimmunoconjugates, and their in vitro stability for radioimmunotherapy (RIT), with particular reference to the most important contributions published in literature in this topic. PMID:28951872

  4. Monoclonal Antibodies Radiolabeling with Rhenium-188 for Radioimmunotherapy.

    PubMed

    Uccelli, Licia; Martini, Petra; Pasquali, Micol; Boschi, Alessandra

    2017-01-01

    Rhenium-188, obtained from an alumina-based tungsten-188/rhenium-188 generator, is actually considered a useful candidate for labeling biomolecules such as antibodies, antibody fragments, peptides, and DNAs for radiotherapy. There is a widespread interest in the availability of labeling procedures that allow obtaining 188 Re-labeled radiopharmaceuticals for various therapeutic applications, in particular for the rhenium attachment to tumor-specific monoclonal antibodies (Mo)Abs for immunotherapy. Different approaches have been developed in order to obtain 188 Re-radioimmunoconjugates in high radiochemical purity starting from the generator eluted [ 188 Re]ReO 4 - . The aim of this paper is to provide a short overview on 188 Re-labeled (Mo)Abs, focusing in particular on the radiolabeling methods, quality control of radioimmunoconjugates, and their in vitro stability for radioimmunotherapy (RIT), with particular reference to the most important contributions published in literature in this topic.

  5. Fabrication of a Tantalum-Based Josephson Junction for an X-Ray Detector

    NASA Astrophysics Data System (ADS)

    Morohashi, Shin'ichi; Gotoh, Kohtaroh; Yokoyama, Naoki

    2000-06-01

    We have fabricated a tantalum-based Josephson junction for an X-ray detector. The tantalum layer was selected for the junction electrode because of its long quasiparticle lifetime, large X-ray absorption efficiency and stability against thermal cycling. We have developed a buffer layer to fabricate the tantalum layer with a body-centered cubic structure. Based on careful consideration of their superconductivity, we have selected a niobium thin layer as the buffer layer for fabricating the tantalum base electrode, and a tungsten thin layer for the tantalum counter electrode. Fabricated Nb/AlOx-Al/Ta/Nb and Nb/Ta/W/AlOx-Al/Ta/Nb Josephson junctions exhibited current-voltage characteristics with a low subgap leakage current.

  6. Rhenium

    USGS Publications Warehouse

    John, David A.; Seal, Robert R.; Polyak, Désirée E.; Schulz, Klaus J.; DeYoung,, John H.; Seal, Robert R.; Bradley, Dwight C.

    2017-12-19

    Rhenium is one of the rarest elements in Earth’s continental crust; its estimated average crustal abundance is less than 1 part per billion. Rhenium is a metal that has an extremely high melting point and a heat-stable crystalline structure. More than 80 percent of the rhenium consumed in the world is used in high-temperature superalloys, especially those used to make turbine blades for jet aircraft engines. Rhenium’s other major application is in platinum-rhenium catalysts used in petroleum refining.Rhenium rarely occurs as a native element or as its own sulfide mineral; most rhenium is present as a substitute for molybdenum in molybdenite. Annual world mine production of rhenium is about 50 metric tons. Nearly all primary rhenium production (that is, rhenium produced by mining rather than through recycling) is as a byproduct of copper mining, and about 80 percent of the rhenium obtained through mining is recovered from the flue dust produced during the roasting of molybdenite concentrates from porphyry copper deposits. Molybdenite in porphyry copper deposits can contain hundreds to several thousand grams per metric ton of rhenium, although the estimated rhenium grades of these deposits range from less than 0.1 gram per metric ton to about 0.6 gram per metric ton.Continental-arc porphyry copper-(molybdenum-gold) deposits supply most of the world’s rhenium production and have large inferred rhenium resources. Porphyry copper mines in Chile account for about 55 percent of the world’s mine production of rhenium; rhenium is also recovered from porphyry copper deposits in the United States, Armenia, Kazakhstan, Mexico, Peru, Russia, and Uzbekistan. Sediment-hosted strata-bound copper deposits in Kazakhstan (of the sandstone type) and in Poland (of the reduced-facies, or Kupferschiefer, type) account for most other rhenium produced by mining. These types of deposits also have large amounts of identified rhenium resources. The future supply of rhenium is likely

  7. Development of Improved Rhenium Coatings for Fluorine Engine Thrust Chambers. [hydrazine-fluorine rocket engines

    NASA Technical Reports Server (NTRS)

    Barton, K. J.; Yurkewycz, R.; Harada, Y.; Daniels, I.

    1981-01-01

    Coating trials were undertaken to evaluate the application of rhenium to carbon-carbon composite sheet by plasma spraying. Optimum spray parameters and coating thickness were identified for production of coatings free from continuous defects and with adequate adherence to the substrate. A tungsten underlayer was not beneficial and possibly detracted from coating integrity. Stress calculations indicated that the proposed operating cycle of the rocket engine would not cause spalling of the rhenium coating. Calculations indicated that permeation of gases through the coating would not be significant during the expected life of the thrust chamber. The feasibility of applying rhenium coatings by laser melting was also studied. Poor wetting of the composite surface by the liquid rhenium precluded production of uniform coatings. Borate/carborate fluxes did not improve wetting characteristics.

  8. Laser-induced breakdown spectroscopy measurement of a small fraction of rhenium in bulk tungsten

    NASA Astrophysics Data System (ADS)

    Nishijima, D.; Ueda, Y.; Doerner, R. P.; Baldwin, M. J.; Ibano, K.

    2018-03-01

    Laser-induced breakdown spectroscopy (LIBS) of bulk rhenium (Re) and tungsten (W)-Re alloy has been performed using a Q-switched Nd:YAG laser (wavelength = 1064 nm, pulse width ∼4-6 ns, laser energy = 115 mJ). It is found that the electron temperature, Te, of laser-induced Re plasma is lower than that of W plasma, and that Te of W-Re plasma is in between Re and W plasmas. This indicates that material properties affect Te in a laser-induced plasma. For analysis of W-3.3%Re alloy, only the strongest visible Re I 488.9 nm line is found to be used because of the strong enough intensity without contamination with W lines. Using the calibration-free LIBS method, the atomic fraction of Re, cRe, is evaluated as a function of the ambient Ar gas pressure, PAr. At PAr < 10 Torr, LIBS-measured cRe agrees well with that from EDX (energy-dispersive X-ray micro-analysis), while cRe increases with an increase in PAr at >10 Torr due to spectral overlapping of the Re I 488.9 nm line by an Ar II 488.9 nm line.

  9. Rhenium Alloys as Ductile Substrates for Diamond Thin-Film Electrodes.

    PubMed

    Halpern, Jeffrey M; Martin, Heidi B

    2014-02-01

    Molybdenum-rhenium (Mo/Re) and tungsten-rhenium (W/Re) alloys were investigated as substrates for thin-film, polycrystalline boron-doped diamond electrodes. Traditional, carbide-forming metal substrates adhere strongly to diamond but lose their ductility during exposure to the high-temperature (1000°C) diamond, chemical vapor deposition environment. Boron-doped semi-metallic diamond was selectively deposited for up to 20 hours on one end of Mo/Re (47.5/52.5 wt.%) and W/Re (75/25 wt.%) alloy wires. Conformal diamond films on the alloys displayed grain sizes and Raman signatures similar to films grown on tungsten; in all cases, the morphology and Raman spectra were consistent with well-faceted, microcrystalline diamond with minimal sp 2 carbon content. Cyclic voltammograms of dopamine in phosphate-buffered saline (PBS) showed the wide window and low baseline current of high-quality diamond electrodes. In addition, the films showed consistently well-defined, dopamine electrochemical redox activity. The Mo/Re substrate regions that were uncoated but still exposed to the diamond-growth environment remained substantially more flexible than tungsten in a bend-to-fracture rotation test, bending to the test maximum of 90° and not fracturing. The W/Re substrates fractured after a 27° bend, and the tungsten fractured after a 21° bend. Brittle, transgranular cleavage fracture surfaces were observed for tungsten and W/Re. A tension-induced fracture of the Mo/Re after the prior bend test showed a dimple fracture with a visible ductile core. Overall, the Mo/Re and W/Re alloys were suitable substrates for diamond growth. The Mo/Re alloy remained significantly more ductile than traditional tungsten substrates after diamond growth, and thus may be an attractive metal substrate for more ductile, thin-film diamond electrodes.

  10. Rhenium Alloys as Ductile Substrates for Diamond Thin-Film Electrodes

    PubMed Central

    Halpern, Jeffrey M.; Martin, Heidi B.

    2014-01-01

    Molybdenum-rhenium (Mo/Re) and tungsten-rhenium (W/Re) alloys were investigated as substrates for thin-film, polycrystalline boron-doped diamond electrodes. Traditional, carbide-forming metal substrates adhere strongly to diamond but lose their ductility during exposure to the high-temperature (1000°C) diamond, chemical vapor deposition environment. Boron-doped semi-metallic diamond was selectively deposited for up to 20 hours on one end of Mo/Re (47.5/52.5 wt.%) and W/Re (75/25 wt.%) alloy wires. Conformal diamond films on the alloys displayed grain sizes and Raman signatures similar to films grown on tungsten; in all cases, the morphology and Raman spectra were consistent with well-faceted, microcrystalline diamond with minimal sp2 carbon content. Cyclic voltammograms of dopamine in phosphate-buffered saline (PBS) showed the wide window and low baseline current of high-quality diamond electrodes. In addition, the films showed consistently well-defined, dopamine electrochemical redox activity. The Mo/Re substrate regions that were uncoated but still exposed to the diamond-growth environment remained substantially more flexible than tungsten in a bend-to-fracture rotation test, bending to the test maximum of 90° and not fracturing. The W/Re substrates fractured after a 27° bend, and the tungsten fractured after a 21° bend. Brittle, transgranular cleavage fracture surfaces were observed for tungsten and W/Re. A tension-induced fracture of the Mo/Re after the prior bend test showed a dimple fracture with a visible ductile core. Overall, the Mo/Re and W/Re alloys were suitable substrates for diamond growth. The Mo/Re alloy remained significantly more ductile than traditional tungsten substrates after diamond growth, and thus may be an attractive metal substrate for more ductile, thin-film diamond electrodes. PMID:25404788

  11. Dissolution kinetics of small amounts of oxygen in tantalum alloy T-111 and internal oxide displacement reactions during annealing

    NASA Technical Reports Server (NTRS)

    Stecura, S.

    1976-01-01

    Oxygen was added to T-111 (Ta-8W-2Hf, wt. %) at 820 and 990 C at an oxygen pressure of about 0.0003 torr. The technique employed permitted predetermined and reproducible doping of T-111 up to 3.0 at. % oxygen. Based on the temperature dependence of the doping reaction, it is concluded that the initial rates of oxygen pickup are probably controlled by solution of oxygen into the T-111 lattice. Although hafnium oxides are more stable than those of tantalum or tungsten, analyses of extracted residues indicate that the latter oxides predominate in the as-doped specimens, presumably because of the higher concentrations of tantalum and tungsten in the alloy. However, high-temperature annealing promotes gettering of dissolved oxygen and of other oxides to form hafnium oxides. Small amounts of tantalum and tungsten oxides were still present after high-temperature annealing. Tungsten oxide (WO3) volatilizes slightly from the surface of T-111 at 990 C. The vaporization of WO3 has no apparent affect on the doping reaction.

  12. Conflict minerals from the Democratic Republic of the Congo: global tantalum processing plants, a critical part of the tantalum supply chain

    USGS Publications Warehouse

    Papp, John F.

    2014-01-01

    Post-beneficiation processing plants (generally called smelters and refineries) for 3TG mineral ores and concentrates were identified by company and industry association representatives as being the link in the 3TG mineral supply chain through which these minerals can be traced to their source of origin (mine). The determination of the source of origin is critical to the development of a complete and transparent conflict-free mineral supply chain. Tungsten processing plants were the subject of the first fact sheet in this series published by USGS NMIC in August 2014. Background information about historical conditions and multinational stakeholders’ voluntary due diligence guidance for minerals from conflict-affected and high-risk areas is presented in the tungsten fact sheet. This fact sheet, the second in a series about 3TG minerals, focuses on the tantalum supply chain by listing selected processors that produced tantalum materials commercially worldwide during 2013–14. It does not provide any information regarding the sources of material processed in these facilities.

  13. A Study of Tungsten-Technetium Alloys

    NASA Technical Reports Server (NTRS)

    Maltz, J. W.

    1965-01-01

    Technetium is a sister element to rhenium and has many properties that are similar to rhenium. It is predicted that technetium will have about the same effects on tungsten as rhenium in regard to increase in workability, lowered ductile to brittle transition temperature, and improved ductility. The objectives of the current work are to recover technetium from fission product wastes at Hanford Atomic Products Operation and reduce to purified metal; prepare W-Tc alloys containing up to 50 atomic% Tc; fabricate the alloy ingots to sheet stock, assessing the effect of technetium on workability; and perform metallurgical and mechanical properties evaluation of the fabricated alloys. Previous reports have described the separation and purification of 800 g of technetium metal powder, melting of technetium and W-Tc alloys, and some initial observation of the alloy material.

  14. Rhenium, Molybdenum, Tungsten - Prospects for Production and Industrial Applications

    DTIC Science & Technology

    1998-06-18

    concentrates from unique complex copper -containing porphyry deposit of the Almalyk region. The ore containing over 10 associated valuable constituents is...L.I.Ruzin, M .F.Sherem etyev ............................................... 71 Recovery of rhenium as by-product of treatment of molybdenite and copper ...for processing copper -molybdenum ores from "Erdenet- Ovoo" deposit S.Davaanyam, I.Sh.Sataev, Zh.Baatarkhuu, A.M.Desyatov, M.I.Khersonsky

  15. Laser Desorption Ionization of small molecules assisted by Tungsten oxide and Rhenium oxide particles

    PubMed Central

    Bernier, Matthew; Wysocki, Vicki; Dagan, Shai

    2015-01-01

    Inorganic metal oxides have shown potential as matrices for assisting in laser desorption ionization (LDI) with advantages over the aromatic acids typically used. Rhenium and tungsten oxides are an attractive option due to their high work functions and relative chemical inertness. In this work, it is shown that ReO3 and WO3, in microparticle (μP) powder forms, can efficiently ionize various types of small molecules and provide minimized background contamination at analyte concentrations below 1 ng/μL. This study shows that untreated inorganic WO3 and ReO3 particles are valid matrix options for detection of protonatable, radical, and precharged species under LDI. Qualitatively, the WO3 μP showed an improved detection of apigenin, sodiated glucose, and the precharged analyte choline, while the ReO3 μP allowed detection of protonated cocaine, quinuclidine, ametryn, and radical ions of polyaromatic hydrocarbons at detection levels as low as 50 pg/μL. For thermometer ion survival yield experiments, it was also shown that the ReO3 powder was significantly softer than CCA. Furthermore, it provided higher intensities of cocaine and polyaromatic hydrocarbons, at laser flux values equal to that used with CCA. PMID:26349643

  16. Effects of in situ dual ion beam (He+ and D+) irradiation with simultaneous pulsed heat loading on surface morphology evolution of tungsten-tantalum alloys

    NASA Astrophysics Data System (ADS)

    Gonderman, S.; Tripathi, J. K.; Sinclair, G.; Novakowski, T. J.; Sizyuk, T.; Hassanein, A.

    2018-02-01

    The strong thermal and mechanical properties of tungsten (W) are well suited for the harsh fusion environment. However, increasing interest in using tungsten as plasma-facing components (PFCs) has revealed several key issues. These potential roadblocks necessitate more investigation of W and other alternative W based materials exposed to realistic fusion conditions. In this work, W and tungsten-tantalum (W-Ta) alloys were exposed to single (He+) and dual (He+  +  D+) ion irradiations with simultaneous pulsed heat loading to elucidate PFCs response under more realistic conditions. Laser only exposer revealed significantly more damage in W-Ta samples as compared to pure W samples. This was due to the difference in the mechanical properties of the two different materials. Further erosion studies were conducted to evaluate the material degradation due to transient heat loading in both the presence and absence of He+ and/or D+ ions. We concluded that erosion of PFC materials was significantly enhanced due to the presence of ion irradiation. This is important as it demonstrates that there are key synergistic effects resulting from more realistic fusion loading conditions that need to be considered when evaluating the response of plasma facing materials.

  17. Laser desorption ionization of small molecules assisted by tungsten oxide and rhenium oxide particles.

    PubMed

    Bernier, Matthew C; Wysocki, Vicki H; Dagan, Shai

    2015-07-01

    Inorganic metal oxides have shown potential as matrices for assisting in laser desorption ionization with advantages over the aromatic acids typically used. Rhenium and tungsten oxides are attractive options due to their high work functions and relative chemical inertness. In this work, it is shown that ReO3 and WO3 , in microparticle (μP) powder forms, can efficiently facilitate ionization of various types of small molecules and provide minimized background contamination at analyte concentrations below 1 ng/µL. This study shows that untreated inorganic WO3 and ReO3 particles are valid matrix options for detection of protonatable, radical, and precharged species under laser desorption ionization. Qualitatively, the WO3 μP showed improved detection of apigenin, sodiated glucose, and precharged analyte choline, while the ReO3 μP allowed better detection of protonated cocaine, quinuclidine, ametryn, and radical ions of polyaromatic hydrocarbons at detection levels as low as 50 pg/µL. For thermometer ion survival yield experiments, it was also shown that the ReO3 powder was significantly softer than α-cyano-4-hydroxycinnaminic acid. Furthermore, it provided higher intensities of cocaine and polyaromatic hydrocarbons, at laser flux values equal to those used with α-cyano-4-hydroxycinnaminic acid. Copyright © 2015 John Wiley & Sons, Ltd.

  18. The tantalum-cased tantalum capacitor

    NASA Technical Reports Server (NTRS)

    Moynihan, J. D.

    1977-01-01

    Tantalum-cased tantalum capacitors were tested with regard to temperature stability, capacitance ratio, surge current capabilities, shock, vibration, and thermal shock. They were found to be superior to the conventional wet slug tantalum capacitor cased in silver, since they are more resistant to sulfuric acid. The tantalum-cased tantalum capacitors are widely accepted for use in critical electronic equipment because of their excellent performance and reliability.

  19. OBSERVATIONS ON RHENIUM-TUNGSTEN ALLOYS (in German)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kirner, K.

    1959-12-01

    Re-W alloys were arc melted between tungsten electrodes, checked metallographically and their hardness was determined. Two intermetallic phases were found, one of which---a stgroa phase--having a broad homogeneity range (approximately from 40 to 60%) and a high hardness (1800 VPN/sub 300/). (auth)

  20. Qualification of tungsten coatings on plasma-facing components for JET

    NASA Astrophysics Data System (ADS)

    Maier, H.; Neu, R.; Greuner, H.; Böswirth, B.; Balden, M.; Lindig, S.; Matthews, G. F.; Rasinski, M.; Wienhold, P.; Wiltner, A.

    2009-12-01

    This contribution summarizes the work that has been performed to establish the industrial production of tungsten coatings on carbon fibre composite (CFC) for application within the ITER-like Wall Project at JET. This comprises the investigation of vacuum plasma-sprayed coatings, physical vapour deposited tungsten/rhenium multilayers, as well as coatings deposited by combined magnetron-sputtering and ion implantation. A variety of analysis tools were applied to investigate failures and oxide and carbide formation in these systems.

  1. Rhenium Radioisotopes for Therapeutic Radiopharmaceutical Development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beets, A.L.; Knapp, F.F., Jr.; Kropp, J.

    The availability of therapeutic radioisotopes at reasonable costs is important for applications in nuclear medicine, oncology and interventional cardiology, Rhenium-186 (Re-186) and rhenium-1 88 (Re-188) are two reactor-produced radioisotope which are attractive for a variety of therapeutic applications, Rhenium-186 has a half-life of 90 hours and decays with emission of a &particle with a maximum energy of 1.08 MeV and a 135 keV (9Yo) gamma which permits imaging. In contrast, Re- 188 has a much shorter half-life of 16.9 hours and emits a p-particle with a much higher energy of 2.12 MeV (Em=) and a 155 keV gamma photon (15Yo)more » for imaging. While Re-186 is unavailable from a generator system and must be directly produced in a nuclear reactor, Re-188 can also be directly produced in a reactor with high specific activity, but is more conveniently and cost-effectively available as carrier-free sodium perrhenate by saline elution of the alumina-based tungsten-188 (W1 88)/Re-l 88 generator system [1-2]. Since a comprehensive overviewofRe-186 and Re-188 therapeutic agents is beyond the scope of this &tended Abstrac4 the goal is to provide key examples of various agents currently in clinical use and those which are being developed for important clinical applications.« less

  2. Creep and Fatigue Interaction Characteristics of PWA1484

    DTIC Science & Technology

    2009-03-01

    Tungsten) , 5.6% Al (aluminum) , 9% Ta (tantalum) , 3% Re (rhenium) , .1% Hf (hafnium) , and 59.3% Ni (nickel) by weight [1]. The alloy was invented...Work by Hael Mughrabi sought to determine the effect that the rafting behavior of the gamma prime precipitates had on the creep performance of...inclusions and in-homogeneities in 1961 [6]. Mughrabi further states that there is a tensile stress present in the gamma prime phase and a compressive

  3. Packed bed carburization of tantalum and tantalum alloy

    DOEpatents

    Lopez, Peter C.; Rodriguez, Patrick J.; Pereyra, Ramiro A.

    1999-01-01

    Packed bed carburization of a tantalum or tantalum alloy object. A method for producing corrosion-resistant tantalum or tantalum alloy objects is described. The method includes the steps of placing the object in contact with a carburizing pack, heating the packed object in vacuum furnace to a temperature whereby carbon from the pack diffuses into the object forming grains with tantalum carbide along the grain boundaries, and etching the surface of the carburized object. This latter step removes tantalum carbides from the surface of the carburized tantalum object while leaving the tantalum carbide along the grain boundaries.

  4. Packed bed carburization of tantalum and tantalum alloy

    DOEpatents

    Lopez, P.C.; Rodriguez, P.J.; Pereyra, R.A.

    1999-06-29

    Packed bed carburization of a tantalum or tantalum alloy object is disclosed. A method for producing corrosion-resistant tantalum or tantalum alloy objects is described. The method includes the steps of placing the object in contact with a carburizing pack, heating the packed object in vacuum furnace to a temperature whereby carbon from the pack diffuses into the object forming grains with tantalum carbide along the grain boundaries, and etching the surface of the carburized object. This latter step removes tantalum carbides from the surface of the carburized tantalum object while leaving the tantalum carbide along the grain boundaries. 4 figs.

  5. The effect of tantalum and carbon on the structure/properties of a single crystal nickel-base superalloy. M.S. Thesis. Final Report

    NASA Technical Reports Server (NTRS)

    Nguyen, H. C.

    1984-01-01

    The microstructure, phase chemistry, and creep and hot tensile properties were studied as a function of tantalum and carbon levels in Mar-M247 type single crystal alloys. Microstructural studies showed that several types of carbides (MC, M23C6 and M5C) are present in the normal carbon (0.10 wt % C) alloys after heat treatment. In general, the composition of the MC carbides changes from titanium rich to tantalum rich as the tantalum level in the alloy increases. Small M23C6 carbides are present in all alloys. Tungsten rich M6C carbides are also observed in the alloy containing no tantalum. No carbides are present in the low carbon (0.01 wt % C) alloy series. The morphology of gamma prime is observed to be sensitive to heat treatment and tantalum level in the alloy. Cuboidal gamma prime is present in all the as cast structures. After heat treatment, the gamma prime precipitates tend to have a more spheroidal like morphology, and this tendency increases as the tantalum level decreases. On prolonged aging, the gamma prime reverts back to a cuboidal morphology or under stress at high temperatures, forms a rafted structure. The weight fraction and lattice parameter of the spheroidal gamma prime increases with increasing tantalum content. Changes in the phase chemistry of the gamma prime matrix and gamma prime have also been analyzed using phase extraction techniques. The partitioning ratio decreases for tungsten and aluminum and increases for tantalum as the tantalum content increases for both alloy series; no significant changes occur in the partitioning ratios of the other alloying elements. A reduction in secondary creep rate and an increase in rupture time result from increasing the tantalum content and decreasing the carbon level.

  6. Rhenium Redefined

    NASA Technical Reports Server (NTRS)

    2001-01-01

    Through a Small Business Innovation Research (SBIR) contract with NASA's Glenn Research Center, Rhenium Alloys, Inc., of Elyria, Ohio, developed a new method for producing rhenium combustion chambers. Using room temperature isostatic pressing, Rhenium Alloys, Inc., compacted rhenium powder to a high density and into the approximated end shape and dimension of the rocket thruster. The item was then subjected to sintering and containerless hot isostatic pressing, increasing the density of the powder metallurgy part. With the new manufacturing process, both production time and costs are reduced while quality is significantly increased. The method enabled the company to deliver two chemical rocket thrusters to Glenn Research Center. The company makes rhenium a practical choice in manufacturing fields, including the aerospace, nuclear, and electronic industries, with upcoming opportunities projected in medical instrumentation.

  7. Effects of alloy composition in alleviating embrittlement problems associated with the tantalum alloy T-111

    NASA Technical Reports Server (NTRS)

    Stephens, J. R.

    1975-01-01

    The causes of aging embrittlement in T-111 (Ta-8W-2Hf) and the effect of alloy modification were investigated. Results show that T-111 possesses a critical combination of tungsten and hafnium that leads to loss in ductility at -196 C after aging near 1040 C. It was found that this occurs because tungsten enhances hafnium segregation to grain boundaries, which also leads to increased susceptibility to hydrogen embrittlement. Aging embrittlement was not observed in tantalum alloys with reduced tungsten or hafnium contents; most of the alloys studied have lower strengths than T-111 and exhibit susceptibility to hydrogen embrittlement.

  8. Semimicrodetermination of combined tantalum and niobium with selenous acid

    USGS Publications Warehouse

    Grimaldi, F.S.; Schnepfe, M.

    1959-01-01

    Tantalum and niobium are separated and determined gravimetrically by precipitation with selenous acid from highly acidic solutions in the absence of complexing agents. Hydrogen peroxide is used in the preparation of the solution and later catalytically destroyed during digestion of the precipitate. From 0.2 to 30 mg., separately or in mixtures, of niobium or tantalum pentoxide can be separated from mixtures containing 100 mg. each of the oxides of scandium, yttrium, cerium, vanadium, molybdenum, iron, aluminum, tin, lead, and bismuth with a single precipitation; and from 30 mg. of titanium dioxide, and 50 mg. each of the oxides of antimony and thorium, when present separately, with three precipitations. At least 50 mg. of uranium(VI) oxide can be separated with a single precipitation when present alone; otherwise, three precipitations may be needed. Zirconium does not interfere when the tantalum and niobium contents of the sample are small, but in general, zirconium as well as tungsten interfere. The method is applied to the determination of the earth acids in tantaloniobate ores.

  9. High reliability sheathed, beryllia insulated, tungsten-rhenium alloy thermocouple assemblies; their fabrication and EMF stability

    NASA Technical Reports Server (NTRS)

    Burns, G. W.; Hurst, W. S.; Scroger, M. G.

    1974-01-01

    Tantalum sheathed, BeO insulated, W-3% Re/W-25% Re thermocouple assemblies were fabricated and their emf drift determined during 2059 hours of exposure at 2073 K in a gaseous helium environment. The sheathed thermocouple assemblies were constructed from aged thermoelements, specially heat-treated BeO insulators, and specially cleaned and etched tantalum sheaths. Their thermal emf drifts ranged from the equivalent of only -0.3 to -0.8 K drift per 1000 hours of exposure at 2073 K. No evidence of any gross chemical attack or degradation of the component materials was found. The emf drift and material behavior of some unsheathed, BeO insulated, W-3% Re/W-25% Re thermocouples at 2250 and 2400 K were also determined. Unsheathed thermocouples tested in an argon environment at 2250 K for 1100 hours and at 2400 K for 307 hours exhibited changes in thermal emf that typically ranged from the equivalent of a few degrees K to as much as +11 K. Post-test examinations of these thermocouples revealed some undesirable material degradation and interaction which included erosion of the BeO insulators and contamination of the thermoelements by tantalum from the tantalum blackbody enclosure in which the thermocouples were contained.

  10. Oxide strengthened molybdenum-rhenium alloy

    DOEpatents

    Bianco, Robert; Buckman, Jr., R. William

    2000-01-01

    Provided is a method of making an ODS molybdenum-rhenium alloy which includes the steps of: (a) forming a slurry containing molybdenum oxide and a metal salt dispersed in an aqueous medium, the metal salt being selected from nitrates or acetates of lanthanum, cerium or thorium; (b) heating the slurry in the presence of hydrogen to form a molybdenum powder comprising molybdenum and an oxide of the metal salt; (c) mixing rhenium powder with the molybdenum powder to form a molybdenum-rhenium powder; (d) pressing the molybdenum-rhenium powder to form a molybdenum-rhenium compact; (e) sintering the molybdenum-rhenium compact in hydrogen or under a vacuum to form a molybdenum-rhenium ingot; and (f) compacting the molybdenum-rhenium ingot to reduce the cross-sectional area of the molybdenum-rhenium ingot and form a molybdenum-rhenium alloy containing said metal oxide. The present invention also provides an ODS molybdenum-rhenium alloy made by the method. A preferred Mo--Re-ODS alloy contains 7-14 weight % rhenium and 2-4 volume % lanthanum oxide.

  11. High temperature coatings for gas turbines

    DOEpatents

    Zheng, Xiaoci Maggie

    2003-10-21

    Coating for high temperature gas turbine components that include a MCrAlX phase, and an aluminum-rich phase, significantly increase oxidation and cracking resistance of the components, thereby increasing their useful life and reducing operating costs. The aluminum-rich phase includes aluminum at a higher concentration than aluminum concentration in the MCrAlX alloy, and an aluminum diffusion-retarding composition, which may include cobalt, nickel, yttrium, zirconium, niobium, molybdenum, rhodium, cadmium, indium, cerium, iron, chromium, tantalum, silicon, boron, carbon, titanium, tungsten, rhenium, platinum, and combinations thereof, and particularly nickel and/or rhenium. The aluminum-rich phase may be derived from a particulate aluminum composite that has a core comprising aluminum and a shell comprising the aluminum diffusion-retarding composition.

  12. Rhenium material properties

    NASA Technical Reports Server (NTRS)

    Biaglow, James A.

    1995-01-01

    Tensile data were obtained from four different types of rhenium at ambient and elevated temperatures. The four types of rhenium included chemical vapor deposition (CVD) and three powder metallurgy (PM) types, i.e., rolled sheet and pressed and sintered bars, with and without hot isostatic pressure (HIP) treatment. Results revealed a wide range of values with ultimate strengths at ambient temperatures varying from 663 MPa for CVD rhenium to 943 MPa for rolled sheet. A similar spread was also obtained for material tested at 1088 K and 1644 K. The wide variance observed with the different materials indicated that the rhenium manufacturing process, material composition and prior handling strongly dictated its properties. In addition to tensile properties, CVD, pressed and sintered material and HIP rhenium successfully completed 100 cycles of low cycle fatigue. Creep data were also obtained showing that CVD and pressed and sintered rhenium could sustain five hours of testing under a tension of 27.5 MPa at 1922 K.

  13. High-temperature properties of joint interface of VPS-tungsten coated CFC

    NASA Astrophysics Data System (ADS)

    Tamura, S.; Liu, X.; Tokunaga, K.; Tsunekawa, Y.; Okumiya, M.; Noda, N.; Yoshida, N.

    2004-08-01

    Tungsten coated carbon fiber composite (CFC) is a candidate material for the high heat flux components in fusion reactors. In order to investigate the high-temperature properties at the joint interface of coating, heat load experiments by using electron beam were performed on VPS-tungsten coated CX-2002U samples. After the heat load test for 3.6 ks at 1400 °C, tungsten-rhenium multilayer (diffusion barrier for carbon) at the joint interface of coating was observed clearly. But, at the temperatures above 1600 °C, the multilayer was disappeared and a tungsten carbide layer was formed in the VPS-tungsten coating. At the temperatures below 1800 °C, the thickness of this layer logarithmically increased with increasing its loading time. At 2000 °C, the growth of the tungsten carbide layer was proportional to the square root of loading time. These results indicate that the diffusion barrier for carbon is not expected to suppress the carbide formation at the joint interface of the VPS-tungsten coating above 1600 °C.

  14. Transition of dislocation glide to shear transformation in shocked tantalum

    DOE PAGES

    Hsiung, Luke L.; Campbell, Geoffrey H.

    2017-02-28

    A TEM study of pure tantalum and tantalum-tungsten alloys explosively shocked at a peak pressure of 30 GPa (strain rate: ~1 x 10 4 sec -1) is presented. While no ω (hexagonal) phase was found in shock-recovered pure Ta and Ta-5W that contain mainly a low-energy cellular dislocation structure, shock-induced ω phase was found to form in Ta-10W that contains evenly distributed dislocations with a stored dislocation density higher than 1 x 10 12 cm -2. The TEM results clearly reveal that shock-induced α (bcc) → ω (hexagonal) shear transformation occurs when dynamic recovery reactions which lead the formation low-energymore » cellular dislocation structure become largely suppressed in Ta-10W shocked under dynamic (i.e., high strain-rate and high-pressure) conditions. A novel dislocation-based mechanism is proposed to rationalize the transition of dislocation glide to twinning and/or shear transformation in shock-deformed tantalum. Lastly, twinning and/or shear transformation take place as an alternative deformation mechanism to accommodate high-strain-rate straining when the shear stress required for dislocation multiplication exceeds the threshold shear stresses for twinning and/or shear transformation.« less

  15. Rhenium-Foil Witness Cylinders

    NASA Technical Reports Server (NTRS)

    Knight, B. L.

    1992-01-01

    Cylindrical portion of wall of combustion chamber replaced with rhenium foil mounted on holder. Rhenium oxidizes without melting, indicating regions of excess oxidizer in combustion-chamber flow. Rhenium witness foils also useful in detecting excess oxygen and other oxidizers at temperatures between 2,000 and 3,600 degrees F in burner cores of advanced gas-turbine engines.

  16. Alloy hardening and softening in binary molybdenum alloys as related to electron concentration

    NASA Technical Reports Server (NTRS)

    Stephens, J. R.; Witzke, W. R.

    1972-01-01

    An investigation was conducted to determine the effects of alloy additions of hafnium, tantalum, tungsten, rhenium, osmium, iridium, and platinum on hardness of molybdenum. Special emphasis was placed on alloy softening in these binary molybdenum alloys. Results showed that alloy softening was produced by those elements having an excess of s+d electrons compared to molybdenum, while those elements having an equal number or fewer s+d electrons that molybdenum failed to produce alloy softening. Alloy softening and alloy hardening can be correlated with the difference in number of s+d electrons of the solute element and molybdenum.

  17. Effect of solutes in binary columbium /Nb/ alloys on creep strength

    NASA Technical Reports Server (NTRS)

    Klein, M. J.; Metcalfe, A. G.

    1973-01-01

    The effect of seven different solutes in binary columbium (Nb) alloys on creep strength was determined from 1400 to 3400 F for solute concentrations to 20 at.%, using a new method of creep-strength measurement. The technique permits rapid determination of approximate creep strength over a large temperature span. All of the elements were found to increase the creep strength of columbium except tantalum. This element did not strengthen columbium until the concentration exceeded 10 at.%. Hafnium, zirconium, and vanadium strengthed columbium most at low temperatures and concentrations, whereas tungsten, molybdenum, and rhenium contributed more to creep strength at high temperatures and concentrations.

  18. Microstructure Changes of Plasma Spraying Tungsten Coatings on Cfc after Different Temperature Annealing

    NASA Astrophysics Data System (ADS)

    Liu, X.; Tamura, S.; Tokunaga, K.; Yoshida, N.; Noda, N.

    2003-06-01

    Thermal behaviors of tungsten coating of 0.5 mm thick with multi-layers interface of tungsten (W) and rhenium (Re) coated on CFC (CX-2002U) substrate by vacuum plasma spraying (VPS) technique were examined by annealing with an electron beam thermal load facility between 1200 °C and 2000 °C. Change of the microstructure was observed and its chemical composition was analyzed by EDS after annealing. It was observed that remarkable recrystallization of VPS-W occurred above 1400 °C. The structure of the multi-layers of W and Re become obscure by the mutual diffusion of W, Re and C above 1600°C and finally disappeared after annealing at 2000 °C for one hour. Very hard tungsten carbides are formed at the interface above 1600 °C and they were broadening with increasing annealing temperature and time.

  19. Copper-tantalum alloy

    DOEpatents

    Schmidt, Frederick A.; Verhoeven, John D.; Gibson, Edwin D.

    1986-07-15

    A tantalum-copper alloy can be made by preparing a consumable electrode consisting of an elongated copper billet containing at least two spaced apart tantalum rods extending longitudinally the length of the billet. The electrode is placed in a dc arc furnace and melted under conditions which co-melt the copper and tantalum to form the alloy.

  20. Electron-emission characteristics of tungsten alloys: Mee 492. [No data; plasma anode tube

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moon, H.M.

    A plasma-anode tube was constructed to investigate the electron-emission characteristics for rhenium, 1% thorium tungsten, and 2% thorium tungsten. The tube consists of cathode, anode, cesium reservoir, and three probes. Inside of tube is a rough vacuum by using a Varian liquid-nitrogen-cooled cryovalve and further vacuum by using a Varian absorption pumpt to 4 X IO/sup -5/ pa. The tube was sealed off from the vacuum pump after the cesium ampoule was broken. The entire plasma-anode tube except the cesiunm reservoir was placed in a Blue M Electric Company furnace whose door had been modified to permit viewing of themore » tube.« less

  1. Tungsten tetraboride, an inexpensive superhard material

    PubMed Central

    Mohammadi, Reza; Lech, Andrew T.; Xie, Miao; Weaver, Beth E.; Yeung, Michael T.; Tolbert, Sarah H.; Kaner, Richard B.

    2011-01-01

    Tungsten tetraboride (WB4) is an interesting candidate as a less expensive member of the growing group of superhard transition metal borides. WB4 was successfully synthesized by arc melting from the elements. Characterization using powder X-ray diffraction (XRD) and energy-dispersive X-ray spectroscopy (EDX) indicates that the as-synthesized material is phase pure. The zero-pressure bulk modulus, as measured by high-pressure X-ray diffraction for WB4, is 339 GPa. Mechanical testing using microindentation gives a Vickers hardness of 43.3 ± 2.9 GPa under an applied load of 0.49 N. Various ratios of rhenium were added to WB4 in an attempt to increase hardness. With the addition of 1 at.% Re, the Vickers hardness increased to approximately 50 GPa at 0.49 N. Powders of tungsten tetraboride with and without 1 at.% Re addition are thermally stable up to approximately 400 °C in air as measured by thermal gravimetric analysis. PMID:21690363

  2. All-tantalum electrolytic capacitor

    NASA Technical Reports Server (NTRS)

    Green, G. E., Jr.

    1977-01-01

    Device uses single-compression tantalum-to-tantalum seal. Single-compression seal allows better utilization of volume within device. As result of all-tantalum case and lengthened cathode, electrical parameters, particularly equivalent series resistance and capacitance stability, improved over silver-cased capacitor.

  3. Niobium and tantalum

    USGS Publications Warehouse

    Schulz, Klaus J.; Piatak, Nadine M.; Papp, John F.; Schulz, Klaus J.; DeYoung,, John H.; Seal, Robert R.; Bradley, Dwight C.

    2017-12-19

    Niobium and tantalum are transition metals that are almost always found together in nature because they have very similar physical and chemical properties. Their properties of hardness, conductivity, and resistance to corrosion largely determine their primary uses today. The leading use of niobium (about 75 percent) is in the production of high-strength steel alloys used in pipelines, transportation infrastructure, and structural applications. Electronic capacitors are the leading use of tantalum for high-end applications, including cell phones, computer hard drives, and such implantable medical devices as pacemakers. Niobium and tantalum are considered critical and strategic metals based on the potential risks to their supply (because current production is restricted to only a few countries) and the significant effects that a restriction in supply would have on the defense, energy, high-tech industrial, and medical sectors.The average abundance of niobium and tantalum in bulk continental crust is relatively low—8.0 parts per million (ppm) niobium and 0.7 ppm tantalum. Their chemical characteristics, such as small ionic size and high electronic field strength, significantly reduce the potential for these elements to substitute for more common elements in rock-forming minerals and make niobium and tantalum essentially immobile in most aqueous solutions. Niobium and tantalum do not occur naturally as pure metals but are concentrated in a variety of relatively rare oxide and hydroxide minerals, as well as in a few rare silicate minerals. Niobium is primarily derived from the complex oxide minerals of the pyrochlore group ((Na,Ca,Ce)2(Nb,Ti,Ta)2(O,OH,F)7), which are found in some alkaline granite-syenite complexes (that is, igneous rocks containing sodium- or potassium-rich minerals and little or no quartz) and carbonatites (that is, igneous rocks that are more than 50 percent composed of primary carbonate minerals, by volume). Tantalum is derived mostly from the

  4. Electrodeposition of Tantalum and Tantalum-Chromium Alloys

    DTIC Science & Technology

    1980-05-01

    Electrochem Soc, 112, 840 (1965). 7Ibid, 113,60 (1966). 8Ibid, 113.66 (1966). J. Wurm, "European Conference on the Development of Molten Salts Applica...Chem. 35, 161-3 (1887). 16. J. Wurm, "European Conference on the Development of Molten Salts Applica- tions," Extended Abstracts and Proceedings, pp...Metals Tantalum Tantalum-Chromium Alloys Chromium Coating Fused Salt Electrolyte Electrodeposition FLINAK 20. ABSTRACT (Continue on reverse

  5. Near-Net Shape Powder Metallurgy Rhenium Thruster

    NASA Technical Reports Server (NTRS)

    Leonhardt, Todd; Hamister, Mark; Carlen, Jan C.; Biaglow, James; Reed, Brian

    2001-01-01

    This paper describes the development of a method to produce a near-net shape (NNS) powder metallurgy (PM) rhenium combustion chamber of the size 445 N (100 lbf) used in a high performance liquid apogee engine. These engines are used in low earth Orbit and geostationary orbit for satellite positioning systems. The developments in near-net shape powder metallurgy rhenium combustion chambers reported in this paper will reduce manufacturing cost of the rhenium chambers by 25 percent, and reduce the manufacturing time by 30 to 40 percent. The quantity of rhenium metal powder used to produce a rhenium chamber is reduced by approximately 70 percent and the subsequent reduction in machining schedule and costs is nearly 50 percent.

  6. Design Parameters Affecting the Accuracy of Isothermal Thermocouples

    DTIC Science & Technology

    1975-01-02

    Design Parameters Lead Wire Length intekference Accuracy Askew Installation Tungsten / Rhenium Wire Diameter Trajectory Insulation Thickness Heatshield...Summary ................. 73 A-3 Thermodynamic Properties of Tungsten / Rhenium Therm ocouples ............................ 75 A-4 Thermodynamic Properties...were tungsten / rhenium , chromel/alumel, and iron/constbntan, which covered the 0 to 5000, 0 to 2200, and 0 to I-00°F temperatut- ranges, resoectively. in

  7. Liquid fluorine/hydrazine rhenium thruster update

    NASA Technical Reports Server (NTRS)

    Appel, M. A.; Kaplan, R. B.; Tuffias, R. H.

    1983-01-01

    The status of a fluorine/hydrazine thruster development program is discussed. A solid rhenium metal sea-level thrust chamber was successfully fabricated and tested for a total run duration of 1075 s with 17 starts. Rhenium fabrication methods are discussed. A test program was conducted to evaluate performance and chamber cooling. Acceptable performance was reached and cooling was adequate. A flight-type injector was fabricated that achieved an average extrapolated performance value of 3608 N-s/kg (368 lbf-s/lbm). Altitude thrust chambers were fabricated. One chamber incorporates a rhenium combustor and nozzle with an area ratio of 15:1, and a columbium nozzle extension with area ratios from 15:1 to 60:1. The other chamber was fabricated completely with a carbon/carbon composite. Because of the attributes of rhenium for use in high-temperature applications, a program to provide the materials and processes technology needed to reliably fabricate and/or repair vapor-deposited rhenium parts of relatively large size and complex shape is recommended.

  8. Metastable tantalum oxide formation during the devitrification of amorphous tantalum thin films

    DOE PAGES

    Donaldson, Olivia K.; Hattar, Khalid; Trelewicz, Jason R.

    2016-07-04

    Microstructural evolution during the devitrification of amorphous tantalum thin films synthesized via pulsed laser deposition was investigated using in situ transmission electron microscopy (TEM) combined with ex situ isothermal annealing, bright-field imaging, and electron-diffraction analysis. The phases formed during crystallization and their stability were characterized as a function of the chamber pressure during deposition, devitrification temperature, and annealing time. A range of metastable nanocrystalline tantalum oxides were identified following devitrification including multiple orthorhombic oxide phases, which often were present with, or evolved to, the tetragonal TaO 2 phase. While the appearance of these phases indicated the films were evolving tomore » the stable form of tantalum oxide—monoclinic tantalum pentoxide—it was likely not achieved for the conditions considered due to an insufficient amount of oxygen present in the films following deposition. Nevertheless, the collective in situ and ex situ TEM analysis applied to thin film samples enabled the isolation of a number of metastable tantalum oxides. As a result, new insights were gained into the transformation sequence and stability of these nanocrystalline phases, which presents opportunities for the development of advanced tantalum oxide-based dielectric materials for novel memristor designs.« less

  9. Rhenium Complexes and Clusters Supported on c-Al2O3: Effects of Rhenium Oxidation State and Rhenium Cluster Size on Catalytic Activity for n-butane Hydrogenolysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lobo Lapidus, R.; Gates, B

    2009-01-01

    Supported metals prepared from H{sub 3}Re{sub 3}(CO){sub 12} on {gamma}-Al{sub 2}O{sub 3} were treated under conditions that led to various rhenium structures on the support and were tested as catalysts for n-butane conversion in the presence of H{sub 2} in a flow reactor at 533 K and 1 atm. After use, two samples were characterized by X-ray absorption edge positions of approximately 5.6 eV (relative to rhenium metal), indicating that the rhenium was cationic and essentially in the same average oxidation state in each. But the Re-Re coordination numbers found by extended X-ray absorption fine structure spectroscopy (2.2 and 5.1)more » show that the clusters in the two samples were significantly different in average nuclearity despite their indistinguishable rhenium oxidation states. Spectra of a third sample after catalysis indicate approximately Re{sub 3} clusters, on average, and an edge position of 4.5 eV. Thus, two samples contained clusters approximated as Re{sub 3} (on the basis of the Re-Re coordination number), on average, with different average rhenium oxidation states. The data allow resolution of the effects of rhenium oxidation state and cluster size, both of which affect the catalytic activity; larger clusters and a greater degree of reduction lead to increased activity.« less

  10. Rhenium/Oxygen Interactions at Elevated Temperatures

    NASA Technical Reports Server (NTRS)

    Jacobson, Nathan; Myers, Dwight; Zhu, Dong-Ming; Humphrey, Donald

    2000-01-01

    The oxidation of pure rhenium is examined from 600-1400 C in oxygen/argon mixtures. Linear weight loss kinetics are observed. Gas pressures, flow rates, and temperatures are methodically varied to determine the rate controlling steps. The reaction at 600 and 800 C appears to be controlled by a chemical reaction step at the surface; whereas the higher temperature reactions appear to be controlled by gas phase diffusion of oxygen to the rhenium surface. Attack of the rhenium appears to be along grain boundaries and crystallographic planes.

  11. Adhesion and friction of transition metals in contact with nonmetallic hard materials

    NASA Technical Reports Server (NTRS)

    Miyoshi, K.; Buckley, D. H.

    1981-01-01

    Sliding friction experiments were conducted with the metals yttrium, titanium, tantalum, zirconium, vanadium, neodymium, iron, cobalt, nickel, tungsten, platinum, rhenium, ruthenium, and rhodium in sliding contact with single crystal diamond, silicon carbide, pyrolytic boron nitride, and ferrite. Auger electron spectroscopy analysis was conducted with the metals and nonmetals to determine the surface chemistry and the degree of surface cleanliness. The results of the investigation indicate the adhesion and friction of the transition metals in contact with diamond, silicon carbide, boron nitride, and ferrite are related to the relative chemical activity of the metals. The more chemically active the metal, the higher the coefficient of friction and the greater amount of transfer to the nonmetals.

  12. ITEP MEVVA ion beam for rhenium silicide production.

    PubMed

    Kulevoy, T; Gerasimenko, N; Seleznev, D; Kropachev, G; Kozlov, A; Kuibeda, R; Yakushin, P; Petrenko, S; Medetov, N; Zaporozhan, O

    2010-02-01

    The rhenium silicides are very attractive materials for semiconductor industry. In the Institute for Theoretical and Experimental Physics (ITEP) at the ion source test bench the research program of rhenium silicide production by ion beam implantation are going on. The investigation of silicon wafer after implantation of rhenium ion beam with different energy and with different total dose were carried out by secondary ions mass spectrometry, energy-dispersive x-ray microanalysis, and x-ray diffraction analysis. The first promising results of rhenium silicide film production by high intensity ion beam implantation are presented.

  13. Evaluation of Rhenium Joining Methods

    NASA Technical Reports Server (NTRS)

    Reed, Brian D.; Morren, Sybil H.

    1995-01-01

    Coupons of rhenium-to-Cl03 flat plate joints, formed by explosive and diffusion bonding, were evaluated in a series of shear tests. Shear testing was conducted on as-received, thermally-cycled (100 cycles, from 21 to 1100 C), and thermally-aged (3 and 6 hrs at 1100 C) joint coupons. Shear tests were also conducted on joint coupons with rhenium and/or Cl03 electron beam welded tabs to simulate the joint's incorporation into a structure. Ultimate shear strength was used as a figure of merit to assess the effects of the thermal treatment and the electron beam welding of tabs on the joint coupons. All of the coupons survived thermal testing intact and without any visible degradation. Two different lots of as-received, explosively-bonded joint coupons had ultimate shear strengths of 281 and 310 MPa and 162 and 223 MPa, respectively. As-received, diffusion-bonded coupons had ultimate shear strengths of 199 and 348 MPa. For the most part, the thermally-treated and rhenium weld tab coupons had shear strengths slightly reduced or within the range of the as-received values. Coupons with Cl03 weld tabs experienced a significant reduction in shear strength. The degradation of strength appeared to be the result of a poor heat sink provided during the electron beam welding. The Cl03 base material could not dissipate heat as effectively as rhenium, leading to the formation of a brittle rhenium-niobium intermetallic.

  14. Tantalum recycling in the United States in 1998

    USGS Publications Warehouse

    Cunningham, Larry D.

    2001-01-01

    This report describes the flow of tantalum in the United States in 1998 with emphasis on the extent to which tantalum was recycled/reused. Tantalum was mostly recycled from new scrap that was generated during the manufacture of tantalum-related electronic components and new and old scrap products of tantalum-containing cemented carbides and superalloys. In 1998, about 210 metric tons of tantalum was recycled/reused, with about 43% derived from old scrap. The tantalum recycling rate was calculated to be 21%, and tantalum scrap recycling efficiency, 35%.

  15. Mineral of the month: rhenium

    USGS Publications Warehouse

    Magyar, Michael J.

    2005-01-01

    Rhenium, an exotic, heat-resistant metal, has grown in importance since its discovery nearly 80 years ago. First isolated by a team of German chemists studying a platinum ore, the mineral was named for the Rhine River. From then until the 1960s, only 2 metric tons of rhenium were produced worldwide. In 2004, worldwide production was 40 metric tons.

  16. Method of making tantalum capacitors

    DOEpatents

    McMillan, April D.; Clausing, Robert E.; Vierow, William F.

    1998-01-01

    A method for manufacturing tantalum capacitors includes preparing a tantalum compact by cold pressing tantalum powder, placing the compact, along with loose refractory metal powder, in a microwave-transparent casket to form an assembly, and heating the assembly for a time sufficient to effect at least partial sintering of the compact and the product made by the method.

  17. Alkali oxide-tantalum, niobium and antimony oxide ionic conductors

    NASA Technical Reports Server (NTRS)

    Roth, R. S.; Brower, W. S.; Parker, H. S.; Minor, D. B.; Waring, J. L.

    1975-01-01

    The phase equilibrium relations of four systems were investigated in detail. These consisted of sodium and potassium antimonates with antimony oxide and tantalum and niobium oxide with rubidium oxide as far as the ratio 4Rb2O:llB2O5 (B=Nb, Ta). The ternary system NaSbO3-Sb2O4-NaF was investigated extensively to determine the actual composition of the body centered cubic sodium antimonate. Various other binary and ternary oxide systems involving alkali oxides were examined in lesser detail. The phases synthesized were screened by ion exchange methods to determine mobility of the mobility of the alkali ion within the niobium, tantalum or antimony oxide (fluoride) structural framework. Five structure types warranted further investigation; these structure types are (1) hexagonal tungsten bronze (HTB), (2) pyrochlore, (3) the hybrid HTB-pyrochlore hexagonal ordered phases, (4) body centered cubic antimonates and (5) 2K2O:3Nb2O5. Although all of these phases exhibit good ion exchange properties only the pyrochlore was prepared with Na(+) ions as an equilibrium phase and as a low porosity ceramic. Sb(+3) in the channel interferes with ionic conductivity in this case, although relatively good ionic conductivity was found for the metastable Na(+) ion exchanged analogs of RbTa2O5F and KTaWO6 pyrochlore phases.

  18. Process for manufacturing tantalum capacitors

    DOEpatents

    Lauf, Robert J.; Holcombe, Cressie E.; Dykes, Norman L.

    1993-01-01

    A process for manufacturing tantalum capacitors in which microwave energy is used to sinter a tantalum powder compact in order to achieve higher surface area and improved dielectric strength. The process comprises cold pressing tantalum powder with organic binders and lubricants to form a porous compact. After removal of the organics, the tantalum compact is heated to 1300.degree. to 2000.degree. C. by applying microwave radiation. Said compact is then anodized to form a dielectric oxide layer and infiltrated with a conductive material such as MnO.sub.2. Wire leads are then attached to form a capacitor to said capacitor is hermetically packaged to form the finished product.

  19. Process for manufacturing tantalum capacitors

    DOEpatents

    Lauf, R.J.; Holcombe, C.E.; Dykes, N.L.

    1993-02-02

    A process for manufacturing tantalum capacitors in which microwave energy is used to sinter a tantalum powder compact in order to achieve higher surface area and improved dielectric strength. The process comprises cold pressing tantalum powder with organic binders and lubricants to form a porous compact. After removal of the organics, the tantalum compact is heated to 1,300 to 2,000 C by applying microwave radiation. Said compact is then anodized to form a dielectric oxide layer and infiltrated with a conductive material such as MnO[sub 2]. Wire leads are then attached to form a capacitor to said capacitor is hermetically packaged to form the finished product.

  20. Additively manufactured porous tantalum implants.

    PubMed

    Wauthle, Ruben; van der Stok, Johan; Amin Yavari, Saber; Van Humbeeck, Jan; Kruth, Jean-Pierre; Zadpoor, Amir Abbas; Weinans, Harrie; Mulier, Michiel; Schrooten, Jan

    2015-03-01

    The medical device industry's interest in open porous, metallic biomaterials has increased in response to additive manufacturing techniques enabling the production of complex shapes that cannot be produced with conventional techniques. Tantalum is an important metal for medical devices because of its good biocompatibility. In this study selective laser melting technology was used for the first time to manufacture highly porous pure tantalum implants with fully interconnected open pores. The architecture of the porous structure in combination with the material properties of tantalum result in mechanical properties close to those of human bone and allow for bone ingrowth. The bone regeneration performance of the porous tantalum was evaluated in vivo using an orthotopic load-bearing bone defect model in the rat femur. After 12 weeks, substantial bone ingrowth, good quality of the regenerated bone and a strong, functional implant-bone interface connection were observed. Compared to identical porous Ti-6Al-4V structures, laser-melted tantalum shows excellent osteoconductive properties, has a higher normalized fatigue strength and allows for more plastic deformation due to its high ductility. It is therefore concluded that this is a first step towards a new generation of open porous tantalum implants manufactured using selective laser melting. Copyright © 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  1. Thermal hydraulic design and decay heat removal of a solid target for a spallation neutron source

    NASA Astrophysics Data System (ADS)

    Takenaka, N.; Nio, D.; Kiyanagi, Y.; Mishima, K.; Kawai, M.; Furusaka, M.

    2005-08-01

    Thermal hydraulic design and thermal stress calculations were conducted for a water-cooled solid target irradiated by a MW-class proton beam for a spallation neutron source. Plate type and rod bundle type targets were examined. The thickness of the plate and the diameter of the rod were determined based on the maximum and the wall surface temperature. The thermal stress distributions were calculated by a finite element method (FEM). The neutronics performance of the target is roughly proportional to its average density. The averaged densities of the designed targets were calculated for tungsten plates, tantalum clad tungsten plates, tungsten rods sheathed by tantalum and Zircaloy and they were compared with mercury density. It was shown that the averaged density was highest for the tungsten plates and was high for the tantalum cladding tungsten plates, the tungsten rods sheathed by tantalum and Zircaloy in order. They were higher than or equal to that of mercury for the 1 2 MW proton beams. Tungsten target without the cladding or the sheath is not practical due to corrosion by water under irradiation condition. Therefore, the tantalum cladding tungsten plate already made successfully by HIP and the sheathed tungsten rod are the candidate of high performance solid targets. The decay heat of each target was calculated. It was low enough low compared to that of ISIS for the target without tantalum but was about four times as high as that of ISIS when the thickness of the tantalum cladding was 0.5 mm. Heat removal methods of the decay heat with tantalum were examined. It was shown that a special cooling system was required for the target exchange when tantalum was used for the target. It was concluded that the tungsten rod target sheathed with stainless steel or Zircaloy was the most reliable from the safety considerations and had similar neutronics performance to that of mercury.

  2. Effects of Processing Variables on Tantalum Nitride by Reactive-Ion-Assisted Magnetron Sputtering Deposition

    NASA Astrophysics Data System (ADS)

    Wei, Chao‑Tsang; Shieh, Han‑Ping D.

