Sample records for tap water supplied

  1. Comparing microbial water quality in an intermittent and continuous piped water supply.

    PubMed

    Kumpel, Emily; Nelson, Kara L

    2013-09-15

    Supplying piped water intermittently is a common practice throughout the world that increases the risk of microbial contamination through multiple mechanisms. Converting an intermittent supply to a continuous supply has the potential to improve the quality of water delivered to consumers. To understand the effects of this upgrade on water quality, we tested samples from reservoirs, consumer taps, and drinking water provided by households (e.g. from storage containers) from an intermittent and continuous supply in Hubli-Dharwad, India, over one year. Water samples were tested for total coliform, Escherichia coli, turbidity, free chlorine, and combined chlorine. While water quality was similar at service reservoirs supplying the continuous and intermittent sections of the network, indicator bacteria were detected more frequently and at higher concentrations in samples from taps supplied intermittently compared to those supplied continuously (p < 0.01). Detection of E. coli was rare in continuous supply, with 0.7% of tap samples positive compared to 31.7% of intermittent water supply tap samples positive for E. coli. In samples from both continuously and intermittently supplied taps, higher concentrations of total coliform were measured after rainfall events. While source water quality declined slightly during the rainy season, only tap water from intermittent supply had significantly more indicator bacteria throughout the rainy season compared to the dry season. Drinking water samples provided by households in both continuous and intermittent supplies had higher concentrations of indicator bacteria than samples collected directly from taps. Most households with continuous supply continued to store water for drinking, resulting in re-contamination, which may reduce the benefits to water quality of converting to continuous supply. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. Stable isotope ratios of tap water in the contiguous United States

    NASA Astrophysics Data System (ADS)

    Bowen, Gabriel J.; Ehleringer, James R.; Chesson, Lesley A.; Stange, Erik; Cerling, Thure E.

    2007-03-01

    Understanding links between water consumers and climatological (precipitation) sources is essential for developing strategies to ensure the long-term sustainability of water supplies. In pursing this understanding a need exists for tools to study and monitor complex human-hydrological systems that involve high levels of spatial connectivity and supply problems that are regional, rather than local, in nature. Here we report the first national-level survey of stable isotope ratios in tap water, including spatially and temporally explicit samples from a large number of cities and towns across the contiguous United States. We show that intra-annual ranges of tap water isotope ratios are relatively small (e.g., <10‰ for δ2H) at most sites. In contrast, spatial variation in tap water isotope ratios is very large, spanning ranges of 163‰ for δ2H and 23.6‰ for δ18O. The spatial distribution of tap water isotope ratios at the national level is similar to that of stable isotope ratios of precipitation. At the regional level, however, pervasive differences between tap water and precipitation isotope ratios can be attributed to hydrological factors in the water source to consumer chain. These patterns highlight the potential for monitoring of tap water isotope ratios to contribute to the study of regional water supply stability and provide warning signals for impending water resource changes. We present the first published maps of predicted tap water isotope ratios for the contiguous United States, which will be useful in guiding future research on human-hydrological systems and as a tool for applied forensics and traceability studies.

  3. Evaluation on the Quality of Bangkok Tap Water with Other Drinking Purpose Water

    NASA Astrophysics Data System (ADS)

    Kordach, A.; Chardwattananon, C.; Wongin, K.; Chayaput, B.; Wongpat, N.

    2018-02-01

    The concern of drinking purposed water quality in Bangkok, Nonthaburi, and Samutprakarn provinces has been a problem for over fifteen years. Metropolitan Water Works Authority (MWA) of Thailand is fully responsible for providing water supply to the mentioned areas. The objective of Drinkable Tap Water Project is to make people realize in quality of tap water. Communities, school, government agencies, hotels, hospitals, department stores, and other organizations are participating in this project. MWA have collected at least 3 samples of water from the corresponding places and the samples have to meet the World Health Organization (WHO) guidelines level. This study is to evaluate water quality of tap water, storage water, filtered water, and filtered water dispenser. The water samples from 2,354 attending places are collected and analyzed. From October 2011 to September 2016, MWA analyzed 32,711 samples. The analyzed water parameters are free residual chlorine, appearance color, turbidity, pH, conductivity, total dissolved solids (TDS), and pathogenic bacteria; E.coli. The results indicated that a number of tap water samples had the highest number compliance with WHO guidelines levels at 98.40%. The filtered water, filtered water dispenser, and storage water were received 96.71%, 95.63%, and 90.88%, respectively. However, the several samples fail to pass WHO guideline level because they were contaminated by E.coli. The result is that tap water has the highest score among other sources probably because tap water has chlorine for disinfection and always is monitored by professional team round-the-clock services compared to the other water sources with less maintenance or cleaning. Also, water quality reports are continuously sent to customers by mail addresses. Tap water quality data are shown on MWA websites and Facebook. All these steps of work should enhance the confidence of tap water quality.

  4. An evaluation of microbial and chemical contamination sources related to the deterioration of tap water quality in the household water supply system.

    PubMed

    Lee, Yoonjin

    2013-09-06

    The predominant microorganisms in samples taken from shower heads in residences in the Korean city "N" were Stenotrophomonas maltophilia, Sphingomonas paucimobilis, Acidovorax temperans, and Microbacterium lacticum. Legionella was not detected in this case. The volatile organic compounds (VOCs) vinylacetate, NN-DMA, cis-1,2-dichloroethylene, epichlorohydrin, and styrene were measured in five types of plastic pipes: PVC, PB, PP, PE, and cPVC. The rate of multiplication of the heterotrophic plate count (HPC) attached on the copper pipe in contact with hot tap water was higher than the rate for the copper pipe in contact with cold tap water. Biofilm accumulation on stainless steel pipes with added acetate (3 mg/L) was 2.56 times higher than the non-supplemented condition. Therefore, the growth of HPC in the pipe system was affected by the type and availability of nutrients and depended on variables such as heating during the hot water supply.

  5. An Evaluation of Microbial and Chemical Contamination Sources Related to the Deterioration of Tap Water Quality in the Household Water Supply System

    PubMed Central

    Lee, Yoonjin

    2013-01-01

    The predominant microorganisms in samples taken from shower heads in residences in the Korean city “N” were Stenotrophomonas maltophilia, Sphingomonas paucimobilis, Acidovorax temperans, and Microbacterium lacticum. Legionella was not detected in this case. The volatile organic compounds (VOCs) vinylacetate, NN-DMA, cis-1,2-dichloroethylene, epichlorohydrin, and styrene were measured in five types of plastic pipes: PVC, PB, PP, PE, and cPVC. The rate of multiplication of the heterotrophic plate count (HPC) attached on the copper pipe in contact with hot tap water was higher than the rate for the copper pipe in contact with cold tap water. Biofilm accumulation on stainless steel pipes with added acetate (3 mg/L) was 2.56 times higher than the non-supplemented condition. Therefore, the growth of HPC in the pipe system was affected by the type and availability of nutrients and depended on variables such as heating during the hot water supply. PMID:24018837

  6. Fluoride and bacterial content of bottled drinking water versus municipal tap water.

    PubMed

    Mythri, H; Chandu, G N; Prashant, G M; Subba Reddy, V V

    2010-01-01

    Water is a divine gift. People quench their thirst without questioning the source of water. But, apprehension about contaminants in municipal water supplies along with increased fear of fluorosis made bottled drinking water as one of the important tradable commodities. The objectives of the study were to determine and compare the fluoride and bacterial contents of commercially available bottled drinking water and municipal tap water in Davangere city, Karnataka. Fifty samples of 10 categories of bottled drinking water with different batch numbers were purchased and municipal water from different sources were collected. Fluoride levels were determined by an ion-selective electrode. Water was cultured quantitatively and levels of bacteria were calculated as colony-forming units (CFUs) per milliliter. Descriptive analysis of water samples for fluoride concentration was in the range of 0.07-0.33 for bottled drinking water, Bisleri showing the highest of 0.33. A comparison of the mean values of microbial count for bottled drinking water with that of municipal tap water showed no statistically significant difference, but was more than the standard levels along with the presence of fungus and maggots. The fluoride concentration was below the optimal level for both municipal tap water and bottled drinking water. CFUs were more than the recommended level in both municipal tap water and bottled drinking water.

  7. Mineral water or tap water? An endless debate.

    PubMed

    De Giglio, O; Quaranta, A; Lovero, G; Caggiano, G; Montagna, M T

    2015-01-01

    The consumption of mineral water has been increasing because of the frequent and unjustified reports of the water supply contamination. However some authors have shown that bottled waters are not always better than tap water. Mineral waters are more palatable for organoleptic characteristic because, being pure at source, they do not undergo disinfection treatments and are sometimes enriched with CO2. In fact, they are characterized by their microbial facies subject to changes during the production cycle which can contribute to their contamination. It is necessary to provide people with the tools necessary to operate a critical choice of the type of water to be consumed not exclusively for their organoleptic characteristics or marketing strategies.

  8. Acanthamoeba keratitis: the role of domestic tap water contamination in the United Kingdom.

    PubMed

    Kilvington, Simon; Gray, Trevor; Dart, John; Morlet, Nigel; Beeching, John R; Frazer, David G; Matheson, Melville

    2004-01-01

    The incidence of acanthamoeba keratitis (AK) in the UK is some 15 times that in the United States and seven times that in Holland. To investigate reasons for this higher frequency, a study of the role of domestic tap water as a potential source of AK was undertaken. Tap outlets from the homes of 27 patients with culture-proven AK were sampled and cultured for free-living amoebae (FLA). For all Acanthamoeba isolates, mitochondrial DNA (mtDNA) restriction fragment length polymorphisms (RFLPs) and cytochrome oxidase (cox 1/2) sequence typing was performed to determine the similarity between corneal and tap water isolates. FLA, including Acanthamoeba, were isolated from 24 (89%) of 27 homes, and the presence within the homes varied significantly with tap water temperature and location: 19 (76%) of 25 bathroom sink cold taps sampled compared with 6 (24%) of 25 hot and 9 (47%) of 19 kitchen cold taps compared with 3 (16%) of 19 of hot kitchen taps. Acanthamoeba were isolated from 8 (30%) of 27 homes (five bathroom sink cold taps, one cloakroom cold tap, one bath, and one bedroom sink mixer [hot/cold] taps). In six cases, identical Acanthamoeba mtDNA profiles were found for the clinical and home tap water isolates. In keeping with UK plumbing practice, 24 of 27 homes had internal roof water storage tanks to supply domestic taps, but the mains fed the kitchen cold tap. Water storage tanks promote colonization of domestic water with FLA, including Acanthamoeba, and hence increase the risk of AK. This accounts for the significantly greater incidence of AK in the UK and supports advice to avoid using tap water in contact lens care routines.

  9. Tap water isotope ratios reflect urban water system structure and dynamics across a semiarid metropolitan area

    NASA Astrophysics Data System (ADS)

    Jameel, Yusuf; Brewer, Simon; Good, Stephen P.; Tipple, Brett J.; Ehleringer, James R.; Bowen, Gabriel J.

    2016-08-01

    Water extraction for anthropogenic use has become a major flux in the hydrological cycle. With increasing demand for water and challenges supplying it in the face of climate change, there is a pressing need to better understand connections between human populations, climate, water extraction, water use, and its impacts. To understand these connections, we collected and analyzed stable isotopic ratios of more than 800 urban tap water samples in a series of semiannual water surveys (spring and fall, 2013-2015) across the Salt Lake Valley (SLV) of northern Utah. Consistent with previous work, we found that mean tap water had a lower 2H and 18O concentration than local precipitation, highlighting the importance of nearby montane winter precipitation as source water for the region. However, we observed strong and structured spatiotemporal variation in tap water isotopic compositions across the region which we attribute to complex distribution systems, varying water management practices and multiple sources used across the valley. Water from different sources was not used uniformly throughout the area and we identified significant correlation between water source and demographic parameters including population and income. Isotopic mass balance indicated significant interannual and intra-annual variability in water losses within the distribution network due to evaporation from surface water resources supplying the SLV. Our results demonstrate the effectiveness of isotopes as an indicator of water management strategies and climate impacts within regional urban water systems, with potential utility for monitoring, regulation, forensic, and a range of water resource research.

  10. What's Wrong with the Tap? Examining Perceptions of Tap Water and Bottled Water at Purdue University

    NASA Astrophysics Data System (ADS)

    Saylor, Amber; Prokopy, Linda Stalker; Amberg, Shannon

    2011-09-01

    The environmental impacts of bottled water prompted us to explore drinking water choices at Purdue University, located in West Lafayette, IN. A random sample of 2,045 Purdue University students, staff, and faculty was invited to participate in an online survey. The survey assessed current behaviors as well as perceived barriers and benefits to drinking tap water versus bottled water. 677 surveys were completed for a response rate of 33.1%. We then conducted qualitative interviews with a purposive sample of university undergraduates ( n = 21) to obtain contextual insights into the survey results and the beliefs of individuals with a variety of drinking water preferences. This study revealed that women drink disproportionately more bottled water then men while undergraduate students drink more than graduate students, staff and faculty. The study also uncovered a widespread belief that recycling eliminates the environmental impacts of bottled water. Important barriers to drinking tap water at Purdue include: perceived risks from tap water and the perceived safety of bottled water, preferring the taste of bottled water, and the convenience of drinking bottled water. The qualitative interviews revealed that drinking water choices can be influenced by several factors—especially whether individuals trust tap water to be clean—but involve varying levels of complexity. The implications of these results for social marketing strategies to promote tap water are discussed.

  11. What's wrong with the tap? Examining perceptions of tap water and bottled water at Purdue University.

    PubMed

    Saylor, Amber; Prokopy, Linda Stalker; Amberg, Shannon

    2011-09-01

    The environmental impacts of bottled water prompted us to explore drinking water choices at Purdue University, located in West Lafayette, IN. A random sample of 2,045 Purdue University students, staff, and faculty was invited to participate in an online survey. The survey assessed current behaviors as well as perceived barriers and benefits to drinking tap water versus bottled water. 677 surveys were completed for a response rate of 33.1%. We then conducted qualitative interviews with a purposive sample of university undergraduates (n = 21) to obtain contextual insights into the survey results and the beliefs of individuals with a variety of drinking water preferences. This study revealed that women drink disproportionately more bottled water then men while undergraduate students drink more than graduate students, staff and faculty. The study also uncovered a widespread belief that recycling eliminates the environmental impacts of bottled water. Important barriers to drinking tap water at Purdue include: perceived risks from tap water and the perceived safety of bottled water, preferring the taste of bottled water, and the convenience of drinking bottled water. The qualitative interviews revealed that drinking water choices can be influenced by several factors-especially whether individuals trust tap water to be clean-but involve varying levels of complexity. The implications of these results for social marketing strategies to promote tap water are discussed.

  12. A City-wide Investigation of the Isotopic Distribution and Source of Tap Waters for Forensic Human Geolocation Ground-truthing.

    PubMed

    Ueda, Momoko; Bell, Lynne S

    2017-05-01

    Human geolocation is prefaced on the accuracy of the geographic precision of mapped isotopic values for drinking water. As most people live in cities, it becomes important to understand city water supplies and how the isotopic values uniquely reflect that city. This study investigated the isotopic distribution of δ 2 H and δ 18 O from sourced tap waters that were collected from across the Metro Vancouver (MV) area (n = 135). The results revealed that the isotopic values reflect their water sources with a range of 5.3‰ for δ 18 O tap and 29.3‰ for δ 2 H tap for MV. The results indicate that individual cities need higher resolution studies to determine their tap water isotopic ranges, and a good understanding of the water supply network itself for human geolocation work. With an extended high-resolution understanding of each city, human tissue may be compared with more certainty for geolocation. © 2016 American Academy of Forensic Sciences.

  13. Drinking of tap water is smart, but how do it better? - A tap water quality research

    NASA Astrophysics Data System (ADS)

    Mika, Anna; Sekuła, Klaudia; Dendys, Marta; Ptaszek, Weronika; Postawa, Adam

    2018-02-01

    Drinking tap water has recently become popular. It is a way to fight with the tons of garbage (disposable, plastic bottles). However, many people are afraid of water quality. The research was performed in December 2015 in Krakow, during one week. 56 samples were collected. The samples were taken in different times of the day and in the two types of building (old one with installation from the 80s and new one with installation built in past few years). Samples were taken by two qualified operators. The first sample was collected at the morning at 6 a.m., before anyone uses the tap. The second one after the tap was flushed and then the third one after 30 minutes stagnation. At the evening was taken one sample (after using the tap all day).The aim of the research was to check the quality of drinking water in the end-user. The results show that quality of tap water in Krakow is good, also in the end-user, but the concentration of chemical elements are changing during the flushing and using of the tap.

  14. Risk characterization of methyl tertiary butyl ether (MTBE) in tap water.

    PubMed

    Stern, B R; Tardiff, R G

    1997-12-01

    Methyl tertiary butyl ether (MTBE) can enter surface water and groundwater through wet atmospheric deposition or as a result of fuel leaks and spills. About 30% of the U.S. population lives in areas where MTBE is in regular use. Ninety-five percent of this population is unlikely to be exposed to MTBE in tap water at concentrations exceeding 2 ppb, and most will be exposed to concentrations that are much lower and may be zero. About 5% of this population may be exposed to higher levels of MTBE in tap water, resulting from fuel tank leaks and spills into surface or groundwater used for potable water supplies. This paper describes the concentration ranges found and anticipated in surface and groundwater, and estimates the distribution of doses experienced by humans using water containing MTBE to drink, prepare food, and shower/bathe. The toxic properties (including potency) of MTBE when ingested, inhaled, and in contact with the skin are summarized. Using a range of human toxic potency values derived from animal studies, margins of exposure (MOE) associated with alternative chronic exposure scenarios are estimated to range from 1700 to 140,000. Maximum concentrations of MTBE in tap water anticipated not to cause adverse health effects are determined to range from 700 to 14,000 ppb. The results of this analysis demonstrate that no health risks are likely to be associated with chronic and subchronic human exposures to MTBE in tap water. Although some individuals may be exposed to very high concentrations of MTBE in tap water immediately following a localized spill, these exposures are likely to be brief in duration due to large-scale dilution and rapid volatilization of MTBE, the institution of emergency response and remediation measures to minimize human exposures, and the low taste and odor thresholds of MTBE which ensure that its presence in tap water is readily detected at concentrations well below the threshold for human injury.

  15. Comparison of the Mineral Content of Tap Water and Bottled Waters

    PubMed Central

    Azoulay, Arik; Garzon, Philippe; Eisenberg, Mark J

    2001-01-01

    OBJECTIVES Because of growing concern that constituents of drinking water may have adverse health effects, consumption of tap water in North America has decreased and consumption of bottled water has increased. Our objectives were to 1) determine whether North American tap water contains clinically important levels of calcium (Ca2+), magnesium (Mg2+), and sodium (Na+) and 2) determine whether differences in mineral content of tap water and commercially available bottled waters are clinically important. DESIGN We obtained mineral analysis reports from municipal water authorities of 21 major North American cities. Mineral content of tap water was compared with published data regarding commercially available bottled waters and with dietary reference intakes (DRIs). MEASUREMENTS AND MAIN RESULTS Mineral levels varied among tap water sources in North America and among bottled waters. European bottled waters generally contained higher mineral levels than North American tap water sources and North American bottled waters. For half of the tap water sources we examined, adults may fulfill between 8% and 16% of their Ca2+ DRI and between 6% and 31% of their Mg2+ DRI by drinking 2 liters per day. One liter of most moderate mineralization European bottled waters contained between 20% and 58% of the Ca2+ DRI and between 16% and 41% of the Mg2+ DRI in adults. High mineralization bottled waters often contained up to half of the maximum recommended daily intake of Na+. CONCLUSION Drinking water sources available to North Americans may contain high levels of Ca2+, Mg2+, and Na+ and may provide clinically important portions of the recommended dietary intake of these minerals. Physicians should encourage patients to check the mineral content of their drinking water, whether tap or bottled, and choose water most appropriate for their needs. PMID:11318912

  16. Water use and time analysis in ablution from taps

    NASA Astrophysics Data System (ADS)

    Zaied, Roubi A.

    2017-09-01

    There is a lack of water resources and an extreme use of potable water in our Arab region. Ablution from taps was studied since it is a repeated daily activity that consumes more water. Five different tap types are investigated for water consumption fashions including traditional mixing tap and automatic tap. Analyzing 100 experimental observations revealed that 22.7-28.8 % of ablution water is used for washing of feet and the largest water waste occurs during washing of face portions. Moreover, 30-47 % amount of water consumed in ablution from taps is wasted which can be saved if tap releases water only at moments of need. The push-type tap is being spread recently especially in airports. If it is intended for use in ablution facilities, batch duration and volume must be tuned. When each batch is 0.25 L of water and lasts for 3 s, 3 L are sufficient for one complete ablution in average which means considerable saving. A cost-benefit model is proposed for using different tap types and an economic feasibility study is performed on a case study. This analysis can help us to design better ablution systems.

  17. Presence of Legionella in London's water supplies.

    PubMed

    Colbourne, J S; Trew, R M

    1986-09-01

    Legionella occurs frequently (52 to 54%) in domestic water and cooling water inside commercial, industrial and health care buildings, and these types of water systems are now regarded as a normal habitat for Legionella. The factors that predispose a particular water system to colonization by these organisms are ill-defined, although it is fairly certain that biological and physicochemical environmental factors play an important role in allowing Legionella to multiply in the circulating water. It has been postulated that the organism may gain access to water systems inside buildings by one of three routes: contact with air through open points such as uncovered storage tanks or vents, ingress of soil or surface water during construction or repair, or intermittent seeding with organisms present in low numbers in the public water supply. Three studies in the USA have found Legionella in 0.4 to 8.8% of drinking-water samples, but these were not representative of the public supply network as a whole. The aim of this study was to determine, over a period of 1 year, the frequency of Legionella in London's drinking water--from the treatment plant through to the consumer's tap. To date, Legionella has not been isolated from raw river water entering London's treatment works or from treated water entering the distribution network. Sixty-two monitoring taps in buildings located in 21 supply areas have been sampled twice for Legionella; only 2 (2.4%) have proved positive during the autumn and winter of 1985/86. The strain found was L. pneumophila serotype 1, subgroup Olda, and the numbers ranged from 10(2) to 10(4)/l. Although the survey is incomplete, it is already clear that the public water supplies in London are not a source of strains of Legionella associated with disease.

  18. Microbiological tap water profile of a medium-sized building and effect of water stagnation.

    PubMed

    Lipphaus, Patrick; Hammes, Frederik; Kötzsch, Stefan; Green, James; Gillespie, Simon; Nocker, Andreas

    2014-01-01

    Whereas microbiological quality of drinking water in water distribution systems is routinely monitored for reasons of legal compliance, microbial numbers in tap water are grossly understudied. Motivated by gross differences in water from private households, we applied in this study flow cytometry as a rapid analytical method to quantify microbial concentrations in water sampled at diverse taps in a medium size research building receiving chlorinated water. Taps differed considerably in frequency of usage and were located in laboratories, bathrooms, and a coffee kitchen. Substantial differences were observed between taps with concentrations (per mL) in the range from 6.29 x 10(3) to 7.74 x 10(5) for total cells and from 1.66 x 10(3) to 4.31 x 10(5) for intact cells. The percentage of intact cells varied between 7% and 96%. Water from taps with very infrequent use showed the highest bacterial numbers and the highest proportions of intact cells. Stagnation tended to increase microbial numbers in water from those taps which were otherwise frequently used. Microbial numbers in other taps that were rarely opened were not affected by stagnation as their water is probably mostly stagnant. For cold water taps, microbial numbers and the percentage of intact cells tended to decline with flushing with the greatest decline for taps used least frequently whereas microbial concentrations in water from hot water taps tended to be somewhat more stable. We conclude that microbiological water quality is mainly determined by building-specific parameters. Tap water profiling can provide valuable insight into plumbing system hygiene and maintenance.

  19. Occurrence and sources of bromate in chlorinated tap drinking water in Metropolitan Manila, Philippines.

    PubMed

    Genuino, Homer C; Espino, Maria Pythias B

    2012-04-01

    Significant levels of potentially carcinogenic bromate were measured in chlorinated tap drinking water in Metropolitan Manila, Philippines, using an optimized ion-chromatographic method. This method can quantify bromate in water down to 4.5 μg l⁻¹ by employing a postcolumn reaction with acidic fuchsin and subsequent spectrophotometric detection. The concentration of bromate in tap drinking water samples collected from 21 locations in cities and municipalities within the 9-month study period ranged from 7 to 138 μg l⁻¹. The average bromate concentration of all tap drinking water samples was 66 μg l⁻¹ (n = 567), almost seven times greater than the current regulatory limit in the country. The levels of bromate in other water types were also determined to identify the sources of bromate found in the distribution lines and to further uncover contaminated sites. The concentration of bromate in water sourced from two rivers and two water treatment plants ranged from 15 to 80 and 12 to 101 μg l⁻¹, respectively. Rainwater did not contribute bromate in rivers but decreased bromate level by dilution. Groundwater and wastewater samples showed bromate concentrations as high as 246 and 342 μg l⁻¹, respectively. Bromate presence in tap drinking water can be linked to pollution in natural water bodies and the practice of using hypochlorite chemicals in addition to gaseous chlorine for water disinfection. This study established the levels, occurrence, and possible sources of bromate in local drinking water supplies.

  20. Spatio-temporal variation in the tap water isotope ratios of Salt Lake City: a novel indicator of urban water system structure and dynamics.

    NASA Astrophysics Data System (ADS)

    Jameel, M. Y.; Bowen, G. J.

    2015-12-01

    Public water supply systems are the life-blood of urban areas. How we use urban water systems affects more than human health and well-being. Our water use can alter a city's energy balance, including how much solar energy is absorbed as heat or reflected back into space. The severity of these effects, and the need to better understand connections between climate, water extraction, water use, and water use impacts, is strongest in areas of climatic aridity and substantial land-use change, such as the rapidly urbanizing areas of Utah. We have gathered and analyzed stable water isotope data from a series of semi-annual hydrological surveys (spring and fall, 2013 and 2014) in urban tap water sampled across the Salt Lake Valley. Our study has led to four major findings thus far: 1) Clear and substantial variation in tap water isotopic composition in space and time that can be linked to different water sources and management practices within the urban area, 2) There is a strong correlation between the range of observed isotope values and the population of water districts, reflecting use of water from multiple local and non-local sources in districts with high water demand, 3) Water isotopes reflect significant and variable loss of water due to evaporation of surface water resources and 4) Overall, tap water contains lower concentrations of the heavy H and O isotopes than does precipitation within the basin, reflecting the connection between city water supplies and mountain water sources. Our results highlight the utility of isotopic data as an indicator of heterogeneities within urban water systems, management practices and their variation across a major metropolitan area, and effects of climate variability on urban water supplies

  1. Bottled Water Mania: Americas Misguided Infatuation with Bottled Water over Tap Water

    DTIC Science & Technology

    2010-05-01

    AU/ACSC/BROWN, S/AY10 AIR COMMAND AND STAFF COLLEGE AIR UNIVERSITY Bottled Water Mania: America’s Misguided...Infatuation with Bottled Water over Tap Water by Seiho P. Brown, LCDR, U.S. Navy A Research Report Submitted to the Faculty In...iii Abstract The purpose of this paper is to analyze the tendency for American people to drink bottled water over tap water even though it costs

  2. Chemical quality of tap water in Madrid: multicase control cancer study in Spain (MCC-Spain).

    PubMed

    Fernández-Navarro, Pablo; Villanueva, Cristina M; García-Pérez, Javier; Boldo, Elena; Goñi-Irigoyen, Fernando; Ulibarrena, Enrique; Rantakokko, Panu; García-Esquinas, Esther; Pérez-Gómez, Beatriz; Pollán, Marina; Aragonés, Nuria

    2017-02-01

    Chronic consumption of water, which contains contaminants, may give rise to adverse health effects. The Madrid region, covered by the population-based multicase-control (MCC-Spain) study, includes two drinking water supply areas. The different sources of the water, coupled together with the possible differences in water management, mean that there may be differences in drinking water quality. In the context of the MCC study, our aims were to describe contaminant concentrations in tap water drawn from various sampling points distributed around the region, assess these concentrations by reference to guideline values and study possible differences between the two supply areas. Tap water samples were collected from 34 sampling points in 7 towns in the Madrid region (19-29 April 2010), and 23 contaminants (metals, nitrates, disinfection by-product and Mutagen X levels) were quantified. We undertook a descriptive analysis of the contaminant concentrations in the water and compared them between the two water supply areas (Wilcoxon test). We created maps representing the distribution of the concentrations observed at water sampling points and assessed the correlations (Spearman's coefficient) between the different parameters measured. The concentrations of the contaminants were below guideline values. There were differences between the two supply areas in concentration of nitrates (p value = 0.0051) and certain disinfection by-products. While there were positive correlations (rho >0.70) among some disinfection by-products, no correlations were found in metals or nitrates. The differences in nitrate levels could be linked to differences in farming/industrial activities in the catchment areas and in disinfection by-products might be related to the existence of different treatment systems or bromine content in source waters.

  3. Social Perception of Public Water Supply Network and Groundwater Quality in an Urban Setting Facing Saltwater Intrusion and Water Shortages

    NASA Astrophysics Data System (ADS)

    Alameddine, Ibrahim; Jawhari, Gheeda; El-Fadel, Mutasem

    2017-04-01

    Perceptions developed by consumers regarding the quality of water reaching their household can affect the ultimate use of the water. This study identified key factors influencing consumers' perception of water quality in a highly urbanized coastal city, experiencing chronic water shortages, overexploitation of groundwater, and accelerated saltwater intrusion. Household surveys were administered to residents to capture views and perceptions of consumed water. Concomitantly, groundwater and tap water samples were collected and analyzed at each residence for comparison with perceptions. People's rating of groundwater quality was found to correlate to the measured water quality both in the dry and wet seasons. In contrast, perceptions regarding the water quality of the public water supply network did not show any correlation with the measured tap water quality indicators. Logistic regression models developed to predict perception based on salient variables indicated that age, apartment ownership, and levels of total dissolved solids play a significant role in shaping perceptions regarding groundwater quality. Perceptions concerning the water quality of the public water supply network appeared to be independent of the measured total dissolved solids levels at the tap but correlated to those measured in the wells. The study highlights misconceptions that can arise as a result of uncontrolled cross-connections of groundwater to the public supply network water and the development of misaligned perceptions based on prior consumption patterns, water shortages, and a rapidly salinizing groundwater aquifer.

  4. Social Perception of Public Water Supply Network and Groundwater Quality in an Urban Setting Facing Saltwater Intrusion and Water Shortages.

    PubMed

    Alameddine, Ibrahim; Jawhari, Gheeda; El-Fadel, Mutasem

    2017-04-01

    Perceptions developed by consumers regarding the quality of water reaching their household can affect the ultimate use of the water. This study identified key factors influencing consumers' perception of water quality in a highly urbanized coastal city, experiencing chronic water shortages, overexploitation of groundwater, and accelerated saltwater intrusion. Household surveys were administered to residents to capture views and perceptions of consumed water. Concomitantly, groundwater and tap water samples were collected and analyzed at each residence for comparison with perceptions. People's rating of groundwater quality was found to correlate to the measured water quality both in the dry and wet seasons. In contrast, perceptions regarding the water quality of the public water supply network did not show any correlation with the measured tap water quality indicators. Logistic regression models developed to predict perception based on salient variables indicated that age, apartment ownership, and levels of total dissolved solids play a significant role in shaping perceptions regarding groundwater quality. Perceptions concerning the water quality of the public water supply network appeared to be independent of the measured total dissolved solids levels at the tap but correlated to those measured in the wells. The study highlights misconceptions that can arise as a result of uncontrolled cross-connections of groundwater to the public supply network water and the development of misaligned perceptions based on prior consumption patterns, water shortages, and a rapidly salinizing groundwater aquifer.

  5. Bacteriological quality of bottled drinking water versus municipal tap water in Dharan municipality, Nepal.

    PubMed

    Pant, Narayan Dutt; Poudyal, Nimesh; Bhattacharya, Shyamal Kumar

    2016-06-07

    Water-related diseases are of great concern in developing countries like Nepal. Every year, there are countless morbidity and mortality due to the consumption of unsafe drinking water. Recently, there have been increased uses of bottled drinking water in an assumption that the bottled water is safer than the tap water and its use will help to protect from water-related diseases. So, the main objective of this study was to analyze the bacteriological quality of bottled drinking water and that of municipal tap water. A total of 100 samples (76 tap water and 24 bottled water) were analyzed for bacteriological quality and pH. The methods used were spread plate method for total plate count (TPC) and membrane filter method for total coliform count (TCC), fecal coliform count (FCC), and fecal streptococcal count (FSC). pH meter was used for measuring pH. One hundred percent of the tap water samples and 87.5 % of the bottled water samples were found to be contaminated with heterotrophic bacteria. Of the tap water samples, 55.3 % were positive for total coliforms, compared with 25 % of the bottled water. No bottled water samples were positive for fecal coliforms and fecal streptococci, in contrast to 21.1 % and 14.5 % of the tap water samples being contaminated with fecal coliforms and fecal streptococci, respectively. One hundred percent of the tap water samples and 54.2 % of the bottled water samples had pH in the acceptable range. All of the municipal tap water samples and most of the bottled drinking water samples distributed in Dharan municipality were found to be contaminated with one or more than one type of indicator organisms. On the basis of our findings, we may conclude that comparatively, the bottled drinking water may have been safer (than tap water) to drink.

  6. Water supply interruptions and suspected cholera incidence: a time-series regression in the Democratic Republic of the Congo.

    PubMed

    Jeandron, Aurélie; Saidi, Jaime Mufitini; Kapama, Alois; Burhole, Manu; Birembano, Freddy; Vandevelde, Thierry; Gasparrini, Antonio; Armstrong, Ben; Cairncross, Sandy; Ensink, Jeroen H J

    2015-10-01

    The eastern provinces of the Democratic Republic of the Congo have been identified as endemic areas for cholera transmission, and despite continuous control efforts, they continue to experience regular cholera outbreaks that occasionally spread to the rest of the country. In a region where access to improved water sources is particularly poor, the question of which improvements in water access should be prioritized to address cholera transmission remains unresolved. This study aimed at investigating the temporal association between water supply interruptions and Cholera Treatment Centre (CTC) admissions in a medium-sized town. Time-series patterns of daily incidence of suspected cholera cases admitted to the Cholera Treatment Centre in Uvira in South Kivu Province between 2009 and 2014 were examined in relation to the daily variations in volume of water supplied by the town water treatment plant. Quasi-poisson regression and distributed lag nonlinear models up to 12 d were used, adjusting for daily precipitation rates, day of the week, and seasonal variations. A total of 5,745 patients over 5 y of age with acute watery diarrhoea symptoms were admitted to the CTC over the study period of 1,946 d. Following a day without tap water supply, the suspected cholera incidence rate increased on average by 155% over the next 12 d, corresponding to a rate ratio of 2.55 (95% CI: 1.54-4.24), compared to the incidence experienced after a day with optimal production (defined as the 95th percentile-4,794 m3). Suspected cholera cases attributable to a suboptimal tap water supply reached 23.2% of total admissions (95% CI 11.4%-33.2%). Although generally reporting less admissions to the CTC, neighbourhoods with a higher consumption of tap water were more affected by water supply interruptions, with a rate ratio of 3.71 (95% CI: 1.91-7.20) and an attributable fraction of cases of 31.4% (95% CI: 17.3%-42.5%). The analysis did not suggest any association between levels of residual

  7. Legionella species diversity and dynamics from surface reservoir to tap water: from cold adaptation to thermophily

    PubMed Central

    Lesnik, René; Brettar, Ingrid; Höfle, Manfred G

    2016-01-01

    Water samples of the Drinking Water Supply System (DWSS) of the city of Braunschweig were analysed for its Legionella species composition using genus-specific PCR amplicons and single-strand conformation polymorphism (SSCP) fingerprint analyses based on 16S rRNA genes. These analyses comprised the whole supply chain including raw water, treatment process and large-scale storage, and a seasonal study of finished drinking water sampled monthly from cold and hot tap water. Treatment of raw water had a major impact on Legionella species by reducing their diversity and abundances. The Legionella species composition of the tap water was highly distinct from that of both source waters. In cold water, 8–14 different phylotypes of Legionella (PTLs) were observed per sample with relative abundances ranging from >1% to 53%. In hot water, L. pneumophila was present during all seasons at high relative abundances (8–40%) accompanied by 5–14 other PTLs of which 6 PTLs were in common with cold water. This thermophilic Legionella community, including L. pneumophila, was able to grow in the hot water above 50 °C. Such thermophilic Legionella populations are of general relevance for drinking water management and public health, but also for the ecology and evolution of the genus Legionella. PMID:26528838

  8. Legionella species diversity and dynamics from surface reservoir to tap water: from cold adaptation to thermophily.

    PubMed

    Lesnik, René; Brettar, Ingrid; Höfle, Manfred G

    2016-05-01

    Water samples of the Drinking Water Supply System (DWSS) of the city of Braunschweig were analysed for its Legionella species composition using genus-specific PCR amplicons and single-strand conformation polymorphism (SSCP) fingerprint analyses based on 16S rRNA genes. These analyses comprised the whole supply chain including raw water, treatment process and large-scale storage, and a seasonal study of finished drinking water sampled monthly from cold and hot tap water. Treatment of raw water had a major impact on Legionella species by reducing their diversity and abundances. The Legionella species composition of the tap water was highly distinct from that of both source waters. In cold water, 8-14 different phylotypes of Legionella (PTLs) were observed per sample with relative abundances ranging from >1% to 53%. In hot water, L. pneumophila was present during all seasons at high relative abundances (8-40%) accompanied by 5-14 other PTLs of which 6 PTLs were in common with cold water. This thermophilic Legionella community, including L. pneumophila, was able to grow in the hot water above 50 °C. Such thermophilic Legionella populations are of general relevance for drinking water management and public health, but also for the ecology and evolution of the genus Legionella.

  9. Poor tap water quality experiences and poor sleep quality during the Flint, Michigan Municipal Water Crisis.

    PubMed

    Kruger, Daniel J; Kodjebacheva, Gergana D; Cupal, Suzanne

    2017-08-01

    After inadequate official response to community concerns over water quality following changes in Flint's municipal water supply, this study sought evidence for a relationship between water quality and community mental health. The Speak to Your Health Community Survey is a community-based participatory component of the health surveillance system in Genesee County, Michigan. This cross-sectional survey recruits participants from every residential Census Tract of the county and strives for demographic representativeness. Respondents (n=834) rated their tap water quality (taste, smell, appearance) as poor (36%), fair (18%), good (20%), very good (17%), and excellent (10%). They rated their sleep quality as poor (12%), fair (28%), good (39%), very good (18%), and excellent (4%), and had an average (SD) sleep length of 408(90) minutes. Controlling for age, sex, years of education, and whether respondents were African American and Hispanic/Latino/a, lower perceived tap water quality was associated with lower sleep quality and shorter sleep length. Results indicate that adverse health conditions related to the water crisis extend beyond lead poisoning in children and include deterioration of sleep conditions among adult residents. Copyright © 2017 National Sleep Foundation. Published by Elsevier Inc. All rights reserved.

  10. Identification of Trihalomethanes (THMs) Levels in Water Supply: A Case Study in Perlis, Malaysia

    NASA Astrophysics Data System (ADS)

    Jalil, Mohd Faizal Ab; Hamidin, Nasrul; Anas Nagoor Gunny, Ahmad; Nihla Kamarudzaman, Ain

    2018-03-01

    In Malaysia, chlorination is used for drinking water disinfection at water treatment plants due to its cost-effectiveness and efficiency. However, the use of chlorine poses potential health risks due to the formation of disinfection by-products such as trihalomethanes (THMs). THMs are formed due to the reaction between chlorine and some natural organic matter. The objective of the study is to analyze the level of THMs in the water supply in Perlis, Malaysia. The water samples were collected from end-user tap water near the water treatment plant (WTP) located in Perlis, including Timah Tasoh WTP, Kampung Sungai Baru WTP, Arau Phase I, II, III, and IV WTPs. The THMs were analyzed using a Gas Chromatography-Mass Spectrometry (GC/MS). The results showed that the water supply from Timah Tasoh WTP generates the most THMs, whereas Kuala Sungai Baru shows the fewest amounts of total THMs. In conclusion, the presence of THMs in tap water has caused great concern since these components can cause cancer in humans. Therefore, the identification of THM formation is crucial in order to make sure that the tap water quality remains at acceptable safety levels.

  11. Water Supply Interruptions and Suspected Cholera Incidence: A Time-Series Regression in the Democratic Republic of the Congo

    PubMed Central

    Jeandron, Aurélie; Saidi, Jaime Mufitini; Kapama, Alois; Burhole, Manu; Birembano, Freddy; Vandevelde, Thierry; Gasparrini, Antonio; Armstrong, Ben; Cairncross, Sandy; Ensink, Jeroen H. J.

    2015-01-01

    Background The eastern provinces of the Democratic Republic of the Congo have been identified as endemic areas for cholera transmission, and despite continuous control efforts, they continue to experience regular cholera outbreaks that occasionally spread to the rest of the country. In a region where access to improved water sources is particularly poor, the question of which improvements in water access should be prioritized to address cholera transmission remains unresolved. This study aimed at investigating the temporal association between water supply interruptions and Cholera Treatment Centre (CTC) admissions in a medium-sized town. Methods and Findings Time-series patterns of daily incidence of suspected cholera cases admitted to the Cholera Treatment Centre in Uvira in South Kivu Province between 2009 and 2014 were examined in relation to the daily variations in volume of water supplied by the town water treatment plant. Quasi-poisson regression and distributed lag nonlinear models up to 12 d were used, adjusting for daily precipitation rates, day of the week, and seasonal variations. A total of 5,745 patients over 5 y of age with acute watery diarrhoea symptoms were admitted to the CTC over the study period of 1,946 d. Following a day without tap water supply, the suspected cholera incidence rate increased on average by 155% over the next 12 d, corresponding to a rate ratio of 2.55 (95% CI: 1.54–4.24), compared to the incidence experienced after a day with optimal production (defined as the 95th percentile—4,794 m3). Suspected cholera cases attributable to a suboptimal tap water supply reached 23.2% of total admissions (95% CI 11.4%–33.2%). Although generally reporting less admissions to the CTC, neighbourhoods with a higher consumption of tap water were more affected by water supply interruptions, with a rate ratio of 3.71 (95% CI: 1.91–7.20) and an attributable fraction of cases of 31.4% (95% CI: 17.3%–42.5%). The analysis did not suggest any

  12. Perfluoroalkyl acids (PFAAs) in the Pra and Kakum River basins and associated tap water in Ghana.

    PubMed

    Essumang, David K; Eshun, Albert; Hogarh, Jonathan N; Bentum, John K; Adjei, Joseph K; Negishi, Junya; Nakamichi, Shihori; Habibullah-Al-Mamun, Md; Masunaga, Shigeki

    2017-02-01

    Perfluoroalkyl acids (PFAAs) are persistent environmental pollutants that have been detected in various media including human serum. Due to concerns regarding their bioaccumulation and possible negative health effects, an understanding of routes of human exposure is necessary. PFAAs are recalcitrant in many water treatment processes, making drinking water a potential source of human exposure. This study presents the first report on contamination from PFAAs in river and drinking water in Ghana. The targeted PFAAs were perfluoroalkyl carboxylic acids (PFCAs) with C 4-14 carbon chain and perfluoroalkane sulphonic acids (PFSAs) with C 6, 8, 10 . Five PFAA congeners - PFOA, PFOS, PFHxA, PFDA and PFPeA - were commonly detected in river and tap water. The mean concentrations of ∑PFAAs in the Kakum and Pra Rivers were 281 and 398ng/L, while tap water (supplied from the treatment of water from those rivers) contained concentrations of 197 and 200ng/L, respectively. PFOA and PFOS constituted about 99% of the ∑PFAAs. The risk quotient (RQ) attributed to drinking of tap water was estimated at 1.01 and 1.74 for PFOA and PFOS, respectively. For a country that has not produced these compounds, the RQs were unexpectedly high, raising concerns particularly about contamination from such emerging pollutants in local water sources. The study revealed limitations of local tap water treatment in getting rid of these emerging pollutants. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Influence of tap water quality and household water use activities on indoor air and internal dose levels of trihalomethanes.

    PubMed

    Nuckols, John R; Ashley, David L; Lyu, Christopher; Gordon, Sydney M; Hinckley, Alison F; Singer, Philip

    2005-07-01

    Individual exposure to trihalomethanes (THMs) in tap water can occur through ingestion, inhalation, or dermal exposure. Studies indicate that activities associated with inhaled or dermal exposure routes result in a greater increase in blood THM concentration than does ingestion. We measured blood and exhaled air concentrations of THM as biomarkers of exposure to participants conducting 14 common household water use activities, including ingestion of hot and cold tap water beverages, showering, clothes washing, hand washing, bathing, dish washing, and indirect shower exposure. We conducted our study at a single residence in each of two water utility service areas, one with relatively high and the other low total THM in the residence tap water. To maintain a consistent exposure environment for seven participants, we controlled water use activities, exposure time, air exchange, water flow and temperature, and nonstudy THM sources to the indoor air. We collected reference samples for water supply and air (pre-water use activity), as well as tap water and ambient air samples. We collected blood samples before and after each activity and exhaled breath samples at baseline and post-activity. All hot water use activities yielded a 2-fold increase in blood or breath THM concentrations for at least one individual. The greatest observed increase in blood and exhaled breath THM concentration in any participant was due to showering (direct and indirect), bathing, and hand dishwashing. Average increase in blood THM concentration ranged from 57 to 358 pg/mL due to these activities. More research is needed to determine whether acute and frequent exposures to THM at these concentrations have public health implications. Further research is also needed in designing epidemiologic studies that minimize data collection burden yet maximize accuracy in classification of dermal and inhalation THM exposure during hot water use activities.

  14. Influence of Tap Water Quality and Household Water Use Activities on Indoor Air and Internal Dose Levels of Trihalomethanes

    PubMed Central

    Nuckols, John R.; Ashley, David L.; Lyu, Christopher; Gordon, Sydney M.; Hinckley, Alison F.; Singer, Philip

    2005-01-01

    Individual exposure to trihalomethanes (THMs) in tap water can occur through ingestion, inhalation, or dermal exposure. Studies indicate that activities associated with inhaled or dermal exposure routes result in a greater increase in blood THM concentration than does ingestion. We measured blood and exhaled air concentrations of THM as biomarkers of exposure to participants conducting 14 common household water use activities, including ingestion of hot and cold tap water beverages, showering, clothes washing, hand washing, bathing, dish washing, and indirect shower exposure. We conducted our study at a single residence in each of two water utility service areas, one with relatively high and the other low total THM in the residence tap water. To maintain a consistent exposure environment for seven participants, we controlled water use activities, exposure time, air exchange, water flow and temperature, and nonstudy THM sources to the indoor air. We collected reference samples for water supply and air (pre–water use activity), as well as tap water and ambient air samples. We collected blood samples before and after each activity and exhaled breath samples at baseline and postactivity. All hot water use activities yielded a 2-fold increase in blood or breath THM concentrations for at least one individual. The greatest observed increase in blood and exhaled breath THM concentration in any participant was due to showering (direct and indirect), bathing, and hand dishwashing. Average increase in blood THM concentration ranged from 57 to 358 pg/mL due to these activities. More research is needed to determine whether acute and frequent exposures to THM at these concentrations have public health implications. Further research is also needed in designing epidemiologic studies that minimize data collection burden yet maximize accuracy in classification of dermal and inhalation THM exposure during hot water use activities. PMID:16002374

  15. The First Association of a Primary Amebic Meningoencephalitis Death with Culturable Naegleria fowleri in Tap Water from a U.S. Treated Public Drinking Water System

    PubMed Central

    Cope, Jennifer R.; Ratard, Raoult C.; Hill, Vincent R.; Sokol, Theresa; Causey, Jonathan Jake; Yoder, Jonathan S.; Mirani, Gayatri; Mull, Bonnie; Mukerjee, Kimberly A.; Narayanan, Jothikumar; Doucet, Meggie; Qvarnstrom, Yvonne; Poole, Charla N.; Akingbola, Olugbenga A.; Ritter, Jana; Xiong, Zhenggang; da Silva, Alexandre; Roellig, Dawn; Van Dyke, Russell; Stern, Harlan; Xiao, Lihua; Beach, Michael J.