    2006-08-01

    The binary compound tantalum nitride (TaN) and ternary compounds tantalum tungsten nitrides (Ta1-xWxNy) exhibit interesting properties such as high melting point, high hardness, and chemical inertness. Such nitrides were deposited on a tungsten carbide (WC) die and silicon wafers by ion-beam-sputter evaporation of the respective metal under nitrogen ion-assisted deposition (IAD). The effects of N2/Ar flux ratio, post annealing, ion-assisted deposition, deposition rate, and W doping in coating processing variables on hardness, load critical scratching, oxidation resistance, stress and surface roughness were investigated. The optimum N2/Ar flux ratios in view of the hardness and critical load of TaN and Ta1-xWxNy films were ranged from 0.9 to 1.0. Doping W into TaN to form Ta1-xWxNy films led significant increases in hardness, critical load, oxidation resistance, and reduced surface roughness. The optimum doping ratio was [W/(W+Ta)]=0.85. From the deposition rate and IAD experiments, the stress in the films is mainly contributed by sputtering atoms. The lower deposition rate at a high N2/Ar flux ratio resulted in a higher compressive stress. A high compressive residual stress accounts for a high hardness. The relatively high compressive stress was attributed primarily to peening by atoms, ions and electrons during film growth, the Ta1-xWxNy films showed excellent hardness and strength against a high temperature, and sticking phenomena can essentially be avoided through their use. Ta1-xWxNy films showed better performance than the TaN film in terms of mechanical properties and oxidation resistance.

  3. Rhenium-188 production in hospitals, by w-188/re-188 generator, for easy use in radionuclide therapy.

    PubMed

    Argyrou, Maria; Valassi, Alexia; Andreou, Maria; Lyra, Maria

    2013-01-01

    Rhenium-188 (Re-188) is a high energy β-emitting radioisotope obtained from the tungsten-188/rhenium-188 (W-188/Re-188) generator, which has shown utility for a variety of therapeutic applications in nuclear medicine, oncology, and interventional radiology/cardiology. Re-188 decay is accompanied by a 155 keV predominant energy γ-emission, which could be detected by γ-cameras, for imaging, biodistribution, or absorbed radiation dose studies. Its attractive physical properties and its potential low cost associated with a long-lived parent make it an interesting option for clinical use. The setup and daily use of W-188/Re-188 generator in hospital nuclear medicine departments are discussed in detail. The clinical efficacy, for several therapeutic applications, of a variety of Re-188-labeled agents is demonstrated. The high energy of the β-emission of Re-188 is particularly well suited for effective penetration in solid tumours. Its total radiation dose delivered to tissues is comparable to other radionuclides used in therapy. Furthermore, radiation safety and shielding requirements are an important subject of matter. In the case of bone metastases treatment, therapeutic ratios are presented in order to describe the efficacy of Re-188 usage.

  4. THE USE OF ATOMIC BEAMS AS A PROBE FOR STUDYING LOW DENSITY PLASMAS. Quarterly Report for July 1, 1962-October 1, 1962

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    1963-10-31

    A charge transfer cell was designed with the intention of minimizing space charge effects, since space charge represents a particularly serious handicap in the low energy (1 to 100 ev) region. Some cesium triode characteristice of the cell are presented in the form of curves of plate current versus plate voltage for several different voltages of grid (G1) to cathode. The potassium beamnoble gas attenuatlon studies were continued. The characteristics of a plasma source are described. The source consists of two water cooled copper spindles around which very thin tantalum, tungsten, or rhenium sheet may be wound. The cesium willmore » enter the source through a hole drilled in the face of one of the spindles. (N.W.R.)« less

  5. Supported rhenium complexes: almost uniform rhenium tricarbonyls synthesized from CH3Re(CO)5 and HY zeolite.

    PubMed

    Lobo-Lapidus, Rodrigo J; Gates, Bruce C

    2010-11-02

    Supported rhenium complexes were prepared from CH(3)Re(CO)(5) and dealuminated HY zeolite or NaY zeolite, each with a Si/Al atomic ratio of 30. The samples were characterized with infrared (IR) and extended X-ray absorption fine structure (EXAFS) spectroscopies. EXAFS data characterizing the sample formed by the reaction of CH(3)Re(CO)(5) with dealuminated HY zeolite show that the rhenium complexes were bonded to the zeolite frame, incorporating, on average, three carbonyl ligands per Re atom (as shown by Re-C and multiple-scattering Re-O EXAFS contributions). The IR spectra, consistent with this result, show that the supported rhenium carbonyls were bonded near aluminum sites of the zeolite, as shown by the decrease in intensity of the IR bands characterizing the acidic silanol groups resulting from the reaction of the rhenium carbonyl with the zeolite. This supported metal complex was characterized by narrow peaks in the ν(CO) region of the IR spectrum, indicating highly uniform species. In contrast, the species formed from CH(3)Re(CO)(5) on NaY zeolite lost fewer carbonyl ligands than those formed on HY zeolite and were significantly less uniform, as indicated by the greater breadth of the ν(CO) bands in the IR spectra. The results show the importance of zeolite H(+) sites for the formation of uniform supported rhenium carbonyls from CH(3)Re(CO)(5); the formation of such uniform complexes did not occur on the NaY zeolite.

  6. Ambient aging of rhenium filaments used in thermal ionization mass spectrometry: Growth of oxo-rhenium crystallites and anti-aging strategies.

    PubMed

    Mannion, Joseph M; Wellons, Matthew S; Shick, Charles R; Fugate, Glenn A; Powell, Brian A; Husson, Scott M

    2017-01-01

    Degassing is a common preparation technique for rhenium filaments used for thermal ionization mass spectrometric analysis of actinides, including plutonium. Although optimization studies regarding degassing conditions have been reported, little work has been done to characterize filament aging after degassing. In this study, the effects of filament aging after degassing were explored to determine a "shelf-life" for degassed rhenium filaments, and methods to limit filament aging were investigated. Zone-refined rhenium filaments were degassed by resistance heating under high vacuum before exposure to ambient atmosphere for up to 2 months. After degassing the nucleation and preferential growth of oxo-rhenium crystallites on the surface of polycrystalline rhenium filaments was observed by atomic force microscopy and scanning electron microscopy (SEM). Compositional analysis of the crystallites was conducted using SEM-Raman spectroscopy and SEM energy dispersive X-ray spectroscopy, and grain orientation at the metal surface was investigated by electron back-scatter diffraction mapping. Spectra collected by SEM-Raman suggest crystallites are composed primarily of perrhenic acid. The relative extent of growth and crystallite morphology were found to be grain dependent and affected by the dissolution of carbon into filaments during annealing (often referred to as carbonization or carburization). Crystallites were observed to nucleate in region specific modes and grow over time through transfer of material from the surface. Factors most likely to affect the rates of crystallite growth include rhenium substrate properties such as grain size, orientation, levels of dissolved carbon, and relative abundance of defect sites; as well as environmental factors such as length of exposure to oxygen and relative humidity. Thin (∼180 nm) hydrophobic films of poly(vinylbenzyl chloride) were found to slow the growth of oxo-rhenium crystallites on the filament surfaces and may serve as

  7. Development of chemically vapor deposited rhenium emitters of (0001) preferred crystal orientation

    NASA Technical Reports Server (NTRS)

    Yang, L.; Hudson, R. G.

    1973-01-01

    Rhenium thermionic emitters were prepared by the pyrolysis of rhenium chlorides formed by the chlorination of rhenium pellets. The impurity contents, microstructures, degrees of (0001) preferred crystal orientation, and vacuum electron work functions of these emitters were determined as a function of deposition parameters, such as substrate temperature, rhenium pellet temperature and chlorine flow rate. A correlation between vacuum electron work function and degree of (0001) preferred crystal orientation was established. Conditions for depositing porosity-free rhenium emitters of high vacuum electron work functions were defined. Finally, three cylindrical rhenium emitters were prepared under the optimum deposition conditions.

  8. Toward hypoxia-selective rhenium and technetium tricarbonyl complexes.

    PubMed

    North, Andrea J; Hayne, David J; Schieber, Christine; Price, Katherine; White, Anthony R; Crouch, Peter J; Rigopoulos, Angela; O'Keefe, Graeme J; Tochon-Danguy, Henri; Scott, Andrew M; White, Jonathan M; Ackermann, Uwe; Donnelly, Paul S

    2015-10-05

    With the aim of preparing hypoxia-selective imaging and therapeutic agents, technetium(I) and rhenium(I) tricarbonyl complexes with pyridylhydrazone, dipyridylamine, and pyridylaminocarboxylate ligands containing nitrobenzyl or nitroimidazole functional groups have been prepared. The rhenium tricarbonyl complexes were synthesized with short reaction times using microwave irradiation. Rhenium tricarbonyl complexes with deprotonated p-nitrophenyl pyridylhydrazone ligands are luminescent, and this has been used to track their uptake in HeLa cells using confocal fluorescent microscopy. Selected rhenium tricarbonyl complexes displayed higher uptake in hypoxic cells when compared to normoxic cells. A (99m)Tc tricarbonyl complex with a dipyridylamine ligand bearing a nitroimidazole functional group is stable in human serum and was shown to localize in a human renal cell carcinoma (RCC; SK-RC-52) tumor in a mouse.

  9. Mineral resource of the month: tantalum

    USGS Publications Warehouse

    ,

    2011-01-01

    The article offers information on a rare transition metal called tantalum. It says that the blue-gray mineral resource was discovered in 1801 or 1802 and was used for capacitors in 1940. It adds that the tantalite ore and other minerals in the ore should be separated in order to generate concentrates of tantalum. The use of tantalum are also cited.

  10. A Preliminary Report on the Strength and Metallography of a Bimetallic Friction Stir Weld Joint Between AA6061 and MIL-DTL-46100E High Hardness Steel Armor

    DTIC Science & Technology

    2012-11-26

    alloy and High Hardness steel armor (MIL- STD-46100) were successfully joined by the friction stir welding (FSW) process using a tungsten- rhenium ...tungsten- rhenium stir tool. Process parameter variation experiments, which included inductive pre-heating, tool design geometry, plunge and traverse

  11. enantio-Enriched CPL-active helicene-bipyridine-rhenium complexes.

    PubMed

    Saleh, Nidal; Srebro, Monika; Reynaldo, Thibault; Vanthuyne, Nicolas; Toupet, Loïc; Chang, Victoria Y; Muller, Gilles; Williams, J A Gareth; Roussel, Christian; Autschbach, Jochen; Crassous, Jeanne

    2015-03-04

    The incorporation of a rhenium atom within an extended helical π-conjugated bi-pyridine system impacts the chiroptical and photophysical properties of the resulting neutral or cationic complexes, leading to the first examples of rhenium-based phosphors that exhibit circularly polarized luminescence.

  12. Mineral resource of the month: rhenium

    USGS Publications Warehouse

    Polyak, Désirée E.

    2012-01-01

    Rhenium, a silvery-white, heat resistant metal, has increased significantly in importance since its discovery in 1925. First isolated by a team of German chemists studying platinum ore, the mineral was named for the Rhine River. From 1925 until the 1960s, only two metric tons of rhenium were produced worldwide. Since then, its uses have steadily increased, including everything from unleaded gasoline to jet engines, and worldwide annual production now tops 45 metric tons.

  13. Rhenium-Oxygen Interactions at High Temperatures

    NASA Technical Reports Server (NTRS)

    Jacobson, Nathan S.; Myers, Dwight L.; Zhu, Dongming; Humphrey, Donald

    2000-01-01

    The reaction of pure rhenium metal with dilute oxygen/argon mixtures was studied from 600 to 1400 C. Temperature, oxygen pressure, and flow rates were systematically varied to determine the rate-controlling steps. At lower temperatures the oxygen/rhenium chemical reaction is rate limiting; at higher temperatures gas-phase diffusion of oxygen through the static boundary layer is rate limiting. At all temperatures post-reaction microstructures indicate preferential attack along certain crystallographic planes and defects.

  14. enantio-Enriched CPL-active helicene–bipyridine–rhenium complexes†

    PubMed Central

    Saleh, Nidal; Srebro, Monika; Reynaldo, Thibault; Vanthuyne, Nicolas; Toupet, Loïc; Chang, Victoria Y.; Muller, Gilles; Gareth Williams, J. A.; Roussel, Christian

    2016-01-01

    The incorporation of a rhenium atom within an extended helical π-conjugated bi-pyridine system impacts the chiroptical and photophysical properties of the resulting neutral or cationic complexes, leading to the first examples of rhenium-based phosphors that exhibit circularly polarized luminescence. PMID:25643941

  15. Performance comparison: Aluminum electrolytic and solid tantalum capacitor

    NASA Technical Reports Server (NTRS)

    Hawthornthwaite, B. G.; Piper, J.; Holland, H. W.

    1981-01-01

    Several key electrical and environmental parameters of latest technology aluminum electrolytic and solid tantalum capacitors were evaluated in terms of price fluctuations of tantalum metal. Performance differences between solid tantalums and aluminum electrolytics are examined.

  16. Tantalum-based semiconductors for solar water splitting.

    PubMed

    Zhang, Peng; Zhang, Jijie; Gong, Jinlong

    2014-07-07

    Solar energy utilization is one of the most promising solutions for the energy crises. Among all the possible means to make use of solar energy, solar water splitting is remarkable since it can accomplish the conversion of solar energy into chemical energy. The produced hydrogen is clean and sustainable which could be used in various areas. For the past decades, numerous efforts have been put into this research area with many important achievements. Improving the overall efficiency and stability of semiconductor photocatalysts are the research focuses for the solar water splitting. Tantalum-based semiconductors, including tantalum oxide, tantalate and tantalum (oxy)nitride, are among the most important photocatalysts. Tantalum oxide has the band gap energy that is suitable for the overall solar water splitting. The more negative conduction band minimum of tantalum oxide provides photogenerated electrons with higher potential for the hydrogen generation reaction. Tantalates, with tunable compositions, show high activities owning to their layered perovskite structure. (Oxy)nitrides, especially TaON and Ta3N5, have small band gaps to respond to visible-light, whereas they can still realize overall solar water splitting with the proper positions of conduction band minimum and valence band maximum. This review describes recent progress regarding the improvement of photocatalytic activities of tantalum-based semiconductors. Basic concepts and principles of solar water splitting will be discussed in the introduction section, followed by the three main categories regarding to the different types of tantalum-based semiconductors. In each category, synthetic methodologies, influencing factors on the photocatalytic activities, strategies to enhance the efficiencies of photocatalysts and morphology control of tantalum-based materials will be discussed in detail. Future directions to further explore the research area of tantalum-based semiconductors for solar water splitting

  17. Rhenium-188 Production in Hospitals, by W-188/Re-188 Generator, for Easy Use in Radionuclide Therapy

    PubMed Central

    Argyrou, Maria; Valassi, Alexia; Andreou, Maria; Lyra, Maria

    2013-01-01

    Rhenium-188 (Re-188) is a high energy β-emitting radioisotope obtained from the tungsten-188/rhenium-188 (W-188/Re-188) generator, which has shown utility for a variety of therapeutic applications in nuclear medicine, oncology, and interventional radiology/cardiology. Re-188 decay is accompanied by a 155 keV predominant energy γ-emission, which could be detected by γ-cameras, for imaging, biodistribution, or absorbed radiation dose studies. Its attractive physical properties and its potential low cost associated with a long-lived parent make it an interesting option for clinical use. The setup and daily use of W-188/Re-188 generator in hospital nuclear medicine departments are discussed in detail. The clinical efficacy, for several therapeutic applications, of a variety of Re-188-labeled agents is demonstrated. The high energy of the β-emission of Re-188 is particularly well suited for effective penetration in solid tumours. Its total radiation dose delivered to tissues is comparable to other radionuclides used in therapy. Furthermore, radiation safety and shielding requirements are an important subject of matter. In the case of bone metastases treatment, therapeutic ratios are presented in order to describe the efficacy of Re-188 usage. PMID:23653859

  18. Tantalum-copper alloy and method for making

    DOEpatents

    Schmidt, Frederick A.; Verhoeven, John D.; Gibson, Edwin D.

    1984-11-06

    A tantalum-copper alloy can be made by preparing a consumable electrode consisting of an elongated copper billet containing at least two spaced apart tantalum rods extending longitudinally the length of the billet. The electrode is placed in a dc arc furnace and melted under conditions which co-melt the copper and tantalum to form the alloy.

  19. Tantalum-copper alloy and method for making

    DOEpatents

    Schmidt, F.A.; Verhoeven, J.D.; Gibson, E.D.

    1983-06-01

    A tantalum-copper alloy can be made by preparing a consumable electrode consisting of an elongated copper billet containing at least two spaced apart tantalum rods extending longitudinally the length of the billet. The electrode is placed in a dc arc furnace and melted under conditions which co-melt the copper and tantalum to form the alloy.

  20. Synthesis of rhenium nitride crystals with MoS2 structure

    NASA Astrophysics Data System (ADS)

    Kawamura, Fumio; Yusa, Hitoshi; Taniguchi, Takashi

    2012-06-01

    Rhenium nitride (ReN2) crystals were synthesized from a metathesis reaction between ReCl5 and Li3N under high pressure. The reaction was well controlled by the addition of a large amount of NaCl as reaction inhibitor to prevent a violent exothermic reaction. The largest rhenium nitride crystals obtained had a millimeter-order size with a platelet shape. X-ray diffraction analysis revealed that rhenium nitride has MoS2 structure similar to hexagonal rhenium diboride (ReB2) which has recently been investigated as an ultra-hard material. The structure was different from any structures previously predicted for ReN2 by theoretical calculations.

  1. Conflict minerals from the Democratic Republic of the Congo: global tungsten processing plants, a critical part of the tungsten supply chain

    USGS Publications Warehouse

    Bermúdez-Lugo, Omayra

    2014-01-01

    The U.S. Geological Survey (USGS) analyzes supply chains to identify and define major components of mineral and material flows from ore extraction, through intermediate forms, to a final product. Two major reasons necessitate these analyses: (1) to identify risks associated with the supply of critical and strategic minerals to the United States and (2) to provide greater supply chain transparency so that policymakers have the information necessary to ensure domestic legislation compliance. This fact sheet focuses on the latter. The USGS National Minerals Information Center has been asked by governmental and non-governmental organizations to provide information on tin, tantalum, tungsten, and gold (collectively known as “3TG minerals”) processing facilities worldwide in response to U.S. legislation aimed at removing the link between the trade in these minerals and civil unrest in the Democratic Republic of the Congo. Post beneficiation processing plants (smelters and refineries) of 3TG mineral ores and concentrates were identified by company and industry association representatives as being the link in the 3TG mineral supply chain through which these minerals can be traced to their source of origin (mine); determining the point of origin is critical to establishing a transparent conflict mineral supply chain. This fact sheet, the first in a series of 3TG mineral fact sheets, focuses on the tungsten supply chain by listing plants that consume tungsten concentrates to produce ammonium paratungstate and ferrotungsten worldwide.

  2. Purification of tantalum by plasma arc melting

    DOEpatents

    Dunn, Paul S.; Korzekwa, Deniece R.

    1999-01-01

    Purification of tantalum by plasma arc melting. The level of oxygen and carbon impurities in tantalum was reduced by plasma arc melting the tantalum using a flowing plasma gas generated from a gas mixture of helium and hydrogen. The flowing plasma gases of the present invention were found to be superior to other known flowing plasma gases used for this purpose.

  3. Initial Assessment of Environmental Barrier Coatings for the Prometheus Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    M. Frederick

    2005-12-15

    Depending upon final design and materials selections, a variety of engineering solutions may need to be considered to avoid chemical degradation of components in a notional space nuclear power plant (SNPP). Coatings are one engineered approach that was considered. A comprehensive review of protective coating technology for various space-reactor structural materials is presented, including refractory metal alloys [molybdenum (Mo), tungsten (W), rhenium (Re), tantalum (Ta), and niobium (Nb)], nickel (Ni)-base superalloys, and silicon carbide (Sic). A summary description of some common deposition techniques is included. A literature survey identified coatings based on silicides or iridium/rhenium as the primary methods formore » environmental protection of refractory metal alloys. Modified aluminide coatings have been identified for superalloys and multilayer ceramic coatings for protection of Sic. All reviewed research focused on protecting structural materials from extreme temperatures in highly oxidizing conditions. Thermodynamic analyses indicate that some of these coatings may not be protective in the high-temperature, impure-He environment expected in a Prometheus reactor system. Further research is proposed to determine extensibility of these coating materials to less-oxidizing or neutral environments.« less

  4. Supported Rhenium Complexes: Almost Uniform Rhenium Tricarbonyls Synthesized from CH[subscript 3]Re(CO)[subscript 5] and HY Zeolite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lobo-Lapidus, Rodrigo J.; Gates, Bruce C.

    2010-12-07

    Supported rhenium complexes were prepared from CH{sub 3}Re(CO){sub 5} and dealuminated HY zeolite or NaY zeolite, each with a Si/Al atomic ratio of 30. The samples were characterized with infrared (IR) and extended X-ray absorption fine structure (EXAFS) spectroscopies. EXAFS data characterizing the sample formed by the reaction of CH{sub 3}Re(CO){sub 5} with dealuminated HY zeolite show that the rhenium complexes were bonded to the zeolite frame, incorporating, on average, three carbonyl ligands per Re atom (as shown by Re-C and multiple-scattering Re-O EXAFS contributions). The IR spectra, consistent with this result, show that the supported rhenium carbonyls were bondedmore » near aluminum sites of the zeolite, as shown by the decrease in intensity of the IR bands characterizing the acidic silanol groups resulting from the reaction of the rhenium carbonyl with the zeolite. This supported metal complex was characterized by narrow peaks in the {nu}{sub CO} region of the IR spectrum, indicating highly uniform species. In contrast, the species formed from CH{sub 3}Re(CO){sub 5} on NaY zeolite lost fewer carbonyl ligands than those formed on HY zeolite and were significantly less uniform, as indicated by the greater breadth of the {nu}{sub CO} bands in the IR spectra. The results show the importance of zeolite H{sup +} sites for the formation of uniform supported rhenium carbonyls from CH{sub 3}Re(CO){sub 5}; the formation of such uniform complexes did not occur on the NaY zeolite.« less

  5. Separation of no-carrier-added rhenium from bulk tantalum by the sodium malonate-PEG aqueous biphasic system.

    PubMed

    Dutta, Binita; Lahiri, Susanta; Tomar, B S

    2014-02-01

    The aqueous biphasic system (ABS) involving sodium malonate-polyethylene glycol (PEG) phases has been applied for the first time for separation of no-carrier-added (183)Re (T1/2=70 d) from α-particle irradiated bulk tantalum target. The various ABS conditions were applied for investigating the separation by varying pH, temperature, PEG-molecular weight, concentration of salt. The extraction pattern was hardly affected by change in pH and the molecular weight of PEG. One step separation of nca (183)Re from Ta was achieved at the optimal conditions of (i) 50% (w/w) PEG-4000-2 M sodium malonate, 40 °C and (ii) 50% (w/w) PEG-4000-3 M sodium malonate, room temperature (27 °C). © 2013 Published by Elsevier Ltd.

  6. Embedded Weapons-Grade Tungsten Alloy Shrapnel Rapidly Induces Metastatic High-Grade Rhabdomyosarcomas in F344 Rats

    PubMed Central

    Kalinich, John F.; Emond, Christy A.; Dalton, Thomas K.; Mog, Steven R.; Coleman, Gary D.; Kordell, Jessica E.; Miller, Alexandra C.; McClain, David E.

    2005-01-01

    Continuing concern regarding the potential health and environmental effects of depleted uranium and lead has resulted in many countries adding tungsten alloy (WA)-based munitions to their battlefield arsenals as replacements for these metals. Because the alloys used in many munitions are relatively recent additions to the list of militarily relevant metals, very little is known about the health effects of these metals after internalization as embedded shrapnel. Previous work in this laboratory developed a rodent model system that mimicked shrapnel loads seen in wounded personnel from the 1991 Persian Gulf War. In the present study, we used that system and male F344 rats, implanted intramuscularly with pellets (1 mm × 2 mm cylinders) of weapons-grade WA, to simulate shrapnel wounds. Rats were implanted with 4 (low dose) or 20 pellets (high dose) of WA. Tantalum (20 pellets) and nickel (20 pellets) served as negative and positive controls, respectively. The high-dose WA-implanted rats (n = 46) developed extremely aggressive tumors surrounding the pellets within 4–5 months after implantation. The low-dose WA-implanted rats (n = 46) and nickel-implanted rats (n = 36) also developed tumors surrounding the pellets but at a slower rate. Rats implanted with tantalum (n = 46), an inert control metal, did not develop tumors. Tumor yield was 100% in both the low- and high-dose WA groups. The tumors, characterized as high-grade pleomorphic rhabdomyosarcomas by histopathology and immunohistochemical examination, rapidly metastasized to the lung and necessitated euthanasia of the animal. Significant hematologic changes, indicative of polycythemia, were also observed in the high-dose WA-implanted rats. These changes were apparent as early as 1 month postimplantation in the high-dose WA rats, well before any overt signs of tumor development. These results point out the need for further studies investigating the health effects of tungsten and tungsten-based alloys. PMID:15929896

  7. Rhenium: a rare metal critical in modern transportation

    USGS Publications Warehouse

    John, David A.

    2015-01-01

    Rhenium rarely occurs as a native element or as its own sulfide mineral—rheniite (ReS2)—and often occurs as a substitute for molybdenum in molybdenite (MoS2). Most extracted rhenium is a byproduct of copper mining, with about 80 percent recovered from flue dust during the processing of molybdenite concentrates from porphyry copper deposits.

  8. Study of constitution diagram aluminum-tantalum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Glazov, V.M.; Mal'tsev, M.V.; Chistyakov, Y.D.

    1988-10-20

    Alloys of aluminum with tantalum were for the first time obtained by aluminothermic method in 1868 by Moriniak. Later these alloys were studied in the works of Schirmeister (1915) and Brouwer (1938), moreover Brouwer established that tantalum with aluminum forms the chemical compound TaA1, which has tetragonal crystal lattice with parameters a=5.422 angstroms and c=8.536 angstroms (1). However despite the fact that alloys of aluminum with tantalum long ago are obtained already, constitution diagram of this system is not studied until recently. In connection with the application of tantalum as the modifying additive in aluminum alloys an emergency in themore » construction of this diagram, without the knowledge by which it is not possible to give the correct explanation of the mechanism of the very process of the modification of primary grain. For this purpose was undertaken this work. Russian translations.« less

  9. Rhenium(VII) Catalysis of Prins Cyclization Reactions

    PubMed Central

    Tadpetch, Kwanruthai; Rychnovsky, Scott D.

    2009-01-01

    The rhenium(VII) complex O3ReOSiPh3 are particularly effective catalyst for Prins cyclizations using aromatic and α,β-unsaturated aldehydes. The reaction conditions are mild and the highly substituted 4-hydroxy tetrahydropyran products are formed stereoselectively. Rhenium(VII) complexes appear to spontaneously form esters with alcohols and to directly activate electron rich alcohols for solvolysis. Re2O7 and perrhenic acid were equally effective in catalyzing these cyclizations. PMID:18816133

  10. Niobium and tantalum: indispensable twins

    USGS Publications Warehouse

    Schulz, Klaus; Papp, John

    2014-01-01

    Niobium and tantalum are transition metals almost always paired together in nature. These “twins” are difficult to separate because of their shared physical and chemical properties. In 1801, English chemist Charles Hatchett uncovered an unknown element in a mineral sample of columbite; John Winthrop found the sample in a Massachusetts mine and sent it to the British Museum in London in 1734. The name columbium, which Hatchet named the new element, came from the poetic name for North America—Columbia—and was used interchangeably for niobium until 1949, when the name niobium became official. Swedish scientist Anders Ekberg discovered tantalum in 1802, but it was confused with niobium, because of their twinned properties, until 1864, when it was recognized as a separate element. Niobium is a lustrous, gray, ductile metal with a high melting point, relatively low density, and superconductor properties. Tantalum is a dark blue-gray, dense, ductile, very hard, and easily fabricated metal. It is highly conductive to heat and electricity and renowned for its resistance to acidic corrosion. These special properties determine their primary uses and make niobium and tantalum indispensable.

  11. 40 CFR 421.210 - Applicability: Description of the primary molybdenum and rhenium subcategory.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... primary molybdenum and rhenium subcategory. 421.210 Section 421.210 Protection of Environment... POINT SOURCE CATEGORY Primary Molybdenum and Rhenium Subcategory § 421.210 Applicability: Description of the primary molybdenum and rhenium subcategory. The provisions of this subpart are applicable to...

  12. 40 CFR 421.210 - Applicability: Description of the primary molybdenum and rhenium subcategory.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... primary molybdenum and rhenium subcategory. 421.210 Section 421.210 Protection of Environment... POINT SOURCE CATEGORY Primary Molybdenum and Rhenium Subcategory § 421.210 Applicability: Description of the primary molybdenum and rhenium subcategory. The provisions of this subpart are applicable to...

  13. 40 CFR 421.210 - Applicability: Description of the primary molybdenum and rhenium subcategory.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... primary molybdenum and rhenium subcategory. 421.210 Section 421.210 Protection of Environment... POINT SOURCE CATEGORY Primary Molybdenum and Rhenium Subcategory § 421.210 Applicability: Description of the primary molybdenum and rhenium subcategory. The provisions of this subpart are applicable to...

  14. 40 CFR 421.210 - Applicability: Description of the primary molybdenum and rhenium subcategory.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... primary molybdenum and rhenium subcategory. 421.210 Section 421.210 Protection of Environment... POINT SOURCE CATEGORY Primary Molybdenum and Rhenium Subcategory § 421.210 Applicability: Description of the primary molybdenum and rhenium subcategory. The provisions of this subpart are applicable to...

  15. 40 CFR 421.210 - Applicability: Description of the primary molybdenum and rhenium subcategory.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... primary molybdenum and rhenium subcategory. 421.210 Section 421.210 Protection of Environment... POINT SOURCE CATEGORY Primary Molybdenum and Rhenium Subcategory § 421.210 Applicability: Description of the primary molybdenum and rhenium subcategory. The provisions of this subpart are applicable to...

  16. Spectrophotometric catalytic determination of small amounts of rhenium in mineralized rocks and molybdenite

    USGS Publications Warehouse

    Simon, F.O.; Grimaldi, F.S.

    1962-01-01

    Rhenium is determined by spectrophotometry of the tellurium sol formed by the reduction of tellurate by stannous chloride under the catalytic influence of rhenium. A detailed investigation of the conditions for high sensitivity and stability at lowest concentration levels of rhenium is presented as well as the behavior of 26 ions. The method is applied to the determination of some tenths of 1 p.p.m. or more of rhenium in a 1-mg. aliquot of mineralized rocks, mixtures of molybdenite and rocks, and molybdenite concentrates. The practical quantity limit of detection is 2 ?? 10-10 gram of rhenium. Samples are decomposed with a mixture of CaO, CaCl2, and MgO. On leaching, most constituents of the sample are precipitated either as calcium salts or hydroxides, except for rhenium and a small amount of molybdenum which pass into the filtrate. Residual molybdenum is removed by extraction with 8-quinolinol in chloroform. Better than 95% recoveries are obtained with two fusions with flux.

  17. Structure refinement for tantalum nitrides nanocrystals with various morphologies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Lianyun; School of Science, Beijing Jiaotong University, 3 Shang Yuan Cun, Haidian District, Beijing 100044; Huang, Kai

    2012-07-15

    Graphical abstract: Tantalum nitrides nanocrystals with various phases and morphologies for the first time have been synthesized through homogenous sodium reduction under low temperature with the subsequent annealing process under high vacuum. Highlights: ► The spherical TaN, cuboidal TaN{sub 0.83} and TaN{sub 0.5} nanocrystals have been synthesized through homogenous sodium reduction under low temperature with the subsequent annealing process under high vacuum. ► The crystal structures of different tantalum nitrides were determined by Rietveld refinement on the X-ray diffraction data and the examinations of electron microcopies. ► The specific surface area of the tantalum nitrides powders was around 10 m{supmore » 2} g{sup −1}. ► Tantalum nitrides powders could be suitable for capacitor with high specific capacitance. -- Abstract: Tantalum nitrides (TaN{sub x}) nanocrystals with different phase and morphology have been synthesized through homogenous sodium reduction under low temperature with the subsequent annealing process under high vacuum. The crystal structures of tantalum nitrides were determined by Rietveld refinement based on the X-ray diffraction data. The morphologies of various tantalum nitrides nanocrystals in high quality were analyzed through the electron microcopies examinations. The spherical TaN nanoparticles, cuboidal TaN{sub 0.83} and TaN{sub 0.5} nanocrystals have been selectively prepared at different annealing temperatures. In addition, the specific surface areas of the tantalum nitrides nanocrystals measured by BET method were around 9.87–11.64 m{sup 2} g{sup −1}, indicating that such nano-sized tantalum nitrides could be suitable for capacitor with high specific capacitance.« less

  18. Determination of rhenium in molybdenite by neutron-activation analysis.

    PubMed

    Terada, K; Yoshimura, Y; Osaki, S; Kiba, T

    1967-01-01

    A neutron-activation method is described for the determination of rhenium in molybdenite. Radiochemical separation by a carrier technique was carried out very rapidly by means of successive liquid-liquid extraction processes. The recovery of rhenium, which was determined by a spectrophotometric method, was about 93%. About 10 samples could be analysed within 6 hr in parallel runs.

  19. Effect of aging at 1040 C (1900 F) on the ductility and structure of a tantalum alloy, T-111

    NASA Technical Reports Server (NTRS)

    Watson, G. K.; Stephens, J. R.

    1972-01-01

    The post-aging embrittlement of T-111 (tantalum - 8-percent tungsten - 2-percent hafnium) following exposure for up to about 10,000 hours at 1040 C in either vacuum or liquid lithium was investigated for sheet and tubing samples. This thermal aging was shown to greatly increase the sensitivity of T-111 to hydrogen embrittlement during subsequent room temperature specimen processing or testing. The hydrogen embrittlement problem can be avoided by preventing exposure to the T-111 to moisture during post-aging processing or testing. Aging at 1040 C also resulted in formation of HfO2 particles at grain boundaries, which may contribute to the observed embrittlement.

  20. Development of a fused slurry silicide coating for the protection of tantalum alloys

    NASA Technical Reports Server (NTRS)

    Packer, C. M.; Perkins, R. A.

    1974-01-01

    Results are reported of a research program to develop a reliable high-performance, fused slurry silicide protective coating for a tantalum-10 tungsten alloy for use at 1427 to 1538 C at 0.1 to 10 torr air pressure under cyclic temperature conditions. A review of silicide coating performance under these conditions indicated that the primary wear-out mode is associated with widening of hairline fissures in the coating. Consideration has been given to modifying the oxidation products that form on the coating surface to provide a seal for these fissures and to minimize their widening. On the basis of an analysis of the phase relationships between silica and various other oxides, a coating having the slurry composition 2.5Mn-33Ti-64.5Si was developed that is effective in the pressure range from 1 to 10 torr.

  1. Characterization of Rhenium Oxides Using ESCA

    NASA Technical Reports Server (NTRS)

    Panda, Binayak; Jones, Clyde S. (Technical Monitor)

    2001-01-01

    Rhenium as an engineering material has the following properties: (1) high melting point (one of the refractory metals); (2) high strength at elevated temperatures; (3) excellent toughness at room temperature; (4) low vapor pressure at melting point; (5) low coefficient of thermal expansion; (6) high impact and wear resistance; (7) compatibility with elements such as carbon and platinum; (8) conservation of properties in the presence of hydrogen, water vapor, and nitrogen oxides; and (9) poor oxidation resistance. This viewgraph presentation gives an overview of rhenium oxide characterization, including details on its history, experimental procedure using ESCA, and the analysis of the oxides (spectra and effects of ion sputtering).

  2. Scintillation Breakdowns in Chip Tantalum Capacitors

    NASA Technical Reports Server (NTRS)

    Teverovsky, Alexander

    2008-01-01

    Scintillations in solid tantalum capacitors are momentarily local breakdowns terminated by a self-healing or conversion to a high-resistive state of the manganese oxide cathode. This conversion effectively caps the defective area of the tantalum pentoxide dielectric and prevents short-circuit failures. Typically, this type of breakdown has no immediate catastrophic consequences and is often considered as nuisance rather than a failure. Scintillation breakdowns likely do not affect failures of parts under surge current conditions, and so-called "proofing" of tantalum chip capacitors, which is a controllable exposure of the part after soldering to voltages slightly higher than the operating voltage to verify that possible scintillations are self-healed, has been shown to improve the quality of the parts. However, no in-depth studies of the effect of scintillations on reliability of tantalum capacitors have been performed so far. KEMET is using scintillation breakdown testing as a tool for assessing process improvements and to compare quality of different manufacturing lots. Nevertheless, the relationship between failures and scintillation breakdowns is not clear, and this test is not considered as suitable for lot acceptance testing. In this work, scintillation breakdowns in different military-graded and commercial tantalum capacitors were characterized and related to the rated voltages and to life test failures. A model for assessment of times to failure, based on distributions of breakdown voltages, and accelerating factors of life testing are discussed.

  3. Atom Probe Tomography Analysis of the Distribution of Rhenium in Nickel Alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mottura, A.; Warnken, N; Miller, Michael K

    2010-01-01

    Atom probe tomography (APT) is used to characterise the distributions of rhenium in a binary Ni-Re alloy and the nickel-based single-crystal CMSX-4 superalloy. A purpose-built algorithm is developed to quantify the size distribution of solute clusters, and applied to the APT datasets to critique the hypothesis that rhenium is prone to the formation of clusters in these systems. No evidence is found to indicate that rhenium forms solute clusters above the level expected from random fluctuations. In CMSX-4, enrichment of Re is detected in the matrix phase close to the matrix/precipitate ({gamma}/{gamma}{prime}) phase boundaries. Phase field modelling indicates that thismore » is due to the migration of the {gamma}/{gamma}{prime} interface during cooling from the temperature of operation. Thus, neither clustering of rhenium nor interface enrichments can be the cause of the enhancement in high temperature mechanical properties conferred by rhenium alloying.« less

  4. 21 CFR 886.3100 - Ophthalmic tantalum clip.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... blood vessels in the eye. (b) Classification. Class II (special controls). The device is exempt from the...) MEDICAL DEVICES OPHTHALMIC DEVICES Prosthetic Devices § 886.3100 Ophthalmic tantalum clip. (a) Identification. An ophthalmic tantalum clip is a malleable metallic device intended to be implanted permanently...

  5. Development of Coatings for Tantalum Alloy Nozzle Vanes

    NASA Technical Reports Server (NTRS)

    Stetson, A. R.; Wimber, R. T.

    1967-01-01

    A group of silicide coatings developed for the T222 tantalum-base alloy have afforded over 600 hours of protection at 1600 and 2400 F during cyclic exposure in air. These coatings were applied in two steps. A modifier alloy was applied by slurry techniques and was sintered in vacuum prior to siliciding by pack cementation in argon. Application of the modifier alloy by pack cementation was found to be much less effective. The addition of titanium and vanadium to molybdenum and tungsten yielded beneficial modifier alloys, whereas the addition of chromium showed no improvement. After siliciding, the 15Ti- 35W-15V-35Mo modifier alloy exhibited the best performance; one sample survived 1064 hours of oxidation at 2400 F. This same coating was the only coating to reproducibly provide 600 hours of protection at both 1600 and 2400 F; in the second and third of three experiments, involving oxidation of three to five specimens at each temperature in each experiment, no failures were observed in 600 hours of testing. The slurry coatings were also shown to protect the Cb752 and D43 columbium-base alloys.

  6. Rhenium-188 Labeled Tungsten Disulfide Nanoflakes for Self-Sensitized, Near-Infrared Enhanced Radioisotope Therapy.

    PubMed

    Chao, Yu; Wang, Guanglin; Liang, Chao; Yi, Xuan; Zhong, Xiaoyan; Liu, Jingjing; Gao, Min; Yang, Kai; Cheng, Liang; Liu, Zhuang

    2016-08-01

    Radioisotope therapy (RIT), in which radioactive agents are administered or implanted into the body to irradiate tumors from the inside, is a clinically adopted cancer treatment method but still needs improvement to enhance its performances. Herein, it is found that polyethylene glycol (PEG) modified tungsten disulfide (WS2 ) nanoflakes can be easily labeled by (188) Re, a widely used radioisotope for RIT, upon simple mixing. Like other high-Z elements acting as radiosensitizers, tungsten in the obtained (188) Re-WS2 -PEG would be able to absorb ionization radiation generated from (188) Re, enabling ''self-sensitization'' to enhance the efficacy of RIT as demonstrated in carefully designed in vitro experiments of this study. In the meanwhile, the strong NIR absorbance of WS2 -PEG could be utilized for NIR light-induced photothermal therapy (PTT), which if applied on tumors would be able to greatly relieve their hypoxia state and help to overcome hypoxia-associated radioresistance of tumors. Therefore, with (188) Re-WS2 -PEG as a multifunctional agent, which shows efficient passive tumor homing after intravenous injection, in vivo self-sensitized, NIR-enhanced RIT cancer treatment is realized, achieving excellent tumor killing efficacy in a mouse tumor model. This work presents a new concept of applying nanotechnology in RIT, by delivering radioisotopes into tumors, self-sensitizing the irradiation-induced cell damage, and modulating the tumor hypoxia state to further enhance the therapeutic outcomes. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Use of the ORNL Tungsten-188/Rhenium-188 Generator for Preparation of the Rhenium-188 HDD/Lipiodol Complex for Transarterial Liver Cancer Therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Knapp Jr, Russ F; Jeong, J M

    2008-01-01

    This work describes the installation, use, and quality control (QC) of the alumina-based tungsten-188 ({sup 188}W)/rhenium-188 ({sup 188}Re) generators provided by the Oak Ridge National Laboratory (ORNL). In addition, methods used for concentration of the {sup 188}Re-perrhenate bolus and preparation of {sup 188}Re-labeled HDD (4-hexadecyl-2,2,9,9-tetramethyl-4,7-diaza-1,10-decanethiol) for trans-arterial administration for therapy of nonresectable liver cancer also are described. The {sup 188}W/{sup 188}Re generator has a long useful shelf-life of several months and is a convenient on-site {sup 188}Re production system. {sup 188}Re has excellent therapeutic and imaging properties (T{sub 1/2} 16.9 hours; E{beta}{sub max} 2.12 MeV; 155-keV gamma ray, 15%) andmore » is cost effectively obtained on demand by saline elution of the generator. The clinical efficacy of a variety of {sup 188}Re-labeled agents has been demonstrated for several therapeutic applications. Because of the favorable physical properties of {sup 188}Re, several {sup 188}Re-labeled agents are being developed and evaluated for the treatment of nonresectable/refractory liver cancer. {sup 188}Re-labeled HDD has been the most widely studied of these agents for this application and has been introduced into clinical trials at a number of institutions. The trans-arterial administration of {sup 188}Re-labeled agents for treatment of inoperable liver cancer requires use of high-level (1-2 Ci) {sup 188}W/{sup 188}Re generators. The handling of such high levels of {sup 188}Re imposes radiological precautions normally not encountered in a radiopharmacy and adequate care and ALARA (ie, 'As Low As Reasonably Achievable') principles must be followed. The ORNL generator provides consistently high {sup 188}Re yields (>75%) and low {sup 188}W parent breakthrough (<10{sup -3}%) over an extended shelf-life of several months. However, the high elution volumes (20-40 mL for 1-2 Ci generators) can require concentration

  8. [Influence of antitumor system rhenium-platinum on biochemical state of the liver].

    PubMed

    Ivchuk, V V; Polishko, T M; Golichenko, O A; Shtemenko, O V; Shtemenko, N I

    2011-01-01

    Influence of the antitumour rhenium-platinum system on biochemical liver characteristics in the model of tumor growth (Guerin carcinoma) was studied and possible hepatoprotective activity of rhenium cluster compounds when introducing them in different forms was shown, that was confirmed by decreasing of diagnostic enzymes activity in blood (aminotransferase--AST 6 times and ALT 5.6 times, lactatedehydrogenase 4.9 times, gamma-glutamyltranspeptidase 3.6 times) and normalization of morphological state of the liver cells. The hepatoprotective activity of the cluster rhenium compound with adamanthyl ligands was confirmed in the model of acute toxic hepatitis. Introduction of this compound led to reduction of the concentration of MDA in homogenates of liver tissue (2 times), and in blood plasma (3.8 times); to reduction of levels of diagnostic liver enzymes in blood--AST and ALT 5.8 and 5.5 times respectively in comparison with control group. Some aspects of the mechanism of hepatoprotection were discussed, that included the presence of conjugated systems around the quadrupol rhenium-rhenium bond and alkyl radicals with significant positive inductive effects.

  9. Hafnium radioisotope recovery from irradiated tantalum

    DOEpatents

    Taylor, Wayne A.; Jamriska, David J.

    2001-01-01

    Hafnium is recovered from irradiated tantalum by: (a) contacting the irradiated tantalum with at least one acid to obtain a solution of dissolved tantalum; (b) combining an aqueous solution of a calcium compound with the solution of dissolved tantalum to obtain a third combined solution; (c) precipitating hafnium, lanthanide, and insoluble calcium complexes from the third combined solution to obtain a first precipitate; (d) contacting the first precipitate of hafnium, lanthanide and calcium complexes with at least one fluoride ion complexing agent to form a fourth solution; (e) selectively adsorbing lanthanides and calcium from the fourth solution by cationic exchange; (f) separating fluoride ion complexing agent product from hafnium in the fourth solution by adding an aqueous solution of ferric chloride to obtain a second precipitate containing the hafnium and iron; (g) dissolving the second precipitate containing the hafnium and iron in acid to obtain an acid solution of hafnium and iron; (h) selectively adsorbing the iron from the acid solution of hafnium and iron by anionic exchange; (i) drying the ion exchanged hafnium solution to obtain hafnium isotopes. Additionally, if needed to remove residue remaining after the product is dried, dissolution in acid followed by cation exchange, then anion exchange, is performed.

  10. Necroptosis-inducing rhenium(V) oxo complexes.

    PubMed

    Suntharalingam, Kogularamanan; Awuah, Samuel G; Bruno, Peter M; Johnstone, Timothy C; Wang, Fang; Lin, Wei; Zheng, Yao-Rong; Page, Julia E; Hemann, Michael T; Lippard, Stephen J

    2015-03-04

    Rhenium(V) oxo complexes of general formula [ReO(OMe)(N^N)Cl2], where N^N = 4,7-diphenyl-1,10-phenanthroline, 1, or 3,4,7,8-tetramethyl-1,10-phenanthroline, 2, effectively kill cancer cells by triggering necroptosis, a non-apoptotic form of cell death. Both complexes evoke necrosome (RIP1-RIP3)-dependent intracellular reactive oxygen species (ROS) production and propidium iodide uptake. The complexes also induce mitochondrial membrane potential depletion, a possible downstream effect of ROS production. Apparently, 1 and 2 are the first rhenium complexes to evoke cellular events consistent with programmed necrosis in cancer cells. Furthermore, 1 and 2 display low acute toxicity in C57BL/6 mice and reasonable stability in fresh human blood.

  11. Necroptosis-Inducing Rhenium(V) Oxo Complexes

    PubMed Central

    Suntharalingam, Kogularamanan; Awuah, Samuel G.; Bruno, Peter M.; Johnstone, Timothy C.; Wang, Fang; Lin, Wei; Zheng, Yao-Rong; Page, Julia E.; Hemann, Michael T.; Lippard, Stephen J.

    2015-01-01

    Rhenium(V) oxo complexes of general formula [ReO(OMe)(N^N)Cl2], where N^N = 4,7-diphenyl-1,10-phenanthroline, 1, or 3,4,7,8-tetramethyl-1,10-phenanthroline, 2, effectively kill cancer cells by triggering necroptsosis, a non-apoptotic form of cell death. Both complexes evoke necrosome (RIP1-RIP3)-dependent intracellular ROS production and propidium iodide uptake. The complexes also induce mitochondrial membrane potential depletion, a possible downstream effect of ROS production. Apparently, 1 and 2 are the first rhenium complexes to evoke cellular events consistent with programmed necrosis in cancer cells. Furthermore, 1 and 2 display low acute toxicity in C57BL/6 mice and reasonable stability in fresh human blood. PMID:25698398

  12. Effect of rhenium on the structure and properties of the weld metal of a molybdenum alloy

    NASA Technical Reports Server (NTRS)

    Dyachenko, V. V.; Morozov, B. P.; Tylkina, M. A.; Savitskiy, Y. M.; Nikishanov, V. V.

    1984-01-01

    The structure and properties of welds made in molybdenum alloy VM-1 as a function of rhenium concentrations in the weld metal were studied. Rhenium was introduced into the weld using rhenium wire and tape or wires of Mo-47Re and Mo-52Re alloys. The properties of the weld metal were studied by means of metallographic techniques, electron microscopy, X-ray analysis, and autoradiography. The plasticity of the weld metal sharply was found to increase with increasing concentration of rhenium up to 50%. During welding, a decarburization process was observed which was more pronounced at higher concentrations of rhenium.

  13. Development Study of Cartridge/Crucible Tube Materials

    NASA Technical Reports Server (NTRS)

    McKechnie, Timothy N.; ODell, Scott J.

    1998-01-01

    The limitations of traditional alloys and the desire for improved performance for components is driving the increased utilization of refractory metals in tile space industry. From advanced propulsion systems to high temperature furnace components for microgravity processing, refractory metals are being used for their high melting temperatures and inherent chemical stability. Techniques have been developed to produce near net shape refractory metal components utilizing vacuum plasma spraying. Material utilization is very high, and laborious machining can be avoided. As-spray formed components have been tested and found to perform adequately. However, increased mechanical and thermal properties are needed. To improve these properties, post processing thermal treatments such as hydrogen sintering and vacuum annealing have been performed. Components formed from alloys of tungsten, rhenium, tantalum, niobium, and molybdenum are discussed and a metallurgical analyses detailing the results are presented. A qualitative comparison of mechanical properties is also included.

  14. Intense photoluminescence from amorphous tantalum oxide films

    NASA Astrophysics Data System (ADS)

    Zhu, Minmin; Zhang, Zhengjun; Miao, Wei

    2006-07-01

    Tantalum oxide films were deposited on silicon substrates at a temperature of ˜450°C by heating a pure tantalum foil in a rough vacuum. The films were amorphous in structure and consisted of fully oxidized Ta2O5 and (TaOx, x <2.5) suboxides. This feature resulted in strong visible light emission from the films further oxidized in the air at temperatures of 200-300°C. The mechanism for this photoluminescence behavior of the amorphous tantalum oxide films was also investigated and discussed. This study suggests that wide-band-gap materials could act as effective visible light emitters and provides a simple route to synthesize such materials.

  15. Determination of rhenium in molybdenite by X-ray fluorescence: A combined chemical-spectrometric technique.

    PubMed

    Solt, M W; Wahlberg, J S; Myers, A T

    1969-01-01

    Rhenium in molybdenite is separated from molybdenum by distillation of rhenium heptoxide from a perchloric-sulphuric acid mixture. It is concentrated by precipitation of the sulphide and then determined by X-ray fluorescence. From 3 to 1000 microg of rhenium can be measured with a precision generally within 2%. The procedure tolerates larger amounts of molybdenum than the usual colorimetric methods.

  16. Determination of rhenium in molybdenite by X-ray fluorescence. A combined chemical-spectrometric technique

    USGS Publications Warehouse

    Solt, M.W.; Wahlberg, J.S.; Myers, A.T.

    1969-01-01

    Rhenium in molybdenite is separated from molybdenum by distillation of rhenium heptoxide from a perchloric-sulphuric acid mixture. It is concentrated by precipitation of the sulphide and then determined by X-ray fluorescence. From 3 to 1000 ??g of rhenium can be measured with a precision generally within 2%. The procedure tolerates larger amounts of molybdenum than the usual colorimetric methods. ?? 1969.

  17. Iridium-Coated Rhenium Combustion Chamber

    NASA Technical Reports Server (NTRS)

    Schneider, Steven J.; Tuffias, Robert H.; Rosenberg, Sanders D.

    1994-01-01

    Iridium-coated rhenium combustion chamber withstands operating temperatures up to 2,200 degrees C. Chamber designed to replace older silicide-coated combustion chamber in small rocket engine. Modified versions of newer chamber could be designed for use on Earth in gas turbines, ramjets, and scramjets.

  18. High Temperature Oxidation-Resistant Thruster Research

    DTIC Science & Technology

    1990-02-01

    substrates: Refractory metals, ! Ceramics, Composites and I Carbon - carbon . Rhenium and hafnium carbide were selected based on their properties I and... carbon . Rhenium was selected as the primary refractory metal candidate because of its high melting point, no ductile-to- brittle transition in the...of rhenium (Re) with those of other refractory metals. Rhenium has the second highest melting point of the elements, 3013 C, second only to tungsten

  19. In vitro comparison of the antiproliferative effects of rhenium-186 and rhenium-188 on human aortic endothelial cells.

    PubMed

    Sauter, Alexander; Arthasana, Daniel; Dittmann, Helmut; Pritzkow, Maren; Wiesinger, Benjamin; Schmehl, Joerg; Brechtel, Klaus; Bantleon, Rüdiger; Claussen, Claus; Kehlbach, Rainer

    2011-08-01

    Rhenium-186 ((186)Re) and rhenium-188 ((188)Re) are promising radionuclides for the inhibition of restenosis after percutaneous transluminal angioplasty or other vascular interventions. Until now the maximal dose tolerance of endothelial cells has not been clearly known. To characterize the effects of local irradiation treatment, human aortic endothelial cells (ECs) were incubated with different doses of (186)Re and (188)Re. Two days after plating, ECs received treatment for a period of 5 days. The total radiation doses applied were 1, 4, 8, 16, and 32 Gy. On days 1, 3, 5, 7, and 12 after initial rhenium incubation, cell growth, clonogenic activity, cell-cycle distribution, and cytoskeletal architecture were evaluated. From the first day on, a dose-dependent growth inhibition was observed. Cumulative doses of ≥32 Gy caused a weak colony formation and significant alterations in the cytoskeletal architecture. An increased fraction of cells in G2/M phase was seen for cumulative radiation doses of ≥16 Gy. Interestingly, there were no significant differences between (186)Re and (188)Re. Even for low dose rates of β particles a dose-dependent proliferation inhibition of ECs is seen. Doses beyond 32 Gy alter the cytoskeletal architecture with possibly endothelial dysfunction and late thrombosis.

  20. Rhenium-188: Availability from the W-188/Re-188 Generator and Status of Current Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pillai, M R A; Dash, A; Knapp Jr, Russ F

    Rhenium-188 is one of the most readily available generator derived and useful radionuclides for therapy emitting - particles (2.12 MeV, 71.1% and 1.965 MeV, 25.6%) and imageable gammas (155 KeV, 15.1%). The 188W/188Re generator is an ideal source for the long term (4-6 months) continuous availability of no carrier added (nca) 188Re suitable for the preparation of radiopharmaceuticals for radionuclide therapy. The challenges associated with the double neutron capture route of production of the parent 188W radionuclide have been a major impediment in the progress of application of 188Re. Tungsten-188 of adequate specific activity can be prepared only in 2-3more » of the high flux reactors operating in the World. Several useful technologies have been developed for the preparation of clinical grade 188W/188Re generator. Since the specific activity of 188W used in the generator is relatively low (<5 Ci/g), the eluted 188ReO4- can have low radioactive concentration often insufficient for radiopharmaceutical preparation. However, several efficient post elution concentration techniques have been developed that yield clinically useful 188ReO4-. Rhenium-188 has been used for the preparation of therapeutic radiopharmaceuticals for the management of diseases such as bone metastasis, rheumatoid arthritis and primary cancers. Several early phase clinical studies using radiopharmaceuticals based on 188Re-labeled phosphonates, antibodies, peptides, lipiodol and particulates have been reported. This article reviews the availability, and use of188Re including a discussion of why broader use of 188Re has not progressed as ecpected as a popular radionuclide for therapy.« less

  1. Rhenium-188: availability from the (188)W/(188)Re generator and status of current applications.

    PubMed

    Pillai, M R A; Dash, Ashutosh; Knapp, F F

    2012-07-01

    Rhenium-188 is one of the most readily available generator derived and useful radionuclides for therapy emitting β(-) particles (2.12 MeV, 71.1% and 1.965 MeV, 25.6%) and imageable gammas (155 keV, 15.1%). The (188)W/(188)Re generator is an ideal source for the long term (4-6 months) continuous availability of no carrier added (nca) (188)Re suitable for the preparation of radiopharmaceuticals for radionuclide therapy. The challenges associated with the double neutron capture route of production of the parent (188)W radionuclide have been a major impediment in the progress of application of (188)Re. Tungsten-188 of adequate specific activity can be prepared only in 2-3 of the high flux reactors operating in the World. Several useful technologies have been developed for the preparation of clinical grade (188)W/(188)Re generators. Since the specific activity of (188)W used in the generator is relatively low 185 GBq( < 5 Ci)/g], the eluted (188)ReO(4)(-) can have low radioactive concentration often insufficient for radiopharmaceutical preparation. However, several efficient post elution concentration techniques have been developed that yield clinically useful (188)ReO(4)(-) solutions. Rhenium-188 has been used for the preparation of therapeutic radiopharmaceuticals for the management of diseases such as bone metastasis, rheumatoid arthritis and primary cancers. Several early phase clinical studies using radiopharmaceuticals based on (188)Re-labeled phosphonates, antibodies, peptides, lipiodol and particulates have been reported. This article reviews the availability and use of (188)Re including a discussion of why broader use of (188)Re has not progressed as expected as a popular radionuclide for therapy.

  2. Electronic structure and charge transport in nonstoichiometric tantalum oxide

    NASA Astrophysics Data System (ADS)

    Perevalov, T. V.; Gritsenko, V. A.; Gismatulin, A. A.; Voronkovskii, V. A.; Gerasimova, A. K.; Aliev, V. Sh; Prosvirin, I. A.

    2018-06-01

    The atomic and electronic structure of nonstoichiometric oxygen-deficient tantalum oxide TaO x<2.5 grown by ion beam sputtering deposition was studied. The TaO x film content was analyzed by x-ray photoelectron spectroscopy and by quantum-chemistry simulation. TaO x is composed of Ta2O5, metallic tantalum clusters and tantalum suboxides. A method for evaluating the stoichiometry parameter of TaO x from the comparison of experimental and theoretical photoelectron valence band spectra is proposed. The charge transport properties of TaO x were experimentally studied and the transport mechanism was quantitatively analyzed with four theoretical dielectric conductivity models. It was found that the charge transport in almost stoichiometric and nonstoichiometric tantalum oxide can be consistently described by the phonon-assisted tunneling between traps.

  3. Reestablishing Strategic and Critical Material Security in the Department of Defense

    DTIC Science & Technology

    2011-05-11

    Nickel >700% Tungsten 300% Titanium 600% Cobalt 325% Germanium 300% Chromium 500% Molybdenum 500% Indium 300% Manganese 350% Rhenium > 1000% Peak...CHAIN LEADERSHIP New Mission Example • Currently working with Tinker Air Force Base on a rhenium availability issue – Rhenium is a super alloy used in...acquisitions to assure industrial base capability – Titanium – Rare Earth Elements – Germanium – Rhenium / nickel super-alloys – Other materials as supply chain

  4. High Temperature Evaluation of Tantalum Capacitors - Test 1

    DOE Data Explorer

    Cieslewski, Grzegorz

    2014-09-28

    Tantalum capacitors can provide much higher capacitance at high-temperatures than the ceramic capacitors. This study evaluates selected tantalum capacitors at high temperatures to determine their suitability for you in geothermal field. This data set contains results of the first test where three different types of capacitors were evaluated at 260C.

  5. 2017 NEPP Tasks Update for Ceramic and Tantalum Capacitors

    NASA Technical Reports Server (NTRS)

    Teverovsky, Alexander A.

    2017-01-01

    This presentation gives an overview of current NEPP tasks on ceramic and tantalum capacitors and plans for the future. It includes tasks on leakage currents, gas generation and case deformation in wet tantalum capacitors; ESR degradation and acceleration factors in MnO2 and polymer cathode capacitors. Preliminary results on the effect of moisture on degradation of reverse currents in MnO2 tantalum capacitors are discussed. Latest results on mechanical characteristics of MLCCs and modeling of degradation of leakage currents in BME capacitors with defects are also presented.

  6. Characterization of Rhenium Oxides Using ESCA

    NASA Technical Reports Server (NTRS)

    Panda, Binayak; Gentz, Steven J. (Technical Monitor)

    2001-01-01

    High melting point and inherent ductility (toughness) over a wide range of temperature has made Rhenium an engineering material of choice for several thrust chambers in propulsion systems. Although the material remains tough at high temperatures, it still can readily transform to several oxides. As many as eight different oxides have been reported in literature. When characterized using ESCA (Electron Spectroscopy for Chemical Analyses) these oxides show large shifts in the Re 4f line positions. While this unique property could be used as a tool for oxide characterization, literature indicates that only a few of these oxides have been characterized. Current work focuses on characterizing oxides of Rhenium using ESCA. Spectral line Re 4f have been measured for various oxides and the results have been compared with the Re 4f line positions of real-time oxidation products from space hardware.

  7. Rhenium(I)-based Double-heterostranded Helicates.

    PubMed

    Saxena, Priya; Shankar, Bhaskaran; Sathyanarayana, Arruri; Prabusankar, Ganesan; Sathiyendiran, Malaichamy

    2015-01-01

    Rhenium(I)-based supramolecular coordination complexes were obtained using Re2(CO)10, (2-hydroxyphenyl)benzimidazole-derived bis-chelating N∩O donors and a benzimidazolyl-derived ditopic monodentate N-donor possessing Troger's base spacer in a one-pot approach.

  8. METHOD OF PROTECTING TANTALUM CRUCIBLES AGAINST REACTION WITH MOLTEN URANIUM

    DOEpatents

    Feder, H.M.; Chellew, N.R.

    1960-08-16

    Tantalum crucibles against reaction with molten uranium by contacting the surfaces to be protected with metallic boron (as powder, vapor, or suspension in a liquid-volatilenonreacting medium, such as acetone and petroleum oil) at about 1800 deg C in vacuum, discontinuing contact with the boron, and heating the crucibles to a temperature of between 1800 aad 2000 deg C, whereby the tantalum boride formed in the first heating step is converted to tantalum monoboride.

  9. Failure modes of vacuum plasma spray tungsten coating created on carbon fibre composites under thermal loads

    NASA Astrophysics Data System (ADS)

    Hirai, T.; Bekris, N.; Coad, J. P.; Grisolia, C.; Linke, J.; Maier, H.; Matthews, G. F.; Philipps, V.; Wessel, E.

    2009-07-01

    Vacuum plasma spray tungsten (VPS-W) coating created on a carbon fibre reinforced composite (CFC) was tested under two thermal load schemes in the electron beam facility to examine the operation limits and failure modes. In cyclic ELM-like short transient thermal loads, the VPS-W coating was destroyed sub-layer by sub-layer at 0.33 GW/m 2 for 1 ms pulse duration. At longer single pulses, simulating steady-state thermal loads, the coating was destroyed at surface temperatures above 2700 °C by melting of the rhenium containing multilayer at the interface between VPS-W and CFC. The operation limits and failure modes of the VPS-W coating in the thermal load schemes are discussed in detail.

  10. Rhenium-catalyzed deoxydehydration of diols and polyols.

    PubMed

    Dethlefsen, Johannes R; Fristrup, Peter

    2015-03-01

    The substitution of platform chemicals of fossil origin by biomass-derived analogues requires the development of chemical transformations capable of reducing the very high oxygen content of biomass. One such reaction, which has received increasing attention within the past five years, is the rhenium-catalyzed deoxydehydration (DODH) of a vicinal diol into an alkene; this is a model system for abundant polyols like glycerol and sugar alcohols. The present contribution includes a review of early investigations of stoichiometric reactions involving rhenium, diols, and alkenes followed by a discussion of the various catalytic systems that have been developed with emphasis on the nature of the reductant, the substrate scope, and mechanistic investigations. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Extreme Response in Tension and Compression of Tantalum

    NASA Astrophysics Data System (ADS)

    Remington, Tane Perry

    This research on a model bcc metal, tantalum, has three components: the study of tensile failure; defects generated under a nanoindenter; and dislocation velocities in an extreme regime generated by pulsed lasers. The processes of dynamic failure by spalling were established in nano, poly, and mono crystalline tantalum in recovery experiments following laser compression and release. The process of spall was characterized by different techniques: optical microscopy, scanning electron microscopy, microcomputerized tomography and electron backscatter diffraction. Additionally, the pull back signal was measured by VISAR and the pressure decay was compared with HYADES simulations. There are clear differences in the microscopic fracture mechanisms, dictated by the grain sizes. In the nano and poly crystals, spalling occurred by ductile fracture favoring grain boundaries. In the monocrystals, grain boundaries are absent, and the process was of ductile failure by void initiation, growth and coalescence. The spall strength of single crystalline tantalum was higher than the poly and nano crystals. It was experimentally confirmed that spall strength in tantalum increases with strain rate. In order to generate dislocations close to the surface, single crystalline tantalum with orientations (100), (110) and (111) was nanoindented with a Berkovich tip. Atomic force microscopy showed pile-ups of dislocations around the perimeter of the nanoindentations. Sections of nanoindentations were focused ion beam cut into transmission electron microscope foils. The mechanisms of deformation under a nanoindentation in tantalum were identified and quantified. Molecular dynamics simulations were conducted and the simulated plastic deformation proceeds by the formation of nanotwins, which rapidly evolve into shear dislocation loops. Dislocation densities under the indenter were estimated experimentally (~1.2 x 1015 m-2), by MD (~7 x1015 m-2) and through an analytical calculation (2.6--19 x10

  12. Feasibility of EB Welded Hastelloy X and Combination of Refractory Metals

    NASA Technical Reports Server (NTRS)

    Martinez, Diana A.

    2004-01-01

    As NASA continues to expand its horizon, exploration and discovery creates the need of advancement in technology. The Jupiter Icy Moon Orbiter's (JIMO) mission to explore and document the outer surfaces, rate the possibility of holding potential life forms, etc. within the three moons (Callisto, Ganymede, and Europa) proves to be challenging. The orbiter itself consists of many sections including: the nuclear reactor and the power conversion system, the radiator panels, and the thrusters and antenna. The nuclear reactor serves as a power source, and if successfully developed, can operate for extended periods. During the duration of my tenure at NASA Glenn Research Center's (NASA GRC) Advanced Metallics Branch, I was assigned to assist Frank J. Ritzert on analyzing the feasibility of the Electron Beam Welded Hastelloy X (HX), a nickel-based superalloy, to Niobium- 1 %Zirconium (Nb-1 Zr) and other refractory metals/alloys including Tantalum, Molybdenum, Tungsten, and Rhenium alloys. This welding technique is going to be used for the nuclear reactor within JIMO.

  13. Non-noble metal based electro-catalyst compositions for proton exchange membrane based water electrolysis and methods of making

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumta, Prashant N.; Kadakia, Karan Sandeep; Datta, Moni Kanchan

    The invention provides electro-catalyst compositions for an anode electrode of a proton exchange membrane-based water electrolysis system. The compositions include a noble metal component selected from the group consisting of iridium oxide, ruthenium oxide, rhenium oxide and mixtures thereof, and a non-noble metal component selected from the group consisting of tantalum oxide, tin oxide, niobium oxide, titanium oxide, tungsten oxide, molybdenum oxide, yttrium oxide, scandium oxide, cooper oxide, zirconium oxide, nickel oxide and mixtures thereof. Further, the non-noble metal component can include a dopant. The dopant can be at least one element selected from Groups III, V, VI and VIImore » of the Periodic Table. The compositions can be prepared using a surfactant approach or a sol gel approach. Further, the compositions are prepared using noble metal and non-noble metal precursors. Furthermore, a thin film containing the compositions can be deposited onto a substrate to form the anode electrode.« less

  14. Mechanistic Study of Oxygen Atom Transfer Catalyzed by Rhenium Compounds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shan, Xiaopeng

    2003-01-01

    Two ionic and one neutral methyl(oxo)rhenium(V) compounds were synthesized and structurally characterized. They were compared in reactivity towards the ligands triphenylphosphane, pyridines, pyridine N-oxides. Assistance from Broensted bases was found on ligand displacement of ionic rhenium compounds as well as nucleophile assistance on oxidation of all compounds. From the kinetic data, crystal structures, and an analysis of the intermediates, a structural formula of PicH +3 - and mechanisms of ligand displacement and oxidation were proposed.

  15. Rhenium Mechanical Properties and Joining Technology

    NASA Technical Reports Server (NTRS)

    Reed, Brian D.; Biaglow, James A.

    1996-01-01

    Iridium-coated rhenium (Ir/Re) provides thermal margin for high performance and long life radiation cooled rockets. Two issues that have arisen in the development of flight Ir/Re engines are the sparsity of rhenium (Re) mechanical property data (particularly at high temperatures) required for engineering design, and the inability to directly electron beam weld Re chambers to C103 nozzle skirts. To address these issues, a Re mechanical property database is being established and techniques for creating Re/C103 transition joints are being investigated. This paper discusses the tensile testing results of powder metallurgy Re samples at temperatures from 1370 to 2090 C. Also discussed is the evaluation of Re/C103 transition pieces joined by both, explosive and diffusion bonding. Finally, the evaluation of full size Re transition pieces, joined by inertia welding, as well as explosive and diffusion bonding, is detailed.

  16. ON THE GEOCHEMISTRY OF NIOBIUM AND TANTALUM IN CLAYS (in Russian)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pachadzhanov, D.N.

    1963-10-01

    With the aid of the spectral method with a preliminary enrichment in tannin, the niobium and tantalum content was determined in some humid and arid clays of the Russian platform. The investigated samples were composed of 354 specimens. The average content of niobium in humid clays is 0.0020%, of tantalum 0.00024% (the Nb/Ta ratio is 8.4) and in arid clays is respectively the content of niobium 0.00133% and the content of tantalum 0.00009% (the Nb/Ta ratio is 14.8). The average value of the content of niobium content for all studied clays is 0.00183% and of the tantalum content 0.00020%, themore » Nb/Ta ratio being 9.1. In clays an interconnection of niobium with tantalum, as well as with aluminium, titanium, zirconium, and hafnium was observed. However, on the background of this connection some separation of the named elements is noted. A tendency for the Nb/Ta ratio shift from the region of matter removal towards the center of the marine basin was observed. The study of niobium and tantalum distribution over different clay fractions showed that one part of elements is connected with zircon and titanium minerals in aleuosand fraction (0.1-- 0.01 mm). Another, approximately similar part is contained in the proper clay fraction (<0. 01 mm), the tantalum somewhat more concentrating in the aleurosand fraction and niobium in the clay fraction. (P.C.H.)« less

  17. Multi-scale Modeling of Plasticity in Tantalum.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lim, Hojun; Battaile, Corbett Chandler.; Carroll, Jay

    In this report, we present a multi-scale computational model to simulate plastic deformation of tantalum and validating experiments. In atomistic/ dislocation level, dislocation kink- pair theory is used to formulate temperature and strain rate dependent constitutive equations. The kink-pair theory is calibrated to available data from single crystal experiments to produce accurate and convenient constitutive laws. The model is then implemented into a BCC crystal plasticity finite element method (CP-FEM) model to predict temperature and strain rate dependent yield stresses of single and polycrystalline tantalum and compared with existing experimental data from the literature. Furthermore, classical continuum constitutive models describingmore » temperature and strain rate dependent flow behaviors are fit to the yield stresses obtained from the CP-FEM polycrystal predictions. The model is then used to conduct hydro- dynamic simulations of Taylor cylinder impact test and compared with experiments. In order to validate the proposed tantalum CP-FEM model with experiments, we introduce a method for quantitative comparison of CP-FEM models with various experimental techniques. To mitigate the effects of unknown subsurface microstructure, tantalum tensile specimens with a pseudo-two-dimensional grain structure and grain sizes on the order of millimeters are used. A technique combining an electron back scatter diffraction (EBSD) and high resolution digital image correlation (HR-DIC) is used to measure the texture and sub-grain strain fields upon uniaxial tensile loading at various applied strains. Deformed specimens are also analyzed with optical profilometry measurements to obtain out-of- plane strain fields. These high resolution measurements are directly compared with large-scale CP-FEM predictions. This computational method directly links fundamental dislocation physics to plastic deformations in the grain-scale and to the engineering-scale applications. Furthermore

  18. Development and Applications of Porous Tantalum Trabecular Metal Enhanced Titanium Dental Implants

    PubMed Central

    Bencharit, Sompop; Byrd, Warren C.; Altarawneh, Sandra; Hosseini, Bashir; Leong, Austin; Reside, Glenn; Morelli, Thiago; Offenbacher, Steven

    2013-01-01

    Statement of Problem Porous tantalum trabecular metal has recently been incorporated in titanium dental implants as a new form of implant surface enhancement. However, there is little information on the applications of this material in implant dentistry. Methods We, therefore review the current literature on the basic science and clinical uses of this material. Results Porous tantalum metal is used to improve the contact between osseous structure and dental implants; and therefore presumably facilitate osseointegration. Success of porous tantalum metal in orthopedic implants led to the incorporation of porous tantalum metal in the design of root-from endosseous titanium implants. The porous tantalum three-dimensional enhancement of titanium dental implant surface allows for combining bone ongrowth together with bone ingrowth, or osseoincorporation. While little is known about the biological aspect of the porous tantalum in the oral cavity, there seems to be several possible advantages of this implant design. This article reviews the biological aspects of porous tantalum enhanced titanium dental implants, in particular the effects of anatomical consideration and oral environment to implant designs. Conclusions We propose here possible clinical situations and applications for this type of dental implant. Advantages and disadvantages of the implants as well as needed future clinical studies are discussed. PMID:23527899

  19. Surface cracking and melting of different tungsten grades under transient heat and particle loads in a magnetized coaxial plasma gun

    NASA Astrophysics Data System (ADS)

    Kikuchi, Y.; Sakuma, I.; Iwamoto, D.; Kitagawa, Y.; Fukumoto, N.; Nagata, M.; Ueda, Y.

    2013-07-01

    Surface damage of pure tungsten (W), W alloys with 2 wt.% tantalum (W-Ta) and vacuum plasma spray (VPS) W coating on a reduced activation material of ferritic steel (F82H) due to repetitive ELM-like pulsed (˜0.3 ms) deuterium plasma irradiation has been investigated by using a magnetized coaxial plasma gun. Surface cracks appeared on a pure W sample exposed to 10 plasma pulses of ˜0.3 MJ m-2, while a W-Ta sample did not show surface cracks with similar pulsed plasma irradiation. The energy density threshold for surface cracking was significantly increased by the existence of the alloying element of tantalum. No surface morphology change of a VPS W coated F82H sample was observed under 10 plasma pulses of ˜0.3 MJ m-2, although surface melting and cracks in the resolidification layer occurred at higher energy density of ˜0.9 MJ m-2. There was no indication of exfoliation of the W coating from the substrate of F82H after the pulsed plasma exposures.

  20. Rhenium ion beam for implantation into semiconductors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kulevoy, T. V.; Seleznev, D. N.; Alyoshin, M. E.

    2012-02-15

    At the ion source test bench in Institute for Theoretical and Experimental Physics the program of ion source development for semiconductor industry is in progress. In framework of the program the Metal Vapor Vacuum Arc ion source for germanium and rhenium ion beam generation was developed and investigated. It was shown that at special conditions of ion beam implantation it is possible to fabricate not only homogenous layers of rhenium silicides solid solutions but also clusters of this compound with properties of quantum dots. At the present moment the compound is very interesting for semiconductor industry, especially for nanoelectronics andmore » nanophotonics, but there is no very developed technology for production of nanostructures (for example quantum sized structures) with required parameters. The results of materials synthesis and exploration are presented.« less

  1. World War II, tantalum, and the evolution of modern cranioplasty technique.

    PubMed

    Flanigan, Patrick; Kshettry, Varun R; Benzel, Edward C

    2014-04-01

    Cranioplasty is a unique procedure with a rich history. Since ancient times, a diverse array of materials from coconut shells to gold plates has been used for the repair of cranial defects. More recently, World War II greatly increased the demand for cranioplasty procedures and renewed interest in the search for a suitable synthetic material for cranioprostheses. Experimental evidence revealed that tantalum was biologically inert to acid and oxidative stresses. In fact, the observation that tantalum did not absorb acid resulted in the metal being named after Tantalus, the Greek mythological figure who was condemned to a pool of water in the Underworld that would recede when he tried to take a drink. In clinical use, malleability facilitated a single-stage cosmetic repair of cranial defects. Tantalum became the preferred cranioplasty material for more than 1000 procedures performed during World War II. In fact, its use was rapidly adopted in the civilian population. During World War II and the heyday of tantalum cranioplasty, there was a rapid evolution in prosthesis implantation and fixation techniques significantly shaping how cranioplasties are performed today. Several years after the war, acrylic emerged as the cranioplasty material of choice. It had several clear advantages over its metallic counterparts. Titanium, which was less radiopaque and had a more optimal thermal conductivity profile (less thermally conductive), eventually supplanted tantalum as the most common metallic cranioplasty material. While tantalum cranioplasty was popular for only a decade, it represented a significant breakthrough in synthetic cranioplasty. The experiences of wartime neurosurgeons with tantalum cranioplasty played a pivotal role in the evolution of modern cranioplasty techniques and ultimately led to a heightened understanding of the necessary attributes of an ideal synthetic cranioplasty material. Indeed, the history of tantalum cranioplasty serves as a model for innovative

  2. Spatial heterogeneity of tungsten transmutation in a fusion device

    NASA Astrophysics Data System (ADS)

    Gilbert, M. R.; Sublet, J.-Ch.; Dudarev, S. L.

    2017-04-01

    Accurately quantifying the transmutation rate of tungsten (W) under neutron irradiation is a necessary requirement in the assessment of its performance as an armour material in a fusion power plant. The usual approach of calculating average responses, assuming large, homogenised material volumes, is insufficient to capture the full complexity of the transmutation picture in the context of a realistic fusion power plant design, particularly for rhenium (Re) production from W. Combined neutron transport and inventory simulations for representative spatially heterogeneous high-resolution models of a fusion power plant show that the production rate of Re is strongly influenced by the surrounding local spatial environment. Localised variation in neutron moderation (slowing down) due to structural steel and coolant, particularly water, can dramatically increase Re production because of the huge cross sections of giant resolved resonances in the neutron-capture reaction of 186W at low neutron energies. Calculations using cross section data corrected for temperature (Doppler) effects suggest that temperature may have a relatively lesser influence on transmutation rates.

  3. International strategic minerals inventory summary report; niobium (columbium) and tantalum

    USGS Publications Warehouse

    Crockett, R.N.; Sutphin, D.M.

    1993-01-01

    Major world resources of niobium and tantalum are described in this summary report of information in the International Strategic Minerals Inventory (ISMI). ISMI is a cooperative data-collection effort of earth-science and mineral-resource agencies in Australia, Canada, the Federal Republic of Germany, the Republic of South Africa, the United Kingdom, and the United States of America. Part I of this report presents an overview of the resources and potential supply of niobium and tantalum based on inventory information; Part II contains tables of both geologic and mineral-resource information and includes production data collected by ISMI participants. Niobium is used principally as an alloying element in special steels and superalloys, and tantalum is used mainly in electronics. Minerals in the columbite-tantalite series are principal ore minerals of niobium and tantalum. Pyrochlore is a principal source of niobium. These minerals are found in carbonatite, certain rocks in alkaline igneous complexes, pegmatite, and placer deposits. ISMI estimates show that there are over 7 million metric tons of niobium and almost 0.5 million metric tons of tantalum in known deposits, outside of China and the former Soviet Union, for which reliable estimates have been made. Brazilian deposits, followed by Canadian deposits, contain by far the largest source of niobium. Tantalum production is spread widely among several countries, and Brazil and Canada are the most significant of these producers. Brazil's position is further strengthened by potential byproduct columbite from tin mining. Present economically exploitable resources of niobium appear to be sufficient for the near future, but Brazil will continue to be the predominant world supplier of ferrocolumbium. Tantalum, a byproduct of tin production, has been captive to the fluctuations of that market, but resources in pegmatite in Canada and Australia make it likely that future increases in the present modest demand will be met.

  4. Iridium-coated rhenium thrusters by CVD

    NASA Technical Reports Server (NTRS)

    Harding, J. T.; Kazaroff, J. M.; Appel, M. A.

    1989-01-01

    Operation of spacecraft thrusters at increased temperature reduces propellant requirements. Inasmuch as propellant comprises the bulk of a satellite's mass, even a small percentage reduction makes possible a significant enhancement of the mission in terms of increased payload. Because of its excellent high temperature strength, rhenium is often the structural material of choice. It can be fabricated into free-standing shapes by chemical vapor deposition (CVD) onto an expendable mandrel. What rhenium lacks is oxidation resistance, but this can be provided by a coating of iridium, also by CVD. This paper describes the process used by Ultramet to fabricate 22-N (5-lbf) and, more recently, 445-N (100-lbf) Ir/Re thrusters; characterizes the CVD-deposited materials; and summarizes the materials effects of firing these thrusters. Optimal propellant mixture ratios can be employed because the materials withstand an oxidizing environment up to the melting temperature of iridium, 2400 C (4350 F).

  5. Iridium-coated rhenium thrusters by CVD

    NASA Technical Reports Server (NTRS)

    Harding, John T.; Kazaroff, John M.; Appel, Marshall A.

    1988-01-01

    Operation of spacecraft thrusters at increased temperature reduces propellant requirements. Inasmuch as propellant comprises the bulk of a satellite's mass, even a small percentage reduction makes possible a significant enhancement of the mission in terms of increased payload. Because of its excellent high temperature strength, rhenium is often the structural material of choice. It can be fabricated into free-standing shapes by chemical vapor deposition (CVD) onto an expendable mandrel. What rhenium lacks is oxidation resistance, but this can be provided by a coating of iridium, also by CVD. This paper describes the process used by Ultramet to fabricate 22-N (5-lbf) and, more recently, 445-N (100-lbf) Ir/Re thrusters; characterizes the CVD-deposited materials; and summarizes the materials effects of firing these thrusters. Optimal propellant mixture ratios can be employed because the materials withstand an oxidizing environment up to the meltimg temperature of iridium, 2400 C (4350 F).

  6. CVD Rhenium Engines for Solar-Thermal Propulsion Systems

    NASA Technical Reports Server (NTRS)

    Williams, Brian E.; Fortini, Arthur J.; Tuffias, Robert H.; Duffy, Andrew J.; Tucker, Stephen P.

    1999-01-01

    Solar-thermal upper-stage propulsion systems have the potential to provide specific impulse approaching 900 seconds, with 760 seconds already demonstrated in ground testing. Such performance levels offer a 100% increase in payload capability compared to state-of-the-art chemical upper-stage systems, at lower cost. Although alternatives such as electric propulsion offer even greater performance, the 6- to 18- month orbital transfer time is a far greater deviation from the state of the art than the one to two months required for solar propulsion. Rhenium metal is the only material that is capable of withstanding the predicted thermal, mechanical, and chemical environment of a solar-thermal propulsion device. Chemical vapor deposition (CVD) is the most well-established and cost-effective process for the fabrication of complex rhenium structures. CVD rhenium engines have been successfully constructed for the Air Force ISUS program (bimodal thrust/electricity) and the NASA Shooting Star program (thrust only), as well as under an Air Force SBIR project (thrust only). The bimodal engine represents a more long-term and versatile approach to solar-thermal propulsion, while the thrust-only engines provide a potentially lower weight/lower cost and more near-term replacement for current upper-stage propulsion systems.

  7. Thermochemistry of tantalum-wall cooling system with lithium and sodium working fluids

    NASA Technical Reports Server (NTRS)

    Tower, L. K.

    1972-01-01

    Plots are presented which show the distribution of oxygen between liquid lithium and tantalum or niobium, and between liquid sodium and tantalum at elevated temperatures. Additional plots showing the composition of the gas phase above the solutions of oxygen and alkali metal are presented. The use of the plots is illustrated by an example tantalum heat pipe filled with lithium.

  8. Tin-tungsten mineralizing processes in tungsten vein deposits: Panasqueira, Portugal

    NASA Astrophysics Data System (ADS)

    Lecumberri-Sanchez, P.; Pinto, F.; Vieira, R.; Wälle, M.; Heinrich, C. A.

    2015-12-01

    Tungsten has a high heat resistance, density and hardness, which makes it widely applied in industry (e.g. steel, tungsten carbides). Tungsten deposits are typically magmatic-hydrothermal systems. Despite the economic significance of tungsten, there are no modern quantitative analytical studies of the fluids responsible for the formation of its highest-grade deposit type (tungsten vein deposits). Panasqueira (Portugal) is a tungsten vein deposit, one of the leading tungsten producers in Europe and one of the best geologically characterized tungsten vein deposits. In this study, compositions of the mineralizing fluids at Panasqueira have been determined through combination of detailed petrography, microthermometric measurements and LA-ICPMS analyses, and geochemical modeling has been used to determine the processes that lead to tungsten mineralization. We characterized the fluids related to the various mineralizing stages in the system: the oxide stage (tin and tungsten mineralization), the sulfide stage (chalcopyrite and sphalerite mineralization) and the carbonate stage. Thus, our results provide information on the properties of fluids related with specific paragenetic stages. Furthermore we used those fluid compositions in combination with host rock mineralogy and chemistry to evaluate which are the controlling factors in the mineralizing process. This study provides the first quantitative analytical data on fluid composition for tungsten vein deposits and evaluates the controlling mineralization processes helping to determine the mechanisms of formation of the Panasqueira tin-tungsten deposit and providing additional geochemical constraints on the local distribution of mineralization.

  9. Structure of rhenium-containing sodium borosilicate glass

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goel, Ashutosh; McCloy, John S.; Windisch, Charles F.

    2013-03-01

    A series of sodium borosilicate glasses were synthesized with increasing fractions of KReO4 or Re2O7, to 10000 ppm (1 mass%) target Re in glass, to assess the effects of large concentrations of rhenium on glass structure and to estimate the solubility of technetium, a radioactive component in typical low active waste nuclear waste glasses. Magic angle spinning nuclear magnetic resonance (MAS-NMR), Fourier transform infrared (FTIR) spectroscopy, and Raman spectroscopy were performed to characterize the glasses as a function of Re source additions. In general, silicon was found coordinated in a mixture of Q2 and Q3 structural units, while Al wasmore » 4-coordinated and B was largely 3-coordinate and partially 4-coordinated. The rhenium source did not appear to have significant effects on the glass structure. Thus, at the up to the concentrations that remain in dissolved in glass, ~3000 ppm Re by mass maximum. , the Re appeared to be neither a glass-former nor a strong glass modifier., Rhenium likely exists in isolated ReO4- anions in the interstices of the glass network, as evidenced by the polarized Raman spectrum of the Re glass in the absence of sulfate. Analogous to SO42-¬ in similar glasses, ReO4- is likely a network modifier and forms alkali salt phases on the surface and in the bulk glass above solubility.« less

  10. Tantalum coatings for inertial confinement fusion dry wall designs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taylor, L.H.; Green, L.

    1996-12-31

    The coating on a dry first wall inertial confinement fusion reactor must survive the target explosion and be ductile, inexpensive, and compatible with the materials in the target, i.e. have a high atomic number Z. Calculations indicate that tantalum is the best choice for the coating material. As a test of this design 1 mm tantalum coatings were plasma sprayed onto ferrite steel tubes. They were then subjected to 100 heating-cooling cycles which simulated the stressful thermal cycling which would be encountered during five years of plant startups and shutdowns. The coatings were undamaged and continued to bond well tomore » the steel. Furthermore, chemical reactions should not degrade tantalum coatings.« less

  11. Mineral-deposit model for lithium-cesium-tantalum pegmatites

    USGS Publications Warehouse

    Bradley, Dwight C.; McCauley, Andrew D.; Stillings, Lisa L.

    2017-06-20

    Lithium-cesium-tantalum (LCT) pegmatites comprise a compositionally defined subset of granitic pegmatites. The major minerals are quartz, potassium feldspar, albite, and muscovite; typical accessory minerals include biotite, garnet, tourmaline, and apatite. The principal lithium ore minerals are spodumene, petalite, and lepidolite; cesium mostly comes from pollucite; and tantalum mostly comes from columbite-tantalite. Tin ore as cassiterite and beryllium ore as beryl also occur in LCT pegmatites, as do a number of gemstones and high-value museum specimens of rare minerals. Individual crystals in LCT pegmatites can be enormous: the largest spodumene was 14 meters long, the largest beryl was 18 meters long, and the largest potassium feldspar was 49 meters long.Lithium-cesium-tantalum pegmatites account for about one-fourth of the world’s lithium production, most of the tantalum production, and all of the cesium production. Giant deposits include Tanco in Canada, Greenbushes in Australia, and Bikita in Zimbabwe. The largest lithium pegmatite in the United States, at King’s Mountain, North Carolina, is no longer being mined although large reserves of lithium remain. Depending on size and attitude of the pegmatite, a variety of mining techniques are used, including artisanal surface mining, open-pit surface mining, small underground workings, and large underground operations using room-and-pillar design. In favorable circumstances, what would otherwise be gangue minerals (quartz, potassium feldspar, albite, and muscovite) can be mined along with lithium and (or) tantalum as coproducts.Most LCT pegmatites are hosted in metamorphosed supracrustal rocks in the upper greenschist to lower amphibolite facies. Lithium-cesium-tantalum pegmatite intrusions generally are emplaced late during orogeny, with emplacement being controlled by pre-existing structures. Typically, they crop out near evolved, peraluminous granites and leucogranites from which they are inferred to be

  12. Microstructural evolution of pure tungsten neutron irradiated with a mixed energy spectrum

    DOE PAGES

    Koyanagi, Takaaki; Kumar, N. A. P. Kiran; Hwang, Taehyun; ...

    2017-04-13

    Here, microstructures of single-crystal bulk tungsten (W) and polycrystalline W foil with a strong grain texture were investigated using transmission electron microscopy following neutron irradiation at ~90–800 °C to 0.03–4.6 displacements per atom (dpa) in the High Flux Isotope Reactor with a mixed energy spectrum. The dominant irradiation defects were dislocation loops and small clusters at ~90 °C. Additional voids were formed in W irradiated at above 460 °C. Voids and precipitates involving transmutation rhenium and osmium were the dominant defects at more than ~1 dpa. We found a new phenomenon of microstructural evolution in irradiated polycrystalline W: Re- andmore » Os-rich precipitation along grain boundaries. Comparison of results between this study and previous studies using different irradiation facilities revealed that the microstructural evolution of pure W is highly dependent on the neutron energy spectrum in addition to the irradiation temperature and dose.« less

  13. Microstructural evolution of pure tungsten neutron irradiated with a mixed energy spectrum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koyanagi, Takaaki; Kumar, N. A. P. Kiran; Hwang, Taehyun

    Here, microstructures of single-crystal bulk tungsten (W) and polycrystalline W foil with a strong grain texture were investigated using transmission electron microscopy following neutron irradiation at ~90–800 °C to 0.03–4.6 displacements per atom (dpa) in the High Flux Isotope Reactor with a mixed energy spectrum. The dominant irradiation defects were dislocation loops and small clusters at ~90 °C. Additional voids were formed in W irradiated at above 460 °C. Voids and precipitates involving transmutation rhenium and osmium were the dominant defects at more than ~1 dpa. We found a new phenomenon of microstructural evolution in irradiated polycrystalline W: Re- andmore » Os-rich precipitation along grain boundaries. Comparison of results between this study and previous studies using different irradiation facilities revealed that the microstructural evolution of pure W is highly dependent on the neutron energy spectrum in addition to the irradiation temperature and dose.« less

  14. Microstructural evolution of pure tungsten neutron irradiated with a mixed energy spectrum

    NASA Astrophysics Data System (ADS)

    Koyanagi, Takaaki; Kumar, N. A. P. Kiran; Hwang, Taehyun; Garrison, Lauren M.; Hu, Xunxiang; Snead, Lance L.; Katoh, Yutai

    2017-07-01

    Microstructures of single-crystal bulk tungsten (W) and polycrystalline W foil with a strong grain texture were investigated using transmission electron microscopy following neutron irradiation at ∼90-800 °C to 0.03-4.6 displacements per atom (dpa) in the High Flux Isotope Reactor with a mixed energy spectrum. The dominant irradiation defects were dislocation loops and small clusters at ∼90 °C. Additional voids were formed in W irradiated at above 460 °C. Voids and precipitates involving transmutation rhenium and osmium were the dominant defects at more than ∼1 dpa. We found a new phenomenon of microstructural evolution in irradiated polycrystalline W: Re- and Os-rich precipitation along grain boundaries. Comparison of results between this study and previous studies using different irradiation facilities revealed that the microstructural evolution of pure W is highly dependent on the neutron energy spectrum in addition to the irradiation temperature and dose.

  15. Rhenium-osmium evidence for regional mineralization in southwestern north america.

    PubMed

    McCandless, T E; Ruiz, J

    1993-09-03

    More than 40 base metal porphyry ore deposits in southwestern North America are associated with the Laramide orogeny (about 90 million to 50 million years ago). Rhenium-osmium dates on molybdenite, a rhenium-enriched sulfide common in many of the deposits, reveal that in individual deposits mineralization occurs near the final stages of magmatic activity irrespective of the time of inception, magnitude, or duration of magmatism. Deposits that differ widely in location and in the extent and timing of magmatism have nearly identical ages for mineralization. Rhenium-osmium-ages suggest that mineralization occurred during two distinct intervals from about 74 million to 70 million years ago and from 60 million to 55 million years ago. Most deposits that formed in the oldest interval are within the older Precambrian basement of northwestern Arizona, whereas the younger deposits are restricted to the younger Precambrian basement in southern Arizona and northern Mexico. Synchronous, widespread mineralization indicates that similar crust-mantle interaction occurred on a regional scale for ore deposits once thought to be the product of localized processes.

  16. Characterization of rhenium compounds obtained by electrochemical synthesis after aging process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vargas-Uscategui, Alejandro, E-mail: avargasuscat@ing.uchile.cl; Mosquera, Edgar; López-Encarnación, Juan M.

    2014-12-15

    The proper identification of the molecular nature of the aged rhenium compound obtained by means of electrodeposition from an alkaline aqueous electrolyte was determined. Chemical, structural and vibrational experimental characterization of the aged Re compound showed agreement with quantum-computations, thereby allowing the unambiguous identification of the Re compound as H(ReO{sub 4})H{sub 2}O. - Graphical abstract: Rhenium oxides were electrodeposited on a copper surface and after environmental aging was formed the H(ReO{sub 4})H{sub 2}O compound. The characterization of the synthesized material was made through the comparison of experimental evidence with quantum mechanical computations carried out by means of density functional theorymore » (DFT). - Highlights: • Aged rhenium compound obtained by means of electrodeposition was studied. • The study was made by combining experimental and DFT-computational information. • The aged electrodeposited material is consistent with the H(ReO{sub 4})H{sub 2}O compound.« less

  17. 40 CFR 421.110 - Applicability: Description of the primary columbium-tantalum subcategory.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS NONFERROUS METALS MANUFACTURING POINT SOURCE... the production of columbium or tantalum by primary columbium-tantalum facilities. [49 FR 8817, Mar. 8...

  18. CoMSIA and Docking Study of Rhenium Based Estrogen Receptor Ligand Analogs

    PubMed Central

    Wolohan, Peter; Reichert, David E.

    2007-01-01

    OPLS all atom force field parameters were developed in order to model a diverse set of novel rhenium based estrogen receptor ligands whose relative binding affinities (RBA) to the estrogen receptor alpha isoform (ERα) with respect to 17β-Estradiol were available. The binding properties of these novel rhenium based organometallic complexes were studied with a combination of Comparative Molecular Similarity Indices Analysis (CoMSIA) and docking. A total of 29 estrogen receptor ligands consisting of 11 rhenium complexes and 18 organic ligands were docked inside the ligand-binding domain (LBD) of ERα utilizing the program Gold. The top ranked pose was used to construct CoMSIA models from a training set of 22 of the estrogen receptor ligands which were selected at random. In addition scoring functions from the docking runs and the polar volume (PV) were also studied to investigate their ability to predict RBA ERα. A partial least-squares analysis consisting of the CoMSIA steric, electrostatic and hydrophobic indices together with the polar volume proved sufficiently predictive having a correlation coefficient, r2, of 0.94 and a cross-validated correlation coefficient, q2, utilizing the leave one out method of 0.68. Analysis of the scoring functions from Gold showed particularly poor correlation to RBA ERα which did not improve when the rhenium complexes were extracted to leave the organic ligands. The combined CoMSIA and polar volume model ranked correctly the ligands in order of increasing RBA ERα, illustrating the utility of this method as a prescreening tool in the development of novel rhenium based estrogen receptor ligands. PMID:17280694

  19. Gondola-shaped tetra-rhenium metallacycles modified evanescent wave infrared chemical sensors for selective determination of volatile organic compounds.

    PubMed

    Huang, Genin Gary; Lee, Chung-Jay; Tsai, Bo-Chan; Yang, Jyisy; Sathiyendiran, Malaichamy; Lu, Kuang-Lieh

    2011-07-15

    Water-stable and cavity-contained rhenium metallacycles were synthesized, and their ability to selectively interact with volatile organic compounds (VOCs) systematically studied using attenuated total reflection infrared (ATR-IR) spectroscopy. Integrating the unique properties of rhenium metallacycles into optical sensing technologies significantly improves selectivity in detecting aromatic compounds. To explore the interaction of rhenium metallacycles with VOCs, the surface of ATR sensing elements was modified with the synthesized rhenium metallacycles and used to detect VOCs. The results indicate that rhenium metallacycles have crown ether-like recognition sites, which can selectively interact with aromatic compounds, especially those bearing polar functional groups. The IR absorption bands of rhenium metallacycles shift significantly upon adsorption of aromatic VOCs, revealing a strong interaction between the tetra-rhenium metallacycles and guest aromatic compounds. Optimizing the thickness of the metallacycles coated on the surface of the sensing element led to rapid response in detection. The dynamic range of response was generally up to 30 mg/L with detection limits ca. 30 μg/L. Further studies of the effect of interferences indicate that recovery can be higher than 95% for most of the compounds tested. The results on the flow-cell device indicated that the performances were similar to a static detection system but the detection of VOCs can be largely simplified. Copyright © 2011 Elsevier B.V. All rights reserved.

  20. Use of the Oak Ridge National Laboratory tungsten-188/rhenium-188 generator for preparation of the rhenium-188 HDD/lipiodol complex for trans-arterial liver cancer therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jeong, J M; Knapp Jr, Russ F

    2008-01-01

    This work describes the installation, use, and quality control (QC) of the alumina-based tungsten-188 ({sup 188}W)/rhenium-188 ({sup 188}Re) generators provided by the Oak Ridge National Laboratory (ORNL). In addition, methods used for concentration of the {sup 188}Re-perrhenate bolus and preparation of {sup 188}Re-labeled HDD (4-hexadecyl-2,2,9,9-tetramethyl-4,7-diaza-1,10-decanethiol) for trans-arterial administration for therapy of nonresectable liver cancer also are described. The {sup 188}W/{sup 188}Re generator has a long useful shelf-life of several months and is a convenient on-site {sup 188}Re production system. {sup 188}Re has excellent therapeutic and imaging properties (T{sub 1/2} 16.9 hours; E{sub {beta}max} 2.12 MeV; 155-keV gamma ray, 15%) andmore » is cost effectively obtained on demand by saline elution of the generator. The clinical efficacy of a variety of {sup 188}Re-labeled agents has been demonstrated for several therapeutic applications. Because of the favorable physical properties of {sup 188}Re, several {sup 188}Re-labeled agents are being developed and evaluated for the treatment of nonresectable/refractory liver cancer. {sup 188}Re-labeled HDD has been the most widely studied of these agents for this application and has been introduced into clinical trials at a number of institutions. The trans-arterial administration of {sup 188}Re-labeled agents for treatment of inoperable liver cancer requires use of high-level (1-2 Ci) {sup 188}W/{sup 188}Re generators. The handling of such high levels of {sup 188}Re imposes radiological precautions normally not encountered in a radiopharmacy and adequate care and ALARA (i.e., 'As Low As Reasonably Achievable') principles must be followed. The ORNL generator provides consistently high {sup 188}Re yields (>75%) and low {sup 188}W parent breakthrough (<10{sup -3}%) over an extended shelf-life of several months. However, the high elution volumes (20-40 mL for 1-2 Ci generators) can require

  1. Reliability Effects of Surge Current Testing of Solid Tantalum Capacitors

    NASA Technical Reports Server (NTRS)

    Teverovsky, Alexander

    2007-01-01

    Solid tantalum capacitors are widely used in space applications to filter low-frequency ripple currents in power supply circuits and stabilize DC voltages in the system. Tantalum capacitors manufactured per military specifications (MIL-PRF-55365) are established reliability components and have less than 0.001% of failures per 1000 hours (the failure rate is less than 10 FIT) for grades D or S, thus positioning these parts among electronic components with the highest reliability characteristics. Still, failures of tantalum capacitors do happen and when it occurs it might have catastrophic consequences for the system. This is due to a short-circuit failure mode, which might be damaging to a power supply, and also to the capability of tantalum capacitors with manganese cathodes to self-ignite when a failure occurs in low-impedance applications. During such a failure, a substantial amount of energy is released by exothermic reaction of the tantalum pellet with oxygen generated by the overheated manganese oxide cathode, resulting not only in destruction of the part, but also in damage of the board and surrounding components. A specific feature of tantalum capacitors, compared to ceramic parts, is a relatively large value of capacitance, which in contemporary low-size chip capacitors reaches dozens and hundreds of microfarads. This might result in so-called surge current or turn-on failures in the parts when the board is first powered up. Such a failure, which is considered as the most prevalent type of failures in tantalum capacitors [I], is due to fast changes of the voltage in the circuit, dV/dt, producing high surge current spikes, I(sub sp) = Cx(dV/dt), when current in the circuit is unrestricted. These spikes can reach hundreds of amperes and cause catastrophic failures in the system. The mechanism of surge current failures has not been understood completely yet, and different hypotheses were discussed in relevant literature. These include a sustained scintillation

  2. Advanced Wet Tantalum Capacitors: Design, Specifications and Performance

    NASA Technical Reports Server (NTRS)

    Teverovsky, Alexander

    2016-01-01

    Insertion of new types of commercial, high volumetric efficiency wet tantalum capacitors in space systems requires reassessment of the existing quality assurance approaches that have been developed for capacitors manufactured to MIL-PRF-39006 requirements. The specifics of wet electrolytic capacitors is that leakage currents flowing through electrolyte can cause gas generation resulting in building up of internal gas pressure and rupture of the case. The risk associated with excessive leakage currents and increased pressure is greater for high value advanced wet tantalum capacitors, but it has not been properly evaluated yet. This presentation gives a review of specifics of the design, performance, and potential reliability risks associated with advanced wet tantalum capacitors. Problems related to setting adequate requirements for DPA, leakage currents, hermeticity, stability at low and high temperatures, ripple currents for parts operating in vacuum, and random vibration testing are discussed. Recommendations for screening and qualification to reduce risks of failures have been suggested.

  3. Advanced Wet Tantalum Capacitors: Design, Specifications and Performance

    NASA Technical Reports Server (NTRS)

    Teverovsky, Alexander

    2017-01-01

    Insertion of new types of commercial, high volumetric efficiency wet tantalum capacitors in space systems requires reassessment of the existing quality assurance approaches that have been developed for capacitors manufactured to MIL-PRF-39006 requirements. The specifics of wet electrolytic capacitors is that leakage currents flowing through electrolyte can cause gas generation resulting in building up of internal gas pressure and rupture of the case. The risk associated with excessive leakage currents and increased pressure is greater for high value advanced wet tantalum capacitors, but it has not been properly evaluated yet. This presentation gives a review of specifics of the design, performance, and potential reliability risks associated with advanced wet tantalum capacitors. Problems related to setting adequate requirements for DPA, leakage currents, hermeticity, stability at low and high temperatures, ripple currents for parts operating in vacuum, and random vibration testing are discussed. Recommendations for screening and qualification to reduce risks of failures have been suggested.

  4. Tribological performance of polycrystalline tantalum-carbide-incorporated diamond films on silicon substrates

    NASA Astrophysics Data System (ADS)

    Ullah, Mahtab; Rana, Anwar Manzoor; Ahmed, E.; Malik, Abdul Sattar; Shah, Z. A.; Ahmad, Naseeb; Mehtab, Ujala; Raza, Rizwan

    2018-05-01

    Polycrystalline tantalum-carbide-incorporated diamond coatings have been made on unpolished side of Si (100) wafer by hot filament chemical vapor deposition process. Morphology of the coatings has been found to vary from (111) triangular-facetted to predominantly (111) square-faceted by increasing the concentration of tantalum carbide. The results have been compared to those of a diamond reference coating with no tantalum content. An increase in roughness has been observed with the increase of tantalum carbide (TaC) due to change in morphology of the diamond films. It is noticed that roughness of the coatings increases as grains become more square-faceted. It is found that diamond coatings involving tantalum carbide are not as resistant as diamond films with no TaC content and the coefficient of friction for such coatings with microcrystalline grains can be manipulated to 0·33 under high vacuum of 10-7 Torr. Such a low friction coefficient value enhances tribological behavior of unpolished Si substrates and can possibly be used in sliding applications.

  5. Development of tungsten fibre-reinforced tungsten composites towards their use in DEMO—potassium doped tungsten wire

    NASA Astrophysics Data System (ADS)

    Riesch, J.; Han, Y.; Almanstötter, J.; Coenen, J. W.; Höschen, T.; Jasper, B.; Zhao, P.; Linsmeier, Ch; Neu, R.

    2016-02-01

    For the next step fusion reactor the use of tungsten is inevitable to suppress erosion and allow operation at elevated temperature and high heat loads. Tungsten fibre-reinforced composites overcome the intrinsic brittleness of tungsten and its susceptibility to operation embrittlement and thus allow its use as a structural as well as an armour material. That this concept works in principle has been shown in recent years. In this contribution we present a development approach towards its use in a future fusion reactor. A multilayer approach is needed addressing all composite constituents and manufacturing steps. A huge potential lies in the optimization of the tungsten wire used as fibre. We discuss this aspect and present studies on potassium doped tungsten wire in detail. This wire, utilized in the illumination industry, could be a replacement for the so far used pure tungsten wire due to its superior high temperature properties. In tensile tests the wire showed high strength and ductility up to an annealing temperature of 2200 K. The results show that the use of doped tungsten wire could increase the allowed fabrication temperature and the overall working temperature of the composite itself.

  6. 2 x 2 Polyethylene Reflected and Moderated Highly Enriched Uranium System with Rhenium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    A. Nichole Ellis; Jesson Hutchinson; John D. Bess

    2010-09-01

    The 2 × 2 array HEU-Re experiment was performed on the Planet universal critical assembly machine on November 4th, 2003 at the Los Alamos Critical Experiments Facility (LACEF) at Los Alamos National Laboratory (LANL). For this experiment, there were 10 ½ units, each full unit containing four HEU foils and two rhenium foils. The top unit contained only two HEU foils and two rhenium foils. A total of 42 HEU foils were used for this experiment. Rhenium is a desirable cladding material for space nuclear power applications. This experiment consisted of HEU foils interleaved with rhenium foils and is moderatedmore » and reflected by polyethylene plates. A unit consisted of a polyethylene plate, which has a recess for rhenium foils, and four HEU foils in a single layer in the top recess of each polyethylene plate. The Planet universal criticality assembly machine has been previously used in experiments containing HEU foils interspersed with SiO2 (HEU-MET-THERM-001), Al (HEU-MET-THERM-008), MgO (HEU-MET-THERM-009), Gd foils (HEU-MET-THERM-010), 2 × 2 × 26 Al (HEU-MET-THERM-012), Fe (HEU-MET-THERM-013 and HEU-MET-THERM-015), 2 × 2 × 23 SiO2 (HEU-MET-THERM-014), 2 × 2 × 11 hastalloy plates (HEU-MET-THERM-016), and concrete (HEU-MET-THERM-018). The 2 × 2 array of HEU-Re is considered acceptable for use as a benchmark critical experiment.« less

  7. Tungsten foil laminate for structural divertor applications - Joining of tungsten foils

    NASA Astrophysics Data System (ADS)

    Reiser, Jens; Rieth, Michael; Möslang, Anton; Dafferner, Bernhard; Hoffmann, Jan; Mrotzek, Tobias; Hoffmann, Andreas; Armstrong, D. E. J.; Yi, Xiaoou

    2013-05-01

    This paper is the fourth in our series on tungsten laminates. The aim of this paper is to discuss laminate synthesis, meaning the joining of tungsten foils. It is obvious that the properties of the tungsten laminate strongly depend on the combination of (i) interlayer and (ii) joining technology, as this combination defines (i) the condition of the tungsten foil after joining (as-received or recrystallised) as well as (ii) the characteristics of the interface between the tungsten foil and the interlayer (wettability or diffusion leading to a solid solution or the formation of intermetallics). From the example of tungsten laminates joined by brazing with (i) an eutectic silver copper brazing filler, (ii) copper, (iii) titanium, and (iv) zirconium, the microstructure will be discussed, with special focus on the interface. Based on our assumptions of the mechanism of the extraordinary ductility of tungsten foil we present three syntheses strategies and make recommendations for the synthesis of high temperature tungsten laminates.

  8. Anomalous softening of yield strength in tantalum at high pressures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jing, Qiumin, E-mail: j-qm@163.com; Wu, Qiang; Xu, Ji-an

    2015-02-07

    The pressure dependence of the yield strength of tantalum was investigated experimentally up to 101 GPa at room temperature using a diamond anvil cell. A yield strength softening is observed between 52 and 84 GPa, whereas a normal trend is observed below 52 GPa and above 84 GPa. The onset pressure of the softening is in agreement with previous results obtained by the pressure gradient method and shock wave experiments. This unusual strength softening in tantalum is not related with structural transformation, preferred orientation, or material damage. Our measurements indicate that microscopic deviatoric strain is the major reason for the observed strength softening inmore » tantalum.« less

  9. Gadolinium-148 and other spallation production cross section measurements for accelerator target facilities

    NASA Astrophysics Data System (ADS)

    Kelley, Karen Corzine

    At the Los Alamos Neutron Science Center accelerator complex, protons are accelerated to 800 MeV and directed to two tungsten targets, Target 4 at the Weapons Neutron Research facility and the 1L target at the Lujan Center. The Department of Energy requires hazard classification analyses to be performed on these targets and places limits on certain radionuclide inventories in the targets to avoid characterizing the facilities as "nuclear facilities." Gadolinium-148 is a radionuclide created from the spallation of tungsten. Allowed isotopic inventories are particularly low for this isotope because it is an alpha-particle emitter with a 75-year half-life. The activity level of Gadolinium-148 is low, but it encompasses almost two-thirds of the total dose burden for the two tungsten targets based on present yield estimates. From a hazard classification standpoint, this severely limits the lifetime of these tungsten targets. The cross section is not well-established experimentally and this is the motivation for measuring the Gadolinium-148 production cross section from tungsten. In a series of experiments at the Weapons Neutron Research facility, Gadolinium-148 production was measured for 600- and 800-MeV protons on tungsten, tantalum, and gold. These experiments used 3 mum thin tungsten, tantalum, and gold foils and 10 mum thin aluminum activation foils. In addition, spallation yields were determined for many short-lived and long-lived spallation products with these foils using gamma and alpha spectroscopy and compared with predictions of the Los Alamos National Laboratory codes CEM2k+GEM2 and MCNPX. The cumulative Gadolinium-148 production cross section measured from tantalum, tungsten, and gold for incident 600-MeV protons were 15.2 +/- 4.0, 8.31 +/- 0.92, and 0.591 +/- 0.155, respectively. The average production cross sections measured at 800 MeV were 28.6 +/- 3.5, 19.4 +/- 1.8, and 3.69 +/- 0.50 for tantalum, tungsten, and gold, respectively. These cumulative

  10. Mechanistic insights into the rhenium-catalyzed alcohol-to-olefin dehydration reaction.

    PubMed

    Korstanje, Ties J; Jastrzebski, Johann T B H; Klein Gebbink, Robertus J M

    2013-09-23

    Rhenium-based complexes are powerful catalysts for the dehydration of various alcohols to the corresponding olefins. Here, we report on both experimental and theoretical (DFT) studies into the mechanism of the rhenium-catalyzed dehydration of alcohols to olefins in general, and the methyltrioxorhenium-catalyzed dehydration of 1-phenylethanol to styrene in particular. The experimental and theoretical studies are in good agreement, both showing the involvement of several proton transfers, and of a carbenium ion intermediate in the catalytic cycle. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Quasi-Static Compression and Tensile Stress-Strain Curves, Tantalum - 10% Tungsten and 300 Grade Maraging Steel

    DTIC Science & Technology

    1986-05-01

    available high density metal. It was investigated as a practical substitute for ballistic tungsten or uranium alloys. It was also used as a core material... PPM ) H ɝ ɝ ɝ C ᝺ ណ ណ N 12 ɝ 7 0 41 អ 60 Si ម ម Ti ង V ង ង ង Cr ᝺ ង ង Fe ង ម ម Co ង ᝺ ᝺ Ni ង ង ង Cu...3M Tri-M- ite WETORDRY trademark silicon carbide paper, wet with a trichloroethane base coolant, to remove about 0.05 mm in the center. An 0.1

  12. Investigating the oxidation mechanism of tantalum nanoparticles at high heating rates

    NASA Astrophysics Data System (ADS)

    DeLisio, Jeffery B.; Wang, Xizheng; Wu, Tao; Egan, Garth C.; Jacob, Rohit J.; Zachariah, Michael R.

    2017-12-01

    Reduced diffusion length scales and increased specific surface areas of nanosized metal fuels have recently demonstrated increased reaction rates for these systems, increasing their relevance in a wide variety of applications. The most commonly employed metal fuel, aluminum, tends to oxidize rapidly near its melting point (660 °C) in addition to undergoing a phase change of the nascent oxide shell. To further expand on the understanding of nanosized metal fuel oxidation, tantalum nanoparticles were studied due to their high melting point (3017 °C) in comparison to aluminum. Both traditional slow heating rate and in-situ high heating rate techniques were used to probe the oxidation of tantalum nanoparticles in oxygen containing environments in addition to nanothermite mixtures. When oxidized by gas phase oxygen, the oxide shell of the tantalum nanoparticles rapidly crystallized creating cracks that may attribute to enhanced oxygen diffusion into the particle. In the case of tantalum based nanothermites, oxide shell crystallization was shown to induce reactive sintering with the metal oxide resulting in a narrow range of ignition temperatures independent of the metal oxide used. The oxidation mechanism was modeled using the Deal-Grove model to extract rate parameters, and theoretical burn times for tantalum based nanocomposites were calculated.

  13. Defeating Hard and Deeply Buried Targets in 2035

    DTIC Science & Technology

    2012-02-15

    Hafnium Carbide 12.2 33 722 120 3000 Tantalum 16.4 24 680 113 3017 Tantalum Carbide 14.3 28 746 124 3880 Tungsten 19.3 21 550 92 3422 Tungsten ...lethality. Concepts for employing the weapon included “vertical delivery with the bomb detonated at or just outside portal, skip bomb with short fuse (first...or second contact), skip bomb with long fuse (penetrate door, maximize distance down adits [underground facility entrances or passages]), and

  14. High efficiency tantalum-based ceramic composite structures

    NASA Technical Reports Server (NTRS)

    Stewart, David A. (Inventor); Leiser, Daniel B. (Inventor); DiFiore, Robert R. (Inventor); Katvala, Victor W. (Inventor)

    2010-01-01

    Tantalum-based ceramics are suitable for use in thermal protection systems. These composite structures have high efficiency surfaces (low catalytic efficiency and high emittance), thereby reducing heat flux to a spacecraft during planetary re-entry. These ceramics contain tantalum disilicide, molybdenum disilicide and borosilicate glass. The components are milled, along with a processing aid, then applied to a surface of a porous substrate, such as a fibrous silica or carbon substrate. Following application, the coating is then sintered on the substrate. The composite structure is substantially impervious to hot gas penetration and capable of surviving high heat fluxes at temperatures approaching 3000.degree. F. and above.