    2015-01-01

    Background Naegleria fowleri is a climate-sensitive, thermophilic ameba found in warm, freshwater lakes and rivers. Primary amebic meningoencephalitis (PAM), which is almost universally fatal, occurs when N. fowleri–containing water enters the nose, typically during swimming, and N. fowleri migrates to the brain via the olfactory nerve. In August 2013, a 4-year-old child died of meningoencephalitis of unknown etiology in a Louisiana hospital. Methods Clinical and environmental testing and a case investigation were initiated to determine the cause of death and to identify potential exposures. Results Based on testing of CSF and brain specimens, the child was diagnosed with PAM. His only reported water exposure was tap water; in particular, tap water that was used to supply water to a lawn water slide on which the child had played extensively prior to becoming ill. Water samples were collected from both the home and the water distribution system that supplied the home and tested; N. fowleri were identified in water samples from both the home and the water distribution system. Conclusions This case is the first reported PAM death associated with culturable N. fowleri in tap water from a U.S. treated drinking water system. This case occurred in the context of an expanding geographic range for PAM beyond southern tier states with recent case reports from Minnesota, Kansas, and Indiana. This case also highlights the role of adequate disinfection throughout drinking water distribution systems and the importance of maintaining vigilance when operating drinking water systems using source waters with elevated temperatures. PMID:25595746

  16. Divergence of stable isotopes in tap water across China

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, Sihan; Hu, Hongchang; Tian, Fuqiang

    Stable isotopes in water (e.g., δ2H and δ18O) are important indicators of hydrological and ecological patterns and processes. Tap water can reflect integrated features of regional hydrological processes and human activities. China is a large country with significant meteorological and geographical variations. This report presents the first national-scale survey of Stable Isotopes in Tap Water (SITW) across China. 780 tap water samples have been collected from 95 cities across China from December 2014 to December 2015. (1) Results yielded the Tap Water Line in China is δ2H = 7.72 δ18O + 6.57 (r2 = 0.95). (2) SITW spatial distribution presentsmore » typical "continental effect". (3) SITW seasonal variations indicate clearly regional patterns but no trends at the national level. (4) SITW can be correlated in some parts with geographic or meteorological factors. This work presents the first SITW map in China, which sets up a benchmark for further stable isotopes research across China. This is a critical step toward monitoring and investigating water resources in climate-sensitive regions, so the human-hydrological system. These findings could be used in the future to establish water management strategies at a national or regional scale. Title: Divergence of stable isotopes in tap water across China Authors: Zhao, SH; Hu, HC; Tian, FQ; Tie, Q; Wang, LX; Liu, YL; Shi, CX Source: SCIENTIFIC REPORTS, 7 10.1038/srep43653 MAR 2 2017« less

  17. Quality comparison of tap water vs. bottled water in the industrial city of Yanbu (Saudi Arabia).

    PubMed

    Ahmad, Maqbool; Bajahlan, Ahmad S

    2009-12-01

    This study was conducted to compare the quality of bottled water with potabilized desalinated tap water. Fourteen brands of local and imported bottled water samples were collected from the local market and analyzed for physicochemical parameters in the Royal Commission Environmental Laboratory. Results were compared with 5-year continuous monitoring data of tap water from different locations in Madinat Yanbu Al-Sinaiyah (MYAS) including storage tanks of desalination plant. Results show that there was no significant difference in the quality of tap water and bottled water. Bacteriological test was never found positive in the 5-year data in tap water. Similarly, physicochemical analysis shows the persistent quality of tap water. Based on hardness analysis, bottled and tap water are categorized as soft water. Trihalomethanes (THMs) study also indicates that traces of disinfection by products (DBPs) are present in both tap and bottled water and are much less than the World Health Organization and Environmental Protection Agency maximum permissible limits. It is also important to note that the tap water distribution network in MAYS is a high-pressure recirculation network and there is no chance to grow bacteria in stagnant water in pipe lines or houses. Recently, the Royal Commission has replaced the whole drinking water network, which was made of asbestos-cemented pipes with glass-reinforced plastic (GRP) pipes, to avoid any asbestos contaminations. Based on these results, it is concluded that drinking water distributed in the city is of very good and persistent quality, comparable with bottled water. Continuous monitoring also guarantees the safe drinking water to the community. Hence, it is the responsibility of the Royal Commission to encourage the peoples in the city to drink tap water as it is as good as bottled water even better than some of the brands and is monitored regularly. It is also much cheaper compared to bottled water and is available round the clock

  18. Lithium levels in tap water and psychotic experiences in a general population of adolescents.

    PubMed

    Shimodera, Shinji; Koike, Shinsuke; Ando, Shuntaro; Yamasaki, Syudo; Fujito, Ryosuke; Endo, Kaori; Iijima, Yudai; Yamamoto, Yu; Morita, Masaya; Sawada, Ken; Ohara, Nobuki; Okazaki, Yuji; Nishida, Atsushi

    2018-06-09

    Recently, several epidemiologic studies have reported that lithium in drinking water may be associated with lower rates of suicide mortality, lower incidence of dementia, and lower levels of adolescents' depression and aggression at the population level. However, to our knowledge, no study has investigated lithium level in tap water in relation to psychotic experiences in a general population of adolescents. This is the first study to investigate this using a large dataset. Information on psychotic experiences, distress associated with these experiences, and depressive symptoms were collected in 24 public junior high schools in Kochi Prefecture in Japan. Samples were collected from sources that supplied drinking water to schools, and lithium levels were measured using atomic absorption spectrophotometry. The association of lithium levels with psychotic experiences, considering distress as a degree of severity, was examined using an ordinal logistic regression model with schools and depressive symptoms as random effects. In total, 3040 students responded to the self-reporting questionnaire (response rate: 91.8%). Lithium levels in tap water were inversely associated with psychotic experiences (p = 0.021). We concluded that lithium level in tap water was inversely associated with psychotic experiences among a general population of adolescents and may have a preventive effect for such experiences and distress. Copyright © 2018 Elsevier B.V. All rights reserved.

  19. Spatial, seasonal, and source variability in the stable oxygen and hydrogen isotopic composition of tap waters throughout the USA

    USGS Publications Warehouse

    Landwehr, Jurate M.; Coplen, Tyler B.; Stewart, David W.

    2013-01-01

    To assess spatial, seasonal, and source variability in stable isotopic composition of human drinking waters throughout the entire USA, we have constructed a database of δ18O and δ2H of US tap waters. An additional purpose was to create a publicly available dataset useful for evaluating the forensic applicability of these isotopes for human tissue source geolocation. Samples were obtained at 349 sites, from diverse population centres, grouped by surface hydrologic units for regional comparisons. Samples were taken concurrently during two contrasting seasons, summer and winter. Source supply (surface, groundwater, mixed, and cistern) and system (public and private) types were noted. The isotopic composition of tap waters exhibits large spatial and regional variation within each season as well as significant at-site differences between seasons at many locations, consistent with patterns found in environmental (river and precipitation) waters deriving from hydrologic processes influenced by geographic factors. However, anthropogenic factors, such as the population of a tap’s surrounding community and local availability from diverse sources, also influence the isotopic composition of tap waters. Even within a locale as small as a single metropolitan area, tap waters with greatly differing isotopic compositions can be found, so that tap water within a region may not exhibit the spatial or temporal coherence predicted for environmental water. Such heterogeneities can be confounding factors when attempting forensic inference of source water location, and they underscore the necessity of measurements, not just predictions, with which to characterize the isotopic composition of regional tap waters. Published 2013. This article is a U.S. Government work and is in the public domain in the USA.

  20. Bottled, filtered, and tap water use in Latino and non-Latino children.

    PubMed

    Hobson, Wendy L; Knochel, Miguel L; Byington, Carrie L; Young, Paul C; Hoff, Charles J; Buchi, Karen F

    2007-05-01

    To describe bottled, filtered, and tap water consumption and fluoride use among pediatric patients; to analyze differences between ethnic and socioeconomic groups; and to describe the frequency of physician-parent discussions regarding water consumption. Convenience sample survey. An urban public health clinic. Parents attending a public health clinic. The primary outcome measure was the prevalence of tap, filtered, and bottled water use. The secondary outcome measures were supplemental fluoride use and the percentage of patients reporting discussions of water consumption with their physician. A total of 216 parents (80.5% Latino and 19.5% non-Latino) completed the survey. Of the parents, 30.1% never drank tap water and 41.2% never gave it to their children. Latino parents were less likely than non-Latino parents to drink tap water (odds ratio, 0.26; 95% confidence interval, 0.10-0.67) and less likely to give tap water to their children (odds ratio, 0.32; 95% confidence interval, 0.15-0.70). More Latinos believed that tap water would make them sick (odds ratio, 5.63; 95% confidence interval, 2.17-14.54). Approximately 40% of children who never drank tap water were not receiving fluoride supplements. Of the lowest-income families (water to their children. Of the parents surveyed, 82.5% reported that their child's physician had never discussed the type of water they should use. Many Latino families avoid drinking tap water because they fear it causes illness. Unnecessary use of bottled and filtered water is costly and may result in adverse dental health outcomes. Physicians should provide guidance to families regarding the safety, low cost, and dental health benefits of drinking tap water.

  1. Neural Tube Defects In Mice Exposed To Tap Water

    PubMed Central

    Mallela, Murali K; Werre, Stephen R; Hrubec, Terry C

    2010-01-01

    In May of 2006 we suddenly began to observe neural tube defects (NTDs) in embryos of untreated control mice. We hypothesized the mice were being exposed unknowingly to a teratogenic agent and investigated the cause. Our results suggested that NTDs were not resulting from bedding material, feed, strain or source of the mice. Additionally, mice were negative for routine and comprehensive screens of pathogens. To further test whether the NTDs resulted from infectious or genetic cause localized to our facility, we obtained three strains of timed pregnant mice from commercial suppliers located in 4 different states. All strains and sources of mice arrived in our laboratory with NTDs, implying that commercially available mice were possibly exposed to a teratogen prior to purchase. Our investigation eventually concluded that exposure to tap water was causing the NTDs. The incidence of NTDs was greatest in purchased mice provided tap water and lowest in purchased mice provided distilled deionized water (DDI). Providing mice DDI water for two generations (F2-DDI) eliminated the NTDs. When F2-DDI mice were provided tap water from three different urban areas prior to breeding, their offspring again developed NTDs. Increased length of exposure to tap water significantly increased the incidence of NTDs. These results indicate that a contaminant in municipal tap water is likely causing NTDs in mice. The unknown teratogen appears to have a wide geographic distribution but has not yet been identified. Water analysis is currently underway to identify candidate contaminants that might be responsible for the malformations. PMID:20549630

  2. Risk perceptions of arsenic in tap water and consumption of bottled water

    NASA Astrophysics Data System (ADS)

    Jakus, Paul M.; Shaw, W. Douglass; Nguyen, To N.; Walker, Mark

    2009-05-01

    The demand for bottled water has increased rapidly over the past decade, but bottled water is extremely costly compared to tap water. The convenience of bottled water surely matters to consumers, but are others factors at work? This manuscript examines whether purchases of bottled water are associated with the perceived risk of tap water. All of the past studies on bottled water consumption have used simple scale measures of perceived risk that do not correspond to risk measures used by risk analysts. We elicit a probability-based measure of risk and find that as perceived risks rise, expenditures for bottled water rise.

  3. Disparity in disinfection byproducts concentration between hot and cold tap water.

    PubMed

    Liu, Boning; Reckhow, David A

    2015-03-01

    The quality of water entering a distribution system may differ substantially from the quality at the point of exposure to the consumer. This study investigated temporal variations in the levels of regulated and non-regulated disinfection byproducts (DBPs) in cold and hot tap water in a home on a medium-sized municipal water system. In addition, samples were collected directly from the water plant with some being held in accordance with a simulated distribution system (SDS) test protocol. The location for this work was a system in western Massachusetts, USA that uses free chlorine as a final disinfectant. Very little short term variability of DBPs at the point of entry (POE) was observed. The concentration of DBPs in the time-variable SDS test was similar to concentrations in the cold water tap. For most DBPs, the concentrations continued to increase as the cold water tap sample was held for the time-variable SDS incubation period. However, the impact of heating on DBP levels was compound specific. For example, the concentrations of trihalomethanes (THMs), dichloroacetic acid (DCAA) and chloropicrin (CP) were substantially higher in the hot water tap than in the cold water time-variable SDS samples. In contrast, the concentration of trichloroacetic acid (TCAA) was lower in the heated hot tap water, but about equal to that observed in the cold tap water. The situation was more pronounced for dichloroacetonitrile (DCAN), bromodichloroacetic acid (BDCAA), bromochloroacetic acid (BCAA) and 1,1,1-trichloropropanone (TCP), which all showed lower concentrations in the hot water then in either of the cold water samples (instantaneous or time-variable SDS). The latter was viewed as a clear indication of thermally-induced decomposition. The ratio of unknown total organic halide (UTOX) to TOX was substantially lower in the hot tap water as the THM to TOX ratio became correspondingly larger. The results of this study show that DBP exposure in the home is not well represented by

  4. The first association of a primary amebic meningoencephalitis death with culturable Naegleria fowleri in tap water from a US treated public drinking water system.

    PubMed

    Cope, Jennifer R; Ratard, Raoult C; Hill, Vincent R; Sokol, Theresa; Causey, Jonathan Jake; Yoder, Jonathan S; Mirani, Gayatri; Mull, Bonnie; Mukerjee, Kimberly A; Narayanan, Jothikumar; Doucet, Meggie; Qvarnstrom, Yvonne; Poole, Charla N; Akingbola, Olugbenga A; Ritter, Jana M; Xiong, Zhenggang; da Silva, Alexandre J; Roellig, Dawn; Van Dyke, Russell B; Stern, Harlan; Xiao, Lihua; Beach, Michael J

    2015-04-15

    Naegleria fowleri is a climate-sensitive, thermophilic ameba found in warm, freshwater lakes and rivers. Primary amebic meningoencephalitis (PAM), which is almost universally fatal, occurs when N. fowleri-containing water enters the nose, typically during swimming, and migrates to the brain via the olfactory nerve. In August 2013, a 4-year-old boy died of meningoencephalitis of unknown etiology in a Louisiana hospital. Clinical and environmental testing and a case investigation were initiated to determine the cause of death and to identify potential exposures. Based on testing of cerebrospinal fluid and brain specimens, the child was diagnosed with PAM. His only reported water exposure was tap water; in particular, tap water that was used to supply water to a lawn water slide on which the child had played extensively prior to becoming ill. Water samples were collected from both the home and the water distribution system that supplied the home and tested; N. fowleri was identified in water samples from both the home and the water distribution system. This case is the first reported PAM death associated with culturable N. fowleri in tap water from a US treated drinking water system. This case occurred in the context of an expanding geographic range for PAM beyond southern states, with recent case reports from Minnesota, Kansas, and Indiana. This case also highlights the role of adequate disinfection throughout drinking water distribution systems and the importance of maintaining vigilance when operating drinking water systems using source waters with elevated temperatures. Published by Oxford University Press on behalf of the Infectious Diseases Society of America 2015. This work is written by (a) US Government employee(s) and is in the public domain in the US.

  5. Proposed water-supply investigations in Sidamo Province, Ethiopia

    USGS Publications Warehouse

    Phoenix, David A.

    1966-01-01

    The present report describes the results of an air and ground hydrologic reconnaissance of some 32,000 square kilometers in Sidamo Province of southern Ethiopia. Existing (1966) water resources developments, chiefly for livestock and village supplies, include surface reservoirs, a few drilled wells, several clusters of dug wells in the Mega area, several scattered springs, and the perennial Dawa Parma River. Surface-water reservoirs range from hand-dug ponds of a few hundred cubic meters capacity to large machine-constructed excavations built to hold 62,000 cubic meters of water. All the existing drilled wells tap saturated alluvium at depths of less than 120 meters. The dug wells tap water-bearing zones in tuffaceous lacustrine deposits or stream-channel alluvium generally at depths of less than 30 meters. The springs mostly rise from fractured Precambrian quartzite and individual discharges are all less than 75 liters per minute. The report also outlines the terms of reference for a longer term water-resources investigation of the region including staffing, housing and equipment requirements and other logistic support.

  6. Perceptions of tap water and school water fountains and association with intake of plain water and sugar-sweetened beverages.

    PubMed

    Onufrak, Stephen J; Park, Sohyun; Sharkey, Joseph R; Merlo, Caitlin; Dean, Wesley R; Sherry, Bettylou

    2014-03-01

    Little is known regarding youth perceptions of tap water and school water fountains and how these relate to water and sugar-sweetened beverage (SSB) intake. We used national 2010 YouthStyles data to assess perceptions of tap water and school water fountains and associations with water and SSB intake. Nearly 1 in 5 participants disagreed their tap water was safe and nearly 2 in 5 disagreed school water fountains were clean and safe. Perceived tap water risk was more prevalent among non-Hispanic (NH) Blacks (26.4%) and Hispanics (28.3%) compared with NH Whites (14.7%, p < .001) and more prevalent among lower-income youth. Negative water fountain perceptions were more common among high school-aged youth. Perceived tap water risk was not associated with SSB intake (odds ratio [OR] = 1.0, 95% confidence interval [CI]: 0.6, 1.5) or water intake (OR = 1.4, 95% CI: 0.9, 2.1). Negative water fountain perceptions were associated with SSB intake only among Hispanics (race/ethnicity interaction p < .001; OR = 2.9, 95% CI: 1.3, 6.6) but were not associated with water intake. Negative perceptions of tap water and water fountains among youth are common and should be considered in efforts to provide water in schools. Published 2014. This article is a U.S. Government work and is in the public domain in the USA.

  7. Quantitative risk assessment of Cryptosporidium in tap water in Ireland.

    PubMed

    Cummins, E; Kennedy, R; Cormican, M

    2010-01-15

    Cryptosporidium species are protozoan parasites associated with gastro-intestinal illness. Following a number of high profile outbreaks worldwide, it has emerged as a parasite of major public health concern. A quantitative Monte Carlo simulation model was developed to evaluate the annual risk of infection from Cryptosporidium in tap water in Ireland. The assessment considers the potential initial contamination levels in raw water, oocyst removal and decontamination events following various process stages, including coagulation/flocculation, sedimentation, filtration and disinfection. A number of scenarios were analysed to represent potential risks from public water supplies, group water schemes and private wells. Where surface water is used additional physical and chemical water treatment is important in terms of reducing the risk to consumers. The simulated annual risk of illness for immunocompetent individuals was below 1 x 10(-4) per year (as set by the US EPA) except under extreme contamination events. The risk for immunocompromised individuals was 2-3 orders of magnitude greater for the scenarios analysed. The model indicates a reduced risk of infection from tap water that has undergone microfiltration, as this treatment is more robust in the event of high contamination loads. The sensitivity analysis highlighted the importance of watershed protection and the importance of adequate coagulation/flocculation in conventional treatment. The frequency of failure of the treatment process is the most important parameter influencing human risk in conventional treatment. The model developed in this study may be useful for local authorities, government agencies and other stakeholders to evaluate the likely risk of infection given some basic input data on source water and treatment processes used. Copyright 2009 Elsevier B.V. All rights reserved.

  8. Tap water isotopes reveal the San Francisco Bay Area's plumbing and responses to a major drought

    NASA Astrophysics Data System (ADS)

    Tipple, B. J.; Jameel, M. Y.; Chau, T. H.; Mancuso, C. J.; Bowen, G. J.; Dufour, A.; Chesson, L. A.; Ehleringer, J. R.

    2016-12-01

    Water availability and sustainability in the Western United States is a major flashpoint among expanding communities, growing industries, and productive agricultural lands. This issue came to a head in 2015 in the State of California, when the State mandated a 25% reduction in urban water use following a multi-year drought that significantly depleted water resources. The demands for and challenges in supplying water are only expected to intensify as climate perturbations, such as the 2012-2015 California Drought, become more common. As a consequence, there is an increased need to understand linkages between population centers, water transport and usage, and the impacts of climate change on water resources and infrastructure. To better understand these relationships within a megalopolis in the Western United States, we collected and analyzed 723 tap waters from the San Francisco Bay Area during seven collection campaigns across 21 months during 2013-2015. San Francisco Bay Area was selected as it has well-known water management strategies and its water resources were dramatically affected by the 2012-2105 drought. Consistent with known water management strategies and previous reports of tap water isotope values, we found large spatiotemporal variations in the δ2H and δ18O values of tap waters, indicative of complex water transport systems and municipality-scale management decisions. We observed δ2H and δ18O values of tap water consistent with waters originating from snowmelt from the Sierra Nevada Mountains, local precipitation, ground water, and partially evaporated reservoir sources. A cluster analysis of measured tap water data grouped waters from 43 static sampling sites that were associated with specific water utility providers within the San Francisco Bay Area and known management practices. Water management responses to the drought, such as source switching, bringing in new sources, and conservation, could be observed within the isotope data from each of

  9. Sociodemographic Characteristics and Beverage Intake of Children Who Drink Tap Water

    PubMed Central

    Patel, Anisha I.; Shapiro, Daniel J.; Wang, Y. Claire; Cabana, Michael D.

    2015-01-01

    Background Tap water provides a calorie-free, no-cost, environmentally friendly beverage option, yet only some youth drink it. Purpose To examine sociodemographic characteristics, weight status, and beverage intake of those aged 1–19 years who drink tap water. Methods National Health and Nutrition Examination Survey data (2005–2010) were used to examine factors associated with tap water consumption. A comparison was made of beverage intake among tap water consumers and nonconsumers, by age, race/ethnicity, and income. Results Tap water consumption was more prevalent among school-aged children (OR=1.85, 95% CI=1.47, 2.33, for those aged 6–11 years; OR=1.85, 95% CI=1.32, 2.59, for those aged 12–19 years) as compared to those aged 1–2 years. Tap water intake was less prevalent among girls/women (OR=0.76, 95% CI=0.64, 0.89); Mexican Americans (OR=0.32, 95% CI=0.23, 0.45); non-Hispanic blacks (OR=0.48, 95% CI=0.34, 0.67); and others (OR=0.50, 95% CI=0.36, 0.68) as compared to whites; Spanish speakers (OR=0.72, 95% CI=0.55, 0.95); and among referents with a lower than Grade-9 education (OR=0.52, 95% CI=0.31, 0.88); Grade 9–11 education (OR=0.50, 95% CI=0.32, 0.77); and high school/General Educational Development test completion (OR=0.50, 95% CI=0.33, 0.76), as compared to college graduates. Tap water consumers drank more fluid (52.5 vs 48.0 ounces, p<0.01); more plain water (20.1 vs 15.2 ounces, p<0.01); and less juice (3.6 vs 5.2 ounces, p<0.01) than nonconsumers. Conclusions One in six children/adolescents does not drink tap water, and this finding is more pronounced among minorities. Sociodemographic disparities in tap water consumption may contribute to disparities in health outcomes. Improvements in drinking water infrastructure and culturally relevant promotion may help to address these issues. PMID:23790991

  10. Variability in the chemistry of private drinking water supplies and the impact of domestic treatment systems on water quality.

    PubMed

    Ander, E L; Watts, M J; Smedley, P L; Hamilton, E M; Close, R; Crabbe, H; Fletcher, T; Rimell, A; Studden, M; Leonardi, G

    2016-12-01

    Tap water from 497 properties using private water supplies, in an area of metalliferous and arsenic mineralisation (Cornwall, UK), was measured to assess the extent of compliance with chemical drinking water quality standards, and how this is influenced by householder water treatment decisions. The proportion of analyses exceeding water quality standards were high, with 65 % of tap water samples exceeding one or more chemical standards. The highest exceedances for health-based standards were nitrate (11 %) and arsenic (5 %). Arsenic had a maximum observed concentration of 440 µg/L. Exceedances were also high for pH (47 %), manganese (12 %) and aluminium (7 %), for which standards are set primarily on aesthetic grounds. However, the highest observed concentrations of manganese and aluminium also exceeded relevant health-based guidelines. Significant reductions in concentrations of aluminium, cadmium, copper, lead and/or nickel were found in tap waters where households were successfully treating low-pH groundwaters, and similar adventitious results were found for arsenic and nickel where treatment was installed for iron and/or manganese removal, and successful treatment specifically to decrease tap water arsenic concentrations was observed at two properties where it was installed. However, 31 % of samples where pH treatment was reported had pH < 6.5 (the minimum value in the drinking water regulations), suggesting widespread problems with system maintenance. Other examples of ineffectual treatment are seen in failed responses post-treatment, including for nitrate. This demonstrates that even where the tap waters are considered to be treated, they may still fail one or more drinking water quality standards. We find that the degree of drinking water standard exceedances warrant further work to understand environmental controls and the location of high concentrations. We also found that residents were more willing to accept drinking water with high metal

  11. Influence of secondary water supply systems on microbial community structure and opportunistic pathogen gene markers.

    PubMed

    Li, Huan; Li, Shang; Tang, Wei; Yang, Yang; Zhao, Jianfu; Xia, Siqing; Zhang, Weixian; Wang, Hong

    2018-06-01

    Secondary water supply systems (SWSSs) refer to the in-building infrastructures (e.g., water storage tanks) used to supply water pressure beyond the main distribution systems. The purpose of this study was to investigate the influence of SWSSs on microbial community structure and the occurrence of opportunistic pathogens, the latter of which are an emerging public health concern. Higher numbers of bacterial 16S rRNA genes, Legionella and mycobacterial gene markers were found in public building taps served by SWSSs relative to the mains, regardless of the flushing practice (P < 0.05). In residential buildings, genes of L. pneumomhila, Acanthamoeba and Vermamoeba vermiformis were primarily detected in tanks and taps compared to the mains. Long water retention time, warm temperature and loss of disinfectant residuals promoted microbial growth and colonization of potential pathogens in SWSSs. Varied levels of microbial community shifts were found in different types of SWSSs during water transportation from the distribution main to taps, highlighting the critical role of SWSSs in shaping the drinking water microbiota. Overall, the results provided insight to factors that might aid in controlling pathogen proliferation in real-world water systems using SWSSs. Copyright © 2018 Elsevier Ltd. All rights reserved.

  12. Analysis of UV filters in tap water and other clean waters in Spain.

    PubMed

    Díaz-Cruz, M Silvia; Gago-Ferrero, Pablo; Llorca, Marta; Barceló, Damià

    2012-03-01

    The present paper describes the development of a method for the simultaneous determination of five hormonally active UV filters namely benzophenone-3 (BP3), 3-(4-methylbenzylidene) camphor (4MBC), 2-ethylhexyl 4-(dimethylamino) benzoate (OD-PABA), 2-ethylhexyl 4-methoxycinnamate (EHMC) and octocrylene (OC) by means of solid-phase extraction and gas chromatography-electron impact ionization-mass spectrometry. Under optimized conditions, this methodology achieved low method limits of detection (needed for clean waters, especially drinking water analysis), between 0.02 and 8.42 ng/L, and quantitative recovery rates higher than 73% in all cases. Inter- and intraday precision for all compounds were lower than 7% and 11%, respectively. The optimized methodology was applied to perform the first survey of UV absorbing compounds in tap water from the metropolitan area and the city of Barcelona (Catalonia, Spain). In addition, other types of clean water matrices (mineral bottled water, well water and tap water treated with an ion-exchange resin) were investigated as well. Results evidenced that all the UV filters investigated were detected in the water samples analyzed. The compounds most frequently found were EHMC and OC. Maximum concentrations reached in tap water were 290 (BP3), 35 (4MBC), 110 (OD-PABA), 260 (EHMC), and 170 ng/L (OC). This study constitutes the first evidence of the presence of UV filter residues in tap water in Europe.

  13. The mineral content of tap water in United States households

    USDA-ARS?s Scientific Manuscript database

    The composition of tap water contributes to dietary intake of minerals. The USDA’s Nutrient Data Laboratory (NDL) conducted a study of the mineral content of residential tap water, to generate current data for the USDA National Nutrient Database. Sodium, potassium, calcium, magnesium, iron, copper...

  14. Oropharyngeal Tularemia Outbreak Associated with Drinking Contaminated Tap Water, Turkey, July-September 2013.

    PubMed

    Aktas, Dilber; Celebi, Bekir; Isik, Mehmet Emirhan; Tutus, Celal; Ozturk, Huseyin; Temel, Fehminaz; Kizilaslan, Mecit; Zhu, Bao-Ping

    2015-12-01

    In 2013, an oropharyngeal tularemia outbreak in Turkey affected 55 persons. Drinking tap water during the likely exposure period was significantly associated with illness (attack rate 27% vs. 11% among non-tap water drinkers). Findings showed the tap water source had been contaminated by surface water, and the chlorination device malfunctioned.

  15. [Surveillance of drinking water supply systems on markets and in vehicles].

    PubMed

    Rädel, U; Puchert, W; Suchenwirth, R

    2007-03-01

    The new German Drinking Water Ordinance (TrinkwV 2001) demands that the requirements of water intended for human consumption be met up to the intrinsic tap, at which the water is used. This also applies to water supply systems for food trade aboard non-stationary facilities and in vehicles for commercial purposes. In contrast to stationary units for drinking water supply, the nonstationary units relocate and the responsibility changes with each public health authority agent. Therefore, a coordinated action between the federal states is desirable and necessary. The experience of the public health departments presents many non-compliant parameters of microbiology in water supply systems on markets and in vehicles. The development of practical and consistent recommendations for the surveillance of non-stationary units is required to give consistent standards to the users. The article gives a review about legal foundations and technical rules in order to define the drinking water supply systems on markets and in vehicles in compliance with the German Drinking Water Ordinance. Examples of laboratory results from different monitoring episodes from three federal states are shown.

  16. Perceptions of Tap Water and School Water Fountains among Youth and Association with Intake of Plain Water and Sugar-Sweetened Beverages

    PubMed Central

    Onufrak, Stephen J; Park, Sohyun; Sharkey, Joseph R; Merlo, Caitlin; Dean, Wesley R.; Sherry, Bettylou

    2015-01-01

    BACKGROUND Little is known regarding youth perceptions of tap water and school water fountains and how these relate to water and sugar-sweetened beverage (SSB) intake. METHODS We used national 2010 YouthStyles data to assess perceptions of tap water and school water fountains and associations with water and SSB intake. RESULTS Nearly 1 in 5 participants disagreed their tap water was safe and nearly 2 in 5 disagreed school water fountains were clean and safe. Perceived tap water risk was more prevalent among non-Hispanic (NH) blacks (26.4%) and Hispanics (28.3%) compared to NH whites (14.7%, p < .001) and more prevalent among lower income youth. Negative water fountain perceptions were more common among high school age youth. Perceived tap water risk was not associated with SSB intake (odds ratio (OR) = 1.0, 95% CI: 0.6, 1.5) or water intake (OR = 1.4, 95% CI: 0.9, 2.1). Negative water fountain perceptions were associated with SSB intake only among Hispanics (race/ethnicity interaction p < .001; OR = 2.9, 95% CI: 1.3, 6.6) but were not associated with water intake. CONCLUSION Negative perceptions of tap water and water fountains among youth are common and should be considered in efforts to provide water in schools. PMID:24443781

  17. [Investigation of a norovirus outbreak through contaminated centralized water supply system].

    PubMed

    Zheng, Hui-Zhen; Guo, Ru-Ning; Li, Jian-Sen; Zhang, Zheng-Min; Li, Hui

    2009-07-01

    To investigate the etiology and source of an infectious diarrhea outbreak and control the epidemic. Through the retrospective cohort study, we had surveyed all the residents who complained symptoms of diarrhea or vomiting since Nov. 20th,2007 from the five villages in the north of town Y, and collected hygiene information on the water supply system of the five villages, the environment information of three villages and hygiene information of some case-indexed families, and tested the etiological biomarker, including nucleoside acid of norovirus through Real-time PCR and nested PCR technologies. From Nov. 24th to Dec. 3th in 2007, 435 diarrhea or vomiting cases were found in the north of Y town, where tap water A was supplied for daily use. The attack rate was 12.93%. The diarrhea cases were distributed among all country groups who has used tap water A and the attack rate was ranged from 5.21% (20/384) to 21.23% (100/471). Drinking the tap water A was significantly associated with an increased risk of infection (RR = 9.246, 95% CI: 6.25 -13.68). About 85.9% (262/ 305) of the cases were from Nov. 25th to 27th. An investigation of a country of S2 group showed that the incidence of different age groups was distributed as the following: 0 - year-old 20.0% (3/15); 10 - year-old 17.3% (9/52); 20 - year-old 15.2% (16/105); older than 60 year-old 23.3% (7/30). No statistical significance was identified between age and infection(chi2 = 1.15, P >0.05). Most of the patients were not serious and well prognostic, and no hospitalized or dead cases were reported. On site investigation and daily water quality monitoring showed that disinfection procedures were not strictly followed. The monitoring data also indicated the bacteriology index of tap water A was disqualified. The test of Salmonella, Shigella and Staphylococcus aureus were negative in two vomit and one stool samples from patients. Three specimens by Real-time PCR, and six by nested PCR were positive for norovirus among

  18. Norovirus contamination of a drinking water supply at a hotel resort.

    PubMed

    Jack, Susan; Bell, Derek; Hewitt, Joanne

    2013-12-13

    To investigate a waterborne gastroenteritis outbreak and consider wider environmental contamination concerns. An acute gastroenteritis outbreak was investigated through interviews, analysis of faecal samples, drinking water and environmental water samples. A total of 53 cases reported an illness of acute gastroenteritis following stays and/or dining at a hotel or neighbouring resort in southern New Zealand over a 1-month period in early spring 2012. The consumption of table or tap water was strongly associated with the illness. Faecal samples were positive for norovirus (NoV) genogroup I and II (GI and GII). Drinking tap water samples were positive for NoV GI and GII but negative for Escherichia coli (E. coli). Wider environmental water testing at local drinking water sources, around the sewage disposal field and at the nearby river showed the presence of NoV GI and GII. Voluntary boil water notices were issued and implemented with no further cases following this action. Additional treatment of drinking water supplies has been implemented and sewerage disposal concerns referred to local government. Investigation of this gastroenteritis outbreak revealed contamination of both drinking water and the wider environment with NoV. Bacterial indicators do not adequately cover contamination by viruses but due to costs, frequent virus monitoring programmes are currently impractical. A strategy to decrease environmental contamination of drinking water supplies in this busy tourist location through improved management of sewage disposal and drinking water is urgently required.

  19. The Relationship of Perceptions of Tap Water Safety with Intake of Sugar Sweetened Beverages and Plain Water among U.S. Adults

    PubMed Central

    Onufrak, Stephen J; Park, Sohyun; Sharkey, Joseph R; Sherry, Bettylou

    2015-01-01

    Objective Research is limited on whether mistrust of tap water discourages plain water intake and leads to greater intake of sugar-sweetened beverages (SSB). The objective of this study is to examine demographic differences in perceptions of tap water safety and determine if these perceptions are associated with intake of SSB and plain water Design The study examined perceptions of tap water safety and their cross-sectional association with intake of SSB and plain water. Racial/ethnic differences in the associations of tap water perceptions with SSB and plain water intake were also examined. Setting Nationally weighted data from 2010 HealthStyles Survey (n=4184) Subjects United States adults ≥18 years Results Overall, 13.0% of participants disagreed that their local tap water was safe to drink and 26.4% of participants agreed that bottled water was safer than tap water. Both mistrust of tap water safety and favoring bottled water differed by region, age, race/ethnicity, income, and education. The associations of tap water mistrust on intake of SSB and plain water were modified by race/ethnicity (p<0.05). Non-white racial/ethnic groups who disagreed that their local tap water was safe to drink were more likely to report low intake of plain water. The odds of consuming ≥1 SSB/day among Hispanics who mistrusted their local tap water was twice that of Hispanics who did not (OR = 2.0; 95% CI: 1.2, 3.3). Conclusions Public health efforts to promote healthy beverages should recognize the potential impact of tap water perceptions on water and SSB intake among minority populations. PMID:23098620

  20. Perceptions of Tap Water and School Water Fountains and Association with Intake of Plain Water and Sugar-Sweetened Beverages

    ERIC Educational Resources Information Center

    Onufrak, Stephen J.; Park, Sohyun; Sharkey, Joseph R.; Merlo, Caitlin; Dean, Wesley R.; Sherry, Bettylou

    2014-01-01

    Background: Little is known regarding youth perceptions of tap water and school water fountains and how these relate to water and sugar-sweetened beverage (SSB) intake. Methods: We used national 2010 YouthStyles data to assess perceptions of tap water and school water fountains and associations with water and SSB intake. Results: Nearly 1 in 5…

  1. Demographic factors associated with perceptions about water safety and tap water consumption among adults in Santa Clara County, California, 2011.

    PubMed

    van Erp, Brianna; Webber, Whitney L; Stoddard, Pamela; Shah, Roshni; Martin, Lori; Broderick, Bonnie; Induni, Marta

    2014-06-12

    The objective of this study was to examine differences in tap water consumption and perceptions of bottle versus tap water safety for Hispanics and non-Hispanic whites, as well as associations with other demographic characteristics. Data are from the Santa Clara County, California, Dietary Practices Survey (2011; N = 306). We used logistic regression to examine associations between demographic characteristics and 1) perceptions that bottled water is safer than tap and 2) primarily consuming tap water. Hispanics were less likely than non-Hispanic whites to primarily drink tap water (OR = 0.33; 95% CI, 0.11-0.99), although there was no significant difference in perceptions that bottled water is safer between these groups (OR = 0.50; 95% CI, 0.11-2.27). Hispanics may be an important population for interventions promoting tap water consumption.

  2. Major inorganic elements in tap water samples in Peninsular Malaysia.

    PubMed

    Azrina, A; Khoo, H E; Idris, M A; Amin, I; Razman, M R

    2011-08-01

    Quality drinking water should be free from harmful levels of impurities such as heavy metals and other inorganic elements. Samples of tap water collected from 24 locations in Peninsular Malaysia were determined for inorganic element content. Minerals and heavy metals were analysed by spectroscopy methods, while non-metal elements were analysed using test kits. Minerals and heavy metals determined were sodium, magnesium, potassium, calcium, chromium, manganese, iron, nickel, copper, zinc, arsenic, cadmium and lead while the non-metal elements were fluoride, chloride, nitrate and sulphate. Most of the inorganic elements found in the samples were below the maximum permitted levels recommended by inter-national drinking water standard limits, except for iron and manganese. Iron concentration of tap water from one of the locations was higher than the standard limit. In general, tap water from different parts of Peninsular Malaysia had low concentrations of heavy metals and inorganic elements.

  3. The occurrence of antibiotic resistance genes in tap water - a review

    NASA Astrophysics Data System (ADS)

    Siedlecka, Agata

    2018-02-01

    The study presents a review of the occurrence of genetic determinants of antibiotic resistance in tap water. The aim of this study was also to compare the applied methods for antibiotic resistance genes (ARGs) investigations in tap water. As the concentration of ARGs in treated, drinking water is expected to be very low and may cause problems in a standard isolation procedure, the special emphasis is placed on the applied procedures of DNA extraction and their efficiency. The study presents the first attempts to obtain DNA directly from tap water. Further efforts must be put to determine the final amount of obtained DNA and the presence of chosen ARGs among the molecules.

  4. [Survey on the contamination of microcystin-LR in water supply of Shanghai city].

    PubMed

    Wu, He-yan; Zheng, Li-xing; Su, Jin; Shi, Wei

    2005-03-01

    To study the pollution level of microcystin-LR in water supply of Shanghai city and the removal efficacy for microcystin-LR through routine water treatment technique. High performance liquid chromatogram (HPLC) was applied to determine the concentration of microcystin-LR in source water, water samples after various water treatment procedures and tap water. The concentration of microcystin-LR varied with sampling seasons and sites and reached peak during summer and fall. The maximum of microcystin-LR was 2.38 microg/L in source water. Coagulation plus chlorine disinfection were found to be effective for the removal of microcystin-LR, while the remove rate through filtration was not significant. And it could also be detected in tap water as high as 1.27 microg/L. The source waters of Shanghai city were polluted by cyanobacteria toxins represented by microcystin-LR. The source water in suburb was more polluted. Routine water treatment techniques can not remove the toxins effectively.

  5. Development of ground-water supplies at Mississippi test facility, Hancock County, Mississippi

    USGS Publications Warehouse

    Newcome, Roy

    1967-01-01

    Potable and industrial water supplies at the National Aeronautics and Space Administration's Mississippi Test Facility in Hancock County, Miss., are obtained from large-capacity wells that tap southward-dipping water-bearing sands of Miocene and Pliocene age. The fresh-water-bearing section is 2,000-3,000 feet thick in the area, and individual aquifers are as thick as 450 feet. Aquifer thickness is not constant over large areas, however; and 100 feet is a more common thickness. Three wells installed for potable water supply are 1,434-1,524 feet deep and have produced 1,100-2,500 gpm (gallons per minute) by natural flow. Artesian pressure is sufficient to provide a static head as high as 90 feet above land surface. Planned use rate for two of the wells is about 600 gpm each and for the third, 1,250 gpm. Water for cooling Saturn rocket test-stand deflectors is obtained from three wells 1,873, 1,695, and 672 feet deep. The production rates of these wells are 3,100, 4,500, and 5,000 gpm, respectively; the wells are capable of supplying 7.5 million gallons in a 10-hour period (18 million gallons per day). Artesian head for the aquifers tapped by these wells ranges from 104 feet above land surface for the deepest aquifer to 15 feet for the shallowest. Aquifer transmissibilities determined in pumping tests range from 81,000 to 200,000 gallons per day per foot. Specific capacities of the wells range from a 15 to 47 gpm per foot of drawdown. Water from the supply wells is soft and of good quality. Dissolved solids range from 236 to 315 parts per million. The water is a sodium bicarbonate type, with high pH. The concentration of iron is less than 0.3 part per million. Water temperatures range from 79?F in the shallowest supply well to 100?F in the deepest.

  6. Predicting consumer preferences for mineral composition of bottled and tap water.

    PubMed

    Platikanov, Stefan; Hernández, Alejandra; González, Susana; Luis Cortina, Jose; Tauler, Roma; Devesa, Ricard

    2017-01-01

    The overall liking for taste of water was correlated with the mineral composition of selected bottled and tap waters. Sixty-nine untrained volunteers assessed and rated twenty-five different commercial bottled and tap waters from. Water samples were physicochemical characterised by analysing conductivity, pH, total dissolved solids (TDS) and major anions and cations: HCO 3 - , SO 4 2- , Cl - , NO 3 - , Ca 2+ , Mg 2+ , Na + , and K + . Residual chlorine levels were also analysed in the tap water samples. Globally, volunteers preferred waters rich in calcium bicarbonate and sulfate, rather than in sodium chloride. This study also demonstrated that it was possible to accurately predict the overall liking by a Partial Least Squares regression using either all measured physicochemical parameters or a reduced number of them. These results were in agreement with previously published results using trained panellists. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Public perceptions of drinking water: a postal survey of residents with private water supplies

    PubMed Central

    Jones, Andria Q; Dewey, Catherine E; Doré, Kathryn; Majowicz, Shannon E; McEwen, Scott A; David, Waltner-Toews; Eric, Mathews; Carr, Deborah J; Henson, Spencer J

    2006-01-01

    Background In Canada, the legal responsibility for the condition of private water supplies, including private wells and cisterns, rests with their owners. However, there are reports that Canadians test these water supplies intermittently and that treatment of such water is uncommon. An estimated 45% of all waterborne outbreaks in Canada involve non-municipal systems. An understanding of the perceptions and needs of Canadians served by private water supplies is essential, as it would enable public health professionals to better target public education and drinking water policy. The purpose of this study was to investigate the public perceptions of private water supplies in the City of Hamilton, Ontario (Canada), with the intent of informing public education and outreach strategies within the population. Methods A cross-sectional postal survey of 246 residences with private water supplies was conducted in May 2004. Questions pertained to the perceptions of water quality and alternative water sources, water testing behaviours and the self-identified need for further information. Results Private wells, cisterns or both, were the source of household water for 71%, 16% and 13% of respondents, respectively. Although respondents rated their water quality highly, 80% also had concerns with its safety. The most common concerns pertained to bacterial and chemical contamination of their water supply and its potential negative effect on health. Approximately 56% and 61% of respondents used in-home treatment devices and bottled water within their homes, respectively, mainly due to perceived improvements in the safety and aesthetic qualities compared to regular tap water. Testing of private water supplies was performed infrequently: 8% of respondents tested at a frequency that meets current provincial guidelines. Two-thirds of respondents wanted more information on various topics related to private water supplies. Flyers and newspapers were the two media reported most likely to

  8. Factors associated with drinking and being satisfied with tap water in Indigenous communities in Saskatchewan, Canada

    PubMed Central

    Bharadwaj, Lalita; Waldner, Cheryl L.

    2018-01-01

    ABSTRACT Previous studies have described concerns regarding tap water in Indigenous communities, yet there is little information on participants who report drinking their tap water and being satisfied with its quality. This study undertaken with members of 8 Indigenous communities in Saskatchewan, Canada, and identified factors associated with both the decision to drink tap water at home and being satisfied with its quality. We examined the importance of factors such as individual attributes, experiences, attitudes, household and community-based variables. Less than one-quarter of participants (23.4%) drank tap water and were satisfied with its quality. Individuals who did not boil tap water (odds ratio [OR] = 5.76, 95% confidence interval [CI] = 1.68–19.8), those who did not experience tap water odour (OR = 2.38, 95% CI = 1.26–4.50) and participants living in communities away from urban centres (OR = 2.74, 95% CI = 1.63–4.51) were more likely to drink and be satisfied with their tap water. Concerns about the environment had the most impact on community members aged 55+ years. Those not reporting concerns about environmental problems affecting water (OR = 11.4, 95% CI = 3.10–42.2) were much more likely to drink and be satisfied with their tap water. Programmes to improve water quality, reduce the need for boil water advisories and increase community confidence in the environment could improve tap water satisfaction and consumption. PMID:29697009

  9. Influence of Household Water Filters on Bacteria Growth and Trace Metals in Tap Water of Doha, Qatar.

    PubMed

    Nriagu, Jerome; Xi, Chuanwu; Siddique, Azhar; Vincent, Annette; Shomar, Basem

    2018-05-29

    Deteriorating water quality from aging infrastructure, growing threat of pollution from industrialization and urbanization, and increasing awareness about waterborne diseases are among the factors driving the surge in worldwide use of point-of-entry (POE) and point-of-use (POU) filters. Any adverse influence of such consumer point-of-use systems on quality of water at the tap remains poorly understood, however. We determined the chemical and microbiological changes in municipal water from the point of entry into the household plumbing system until it leaves from the tap in houses equipped with filters. We show that POE/POU devices can induce significant deterioration of the quality of tap water by functioning as traps and reservoirs for sludge, scale, rust, algae or slime deposits which promote microbial growth and biofilm formation in the household water distribution system. With changes in water pressure and physical or chemical disturbance of the plumbing system, the microorganisms and contaminants may be flushed into the tap water. Such changes in quality of household water carry a potential health risk which calls for some introspection in widespread deployment of POE/POU filters in water distribution systems.

  10. Exposure of children to metals via tap water ingestion at home: Contamination and exposure data from a nationwide survey in France.

    PubMed

    Le Bot, Barbara; Lucas, Jean-Paul; Lacroix, Françoise; Glorennec, Philippe

    2016-09-01

    29 inorganic compounds (Al, As, B, Ba, Be, Bi, Ca, Cd, Ce, Co, Cr, Cu, Fe, Gd, K, Mg, Mn, Mo, Na, Nd, Ni, Pb, Sb, Se, Sr, Tl, U, V and Zn) were measured in the tap water of 484 representative homes of children aged 6months to 6years in metropolitan France in 2008-2009. Parents were asked whether their children consumed tap water. Sampling design and sampling weights were taken into account to estimate element concentrations in tap water supplied to the 3,581,991 homes of 4,923,058 children aged 6months to 6years. Median and 95th percentiles of concentrations in tap water were in μg/L: Al: <10, 48.3, As: 0.2, 2.1; B: <100, 100; Ba: 30.7, 149.4; Ca: 85,000, 121,700; Cd: <0.5, <0.5; Ce: <0.5, <0.5; Co: <0.5, 0.8; Cr: <5, <5; Cu: 70, 720; K: 2210, 6740; Fe: <20, 46; Mn: <5, <5; Mo: <0.5, 1.5; Na: 14,500, 66,800; Ni: <2, 10.2; Mg: 6500, 21,200; Pb: <1, 5.4; Sb: <0.5, <0.5; Se: <1, 6.7; Sr: 256.9, 1004; Tl: <0.5, <0.5; U: <0.5, 2.4; V: <1, 1; Zn: 53, 208. Of the 2,977,123 young children drinking tap water in France, some were drinking water having concentrations above the 2011 World Health Organization drinking-water quality guidelines: respectively 498 (CI 95%: 0-1484) over 700μg/L of Ba; 121,581 (CI 95%: 7091-236,070) over 50mg/L of Na; 2044 (CI 95%: 0-6132) over 70μg/L of Ni, and 78,466 (17,171-139,761) over 10μg/L of Pb. Since it is representative, this tap water contamination data can be used for integrated exposure assessment, in conjunction with diet and environmental (dust and soil) exposure data. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Longitudinal and Source-to-Tap New Orleans, LA, U.S.A. Drinking Water Microbiology.