  15. Synthesis, reactivity, and properties of N-fused porphyrin rhenium(I) tricarbonyl complexes.

    PubMed

    Toganoh, Motoki; Ikeda, Shinya; Furuta, Hiroyuki

    2007-11-12

    The thermal reactions of N-fused tetraarylporphyrins or N-confused tetraarylporphyrins with Re2(CO)10 gave the rhenium(I) tricarbonyl complexes bearing N-fused porphyrinato ligands (4) in moderate to good yields. The rhenium complexes 4 are characterized by mass, IR, 1H, and 13C NMR spectroscopy, and the structures of tetraphenylporphynato complex 4a and its nitro derivative 15 are determined by X-ray single crystal analysis. The rhenium complexes 4 show excellent stability against heat, light, acids, bases, and oxidants. The aromatic substitution reactions of 4 proceed without a loss of the center metal to give the nitro (15), formyl (16), benzoyl (17), and cyano derivatives (19), regioselectively. In the electrochemical measurements for 4, one reversible oxidation wave and two reversible reduction waves are observed. Their redox potentials imply narrow HOMO-LUMO band gaps of 4 and are consistent with their electronic absorption spectra, in which the absorption edges exceed 1000 nm. Theoretical study reveals that the HOMO and LUMO of the rhenium complexes are exclusively composed of the N-fused porphyrin skeleton. Protonation of 4 takes place at the 21-position regioselectively, reflecting the high coefficient of the C21 atom in the HOMO orbital. The skeletal rearrangement reaction from N-confused porphyrin Re(I) complex (8) to N-fused porphyrin Re(I) complex (4) is suggested from the mechanistic study as well as DFT calculations.

  16. Production of nanocrystalline metal powders via combustion reaction synthesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Frye, John G.; Weil, Kenneth Scott; Lavender, Curt A.

    Nanocrystalline metal powders comprising tungsten, molybdenum, rhenium and/or niobium can be synthesized using a combustion reaction. Methods for synthesizing the nanocrystalline metal powders are characterized by forming a combustion synthesis solution by dissolving in water an oxidizer, a fuel, and a base-soluble, ammonium precursor of tungsten, molybdenum, rhenium, or niobium in amounts that yield a stoichiometric burn when combusted. The combustion synthesis solution is then heated to a temperature sufficient to substantially remove water and to initiate a self-sustaining combustion reaction. The resulting powder can be subsequently reduced to metal form by heating in a reducing gas environment.

  17. Vapor deposition of thin films

    DOEpatents

    Smith, David C.; Pattillo, Stevan G.; Laia, Jr., Joseph R.; Sattelberger, Alfred P.

    1992-01-01

    A highly pure thin metal film having a nanocrystalline structure and a process of preparing such highly pure thin metal films of, e.g., rhodium, iridium, molybdenum, tungsten, rhenium, platinum, or palladium by plasma assisted chemical vapor deposition of, e.g., rhodium(allyl).sub.3, iridium(allyl).sub.3, molybdenum(allyl).sub.4, tungsten(allyl).sub.4, rhenium(allyl).sub.4, platinum(allyl).sub.2, or palladium(allyl).sub.2 are disclosed. Additionally, a general process of reducing the carbon content of a metallic film prepared from one or more organometallic precursor compounds by plasma assisted chemical vapor deposition is disclosed.

  18. Deuterium desorption from ion-irradiated tantalum and effects on surface morphology

    NASA Astrophysics Data System (ADS)

    Novakowski, T. J.; Sundaram, A.; Tripathi, J. K.; Gonderman, S.; Hassanein, A.

    2018-06-01

    Compared to tungsten (W), tantalum (Ta) has shown superior resistance to helium (He)-induced surface morphology changes under fusion-relevant irradiation conditions. However, Ta is also expected to have a stronger interaction with hydrogen isotopes, potentially limiting its use as a plasma-facing material. Despite these concerns, detailed investigations on hydrogen irradiation effects on Ta are scarce. In this study, pristine and fuzzy (He+ ion-irradiated) Ta samples are irradiated with 120 eV deuterium (D) ions at various temperatures and examined with a combination of thermal desorption spectroscopy (TDS), scanning electron microscopy (SEM), and optical reflectivity. TDS reveals discrete D desorption temperatures at 660 and 760 K, corresponding to trapping energies of 1.82 and 2.11 eV, respectively. Although D is retained in Ta both in higher quantities and at higher temperatures compared to W, extreme surface temperatures expected in tokamak divertors may exceed these desorption temperatures and counteract retention. Furthermore, this study indicates that Ta is relatively resistant to adverse surface structuring under D+ ion irradiation. In fact, D+ is shown to prevent and suppress Ta fuzz formation in sequential D+/He+ ion irradiation experiments. While further investigations are needed to elucidate this behavior, these initial investigations show a strong potential for the use of Ta as a PFC material.

  19. Methods for the separation of rhenium, osmium and molybdenum applicable to isotope geochemistry

    USGS Publications Warehouse

    Morgan, J.W.; Golightly, D.W.; Dorrzapf, A.F.

    1991-01-01

    Effective methods are described for the chemical separation of rhenium, osmium and molybdenum. The methods are based on distillation and anion-exchange chromatography, and have been the basis for rhenium-osmium isotope studies of ore deposits and meteorites. Successful anion-exchange separation of osmium requires both recognition and careful control of the osmium species in solution; thus, distillation of osmium tetroxide from a mixture of sulfuric acid and hydrogen peroxide is preferred to anion-exchange. Distribution coefficients measured for perrhenate in sulfuric acid media are sufficiently high (Kd > 500) for rhenium to be directly loaded onto an ion-exchange column from a distillation residue and subsequently eluted with nitric acid. Polymerization of molybdenum species during elution is prevented by use of a solution that is 1M in hydrochloric acid and 1M in sodium chloride. ?? 1991.

  20. A niobium oxide-tantalum oxide selector-memristor self-aligned nanostack

    NASA Astrophysics Data System (ADS)

    Diaz Leon, Juan J.; Norris, Kate J.; Yang, J. Joshua; Sevic, John F.; Kobayashi, Nobuhiko P.

    2017-03-01

    The integration of nonlinear current-voltage selectors and bi-stable memristors is a paramount step for reliable operation of crossbar arrays. In this paper, the self-aligned assembly of a single nanometer-scale device that contains both a selector and a memristor is presented. The two components (i.e., selector and memristor) are vertically assembled via a self-aligned fabrication process combined with electroforming. In designing the device, niobium oxide and tantalum oxide are chosen as materials for selector and memristor, respectively. The formation of niobium oxide is visualized by exploiting the self-limiting reaction between niobium and tantalum oxide; crystalline niobium (di)oxide forms at the interface between metallic niobium and tantalum oxide via electrothermal heating, resulting in a niobium oxide selector self-aligned to a tantalum oxide memristor. A steady-state finite element analysis is used to assess the electrothermal heating expected to occur in the device. Current-voltage measurements and structural/chemical analyses conducted for the virgin device, the electroforming process, and the functional selector-memristor device are presented. The demonstration of a self-aligned, monolithically integrated selector-memristor device would pave a practical pathway to various circuits based on memristors attainable at manufacturing scales.

  1. Analysis of Weibull Grading Test for Solid Tantalum Capacitors

    NASA Technical Reports Server (NTRS)

    Teverovsky, Alexander

    2010-01-01

    Weibull grading test is a powerful technique that allows selection and reliability rating of solid tantalum capacitors for military and space applications. However, inaccuracies in the existing method and non-adequate acceleration factors can result in significant, up to three orders of magnitude, errors in the calculated failure rate of capacitors. This paper analyzes deficiencies of the existing technique and recommends more accurate method of calculations. A physical model presenting failures of tantalum capacitors as time-dependent-dielectric-breakdown is used to determine voltage and temperature acceleration factors and select adequate Weibull grading test conditions. This, model is verified by highly accelerated life testing (HALT) at different temperature and voltage conditions for three types of solid chip tantalum capacitors. It is shown that parameters of the model and acceleration factors can be calculated using a general log-linear relationship for the characteristic life with two stress levels.

  2. Testing and evaluation of oxide-coated iridium/rhenium chambers

    NASA Technical Reports Server (NTRS)

    Reed, Brian D.

    1993-01-01

    Iridium-coated rhenium provides long life operation of radiation-cooled rockets at temperatures up to 2200 C. Ceramic oxide coatings could be used to increase iridium/rhenium rocket lifetimes and allow operation in highly oxidizing environments. Ceramic oxide coatings promise to serve as both thermal and diffusion barriers for the iridium layer. Seven ceramic oxide-coated iridium/rhenium, 22 N rocket chambers were tested on gaseous hydrogen/gaseous oxygen propellants. Five chambers had thick (over 10 mils), monolithic coatings of either hafnia or zirconia. Two chambers had coatings with thicknesses less than 5 mils. One of these chambers had a thin-walled coating of zirconia infiltrated with sol gel hafnia. The other chamber had a coating composed of an iridium/oxide composite. The purpose of this test program was to assess the ability of the oxide coatings to withstand the thermal shock of combustion initiation, adhere under repeated thermal cycling, and operate in aggressively oxidizing environments. All of the coatings survived the thermal shock of combustion and demonstrated operation at mixture ratios up to 11. The iridium/oxide composite coated chamber included testing for over 29 minutes at mixture ratio 16. The thicker-walled coatings provided the larger temperature drops across the oxide layer (up to 570 C), but were susceptible to macrocracking and eventual chipping at a stress concentrator. The cracks apparently resealed during firing, under compression of the oxide layer. The thinner-walled coatings did not experience the macrocracking and chipping of the chambers seen with the thick, monolithic coatings. However, burnthroughs in the throat region did occur in both of the thin-walled chambers at mixture ratios well above stochiometric. The burn-throughs were probably the result of oxygen-diffusion through the oxide coating that allowed the underlying iridium and rhenium layers to be oxidized. The results of this test program indicated that the thin

  3. Metallic transfer between metals in sliding contact examined by auger emission spectroscopy

    NASA Technical Reports Server (NTRS)

    Pepper, S. V.

    1972-01-01

    Metallic transfer between polycrystalline metals in sliding contact was examined. Hemispherical riders of iron, nickel, and cobalt were slid on tungsten, tantalum, niobium, and molybdenum disks in ultrahigh vacuum. Auger emission spectroscopy was used to monitor the elemental composition of the disk surfaces. Iron, nickel, and cobalt transferred to tungsten, whereas only cobalt transferred to tantalum, niobium, and molybdenum. The results of this investigation are discussed in terms of the cohesive energy and strain hardening characteristics of the specimen materials.

  4. Deuterium depth profile quantification in a ASDEX Upgrade divertor tile using secondary ion mass spectrometry

    NASA Astrophysics Data System (ADS)

    Ghezzi, F.; Caniello, R.; Giubertoni, D.; Bersani, M.; Hakola, A.; Mayer, M.; Rohde, V.; Anderle, M.; ASDEX Upgrade Team

    2014-10-01

    We present the results of a study where secondary ion mass spectrometry (SIMS) has been used to obtain depth profiles of deuterium concentration on plasma facing components of the first wall of the ASDEX Upgrade tokamak. The method uses primary and secondary standards to quantify the amount of deuterium retained. Samples of bulk graphite coated with tungsten or tantalum-doped tungsten are independently profiled with three different SIMS instruments. Their deuterium concentration profiles are compared showing good agreement. In order to assess the validity of the method, the integrated deuterium concentrations in the coatings given by one of the SIMS devices is compared with nuclear reaction analysis (NRA) data. Although in the case of tungsten the agreement between NRA and SIMS is satisfactory, for tantalum-doped tungsten samples the discrepancy is significant because of matrix effect induced by tantalum and differently eroded surface (W + Ta always exposed to plasma, W largely shadowed). A further comparison where the SIMS deuterium concentration is obtained by calibrating the measurements against NRA values is also presented. For the tungsten samples, where no Ta induced matrix effects are present, the two methods are almost equivalent.The results presented show the potential of the method provided that the standards used for the calibration reproduce faithfully the matrix nature of the samples.

  5. Imaging of radiation damage using complementary field ion microscopy and atom probe tomography.

    PubMed

    Dagan, Michal; Hanna, Luke R; Xu, Alan; Roberts, Steve G; Smith, George D W; Gault, Baptiste; Edmondson, Philip D; Bagot, Paul A J; Moody, Michael P

    2015-12-01

    Radiation damage in tungsten and a tungsten-tantalum alloy, both of relevance to nuclear fusion research, has been characterized using a combination of field ion microscopy (FIM) imaging and atom probe tomography (APT). While APT provides 3D analytical imaging with sub-nanometer resolution, FIM is capable of imaging the arrangements of single atoms on a crystal lattice and has the potential to provide insights into radiation induced crystal damage, all the way down to its smallest manifestation--a single vacancy. This paper demonstrates the strength of combining these characterization techniques. In ion implanted tungsten, it was found that atomic scale lattice damage is best imaged using FIM. In certain cases, APT reveals an identifiable imprint in the data via the segregation of solute and impurities and trajectory aberrations. In a W-5at%Ta alloy, a combined APT-FIM study was able to determine the atomic distribution of tantalum inside the tungsten matrix. An indirect method was implemented to identify tantalum atoms inside the tungsten matrix in FIM images. By tracing irregularities in the evaporation sequence of atoms imaged with FIM, this method enables the benefit of FIM's atomic resolution in chemical distinction between the two species. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Rhenium-coated glass beads for intracolonic administration attenuate TNBS-induced colitis in mice: Proof-of-Concept Study.

    PubMed

    Siczek, Krzysztof; Zatorski, Hubert; Pawlak, Wojciech; Fichna, Jakub

    2015-01-01

    In search for novel effective treatments in inflammatory bowel diseases, a new strategy employing glass beads coated with rhenium nanolayer has been developed and validated in the mouse model of 2,4,6-trinitrobenzene sulfonic acid (TNBS)-induced colitis. Briefly, mice were randomly divided into 5 experimental groups: control (vehicle alone, Group 1); control treated with rhenium-coated glass beads (Group 2); TNBS (Group 3); TNBS treated with rhenium-coated glass beads (Group 4); and TNBS treated with uncoated glass beads (Group 5). Mice from Group 2, 4 and 5 were treated with respective beads (once daily, 5 beads / animal, i.c.) between D3-D6 post-TNBS/vehicle and evaluation of colonic damage was performed on D7, based on macroscopic scoring and clinical parameters. Severe colonic inflammation developed in post-TNBS mice (Group 3) [P <0.001 vs. control (Group 1) for macroscopic score], which was significantly attenuated by treatment with rhenium-coated glass beads (Group 4) [P <0.01 vs. TNBS (Group 3), for macroscopic score]. Neither rhenium-coated glass beads had any effect in control animals (Group 2), nor uncoated glass beads influenced TNBS-induced colitis (Group 5). In conclusion, a novel and attractive strategy for the treatment of colonic inflammation has been proposed; therapy with rhenium-coated glass beads already proved effective in the mouse model of TNBS-induced colitis, now requires further characterization in clinical conditions.

  7. Ductilisation of tungsten (W): Tungsten laminated composites

    DOE PAGES

    Reiser, Jens; Garrison, Lauren M.; Greuner, Henri; ...

    2017-08-02

    Here we elucidate the mechanisms of plastic deformation and fracture of tungsten laminated composites. Furthermore our results suggest that the mechanical response of the laminates is governed by the plastic deformation of the tungsten plies. In most cases, the impact of the interlayer is of secondary importance.

  8. Draft critical mineral list—Summary of methodology and background information—U.S. Geological Survey technical input document in response to Secretarial Order No. 3359

    USGS Publications Warehouse

    Fortier, Steven M.; Nassar, Nedal T.; Lederer, Graham W.; Brainard, Jamie; Gambogi, Joseph; McCullough, Erin A.

    2018-02-16

    Pursuant to the Presidential Executive Order (EO) No. 13817, “A Federal Strategy to Ensure Secure and Reliable Supplies of Critical Minerals,” the Secretary of the Interior, in coordination with the Secretary of Defense, and in consultation with the heads of other relevant executive departments and agencies, was tasked with developing and submitting a draft list of minerals defined as “critical minerals” to the Federal Register within 60 days of the issue of the EO (December 20, 2017).Based on an analysis by the U.S. Geological Survey and other U.S. Government agencies, using multiple criteria, 35 minerals or mineral material groups have been identified that are currently (February 2018) considered critical. These include the following: aluminum (bauxite), antimony, arsenic, barite, beryllium, bismuth, cesium, chromium, cobalt, fluorspar, gallium, germanium, graphite (natural), hafnium, helium, indium, lithium, magnesium, manganese, niobium, platinum group metals, potash, rare earth elements group, rhenium, rubidium, scandium, strontium, tantalum, tellurium, tin, titanium, tungsten, uranium, vanadium, and zirconium. The categorization of minerals as critical may change during the course of the review process and is thus provisional.

  9. The Tri-lab Tantalum Strength Consortium

    NASA Astrophysics Data System (ADS)

    Flicker, Dawn G.; Arsenlis, Thomas A.; Austin, Ryan; Barton, Nathan R.; Benage, John F.; Bronkhorst, Curt A.; Brown, Justin L.; Brown, Staci L.; Buttler, William T.; Shen, Shuh-Rong; Dattelbaum, Dana M.; Fensin, Sayu J.; Gray, George T., III; Lane, J. Matthew D.; Lim, Hojun; Luscher, D. J.; Mattsson, Thomas R.; McNabb, Dennis P.; Remington, Bruce A.; Park, Hye-Sook; Prisbrey, Shon T.; Prime, Michael B.; Scharff, Robert J.; Schraad, Mark W.; Sun, Amy C.

    2017-06-01

    A Tri-lab consortium of experimentalists and theorists at SNL, LLNL, and LANL is joining forces to better understand tantalum strength across an unprecedented range of loading conditions. The team is collecting and comparing tantalum strength data from Hopkinson bar, Taylor cylinder, guns, Z, Omega and the NIF. These experiments, all using Ta from a single lot, span pressures from tenths to hundreds of GPa and strain rates from 103 to 107. New experiments are underway to provide more overlap between the platforms. The experiments are being simulated with a variety of models in order to determine which processes are important under which conditions. The presentation will show results to date. Sandia is a multi-program laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy under contract DE-AC04-94AL85000.

  10. Observation of oxide particles below the apparent oxygen solubility limit in tantalum

    NASA Technical Reports Server (NTRS)

    Stecura, S.

    1973-01-01

    The apparent solubility of oxygen in polycrystalline tantalum as determined by the X-ray diffraction lattice parameter technique is about 1.63 atomic percent at 820 C. However, oxide particles were identified in samples containing as low as 0.5 atomic percent of oxygen. These oxide particles were present at the grain boundaries and within the grains. The number of oxide particles increased with increasing oxygen concentration in tantalum. The presence of oxide particles suggests that the true solubility of oxygen in the polycrystalline tantalum metal is probably significantly lower than that reported in the literature.

  11. Simultaneous determination of tantalum and hafnium in silicates by neutron activation analysis

    USGS Publications Warehouse

    Greenland, L.P.

    1968-01-01

    A neutron activation procedure suitable for the routine determination of tantalum and hafnium in silicates is described. The irradiated sample is fused with sodium peroxide and leached, and the insoluble hydroxides are dissolved in dilute hydrofluoric acid-hydrochloric acid. After LaF3 and AgCl scavenges, tantalum and hafnium are separated by anion exchange. Tantalum is obtained radiochemically pure; 233Pa and 95Zr contaminants in the hafnium fraction are resolved by ??-ray spectrometry. The chemical yield of the procedure is detemined after counting by re-irradiation. Values for the 8 U.S. Geological Survey standard rocks are reported. ?? 1968.

  12. Synthesis of Coral-Like Tantalum Oxide Films via Anodization in Mixed Organic-Inorganic Electrolytes

    PubMed Central

    Yu, Hongbin; Zhu, Suiyi; Yang, Xia; Wang, Xinhong; Sun, Hongwei; Huo, Mingxin

    2013-01-01

    We report a simple method to fabricate nano-porous tantalum oxide films via anodization with Ta foils as the anode at room temperature. A mixture of ethylene glycol, phosphoric acid, NH4F and H2O was used as the electrolyte where the nano-porous tantalum oxide could be synthesized by anodizing a tantalum foil for 1 h at 20 V in a two–electrode configuration. The as-prepared porous film exhibited a continuous, uniform and coral-like morphology. The diameters of pores ranged from 30 nm to 50 nm. The pores interlaced each other and the depth was about 150 nm. After calcination, the as-synthesized amorphous tantalum oxide could be crystallized to the orthorhombic crystal system. As observed in photocatalytic experiments, the coral-like tantalum oxide exhibited a higher photocatalytic activity for the degradation of phenol than that with a compact surface morphology, and the elimination rate of phenol increased by 66.7%. PMID:23799106

  13. Biological Response of Human Bone Marrow-Derived Mesenchymal Stem Cells to Commercial Tantalum Coatings with Microscale and Nanoscale Surface Topographies

    NASA Astrophysics Data System (ADS)

    Skoog, Shelby A.; Kumar, Girish; Goering, Peter L.; Williams, Brian; Stiglich, Jack; Narayan, Roger J.

    2016-06-01

    Tantalum is a promising orthopaedic implant coating material due to its robust mechanical properties, corrosion resistance, and excellent biocompatibility. Previous studies have demonstrated improved biocompatibility and tissue integration of surface-treated tantalum coatings compared to untreated tantalum. Surface modification of tantalum coatings with biologically inspired microscale and nanoscale features may be used to evoke optimal tissue responses. The goal of this study was to evaluate commercial tantalum coatings with nanoscale, sub-microscale, and microscale surface topographies for orthopaedic and dental applications using human bone marrow-derived mesenchymal stem cells (hBMSCs). Tantalum coatings with different microscale and nanoscale surface topographies were fabricated using a diffusion process or chemical vapor deposition. Biological evaluation of the tantalum coatings using hBMSCs showed that tantalum coatings promote cellular adhesion and growth. Furthermore, hBMSC adhesion to the tantalum coatings was dependent on surface feature characteristics, with enhanced cell adhesion on sub-micrometer- and micrometer-sized surface topographies compared to hybrid nano-/microstructures. Nanostructured and microstructured tantalum coatings should be further evaluated to optimize the surface coating features to promote osteogenesis and enhance osseointegration of tantalum-based orthopaedic implants.

  14. Bench to bedside development of GMP grade Rhenium-188-HEDP, a radiopharmaceutical for targeted treatment of painful bone metastases.

    PubMed

    ter Heine, Rob; Lange, Rogier; Breukels, Oscar B; Bloemendal, Haiko J; Rummenie, Rob G; Wakker, Antoinette M; de Graaf, Hilly; Beekman, Freek J; van der Westerlaken, Monique M L; Malingré, Mirte M; Wielders, Jos P M; van den Berg, Leo; Hendrikse, N Harry; de Klerk, John M H

    2014-04-25

    Bone-targeting therapeutic radiopharmaceuticals are effective agents for treatment of painful bone metastases. Rhenium-188-HEDP is such a therapeutic radiopharmaceutical and has advantages over commercially available alternatives in terms of efficacy, safety and the ability to be produced on-site, allowing rapid treatment upon presentation of patients with pain. Unlike many other radiopharmaceuticals, there are no standardized preparation methods for Rhenium-188-HEDP. It is known, however, that drug composition may not only affect stability of the final drug product, but it may also influence bone affinity and, thus, efficacy. Furthermore, for support of clinical studies with Rhenium-188-HEDP as an investigational medicinal product, preparation of this radiopharmaceutical has to be performed under GMP conditions. To our knowledge, no group has reported on the preparation of Rhenium-188-HEDP under GMP conditions or on stock production of sterile non-radioactive starting materials. We present the production of GMP grade Rhenium-188-HEDP for application of this therapeutic radiopharmaceutical in routine clinical practice and for support of clinical studies. In addition, bio-distribution data of Rhenium-188-HEDP in mice and in patients with bone metastases originating from prostate cancer are presented. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. The Role of the Component Metals in the Toxicity of Military-Grade Tungsten Alloy

    PubMed Central

    Emond, Christy A.; Vergara, Vernieda B.; Lombardini, Eric D.; Mog, Steven R.; Kalinich, John F.

    2015-01-01

    Tungsten-based composites have been recommended as a suitable replacement for depleted uranium. Unfortunately, one of these mixtures composed of tungsten (W), nickel (Ni) and cobalt (Co) induced rhabdomyosarcomas when implanted into the leg muscle of laboratory rats and mice to simulate a shrapnel wound. The question arose as to whether the neoplastic effect of the mixture could be solely attributed to one or more of the metal components. To investigate this possibility, pellets with one or two of the component metals replaced with an identical amount of the biologically-inert metal tantalum (Ta) were manufactured and implanted into the quadriceps of B6C3F1 mice. The mice were followed for two years to assess potential adverse health effects. Implantation with WTa, CoTa or WNiTa resulted in decreased survival, but not to the level reported for WNiCo. Sarcomas in the implanted muscle were found in 20% of the CoTa-implanted mice and 5% of the WTa- and WCoTa-implanted rats and mice, far below the 80% reported for WNiCo-implanted mice. The data obtained from this study suggested that no single metal is solely responsible for the neoplastic effects of WNiCo and that a synergistic effect of the three metals in tumor development was likely. PMID:29051474

  16. Effect of Post-HALT Annealing on Leakage Currents in Solid Tantalum Capacitors

    NASA Technical Reports Server (NTRS)

    Teverovsky, Alexander

    2010-01-01

    Degradation of leakage currents is often observed during life testing of tantalum capacitors and is sometimes attributed to the field-induced crystallization in amorphous anodic tantalum pentoxide dielectrics. However, degradation of leakage currents and the possibility of annealing of degraded capacitors have not been investigated yet. In this work the effect of annealing after highly accelerated life testing (HALT) on leakage currents in various types of solid tantalum capacitors was analyzed. Variations of leakage currents with time during annealing at temperatures from 125 oC to 180 oC, thermally stimulated depolarization (TSD) currents, and I-V characteristics were measured to understand the conduction mechanism and the reason for current degradation. Annealing resulted in a gradual decrease of leakage currents and restored their initial values. Repeat HALT after annealing resulted in reproducible degradation of leakage currents. The observed results are explained based on ionic charge instability (drift/diffusion of oxygen vacancies) in the tantalum pentoxide dielectrics using a modified Schottky conduction mechanism.

  17. The Evaluation of Hydroxyapatite (HA) Coated and Uncoated Porous Tantalum for Biomedical Material Applications

    NASA Astrophysics Data System (ADS)

    Safuan, Nadia; Sukmana, Irza; Kadir, Mohammed Rafiq Abdul; Noviana, Deni

    2014-04-01

    Porous tantalum has been used as an orthopedic implant for bone defects as it has a good corrosion resistance and fatigue behaviour properties. However, there are some reports on the rejection of porous Ta after the implantation. Those clinical cases refer to the less bioactivity of metallic-based materials. This study aims to evaluate hydroxyapatite coated and uncoated porous Tantalum in order to improve the biocompatibility of porous tantalum implant and osseointegration. Porous tantalum was used as metallic-base substrate and hydroxyapatite coating has been done using plasma-spraying technique. Scanning Electron Microscopy (SEM) and Field Emission Scanning Electron Microscopy (FESEM) techniques were utilizes to investigate the coating characteristics while Confocal Raman Microscopy to investigate the interface and image. The effect of coating to the corrosion behaviour was assessed by employing potentiodynamic polarization tests in simulated body fluid at 37±1 °C. Based on SEM and FESEM results, the morphologies as well the weight element consists in the uncoated and hydroxyapatite coated porous tantalum were revealed. The results indicated that the decrease in corrosion current density for HA coated porous Ta compared to the uncoated porous Ta. This study concluded that by coating porous tantalum with HA supports to decrease the corrosion rate of pure porous.

  18. NIOBIUM-TANTALUM SEPARATION

    DOEpatents

    Wilhelm, H.A.; Foos, R.A.

    1959-01-27

    The usual method for the separation of tantalum and niobium consists of a selective solvent extraction from an aqueous hydrofluoric acid solution of the metals. A difficulty encountered in this process is the fact that the corrosion problems associated with hydrofluoric acid are serious. It has been found that the corrosion caused by the hydrofluoric acid may be substantially reduced by adding to the acidic solution an amine, such as phenyl diethanolamine or aniline, and adjusting pH value to between 4 and 6.

  19. In house development of (99m)Tc-Rhenium sulfide colloidal nanoparticles for sentinel lymph node detection.

    PubMed

    Dar, Ume-Kalsoom; Khan, Irfanullah; Javed, Muhammad; Ali, Muhammad; Hyder, Syed Waqar; Murad, Sohail; Anwar, Jamil

    2013-03-01

    In this study, rhenium sulfide colloidal nanoparticles were developed as radiopharmaceutical for sentinel lymph node detection. We directly used rhenium sulfide as a starting material for the preparation of colloidal nanoparticles. UV-visible spectrophotometry was used for characterization of in house developed colloidal particles. The size distribution of radioactive particles was studied by using membrane filtration method. The percentage of radiolabeled colloidal nanoparticles was determined by paper chromatography (PC). The study also includes in vitro stability, protein binding in human blood and bioevaluation in a rabbit model. The results indicate that 77.27 ± 3.26 % particles of size less than 20nm (suitable for lymphoscintigraphy) were radiolabeled. (99m)Tc labeled rhenium sulfide labeling efficacy with the radiometal is 98.5 ± 0.5%, which remains considerably stable beyond 5h at room temperature. Furthermore, it was observed that 70.2 ± 1.3% radiolabeled colloid complex showed binding with the blood protein. Bioevaluation results show the remarkable achievement of our radiopharmaceutical. The in house prepared (99m)Tc labeled rhenium sulfide colloidal nanoparticles reached the sentinel node within 15 min of post injection. These results indicate that (99m)Tc labeled rhenium sulfide colloid nanoparticles kit produced by a novel procedure seems of significant potential as a feasible candidate for further development to be used in clinical practice.

  20. Friction stir weld tools having fine grain structure

    DOEpatents

    Grant, Glenn J.; Frye, John G.; Kim, Jin Yong; Lavender, Curt A.; Weil, Kenneth Scott

    2016-03-15

    Tools for friction stir welding can be made with fewer process steps, lower cost techniques, and/or lower cost ingredients than other state-of-the-art processes by utilizing improved compositions and processes of fabrication. Furthermore, the tools resulting from the improved compositions and processes of fabrication can exhibit better distribution and homogeneity of chemical constituents, greater strength, and/or increased durability. In one example, a friction stir weld tool includes tungsten and rhenium and is characterized by carbide and oxide dispersoids, by carbide particulates, and by grains that comprise a solid solution of the tungsten and rhenium. The grains do not exceed 10 micrometers in diameter.

  1. Tantalum modified ferritic iron base alloys

    NASA Technical Reports Server (NTRS)

    Oldrieve, R. E.; Blankenship, C. P. (Inventor)

    1977-01-01

    Strong ferritic alloys of the Fe-CR-Al type containing 0.4% to 2% tantalum were developed. These alloys have improved fabricability without sacrificing high temperature strength and oxidation resistance in the 800 C (1475 F) to 1040 C (1900 F) range.

  2. Effect of Compressive Stresses on Leakage Currents in Microchip Tantalum Capacitors

    NASA Technical Reports Server (NTRS)

    Teverovsky, Alexander

    2012-01-01

    Microchip tantalum capacitors are manufactured using new technologies that allow for production of small size capacitors (down to EIA case size 0402) with volumetric efficiency much greater than for regular chip capacitors. Due to a small size of the parts and leadless design they might be more sensitive to mechanical stresses that develop after soldering onto printed wiring boards (PWB) compared to standard chip capacitors. In this work, the effect of compressive stresses on leakage currents in capacitors has been investigated in the range of stresses up to 200 MPa. Significant, up to three orders of magnitude, variations of currents were observed after the stress exceeds a certain critical level that varied from 10 MPa to 180 MPa for capacitors used in this study. A stress-induced generation of electron traps in tantalum pentoxide dielectric is suggested to explain reversible variations of leakage currents in tantalum capacitors. Thermo-mechanical characteristics of microchip capacitors have been studied to estimate the level of stresses caused by assembly onto PWB and assess the risk of stress-related degradation and failures. Keywords: tantalum capacitors, leakage current, soldering, reliability, mechanical stress.

  3. The preparation of tantalum powder using a MR-EMR combination process

    NASA Astrophysics Data System (ADS)

    Yoon, Jae Sik; Kim, Byung Il

    2007-04-01

    In the conventional metallothermic reduction (MR) process used to obtain tantalum powder in batch-type operation, it is difficult to control the morphology and location of the tantalum deposits. In contrast, an electronically mediated reaction (EMR) process is capable of overcoming this difficulty. It has the advantage of being a continuous process, but has the disadvantage of a poor reduction yield. A process known as the MR-EMR combination process is able to overcome the shortcomings of the MR and EMR processes. In this study, an MR-EMR combination process is applied to the production of tantalum powder via sodium reduction of K2TaF7. In the MR-EMR combination process, the total charge passed through an external circuit and the average particle size (FSSS) increase as the reduction temperature increases. In addition, the proportion of fine particles (-325 mesh) decreases as the reduction temperature increasess. The tantalum yield improved from 65 to 74% as the reduction temperature increased. Taking into account the charge, impurities, morphology, particle size and yield, a reduction temperature of 1123 K was found to be optimum for the MR-EMR combination process.

  4. Deuterium trapping in tungsten

    NASA Astrophysics Data System (ADS)

    Poon, Michael

    Tungsten is one of the primary material candidates being investigated for use in the first-wall of a magnetic confinement fusion reactor. An ion accelerator was used to simulate the type of ion interaction that may occur at a plasma-facing material. Thermal desorption spectroscopy (TDS) was the primary tool used to analyze the effects of the irradiation. Secondary ion mass spectroscopy (SIMS) was used to determine the distribution of trapped D in the tungsten specimen. The tritium migration analysis program (TMAP) was used to simulate thermal desorption profiles from the D depth distributions. Fitting of the simulated thermal desorption profiles with the measured TDS results provided values of the D trap energies. Deuterium trapping in single crystal tungsten was studied as a function of the incident ion fluence, ion flux, irradiation temperature, irradiation history, and surface impurity levels during irradiation. The results show that deuterium was trapped at vacancies and voids. Two deuterium atoms could be trapped at a tungsten vacancy, with trapping energies of 1.4 eV and 1.2 eV for the first and second D atoms, respectively. In a tungsten void, D is trapped as atoms adsorbed on the inner walls of the void with a trap energy of 2.1 eV, or as D2 molecules inside the void with a trap energy of 1.2 eV. Deuterium trapping in polycrystalline tungsten was also studied as a function of the incident fluence, irradiation temperature, and irradiation history. Deuterium trapping in polycrystalline tungsten also occurs primarily at vacancies and voids with the same trap energies as in single crystal tungsten; however, the presence of grain boundaries promotes the formation of large surface blisters with high fluence irradiations at 500 K. In general, D trapping is greater in polycrystalline tungsten than in single crystal tungsten. To simulate mixed materials comprising of carbon (C) and tungsten, tungsten specimens were pre-irradiated with carbon ions prior to D

  5. Reliability of High-Voltage Tantalum Capacitors. Parts 3 and 4)

    NASA Technical Reports Server (NTRS)

    Teverovsky, Alexander

    2010-01-01

    Weibull grading test is a powerful technique that allows selection and reliability rating of solid tantalum capacitors for military and space applications. However, inaccuracies in the existing method and non-adequate acceleration factors can result in significant, up to three orders of magnitude, errors in the calculated failure rate of capacitors. This paper analyzes deficiencies of the existing technique and recommends more accurate method of calculations. A physical model presenting failures of tantalum capacitors as time-dependent-dielectric-breakdown is used to determine voltage and temperature acceleration factors and select adequate Weibull grading test conditions. This model is verified by highly accelerated life testing (HALT) at different temperature and voltage conditions for three types of solid chip tantalum capacitors. It is shown that parameters of the model and acceleration factors can be calculated using a general log-linear relationship for the characteristic life with two stress levels.

  6. Isotopic determinations of rhenium and osmium in meteorites by using fusion, distillation and ion-exchange separations

    USGS Publications Warehouse

    Morgan, J.W.; Walker, R.J.

    1989-01-01

    A stable isotope-dilution method using resonance ionization mass spectrometry is suitable for the determination of rhenium and osmium abundances and osmium isotopic composition in carbonaceous chondrites and iron meteorites. The chemical procedure involves sodium peroxide fusion, followed by distillation of osmium from sulfuric acid/hydrogen peroxide and subsequent anion-exchange separation of rhenium from the same solution. ?? 1989.

  7. Highly Selective Deoxydehydration of Tartaric Acid over Supported and Unsupported Rhenium Catalysts with Modified Acidities.

    PubMed

    Li, Xiukai; Zhang, Yugen

    2016-10-06

    The deoxydehydration (DODH) of sugar acids to industrially important carboxylic acids is a very attractive topic. Oxorhenium complexes are the most-often employed DODH catalysts. Because of the acidity of the rhenium catalysts, the DODH products of sugar acids were usually in the form of mixture of free carboxylic acids and esters. Herein, we demonstrate strategies for the selective DODH of sugar acids to free carboxylic acids by tuning the Lewis acidity or the Brønsted acidity of the rhenium-based catalysts. Starting from tartaric acid, up to 97 % yield of free maleic acid was achieved. Based on our strategies, functional polymer immobilized heterogeneous rhenium catalysts were also developed for the selective DODH conversion of sugar acids. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Surface nanotexturing of tantalum by laser ablation in water

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barmina, E V; Simakin, Aleksandr V; Shafeev, Georgii A

    2009-01-31

    Surface nanotexturing of tantalum by ablation with short laser pulses in water has been studied experimentally using three ablation sources: a neodymium laser with a pulse duration of 350 ps, an excimer laser (248 nm) with a pulse duration of 5 ps and a Ti:sapphire laser with a pulse duration of 180 fs. The morphology of the nanotextured surfaces has been examined using a nanoprofilometer and field emission scanning electron microscope. The results demonstrate that the average size of the hillocks produced on the target surface depends on the laser energy density and is {approx}200 nm at an energy densitymore » approaching the laser-melting threshold of tantalum and a pulse duration of 350 ps. Their surface density reaches 10{sup 6} cm{sup -2}. At a pulse duration of 5 ps, the average hillock size is 60-70 nm. Nanotexturing is accompanied by changes in the absorption spectrum of the tantalum surface in the UV and visible spectral regions. The possible mechanisms of surface nanotexturing and potential applications of this effect are discussed. (nanostructures)« less

  9. Tantalum protective coatings for fusion reactor applications

    NASA Astrophysics Data System (ADS)

    Brossa, Francesco; Piatti, Giovanni; Bardy, Michel

    Tantalum has a very low sputtering yield, high melting point, low vapour pressure and good mechanical properties at low and high temperatures, so it is a very interesting candidate for the first wall and blanket structural components. Tantalum coatings overcome the problems of fabrication and joining bulk Ta, thus reducing also dead weight and cost. Ta coatings were produced by chemical vapour deposition and plasma spraying on four conventional structural materials: Al, Cu, AISI 316 L and Inconel 600. The conditions which improve adherence have been studied. The composition of the films was determined by chemical means and by X-ray analysis. Metallographie examination was employed to define the morphological structure of the deposits. The adherence of the coatings was determined by subjecting the samples to bend tests and to thermal shocks.

  10. Effects of severe stressing on tantalum capacitors

    NASA Technical Reports Server (NTRS)

    Shakar, J. F.; Fairfield, E. H.

    1981-01-01

    The ultimate capabilities of an all tantalum capacitor were determined and evaluated. The evaluation included: 175 C life; 100 cycle thermal shock; 70 g random vibration; 3000 g shock; and 90 C ase ripple current.

  11. Microwave spectra and quadrupole coupling measurements for methyl rhenium trioxide

    NASA Astrophysics Data System (ADS)

    Sickafoose, S. M.; Wikrent, P.; Drouin, B. J.; Kukolich, S. G.

    1996-12-01

    Microwave rotational transitions for J' ← J = 1 ← 0 and 2 ← 1 were measured in the 6-14 GHz range for methyl rhenium trioxide using a Flygare-Balle type, pulsed-beam spectrometer. The rotational constants for the most abundant isotopomers are B( 187Re) = 3466.964(2) MHz and B( 185Re) = 3467.049(3) MHz. The quadrupole coupling strengths are eQq( 187Re) = 716.55(2) MHz and eQq( 185Re) = 757.19(3) MHz. Transitions were also observed for 13C isotopomers and 18O isotopomers. The value for the ReC bond length obtained from a Kraitchman analysis is R( ReC) = 2.080 Å. The rhenium quadrupole coupling strengths are about 20% smaller than those obtained for HRe(CO) 5.

  12. Micro/Nano Structural Tantalum Coating for Enhanced Osteogenic Differentiation of Human Bone Marrow Stem Cells

    PubMed Central

    Ding, Ding; Xie, Youtao; Li, Kai; Huang, Liping; Zheng, Xuebin

    2018-01-01

    Recently, tantalum has been attracting much attention for its anticorrosion resistance and biocompatibility, and it has been widely used in surface modification for implant applications. To improve its osteogenic differentiation of human bone marrow stem cells (hBMSCs), a micro/nano structure has been fabricated on the tantalum coating surface through the combination of anodic oxidation and plasma spraying method. The morphology, composition, and microstructure of the modified coating were comprehensively studied by employing scanning electron microscopy (SEM), X-ray diffraction (XRD) as well as transmission electron microscopy (TEM). The effects of hierarchical structures as well as micro-porous structure of tantalum coating on the behavior for human bone marrow stem cells (hBMSCs) were evaluated and compared at both cellular and molecular levels in vitro. The experimental results show that a hierarchical micro/nano structure with Ta2O5 nanotubes spread onto a micro-scale tantalum coating has been fabricated successfully, which is confirmed to promote cell adhesion and spreading. Besides, the hierarchical micro/nano tantalum coating can provide 1.5~2.1 times improvement in gene expression, compared with the micro-porous tantalum coating. It demonstrates that it can effectively enhance the proliferation and differentiation of hBMSCs in vitro. PMID:29614022

  13. Micro/Nano Structural Tantalum Coating for Enhanced Osteogenic Differentiation of Human Bone Marrow Stem Cells.

    PubMed

    Ding, Ding; Xie, Youtao; Li, Kai; Huang, Liping; Zheng, Xuebin

    2018-04-03

    Recently, tantalum has been attracting much attention for its anticorrosion resistance and biocompatibility, and it has been widely used in surface modification for implant applications. To improve its osteogenic differentiation of human bone marrow stem cells (hBMSCs), a micro/nano structure has been fabricated on the tantalum coating surface through the combination of anodic oxidation and plasma spraying method. The morphology, composition, and microstructure of the modified coating were comprehensively studied by employing scanning electron microscopy (SEM), X-ray diffraction (XRD) as well as transmission electron microscopy (TEM). The effects of hierarchical structures as well as micro-porous structure of tantalum coating on the behavior for human bone marrow stem cells (hBMSCs) were evaluated and compared at both cellular and molecular levels in vitro. The experimental results show that a hierarchical micro/nano structure with Ta₂O₅ nanotubes spread onto a micro-scale tantalum coating has been fabricated successfully, which is confirmed to promote cell adhesion and spreading. Besides, the hierarchical micro/nano tantalum coating can provide 1.5~2.1 times improvement in gene expression, compared with the micro-porous tantalum coating. It demonstrates that it can effectively enhance the proliferation and differentiation of hBMSCs in vitro.

  14. Photosensitized generation of singlet oxygen by rhenium(I) complex

    NASA Astrophysics Data System (ADS)

    Burchinov, A. N.; Kiselev, V. M.; Penni, A. A.; Khistyaeva, V. V.

    2015-12-01

    The photosensitized generation of singlet oxygen in solutions of rhenium(I) complex fac-[Re(bipy)(CO)3NCCH3]+OTf-, where bipy=2,2'-bipyridine, in chloride methylene and carbon tetrachloride under continuous LED irradiation in the UV and visible ranges has been investigated.

  15. Direct Electrochemical Preparation of Cobalt, Tungsten, and Tungsten Carbide from Cemented Carbide Scrap

    NASA Astrophysics Data System (ADS)

    Xiao, Xiangjun; Xi, Xiaoli; Nie, Zuoren; Zhang, Liwen; Ma, Liwen

    2017-02-01

    A novel process of preparing cobalt, tungsten, and tungsten carbide powders from cemented carbide scrap by molten salt electrolysis has been investigated in this paper. In this experiment, WC-6Co and NaCl-KCl salt were used as sacrificial anode and electrolyte, respectively. The dissolution potential of cobalt and WC was determined by linear sweep voltammetry to be 0 and 0.6 V ( vs Ag/AgCl), respectively. Furthermore, the electrochemical behavior of cobalt and tungsten ions was investigated by a variety of electrochemical techniques. Results of cyclic voltammetry (CV) and square-wave voltammetry show that the cobalt and tungsten ions existed as Co2+ and W2+ on melts, respectively. The effect of applied voltage, electrolysis current, and electrolysis times on the composition of the product was studied. Results showed that pure cobalt powder can be obtained when the electrolysis potential is lower than 0.6 V or during low current and short times. Double-cathode and two-stage electrolysis was utilized for the preparation of cobalt, tungsten carbide, and tungsten powders. Additionally, X-ray diffraction results confirm that the product collected at cathodes 1 and 2 is pure Co and WC, respectively. Pure tungsten powder was obtained after electrolysis of the second part. Scanning electron microscope results show that the diameters of tungsten, tungsten carbide, and cobalt powder are smaller than 100, 200, and 200 nm, respectively.

  16. Random Vibration Testing of Advanced Wet Tantalum Capacitors

    NASA Technical Reports Server (NTRS)

    Teverovsky, Alexander

    2015-01-01

    Advanced wet tantalum capacitors allow for improved performance of power supply systems along with substantial reduction of size and weight of the systems that is especially beneficial for space electronics. Due to launch-related stresses, acceptance testing of all space systems includes random vibration test (RVT). However, many types of advanced wet tantalum capacitors cannot pass consistently RVT at conditions specified in MIL-PRF-39006, which impedes their use in space projects. This requires a closer look at the existing requirements, modes and mechanisms of failures, specifics of test conditions, and acceptance criteria. In this work, different lots of advanced wet tantalum capacitors from four manufacturers have been tested at step stress random vibration conditions while their currents were monitored before, during, and after the testing. It has been shown that the robustness of the parts and their reliability are mostly due to effective self-healing processes and limited current spiking or minor scintillations caused by RVT do not increase the risk of failures during operation. A simple model for scintillations events has been used to simulate current spiking during RVT and optimize test conditions. The significance of scintillations and possible effects of gas generation have been discussed and test acceptance criteria for limited current spiking have been suggested.

  17. Effects of substrate temperature on properties of pulsed dc reactively sputtered tantalum oxide films

    NASA Astrophysics Data System (ADS)

    Jain, Pushkar; Juneja, Jasbir S.; Bhagwat, Vinay; Rymaszewski, Eugene J.; Lu, Toh-Ming; Cale, Timothy S.

    2005-05-01

    The effects of substrate heating on the stoichiometry and the electrical properties of pulsed dc reactively sputtered tantalum oxide films over a range of film thickness (0.14 to 5.4 μm) are discussed. The film stoichiometry, and hence the electrical properties, of tantalum oxide films; e.g., breakdown field, leakage current density, dielectric constant, and dielectric loss are compared for two different cases: (a) when no intentional substrate/film cooling is provided, and (b) when the substrate is water cooled during deposition. All other operating conditions are the same, and the film thickness is directly related to deposition time. The tantalum oxide films deposited on the water-cooled substrates are stoichiometric, and exhibit excellent electrical properties over the entire range of film thickness. ``Noncooled'' tantalum oxide films are stoichiometric up to ~1 μm film thickness, beyond that the deposited oxide is increasingly nonstoichiometric. The presence of partially oxidized Ta in thicker (>~1 μm) noncooled tantalum oxide films causes a lower breakdown field, higher leakage current density, higher apparent dielectric constant, and dielectric loss. The growth of nonstoichiometric tantalum oxide in thicker noncooled films is attributed to decreased surface oxygen concentration due to oxygen recombination and desorption at higher film temperatures (>~100 °C). The quantitative results presented reflect experience with a specific piece of equipment; however, the procedures presented can be used to characterize deposition processes in which film stoichiometry can change.

  18. Fluorescent rhenium-naphthalimide conjugates as cellular imaging agents.

    PubMed

    Langdon-Jones, Emily E; Symonds, Nadine O; Yates, Sara E; Hayes, Anthony J; Lloyd, David; Williams, Rebecca; Coles, Simon J; Horton, Peter N; Pope, Simon J A

    2014-04-07

    A range of biologically compatible, fluorescent rhenium-naphthalimide conjugates, based upon the rhenium fac-tricarbonyl core, has been synthesized. The fluorescent ligands are based upon a N-functionalized, 4-amino-derived 1,8-naphthalimide core and incorporate a dipicolyl amine binding unit to chelate Re(I); the structural variations accord to the nature of the alkylated imide with ethyl ester glycine (L(1)), 3-propanol (L(2)), diethylene glycol (L(3)), and benzyl alcohol (L(4)) variants. The species are fluorescent in the visible region between 505 and 537 nm through a naphthalimide-localized intramolecular charge transfer, with corresponding fluorescent lifetimes of up to 9.8 ns. The ligands and complexes were investigated for their potential as imaging agents for human osteoarthritic cells and protistan fish parasite Spironucleus vortens using confocal fluorescence microscopy. The results show that the specific nature of the naphthalimide structure serves to control the uptake and intracellular localization of these imaging agents. Significant differences were noted between the free ligands and complexes, with the Re(I) complex of L(2) showing hydrogenosomal localization in S. vortens.

  19. Machine Gun Liner Bond Strength

    DTIC Science & Technology

    2007-08-01

    explosive bonding of pure tantalum, several tantalum alloys, and Stellite 25 (an alloy of cobalt, chrome , nickel, and tungsten) in a liner...smoothly as elastic stresses increase in the plug and liner. At a certain level of displacement, the load reaches a peak and then drops sharply. The

  20. Asymmetric rhenium tricarbonyl complexes show superior luminescence properties in live cell imaging.

    PubMed

    Raszeja, Lukasz J; Siegmund, Daniel; Cordes, Anna L; Güldenhaupt, Jörn; Gerwert, Klaus; Hahn, Stephan; Metzler-Nolte, Nils

    2017-01-16

    The synthesis and photophysical properties of a novel series of rhenium tricarbonyl complexes based on tridentate phenanthridinyl-containing ligands are described. Photophysical data reveal beneficial luminescence behaviour especially for compounds with an asymmetric ligand set. These advantageous properties are not limited to organic solvents, but indeed also improved in aqueous solutions. The suitability of our new rhenium complexes as potent imaging agents has been confirmed by fluorescence microscopy on living cancer cells, which also confirms superior long-time stability under fluorescence microscopy conditions. Colocalisation studies with commercial organelle stains reveal an accumulation of the complexes in the endoplasmic reticulum for all tested cell lines.

  1. Guidelines for the selection and application of tantalum electrolytic capacitors in highly reliable equipment

    NASA Technical Reports Server (NTRS)

    Holladay, A. M.

    1978-01-01

    Guidelines are given for the selection and application of three types of tantalum electrolytic capacitors in current use in the design of electrical and electronic circuits for space flight missions. In addition, the guidelines supplement requirements of existing military specifications used in the procurement of capacitors. A need exists for these guidelines to assist designers in preventing some of the recurring, serious problems experienced with tantalum electrolytic capacitors in the recent past. The three types of capacitors covered by these guidelines are; solid, wet foil, and tantalum cased wet slug.

  2. Compatibility of refractory materials for nuclear reactor poison control systems

    NASA Technical Reports Server (NTRS)

    Sinclair, J. H.

    1974-01-01

    Metal-clad poison rods have been considered for the control system of an advanced space power reactor concept studied at the NASA Lewis Research Center. Such control rods may be required to operate at temperatures of about 140O C. Selected poison materials (including boron carbide and the diborides of zirconium, hafnium, and tantalum) were subjected to 1000-hour screening tests in contact with candidate refractory metal cladding materials (including tungsten and alloys of tantalum, niobium, and molybdenum) to assess the compatibility of these materials combinations at the temperatures of interest. Zirconium and hafnium diborides were compatible with refractory metals at 1400 C, but boron carbide and tantalum diboride reacted with the refractory metals at this temperature. Zirconium diboride also showed promise as a reaction barrier between boron carbide and tungsten.

  3. Shear-horizontal surface acoustic wave phononic device with high density filling material for ultra-low power sensing applications

    NASA Astrophysics Data System (ADS)

    Richardson, M.; Sankaranarayanan, S. K. R. S.; Bhethanabotla, V. R.

    2014-06-01

    Finite element simulations of a phononic shear-horizontal surface acoustic wave (SAW) sensor based on ST 90°-X Quartz reveal a dramatic reduction in power consumption. The phononic sensor is realized by artificially structuring the delay path to form an acoustic meta-material comprised of a periodic microcavity array incorporating high-density materials such as tantalum or tungsten. Constructive interference of the scattered and secondary reflected waves at every microcavity interface leads to acoustic energy confinement in the high-density regions translating into reduced power loss. Tantalum filled cavities show the best performance while tungsten inclusions create a phononic bandgap. Based on our simulation results, SAW devices with tantalum filled microcavities were fabricated and shown to significantly decrease insertion loss. Our findings offer encouraging prospects for designing low power, highly sensitive portable biosensors.

  4. Electronic transitions of tantalum monofluoride

    NASA Astrophysics Data System (ADS)

    Ng, K. F.; Zou, Wenli; Liu, Wenjian; Cheung, A. S.-C.

    2017-03-01

    The electronic transition spectrum of the tantalum monofluoride (TaF) molecule in the spectral region between 448 and 560 nm has been studied using the technique of laser-ablation/reaction free jet expansion and laser induced fluorescence spectroscopy. The TaF molecule was produced by reacting laser-ablated tantalum atoms with sulfur hexafluoride gas seeded in argon. Twenty-two vibrational bands with resolved rotational structure have been recorded and analyzed, which were organized into seven electronic transitions. The X3Σ-(0+) state has been identified to be the ground state and the determined equilibrium bond length, re, and vibrational frequency, ωe, are 1.8184 Å and 700.1 cm-1, respectively. The low-lying Λ-S states and Ω sub-states of TaF were also theoretically studied at the MRCISD+Q level of theory with spin-orbit coupling. The Ω = 0+ and 2 sub-states from the -3Σ and 3Φ state have been found to be the ground and the first excited states, respectively, which agrees well with our experimental determinations. This work represents the first experimental investigation of the molecular structure of the TaF molecule.

  5. Gas-driven permeation of deuterium through tungsten and tungsten alloys

    DOE PAGES

    Buchenauer, Dean A.; Karnesky, Richard A.; Fang, Zhigang Zak; ...

    2016-03-25

    Here, to address the transport and trapping of hydrogen isotopes, several permeation experiments are being pursued at both Sandia National Laboratories (deuterium gas-driven permeation) and Idaho National Laboratories (tritium gas- and plasma-driven tritium permeation). These experiments are in part a collaboration between the US and Japan to study the performance of tungsten at divertor relevant temperatures (PHENIX). Here we report on the development of a high temperature (≤1150 °C) gas-driven permeation cell and initial measurements of deuterium permeation in several types of tungsten: high purity tungsten foil, ITER-grade tungsten (grains oriented through the membrane), and dispersoid-strengthened ultra-fine grain (UFG) tungstenmore » being developed in the US. Experiments were performed at 500–1000 °C and 0.1–1.0 atm D 2 pressure. Permeation through ITER-grade tungsten was similar to earlier W experiments by Frauenfelder (1968–69) and Zaharakov (1973). Data from the UFG alloy indicates marginally higher permeability (< 10×) at lower temperatures, but the permeability converges to that of the ITER tungsten at 1000 °C. The permeation cell uses only ceramic and graphite materials in the hot zone to reduce the possibility for oxidation of the sample membrane. Sealing pressure is applied externally, thereby allowing for elevation of the temperature for brittle membranes above the ductile-to-brittle transition temperature.« less

  6. Solid state consolidation nanocrystalline copper-tungsten using cold spray

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hall, Aaron Christopher; Sarobol, Pylin; Argibay, Nicolas

    It is well known that nanostructured metals can exhibit significantly improved properties compared to metals with conventional grain size. Unfortunately, nanocrystalline metals typically are not thermodynamically stable and exhibit rapid grain growth at moderate temperatures. This severely limits their processing and use, making them impractical for most engineering applications. Recent work has shown that a number of thermodynamically stable nanocrystalline metal alloys exist. These alloys have been prepared as powders using severe plastic deformation (e.g. ball milling) processes. Consolidation of these powders without compromise of their nanocrystalline microstructure is a critical step to enabling their use as engineering materials. Wemore » demonstrate solid-state consolidation of ball milled copper-tantalum nanocrystalline metal powder using cold spray. Unfortunately, the nanocrystalline copper-tantalum powder that was consolidated did not contain the thermodynamically stable copper-tantalum nanostructure. Nevertheless, this does this demonstrates a pathway to preparation of bulk thermodynamically stable nanocrystalline copper-tantalum. Furthermore, it demonstrates a pathway to additive manufacturing (3D printing) of nanocrystalline copper-tantalum. Additive manufacturing of thermodynamically stable nanocrystalline metals is attractive because it enables maximum flexibility and efficiency in the use of these unique materials.« less

  7. Glyco-functionalized dinuclear rhenium(i) complexes for cell imaging.

    PubMed

    Palmioli, Alessandro; Aliprandi, Alessandro; Septiadi, Dedy; Mauro, Matteo; Bernardi, Anna; De Cola, Luisa; Panigati, Monica

    2017-02-21

    The design, synthesis and photophysical characterization of four new luminescent glycosylated luminophores based on dinuclear rhenium complexes, namely Glyco-Re, are described. The derivatives have the general formula [Re 2 (μ-Cl) 2 (CO) 6 (μ-pydz-R)] (R-pydz = functionalized 1,2-pyridazine), where a sugar residue (R) is covalently bound to the pyridazine ligand in the β position. Different synthetic pathways have been investigated including the so-called neo-glycorandomization procedure, affording stereoselectively glyco-conjugates containing glucose and maltose in a β anomeric configuration. A multivalent dinuclear rhenium glycodendron bearing three glucose units is also synthesized. All the Glyco-Re conjugates are comprehensively characterized and their photophysical properties and cellular internalization experiments on human cervical adenocarcinoma (HeLa) cells are reported. The results show that such Glyco-Re complexes display interesting bio-imaging properties, i.e. high cell permeability, organelle selectivity, low cytotoxicity and fast internalization. These findings make the presented Glyco-Re derivatives efficient phosphorescent probes suitable for cell imaging application.

  8. Performance and Reliability of Solid Tantalum Capacitors at Cryogenic Conditions

    NASA Technical Reports Server (NTRS)

    Teverovsky, Alexander

    2006-01-01

    Performance of different types of solid tantalum capacitors was evaluated at room and low temperatures, down to 15 K. The effect of temperature on frequency dependencies of capacitance, effective series resistances (ESR), leakage currents, and breakdown voltages has been investigated and analyzed. To assess thermo-mechanical robustness of the parts, several groups of loose capacitors and those soldered on FR4 boards were subjected to multiple (up to 500) temperature cycles between room temperature and 77 K. Experiments and mathematical modeling have shown that degradation in tantalum capacitors at low temperatures is mostly due to increasing resistance of the manganese cathode layer, resulting in substantial decrease of the roll-off frequency. Absorption currents follow a power law, I approximately t(sup -m), with the exponent m varying from 0.8 to 1.1. These currents do not change significantly at cryogenic conditions and the value of the exponent remains the same down to 15 K. Variations of leakage currents with voltage can be described by Pool-Frenkel and Schottky mechanisms of conductivity, with the Schottky mechanism prevailing at cryogenic conditions. Breakdown voltages of tantalum capacitors increase and the probability of scintillations decreases at cryogenic temperatures. However, breakdown voltages measured during surge current testing decrease at liquid nitrogen (LN) compared to room-temperature conditions. Results of temperature cycling suggest that tantalum capacitors are capable of withstanding multiple exposures to cryogenic conditions, but the probability of failures varies for different part types.

  9. High strength uranium-tungsten alloys

    DOEpatents

    Dunn, Paul S.; Sheinberg, Haskell; Hogan, Billy M.; Lewis, Homer D.; Dickinson, James M.

    1991-01-01

    Alloys of uranium and tungsten and a method for making the alloys. The amount of tungsten present in the alloys is from about 4 wt % to about 35 wt %. Tungsten particles are dispersed throughout the uranium and a small amount of tungsten is dissolved in the uranium.

  10. Tantalum-based thin film coatings for wear resistant arthroprostheses.

    PubMed

    Balagna, C; Faga, M G; Spriano, S

    2011-10-01

    Cobalt-chromium-molybdenum alloys with high carbon content (HC-CoCrMo) are widely used as materials for arthroprosthesis, in particular in metal-on-metal (MoM) hip joints. In spite of their good wear and corrosion resistance, production of metallic wear particles and metal ion release will occur on a large time-scale. An enhancement of the metal ion level in the patient's blood and urine is often reported in clinical data. Hypersensitivity, inflammatory response and cell necrosis can occur as consequence. So implants on young patients and women on childbearing age are not so widespread. The aim of this research is the realization of a thin film coating in order to improve the biocompatibility of Co-based alloys and to reduce debris production, ion release and citotoxicity. The innovative process consists of a thermal treatment in molten salts, in order to obtain a tantalum enriched thin film coating. Tantalum is chosen because it is considered a biocompatible metal with high corrosion resistance and low ion release. Three HC-CoCrMo alloys, produced by different manufacturing processes, are tested as substrates. The coating is a thin film of TaC or it can be composed by a multilayer of two tantalum carbides and metallic tantalum, depending on the temperature of the treatment and on the carbon content of the substrate. The thin films as well the substrates are characterized from the structural, chemical and morphological point of view. Moreover mechanical behaviour of treated and untreated materials is analyzed by means of nanohardness, scratch and ball-on-disc wear tests. The coating increases the mechanical and tribological properties of HC-CoCrMo.

  11. A preliminary deposit model for lithium-cesium-tantalum (LCT) pegmatites

    USGS Publications Warehouse

    Bradley, Dwight; McCauley, Andrew

    2013-01-01

    This report is part of an effort by the U.S. Geological Survey to update existing mineral deposit models and to develop new ones. We emphasize practical aspects of pegmatite geology that might directly or indirectly help in exploration for lithium-cesium-tantalum (LCT) pegmatites, or for assessing regions for pegmatite-related mineral resource potential. These deposits are an important link in the world’s supply chain of rare and strategic elements, accounting for about one-third of world lithium production, most of the tantalum, and all of the cesium.

  12. Iridium/Rhenium Parts For Rocket Engines

    NASA Technical Reports Server (NTRS)

    Schneider, Steven J.; Harding, John T.; Wooten, John R.

    1991-01-01

    Oxidation/corrosion of metals at high temperatures primary life-limiting mechanism of parts in rocket engines. Combination of metals greatly increases operating temperature and longevity of these parts. Consists of two transition-element metals - iridium and rhenium - that melt at extremely high temperatures. Maximum operating temperature increased to 2,200 degrees C from 1,400 degrees C. Increases operating lifetimes of small rocket engines by more than factor of 10. Possible to make hotter-operating, longer-lasting components for turbines and other heat engines.

  13. Deformation of Cases in High Capacitance Value Wet Tantalum Capacitors under Environmental Stresses

    NASA Technical Reports Server (NTRS)

    Teverovsky, Alexander

    2016-01-01

    Internal gas pressure in hermetic wet tantalum capacitors is created by air, electrolyte vapor, and gas generated by electrochemical reactions at the electrodes. This pressure increases substantially with temperature and time of operation due to excessive leakage currents. Deformation of the case occurs when the internal pressure exceeds pressure of the environments and can raise significantly when a part operates in space. Contrary to the cylinder case wet tantalum capacitors that have external sealing by welding and internal sealing provided by the Teflon bushing and crimping of the case, no reliable internal sealing exists in the button case capacitors. Single seal design capacitors are used for high capacitance value wet tantalum capacitors manufactured per DLA L&M drawings #04003, 04005, and 10011, and require additional analysis to assure their reliable application in space systems. In this work, leakage currents and case deformation of button case capacitors were measured during different environmental test conditions. Recommendations for derating, screening and qualification testing are given. This work is a continuation of a series of NEPP reports related to quality and reliability of wet tantalum capacitors.

  14. Superconducting characteristics in purified tantalum-foils

    NASA Astrophysics Data System (ADS)

    Hu, Qinghua; Wang, Zhihe

    2018-07-01

    We have conducted extensive investigations on the electrical transport and magnetization on a purified tantalum foil with extremely sharp resistive transition (transition width ΔTc < 0.02 K) at 0 T and residual resistivity ratio ρ290K/ρ5K= 16.75. Many effects, such as anisotropic field-induced resistive broadening and second peak of the magnetization-hysteresis loop, are observed in the sample. The maximum upper critical field determined by criteria of R/Rn = 0.9 is about 1.08 T rather weak compared to that in cuprate and/or iron-based superconductors. Although the value of upper critical field Hc2(0) and the field dependence of effective pinning energy U show that the flux pinning potential is weaker, the critical current density Jc(2 K, 0 T) = 1.145 × 105 A/cm2 and the effect of second peak indicate that there should be higher collective vortex pinning potential in the tantalum foil. The carriers are dominated by holes with the density n = 6.6 × 1022/cm3.

  15. Catalytic Hydroamination of Alkynes and Norbornene with Neutral and Cationic Tantalum Imido Complexes

    PubMed Central

    Anderson, Laura L.; Arnold, John; Bergman, Robert G.

    2005-01-01

    Several tantalum imido complexes have been synthesized and shown to efficiently catalyze the hydroamination of internal and terminal alkynes. An unusual hydroamination/hydroarylation reaction of norbornene catalyzed by a highly electrophilic cationic tantalum imido complex is also reported. Factors affecting catalyst activity and selectivity are discussed along with mechanistic insights gained from stoichiometric reactions. PMID:15255680

  16. Characterization of Tantalum Polymer Capacitors

    NASA Technical Reports Server (NTRS)

    Spence, Penelope

    2012-01-01

    Overview Reviewed data Caution must be taken when accelerating test conditions Data not useful to establish an acceleration model Introduction of new failure mechanism skewing results Evidence of Anti-Wear-Out De-doping of polymer Decreased capacitance Increased ESR Not dielectric breakdown Needs further investigation Further investigation into tantalum polymer capacitor technology Promising acceleration model for Manufacturer A Possibility for use in high-reliability space applications with suitable voltage derating.

  17. Physically-based strength model of tantalum incorporating effects of temperature, strain rate and pressure

    DOE PAGES

    Lim, Hojun; Battaile, Corbett C.; Brown, Justin L.; ...

    2016-06-14

    In this work, we develop a tantalum strength model that incorporates e ects of temperature, strain rate and pressure. Dislocation kink-pair theory is used to incorporate temperature and strain rate e ects while the pressure dependent yield is obtained through the pressure dependent shear modulus. Material constants used in the model are parameterized from tantalum single crystal tests and polycrystalline ramp compression experiments. It is shown that the proposed strength model agrees well with the temperature and strain rate dependent yield obtained from polycrystalline tantalum experiments. Furthermore, the model accurately reproduces the pressure dependent yield stresses up to 250 GPa.more » The proposed strength model is then used to conduct simulations of a Taylor cylinder impact test and validated with experiments. This approach provides a physically-based multi-scale strength model that is able to predict the plastic deformation of polycrystalline tantalum through a wide range of temperature, strain and pressure regimes.« less

  18. Vacuum pyrolysis characteristics and parameter optimization of recycling organic materials from waste tantalum capacitors.

    PubMed

    Chen, Zhenyang; Niu, Bo; Zhang, Lingen; Xu, Zhenming

    2018-01-15

    Recycling rare metal tantalum from waste tantalum capacitors (WTCs) is significant to alleviate the shortage of tantalum resource. However, environmental problems will be caused if the organic materials from WTCs are improperly disposed. This study presented a promising vacuum pyrolysis technology to recycle the organic materials from WTCs. The organics removal rate could reach 94.32wt% according to TG results. The optimal parameters were determined as 425°C, 50Pa and 30min on the basis of response surface methodology (RSM). The oil yield and residual rate was 18.09wt% and 74.94wt%, respectively. All pyrolysis products can be recycled through a reasonable route. Besides, to deeply understand the pyrolysis process, the pyrolysis mechanism was also proposed based on the product and free radical theory. This paper provides an efficient process for recycling the organic material from WTCs, which can facilitate the following tantalum recovery. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Powder Injection Molding (PIM) for Low Cost Manufacturing of Intricate Parts to Net-Shape

    DTIC Science & Technology

    2006-05-01

    tungsten - or molybdenum-pseudoalloys, which can be net-shape manufactured only by PIM because of the tight dimension tolerances needed for the final...materials. Rhenium metal, for instance, which costs about US$ 800 /lb, offers the advantage of a high melting point. It can maintain reasonable...tubes, valves and thrusters of solid fluid propeller systems. Production of these components is however both expensive and difficult, as rhenium cannot

  20. Rhenium solubility in borosilicate nuclear waste glass: implications for the processing and immobilization of technetium-99.

    PubMed

    McCloy, John S; Riley, Brian J; Goel, Ashutosh; Liezers, Martin; Schweiger, Michael J; Rodriguez, Carmen P; Hrma, Pavel; Kim, Dong-Sang; Lukens, Wayne W; Kruger, Albert A

    2012-11-20

    The immobilization of technetium-99 ((99)Tc) in a suitable host matrix has proven to be a challenging task for researchers in the nuclear waste community around the world. In this context, the present work reports on the solubility and retention of rhenium, a nonradioactive surrogate for (99)Tc, in a sodium borosilicate glass. Glasses containing target Re concentrations from 0 to 10,000 ppm [by mass, added as KReO(4) (Re(7+))] were synthesized in vacuum-sealed quartz ampules to minimize the loss of Re from volatilization during melting at 1000 °C. The rhenium was found as Re(7+) in all of the glasses as observed by X-ray absorption near-edge structure. The solubility of Re in borosilicate glasses was determined to be ~3000 ppm (by mass) using inductively coupled plasma optical emission spectroscopy. At higher rhenium concentrations, additional rhenium was retained in the glasses as crystalline inclusions of alkali perrhenates detected with X-ray diffraction. Since (99)Tc concentrations in a glass waste form are predicted to be <10 ppm (by mass), these Re results implied that the solubility should not be a limiting factor in processing radioactive wastes, assuming Tc as Tc(7+) and similarities between Re(7+) and Tc(7+) behavior in this glass system.

  1. Rhenium-catalysed dehydrogenative borylation of primary and secondary C(sp3)-H bonds adjacent to a nitrogen atom.

    PubMed

    Murai, Masahito; Omura, Tetsuya; Kuninobu, Yoichiro; Takai, Kazuhiko

    2015-03-18

    Rhenium-catalysed C(sp(3))-H bond borylation in the absence of any oxidant, hydrogen acceptor, or external ligand, with the generation of H2 as the sole byproduct is described. The transformation, which represents a rare example of rhenium-catalysed C(sp(3))-H bond functionalisation, features high atom efficiency and simple reaction conditions.

  2. Corrosion resistance of porous binary tantalum and titanium carbides of various composition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Artyunina, N.P.; Komratov, G.N.; Bolonova, E.A.

    1993-12-20

    Resistance of porous binary tantalum and titanium carbides in solutions of mineral acids and their mixtures, of several organic acids, and of ammonium and potassium hydroxide was studied. It has been shown that as the content of tantalum in a material increases its resistance in solutions of oxidizing acids is improved, but it is reduced in solutions of sulfuric and hydrofluoric acids and also in solutions of potassium hydroxide.

  3. Rhenium-osmium-isotope constraints on the age of iron meteorites

    NASA Technical Reports Server (NTRS)

    Horan, M. F.; Morgan, J. W.; Walker, R. J.; Grossman, J. N.

    1992-01-01

    Rhenium and osmium concentrations and the osmium isotopic compositions of iron meteorites were determined by negative thermal ionization mass spectrometry. Data for the IIA iron meteorites define an isochron with an uncertainty of approximately +/-31 million years for meteorites about 4500 million years old. Although an absolute rhenium-osmium closure age for this iron group cannot be as precisely constrained because of uncertainty in the decay constant of Re-187, an age of 4460 million years ago is the minimum permitted by combined uncertainties. These age constraints imply that the parent body of the IIAB magmatic irons melted and subsequently cooled within 100 million years after the formation of the oldest portions of chondrites. Other iron meteorites plot above the IIA isochron, indicating that the planetary bodies represented by these iron groups may have cooled significantly later than the parent body of the IIA irons.

  4. Rhenium-osmium isotope constraints on the age of iron meteorites

    USGS Publications Warehouse

    Horan, M.F.; Morgan, J.W.; Walker, R.J.; Grossman, J.N.

    1992-01-01

    Rhenium and osmium concentrations and the osmium isotopic compositions of iron meteorites were determined by negative thermal ionization mass spectrometry. Data for the IIA iron meteorites define an isochron with an uncertainty of approximately ??31 million years for meteorites ???4500 million years old. Although an absolute rhenium-osmium closure age for this iron group cannot be as precisely constrained because of uncertainty in the decay constant of 187Re, an age of 4460 million years ago is the minimum permitted by combined uncertainties. These age constraints imply that the parent body of the IIAB magmatic irons melted and subsequently cooled within 100 million years after the formation of the oldest portions of chondrites. Other iron meteorites plot above the IIA isochron, indicating that the planetary bodies represented by these iron groups may have cooled significantly later than the parent body of the IIA irons.

  5. Iridium-Coated Rhenium Radiation-Cooled Rockets

    NASA Technical Reports Server (NTRS)

    Reed, Brian D.; Biaglow, James A.; Schneider, Steven J.

    1997-01-01

    Radiation-cooled rockets are used for a range of low-thrust propulsion functions, including apogee insertion, attitude control, and repositioning of satellites, reaction control of launch vehicles, and primary propulsion for planetary space- craft. The key to high performance and long lifetimes for radiation-cooled rockets is the chamber temperature capability. The material system that is currently used for radiation-cooled rockets, a niobium alloy (C103) with a fused silica coating, has a maximum operating temperature of 1370 C. Temperature limitations of C103 rockets force the use of fuel film cooling, which degrades rocket performance and, in some cases, imposes a plume contamination issue from unburned fuel. A material system composed of a rhenium (Re) substrate and an iridium (Ir) coating has demonstrated operation at high temperatures (2200 C) and for long lifetimes (hours). The added thermal margin afforded by iridium-coated rhenium (Ir/Re) allows reduction or elimination of fuel film cooling. This, in turn, leads to higher performance and cleaner spacecraft environments. There are ongoing government- and industry-sponsored efforts to develop flight Ir/ Re engines, with the primary focus on 440-N, apogee insertion engines. Complementing these Ir/Re engine development efforts is a program to address specific concerns and fundamental characterization of the Ir/Re material system, including (1) development of Ir/Re rocket fabrication methods, (2) establishment of critical Re mechanical properly data, (3) development of reliable joining methods, and (4) characterization of Ir/Re life-limiting mechanisms.

  6. Object kinetic Monte Carlo model for neutron and ion irradiation in tungsten: Impact of transmutation and carbon impurities

    NASA Astrophysics Data System (ADS)

    Castin, N.; Bonny, G.; Bakaev, A.; Ortiz, C. J.; Sand, A. E.; Terentyev, D.

    2018-03-01

    We upgrade our object kinetic Monte Carlo (OKMC) model, aimed at describing the microstructural evolution in tungsten (W) under neutron and ion irradiation. Two main improvements are proposed based on recently published atomistic data: (a) interstitial carbon impurities, and their interaction with radiation-induced defects (point defect clusters and loops), are more accurately parameterized thanks to ab initio findings; (b) W transmutation to rhenium (Re) upon neutron irradiation, impacting the diffusivity of radiation defects, is included, also relying on recent atomistic data. These essential amendments highly improve the portability of our OKMC model, providing a description for the formation of SIA-type loops under different irradiation conditions. The model is applied to simulate neutron and ion irradiation in pure W samples, in a wide range of fluxes and temperatures. We demonstrate that it performs a realistic prediction of the population of TEM-visible voids and loops, as compared to experimental evidence. The impact of the transmutation of W to Re, and of carbon trapping, is assessed.

  7. Technetium and rhenium pentacarbonyl complexes with C₂ and C₁₁ ω-isocyanocarboxylic acid esters.

    PubMed

    Miroslavov, Alexander E; Polotskii, Yuriy S; Gurzhiy, Vladislav V; Ivanov, Alexander Yu; Lumpov, Alexander A; Tyupina, Margarita Yu; Sidorenko, Georgy V; Tolstoy, Peter M; Maltsev, Daniil A; Suglobov, Dmitry N

    2014-08-04

    Technetium(I) and rhenium(I) pentacarbonyl complexes with ethyl 2-isocyanoacetate and methyl 11-isocyanoundecanoate, [M(CO)5(CNCH2COOEt)]ClO4 (M = Tc (1) and Re (2)) and [M(CO)5(CN(CH2)10COOMe)]ClO4 (M = Tc (3) and Re (4)), were prepared and characterized by IR, (1)H NMR, and (13)C{(1)H} NMR spectroscopy. The crystal structures of 1 and 2 were determined using single-crystal X-ray diffraction. The kinetics of thermal decarbonylation of technetium complexes 1 and 3 in ethylene glycol was studied by IR spectroscopy. The rate constants and activation parameters of this reaction were determined and compared with those for [Tc(CO)6](+). It was found that rhenium complexes 2 and 4 were stable with respect to thermal decarbonylation. Histidine challenge reaction of complexes 1 and 2 in phosphate buffer was examined by IR spectroscopy. In the presence of histidine, the rhenium pentacarbonyl isocyanide complex partially decomposes to form an unidentified yellow precipitate. Technetium analogue 1 is more stable under these conditions.

  8. Influence of Wall Material on VUV Emission from Hydrogen Plasma in H- Source

    NASA Astrophysics Data System (ADS)

    Bacal, M.; Glass-Maujean, M.; Ivanov, A. A., Jr; Nishiura, M.; Sasao, M.; Wada, M.

    2002-11-01

    The study of VUV emission from a hydrogen plasma produced in a filament discharge in a magnetic multicusp device showed that the use of tantalum and tungsten filaments leads to significant differences in the spectra. The effect of the filament material is interpreted in terms of the fresh film of this material, deposited on the wall. The synthetic spectrum convoluted with our apparatus function for the conditions of this experiment (gas temperature 500 K, electron energy 100 eV) agrees roughly well with the spectrum obtained with tungsten covered walls, but not with the spectrum obtained with tantalum covered walls. We show that in the case of tungsten covered walls the E-V singlet excitation is indeed a two-step Franck-Condon transition, going through either B or C state from an initial H2 molecule with v"=0, added to a Franck-Condon transition to highly excited states cascading to the B or C states. The excitation process to high v" states in the case of tantalum covered walls is a three step process, in which the first step is the formation by recombinative desorption on the wall of a vibrationally excited molecule with v"=1 or 2, which serves as the initial molecule in the subsequent E-V excitation through the B state. The results indicate a larger recombination coefficient of atoms on the tantalum covered wall.

  9. Mineral resource of the month: tungsten

    USGS Publications Warehouse

    Shedd, Kim B.

    2012-01-01

    The article offers information on tungsten. It says that tungsten is a metal found in chemical compounds such as in the scheelite and ore minerals wolframite. It states that tungsten has the highest melting point and it forms a compound as hard as diamond when combined with carbon. It states that tungsten can be used as a substitute for lead in fishing weights, ammunition, and hunting shot. Moreover, China started to export tungsten materials and products instead of tungsten raw materials.

  10. [Short-term curative effects of Tantalum rod treatment in early avascular necrosis].

    PubMed

    Ye, Fu-Sheng; Ni, Zhe-Ji; Chu, Xiao-Bing; He, Bang-Jian; Li, Ju; Tong, Pei-Jian

    2013-08-01

    To explore the recent clinical curative effect of Tantalum rod in treating the early avascular necrosis. From January 2008 to November 2008, the 25 patients (39 hips) with early avascular necrosis accepted tantalum rod placement and included 9 males (11 hips) and 16 females (28 hips) with an average age of 37 years old ranging from 18 to 74 years old. Four patients (6 hips) caused by Alcoholic, 6 patients (8 hips) by hormone, 2 cases (2 hips) by traumatic, 13 cases (23 hips) by idiopathic. Steinberg preoperative stage involved 7 hips in period I, 24 hips in period II, 8 hips in period III. Curative effect analysis included preoperative and postoperative Harris score, radiographic changes and hip replacement for follow-up to accept the end of the femoral head survival rate. All patients were followed up for 6 to 47 months (averaged 37.4 months). All 12 hips imaging appeard progress,including tantalum rod exit in 1 hip, hip hemiarthroplasty collapse in 3 hips, the area increased to avascular necrosis in 8 hips. Six hips accepted total hip replacement, including imaging progress in 5 hips (41.7%, 5/12), no imaging progress in 1 hip (3.7%,1/27). All hips' Kaplan-Meier survival curves showed 6-month survival rate was (97.4 +/- 2.5)% after tantalum stick insertion, 1-year survival rate was (94.7 +/- 3.6), and 2-year survival rate was (88.6 +/- 5.4)%, 3-year survival rate was (72.5 +/- 11.2). It is effective for treatment of avascular necrosis of femoral head in Steinberg I and II by Tantalum rod, and it can effectively relieve femoral head replacement time.

  11. The effects of argon ion bombardment on the corrosion resistance of tantalum

    NASA Astrophysics Data System (ADS)

    Ramezani, A. H.; Sari, A. H.; Shokouhy, A.

    2017-02-01

    Application of ion beam has been widely used as a surface modification method to improve surface properties. This paper investigates the effect of argon ion implantation on surface structure as well as resistance against tantalum corrosion. In this experiment, argon ions with energy of 30 keV and in doses of 1 × 1017-10 × 1017 ions/cm2 were used. The surface bombardment with inert gases mainly produces modified topography and morphology of the surface. Atomic Force Microscopy was also used to patterned the roughness variations prior to and after the implantation phase. Additionally, the corrosion investigation apparatus wear was applied to compare resistance against tantalum corrosion both before and after ion implantation. The results show that argon ion implantation has a substantial impact on increasing resistance against tantalum corrosion. After the corrosion test, scanning electron microscopy (SEM) analyzed the samples' surface morphologies. In addition, the elemental composition is characterized by energy-dispersive X-ray (EDX) analysis. The purpose of this paper was to obtain the perfect condition for the formation of tantalum corrosion resistance. In order to evaluate the effect of the ion implantation on the corrosion behavior, potentiodynamic tests were performed. The results show that the corrosion resistance of the samples strongly depends on the implantation doses.

  12. Intracellular distribution and stability of a luminescent rhenium(i) tricarbonyl tetrazolato complex using epifluorescence microscopy in conjunction with X-ray fluorescence imaging.

    PubMed

    Wedding, J L; Harris, H H; Bader, C A; Plush, S E; Mak, R; Massi, M; Brooks, D A; Lai, B; Vogt, S; Werrett, M V; Simpson, P V; Skelton, B W; Stagni, S

    2017-04-19

    Optical epifluorescence microscopy was used in conjunction with X-ray fluorescence imaging to monitor the stability and intracellular distribution of the luminescent rhenium(i) complex fac-[Re(CO) 3 (phen)L], where phen = 1,10-phenathroline and L = 5-(4-iodophenyl)tetrazolato, in 22Rv1 cells. The rhenium complex showed no signs of ancillary ligand dissociation, a conclusion based on data obtained via X-ray fluorescence imaging aligning iodine and rhenium distributions. A diffuse reticular localisation was detected for the complex in the nuclear/perinuclear region of cells, by either optical or X-ray fluorescence imaging techniques. X-ray fluorescence also showed that the rhenium complex disrupted the homeostasis of some biologically relevant elements, such as chlorine, potassium and zinc.

  13. Development of quantitative atomic modeling for tungsten transport study using LHD plasma with tungsten pellet injection

    NASA Astrophysics Data System (ADS)

    Murakami, I.; Sakaue, H. A.; Suzuki, C.; Kato, D.; Goto, M.; Tamura, N.; Sudo, S.; Morita, S.

    2015-09-01

    Quantitative tungsten study with reliable atomic modeling is important for successful achievement of ITER and fusion reactors. We have developed tungsten atomic modeling for understanding the tungsten behavior in fusion plasmas. The modeling is applied to the analysis of tungsten spectra observed from plasmas of the large helical device (LHD) with tungsten pellet injection. We found that extreme ultraviolet (EUV) emission of W24+ to W33+ ions at 1.5-3.5 nm are sensitive to electron temperature and useful to examine the tungsten behavior in edge plasmas. We can reproduce measured EUV spectra at 1.5-3.5 nm by calculated spectra with the tungsten atomic model and obtain charge state distributions of tungsten ions in LHD plasmas at different temperatures around 1 keV. Our model is applied to calculate the unresolved transition array (UTA) seen at 4.5-7 nm tungsten spectra. We analyze the effect of configuration interaction on population kinetics related to the UTA structure in detail and find the importance of two-electron-one-photon transitions between 4p54dn+1- 4p64dn-14f. Radiation power rate of tungsten due to line emissions is also estimated with the model and is consistent with other models within factor 2.

  14. An exploration in mineral supply chain mapping using tantalum as an example

    USGS Publications Warehouse

    Soto-Viruet, Yadira; Menzie, W. David; Papp, John F.; Yager, Thomas R.

    2013-01-01

    This report uses the supply chain of tantalum (Ta) to investigate the complexity of mineral and metal supply chains in general and show how they can be mapped. A supply chain is made up of all the manufacturers, suppliers, information networks, and so forth, that provide the materials and parts that go into making up a final product. The mineral portion of the supply chain begins with mineral material in the ground (the ore deposit); extends through a series of processes that include mining, beneficiation, processing (smelting and refining), semimanufacture, and manufacture; and continues through transformation of the mineral ore into concentrates, refined mineral commodities, intermediate forms (such as metals and alloys), component parts, and, finally, complex products. This study analyses the supply chain of tantalum beginning with minerals in the ground to many of the final goods that contain tantalum.

  15. STUDIES ON ANALYTICAL METHODS FOR TRACE ELEMENTS IN METALS BY USING RADIOACTIVE ISOTOPE. III. DETERMINATION OF TANTALUM BY MEANS OF ISOTOPE DILUTION METHOD

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Amano, H.

    1959-10-01

    The determination of tantalum by the isotope dilution method in the presence of niobium was investigated by the use of the radioisotope Ta/sup 185/. Tantalum was separated from niobium as tantalum-tannin precipitate under the optimum conditions of a pH of 1.9 to 2.5 and a tantalum/niobium ratio of up to 1/ 50. If niobium was present in amounts 100 times or more that of tantalum, reprecipitation was needed. The reciprocal of the specific activity of tanthlum pentoxide precipitate was in a linear relation to the change in the amount of tantalum added. The recommended method gave an accurate result inmore » the determination of tantalum in steal. (auth)« less

  16. Tantalum capacitor behavior under fast transient overvoltages. [circuit protection against lightning

    NASA Technical Reports Server (NTRS)

    Zill, J. A.; Castle, K. D.

    1974-01-01

    Tantalum capacitors were tested to determine failure time when subjected to short-duration, high-voltage surges caused by lightning strikes. Lightning is of concern to NASA because of possible damage to critical spacecraft circuits. The test was designed to determine the minimum time for tantalum capacitor failure and the amount of overvoltage a capacitor could survive, without permanent damage, in 100 microseconds. All tested exhibited good recovery from the transient one-shot pulses with no failure at any voltage, forward or reverse, in less than 25 microseconds.

  17. Vacuum Plasma Spray (VPS) Forming of Solar Thermal Propulsion Components Using Refractory Metals

    NASA Technical Reports Server (NTRS)

    Zimmerman, Frank R.; Hissam, David A.; Gerrish, Harold P.; Davis, William M.

    1999-01-01

    The Thermal Spray Laboratory at NASA's Marshall Space Flight Center has developed and demonstrated a fabrication technique using Vacuum Plasma Spray (VPS) to form structural components from a tungsten/rhenium alloy. The components were assembled into an absorber cavity for a fully-functioning, ground test unit of a solar then-nal propulsion engine. The VPS process deposits refractory metal onto a graphite mandrel of the desired shape. The mandrel acts as a male mold, forming the required contour and dimensions of the inside surface of the deposit. Tungsten and tungsten/25% rhenium were used in the development and production of several absorber cavity components. These materials were selected for their high temperature (greater than 25000 C [greater than 4530 F]) strength. Each absorber cavity comprises 3 coaxial shells with two, double-helical flow passages through which the propellant gas flows. This paper describes the processing techniques, design considerations, and process development associated with forming these engine components.

  18. Vacuum Plasma Spray (VPS) Forming of Solar Thermal Propulsion Components Using Refractory Metals

    NASA Technical Reports Server (NTRS)

    Zimmerman, Frank; Gerish, Harold; Davis, William; Hissam, D. Andy

    1998-01-01

    The Thermal Spray Laboratory at NASA's Marshall Space Flight Center has developed and demonstrated a fabrication technique using Vacuum Plasma Spray (VPS) to form structural components from a tungsten/rhenium alloy. The components were assembled into an absorption cavity for a fully-functioning, ground test unit of a solar thermal propulsion engine. The VPS process deposits refractory metal onto a graphite mandrel of the desired shape. The mandrel acts as a male mold, forming the required contour and dimensions of the inside surface of the deposit. Tungsten and tungsten/25% rhenium were used in the development and production of several absorber cavity components. These materials were selected for their high temperature (less than 2500 C) strength. Each absorber cavity comprises 3 coaxial shells with two, double-helical flow passages through which the propellant gas flows. This paper describes the processing techniques, design considerations, and process development associated with forming these engine components.

  19. SU-E-J-201: Position Verification in Breast Cancer Radiotherapy Using Tantalum Clips in the Lumpectomy Cavity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Santvoort, J van; Van der Drift, M; Kuipers, J

    2014-06-01

    Purpose: To find out whether tantalum surgical clips can be used for online position verification in treatment of the lumpectomy cavity (LC) in breast cancer patients. Tantalum is a high density metal that could be visible on Electronic Portal Images (EPIs) and be an affordable alternative to gold markers. Clips are considered more representative for the LC position than nearby bony structures. Methods: In twelve patients the surgeon had placed 2 to 5 tantalum clips in the LC. The AP and lateral fields used for portal imaging, were adapted. In doing so, both bony structures and tantalum clips were visiblemore » on EPIs. The following analyses were performed:1. Image degradation, with respect to delineating the CTV, of the axial CT slices by artefacts because of the tantalum clips was evaluated by a radiation oncologist;2. The visibility of the tantalum clips on the EPIs was evaluated by four radiation therapists (RTTs);3. Bony anatomy and tantalum clip matches were performed on the same images independently by two observers. Results: 1. Delineation of the CTV by the radiation oncologist was not hampered by CT image artefacts because of the clips.2. The mean score for visibility of the clips on the EPIs, analysed by the four RTTs, was 5.6 on a scale of 10 (range 3.9 – 8.0).3. In total 12 patients with 16 fractions each were analysed. The differences between clip match and bone match are significant with a mean vector length of 5.2 mm (SD 1.9 mm) for the difference. Conclusion: Results of matches on tantalum clips as compared to matches on bony structures differ substantially. Therefore clip matches can result in smaller CTV to PTV margins than bone matches. Visibility of the clips on EPIs is sufficient, so they can be an alternative to gold markers.« less

  20. Optical Property Enhancement and Durability Evaluation of Heat Receiver Aperture Shield Materials

    NASA Technical Reports Server (NTRS)

    deGroh, Kim K.; Jaworske, Donald A.; Smith, Daniela C.

    1998-01-01

    Under the Solar Dynamic Flight Demonstration (SDFD) program, NASA Lewis Research Center worked with AlliedSignal Aerospace, the heat receiver contractor, on the development, characterization and durability testing of refractory metals to obtain appropriate optical and thermal properties for the SDFD heat receiver aperture shield. Molybdenum and tungsten foils were grit-blasted using silicon carbide or alumina grit under various grit-blasting conditions for optical property enhancement. Black rhenium coated tungsten foil was also evaluated. Tungsten, black rhenium-coated tungsten, and grit-blasted tungsten screens of various mesh sizes were placed over the pristine and grit-blasted foils for optical property characterization. Grit-blasting was found to be effective in decreasing the specular reflectance and the absorptance/emittance ratio of the refractory foils. The placement of a screen further enhanced these optical properties, with a grit-blasted screen over a grit-blasted foil producing the best results. Based on the optical property enhancement results, samples were tested for atomic oxygen and vacuum heat treatment durability. Grit-blasted (Al2O3 grit) 2 mil tungsten foil was chosen for the exterior layer of the SDFD heat receiver aperture shield. A 0.007 in. wire diameter, 20 x 20 mesh tungsten screen was chosen to cover the tungsten foil. Based on these test results, a heat receiver aperture shield test unit has been built with the screen covered grit-blast tungsten foil exterior layers. The aperture shield was tested and verified the thermal and structural durability of the outer foil layers during an off-pointing period.

  1. Testing of Wrought Iridium/Chemical Vapor Deposition Rhenium Rocket

    NASA Technical Reports Server (NTRS)

    Reed, Brian D.; Schneider, Steven J.

    1996-01-01

    A 22-N class, iridium/rhenium (Ir/Re) rocket chamber, composed of a thick (418 miocrometer) wrought iridium (Ir) liner and a rhenium substrate deposited via chemical vapor deposition, was tested over an extended period on gaseous oxygen/gaseous hydrogen (GO2/GH2) propellants. The test conditions were designed to produce species concentrations similar to those expected in an Earth-storable propellant combustion environment. Temperatures attained in testing were significantly higher than those expected with Earth-storable propellants, both because of the inherently higher combustion temperature of GO2/GH2 propellants and because the exterior surface of the rocket was not treated with a high-emissivity coating that would be applied to flight class rockets. Thus the test conditions were thought to represent a more severe case than for typical operational applications. The chamber successfully completed testing (over 11 hr accumulated in 44 firings), and post-test inspections showed little degradation of the Ir liner. The results indicate that use of a thick, wrought Ir liner is a viable alternative to the Ir coatings currently used for Ir/Re rockets.

  2. The application of porous tantalum cylinder to the repair of comminuted bone defects: a study of rabbit firearm injuries

    PubMed Central

    Ren, Bo; Zhai, Zhenbo; Guo, Kai; Liu, Yanpu; Hou, Weihuan; Zhu, Qingsheng; Zhu, Jinyu

    2015-01-01

    The aim of this study is to investigate the effect of porous tantalum material in repair tibial defects caused by firearm injuries in a rabbit model. A multifunctional biological impact machine was used to establish a rabbit tibial defect model of firearm injury. Porous tantalum rods were processed into a hollow cylinder. Kirschner wires were used for intramedullary fixation. We compared the differences of the bone ingrowth of the porous tantalum material by gross observations, X-rays and histological evaluations. The radiographic observations revealed that fibrous tissue covered the material surface after 4 weeks, and periosteal reactions and new bone callus extending materials appeared after 8 weeks. After 16 weeks, the calluses of the firearm injury group were completely wrapped around a porous tantalum material. The group with the highest Lane-Sandhu X-rays cores was the firearm injury and tantalum implant group, and the blank control group exhibited the lowest scores. The histological evaluations revealed that the presence of new bone around the biomaterial had grown into the porous tantalum. By the 16th week, the areas of bone tissue of the firearm injury group was significant higher than that of non-firearm injury group (P<0.05). The comminuted fractures treated with tantalum cylinders exhibited greater bone ingrowth in the firearm injury group. In conditions of firearm injuries, the porous tantalum biomaterial exhibited bone ingrowth that was beneficial to the treatment of bone defects. PMID:26131078

  3. New Structural Materials

    DTIC Science & Technology

    1989-03-25

    3887) Tantalum Carbide (TaC) 4150 (3877) Niobium Carbide 4023 (3750) Carbon (Graphite) 3970 (3697) Zirconium Carbide 3805 (3532) Tungsten 3643 3643...process. Some fibers, especially those made of tungsten , silicon carbide, and zirconia, survived the reaction conditions. However, the ceramic bodies...displayed cracks and voids. Examination by SEM of cross’sections of the reacted parts made with tungsten fibers disclosed the presence of "whiskers

  4. Formation of novel transition metal hydride complexes with ninefold hydrogen coordination

    PubMed Central

    Takagi, Shigeyuki; Iijima, Yuki; Sato, Toyoto; Saitoh, Hiroyuki; Ikeda, Kazutaka; Otomo, Toshiya; Miwa, Kazutoshi; Ikeshoji, Tamio; Orimo, Shin-ichi

    2017-01-01

    Ninefold coordination of hydrogen is very rare, and has been observed in two different hydride complexes comprising rhenium and technetium. Herein, based on a theoretical/experimental approach, we present evidence for the formation of ninefold H- coordination hydride complexes of molybdenum ([MoH9]3−), tungsten ([WH9]3−), niobium ([NbH9]4−) and tantalum ([TaH9]4−) in novel complex transition-metal hydrides, Li5MoH11, Li5WH11, Li6NbH11 and Li6TaH11, respectively. All of the synthesized materials are insulated with band gaps of approximately 4 eV, but contain a sufficient amount of hydrogen to cause the H 1s-derived states to reach the Fermi level. Such hydrogen-rich materials might be of interest for high-critical-temperature superconductivity if the gaps close under compression. Furthermore, the hydride complexes exhibit significant rotational motions associated with anharmonic librations at room temperature, which are often discussed in relation to the translational diffusion of cations in alkali-metal dodecahydro-closo-dodecaborates and strongly point to the emergence of a fast lithium conduction even at room temperature. PMID:28287143

  5. Photochemical preparation of pyrimidin-2(1H)-ones by rhenium(I) complexes with visible light.

    PubMed

    Liu, Qiang; Li, Ya-Nan; Zhang, Hui-Hui; Chen, Bin; Tung, Chen-Ho; Wu, Li-Zhu

    2011-03-04

    With visible light irradiation (λ > 400 nm) of rhenium(I) complexes (P1-P4), a photochemical conversion from 3,4-dihydropyrimidin-2(1H)-ones to pyrimidin-2(1H)-ones at room temperature has been achieved with good to excellent yields in CH(3)CN-H(2)O solution containing CCl(4) and K(2)CO(3). Luminescence quenching study and product analysis reveal that photoinduced electron transfer between rhenium(I) complex P and 3,4-dihydropyrimidin-2(1H)-ones plays an important role in the initial event.

  6. Polarographic determination of tungsten in rocks

    USGS Publications Warehouse

    Reichen, L.E.

    1954-01-01

    This work was undertaken to develop a simpler and faster method than the classical gravimetric procedure for the determination of tungsten in rocks and ores. A new polarographic wave of tungsten is obtained in a supporting electrolyte of dilute hydrochloric acid containing tartrate ion. This permits the determination of tungsten both rapidly and accurately. No precipitation of the tungsten is necessary, and only the iron need be separated from the tungsten. The accuracy is within the limits of a polarographic procedure; comparison of polarographic and gravimetric results is given. The method reduces appreciably the amount of time ordinarily consumed in determination of tungsten.

  7. Global Tungsten Demand and Supply Forecast

    NASA Astrophysics Data System (ADS)

    Dvořáček, Jaroslav; Sousedíková, Radmila; Vrátný, Tomáš; Jureková, Zdenka

    2017-03-01

    An estimate of the world tungsten demand and supply until 2018 has been made. The figures were obtained by extrapolating from past trends of tungsten production from1905, and its demand from 1964. In addition, estimate suggestions of major production and investment companies were taken into account with regard to implementations of new projects for mining of tungsten or possible termination of its standing extraction. It can be assumed that tungsten supply will match demand by 2018. This suggestion is conditioned by successful implementation of new tungsten extraction projects, and full application of tungsten recycling methods.

  8. New insights into hydrosilylation of unsaturated carbon-heteroatom (C═O, C═N) bonds by rhenium(V)-dioxo complexes.

    PubMed

    Huang, Liangfang; Wang, Wenmin; Wei, Xiaoqin; Wei, Haiyan

    2015-04-23

    The hydrosilylation of unsaturated carbon-heteroatom (C═O, C═N) bonds catalyzed by high-valent rhenium(V)-dioxo complex ReO2I(PPh3)2 (1) were studied computationally to determine the underlying mechanism. Our calculations revealed that the ionic outer-sphere pathway in which the organic substrate attacks the Si center in an η(1)-silane rhenium adduct to prompt the heterolytic cleavage of the Si-H bond is the most energetically favorable process for rhenium(V)-dioxo complex 1 catalyzed hydrosilylation of imines. The activation energy of the turnover-limiting step was calculated to be 22.8 kcal/mol with phenylmethanimine. This value is energetically more favorable than the [2 + 2] addition pathway by as much as 10.0 kcal/mol. Moreover, the ionic outer-sphere pathway competes with the [2 + 2] addition mechanism for rhenium(V)-dioxo complex 1 catalyzing the hydrosilylation of carbonyl compounds. Furthermore, the electron-donating group on the organic substrates would induce a better activity favoring the ionic outer-sphere mechanistic pathway. These findings highlight the unique features of high-valent transition-metal complexes as Lewis acids in activating the Si-H bond and catalyzing the reduction reactions.

  9. High-acoustic-impedance tantalum oxide layers for insulating acoustic reflectors.

    PubMed

    Capilla, Jose; Olivares, Jimena; Clement, Marta; Sangrador, Jesús; Iborra, Enrique; Devos, Arnaud

    2012-03-01

    This work describes the assessment of the acoustic properties of sputtered tantalum oxide films intended for use as high-impedance films of acoustic reflectors for solidly mounted resonators operating in the gigahertz frequency range. The films are grown by sputtering a metallic tantalum target under different oxygen and argon gas mixtures, total pressures, pulsed dc powers, and substrate biases. The structural properties of the films are assessed through infrared absorption spectroscopy and X-ray diffraction measurements. Their acoustic impedance is assessed by deriving the mass density from X-ray reflectometry measurements and the acoustic velocity from picosecond acoustic spectroscopy and the analysis of the frequency response of the test resonators.

  10. High strength uranium-tungsten alloy process

    DOEpatents

    Dunn, Paul S.; Sheinberg, Haskell; Hogan, Billy M.; Lewis, Homer D.; Dickinson, James M.

    1990-01-01

    Alloys of uranium and tungsten and a method for making the alloys. The amount of tungsten present in the alloys is from about 4 wt % to about 35 wt %. Tungsten particles are dispersed throughout the uranium and a small amount of tungsten is dissolved in the uranium.

  11. Reactions of technetium hexafluoride with nitric acid, nitrosyl fluoride, and nitryl fluoride

    NASA Technical Reports Server (NTRS)

    Holloway, J. H.; Selig, H.

    1970-01-01

    Stoichiometry of technetium hexafluoride reactions is studied. Magnetic properties and infrared spectra of reaction products are studied and compared with those of analogous complexes of the hexafluorides of tungsten, rhenium, and osmium.

  12. Effect of Reverse Bias Stress on Leakage Currents and Breakdown Voltages of Solid Tantalum Capacitors

    NASA Technical Reports Server (NTRS)

    Teverovsky, Alexander A.

    2011-01-01

    The majority of solid tantalum capacitors are produced by high-temperature sintering of a fine tantalum powder around a tantalum wire followed by electrolytic anodization that forms a thin amorphous Ta2O5 dielectric layer and pyrolysis of manganese nitrite on the oxide to create a conductive manganese dioxide electrode. A contact to tantalum wire is used as anode terminal and to the manganese layer as a cathode terminal of the device. This process results in formation of an asymmetric Ta -- Ta2O5 -- MnO2 capacitor that has different characteristics at forward (positive bias applied to tantalum) and reverse (positive bias applied to manganese cathode) voltages. Reverse bias currents might be several orders of magnitude larger than forward leakage currents so I-V characteristics of tantalum capacitors resemble characteristics of semiconductor rectifiers. Asymmetric I-V characteristics of Ta -- anodic Ta2O5 systems have been observed at different top electrode materials including metals, electrolytes, conductive polymers, and manganese oxide thus indicating that this phenomenon is likely related to the specifics of the Ta -- Ta2O5 interface. There have been multiple attempts to explain rectifying characteristics of capacitors employing anodic tantalum pentoxide dielectrics. A brief review of works related to reverse bias (RB) behavior of tantalum capacitors shows that the mechanism of conduction in Ta -- Ta2O5 systems is still not clear and more testing and analysis is necessary to understand the processes involved. If tantalum capacitors behave just as rectifiers, then the assessment of the safe reverse bias operating conditions would be a relatively simple task. Unfortunately, these parts can degrade with time under reverse bias significantly, and this further complicates analysis of the I-V characteristics and establishing safe operating areas of the parts. On other hand, time dependence of reverse currents might provide additional information for investigation of

  13. Process Of Bonding Copper And Tungsten

    DOEpatents

    Slattery, Kevin T.; Driemeyer, Daniel E.

    1999-11-23

    Process for bonding a copper substrate to a tungsten substrate by providing a thin metallic adhesion promoting film bonded to a tungsten substrate and a functionally graded material (FGM) interlayer bonding the thin metallic adhesion promoting film to the copper substrate. The FGM interlayer is formed by thermal plasma spraying mixtures of copper powder and tungsten powder in a varied blending ratio such that the blending ratio of the copper powder and the tungsten powder that is fed to a plasma torch is intermittently adjusted to provide progressively higher copper content/tungsten content, by volume, ratio values in the interlayer in a lineal direction extending from the tungsten substrate towards the copper substrate. The resulting copper to tungsten joint well accommodates the difference in the coefficient of thermal expansion of the materials.

  14. Deposition and characterization of magnetron sputtered bcc tantalum

    NASA Astrophysics Data System (ADS)

    Patel, Anamika

    The goal of this thesis was to provide scientific and technical research results for developing and characterizing tantalum (Ta) coatings on steel substrates deposited by DC magnetron sputtering. Deposition of tantalum on steel is of special interest for the protection it offers to surfaces, e.g. the surfaces of gun barrels against the erosive wear of hot propellant gases and the mechanical damage caused by the motion of launching projectiles. Electro-plated chromium is presently most commonly used for this purpose; however, it is considered to be carcinogenic in its hexavalent form. Tantalum is being investigated as non-toxic alternative to chromium and also because of its superior protective properties in these extreme environments. DC magnetron sputtering was chosen for this investigation of tantalum coatings on steel substrates because it is a versatile industrial proven process for deposition of metals. Sputter deposited Ta films can have two crystallographic structures: (1) body center cubic (bcc) phase, characterized by high toughness and high ductility and (2) a tetragonal beta phase characterized by brittleness and a tendency to fail under stress. It was found in this work that the bcc Ta coatings on steel can be obtained reliably by either of two methods: (1) depositing Ta on a submicron, stoichiometric TaN seed layer reactively sputtered on unheated steel and (2) depositing Ta directly on steel heated above a critical temperature. For argon sputtering gas this critical temperature was found to be 400°C at a pressure of 5 mtorr. With the heavier krypton gas, this critical temperature is reduced to 350°C. X-ray diffraction (XRD) was used to investigate the structure of tantalum and nitride films, and the composition of the nitride films was measured by nuclear reaction analyses (NRA), which were used to study in detail the enhancement of the bcc phase of Ta on steel. The scratch adhesion tests performed with a diamond hemispherical tip of radius 200 mum

  15. Process Of Bonding Copper And Tungsten

    DOEpatents

    Slattery, Kevin T.; Driemeyer, Daniel E.; Davis, John W.

    2000-07-18

    Process for bonding a copper substrate to a tungsten substrate by providing a thin metallic adhesion promoting film bonded to a tungsten substrate and a functionally graded material (FGM) interlayer bonding the thin metallic adhesion promoting film to the copper substrate. The FGM interlayer is formed by sintering a stack of individual copper and tungsten powder blend layers having progressively higher copper content/tungsten content, by volume, ratio values in successive powder blend layers in a lineal direction extending from the tungsten substrate towards the copper substrate. The resulting copper to tungsten joint well accommodates the difference in the coefficient of thermal expansion of the materials.

  16. Conducting metal oxide and metal nitride nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DiSalvo, Jr., Francis J.; Subban, Chinmayee V.

    Conducting metal oxide and nitride nanoparticles that can be used in fuel cell applications. The metal oxide nanoparticles are comprised of for example, titanium, niobium, tantalum, tungsten and combinations thereof. The metal nitride nanoparticles are comprised of, for example, titanium, niobium, tantalum, tungsten, zirconium, and combinations thereof. The nanoparticles can be sintered to provide conducting porous agglomerates of the nanoparticles which can be used as a catalyst support in fuel cell applications. Further, platinum nanoparticles, for example, can be deposited on the agglomerates to provide a material that can be used as both an anode and a cathode catalyst supportmore » in a fuel cell.« less

  17. Mineral resource of the month: tantalum

    USGS Publications Warehouse

    Cunningham, Larry D.

    2004-01-01

    Tantalum is a metal that is critical to the United States because of its defense-related applications in aircraft, missiles and radio communications. It is ductile, easily fabricated, highly resistant to corrosion by acids, a good conductor of heat and electricity, and has a high melting point. Tantalum’s first commercial usage was as filament material in incandescent electric lamps in the early 1900s.

  18. Tantalum coating of porous carbon scaffold supplemented with autologous bone marrow stromal stem cells for bone regeneration in vitro and in vivo.

    PubMed

    Wei, Xiaowei; Zhao, Dewei; Wang, Benjie; Wang, Wei; Kang, Kai; Xie, Hui; Liu, Baoyi; Zhang, Xiuzhi; Zhang, Jinsong; Yang, Zhenming

    2016-03-01

    Porous tantalum metal with low elastic modulus is similar to cancellous bone. Reticulated vitreous carbon (RVC) can provide three-dimensional pore structure and serves as the ideal scaffold of tantalum coating. In this study, the biocompatibility of domestic porous tantalum was first successfully tested with bone marrow stromal stem cells (BMSCs) in vitro and for bone tissue repair in vivo. We evaluated cytotoxicity of RVC scaffold and tantalum coating using BMSCs. The morphology, adhesion, and proliferation of BMSCs were observed via laser scanning confocal microscope and scanning electron microscopy. In addition, porous tantalum rods with or without autologous BMSCs were implanted on hind legs in dogs, respectively. The osteogenic potential was observed by hard tissue slice examination. At three weeks and six weeks following implantation, new osteoblasts and new bone were observed at the tantalum-host bone interface and pores. At 12 weeks postporous tantalum with autologous BMSCs implantation, regenerated trabecular equivalent to mature bone was found in the pore of tantalum rods. Our results suggested that domestic porous tantalum had excellent biocompatibility and could promote new bone formation in vivo. Meanwhile, the osteogenesis of porous tantalum associated with autologous BMSCs was more excellent than only tantalum implantation. Future clinical studies are warranted to verify the clinical efficacy of combined implantation of this domestic porous tantalum associated with autologous BMSCs implantation and compare their efficacy with conventional autologous bone grafting carrying blood vessel in patients needing bone repairing. © 2016 by the Society for Experimental Biology and Medicine.

  19. Tensile properties from room temperature to 1315 C of tungsten-lined tantalum-alloy (T-111) tubing fabricated by hot isostatic pressing

    NASA Technical Reports Server (NTRS)

    Buzzard, R. J.; Metroka, R. R.

    1974-01-01

    The effects were studied of a thin tungsten liner on the tensile properties of T-111 tubing considered for fuel cladding in a space power nuclear reactor concept. The results indicate that the metallurgically bonded liner had no appreciable effects on the properties of the T-111 tubing. A hot isostatic pressing method used to apply the liners is described along with a means for overcoming the possible embrittling effects of hydrogen contamination.

  20. Presence of Tungsten-Containing Fibers in Tungsten Refining and Manufacturing Processes

    PubMed Central

    Mckernan, John L.; Toraason, Mark A.; Fernback, Joseph E.; Petersen, Martin R.

    2009-01-01

    In tungsten refining and manufacturing processes, a series of tungsten oxides are typically formed as intermediates in the production of tungsten powder. The present study was conducted to characterize airborne tungsten-containing fiber dimensions, elemental composition and concentrations in the US tungsten refining and manufacturing industry. During the course of normal employee work activities, seven personal breathing zone and 62 area air samples were collected and analyzed using National Institute for Occupational Safety and Health (NIOSH) fiber sampling and counting methods to determine dimensions, composition and airborne concentrations of fibers. Mixed models were used to identify relationships between potential determinants and airborne fiber concentrations. Results from transmission electron microscopy analyses indicated that airborne fibers with length >0.5 μm, diameter >0.01 μm and aspect ratios ≥3:1 were present on 35 of the 69 air samples collected. Overall, the airborne fibers detected had a geometric mean length ≈3 μm and diameter ≈0.3 μm. Ninety-seven percent of the airborne fibers identified were in the thoracic fraction (i.e. aerodynamic diameter ≤ 10 μm). Energy dispersive X-ray spectrometry results indicated that airborne fibers prior to the carburization process consisted primarily of tungsten and oxygen, with other elements being detected in trace quantities. Based on NIOSH fiber counting ‘B’ rules (length > 5 μm, diameter < 3 μm and aspect ratio ≥ 5:1), airborne fiber concentrations ranged from below the limit of detection to 0.085 fibers cm−3, with calcining being associated with the highest airborne concentrations. The mixed model procedure indicated that process temperature had a marginally significant relationship to airborne fiber concentration. This finding was expected since heated processes such as calcining created the highest airborne fiber concentrations. The finding of airborne tungsten-containing fibers in

  1. Tantalum coating of porous carbon scaffold supplemented with autologous bone marrow stromal stem cells for bone regeneration in vitro and in vivo

    PubMed Central

    Wei, Xiaowei; Wang, Benjie; Wang, Wei; Kang, Kai; Xie, Hui; Liu, Baoyi; Zhang, Xiuzhi; Zhang, Jinsong; Yang, Zhenming

    2016-01-01

    Porous tantalum metal with low elastic modulus is similar to cancellous bone. Reticulated vitreous carbon (RVC) can provide three-dimensional pore structure and serves as the ideal scaffold of tantalum coating. In this study, the biocompatibility of domestic porous tantalum was first successfully tested with bone marrow stromal stem cells (BMSCs) in vitro and for bone tissue repair in vivo. We evaluated cytotoxicity of RVC scaffold and tantalum coating using BMSCs. The morphology, adhesion, and proliferation of BMSCs were observed via laser scanning confocal microscope and scanning electron microscopy. In addition, porous tantalum rods with or without autologous BMSCs were implanted on hind legs in dogs, respectively. The osteogenic potential was observed by hard tissue slice examination. At three weeks and six weeks following implantation, new osteoblasts and new bone were observed at the tantalum–host bone interface and pores. At 12 weeks postporous tantalum with autologous BMSCs implantation, regenerated trabecular equivalent to mature bone was found in the pore of tantalum rods. Our results suggested that domestic porous tantalum had excellent biocompatibility and could promote new bone formation in vivo. Meanwhile, the osteogenesis of porous tantalum associated with autologous BMSCs was more excellent than only tantalum implantation. Future clinical studies are warranted to verify the clinical efficacy of combined implantation of this domestic porous tantalum associated with autologous BMSCs implantation and compare their efficacy with conventional autologous bone grafting carrying blood vessel in patients needing bone repairing. PMID:26843518

  2. Antimicrobial activity of tantalum oxide coatings decorated with Ag nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cao, Huiliang, E-mail: hlc@mail.sic.ac.cn; Meng, Fanhao; Liu, Xuanyong, E-mail: xyliu@mail.sic.ac.cn

    Silver plasma immersion ion implantation was used to decorate silver nanoparticles (Ag NPs) on tantalum oxide (TO) coatings. The coatings acted against bacterial cells (Staphylococcus epidermidis) in the dark by disrupting their integrity. The action was independent of silver release and likely driven by the electron storage capability of the Schottky barriers established at the interfaces between Ag NPs and the TO support. Moreover, no apparent side effect on the adhesion and differentiation of rat bone mesenchymal stem cells was detected when using Ag NPs-modified TO coatings. These results demonstrate that decoration of tantalum oxide using Ag NPs could bemore » a promising procedure for improving the antibacterial properties for orthopedic and dental implants.« less

  3. Interaction of tungsten with tungsten carbide in a copper melt

    NASA Astrophysics Data System (ADS)

    Bodrova, L. E.; Goida, E. Yu.; Pastukhov, E. A.; Marshuk, L. A.; Popova, E. A.