    PubMed

    Hull, Natalie M; Holinger, Eric P; Ross, Kimberly A; Robertson, Charles E; Harris, J Kirk; Stevens, Mark J; Pace, Norman R

    2017-04-18

    The two municipal drinking water systems of New Orleans, LA, U.S.A. were sampled to compare the microbiology of independent systems that treat the same surface water from the Mississippi River. To better understand temporal trends and sources of microbiology delivered to taps, these treatment plants and distribution systems were subjected to source-to-tap sampling over four years. Both plants employ traditional treatment by chloramination, applied during or after settling, followed by filtration before distribution in a warm, low water age system. Longitudinal samples indicated microbiology to have stability both spatially and temporally, and between treatment plants and distribution systems. Disinfection had the greatest impact on microbial composition, which was further refined by filtration and influenced by distribution and premise plumbing. Actinobacteria spp. exhibited trends with treatment. In particular, Mycobacterium spp., very low in finished waters, occurred idiosyncratically at high levels in some tap waters, indicating distribution and/or premise plumbing as main contributors of mycobacteria. Legionella spp., another genus containing potential opportunistic pathogens, also occurred ubiquitously. Source water microbiology was most divergent from tap water, and each step of treatment brought samples more closely similar to tap waters.

  12. Investigation of formaldehyde pollution of tap water and rain water using a novel visual colorimetry.

    PubMed

    Murai, K; Okano, M; Kuramitz, H; Hata, N; Kawakami, T; Taguchi, S

    2008-01-01

    The pollution of tap water and rain water with formaldehyde in Toyama Pref., Japan was investigated by means of a simple, rapid and cost-effective visual colorimetry developed by us. The levels of formaldehyde in three tap waters from different sources of dams on mountainside and a well-water pumped in urban area in Toyama Pref. were lower than 0.01 mg L(-1) that was the detection limit of the colorimetry. On the other hand, rain waters were seriously polluted with formaldehyde. Rain waters were sampled from three different sites (urban area, top of hill and industrial area) in Toyama Pref. from autumn to winter in 2006. The levels of formaldehyde in the rain waters ranged from 0.07 to 0.30 mg L(-1). The analytical results by the visual colorimetry were in good agreement with those obtained by GC-MS method. It was confirmed that the colorimetry is excellent for practical use for the determination of formaldehyde. It must be concerned about the pollution of rainwater with formaldehyde, when rain water is applied for tap water and miscellaneous purpose. Copyright IWA Publishing 2008.

  13. Isotopic metrics for structure, connectivity, and residence time in urban water supply systems

    NASA Astrophysics Data System (ADS)

    Bowen, Gabriel; Kennedy, Casey; Good, Stephen; Ehleringer, James

    2014-05-01

    Public water supply systems are the life-blood of urban areas, accessing, managing, and distributing water from an often complex array of sources to provide on-demand access to safe, potable water at the point-of-use. Water managers are faced with a wide range of potential threats, ranging from climate change to infrastructure failure to supply contamination. Information on the structure of supply and conveyance systems, connectivity within these systems, and links between the point-of-use and environmental water sources are thus critical to assessing the stability of water supplies and responding efficiently and effectively to water supply threats. We report datasets documenting stable hydrogen and oxygen isotope ratios of public supply water in cities of the United States across a range of scales. The data show a wide range of spatial and temporal variability that can be attributed to a combination of regional hydroclimate and water supply characteristics. Comparisons of public supply waters with model-based estimates of the isotopic composition of regional water sources suggests that major factors reflected in the tap water data include the degree of fragmentation of natural and man-made storage and conveyance systems, inter-basinal transfer of water, evaporative losses, and the total residence time of the natural and artificial systems being exploited. Because each of these factors contributes to determining the sustainability of water supply systems and their sensitivity to environmental disturbance, we propose a set of isotope-based metrics that can be used to efficiently assess and monitor the characteristics of public-supply systems in water security assessments and in support of management, planning, and outreach activities.

  14. Evaluation of biochemical urinary stone composition and its relationship to tap water hardness in Qom province, central Iran.

    PubMed

    Moslemi, Mohammad Kazem; Saghafi, Hossein; Joorabchin, Seyed Mohammad Amin

    2011-01-01

    The aim of this study was to evaluate the biochemical stone composition in general population of Qom province, central Iran, and its relationship with high tap water hardness. In a prospective study, from March 2008 to July 2011, biochemical analysis of urinary stones in patients living in Qom province for at least 5 years was performed. Stones were retrieved by spontaneous passage, endoscopic or open surgery, and after extracorporeal shockwave lithotripsy. Demographic findings and the drinking water supply of patients were evaluated and compared with biochemical stone analysis. Stone analysis was performed in 255 patients. The most dominant composition of urinary stones was calcium oxalate (73%), followed by uric acid (24%), ammonium urate (2%), and cystine (1%). The peak incidence of urinary stone was in patients in their forties. Overall male to female ratio was 4.93:1. The dominant stone composition in inhabitants of central Iran, where tap water hardness is high, was calcium oxalate stones. On the basis of this study, biochemical urinary stone composition of Qom does not differ from other regions of Iran with lower water hardness.

  15. Reduction of enteric infectious disease in rural China by providing deep-well tap water.

    PubMed Central

    Wang, Z. S.; Shepard, D. S.; Zhu, Y. C.; Cash, R. A.; Zhao, R. J.; Zhu, Z. X.; Shen, F. M.

    1989-01-01

    Enteric infectious disease (EID), defined here as bacillary dysentery, viral hepatitis A, El Tor cholera, or acute watery diarrhoea, is an important public health problem in most developing countries. This study assessed the impact on EID of providing deep-well tap water (DWTW) through household taps in rural China. For this purpose, we compared the incidence of EID in six study villages (population, 10,290) in Qidong County that had DWTW with that in six control villages (population 9397) that had only surface water. Both the bacterial counts and chemical properties of the DWTW met established hygiene standards for drinking water. The incidence of EID in the study region was 38.6% lower than in the control region; however, the introduction of DWTW supplies did not significantly affect the incidence of bacillary dysentery. These results indicate that the construction and use of DWTW systems with household taps is associated with decreased incidences of El Tor cholera, viral hepatitis A, and acute watery diarrhoea. Since high construction costs have led many authorities to question the value of DWTW, we carried out a cost-benefit analysis of the programme. The cost of constructing a DWTW system averaged US $36,000 at 1983 prices, or US $10.50 per capita. The combined capital and operating costs of a DWTW system were US $1.46 per capita per annum over its 20-year estimated life. The benefits derived from reductions in cost of illness and savings in time to fetch water were 2.2 times the costs at present values Capital outlays were recouped in a 3.6-year payback period and the provision of DWTW proved highly beneficial in both economic and social terms. PMID:2501042

  16. Monitoring bacterial contamination of piped water supply in rural coastal Bangladesh.

    PubMed

    Ahsan, Md Sabbir; Akber, Md Ali; Islam, Md Atikul; Kabir, Md Pervez; Hoque, Md Ikramul

    2017-10-31

    Safe drinking water is scarce in southwest coastal Bangladesh because of unavailability of fresh water. Given the high salinity of both groundwater and surface water in this area, harvested rainwater and rain-fed pond water became the main sources of drinking water. Both the government and non-government organizations have recently introduced pipe water supply in the rural coastal areas to ensure safe drinking water. We assessed the bacteriological quality of water at different points along the piped water distribution system (i.e., the source, treatment plant, household taps, street hydrants, and household storage containers) of Mongla municipality under Mongla Upazila in Bagerhat district. Water samples were collected at 2-month interval from May 2014 to March 2015. Median E. coli and total coliform counts at source, treatment plant, household taps, street hydrants, and household storage containers were respectively 225, 4, 7, 7, and 15 cfu/100 ml and 42,000, 545, 5000, 6150, and 18,800 cfu/100 ml. Concentrations of both of the indicator bacteria reduced after treatment, although it did not satisfy the WHO drinking water standards. However, re-contamination in distribution systems and household storage containers indicate improper maintenance of distribution system and lack of personal hygiene.

  17. Microcystins from tap water could be a risk factor for liver and colorectal cancer: a risk intensified by global change.

    PubMed

    Martínez Hernández, Juan; López-Rodas, V; Costas, E

    2009-05-01

    An increasing number of people drink water from fresh water supply reservoirs. However, with the global change a lot of reservoirs become eutrophic, which facilitates the occurrence of toxin-producing cyanobacterial blooms. Microcystins (powerful hepatotoxic water-soluble heptapeptides) are the most important cyanobacterial toxins affecting humans. High doses of microcystins produce hepatic necrosis. Consequently, WHO Guidelines limit microcystins to 1 ppb in drinking waters. However, microcystins are present frequently in tap water at lower doses. Here, we hypothesized that chronic consume of tap water containing low doses of microcystins may be a risk factor for liver and colorectal cancer. Two kinds of evidences support this hypothesis. On one hand some epidemiological data (mainly in China). On the other hand, the molecular mechanism of microcystins toxicity (inhibition of protein phosphatases PP1 and PP2) is just like okadaic acid (a potent tumor promoter). Cancer risk from drinking water is certainly less than smoking, occupational exposures or some foods. But it is significant and with a rapid increase of toxic cyanobacterial blooms by eutrophycation, become more frequent.

  18. A level change in mutagenicity of Japanese tap water over the past 12 yr.

    PubMed

    Takanashi, Hirokazu; Kishida, Misako; Nakajima, Tsunenori; Ohki, Akira; Akiba, Michihiro

    2011-05-01

    A relative comparison study of mutagenicity in Japanese tap water was conducted for 1993 and 2005 surveys. It intended to assess the effects of advanced water treatment installations to water works, improvement of raw water quality and improvement of residual HOCl concentration controlling. Sampling points (taps) were the same in both surveys. The results of 245 samples obtained by the Ames Salmonella mutagenicity test (Ames test) were analyzed. The Ames tests were conducted by using Salmonella typhimurium TA98 and TA100 strains with and without exogenous activation (S9). With the exception of TA100-S9, the other conditions needed no discussion as a factor in the mutagenicity level change. The average mutagenicity in 1993 and 2005 under the conditions of TA100-S9 were 2600 and 1100 net revertantL(-1), respectively. This indicated that the mutagenicity level of Japanese tap water decreased during the 12-yr period. Particularly a remarkable decrease in mutagenicity was observed in the water works where the advanced water treatments were installed during the 12-yr period. The advanced water treatments were effective in decreasing the mutagenicity of tap water. Mutagenicity also decreased in the water works with conventional water treatments; the improvement of residual HOCl concentration controlling was also considered to be effective in decreasing the mutagenicity of tap water. Copyright © 2011 Elsevier Ltd. All rights reserved.

  19. Presence of rotavirus and free-living amoebae in the water supplies of Karachi, Pakistan.

    PubMed

    Yousuf, Farzana Abubakar; Siddiqui, Ruqaiyyah; Khan, Naveed Ahmed

    2017-06-01

    Rotavirus and pathogenic free-living amoebae are causative agents of important health problems, especially for developing countries like Pakistan where the population has limited access to clean water supplies. Here, we evaluated the prevalence of rotavirus and free-living amoebae (Acanthamoeba spp., Balamuthia mandrillaris, Naegleria fowleri) in drinking water supplies of Karachi, Pakistan. Six water filtration plants that supply drinking water to the population of Karachi were investigated. Additionally, drinking water samples from households were analyzed for the presence of rotavirus and free-living amoebae. Rotavirus was present in 35% of the water samples collected from water filtration plants; however, domestic tap water samples had a prevalence of only 5%. Out of 20 water samples from filtration plants, 13 (65%) were positive for Acanthamoeba spp., and one (5%) was positive for B. mandrillaris. Out of 20 drinking water samples collected from different areas of Karachi, 35% were positive for Acanthamoeba spp. Rotavirus was detected in 5% of the drinking water samples tested. Overall, these findings showed for the first time the presence of rotavirus, in addition to pathogenic free-living amoebae in drinking water supplies of Karachi that could be an important public health risk for the affected population.

  20. Observation of Isotope Ratios (δ2H, δ18O, 87Sr/86Sr) of Tap Water in Urban Environments

    NASA Astrophysics Data System (ADS)

    Mancuso, C. J.; Tipple, B. J.; Ehleringer, J. R.

    2014-12-01

    Urban environments are centers for rapidly growing populations. In order to meet the culinary water needs of these areas, municipal water departments use water from multiple locations and/or sources, often piped differentially to different locations within a municipality. This practice creates isotopically distinct locations within an urban area and therefore provides insight to urban water management practices. In our study we selected urban locations in the Salt Lake Valley, UT (SLV) and San Francisco Bay Area, CA (SFB) where we hypothesized geographically distinct water isotopic ratio differences existed. Within the SLV, municipal waters come from the same mountainous region, but are derived from different geologically distinct watersheds. In contrast, SFB waters are derived from regionally distinct water sources. We hypothesized that the isotope ratios of tap waters would differ based upon known municipal sources. To test this, tap water samples were collected throughout the urban regions in SLV and SFB and analyzed for δ2H, δ18O and 87Sr/86Sr isotope ratios. Seasonal collections were also made to assess if isotope ratios differed throughout the year. Within SLV and SFB, different regions were characterized by distinct paired δ18O and 87Sr/86Sr values. These different realms also agreed with known differences in municipal water supplies within the general geographic region. Waters from different cities within Marin County showed isotopic differences, consistent with water derived from different local reservoirs. Seasonal variation was observed in paired δ18O and 87Sr/86Sr values of tap water for some locations within SLV and SFB, indicating management decisions to shift from one water source to another depending on demand and available resources. Our study revealed that the δ18O and 87Sr/86Sr values of tap waters in an urban region can exhibit significant differences despite close spatial proximity if districts differ in their use of local versus

  1. Microprocessor controlled anodic stripping voltameter for trace metals analysis in tap water

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clem, R.G.; Park, F.W.; Kirsten, F.A.

    1981-04-01

    The construction and use of a portable, microprocessor controlled anodic stripping voltameter for on-site simultaneous metal analysis of copper, lead and cadmium in tap water is discussed. The instrumental system is comprised of a programmable controller which permits keying in analytical parameters such as sparge time and plating time; a rotating cell for efficient oxygen removal and amalgam formation; and, a magnetic tape which can be used for data storage. Analysis time can be as short as 10 to 15 minutes. The stripping analysis is based on a pre-measurement step during which the metals from a water sample are concentratedmore » into a thin mercury film by deposition from an acetate solution of pH 4.5. The concentrated metals are then electrochemically dissolved from the film by application of a linearly increasing anodic potential. Typical peak-shaped curves are obtained. The heights of these curves are related to the concentration of metals in the water by calibration data. Results of tap water analysis showed 3 +- 1 ..mu..g/L lead, 22 +- 0.3 ..mu..g/L copper, and less than 0.2 ..mu..g/L cadmium for a Berkeley, California tap water, and 1 to 1000 ..mu..g/L Cu, 1 to 2 ..mu..g/L Pb for ten samples of Seattle, Washington tap water. Recommendations are given for a next generation instrument system.« less

  2. Airborne exposure to trihalomethanes from tap water in homes with refrigeration-type and evaporative cooling systems.

    PubMed

    Kerger, Brent D; Suder, David R; Schmidt, Chuck E; Paustenbach, Dennis J

    2005-03-26

    This study evaluates airborne concentrations of common trihalomethane compounds (THM) in selected living spaces of homes supplied with chlorinated tap water containing >85 ppb total THM. Three small homes in an arid urban area were selected, each having three bedrooms, a full bath, and approximately 1000 square feet; two homes had standard (refrigeration-type) central air conditioning and the third had a central evaporative cooling system ("swamp cooler"). A high-end water-use pattern was used at each home in this exposure simulation. THM were concurrently measured on 4 separate test days in tap water and air in the bathroom, living room, the bedroom closest to the bathroom, and outside using Summa canisters. Chloroform (trichloromethane, TCM), bromodichloromethane (BDCM), and dibromochloromethane (DBCM) concentrations were quantified using U.S. EPA Method TO-14. The apparent volatilization fraction consistently followed the order: TCM > BDCM > DBCM. Relatively low airborne THM concentrations (similar to outdoors) were found in the living room and bedroom samples for the home with evaporative cooling, while the refrigeration-cooled homes showed significantly higher THM levels (three- to fourfold). This differential remained after normalizing the air concentrations based on estimated THM throughput or water concentrations. These findings indicate that, despite higher throughput of THM-containing water in homes using evaporative coolers, the higher air exchange rates associated with these systems rapidly clears THM to levels similar to ambient outdoor concentrations.

  3. Relationship between the incidence infection stones and the magnesium-calcium ratio of tap water.

    PubMed

    Kohri, K; Ishikawa, Y; Iguchi, M; Kurita, T; Okada, Y; Yoshida, O

    1993-01-01

    In a previous study we showed that the magnesium-calcium ratio of tap water is negatively correlated with the incidence of calcium-containing urinary stones. In this study we examined the relationship between the incidence of struvite stones, water hardness and the regional geological features on the basis of our previous study and an epidemiological study of urolithiasis performed in Japan. The magnesium-calcium ratio of tap water was found to correlate positively with the incidence of struvite stones. The tap water magnesium-calcium ratio was high in regions of basalt and sedimentary rock and was low in granite and limestone areas. The incidence of struvite stones in the regions of basalt and sedimentary rock was higher than that in the granite and limestone areas. Thus, this study suggested that the incidence of struvite stones is related to the magnesium-calcium ratio of tap water and to the regional geology, as is the case for calcium-containing stones.

  4. Evaluation of biochemical urinary stone composition and its relationship to tap water hardness in Qom province, central Iran

    PubMed Central

    Moslemi, Mohammad Kazem; Saghafi, Hossein; Joorabchin, Seyed Mohammad Amin

    2011-01-01

    Purpose The aim of this study was to evaluate the biochemical stone composition in general population of Qom province, central Iran, and its relationship with high tap water hardness. Materials and methods In a prospective study, from March 2008 to July 2011, biochemical analysis of urinary stones in patients living in Qom province for at least 5 years was performed. Stones were retrieved by spontaneous passage, endoscopic or open surgery, and after extracorporeal shockwave lithotripsy. Demographic findings and the drinking water supply of patients were evaluated and compared with biochemical stone analysis. Results Stone analysis was performed in 255 patients. The most dominant composition of urinary stones was calcium oxalate (73%), followed by uric acid (24%), ammonium urate (2%), and cystine (1%). The peak incidence of urinary stone was in patients in their forties. Overall male to female ratio was 4.93:1. Conclusion The dominant stone composition in inhabitants of central Iran, where tap water hardness is high, was calcium oxalate stones. On the basis of this study, biochemical urinary stone composition of Qom does not differ from other regions of Iran with lower water hardness. PMID:22163171

  5. Immunoaffinity column as clean-up tool for determination of trace amounts of microcystins in tap water.

    PubMed

    Tsutsumi, T; Nagata, S; Hasegawa, A; Ueno, Y

    2000-07-01

    Trace amounts of microcystins (MCs) in drinking water should be monitored because of their potential hazard for human health as an environmental tumor promoter. We describe here a new clean-up tool with immunoaffinity column (IAC) for determination of trace amounts of MCs (from pg to microg/litre) in tap water. The water samples were concentrated with IAC clean-up and MCs levels were determined by HPLC with UV detection or enzyme-linked immunosorbent assay (ELISA). In the combination with HPLC analysis, mean recovery of microcystin-LR (MCLR),-RR and-YR spiked to tap water were 91.8%, 77.3% and 86.4%, respectively, in the range 2.5-100 microg/litre. The chromatogram of MCs-spiked tap water sample cleaned up with IAC showed effective elimination of the impurities compared to that with octadecyl silanized cartridge, which had been cleaned up with a conventional method. Also, in the combination with highly sensitive ELISA, mean recovery of MCLR spiked to tap water was 80% in the range 0.1-1000 ng/litre. The combined methods developed here can detect pg to microg/litre of MCs in tap water. The overall results indicated that IAC will be suitable as a clean-up tool for trace amounts of MCs in tap water.

  6. Presence of rotavirus and free-living amoebae in the water supplies of Karachi, Pakistan

    PubMed Central

    Yousuf, Farzana Abubakar; Siddiqui, Ruqaiyyah; Khan, Naveed Ahmed

    2017-01-01

    ABSTRACT Rotavirus and pathogenic free-living amoebae are causative agents of important health problems, especially for developing countries like Pakistan where the population has limited access to clean water supplies. Here, we evaluated the prevalence of rotavirus and free-living amoebae (Acanthamoeba spp., Balamuthia mandrillaris, Naegleria fowleri) in drinking water supplies of Karachi, Pakistan. Six water filtration plants that supply drinking water to the population of Karachi were investigated. Additionally, drinking water samples from households were analyzed for the presence of rotavirus and free-living amoebae. Rotavirus was present in 35% of the water samples collected from water filtration plants; however, domestic tap water samples had a prevalence of only 5%. Out of 20 water samples from filtration plants, 13 (65%) were positive for Acanthamoeba spp., and one (5%) was positive for B. mandrillaris. Out of 20 drinking water samples collected from different areas of Karachi, 35% were positive for Acanthamoeba spp. Rotavirus was detected in 5% of the drinking water samples tested. Overall, these findings showed for the first time the presence of rotavirus, in addition to pathogenic free-living amoebae in drinking water supplies of Karachi that could be an important public health risk for the affected population. PMID:28591260

  7. Concentration of poliovirus from tap water using positively charged microporous filters.

    PubMed Central

    Sobsey, M D; Jones, B L

    1979-01-01

    Microporous filters that are more electropositive than the negatively charged filters currently used for virus concentrations from water by filter adsorption-elution methods were evaluated for poliovirus recovery from tap water. Zeta Plus filters composed of diatomaceous earth-cellulose-"charge-modified" resin mixtures and having a net positive charge of up to pH 5 to 6 efficiently adsorbed poliovirus from tap water at ambient pH levels 7.0 to 7.5 without added multivalent cation salts. The adsorbed virus were eluted with glycine-NaOH, pH 9.5 to 11.5. Electropositive asbestos-cellulose filters efficiently adsorbed poliovirus from tap water without added multivalent cation salts between pH 3.5 and 9.0, and the absorbed viruses could be eluted with 3% beef extract, pH 9, but not with pH 9.5 to 11.5 glycine-NaOH. Under water quality conditions in which poliovirus recoveries from large volumes of water were less than 5% with conventional negatively charged filters and standard methods, recoveries with Zeta Plus filters averaged 64 and 22.5% for one- and two-stage concentration procedures, respectively. Electropositive filters appear to offer distinct advantages over conventional negatively charged filters for concentrating enteric viruses from water, and their behavior tends to confirm the importance of electrostatic forces in virus recovery from water by microporous filter adsorption-elution methods. PMID:36844

  8. Levels of major and trace elements, including rare earth elements, and ²³⁸U in Croatian tap waters.

    PubMed

    Fiket, Željka; Rožmarić, Martina; Krmpotić, Matea; Benedik, Ljudmila

    2015-05-01

    Concentrations of 46 elements, including major, trace, and rare earth elements, and (238)U in Croatian tap waters were investigated. Selected sampling locations include tap waters from various hydrogeological regions, i.e., different types of aquifers, providing insight into the range of concentrations of studied elements and (238)U activity concentrations in Croatian tap waters. Obtained concentrations were compared with the Croatian maximum contaminant levels for trace elements in water intended for human consumption, as well as WHO and EPA drinking water standards. Concentrations in all analyzed tap waters were found in accordance with Croatian regulations, except tap water from Šibenik in which manganese in concentration above maximum permissible concentration (MPC) was measured. Furthermore, in tap water from Osijek, levels of arsenic exceeded the WHO guidelines and EPA regulations. In general, investigated tap waters were found to vary considerably in concentrations of studied elements, including (238)U activity concentrations. Causes of variability were further explored using statistical methods. Composition of studied tap waters was found to be predominately influenced by hydrogeological characteristics of the aquifer, at regional and local level, the existing redox conditions, and the household plumbing system. Rare earth element data, including abundances and fractionation patterns, complemented the characterization and facilitated the interpretation of factors affecting the composition of the analyzed tap waters.

  9. Bacterial community of iron tubercles from a drinking water distribution system and its occurrence in stagnant tap water.

    PubMed

    Chen, Lu; Jia, Rui-Bao; Li, Li

    2013-07-01

    Bacteria in drinking water distribution systems can cause deterioration of the water quality, and the microbial quality of tap water is closely related to consumer health. In the present study, the potential effects of bacteria attached to cast iron pipes on tap water in a distribution system were investigated. Comparison of the bacterial community composition of pipe tubercles with that of stagnant tap water samples based on a denaturing gradient gel electrophoresis analysis of the 16S rRNA gene revealed that the communities were related. Specifically, the main bacterial members were identical to each other. The bacterial community was found to be dominated by Firmicutes, Actinobacteria, and Proteobacteria, which included Rhizobium, Pseudomonas, Lactococcus, Brevundimonas, Rheinheimera, Arthrobacter, Bacillus, and Herbaspirillum. Heterotrophic bacteria proliferation was observed during the period of stagnation, followed by a decrease of assimilable organic carbon and a slight increase of microbially available phosphorus. These findings indicated that the regrowth of bacteria might be boosted by the release of nutrients such as phosphorus from the pipe walls, as well as the decline of residual chlorine during stagnation. Inorganic contaminants at low levels, including Al, Mn, Zn, Pb, Cr, Cu, and Ni, were detected in tubercles and were concentrated in particulates from tap water following the release of iron during stagnation.

  10. Assessing the origin of bacteria in tap water and distribution system in an unchlorinated drinking water system by SourceTracker using microbial community fingerprints.

    PubMed

    Liu, Gang; Zhang, Ya; van der Mark, Ed; Magic-Knezev, Aleksandra; Pinto, Ameet; van den Bogert, Bartholomeus; Liu, Wentso; van der Meer, Walter; Medema, Gertjan

    2018-07-01

    The general consensus is that the abundance of tap water bacteria is greatly influenced by water purification and distribution. Those bacteria that are released from biofilm in the distribution system are especially considered as the major potential risk for drinking water bio-safety. For the first time, this full-scale study has captured and identified the proportional contribution of the source water, treated water, and distribution system in shaping the tap water bacterial community based on their microbial community fingerprints using the Bayesian "SourceTracker" method. The bacterial community profiles and diversity analyses illustrated that the water purification process shaped the community of planktonic and suspended particle-associated bacteria in treated water. The bacterial communities associated with suspended particles, loose deposits, and biofilm were similar to each other, while the community of tap water planktonic bacteria varied across different locations in distribution system. The microbial source tracking results showed that there was not a detectable contribution of source water to bacterial community in the tap water and distribution system. The planktonic bacteria in the treated water was the major contributor to planktonic bacteria in the tap water (17.7-54.1%). The particle-associated bacterial community in the treated water seeded the bacterial community associated with loose deposits (24.9-32.7%) and biofilm (37.8-43.8%) in the distribution system. In return, the loose deposits and biofilm showed a significant influence on tap water planktonic and particle-associated bacteria, which were location dependent and influenced by hydraulic changes. This was revealed by the increased contribution of loose deposits to tap water planktonic bacteria (from 2.5% to 38.0%) and an increased contribution of biofilm to tap water particle-associated bacteria (from 5.9% to 19.7%) caused by possible hydraulic disturbance from proximal to distal regions

  11. Residential tap water contamination following the Freedom Industries chemical spill: perceptions, water quality, and health impacts.

    PubMed

    Whelton, Andrew J; McMillan, LaKia; Connell, Matt; Kelley, Keven M; Gill, Jeff P; White, Kevin D; Gupta, Rahul; Dey, Rajarshi; Novy, Caroline

    2015-01-20

    During January 2014, an industrial solvent contaminated West Virginia’s Elk River and 15% of the state population’s tap water. A rapid in-home survey and water testing was conducted 2 weeks following the spill to understand resident perceptions, tap water chemical levels, and premise plumbing flushing effectiveness. Water odors were detected in all 10 homes sampled before and after premise plumbing flushing. Survey and medical data indicated flushing caused adverse health impacts. Bench-scale experiments and physiochemical property predictions showed flushing promoted chemical volatilization, and contaminants did not appreciably sorb into cross-linked polyethylene (PEX) pipe. Flushing reduced tap water 4-methylcyclohexanemethanol (4-MCHM) concentrations within some but not all homes. 4-MCHM was detected at unflushed (<10 to 420 μg/L) and flushed plumbing systems (<10 to 96 μg/L) and sometimes concentrations differed among faucets within each home. All waters contained less 4-MCHM than the 1000 μg/L Centers for Disease Control drinking water limit, but one home exceeded the 120 μg/L drinking water limit established by independent toxicologists. Nearly all households refused to resume water use activities after flushing because of water safety concerns. Science based flushing protocols should be developed to expedite recovery, minimize health impacts, and reduce concentrations in homes when future events occur.

  12. Monitoring of heavy metals in selected Water Supply Systems in Poland, in relation to current regulations

    NASA Astrophysics Data System (ADS)

    Szuster-Janiaczyk, Agnieszka; Zeuschner, Piotr; Noga, Paweł; Skrzypczak, Marta

    2018-02-01

    The study presents an analysis of water quality monitoring in terms of the content of heavy metals, which is conducted in three independent water supply systems in Poland. The analysis showed that the monitoring of heavy metals isn't reliable - both the quantity of tested water samples and the location of the monitoring points are the problem. The analysis of changes in water quality from raw water to tap water was possible only for one of the analysed systems and indicate a gradual deterioration of water quality, although still within acceptable limits of legal regulations.

  13. Anthropogenic contamination of tap water, beer, and sea salt

    PubMed Central

    2018-01-01

    Plastic pollution has been well documented in natural environments, including the open waters and sediments within lakes and rivers, the open ocean and even the air, but less attention has been paid to synthetic polymers in human consumables. Since multiple toxicity studies indicate risks to human health when plastic particles are ingested, more needs to be known about the presence and abundance of anthropogenic particles in human foods and beverages. This study investigates the presence of anthropogenic particles in 159 samples of globally sourced tap water, 12 brands of Laurentian Great Lakes beer, and 12 brands of commercial sea salt. Of the tap water samples analyzed, 81% were found to contain anthropogenic particles. The majority of these particles were fibers (98.3%) between 0.1–5 mm in length. The range was 0 to 61 particles/L, with an overall mean of 5.45 particles/L. Anthropogenic debris was found in each brand of beer and salt. Of the extracted particles, over 99% were fibers. After adjusting for particles found in lab blanks for both salt and beer, the average number of particles found in beer was 4.05 particles/L with a range of 0 to 14.3 particles/L and the average number of particles found in each brand of salt was 212 particles/kg with a range of 46.7 to 806 particles/kg. Based on consumer guidelines, our results indicate the average person ingests over 5,800 particles of synthetic debris from these three sources annually, with the largest contribution coming from tap water (88%). PMID:29641556

  14. Detection of toxic industrial chemicals in water supplies using surface-enhanced Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Spencer, Kevin M.; Sylvia, James M.; Spencer, Sarah A.; Clauson, Susan L.

    2010-04-01

    An effective method to create fear in the populace is to endanger the water supply. Homeland Security places significant importance on ensuring drinking water integrity. Beyond terrorism, accidental supply contamination from a spill or chemical residual increases is a concern. A prominent class of toxic industrial chemicals (TICs) is pesticides, which are prevalent in agricultural use and can be very toxic in minute concentrations. Detection of TICs or warfare agents must be aggressive; the contaminant needs to be rapidly detected and identified to enable isolation and remediation of the contaminated water while continuing a clean water supply for the population. Awaiting laboratory analysis is unacceptable as delay in identification and remediation increases the likelihood of infection. Therefore, a portable or online water quality sensor is required that can produce rapid results. In this presentation, Surface-Enhanced Raman Spectroscopy (SERS) is discussed as a viable fieldable sensor that can be immersed directly into the water supply and can provide results in <5 minutes from the time the instrument is turned on until analysis is complete. The ability of SERS to detect several chemical warfare agent degradation products, simulants and toxic industrial chemicals in distilled water, tap water and untreated water will be shown. In addition, results for chemical warfare agent degradation products and simulants will be presented. Receiver operator characteristic (ROC) curves will also be presented.

  15. Stereotypes for lever-tap operation.

    PubMed

    Chan, Alan H S; Tsang, Steve N H; Hoffmann, Errol R

    2016-04-15

    Lever-operated taps have become more popular and are commonly used in operating theatres, food preparation areas and where users have poor strength; however, there is very little data available for user expectations on tap operation. Thus, an experiment on dual lever-operated water tap (faucets) was conducted with the aim of for providing information for improved design. This study aims to compare different lever-tap designs and their stereotypes adopted by the end-user to operate them also to verify the stereotypes for increasing or decreasing the water flow. 240 participants were requested to rotate the lever tap to indicate direction for increasing and decreasing water flow with simulated hardware, using actual taps placed at the top of a simulated washbasin. Nine initial positions of the lever were used for increasing and decreasing flows, ranging from the ends of both levers facing outward from the bowl center to the ends of both levers facing inward. All levers operated in the horizontal plane. Strong stereotypes (greater than 80%) for several initial lever orientations were found for increasing water flow, especially when the initial lever end positions were facing outwards. However, for different initial positions at which participants were told that the water was flowing and the flow was to be decreased, no strong stereotypes existed. The stereotypes for increasing water flow of dual-lever taps were strong, whereas those for decreasing water flow were weak and hence the stereotype reversibility was also weak. In terms of user expectations, lever taps do not show any great advantage over cross-taps in terms of operator expectations for increasing and decreasing water flow.

  16. Population density, water supply, and the risk of dengue fever in Vietnam: cohort study and spatial analysis.

    PubMed

    Schmidt, Wolf-Peter; Suzuki, Motoi; Thiem, Vu Dinh; White, Richard G; Tsuzuki, Ataru; Yoshida, Lay-Myint; Yanai, Hideki; Haque, Ubydul; Tho, Le Huu; Anh, Dang Duc; Ariyoshi, Koya

    2011-08-01

    Aedes aegypti, the major vector of dengue viruses, often breeds in water storage containers used by households without tap water supply, and occurs in high numbers even in dense urban areas. We analysed the interaction between human population density and lack of tap water as a cause of dengue fever outbreaks with the aim of identifying geographic areas at highest risk. We conducted an individual-level cohort study in a population of 75,000 geo-referenced households in Vietnam over the course of two epidemics, on the basis of dengue hospital admissions (n = 3,013). We applied space-time scan statistics and mathematical models to confirm the findings. We identified a surprisingly narrow range of critical human population densities between around 3,000 to 7,000 people/km² prone to dengue outbreaks. In the study area, this population density was typical of villages and some peri-urban areas. Scan statistics showed that areas with a high population density or adequate water supply did not experience severe outbreaks. The risk of dengue was higher in rural than in urban areas, largely explained by lack of piped water supply, and in human population densities more often falling within the critical range. Mathematical modeling suggests that simple assumptions regarding area-level vector/host ratios may explain the occurrence of outbreaks. Rural areas may contribute at least as much to the dissemination of dengue fever as cities. Improving water supply and vector control in areas with a human population density critical for dengue transmission could increase the efficiency of control efforts. Please see later in the article for the Editors' Summary.

  17. Population Density, Water Supply, and the Risk of Dengue Fever in Vietnam: Cohort Study and Spatial Analysis

    PubMed Central

    Schmidt, Wolf-Peter; Suzuki, Motoi; Dinh Thiem, Vu; White, Richard G.; Tsuzuki, Ataru; Yoshida, Lay-Myint; Yanai, Hideki; Haque, Ubydul; Huu Tho, Le; Anh, Dang Duc; Ariyoshi, Koya

    2011-01-01

    Background Aedes aegypti, the major vector of dengue viruses, often breeds in water storage containers used by households without tap water supply, and occurs in high numbers even in dense urban areas. We analysed the interaction between human population density and lack of tap water as a cause of dengue fever outbreaks with the aim of identifying geographic areas at highest risk. Methods and Findings We conducted an individual-level cohort study in a population of 75,000 geo-referenced households in Vietnam over the course of two epidemics, on the basis of dengue hospital admissions (n = 3,013). We applied space-time scan statistics and mathematical models to confirm the findings. We identified a surprisingly narrow range of critical human population densities between around 3,000 to 7,000 people/km2 prone to dengue outbreaks. In the study area, this population density was typical of villages and some peri-urban areas. Scan statistics showed that areas with a high population density or adequate water supply did not experience severe outbreaks. The risk of dengue was higher in rural than in urban areas, largely explained by lack of piped water supply, and in human population densities more often falling within the critical range. Mathematical modeling suggests that simple assumptions regarding area-level vector/host ratios may explain the occurrence of outbreaks. Conclusions Rural areas may contribute at least as much to the dissemination of dengue fever as cities. Improving water supply and vector control in areas with a human population density critical for dengue transmission could increase the efficiency of control efforts. Please see later in the article for the Editors' Summary PMID:21918642

  18. Evaluation of disinfective potential of reactivated free chlorine in pooled tap water by electrolysis.

    PubMed

    Nakajima, Norihito; Nakano, Takashi; Harada, Fumiue; Taniguchi, Hiromasa; Yokoyama, Isao; Hirose, Jun; Daikoku, Eriko; Sano, Kouichi

    2004-05-01

    Tap water is one of the causative factors of hospital infections. We examined the disinfective potential of electrolysis and mechanism of disinfection, and clarified the disinfective effect of electrolysis on tap water contaminated with bacteria, and discussed its clinical applications. Tap waters artificially contaminated with Pseudomonas aeruginosa, Escherichia coli, Legionella pneumophila, and Staphylococcus aureus could be sterilized by electrolysis at 20-30 mA for 5 min. A high-density suspension (10(6) CFU/ml) of a spore forming bacterium, Bacillus subtilis was not completely sterilized by electrolysis at 50 mA up to 30 min, but a low-density suspension (10(5) CFU/ml) was totally sterilized by electrolysis at 50 mA for 5 min. Electrolyzed P. aeruginosa changed morphologically, that is, there was bleb formation on the cell wall and irregular aggregation of cytoplasmic small granules. Moreover, cytoplasmic enzyme, nitrate reductase, was inactivated by the electrolysis. On the other hand, genomic DNA of the electrolyzed bacteria was not degenerated, therefore, their DNA polymerase activity was not completely inactivated. Consequently, the major agent in electrolysis for bactericidal action was considered to be free chlorine, and the possible bactericidal mechanism was by destruction of bacterial membranes, followed by the aggregation of peripheral cytoplasmic proteins. Electrolysis of tap water for both disinfecting contaminating bacteria and increasing the disinfectant capacity was considered effective with some limitations, particularly against high-density contamination by spore-forming bacteria. In clinical settings, electrolysis of tap water is considered effective to disinfect water for hand washing in operation theatres, and bathing water for immunocompromised hosts.

  19. Exposure assessment of radon in the drinking water supplies: a descriptive study in Palestine

    PubMed Central

    2012-01-01

    Background Radon gas is considered as a main risk factor for lung cancer and found naturally in rock, soil, and water. The objective of this study was to determine the radon level in the drinking water sources in Nablus city in order to set up a sound policy on water management in Palestine. Methods This was a descriptive study carried out in two phases with a random sampling technique in the second phase. Primarily, samples were taken from 4 wells and 5 springs that supplied Nablus city residents. For each source, 3 samples were taken and each was analyzed in 4 cycles by RAD 7 device manufactured by Durridge Company. Secondly, from the seven regions of the Nablus city, three samples were taken from the residential tap water of each region. Regarding the old city, ten samples were taken. Finally, the mean radon concentration value for each source was calculated. Results The mean (range) concentration of radon in the main sources were 6.9 (1.5-23.4) Becquerel/liter (Bq/L). Separately, springs and wells' means were 4.6 Bq/L and 9.5 Bq/L; respectively. For the residential tap water in the 7 regions, the results of the mean (range) concentration values were found to be 1.0 (0.9-1.3) Bq/L. For the old city, the mean (range) concentration values were 2.3 (0.9-3.9) Bq/L. Conclusions Except for Al-Badan well, radon concentrations in the wells and springs were below the United State Environmental Protection Agency maximum contaminated level (U.S EPA MCL). The level was much lower for tap water. Although the concentration of radon in the tap water of old city were below the MCL, it was higher than other regions in the city. Preventive measures and population awareness on radon's exposure are recommended. PMID:22243625

  20. Exposure assessment of radon in the drinking water supplies: a descriptive study in Palestine.

    PubMed

    Al Zabadi, Hamzeh; Musmar, Samar; Issa, Shaza; Dwaikat, Nidal; Saffarini, Ghassan

    2012-01-13

    Radon gas is considered as a main risk factor for lung cancer and found naturally in rock, soil, and water. The objective of this study was to determine the radon level in the drinking water sources in Nablus city in order to set up a sound policy on water management in Palestine. This was a descriptive study carried out in two phases with a random sampling technique in the second phase. Primarily, samples were taken from 4 wells and 5 springs that supplied Nablus city residents. For each source, 3 samples were taken and each was analyzed in 4 cycles by RAD 7 device manufactured by Durridge Company. Secondly, from the seven regions of the Nablus city, three samples were taken from the residential tap water of each region. Regarding the old city, ten samples were taken. Finally, the mean radon concentration value for each source was calculated. The mean (range) concentration of radon in the main sources were 6.9 (1.5-23.4) Becquerel/liter (Bq/L). Separately, springs and wells' means were 4.6 Bq/L and 9.5 Bq/L; respectively. For the residential tap water in the 7 regions, the results of the mean (range) concentration values were found to be 1.0 (0.9-1.3) Bq/L. For the old city, the mean (range) concentration values were 2.3 (0.9-3.9) Bq/L. Except for Al-Badan well, radon concentrations in the wells and springs were below the United State Environmental Protection Agency maximum contaminated level (U.S EPA MCL). The level was much lower for tap water. Although the concentration of radon in the tap water of old city were below the MCL, it was higher than other regions in the city. Preventive measures and population awareness on radon's exposure are recommended.

  1. Trihalomethanes in public water supplies and risk of stillbirth.

    PubMed

    Dodds, Linda; King, Will; Allen, Alexander C; Armson, B Anthony; Fell, Deshayne B; Nimrod, Carl

    2004-03-01

    The chlorine used to disinfect public drinking water supplies reacts with naturally occurring organic matter to form a number of chemical byproducts. Recent studies have implicated exposure to chlorination byproducts in drinking water, trihalomethanes (THMs), in particular, with intrauterine death. We conducted a population-based case-control study in Nova Scotia and Eastern Ontario, Canada, to examine the effect of exposure to THMs on stillbirth risk. Cases were women who had a stillborn infant, and controls were a random sample of women with live births. Subjects were interviewed, and women with a public water source provided a residential water sample. Risks were examined according to residential THM level in tap water and to a total exposure metric incorporating tap water ingestion, showering, and bathing. We enrolled 112 stillbirth cases and 398 live birth controls. Women with a residential total THM level of 80 or more microg/L had twice the risk of a stillbirth compared with women with no exposure to THMs (adjusted odds ratio [OR] = 2.2; 95% confidence interval [CI] = 1.1-4.4). The highest quintile of total THM exposure using the total exposure metric was associated with an adjusted odds ratio of 2.4 (95% CI = 1.2-4.6) compared with women not exposed to THMs. Similar results were seen for specific THM compounds. A monotonic dose-response relationship was not seen. Our results provide evidence for an increased risk of stillbirth associated with exposure to chlorination byproducts through ingestion and showering and bathing, although there was not a clear dose-response relationship.

  2. Detection of Escherichia coli, Salmonella species, and Vibrio cholerae in tap water and bottled drinking water in Isfahan, Iran.

    PubMed

    Momtaz, Hassan; Dehkordi, Farhad Safarpoor; Rahimi, Ebrahim; Asgarifar, Amin

    2013-06-07

    The quality of drinking water has an important role in human infection and disease. This study was aimed at comparing polymerase chain reaction and culture in detecting Escherichia coli, Salmonella species and Vibrio cholera in tape water and bottled drinking water in various seasons in Isfahan province, Iran. A total of 448 water samples from tap water and bottled mineral water were taken over 6 months, from July 2010 to December 2010, and after filtration, samples were examined by culture and polymerase chain reaction methods for detection of Escherichia coli, Salmonella species, and Vibrio cholerae. The culture method showed that 34 (7.58%), 4 (0.89%) and 3 (0.66%) of all 448 water samples were positive for Escherichia coli, Salmonella species, and Vibrio cholera, respectively. The uidA gene from Escherichia coli, IpaB gene from Salmonella species, and epsM gene from Vibrio cholera were detected in 38 (26.38%), 5 (3.47%), and 3 (2.08%) of 144 tap-water samples, respectively. Escherichia coli was detected in 8 (2.63%) of 304 samples of bottled drinking water from 5 companies. The water of southern part of Isfahan and company 5 had the highest prevalence of bacteria. The Escherichia coli water contamination was significantly higher (P < 0.05) in the hot seasons (July-August) than cold (November-December) seasons and in company 5 than other companies. There were significant differences (P < 0.05) for the prevalence of bacteria between the tap waters of southern part and tap waters of central part of Isfahan. This study showed that the polymerase chain reaction assays can be an extremely accurate, fast, safe, sensitive and specific approach to monitor drinking water quality from purification facilities and bottled water companies. Also, our study confirmed the presence of Escherichia coli, Salmonella species, and Vibrio cholerae as water-borne pathogens in tap water and bottled drinking water of Isfahan, Iran. The present study showed the important public health

  3. Detection of Escherichia coli, Salmonella species, and Vibrio cholerae in tap water and bottled drinking water in Isfahan, Iran

    PubMed Central

    2013-01-01

    Background The quality of drinking water has an important role in human infection and disease. This study was aimed at comparing polymerase chain reaction and culture in detecting Escherichia coli, Salmonella species and Vibrio cholera in tape water and bottled drinking water in various seasons in Isfahan province, Iran. Methods A total of 448 water samples from tap water and bottled mineral water were taken over 6 months, from July 2010 to December 2010, and after filtration, samples were examined by culture and polymerase chain reaction methods for detection of Escherichia coli, Salmonella species, and Vibrio cholerae. Results The culture method showed that 34 (7.58%), 4 (0.89%) and 3 (0.66%) of all 448 water samples were positive for Escherichia coli, Salmonella species, and Vibrio cholera, respectively. The uidA gene from Escherichia coli, IpaB gene from Salmonella species, and epsM gene from Vibrio cholera were detected in 38 (26.38%), 5 (3.47%), and 3 (2.08%) of 144 tap-water samples, respectively. Escherichia coli was detected in 8 (2.63%) of 304 samples of bottled drinking water from 5 companies. The water of southern part of Isfahan and company 5 had the highest prevalence of bacteria. The Escherichia coli water contamination was significantly higher (P < 0.05) in the hot seasons (July-August) than cold (November-December) seasons and in company 5 than other companies. There were significant differences (P < 0.05) for the prevalence of bacteria between the tap waters of southern part and tap waters of central part of Isfahan. Conclusions This study showed that the polymerase chain reaction assays can be an extremely accurate, fast, safe, sensitive and specific approach to monitor drinking water quality from purification facilities and bottled water companies. Also, our study confirmed the presence of Escherichia coli, Salmonella species, and Vibrio cholerae as water-borne pathogens in tap water and bottled drinking water of Isfahan, Iran. The

  4. [Volatile organic compounds of the tap water in the Watarase, Tone and Edo River system].

    PubMed

    Ohmichi, Kimihide; Ohmichi, Masayoshi; Machida, Kazuhiko

    2004-01-01

    The chlorination of river water in purification plants is known to produce carcinogens such as trihalomethanes (THMs). We studied the river system of the Watarase, Tone, and Edo Rivers in regard to the formation of THMs. This river system starts from the base of the Ashio copper mine and ends at Tokyo Bay. Along the rivers, there are 14 local municipalities in Gunma, Saitama, Ibaragi and Chiba Prefectures, as well as Tokyo. This area is the center of the Kanto plain and includes the main sources of water pollution from human activities. We also analyzed various chemicals in river water and tap water to clarify the status of the water environment, and we outline the problems of the water environment in the research area (Fig. 1). Water samples were taken from 18 river sites and 42 water faucets at public facilities in 14 local municipalities. We analyzed samples for volatile organic compounds such as THMs, by gas chromatography mass spectrometry (GC-MS), and evaluations of chemical oxygen demand (COD) were made with reference to Japanese drinking water quality standards. Concentrations of THMs in the downstream tap water samples were higher than those in the samples from the upperstream. This tendency was similar to the COD of the river water samples, but no correlation between the concentration of THMs in tap water and the COD in tap water sources was found. In tap water of local government C, trichloroethylene was detected. The current findings suggest that the present water filtration plant procedures are not sufficient to remove some hazardous chemicals from the source water. Moreover, it was confirmed that the water filtration produced THMs. Also, trichloroethylene was detected from the water environment in the research area, suggesting that pollution of the water environment continues.

  5. The Danger of Using Tap Water with Contact Lenses

    EPA Pesticide Factsheets

    Acanthamoeba is a microbe that is very common in tap water. It has two forms: the trophozoite and the cyst. These trophozoites and cysts can stick to the surface of your contact lenses and then infect your eye.

  6. Simultaneous determination and assessment of 4-nonylphenol, bisphenol A and triclosan in tap water, bottled water and baby bottles.