    2013-07-01

    The chemical interaction between tungsten and tungsten carbide in a copper melt with the formation of W2C at 1300°C is studied. It is shown that the mechanical activation of a composition consisting of copper melt + W and WC powders by low-temperature vibrations initiates not only the chemical interaction of its solid components but also their refinement.

  4. Tungsten Filament Fire

    ERIC Educational Resources Information Center

    Ruiz, Michael J.; Perkins, James

    2016-01-01

    We safely remove the outer glass bulb from an incandescent lamp and burn up the tungsten filament after the glass is removed. This demonstration dramatically illustrates the necessity of a vacuum or inert gas for the environment surrounding the tungsten filament inside the bulb. Our approach has added historical importance since the incandescent…

  5. Application of pyrolysis to recycling organics from waste tantalum capacitors.

    PubMed

    Niu, Bo; Chen, Zhenyang; Xu, Zhenming

    2017-08-05

    Tantalum capacitors (TCs) are widely used in electronic appliances. The rapid replacement of electronic products results in generating large amounts of waste TCs (WTCs). WTCs, rich in valuable tantalum, are considered as high quality tantalum resources for recycling. However, environmental pollution will be caused if the organics of WTCs were not properly disposed. Therefore, effectively recycling the organics of WTCs is significant for recovering the valuable parts. This study proposed an argon (Ar) pyrolysis process to recycle the organics from WTCs. The organic decomposition kinetic was first analyzed by thermogravimetry. The results showed that the organics were decomposed in two major steps and the average activation energy was calculated to 234kJ/mol. Then, the suitable pyrolysis parameters were determined as 550°C, 30min and 100ml/min. The organics were effectively decomposed and converted to oils (mainly contained phenol homologs and benzene homologs) and gases (some hydrocarbon). These pyrolysis products could be reutilized as energy sources. Moreover, based on the products and bond energy theory, the pyrolysis mechanisms of the organics were also discussed. Finally, a reasonable technological process for products utilization was presented. This study contributes to the efficient recycling the organics before valuable material recovery from WTCs. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Achieving surface chemical and morphologic alterations on tantalum by plasma electrolytic oxidation.

    PubMed

    Goularte, Marcelo Augusto Pinto Cardoso; Barbosa, Gustavo Frainer; da Cruz, Nilson Cristino; Hirakata, Luciana Mayumi

    2016-12-01

    Search for materials that may either replace titanium dental implants or constitute an alternative as a new dental implant material has been widely studied. As well, the search for optimum biocompatible metal surfaces remains crucial. So, the aim of this work is to develop an oxidized surface layer on tantalum using plasma electrolytic oxidation (PEO) similar to those existing on oral implants been marketed today. Cleaned tantalum samples were divided into group 1 (control) and groups 2, 3, and 4 (treated by PEO for 1, 3, and 5 min, respectively). An electrolytic solution diluted in 1-L deionized water was used for the anodizing process. Then, samples were washed with anhydrous ethyl alcohol and dried in the open air. For complete anodic treatment disposal, the samples were immersed in acetone altogether, taken to the ultrasonic tank for 10 min, washed again in distilled water, and finally air-dried. For the scanning electron microscopy (SEM) analysis, all samples were previously coated with gold; the salt deposition analysis was conducted with an energy-dispersive X-ray spectroscopy (EDS) system integrated with the SEM unit. SEM images confirmed the changes on tantalum strips surface according to different exposure times while EDS analysis confirmed increased salt deposition as exposure time to the anodizing process also increased. PEO was able to produce both surface alteration and salt deposition on tantalum strips similar to those existing on oral implants been marketed today.

  7. X-ray analyses of thermally grown and reactively sputtered tantalum oxide films on NiTi alloy

    NASA Astrophysics Data System (ADS)

    McNamara, Karrina; Tofail, Syed A. M.; Conroy, Derek; Butler, James; Gandhi, Abbasi A.; Redington, Wynette

    2012-08-01

    Sputter deposition of tantalum (Ta) on the surface of NiTi alloy is expected to improve the alloy's corrosion resistance and biocompatibility. Tantalum is a well-known biomaterial which is not affected by body fluids and is not irritating to human tissue. Here we compare the oxidation chemistry crystal structure evolution of tantalum oxide films grown on NiTi by reactive O2 sputtering and by thermal oxidation of sputter deposited Ta films. The effect of sputtering parameters and post-sputtering treatments on the morphology, oxidation state and crystal structure of the tantalum oxide layer have been investigated by field-emission scanning electron microscopy (FE-SEM), X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD). The study has found that it may be better to avoid oxidation at and above 600 °C. The study establishes that reactive sputtering in presence of low oxygen mixture yields thicker film with better control of the film quality except that the surface oxidation state of Ta is slightly lower.

  8. Synthesis and characterization of polystyrene embolization particles doped with tantalum oxide nanoparticles for X-ray contrast.

    PubMed

    Morrison, Rachel; Thompson, James; Bird, Luke; Hill, Mark A; Townley, Helen

    2015-08-01

    Radiopaque and fluorescent embolic particles have been synthesized and characterised to match the size of vasculature found in tumours to ensure effective occlusion of the vessels. A literature search showed that the majority of vessels surrounding a tumour were less than 50 µm and therefore polydispersed polystyrene particles with a peak size of 50 µm have been synthesised. The embolic particles contain 5-8 nm amorphous tantalum oxide nanoparticles which provide X-ray contrast. Embolic particles containing up to 9.4 wt% tantalum oxide were prepared and showed significant contrast compared to the undoped polystyrene particles. The X-ray contrast of the embolic particles was shown to be linear (R(2) = 0.9) with respect to the concentration of incorporated tantalum nanoparticles. A model was developed which showed that seventy-five 50 µm embolic particles containing 10% tantalum oxide could provide the same contrast as 5 cm of bone. Therefore, the synthesized particles would provide sufficient X-ray contrast to enable visualisation within a tumour.

  9. Equation of state of rhenium and application for ultra high pressure calibration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anzellini, Simone; Dewaele, Agnès; Occelli, Florent

    2014-01-28

    The isothermal equation of state of rhenium has been measured by powder X-ray diffraction experiments up to 144 GPa at room temperature in a diamond anvil cell. A helium pressure transmitting medium was used to minimize the non-hydrostatic stress on the sample. The fit of pressure-volume data yields a bulk modulus K{sub 0} = 352.6 GPa and a pressure derivative of the bulk modulus K′{sub 0}=4.56. This equation of state differs significantly from a recent determination [Dubrovinsky et al., Nat. Commun. 3, 1163 (2012)], giving here a lower pressure at a given volume. The possibility of using rhenium gasket X-ray diffraction signal, with themore » present equation of state, to evaluate multi-Mbar pressures in the chamber of diamond anvil cells is discussed.« less

  10. Effect of Iron and Carbonation of the Diffusion of Iodine and Rhenium in Waste Encasement Concrete and Soil Fill Material under Hydraulically Unsaturated Conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wellman, Dawn M.; Parker, Kent E.; Powers, Laura

    2008-07-31

    Assessing long-term performance of Category 3 cement wasteforms and accurate prediction for radionuclide encasement requires knowledge of the radionuclide-cement interactions and mechanisms of retention (i.e. sorption or precipitation). A set of sediment-concrete half-cell diffusion experiments was conducted under unsaturated conditions (4% and 7% by weight moisture content) using carbonated and non-carbonated concrete-soil half-cells. Results indicate the behavior of rhenium and iodine release was comparable within a given half-cell test. Diffusivity in soil is a function of moisture content; a 3% increase in moisture content affords a one to two order of magnitude increase in diffusivity. Release of iodine and rheniummore » was 1 to 3 orders of magnitude less from non-carbonated, relative to carbonated, concrete monoliths. Inclusion of iron in non-carbonate monoliths resulted in the lowest concrete diffusivity values for both iodine and rhenium. This suggests that in the presence of iron, iodine and rhenium are converted to reduced species, which are less soluble and better retained within the concrete monolith. The release of iodine and rhenium was greatest from iron-bearing, carbonated concrete monoliths, suggesting carbonation negates the effect of iron on the retention of iodine and rhenium within concrete monoliths. This is likely due to enhanced formation of microcracks in the presence of iron, which provide preferential paths for contaminant migration. Although the release of iodine and rhenium were greatest from carbonated concrete monoliths containing iron, the migration of iodine and rhenium within a given half-cell is dependent on the moisture content, soil diffusivity, and diffusing species.« less

  11. Effect of the oxygen content in a salt solution on the characteristics of sodium-reduced tantalum powders

    NASA Astrophysics Data System (ADS)

    Kolosov, V. N.; Orlov, V. M.; Miroshnichenko, M. N.; Prokhorova, T. Yu.; Masloboeva, S. M.; Belyaevskii, A. T.

    2009-02-01

    The characteristics of the tantalum powders produced by sodium thermal reduction from salt melts based on K2TaF7 and NaCl with various amounts of added oxycompounds K3TaOF6 and K2Ta2O3F6 are studied. At a molar ratio of oxygen to tantalum of 1.25 in the initial melt, capacitor tantalum powders with a specific surface area more than 3 m2/g are produced. The specific capacitance of the anodes made from these powders reaches 58 mC/g.

  12. Ultra-small rhenium clusters supported on graphene.

    PubMed

    Miramontes, Orlando; Bonafé, Franco; Santiago, Ulises; Larios-Rodriguez, Eduardo; Velázquez-Salazar, Jesús J; Mariscal, Marcelo M; Yacaman, Miguel José

    2015-03-28

    The adsorption of very small rhenium clusters (2-13 atoms) supported on graphene was studied by high-angle annular dark field-scanning transmission electron microscopy (HAADF-STEM). The atomic structure of the clusters was fully resolved with the aid of density functional theory calculations and STEM simulations. It was found that octahedral and tetrahedral structures work as seeds to obtain more complex morphologies. Finally, a detailed analysis of the electronic structure suggested that a higher catalytic effect can be expected in Re clusters when adsorbed on graphene than in isolated ones.

  13. Ultra-small rhenium clusters supported on graphene

    PubMed Central

    Miramontes, Orlando; Bonafé, Franco; Santiago, Ulises; Larios-Rodriguez, Eduardo; Velázquez-Salazar, Jesús J.; Mariscal, Marcelo M.; Yacaman, Miguel José

    2015-01-01

    The adsorption of very small rhenium clusters (2 – 13 atoms) supported on graphene was studied with high annular dark field - scanning transmission electron microscopy (HAADF-STEM). The atomic structure of the clusters was fully resolved with the aid of density functional calculations and STEM simulations. It was found that octahedral and tetrahedral structures work as seeds to obtain more complex morphologies. Finally, a detailed analysis of the electronic structure suggested that a higher catalytic effect can be expected in Re clusters when adsorbed on graphene than in isolated ones. PMID:25721176

  14. Crystalline phase-stability of tantalum pentoxide

    NASA Astrophysics Data System (ADS)

    Walton, Santiago; Padilha, Antonio; Dalpian, Gustavo; Guillén, Jorge; Dalpian's Research Group Collaboration; Grupo de Estado Solido Collaboration; Gritad Collaboration

    2013-03-01

    Memristive devices are attractive candidates to provide a paradigm change in memory devices fabrication. These new devices would be faster, denser and less power consuming than those available today. However, the mechanism of memristance is not yet well understood. It is believed that a voltage/current-driven phase transition occurs in the material, which leads to significant changes in the device's conductivity. In the particular case of tantalum-oxide-based devices the relevant crystalline phases are still a matter of debate. Some of these phases are not even completely known and there is no agreement about which model best explains the crystallographic results. In this work we have performed ab-initio DFT based calculations to study the structural properties of different phases (and models) of Ta2O5 - the structure which is believed to exist inside Tantalum Oxide based devices. The equations of state for this material were constructed through first principles total energy calculations and we have also calculated the phonon frequencies at Γ. These results show that the most stable phase of this oxide (B-Ta2O5) is in fact composed of octahedral, instead of pentagonal (as L-Ta2O5) or hexagonal (as δ-Ta2O5) bipyramids. Fapesp, CNPq, Capes,CODI-UdeA

  15. Evaluation of the 3D Finite Element Method Using a Tantalum Rod for Osteonecrosis of the Femoral Head

    PubMed Central

    Shi, Jingsheng; Chen, Jie; Wu, Jianguo; Chen, Feiyan; Huang, Gangyong; Wang, Zhan; Zhao, Guanglei; Wei, Yibing; Wang, Siqun

    2014-01-01

    Background The aim of this study was to contrast the collapse values of the postoperative weight-bearing areas of different tantalum rod implant positions, fibula implantation, and core decompression model and to investigate the advantages and disadvantages of tantalum rod implantation in different ranges of osteonecrosis in comparison with other methods. Material/Methods The 3D finite element method was used to establish the 3D finite element model of normal upper femur, 3D finite element model after tantalum rod implantation into different positions of the upper femur in different osteonecrosis ranges, and other 3D finite element models for simulating fibula implant and core decompression. Results The collapse values in the weight-bearing area of the femoral head of the tantalum rod implant model inside the osteonecrosis area, implant model in the middle of the osteonecrosis area, fibula implant model, and shortening implant model exhibited no statistically significant differences (p>0.05) when the osteonecrosis range was small (60°). The stress values on the artificial bone surface for the tantalum rod implant model inside the osteonecrosis area and the shortening implant model exhibited statistical significance (p<0.01). Conclusions Tantalum rod implantation into the osteonecrosis area can reduce the collapse values in the weight-bearing area when osteonecrosis of the femoral head (ONFH) was in a certain range, thereby obtaining better clinical effects. When ONFH was in a large range (120°), the tantalum rod implantation inside the osteonecrosis area, shortening implant or fibula implant can reduce the collapse values of the femoral head, as assessed by other methods. PMID:25479830

  16. Scanning tunneling microscopy measurements of the spin Hall effect in tungsten films by using iron-coated tungsten tips

    NASA Astrophysics Data System (ADS)

    Xie, Ting; Dreyer, Michael; Bowen, David; Hinkel, Dan; Butera, R. E.; Krafft, Charles; Mayergoyz, Isaak

    2018-05-01

    Scanning tunneling microscopy experiments using iron-coated tungsten tips and current-carrying tungsten films have been conducted. An asymmetry of the tunneling current with respect to the change of the direction of the bias current through a tungsten film has been observed. It is argued that this asymmetry is a manifestation of the spin Hall effect in the current-carrying tungsten film. Nanoscale variations of this asymmetry across the tungsten film have been studied by using the scanning tunneling microscopy technique.

  17. Mono- and Dinuclear Phosphorescent Rhenium(I) Complexes: Impact of Subcellular Localization on Anticancer Mechanisms.

    PubMed

    Ye, Rui-Rong; Tan, Cai-Ping; Chen, Mu-He; Hao, Liang; Ji, Liang-Nian; Mao, Zong-Wan

    2016-06-01

    Elucidation of relationship among chemical structure, cellular uptake, localization, and biological activity of anticancer metal complexes is important for the understanding of their mechanisms of action. Organometallic rhenium(I) tricarbonyl compounds have emerged as potential multifunctional anticancer drug candidates that can integrate therapeutic and imaging capabilities in a single molecule. Herein, two mononuclear phosphorescent rhenium(I) complexes (Re1 and Re2), along with their corresponding dinuclear complexes (Re3 and Re4), were designed and synthesized as potent anticancer agents. The subcellular accumulation of Re1-Re4 was conveniently analyzed by confocal microscopy in situ in live cells by utilizing their intrinsic phosphorescence. We found that increased lipophilicity of the bidentate ligands could enhance their cellular uptake, leading to improved anticancer efficacy. The dinuclear complexes were more potent than the mononuclear counterparts. The molecular anticancer mechanisms of action evoked by Re3 and Re4 were explored in detail. Re3 with a lower lipophilicity localizes to lysosomes and induces caspase-independent apoptosis, whereas Re4 with higher lipophilicity specially accumulates in mitochondria and induces caspase-independent paraptosis in cancer cells. Our study demonstrates that subcellular localization is crucial for the anticancer mechanisms of these phosphorescent rhenium(I) complexes. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. A novel tantalum-based sol-gel packed microextraction syringe for highly specific enrichment of phosphopeptides in MALDI-MS applications.

    PubMed

    Çelikbıçak, Ömür; Atakay, Mehmet; Güler, Ülkü; Salih, Bekir

    2013-08-07

    A new tantalum-based sol-gel material was synthesized using a unique sol-gel synthesis pathway by PEG incorporation into the sol-gel structure without performing a calcination step. This improved its chemical and physical properties for the high capacity and selective enrichment of phosphopeptides from protein digests in complex biological media. The specificity of the tantalum-based sol-gel material for phosphopeptides was evaluated and compared with tantalum(V) oxide (Ta2O5) in different phosphopeptide enrichment applications. The tantalum-based sol-gel and tantalum(V) oxide were characterized in detail using FT-IR spectroscopy, X-ray diffraction (XRD) and scanning electron microscopy (SEM), and also using a surface area and pore size analyzer. In the characterization studies, the surface morphology, pore volume, crystallinity of the materials and PEG incorporation into the sol-gel structure to produce a more hydrophilic material were successfully demonstrated. The X-ray diffractograms of the two different materials were compared and it was noted that the broad signals of the tantalum-based sol-gel clearly represented the amorphous structure of the sol-gel material, which was more likely to create enough surface area and to provide more accessible tantalum atoms for phosphopeptides to be easily adsorbed when compared with the neat and more crystalline structure of Ta2O5. Therefore, the phosphopeptide enrichment performance of the tantalum-based sol-gels was found to be remarkably higher than the more crystalline Ta2O5 in our studies. Phosphopeptides at femtomole levels could be selectively enriched using the tantalum-based sol-gel and detected with a higher signal-to-noise ratio by matrix-assisted laser desorption/ionization-mass spectrometer (MALDI-MS). Moreover, phosphopeptides in a tryptic digest of non-fat bovine milk as a complex real-world biological sample were retained with higher yield using a tantalum-based sol-gel. Additionally, the sol-gel material

  19. The effect of high-power plasma flows on tungsten plates with multilayer films of tungsten nanoparticles

    NASA Astrophysics Data System (ADS)

    Gorokhov, M. V.; Kozhevin, V. M.; Yavsin, D. A.; Voronin, A. V.; Gurevich, S. A.

    2017-04-01

    We have experimentally studied the action of high-power plasma flows on pure tungsten plates covered with multilayer films of tungsten nanoparticles formed by the method of laser electrodeposition. The samples were irradiated using a plasma gun producing hydrogen (helium) plasma flows with power density up to 35 GW/cm2. The resulting surface morphology was studied by scanning electron microscopy (SEM). SEM data showed that tungsten plates coated by nanoparticles are more resistant to the formation of microcracks than are pure tungsten plates.

  20. Rhenium Solubility in Borosilicate Nuclear Waste Glass: Implications for the Processing and Immobilization of Technetium-99

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCloy, John S.; Riley, Brian J.; Goel, Ashutosh

    2012-10-26

    The immobilization of 99Tc in a suitable host matrix has proved to be an arduous task for the researchers in nuclear waste community around the world. At the Hanford site in Washington State, the total amount of 99Tc in low-activity waste (LAW) is ~1300 kg and the current strategy is to immobilize the 99Tc in borosilicate glass with vitrification. In this context, the present article reports on the solubility/retention of rhenium, a nonradioactive surrogate for 99Tc, in a LAW borosilicate glass. Due to the radioactive nature of technetium, rhenium was chosen as a simulant because of the similarity between theirmore » ionic radii and other chemical aspects. The glasses containing Re (0 – 10,000 ppm by mass) were synthesized in vacuum-sealed quartz ampoules in order to minimize the loss of Re by volatilization during melting at 1000 °C. The rhenium was found to predominantly exist as Re (VII) in all the glasses as observed by X-ray absorption near-edge structure (XANES). The solubility of Re in borosilicate glasses was determined to be ~3000 ppm (by mass) with inductively coupled plasma-optical emission spectroscopy (ICP-OES). At higher rhenium concentrations, some additional material was retained in the glasses in the form of crystalline inclusions that were detected by X-ray diffraction (XRD) and laser ablation-ICP mass spectrometry (LA-ICP-MS). The implications of these results on the immobilization of 99Tc from radioactive wastes in borosilicate glasses have been discussed.« less

  1. Effect of Temperature Cycling and Exposure to Extreme Temperatures on Reliability of Solid Tantalum Capacitors

    NASA Technical Reports Server (NTRS)

    Teverovsky, Alexander

    2007-01-01

    In this work, results of multiple temperature cycling (TC) (up to 1,000 cycles) of different types of solid tantalum capacitors are analyzed and reported. Deformation of chip tantalum during temperature variations simulating reflow soldering conditions was measured to evaluate the possibility of the pop-corning effect in the parts. To simulate the effect of short-time exposures to solder reflow temperatures on the reliability of tantalum capacitors, several part types were subjected to multiple cycles (up to 100) between room temperature and 240 C with periodical measurements of electrical characteristics of the parts. Mechanisms of degradation caused by temperature cycling and exposure to high temperatures, and the requirements of MIL-PRF-55365 for assessment of the resistance of the parts to soldering heat are discussed.

  2. CONTRIBUTION TO THE GEOCHEMISTRY OF TANTALUM AND NIOBIUM IN THE HYDROTHERMAL-PNEUMATHOLYTIC PROCESS (in Russian)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beus, A.A.; Sitnin, A.A.

    1961-01-01

    S>Data obtained as a result of geochemical investigations show that tantalum and niobium are typical elements of high-temperature postmagmatic processes (early albitization, greysening) connected with granites. The separation of tantalum and niobium in the hydrothermal-pneumatholytic process (greysening stage), which leads to the concentration of tantalum in albitized and greysenized granites (40 to 100 times compared to the average content in granites) is connected with the different mobility and stability of their acido- complex compounds (in particular fluor- and oxyfluorcomplexes), the existence of which in greysening solutions is suggested. A natural analogy in the behavior of both elements in the processesmore » of postmagmatic metasomatose in granites and granitic pegmatites is suggested. (tr-auth)« less

  3. Early/Late Heterobimetallic Tantalum/Rhodium Species Assembled Through a Novel Bifunctional NHC-OH Ligand.

    PubMed

    Srivastava, Ravi; Moneuse, Raphaël; Petit, Julien; Pavard, Paul-Alexis; Dardun, Vincent; Rivat, Madleen; Schiltz, Pauline; Solari, Marius; Jeanneau, Erwann; Veyre, Laurent; Thieuleux, Chloé; Quadrelli, Elsje Alessandra; Camp, Clément

    2018-03-20

    The straightforward synthesis of a new unsymmetrical hydroxy-tethered N-heterocyclic carbene (NHC) ligand, HL, is presented. The free ligand exhibits an unusual OH-carbene hydrogen-bonding interaction. This OH-carbene motif was used to yield 1) the first tantalum complex displaying both a Fischer- and Schrock-type carbene ligand and 2) a unique NHC-based early/late heterobimetallic complex. More specifically, the protonolysis chemistry between the ligand's hydroxy group and imido-alkyl or alkylidene-alkyl tantalum precursor complexes yielded the rare monometallic tantalum-NHC complexes [Ta(XtBu)(L)(CH 2 tBu) 2 ] (X=N, CH), in which the alkoxy-carbene ligand acts as a chelate. In contrast, HL only binds to rhodium through the NHC unit in [Rh(HL)(cod)Cl] (cod=cycloocta-1,5-diene), the hydroxy pendant arm remaining unbound. This bifunctional ligand scaffold successfully promoted the assembly of rhodium/tantalum heterobimetallic complexes upon either 1) the insertion of [Rh(cod)Cl] 2 into the Ta-NHC bond in [Ta(NtBu)(L)(CH 2 tBu) 2 ] or 2) protonolysis between the free hydroxy group in [Rh(HL)(cod)Cl] and one alkyl group in [Ta(NtBu)(CH 2 tBu) 3 ]. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Hot pressing of nanocrystalline tantalum using high frequency induction heating and pulse plasma sintering

    NASA Astrophysics Data System (ADS)

    Jakubowicz, J.; Adamek, G.; Sopata, M.; Koper, J. K.; Siwak, P.

    2017-12-01

    The paper presents the results of nanocrystalline powder tantalum consolidation using hot pressing. The authors used two different heating techniques during hot pressing: high-frequency induction heating (HFIH) and pulse plasma sintering (PPS). A comparison of the structure, microstructure, mechanical properties and corrosion resistance of the bulk nanocrystalline tantalum obtained in both techniques was performed. The nanocrystalline powder was made to start from the microcrystalline one using the high-energy ball milling process. The nanocrystalline powder was hot-pressed at 1000 °C, whereas, for comparison, the microcrystalline powder was hot pressed up to 1500 °C for proper consolidation. The authors found that during hot pressing, the powder partially reacts with the graphite die covered by boron nitride, which facilitated punches and powder displacement in the die during densification. Tantalum carbide and boride in the nanocrystalline material was found, which can improve the mechanical properties. The hardness of the HFIH and PPS nanocrystalline tantalum was as high as 625 and 615 HV, respectively. The microstructure was more uniform in the PPS nanomaterial. The corrosion resistance in both cases deteriorated, in comparison to the microcrystalline material, while the PPS material corrosion resistance was slightly better than that of the HFIH one.

  5. The effect of tantalum on the structure/properties of two polycrystalline nickel-base superalloys: B-1900 + Hf MAR-M247. M.S. Thesis, Final Report

    NASA Technical Reports Server (NTRS)

    Janowski, G. M.

    1985-01-01

    The microstructure, phase compositions, and phase fractions were studied in conventionally cast B-1900 + Hf and both conventionally cast and directionally solidified MAR-M247 as a function of tantalum concentration. The hot tensile and creep rupture properties of the solutionized and aged MAR-M247-type alloys were also determined as a function of tantalum level. The effects of tantalum on the microstructure and phase compositions of B-1900 + Hf and MAR-M247 (conventionally cast and directionally solidified) were found to be very similar. The addition of tantalum to the as cast and heat treated alloys was shown to cause the partial replacement of the Hf in the MC carbides by Ta, although the degree of replacement was decreased by the solutionizing and aging heat treatment. The gamma prime and minor phase fractions (primarily MC type carbides) both increased approximately linearly with tantalum concentration. The gamma prime phase compositions were relatively insensitive to tantalum variations with the exception of the tantalum and/or hafnium levels. Bulk tantalum additions increased the tantalum, chromium, and cobalt levels of the gamma phase in both alloy series. The increase in the concentrations of the latter two elements in the gamma phase was a result of the decrease in the gamma phase fraction with increasing bulk tantalum concentration and constant gamma/gamma prime partitioning ratio. Tantalum additions increased the yield stress and ultimate tensile strength of the directionally solidified MAR-M247 type alloys and had no significant effect on ductility.

  6. Primary human osteoblasts grow into porous tantalum and maintain an osteoblastic phenotype.

    PubMed

    Welldon, Katie J; Atkins, Gerald J; Howie, Donald W; Findlay, David M

    2008-03-01

    Porous tantalum (Ta) has found application in orthopedics, although the interaction of human osteoblasts (HOB) with this material has not been reported. The aim of this study was to investigate the interaction of primary HOB with porous tantalum, using 5-mm thick discs of porous tantalum. Comparison was made with discs of solid tantalum and tissue culture plastic. Confocal microscopy was used to investigate the attachment and growth of cells on porous Ta, and showed that HOB attached successfully to the metal "trabeculae," underwent extensive cell division, and penetrated into the Ta pores. The maturation of HOB on porous Ta was determined in terms of cell expression of the osteoblast phenotypic markers, STRO-1, and alkaline phosphatase. Despite some donor-dependent variation in STRO-1/AlkPhos expression, growth of cells grown on porous Ta either promoted, or did not impede, the maturation of HOB. In addition, the expression of key osteoblastic genes was investigated after 14 days of culture. The relative levels of mRNA encoding osteocalcin, osteopontin and receptor activator of NFkappaB ligand (RANKL) was not different between porous or solid Ta or plastic, although these genes were expressed differently by cells of different donors. However, bone sialoprotein and type I collagen mRNA species showed a decreased expression on porous Ta compared with expression on plastic. No substrate-dependent differences were seen in the extent of in vitro mineralization by HOB. These results indicate that porous Ta is a good substrate for the attachment, growth, and differentiated function of HOB. (c) 2007 Wiley Periodicals, Inc.

  7. Drug composition matters: the influence of carrier concentration on the radiochemical purity, hydroxyapatite affinity and in-vivo bone accumulation of the therapeutic radiopharmaceutical 188Rhenium-HEDP.

    PubMed

    Lange, R; de Klerk, J M H; Bloemendal, H J; Ramakers, R M; Beekman, F J; van der Westerlaken, M M L; Hendrikse, N H; Ter Heine, R

    2015-05-01

    (188)Rhenium-HEDP is an effective bone-targeting therapeutic radiopharmaceutical, for treatment of osteoblastic bone metastases. It is known that the presence of carrier (non-radioactive rhenium as ammonium perrhenate) in the reaction mixture during labeling is a prerequisite for adequate bone affinity, but little is known about the optimal carrier concentration. We investigated the influence of carrier concentration in the formulation on the radiochemical purity, in-vitro hydroxyapatite affinity and the in-vivo bone accumulation of (188)Rhenium-HEDP in mice. The carrier concentration influenced hydroxyapatite binding in-vitro as well as bone accumulation in-vivo. Variation in hydroxyapatite binding with various carrier concentrations seemed to be mainly driven by variation in radiochemical purity. The in-vivo bone accumulation appeared to be more complex: satisfactory radiochemical purity and hydroxyapatite affinity did not necessarily predict acceptable bio-distribution of (188)Rhenium-HEDP. For development of new bisphosphonate-based radiopharmaceuticals for clinical use, human administration should not be performed without previous animal bio-distribution experiments. Furthermore, our clinical formulation of (188)Rhenium-HEDP, containing 10 μmol carrier, showed excellent bone accumulation that was comparable to other bisphosphonate-based radiopharmaceuticals, with no apparent uptake in other organs. Radiochemical purity and in-vitro hydroxyapatite binding are not necessarily predictive of bone accumulation of (188)Rhenium-HEDP in-vivo. The formulation for (188)Rhenium-HEDP as developed by us for clinical use exhibits excellent bone uptake and variation in carrier concentration during preparation of this radiopharmaceutical should be avoided. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Frolov, T.; Setyawan, W.; Kurtz, R. J.

    Evolutionary grand-canonical search predicts novel grain boundary structures and multiple grain boundary phases in elemental body-centered cubic (bcc) metals represented by tungsten, tantalum and molybdenum.

  9. Grain boundary phases in bcc metals

    DOE PAGES

    Frolov, T.; Setyawan, W.; Kurtz, R. J.; ...

    2018-01-01

    Evolutionary grand-canonical search predicts novel grain boundary structures and multiple grain boundary phases in elemental body-centered cubic (bcc) metals represented by tungsten, tantalum and molybdenum.

  10. Tungsten Speciation and Solubility in Munitions-Impacted Soils.

    PubMed

    Bostick, Benjamín C; Sun, Jing; Landis, Joshua D; Clausen, Jay L

    2018-02-06

    Considerable questions persist regarding tungsten geochemistry in natural systems, including which forms of tungsten are found in soils and how adsorption regulates dissolved tungsten concentrations. In this study, we examine tungsten speciation and solubility in a series of soils at firing ranges in which tungsten rounds were used. The metallic, mineral, and adsorbed forms of tungsten were characterized using X-ray absorption spectroscopy and X-ray microprobe, and desorption isotherms for tungsten in these soils were used to characterize its solid-solution partitioning behavior. Data revealed the complete and rapid oxidation of tungsten metal to hexavalent tungsten(VI) and the prevalence of adsorbed polymeric tungstates in the soils rather than discrete mineral phases. These polymeric complexes were only weakly retained in the soils, and porewaters in equilibrium with contaminated soils had 850 mg L -1 tungsten, considerably in excess of predicted solubility. We attribute the high solubility and limited adsorption of tungsten to the formation of polyoxometalates such as W 12 SiO 40 4- , an α-Keggin cluster, in soil solutions. Although more research is needed to confirm which of such polyoxometalates are present in soils, their formation may not only increase the solubility of tungsten but also facilitate its transport and influence its toxicity.

  11. Tungsten carbide: Crystals by the ton

    NASA Astrophysics Data System (ADS)

    Smith, E. N.

    1988-06-01

    A comparison is made of the conventional process of making tungsten carbide by carburizing tungsten powder and the Macro Process wherein the tungsten carbide is formed directly from the ore concentrate by an exothermic reaction of ingredients causing a simultaneous reduction and carburization. Tons of tungsten monocarbide crystals are formed in a very rapid reaction. The process is unique in that it is self regulating and produces a tungsten carbide compound with the correct stoichiometry. The high purity with respect to oxygen and nitrogen is achieved because the reactions occur beneath the molten metal. The morphology and hardness of these crystals has been studied by various investigators and reported in the listed references.

  12. Leakage Currents and Gas Generation in Advanced Wet Tantalum Capacitors

    NASA Technical Reports Server (NTRS)

    Teverovsky, Alexander

    2015-01-01

    Currently, military grade, established reliability wet tantalum capacitors are among the most reliable parts used for space applications. This has been achieved over the years by extensive testing and improvements in design and materials. However, a rapid insertion of new types of advanced, high volumetric efficiency capacitors in space systems without proper testing and analysis of degradation mechanisms might increase risks of failures. The specifics of leakage currents in wet electrolytic capacitors is that the conduction process is associated with electrolysis of electrolyte and gas generation resulting in building up of internal gas pressure in the parts. The risk associated with excessive leakage currents and increased pressure is greater for high value advanced wet tantalum capacitors, but it has not been properly evaluated yet. In this work, in Part I, leakages currents in various types of tantalum capacitors have been analyzed in a wide range of voltages, temperatures, and time under bias. Gas generation and the level of internal pressure have been calculated in Part II for different case sizes and different hermeticity leak rates to assess maximal allowable leakage currents. Effects related to electrolyte penetration to the glass seal area have been studied and the possibility of failures analyzed in Part III. Recommendations for screening and qualification to reduce risks of failures have been suggested.

  13. High strength and density tungsten-uranium alloys

    DOEpatents

    Sheinberg, Haskell

    1993-01-01

    Alloys of tungsten and uranium and a method for making the alloys. The amount of tungsten present in the alloys is from about 55 vol % to about 85 vol %. A porous preform is made by sintering consolidated tungsten powder. The preform is impregnated with molten uranium such that (1) uranium fills the pores of the preform to form uranium in a tungsten matrix or (2) uranium dissolves portions of the preform to form a continuous uranium phase containing tungsten particles.

  14. Realization of Ru-C Eutectic Point for Evaluation of W-Re and IrRh/Ir Thermocouples

    NASA Astrophysics Data System (ADS)

    Ogura, H.; Masuyama, S.; Izuchi, M.; Yamazawa, K.; Arai, M.

    2015-03-01

    Tungsten-rhenium (W-Re) thermocouples are widely used in industry for measurements at high temperatures, up to . Since the electromotive force (emf) of a W-Re thermocouple is known to change during exposure at high temperatures, evaluation of the emf stability is essential for measuring temperature precisely and for realizing precise temperature control used to ensure the quality of products subject to annealing processes. To evaluate precisely the thermoelectric stability around , two Ru-C cells (crucible and Ru-C eutectic alloy) were constructed in our laboratory. The key feature of the cells is that their dimensions are large to ensure there is sufficient immersion available to evaluate the homogeneity characteristics of the thermocouples. By using one of the Ru-C cells, the drift and inhomogeneity of Type C (tungsten-5 % rhenium vs tungsten-26 % rhenium) thermocouples during an exposure to high temperature around were evaluated. Furthermore, to explore possible applications of the eutectic point to other types of high-temperature thermocouples, the drift of an IrRh/Ir thermocouple (iridium-40 % rhodium vs iridium) was also evaluated using another Ru-C cell. The tests with W-Re and IrRh/Ir thermocouples demonstrate that the newly developed Ru-C cells can be used to successfully realize melting plateaux repeatedly. This enables the long-term drift measurements essential for the evaluation and improvement of high-temperature thermocouples. The results obtained in this study will also be useful for evaluating the uncertainty of thermocouple calibrations at around.

  15. Alkoxy bridged binuclear rhenium (I) complexes as a potential sensor for β-amyloid aggregation.

    PubMed

    Sathish, Veerasamy; Babu, Eththilu; Ramdass, Arumugam; Lu, Zong-Zhan; Velayudham, Murugesan; Thanasekaran, Pounraj; Lu, Kuang-Lieh; Rajagopal, Seenivasan

    2014-12-01

    Alkoxy bridged binuclear rhenium(I) complexes are used as a probe for the selective and sensitive detection of aggregation of β-amyloid fibrils that are consorted with Alzheimer's disease (AD). The strong binding of the complexes is affirmed by the fluorescence enhancement and calculated binding constant value in the order of 10(5)M(-1) is obtained from the Scatchard plots. The binding of β-amyloid can be attributed to π-π stacking interaction of naphthalene moiety present in rhenium(I) complexes, and it is supported by docking studies. The selectivity is quite high towards other proteins and the formation of fibrils can be observed in the range of 30-40 nm through the AFM and TEM techniques. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Inertial Weldment of Rhenium and Inconel 718

    NASA Technical Reports Server (NTRS)

    Cavender, D. P.; Courtright, Z. S.; Hostetter, G.; Laiman, M.

    2018-01-01

    Inertia welding has been found to be a successful method for joining pure rhenium to Inconel 718, and with additional experimentation, this process may have great potential for rocket nozzle applications. Refractory metals are ideally suited to this application, where high temperatures and oxidizing environment survivability is required, but not all of the thruster must be made of these materials, only the areas that require them. A bolted joint between the two metals is not ideal, especially for small thrusters where the mess of a bolted join will come at a steep price. A welded joint would be preferred for flight thrusters.

  17. Effect of Mechanical Stresses on Characteristics of Chip Tantalum Capacitors

    NASA Technical Reports Server (NTRS)

    Teverovsky, Alexander A.

    2007-01-01

    The effect of compressive mechanical stresses on chip solid tantalum capacitors is investigated by monitoring characteristics of different part types under axial and hydrostatic stresses. Depending on part types, an exponential increase of leakage currents was observed when stresses exceeded 10 MPa to 40 MPa. For the first time, reversible variations of leakage currents (up to two orders of magnitude) with stress have been demonstrated. Mechanical stresses did not cause significant changes of AC characteristics of the capacitors, whereas breakdown voltages measured during the surge current testing decreased substantially indicating an increased probability of failures of stressed capacitors in low impedance applications. Variations of leakage currents are explained by a combination of two mechanisms: stress-induced scintillations and stress-induced generation of electron traps in the tantalum pentoxide dielectric.

  18. Accurate pointing of tungsten welding electrodes

    NASA Technical Reports Server (NTRS)

    Ziegelmeier, P.

    1971-01-01

    Thoriated-tungsten is pointed accurately and quickly by using sodium nitrite. Point produced is smooth and no effort is necessary to hold the tungsten rod concentric. The chemically produced point can be used several times longer than ground points. This method reduces time and cost of preparing tungsten electrodes.

  19. The First Seven-Coordinated Triiodo Complex of Rhenium(III)

    NASA Astrophysics Data System (ADS)

    Schoultz, X.; Gerber, T. I. A.; Betz, R.; Hosten, E. C.

    2017-12-01

    The reaction of cis-[ReO2I(P Ph 3)2] with tert-butyl isocyanide in benzene led to the isolation of the complex [ReI3(CN- t-Bu)3(P Ph 3)] ( 1). The complex is unusual since it contains bulky ligands with large cone angles, i.e. three iodides, three isocyanides with tert-butyl groups and a triphenylphosphine as ligands in a seven-coordinate geometry around the rhenium(III) metal ion.

  20. Evaluation of Ferrite Chip Beads as Surge Current Limiters in Circuits with Tantalum Capacitors

    NASA Technical Reports Server (NTRS)

    Teverovsky, Alexander

    2014-01-01

    Limiting resistors are currently required to be connected in series with tantalum capacitors to reduce the risk of surge current failures. However, application of limiting resistors decreases substantially the efficiency of the power supply systems. An ideal surge current limiting device should have a negligible resistance for DC currents and high resistance at frequencies corresponding to transients in tantalum capacitors. This work evaluates the possibility of using chip ferrite beads (FB) as such devices. Twelve types of small size FBs from three manufacturers were used to evaluate their robustness under soldering stresses and at high surge current spikes associated with transients in tantalum capacitors. Results show that FBs are capable to withstand current pulses that are substantially greater than the specified current limits. However, due to a sharp decrease of impedance with current, FBs do not reduce surge currents to the required level that can be achieved with regular resistors.

  1. Tantalum-containing catalyst useful for producing alcohols from synthesis gas

    DOEpatents

    Kinkade, Nancy E.

    1991-01-01

    A catalyst useful for selectively converting a mixture of carbon monoxide and hydrogen to a mixture of lower alkanols consisting essentially of a mixture of molybdenum sulfide, an alkali metal compound and a tantalum compound.

  2. Tantalum-containing catalyst useful for producing alcohols from synthesis gas

    DOEpatents

    Kinkade, Nancy E.

    1992-01-01

    A catalyst useful for selectively converting a mixture of carbon monoxide and hydrogen to a mixture of lower alkanols consisting essentially of a mixture of molybdenum sulfide, an alkali metal compound and a tantalum compound.

  3. Negative Impact of Total Body Irradiation on the Antitumor Activity of Rhenium-(I)-diselenoether.

    PubMed

    Collery, Philippe; Santoni, Francois; Mohsen, Ahmed; Mignard, Caroline; Desmaele, Didier

    2016-11-01

    It has been shown that a rhenium-(I)-diselenoether complex had significant antitumor activity in MDA-MB231 tumor-bearing mice after repeated oral or intraperitoneal administrations for 4 weeks at safe doses of 10 mg/kg/day. It has also been suggested that lower doses could be as effective as this dose. We, thus, tested two doses (5 and 10 mg/kg). The drug was orally administered daily by gavage for 4 weeks and for a further 2 weeks with or without 15 mg/kg paclitaxel treatment (intravenously, once a week). This experiment was performed in MDA-MB 231 tumor-bearing mice, as a model of resistant breast tumor. However, in contrast to previous studies, the mice were pretreated with total body irradiation to increase the tumor growth. These two doses were safe, even in combination with paclitaxel. The expected tumor regression was not observed with the rhenium-(I)-diselenoether complex, and there was even a significant increase of the tumor volume in mice treated with 10 mg/kg versus controls. No synergism was observed with paclitaxel. We comment on the possible negative impact of radiotherapy on the antitumor activity of the drug. Plasma and tumor rhenium and selenium concentrations are also reported. Copyright© 2016 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  4. Inferring Strength of Tantalum from Hydrodynamic Instability Recovery Experiments

    NASA Astrophysics Data System (ADS)

    Sternberger, Z.; Maddox, B.; Opachich, Y.; Wehrenberg, C.; Kraus, R.; Remington, B.; Randall, G.; Farrell, M.; Ravichandran, G.

    2018-05-01

    Hydrodynamic instability experiments allow access to material properties at extreme conditions, where strain rates exceed 105 s-1 and pressures reach 100 GPa. Current hydrodynamic instability experimental methods require in-flight radiography to image the instability growth at high pressure and high strain rate, limiting the facilities where these experiments can be performed. An alternate approach, recovering the sample after loading, allows measurement of the instability growth with profilometry. Tantalum samples were manufactured with different 2D and 3D initial perturbation patterns and dynamically compressed by a blast wave generated by laser ablation. The samples were recovered from peak pressures between 30 and 120 GPa and strain rates on the order of 107 s-1, providing a record of the growth of the perturbations due to hydrodynamic instability. These records are useful validation points for hydrocode simulations using models of material strength at high strain rate. Recovered tantalum samples were analyzed, providing an estimate of the strength of the material at high pressure and strain rate.

  5. Upgrading tantalum and niobium oxides content in Bangka tin slag with double leaching

    NASA Astrophysics Data System (ADS)

    Soedarsono, J. W.; Permana, S.; Hutauruk, J. K.; Adhyputra, R.; Rustandi, A.; Maksum, A.; Widana, K. S.; Trinopiawan, K.; Anggraini, M.

    2018-03-01

    Tantalum has become one of the 14 types of critical materials where the level of its availability is assumed as the midterm critical metal. Benefits of the element tantalum in the electronics field increased the deficit balance of supply / demand, as more variations of electronic products developed. The tantalum experts calculated the level of availability until 2020. Base on the previous studies, tin slag is a secondary source of tantalum and niobium. This study uses tin slag from Bangka, Indonesia, abbreviated, Bangka Tin Slag (BTS). BTS was roasted, water quenched and sieved, abbreviated BTS-RQS.BTS was roasted, water quenched and sieved, abbreviated BTS-RQS.BTS-RQS was roasted at a temperature 700□C given sample code BTS-R700QS, while roasted at 800°C given sample code BTS-R800QS.A variable leaching experiment on BTS-R700QS was solvent concentration variable and on BTS-R800QS was time variable. The entire residue was characterized by X-Ray Fluorescence (XRF), and the optimum results are on the BTS-R800QS leaching into 5 M NaOH for 20 min followed by 5M HCl for 50 min, with content of Ta2O5 and Nb2O51.56% and 1.11%, respectively. The result of XRF measurement showed was the increasing of TNO content due to the increasing solvent concentration and time of acid leaching. The discussion of thermodynamics this study used was HSC Chemistry 6 as a supporting data.

  6. Evaluation of Polymer Hermetically Sealed Tantalum Capacitors

    NASA Technical Reports Server (NTRS)

    Teverovsky, Alexander A.

    2014-01-01

    Polymer cathode tantalum capacitors have lower ESR (equivalent series resistance) compared to other types of tantalum capacitors and for this reason have gained popularity in the electronics design community. Their use allows improved performance of power supply systems along with substantial reduction of size and weight of the components used. However, these parts have poor thermal stability and can degrade in humid environments. Polymer hermetically sealed (PHS) capacitors avoid problems related to environmental degradation of molded case parts and can potentially replace current wet and solid hermetically sealed capacitors. In this work, PHS capacitors manufactured per DLA LAM DWG#13030 are evaluated for space applications. Several lots of capacitors manufactured over period from 2010 to 2014 were tested for the consistency of performance, electrical and thermal characteristics, highly accelerated life testing, and robustness under reverse bias and random vibration conditions. Special attention was given to analysis of leakage currents and the effect of long-term high temperature storage on capacitors in as is condition and after hermeticity loss. The results show that PHS capacitors might be especially effective for low-temperature applications or for system requiring a cold start-up. Additional screening and qualification testing have been recommended to assure the necessary quality of capacitors for space projects.

  7. Tantalum-containing catalyst useful for producing alcohols from synthesis gas

    DOEpatents

    Kinkade, N.E.

    1992-04-07

    A catalyst is described which is useful for selectively converting a mixture of carbon monoxide and hydrogen to a mixture of lower alkanols. The catalyst consists essentially of a mixture of molybdenum sulfide, an alkali metal compound and a tantalum compound.

  8. Geochronology and geochemistry of the granitoids and ore - forming age in the Xiaoyao tungsten polymetallic skarn deposit in the Jiangnan Massif tungsten belt, China: Implications for their petrogenesis, geodynamic setting, and mineralization

    NASA Astrophysics Data System (ADS)

    Su, Qiangwei; Mao, Jingwen; Wu, Shenghua; Zhang, Zhaochong; Xu, Shengfa

    2018-01-01

    The Xiaoyao tungsten polymetallic skarn deposit in the eastern Jiangnan Massif of Yangtze Block is located at the contact between a granodiorite pluton and Sinian-Cambrian limestone. The intrusions in the tungsten-rich district comprise the Xiaoyao and other granodiorite plutons and granite porphyry dikes. The age determinations by LA-ICP-MS U-Pb dating of zircons indicate that the granodiorite formed at 149.4 ± 1.1 Ma, whereas the granite porphyry was emplaced at 133.2 ± 0.7 Ma. Re-Os dating of molybdenite from the skarn orebodies yielded a weighted average age of 148.7 ± 2.3 Ma (n = 5). These ages indicate that the tungsten mineralization is temporally related to the granodiorite. The granodiorites are metaluminous (A/CNK = 0.86-0.98) and in the high-K calc-alkaline series. They contain hornblende and have a negative correlation between P2O5 and SiO2, indicating that they are typical I-type intrusions. The granite porphyries exhibit high alkali contents (Na2O + K2O = 7.97-9.53%), elevated FeOT/(FeOT + MgO) ratios (0.83-0.94), high concentrations of Zr, Nb, Ce, and Y, and high Zr saturation temperatures (average of 812 °C); thus, they are geochemically similar to A-type intrusions. The initial 87Sr/86Sr and εNd(t) values range respectively from 0.7074 to 0.7083 and from - 7.9 to - 1.3 for the granodiorite, and from 0.7008 to 0.7083 and from - 6.3 to - 4.7 for the granite porphyry. In addition, two-stage Nd model ages (T2DM) of 1.0-1.6 Ga for the granodiorite and 1.3-1.4 Ga for the granite porphyry indicate that the Proterozoic crustal rocks of the Shangxi Group could have contributed to the Xiaoyao magmas. The rhenium contents of the molybdenite grains vary from 32 to 136 ppm, suggesting that the molybdenum was derived mainly from a mixture of mantle and crustal sources. Based on the new geochemical data and regional geological investigations, we propose that the Late Jurassic mineralization-related I-type granodiorite was derived from the Neoproterozoic

  9. RECOVERY OF URANIUM FROM TUNGSTEN

    DOEpatents

    Newnam, K.

    1959-02-01

    A method is presented for the rccovery of uranium which has adhered to tungsten parts in electromagnetic isotope separation apparatus. Such a tungsten article is dissolved electrolytically in 20% NaOH by using the tungsten article as the anode. The resulting solution, containing soluble sodium lungstate and an insoluble slime, is then filtered. The slime residue is ignited successively with sodium nitrate and sodium pyrosulfate and leashed, and the resulting filtrates are combined with the original filtrate. Uranium is then recovered from the combined flltrates by diuranate precipitation.

  10. Combination of three metals for the treatment of cancer: gallium, rhenium and platinum. 1. Determination of the optimal schedule of treatment.

    PubMed

    Collery, Philippe; Mohsen, Ahmed; Kermagoret, Anthony; D'Angelo, Jean; Morgant, Georges; Desmaele, Didier; Tomas, Alain; Collery, Thomas; Wei, Ming; Badawi, Abdelfattah

    2012-07-01

    Platinum is well known for its anticancer activity, firstly used as cis-diaminedichloroplatinum (II) (CDDP), with a wide range of activity. Its main mechanism of action involves its binding to DNA. Gallium, another metal, has also demonstrated apoptotic effects on malignant cells, but through interaction with targets other than DNA, such as the membrane, cytoskeleton and proteasome, and on enzyme activities. An antitumor synergism between CDDP and both gallium and rhenium compounds has been demonstrated. For these reasons, we proposed to combine these three metals and to determine at which doses each compound could be administered without major toxicity. CDDP, tetrakis(1-octanol) tris(5-aminosalicylate)gallium(III), and a diseleno-ether rhenium(I) complex were used in this experimental study in breast cancer MCF-7 tumor-bearing mice. CDDP was administered intraperitoneally (i.p.) twice a week at the dose of 3 mg/kg. Tetrakis(1-octanol) tris(5-aminosalicylate) gallium (III) and rhenium(I) diseleno-ether complexes were administered orally, daily, five days a week for three weeks, at doses ranging from 20 to 100 mg/kg for the gallium compound and from 10 to 50 mg/kg for the rhenium compound. Doses of 10 mg/kg of rhenium(I) diseleno-ether, and 100 mg/kg of the salicylate gallium compound, in combination with CDDP induced a significant decrease of 50% of the tumor volume, by comparison with the control group. In contrast, the decrease of the tumor volume in mice treated by CDDP alone was less than 25%. Changes in the sequence of administration of the three metals will be discussed to improve the therapeutic index.

  11. Hydrogen permeation properties of plasma-sprayed tungsten*1

    NASA Astrophysics Data System (ADS)

    Anderl, R. A.; Pawelko, R. J.; Hankins, M. R.; Longhurst, G. R.; Neiser, R. A.

    1994-09-01

    Tungsten has been proposed as a plasma-facing component material for advanced fusion facilities. This paper reports on laboratory-scale studies that were done to assess the hydrogen permeation properties of plasma-sprayed tungsten for such applications. The work entailed deuterium permeation measurements for plasma-sprayed (PS) tungsten coatings, sputter-deposited (SP) tungsten coatings, and steel substrate material using a mass-analyzed, 3 keV D 3+ ion beam with fluxes of ˜6.5 × 10 19 D/m 2 s. Extensive characterization analyses for the plasma-sprayed tungsten coatings were made using Auger spectrometry and scanning electron microscopy (SEM). Observed permeation rates through composite PS-tungsten/steel specimens were several orders of magnitude below the permeation levels observed for SP-tungsten/steel composite specimens and pure steel specimens. Characterization analyses indicated that the plasma-sprayed tungsten coating had a nonhomogeneous microstructure that consisted of splats with columnar solidification, partially-melted particles with grain boundaries, and void regions. Reduced permeation levels can be attributed to the complex microstructure and a substantial surface-connected porosity.

  12. Slip casting and extruding shapes of rhenium with metal oxide additives. 1: Feasibility demonstration

    NASA Technical Reports Server (NTRS)

    Barr, F. A.; Page, R. J.

    1986-01-01

    The feasibility of fabricating small rhenium parts with metal oxide additives by means of slip casting and extrusion techniques is described. The metal oxides, ZrO2 and HfO2 were stabilized into the cubic phase with Y2O3. Additions of metal oxide to the rhenium of up to 15 weight percent were used. Tubes of 17 mm diameter with 0.5 mm walls were slip cast by adapting current ceramic oxide techniques. A complete cast double conical nozzle demonstrated the ability to meet shapes and tolerances. Extrusion of meter long tubing lengths of 3.9 mm o.d. x 2.3 mm i.d. final dimension is documented. Sintering schedules are presented to produce better than 95% of theoretical density parts. Finished machining was found possible were requried by electric discharge machining and diamond grinding.

  13. Frequency spectrum of tantalum at temperatures of 293-2300 K

    NASA Astrophysics Data System (ADS)

    Semenov, V. A.; Kozlov, Zh. A.; Krachun, L.; Mateescu, G.; Morozov, V. M.; Oprea, A. I.; Oprea, K.; Puchkov, A. V.

    2010-05-01

    The temperature dependence of the frequency spectrum of tantalum in the temperature range from room temperature to 2300 K has been studied for the first time using inelastic slow-neutron scattering. The inelastic slow-neutron scattering spectra have been measured at different temperatures on a DIN-2PI time-of-flight spectrometer installed at the IBR-2 nuclear reactor (Joint Institute for Nuclear Research, Dubna, Russia) with the use of a TS3000K high-temperature thermostat. From the measured spectra, the frequency spectra of the tantalum crystal lattice have been determined at temperatures of 293, 1584, and 2300 K by the iteration method. As the temperature increases, the frequency spectrum, on the whole, is softened and the specific features manifested themselves at room temperature are smoothed. The variations observed have been explained by the increase in the role of the effects of vibration anharmonism at high temperatures.

  14. Radiosynovectomy in haemophilic synovitis of elbows and ankles: Is the effectiveness of yttrium-90 and rhenium-186 different?

    PubMed

    Rodriguez-Merchan, E C; De La Corte-Rodriguez, H

    2016-04-01

    Radiosynovectomy (RS) reduces the number of haemarthroses and the synovial size in chronic haemophilic synovitis. The purpose of this study was to quantitatively compare the effectiveness of two types of RS (yttrium-90 vs. rhenium-186) in terms of the objective improvement of haemarthroses and synovial size. Seventy RSs were performed in 70 joints (44 elbows, 26 ankles) of 70 haemophiliacs diagnosed with chronic synovitis. Yttrium-90 was used in 21 joints and rhenium-186 was used in 49 joints. The mean patient age was 20.61 years. RS resulted in significant improvement in the three variables studied (six months before RS vs. six months after RS), namely in the number of episodes of haemarthrosis (67.8% improvement); the size of the synovium as measured by means of a clinical scale (43.8% improvement) and imaging techniques in millimetres (26.7% improvement). We did not find significant statistical differences between yttrium-90 and rhenium-186 regarding their efficacy. No correlation was found between the results and other variables: age, joint (ankle or elbow), presence or absence of radiological involvement, type of haemophilia (A or B), grade of haemophilia (mild, moderate or severe), previous haematological treatment (on demand or prophylaxis), and the presence or absence of inhibitor Yttrium-90 RS and rhenium-186 RS were equally effective in reducing the number of haemarthroses and the size of the synovium in ankles and elbows in the short-term (6 months). No correlation was found between the results and other patients' characteristics. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Boron carbide coating deposition on tungsten and testing of tungsten layers and coating under intense plasma load

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Airapetov, A. A.; Begrambekov, L. B., E-mail: lbb@plasma.mephi.ru; Buzhinskiy, O. I.

    2015-12-15

    A device intended for boron carbide coating deposition and material testing under high heat loads is presented. A boron carbide coating 5 μm thick was deposited on the tungsten substrate. These samples were subjected to thermocycling loads in the temperature range of 400–1500°C. Tungsten layers deposited on tungsten substrates were tested in similar conditions. Results of the surface analysis are presented.

  16. Atomization from a tantalum surface in graphite furnace atomic absorption spectrometry

    NASA Astrophysics Data System (ADS)

    Gregoire, D. C.; Chakrabarti, C. L.