    PubMed

    Li, Xu; Ying, Guang-Guo; Su, Hao-Chang; Yang, Xiao-Bing; Wang, Li

    2010-08-01

    This study investigated the levels of 4-nonylphenol (4-NP), bisphenol A (BPA) and triclosan (TCS) in bottled water and tap water in Guangzhou and release of these chemicals from baby bottles using gas chromatography-mass spectrometry with negative chemical ionization. Results show that 4-NP was present in all the bottled water while 17 out of 21 contained BPA and 18 out of 21 contained TCS. Their concentrations in bottled water ranged from 108 to 298 ng/L, 17.6 to 324 ng/L and 0.6 to 9.7 ng/L, respectively. Five of the tap water samples from six drinking water plants were found to contain 4-NP and BPA both in June and December, while TCS was detected in the same five plants only in June. The highest concentrations in tap water for 4-NP, BPA and TCS were 1987, 317 and 14.5ng/L, respectively. Daily intakes of 4-NP, BPA and TCS of adults by drinking 2L of tap water were estimated to be 1410, 148 and 10 ng/day, respectively. BPA was found to be released within 24h from four brands of baby bottles at room temperature (24 degrees C), 40 degrees C and 100 degrees C. Increased temperature led to higher release of BPA from the baby bottles. Estimated daily intakes of 4-NP, BPA and TCS for infants were 705, 1340 and 5 ng/day, respectively, by drinking 1L of tap water from a baby bottle at 40 degrees C. This study showed that the exposure to the three compounds from drinking water is unlikely to pose a health risk. Copyright 2010 Elsevier Ltd. All rights reserved.

  7. Persistence of antibiotic resistance genes and bacterial community changes in drinking water treatment system: From drinking water source to tap water.

    PubMed

    Su, Hao-Chang; Liu, You-Sheng; Pan, Chang-Gui; Chen, Jun; He, Liang-Ying; Ying, Guang-Guo

    2018-03-01

    As emerging contaminants, antibiotic resistance genes (ARGs) have become a public concern. This study aimed to investigate the occurrence and diversity of ARGs, and variation in the composition of bacterial communities in source water, drinking water treatment plants, and tap water in the Pearl River Delta region, South China. Various ARGs were present in the different types of water. Among the 27 target ARGs, floR and sul1 dominated in source water from three large rivers in the region. Pearson correlation analysis suggested that sul1, sul2, floR, and cmlA could be potential indicators for ARGs in water samples. The total abundance of the detected ARGs in tap water was much lower than that in source water. Sand filtration and sedimentation in drinking water treatment plants could effectively remove ARGs; in contrast, granular activated carbon filtration increased the abundance of ARGs. It was found that Pseudomonas may be involved in the proliferation and dissemination of ARGs in the studied drinking water treatment system. Bacteria and ARGs were still present in tap water after treatment, though they were significantly reduced. More research is needed to optimize the water treatment process for ARG removal. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Contribution of tap water to chlorate and perchlorate intake: a market basket study.

    PubMed

    Asami, Mari; Yoshida, Nobue; Kosaka, Koji; Ohno, Koichi; Matsui, Yoshihiko

    2013-10-01

    The contributions of water to total levels of chlorate and perchlorate intake were determined using food and water samples from a market basket study from 10 locations in Japan between 2008 and 2009. Foods were categorized into 13 groups and analyzed along with tap water. The average total chlorate intake was 333 (min. 193-max. 486) μg/day for samples cooked with tap water. The contribution of tap water to total chlorate intake was as high as 47%-58%, although total chlorate intake was less than 32% of the tolerable daily intake, 1500 μg/day for body weight of 50 kg. For perchlorate, daily intake from water was 0.7 (0.1-4.4) μg/day, which is not high compared to the average total intake of 14 (2.5-84) μg/day, while the reference dose (RfD) is 35 μg/day and the provisional maximum tolerable daily intake (PMTDI) is 500 μg/day for body weight of 50 kg. The highest intake of perchlorate was 84 μg/day, where concentrations in foods were high, but not in water. The contribution of water to total perchlorate intake ranged from 0.5% to 22%, while the ratio of highest daily intake to RfD was 240% and that to PMTDI was 17%. Eight baby formulas were also tested--total chlorate and perchlorate intakes were 147 (42-332) μg/day and 1.11 (0.05-4.5) μg/day, respectively, for an ingestion volume of 1 L/day if prepared with tap water. Copyright © 2013 The Authors. Published by Elsevier B.V. All rights reserved.

  9. &LDQUO;FROM THE SOURCE &NDASH; TAP WATER AS A SUSTAINABLE ALTERNATIVE&RDQUO;

    EPA Science Inventory

    The major technical challenge to sustainability is reduction of use of plastic bottled water and bottled water in general. This will be done by a student administered water assessment survey on campus, coupled with a public education campaign on the benefits of using tap water...

  10. Municipal water supplies in Lee County, Florida, 1974

    USGS Publications Warehouse

    O'Donnell, T. H.

    1977-01-01

    In 1974 the total pumpage for Lee County, Fla., municipal supplies reached 5,700 Mgal (million gallons annually), an increase of 54 percent over 1970 levels. Pumpage from individual sources included: Caloosahatchee River, 1,312 Mgal; water-table aquifer, 2,171 Mgal; the water-bearing zone in the Tamiami Formation, 340 Mgal; the water-bearing zone in the upper part of the Hawthorn Formation, 1,399 Mgal; the saline water zones in the lower part of the Hawthorn Formation and the Suwannee Limestone, 483 Mgal. Among the various sources, the water-table aquifer showed the greatest increase in municipal pumpage over 1970 levels (60 percent) while the saline zones in the lower part of the Hawthorn Formation and Suwannee Limestone showed the least (40 percent). Intensive pumpage from the water bearing zone in the upper part of the Hawthorn Formation has caused a progressive decline in water levels in wells tapping that zone. The quality of fresh ground water in areas unaffected by intrusion of saline water, generally meets all the recommended limits of the Environmental Protection Agency. The chemical treatment processes utilized by water plants in the county are generally effective in producing finished water that meets EPA preliminary drinking water standards. (Woodard-USGS)

  11. TRIHALOMETHANE LEVELS IN HOME TAP WATER AND SEMEN QUALITY

    EPA Science Inventory

    Trihalomethane Levels in Home Tap Water and Semen Quality
    Laura Fenster, 1 Kirsten Waller, 2 Gayle Windham, 1 Tanya Henneman, 2 Meredith Anderson, 2 Pauline Mendola, 3 James W. Overstreet, 4 Shanna H. Swan5

    1California Department of Health Services, Division of Environm...

  12. Water-supply options in arsenic-affected regions in Cambodia: targeting the bottom income quintiles.

    PubMed

    Chamberlain, Jim F; Sabatini, David A

    2014-08-01

    In arsenic-affected regions of Cambodia, rural water committees and planners can choose to promote various arsenic-avoidance and/or arsenic-removal water supply systems. Each of these has different costs of providing water, subsequently born by the consumer in order to be sustainable. On a volumetric basis ($/m3-yr) and of the arsenic-avoidance options considered, small-scale public water supply - e.g., treated water provided to a central tap stand - is the most expensive option on a life-cycle cost basis. Rainwater harvesting, protected hand dug wells, and vendor-supplied water are the cheapest with a normalized present worth value, ranging from $2 to $10 per cubic meter per year of water delivered. Subsidization of capital costs is needed to make even these options affordable to the lowest (Q5) quintile. The range of arsenic-removal systems considered here, using adsorptive media, is competitive with large-scale public water supply and deep tube well systems. Both community level and household-scale systems are in a range that is affordable to the Q4 quintile, though more research and field trials are needed. At a target cost of $5.00/m3, arsenic removal systems will compete with the OpEx costs for most of the arsenic-safe water systems that are currently available. The life-cycle cost approach is a valuable method for comparing alternatives and for assessing current water supply practices as these relate to equity and the ability to pay. Copyright © 2013 Elsevier B.V. All rights reserved.

  13. [Cytotoxicity and genotoxicity of drinking water of two networks supplied by surface water].

    PubMed

    Pellacani, Claudia; Branchi, Elisa; Buschini, Annamaria; Furlini, Mariangela; Poli, Paola; Rossi, Carlo

    2005-01-01

    Evaluation of cytotoxic and genotoxic load of drinking water in relationship to the source of supplies, the disinfection process, and the piping system. Two treatment/distribution networks of drinking water, the first (#1) located near the source, the second (#2) located near the mouth of a river supplying the plants. Water samples were collected before (F) and after (A) the disinfection process and in two points (R1 and R2) of the piping system. The samples, concentrated on C18, were tested for DNA damage in human leukocytes by the Comet assay and for gene conversion, reversion and mitochondrial mutability in Saccharomyces cerevisiae D7 strain. The approach used in this study is able to identify genotoxic compounds at low concentration and evaluate their antagonism/synergism in complex mixtures. Comet assay results show that the raw water quality depends on the sampling point, suggesting that a high input of environmental pollutants occurred during river flowing; they also show that the disinfection process can both detoxify or enhance biological activity of raw water according to its quality and that the piping systems do not affect tap water cytotoxic/genotoxic load. The yeast tests indicate the presence of some disinfection by-products effective on mitochondrial DNA. The biological assays used in this study are proven to be able to detect the presence of low concentrations of toxic/genotoxic compounds and assess the sources of their origin/production.

  14. Public-supply water use and self-supplied industrial water use in Tennessee, 2010

    USGS Publications Warehouse

    Robinson, John A.

    2018-04-26

    The U.S. Geological Survey (USGS), in cooperation with the Tennessee Department of Environment and Conservation, Division of Water Resources, prepared this report and displayed and analyzed water use by self-supplied industrial and public-supply water systems in Tennessee for 2010. Public-supply water systems in Tennessee provide water for domestic, industrial, and commercial uses and for municipal services. In 2010, 474 public-supply water systems distributed 917 million gallons per day (Mgal/d) of surface water (67 percent, 617 Mgal/d) and groundwater (33 percent, 300 Mgal/d) to a population of 5.7 million in Tennessee. Gross per capita water use in Tennessee during 2010 was 162 gallons per day.Since 1950, water withdrawals by public-supply water systems in Tennessee have increased from 160 Mgal/d to 917 Mgal/d in 2010. Each of the 95 counties in Tennessee was served by at least 1 public-supply water system in 2010. Tennessee public-supply water systems withdraw less groundwater than surface water, and surface-water use has increased at a faster rate than groundwater use. Since 2005, surface-water withdrawals have increased by 26 Mgal/d, and groundwater withdrawals have decreased by 29 Mgal/d, which is the first decrease in groundwater withdrawals since 1950; however, 29 systems reported increased groundwater withdrawals during 2010, and 12 of these 29 systems reported increases of 1 Mgal/d or more. Davidson County had the largest surface-water withdrawal rate (136 Mgal/d) in 2010. The largest groundwater withdrawal rate (151 Mgal/d) by a single public-supply water system was reported by Memphis Light, Gas and Water, which served more than 669,000 people in Shelby County in 2010.Self-supplied industrial water use includes water for such purposes as fabrication, processing, washing, diluting, cooling, or transporting a product; incorporating water into a product; or for sanitation needs in facilities that manufacture various products. Water withdrawals for self-supplied

  15. How to Control Airline Routes from the Supply Side: The Case of TAP

    NASA Technical Reports Server (NTRS)

    Button, Kenneth; Costa, Alvaro; Reis, Vasco

    2005-01-01

    Competition in the European airline industry is currently fierce in the face of depressed demand conditions, and in the wake of privatizations and liberalization. The Portuguese flag carrier, TAP Air Portugal, operates within this environment. It is a medium sized carrier that was part of the defunct Qualiflyer Group alliance and has recently joined the Star Alliance. It controls more than 50% of the air market between Europe and Brazil and Europe and Angola. Nevertheless, it has been experiencing financial losses. One reason for this is that, following the reasoning of Ronald Coase (1946), it is difficult for any company with decreasing average costs to recover full costs in a highly competitive market. One way of approaching the problem is to establish quasi-monopoly power and airlines have done this through such things as frequent flyer programs and hub-and-spoke operations. Other airlines, notably charter carriers, have sought to adjust capacity and services to meet an anticipated cash flow. In practice, many have used a combination of measures with mixed success. This paper focuses on how TAP has responded to changing conditions by adjusting its supply-side activities in terms of restructuring its network to maximize potential revenues.

  16. Stable hydrogen and oxygen isotopes of tap water reveal structure of the San Francisco Bay Area's water system and adjustments during a major drought.

    PubMed

    Tipple, Brett J; Jameel, Yusuf; Chau, Thuan H; Mancuso, Christy J; Bowen, Gabriel J; Dufour, Alexis; Chesson, Lesley A; Ehleringer, James R

    2017-08-01

    Water availability and sustainability in the Western United States is a major flashpoint among expanding communities, growing industries, and productive agricultural lands. This issue came to a head in 2015 in the State of California, when the State mandated a 25% reduction in urban water use following a multi-year drought that significantly depleted water resources. Water demands and challenges in supplying water are only expected to intensify as climate perturbations, such as the 2012-2015 California Drought, become more common. As a consequence, there is an increased need to understand linkages between urban centers, water transport and usage, and the impacts of climate change on water resources. To assess if stable hydrogen and oxygen isotope ratios could increase the understanding of these relationships within a megalopolis in the Western United States, we collected and analyzed 723 tap waters across the San Francisco Bay Area during seven collection campaigns spanning 21 months during 2013-2015. The San Francisco Bay Area was selected as it has well-characterized water management strategies and the 2012-2105 California Drought dramatically affected its water resources. Consistent with known water management strategies and previously collected isotope data, we found large spatiotemporal variations in the δ 2 H and δ 18 O values of tap waters within the Bay Area. This is indicative of complex water transport systems and varying municipality-scale management decisions. We observed δ 2 H and δ 18 O values of tap water consistent with waters originating from snowmelt from the Sierra Nevada Mountains, local precipitation, ground water, and partially evaporated reservoir sources. A cluster analysis of the isotope data collected in this study grouped waters from 43 static sampling sites that were associated with specific water utility providers within the San Francisco Bay Area and known management practices. Various management responses to the drought, such as

  17. First isolation of Mycobacterium canariasense from municipal water supplies in Tenerife, Canary Islands, Spain.

    PubMed

    Lecuona, María; Abreu, Rossana; Rodríguez-Álvarez, Cristobalina; Castro, Beatriz; Campos, Silvia; Hernández-Porto, Miriam; Mendoza, Pablo; Arias, Angeles

    2016-01-01

    Nontuberculous mycobacteria (NTM) are common bacteria in water and especially water supply distribution systems. Some species can cause infections, especially in immunocompromised patients and other risk groups. This study examined the frequency of occurrence of NTM in 135 household potable water samples collected from household water taps in Tenerife Island. Mycobacteria species were identified by polymerase chain reaction targeting the 16S rRNA and 16S-23S rRNA regions, and by double-reverse hybridization on a dipstick using colloidal gold-bound and membrane-bound probes (Speed-Oligo(®) Mycobacteria). Some species were identified by sequencing the gene that encodes the 16S rRNA region. NTM were present in 47.4% of the samples. Mycobacterium fortuitum was the NTM isolated most frequently (70.3%), followed by Mycobacterium canariasense (6.3%) and Mycobacterium chelonae (6.3%). Other species were isolated at lower percentage frequencies. We isolated and identified the species M. canariasense in water supplies for public consumption. This species has previously been reported only in hospital settings. The elevated presence of NTM in the water supply indicates that it may be a reservoir for infections caused by recently described species of mycobacteria. Copyright © 2015 Elsevier GmbH. All rights reserved.

  18. Determination of uranium in tap water by ICP-MS.

    PubMed

    El Himri, M; Pastor, A; de la Guardia, M

    2000-05-01

    A fast and accurate procedure has been developed for the determination of uranium at microg L(-1) level in tap and mineral water. The method is based on the direct introduction of samples, without any chemical pre-treatment, into an inductively coupled plasma mass spectrometer (ICP-MS). Uranium was determined at the mass number 238 using Rh as internal standard. The method provides a limit of detection of 2 ng L(-1) and a good repeatability with relative standard deviation values (RSD) about 3% for five independent analyses of samples containing 73 microg L(-1) of uranium. Recovery percentage values found for the determination of uranium in spiked natural samples varied between 91% and 106%. Results obtained are comparable with those found by radiochemical methods for natural samples and of the same order for the certified content of a reference material, thus indicating the accuracy of the ICP-MS procedure without the need of using isotope dilution. A series of mineral and tap waters from different parts of Spain and Morocco were analysed.

  19. The tracing of mycobacteria in drinking water supply systems by culture, conventional, and real time PCRs.

    PubMed

    Klanicova, Barbora; Seda, Jaromir; Slana, Iva; Slany, Michal; Pavlik, Ivo

    2013-12-01

    Mycobacteria are widely present in diverse aquatic habitats, where they can survive for months or years while some species can even proliferate. The resistance of different mycobacterial species to disinfection methods like chlorination or ozonation could result in their presence in the final tap water of consumers. In this study, the culture method, Mycobacterium tuberculosis complex conventional duplex PCR for detection of non-tuberculous mycobacteria (NTM) and quantitative real-time PCR (qPCR) to detect three subspecies of M. avium species (M. a. avium, M. a. hominissuis, and M. a. paratuberculosis) were used to trace their possible path of transmission from the watershed through the reservoir and drinking water plant to raw drinking water and finally to households. A total of 124 samples from four drinking water supply systems in the Czech Republic, 52 dam sediments, 34 water treatment plant sludge samples, and 38 tap water household sediments, were analyzed. NTM of 11 different species were isolated by culture from 42 (33.9 %) samples; the most prevalent were M. gordonae (16.7 %), M. triplex (14.3 %), M. lentiflavum (9.5 %), M. a. avium (7.1 %), M. montefiorenase (7.1 %), and M. nonchromogenicum (7.1 %). NTM DNA was detected in 92 (76.7 %) samples. By qPCR analysis a statistically significant decrease (P < 0.01) was observed along the route from the reservoir (dam sediments), through water treatment sludge and finally to household sediments. The concentrations ranged from 10(0) to 10(4) DNA cells/g. It was confirmed that drinking water supply systems (watershed-reservoir-drinking water treatment plant-household) might be a potential transmission route for mycobacteria.

  20. Natural fluoride levels from public water supplies in Piauí State, Brazil.

    PubMed

    Silva, Josiene Saibrosa da; Moreno, Wallesk Gomes; Forte, Franklin Delano Soares; Sampaio, Fábio Correia

    2009-01-01

    The aim of this work was to determine the natural fluoride concentrations in public water supplies in Piauí State, Brazil, in order to identify cities in risk for high prevalence of dental fluorosis. For each city, two samples of drinking water were collected in the urban area: one from the main public water supply and another from a public or residential tap from the same source. Fluoride analyses were carried out in duplicate using a specific ion electrode and TISAB II. From a total of 222 cities in Piauí, 164 (73.8%) samples were analyzed. Urban population in these towns corresponds to 92.5% of the whole state with an estimated population of 1,654,563 inhabitants from the total urban population (1,788,590 inhabitants). A total of 151 cities showed low fluoride levels (<0.30 mg/L) and 13 were just below optimum fluoride concentration in the drinking water (0.31-0.59 mg/L). High natural fluoride concentration above 0.81 mg/L was not observed in any of the surveyed cities. As a conclusion, most of the cities in Piauí have low fluoride concentration in the drinking water. The risk for a high prevalence of dental fluorosis in these urban areas due to natural fluoride in the water supplies is very unlikely. Thus, surveys about the dental fluorosis prevalence in Piauí should be related with data about the consumption of fluoridated dentifrices and other fluoride sources.

  1. 9. Tower building. Hot water tap floor shown. Mixing vat ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    9. Tower building. Hot water tap floor shown. Mixing vat at center level. Juices mix and flow and left lower level. Copper kettles are down below view level. Looking toward front of building. - Tivoli-Union Brewery, 1320-1348 Tenth Street, Denver, Denver County, CO

  2. Does improved access to water supply by rural households enhance the concept of safe water at the point of use? A case study from deep rural South Africa.

    PubMed

    Jagals, P

    2006-01-01

    The concept of safe water is defined by three principles: the health-related quality must be suitable, the supply/source must be accessible and the water must constantly be available in quantities sufficient for the intended use. If any one (or more) of these three elements is missing from a water services improvement programme, providing safe water is not successfully achieved. A study in a deep rural area in South Africa showed that providing small communities, using untreated river water as their only water source, with good quality water through a piped distribution system and accessible at communal taps did not fall within our parameters of safe water. The parameters for measuring the three principles were: absence of Escherichia coli in drinking water samples; accessibility by improving tap distances to within 200 m from each household; availability by assessing whether households have at least 25 L per person per day. Results show that although E. coli levels were reduced significantly, households were still consuming water with E. coli numbers at non-compliant levels. Access (distance) was improved from an average of 750 m from households to river source to an average of 120 m to new on-tap source points. This did not result in significant increases in household quantities, which on average remained around 18 L per person per day.

  3. Risk Assessment of Exposure to Lead in Tap Water among Residents of Seri Kembangan, Selangor State, Malaysia

    PubMed Central

    C. S., Lim; M. S., Shaharuddin; W. Y., Sam

    2013-01-01

    Introduction: A cross sectional study was conducted to estimate risk of exposure to lead via tap water ingestion pathway for the population of Seri Kembangan (SK). Methodology: By using purposive sampling method, 100 respondents who fulfilled the inclusive criteria were selected from different housing areas of SK based on geographical population distribution. Residents with filtration systems installed were excluded from the study. Questionnaires were administered to determine water consumption-related information and demographics. Two water samples (first-flushed and fully-flushed samples) were collected from kitchen tap of each household using HDPE bottles. A total of 200 water samples were collected and lead concentrations were determined using a Graphite Furnace Atomic Absorption Spectrophotometer (GFAAS). Results: Mean lead concentration in first-flushed samples was 3.041± SD 6.967µg/L and 1.064± SD 1.103µg/L for fully-flushed samples. Of the first-flushed samples, four (4) had exceeded the National Drinking Water Quality Standard (NDWQS) lead limit value of 10µg/L while none of the fully-flushed samples had lead concentration exceeded the limit. There was a significant difference between first-flushed samples and fully-flushed samples and flushing had elicited a significant change in lead concentration in the water (Z = -5.880, p<0.05). It was also found that lead concentration in both first-flushed and fully flushed samples was not significantly different across nine (9) areas of Seri Kembangan (p>0.05). Serdang Jaya was found to have the highest lead concentration in first-flushed water (mean= 10.44± SD 17.83µg/L) while Taman Universiti Indah had the highest lead concentration in fully-flushed water (mean=1.45± SD 1.83µg/L). Exposure assessment found that the mean chronic daily intake (CDI) was 0.028± SD 0.034µgday-1kg-1. None of the hazard quotient (HQ) value was found to be greater than 1. Conclusion: The overall quality of water supply in SK

  4. Risk assessment of exposure to lead in tap water among residents of Seri Kembangan, Selangor state, Malaysia.

    PubMed

    Lim, C S; Shaharuddin, M S; Sam, W Y

    2012-11-21

    A cross sectional study was conducted to estimate risk of exposure to lead via tap water ingestion pathway for the population of Seri Kembangan (SK). By using purposive sampling method, 100 respondents who fulfilled the inclusive criteria were selected from different housing areas of SK based on geographical population distribution. Residents with filtration systems installed were excluded from the study. Questionnaires were administered to determine water consumption-related information and demographics. Two water samples (first-flushed and fully-flushed samples) were collected from kitchen tap of each household using HDPE bottles. A total of 200 water samples were collected and lead concentrations were determined using a Graphite Furnace Atomic Absorption Spectrophotometer (GFAAS). Mean lead concentration in first-flushed samples was 3.041± SD 6.967µg/L and 1.064± SD 1.103µg/L for fully-flushed samples. Of the first-flushed samples, four (4) had exceeded the National Drinking Water Quality Standard (NDWQS) lead limit value of 10µg/L while none of the fully-flushed samples had lead concentration exceeded the limit. There was a significant difference between first-flushed samples and fully-flushed samples and flushing had elicited a significant change in lead concentration in the water (Z = -5.880, p<0.05). It was also found that lead concentration in both first-flushed and fully flushed samples was not significantly different across nine (9) areas of Seri Kembangan (p>0.05). Serdang Jaya was found to have the highest lead concentration in first-flushed water (mean= 10.44± SD 17.83µg/L) while Taman Universiti Indah had the highest lead concentration in fully-flushed water (mean=1.45± SD 1.83µg/L). Exposure assessment found that the mean chronic daily intake (CDI) was 0.028± SD 0.034µgday-1kg-1. None of the hazard quotient (HQ) value was found to be greater than 1. The overall quality of water supply in SK was satisfactory because most of the

  5. Biofilm formation in an experimental water distribution system: the contamination of non-touch sensor taps and the implication for healthcare.

    PubMed

    Moore, Ginny; Stevenson, David; Thompson, Katy-Anne; Parks, Simon; Ngabo, Didier; Bennett, Allan M; Walker, Jimmy T

    2015-01-01

    Hospital tap water is a recognised source of Pseudomonas aeruginosa. U.K. guidance documents recommend measures to control/minimise the risk of P. aeruginosa in augmented care units but these are based on limited scientific evidence. An experimental water distribution system was designed to investigate colonisation of hospital tap components. P. aeruginosa was injected into 27 individual tap 'assemblies'. Taps were subsequently flushed twice daily and contamination levels monitored over two years. Tap assemblies were systematically dismantled and assessed microbiologically and the effect of removing potentially contaminated components was determined. P. aeruginosa was repeatedly recovered from the tap water at levels above the augmented care alert level. The organism was recovered from all dismantled solenoid valves with colonisation of the ethylene propylene diene monomer (EPDM) diaphragm confirmed by microscopy. Removing the solenoid valves reduced P. aeruginosa counts in the water to below detectable levels. This effect was immediate and sustained, implicating the solenoid diaphragm as the primary contamination source.

  6. Comparing grey water versus tap water and coal ash versus perlite on growth of two plant species on green roofs.

    PubMed

    Agra, Har'el; Solodar, Ariel; Bawab, Omar; Levy, Shay; Kadas, Gyongyver J; Blaustein, Leon; Greenbaum, Noam

    2018-08-15

    Green roofs provide important ecosystem services in urban areas. In Mediterranean and other semi-arid climate regions, most perennial plants on green roofs need to be irrigated during the dry season. However, the use of freshwater in such regions is scarce. Therefore, the possibility of using grey water should be examined. Coal ash, produced primarily from the burning of coal in power plants, constitutes an environmental contaminant that should be disposed. One option is to use ash as a growing substrate for plants. Here, we compare the effects of irrigating with grey- versus tap-water and using ash versus perlite as growing substrates in green roofs. The study was conducted in northern Israel in a Mediterranean climate. The design was full factorial with three factors: water-type (grey or tap-water)×substrate-type (coal ash vs perlite)×plant species (Phyla nodiflora, Convolvulus mauritanicus or no-plant). The development of plants and the quality of drainage water along the season, as well as quality of the used substrates were monitored. Both plant species developed well under all the experimental conditions with no effect of water type or substrate type. Under all treatments, both plant species enhanced electrical conductivity (EC) and chemical oxygen demand (COD) of the drainage water. In the summer, EC and COD reached levels that are unacceptable in water and are intended to be reused for irrigation. We conclude that irrigating with grey water and using coal ash as a growth substrate can both be implemented in green roofs. The drainage from tap water as well as from grey water can be further used for irrigating the roof, but for that, COD and EC levels must be lowered by adding a sufficient amount of tap water before reusing. Copyright © 2018 Elsevier B.V. All rights reserved.

  7. Tap versus bottled water consumption: The influence of social norms, affect and image on consumer choice.

    PubMed

    Etale, Anita; Jobin, Marilou; Siegrist, Michael

    2018-02-01

    What drives consumers to choose bottled water instead of tap water where the latter is safe, accessible, costs far less, and in spite of its environmental impacts? This research investigates the influence of hitherto unexplored psychological drivers in an attempt to generate a more holistic understanding of the phenomenon, and strategies for designing more effective consumption reduction campaigns. Using data from an internet survey of Swiss and German respondents (N = 849) we investigated the role of, social norms, affect and image on water consumption. Results suggest that these psychological factors play a role in water consumption choice. Convenience was the only contextual predictor - the inconvenience of transporting bottled water has a negative effect on its consumption, and a positive effect on tap water consumption. Although concern about the effect of bottled water on the environment was not a significant predictor of tap water consumption, we found that for some people, a link exists between environmental concern and consumption choice. Ways through which consumers may be more effectively influenced towards environmentally-friendly consumption are discussed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Detection of enteroviruses in untreated and treated drinking water supplies in South Africa.

    PubMed

    Ehlers, M M; Grabow, W O K; Pavlov, D N

    2005-06-01

    drinking water that does not exceed acceptable health risks. More reliable approaches to ensure acceptable safety of drinking water supplies may be based on control by multiple-barrier principles from catchment to tap using hazard assessment and critical control point (HACCP) principles.

  9. Widespread molecular detection of Legionella pneumophila Serogroup 1 in cold water taps across the United States.

    PubMed

    Donohue, Maura J; O'Connell, Katharine; Vesper, Stephen J; Mistry, Jatin H; King, Dawn; Kostich, Mitch; Pfaller, Stacy

    2014-03-18

    In the United States, 6,868 cases of legionellosis were reported to the Center for Disease Control and Prevention in 2009-2010. Of these reports, it is estimated that 84% are caused by the microorganism Legionella pneumophila Serogroup (Sg) 1. Legionella spp. have been isolated and recovered from a variety of natural freshwater environments. Human exposure to L. pneumophila Sg1 may occur from aerosolization and subsequent inhalation of household and facility water. In this study, two primer/probe sets (one able to detect L. pneumophila and the other L. pneumophila Sg1) were determined to be highly sensitive and selective for their respective targets. Over 272 water samples, collected in 2009 and 2010 from 68 public and private water taps across the United States, were analyzed using the two qPCR assays to evaluate the incidence of L. pneumophila Sg1. Nearly half of the taps showed the presence of L. pneumophila Sg1 in one sampling event, and 16% of taps were positive in more than one sampling event. This study is the first United States survey to document the occurrence and colonization of L. pneumophila Sg1 in cold water delivered from point of use taps.

  10. Composition and Dynamics of Bacterial Communities of a Drinking Water Supply System as Assessed by RNA- and DNA-Based 16S rRNA Gene Fingerprinting

    PubMed Central

    Eichler, Stefan; Christen, Richard; Höltje, Claudia; Westphal, Petra; Bötel, Julia; Brettar, Ingrid; Mehling, Arndt; Höfle, Manfred G.

    2006-01-01

    Bacterial community dynamics of a whole drinking water supply system (DWSS) were studied from source to tap. Raw water for this DWSS is provided by two reservoirs with different water characteristics in the Harz mountains of Northern Germany. Samples were taken after different steps of treatment of raw water (i.e., flocculation, sand filtration, and chlorination) and at different points along the supply system to the tap. RNA and DNA were extracted from the sampled water. The 16S rRNA or its genes were partially amplified by reverse transcription-PCR or PCR and analyzed by single-strand conformation polymorphism community fingerprints. The bacterial community structures of the raw water samples from the two reservoirs were very different, but no major changes of these structures occurred after flocculation and sand filtration. Chlorination of the processed raw water strongly affected bacterial community structure, as reflected by the RNA-based fingerprints. This effect was less pronounced for the DNA-based fingerprints. After chlorination, the bacterial community remained rather constant from the storage containers to the tap. Furthermore, the community structure of the tap water did not change substantially for several months. Community composition was assessed by sequencing of abundant bands and phylogenetic analysis of the sequences obtained. The taxonomic compositions of the bacterial communities from both reservoirs were very different at the species level due to their different limnologies. On the other hand, major taxonomic groups, well known to occur in freshwater, such as Alphaproteobacteria, Betaproteobacteria, and Bacteroidetes, were found in both reservoirs. Significant differences in the detection of the major groups were observed between DNA-based and RNA-based fingerprints irrespective of the reservoir. Chlorination of the drinking water seemed to promote growth of nitrifying bacteria. Detailed analysis of the community dynamics of the whole DWSS

  11. From Source Water to Tap Water to Spa and Swimming Pool Water: Effects of Disinfectanta and Precursors and Implications for Exposure and Toxicity

    EPA Science Inventory

    Introduction The current study investigated the effect of different disinfection treatments on the disinfection by-products (DBPs) formed in finished drinking water vs. tap water vs. swimming pool water vs. spa waters. To this end, samples across the complete water pathway (untr...

  12. On-tap passive enrichment, a new way to investigate off-flavor episodes in drinking water.

    PubMed

    Tondelier, Christophe; Thouvenot, Thomas; Genin, Arnaud; Benanou, David

    2009-04-03

    Because taste and odor events in drinking water are often fleeting and unpredictable phenomena, an innovative enrichment sampler has been developed to trap off-flavor compounds directly at the consumer's tap. The ARISTOT (Advanced Relevant Investigation Sampler for Taste & Odor at Tap) consists of a tap adapter in which seven polydimethylsiloxane (PDMS) coated stir bars are placed, allowing the stir bar sorptive extraction (SBSE) of organic compounds during each tap opening. In order to study the efficiency of ARISTOT, a private network pilot unit has been constructed in our laboratory, equipped with four faucets in parallel, solenoid valves for an automation of the system and a mixing chamber to spike drinking water with odorous compounds in order to have homogenously smelling water at each tap. After enrichment, the stir bars are taken out, in-line thermo-desorbed and analyzed by gas chromatography coupled with a mass spectrometer. The results showed the high sensitivity of ARISTOT, which was able to quickly monitor odorous compounds at the sub ng/L level. A "multishot" method was developed to analyze chemicals concentrated on the seven stir bars in only one chromatographic run, thereby increasing the sensitivity of the system. Higher enrichment factors were obtained under low water flow rates or by using longer stir bars and/or stir bars with a higher PDMS film thickness. No significant loss of extracted compounds was reported for flow rates between 2 and 4L/min. This allowed us to spike the stir bars with an internal standard prior to sampling in order to monitor the analytical variations. It was also observed that hot water increases the loss of enriched solutes but the quantification can be corrected by internal standard addition.

  13. [One-time effects of drinking mineral water and tap water enriched with silver nanoparticles on the biochemical markers of liver condition and metabolic parameters in healthy rats].

    PubMed

    Efimenko, N V; Frolkov, V K; Kozlova, V V; Kaisinova, A S; Chalaya, E N

    2017-12-05

     The objective of the present research was to study the influence of tap water enriched with silver nanoparticles (NP) as well as that of «Krasnoarmeysky» and «Essentuki №17» mineral waters after their single administration through the oral gavage to the rats on the metabolism of carbohydrates and lipids, the biochemical markers of the liver condition, and the endocrine profile in the healthy animals.  The laboratory animals (130 male Wistar rats) were allocated to thirteen groups comprised of 10 rats each as follows: 1st group (n=10) intact animals, 2nd group (5 minutes after the administration of silver NP (n=10), 3rd group (15 minutes after the of silver NP), 4th group (60 minutes after the administration of silver NP), 5th group (n=10) (5 minutes after the introduction of the «Krasnoarmeysky» mineral water), 6th group (n=10) (15 min after the introduction of the «Krasnoarmeysky» mineral water), 7th group (n=10), (60 minutes after the introduction of the «Krasnoarmeysky» mineral water) 8th group (n=10) (5 minutes after the introduction of the «Essentuki № 17» mineral water), 9th group (n=10) (15 min after the introduction of the «Essentuki № 7» mineral water) , 10th group (n=10) (60 minutes after the introduction of the «Essentuki №17» mineral water), 11th group (n=10) (5 minutes after administration of tap water (control),12th group (n=10) (15 minutes after administration of tap water (control), and 13th (n=10) group 60 minutes after administration of tap water (control).  The study has demonstrated that the tap water enriched with silver nanoparticles similar to the mineral waters caused stress reactions that are inferior to those induced by «Essentuki №17» mineral water in terms of the magnitude; however, the effect provoked by the tap water was of longer duration. Moreover, the tap water enriched with silver nanoparticles stimulates prooxidant reactions, and inhibit the activity of antioxidant protection. Silver nanoparticles

  14. Endocrine disrupting compounds in drinking water supply system and human health risk implication.

    PubMed

    Wee, Sze Yee; Aris, Ahmad Zaharin

    2017-09-01

    To date, experimental and epidemiological evidence of endocrine disrupting compounds (EDCs) adversely affecting human and animal populations has been widely debated. Notably, human health risk assessment is required for risk mitigation. The lack of human health risk assessment and management may thus unreliably regulate the quality of water resources and efficiency of treatment processes. Therefore, drinking water supply systems (DWSSs) may be still unwarranted in assuring safe access to potable drinking water. Drinking water supply, such as tap water, is an additional and crucial route of human exposure to the health risks associated with EDCs. A holistic system, incorporating continuous research in DWSS monitoring and management using multi-barrier approach, is proposed as a preventive measure to reduce human exposure to the risks associated with EDCs through drinking water consumption. The occurrence of EDCs in DWSSs and corresponding human health risk implications are analyzed using the Needs, Approaches, Benefits, and Challenges (NABC) method. Therefore, this review may act as a supportive tool in protecting human health and environmental quality from EDCs, which is essential for decision-making regarding environmental monitoring and management purposes. Subsequently, the public could have sustainable access to safer and more reliable drinking water. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Investigation of radon level in air and tap water of workplaces at Thailand Institute of Nuclear Technology, Thailand

    NASA Astrophysics Data System (ADS)

    Sola, P.; Youngchuay, U.; Kongsri, S.; Kongtana, A.

    2017-06-01

    Thailand Institute of Nuclear Technology (TINT) has continuously monitored radiation exposure and radionuclide in workplaces specifically radon gas to estimate effective dose for workers. Radon exposure is the second leading cause of lung cancer in the world. In this study, radon in air and tap water at building no. 3, 7, 8, 9 and 18 on Ongkharak site of TINT have been measured for 5 years from 2012 to 2016. Radon level in air and tap water were investigated on 83 stations (workplaces) and 54 samples, respectively. Radon concentrations in air and tap water were measured by using the pulsed ionization chamber (ATMOS 12 DPX). Indoor radon concentrations in air were in the range of 12-138 Bq.m-3 with an average value of 30.13±17.05 Bq.m-3. Radon concentrations in tap water were in the range of 0.10 to 2.89 Bq.l-1 with an average value of 0.51±0.55 Bq.l-1. The results of radon concentrations at TINT were below the US Environmental Protection Agency (US EPA) safety limit of 148 Bq.m-3 and 150 Bq.l-1, for, air and tap water, respectively. The average effective dose for TINT’s workers due to indoor radon exposure was approximately 0.20±0.11 mSv.y-1. The value is 100 times less than the annual dose limit for limit occupational radiation worker defined by the International Commission on Radiological Protection (ICRP). As a result, the TINT’s workplaces are radiologically safe from radon content in air and tap water.

  16. Low entomological impact of new water supply infrastructure in southern Vietnam, with reference to dengue vectors.

    PubMed

    Tran, Hau P; Huynh, Trang T T; Nguyen, Yen T; Kutcher, Simon; O'Rourke, Peter; Marquart, Louise; Ryan, Peter A; Kay, Brian H

    2012-10-01

    We did a prospective study in southern Vietnam where new water infrastructure was added. New 1,200-L tanks may present potential breeding grounds for Aedes aegypti, particularly when sealed lids were not always supplied. Some householders in these communes received a piped water supply, however there was no reduction in water storage practices. The prevalence of Aedes aegypti immatures in tank and tap households reached 73%, but were non-significantly different from each other and from control households that received no infrastructure. In all three communes, standard jars comprised from 48% to 71% of containers but were associated with > 90% of III-IV instars and pupae on occasions. In contrast, project tanks contributed from 0-21% of the total population. Non-functional or no lids were apparent 4 months after installation in 45-76% of new tanks, but there was no difference between communes with lids and without lids.

  17. Occurrence and Distribution of Organophosphate Flame Retardants/Plasticizers in Surface Waters, Tap Water, and Rainwater: Implications for Human Exposure.

    PubMed

    Kim, Un-Jung; Kannan, Kurunthachalam

    2018-04-27

    The occurrence and profiles of 14 triester organophosphate flame retardants (OPFRs) and plasticizers were investigated in surface water, tap water, rainwater, and seawater collected from New York State. In total, 150 samples collected from rivers ( n = 35), lakes ( n = 39), tap water ( n = 58), precipitation/rainwater ( n = 15), and seawater ( n = 3) were analyzed for 14 organophosphate esters (OPEs). An additional nine Hudson River water samples were collected periodically to delineate seasonal trends in OPE levels. The total concentrations of OPEs were found at part-per-trillion ranges, with average concentrations that ranged from 0.01 ng/L for tripropyl phosphate (TPP) in river water to 689 ng/L for tris(2-butoxyethyl)phosphate (TBOEP) in lake water. Tris(1-chloro-2-propyl)phosphate (TCIPP) was the most abundant compound among the investigated OPEs in all types of water. The concentrations of OPEs in river-, lake-, and rainwater were similar but >3 times higher than those found in tap water. Chlorinated alkyl OPFRs accounted for a major proportion of total concentrations. TCIPP, TBOEP, and triethyl phosphate (TEP) were found in >90% of the samples analyzed. Wet deposition fluxes for 14 OPFRs were estimated, on the basis of the concentrations measured in rainwater in Albany, New York, and the values were between 440 and 5250 ng/m 2 . Among several surface water bodies analyzed, samples from the Hudson River and Onondaga Lake contained elevated concentrations of OPEs. Estimated daily intake of OPEs via the ingestion of drinking water was up to 9.65 ng/kg body weight/day.

  18. The Recreational Water Cycle: From Source Water to Tap Water to Spa and Swimming Pool Water: Effects of Disinfectants and Precursors and Implications for Exposure and Toxicity

    EPA Science Inventory

    The current study investigates the effect of different disinfection treatments on the disinfection by-products (DBPs) formed in finished drinking water vs. tap water vs. swimming pool water vs. spa waters. To this end, complete water pathway samples (untreated source waters ->fi...

  19. A method for improving reliability and relevance of LCA reviews: the case of life-cycle greenhouse gas emissions of tap and bottled water.

    PubMed

    Fantin, Valentina; Scalbi, Simona; Ottaviano, Giuseppe; Masoni, Paolo

    2014-04-01

    The purpose of this study is to propose a method for harmonising Life Cycle Assessment (LCA) literature studies on the same product or on different products fulfilling the same function for a reliable and meaningful comparison of their life-cycle environmental impacts. The method is divided in six main steps which aim to rationalize and quicken the efforts needed to carry out the comparison. The steps include: 1) a clear definition of the goal and scope of the review; 2) critical review of the references; 3) identification of significant parameters that have to be harmonised; 4) harmonisation of the parameters; 5) statistical analysis to support the comparison; 6) results and discussion. This approach was then applied to the comparative analysis of the published LCA studies on tap and bottled water production, focussing on Global Warming Potential (GWP) results, with the aim to identify the environmental preferable alternative. A statistical analysis with Wilcoxon's test confirmed that the difference between harmonised GWP values of tap and bottled water was significant. The results obtained from the comparison of the harmonised mean GWP results showed that tap water always has the best environmental performance, even in case of high energy-consuming technologies for drinking water treatments. The strength of the method is that it enables both performing a deep analysis of the LCA literature and obtaining more consistent comparisons across the published LCAs. For these reasons, it can be a valuable tool which provides useful information for both practitioners and decision makers. Finally, its application to the case study allowed both to supply a description of systems variability and to evaluate the importance of several key parameters for tap and bottled water production. The comparative review of LCA studies, with the inclusion of a statistical decision test, can validate and strengthen the final statements of the comparison. Copyright © 2014 Elsevier B.V. All

  20. Efficient electrochemical remediation of microcystin-LR in tap water using designer TiO2@carbon electrodes

    NASA Astrophysics Data System (ADS)

    Sanz Lobón, Germán; Yepez, Alfonso; Garcia, Luane Ferreira; Morais, Ruiter Lima; Vaz, Boniek Gontijo; Carvalho, Veronica Vale; de Oliveira, Gisele Augusto Rodrigues; Luque, Rafael; Gil, Eric De Souza

    2017-02-01

    Microcystin-leucine arginine (MC-LR) is the most abundant and toxic secondary metabolite produced by freshwater cyanobacteria. This toxin has a high potential hazard health due to potential interactions with liver, kidney and the nervous system. The aim of this work was the design of a simple and environmentally friendly electrochemical system based on highly efficient nanostructured electrodes for the removal of MC-LR in tap water. Titania nanoparticles were deposited on carbon (graphite) under a simple and efficient microwave assisted approach for the design of the electrode, further utilized in the electrochemical remediation assays. Parameters including the applied voltage, time of removal and pH (natural tap water or alkaline condition) were investigated in the process, with results pointing to a high removal efficiency for MC-LR (60% in tap water and 90% in alkaline media experiments, under optimized conditions).

  1. Efficient electrochemical remediation of microcystin-LR in tap water using designer TiO2@carbon electrodes

    PubMed Central

    Sanz Lobón, Germán; Yepez, Alfonso; Garcia, Luane Ferreira; Morais, Ruiter Lima; Vaz, Boniek Gontijo; Carvalho, Veronica Vale; de Oliveira, Gisele Augusto Rodrigues; Luque, Rafael; Gil, Eric de Souza

    2017-01-01

    Microcystin-leucine arginine (MC-LR) is the most abundant and toxic secondary metabolite produced by freshwater cyanobacteria. This toxin has a high potential hazard health due to potential interactions with liver, kidney and the nervous system. The aim of this work was the design of a simple and environmentally friendly electrochemical system based on highly efficient nanostructured electrodes for the removal of MC-LR in tap water. Titania nanoparticles were deposited on carbon (graphite) under a simple and efficient microwave assisted approach for the design of the electrode, further utilized in the electrochemical remediation assays. Parameters including the applied voltage, time of removal and pH (natural tap water or alkaline condition) were investigated in the process, with results pointing to a high removal efficiency for MC-LR (60% in tap water and 90% in alkaline media experiments, under optimized conditions). PMID:28145477

  2. Molybdenum distributions and variability in drinking water from England and Wales.

    PubMed

    Smedley, P L; Cooper, D M; Lapworth, D J

    2014-10-01

    An investigation has been carried out of molybdenum in drinking water from a selection of public supply sources and domestic taps across England and Wales. This was to assess concentrations in relation to the World Health Organization (WHO) health-based value for Mo in drinking water of 70 μg/l and the decision to remove the element from the list of formal guideline values. Samples of treated drinking water from 12 water supply works were monitored up to four times over an 18-month period, and 24 domestic taps were sampled from three of their supply areas. Significant (p < 0.05) differences were apparent in Mo concentration between sources. Highest concentrations were derived from groundwater from a sulphide-mineralised catchment, although concentrations were only 1.5 μg/l. Temporal variability within sites was small, and no seasonal effects (p > 0.05) were detected. Tap water samples collected from three towns (North Wales, the English Midlands, and South East England) supplied uniquely by upland reservoir water, river water, and Chalk groundwater, respectively, also showed a remarkable uniformity in Mo concentrations at each location. Within each, the variability was very small between houses (old and new), between pre-flush and post-flush samples, and between the tap water and respective source water samples. The results indicate that water distribution pipework has a negligible effect on supplied tap water Mo concentrations. The findings contrast with those for Cu, Zn, Ni, Pb, and Cd, which showed significant differences (p < 0.05) in concentrations between pre-flush and post-flush tap water samples. In two pre-flush samples, concentrations of Ni or Pb were above drinking water limits, although in all cases, post-flush waters were compliant. The high concentrations, most likely derived from metal pipework in the domestic distribution system, accumulated during overnight stagnation. The concentrations of Mo observed in British drinking water, in

  3. [The value of glucose-positive coliform bacteria and potentially pathogenic bacteria as indicators of epidemiological safety of tap water].

    PubMed

    Zhuravlev, P V; Aleshnia, V V; Panasovets, O P; Morozova, A A; Artemova, T Z; Talaeva, Iu G; Zagaĭnova, A V; Gipp, E K

    2012-01-01

    Due to intensive anthropogenic pollution of water environment generally accepted indicators of epidemic security of water bodies - common bacteria and thermotolerant coliform bacteria do not always permit to obtain an objective characterization of bacterial contamination of tap water. From the point of view of authors the integral index - glucose positive coliform bacteria most adequately reflect the sanitary-hygienic and epidemiological situation of water bodies. In monitoring for bacterial quality of tap water it is advisable to determine glucose positive coliform bacteria, that will provide the relevance of estimation of the epidemiological safety of water use. According to the method developed by the authors the calculation of the index of population risk of acute intestinal infections occurrence in dependence on the quality of tap water in Azov and Tsimlyansk towns.

  4. Ingestion, inhalation, and dermal exposures to chloroform and trichloroethene from tap water.

    PubMed Central

    Weisel, C P; Jo, W K

    1996-01-01

    Individuals are exposed to volatile compounds present in tap water by ingestion, inhalation, and dermal absorption. Traditional risk assessments for water often only consider ingestion exposure to toxic chemicals, even though showering has been shown to increase the body burden of certain chemicals due to inhalation exposure and dermal absorption. We collected and analyzed time-series samples of expired alveolar breath to evaluate changes in concentrations of volatile organic compounds being expired, which reflects the rate of change in the bloodstream due to expiration, metabolism, and absorption into tissues. Analysis of chloroform and trichloethene in expired breath, compounds regulated in water, was also used to determine uptake from tap water by each route (inhalation, ingestion, or absorption). Each route of exposure contributed to the total exposure of these compounds from daily water use. Further, the ingestion dose was completely metabolized before entering the bloodstream, whereas the dose from the other routes was dispersed throughout the body. Thus, differences in potential biologically effective doses depend on route, target organ, and whether the contaminant or metabolite is the biologically active agent. Images Figure 1. A Figure 1. B Figure 1. C Figure 2. A Figure 2. B PMID:8834861

  5. Rapid Detection of Melamine in Tap Water and Milk Using Conjugated "One-Step" Molecularly Imprinted Polymers-Surface Enhanced Raman Spectroscopic Sensor.

    PubMed

    Hu, Yaxi; Lu, Xiaonan

    2016-05-01

    An innovative "one-step" sensor conjugating molecularly imprinted polymers and surface enhanced Raman spectroscopic-active substrate (MIPs-SERS) was investigated for simultaneous extraction and determination of melamine in tap water and milk. This sensor was fabricated by integrating silver nanoparticles (AgNPs) with MIPs synthesized by bulk polymerization of melamine (template), methacrylic acid (functional monomer), ethylene glycol dimethacrylate (cross-linking agent), and 2,2'-azobisisobutyronitrile (initiator). Static and kinetic adsorption tests validated the specific affinity of MIPs-AgNPs to melamine and the rapid adsorption equilibration rate. Principal component analysis segregated SERS spectral features of tap water and milk samples with different melamine concentrations. Partial least squares regression models correlated melamine concentrations in tap water and skim milk with SERS spectral features. The limit of detection (LOD) and limit of quantification (LOQ) of melamine in tap water were determined as 0.0019 and 0.0064 mmol/L, while the LOD and LOQ were 0.0165 and 0.055 mmol/L for the determination of melamine in skim milk. However, this sensor is not ideal to quantify melamine in tap water and skim milk. By conjugating MIPs with SERS-active substrate (that is, AgNPs), reproducibility of SERS spectral features was increased, resulting in more accurate detection. The time required to determine melamine in tap water and milk were 6 and 25 min, respectively. The low LOD, LOQ, and rapid detection confirm the potential of applying this sensor for accurate and high-throughput detection of melamine in tap water and milk. © 2016 Institute of Food Technologists®

  6. Randomised controlled trial of thermostatic mixer valves in reducing bath hot tap water temperature in families with young children in social housing: A protocol

    PubMed Central

    Kendrick, Denise; Stewart, Jane; Coupland, Carol; Hayes, Michael; Hopkins, Nick; McCabe, Debbie; Murphy, Robert; O'Donnell, George; Phillips, Ceri; Radford, David; Ryan, Jackie; Smith, Sherie; Groom, Lindsay; Towner, Elizabeth

    2008-01-01

    Background Each year in the UK 2000 children attend emergency departments and 500 are admitted to hospital following a bath water scald. The long term effects can include disability, disfigurement or psychological harm and repeated skin grafts may be required as the child grows. The costs of treating a severe scald are estimated at 250,000 GBP. Children living in the most deprived wards are at greatest risk of thermal injuries; hospital admission rates are three times that for children living in the least deprived wards. Domestic hot water, which is usually stored at around 60 degrees Celsius, can result in a second-degree burn after 3 seconds and a third-degree burn after 5 seconds. Educational strategies to encourage testing of tap water temperature and reduction of hot water thermostat settings have largely proved unsuccessful. Legislation in the USA mandating pre-setting hot water heater thermostats at 49 degrees Celsius was effective in reducing scald injuries, suggesting passive measures may have a greater impact. Thermostatic mixer valves (TMVs), recently developed for the domestic market, fitted across the hot and cold water supply pipes of the bath, allow delivery of water set at a fixed temperature from the hot bath tap. These valves therefore offer the potential to reduce scald injuries. Design/Methods A pragmatic, randomised controlled trial to assess the effectiveness of TMVs in reducing bath hot tap water temperatures in the homes of families with young children in rented social housing. Two parallel arms include an intervention group and a control group where the intervention will be deferred. The intervention will consist of fitting a TMV (set at 44 degrees Celsius) by a qualified plumber and provision of educational materials. The control arm will not receive a TMV or the educational materials for the study duration but will be offered the intervention after collection of follow-up data 12 months post randomisation. The primary outcome measure will

  7. Whole genome and transcriptome analyses of environmental antibiotic sensitive and multi-resistant Pseudomonas aeruginosa isolates exposed to waste water and tap water

    PubMed Central

    Schwartz, Thomas; Armant, Olivier; Bretschneider, Nancy; Hahn, Alexander; Kirchen, Silke; Seifert, Martin; Dötsch, Andreas

    2015-01-01

    The fitness of sensitive and resistant Pseudomonas aeruginosa in different aquatic environments depends on genetic capacities and transcriptional regulation. Therefore, an antibiotic-sensitive isolate PA30 and a multi-resistant isolate PA49 originating from waste waters were compared via whole genome and transcriptome Illumina sequencing after exposure to municipal waste water and tap water. A number of different genomic islands (e.g. PAGIs, PAPIs) were identified in the two environmental isolates beside the highly conserved core genome. Exposure to tap water and waste water exhibited similar transcriptional impacts on several gene clusters (antibiotic and metal resistance, genetic mobile elements, efflux pumps) in both environmental P. aeruginosa isolates. The MexCD-OprJ efflux pump was overexpressed in PA49 in response to waste water. The expression of resistance genes, genetic mobile elements in PA49 was independent from the water matrix. Consistently, the antibiotic sensitive strain PA30 did not show any difference in expression of the intrinsic resistance determinants and genetic mobile elements. Thus, the exposure of both isolates to polluted waste water and oligotrophic tap water resulted in similar expression profiles of mentioned genes. However, changes in environmental milieus resulted in rather unspecific transcriptional responses than selected and stimuli-specific gene regulation. PMID:25186059

  8. Influence of storage conditions on aluminum concentrations in serum, dialysis fluid, urine, and tap water.

    PubMed

    Wilhelm, M; Ohnesorge, F K

    1990-01-01

    The influence of storage temperature, vessel type, and treatment on alterations of aluminum (Al) concentrations in serum, urine, and dialysis fluid samples was studied at three different concentrations for each sample over an 18-month period. Furthermore, the influence of acidification on Al levels in tap water, urine, and dialysis fluid samples was studied over a four-month period. Al was measured by atomic absorption spectrometry. Sample storage in glass vessels was unsuitable, whereas only minor alterations of Al levels were observed with storage in polypropylene tubes, polystyrene tubes, and Monovettes. By using appropriate plastic containers, acid washing of the vessels showed no improvement. Frozen storage was superior compared with 4 degrees C, whereas storage at -80 degrees C offered no advantage compared with storage at -20 degrees C. Acidification of tap water samples was necessary to stabilize Al levels during storage. No striking effect of acidification on Al levels in urine and dialysis fluid samples was found. It is concluded that longterm storage of serum, urine, tap water, and dialysis fluid samples is possible if appropriate conditions are used.

  9. Can we remove iodine-131 from tap water in Japan by boiling? - Experimental testing in response to the Fukushima Daiichi Nuclear Power Plant accident.

    PubMed

    Tagami, K; Uchida, S

    2011-08-01

    Iodine-131 concentrations in tap water higher than 100 BqL(-1) were reported by several local governments in Japan following the Fukushima Daiichi Nuclear Power Plant accident. Some individuals in the emergency-response community recommended the boiling of tap water to remove iodine-131. However, the tap water boiling tests in this study showed no iodine-131 loss from the tap water with either short-term boiling (1-10 min) or prolonged boiling (up to 30 min) resulting in up to 3-fold volume reductions. In this situation, boiling was shown to be not effective in removing iodine-131 from tap water; indeed even higher concentrations may result from the liquid-volume reduction accompanying this process. Copyright © 2011 Elsevier Ltd. All rights reserved.

  10. [The significance of glucose positive coliform bacteria and potentially pathogenic bacteria as an indicator of epidemiological safety of tap water].

    PubMed

    Zhuravlev, P V; Aleshnya, V V; Panasovets, O P; Morozova, A A; Artemova, T Z; Talaeva, Yu G; Zagaynova, A V

    2013-01-01

    Due to intensive anthropogenic pollution of water environment generally accepted indicators of epidemic security of water bodies--common bacteria (CB) and thermotolerant coliform bacteria (TCB) do not always permit to obtain an objective characterization of bacterial contamination of tap water. From the point of view of authors the integral index--glucose positive coliform bacteria most adequately reflect the sanitary-hygienic and epidemiological situation of water bodies. In monitoring for bacterial quality of tap water it is advisable to determine glucose positive coliform bacteria, that will provide the relevance of estimation of the epidemiological safety of water use. According to the method developed by the authors the calculation of the index of population risk of acute intestinal infections (AHI) occurrence in dependence on the quality of tap water in Azov and Tsimlyansk towns.

  11. 40 CFR 141.86 - Monitoring requirements for lead and copper in tap water.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 23 2014-07-01 2014-07-01 false Monitoring requirements for lead and... § 141.86 Monitoring requirements for lead and copper in tap water. (a) Sample site location. (1) By the applicable date for commencement of monitoring under paragraph (d)(1) of this section, each water system...

  12. 40 CFR 141.86 - Monitoring requirements for lead and copper in tap water.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 24 2013-07-01 2013-07-01 false Monitoring requirements for lead and... § 141.86 Monitoring requirements for lead and copper in tap water. (a) Sample site location. (1) By the applicable date for commencement of monitoring under paragraph (d)(1) of this section, each water system...

  13. 40 CFR 141.86 - Monitoring requirements for lead and copper in tap water.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 24 2012-07-01 2012-07-01 false Monitoring requirements for lead and... § 141.86 Monitoring requirements for lead and copper in tap water. (a) Sample site location. (1) By the applicable date for commencement of monitoring under paragraph (d)(1) of this section, each water system...

  14. TIME TO PREGNANCY IN RELATION TO TOTAL TRIHALOMETHANE LEVELS IN TAP WATER

    EPA Science Inventory

    Time to pregnancy in relation to total trihalomethane levels in tap water
    Shanna H. Swan, Cuirong Ren, Gayle C. Windham, Laura Fenster, Kirsten Waller. (University of Missouri and California Department of Health Services).

    We have previously reported increased risks o...

  15. Water quality monitoring records for estimating tap water arsenic and nitrate: a validation study.

    PubMed

    Searles Nielsen, Susan; Kuehn, Carrie M; Mueller, Beth A

    2010-01-28

    Tap water may be an important source of exposure to arsenic and nitrate. Obtaining and analyzing samples in the context of large studies of health effects can be expensive. As an alternative, studies might estimate contaminant levels in individual homes by using publicly available water quality monitoring records, either alone or in combination with geographic information systems (GIS). We examined the validity of records-based methods in Washington State, where arsenic and nitrate contamination is prevalent but generally observed at modest levels. Laboratory analysis of samples from 107 homes (median 0.6 microg/L arsenic, median 0.4 mg/L nitrate as nitrogen) served as our "gold standard." Using Spearman's rho we compared these measures to estimates obtained using only the homes' street addresses and recent and/or historical measures from publicly monitored water sources within specified distances (radii) ranging from one half mile to 10 miles. Agreement improved as distance decreased, but the proportion of homes for which we could estimate summary measures also decreased. When including all homes, agreement was 0.05-0.24 for arsenic (8 miles), and 0.31-0.33 for nitrate (6 miles). Focusing on the closest source yielded little improvement. Agreement was greatest among homes with private wells. For homes on a water system, agreement improved considerably if we included only sources serving the relevant system (rho = 0.29 for arsenic, rho = 0.60 for nitrate). Historical water quality databases show some promise for categorizing epidemiologic study participants in terms of relative tap water nitrate levels. Nonetheless, such records-based methods must be used with caution, and their use for arsenic may be limited.

  16. Relationship between tap water hardness, magnesium, and calcium concentration and mortality due to ischemic heart disease or stroke in The Netherlands.

    PubMed

    Leurs, Lina J; Schouten, Leo J; Mons, Margreet N; Goldbohm, R Alexandra; van den Brandt, Piet A

    2010-03-01

    Conflicting results on the relationship between the hardness of drinking water and mortality related to ischemic heart disease (IHD) or stroke have been reported. We investigated the possible association between tap water calcium or magnesium concentration and total hardness and IHD mortality or stroke mortality. In 1986, a cohort of 120,852 men and women aged 5569 years provided detailed information on dietary and other lifestyle habits. Follow-up for mortality until 1996 was established by linking data from the Central Bureau of Genealogy and Statistics Netherlands. We calculated tap water hardness for each postal code using information obtained from all pumping stations in the Netherlands. Tap water hardness was categorized as soft [< 1.5 mmol/L calcium carbonate (CaCO3)], medium hard (1.62.0 mmol/L CaCO3), and hard (> 2.0 mmol/L CaCO3). The multivariate case-cohort analysis was based on 1,944 IHD mortality and 779 stroke mortality cases and 4,114 subcohort members. For both men and women, we observed no relationship between tap water hardness and IHD mortality [hard vs. soft water: hazard ratio (HR) = 1.03; 95% confidence interval (CI), 0.851.28 for men and HR = 0.93; 95% CI, 0.711.21 for women) and stroke mortality (hard vs. soft water HR = 0.90; 95% CI, 0.661.21 and HR = 0.86; 95% CI, 0.621.20, respectively). For men with the 20% lowest dietary magnesium intake, an inverse association was observed between tap water magnesium intake and stroke mortality (HR per 1 mg/L intake = 0.75; 95% CI, 0.610.91), whereas for women with the 20% lowest dietary magnesium intake, the opposite was observed. We found no evidence for an overall significant association between tap water hardness, magnesium or calcium concentrations, and IHD mortality or stroke mortality. More research is needed to investigate the effect of tap water magnesium on IHD mortality or stroke mortality in subjects with low dietary magnesium intake.

  17. Inequalities in microbial contamination of drinking water supplies in urban areas: the case of Lilongwe, Malawi.

    PubMed

    Boakye-Ansah, Akosua Sarpong; Ferrero, Giuliana; Rusca, Maria; van der Zaag, Pieter

    2016-10-01

    Over past decades strategies for improving access to drinking water in cities of the Global South have mainly focused on increasing coverage, while water quality has often been overlooked. This paper focuses on drinking water quality in the centralized water supply network of Lilongwe, the capital of Malawi. It shows how microbial contamination of drinking water is unequally distributed to consumers in low-income (unplanned areas) and higher-income neighbourhoods (planned areas). Microbial contamination and residual disinfectant concentration were measured in 170 water samples collected from in-house taps in high-income areas and from kiosks and water storage facilities in low-income areas between November 2014 and January 2015. Faecal contamination (Escherichia coli) was detected in 10% of the 40 samples collected from planned areas, in 59% of the 64 samples collected from kiosks in the unplanned areas and in 75% of the 32 samples of water stored at household level. Differences in water quality in planned and unplanned areas were found to be statistically significant at p < 0.05. Finally, the paper shows how the inequalities in microbial contamination of drinking water are produced by decisions both on the development of the water supply infrastructure and on how this is operated and maintained.

  18. Whole genome and transcriptome analyses of environmental antibiotic sensitive and multi-resistant Pseudomonas aeruginosa isolates exposed to waste water and tap water.

    PubMed

    Schwartz, Thomas; Armant, Olivier; Bretschneider, Nancy; Hahn, Alexander; Kirchen, Silke; Seifert, Martin; Dötsch, Andreas

    2015-01-01

    The fitness of sensitive and resistant Pseudomonas aeruginosa in different aquatic environments depends on genetic capacities and transcriptional regulation. Therefore, an antibiotic-sensitive isolate PA30 and a multi-resistant isolate PA49 originating from waste waters were compared via whole genome and transcriptome Illumina sequencing after exposure to municipal waste water and tap water. A number of different genomic islands (e.g. PAGIs, PAPIs) were identified in the two environmental isolates beside the highly conserved core genome. Exposure to tap water and waste water exhibited similar transcriptional impacts on several gene clusters (antibiotic and metal resistance, genetic mobile elements, efflux pumps) in both environmental P. aeruginosa isolates. The MexCD-OprJ efflux pump was overexpressed in PA49 in response to waste water. The expression of resistance genes, genetic mobile elements in PA49 was independent from the water matrix. Consistently, the antibiotic sensitive strain PA30 did not show any difference in expression of the intrinsic resistance determinants and genetic mobile elements. Thus, the exposure of both isolates to polluted waste water and oligotrophic tap water resulted in similar expression profiles of mentioned genes. However, changes in environmental milieus resulted in rather unspecific transcriptional responses than selected and stimuli-specific gene regulation. © 2014 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.

  19. [Nitrate concentrations in tap water in Spain].

    PubMed

    Vitoria, Isidro; Maraver, Francisco; Sánchez-Valverde, Félix; Armijo, Francisco

    2015-01-01

    To determine nitrate concentrations in drinking water in a sample of Spanish cities. We used ion chromatography to analyze the nitrate concentrations of public drinking water in 108 Spanish municipalities with more than 50,000 inhabitants (supplying 21,290,707 potential individuals). The samples were collected between January and April 2012. The total number of samples tested was 324. The median nitrate concentration was 3.47 mg/L (range: 0.38-66.76; interquartile range: 4.51). The water from 94% of the municipalities contained less than 15 mg/L. The concentration was higher than 25mg/L in only 3 municipalities and was greater than 50mg/L in one. Nitrate levels in most public drinking water supplies in municipalities inhabited by almost half of the Spanish population are below 15 mg/L. Copyright © 2014 SESPAS. Published by Elsevier Espana. All rights reserved.

  20. The relation of communication to risk judgment and preventive behavior related to lead in tap water.

    PubMed

    Griffin, R J; Dunwoody, S

    2000-01-01

    More and more communities are becoming concerned about health risks posed by lead and other health hazards in their drinking water. Our study, applying the model of innovation diffusion to the adoption of preventive health behaviors, found that reliance on health professionals for information about lead in tap water was associated with residents perceiving risk from this hazard, their sense of efficacy in dealing with it, and their adoption of preventive behaviors. Mass media and pamphlets mailed directly to residents were relatively ineffective. Results suggest that interpersonal channels may be the best way to reach individuals who live in areas of highest risk from tap water lead.

  1. 46 CFR 108.467 - Water supply.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false Water supply. 108.467 Section 108.467 Shipping COAST... Fire Extinguishing Systems Foam Extinguishing Systems § 108.467 Water supply. The water supply of a foam extinguishing system must not be the water supply of the fire main system on the unit unless when...

  2. 46 CFR 108.467 - Water supply.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Water supply. 108.467 Section 108.467 Shipping COAST... Fire Extinguishing Systems Foam Extinguishing Systems § 108.467 Water supply. The water supply of a foam extinguishing system must not be the water supply of the fire main system on the unit unless when...

  3. 46 CFR 108.467 - Water supply.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 4 2013-10-01 2013-10-01 false Water supply. 108.467 Section 108.467 Shipping COAST... Fire Extinguishing Systems Foam Extinguishing Systems § 108.467 Water supply. The water supply of a foam extinguishing system must not be the water supply of the fire main system on the unit unless when...

  4. 46 CFR 108.467 - Water supply.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 4 2014-10-01 2014-10-01 false Water supply. 108.467 Section 108.467 Shipping COAST... Fire Extinguishing Systems Foam Extinguishing Systems § 108.467 Water supply. The water supply of a foam extinguishing system must not be the water supply of the fire main system on the unit unless when...

  5. 46 CFR 108.467 - Water supply.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 4 2012-10-01 2012-10-01 false Water supply. 108.467 Section 108.467 Shipping COAST... Fire Extinguishing Systems Foam Extinguishing Systems § 108.467 Water supply. The water supply of a foam extinguishing system must not be the water supply of the fire main system on the unit unless when...

  6. Water Supply Treatment Sustainability of Panching Water Supply Treatment Process - Water Footprint Approach

    NASA Astrophysics Data System (ADS)

    Aziz, Edriyana A.; Malek, Marlinda Abdul; Moni, Syazwan N.; Zulkifli, Nabil F.; Hadi, Iqmal H.

    2018-03-01

    In many parts of the world, freshwater is scarce and overexploited. The purpose of this study is to determine the water footprint of Water Supply Treatment Process (WSTP) at Panching Water Treatment Plant (WTP) as well as to identify the sustainability of the Sg. Kuantan as an intake resource due to the effect of land use development. The total water footprint (WF) will be calculated by using WF accounting manual. The results obtained shows that the water intake resource is still available but it is believed that it will not be able to cope with the increasing WF. The increment of water demand percentage by 1.8% from 2015 to 2016 has increased 11 times higher of the water footprint percentage, 19.9%. This result shows that the water consumption during the water supply treatment process is two times higher than the demand thus it shows the inefficient of the water management

  7. Survey and significance of filamentous fungi from tap water.

    PubMed

    Gonçalves, Ana B; Paterson, R Russell M; Lima, Nelson

    2006-05-01

    Fungi in drinking water are involved in the production of tastes and odours in water. Health problems are possible, originating from mycotoxins, animal pathogens and allergies. This report concerns the surveillance of mesophilic fungi in tap water and assessment of their potential for causing problems. The methods for the determination of the filamentous fungi (ff) were filtering, swabbing and baiting. Tap water, half-strength corn meal, neopeptone-glucose rose Bengal aureomycin (NGRBA) and oomycete selective agars for the enumeration of colony forming units (cfu) were used. Samples were taken consecutively over 16 months. Filtration and NGRBA gave the highest ff counts. A total of 340 taxa were isolated. There appeared to be a negative correlation between bacterial and yeast (b/y) and ff counts. Highest counts were found in winter months for ff and in the warmer months for b/y. Penicillium (40.6%) and Acremonium (38.8%) were the most frequently isolated ff. There was a difference in the pattern of isolation of the key taxa with season: penicillia predominated in early summer and Acremonium in winter. P. expansum was isolated in high numbers in May 2004. This species is associated with the production of the mycotoxin patulin and the odour secondary metabolite geosmin. P. brevicompactum was detected throughout the sampling period and is known to produce the immunosuppressive drug mycophenolic acid. Acremonium is associated with ocentol production which is responsible for bad tastes and flavours. The remaining taxa were Phialophora sp. (4.1%), Cladosporium sp. (3.5%), Rhizopus stolonifer (2.9%), Chaetomium sp. (0.6%), Alternaria sp. (0.3%), Aspergillus sp. (0.3%), mycelia sterilia (2.6%) and unidentified (6.2%). It is emphasised that few Aspergillus and no Fusarium strains were isolated. Rhizopus stolonifer was obtained. However, none of the fungi isolated at mesophilic temperature used could be described as being involved with pathogenicity per se.

  8. Overnight stagnation of drinking water in household taps induces microbial growth and changes in community composition.

    PubMed

    Lautenschlager, Karin; Boon, Nico; Wang, Yingying; Egli, Thomas; Hammes, Frederik

    2010-09-01

    Drinking water quality is routinely monitored in the distribution network but not inside households at the point of consumption. Fluctuating temperatures, residence times (stagnation), pipe materials and decreasing pipe diameters can promote bacterial growth in buildings. To test the influence of stagnation in households on the bacterial cell concentrations and composition, water was sampled from 10 separate households after overnight stagnation and after flushing the taps. Cell concentrations, measured by flow cytometry, increased (2-3-fold) in all water samples after stagnation. This increase was also observed in adenosine tri-phosphate (ATP) concentrations (2-18-fold) and heterotrophic plate counts (4-580-fold). An observed increase in cell biovolume and ATP-per-cell concentrations furthermore suggests that the increase in cell concentrations was due to microbial growth. After 5 min flushing of the taps, cell concentrations and water temperature decreased to the level generally found in the drinking water network. Denaturing gradient gel electrophoresis also showed a change in the microbial composition after stagnation. This study showed that water stagnation in household pipes results in considerable microbial changes. While hygienic risk was not directly assessed, it emphasizes the need for the development of good material validation methods, recommendations and spot tests for in-house water installations. However, a simple mitigation strategy would be a short flushing of taps prior to use. Copyright © 2010 Elsevier Ltd. All rights reserved.

  9. Towards metering tap water by Lorentz force velocimetry

    NASA Astrophysics Data System (ADS)

    Vasilyan, Suren; Ebert, Reschad; Weidner, Markus; Rivero, Michel; Halbedel, Bernd; Resagk, Christian; Fröhlich, Thomas

    2015-11-01

    In this paper, we present enhanced flow rate measurement by applying the contactless Lorentz Force Velocimetry (LFV) technique. Particularly, we show that the LFV is a feasible technique for metering the flow rate of salt water in a rectangular channel. The measurements of the Lorentz forces as a function of the flow rate are presented for different electrical conductivities of the salt water. The smallest value of conductivity is achieved at 0.06 S·m-1, which corresponds to the typical value of tap water. In comparison with previous results, the performance of LFV is improved by approximately 2 orders of magnitude by means of a high-precision differential force measurement setup. Furthermore, the sensitivity curve and the calibration factor of the flowmeter are provided based on extensive measurements for the flow velocities ranging from 0.2 to 2.5 m·s-1 and conductivities ranging from 0.06 to 10 S·m-1.

  10. Calcium contained tap water phenomena: students misconception patterns of acids-bases concept

    NASA Astrophysics Data System (ADS)

    Liliasari, S.; Albaiti, A.; Wahyudi, A.

    2018-05-01

    Acids and bases concept is very important and fundamental concept in learning chemistry. It is one of the chemistry subjects considered as an abstract and difficult concept to understand. The aim of this research was to explore student’s misconception pattern about acids and bases phenomena in daily life, such as calcium contained tap water. This was a qualitative research with descriptive methods. Participants were 546 undergraduate students of chemistry education and chemistry program, and graduate students of chemistry education in West Java, Indonesia. The test to explore students’ misconception about this phenomena was essay test. The results showed that there were five patterns of students’ misconception in explaining the phenomena of calcium carbonate precipitation on heating tap water. Students used irrelevant concepts in explaining this phenomena, i.e. temporary hardness, coagulation, density, and phase concepts. No students had right answer in explaining this phenomena. This research contributes to design meaningful learning and to achieve better understanding.

  11. Water stress, water salience, and the implications for water supply planning

    NASA Astrophysics Data System (ADS)

    Garcia, M. E.; Islam, S.

    2017-12-01

    Effectively addressing the water supply challenges posed by urbanization and climate change requires a holistic understanding of the water supply system, including the impact of human behavior on system dynamics. Decision makers have limits to available information and information processing capacity, and their attention is not equally distributed among risks. The salience of a given risk is higher when increased attention is directed to it and though perceived risk may increase, real risk does not change. Relevant to water supply planning is how and when water stress results in an increased salience of water risks. This work takes a socio-hydrological approach to develop a water supply planning model that includes water consumption as an endogenous variable, in the context of Las Vegas, NV. To understand the benefits and limitations of this approach, this model is compared to a traditional planning model that uses water consumption scenarios. Both models are applied to project system reliability and water stress under four streamflow and demographic scenarios, and to assess supply side responses to changing conditions. The endogenous demand model enables the identification of feedback between both supply and demand management decisions on future water consumption and system performance. This model, while specific to the Las Vegas case, demonstrates a prototypical modeling framework capable of examining water-supply demand interactions by incorporating water stress driven conservation.

  12. Irrigation of continent catheterizable ileal pouches: tap water can replace sterile solutions because it is safe, easy, and economical.

    PubMed

    Birkhäuser, Frédéric D; Zehnder, Pascal; Roth, Beat; Schürch, Leander; Ochsner, Katharina; Willener, Rita; Thalmann, George N; Burkhard, Fiona C; Studer, Urs E

    2011-04-01

    Continent catheterizable ileal pouches require regular irrigations to reduce the risk of bacteriuria and urinary tract infections (UTIs). Our aim was to compare the UTI rate, patient friendliness, and costs of standard sterile irrigation versus irrigation with tap water. Twenty-three patients participated in a prospective randomized two-arm crossover single-center trial. Aseptic intermittent self-catheterization (ISC) combined with sterile sodium chloride (NaCl) 0.9% irrigation was compared with clean ISC and irrigation with tap water (H(2)O) during two study periods of 90 d each. Patients underwent daily pouch irrigations with NaCl 0.9% solution or tap water. Urine nitrite dipstick tests were evaluated daily; urine culture (UC) and patient friendliness were evaluated monthly. Costs were documented. A total of 3916 study days with nitrite testing and irrigation were analyzed, 1876 (48%) in the NaCl arm and 2040 (52%) in the H(2)O arm. In the NaCl arm, 418 study days (22%) with nitrite-positive dipsticks were recorded, 219 d (11%) in the H(2)O arm, significantly fewer (p=0.01). Of the 149 UCs, 96 (64%) were positive, 48 in each arm, revealing a total of 16 different germs. All patients preferred the H(2)O method. Monthly costs were up to 20 times lower in the H(2)O arm. Pouch irrigation with sterile NaCl 0.9% solution and tap water had comparable rates of positive UC. Irrigation with tap water significantly lowered the incidence of nitrite-positive study days and was substantially less costly and more patient friendly than NaCl irrigation. We therefore recommend the use of tap water (or bottled water) instead of sterile NaCl 0.9% solution for daily irrigation of continent catheterizable ileal pouches. Australian New Zealand Clinical Trials Registry, ACTRN12610000618055, http://www.ANZCTR.org.au/ACTRN12610000618055.aspx. Copyright © 2011 European Association of Urology. Published by Elsevier B.V. All rights reserved.

  13. Quantifying tap-to-household water quality deterioration in urban communities in Vellore, India: The impact of spatial assumptions.

    PubMed

    Alarcon Falconi, Tania M; Kulinkina, Alexandra V; Mohan, Venkata Raghava; Francis, Mark R; Kattula, Deepthi; Sarkar, Rajiv; Ward, Honorine; Kang, Gagandeep; Balraj, Vinohar; Naumova, Elena N

    2017-01-01

    Municipal water sources in India have been found to be highly contaminated, with further water quality deterioration occurring during household storage. Quantifying water quality deterioration requires knowledge about the exact source tap and length of water storage at the household, which is not usually known. This study presents a methodology to link source and household stored water, and explores the effects of spatial assumptions on the association between tap-to-household water quality deterioration and enteric infections in two semi-urban slums of Vellore, India. To determine a possible water source for each household sample, we paired household and tap samples collected on the same day using three spatial approaches implemented in GIS: minimum Euclidean distance; minimum network distance; and inverse network-distance weighted average. Logistic and Poisson regression models were used to determine associations between water quality deterioration and household-level characteristics, and between diarrheal cases and water quality deterioration. On average, 60% of households had higher fecal coliform concentrations in household samples than at source taps. Only the weighted average approach detected a higher risk of water quality deterioration for households that do not purify water and that have animals in the home (RR=1.50 [1.03, 2.18], p=0.033); and showed that households with water quality deterioration were more likely to report diarrheal cases (OR=3.08 [1.21, 8.18], p=0.02). Studies to assess contamination between source and household are rare due to methodological challenges and high costs associated with collecting paired samples. Our study demonstrated it is possible to derive useful spatial links between samples post hoc; and that the pairing approach affects the conclusions related to associations between enteric infections and water quality deterioration. Copyright © 2016 Elsevier GmbH. All rights reserved.

  14. Relation of dietary inorganic arsenic to serum matrix metalloproteinase-9 (MMP-9) at different threshold concentrations of tap water arsenic

    PubMed Central

    Kurzius-Spencer, Margaret; Harris, Robin B.; Hartz, Vern; Roberge, Jason; Hsu, Chiu-Hsieh; O’Rourke, Mary Kay; Burgess, Jefferey L.

    2015-01-01

    Arsenic (As) exposure is associated with cancer, lung and cardiovascular disease, yet the mechanisms involved are not clearly understood. Elevated matrix metalloproteinase-9 (MMP-9) levels are also associated with these diseases, as well as with exposure to water As. Our objective was to evaluate the effects of dietary components of inorganic As (iAs) intake on serum MMP-9 concentration at differing levels of tap water As. In a cross-sectional study of 214 adults, dietary iAs intake was estimated from 24-h dietary recall interviews using published iAs residue data; drinking and cooking water As intake from water samples and consumption data. Aggregate iAs intake (food plus water) was associated with elevated serum MMP-9 in mixed model regression, with and without adjustment for covariates. In models stratified by tap water As, aggregate intake was a significant positive predictor of serum MMP-9 in subjects exposed to water As ≤10 μg/l. Inorganic As from food alone was associated with serum MMP-9 in subjects exposed to tap water As ≤3 μg/l. Exposure to iAs from food and water combined, in areas where tap water As concentration is ≤10 μg/l, may contribute to As-induced changes in a biomarker associated with toxicity. PMID:25605447

  15. Utah water use data: Public water supplies, 1979

    USGS Publications Warehouse

    Hooper, David; Schwarting, Richard

    1981-01-01

    This report presents data for public water suppliers in Utah during 1979. A public water supply system supplies water for human consumption and other domestic uses. It can be publicly or privately owned and includes systems supplying water to cities, subdivisions, federal installations, summer homes, and camping areas. The data were collected through questionnaires mailed to the various public water suppliers in the state. The public suppliers and their data listed in this report are not complete but will be expanded as more water utility personnel respond to the questionnaire. Through telephone and personal visits, attempts were made to verify those data which seemed inconsistent with water data collected in other areas of the state. While the degree of confidence in the accuracy of the data is believed to be good, some caution should be exercised in its interpretation. In most cases, the information submitted is only as good as the water measuring devices or personal estimations of the public water supply personnel.

  16. 18 CFR 801.6 - Water supply.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 18 Conservation of Power and Water Resources 2 2010-04-01 2010-04-01 false Water supply. 801.6... POLICIES § 801.6 Water supply. (a) The Susquehanna River Basin is rich in water resources. With proper... forth in the comprehensive plan. (c) The Commission shall study the basin's water supply needs, the...

  17. The effectiveness of tap water iontophoresis for palmoplantar hyperhidrosis using a Monday, Wednesday, and Friday treatment regime.

    PubMed

    Siah, Tee Wei; Hampton, Philip J

    2013-03-15

    Primary focal hyperhidrosis is a benign condition of unknown etiology. Tap water iontophoresis has long been known to inhibit sweat production. The mechanism of reduced hyperhidrosis by iontophoresis is not completely clear. For operational convenience, our patients received their treatments at different intervals to those recommended by the manufacturer of the iontophoresis unit. We performed a retrospective audit to evaluate the effectiveness of tap water iontophoresis using this regimen. This new treatment regimen was effective at controlling palmoplantar hyperhidrosis. Minimal undesirable effects such as mild skin irritation and erythema were noted but none were severe enough to necessitate discontinuation of treatment. In conclusion, tap water iontophoresis is a safe and effective treatment of palmar and plantar hyperhidrosis when used on Monday, Wednesday, and Friday for 4 weeks. Continued treatment is needed to maintain the effect and many patients go on to purchase their own machines. This technique should be considered prior to systemic or aggressive surgical intervention.

  18. Perceptions of tap water temperatures, scald risk and prevention among parents and older people in social housing: a qualitative study.

    PubMed

    Durand, Mary Alison; Green, Judith; Edwards, Phil; Milton, Sarah; Lutchmun, Suzanne

    2012-06-01

    Young children and older people are particularly vulnerable to tap water scalding. For children, there are also socio-economic inequalities in risk. Evidence suggests that reducing tap water temperatures in social (public) housing through 'passive' means is effective in reducing risk. However, little is known about parents' or older people's perceptions of scald risk and prevention. This study aimed to document the views of parents and older residents in social housing in an inner-London borough about their tap water temperature, perceived scalding risk and scald prevention strategies. Analysis of twenty in-depth interviews with 11 parents and 10 people aged 65 years or older. Tap water was described as very hot, but participants did not consider themselves at risk, viewing scald prevention as a personal responsibility achieved with a range of everyday, routine strategies. Very hot water was preferred for health- and convenience-related reasons. However, it was felt that others, particularly children, could be scalded, and some concern was expressed about the environmental and financial impacts of excessively hot water. Those seeking to introduce engineering-based scald prevention interventions in social housing should emphasise the potential environmental and financial impacts of water temperature reduction, in addition to promoting safety benefits for vulnerable others. Copyright © 2011 Elsevier Ltd and ISBI. All rights reserved.

  19. Indoor Heating Drives Water Bacterial Growth and Community Metabolic Profile Changes in Building Tap Pipes during the Winter Season

    PubMed Central

    Zhang, Hai-Han; Chen, Sheng-Nan; Huang, Ting-Lin; Shang, Pan-Lu; Yang, Xiao; Ma, Wei-Xing

    2015-01-01

    The growth of the bacterial community harbored in indoor drinking water taps is regulated by external environmental factors, such as indoor temperature. However, the effect of indoor heating on bacterial regrowth associated with indoor drinking water taps is poorly understood. In the present work, flow cytometry and community-level sole-carbon-source utilization techniques were combined to explore the effects of indoor heating on water bacterial cell concentrations and community carbon metabolic profiles in building tap pipes during the winter season. The results showed that the temperature of water stagnated overnight (“before”) in the indoor water pipes was 15–17 °C, and the water temperature decreased to 4–6 °C after flushing for 10 min (“flushed”). The highest bacterial cell number was observed in water stagnated overnight, and was 5–11 times higher than that of flushed water. Meanwhile, a significantly higher bacterial community metabolic activity (AWCD590nm) was also found in overnight stagnation water samples. The significant “flushed” and “taps” values indicated that the AWCD590nm, and bacterial cell number varied among the taps within the flushed group (p < 0.01). Heatmap fingerprints and principle component analyses (PCA) revealed a significant discrimination bacterial community functional metabolic profiles in the water stagnated overnight and flushed water. Serine, threonine, glucose-phosphate, ketobutyric acid, phenylethylamine, glycerol, putrescine were significantly used by “before” water samples. The results suggested that water stagnated at higher temperature should be treated before drinking because of bacterial regrowth. The data from this work provides useful information on reasonable utilization of drinking water after stagnation in indoor pipes during indoor heating periods. PMID:26516885

  20. Endemic cryptosporidiosis and exposure to municipal tap water in persons with acquired immunodeficiency syndrome (AIDS): A case-control study

    PubMed Central

    Aragón, Tomás J; Novotny, Suzanne; Enanoria, Wayne; Vugia, Duc J; Khalakdina, Asheena; Katz, Mitchell H

    2003-01-01

    Background In persons with acquired immunodeficiency syndrome (AIDS), Cryptosporidium parvum causes a prolonged, severe diarrheal illness to which there is no effective treatment, and the risk of developing cryptosporidiosis from drinking tap water in non-outbreak settings remains uncertain. To test the hypothesis that drinking tap water was associated with developing cryptosporidiosis, we conducted a matched case-control study among persons with AIDS in San Francisco. Methods Among patients reported to the San Francisco AIDS Registry from May 1996 through September 1998, we compared patients who developed cryptosporidiosis to those who did not. Cases were individually matched to controls based on age, sex, race/ethnicity, CD4+ T lymphocyte count, date of CD4+ count, and date of case diagnosis. Population attributable fractions (PAFs) were calculated. Results The study consisted of 49 cases and 99 matched controls. In the multivariable analysis with adjustments for confounders, tap water consumption inside and outside the home at the highest exposure categories was associated with the occurrence of cryptosporidiosis (inside the home: odds ratio (OR), 6.76; 95% CI 1.37–33.5, and outside the home: OR 3.16; 95% CI 1.23–8.13). The PAF was 85%; that is, the proportion of cases of cryptosporidiosis in San Francisco AIDS patients attributable to tap water consumption could have been as high as 85%. Conclusions Although the results from this observational study cannot be considered definitive, until there is more data, we recommend persons with AIDS, especially those with compromised immune systems, consider avoiding tap water. PMID:12515584

  1. Endemic cryptosporidiosis and exposure to municipal tap water in persons with acquired immunodeficiency syndrome (AIDS): a case-control study.

    PubMed

    Aragón, Tomás J; Novotny, Suzanne; Enanoria, Wayne; Vugia, Duc J; Khalakdina, Asheena; Katz, Mitchell H

    2003-01-06

    In persons with acquired immunodeficiency syndrome (AIDS), Cryptosporidium parvum causes a prolonged, severe diarrheal illness to which there is no effective treatment, and the risk of developing cryptosporidiosis from drinking tap water in non-outbreak settings remains uncertain. To test the hypothesis that drinking tap water was associated with developing cryptosporidiosis, we conducted a matched case-control study among persons with AIDS in San Francisco. Among patients reported to the San Francisco AIDS Registry from May 1996 through September 1998, we compared patients who developed cryptosporidiosis to those who did not. Cases were individually matched to controls based on age, sex, race/ethnicity, CD4+ T lymphocyte count, date of CD4+ count, and date of case diagnosis. Population attributable fractions (PAFs) were calculated. The study consisted of 49 cases and 99 matched controls. In the multivariable analysis with adjustments for confounders, tap water consumption inside and outside the home at the highest exposure categories was associated with the occurrence of cryptosporidiosis (inside the home: odds ratio (OR), 6.76; 95% CI 1.37-33.5, and outside the home: OR 3.16; 95% CI 1.23-8.13). The PAF was 85%; that is, the proportion of cases of cryptosporidiosis in San Francisco AIDS patients attributable to tap water consumption could have been as high as 85%. Although the results from this observational study cannot be considered definitive, until there is more data, we recommend persons with AIDS, especially those with compromised immune systems, consider avoiding tap water.

  2. Herbicides and their transformation products in source-water aquifers tapped by public-supply wells in Illinois, 2001-02

    USGS Publications Warehouse

    Mills, Patrick C.; McMillan, William D.

    2004-01-01

    During 2001-02, ground-water samples were collected from 117 public-supply wells distributed throughout Illinois to evaluate the occurrence of herbicides and their transformation products in the State?s source-water aquifers. Wells were selected using a stratified-random method to ensure representation of the major types of source-water aquifers in the State. Samples were analyzed for 18 herbicides and 18 transformation products, including 3 triazine and 14 chloroacetanilide products. Herbicide compounds (field-applied parent herbicides and their transformation products) were detected in 34 percent of samples. A subset of samples was collected unfiltered to determine if analytical results for herbicides in unfiltered samples are similar to those in paired filtered samples and, thus, can be considered equally representative of herbicide concentrations in ground water supplied to the public. The study by the U.S. Geological Survey was done in cooperation with the Illinois Environmental Protection Agency. Parent herbicides were detected in only 4 percent of all samples. The six most frequently detected herbicide compounds (from 5 to 28 percent of samples) were chloroacetanilide transformation products. The frequent occurrence of transformation products and their higher concentrations relative to those of most parent herbicides confirm the importance of obtaining information on transformation products to understand the mobility and fate of herbicides in ground-water systems. No sample concentrations determined during this study exceeded current (2003) Federal or State drinking-water standards; however, standards are established for only seven parent herbicides. Factors related to the occurrence of herbicide compounds in the State?s source-water aquifers include unconsolidated and unconfined conditions, various hydrogeologic characteristics and well-construction aspects at shallow depths, and proximity to streams. Generally, the closer an aquifer (or well location) is

  3. Public Water-Supply Systems and Associated Water Use in Tennessee, 2000

    USGS Publications Warehouse

    Webbers, Ank

    2003-01-01

    Public water-supply systems in Tennessee provide water to meet customer needs for domestic, industrial, and commercial users and municipal services. In 2000, more than 500 public water-supply systems distributed about 890 million gallons per day (Mgal/d) of surface water and ground water to a population of about 5 million in Tennessee. Surface-water sources provided 64 percent (about 569 Mgal/d) of the State?s water supplies, primarily in Middle and East Tennessee. Ground water produced from wells and springs in Middle and East Tennessee and from wells in West Tennessee provided 36 percent (about 321 Mgal/d) of the public water supplies. Springs in Middle and East Tennessee provided about 14 percent (about 42 Mgal/d) of ground-water supplies used in the State. Per capita water use for Tennessee in 2000 was about 136 gallons per day. An additional 146 public water-supply systems provided approximately 84 Mgal/d of water supplies that were purchased from other water systems. Water withdrawals by public water-supply systems in Tennessee have increased by over 250 percent; from 250 Mgal/d in 1955 to 890 Mgal/d in 2000. Although Tennessee public water-supply systems withdraw less ground water than surface water, ground-water withdrawal rates reported by these systems continue to increase. In addition, the number of public water-supply systems reporting ground-water withdrawals of 1 Mgal/d or more in West Tennessee is increasing.

  4. 24 CFR 3285.603 - Water supply.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 24 Housing and Urban Development 5 2011-04-01 2011-04-01 false Water supply. 3285.603 Section 3285... § 3285.603 Water supply. (a) Crossover. Multi-section homes with plumbing in both sections require water... pressure and reduction. When the local water supply pressure exceeds 80 psi to the manufactured home, a...

  5. 9 CFR 354.224 - Water supply.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 9 Animals and Animal Products 2 2011-01-01 2011-01-01 false Water supply. 354.224 Section 354.224....224 Water supply. The water supply shall be ample, clean, and potable with adequate facilities for its distribution in the plant and its protection against contamination and pollution. (a) Hot water at a...

  6. 24 CFR 3285.603 - Water supply.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 24 Housing and Urban Development 5 2010-04-01 2010-04-01 false Water supply. 3285.603 Section 3285... § 3285.603 Water supply. (a) Crossover. Multi-section homes with plumbing in both sections require water... pressure and reduction. When the local water supply pressure exceeds 80 psi to the manufactured home, a...

  7. 9 CFR 354.224 - Water supply.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 9 Animals and Animal Products 2 2010-01-01 2010-01-01 false Water supply. 354.224 Section 354.224....224 Water supply. The water supply shall be ample, clean, and potable with adequate facilities for its distribution in the plant and its protection against contamination and pollution. (a) Hot water at a...

  8. 24 CFR 3285.603 - Water supply.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 24 Housing and Urban Development 5 2013-04-01 2013-04-01 false Water supply. 3285.603 Section 3285... § 3285.603 Water supply. (a) Crossover. Multi-section homes with plumbing in both sections require water... pressure and reduction. When the local water supply pressure exceeds 80 psi to the manufactured home, a...

  9. 9 CFR 354.224 - Water supply.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 9 Animals and Animal Products 2 2012-01-01 2012-01-01 false Water supply. 354.224 Section 354.224....224 Water supply. The water supply shall be ample, clean, and potable with adequate facilities for its distribution in the plant and its protection against contamination and pollution. (a) Hot water at a...

  10. 9 CFR 354.224 - Water supply.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 9 Animals and Animal Products 2 2014-01-01 2014-01-01 false Water supply. 354.224 Section 354.224....224 Water supply. The water supply shall be ample, clean, and potable with adequate facilities for its distribution in the plant and its protection against contamination and pollution. (a) Hot water at a...

  11. 24 CFR 3285.603 - Water supply.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 24 Housing and Urban Development 5 2012-04-01 2012-04-01 false Water supply. 3285.603 Section 3285... § 3285.603 Water supply. (a) Crossover. Multi-section homes with plumbing in both sections require water... pressure and reduction. When the local water supply pressure exceeds 80 psi to the manufactured home, a...

  12. 24 CFR 3285.603 - Water supply.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 24 Housing and Urban Development 5 2014-04-01 2014-04-01 false Water supply. 3285.603 Section 3285... § 3285.603 Water supply. (a) Crossover. Multi-section homes with plumbing in both sections require water... pressure and reduction. When the local water supply pressure exceeds 80 psi to the manufactured home, a...

  13. 9 CFR 354.224 - Water supply.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 9 Animals and Animal Products 2 2013-01-01 2013-01-01 false Water supply. 354.224 Section 354.224....224 Water supply. The water supply shall be ample, clean, and potable with adequate facilities for its distribution in the plant and its protection against contamination and pollution. (a) Hot water at a...