    The mechanism of atom formation of U, V, Mo, Ni, Mn, Cu and Mg atomized from pyrolytic graphite and tantalum metal surfaces has been studied. The mechanism of atom formation for U from a graphite tube atomizer is reported for the first time. The peak absorbance for U and Cu is increased by factors of 59.7 and 2.0, respectively, whereas that of V, Mo and Ni is reduced by several orders of magnitude when they are atomized from a tantalum metal surface. The peak absorbance of Mn and Mg is not appreciably affected by the material of the atomization surface. Interaction of Mn and Mg with the graphite surface and formation of their refractory carbides was found to be negligible. Uranium forms a refractory carbide when heated from a graphite surface.

  17. Precipitation of a monoclonal antibody by soluble tungsten.

    PubMed

    Bee, Jared S; Nelson, Stephanie A; Freund, Erwin; Carpenter, John F; Randolph, Theodore W

    2009-09-01

    Tungsten microparticles may be introduced into some pre-filled syringes during the creation of the needle hole. In turn, these microcontaminants may interact with protein therapeutics to produce visible particles. We found that soluble tungsten polyanions formed in acidic buffer below pH 6.0 can precipitate a monoclonal antibody within seconds. Soluble tungsten in pH 5.0 buffer at about 3 ppm was enough to cause precipitation of a mAb formulated at 0.02 mg/mL. The secondary structure of the protein was near-native in the collected precipitate. Our observations are consistent with the coagulation of a monoclonal antibody by tungsten polyanions. Tungsten-induced precipitation should only be a concern for proteins formulated below about pH 6.0 since tungsten polyanions are not formed at higher pHs. We speculate that the heterogenous nature of particle contamination within the poorly mixed syringe tip volume could mean that a specification for tungsten contamination based on the entire syringe volume is not appropriate. The potential potency of tungsten metal contamination is highlighted by the small number of particles that would be required to generate soluble tungsten levels needed to coagulate this antibody at pH 5.0.

  18. Precipitation of a Monoclonal Antibody by Soluble Tungsten

    PubMed Central

    Bee, Jared S.; Nelson, Stephanie A.; Freund, Erwin; Carpenter, John F.; Randolph, Theodore W.

    2009-01-01

    Tungsten microparticles may be introduced into some pre-filled syringes during the creation of the needle hole. In turn, these microcontaminants may interact with protein therapeutics to produce visible particles. We found that soluble tungsten polyanions formed in acidic buffer below pH 6.0 can precipitate a monoclonal antibody within seconds. Soluble tungsten in pH 5.0 buffer at about 3 ppm was enough to cause precipitation of a mAb formulated at 0.02 mg/mL. The secondary structure of the protein was near-native in the collected precipitate. Our observations are consistent with the coagulation of a monoclonal antibody by tungsten polyanions. Tungsten-induced precipitation should only be a concern for proteins formulated below about pH 6.0 since tungsten polyanions are not formed at higher pHs. We speculate that the heterogenous nature of particle contamination within the poorly mixed syringe tip volume could mean that a specification for tungsten contamination based on the entire syringe volume is not appropriate. The potential potency of tungsten metal contamination is highlighted by the small number of particles that would be required to generate soluble tungsten levels needed to coagulate this antibody at pH 5.0. PMID:19230018

  19. [Spectrophotometric study of the interaction between rhenium complexes and phosphatidylcholine during liposome formation].

    PubMed

    Shtemenko, O V; Zeleniuk, M A; Shtemenko, N I; Verbyts'ka, Ia S

    2002-01-01

    The electron absorption spectra of halogenides and halogencarboxylate complex compounds of rhenium (III) having cluster structure with phosphatydilcholine and their lyposome forms were investigated. Some results which evidence for the interaction of these compounds with phosphatydilcholine were obtained. The possible mechanism of this interaction is discussed.

  20. Improved Rhenium Thrust Chambers

    NASA Technical Reports Server (NTRS)

    O'Dell, John Scott

    2015-01-01

    Radiation-cooled bipropellant thrust chambers are being considered for ascent/ descent engines and reaction control systems on various NASA missions and spacecraft, such as the Mars Sample Return and Orion Multi-Purpose Crew Vehicle (MPCV). Currently, iridium (Ir)-lined rhenium (Re) combustion chambers are the state of the art for in-space engines. NASA's Advanced Materials Bipropellant Rocket (AMBR) engine, a 150-lbf Ir-Re chamber produced by Plasma Processes and Aerojet Rocketdyne, recently set a hydrazine specific impulse record of 333.5 seconds. To withstand the high loads during terrestrial launch, Re chambers with improved mechanical properties are needed. Recent electrochemical forming (EL-Form"TM") results have shown considerable promise for improving Re's mechanical properties by producing a multilayered deposit composed of a tailored microstructure (i.e., Engineered Re). The Engineered Re processing techniques were optimized, and detailed characterization and mechanical properties tests were performed. The most promising techniques were selected and used to produce an Engineered Re AMBR-sized combustion chamber for testing at Aerojet Rocketdyne.

  1. Intracellular distribution and stability of a luminescent rhenium(I) tricarbonyl tetrazolato complex using epifluorescence microscopy in conjunction with X-ray fluorescence imaging

    DOE PAGES

    Wedding, Jason L.; Harris, Hugh H.; Bader, Christie A.; ...

    2016-11-23

    Optical fluorescence microscopy was used in conjunction with X-ray fluorescence microscopy to monitor the stability and intracellular distribution of the luminescent rhenium(I) complex fac-[Re(CO) 3(phen)L], where phen = 1,10-phenathroline and L = 5-(4-iodophenyl)tetrazolato, in 22Rv1 cells. The rhenium complex showed no signs of ancillary ligand dissociation, a conclusion based on data obtained via X-ray fluorescence imaging aligning iodine and rhenium distributions. A diffuse reticular localisation was detected for the complex, in the nuclear/perinuclear region of cells, by either optical or X-ray fluorescence techniques. Furthermore, X-ray fluorescence also showed that the Re-I complex disrupted the homeostasis of some biologically relevant elements,more » such as chlorine, potassium and zinc.« less

  2. Mirrorlike pulsed laser deposited tungsten thin film.

    PubMed

    Mostako, A T T; Rao, C V S; Khare, Alika

    2011-01-01

    Mirrorlike tungsten thin films on stainless steel substrate deposited via pulsed laser deposition technique in vacuum (10(-5) Torr) is reported, which may find direct application as first mirror in fusion devices. The crystal structure of tungsten film is analyzed using x-ray diffraction pattern, surface morphology of the tungsten films is studied with scanning electron microscope and atomic force microscope. The film composition is identified using energy dispersive x-ray. The specular and diffuse reflectivities with respect to stainless steel substrate of the tungsten films are recorded with FTIR spectra. The thickness and the optical quality of pulsed laser deposition deposited films are tested via interferometric technique. The reflectivity is approaching about that of the bulk for the tungsten film of thickness ∼782 nm.

  3. Long-term life testing of Geostationary Operational Environmental Satellite (GOES) encoder lamps

    NASA Technical Reports Server (NTRS)

    Powers, Charles E.

    1992-01-01

    The aging characteristics and lifetimes of tungsten filament encoder lamps were determined as a function of operating voltage and filament material. For pure tungsten and thoria doped (1 pct.) filament lamps, crystal grain growth over the center portion of the filament leads to the ultimate failure of the lamp. The development of notches associated with this grain growth is the cause of lamp burn out. Eventually, one of the notches will 'etch' through the filament, causing it to fail open. For rhenium doped (3 pct.) filament lamps, distortion of the filament leads to the ultimate failure of the lamp. The lifetime of these lamps is about 1 year at an operating voltage of 5.0 volts. The pure tungsten filament lamps have the longest average lifetime, and the thoria doped filament lamps have the shortest at 5.0 volts. The lifetimes of these lamps is about 7 years at an operating voltage of 3.5 volts. Data suggest that the rhenium doped lamps will have the longest average lifetime at 3.5 volts, and the thoria doped will have the shortest. These lifetimes are comparable to the desired lifetimes of 7 years.

  4. Chromium Elimination and Cannon Life Extension for Gun Tubes

    DTIC Science & Technology

    2012-08-30

    the use of hexavalent chromium (VI) in the production of cannon barrels by developing a cost effective environmentally friendly Explosive Bonding...erosion- resistant chrome cobalt alloy matrix with 15% tungsten. Stellite is used as M60 machine gun barrel liner. Tantalum Cobalt Tungsten...Grounds (YPG) Preliminary proof of principle endurance testing at YPG shows promising results when conducted side by side to a chrome plated

  5. Tungsten devices in analytical atomic spectrometry

    NASA Astrophysics Data System (ADS)

    Hou, Xiandeng; Jones, Bradley T.

    2002-04-01

    Tungsten devices have been employed in analytical atomic spectrometry for approximately 30 years. Most of these atomizers can be electrically heated up to 3000 °C at very high heating rates, with a simple power supply. Usually, a tungsten device is employed in one of two modes: as an electrothermal atomizer with which the sample vapor is probed directly, or as an electrothermal vaporizer, which produces a sample aerosol that is then carried to a separate atomizer for analysis. Tungsten devices may take various physical shapes: tubes, cups, boats, ribbons, wires, filaments, coils and loops. Most of these orientations have been applied to many analytical techniques, such as atomic absorption spectrometry, atomic emission spectrometry, atomic fluorescence spectrometry, laser excited atomic fluorescence spectrometry, metastable transfer emission spectroscopy, inductively coupled plasma optical emission spectrometry, inductively coupled plasma mass spectrometry and microwave plasma atomic spectrometry. The analytical figures of merit and the practical applications reported for these techniques are reviewed. Atomization mechanisms reported for tungsten atomizers are also briefly summarized. In addition, less common applications of tungsten devices are discussed, including analyte preconcentration by adsorption or electrodeposition and electrothermal separation of analytes prior to analysis. Tungsten atomization devices continue to provide simple, versatile alternatives for analytical atomic spectrometry.

  6. 2014 NEPP Tasks Update for Ceramic and Tantalum Capacitors

    NASA Technical Reports Server (NTRS)

    Teverovsky, Alexander A.

    2014-01-01

    Presentation describes recent development in research on MnO2, wet, and polymer tantalum capacitors. Low-voltage failures in multilayer ceramic capacitors and techniques to reveal precious metal electrode (PME) and base metal electrode (BME) capacitors with cracks are discussed. A voltage breakdown technique is suggested to select high quality low-voltage BME ceramic capacitors.

  7. Superconducting molybdenum-rhenium electrodes for single-molecule transport studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gaudenzi, R.; Island, J. O.; Bruijckere, J. de

    2015-06-01

    We demonstrate that electronic transport through single molecules or molecular ensembles, commonly based on gold (Au) electrodes, can be extended to superconducting electrodes by combining gold with molybdenum-rhenium (MoRe). This combination induces proximity-effect superconductivity in the gold to temperatures of at least 4.6 K and magnetic fields of 6 T, improving on previously reported aluminum based superconducting nanojunctions. As a proof of concept, we show three-terminal superconductive transport measurements through an individual Fe{sub 4} single-molecule magnet.

  8. Development and characterization of powder metallurgically produced discontinuous tungsten fiber reinforced tungsten composites

    NASA Astrophysics Data System (ADS)

    Mao, Y.; Coenen, J. W.; Riesch, J.; Sistla, S.; Almanstötter, J.; Jasper, B.; Terra, A.; Höschen, T.; Gietl, H.; Bram, M.; Gonzalez-Julian, J.; Linsmeier, Ch; Broeckmann, C.

    2017-12-01

    In future fusion reactors, tungsten is the prime candidate material for the plasma facing components. Nevertheless, tungsten is prone to develop cracks due to its intrinsic brittleness—a major concern under the extreme conditions of fusion environment. To overcome this drawback, tungsten fiber reinforced tungsten (Wf/W) composites are being developed. These composite materials rely on an extrinsic toughing principle, similar to those in ceramic matrix composite, using internal energy dissipation mechanisms, such as crack bridging and fiber pull-out, during crack propagation. This can help Wf/W to facilitate a pseudo-ductile behavior and allows an elevated damage resilience compared to pure W. For pseudo-ductility mechanisms to occur, the interface between the fiber and matrix is crucial. Recent developments in the area of powder-metallurgical Wf/W are presented. Two consolidation methods are compared. Field assisted sintering technology and hot isostatic pressing are chosen to manufacture the Wf/W composites. Initial mechanical tests and microstructural analyses are performed on the Wf/W composites with a 30% fiber volume fraction. The samples produced by both processes can give pseudo-ductile behavior at room temperature.

  9. Materials Survey: Tungsten

    DTIC Science & Technology

    1956-12-01

    Decomposition of Tungsten Ores ......................................... 111-13 Purification of Tungsten Oxide...which followed in 1945 . THE POSTWAR PERIOD Readjustment ’൚-4-1" type of high-speed steel bymanu- facturers who had been using the Ś-6" The period 1946... 1945 ... 5,26’ 8,639 4,7,74 14, 16 2 4,341 23.17 first. 1Ś ... 4.42 b,s81 6,869 6,458 37 ),980 20.17 I94’... 2,945 9,W02 6,018 7,812 148 3.󈧐 23.43袄

  10. Low-Cost, High-Performance Combustion Chamber

    NASA Technical Reports Server (NTRS)

    Fortini, Arthur J.

    2015-01-01

    Ultramet designed and fabricated a lightweight, high-temperature combustion chamber for use with cryogenic LOX/CH4 propellants that can deliver a specific impulse of approx.355 seconds. This increase over the current 320-second baseline of nitrogen tetroxide/monomethylhydrazine (NTO/MMH) will result in a propellant mass decrease of 55 lb for a typical lunar mission. The material system was based on Ultramet's proven oxide-iridium/rhenium architecture, which has been hot-fire tested with stoichiometric oxygen/hydrogen for hours. Instead of rhenium, however, the structural material was a niobium or tantalum alloy that has excellent yield strength at both ambient and elevated temperatures. Phase I demonstrated alloys with yield strength-to-weight ratios more than three times that of rhenium, which will significantly reduce chamber weight. The starting materials were also two orders of magnitude less expensive than rhenium and were less expensive than the C103 niobium alloy commonly used in low-performance engines. Phase II focused on the design, fabrication, and hot-fire testing of a 12-lbf thrust class chamber with LOX/CH4, and a 100-lbf chamber for LOX/CH4. A 5-lbf chamber for NTO/MMH also was designed and fabricated.

  11. Alkyl group effects on CO insertion into coordinatively unsaturated early-transition-metal alkyls. Preparations and the first structural characterizations of tantalum enolate-O and tantalum. eta. sup 2 -acyl complexes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meyer, T.Y.; Garner, L.R.; Baenziger, N.C.

    1990-10-03

    Low-pressure carbonylation of the mono(peralkylcyclopentadienyl)tantalum(V) alkyls ({eta}-C{sub 5}Me{sub 4}R)TaR{prime}Cl{sub 3} (R = Me, Et; R{prime} = CH{sub 2}C{sub 6}H{sub 4}-p-Me, CH{sub 2}CMe{sub 3}) yields either the O-bound enolate or the {eta}{sup 2}-acyl as shown by ir/NMR spectroscopy and x-ray diffractometry. The p-tolyl enolate ({eta}-C{sub 5}Me{sub 5})Ta(OCH{double bond}CHC{sub 6}H{sub 4}-p-Me)Cl{sub 3}, derived directly from carbonylation of the tantalum 4-methylbenzyl precursor, is shown to possess a cis configuration in solution and in the solid state. Key structural features from a single-crystal x-ray diffraction study of the tetrahydrofuran-ligated enolate complex are reported. The mechanism of formation of the enolate from carbonylation of themore » 4-methylbenzyl complex is discussed. The previously reported acyl ({eta}-C{sub 5}Me{sub 4}R)Ta(C(O)CH{sub 2}CMe{sub 3})Cl{sub 3} has been reexamined and found to possess a symmetric, strongly distorted {eta}{sup 2}-acyl coordination by solution {sup 1}H NMR spectroscopy and solid-state x-ray diffractometry. The molecular structures of ({eta}-C{sub 5}Me{sub 5})Ta(OCH{double bond}CHC{sub 6}H{sub 4}-p-Me)Cl{sub 3} and ({eta}-C{sub 5}Me{sub 5})Ta(C(O)CH{sub 2}CMe{sub 3})Cl{sub 3}, which are reported here, are the first structural determinations of a tantalum enolate and of a tantalum {eta}{sup 2}-acyl. 41 refs., 2 figs., 8 tabs.« less

  12. The tungsten powder study of the dispenser cathode

    NASA Astrophysics Data System (ADS)

    Bao, Ji-xiu; Wan, Bao-fei

    2006-06-01

    The intercorrelation of tungsten powder properties, such as grain size, distribution and morphology, and porous matrix parameters with electron emission capability and longevity of Ba dispenser cathodes has been investigated for the different grain morphologies. It is shown that a fully cleaning step of the tungsten powder is so necessary that the tungsten powder will be reduction of oxide in hydrogen atmosphere above 700 °C. The porosity of the tungsten matrix distributes more even and the closed pore is fewer, the average granule size of the tungsten powder distributes more convergent. The porosity of the tungsten matrix and the evaporation of the activator are bigger and the pulse of the cathode is smaller when the granularity is bigger by the analysis of the electronic microscope and diode experiment.

  13. Rhenium and technetium tricarbonyl, {M(CO)3} (+) (M = Tc, Re), binding to mammalian metallothioneins: new insights into chemical and radiopharmaceutical implications.

    PubMed

    Lecina, Joan; Palacios, Òscar; Atrian, Sílvia; Capdevila, Mercè; Suades, Joan

    2015-04-01

    This paper deals with the binding of the four mammalian metallothioneins (MTs) to the organometallic metal fragment {fac-M(CO)3}(+) (M = (99)Tc, Re), which is highly promising for the preparation of second-generation radiopharmaceuticals. The study of the transmetallation reaction between zinc and rhenium in Zn7-MT1 by means of UV-vis and CD spectroscopy demonstrated the incorporation of the {fac-Re(CO)3}(+) fragment to the MTs. This reaction should be performed at 70 °C to accelerate the reaction rate, a result that is consistent with the reported reactivity of the rhenium fragment. ESI-TOF MS demonstrated the formation of mixed-metal species as Zn6,{Re(CO)3}-MT, Zn6,{Re(CO)3}2-MT, and Zn5,{Re(CO)3}3-MT, as well as the different reactivity of the four MT isoforms. Hence, Zn-MT3 showed the highest reactivity, in agreement with its high Cu-thionein character, whereas Zn-MT2 exhibited the lowest reactivity, in line with its high Zn-thionein character. The reactivity of the Zn-loaded forms of MT1 and MT4 is intermediate between those of MT3 and MT2. The study of the binding of the {fac-(99)Tc(CO)3}(+) fragment to MTs showed a significant and very interesting different reactivity in relation to rhenium. The transmetallation reaction is much more effective with technetium than with rhenium and significant amounts of mixed Zn x ,{(99)Tc(CO)3} y -MT species were formed with the four MT isoforms whereas only MT3 rendered similar amounts of rhenium derivatives. The results obtained in this study support the possible use of technetium for labelling mammalian metallothioneins and also for possible radiopharmaceutical applications.

  14. Irradiation effects in tungsten-copper laminate composite

    DOE PAGES

    Garrison, L. M.; Katoh, Yutai; Snead, Lance L.; ...

    2016-09-19

    Tungsten-copper laminate composite has shown promise as a structural plasma-facing component as compared to tungsten rod or plate. The present study evaluated the tungsten-copper composite after irradiation in the High Flux Isotope Reactor (HFIR) at temperatures of 410–780 °C and fast neutron fluences of 0.02–9.0 × 10 25 n/m 2, E > 0.1 MeV, 0.0039–1.76 displacements per atom (dpa) in tungsten. Tensile tests were performed on the composites, and the fracture surfaces were analyzed with scanning electron microscopy. Before irradiation, the tungsten layers had brittle cleavage failure, but the overall composite had 15.5% elongation at 22 °C. After only 0.0039more » dpa this was reduced to 7.7% elongation, and no ductility was observed after 0.2 dpa at all irradiation temperatures when tensile tested at 22 °C. In conclusion, tor elevated temperature tensile tests after irradiation, the composite only had ductile failure at temperatures where the tungsten was delaminating or ductile.« less

  15. Large enhancement of superconducting transition temperature in single-element superconducting rhenium by shear strain

    PubMed Central

    Mito, Masaki; Matsui, Hideaki; Tsuruta, Kazuki; Yamaguchi, Tomiko; Nakamura, Kazuma; Deguchi, Hiroyuki; Shirakawa, Naoki; Adachi, Hiroki; Yamasaki, Tohru; Iwaoka, Hideaki; Ikoma, Yoshifumi; Horita, Zenji

    2016-01-01

    Finding a physical approach for increasing the superconducting transition temperature (Tc) is a challenge in the field of material science. Shear strain effects on the superconductivity of rhenium were investigated using magnetic measurements, X-ray diffraction, transmission electron microscopy, and first-principles calculations. A large shear strain reduces the grain size and simultaneously expands the unit cells, resulting in an increase in Tc. Here we show that this shear strain approach is a new method for enhancing Tc and differs from that using hydrostatic strain. The enhancement of Tc is explained by an increase in net electron–electron coupling rather than a change in the density of states near the Fermi level. The shear strain effect in rhenium could be a successful example of manipulating Bardeen–Cooper–Schrieffer-type Cooper pairing, in which the unit cell volumes are indeed a key parameter. PMID:27811983

  16. Study of surge current effects on solid tantalum capacitors

    NASA Technical Reports Server (NTRS)

    1980-01-01

    Results are presented of a 2,000 hour cycled life test program conducted to determine the effect of short term surge current screening on approximately 47 micron f/volt solid tantalum capacitors. The format provides average values and standard deviations of the parameters, capacitance, dissipation factor, and equivalent series resistance at 120 Hz, 1KHz, abd 40 KHz.

  17. Tungsten or Wolfram: Friend or Foe?

    PubMed

    Zoroddu, Maria A; Medici, Serenella; Peana, Massimiliano; Nurchi, Valeria M; Lachowicz, Joanna I; Laulicht-Glickc, Freda; Costa, Max

    2018-01-01

    Tungsten or wolfram was regarded for many years as an enemy within the tin smelting and mining industry, because it conferred impurity or dirtiness in tin mining. However, later it was considered an amazing metal for its strength and flexibility, together with its diamond like hardness and its melting point which is the highest of any metal. It was first believed to be relatively inert and an only slightly toxic metal. Since early 2000, the risk exerted by tungsten alloys, its dusts and particulates to induce cancer and several other adverse effects in animals as well as humans has been highlighted from in vitro and in vivo experiments. Thus, it becomes necessary to take a careful look at all the most recent data reported in the scientific literature, covering the years 2001-2016. In fact, the findings indicate that much more attention should be devoted to thoroughly investigate the toxic effects of tungsten and the involved mechanisms of tungsten metal or tungsten metal ions. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  18. Diffusion-Cooled Tantalum Hot-Electron Bolometer Mixers

    NASA Technical Reports Server (NTRS)

    Skalare, Anders; McGrath, William; Bumble, Bruce; LeDuc, Henry

    2004-01-01

    A batch of experimental diffusion-cooled hot-electron bolometers (HEBs), suitable for use as mixers having input frequencies in the terahertz range and output frequencies up to about a gigahertz, exploit the superconducting/normal-conducting transition in a thin strip of tantalum. The design and operation of these HEB mixers are based on mostly the same principles as those of a prior HEB mixer that exploited the superconducting/normal- conducting transition in a thin strip of niobium and that was described elsewhere.

  19. Electron-ion temperature equilibration in warm dense tantalum

    DOE PAGES

    Doppner, T; LePape, S.; Ma, T.; ...

    2014-11-05

    We present measurements of electron-ion temperature equilibration in proton-heated tantalum, under warm dense matter conditions. Our results agree with theoretical predictions for metals calculated using input data from ab initio simulations. Furthermore, the fast relaxation observed in the experiment contrasts with much longer equilibration times found in proton heated carbon, indicating that the energy flow pathways in warm dense matter are far from being fully understood.

  20. Response and representation of ductile damage under varying shock loading conditions in tantalum

    DOE PAGES

    Bronkhorst, C. A.; Gray, III, G. T.; Addessio, F. L.; ...

    2016-02-25

    The response of polycrystalline metals, which possess adequate mechanisms for plastic deformation under extreme loading conditions, is often accompanied by the formation of pores within the structure of the material. This large deformation process is broadly identified as progressive with nucleation, growth, coalescence, and failure the physical path taken over very short periods of time. These are well known to be complex processes strongly influenced by microstructure, loading path, and the loading profile, which remains a significant challenge to represent and predict numerically. In the current study, the influence of loading path on the damage evolution in high-purity tantalum ismore » presented. Tantalum samples were shock loaded to three different peak shock stresses using both symmetric impact, and two different composite flyer plate configurations such that upon unloading the three samples displayed nearly identical “pull-back” signals as measured via rear-surface velocimetry. While the “pull-back” signals observed were found to be similar in magnitude, the sample loaded to the highest peak stress nucleated a connected field of ductile fracture which resulted in complete separation, while the two lower peak stresses resulted in incipient damage. The damage evolution in the “soft” recovered tantalum samples was quantified using optical metallography, electron-back-scatter diffraction, and tomography. These experiments are examined numerically through the use of a model for shock-induced porosity evolution during damage. The model is shown to describe the response of the tantalum reasonably well under strongly loaded conditions but less well in the nucleation dominated regime. As a result, numerical results are also presented as a function of computational mesh density and discussed in the context of improved representation of the influence of material structure upon macro-scale models of ductile damage.« less

  1. Tungsten Targets the Tumor Microenvironment to Enhance Breast Cancer Metastasis

    PubMed Central

    Bolt, Alicia M.; Sabourin, Valérie; Molina, Manuel Flores; Police, Alice M.; Negro Silva, Luis Fernando; Plourde, Dany; Lemaire, Maryse; Ursini-Siegel, Josie; Mann, Koren K.

    2015-01-01

    The number of individuals exposed to high levels of tungsten is increasing, yet there is limited knowledge of the potential human health risks. Recently, a cohort of breast cancer patients was left with tungsten in their breasts following testing of a tungsten-based shield during intraoperative radiotherapy. While monitoring tungsten levels in the blood and urine of these patients, we utilized the 66Cl4 cell model, in vitro and in mice to study the effects of tungsten exposure on mammary tumor growth and metastasis. We still detect tungsten in the urine of patients’ years after surgery (mean urinary tungsten concentration at least 20 months post-surgery = 1.76 ng/ml), even in those who have opted for mastectomy, indicating that tungsten does not remain in the breast. In addition, standard chelation therapy was ineffective at mobilizing tungsten. In the mouse model, tungsten slightly delayed primary tumor growth, but significantly enhanced lung metastasis. In vitro, tungsten did not enhance 66Cl4 proliferation or invasion, suggesting that tungsten was not directly acting on 66Cl4 primary tumor cells to enhance invasion. In contrast, tungsten changed the tumor microenvironment, enhancing parameters known to be important for cell invasion and metastasis including activated fibroblasts, matrix metalloproteinases, and myeloid-derived suppressor cells. We show, for the first time, that tungsten enhances metastasis in an animal model of breast cancer by targeting the microenvironment. Importantly, all these tumor microenvironmental changes are associated with a poor prognosis in humans. PMID:25324207

  2. Diverse roles of hydrogen in rhenium carbonyl chemistry: hydrides, dihydrogen complexes, and a formyl derivative.

    PubMed

    Li, Nan; Xie, Yaoming; King, R Bruce; Schaefer, Henry F

    2010-11-04

    Rhenium carbonyl hydride chemistry dates back to the 1959 synthesis of HRe(CO)₅ by Hieber and Braun. The binuclear H₂Re₂(CO)₈ was subsequently synthesized as a stable compound with a central Re₂(μ-H)₂ unit analogous to the B₂(μ-H)₂ unit in diborane. The complete series of HRe(CO)(n) (n = 5, 4, 3) and H₂Re₂(CO)(n) (n = 9, 8, 7, 6) derivatives have now been investigated by density functional theory. In contrast to the corresponding manganese derivatives, all of the triplet rhenium structures are found to lie at relatively high energies compared with the corresponding singlet structures consistent with the higher ligand field splitting of rhenium relative to manganese. The lowest energy HRe(CO)₅ structure is the expected octahedral structure. Low-energy structures for HRe(CO)(n) (n = 4, 3) are singlet structures derived from the octahedral HRe(CO)₅ structure by removal of one or two carbonyl groups. For H₂Re₂(CO)₉ a structure HRe₂(CO)₉(μ-H), with one terminal and one bridging hydrogen atom, lies within 3 kcal/mol of the structure Re₂(CO)₉(η²-H₂), similar to that of Re₂(CO)₁₀. For H₂Re₂(CO)(n) (n = 8, 7, 6) the only low-energy structures are doubly bridged singlet Re₂(μ-H)₂(CO)(n) structures. Higher energy dihydrogen complex structures are also found.

  3. Photoinduced hydrogen evolution in supramolecular devices with a rhenium photosensitizer linked to FeFe-hydrogenase model complexes.

    PubMed

    Liu, Jianhui; Jiang, Weina

    2012-08-28

    Coordination of the pyridyl-attached diiron azadithiolate hexacarbonyl complexes (2 and 3) through the pyridyl nitrogen to the Re on 10-phenanthroline rhenium (5a) and 2,9-diphenyl-1,10-phenanthroline rhenium (5b) forms novel [Re-Fe] complexes 7a, 7b and 8 respectively. Under visible light illumination using triethylamine as a sacrificial electron donor and [Re-Fe] type complexes (7a, 7b or 8) as catalysts, remarkably increased efficiency was observed for photoinduced hydrogen production with a turnover number reaching 11.8 from complex 7a and 8.75 from 7b. To the best of our knowledge, these are the best values compared to other [Re-Fe] photocatalysts reported so far. In contrast to the parent molecules, the turnover number by the intermolecular combination of complexes 6a and 2 showed a value of 5.23, and that from 6b and 2 is 3.8, while no H(2) was detected from 8a and 3 under the same experimental conditions. Obviously, the intramolecular combination of rhenium(I) and [2Fe2S] as a catalyst is promising for efficient H(2) evolution, and it is better than the intermolecular multi-component system.

  4. Study on the RF inductively coupled plasma spheroidization of refractory W and W-Ta alloy powders

    NASA Astrophysics Data System (ADS)

    Chenfan, YU; Xin, ZHOU; Dianzheng, WANG; Neuyen VAN, LINH; Wei, LIU

    2018-01-01

    Spherical powders with good flowability and high stacking density are mandatory for powder bed additive manufacturing. Nevertheless, the preparation of spherical refractory tungsten and tungsten alloy powders is a formidable task. In this paper, spherical refractory metal powders processed by high-energy stir ball milling and RF inductively coupled plasma were investigated. By utilizing the technical route, pure spherical tungsten powders were prepared successfully, the flowability increased from 10.7 s/50 g to 5.5 s/50 g and apparent density increased from 6.916 g cm-3 to 11.041 g cm-3. Alloying element tantalum can reduce the tendency to micro-crack during tungsten laser melting and rapid solidification process. Spherical W-6Ta (%wt) powders were prepared in this way, homogeneous dispersion of tantalum in a tungsten matrix occurred but a small amount of flake-like shape particles appeared after high-energy stir ball milling. The flake-like shape particles can hardly be spheroidized in subsequent RF inductively coupled plasma process, might result from the unique suspended state of flaky particles under complex electric and magnetic fields as well as plasma-particle heat exchange was different under various turbulence models. As a result, the flake-like shape particles cannot pass through the high-temperature area of thermal plasma torch and cannot be spheroidized properly.

  5. Analysis and fabrication of tungsten CERMET materials for ultra-high temperature reactor applications via pulsed electric current sintering

    NASA Astrophysics Data System (ADS)

    Webb, Jonathan A.

    The optimized development path for the fabrication of ultra-high temperature W-UO2 CERMET fuel elements were explored within this dissertation. A robust literature search was conducted, which concluded that a W-UO 2 fuel element must contain a fine tungsten microstructure and spherical UO2 kernels throughout the entire consolidation process. Combined Monte Carlo and Computational Fluid Dynamics (CFD) analysis were used to determine the effects of rhenium and gadolinia additions on the performance of W-UO 2 fuel elements at refractory temperatures and in dry and water submerged environments. The computational analysis also led to the design of quasi-optimized fuel elements that can meet thermal-hydraulic and neutronic requirements A rigorous set of experiments were conducted to determine if Pulsed Electric Current Sintering (PECS) can fabricate tungsten and W-Ce02 specimens to the required geometries, densities and microstructures required for high temperature fuel elements as well as determine the mechanisms involved within the PECS consolidation process. The CeO2 acts as a surrogate for UO 2 fuel kernels in these experiments. The experiments seemed to confirm that PECS consolidation takes place via diffusional mass transfer methods; however, the densification process is rapidly accelerated due to the effects of current densities within the consolidating specimen. Fortunately the grain growth proceeds at a traditional rate and the PECS process can yield near fully dense W and W-Ce02 specimens with a finer microstructure than other sintering techniques. PECS consolidation techniques were also shown to be capable of producing W-UO2 segments at near-prototypic geometries; however, great care must be taken to coat the fuel particles with tungsten prior to sintering. Also, great care must be taken to ensure that the particles remain spherical in geometry under the influence of a uniaxial stress as applied during PECS, which involves mixing different fuel kernel sizes in

  6. Nuclear Medicine Program progress report for quarter ending March 31, 1990

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Knapp, F.F. Jr.; Ambrose, K.R.; Callahan, A.P.

    1990-07-01

    The evaluation of the effects of albumin and albumin plus sodium palmitate in the phosphate buffer perfusate on the relative incorporation of 15-(p-(I-125)iodophenyl)-3-(R,S)-methylpentadecanoic acid (BMIPP) into endogenous lipids of isolated rat hearts has been studied. The effects of eluant salt character and concentration on the elution of (Re-188)perrhenate from the alumina-based tungsten-188/rhenium-188 generator system have also been investigated. During this period several agents were supplied to Medical Cooperative investigators, including (I-123)-labeled and (I-131)-labeled fatty acid analogues for studies at the Brookhaven National Laboratory and the Cardiology Department at the Free University of Amsterdam. Tungsten-188/rhenium-188 generators were supplied to the Universitymore » of Massachusetts and the Center for Molecular Medicine and Immunology, in Newark, New Jersey. Osmium-191 was supplied for fabrication of generators for patient studies in Finland. 1 ref., 2 figs., 2 tabs.« less

  7. Analysis of the Nuclear Structure of Rhenium-186 Using Neutron-Induced Reactions

    DTIC Science & Technology

    2015-03-26

    5 1.5 Methods ... radioisotope power source for use on the battlefield. 1 Re-Os Cosmochronometer. The isotope 187Re has a half-life in its ground state of 4.35⇥ 1010 years [2...187Os in meteorites permits one to date the nucleosynthesis of rhenium and osmium by high neutron flux events such as supernovae. The Re-Os radioactive

  8. Selective Dry Etch for Defining Ohmic Contacts for High Performance ZnO TFTs

    DTIC Science & Technology

    2014-03-27

    scale, high-frequency ZnO thin - film transistors (TFTs) could be fabricated. Molybdenum, tantalum, titanium tungsten 10-90, and tungsten metallic contact... thin - film transistor layout utilized in the thesis research . . . . . 42 3.4 Process Flow Diagram for Optical and e-Beam Devices...TFT thin - film transistor TLM transmission line model UV ultra-violet xvii SELECTIVE DRY ETCH FOR DEFINING OHMIC CONTACTS FOR HIGH PERFORMANCE ZnO TFTs

  9. The structure, bond strength and apatite-inducing ability of micro-arc oxidized tantalum and their response to annealing

    NASA Astrophysics Data System (ADS)

    Wang, Cuicui; Wang, Feng; Han, Yong

    2016-01-01

    In this study, the tantalum oxide coatings were formed on pure tantalum (Ta) by micro-arc oxidation (MAO) in electrolytic solutions of calcium acetate and β-glycerophosphate disodium, and the effect of the applied voltage on the microstructure and bond strength of the MAO coatings was systematically investigated. The effect of annealing treatment on the microstructure, bond strength and apatite-inducing ability of the MAO coatings formed at 350 and 450 V was also studied. The study revealed that during the preparation of tantalum oxide coatings on Ta substrate by MAO, the applied voltage considerably affected the phase components, morphologies and bond strength of the coatings, but had little effect on surface chemical species. After annealing treatment, newly formed CaTa4O11 phase mainly contributed to the much more stronger apatite-inducing ability of the annealed tantalum oxide coatings than those that were not annealed. The better apatite-inducing ability of the MAO coatings formed at 450 V compared to those formed at 350 V was attributed to the less amorphous phase and more crystalline phase as well as more Ca and P contained in the MAO coatings with increasing the applied voltage.

  10. Design, Development, manufacture and qualification of wet-slug all-tantalum capacitors

    NASA Technical Reports Server (NTRS)

    Maher, R. H.

    1977-01-01

    Specifications and qualification tests data are presented for over eleven hundred T3 case all-tantalum capacitors encompassing four ratings. The finalized product has all the advantages of the silver cased wet and is capable of withstanding some reverse potential ac ripple current.

  11. Physics of Shock Compression and Release: NEMD Simulations of Tantalum and Silicon

    NASA Astrophysics Data System (ADS)

    Hahn, Eric; Meyers, Marc; Zhao, Shiteng; Remington, Bruce; Bringa, Eduardo; Germann, Tim; Ravelo, Ramon; Hammerberg, James

    2015-06-01

    Shock compression and release allow us to evaluate physical deformation and damage mechanisms occurring in extreme environments. SPaSM and LAMMPS molecular dynamics codes were employed to simulate single and polycrystalline tantalum and silicon at strain rates above 108 s-1. Visualization and analysis was accomplished using OVITO, Crystal Analysis Tool, and a redesigned orientation imaging function implemented into SPaSM. A comparison between interatomic potentials for both Si and Ta (as pertaining to shock conditions) is conducted and the influence on phase transformation and plastic relaxation is discussed. Partial dislocations, shear induced disordering, and metastable phase changes are observed in compressed silicon. For tantalum, the role of grain boundary and twin intersections are evaluated for their role in ductile spallation. Finally, the temperature dependent response of both Ta and Si is investigated.

  12. R&D of A MW-class solid-target for a spallation neutron source

    NASA Astrophysics Data System (ADS)

    Kawai, Masayoshi; Furusaka, Michihiro; Kikuchi, Kenji; Kurishita, Hiroaki; Watanabe, Ryuzo; Li, Jing-Feng; Sugimoto, Katsuhisa; Yamamura, Tsutomu; Hiraoka, Yutaka; Abe, Katsunori; Hasegawa, Akira; Yoshiie, Masatoshi; Takenaka, Hiroyuki; Mishima, Katsuichiro; Kiyanagi, Yoshiaki; Tanabe, Tetsuo; Yoshida, Naoaki; Igarashi, Tadashi

    2003-05-01

    R&D for a MW-class solid target composed of tungsten was undertaken to produce a pulsed intense neutron source for a future neutron scattering-facility. In order to solve the corrosion of tungsten, tungsten target blocks were clad with tantalum by means of HIP'ing, brazing and electrolytic coating in a molten salt bath. The applicability of the HIP'ing method was tested through fabricating target blocks for KENS (spallation neutron source at KEK). A further investigation to certify the optimum HIP conditions was made with the small punch test method. The results showed that the optimum temperature was 1500 °C at which the W/Ta interface gave the strongest fracture strength. In the case of the block with a hole for thermocouple, it was found that the fabrication preciseness of a straight hole and a tantalum sheath influenced the results. The development of a tungsten stainless-steel alloy was tried to produce a bare tungsten target, using techniques in powder metallurgy. Corrosion tests for various tungsten alloys were made while varying the water temperature and velocity. The mass loss of tungsten in very slow water at 180 °C was as low as 0.022 mg/y, but increased remarkably with water velocity. Simulation experiments for radiation damage to supplement the STIP-III experiments were made to investigate material hardening by hydrogen and helium, and microstructures irradiated by electrons. Both experiments showed consistent results on the order of the dislocation numbers and irradiation hardness among the different tungsten materials. Thermal-hydraulic designs were made for two types of solid target system of tungsten: slab and rod geometry as a function of the proton beam power. The neutronic performance of a solid target system was compared with that of mercury target based on Monte Carlo calculations by using the MCNP code.

  13. Design, analysis, and fabrication of oxide-coated iridium/rhenium combustion chambers

    NASA Technical Reports Server (NTRS)

    Jang, Q.; Tuffias, R. H.; Laferla, R.; Ghoniem, N. M.

    1993-01-01

    Iridium-coated rhenium (Ir/Re) combustion chambers provide high temperature, oxidation-resistant operation for radiation-cooled liquid-fueled rocket engines. A 22-N (5-lb(sub f)) chamber has been operated for 15 hours at 2200 C (4000 F) using nitrogen tetroxide/monomethyl hydrazine (NTO/MMH) propellant, with negligible internal erosion. The oxidation resistance of these chambers could be further increased by the addition of refractory oxide coatings, providing longer life and/or operation in more oxidizing and higher temperature environments. The oxide coatings would serve as a thermal and diffusion barrier for the iridium coating, lowering the temperature of the iridium layer while also preventing the ingress of oxygen and egress of iridium oxides. This would serve to slow the failure mechanisms of Ir/Re chambers, namely the diffusion of rhenium to the inner surface and the oxidation of iridium. Such protection could extend chamber lifetimes by tens or perhaps hundreds of hours, and allow chamber operation on stoichiometric or higher mixture ratio oxygen/hydrogen (O2/H2) propellant. Extensive thermomechanical, thermochemical, and mass transport modeling was performed as a key material/structure design tool. Based on the results of these analyses, several 22-N oxide-coated Ir/Re chambers were fabricated and delivered to NASA Lewis Research Center for hot-fire testing.

  14. High-Temperature Crystal-Growth Cartridge Tubes Made by VPS

    NASA Technical Reports Server (NTRS)

    Holmes, Richard; O'Dell, Scott; McKechnie, Timothy; Power, Christopher

    2008-01-01

    Cartridge tubes for use in a crystal growth furnace at temperatures as high as 1,600 deg. C have been fabricated by vacuum plasma spraying (VPS). These cartridges consist mainly of an alloy of 60 weight percent molybdenum with 40 weight percent rhenium, made from molybdenum powder coated with rhenium. This alloy was selected because of its high melting temperature (approximately equal.2,550 C) and because of its excellent ductility at room temperature. These cartridges are intended to supplant tungsten/nickel-alloy cartridges, which cannot be used at temperatures above approximately equal 1,300 C.

  15. Intraoperative Localization of Tantalum Markers for Proton Beam Radiation of Choroidal Melanoma by an Opto-Electronic Navigation System: A Novel Technique

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Amstutz, Christoph A., E-mail: christoph.amstutz@usz.ch; Bechrakis, Nikolaos E.; Foerster, Michael H.

    2012-03-15

    Purpose: External beam proton radiation therapy has been used since 1975 to treat choroidal melanoma. For tumor location determination during proton radiation treatment, surgical tantalum clips are registered with image data. This report introduces the intraoperative application of an opto-electronic navigation system to determine with high precision the position of the tantalum markers and their spatial relationship to the tumor and anatomical landmarks. The application of the technique in the first 4 patients is described. Methods and Materials: A navigated reference base was attached noninvasively to the eye, and a navigated pointer device was used to record the spatial positionmore » of the tantalum markers, the tumor, and anatomical landmarks. Measurement accuracy was assessed on ex vivo porcine eye specimen by repetitive recording of the tantalum marker positions. The method was applied intraoperatively on 4 patients undergoing routine tantalum clip surgery. The spatial position information delivered by the navigation system was compared to the geometric data generated by the EYEPLAN software. Results: In the ex vivo experiments, the maximum repetition error was 0.34 mm. For the intraoperative application, the root mean square error of paired-points matching of the marker positions from the navigation system and from the EYEPLAN software was 0.701-1.25 mm. Conclusions: Navigation systems are a feasible tool for accurate localization of tantalum markers and anatomic landmarks. They can provide additional geometric information, and therefore have the potential to increase the reliability and accuracy of external beam proton radiation therapy for choroidal melanoma.« less

  16. Novel hierarchical tantalum oxide-PDMS hybrid coating for medical implants: One pot synthesis, characterization and modulation of fibroblast proliferation.

    PubMed

    Tran, Phong A; Fox, Kate; Tran, Nhiem

    2017-01-01

    Surface properties such as morphology, roughness and charge density have a strong influence on the interaction of biomaterials and cells. Hierarchical materials with a combination of micron/submicron and nanoscale features for coating of medical implants could therefore have significant potential to modulate cellular responses and eventually improve the performance of the implants. In this study, we report a simple, one pot wet chemistry preparation of a hybrid coating system with hierarchical surface structures consisting of polydimethylsiloxane (PDMS) and tantalum oxide. Medical grade, amine functional PDMS was mixed with tantalum ethoxide which subsequently formed Ta 2 O 5 in situ through hydrolysis and condensation during coating process. The coatings were characterized by SEM, EDS, XPS, confocal scanning microscopy, contact angle measurement and in vitro cell culture. Varying PDMS and tantalum ethoxide ratios resulted in coatings of different surface textures ranging from smooth to submicro- and nano-structured. Strikingly, hierarchical surfaces containing both microscale (1-1.5μm) and nanoscale (86-163nm) particles were found on coatings synthesized with 20% and 40% (v/v) tantalum ethoxide. The coatings were similar in term of hydrophobicity but showed different surface roughness and chemical composition. Importantly, higher cell proliferation was observed on hybrid surface with hierarchical structures compared to pure PDMS or pure tantalum oxide. The coating process is simple, versatile, carried out under ambient condition and requires no special equipment. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Mineral Resources of the Wabayuma Peak Wilderness Study Area, Mohave County, Arizona

    USGS Publications Warehouse

    Conway, Clay M.; Hassemer, Jerry R.; Knepper, Daniel H.; Pitkin, James A.; Jachens, Robert C.; Chatman, Mark L.

    1990-01-01

    The Wabayuma Peak Wilderness Study Area (AZ-020-037/043), for which a mineral survey was requested by the U.S. Bureau of land Management, encompasses 40,118 acres in northwestern Arizona. Fieldwork was carried out in 1986-88 by the U.S. Bureau of Mines and the U.S. Geological Survey to appraise the identified (known) resources and assess the mineral resource potential (undiscovered) of the wilderness study area. Within the Wabayuma Peak Wilderness Study Area are 14 private parcels of land totaling 1,315 acres. The Wabayuma Peak Wilderness Study Area, including the 14 private parcels of land, is herein referred to as the 'wilderness study area' or the 'study area'. The Boriana, Antler, and Copper World mines lie near the east boundary of the study area. The Boriana mine was a major tungsten-producing mine of the United States during World War II. The Antler and Copper World mines produced relatively small amounts of copper and zinc prior to 1970. Copper and zinc were mined within 100 ft of the study area at the Antler mine. The Antler mine contains subeconomic resources of 350,000 to 400,000 short tons of copper-zinc ore; a minimum of 2,000 short tons, at grades of 1 to 4 percent copper and 1 to 2 percent zinc, lie within the study area. No other mineral resources were identified within the study area. Four small tracts in the eastern part and one in the central part of the study area have high resource potential for copper, zinc, and minor lead, silver, and gold in massive sulfide deposits. A large central tract and two eastern tracts have moderate resource potential for the same metals. An eastern and a western tract within the wilderness study area have high resource potential for tungsten, copper, and combinations of beryllium, gold, silver, arsenic, bismuth, molybdenum, tin, indium, thorium, niobium, yttrium, lanthanum, scandium, tantalum, rhenium, lead, zinc, and iron in granite-related tungsten-polymetallic vein deposits. Most of the rest of the study area

  18. New Targets for New Accelerators

    NASA Astrophysics Data System (ADS)

    Frentz, Bryce; Manukyan, Khachatur; Aprahamian, Ani

    2013-10-01

    New accelerators, such as the 5 MV Sta Ana accelerator at the University of Notre Dame, will produce more powerful beams up to 100's of μAmps. These accelerators require a complete rethinking of target preparation since the high intensity of such beams would melt conventional targets. Traditionally, accelerator targets are made with a tantalum backing because of its high atomic mass. However, tantalum is brittle, a poor conductor, and, if produced commercially, often contains impurities (e.g. fluorine) that produce undesirable background and reaction products. Tungsten, despite its brittle structure and poor conductivity, has a high atomic mass and lacks impurities, making it a more desirable backing. In conjunction with tungsten's properties, copper is robust and a far superior thermal conductor. We describe a new method of reactive joining that we developed for creating targets that use the advantageous properties of both tungsten and copper. This process involved placing a reactive mixture between tungsten and copper and applying a load force. The mixture is then ignited, and while under pressure, the system produces conditions to join the materials. We present our investigation to optimize the process of reactive joining, as well as some of the final target's properties. This work was supported by the National Science Foundation under Grant PHY-1068192.

  19. Secondary electron emission from plasma-generated nanostructured tungsten fuzz

    DOE PAGES

    Patino, M.; Raitses, Y.; Wirz, R.

    2016-11-14

    Recently, several researchers (e.g., Q. Yang, Y.-W. You, L. Liu, H. Fan, W. Ni, D. Liu, C. S. Liu, G. Benstetter, and Y. Wang, Scientific Reports 5, 10959 (2015)) have shown that tungsten fuzz can grow on a hot tungsten surface under bombardment by energetic helium ions in different plasma discharges and applications, including magnetic fusion devices with plasma facing tungsten components. This work reports direct measurements of the total effective secondary electron emission (SEE) from tungsten fuzz. Using dedicated material surface diagnostics and in-situ characterization, we find two important results: (1) SEE values for tungsten fuzz are 40-63% lowermore » than for smooth tungsten and (2) the SEE values for tungsten fuzz are independent of the angle of the incident electron. The reduction in SEE from tungsten fuzz is most pronounced at high incident angles, which has important implications for many plasma devices since in a negative-going sheath the potential structure leads to relatively high incident angles for the electrons at the plasma confining walls. Overall, low SEE will create a relatively higher sheath potential difference that reduces plasma electron energy loss to the confining wall. Thus the presence or self-generation in a plasma of a low SEE surface such as tungsten fuzz can be desirable for improved performance of many plasma devices.:7px« less

  20. Effect of oxygen deficiency on electronic properties and local structure of amorphous tantalum oxide thin films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Denny, Yus Rama; Firmansyah, Teguh; Oh, Suhk Kun

    2016-10-15

    Highlights: • The effect of oxygen flow rate on electronic properties and local structure of tantalum oxide thin films was studied. • The oxygen deficiency induced the nonstoichiometric state a-TaOx. • A small peak at 1.97 eV above the valence band side appeared on nonstoichiometric Ta{sub 2}O{sub 5} thin films. • The oxygen flow rate can change the local electronic structure of tantalum oxide thin films. - Abstract: The dependence of electronic properties and local structure of tantalum oxide thin film on oxygen deficiency have been investigated by means of X-ray photoelectron spectroscopy (XPS), Reflection Electron Energy Loss Spectroscopy (REELS),more » and X-ray absorption spectroscopy (XAS). The XPS results showed that the oxygen flow rate change results in the appearance of features in the Ta 4f at the binding energies of 23.2 eV, 24.4 eV, 25.8, and 27.3 eV whose peaks are attributed to Ta{sup 1+}, Ta{sup 2+}, Ta{sup 3+}/Ta{sup 4+}, and Ta{sup 5+}, respectively. The presence of nonstoichiometric state from tantalum oxide (TaOx) thin films could be generated by the oxygen vacancies. In addition, XAS spectra manifested both the increase of coordination number of the first Ta-O shell and a considerable reduction of the Ta-O bond distance with the decrease of oxygen deficiency.« less

  1. Preparation and properties of polytetrafluoroethylene impregnated with rhenium oxides

    NASA Technical Reports Server (NTRS)

    Leibecki, H. F.; Easter, R. W.

    1973-01-01

    The results of tests carried out to determine the properties of polytetrafluorethylene (PTFE) impregnated with rhenium oxides are presented. The tests included measurement of physical properties of the impregnated material and investigation of the effects of preparation process variables. Based on the latter tests a mechanism to describe the permeation process is postulated which identifies the rate controlling step to be diffusion of ReF6 molecules into the solid during the initial ReF6 soak. Physical property tests indicated that the electronic conductance is increased by many orders of magnitude while the desirable properties of the PTFE remain virtually unchanged.

  2. Tungsten recycling in the United States in 2000

    USGS Publications Warehouse

    Shedd, Kim B.

    2011-01-01

    This report, which is one of a series of reports on metals recycling, defines and quantifies the flow of tungsten-bearing materials in the United States from imports and stock releases through consumption and disposition in 2000, with particular emphasis on the recycling of industrial scrap (new scrap) and used products (old scrap). Because of tungsten's many diverse uses, numerous types of scrap were available for recycling by a wide variety of processes. In 2000, an estimated 46 percent of U.S. tungsten supply was derived from scrap. The ratio of tungsten consumed from new scrap to that consumed from old scrap was estimated to be 20:80. Of all the tungsten in old scrap available for recycling, an estimated 66 percent was either consumed in the United States or exported to be recycled.

  3. Effect of Surge Current Testing on Reliability of Solid Tantalum Capacitors

    NASA Technical Reports Server (NTRS)

    Teverovsky, Alexander

    2008-01-01

    Tantalum capacitors manufactured per military specifications are established reliability components and have less than 0.001% of failures per 1000 hours for grades D or S, thus positioning these parts among electronic components with the highest reliability characteristics. Still, failures of tantalum capacitors do happen and when it occurs it might have catastrophic consequences for the system. To reduce this risk, further development of a screening and qualification system with special attention to the possible deficiencies in the existing procedures is necessary. The purpose of this work is evaluation of the effect of surge current stress testing on reliability of the parts at both steady-state and multiple surge current stress conditions. In order to reveal possible degradation and precipitate more failures, various part types were tested and stressed in the range of voltage and temperature conditions exceeding the specified limits. A model to estimate the probability of post-surge current testing-screening failures and measures to improve the effectiveness of the screening process has been suggested.

  4. Raman scattering from rapid thermally annealed tungsten silicide

    NASA Technical Reports Server (NTRS)

    Kumar, Sandeep; Dasgupta, Samhita; Jackson, Howard E.; Boyd, Joseph T.

    1987-01-01

    Raman scattering as a technique for studying the formation of tungsten silicide is presented. The tungsten silicide films have been formed by rapid thermal annealing of thin tungsten films sputter deposited on silicon substrates. The Raman data are interpreted by using data from resistivity measurements, Auger and Rutherford backscattering measurements, and scanning electron microscopy.

  5. Measurement of uptake and release of tritium by tungsten

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nakayama, M.; Torikai, Y.; Saito, M.

    2015-03-15

    Tungsten is currently contemplated as plasma facing material for the divertor of future fusion machines. In this paper the uptake of tritium by tungsten and its release behavior have been investigated. Tungsten samples have been annealed at various temperatures and loaded at also different temperatures with deuterium containing 7.2 % tritium at a pressure of 1.2 kPa. A specific system was designed to assess the release of tritiated water and molecular tritium by the samples. Due to the rather low solubility of hydrogen isotopes in tungsten it is particularly important to be aware of the presence of hydrogen traps ormore » thin oxide films. As shown in this work, traps or oxide films may affect the retention capability of tungsten and lead to significantly modified release properties. It became clear that there were capture sites that had different thermal stability and different capture intensity in tungsten after polishing, or oxide films that were grown on the surface of tungsten and had barrier effects.« less

  6. Slip casting and extruding shapes of rhemium with metal oxide additives. Part 2: Development of grain stabilized rhenium parts for resistojets

    NASA Technical Reports Server (NTRS)

    Barr, Francis A.; Page, Russell J.

    1987-01-01

    The adaptation of the powdered particle process used for pure metal oxides to the coprocessing of rhenium oxides suitable to produce pure miniature resistojet hardware has been successful. Both slip casting and extrusion processes were used. The metal oxide ZrO2 was stabilized into the cubic phase with Y2O3, for use as a potentially grain stabilizing additive to rhenium. Straight meter long tubing in two sizes are reported. Tubing suitable for resistojet ohmic heater use of fully fired dimensions of nominally 3.8 mm o.d. x 2.2 mm i.d.. and 1.26 mm o.d. x .45 mm i.d. with 0, 0.5, 1.0 and 5.0% zirconia additives were produced for further study. Photomicrographs of these are discussed. The addition of the metal oxide zirconia to rhenium resulted in more dense and less porous parts. The additions of phase stabilized zirconia most likely act as a sintering aid. Tubes of varying diameter were slip cast which were representative of miniature pressure cases.

  7. Apparatus facilitates high-temperature tensile testing in vacuum

    NASA Technical Reports Server (NTRS)

    Sikora, P. F.

    1964-01-01

    An apparutus for heating refractory materials to high temperatures during tensile testing includes a water-cooled stainless steel vacuum chamber. This contains a resistance heater consisting of a slit tube of tantalum or tungsten to enclose the tensile test rod.

  8. The process development of laser surface modification of commercially pure titanium (Grade 2) with rhenium

    NASA Astrophysics Data System (ADS)

    Kobiela, K.; Smolina, I.; Dziedzic, R.; Szymczyk, P.; Kurzynowski, T.; Chlebus, E.

    2016-12-01

    The paper presents the results of the process development of laser surface modification of commercially pure titanium with rhenium. The criterion of the successful/optimal process is the repetitive geometry of the surface, characterized by predictable and repetitive chemical composition over its entire surface as well as special mechanical properties (hardness and wear resistance). The analysis of surface geometry concluded measurements of laser penetration depth and heat affected zone (HAZ), the width of a single track as well as width of a clad. The diode laser installed on the industrial robot carried out the laser treatment. This solution made possible the continuous supply of powder to the substrate during the process. The aim of an investigation is find out the possibility of improving the tribological characteristics of the surface due to the rhenium alloying. The verification of the surface properties (tribological) concluded geometry measurements, microstructure observation, hardness tests and evaluation of wear resistance.