  14. Preference for tap, bottled, and recycled water: Relations to PTC taste sensitivity and personality.

    PubMed

    Harmon, Daniel; Gauvain, Mary; Z Reisz; Arthur, Isaac; Story, S Drew

    2018-02-01

    This study investigated people's preferences for different water sources and factors that predict such preferences using a blind taste test. Water preferences of 143 participants for one name-brand bottled water, one groundwater-sourced tap water, and one indirect potable reuse (IDR) water were assessed. For predictors of water preference, we measured each participant's PTC taste sensitivity and assessed two personality traits (Neuroticism, Openness to Experience). We also explored participants' descriptions of each water source. Results indicate a preference for water treated with Reverse Osmosis (RO) (bottled and IDR water) over groundwater-sourced water, which had higher pH levels and lower concentrations of Ca and HCO 3 - . PTC taste sensitivity did not predict preferences, while Openness to Experience and Neuroticism predicted preference for IDR water. Positive relations between Openness to Experience and preferences for bottled and IDR water were moderated by gender and were stronger among females. Participants described water primarily by its taste and texture. Findings suggest that (1) tap water treated by RO is equally preferable to some bottled water, (2) personality traits may affect water preferences, and (3) prior findings of gender differences in preferences for bottled water may reflect personality characteristics. Efforts to increase acceptance for sustainable water alternatives, such as IDR, may be more successful by assuring consumers about taste and addressing personality traits that encourage or inhibit use. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Pharmaceuticals in Tap Water: Human Health Risk Assessment and Proposed Monitoring Framework in China

    PubMed Central

    Leung, Ho Wing; Jin, Ling; Wei, Si; Tsui, Mirabelle Mei Po; Zhou, Bingsheng; Jiao, Liping; Cheung, Pak Chuen; Chun, Yiu Kan

    2013-01-01

    Background: Pharmaceuticals are known to contaminate tap water worldwide, but the relevant human health risks have not been assessed in China. Objectives: We monitored 32 pharmaceuticals in Chinese tap water and evaluated the life-long human health risks of exposure in order to provide information for future prioritization and risk management. Methods: We analyzed samples (n = 113) from 13 cities and compared detected concentrations with existing or newly-derived safety levels for assessing risk quotients (RQs) at different life stages, excluding the prenatal stage. Results: We detected 17 pharmaceuticals in 89% of samples, with most detectable concentrations (92%) at < 50 ng/L. Caffeine (median–maximum, nanograms per liter: 24.4–564), metronidazole (1.8–19.3), salicylic acid (16.6–41.2), clofibric acid (1.2–3.3), carbamazepine (1.3–6.7), and dimetridazole (6.9–14.7) were found in ≥ 20% of samples. Cities within the Yangtze River region and Guangzhou were regarded as contamination hot spots because of elevated levels and frequent positive detections. Of the 17 pharmaceuticals detected, 13 showed very low risk levels, but 4 (i.e., dimetridazole, thiamphenicol, sulfamethazine, and clarithromycin) were found to have at least one life-stage RQ ≥ 0.01, especially for the infant and child life stages, and should be considered of high priority for management. We propose an indicator-based monitoring framework for providing information for source identification, water treatment effectiveness, and water safety management in China. Conclusion: Chinese tap water is an additional route of human exposure to pharmaceuticals, particularly for dimetridazole, although the risk to human health is low based on current toxicity data. Pharmaceutical detection and application of the proposed monitoring framework can be used for water source protection and risk management in China and elsewhere. PMID:23665928

  16. Pharmaceuticals in tap water: human health risk assessment and proposed monitoring framework in China.

    PubMed

    Leung, Ho Wing; Jin, Ling; Wei, Si; Tsui, Mirabelle Mei Po; Zhou, Bingsheng; Jiao, Liping; Cheung, Pak Chuen; Chun, Yiu Kan; Murphy, Margaret Burkhardt; Lam, Paul Kwan Sing

    2013-07-01

    Pharmaceuticals are known to contaminate tap water worldwide, but the relevant human health risks have not been assessed in China. We monitored 32 pharmaceuticals in Chinese tap water and evaluated the life-long human health risks of exposure in order to provide information for future prioritization and risk management. We analyzed samples (n = 113) from 13 cities and compared detected concentrations with existing or newly-derived safety levels for assessing risk quotients (RQs) at different life stages, excluding the prenatal stage. We detected 17 pharmaceuticals in 89% of samples, with most detectable concentrations (92%) at < 50 ng/L. Caffeine (median-maximum, nanograms per liter: 24.4-564), metronidazole (1.8-19.3), salicylic acid (16.6-41.2), clofibric acid (1.2-3.3), carbamazepine (1.3-6.7), and dimetridazole (6.9-14.7) were found in ≥ 20% of samples. Cities within the Yangtze River region and Guangzhou were regarded as contamination hot spots because of elevated levels and frequent positive detections. Of the 17 pharmaceuticals detected, 13 showed very low risk levels, but 4 (i.e., dimetridazole, thiamphenicol, sulfamethazine, and clarithromycin) were found to have at least one life-stage RQ ≥ 0.01, especially for the infant and child life stages, and should be considered of high priority for management. We propose an indicator-based monitoring framework for providing information for source identification, water treatment effectiveness, and water safety management in China. Chinese tap water is an additional route of human exposure to pharmaceuticals, particularly for dimetridazole, although the risk to human health is low based on current toxicity data. Pharmaceutical detection and application of the proposed monitoring framework can be used for water source protection and risk management in China and elsewhere.

  17. Perineal tap water burns in the elderly: at what cost?

    PubMed

    Potter, Michael D E; Maitz, Peter K M; Kennedy, Peter J; Goltsman, David

    2017-11-01

    Burn injuries are expensive to treat. Burn injuries have been found to be difficult to treat in elderly patients than their younger counterparts. This is likely to result in higher financial burden on the healthcare system; however, no population-specific study has been conducted to ascertain the inpatient treatment costs of elderly patients with hot tap water burns. Six elderly patients (75-92 years) were admitted for tap water burns at Concord Hospital during 2010. All costs incurred during their hospitalization were followed prospectively, and were apportioned into 'direct' and 'indirect' costs. Direct costs encompassed directly measurable costs, such as consumables used on the ward or in theatres, and indirect costs included hospital overheads, such as bed and theatre costs. Three males and three females admitted with burns to the buttocks, legs or feet. Total burn surface area (TBSA) ranged from 9-21% (mean 12.8%). Length of stay ranged from 26-98 days (mean 46 days). One patient died, and four required surgical management or grafting. Total inpatient costs ranged from $69 782.33 to $254 652.70 per patient (mean $122 800.20, standard deviation $67 484.46). TBSA was directly correlated with length of stay (P < 0.01) and total cost (P < 0.01). Hot water burns among the elderly are associated with high treatment costs, which are proportional to the size of the burn. The cost of treating this cohort is higher than previously reported in a general Australian burn cohort. © 2016 Royal Australasian College of Surgeons.

  18. 20 CFR 654.405 - Water supply.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 20 Employees' Benefits 3 2011-04-01 2011-04-01 false Water supply. 654.405 Section 654.405... THE EMPLOYMENT SERVICE SYSTEM Housing for Agricultural Workers Housing Standards § 654.405 Water supply. (a) An adequate and convenient supply of water that meets the standards of the State health...

  19. 20 CFR 654.405 - Water supply.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 20 Employees' Benefits 3 2010-04-01 2010-04-01 false Water supply. 654.405 Section 654.405... THE EMPLOYMENT SERVICE SYSTEM Housing for Agricultural Workers Housing Standards § 654.405 Water supply. (a) An adequate and convenient supply of water that meets the standards of the State health...

  20. 20 CFR 654.405 - Water supply.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 20 Employees' Benefits 3 2012-04-01 2012-04-01 false Water supply. 654.405 Section 654.405... THE EMPLOYMENT SERVICE SYSTEM Housing for Agricultural Workers Housing Standards § 654.405 Water supply. (a) An adequate and convenient supply of water that meets the standards of the State health...

  1. 20 CFR 654.405 - Water supply.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 20 Employees' Benefits 3 2014-04-01 2014-04-01 false Water supply. 654.405 Section 654.405... THE EMPLOYMENT SERVICE SYSTEM Housing for Agricultural Workers Housing Standards § 654.405 Water supply. (a) An adequate and convenient supply of water that meets the standards of the State health...

  2. 20 CFR 654.405 - Water supply.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 20 Employees' Benefits 3 2013-04-01 2013-04-01 false Water supply. 654.405 Section 654.405... THE EMPLOYMENT SERVICE SYSTEM Housing for Agricultural Workers Housing Standards § 654.405 Water supply. (a) An adequate and convenient supply of water that meets the standards of the State health...

  3. Polarization Resistance Measurement in Tap Water: The Influence of Rust Electrochemical Activity

    NASA Astrophysics Data System (ADS)

    Vasyliev, Georgii

    2017-08-01

    Corrosion rate of mild steel in tap water during 4300 h was estimated by LPR and weight-loss methods coupled with OCP measurements. The LPR results were found to be overestimated compared to the weight-loss data within initial 2000 h of exposure. The electrochemical activity of the rust separated from the metal surface was studied by cycling voltammetry using a home-built powder graphite electrode. High redox currents corresponding to the initial 2000 h of exposure were detected. Rust composition was characterized with IR and XRD, and the highest amounts of electrochemically active β- and γ-FeOOH were again detected for the initial 2000 h. Current consumption in rust transformation processes during LPR measurement in the galvanostatic mode accounts for overestimation of the corrosion rate. The time dependence of rust electrochemical activity correlates with OCP variation with time. During initial 2000 h, OCP values are shifted by 50 mV to cathodic side. For the period of a higher rust electrochemical activity, the use of a reduced B is suggested to increase accuracy of LPR technique in tap water.

  4. Isolation and identification of methylobacterium species from the tap water in hospitals in Japan and their antibiotic susceptibility.

    PubMed

    Furuhata, Katsunori; Kato, Yuko; Goto, Keiichi; Hara, Motonobu; Yoshida, Shin-ichi; Fukuyama, Masafumi

    2006-01-01

    Contamination of tap water by Methylobacterium species has become a serious concern in hospitals. This study was planned to examine the distribution of Methylobacterium species inhabiting tap water used in Japanese hospitals and antibiotic sensitivity of the isolates in 2004. Species identification of 58 isolates was performed based on the homology of a partial sequence of 16S rDNA. The dominant Methylobacterium species in hospital water were M. aquaticum and M. fujisawaense. To examine the biochemical properties of these isolates, a carbon source utilization was tested using an API50CH kit. The phenotypic character varied widely, and was not necessarily consistent with the results of phylogenic analysis based on the partial 16S rDNA sequence, suggesting that the biochemical properties are not suitable for identification of Methylobacterium species. The isolates were also subjected to antibiotic sensitivity tests. They were resistant to 8 antibiotics, but highly sensitive to imipenem (MIC90 = 1 microg/ml) and tetracycline (MIC90 = 8 microg/ml). These findings concerning the isolates revealed the presence of Methylobacterium species with resistance to multiple antibiotics in hospital tap water.

  5. Isolation and identification of pathogenic free-living amoeba from surface and tap water of Shiraz City using morphological and molecular methods.

    PubMed

    Armand, B; Motazedian, M H; Asgari, Q

    2016-01-01

    Free-living amoebae (FLA) are the most abundant and widely distributed protozoa in the environment. An investigation was conducted to determine the presence of free-living amoebae (FLA), Acanthamoeba and Vermamoeba in waterfronts of parks and squares and tap water of Shiraz City, Iran. FLA are considered pathogenic for human. These ubiquitous organisms have been isolated from different environments such as water, soil, and air. Eighty-two water samples were collected from different places of Shiraz City during the summer of 2013. All samples were processed in Dept. of Parasitology and Mycology, Shiraz University of Medical Sciences, Fars, Iran. Samples were screened for FLA and identified by morphological characters in the cultures, PCR amplification targeting specific genes for each genus and sequencing determined frequent species and genotypes base on NCBI database. Overall, 48 samples were positive for Acanthamoeba and Vermamoeba in non-nutrient agar culture based on morphological characteristics. The PCR examination was done successfully. Sequencing results were revealed T4 (62.96 %) genotypes as the most common genotype of Acanthamoeba in the Shiraz water sources. In addition, T5 (33.33 %) and T15 (3.71 %) were isolated from water supplies. Vermamoeba vermiformis was known the dominant species from this genus. The high frequency of Acanthamoeba spp. and Vermamoeba in different environmental water sources of Shiraz is an alert for the public health related to water sources. The result highlights a need for taking more attention to water supplies in order to prevent illnesses related to free-living amoebae.

  6. Magnesium-to-calcium ratio in tap water, and its relationship to geological features and the incidence of calcium-containing urinary stones.

    PubMed

    Kohri, K; Kodama, M; Ishikawa, Y; Katayama, Y; Takada, M; Katoh, Y; Kataoka, K; Iguchi, M; Kurita, T

    1989-11-01

    We examined the relationship among magnesium and calcium content in tap water, the geological features and urinary stone incidence in Japan. The magnesium-to-calcium ratio in tap water correlated negatively with the incidence of urolithiasis. There was no correlation between calcium and magnesium concentration in tap water and urinary stone incidence. Geological features in Japan were classified into 5 groups. The magnesium-to-calcium ratio in the basalt areas was higher than in the other areas, while ratio in the granite areas was low. In the sedimentary rock areas calcium and magnesium concentrations were high; the magnesium-to-calcium ratio in these areas was between those of the basalt and granite areas. The limestone areas had a much higher calcium concentration. The incidence of urinary stones in the sedimentary rock and basalt areas was lower than that of the granite areas, while that in the limestone areas was the highest. Thus, the incidence of urinary stone is related to the magnesium-to-calcium ratio in tap water and the geological area.

  7. Reduction in pesticide residue levels in olives by ozonated and tap water treatments and their transfer into olive oil.

    PubMed

    Kırış, Sevilay; Velioglu, Yakup Sedat

    2016-01-01

    The effects of different wash times (2 and 5 min) with tap and ozonated water on the removal of nine pesticides from olives and the transfer ratios of these pesticides during olive oil production were determined. The reliability of the analytical methods was also tested. The applied methods of analysis were found to be suitable based on linearity, trueness, repeatability, selectivity and limit of quantification all the pesticides tested. All tap and ozonated water wash cycles removed a significant quantity of the pesticides from the olives, with a few exceptions. Generally, extending the wash time increased the pesticide reduction with ozonated water, but did not make significant differences with tap water. During olive oil processing, depending on the processing technique and physicochemical properties of the pesticides, eight of nine pesticides were concentrated into olive oil (processing factor > 1) with almost no significant difference between treatments. Imidacloprid did not pass into olive oil. Ozonated water wash for 5 min reduced chlorpyrifos, β-cyfluthrin, α-cypermethrin and imidacloprid contents by 38%, 50%, 55% and 61% respectively in olives.

  8. 25 CFR 137.1 - Water supply.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 25 Indians 1 2011-04-01 2011-04-01 false Water supply. 137.1 Section 137.1 Indians BUREAU OF... CARLOS INDIAN IRRIGATION PROJECT, ARIZONA § 137.1 Water supply. The engineering report dealt with in... capacity of the San Carlos reservoir created by the Coolidge Dam and the water supply therefor over a...

  9. 25 CFR 137.1 - Water supply.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 25 Indians 1 2010-04-01 2010-04-01 false Water supply. 137.1 Section 137.1 Indians BUREAU OF... CARLOS INDIAN IRRIGATION PROJECT, ARIZONA § 137.1 Water supply. The engineering report dealt with in... capacity of the San Carlos reservoir created by the Coolidge Dam and the water supply therefor over a...

  10. 25 CFR 137.1 - Water supply.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 25 Indians 1 2013-04-01 2013-04-01 false Water supply. 137.1 Section 137.1 Indians BUREAU OF... CARLOS INDIAN IRRIGATION PROJECT, ARIZONA § 137.1 Water supply. The engineering report dealt with in... capacity of the San Carlos reservoir created by the Coolidge Dam and the water supply therefor over a...

  11. 25 CFR 137.1 - Water supply.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 25 Indians 1 2014-04-01 2014-04-01 false Water supply. 137.1 Section 137.1 Indians BUREAU OF... CARLOS INDIAN IRRIGATION PROJECT, ARIZONA § 137.1 Water supply. The engineering report dealt with in... capacity of the San Carlos reservoir created by the Coolidge Dam and the water supply therefor over a...

  12. Optimization of adenovirus 40 and 41 recovery from tap water using small disk filters.

    PubMed

    McMinn, Brian R

    2013-11-01

    Currently, the U.S. Environmental Protection Agency's Information Collection Rule (ICR) for the primary concentration of viruses from drinking and surface waters uses the 1MDS filter, but a more cost effective option, the NanoCeram® filter, has been shown to recover comparable levels of enterovirus and norovirus from both matrices. In order to achieve the highest viral recoveries, filtration methods require the identification of optimal concentration conditions that are unique for each virus type. This study evaluated the effectiveness of 1MDS and NanoCeram filters in recovering adenovirus (AdV) 40 and 41 from tap water, and optimized two secondary concentration procedures the celite and organic flocculation method. Adjustments in pH were made to both virus elution solutions and sample matrices to determine which resulted in higher virus recovery. Samples were analyzed by quantitative PCR (qPCR) and Most Probable Number (MPN) techniques and AdV recoveries were determined by comparing levels of virus in sample concentrates to that in the initial input. The recovery of adenovirus was highest for samples in unconditioned tap water (pH 8) using the 1MDS filter and celite for secondary concentration. Elution buffer containing 0.1% sodium polyphosphate at pH 10.0 was determined to be most effective overall for both AdV types. Under these conditions, the average recovery for AdV40 and 41 was 49% and 60%, respectively. By optimizing secondary elution steps, AdV recovery from tap water could be improved at least two-fold compared to the currently used methodology. Identification of the optimal concentration conditions for human AdV (HAdV) is important for timely and sensitive detection of these viruses from both surface and drinking waters. Published by Elsevier B.V.

  13. 25 CFR 137.1 - Water supply.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 25 Indians 1 2012-04-01 2011-04-01 true Water supply. 137.1 Section 137.1 Indians BUREAU OF INDIAN... INDIAN IRRIGATION PROJECT, ARIZONA § 137.1 Water supply. The engineering report dealt with in section 1... of the San Carlos reservoir created by the Coolidge Dam and the water supply therefor over a period...

  14. Public water supplies in western Texas

    USGS Publications Warehouse

    Broadhurst, W.L.; Sundstrom, R.W.; Weaver, D.E.

    1951-01-01

    This report gives a summarized description of the public water supplies in a region comprising 81 counties of western Texas and lying generally west of the hundredth meridian. It is the fourth and last of this series of reports concerning the public water supplies of the State. It gives the available data for each of 142 communities, as follows: The population of the community; the name of the official from whom the information was obtained; the ownership of the waterworks, whether private or municipal; the source of supply, whether ground water or surface water; the amount of water consumed; the facilities for storage; the number of customers served; the character of the chemical and sanitary treatment of the water, if any; and the chemical analyses of the water. Where ground water is used the following also are given. Records of wells, including drillers' logs; character of the pumping equipment; and yield of the wells and water-level records where they are available. Of the 142 public supplies, 133 are obtained from ground water, 5 from surface water, and 4 from a combination of both. The total amount of water . used for public supply in the region averages about 78,000,000 gallons a day. Of this about 61,000,000 gallons a day is ground water and about 17,000,000 gallons a day is surface water. The ground-water resources of the region from which public water supplies are drawn are in rocks that range in age from Permian to Quaternary. The Ogallala formation of Tertiary age (Pliocene), which covers about 35,000 square miles of the High Plains in Texas, is the most important ground-water reservoir in the region. The formation furnishes water for 78 public supplies and for irrigating about 1,000,000 acres of land. The amount of water used for irrigating amounted to about 1,000,000 acre-feet in 1948. The Trinity and Fredericksburg groups of Lower Cretaceous age supply ground water in the western part of the Edwards Plateau, which constitutes an area of more than 22

  15. Evaluation of on-line concentration coupled to liquid chromatography tandem mass spectrometry for the quantification of neonicotinoids and fipronil in surface water and tap water.

    PubMed

    Montiel-León, Juan Manuel; Duy, Sung Vo; Munoz, Gabriel; Amyot, Marc; Sauvé, Sébastien

    2018-04-01

    A study was initiated to investigate a fast and reliable method for the determination of selected systemic insecticides in water matrixes and to evaluate potential sources of bias in their analysis. Acetamiprid, clothianidin, desnitro-imidacloprid, dinotefuran, fipronil, imidacloprid, nitenpyram, thiacloprid, and thiamethoxam were amenable to analysis via on-line sample enrichment hyphenated to ultra-high-performance liquid chromatography tandem mass spectrometry. The selection of on-line solid-phase extraction parameters was dictated by a multicriterion desirability approach. A 2-mL on-line injection volume with a 1500 μL min -1 loading flow rate met the objectives sought in terms of chromatographic requirements, extraction efficiency, sensitivity, and precision. A total analysis time of 8 min per sample was obtained with method limits of detection in the range of 0.1-5 ng L -1 for the scope of targeted analytes. Automation at the sample concentration step yielded intraday and interday precisions in the range of 1-23 and 2-26%, respectively. Factors that could affect the whole method accuracy were further evaluated in matrix-specific experiments. The impact of the initial filtration step on analyte recovery was evaluated in ultra-pure water, tap water, and surface water. Out of the nine membranes tested, glass fiber filters and polyester filters appeared as the most appropriate materials. Sample storage stability was also investigated across the three matrix types; the targeted analytes displayed suitable stability during 28 days at either 4 °C or - 20 °C, with little deviations (± 10%) with respect to the initial T 0 concentration. Method applicability was demonstrated in a range of tap water and surface water samples from the province of Québec, Canada. Results from the present survey indicated a predominance of thiamethoxam (< 0.5-10 and 3-61 ng L -1 in tap water and river water, respectively), clothianidin (< 0.5-6 and 2-88 ng L -1 in

  16. In vitro bioanalysis of drinking water from source to tap.

    PubMed

    Rosenmai, Anna Kjerstine; Lundqvist, Johan; le Godec, Théo; Ohlsson, Åsa; Tröger, Rikard; Hellman, Björn; Oskarsson, Agneta

    2018-08-01

    The presence of chemical pollutants in sources of drinking water is a key environmental problem threatening public health. Efficient removal of pollutants in drinking water treatment plants (DWTPs) is needed as well as methods for assessment of the total impact of all present chemicals on water quality. In the present study we have analyzed the bioactivity of water samples from source to tap, including effects of various water treatments in a DWTP, using a battery of cell-based bioassays, covering health-relevant endpoints. Reporter gene assays were used to analyze receptor activity of the aryl hydrocarbon receptor (AhR), estrogen receptor (ER), androgen receptor (AR), peroxisome proliferator-activated receptor alpha (PPARα) and induction of oxidative stress by the nuclear factor erythroid 2-related factor 2 (Nrf2). DNA damage was determined by Comet assay. Grab water samples were concentrated by HLB or ENV solid phase extraction and the water samples assayed at a relative enrichment factor of 50. The enrichment procedure did not induce any bioactivity. No bioactivity was detected in Milli-Q water or drinking water control samples. Induction of AhR, ER and Nrf2 activities was revealed in source to tap water samples. No cytotoxicity, PPARα or AR antagonist activity, or DNA damage were observed in any of the water samples. A low AR agonist activity was detected in a few samples of surface water, but not in the samples from the DWTP. The treatment steps at the DWTP, coagulation, granulated activated carbon filtration, UV disinfection and NH 2 Cl dosing had little or no effect on the AhR, Nrf2 and ER bioactivity. However, nanofiltration and passage through the distribution network drastically decreased AhR activity, while the effect on Nrf2 activity was more modest and no apparent effect was observed on ER activity. The present results suggest that bioassays are useful tools for evaluation of the efficiency of different treatment steps in DWTPs in reducing toxic

  17. Estimating Access to Drinking Water Supply, Sanitation, and Hygiene Facilities in Wolaita Sodo Town, Southern Ethiopia, in Reference to National Coverage

    PubMed Central

    Debebe, Ashenafi

    2016-01-01

    Introduction. The coverage of sanitation and access to safe drinking water in Ethiopia especially in Wolaita Sodo town are not well studied. Therefore, the main objective of this study was estimating access to drinking water supply, sanitation, and hygiene facilities in Wolaita Sodo town, southern Ethiopia, in reference to national coverage. Methods. A community based cross-sectional study design method was employed in the study in 588 households of Wolaita Sodo town inhabitants. Face-to-face interview to household owners, in-depth interview to key informants, reviewing secondary data, and observational check lists were used to collect data. Districts were selected using simple random sampling techniques, while systematic random sampling technique was applied to select households. Data was analyzed using Epi Info version 3.5.4 and SPSS version 16 statistical software. Bivariate and multivariable logistic regression analysis were carried out. Results. The community has access to improved water supply which was estimated to be 67.9%. The main water sources of the town were tap water within the yard, which was estimated to be 44.7%, and tap water in the community was 40.0% followed by private protected well which was 14.5%. Ninety-one percent of the households had at least one type of latrine in their homes. The most common type of latrine available to households was pit latrine with superstructure which was estimated to be 75.9% followed by a pit without superstructure, 21.3%, and more than half of the respondents had hand washing facilities in their compound. Occupational status, educational status, and training on water, sanitation, and hygiene related topics were significantly associated with use of improved water source, improved sanitation, and hygiene facilities. Conclusion. In order to address the demand of the town, additional water, sanitation, and hygiene programs are required. PMID:28025598

  18. Estimating Access to Drinking Water Supply, Sanitation, and Hygiene Facilities in Wolaita Sodo Town, Southern Ethiopia, in Reference to National Coverage.

    PubMed

    Admasie, Amha; Debebe, Ashenafi

    2016-01-01

    Introduction . The coverage of sanitation and access to safe drinking water in Ethiopia especially in Wolaita Sodo town are not well studied. Therefore, the main objective of this study was estimating access to drinking water supply, sanitation, and hygiene facilities in Wolaita Sodo town, southern Ethiopia, in reference to national coverage. Methods . A community based cross-sectional study design method was employed in the study in 588 households of Wolaita Sodo town inhabitants. Face-to-face interview to household owners, in-depth interview to key informants, reviewing secondary data, and observational check lists were used to collect data. Districts were selected using simple random sampling techniques, while systematic random sampling technique was applied to select households. Data was analyzed using Epi Info version 3.5.4 and SPSS version 16 statistical software. Bivariate and multivariable logistic regression analysis were carried out. Results . The community has access to improved water supply which was estimated to be 67.9%. The main water sources of the town were tap water within the yard, which was estimated to be 44.7%, and tap water in the community was 40.0% followed by private protected well which was 14.5%. Ninety-one percent of the households had at least one type of latrine in their homes. The most common type of latrine available to households was pit latrine with superstructure which was estimated to be 75.9% followed by a pit without superstructure, 21.3%, and more than half of the respondents had hand washing facilities in their compound. Occupational status, educational status, and training on water, sanitation, and hygiene related topics were significantly associated with use of improved water source, improved sanitation, and hygiene facilities. Conclusion . In order to address the demand of the town, additional water, sanitation, and hygiene programs are required.

  19. 30 CFR 874.14 - Water supply restoration.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Water supply restoration. 874.14 Section 874.14... ABANDONED MINE LAND RECLAMATION GENERAL RECLAMATION REQUIREMENTS § 874.14 Water supply restoration. (a) Any... supply restoration projects. For purposes of this section, “water supply restoration projects” are those...

  20. Intermittent Water Supply: Prevalence, Practice, and Microbial Water Quality.

    PubMed

    Kumpel, Emily; Nelson, Kara L

    2016-01-19

    Intermittent water supplies (IWS), in which water is provided through pipes for only limited durations, serve at least 300 million people around the world. However, providing water intermittently can compromise water quality in the distribution system. In IWS systems, the pipes do not supply water for periods of time, supply periods are shortened, and pipes experience regular flow restarting and draining. These unique behaviors affect distribution system water quality in ways that are different than during normal operations in continuous water supplies (CWS). A better understanding of the influence of IWS on mechanisms causing contamination can help lead to incremental steps that protect water quality and minimize health risks. This review examines the status and nature of IWS practices throughout the world, the evidence of the effect of IWS on water quality, and how the typical contexts in which IWS systems often exist-low-income countries with under-resourced utilities and inadequate sanitation infrastructure-can exacerbate mechanisms causing contamination. We then highlight knowledge gaps for further research to improve our understanding of water quality in IWS.

  1. Water Utility Planning for an Emergency Drinking Water Supply

    EPA Pesticide Factsheets

    Reviews roles and responsibilities among various levels of government regarding emergency water supplies and seeks to encourage collaboration and partnership regarding emergency water supply planning.

  2. Women, water supply and sanitation: INSTRAW's training initiatives.

    PubMed

    Tavares, J

    1997-01-01

    The International Research and Training Institute for the Advancement of Women (INSTRAW) has worked on women, water supply and sanitation since 1986. The program aims to establish the relationship between women, water supply and sanitation and the promotion of the needs of women and their participation in Water Supply and Sanitation projects. Using a multimedia and modular approach, the training package on Women, Water Supply and Sanitation aims to provide an overview for the different government agencies, engineers, trainers and managers involved in water supply and sanitation projects. The six modules contained in this package include: 1) The International Drinking Water Supply and Sanitation Decade and beyond; 2) The Participation of Women in planning, Choice of Technology and Implementation of Sustainable Water Supply and Sanitation Projects; 3) Role of Women in Hygiene Education and Training Activities for Water Supply and Sanitation Projects; 4) Involvement of Women in Management of Water resources, Water Supply and Waste Disposal; 5) Women and Waste Management; and 6) Evaluation and Monitoring of Water Supply and Sanitation Programs, Projects and the Role of Women. In addition, each module comprises five components including objective description, detailed bibliography, feedback tools for each modular unit, lesson plan and guides for trainers and users, and audiovisual aids. In the face of water scarcity, INSTRAW highlights the importance of women¿s participation in the sustainable use of water supply.

  3. 18 CFR 801.6 - Water supply.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 18 Conservation of Power and Water Resources 2 2011-04-01 2011-04-01 false Water supply. 801.6 Section 801.6 Conservation of Power and Water Resources SUSQUEHANNA RIVER BASIN COMMISSION GENERAL POLICIES § 801.6 Water supply. (a) The Susquehanna River Basin is rich in water resources. With proper...

  4. 18 CFR 801.6 - Water supply.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 18 Conservation of Power and Water Resources 2 2014-04-01 2014-04-01 false Water supply. 801.6 Section 801.6 Conservation of Power and Water Resources SUSQUEHANNA RIVER BASIN COMMISSION GENERAL POLICIES § 801.6 Water supply. (a) The Susquehanna River Basin is rich in water resources. With proper...

  5. 18 CFR 801.6 - Water supply.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 18 Conservation of Power and Water Resources 2 2012-04-01 2012-04-01 false Water supply. 801.6 Section 801.6 Conservation of Power and Water Resources SUSQUEHANNA RIVER BASIN COMMISSION GENERAL POLICIES § 801.6 Water supply. (a) The Susquehanna River Basin is rich in water resources. With proper...

  6. 18 CFR 801.6 - Water supply.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 18 Conservation of Power and Water Resources 2 2013-04-01 2012-04-01 true Water supply. 801.6 Section 801.6 Conservation of Power and Water Resources SUSQUEHANNA RIVER BASIN COMMISSION GENERAL POLICIES § 801.6 Water supply. (a) The Susquehanna River Basin is rich in water resources. With proper...

  7. Preliminary study of sources and processes of enrichment of manganese in water from University of Rhode Island supply wells

    USGS Publications Warehouse

    Silvey, William Dudley; Johnston, Herbert E.

    1977-01-01

    Concentrations of dissolved manganese have increased from 0.0 to as much as 3.3 mg/liter over a period of years in closely spaced University of Rhode Island supply wells. The wells tap stratified glacial deposits and derive part of their water from infiltration from a nearby river-pond system. The principal sources of the manganese seem to be coatings of oxides and other forms of manganese on granular aquifer materials and organic-rich sediments on the bottom of the pond and river. Chemical analyses of water from an observation well screened from 3 to 5 feet below the pond bottom indicate that infiltration of water through organic-rich sediments on the pond bottom is the likely cause of manganese enrichment in the well supplies. After passing through the organic layer, the water contains concentrations of manganese as high as 1.2 mg/liter. Manganese in water in concentrations that do not cause unpleasant taste is not regarded to be toxicologically significant. However, concentrations in excess of a few tenths of a milligram per liter are undesirable in public supplies and in many industrial supplies. Brown and others (21970) note that waters containing manganese in concentrations less than 0.1 mg/liter seldom prove troublesome, but that those containing more than 0.5 mg/liter may form objectionable deposits on cooked food, laundry, and plumbing fixtures. The U.S. Public health Service (1962) recommends that the concentrations of manganese in drinking and culinary water not exceed 0.05 mg/liter. (Woodard-USGS)

  8. Public water-supply systems and associated water use in Tennessee, 2005

    USGS Publications Warehouse

    Robinson, John A.; Brooks, Jaala M.

    2010-01-01

    Public water-supply systems in Tennessee provide water to for domestic, industrial, and commercial uses, and municipal services. In 2005, more than 569 public water-supply systems distributed about 920 million gallons per day (Mgal/d) of non-purchased surface water and groundwater to a population of nearly 6 million in Tennessee. Surface-water sources provided 64 percent (about 591 Mgal/d) of the State's water supplies. Groundwater produced from wells and springs in Middle and East Tennessee and from wells in West Tennessee provided 36 percent (about 329 Mgal/d) of the public water supplies. Gross per capita water use for Tennessee in 2005 was about 171 gallons per day. Water withdrawals by public water-supply systems in Tennessee have increased from 250 Mgal/d in 1955 to 920 Mgal/d in 2005. Tennessee public water-supply systems withdraw less groundwater than surface water, and surface-water use has increased at a faster rate than groundwater use. However, 34 systems reported increased groundwater withdrawals during 2000–2005, and 15 of these 34 systems reported increases of 1 Mgal/d or more. The county with the largest surface-water withdrawal rate (130 Mgal/d) was Davidson County. Each of Tennessee's 95 counties was served by at least one public water-supply system in 2005. The largest groundwater withdrawal rate (about 167 Mgal/d) by a single public water-supply system was reported by Memphis Light, Gas and Water, which served 654,267 people in Shelby County in 2005.

  9. An Introduction to EPA's Water Supply and Water Resources Research and Ways of Collaborations

    EPA Science Inventory

    "Drinking water quality at the consumer's tap is the center piece of U.S. drinking water regulations to protect people's health. Recently promulgated Stage II DBP rules are an example, which requires a system approach in a multi-barrier strategy for compliance and risk managemen...

  10. Urban community perception towards intermittent water supply system.

    PubMed

    Joshi, M W; Talkhande, A V; Andey, S P; Kelkar, P S

    2002-04-01

    While evaluating intermittent and continuous water supply systems, consumers opinion survey was undertaken for critical appraisal of both modes of operation. With the help of a pre-designed set of questions relating to various aspects of water supply and the opinion of consumers regarding degree of service, a house to house survey was conducted in the study area of Ghaziabad and Jaipur. The consumer opinion survey clearly indicated a satisfactory degree of service wherever adequate quantity of water was made available irrespective of the mode of water supply. Number of complaints regarding quality of water supplied, timings of supply, low pressures and breakdowns in supply were reported during intermittent water supply. Every family stored water for drinking and other uses. Most of the families discard drinking water once the fresh water supply is resumed next day. Discarded drinking water is usually used in kitchen for washing and gardening. Storage for other purposes depends on economic status and availability of other sources like open dug well in the house. While most of the respondents had no complaints on water tariff, all of them were in favour of continuous water supply.

  11. Plasma-activation of tap water using DBD for agronomy applications: Identification and quantification of long lifetime chemical species and production/consumption mechanisms.

    PubMed

    Judée, F; Simon, S; Bailly, C; Dufour, T

    2018-04-15

    Cold atmospheric plasmas are weakly ionized gases that can be generated in ambient air. They produce energetic species (e.g. electrons, metastables) as well as reactive oxygen species, reactive nitrogen species, UV radiations and local electric field. Their interaction with a liquid such as tap water can hence change its chemical composition. The resulting "plasma-activated liquid" can meet many applications, including medicine and agriculture. Consequently, a complete experimental set of analytical techniques dedicated to the characterization of long lifetime chemical species has been implemented to characterize tap water treated using cold atmospheric plasma process and intended to agronomy applications. For that purpose, colorimetry and acid titrations are performed, considering acid-base equilibria, pH and temperature variations induced during plasma activation. 16 species are quantified and monitored: hydroxide and hydronium ions, ammonia and ammonium ions, orthophosphates, carbonate ions, nitrite and nitrate ions and hydrogen peroxide. The related consumption/production mechanisms are discussed. In parallel, a chemical model of electrical conductivity based on Kohlrausch's law has been developed to simulate the electrical conductivity of the plasma-activated tap water (PATW). Comparing its predictions with experimental measurements leads to a narrow fitting, hence supporting the self-sufficiency of the experimental set, I.e. the fact that all long lifetime radicals of interest present in PATW are characterized. Finally, to evaluate the potential of cold atmospheric plasmas for agriculture applications, tap water has been daily plasma-treated to irrigate lentils seeds. Then, seedlings lengths have been measured and compared with untreated tap water, showing an increase as high as 34.0% and 128.4% after 3 days and 6 days of activation respectively. The interaction mechanisms between plasma and tap water are discussed as well as their positive synergy on

  12. Environmental burden of diarrhoeal diseases due to unsafe water supply and poor sanitation coverage in Nepal.

    PubMed

    Aryal, K K; Joshi, H D; Dhimal, M; Singh, S P; Dhakal, P; Dhimal, B; Bhusal, C L

    2012-05-01

    Unsafe water and poor sanitation are major contributing factors of diarrhoea. Most of the water supply systems in urban and rural area of Nepal do not have basic water treatment facilities. This has resulted in frequent reports of fecal contamination in drinking water and outbreaks of waterborne diseases. The purpose of this study was to find out the burden of diarrhoeal diseases at different scenario of water supply system and sanitation status in Nepalese context. A cross-sectional study was conducted in four different districts of Nepal analyzing six different scenarios based on availability of water supply and sanitation status. Village Development Committees (VDCs) and community selection was made purposively and 360 households, 60 from each scenario were selected conveniently to achieve the required number. Within the selected household, the head of the household or any member above 18 years of age was interviewed using a structured questionnaire. Observation was done for toilet and water sources besides questionnaire method. Incidence of diarrhoea per 1000 population was found to be the highest in scenario-IV (Spring without toilet) with 204.89 followed by scenario-VI (Tube well without toilet) with 145.30, while it was less in scenario-I (Tap water with toilet) with 46.05. Accordingly, the burden of disease (YLD) was also found to be the highest in scenario-IV and the lowest in scenario-I. Most of the households didn't treat water before drinking. Hand washing practice was found to be more than 90% regardless of toilet availability. The greater risk of acquiring diarrhoeal disease and higher burden of disease in situation of unprotected water source and absence of toilet shows that these are still important contributing factors for diarrhoeal disease in Nepal. Use of sanitary toilets and protected water source are the important measures for diarrhoeal disease prevention in Nepal.

  13. Public water-supply systems and water use in Tennessee, 1988

    USGS Publications Warehouse

    Hutson, Susan S.; Morris, A. Jannine

    1992-01-01

    This report summarizes the results of a study conducted by the U.S. Geological Survey, in cooperation with the Tennessee Department of Environment and Conservation (TDEC), Division of Water Supply in 1988. Data gathered during an inventory by the TDEC were collated to determine water use, supply sources, population served, and design and storage capacities of the systems. The inventory was limited to systems that were active on June 30, 1988. Results of a survey of the systems conducted by the Tennessee Department of Health and Environment during 1988 were a primary source of data for this report. Data from computer and manual files maintained by the Tennessee Department of Health and Environment and the U.S. Geological Survey also were used. The Division of Water Supply, TDEC, surveyed 541 public water-supply systems. These systems served 81 percent of the population of the State, or 3.95 million people. The gross per capita use statewide for public-supplied water was 179 gallons per day. Total water withdrawals for public supply increased about 39 percent from 510 million gallons per day (Mgal/d) in 1980, to 708 Mgalld in 1988. During the same period, the population increased about 7 percent. Surface-water withdrawals accounted for 63 percent (446 Mgal/d) of the total water withdrawn in the State. All of these withdrawals occurred in the Tennessee (56 percent or 249 Mgal/d) and the Ohio (44 percent or 197 Mgalld) hydrologic regions. Ground water supplied 262 Mgal/d or 37 percent of the total water withdrawn by public-supply systems statewide. Of that amount, 79 percent, or 208 Mgalld, was used in western Tennessee.

  14. Pollution by Nonylphenol in river, tap water, and aquatic in an acid rain-plagued city in southwest China.

    PubMed

    Jie, Yu; Jie, Zhou; Ya, Luo; Xuesong, Yang; Jing, Yang; Yu, Yang; Jiaqi, Yang; Jie, Xu

    2017-06-01

    Nonylphenol (NP) has provoked much environmental concern because of their weak estrogenic activities; however, few data are available on the environmental levels of the chemical in China. Environmental or river samples were assayed for NP by high-performance liquid chromatography (HPLC) technique. The concentration for NP measured in Xiangjiang River, ranging from 0.174 to 3.411 μg/L with a mean value of 1.73 μg/L, was lower than the Water Quality Criteria for NP of the US (6.6 μg/L); however, the NP concentration was maintained at a higher level compare to the developed countries and other civil cities. NP concentration in downstream water was markedly higher than that both in midstream and upstream water. Tissue accumulation of NP was observed in aquatics. A ratio of mean concentration of NP in aquatic (chlamys farreri and hemiculter leucisculus) to that in river water was 241 and 1087, respectively. The presence of NP in tap water in two urban districts of Zunyi was common with a detectable rate reached 100.0%. Mean NP concentration in terminal tap water in Huichuan district was six times as high as Honghuagang district, which was above Standards for the Drinking Water Quality for Phenols of China (2 μg/L). The pollution of NP in Xiangjiang River, tap water, and aquatic in Zunyi belongs to moderate or severe level in the world.

  15. Molecular characterization of natural biofilms from household taps with different materials: PVC, stainless steel, and cast iron in drinking water distribution system.

    PubMed

    Lin, Wenfang; Yu, Zhisheng; Chen, Xi; Liu, Ruyin; Zhang, Hongxun

    2013-09-01

    Microorganism in drinking water distribution system may colonize in biofilms. Bacterial 16S rRNA gene diversities were analyzed in both water and biofilms grown on taps with three different materials (polyvinyl chloride (PVC), stainless steel, and cast iron) from a local drinking water distribution system. In total, five clone libraries (440 sequences) were obtained. The taxonomic composition of the microbial communities was found to be dominated by members of Proteobacteria (65.9-98.9 %), broadly distributed among the classes Alphaproteobacteria, Betaproteobacteria, and Gammaproteobacteria. Other bacterial groups included Firmicutes, Acidobacteria, Bacteroidetes, Cyanobacteria, and Deinococcus-Thermus. Moreover, a small proportion of unclassified bacteria (3.5-10.6 %) were also found. This investigation revealed that the bacterial communities in biofilms appeared much more diversified than expected and more care should be taken to the taps with high bacterial diversity. Also, regular monitor of outflow water would be useful as potentially pathogenic bacteria were detected. In addition, microbial richness and diversity in taps ranked in the order as: PVC < stainless steel < cast iron. All the results interpreted that PVC would be a potentially suitable material for use as tap component in drinking water distribution system.

  16. Prioritizing hazardous pollutants in two Nigerian water supply schemes: a risk-based approach.

    PubMed

    Etchie, Ayotunde T; Etchie, Tunde O; Adewuyi, Gregory O; Krishnamurthi, Kannan; Saravanadevi, S; Wate, Satish R

    2013-08-01

    To rank pollutants in two Nigerian water supply schemes according to their effect on human health using a risk-based approach. Hazardous pollutants in drinking-water in the study area were identified from a literature search and selected pollutants were monitored from April 2010 to December 2011 in catchments, treatment works and consumer taps. The disease burden due to each pollutant was estimated in disability-adjusted life years (DALYs) using data on the pollutant's concentration, exposure to the pollutant, the severity of its health effects and the consumer population. The pollutants identified were microbial organisms, cadmium, cobalt, chromium, copper, iron, manganese, nickel, lead and zinc. All were detected in the catchments but only cadmium, cobalt, chromium, manganese and lead exceeded World Health Organization (WHO) guideline values after water treatment. Post-treatment contamination was observed. The estimated disease burden was greatest for chromium in both schemes, followed in decreasing order by cadmium, lead, manganese and cobalt. The total disease burden of all pollutants in the two schemes was 46 000 and 9500 DALYs per year or 0.14 and 0.088 DALYs per person per year, respectively, much higher than the WHO reference level of 1 × 10(-6) DALYs per person per year. For each metal, the disease burden exceeded the reference level and was comparable with that due to microbial contamination reported elsewhere in Africa. The estimated disease burden of metal contamination of two Nigerian water supply systems was high. It could best be reduced by protection of water catchment and pretreatment by electrocoagulation.

  17. Contamination of hospital tap water: the survival and persistence of Pseudomonas aeruginosa on conventional and 'antimicrobial' outlet fittings.

    PubMed

    Hutchins, C F; Moore, G; Thompson, K-A; Webb, J; Walker, J T

    2017-10-01

    Pseudomonas aeruginosa infections have been linked to contaminated hospital taps, highlighting the potential for tap outlet fittings (OF) to harbour biofilm. P. aeruginosa may be transferred to OFs via contaminated cleaning cloths. Suggested interventions include flushing regimens and alternative OF designs. To investigate the transfer of P. aeruginosa from a contaminated cleaning cloth to conventional and 'antimicrobial/antibiofilm' OFs and to determine whether this contamination persists and/or leads to contamination of tap water. Microfibre cloths contaminated with P. aeruginosa (10 8  cfu/mL) were used to wipe four different types of OF [one of conventional design (OF-A) and three marketed as 'antimicrobial' and/or 'antibiofilm' (OF- B, -C and -D)]. OFs were inserted into an experimental water distribution system for up to 24 h. Survival was assessed by culture. Single and multiple water samples were collected and cultured for P. aeruginosa. The median number of P. aeruginosa transferred from cloth to OF was 5.7 × 10 5  cfu (OF-A), 1.9 × 10 6  cfu (OF-B), 1.4 × 10 5  cfu (OF-C) and 2.9 × 10 6  cfu (OF-D). Numbers declined on all OFs during the 24 h period with log reductions ranging from 3.5 (OF-C) to 5.2 (OF-B; P > 0.05). All water samples delivered immediately after OF contamination contained P. aeruginosa at ≥10 cfu per 100 mL. Contamination of water delivered from OF-A persisted despite continued flushing. Water delivered from OF-B did not contain P. aeruginosa beyond the first flush. Contaminated cleaning cloths may transfer P. aeruginosa to OFs, leading to contamination of tap water. Although not removing the potential for contamination, 'antimicrobial/antibiofilm' OFs may prevent P. aeruginosa from continually contaminating water delivered from the outlet. Copyright © 2017 The Healthcare Infection Society. All rights reserved.

  18. Estimating Infection Risks and the Global Burden of Diarrheal Disease Attributable to Intermittent Water Supply Using QMRA.

    PubMed

    Bivins, Aaron W; Sumner, Trent; Kumpel, Emily; Howard, Guy; Cumming, Oliver; Ross, Ian; Nelson, Kara; Brown, Joe

    2017-07-05

    Intermittent water supply (IWS) is prevalent throughout low and middle-income countries. IWS is associated with increased microbial contamination and potentially elevated risk of waterborne illness. We used existing data sets to estimate the population exposed to IWS, assess the probability of infection using quantitative microbial risk assessment, and calculate the subsequent burden of diarrheal disease attributable to consuming fecally contaminated tap water from an IWS. We used reference pathogens Campylobacter, Cryptosporidium, and rotavirus as conservative risk proxies for infections via bacteria, protozoa, and viruses, respectively. Results indicate that the median daily risk of infection is an estimated 1 in 23 500 for Campylobacter, 1 in 5 050 000 for Cryptosporidium, and 1 in 118 000 for rotavirus. Based on these risks, IWS may account for 17.2 million infections causing 4.52 million cases of diarrhea, 109 000 diarrheal DALYs, and 1560 deaths each year. The burden of diarrheal disease associated with IWS likely exceeds the WHO health-based normative guideline for drinking water of 10 -6 DALYs per person per year. Our results underscore the importance water safety management in water supplies and the potential benefits of point-of-use treatment to mitigate risks.

  19. Haitian Tap-Taps

    ERIC Educational Resources Information Center

    Sterling, Joan

    2011-01-01

    In the small island country of Haiti, colorful taxis transport the natives to the market. Although the taxis may be crowded with people, goods, and even livestock, it is considered a luxury to ride rather than go on foot. The children's picture book, "Tap-Tap," is a wonderful introduction to the culture of this land. The name…

  20. Safety on Tap: A Citizen's Drinking Water Handbook.

    ERIC Educational Resources Information Center

    Loveland, David Gray; Reichheld, Beth

    This citizen's guide to ensuring a safe supply of drinking water for all provides the information and analysis that individuals need to understand the issues and to participate in local decision making. The sources of drinking water, the types of human activities that results in contamination, and the contaminants that are of most concern are…

  1. Rural water supply in Kerala, India: How to emerge from a low-level equilibrium trap

    NASA Astrophysics Data System (ADS)

    Singh, Bhanwar; Ramasubban, Radhika; Bhatia, Ramesh; Briscoe, John; Griffin, Charles C.; Kim, Chongchun

    1993-07-01

    Large quantities of financial and human resources have been devoted to improving rural water supplies in developing countries over the past two decades. Many projects have been successful, but many have failed to meet the needs of the intended beneficiaries. Evidence of the failures lies in the unused and poorly maintained systems that are scattered throughout rural areas of the developing world. The current situation in water supply in rural Kerala, India, reflects this general observation and can be described as a "low-level equilibrium trap." Water systems provide a low level of service with few yard taps. The monthly tariff for water from household connections is low. With few connectors and low tariffs, little revenue is generated beyond subsidies provided by the government. The water authority can afford to maintain the system up to a level at which the reliability of service is low, forcing consumers to supplement piped water from traditional sources. This study analyzes contingent valuation data collected in three areas of Kerala to evaluate the possibility of lifting the system out of this trap. The analysis shows that by making a few critical policy changes, encouraging private connections and financing those connections through higher tariffs, the system can ratchet up to a "high-level equilibrium" in which there are many connectors, monthly revenues are greatly increased, and consumer welfare improves. Such a system would be better financed, making it possible to improve the reliability and quality of the service.

  2. Survey of human pharmaceuticals in drinking water in the Czech Republic.

    PubMed

    Kozisek, Frantisek; Pomykacova, Ivana; Jeligova, Hana; Cadek, Vaclav; Svobodova, Veronika

    2013-03-01

    The first large-scale assessment of pharmaceuticals in drinking water in the Czech Republic (CR) focused on the detection of five substances. Samples were collected from public water systems supplying 5.3 million people, 50.5% of the Czech population. In the initial survey of tap water from 92 major supply zones using mostly surface water, no pharmaceutical exceeded the limit of quantification (LOQ = 0.5 ng/L). In a second survey, samples were collected from the outlet of 23 water treatment plants (WTPs) considered of high risk because they use surface waters influenced by wastewater. Ibuprofen was the most frequently found pharmaceutical (19 samples), followed by carbamazepine (12), naproxen (8), and diclofenac (3); concentrations ranged from 0.5 to 20.7 ng/L, with medians below 6 ng/L. Concentrations of 17α-ethinylestradiol were below the LOQ. A follow-up survey included tap and outlet samples from eight of the 23 WTPs with the highest concentrations. Pharmaceuticals were quantified in only three tap water samples. Regarding risks to consumers, these results suggest that a relatively small population (<10%) in the CR is exposed to quantifiable concentrations of pharmaceuticals in tap water and that an extremely high margin of safety (several thousand-fold to several million-fold) is associated with these exposures.

  3. Physico-chemical Analysis, Microbial Isolation, Sensitivity Test of the Isolates and Solar Disinfection of Water Running in Community Taps and River Kandutura in Nakuru North Sub-county, Kenya

    PubMed Central

    Waithaka, Paul N; Maingi, John Muthini; Nyamache, Anthony Kebira

    2015-01-01

    Nakuru North sub-county is a peri-urban area which has both dry and wet seasons. Its residents rely mostly on untreated water sources for daily water needs due to unreliable water supply from the urban council. However, this water has not been evaluated on its quality despite residents solely depending on it. This study was aimed at determining the physico-chemical and bacteriological quality of water drawn from River Kandutura and water taps in Nakuru North sub-county. In addition, the study was aimed at carrying out sensitivity test of the isolates to antibiotics and determining effectiveness of solar disinfection in water treatment. A total of 510 water samples; river (255) and taps (255) were collected and analyzed between January and December 2013. Antimicrobial sensitivity test was carried out using Kirby Bauer disk diffusion test. Out of five hundred and ten (510) samples examined for microorganisms, 36.86 % (188/510) were positive for E. coli, Shigella and Salmonella. Water used by Nakuru North sub-county residents is highly contaminated thus posing public health risk. Solar disinfection experiment indicated a possibility of effective decontamination of water up on exposure to sun light for 3-5 h. E. coli showed the highest resistance (26.3 %) followed by Salmonella (17.4 %) while Shigella showed the least (17.1 %). However, there was no significant deference (p=0.98) in resistance among total coliforms, Total heterotrophic and Salmonella at 0.05 level of significant. There is a need to enforce laws and policies on proper waste disposal as part of water pollution control. PMID:26464611

  4. Organization and scaling in water supply networks

    NASA Astrophysics Data System (ADS)

    Cheng, Likwan; Karney, Bryan W.

    2017-12-01

    Public water supply is one of the society's most vital resources and most costly infrastructures. Traditional concepts of these networks capture their engineering identity as isolated, deterministic hydraulic units, but overlook their physics identity as related entities in a probabilistic, geographic ensemble, characterized by size organization and property scaling. Although discoveries of allometric scaling in natural supply networks (organisms and rivers) raised the prospect for similar findings in anthropogenic supplies, so far such a finding has not been reported in public water or related civic resource supplies. Examining an empirical ensemble of large number and wide size range, we show that water supply networks possess self-organized size abundance and theory-explained allometric scaling in spatial, infrastructural, and resource- and emission-flow properties. These discoveries establish scaling physics for water supply networks and may lead to novel applications in resource- and jurisdiction-scale water governance.

  5. Biofilm Composition and Threshold Concentration for Growth of Legionella pneumophila on Surfaces Exposed to Flowing Warm Tap Water without Disinfectant

    PubMed Central

    Bakker, Geo L.; Italiaander, Ronald; Veenendaal, Harm R.; Wullings, Bart A.

    2017-01-01

    on surfaces exposed to warm water in engineered freshwater installations. An investigation with a test system supplied with different types of warm drinking water without disinfectant under controlled hydraulic conditions showed that treated aerobic groundwater (0.3 mg liter−1 of organic carbon) induced a low biofilm concentration that supported no or very limited growth of L. pneumophila. Elevated biofilm concentrations and L. pneumophila colony counts were observed on surfaces exposed to two types of extensively treated groundwater, containing 1.8 and 7.9 mg C liter−1 and complying with the microbial water quality criteria during distribution. Control measures in warm tap water installations are therefore essential for preventing growth of L. pneumophila. PMID:28062459

  6. Biofilm Composition and Threshold Concentration for Growth of Legionella pneumophila on Surfaces Exposed to Flowing Warm Tap Water without Disinfectant.

    PubMed

    van der Kooij, Dick; Bakker, Geo L; Italiaander, Ronald; Veenendaal, Harm R; Wullings, Bart A

    2017-03-01

    exposed to warm water in engineered freshwater installations. An investigation with a test system supplied with different types of warm drinking water without disinfectant under controlled hydraulic conditions showed that treated aerobic groundwater (0.3 mg liter -1 of organic carbon) induced a low biofilm concentration that supported no or very limited growth of L. pneumophila Elevated biofilm concentrations and L. pneumophila colony counts were observed on surfaces exposed to two types of extensively treated groundwater, containing 1.8 and 7.9 mg C liter -1 and complying with the microbial water quality criteria during distribution. Control measures in warm tap water installations are therefore essential for preventing growth of L. pneumophila . Copyright © 2017 American Society for Microbiology.

  7. Mechanisms affecting water quality in an intermittent piped water supply.

    PubMed

    Kumpel, Emily; Nelson, Kara L

    2014-01-01

    Drinking water distribution systems throughout the world supply water intermittently, leaving pipes without pressure between supply cycles. Understanding the multiple mechanisms that affect contamination in these intermittent water supplies (IWS) can be used to develop strategies to improve water quality. To study these effects, we tested water quality in an IWS system with infrequent and short water delivery periods in Hubli-Dharwad, India. We continuously measured pressure and physicochemical parameters and periodically collected grab samples to test for total coliform and E. coli throughout supply cycles at 11 sites. When the supply was first turned on, water with elevated turbidity and high concentrations of indicator bacteria was flushed out of pipes. At low pressures (<10 psi), elevated indicator bacteria were frequently detected even when there was a chlorine residual, suggesting persistent contamination had occurred through intrusion or backflow. At pressures between 10 and 17 psi, evidence of periodic contamination suggested that transient intrusion, backflow, release of particulates, or sloughing of biofilms from pipe walls had occurred. Few total coliform and no E. coli were detected when water was delivered with a chlorine residual and at pressures >17 psi.

  8. Treatment of primary hyperhidrosis with tap water iontophoresis in paediatric patients: a retrospective analysis.

    PubMed

    Dogruk Kacar, Seval; Ozuguz, Pinar; Eroglu, Selma; Polat, Serap; Karaca, Semsettin

    2014-12-01

    Primary hyperhidrosis is an under-recognized condition in children and adolescents. Iontophoresis is the second line of treatment for palmoplantar hyperhidrosis following topical treatment. The studies evaluating the efficacy of iontophoresis in children are limited. We aimed to investigate the efficacy and reliability of tap water iontophoresis in children with primary hyperhidrosis. Twenty-one patients aged under 18 years, who received iontophoresis for primary palmoplantar hyperhidrosis, were included in the study. In our clinic, tap water iontophoresis was administered at regular intervals, starting with five times per week and decreased to once a week on fifth week. Then maintenance sessions once a week for 6 weeks are recommended. The presence of excessive sweating was scored by visual analogue scale (VAS): "0" as continuation of excessive sweating and "10" as the absence of excessive sweating. The demographic and clinical data were collected from files. Also, patients fulfilled a questionnaire for efficacy on follow-up visit. Nineteen patients completed the whole 21 sessions. The mean VAS score was 5.89 ± 1.49 at the end of the 15th session and 6.36 ± 2.06 at the end of the treatment. Side effects were well tolerated. Only seven patients were still free of excessive sweating on third months after treatment. The mean satisfaction score was 4.95 ± 2.38, as measured by VAS where 0 indicated dissatisfaction and 10 indicated high satisfaction. Tap water iontophoresis is an effective method of treatment for primary palmoplantar and axillary hyperhidrosis in paediatric patients. But there are still unanswered questions about the mechanism of action, ideal session intervals and protocols for maximum efficacy.

  9. Evaluation and proposed study of potential ground-water supplies, Gallup area, New Mexico

    USGS Publications Warehouse

    Hiss, William L.

    1975-01-01

    buried alluvium in the Late Tertiary valleys is unknown. Water enters the volcanic rocks as rainfall and snowmelt and probably passes quickly into and through, the underlying alluvium into Jurassic and Cretaceous strata. The Gallup Sandstone in the lower part of the Mesaverde Group and the San Andres Limestone and Glorieta Sandstone (combined) are potential sources of water in the North Plains-Malpais area. Sustained yields of 500 to 800 gallons per minute (30 to 50 l/s) can be expected from wells completed in the Gallup Sandstone of Cretaceous age in areas west and north of the Zuni uplift. Properly completed wells tapping the Dakota Sandstone of Cretaceous age and the Westwater Canyon Sandstone Member of the Morrison Formation of Jurassic age locally yield 100 to 250 gallons per minute (6 to 15 l/s) north and east of Gallup. Additional supplies of ground water could be developed from these aquifers. However, arrangements to purchase or lease the water would probably need to be made before these resources could be exploited. Approximately 3,000 gallons per minute (190 l/s) of ground water is being pumped from the Westwater Canyon Member of the Morrison Formation at two uranium mines located about 12 miles (20 km) northeast of Gallup in the Church Rock mining district. The water is pumped into settling ponds at the surface. Effluent from the ponds is allowed to flow into arroyos draining into the Puerco River. Some of the waste water will be used in an ore-processing mill that is expected to be constructed near the mines. However, additional waste water will probably be available from other mines that reportedly will be located in the same mining district. Water salvaged from the current mining operations and (or) pumped from abandoned uranium mines constitutes the most readily available and dependable source of new ground-water supplies for the city of Gallup. The water contains dissolved uranium but is otherwise of better quality than that now avai

  10. 33 CFR 203.61 - Emergency water supplies due to contaminated water source.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    .... (5) Loss of water supply is not a basis for assistance under this authority. (6) Water will not be... 33 Navigation and Navigable Waters 3 2010-07-01 2010-07-01 false Emergency water supplies due to... PROCEDURES Emergency Water Supplies: Contaminated Water Sources and Drought Assistance § 203.61 Emergency...

  11. Tap water iontophoresis in the treatment of pediatric hyperhidrosis.

    PubMed

    Dagash, Haitham; McCaffrey, Sinead; Mellor, Katie; Roycroft, Agnes; Helbling, Ingrid

    2017-02-01

    The treatment options for localized hyperhidrosis include antiperspirants, anticholinergics, iontophoresis, botulinum toxin and surgery. Tap water iontophoresis (TWI) involves immersing the affected area in tap water and passing a small electrical current through the area. Our aim was to assess the success of this therapy in a pediatric cohort. Retrospective case note review of all patients younger than 18years who underwent TWI between 2002 and 2015. Demographic data, number of treatment sessions, side effects and overall success were analyzed. Individuals undergo 7 treatments over 4weeks. A positive outcome was determined as an improvement in symptoms. Pre- and posttreatment hyperhidrosis disease severity scale (HDSS) was measured. Data are presented as mean (range). Statistical analysis was by paired t-test. A P value of <0.05 was regarded as significant. There were 43 patients (30 females) with a mean age of 15 (8-17) years. Palmar and/or plantar hyperhidrosis (PPH) was present in 39/43 (91%) patients. Axillary hyperhidrosis (AH) was present in 19/43 (44%) patients. All patients (with the exception of one) underwent 7 sessions (5-7). Side effects included paresthesia (88%), pruritus (26%), pain (26%), erythema (14%), dryness (12%) as well as vesicle formation and abrasions in one patient (2%). A positive outcome was found in 84% (36/43) of patients. There was a significant reduction in mean HDSS (pre 3.5 vs. post 2; P=0.0001). TWI is a safe and effective modality of treatment for both PPH and AH in the pediatric population, with minimal side effects. Pediatric surgeons should offer this treatment option before considering more invasive surgical procedures. IV: Retrospective study. Crown Copyright © 2017. Published by Elsevier Inc. All rights reserved.

  12. Abdominal tap

    MedlinePlus

    Peritoneal tap; Paracentesis; Ascites - abdominal tap; Cirrhosis - abdominal tap; Malignant ascites - abdominal tap ... abdominal cavity ( most often cancer of the ovaries ) Cirrhosis of the liver Damaged bowel Heart disease Infection ...

  13. 30 CFR 874.14 - Water supply restoration.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... adverse effect on water supplies referred to in this section occurred both prior to and after August 3..., 1977. (c) If the adverse effect on water supplies referred to in this section occurred both prior to... 30 Mineral Resources 3 2012-07-01 2012-07-01 false Water supply restoration. 874.14 Section 874.14...

  14. 30 CFR 874.14 - Water supply restoration.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... adverse effect on water supplies referred to in this section occurred both prior to and after August 3..., 1977. (c) If the adverse effect on water supplies referred to in this section occurred both prior to... 30 Mineral Resources 3 2011-07-01 2011-07-01 false Water supply restoration. 874.14 Section 874.14...

  15. Water-supply potential from an asphalt-lined catchment near Holualoa Kona, Hawaii

    USGS Publications Warehouse

    Chinn, Salwyn S.W.

    1965-01-01

    The Jenkins-Whitesburg area includes approximately 250 square miles In Letcher and Pike Counties in the southeastern part of the Eastern Coal Field. In this area ground water is the principal source of water for nearly all rural families, most public supplies, several coal mines and coal processing plants, and one bottling plant. The major aquifers in the Jenkins-Whitesburg area are the Breathitt and Lee Formations of Pennsylvanian age. Other aquifers range in age from Devonian to Quaternary but are not important in this area because they occur at great depth or yield little or no water. The Breathitt Formation occurs throughout the area except along the crest and slopes of Pine Mountain and where it is covered by unconsolidated material of Quaternary age. The Breathitt Formation consists of shale, sandstone, and lesser amounts of coal and associated underclay. The yield of wells penetrating the Breathitt Formation ranges from less than 1 to 330 gallons per minute. Well yield is controlled by the type and depth of well, character of the aquifer, and topography of the well site. Generally, deep wells drilled in valleys of perennial streams offer the best potential for high yields. Although enough water for a minimum domestic supply (more than 100 gallons per day) may be obtained from shale, all high-yielding wells probably obtain water from vertical joints and from bedding planes which are best developed in sandstone. About 13 percent of the wells inventoried in the Breathitt Formation failed to supply enough water for a minimum domestic supply. Most of these are shallow dug wells or drilled wells on hillsides or hilltops. Abandoned coal mines are utilized as large infiltration galleries and furnish part of the water for several public supplies. The chemical quality of water from the Breathitt Formation varies considerably from place to place, but the water generally is acceptable for most domestic and industrial uses. Most water is a calcium magnesium bicarbonate

  16. Human drinking water compared with river waters throughout the United States with respect to their stable hydrogen and oxygen isotopic composition

    NASA Astrophysics Data System (ADS)

    Landwehr, J. M.; Coplen, T. B.; Qi, H.

    2009-04-01

    The composition of stable isotopes of hydrogen (^2H) and oxygen (^18O) in animal tissues, such as hair, nail, teeth and bone, has been used to trace migrations and geographic origin of individuals. Variations of these isotopic ratios in tissue are known to show significant correlations with the isotopic composition of ingested water, as well as with diet and other oxygen sources. Drinking water in natural ecosystems is defined by what is locally available for animal consumption, primarily surface waters such as streams, ponds, lakes, seeps, springs, etc. Tap water provides the drinking water in many human ecosystems. It may derive from local sources but can also draw on more diverse sources, such as large rivers with watersheds larger than those of local creeks, deep ground waters or even imported supplies, which may be isotopically distinct from local ecosystem supplies. Because of the potentially complex hydrologic pathways of water sources available in either animal or human ecosystems, the stable isotopic composition of these supplies may differ significantly from that of the (weighted average) local precipitation which is sometimes used to represent local water supplies. For example, water samples taken from three different taps in Washington, D.C., USA, on August 15, 2007, had measured ^2H and ^18O values of -41.7 per mill and -6.13 per mill, -41.7 per mill and -6.06 per mill, and -42.2 per mill and -6.22 per mill, respectively. A water sample taken on the same day from the Potomac River, which is the source of the D.C. water supply, had ^2H and ^18O values of -41.7 per mill and -6.06 per mill, respectively, consistent with that of the urban tap water. However, precipitation samples collected locally in Reston, Virginia, USA, had ^2H and ^18O values of -16.1 per mill and -3.13 per mill, respectively, for the week ending on August 15, 2007; -17.5 per mill and -3.40 per mill, respectively, for the month preceding August 15, 2007; and -13.6 per mill and -3

  17. Public water supplies of North Carolina : a summary of water sources, use, treatment, and capacity of water-supply systems

    USGS Publications Warehouse

    Mann, L.T.

    1978-01-01

    Data were collected during 1970-76 on 224 public water supply systems in North Carolina with 500 or more customers. This report summarizes these data that were previously published in five separate regional reports. The data are presented in order to Council of Government region, county, and water system name and include population served, average and maximum daily use, industrial use, water source, allowable draft of surface-water supplies, raw water pumping capacity, raw and finished water storage, type of water treatment, treatment plant capacity, and a summary of the chemical quality of finished water. Tables and maps provide cross references for system names, counties, Council of Government regions and water source.

  18. Hot tap thermowell installation

    NASA Technical Reports Server (NTRS)

    Romero, C. A.

    1971-01-01

    System permits valve housings or other fillings to be installed in live steam lines or water pipes without interrupting their operation, thus eliminating current tapping restrictions. Two basic assemblies for installation under pressure are described.

  19. Is water fluoridation effective in reducing inequalities in dental caries distribution in developing countries? Recent findings from Brazil.

    PubMed

    Peres, Marco Aurélio; Antunes, José Leopoldo Fereira; Peres, Karen Glazer

    2006-01-01

    To assess socioeconomic differences between towns with and without water fluoridation, and to compare dental caries levels among socioeconomic strata in fluoridated and non-fluoridated areas. A countrywide survey of oral health performed in 2002-03 and comprising 34,550 children aged 12 years provided information about dental caries levels in 249 Brazilian towns. Socioeconomic indices, the coverage and the fluoride status of the water supply network of participating towns were also appraised. Multivariate regression models fitted the adjustment of dental caries levels and covariates to socioeconomic status and water supply. Inequalities in dental outcomes were compared in towns with and without fluoridated tap water. Better-off towns tended to present a higher coverage by the water supply network, and were more inclined to add fluoride. Fluoridated tap water was associated with an overall improved profile of caries, concurrent with an expressively larger inequality in the distribution of dental disease. Suppressing inequalities in the distribution of dental caries requires an expanded access to fluoridated tap water; a strategy that can be effective to foster further reductions in caries indices.

  20. Outbreak of drug-resistant Acinetobacter baumannii ST219 caused by oral care using tap water from contaminated hand hygiene sinks as a reservoir.

    PubMed

    Umezawa, Kazuo; Asai, Satomi; Ohshima, Toshio; Iwashita, Hideo; Ohashi, Maya; Sasaki, Mika; Kaneko, Akihiro; Inokuchi, Sadaki; Miyachi, Hayato

    2015-11-01

    An outbreak of amikacin- and ciprofloxacin-resistant Acinetobacter baumannii ST219 in Tokai University hospital's emergency intensive care unit was caused by its colonization in water systems and subsequent spread through oral care using tap water. The outbreak was successfully controlled after replacement of the water system and implementation as of daily cleaning of water taps and oral care with a dry method. It is important to strictly manage the water system in critical care areas. Copyright © 2015 Association for Professionals in Infection Control and Epidemiology, Inc. Published by Elsevier Inc. All rights reserved.

  1. Fecal indicators and zoonotic pathogens in household drinking water taps fed from rainwater tanks in Southeast Queensland, Australia.

    PubMed

    Ahmed, W; Hodgers, L; Sidhu, J P S; Toze, S

    2012-01-01

    In this study, the microbiological quality of household tap water samples fed from rainwater tanks was assessed by monitoring the numbers of Escherichia coli bacteria and enterococci from 24 households in Southeast Queensland (SEQ), Australia. Quantitative PCR (qPCR) was also used for the quantitative detection of zoonotic pathogens in water samples from rainwater tanks and connected household taps. The numbers of zoonotic pathogens were also estimated in fecal samples from possums and various species of birds by using qPCR, as possums and birds are considered to be the potential sources of fecal contamination in roof-harvested rainwater (RHRW). Among the 24 households, 63% of rainwater tank and 58% of connected household tap water (CHTW) samples contained E. coli and exceeded Australian drinking water guidelines of <1 CFU E. coli per 100 ml water. Similarly, 92% of rainwater tanks and 83% of CHTW samples also contained enterococci. In all, 21%, 4%, and 13% of rainwater tank samples contained Campylobacter spp., Salmonella spp., and Giardia lamblia, respectively. Similarly, 21% of rainwater tank and 13% of CHTW samples contained Campylobacter spp. and G. lamblia, respectively. The number of E. coli (P = 0.78), Enterococcus (P = 0.64), Campylobacter (P = 0.44), and G. lamblia (P = 0.50) cells in rainwater tanks did not differ significantly from the numbers observed in the CHTW samples. Among the 40 possum fecal samples tested, Campylobacter spp., Cryptosporidium parvum, and G. lamblia were detected in 60%, 13%, and 30% of samples, respectively. Among the 38 bird fecal samples tested, Campylobacter spp., Salmonella spp., C. parvum, and G. lamblia were detected in 24%, 11%, 5%, and 13% of the samples, respectively. Household tap water samples fed from rainwater tanks tested in the study appeared to be highly variable. Regular cleaning of roofs and gutters, along with pruning of overhanging tree branches, might also prove effective in reducing animal fecal

  2. Fecal Indicators and Zoonotic Pathogens in Household Drinking Water Taps Fed from Rainwater Tanks in Southeast Queensland, Australia

    PubMed Central

    Hodgers, L.; Sidhu, J. P. S.; Toze, S.

    2012-01-01

    In this study, the microbiological quality of household tap water samples fed from rainwater tanks was assessed by monitoring the numbers of Escherichia coli bacteria and enterococci from 24 households in Southeast Queensland (SEQ), Australia. Quantitative PCR (qPCR) was also used for the quantitative detection of zoonotic pathogens in water samples from rainwater tanks and connected household taps. The numbers of zoonotic pathogens were also estimated in fecal samples from possums and various species of birds by using qPCR, as possums and birds are considered to be the potential sources of fecal contamination in roof-harvested rainwater (RHRW). Among the 24 households, 63% of rainwater tank and 58% of connected household tap water (CHTW) samples contained E. coli and exceeded Australian drinking water guidelines of <1 CFU E. coli per 100 ml water. Similarly, 92% of rainwater tanks and 83% of CHTW samples also contained enterococci. In all, 21%, 4%, and 13% of rainwater tank samples contained Campylobacter spp., Salmonella spp., and Giardia lamblia, respectively. Similarly, 21% of rainwater tank and 13% of CHTW samples contained Campylobacter spp. and G. lamblia, respectively. The number of E. coli (P = 0.78), Enterococcus (P = 0.64), Campylobacter (P = 0.44), and G. lamblia (P = 0.50) cells in rainwater tanks did not differ significantly from the numbers observed in the CHTW samples. Among the 40 possum fecal samples tested, Campylobacter spp., Cryptosporidium parvum, and G. lamblia were detected in 60%, 13%, and 30% of samples, respectively. Among the 38 bird fecal samples tested, Campylobacter spp., Salmonella spp., C. parvum, and G. lamblia were detected in 24%, 11%, 5%, and 13% of the samples, respectively. Household tap water samples fed from rainwater tanks tested in the study appeared to be highly variable. Regular cleaning of roofs and gutters, along with pruning of overhanging tree branches, might also prove effective in reducing animal fecal

  3. Quality control of bottled and vended water in California: A review and comparison to tap water

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Darby, J.L.; Allen, L.

    1994-04-01

    Current regulations and compliance for quality control of bottled and vended water in California are compared with that of the tap water industry in this research. Over 35% of the bottled water sold in the US is consumed in California where a third of the residents use such water as a primary source of drinking water. California is one of several states that regulates bottled water more rigorously than the federal government. In California, water quality standards for the two industries are comparable except that many of the organic standards for bottled water are applicable only to the source water,more » a concern due to potential organic contamination during processing. Reporting requirements, significantly less stringent for bottled water, allow considerable latitude in assessing risks and make assessment of compliance difficult. Based on available statistics, compliance for the two industries is comparable; the majority of violations posed no health risks. For both industries, small systems comprised the majority of violations whereas large systems had excellent compliance rates.« less

  4. Prioritizing hazardous pollutants in two Nigerian water supply schemes: a risk-based approach

    PubMed Central

    Etchie, Ayotunde T; Etchie, Tunde O; Krishnamurthi, Kannan; SaravanaDevi, S; Wate, Satish R

    2013-01-01

    Abstract Objective To rank pollutants in two Nigerian water supply schemes according to their effect on human health using a risk-based approach. Methods Hazardous pollutants in drinking-water in the study area were identified from a literature search and selected pollutants were monitored from April 2010 to December 2011 in catchments, treatment works and consumer taps. The disease burden due to each pollutant was estimated in disability-adjusted life years (DALYs) using data on the pollutant’s concentration, exposure to the pollutant, the severity of its health effects and the consumer population. Findings The pollutants identified were microbial organisms, cadmium, cobalt, chromium, copper, iron, manganese, nickel, lead and zinc. All were detected in the catchments but only cadmium, cobalt, chromium, manganese and lead exceeded World Health Organization (WHO) guideline values after water treatment. Post-treatment contamination was observed. The estimated disease burden was greatest for chromium in both schemes, followed in decreasing order by cadmium, lead, manganese and cobalt. The total disease burden of all pollutants in the two schemes was 46 000 and 9500 DALYs per year or 0.14 and 0.088 DALYs per person per year, respectively, much higher than the WHO reference level of 1 × 10−6 DALYs per person per year. For each metal, the disease burden exceeded the reference level and was comparable with that due to microbial contamination reported elsewhere in Africa. Conclusion The estimated disease burden of metal contamination of two Nigerian water supply systems was high. It could best be reduced by protection of water catchment and pretreatment by electrocoagulation. PMID:23940402

  5. Pseudo-outbreak of Cupriavidus pauculus infection at an outpatient clinic related to rinsing culturette swabs in tap water.

    PubMed

    Balada-Llasat, Joan-Miquel; Elkins, Camille; Swyers, Lettie; Bannerman, Tammy; Pancholi, Preeti

    2010-07-01

    Cupriavidus pauculus is a water microorganism rarely isolated from clinical specimens. We describe a pseudo-outbreak in which multiple strains that were associated with moistening of culturette swabs with tap water were isolated from a single clinic before collecting the patient specimen.

  6. Drinking Water Supply without Use of a Disinfectant

    NASA Astrophysics Data System (ADS)

    Rajnochova, Marketa; Tuhovcak, Ladislav; Rucka, Jan

    2018-02-01

    The paper focuses on the issue of drinking water supply without use of any disinfectants. Before the public water supply network operator begins to consider switching to operation without use of chemical disinfection, initial assessment should be made, whether or not the water supply system in question is suitable for this type of operation. The assessment is performed by applying the decision algorithm. The initial assessment is followed by another decision algorithm which serves for managing and controlling the process of switching to drinking water supply without use of a disinfectant. The paper also summarizes previous experience and knowledge of this way operated public water supply systems in the Czech Republic.

  7. Racial/Ethnic and Socioeconomic Disparities in Hydration Status Among US Adults and the Role of Tap Water and Other Beverage Intake

    PubMed Central

    Gortmaker, Steven L.; Long, Michael W.; Cradock, Angie L.; Kenney, Erica L.

    2017-01-01

    Objectives. To evaluate whether differences in tap water and other beverage intake explain differences in inadequate hydration among US adults by race/ethnicity and income. Methods. We estimated the prevalence of inadequate hydration (urine osmolality ≥ 800 mOsm/kg) by race/ethnicity and income of 8258 participants aged 20 to 74 years in the 2009 to 2012 National Health and Nutrition Examination Survey. Using multivariable regression models, we estimated associations between demographic variables, tap water intake, and inadequate hydration. Results. The prevalence of inadequate hydration among US adults was 29.5%. Non-Hispanic Blacks (adjusted odds ratio [AOR] = 1.44; 95% confidence interval [CI] = 1.17, 1.76) and Hispanics (AOR = 1.42; 95% CI = 1.21, 1.67) had a higher risk of inadequate hydration than did non-Hispanic Whites. Lower-income adults had a higher risk of inadequate hydration than did higher-income adults (AOR = 1.23; 95% CI = 1.04, 1.45). Differences in tap water intake partially attenuated racial/ethnic differences in hydration status. Differences in total beverage and other fluid intake further attenuated sociodemographic disparities. Conclusions. Racial/ethnic and socioeconomic disparities in inadequate hydration among US adults are related to differences in tap water and other beverage intake. Policy action is needed to ensure equitable access to healthy beverages. PMID:28727528

  8. Racial/Ethnic and Socioeconomic Disparities in Hydration Status Among US Adults and the Role of Tap Water and Other Beverage Intake.

    PubMed

    Brooks, Carolyn J; Gortmaker, Steven L; Long, Michael W; Cradock, Angie L; Kenney, Erica L

    2017-09-01

    To evaluate whether differences in tap water and other beverage intake explain differences in inadequate hydration among US adults by race/ethnicity and income. We estimated the prevalence of inadequate hydration (urine osmolality ≥ 800 mOsm/kg) by race/ethnicity and income of 8258 participants aged 20 to 74 years in the 2009 to 2012 National Health and Nutrition Examination Survey. Using multivariable regression models, we estimated associations between demographic variables, tap water intake, and inadequate hydration. The prevalence of inadequate hydration among US adults was 29.5%. Non-Hispanic Blacks (adjusted odds ratio [AOR] = 1.44; 95% confidence interval [CI] = 1.17, 1.76) and Hispanics (AOR = 1.42; 95% CI = 1.21, 1.67) had a higher risk of inadequate hydration than did non-Hispanic Whites. Lower-income adults had a higher risk of inadequate hydration than did higher-income adults (AOR = 1.23; 95% CI = 1.04, 1.45). Differences in tap water intake partially attenuated racial/ethnic differences in hydration status. Differences in total beverage and other fluid intake further attenuated sociodemographic disparities. Racial/ethnic and socioeconomic disparities in inadequate hydration among US adults are related to differences in tap water and other beverage intake. Policy action is needed to ensure equitable access to healthy beverages.

  9. Developing Portfolios of Water Supply Transfers

    NASA Astrophysics Data System (ADS)

    Characklis, G. W.; Kirsch, B. R.; Ramsey, J.; Dillard, K. E.; Kelley, C. T.

    2005-12-01

    Most cities rely on firm water supply capacity to meet demand, but increasing scarcity and supply costs are encouraging greater use of temporary transfers (e.g., spot leases, options). This raises questions regarding how best to coordinate the use of these transfers in meeting cost and reliability objectives. This work combines a hydrologic-water market simulation with an optimization approach to identify portfolios of permanent rights, options and leases that minimize expected costs of meeting a city's annual demand with a specified reliability. Spot market prices are linked to hydrologic conditions and described by monthly lease price distributions which are used to price options via a risk neutral approach. Monthly choices regarding when and how much water to acquire through temporary transfers are made on the basis of anticipatory decision rules related to the ratio of expected supply-to-expected demand. The simulation is linked with an algorithm that uses an implicit filtering search method designed for solution surfaces that exhibit high frequency, low amplitude noise. This simulation-optimization approach is applied to a region that currently supports an active water market, with results suggesting that the use of temporary transfers can reduce expected water supply costs substantially, while still maintaining high reliability levels. Also evaluated are tradeoffs between expected costs and cost variability that occur with variation in a portfolio's distribution of rights, options and leases. While this work represents firm supply capacity as permanent water rights, a similar approach could be used to develop portfolios integrating options and/or leases with hard supply infrastructure.

  10. Selected Works in Water Supply, Water Conservation and Water Quality Planning.

    DTIC Science & Technology

    1981-05-01

    of change (1970- 1980 ). The Institute’s work reflects the fact that the Corps of Engineers is not a novice in the business of providing water supply for...Urban Water Supply of the Task Force was chaired by the Secretary of the Army. The Subcommittee produced a report on 6 June 1980 evaluating urban water...persuant to the President’s Water Pvizcy message to Congress in 1978. The two other reports were published in 1980 and are discussed below. IWR staff

  11. Determination of selected pharmaceuticals in tap water and drinking water treatment plant by high-performance liquid chromatography-triple quadrupole mass spectrometer in Beijing, China.

    PubMed

    Cai, Mei-Quan; Wang, Rong; Feng, Li; Zhang, Li-Qiu

    2015-02-01

    A simultaneous determination method of 14 multi-class pharmaceuticals using solid-phase extraction (SPE) followed by high-performance liquid chromatography-tandem mass spectrometer (HPLC-MS/MS) was established to measure the occurrence and distribution of these pharmaceuticals in tap water and a drinking water treatment plant (DWTP) in Beijing, China. Target compounds included seven anti-inflammatory drugs, two antibacterial drugs, two lipid regulation drugs, one antiepileptic drug, and one hormone. Limits of detection (LODs) and limits of quantitation (LOQs) ranged from 0.01 to 1.80 ng/L and 0.05 to 3.00 ng/L, respectively. Intraday and inter-day precisions, recoveries of different matrices, and matrix effects were also investigated. Of the 14 pharmaceutical compounds selected, nine were identified in tap water of Beijing downtown with the concentration up to 38.24 ng/L (carbamazepine), and the concentration levels of detected pharmaceuticals in tap water (<5 ng/L for most pharmaceuticals) were lower than previous studies in other countries. In addition, ten and six pharmaceuticals were measured in raw water and finished water at the concentration ranged from 0.10 to 16.23 and 0.13 to 17.17 ng/L, respectively. Five compounds were detected most frequently in DWTP, namely antipyrine, carbamazepine, isopropylantipyrine, aminopyrine, and bezafibrate. Ibuprofen was found to be the highest concentration pharmaceutical during DWTP, up to 53.30 ng/L. DWTP shows a positive effect on the removal of most pharmaceuticals with 81.2-99.5 % removal efficiencies, followed by carbamazepine with 55.4 % removal efficiency, but it has no effect for removing ibuprofen and bezafibrate.

  12. Occurrence of cardiovascular drugs in the sewage-impacted Vistula River and in tap water in the Warsaw region (Poland).

    PubMed

    Giebułtowicz, Joanna; Stankiewicz, Albert; Wroczyński, Piotr; Nałęcz-Jawecki, Grzegorz

    2016-12-01

    In recent years, cardiovascular diseases were the second most common cause of death worldwide. Therefore, the consumption of drugs used to treat cardiovascular diseases is high. So far, there were no such comprehensive reports regarding the presence of cardiovascular drugs in surface and tap waters, particularly in Central and Eastern Europe. The aim of our study was to determine the presence of 30 pharmaceutically active compounds and some of their metabolites, at specific points of the Vistula River and in tap water samples in the Warsaw region. The analysis was performed using the liquid chromatography-electrospray ionization-tandem mass spectrometry method, coupled to solid-phase extraction. To the best of the authors' knowledge, this is the first time where the presence of ciprofibrate in the environment was investigated. Cardiovascular drugs found at the highest concentrations (reaching 1 μg/L or higher) in surface water were beta-blockers, sartans and diuretics. In tap water samples, trace amounts of pharmaceuticals were detected, for almost all target compounds. This highlights their inadequate elimination by the treatment facility used in the Warsaw region. The presence of cardiovascular compounds in the aquatic environment could have a long-term effect even at a low exposure level, since synergy effects amongst pharmaceuticals may occur.

  13. The role of ground water in water-supply emergency planning

    NASA Astrophysics Data System (ADS)

    Reichard, E. G.; Li, Z.; Hermans, C.

    2008-12-01

    Catastrophic events, such as earthquakes or floods, can result in water-supply disruptions. Such disruptions can cause large economic losses and pose threats to public health. Water managers seek to develop cost- effective strategies for reducing these risks and ensuring water security. In many areas, ground water can play an important role in such water-supply emergency planning. We present a probabilistic framework for estimating the hydraulic impacts and associated costs of using ground water as a backup supply in the event of a disruption in imported-water deliveries. We also estimate the benefits of ground-water management strategies, such as artificial recharge, in terms of reduced costs of responding to water-supply emergencies. The magnitude of these benefits will depend on the expected severity and duration of the imported-water disruption, the functioning of the hydrogeologic system, and economic parameters. We apply the framework to address water-supply emergency planning in the Los Angeles area. A simulation model is used to generate response functions, which relate emergency ground-water pumpage to potential adverse effects, such as increased pumping lifts, subsidence, and seawater intrusion. These response functions are incorporated into a Monte Carlo analysis, along with cost coefficients and information on the probable severity of the disruption. Disruption severity is represented by a probability distribution, which can be elicited from water managers. In the example, the primary emergency-related benefits of artificial recharge are reductions in potential subsidence costs. The framework could be extended to consider additional engineering factors (e.g., well capacities and integrity of local distribution systems), institutional arrangements, and regulatory requirements.

  14. [Study on chlorinated disinfection byproducts and the relevant health risk in tap water of J City].

    PubMed

    Li, Xiao-ling; Liu, Rui; Lan, Ya-qiong; Yu, Su-lin; Wen, Xiao-gang; Chen, Liu-jun; Zhang, Yong-ming

    2013-09-01

    J City lies in the downstream of Taihu Lake and its water source was micro-polluted by the well-developed industry and agriculture inside the city and in the upper stream. Tap water of J City is characterized as high concentrations of organics and ammonia nitrogen, and chlorinated disinfection byproducts (CDBPs), which has drawn many public concerns for the health risk. Tap water was sampled in May, August, October of 2012 and January of 2013. Four trihalomethanes (THMs) and five haloacetic acids (HAAs) were determined with the gas chromatography. Results revealed that THMs accounted for 88.1% of the sum of THMs and HAAs, with higher concentrations in May, August and January (39.34, 50.37 and 28.02 microg x L(-1), respectively) while obviously lower in October (19.19 microg x L(-1)), which were significantly higher than that of HAAs (2.58-4.02 microg x L(-1)). After boiled for three minutes, THMs were removed over 92.3% but HAAs were largely increased. The health risk of CDBPs was then calculated based on the health risk assessment model recommended by the USEPA. The health risk caused by carcinogenic CDBPs was within a range of 3.1 x 10(-6) - 7. 3 x 10(-6) in the tap water, all over the recommended level of 1 x 10(-6), but after boiled, the value significantly decreased to 7.9 x 10(-7), which is below the recommended level. The health risk caused by non-carcinogenic CDBPs absolutely increased from 2.1 x 10(-11) to 3.4 x 10(-9) after boiled, which is below the reference value of 10(-5).

  15. Using Water Transfers to Manage Supply Risk

    NASA Astrophysics Data System (ADS)

    Characklis, G. W.

    2007-12-01

    Most cities currently rely on water supplies with sufficient capacity to meet demand under almost all conditions. However, the rising costs of water supply development make the maintenance of infrequently used excess capacity increasingly expensive, and more utilities are considering the use of water transfers as a means of more cost effectively meeting demand under drought conditions. Transfers can take place between utilities, as well as different user groups (e.g., municipal and agricultural), and can involve both treated and untreated water. In cases where both the "buyer" and "seller" draw water from the same supply, contractual agreements alone can facilitate a transfer, but in other cases new infrastructure (e.g., pipelines) will be required. Developing and valuing transfer agreements and/or infrastructure investments requires probabilistic supply/demand analyses that incorporate elements of both hydrology and economics. The complexity of these analyses increases as more sophisticated types of agreements (e. g., options) are considered, and as utilities begin to consider how to integrate transfers into long-term planning efforts involving a more diversified portfolio of supply assets. This discussion will revolve around the methods used to develop minimum (expected) cost portfolios of supply assets that meet specified reliability goals. Two different case studies, one in both the eastern and western U.S., will be described with attention to: the role that transfers can play in reducing average supply costs; tradeoffs between costs and supply reliability, and; the effects of different transfer agreement types on the infrastructure capacity required to complete the transfers. Results will provide insights into the cost savings potential of more flexible water supply strategies.

  16. 30 CFR 75.1107-7 - Water spray devices; capacity; water supply; minimum requirements.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Water spray devices; capacity; water supply... Water spray devices; capacity; water supply; minimum requirements. (a) Where water spray devices are... square foot over the top surface area of the equipment and the supply of water shall be adequate to...

  17. AN INTEGRATED RESEARCH AGENDA TO EVALUATE TAP WATER DISINFECTION BYPRODUCTS AND HUMAN HEALTH: PART 1

    EPA Science Inventory

    An Integrated Research Agenda to Evaluate Tap Water Disinfection Byproducts and Human Health: Part I

    Michele Lynberg1, David Ashley 2, Pauline Mendola3, J. R. Nuckols4, Kenneth Cantor5, Benjamin Blount 2, Philip Singer6, Charles Wilkes7, Lorraine Backer1, and Peter Langlo...

  18. Modelling the water energy nexus: should variability in water supply impact on decision making for future energy supply options?

    NASA Astrophysics Data System (ADS)

    Cullis, James D. S.; Walker, Nicholas J.; Ahjum, Fadiel; Juan Rodriguez, Diego

    2018-02-01

    Many countries, like South Africa, Australia, India, China and the United States, are highly dependent on coal fired power stations for energy generation. These power stations require significant amounts of water, particularly when fitted with technology to reduce pollution and climate change impacts. As water resources come under stress it is important that spatial variability in water availability is taken into consideration for future energy planning particularly with regards to motivating for a switch from coal fired power stations to renewable technologies. This is particularly true in developing countries where there is a need for increased power production and associated increasing water demands for energy. Typically future energy supply options are modelled using a least cost optimization model such as TIMES that considers water supply as an input cost, but is generally constant for all technologies. Different energy technologies are located in different regions of the country with different levels of water availability and associated infrastructure development and supply costs. In this study we develop marginal cost curves for future water supply options in different regions of a country where different energy technologies are planned for development. These water supply cost curves are then used in an expanded version of the South Africa TIMES model called SATIM-W that explicitly models the water-energy nexus by taking into account the regional nature of water supply availability associated with different energy supply technologies. The results show a significant difference in the optimal future energy mix and in particular an increase in renewables and a demand for dry-cooling technologies that would not have been the case if the regional variability of water availability had not been taken into account. Choices in energy policy, such as the introduction of a carbon tax, will also significantly impact on future water resources, placing additional water

  19. Water quality effects of intermittent water supply in Arraiján, Panama.

    PubMed

    Erickson, John J; Smith, Charlotte D; Goodridge, Amador; Nelson, Kara L

    2017-05-01

    Intermittent drinking water supply is common in low- and middle-income countries throughout the world and can cause water quality to degrade in the distribution system. In this study, we characterized water quality in one study zone with continuous supply and three zones with intermittent supply in the drinking water distribution network in Arraiján, Panama. Low or zero pressures occurred in all zones, and negative pressures occurred in the continuous zone and two of the intermittent zones. Despite hydraulic conditions that created risks for backflow and contaminant intrusion, only four of 423 (0.9%) grab samples collected at random times were positive for total coliform bacteria and only one was positive for E. coli. Only nine of 496 (1.8%) samples had turbidity >1.0 NTU and all samples had ≥0.2 mg/L free chlorine residual. In contrast, water quality was often degraded during the first-flush period (when supply first returned after an outage). Still, routine and first-flush water quality under intermittent supply was much better in Arraiján than that reported in a previous study conducted in India. Better water quality in Arraiján could be due to better water quality leaving the treatment plant, shorter supply outages, higher supply pressures, a more consistent and higher chlorine residual, and fewer contaminant sources near pipes. The results illustrate that intermittent supply and its effects on water quality can vary greatly between and within distribution networks. The study also demonstrated that monitoring techniques designed specifically for intermittent supply, such as continuous pressure monitoring and sampling the first flush, can detect water quality threats and degradation that would not likely be detected with conventional monitoring. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. The water supply-water environment nexus in salt Intrusion area under the climate change

    NASA Astrophysics Data System (ADS)

    Liu, D.

    2017-12-01

    Water resources are critical problems in in salt Intrusion area for the increasing water supply and water quality deterioration. And the climate change exacerbates these problems. In order to balance the relationship between water supply and water environment requirements, the water supply-water environment nexus should be understood well. Based on the de Saint-Venant system of equations and the convection diffusion equation, which can be used to reflect the laws of water quality, the water supply- water environment nexus equation has be determined. And the nexus is dynamic with the climate change factors. The methods of determined the nexus have then been applied to a case study of the water supply-water environment nexus for the Pearl River Delta in China. The results indicate that the water supply-water environment nexus is trade off each other and are mainly affected by the fresh water flow from the upstream, salt water intrusion will reduce the resilience of the water supply system in this area. Our methods provides a useful framework to quantify the nexus according to the mechanisms of the water quantity and water quality, which will useful freshwater allocation and management in this saltwater intrusion area.

  1. Identification and growth characteristics of pink pigmented oxidative bacteria, Methylobacterium mesophilicum and biovars isolated from chlorinated and raw water supplies.

    PubMed

    O'Brien, J R; Murphy, J M

    1993-01-01

    Pink pigmented bacteria were isolated from a blood bank water purification unit, a municipal town water supply (tap water), and an island (untreated) ground water source. A total of thirteen strains including two reference strains of pink pigmented bacteria were compared in a numerical phenotypic study using 119 binary characters. Three clusters were derived, one major cluster of eleven strains was subdivided into two sub-clusters on the basis of methanol utilization. Five strains were facultative methylotrophs and were classified as Methylobacterium mesophilicum biovar 1. The other six strains did not utilize methanol, but on the basis of high phenotypic similarity of 83.6% were classified as M. mesophilicum biovar 2. The single reference strain comprising cluster 2 Pseudomonas extorquens NCIB 9399 was assigned to the genus Methylobacterium and classified as M. extorquens. Cluster 3 was the single reference strain Rhizobium CB 376.

  2. Public perception of drinking water from private water supplies: focus group analyses

    PubMed Central

    Jones, Andria Q; Dewey, Catherine E; Doré, Kathryn; Majowicz, Shannon E; McEwen, Scott A; Waltner-Toews, David; Henson, Spencer J; Mathews, Eric

    2005-01-01

    Background Over four million Canadians receive their drinking water from private water supplies, and numerous studies report that these supplies often exceed the minimal acceptable standards for contamination. Canadians in rural areas test their water intermittently, if at all, and treatment of water from private supplies is not common. Understanding the perceptions of drinking water among residents served by private systems will enable public health professionals to better target education and outreach activities, and to address the needs and concerns of residents in their jurisdictions. The purpose of this study was to explore the drinking water perceptions and self-described behaviours and needs of participants served by private water systems in the City of Hamilton, Ontario (Canada). Methods In September 2003, three focus group discussions were conducted; two with men and women aged 36–65 years, and one with men and women 20–35 years of age. Results Overall, participants had positive perceptions of their private water supplies, particularly in the older age group. Concerns included bacterial and chemical contamination from agricultural sources. Testing of water from private supplies was minimal and was done less frequently than recommended by the provincial government. Barriers to water testing included the inconvenience of the testing process, acceptable test results in the past, resident complacency and lack of knowledge. The younger participants greatly emphasized their need for more information on private water supplies. Participants from all groups wanted more information on water testing, and various media for information dissemination were discussed. Conclusion While most participants were confident in the safety of their private water supply, the factual basis for these opinions is uncertain. Improved dissemination of information pertaining to private water supplies in this population is needed. Observed differences in the concerns expressed by

  3. Public-supply water use in Kansas, 1990-2012

    USGS Publications Warehouse

    Kenny, Joan F.