  9. Ion beam and dual ion beam sputter deposition of tantalum oxide films

    NASA Astrophysics Data System (ADS)

    Cevro, Mirza; Carter, George

    1994-11-01

    Ion beam sputter deposition (IBS) and dual ion beam sputter deposition (DIBS) of tantalum oxide films was investigated at room temperature and compared with similar films prepared by e-gun deposition. Optical properties ie refractive index and extinction coefficient of IBS films were determined in the 250 - 1100 nm range by transmission spectrophotometry and at (lambda) equals 632.8 nm by ellipsometry. They were found to be mainly sensitive to the partial pressure of oxygen used as a reactive gas in the deposition process. The maximum value of the refractive index of IBS deposited tantalum oxide films was n equals 2.15 at (lambda) equals 550 nm and the extinction coefficient of order k equals 2 X 10-4. Films deposited by e-gun deposition had refractive index n equals 2.06 at (lambda) equals 550 nm. Films deposited using DIBS ie deposition assisted by low energy Ar and O2 ions (Ea equals 0 - 300 eV) and low current density (Ji equals 0 - 40 (mu) A/cm2) showed no improvement in the optical properties of the films. Preferential sputtering occurred at Ea(Ar) equals 300 eV and Ji equals 20 (mu) A/cm2 and slightly oxygen deficient films were formed. Different bonding states in the tantalum-oxide films were determined by x-ray spectroscopy while composition of the film and contaminants were determined by Rutherford scattering spectroscopy. Tantalum oxide films formed by IBS contained relatively high Ar content (approximately equals 2.5%) originating from the reflected argon neutrals from the sputtering target while assisted deposition slightly increased the Ar content. Stress in the IBS deposited films was measured by the bending technique. IBS deposited films showed compressive stress with a typical value of s equals 3.2 X 109 dyn/cm2. Films deposited by concurrent ion bombardment showed an increase in the stress as a function of applied current density. The maximum was s approximately equals 5.6 X 109 dyn/cm2 for Ea equals 300 eV and Ji equals 35 (mu) A/cm2. All

  10. Ion-beam and dual-ion-beam sputter deposition of tantalum oxide films

    NASA Astrophysics Data System (ADS)

    Cevro, Mirza; Carter, George

    1995-02-01

    Ion-beam sputter deposition (IBS) and dual-ion-beam sputter deposition (DIBS) of tantalum oxide films was investigated at room temperature and compared with similar films prepared by e-gun deposition. The optical properties, i.e., refractive index and extinction coefficient, of IBS films were determined in the 250- to 1100-nm range by transmission spectrophotometry and at (lambda) equals 632.8 nm by ellipsometry. They were found to be mainly sensitive to the partial pressure of oxygen used as a reactive gas in the deposition process. The maximum value of the refractive index of IBS deposited tantalum oxide films was n equals 2.15 at (lambda) equals 550 nm and the extinction coefficient of order k equals 2 X 10-4. Films deposited by e-gun deposition had refractive index n 2.06 at (lambda) equals 550 nm. Films deposited using DIBS, i.e., deposition assisted by low energy Ar and O2 ions (Ea equals 0 to 300 eV) and low current density (Ji equals 0 to 40 (mu) A/cm2), showed no improvement in the optical properties of the films. Preferential sputtering occurred at Ea(Ar) equals 300 eV and Ji equals 20 (mu) A/cm2 and slightly oxygen deficient films were formed. Different bonding states in the tantalum-oxide films were determined by x-ray spectroscopy, whereas composition of the film and contaminants were determined by Rutherford backscattering spectroscopy (RBS). Tantalum oxide films formed by IBS contained relatively high Ar content (approximately equals 2.5%) originating from the reflected argon neutrals from the sputtering target whereas assisted deposition slightly increased the Ar content. Stress in the IBS-deposited films was measured by the bending technique. IBS-deposited films showed compressive stress with a typical value of s equals 3.2 X 109 dyn/cm2. Films deposited by concurrent ion bombardment showed an increase in the stress as a function of applied current density. The maximum was s approximately equals 5.6 X 109 dyn/cm2 for Ea equals 300 eV and Ji equals

  11. Evaluation of wet tantalum capacitors after exposure to extended periods of ripple current, volume 1

    NASA Technical Reports Server (NTRS)

    Watson, G. W.; Lasharr, J. C.; Shumaker, M. J.

    1974-01-01

    The application of tantalum capacitors in the Viking Lander includes both dc voltage and ripple current electrical stress, high temperature during nonoperating times (sterilization), and high vibration and shock loads. The capacitors must survive these severe environments without any degradation if reliable performance is to be achieved. A test program was established to evaluate both wet-slug tantalum and wet-foil capacitors under conditions accurately duplicating actual Viking applications. Test results of the electrical performance characteristics during extended periods of ripple current, the characteristics of the internal silver migration as a function for extended periods of ripple current, and the existence of any memory characteristics are presented.

  12. Evaluation of wet tantalum capacitors after exposure to extended periods of ripple current, volume 2

    NASA Technical Reports Server (NTRS)

    Ward, C. M.

    1975-01-01

    The application of tantalum capacitors in the Viking Lander includes dc voltage and ripple current electrical stress, high temperature during nonoperating times (sterilization), and high vibration and shock loads. The capacitors must survive these severe environments without any degradation if reliable performance is to be achieved. A test program was established to evaluate both wet-slug tantalum and wet-foil capacitors under conditions accurately duplicating actual Viking applications. Test results of the electrical performance characteristics during extended periods of ripple current, the characteristics of the internal silver migration as a function of extended periods of ripple current, and the existence of any memory characteristics are presented.

  13. Niobium (columbium) and tantalum resources of Brazil

    USGS Publications Warehouse

    White, Max Gregg

    1975-01-01

    Most of the niobium resources of Brazil occur as pyrochlore in carbonatites within syenitic intrusives of Late Cretaceous to early Tertiary age in western Minas Gerais and southeastern Goils. Minor amounts of it are produced together with tantalum from columbite-tantalite concentrates from pegmatites and placers adjacent to them, in the Sao Joao del Rei district in south-central Minas Gerais. All the niobium and tantalum produced in Brazil is exported. The only pyrochlore mined is from the Barreiro carbonatite deposit near Araxa in Minas Gerais where concentrates and ferroniobium are produced. Exploration work for pyrochlore and other mineral resources are being undertaken on other carbonatites, particularly at Catalao I in southeast Goias and at Tapira and Serra Negra in western Minas Gerais. Annual production and export from the Barreiro deposit are about 8,000 metric tons of pyrochlore concentrate containing about 60 percent Nb205 and about 2,700 metric tons of ferroniobium with 63 percent Nb2O5. The annual production capacity of the Barreiro plant is 18,000 tons of concentrate and 4,000 tons of ferroniobium. Ore reserves of the Barreiro deposit in all categories are 380 million tons with percent Nb2O5. Annual production of tantalite-columbite from the Sao Joao del Rei district, most of which is exported to the United States, is about 290 tons, of which about 79 percent is tantalite and about percent is columbite. Reserves of tantalite-columbite in the Sao Joao del Rei district are about 43,000 tons of proved and 73,000 tons of probable ore.

  14. Deposition of tungsten metal by an immersion process

    DOE PAGES

    Small, Leo J.; Brumbach, Michael T.; Clem, Paul G.; ...

    2017-03-23

    A new multi-step, solution-phase method for the spontaneous deposition of tungsten from a room temperature ethereal solution is reported. This immersion process relies on the deposition of a sacrificial zinc coating which is galvanically displaced by the ether-mediated reduction of oxophilic WCl 6. Subsequent thermal treatment renders a crystalline, metallic tungsten film. The chemical evolution of the surface and formation of a complex intermediate tungsten species is characterized by X-ray diffraction, infrared spectroscopy, and X-ray photoelectron spectroscopy. Efficient metallic tungsten deposition is first characterized on a graphite substrate and then demonstrated on a functional carbon foam electrode. The resulting electrochemicalmore » performance of the modified electrode is interrogated with the canonical aqueous ferricyanide system. A tungsten-coated carbon foam electrode showed that both electrode resistance and overall electrochemical cell resistance were reduced by 50%, resulting in a concomitant decrease in redox peak separation from 1.902 V to 0.783 V. Furthermore, this process promises voltage efficiency gains in electrodes for energy storage technologies and demonstrates the viability of a new route to tungsten coating for technologies and industries where high conductivity and chemical stability are paramount.« less

  15. Uranium nitride behavior at thermionic temperatures

    NASA Technical Reports Server (NTRS)

    Phillips, W. M.

    1973-01-01

    The feasibility of using uranium nitride for in-core thermionic applications was evaluated in electrically heated thermal gradient tests and in flat plate thermionic converters. These tests indicated that grain boundary penetration of uranium nitride into both tungsten and rhenium will occur under thermal gradient conditions. In the case of the tungsten thermionic converter, this led to grain boundary rupture of the emitter and almost total loss of electrical output from the converter. It appears that uranium nitride is unsuitable for thermionic applications at the 2000 K temperatures used in these tests.

  16. Divertor tungsten tile melting and its effect on core plasma performance

    NASA Astrophysics Data System (ADS)

    Lipschultz, B.; Coenen, J. W.; Barnard, H. S.; Howard, N. T.; Reinke, M. L.; Whyte, D. G.; Wright, G. M.

    2012-12-01

    For the 2007 and 2008 run campaigns, Alcator C-Mod operated with a full toroidal row of tungsten tiles in the high heat flux region of the outer divertor; tungsten levels in the core plasma were below measurement limits. An accidental creation of a tungsten leading edge in the 2009 campaign led to this study of a melting tungsten source: H-mode operation with strike point in the region of the melting tile was immediately impossible due to some fraction of tungsten droplets reaching the main plasma. Approximately 15 g of tungsten was lost from the tile over ˜100 discharges. Less than 1% of the evaporated tungsten was found re-deposited on surfaces, the rest is assumed to have become dust. The strong discharge variability of the tungsten reaching the core implies that the melt layer topology is always varying. There is no evidence of healing of the surface with repeated melting. Forces on the melted tungsten tend to lead to prominences that extend further into the plasma. A discussion of the implications of melting a divertor tungsten monoblock on the ITER plasma is presented.

  17. Crystallization of rhenium salts in a simulated low-activity waste borosilicate glass

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Riley, Brian J.; McCloy, John S.; Goel, Ashutosh

    2013-04-01

    This study presents a new method for looking at the solubility of volatile species in simulated low-activity waste glass. The present study looking at rhenium salts is also applicable to real applications involving radioactive technetium salts. In this synthesis method, oxide glass powder is mixed with the volatiles species, vacuum-sealed in a fused quartz ampoule, and then heat-treated under vacuum in a furnace. This technique restricts the volatile species to the headspace above the melt but still within the sealed ampoule, thus maximizing the volatile concentration in contact with the glass. Various techniques were used to measure the solubility ofmore » rhenium in glass and include energy dispersive spectroscopy, wavelength dispersive spectroscopy, laser ablation inductively-coupled plasma mass spectroscopy, and inductively-coupled plasma optical emission spectroscopy. The Re-solubility in this glass was determined to be ~3004 parts per million Re atoms. Above this concentration, the salts separated out of the melt as inclusions and as a low viscosity molten salt phase on top of the melt observed during and after cooling. This salt phase was analyzed with X-ray diffraction, scanning electron microscopy as well as some of the other aforementioned techniques and identified to be composed of alkali perrhenate and alkali sulfate.« less

  18. Computer acquired performance data from a chemically vapor-deposited-rhenium, niobium planar diode

    NASA Technical Reports Server (NTRS)

    Manista, E. J.; Morris, J. F.; Smith, A. L.; Lancashire, R. B.

    1973-01-01

    Performance data from a chemically vapor-deposited-rhenium, niobium thermionic converter are presented. The planar converter has a guard-ringed collector and a nominal fixed spacing of 0.25 mm (10 mils). The data were obtained by using a computerized acquisition system and are available on request to one of the authors on microfiche as individual and composite parametric current, voltage curves. The parameters are the temperatures of the emitter T sub E collector T sub C, and cesium reservoir T sub R. The composite plots have constant T sub E and varying T sub C or T sub R, or both. Current, voltage envelopes having constant T sub E with and without fixed T sub C appear in the present report. The diode was tested at increments between 1600 and 2000 K for the emitter Hohlraum, 800 to 1100 K for the collector, and 540 and 650 K for the reservoir. A total of 312 current, voltage curves were obtained in the present performance evaluation. Current, voltage envelopes from three rhenium emitter converters evaluated in the present program are also given. The data are compared at commom emitter Hohlraum temperatures.

  19. Determination and Fabrication of New Shield Super Alloys Materials for Nuclear Reactor Safety by Experiments and Cern-Fluka Monte Carlo Simulation Code, Geant4 and WinXCom

    NASA Astrophysics Data System (ADS)

    Aygun, Bünyamin; Korkut, Turgay; Karabulut, Abdulhalik

    2016-05-01

    Despite the possibility of depletion of fossil fuels increasing energy needs the use of radiation tends to increase. Recently the security-focused debate about planned nuclear power plants still continues. The objective of this thesis is to prevent the radiation spread from nuclear reactors into the environment. In order to do this, we produced higher performanced of new shielding materials which are high radiation holders in reactors operation. Some additives used in new shielding materials; some of iron (Fe), rhenium (Re), nickel (Ni), chromium (Cr), boron (B), copper (Cu), tungsten (W), tantalum (Ta), boron carbide (B4C). The results of this experiments indicated that these materials are good shields against gamma and neutrons. The powder metallurgy technique was used to produce new shielding materials. CERN - FLUKA Geant4 Monte Carlo simulation code and WinXCom were used for determination of the percentages of high temperature resistant and high-level fast neutron and gamma shielding materials participated components. Super alloys was produced and then the experimental fast neutron dose equivalent measurements and gamma radiation absorpsion of the new shielding materials were carried out. The produced products to be used safely reactors not only in nuclear medicine, in the treatment room, for the storage of nuclear waste, nuclear research laboratories, against cosmic radiation in space vehicles and has the qualities.

  20. Tritium Decay Helium-3 Effects in Tungsten

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shimada, M.; Merrill, B. J.

    2016-06-01

    A critical challenge for long-term operation of ITER and beyond to a Demonstration reactor (DEMO) and future fusion reactor will be the development of plasma-facing components (PFCs) that demonstrate erosion resistance to steady-state/transient heat fluxes and intense neutral/ion particle fluxes under the extreme fusion nuclear environment, while at the same time minimizing in-vessel tritium inventories and permeation fluxes into the PFC’s coolant. Tritium will diffuse in bulk tungsten at elevated temperatures, and can be trapped in radiation-induced trap site (up to 1 at. % T/W) in tungsten [1,2]. Tritium decay into helium-3 may also play a major role in microstructuralmore » evolution (e.g. helium embrittlement) in tungsten due to relatively low helium-4 production (e.g. He/dpa ratio of 0.4-0.7 appm [3]) in tungsten. Tritium-decay helium-3 effect on tungsten is hardly understood, and its database is very limited. Two tungsten samples (99.99 at. % purity from A.L.M.T. Co., Japan) were exposed to high flux (ion flux of 1.0x1022 m-2s-1 and ion fluence of 1.0x1026 m-2) 0.5%T2/D2 plasma at two different temperatures (200, and 500°C) in Tritium Plasma Experiment (TPE) at Idaho National Laboratory. Tritium implanted samples were stored at ambient temperature in air for more than 3 years to investigate tritium decay helium-3 effect in tungsten. The tritium distributions on plasma-exposed was monitored by a tritium imaging plate technique during storage period [4]. Thermal desorption spectroscopy was performed with a ramp rate of 10°C/min up to 900°C to outgas residual deuterium and tritium but keep helium-3 in tungsten. These helium-3 implanted samples were exposed to deuterium plasma in TPE to investigate helium-3 effect on deuterium behavior in tungsten. The results show that tritium surface concentration in 200°C sample decreased to 30 %, but tritium surface concentration in 500°C sample did not alter over the 3 years storage period, indicating possible

  1. Use of steel and tantalum apparatus for molten Cd-Mg-Zn alloys

    NASA Technical Reports Server (NTRS)

    Bennett, G. A.; Burris, L., Jr.; Kyle, M. L.; Nelson, P. A.

    1966-01-01

    Steel and tantalum apparatus contains various ternary alloys of cadmium, zinc, and magnesium used in pyrochemical processes for the recovery of uranium-base reactor fuels. These materials exhibit good corrosion resistance at the high temperatures necessary for fuel separation in liquid metal-molten salt solvents.

  2. Tensile behavior of tungsten and tungsten-alloy wires from 1300 to 1600 K

    NASA Technical Reports Server (NTRS)

    Hee, Man Yun

    1988-01-01

    The tensile behavior of a 200-micrometer-diameter tungsten lamp (218CS-W), tungsten + 1.0 atomic percent (a/o) thoria (ST300-W), and tungsten + 0.4 a/o hafnium carbide (WHfC) wires was determined over the temperature range 1300 t0 1600 K at strain rates of 3.3 X 10 to the -2 to 3.3 X 10 to the -5/sec. Although most tests were conducted on as-drawn materials, one series of tests was undertaken on ST300-W wires in four different conditions: as-drawn and vacuum-annealed at 1535 K for 1 hr, with and without electroplating. Whereas heat treatment had no effect on tensile properties, electropolishing significantly increased both the proportional limit and ductility, but not the ultimate tensile strength. Comparison of the behavior of the three alloys indicates that the HfC-dispersed material possesses superior tensile properties. Theoretical calculations indicate that the strength/ductility advantage of WHfC is due to the resistance to recrystallization imparted by the dispersoid.

  3. An effective approach to synthesize monolayer tungsten disulphide crystals using tungsten halide precursor

    NASA Astrophysics Data System (ADS)

    Thangaraja, Amutha; Shinde, Sachin M.; Kalita, Golap; Tanemura, Masaki

    2016-02-01

    The synthesis of large-area monolayer tungsten disulphide (WS2) single crystal is critical for realistic application in electronic and optical devices. Here, we demonstrate an effective approach to synthesize monolayer WS2 crystals using tungsten hexachloride (WCl6) as a solid precursor in atmospheric chemical vapor deposition process. In this technique, 0.05M solution of WCl6 in ethanol was drop-casted on SiO2/Si substrate to create an even distribution of the precursor, which was reduced and sulfurized at 750 °C in Ar atmosphere. We observed growth of triangular, star-shaped, as well as dendritic WS2 crystals on the substrate. The crystal geometry evolves with the shape and size of the nuclei as observed from the dendritic structures. These results show that controlling the initial nucleation and growth process, large WS2 single crystalline monolayer can be grown using the WCl6 precursor. Our finding shows an easier and effective approach to grow WS2 monolayer using tungsten halide solution-casting, rather than evaporating the precursor for gas phase reaction.

  4. Production of small diameter high-temperature-strength refractory metal wires

    NASA Technical Reports Server (NTRS)

    Petrasek, D. W.; Signorelli, R. A.; King, G. W.

    1973-01-01

    Special thermomechanical techniques (schedules) have been developed to produce small diameter wire from three refractory metal alloys: colombian base alloy, tantalum base alloy, and tungsten base alloy. High strengths of these wires indicate their potential for contributing increased strength to metallic composites.

  5. Direct electroplating of copper on tantalum from ionic liquids in high vacuum: origin of the tantalum oxide layer.

    PubMed

    Schaltin, Stijn; D'Urzo, Lucia; Zhao, Qiang; Vantomme, André; Plank, Harald; Kothleitner, Gerald; Gspan, Christian; Binnemans, Koen; Fransaer, Jan

    2012-10-21

    In this paper, it is shown that high vacuum conditions are not sufficient to completely remove water and oxygen from the ionic liquid 1-ethyl-3-methylimidazolium chloride. Complete removal of water demands heating above 150 °C under reduced pressure, as proven by Nuclear Reaction Analysis (NRA). Dissolved oxygen gas can only be removed by the use of an oxygen scavenger such as hydroquinone, despite the fact that calculations show that oxygen should be removed completely by the applied vacuum conditions. After applying a strict drying procedure and scavenging of molecular oxygen, it was possible to deposit copper directly on tantalum without the presence of an intervening oxide layer.

  6. Degradation of Leakage Currents and Reliability Prediction for Tantalum Capacitors

    NASA Technical Reports Server (NTRS)

    Teverovsky, Alexander

    2016-01-01

    Two types of failures in solid tantalum capacitors, catastrophic and parametric, and their mechanisms are described. Analysis of voltage and temperature reliability acceleration factors reported in literature shows a wide spread of results and requires more investigation. In this work, leakage currents in two types of chip tantalum capacitors were monitored during highly accelerated life testing (HALT) at different temperatures and voltages. Distributions of degradation rates were approximated using a general log-linear Weibull model and yielded voltage acceleration constants B = 9.8 +/- 0.5 and 5.5. The activation energies were Ea = 1.65 eV and 1.42 eV. The model allows for conservative estimations of times to failure and was validated by long-term life test data. Parametric degradation and failures are reversible and can be annealed at high temperatures. The process is attributed to migration of charged oxygen vacancies that reduce the barrier height at the MnO2/Ta2O5 interface and increase injection of electrons from the MnO2 cathode. Analysis showed that the activation energy of the vacancies' migration is 1.1 eV.

  7. Organometallic Rhenium Complexes Divert Doxorubicin to the Mitochondria.

    PubMed

    Imstepf, Sebastian; Pierroz, Vanessa; Rubbiani, Riccardo; Felber, Michael; Fox, Thomas; Gasser, Gilles; Alberto, Roger

    2016-02-18

    Doxorubicin, a well-established chemotherapeutic agent, is known to accumulate in the cell nucleus. By using ICP-MS, we show that the conjugation of two small organometallic rhenium complexes to this structural motif results in a significant redirection of the conjugates from the nucleus to the mitochondria. Despite this relocation, the two bioconjugates display excellent toxicity toward HeLa cells. In addition, we carried out a preliminarily investigation of aspects of cytotoxicity and present evidence that the conjugates disrupt the mitochondrial membrane potential, are strong inhibitors of human Topoisomerase II, and induce apoptosis. Such derivatives may enhance the therapeutic index of the aggressive parent drug and overcome drug resistance by influencing nuclear and mitochondrial homeostasis. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Effect of Preconditioning and Soldering on Failures of Chip Tantalum Capacitors

    NASA Technical Reports Server (NTRS)

    Teverovsky, Alexander A.

    2014-01-01

    Soldering of molded case tantalum capacitors can result in damage to Ta205 dielectric and first turn-on failures due to thermo-mechanical stresses caused by CTE mismatch between materials used in the capacitors. It is also known that presence of moisture might cause damage to plastic cases due to the pop-corning effect. However, there are only scarce literature data on the effect of moisture content on the probability of post-soldering electrical failures. In this work, that is based on a case history, different groups of similar types of CWR tantalum capacitors from two lots were prepared for soldering by bake, moisture saturation, and longterm storage at room conditions. Results of the testing showed that both factors: initial quality of the lot, and preconditioning affect the probability of failures. Baking before soldering was shown to be effective to prevent failures even in lots susceptible to pop-corning damage. Mechanism of failures is discussed and recommendations for pre-soldering bake are suggested based on analysis of moisture characteristics of materials used in the capacitors' design.

  9. NEPP Evaluation of Automotive Grade Tantalum Chip Capacitors

    NASA Technical Reports Server (NTRS)

    Sampson, Mike; Brusse, Jay

    2018-01-01

    Automotive grade tantalum (Ta) chip capacitors are available at lower cost with smaller physical size and higher volumetric efficiency compared to military/space grade capacitors. Designers of high reliability aerospace and military systems would like to take advantage of these attributes while maintaining the high standards for long-term reliable operation they are accustomed to when selecting military-qualified established reliability tantalum chip capacitors (e.g., MIL-PRF-55365). The objective for this evaluation was to assess the long-term performance of off-the-shelf automotive grade Ta chip capacitors (i.e., manufacturer self-qualified per AEC Q-200). Two (2) lots of case size D manganese dioxide (MnO2) cathode Ta chip capacitors from 1 manufacturer were evaluated. The evaluation consisted of construction analysis, basic electrical parameter characterization, extended long-term (2000 hours) life testing and some accelerated stress testing. Tests and acceptance criteria were based upon manufacturer datasheets and the Automotive Electronics Council's AEC Q-200 qualification specification for passive electronic components. As-received a few capacitors were marginally above the specified tolerance for capacitance and ESR. X-ray inspection found that the anodes for some devices may not be properly aligned within the molded encapsulation leaving less than 1 mil thickness of the encapsulation. This evaluation found that the long-term life performance of automotive grade Ta chip capacitors is generally within specification limits suggesting these capacitors may be suitable for some space applications.

  10. Antibacterial properties and cytocompatibility of tantalum oxide coatings with different silver content

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Heng-Li; Chang, Yin-Yu, E-mail: yinyu@mail2000.com.tw; Chen, Hung-Jui

    Tantalum (Ta) oxides and their coatings have been proved to increase their applications in the biomedical fields by improving osseointegration and wear resistance. In this study, Ta oxide coatings containing different proportions of Ag are deposited on SS304 materials. A twin-gun magnetron sputtering system is used to deposit the tantalum oxide-Ag coating. In this study, Staphylococcus aureus, which exhibits physiological commensalism on the human skin, nares, and mucosal and oral areas, is chosen as the model for in vitro antibacterial analyses via a fluorescence staining method using Syto9. The cytocompatibility and adhesive morphology of human skin fibroblast cells (CCD-966SK) onmore » the coatings are also determined by using the microculture tetrazolium assay. This study shows that Ta{sub 2}O{sub 5} and Ta{sub 2}O{sub 5}-Ag coatings with 12.5 at. % of Ag exhibit improved antibacterial effects against S. aureus and have good skin fibroblast cell cellular biocompatibility.« less

  11. Study of properties of tungsten irradiated in hydrogen atmosphere

    NASA Astrophysics Data System (ADS)

    Tazhibayeva, I.; Skakov, M.; Baklanov, V.; Koyanbayev, E.; Miniyazov, A.; Kulsartov, T.; Ponkratov, Yu.; Gordienko, Yu.; Zaurbekova, Zh.; Kukushkin, I.; Nesterov, E.

    2017-12-01

    The paper presents the results of the experiments with DF (double forged) tungsten samples irradiated at the WWR-K research reactor in hydrogen and helium atmospheres. The irradiation time was 3255 h (135.6 d). After reactor irradiation, W samples have been subjected to investigations of their activity level, hardness, and microstructure, as well as x-ray and texture observations. The hydrogen yield released from irradiated tungsten samples have been measured using TDS-method. The hydrogen concentration in the tungsten samples irradiated in hydrogen was higher than that in the samples irradiated in helium atmosphere. It is shown that the surface microstructure of tungsten samples irradiated in hydrogen is characterized by micro-pits, inclusions and blisters in the form of bubbles, which were not observed earlier for tungsten irradiated in hydrogen.

  12. The preparation of pure niobium for neutron dosimetry purposes

    NASA Astrophysics Data System (ADS)

    Schulze, Klaus; Krehl, Michael

    1985-06-01

    A technique is described for the preparation of high purity niobium for use in fast neutron dosimetry. Based on results of known purification processes for niobium, an optimized method has been developed, consisting of: (1) a double electrolytic refining in an eutectic lithium-, sodium-, potassium-fluoride melt, containing fluoro-potassium niobate (K 2NbF 7), (2) electron beam float zone melting (EBFZM) in ultra high vacuum (UHV) and (3) UHV treatments. Starting with EBFZM of niobium of commercial quality (140 μg/g Ta, 35 μg/g W) the tantalum and tungsten contents were reduced by a first electrolysis to approximately 4 and 4 × 10 -2 μg/g, respectively. For a second electrolytic refining using a salt bath with extremely low tantalum and tungsten contents, this material was subjected to an additional EBFZM process. The niobium metal produced by this step was three times zone melted to reduce those elements (e.g. Fe, Co, Ni, O, N) which increased during the electrolyses. Material produced by this technique has impurity concentrations below 0.4 μg/g of tantalum and 10 -2 μg/g of tungsten. The concentration of the interstitials (C, O, N except H) is below the detection limit of classical analytical methods. A further reduction of the interstitials by annealing treatments in UHV of this material resulted in an electrical residual resistivity ratio (RRR) ρ(295 K)/ ρ(4.2 K) = 24 500 indicating an impurity concentration far below 1 μg/g.

  13. Analysis of shockless dynamic compression data on solids to multi-megabar pressures: Application to tantalum

    DOE PAGES

    Davis, Jean -Paul; Brown, Justin L.; Knudson, Marcus D.; ...

    2014-11-26

    In this research, magnetically-driven, planar shockless-compression experiments to multi-megabar pressures were performed on tantalum samples using a stripline target geometry. Free-surface velocity waveforms were measured in 15 cases; nine of these in a dual-sample configuration with two samples of different thicknesses on opposing electrodes, and six in a single-sample configuration with a bare electrode opposite the sample. Details are given on the application of inverse Lagrangian analysis (ILA) to these data, including potential sources of error. The most significant source of systematic error, particularly for single-sample experiments, was found to arise from the pulse-shape dependent free-surface reflected wave interactions withmore » the deviatoric-stress response of tantalum. This could cause local, possibly temporary, unloading of material from a ramp compressed state, and thus multi-value response in wave speed that invalidates the free-surface to in-material velocity mapping step of ILA. By averaging all 15 data sets, a final result for the principal quasi-isentrope of tantalum in stress-strain was obtained to a peak longitudinal stress of 330 GPa with conservative uncertainty bounds of ±4.5% in stress. The result agrees well with a tabular equation of state developed at Los Alamos National Laboratory.« less

  14. Particulate fuel bed tests

    NASA Astrophysics Data System (ADS)

    Horn, F. L.; Powell, J. R.; Savino, J. M.

    Gas-cooled reactors using packed beds of small-diameter, coated fuel particles have been proposed for compact, high-power systems. To test the thermal-hydraulic performance of the particulate reactor fuel under simulated reactor conditions, a bed of 800-micrometer diameter particles was heated by its electrical resistance current and cooled by flowing helium gas. The specific resistance of the bed composed of pyrocarbon-coated particles was measured at several temperatures, and found to be 0.09 ohm-cm at 1273 K and 0.06 ohm-cm at 1600 K. The maximum bed power density reached was 1500 W/cu cm at 1500 K. The pressure drop followed the packed-bed correlation, typically 100,000 Pa/cm. The various frit materials used to contain the bed were also tested to 2000 K in helium and hydrogen to determine their properties and reactions with the fuel. Rhenium metal, zirconium carbide, and zirconium oxide appeared to be the best candidate materials, while tungsten and tungsten-rhenium lost mass and strength.

  15. [Antioxidant properties of cluster rhenium compounds and their effect on erythropoiesis of rats with guerin carcinoma].

    PubMed

    Voronkova, Y S; Babiy, S O; Ivans'kar, L V; Shtemenko, O V; Shtemenko, N I

    2015-01-01

    Biochemical characteristics of kidneys, pe- ripheral blood and bone marrow of rats in model of tumor growth under introduction of cisplatin and cis-tetrachlorodi-μ-isobutyratodirhenium(III), cis-Re2(i-C3H7COO)2Cl4 (I) have been investigated. It was shown that introduction of I alone and together with cisplatin led to decrease of biochemical markers of oxidation of lipids and proteins in tissue homogenates of the kidneys, change of enzyme activity in the urea and tissue homogenates of the kidneys, by a decrease of filtration function of kidneys. Introduction of nanoliposomal forms of the rhenium cluster compound led to a practically normal morphological picture of bone marrow and increase of the RBC (by 60%) with normalization of hematocrit counts, and decrease of quantities of destructed RBC (3.2 times) in comparison with the tumor-bearing animals. A tentative scheme of influence of cluster rhenium compound on erythropoiesis through regulation of synthesis of erythropoietin in kidneys has been proposed.

  16. Standard methods for chemical analysis of steel, cast iron, open-hearth iron, and wrought iron

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    1973-01-01

    Methods are described for determining manganese, phosphorus, sulfur, selenium, copper, nickel, chromium, vanadium, tungsten, titanium, lead, boron, molybdenum ( alpha -benzoin oxime method), zirconium (cupferron --phosphate method), niobium and tantalum (hydrolysis with perchloric and sulfurous acids (gravimetric, titrimetric, and photometric methods)), and beryllium (oxide method). (DHM)

  17. Tungsten dust impact on ITER-like plasma edge

    DOE PAGES

    Smirnov, R. D.; Krasheninnikov, S. I.; Pigarov, A. Yu.; ...

    2015-01-12

    The impact of tungsten dust originating from divertor plates on the performance of edge plasma in ITER-like discharge is evaluated using computer modeling with the coupled dust-plasma transport code DUSTT-UEDGE. Different dust injection parameters, including dust size and mass injection rates, are surveyed. It is found that tungsten dust injection with rates as low as a few mg/s can lead to dangerously high tungsten impurity concentrations in the plasma core. Dust injections with rates of a few tens of mg/s are shown to have a significant effect on edge plasma parameters and dynamics in ITER scale tokamaks. The large impactmore » of certain phenomena, such as dust shielding by an ablation cloud and the thermal force on tungsten ions, on dust/impurity transport in edge plasma and consequently on core tungsten contamination level is demonstrated. Lastly, it is also found that high-Z impurities provided by dust can induce macroscopic self-sustained plasma oscillations in plasma edge leading to large temporal variations of edge plasma parameters and heat load to divertor target plates.« less

  18. Internal fuse modules for solid tantalum capacitors

    NASA Technical Reports Server (NTRS)

    Dematos, H. V.

    1981-01-01

    Miniature fuse modules were designed for and incorporated into two styles of solid tantalum capacitors. One is an epoxy molded, radial leaded, high frequency decoupling capacitor; the other is an hermetically sealed device with axial lead wires. The fusible element for both devices consists of a fine bimetallic wire which reacts exothermically upon reaching a critical temperature and then disintegrates. The desirability of having fused devices is discussed and design constraints, in particular those which minimize inductance and series resistance while optimizing fuse actuation characteristics, are reviewed. Factors affecting the amount of energy required to actuate the fuse and reliability of acuation are identified.

  19. Environmental Effects of Tungsten and Tantalum Alloys

    DTIC Science & Technology

    1998-10-01

    a groundwater well pumping at 400 gpm could potentially irrigate an area approximately 190 acres in size. Alloy metals from test area soils that...the Site. The home range of the beach mouse is similar to that of the deer mouse (Peromyscus leucopus), which has a home range of about 0.15 acres ...USEPA, 1993). The area of the C-64A test area is about 5.74 acres . The mice use and forage in grassland areas and would use much of this area. It is

  20. An effective approach to synthesize monolayer tungsten disulphide crystals using tungsten halide precursor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thangaraja, Amutha; Shinde, Sachin M.; Kalita, Golap, E-mail: kalita.golap@nitech.ac.jp

    2016-02-01

    The synthesis of large-area monolayer tungsten disulphide (WS{sub 2}) single crystal is critical for realistic application in electronic and optical devices. Here, we demonstrate an effective approach to synthesize monolayer WS{sub 2} crystals using tungsten hexachloride (WCl{sub 6}) as a solid precursor in atmospheric chemical vapor deposition process. In this technique, 0.05M solution of WCl{sub 6} in ethanol was drop-casted on SiO{sub 2}/Si substrate to create an even distribution of the precursor, which was reduced and sulfurized at 750 °C in Ar atmosphere. We observed growth of triangular, star-shaped, as well as dendritic WS{sub 2} crystals on the substrate. The crystalmore » geometry evolves with the shape and size of the nuclei as observed from the dendritic structures. These results show that controlling the initial nucleation and growth process, large WS{sub 2} single crystalline monolayer can be grown using the WCl{sub 6} precursor. Our finding shows an easier and effective approach to grow WS{sub 2} monolayer using tungsten halide solution-casting, rather than evaporating the precursor for gas phase reaction.« less

  1. Method of synthesizing tungsten nanoparticles

    DOEpatents

    Thoma, Steven G; Anderson, Travis M

    2013-02-12

    A method to synthesize tungsten nanoparticles has been developed that enables synthesis of nanometer-scale, monodisperse particles that can be stabilized only by tetrahydrofuran. The method can be used at room temperature, is scalable, and the product concentrated by standard means. Since no additives or stabilizing surfactants are required, this method is particularly well suited for producing tungsten nanoparticles for dispersion in polymers. If complete dispersion is achieved due to the size of the nanoparticles, then the optical properties of the polymer can be largely maintained.

  2. Persistence of tungsten oxide particle/fiber mixtures in artificial human lung fluids

    PubMed Central

    2010-01-01

    Background During the manufacture of tungsten metal for non-sag wire, tungsten oxide powders are produced as intermediates and can be in the form of tungsten trioxide (WO3) or tungsten blue oxides (TBOs). TBOs contain fiber-shaped tungsten sub-oxide particles of respirable or thoracic size. The aim of this research was to investigate whether fiber-containing TBOs had prolonged biodurability in artificial lung fluids compared to tungsten metal or WO3 and therefore potentially could pose a greater inhalation hazard. Methods Dissolution of tungsten metal, WO3, one fiber-free TBO (WO2.98), and three fiber-containing TBO (WO2.81, WO2.66, and WO2.51) powders were measured for the material as-received, dispersed, and mixed with metallic cobalt. Solubility was evaluated using artificial airway epithelial lining fluid (SUF) and macrophage phagolysosomal simulant fluid (PSF). Results Dissolution rates of tungsten compounds were one to four orders of magnitude slower in PSF compared to SUF. The state of the fiber-containing TBOs did not influence their dissolution in either SUF or PSF. In SUF, fiber-containing WO2.66 and WO2.51 dissolved more slowly than tungsten metal or WO3. In PSF, all three fiber-containing TBOs dissolved more slowly than tungsten metal. Conclusions Fiber-containing TBO powders dissolved more slowly than tungsten metal and WO3 powders in SUF and more slowly than tungsten metal in PSF. Existing pulmonary toxicological information on tungsten compounds indicates potential for pulmonary irritation and possibly fibrosis. Additional research is needed to fully understand the hazard potential of TBOs. PMID:21126345

  3. New rhenium complexes with ciprofloxacin as useful models for understanding the properties of [99mTc]-ciprofloxacin radiopharmaceutical.

    PubMed

    Lecina, Joan; Cortés, Pilar; Llagostera, Montserrat; Piera, Carlos; Suades, Joan

    2014-07-01

    Rhenium complexes with the antibiotic ciprofloxacin have been prepared to be studied as models of technetium radiopharmaceuticals. With this aim, the new rhenium complexes 1 {[ReO(Cpf)2]Cl}, 2 {[ReO(CpfH)2]Cl3} and 3 {fac-[Re(CO)3(H2O)(Cpf)]} with ciprofloxacin (CpfH=ciprofloxacin; Cpf=conjugated base of ciprofloxacin) have been synthesised and characterised by elemental analyses, IR, NMR ((1)H, (19)F and (13)C CP-MAS) spectroscopy, as well as MS measurements. All spectroscopic data are consistent with the coordination of ciprofloxacin in all these complexes through the carbonyl and the carboxylate oxygen atoms with the formation of a six member chelate ring. The study of a Tc-ciprofloxacin solution by ESI-MS reveals the presence of [TcO(Cpf)2](+) cations, which agrees with the hypothesis that complexes 1 and 2 can be seen as model rhenium complexes of this radiopharmaceutical. Antimicrobial and DNA gyrase inhibition studies performed with complexes 2 and 3 have shown a very similar behaviour between complex 2 and the free antibiotic, whereas complex 3 exhibit a lower antimicrobial activity. Based on a joint analysis of the data reported in the literature and the chemical and biological results obtained in this study, a tentative proposal to explain some aspects of the behaviour of Tc-ciprofloxacin radiopharmaceutical has been made. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Some observations on uranium carbide alloy/tungsten compatibility.

    NASA Technical Reports Server (NTRS)

    Phillips, W. M.

    1972-01-01

    Results of chemical compatibility tests between both pure tungsten and thoriated tungsten run at 1800 C for up to 3300 hours with uranium carbide alloys. Alloying with zirconium carbide appeared to widen the homogeneity range of uranium carbide, making additional carbon available for reaction with the tungsten. Reaction layers were formed both by vapor phase reaction and by physical contact, producing either or both UWC2 and W2C, depending upon the phases present in the starting fuel alloy. Formation of UWC2 results in slow growth of the reaction layer with time, while W2C reaction layers grow rapidly, allowing equilibrium to be reached in less than 2500 hours at 1800 C. Neither the presence of a thermal gradient nor the presence of thoria in the tungsten clad affect the reactions observed.

  5. Conical Tungsten Tips as Substrates for the Preparation of Ultramicroelectrodes

    PubMed Central

    Hermans, Andre; Wightman, R. Mark

    2008-01-01

    Here we describe a simple method to prepare voltammetric microelectrodes using tungsten wires as a substrate. Tungsten wires have high tensile modulus and enable the fabrication of electrodes that have small dimensions overall while retaining rigidity. In this work, 125 μm tungsten wires with a conical tip were employed. For the preparation of gold or platinum ultramicroelectrodes, commercial tungsten microelectrodes, completely insulated except at the tip, were used as substrates. Following removal of oxides from the exposed tungsten, platinum or gold was electroplated yielding surfaces with an electroactive area of between 1×10−6 cm2 to 2×10−6 cm2. Carbon surfaces on the etched tip of tungsten microwires were prepared by coating with photoresist followed by pyrolysis. The entire electrode was then insulated with Epoxylite except the tip yielding an exposed carbon surface with an area of around 4×10−6 cm2 to 6×10−6 cm2. All three types of ultramicroelectrodes fabricated on the tungsten wire had similar electrochemical behavior to electrodes fabricated from wires or fibers insulated with glass tubes. PMID:17129002

  6. Arcjet Cathode Phenomena

    NASA Technical Reports Server (NTRS)

    Curran, Francis M.; Haag, Thomas W.; Raquet, John F.

    1989-01-01

    Cathode tips made from a number of different materials were tested in a modular arcjet thruster in order to examine cathode phenomena. Periodic disassembly and examination, along with the data collected during testing, indicated that all of the tungsten-based materials behaved similarly despite the fact that in one of these samples the percentage of thorium oxide was doubled and another was 25 percent rhenium. The mass loss rate from a 2 percent thoriated rhenium cathode was found to be an order of magnitude greater than that observed using 2 percent thoriated tungsten. Detailed analysis of one of these cathode tips showed that the molten crater contained pure tungsten to a depth of about 150 microns. Problems with thermal stress cracking were encountered in the testing of a hafnium carbide tip. Post test analysis showed that the active area of the tip had chemically reacted with the propellant. A 100 hour continuous test was run at about 1 kW. Post test analysis revealed no dendrite formation, such as observed in a 30 kW arcjet lifetest, near the cathode crater. The cathodes from both this test and a previously run 1000 hour cycled test displayed nearly identical arc craters. Data and calculations indicate that the mass losses observed in testing can be explained by evaporation.

  7. Arcjet cathode phenomena

    NASA Technical Reports Server (NTRS)

    Curran, Francis M.; Haag, Thomas W.; Raquet, John F.

    1989-01-01

    Cathode tips made from a number of different materials were tested in a modular arcjet thruster in order to examine cathode phenomena. Periodic disassembly and examination, along with the data collected during testing, indicated that all of the tungsten-based materials behaved similarly despite the fact that in one of these samples the percentage of thorium oxide was doubled and another was 25 percent rhenium. The mass loss rate from a 2 percent thoriated rhenium cathode was found to be an order of magnitude greater than that observed using 2 percent thoriated tungsten. Detailed analysis of one of these cathode tips showed that the molten crater contained pure tungsten to a depth of about 150 microns. Problems with thermal stress cracking were encountered in the testing of a hafnium carbide tip. Post test analysis showed that the active area of the tip had chemically reacted with the propellant. A 100 hour continuous test was run at about 1 kW. Post test analysis revealed no dendrite formation, such as observed in a 30 kW arcjet lifetest, near the cathode crater. The cathodes from both this test and a previously run 1000 hour cycled test displayed nearly identical arc craters. Data and calculations indicate that the mass losses observed in testing can be explained by evaporation.

  8. Preparation and electrocatalytic activity of tungsten carbide and titania nanocomposite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hu, Sujuan; Shi, Binbin; Yao, Guoxing

    2011-10-15

    Graphical abstract: The electrocatalytic activity of tungsten carbide and titania nanocomposite is related to the structure, crystal phase and chemical components of the nanocomposite, and is also affected by the property of electrolyte. A synergistic effect exists between tungsten carbide and titania of the composite. Highlights: {yields} Electrocatalytic activity of tungsten carbide and titania nanocomposite with core-shell structure. {yields} Activity is related to the structure, crystal phase and chemical component of the nanocomposite. {yields} The property of electrolyte affects the electrocatalytic activity. {yields} A synergistic effect exists between tungsten carbide and titania of the composite. -- Abstract: Tungsten carbide andmore » titania nanocomposite was prepared by combining a reduced-carbonized approach with a mechanochemical approach. The samples were characterized by X-ray diffraction, transmission electron microscope under scanning mode and X-ray energy dispersion spectrum. The results show that the crystal phases of the samples are composed of anatase, rutile, nonstoichiometry titanium oxide, monotungsten carbide, bitungsten carbide and nonstoichiometry tungsten carbide, and they can be controlled by adjusting the parameters of the reduced-carbonized approach; tungsten carbide particles decorate on the surface of titania support, the diameter of tungsten carbide particle is smaller than 20 nm and that of titania is around 100 nm; the chemical components of the samples are Ti, O, W and C. The electrocatalytic activity of the samples was measured by a cyclic voltammetry with three electrodes. The results indicate that the electrocatalytic activities of the samples are related to their crystal phases and the property of electrolyte in aqueous solution. A synergistic effect between titania and tungsten carbide is reported for the first time.« less

  9. Density-functional studies of tungsten trioxide, tungsten bronzes, and related systems

    NASA Astrophysics Data System (ADS)

    Ingham, B.; Hendy, S. C.; Chong, S. V.; Tallon, J. L.

    2005-08-01

    Tungsten trioxide adopts a variety of structures which can be intercalated with charged species to alter the electronic properties, thus forming “tungsten bronzes.” Similar effects are observed upon removing oxygen from WO3 . We present a computational study of cubic and hexagonal alkali bronzes and examine the effects on cell size and band structure as the size of the intercalated ion is increased. With the exception of hydrogen (which is predicted to be unstable as an intercalate), the behavior of the bronzes are relatively consistent. NaWO3 is the most stable of the cubic systems, although in the hexagonal system the larger ions are more stable. The band structures are identical, with the intercalated atom donating its single electron to the tungsten 5d valence band. A study of fractional doping in the NaxWO3 system (0⩽x⩽1) showed a linear variation in cell parameter and a systematic shift in the Fermi level into the conduction band. In the oxygen-deficient WO3-x system the Fermi level undergoes a sudden jump into the conduction band at around x=0.2 . Lastly, three compounds of a layered WO4•α,ω -diaminoalkane hybrid series were studied and found to be insulating, with features in the band structure similar to those of the parent WO3 compound that relate well to experimental UV-visible spectroscopy results.

  10. OEDGE modeling for the planned tungsten ring experiment on DIII-D

    DOE PAGES

    Elder, J. David; Stangeby, Peter C.; Abrams, Tyler W.; ...

    2017-04-19

    The OEDGE code is used to model tungsten erosion and transport for DIII-D experiments with toroidal rings of high-Z metal tiles. Such modeling is needed for both experimental and diagnostic design to have estimates of the expected core and edge tungsten density and to understand the various factors contributing to the uncertainties in these calculations. OEDGE simulations are performed using the planned experimental magnetic geometries and plasma conditions typical of both L-mode and inter-ELM H-mode discharges in DIII-D. OEDGE plasma reconstruction based on specific representative discharges for similar geometries is used to determine the plasma conditions applied to tungsten plasmamore » impurity simulations. We developed a new model for tungsten erosion in OEDGE which imports charge-state resolved carbon impurity fluxes and impact energies from a separate OEDGE run which models the carbon production, transport and deposition for the same plasma conditions as the tungsten simulations. Furthermore, these values are then used to calculate the gross tungsten physical sputtering due to carbon plasma impurities which is then added to any sputtering by deuterium ions; tungsten self-sputtering is also included. The code results are found to be dependent on the following factors: divertor geometry and closure, the choice of cross-field anomalous transport coefficients, divertor plasma conditions (affecting both tungsten source strength and transport), the choice of tungsten atomic physics data used in the model (in particular sviz(Te) for W-atoms), and the model of the carbon flux and energy used for 2 calculating the tungsten source due to sputtering. The core tungsten density is found to be of order 10 15 m -3 (excluding effects of any core transport barrier and with significant variability depending on the other factors mentioned) with density decaying into the scrape off layer.« less

  11. The role of electronegativity on the extent of nitridation of group 5 metals as revealed by reactions of tantalum cluster cations with ammonia molecules.

    PubMed

    Arakawa, Masashi; Ando, Kota; Fujimoto, Shuhei; Mishra, Saurabh; Patwari, G Naresh; Terasaki, Akira

    2018-05-10

    Reactions of the free tantalum cation, Ta+, and tantalum cluster cations, Tan+ (n = 2-10), with ammonia are presented. The reaction of the monomer cation, Ta+, with two molecules of NH3 leads to the formation of TaN2H2+ along with release of two H2 molecules. The dehydrogenation occurs until the formal oxidation number of the tantalum atom reaches +5. On the other hand, all the tantalum cluster cations, Tan+, react with two molecules of NH3 and form TanN2+ with the release of three H2 molecules. Further exposure to ammonia showed that TanNmH+ and TanNm+ are produced through successive reactions; a pure nitride and three H2 molecules are formed for every other NH3 molecule. The nitridation occurred until the formal oxidation number of the tantalum atoms reaches +5 as in the case of TaN2H2+ in contrast to other group 5 elements, i.e., vanadium and niobium, which have been reported to produce nitrides with lower oxidation states. The present results on small gas-phase metal-nitride clusters show correlation with their bulk properties: tantalum is known to form bulk nitrides in the oxidation states of either +5 (Ta3N5) or +3 (TaN), whereas vanadium and niobium form nitrides in the oxidation state of +3 (VN and NbN). Along with DFT calculations, these findings reveal that nitridation is driven by the electron-donating ability of group 5 elements, i.e., electronegativity of the metal plays a key role in determining the composition of the metal nitrides.

  12. Role of electron concentration in softening and hardening of ternary molybdenum alloys

    NASA Technical Reports Server (NTRS)

    Stephens, J. R.; Witzke, W. R.

    1975-01-01

    Effects of various combinations of hafnium, tantalum, rhenium, osmium, iridium, and platinum in ternary molybdenum alloys on alloy softening and hardening were determined. Hardness tests were conducted at four test temperatures over the temperature range 77 to 411 K. Results showed that hardness data for ternary molybdenum alloys could be correlated with anticipated results from binary data based upon expressions involving the number of s and d electrons contributed by the solute elements. The correlation indicated that electron concentration plays a dominant role in controlling the hardness of ternary molybdenum alloys.

  13. An experimental study of the solubility and speciation of tantalum in fluoride-bearing aqueous solutions at elevated temperature

    DOE PAGES

    Timofeev, Alexander; Migdisov, Art. A.; Williams-Jones, A. E.

    2016-10-27

    Here, the solubility of Ta 2O 5 (solid) and the speciation of tantalum in HF-bearing aqueous solutions have been determined at temperatures of 100-250 °C and vapour-saturated water pressure. Tantalum is transported as the species Ta(OH) 5 0 at low HF concentration and pH ~1-3. At higher HF concentration, tantalum mobility is controlled by the species TaF 3(OH) 3- and TaF 5; the presence of TaF 5 0 is only evident at ≤150 °C. Equilibrium constants range from -17.4 ± 0.45 to -16.4 ± 0.12 for the formation of Ta(OH) 5 from crystalline Ta 2O 5 and from -8.24 ±more » 0.64 to -8.55 ± 0.68 for the formation of TaF 3(OH) 3- at 100 and 250 °C, respectively. For TaF 5 0, they were determined to be 0.13 at 100 °C and -0.35 at 150 °C.« less

  14. Tungsten Deposition on Graphite using Plasma Enhanced Chemical Vapour Deposition.

    NASA Astrophysics Data System (ADS)

    Sharma, Uttam; Chauhan, Sachin S.; Sharma, Jayshree; Sanyasi, A. K.; Ghosh, J.; Choudhary, K. K.; Ghosh, S. K.

    2016-10-01

    The tokamak concept is the frontrunner for achieving controlled thermonuclear reaction on earth, an environment friendly way to solve future energy crisis. Although much progress has been made in controlling the heated fusion plasmas (temperature ∼ 150 million degrees) in tokamaks, technological issues related to plasma wall interaction topic still need focused attention. In future, reactor grade tokamak operational scenarios, the reactor wall and target plates are expected to experience a heat load of 10 MW/m2 and even more during the unfortunate events of ELM's and disruptions. Tungsten remains a suitable choice for the wall and target plates. It can withstand high temperatures, its ductile to brittle temperature is fairly low and it has low sputtering yield and low fuel retention capabilities. However, it is difficult to machine tungsten and hence usages of tungsten coated surfaces are mostly desirable. To produce tungsten coated graphite tiles for the above-mentioned purpose, a coating reactor has been designed, developed and made operational at the SVITS, Indore. Tungsten coating on graphite has been attempted and successfully carried out by using radio frequency induced plasma enhanced chemical vapour deposition (rf -PECVD) for the first time in India. Tungsten hexa-fluoride has been used as a pre-cursor gas. Energy Dispersive X-ray spectroscopy (EDS) clearly showed the presence of tungsten coating on the graphite samples. This paper presents the details of successful operation and achievement of tungsten coating in the reactor at SVITS.

  15. Recovery of Tungsten and Molybdenum from Low-Grade Scheelite

    NASA Astrophysics Data System (ADS)

    Li, Yongli; Yang, Jinhong; Zhao, Zhongwei

    2017-10-01

    With most high-quality tungsten ores being exhausted, the enhancement of low-grade scheelite concentrates processing has attracted a great deal of attention. The objective of this study is to develop a method to maximize the recovery tungsten and molybdenum from a low-grade scheelite via a new acid leaching process followed by solvent extraction. Under optimal conditions (350 g/L H2SO4, 95°C, and 2 h), approximately 99.8% of tungsten and 98% of molybdenum were leached out. In the subsequent solvent extraction process, more than 99% of the tungsten and molybdenum were extracted with a co-extraction system (50% TBP, 30% HDEHP, and 10% 2-octanol in kerosene) using a three-stage cross-flow extraction. The raffinate can be recycled for the next leaching process after replenishing the H2SO4 to the initial value (approximately 350 g/L). Based on these results, a conceptual flowsheet is presented to recover tungsten and molybdenum from the low-grade scheelite.

  16. Electrospark doping of steel with tungsten

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Denisova, Yulia, E-mail: yukolubaeva@mail.ru; Shugurov, Vladimir, E-mail: shugurov@opee.hcei.tsc.ru; Petrikova, Elizaveta, E-mail: elizmarkova@yahoo.com

    2016-01-15

    The paper is devoted to the numerical modeling of thermal processes and the analysis of the structure and properties of the surface layer of carbon steel subjected to electrospark doping with tungsten. The problem of finding the temperature field in the system film (tungsten) / substrate (iron) is reduced to the solution of the heat conductivity equation. A one-dimensional case of heating and cooling of a plate with the thickness d has been considered. Calculations of temperature fields formed in the system film / substrate synthesized using methods of electrospark doping have been carried out as a part of one-dimensionalmore » approximation. Calculations have been performed to select the mode of the subsequent treatment of the system film / substrate with a high-intensity pulsed electron beam. Authors revealed the conditions of irradiation allowing implementing processes of steel doping with tungsten. A thermodynamic analysis of phase transformations taking place during doping of iron with tungsten in equilibrium conditions has been performed. The studies have been carried out on the surface layer of the substrate modified using the method of electrospark doping. The results showed the formation in the surface layer of a structure with a highly developed relief and increased strength properties.« less

  17. Structures and transitions in tungsten grain boundaries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Frolov, T.; Zhu, Q.; Marian, J.

    2017-02-07

    The objective of this study is to develop a computational methodology to predict structure, energies of tungsten grain boundaries as a function of misorientation and inclination. The energies and the mobilities are the necessary input for thermomechanical model of recrystallization of tungsten for magnetic fusion applications being developed by the Marian Group at UCLA.

  18. FAST TRACK COMMUNICATION High rate straining of tantalum and copper

    NASA Astrophysics Data System (ADS)

    Armstrong, R. W.; Zerilli, F. J.

    2010-12-01

    High strain rate measurements reported recently for several tantalum and copper crystal/polycrystal materials are shown to follow dislocation mechanics-based constitutive relations, first at lower strain rates, for dislocation velocity control of the imposed plastic deformations and, then at higher rates, transitioning to nano-scale dislocation generation control by twinning or slip. For copper, there is the possibility of added-on slip dislocation displacements to be accounted for from the newly generated dislocations.

  19. Synthesis of Monodispersed Tantalum(V) oxide Nanospheres by an Ethylene Glycol Mediated Route

    EPA Science Inventory

    Tantalum(V) oxide (Ta2O5) nanospheres have been synthesized by a very simple ethylene glycol mediated route. The two-step process involves the formation of glycolate nanoparticles and their subsequent hydrolysis and calcination to generate the final Ta2O5 nanospheres. The synthes...

  20. Nondestructive method for chemically machining crucibles or molds from their enclosed ingots and castings

    DOEpatents

    Stout, Norman D.; Newkirk, Herbert W.

    1991-01-01

    An inventive method is described for chemically machining rhenium, rhenium and tungsten alloy, and group 5b and 6b crucibles or molds from included ingots and castings comprised of oxide crystals including YAG and YAG based crystals, garnets, corundum crystals, and ceramic oxides. A mixture of potassium hydroxide and 15 to 90 weight percent of potassium nitrate is prepared and maintained at a temperature above melting and below the lower of 500 degrees centigrade or the temperature of decomposition of the mixture. The enveloping metal container together with its included oxide crystal object is rotated within the heated KOH-KNO.sub.3 mixture, until the container is safely chemically machined away from the included oxide crystal object.