    2014-01-01

    This fact sheet describes water-use data collection and quantities of surface water and groundwater diverted for public supply in Kansas for the years 1990 through 2012. Data used in this fact sheet are from the Kansas Department of Agriculture’s Division of Water Resources and the Kansas Water Office. Water used for public supply represents about 10 percent of all reported water withdrawals in Kansas. Between 1990 and 2012, annual withdrawals for public supply ranged from a low of 121 billion gallons in 1993 to a high of 159 billion gallons in 2012. Differences in annual withdrawals were associated primarily with climatic fluctuations. Six suppliers distributed about one-half of the total water withdrawn for public supply, and nearly three-quarters of the surface water. Surface water represented between 52 and 61 percent of total annual withdrawals for public supply. The proportion of surface water obtained through contracts from Federal reservoirs increased from less than 5 percent in the 1990s to 8 percent in 2011 and 2012. More than 99 percent of the reported water withdrawn for public supply in Kansas in 2012 was metered, which was an increase from 92 percent in 1990. State population increased steadily from 2.5 million people in 1990 to 2.9 million in 2012. Recent estimates indicate that about 95 percent of the total population was served by public water supply; the remainder obtained water from other sources such as private wells. Average per capita water use as calculated for State conservation planning purposes varied by region of the State. The smallest regional average water use for the years 1990–2012 was 98 gallons per person per day in easternmost Kansas, and the largest regional average water use was 274 gallons per person per day in westernmost Kansas.

  4. A tap water turbidity crisis in Tel Aviv, Israel, due to technical failure: toxicological and risk management issues.

    PubMed

    Winston, Gary; Lerman, Shlomo; Goldberger, Shalom; Collins, Malcolm; Leventhal, Alex

    2003-06-01

    Herein, we report on the actual events linked to an ammonia spillage into the main waterline of the Tel-Aviv metropolitan area and its surrounding municipalities. Based upon a large magnitude increase of unknown origin in the turbidity and ammonia levels of the main drinking water supply, area residents were warned of possible serious contamination and advised to refrain from drinking tap water until further notice. Turbidity was later linked only to CaCO3, which was precipitated from the water due to the rise in pH caused by the excessive ammonia levels. The source of the ammonia (a malfunction of the measurement buoy in the ammonia tank) was not identified until several days after the warning was issued. The toxicological implications of the turbidity and ammonia elevations are considered and reconciled with the management strategies that followed. Of consequence to the management of this crisis was the approach of Ministry of Health officials to regard the ammonia, from the onset, as an indicator of several possible sources of origin rather than as a contaminant. Decision-making policies were hampered by ineffective communication between the national water supplier and government health officials. An outcome of this crisis was a heightened awareness of the potential of a water crisis occurring during peace time and not only in association with terrorist activities, to which Israeli citizens are highly sensitized. Finally, the present paper may serve to guide municipal environmental and health officials more appropriately in the event of similar drinking water crises in Israel or elsewhere.

  5. Investigating public perceptions and knowledge translation priorities to improve water safety for residents with private water supplies: a cross-sectional study in Newfoundland and Labrador

    PubMed Central

    2013-01-01

    Background The first objective of this study was to investigate the public perceptions of private water and alternative sources with respect to safety, quality, testing and treatment in Newfoundland and Labrador (NL), Canada. The second objective was to provide public health practitioners with recommendations for improving knowledge translation (KT) efforts in NL, based on assessments of respondents’ perceived information needs and preferred KT methods. Methods A cross-sectional telephone survey of 618 households with private water supplies was conducted in March-April, 2007. Questions pertained to respondents’ perceptions of their tap water, water concerns, alternative water use, well characteristics, and water testing behaviours. Results Approximately 94% of households were supplied by private wells (50% drilled and 50% dug wells), while 6% obtained water from roadside ponds, rivers or springs (RPRS). While 85% rated their water quality highly, 55% nevertheless had concerns about its overall safety. Approximately 11% of respondents never tested their water, and of the 89% that had, 80% tested at frequencies below provincial recommendations for bacterial testing. More than one-third of respondents reported treating their water in the home, and 78% employed active carbon filtration methods. Respondents wanted more information on testing options and advice on effective treatment methods. Targeted advertising through television, flyers/brochures and/or radio is recommended as a first step to increase awareness. More active KT methods involving key stakeholders may be most effective in improving testing and treatment behaviour. Conclusions The results presented here can assist public health practitioners in tailoring current KT initiatives to influence well owner stewardship behaviour. PMID:24365203

  6. OVERVIEW OF USEPA'S WATER SUPPLY & WATER RESOURCES DIVISION PROGRAM

    EPA Science Inventory

    The United States Environmental Protection Agency's (USEPA) Water Supply and Water Resources Division (WSWRD) conducts a wide range of research on regulated and unregulated contaminants in drinking water, water distribution systems, homeland security, source water protection, and...

  7. 40 CFR 230.50 - Municipal and private water supplies.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Potential Effects on Human Use Characteristics § 230.50 Municipal and private water supplies. (a) Municipal and private water supplies consist of surface water or ground water which is directed to the intake of... 40 Protection of Environment 26 2012-07-01 2011-07-01 true Municipal and private water supplies...

  8. 40 CFR 230.50 - Municipal and private water supplies.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Potential Effects on Human Use Characteristics § 230.50 Municipal and private water supplies. (a) Municipal and private water supplies consist of surface water or ground water which is directed to the intake of... 40 Protection of Environment 25 2014-07-01 2014-07-01 false Municipal and private water supplies...

  9. Physics on Tap

    ERIC Educational Resources Information Center

    Wheeler, Andrew P. S.

    2012-01-01

    This article aims to describe how to visualize surface tension effects in liquid jets. A simple experiment is proposed using the liquid jet flow from a mains water tap/faucet. Using a modern digital camera with a high shutter speed, it is possible to visualize the instabilities (capillary waves) that form within the jet due to the action of…

  10. Analysis of residual chlorine in simple drinking water distribution system with intermittent water supply

    NASA Astrophysics Data System (ADS)

    Goyal, Roopali V.; Patel, H. M.

    2015-09-01

    Knowledge of residual chlorine concentration at various locations in drinking water distribution system is essential final check to the quality of water supplied to the consumers. This paper presents a methodology to find out the residual chlorine concentration at various locations in simple branch network by integrating the hydraulic and water quality model using first-order chlorine decay equation with booster chlorination nodes for intermittent water supply. The explicit equations are developed to compute the residual chlorine in network with a long distribution pipe line at critical nodes. These equations are applicable to Indian conditions where intermittent water supply is the most common system of water supply. It is observed that in intermittent water supply, the residual chlorine at farthest node is sensitive to water supply hours and travelling time of chlorine. Thus, the travelling time of chlorine can be considered to justify the requirement of booster chlorination for intermittent water supply.

  11. A fiber-coupled 9xx module with tap water cooling

    NASA Astrophysics Data System (ADS)

    Schleuning, D.; Anthon, D.; Chryssis, A.; Ryu, G.; Liu, G.; Winhold, H.; Fan, L.; Xu, Z.; Tanbun-Ek, T.; Lehkonen, S.; Acklin, B.

    2016-03-01

    A novel, 9XX nm fiber-coupled module using arrays of highly reliable laser diode bars has been developed. The module is capable of multi-kW output power in a beam parameter product of 80 mm-mrad. The module incorporates a hard-soldered, isolated stack package compatible with tap-water cooling. Using extensive, accelerated multi-cell life-testing, with more than ten million device hours of test, we have demonstrated a MTTF for emitters of >500,000 hrs. In addition we have qualified the module in hard-pulse on-off cycling and stringent environmental tests. Finally we have demonstrated promising results for a next generation 9xx nm chip design currently in applications and qualification testing

  12. The Effect of Different Boiling and Filtering Devices on the Concentration of Disinfection By-Products in Tap Water

    PubMed Central

    Carrasco-Turigas, Glòria; Villanueva, Cristina M.; Goñi, Fernando; Rantakokko, Panu; Nieuwenhuijsen, Mark J.

    2013-01-01

    Disinfection by-products (DBPs) are ubiquitous contaminants in tap drinking water with the potential to produce adverse health effects. Filtering and boiling tap water can lead to changes in the DBP concentrations and modify the exposure through ingestion. Changes in the concentration of 4 individual trihalomethanes (THM4) (chloroform (TCM), bromodichloromethane (BDCM), dibromochloromethane (DBCM), and bromoform (TBM)), MX, and bromate were tested when boiling and filtering high bromine-containing tap water from Barcelona. For filtering, we used a pitcher-type filter and a household reverse osmosis filter; for boiling, an electric kettle, a saucepan, and a microwave were used. Samples were taken before and after each treatment to determine the change in the DBP concentration. pH, conductivity, and free/total chlorine were also measured. A large decrease of THM4 (from 48% to 97%) and MX concentrations was observed for all experiments. Bromine-containing trihalomethanes were mostly eliminated when filtering while chloroform when boiling. There was a large decrease in the concentration of bromate with reverse osmosis, but there was a little effect in the other experiments. These findings suggest that the exposure to THM4 and MX through ingestion is reduced when using these household appliances, while the decrease of bromate is device dependent. This needs to be considered in the exposure assessment of the epidemiological studies. PMID:23476675

  13. Assessment of the Extraction Methods for Monitoring Phthalate Emerging Contaminants in Groundwater and Tap Water

    NASA Astrophysics Data System (ADS)

    Cotto, I.; Padilla, I. Y.; De Jesús, N. H.; Torres, P. M.

    2015-12-01

    Trace organic contaminants such as phthalates, among other chemicals of emerging concerns, have not historically been considered as pollutants but are being detected in water, posing a potential risk to public health and the environment. One of the most common phthalates of particular concern is di-(2-ethylhexyl) phthalate (DEHP), a plasticizer normally found in plastics and consumer products, including: cosmetics, pharmaceuticals, medical devices, food packages, water bottles, and wiring cables. DEHP has been associated with preterm birth, a major cause of neonatal mortality and health complications. This study aims at monitoring the presence and concentration of DEHP and other phthalates in groundwater and tap water systems in Puerto Rico, which has one of the highest rates of preterm birth in the U.S. The Environmental Protection Agency (EPA) suggests a liquid-liquid extraction method that uses methylene chloride as the preferred organic solvent for the extractions. This work presents modified EPA methods that reduce the volume of sample and solvent used, lower the time of analysis, increase productivity, and decrease hazards and waste. Distribution coefficient of DEHP between methylene chloride and water are estimated and related to sample extraction efficiency. Research results indicate that DEHP is in fact distributed between water and methylene chloride with a distribution coefficient average value of 1.24. The study concludes that the sample and solvent volumes have influence on the efficiency but have not an effect on the distribution coefficient. The tests show higher extraction efficiencies for lower DEHP concentrations and higher extraction volumes. Results from the water analysis show presence of DEHP in 55% of groundwater and 44% of tap water samples, indicating a potential exposure through water.

  14. The δ2H and δ18O of tap water from 349 sites in the United States and selected territories

    USGS Publications Warehouse

    Coplen, Tyler B.; Landwehr, Jurate M.; Qi, Haiping; Lorenz, Jennifer M.

    2013-01-01

    Because the stable isotopic compositions of hydrogen (δ2H) and oxygen (δ18O) of animal (including human) tissues, such as hair, nail, and urine, reflect the δ2H and δ18O of water and food ingested by an animal or a human and because the δ2H and δ18O of environmental waters vary geographically, δ2H and δ18O values of tap water samples collected in 2007-2008 from 349 sites in the United States and three selected U.S. territories have been measured in support of forensic science applications, creating one of the largest databases of tap water δ2H and δ18O values to date. The results of replicate isotopic measurements for these tap water samples confirm that the expanded uncertainties (U = 2μc) obtained over a period of years by the Reston Stable Isotope Laboratory from δ2H and δ18O dual-inlet mass spectrometric measurements are conservative, at ±2‰ and ±0.2 ‰, respectively. These uncertainties are important because U.S. Geological Survey data may be needed for forensic science applications, including providing evidence in court cases. Half way through the investigation, an isotope-laser spectrometer was acquired, enabling comparison of dual-inlet isotope-ratio mass spectrometric results with isotope-laser spectrometric results. The uncertainty of the laser-based δ2H measurement results for these tap water samples is comparable to the uncertainty of the mass spectrometric method, with the laser-based method having a slightly lower uncertainty. However, the δ18O uncertainty of the laser-based method is more than a factor of ten higher than that of the dual-inlet isotoperatio mass spectrometric method.

  15. Introduction of water footprint assessment approach to enhance water supply management in Malaysia

    NASA Astrophysics Data System (ADS)

    Moni, Syazwan N.; Aziz, Edriyana A.; Malek, M. A.

    2017-10-01

    Presently, Water Footprint (WF) Approach has been used to assess the sustainability of a product's chain globally but is lacking in the services sector. Thus, this paper aims to introduce WF assessment as a technical approach to determine the sustainability of water supply management for the typical water supply treatment process (WSTP) used in Malaysia. Water supply is one of the pertinent services and most of WF accounting begins with data obtained from the water supply treatment plant. Therefore, the amount of WF will be accounted for each process of WSTP in order to determine the water utilization for the whole process according to blue, green and grey WF. Hence, the exact amount of water used in the process can be measured by applying this accounting method to assess the sustainability of water supply management in Malaysia. Therefore, the WF approach in assessing sustainability of WSTP could be implemented.

  16. Water management, agriculture, and ground-water supplies

    USGS Publications Warehouse

    Nace, Raymond L.

    1960-01-01

    Encyclopedic data on world geography strikingly illustrate the drastic inequity in the distribution of the world's water supply. About 97 percent of the total volume of water is in the world's oceans. The area of continents and islands not under icecaps, glaciers, lakes, and inland seas is about 57.5 million square miles, of which 18 million (36 percent) is arid to semiarid. The total world supply of water is about 326.5 million cubic miles, of which about 317 million is in the oceans and about 9.4 million is in the land areas. Atmospheric moisture is equivalent to only about 3,100 cubic miles of water. The available and accessible supply of ground water in the United States is somewhat more than 53,000 cubic miles (about 180 billion acre ft). The amount of fresh water on the land areas of the world at any one time is roughly 30,300 cubic miles and more than a fourth of this is in large fresh-water lakes on the North American Continent. Annual recharge of ground water in the United States may average somewhat more than 1 billion acre-feet yearly, but the total volume of ground water in storage is equivalent to all the recharge in about the last 160 years. This accumulation of ground water is the nation's only reserve water resource, but already it is being withdrawn or mined on a large scale in a few areas. The principal withdrawals of water in the United States are for agriculture and industry. Only 7.4 percent of agricultural land is irrigated, however; so natural soil moisture is the principal source of agricultural water, and on that basis agriculture is incomparably the largest water user. In view of current forecasts of population and industrial expansion, new commitments of water for agriculture should be scrutinized very closely, and thorough justification should be required. The 17 Western States no longer contain all the large irrigation developments. Nearly 10 percent of the irrigated area is in States east of the western bloc, chiefly in several

  17. The real water consumption behind drinking water: the case of Italy.

    PubMed

    Niccolucci, V; Botto, S; Rugani, B; Nicolardi, V; Bastianoni, S; Gaggi, C

    2011-10-01

    The real amount of drinking water available per capita is a topic of great interest for human health and the economic and political management of resources. The global market of bottled drinking water, for instance, has shown exponential growth in the last twenty years, mainly due to reductions in production costs and investment in promotion. This paper aims to evaluate how much freshwater is actually consumed when water is drunk in Italy, which can be considered a mature bottled-water market. A Water Footprint (WF) calculation was used to compare the alternatives: bottled and tap water. Six Italian brands of water sold in PET bottles were inventoried, analysed and compared with the public tap water of the city of Siena, as representative of the Italian context. Results showed that more than 3 L of water were needed to provide consumers with 1.50 L of drinking water. In particular, a volume of 1.50 L of PET-bottled water required an extra virtual volume of 1.93 L of water while an extra 2.13 L was necessary to supply the same volume of tap water. These values had very different composition and origin. The WF of tap water was mainly due to losses of water during pipeline distribution and usage, while WF of bottled water was greatly influenced by the production of plastic materials. When the contribution of cooling water was added to the calculation, the WF of bottled water rose from 3.43 to 6.92 L. Different strategies to reduce total water footprint are discussed. Copyright © 2011 Elsevier Ltd. All rights reserved.

  18. 30 CFR 874.14 - Water supply restoration.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 3 2013-07-01 2013-07-01 false Water supply restoration. 874.14 Section 874.14... ABANDONED MINE LAND RECLAMATION GENERAL RECLAMATION REQUIREMENTS § 874.14 Water supply restoration. (a) Any... 411(a) of SMCRA may expend funds under §§ 872.16, 872.19, 872.23, and 872.31 of this chapter for water...

  19. 30 CFR 874.14 - Water supply restoration.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 3 2014-07-01 2014-07-01 false Water supply restoration. 874.14 Section 874.14... ABANDONED MINE LAND RECLAMATION GENERAL RECLAMATION REQUIREMENTS § 874.14 Water supply restoration. (a) Any... 411(a) of SMCRA may expend funds under §§ 872.16, 872.19, 872.23, and 872.31 of this chapter for water...

  20. Assessing the risk posed by high-turbidity water to water supplies.

    PubMed

    Chang, Chia-Ling; Liao, Chung-Sheng

    2012-05-01

    The objective of this study is to assess the risk of insufficient water supply posed by high-turbidity water. Several phenomena can pose risks to the sufficiency of a water supply; this study concerns risks to water treatment plants from particular properties of rainfall and raw water turbidity. High-turbidity water can impede water treatment plant operations; rainfall properties can influence the degree of soil erosion. Thus, water turbidity relates to rainfall characteristics. Exceedance probabilities are presented for different rainfall intensities and turbidities of water. When the turbidity of raw water is higher than 5,000 NTU, it can cause operational problems for a water treatment plant. Calculations show that the turbidity of raw water at the Ban-Sin water treatment plant will be higher than 5,000 NTU if the rainfall intensity is larger than 165 mm/day. The exceedance probability of high turbidity (turbidity >5,000 NTU) in the Ban-Sin water treatment plant is larger than 10%. When any water treatment plant cannot work regularly, its ability to supply water to its customers is at risk.

  1. Optimal Dynamics of Intermittent Water Supply

    NASA Astrophysics Data System (ADS)

    Lieb, Anna; Wilkening, Jon; Rycroft, Chris

    2014-11-01

    In many urban areas of the developing world, piped water is supplied only intermittently, as valves direct water to different parts of the water distribution system at different times. The flow is transient, and may transition between free-surface and pressurized, resulting in complex dynamical features with important consequences for water suppliers and users. These consequences include degradation of distribution system components, compromised water quality, and inequitable water availability. The goal of this work is to model the important dynamics and identify operating conditions that mitigate certain negative effects of intermittent water supply. Specifically, we will look at valve parameters occurring as boundary conditions in a network model of transient, transition flow through closed pipes. Optimization will be used to find boundary values to minimize pressure gradients and ensure equitable water availability.

  2. 33 CFR 203.61 - Emergency water supplies due to contaminated water source.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 3 2011-07-01 2011-07-01 false Emergency water supplies due to contaminated water source. 203.61 Section 203.61 Navigation and Navigable Waters CORPS OF ENGINEERS, DEPARTMENT OF THE ARMY, DEPARTMENT OF DEFENSE EMERGENCY EMPLOYMENT OF ARMY AND OTHER RESOURCES, NATURAL DISASTER PROCEDURES Emergency Water Supplies:...

  3. 33 CFR 203.61 - Emergency water supplies due to contaminated water source.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 3 2014-07-01 2014-07-01 false Emergency water supplies due to contaminated water source. 203.61 Section 203.61 Navigation and Navigable Waters CORPS OF ENGINEERS, DEPARTMENT OF THE ARMY, DEPARTMENT OF DEFENSE EMERGENCY EMPLOYMENT OF ARMY AND OTHER RESOURCES, NATURAL DISASTER PROCEDURES Emergency Water Supplies:...

  4. 33 CFR 203.61 - Emergency water supplies due to contaminated water source.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 3 2013-07-01 2013-07-01 false Emergency water supplies due to contaminated water source. 203.61 Section 203.61 Navigation and Navigable Waters CORPS OF ENGINEERS, DEPARTMENT OF THE ARMY, DEPARTMENT OF DEFENSE EMERGENCY EMPLOYMENT OF ARMY AND OTHER RESOURCES, NATURAL DISASTER PROCEDURES Emergency Water Supplies:...

  5. 33 CFR 203.61 - Emergency water supplies due to contaminated water source.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 3 2012-07-01 2012-07-01 false Emergency water supplies due to contaminated water source. 203.61 Section 203.61 Navigation and Navigable Waters CORPS OF ENGINEERS, DEPARTMENT OF THE ARMY, DEPARTMENT OF DEFENSE EMERGENCY EMPLOYMENT OF ARMY AND OTHER RESOURCES, NATURAL DISASTER PROCEDURES Emergency Water Supplies:...

  6. 7 CFR 612.6 - Application for water supply forecast service.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 6 2010-01-01 2010-01-01 false Application for water supply forecast service. 612.6... CONSERVATION SERVICE, DEPARTMENT OF AGRICULTURE CONSERVATION OPERATIONS SNOW SURVEYS AND WATER SUPPLY FORECASTS § 612.6 Application for water supply forecast service. Requests for obtaining water supply forecasts or...

  7. Heat pumps in the PESAG supply district

    NASA Astrophysics Data System (ADS)

    Osterhus, A.

    1980-04-01

    The paper examines the feasibility of using large scale heat pumps in the PESAG (Paderborner Elektrizitaetswerk und Strassenbahn AG) power supply district. It is shown that due to favorable geological factors in the district which allow the tapping of ground water, the market share for heat pumps will increase steadily. Topics discussed include: calculation of electricity consumption, operating experiences with heat pumps in one- and two-family houses, heat pumps in multifamily houses, and industrially used systems.

  8. Wildfire and the future of water supply.

    PubMed

    Bladon, Kevin D; Emelko, Monica B; Silins, Uldis; Stone, Micheal

    2014-08-19

    In many parts of the world, forests provide high quality water for domestic, agricultural, industrial, and ecological needs, with water supplies in those regions inextricably linked to forest health. Wildfires have the potential to have devastating effects on aquatic ecosystems and community drinking water supply through impacts on water quantity and quality. In recent decades, a combination of fuel load accumulation, climate change, extensive droughts, and increased human presence in forests have resulted in increases in area burned and wildfire severity-a trend predicted to continue. Thus, the implications of wildfire for many downstream water uses are increasingly concerning, particularly the provision of safe drinking water, which may require additional treatment infrastructure and increased operations and maintenance costs in communities downstream of impacted landscapes. A better understanding of the effects of wildfire on water is needed to develop effective adaptation and mitigation strategies to protect globally critical water supplies originating in forested environments.

  9. Development of a separate tank with an electrolysis-dependent bacteria controlling system for the long term storage of potable water.

    PubMed

    Ishizuka, Akinori; Tanji, Masataka; Hayashi, Nobuatsu; Wakabayashi, Akihiro; Tatsumoto, Hideki; Hotta, Kunimoto

    2006-12-01

    For the long term storage of tap water, we developed a separate type of tank (5 m3) equipped with an electrolysis system to control bacterial growth. The electrolysis conditions using 20A direct current and a water flow rate of 10 L/min were capable of producing available chlorine (AC) at the rate of 5-8mg/min and raising the AC level of the stored tap water by about 0.2 mg/kg within 20-30 min The electrolyzed tap water with 0.2 mg/kg AC showed a capability per ml of killing 10(5)-10(6) cfu of bacteria such as Escherichia coli and Pseudomonas aeruginosa within 15 sec. A 6-month trial operation of the storage system with an automatic electrolysis control to keep AC level ranging 0.2-0.4 mg/kg demonstrated that the system worked well for the stored tap water in suppressing bacterial growth as well as in keeping good potable quality with reference to the 46 parameters specified for Japanese tap water. Actually, the electrolysis treatment was administered intermittently with an interval of about two weeks. Thus we believe the developed system has good potential to secure a potable water supply not only in the occasion of emergencies but also in countries having problems in the supply of safe drinking water.

  10. In-pipe water quality monitoring in water supply systems under steady and unsteady state flow conditions: a quantitative assessment.

    PubMed

    Aisopou, Angeliki; Stoianov, Ivan; Graham, Nigel J D

    2012-01-01

    Monitoring the quality of drinking water from the treatment plant to the consumers tap is critical to ensure compliance with national standards and/or WHO guideline levels. There are a number of processes and factors affecting the water quality during transmission and distribution which are little understood. A significant obstacle for gaining a detailed knowledge of various physical and chemical processes and the effect of the hydraulic conditions on the water quality deterioration within water supply systems is the lack of reliable and low-cost (both capital and O & M) water quality sensors for continuous monitoring. This paper has two objectives. The first one is to present a detailed evaluation of the performance of a novel in-pipe multi-parameter sensor probe for reagent- and membrane-free continuous water quality monitoring in water supply systems. The second objective is to describe the results from experimental research which was conducted to acquire continuous water quality and high-frequency hydraulic data for the quantitative assessment of the water quality changes occurring under steady and unsteady-state flow conditions. The laboratory and field evaluation of the multi-parameter sensor probe showed that the sensors have a rapid dynamic response, average repeatability and unreliable accuracy. The uncertainties in the sensor data present significant challenges for the analysis and interpretation of the acquired data and their use for water quality modelling, decision support and control in operational systems. Notwithstanding these uncertainties, the unique data sets acquired from transmission and distribution systems demonstrated the deleterious effect of unsteady state flow conditions on various water quality parameters. These studies demonstrate: (i) the significant impact of the unsteady-state hydraulic conditions on the disinfectant residual, turbidity and colour caused by the re-suspension of sediments, scouring of biofilms and tubercles from the

  11. Wildland Fire Research: Water Supply and Ecosystem Protection

    EPA Pesticide Factsheets

    Research is critical to better understand how fires affect water quality and supply and the overall health of an ecosystem. This information can be used to protect the safety of drinking water and assess the vulnerability of water supplies.

  12. Mean Residence Time and Emergency Drinking Water Supply.

    NASA Astrophysics Data System (ADS)

    Kralik, Martin; Humer, Franko

    2013-04-01

    Immediately after securing an endangered population, the first priority of aid workers following a disaster is the distribution of drinking water. Such emergency situations are reported from many parts of the world following regional chemical or nuclear pollution accidents, floods, droughts, rain-induced landslides, tsunami, and other extreme events. It is often difficult to organise a replacement water supply when regular water systems with short residence times are polluted, infiltrated or even flooded by natural or man-made disasters. They are either unusable or their restoration may take months or even years. Groundwater resources, proven safe and protected by the geological environment, with long residence times and the necessary infrastructure for their exploitation, would provide populations with timeous replacement of vulnerable water supply systems and make rescue activities more rapid and effective. Such resources have to be identified and investigated, as a substitute for affected drinking water supplies thereby eliminating or reducing the impact of their failure following catastrophic events. Even in many areas such water resources with long residence times in years or decades are difficult to find it should be known which water supply facilities in the region are matching these requirements to allow in emergency situation the transport of water in tankers to the affected regions to prevent epidemics, importing large quantities of bottled water. One should know the residence time of the water supply to have sufficient time to plan and install new safe water supply facilities. Development of such policy and strategy for human security - both long term and short term - is therefore needed to decrease the vulnerability of populations threatened by extreme events and water supplies with short residence times. Generally: The longer the residence time of groundwater in the aquifer, the lower its vulnerability. The most common and economic methods to estimate

  13. Groundwater potential for water supply during droughts in Korea

    NASA Astrophysics Data System (ADS)

    Hyun, Y.; Cha, E.; Moon, H. J.

    2016-12-01

    Droughts have been receiving much attention in Korea because severe droughts occurred in recent years, causing significant social, economic and environmental damages in some regions. Residents in agricultural area, most of all, were most damaged by droughts with lack of available water supplies to meet crop water demands. In order to mitigate drought damages, we present a strategy to keep from agricultural droughts by using groundwater to meet water supply as a potential water resource in agricultural areas. In this study, we analyze drought severity and the groundwater potential to mitigate social and environmental damages caused by droughts in Korea. We evaluate drought severity by analyzing spatial and temporal meteorological and hydrological data such as rainfall, water supply and demand. For drought severity, we use effective drought index along with the standardized precipitation index (SPI) and standardized runoff index(SRI). Water deficit during the drought period is also quantified to consider social and environmental impact of droughts. Then we assess the feasibility of using groundwater as a potential source for groundwater impact mitigation. Results show that the agricultural areas are more vulnerable to droughts and use of groundwater as an emergency water resource is feasible in some regions. For a case study, we select Jeong-Sun area located in Kangwon providence having well-developed Karst aquifers and surrounded by mountains. For Jeong-Sun area, we quantify groundwater potential use, design the method of water supply by using groundwater, and assess its economic benefit. Results show that water supply system with groundwater abstraction can be a good strategy when droughts are severe for an emergency water supply in Jeong-Sun area, and groundwater can also be used not only for a dry season water supply resource, but for everyday water supply system. This case study results can further be applicable to some regions with no sufficient water

  14. 46 CFR 63.25-3 - Electric hot water supply boilers.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Electric hot water supply boilers. 63.25-3 Section 63.25... water supply boilers. (a) Electric hot water supply boilers that have a capacity not greater than 454... section except the periodic testing required by paragraph (j) of this section. Electric hot water supply...

  15. Sustainable Water Supplies in Uppsala, Sweden?

    NASA Astrophysics Data System (ADS)

    Eriksson, Bert

    2014-05-01

    This is a description of a transdisciplinary three-day project with upper secondary school students around ecosystem services and sustainability. Uppsala (200 000 inhabitants) gets its municipal water from wells in the esker that dominates the landscape in and around the town. This esker was formed by glacial melt water around 11 000 BP, at the end of the latest glaciation and was lifted above sea level by post-glacial land rise from 6000 BP. To keep up the water table in the esker, water from river Fyris is pumped up and infiltrated in the esker. The river is also the recipient of wastewater downstream of the town, and the river runs out into Lake Mälaren that in its turn spills out into the Baltic Sea through Stockholm. The esker and river can thus be a central topic to work around, in Biology and Geography in upper secondary school, concerning recent and future water supplies, quaternary geology, limnology and landscape history. The fieldwork is carried out during three days in a period of three subsequent weeks. 1. One day is used to examine the water quality in the river above the town, organisms, pH, levels of nitrogen and phosphorous, conductivity and turbidity. Then the direction of the water is followed, first up to the infiltration dams on the esker, and then along the esker to the wells in the town. The formation of the esker and other traces in the landscape from the latest glaciation is also studied, as well as the historical use of the esker as a road and as a source of gravel and sand. The tap water that comes from the wells is finally tested in school in the same way as in the river. 2. The second day is used to follow the wastewater from households to the sewage plant, where the staff presents the plant. The water quality is tested in the same way as above in the outlet from the plant to the river. 3. The third day consists of a limnological excursion on the lake outside the mouth of the river where plankton and other organisms are studied, as

  16. 40 CFR 230.50 - Municipal and private water supplies.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... a municipal or private water supply system. (b) Possible loss of values: Discharges can affect the... 40 Protection of Environment 24 2010-07-01 2010-07-01 false Municipal and private water supplies... Potential Effects on Human Use Characteristics § 230.50 Municipal and private water supplies. (a) Municipal...

  17. Optimization of urban water supply portfolios combining infrastructure capacity expansion and water use decisions

    NASA Astrophysics Data System (ADS)

    Medellin-Azuara, J.; Fraga, C. C. S.; Marques, G.; Mendes, C. A.

    2015-12-01

    The expansion and operation of urban water supply systems under rapidly growing demands, hydrologic uncertainty, and scarce water supplies requires a strategic combination of various supply sources for added reliability, reduced costs and improved operational flexibility. The design and operation of such portfolio of water supply sources merits decisions of what and when to expand, and how much to use of each available sources accounting for interest rates, economies of scale and hydrologic variability. The present research provides a framework and an integrated methodology that optimizes the expansion of various water supply alternatives using dynamic programming and combining both short term and long term optimization of water use and simulation of water allocation. A case study in Bahia Do Rio Dos Sinos in Southern Brazil is presented. The framework couples an optimization model with quadratic programming model in GAMS with WEAP, a rain runoff simulation models that hosts the water supply infrastructure features and hydrologic conditions. Results allow (a) identification of trade offs between cost and reliability of different expansion paths and water use decisions and (b) evaluation of potential gains by reducing water system losses as a portfolio component. The latter is critical in several developing countries where water supply system losses are high and often neglected in favor of more system expansion. Results also highlight the potential of various water supply alternatives including, conservation, groundwater, and infrastructural enhancements over time. The framework proves its usefulness for planning its transferability to similarly urbanized systems.

  18. Factual data for public-supply wells and selected irrigation wells in Monmouth County, New Jersey

    USGS Publications Warehouse

    Jablonski, Leo A.

    1960-01-01

    The investigation of the ground-water resources of Monmouth County is part of a Statewide water-resources program. This study was made by the U.S. Geological Survey in cooperation with the new Jersey Department of Conservation and Economic Development, Division of Water Policy and Supply. It was under the general direction of Philip E. LaMoreaux, Chief of the Ground Water Branch of the U.S. Geological Survey, and under the direct supervision of Allen Sinnott, District Geologist.This report presents data for most of the public-supply wells and for several irrigation wells in Monmouth County. The data for these wells are believed to be representative of large-capacity wells tapping the major aquifers present in the county. The information is released at this time in advance of an interpretive report because of its value to prospective users of ground water in Monmouth County. An earlier report presented data on small-capacity wells tapping both major and minor aquifers in the county. The data in these two reports form, in part, the basis for a comprehensive interpretive report on the ground-water resources of Monmouth County, now in preparation. Also to be included in the latter report are data for certain large-capacity industrial wells.

  19. Preferences for tap water attributes within couples: An exploration of alternative mixed logit parameterizations

    NASA Astrophysics Data System (ADS)

    Scarpa, Riccardo; Thiene, Mara; Hensher, David A.

    2012-01-01

    Preferences for attributes of complex goods may differ substantially among members of households. Some of these goods, such as tap water, are jointly supplied at the household level. This issue of jointness poses a series of theoretical and empirical challenges to economists engaged in empirical nonmarket valuation studies. While a series of results have already been obtained in the literature, the issue of how to empirically measure these differences, and how sensitive the results are to choice of model specification from the same data, is yet to be clearly understood. In this paper we use data from a widely employed form of stated preference survey for multiattribute goods, namely choice experiments. The salient feature of the data collection is that the same choice experiment was applied to both partners of established couples. The analysis focuses on models that simultaneously handle scale as well as preference heterogeneity in marginal rates of substitution (MRS), thereby isolating true differences between members of couples in their MRS, by removing interpersonal variation in scale. The models employed are different parameterizations of the mixed logit model, including the willingness to pay (WTP)-space model and the generalized multinomial logit model. We find that in this sample there is some evidence of significant statistical differences in values between women and men, but these are of small magnitude and only apply to a few attributes.

  20. The Challenge of Providing Safe Water with an Intermittently Supplied Piped Water Distribution System

    NASA Astrophysics Data System (ADS)

    Kumpel, E.; Nelson, K. L.

    2012-12-01

    An increasing number of urban residents in low- and middle-income countries have access to piped water; however, this water is often not available continuously. 84% of reporting utilities in low-income countries provide piped water for fewer than 24 hours per day (van den Berg and Danilenko, 2010), while no major city in India has continuous piped water supply. Intermittent water supply leaves pipes vulnerable to contamination and forces households to store water or rely on alternative unsafe sources, posing a health threat to consumers. In these systems, pipes are empty for long periods of time and experience low or negative pressure even when water is being supplied, leaving them susceptible to intrusion from sewage, soil, or groundwater. Households with a non-continuous supply must collect and store water, presenting more opportunities for recontamination. Upgrading to a continuous water supply, while an obvious solution to these challenges, is currently out of reach for many resource-constrained utilities. Despite its widespread prevalence, there are few data on the mechanisms causing contamination in an intermittent supply and the frequency with which it occurs. Understanding the impact of intermittent operation on water quality can lead to strategies to improve access to safe piped water for the millions of people currently served by these systems. We collected over 100 hours of continuous measurements of pressure and physico-chemical water quality indicators and tested over 1,000 grab samples for indicator bacteria over 14 months throughout the distribution system in Hubli-Dharwad, India. This data set is used to explore and explain the mechanisms influencing water quality when piped water is provided for a few hours every 3-5 days. These data indicate that contamination occurs along the distribution system as water travels from the treatment plant to reservoirs and through intermittently supplied pipes to household storage containers, while real

  1. Sources of emergency water supplies in San Mateo County, California

    USGS Publications Warehouse

    Wood, P.R.

    1975-01-01

    San Mateo County has several densely populated urban areas that get most of their water supplies from surface-water sources that could by damaged by a major earthquake or other general disaster. In the event of such a disaster, limited supplies of potable water may be obtained from selected wells, springs, and perennial streams. This report outlines the principal sources of existing water supplies, gives information on the need for emergency water-supply procedures, presents general criteria needed for selecting emergency water-supply wells, summarizes information for 60 selected water wells, numerous springs, and perennial streams that can be used as sources of water, and describes emergency water-purification procedures that can be used by individuals or small groups of people.

  2. Oahu, Hawaii's Water Supply: 1848-2020 A.D.

    ERIC Educational Resources Information Center

    Felix, John Henry

    Demand projections indicate that Oahu's natural ground water supply will be fully developed by the year 2000. Supplementary water resources will need to be developed in keeping with the growth of the economy and population. The author, chairman of the Honolulu Board of Water Supply, authoritatively discusses types of ground water in Hawaii, and…

  3. Climate vulnerability of drinking water supplies

    NASA Astrophysics Data System (ADS)

    Selmeczi, Pál; Homolya, Emese; Rotárné Szalkai, Ágnes

    2016-04-01

    Extreme weather conditions in Hungary led to difficulties in drinking water management on diverse occasions in the past. Due to reduced water resources and the coexisting high demand for drinking water in dry summer periods the availability of a number of water supplies became insufficient therefore causing limitations in water access. In some other cases, as a result of floods and flash floods over karstic areas evolving in consequence of excessive precipitation, several water supplies had to be excluded in order to avoid the risk of infections. More frequent occurrence of extreme weather conditions and further possible changes in the future induce the necessity for an analysis of the vulnerability of drinking water resources to climate change. Since 95% of the total drinking water supply in Hungary originates from subsurface layers, significance of groundwater resources is outstanding. The aim of our work carried out in the frames of the NAGiS (National Adaptation Geo-information System) project was to build up a methodology for the study and determination of the vulnerability of drinking water supplies to climate. The task covered analyses of climatic parameters influencing drinking water supplies principally and hydrogeological characteristics of the geological media that significantly determines vulnerability. Effects on drinking water resources and their reduction or exclusion may imply societal and economic consequences therefore we extended the analyses to the investigation of possibilities concerning the adaptation capacity to changed conditions. We applied the CIVAS (Climate Impact and Vulnerability Assessment Scheme) model developed in the frames of the international climate research project CLAVIER (Climate Change and Variability: Impact on Central and Eastern Europe) to characterize climate vulnerability of drinking water supplies. The CIVAS model, being based on the combined evaluation of exposure, sensitivity and adaptability, provides a unified

  4. Impact analysis of tap switch out of step for converter transformer

    NASA Astrophysics Data System (ADS)

    Hong-yue, ZHANG; Zhen-hua, ZHANG; Zhang-xue, XIONG; Gao-wang, YU

    2017-06-01

    AC transformer load regulation is mainly used to adjust the load side voltage level, improve the quality of power supply, the voltage range is relatively narrow. In DC system, converter transformer is the core equipment of AC and DC power converter and inverter. converter transformer tap adjustment can maintain the normal operation of the converter in small angle range control, the absorption of reactive power, economic operation, valve less stress, valve damping circuit loss, AC / DC harmonic component is also smaller. In this way, the tap switch action is more frequent, and a large range of the tap switch adjustment is required. Converter transformer with a more load voltage regulation switch, the voltage regulation range of the switch is generally 20~30%, the adjustment of each file is 1%~2%. Recently it is often found that the tap switch of Converter Transformers is out of step in Converter station. In this paper, it is analyzed in detail the impact of tap switch out of step for differential protection, overexcitation protection and zero sequence over current protection. Analysis results show that: the tap switch out of step has no effect on the differential protection and the overexcitation protection including the tap switch. But the tap switch out of step has effect on zero sequence overcurrent protection of out of step star-angle converter transformer. The zero sequence overcurrent protection will trip when the tap switch out of step is greater than 3 for out of step star-angle converter transformer.

  5. Pollutant sources in an arsenic-affected multilayer aquifer in the Po Plain of Italy: Implications for drinking-water supply.

    PubMed

    Rotiroti, Marco; McArthur, John; Fumagalli, Letizia; Stefania, Gennaro A; Sacchi, Elisa; Bonomi, Tullia

    2017-02-01

    In aquifers 160 to 260m deep that used for public water-supply in an area ~150km 2 around the town of Cremona, in the Po Plain of Northern Italy, concentrations of arsenic (As) are increasing with time in some wells. The increase is due to drawdown of As-polluted groundwater (As ≤144μg/L) from overlying aquifers at depths 65 to 150m deep in response to large-scale abstraction for public supply. The increase in As threatens drinking-water quality locally, and by inference does so across the entire Po Plain, where natural As-pollution of groundwater (As >10μg/L) is a basin-wide problem. Using new and legacy data for Cl/Br, δ 18 O/δ 2 H and other hydrochemical parameters with groundwater from 32 wells, 9 surface waters, a sewage outfall and rainwater, we show that the deep aquifer (160-260m below ground level), which is tapped widely for public water-supply, is partly recharged by seepage from overlying aquifers (65-150m below ground level). Groundwater quality in deep aquifers appears free of anthropogenic influences and typically <10μg/L of As. In contrast, shallow groundwater and surface water in some, not all, areas are affected by anthropogenic contamination and natural As-pollution (As >10μg/L). Outfalls from sewage-treatment plants and black water from septic tanks firstly affect surface waters, which then locally infiltrate shallow aquifers under high channel-stages. Wastewater permeating shallow aquifers carries with it NO 3 and SO 4 which suppress reduction of iron oxyhydroxides in the aquifer sediments and so suppress the natural release of As to groundwater. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. The influence of TAP1 and TAP2 gene polymorphisms on TAP function and its inhibition by viral immune evasion proteins.

    PubMed

    Praest, P; Luteijn, R D; Brak-Boer, I G J; Lanfermeijer, J; Hoelen, H; Ijgosse, L; Costa, A I; Gorham, R D; Lebbink, R J; Wiertz, E J H J

    2018-06-04

    Herpesviruses encode numerous immune evasion molecules that interfere with the immune system, particularly with certain stages in the MHC class I antigen presentation pathway. In this pathway, the transporter associated with antigen processing (TAP) is a frequent target of viral immune evasion strategies. This ER-resident transporter is composed of the proteins TAP1 and TAP2, and plays a crucial role in the loading of viral peptides onto MHC class I molecules. Several variants of TAP1 and TAP2 occur in the human population, some of which are linked to autoimmune disorders and susceptibility to infections. Here, we assessed the influence of naturally occurring TAP variants on peptide transport and MHC class I expression. In addition, we tested the inhibitory capacity of three viral immune evasion proteins, the TAP inhibitors US6 from human cytomegalovirus, ICP47 from herpes simplex virus type 1 and BNLF2a from Epstein-Barr virus, for a series of TAP1 and TAP2 variants. Our results suggest that these TAP polymorphisms have no or limited effect on peptide transport or MHC class I expression. Furthermore, our study indicates that the herpesvirus-encoded TAP inhibitors target a broad spectrum of TAP variants; inhibition of TAP is not affected by the naturally occurring polymorphisms of TAP tested in this study. Our findings suggest that the long-term coevolution of herpesviruses and their host did not result in selection of inhibitor-resistant TAP variants in the human population. Copyright © 2018. Published by Elsevier Ltd.

  7. Identification of yellow-pigmented bacteria isolated from hospital tap water in Japan and their chlorine resistance.

    PubMed

    Furuhata, Katsunori; Kato, Yuko; Goto, Keiichi; Saitou, Keiko; Sugiyama, Jun-Ichi; Hara, Motonobu; Fukuyama, Masahumi

    2007-06-01

    Twenty-five yellow chromogenic strains isolated from hospital tap water samples collected nationwide were identified by partial 16S rDNA sequencing. In addition, the chlorine resistance of the isolates was experimentally investigated. The results showed that of the strains tested, 12 strains (48.0%) were Sphingomonas ursincola/natatoria, which was most frequently identified, followed by 2 strains (8.0%) of Mycobacterium frederiksbergense and 1 strain (4.0%) each of Sphingomonas adhaesiva, Sphingopyxis witflariensis and Porphyrobacter donghaensis. The other strains were not identified clearly but they belonged to the order of Alphaproteobacteria. On the other hand, the identification results by sequencing and biochemical property testing were not consistent in any of the strains, showing that it was difficult to accurately identify the yellow chromogenic bacteria in tap water based on only their biochemical properties. When the 25 isolates were exposed to 0.1 mg/l residual free chlorine for 1 minute, 22 isolates (88.0%) survived. When the CT (Concentration Time) value killing 99.99% of the bacteria was investigated in 6 of these survivors, M. frederiksbergense (Y-1 strain) was most resistant to chlorine with the CT value of 32 mg x min/l, followed by S. ursincola/natatoria (Y-7 strain) with the CT value of 3.3 mg x min/l. The CT values of Y-5 (Sphingomonas sp.), Y-27 (S. ursincola/natatoria) and Y-21 (Asticacaulis sp.) were within the range of 0.9-0.1 mg x min /l. Of the 6 strains, S. adhaesiva (Y-10) showed the weakest resistance with the CT value of 0.03 mg x min/l. It was clarified that most yellow chromogenic bacteria isolated from hospital tap water were Sphingomonas spp., and these bacteria were experimentally resistant to chlorine.

  8. 75 FR 49518 - Northwest Area Water Supply Project, North Dakota

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-13

    ... DEPARTMENT OF THE INTERIOR Bureau of Reclamation Northwest Area Water Supply Project, North Dakota... Area Water Supply Project (NAWS Project), a Federal reclamation project, located in North Dakota. A... CONTACT: Alicia Waters, Northwest Area Water Supply Project EIS, Bureau of Reclamation, Dakotas Area...

  9. 75 FR 48986 - Northwest Area Water Supply Project, North Dakota

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-12

    ... DEPARTMENT OF THE INTERIOR Bureau of Reclamation Northwest Area Water Supply Project, North Dakota... Area Water Supply Project (NAWS Project), a Federal reclamation project, located in North Dakota. A... CONTACT: Alicia Waters, Northwest Area Water Supply Project EIS, Bureau of Reclamation, Dakotas Area...

  10. Comparison of soymilk, powdered milk, Hank's balanced salt solution and tap water on periodontal ligament cell survival.

    PubMed

    Moazami, Fariborz; Mirhadi, Hosein; Geramizadeh, Bita; Sahebi, Safoura

    2012-04-01

    The purpose of this study was to evaluate the ability of soymilk, powdered milk, and Hank's balanced salt solution (HBSS) to maintain human periodontal ligament (PDL) cell viability in vitro. PDL cells were obtained from extracted healthy third molars and cultured in Dulbecco's modified Eagles medium (DMEM). The cultures were exposed for 1, 2, 4, and 8 h to experimental solutions (tap water served as negative control and DMEM as positive control) at 37°C. The viable cells were then counted using the trypan blue exclusion technique. Data were analyzed by using one-way anova, post hoc Scheffe and two-way anova test. Statistical analysis showed that HBSS, powdered baby formula, and soymilk maintain cell viability equally well in different periods of times. Tap water cannot keep cells viable as well as other solutions. Soymilk and powdered baby formula can be recommended as suitable storage media for avulsed teeth for up to 8 h. © 2011 John Wiley & Sons A/S.

  11. Hydroeconomic optimization of integrated water management and transfers under stochastic surface water supply

    NASA Astrophysics Data System (ADS)

    Zhu, Tingju; Marques, Guilherme Fernandes; Lund, Jay R.

    2015-05-01

    Efficient reallocation and conjunctive operation of existing water supplies is gaining importance as demands grow, competitions among users intensify, and new supplies become more costly. This paper analyzes the roles and benefits of conjunctive use of surface water and groundwater and market-based water transfers in an integrated regional water system where agricultural and urban water users coordinate supply and demand management based on supply reliability and economic values of water. Agricultural users optimize land and water use for annual and perennial crops to maximize farm income, while urban users choose short-term and long-term water conservation actions to maintain reliability and minimize costs. The temporal order of these decisions is represented in a two-stage optimization that maximizes the net expected benefits of crop production, urban conservation and water management including conjunctive use and water transfers. Long-term decisions are in the first stage and short-term decisions are in a second stage based on probabilities of water availability events. Analytical and numerical analyses are made. Results show that conjunctive use and water transfers can substantially stabilize farmer's income and reduce system costs by reducing expensive urban water conservation or construction. Water transfers can equalize marginal values of water across users, while conjunctive use minimizes water marginal value differences in time. Model results are useful for exploring the integration of different water demands and supplies through water transfers, conjunctive use, and conservation, providing valuable insights for improving system management.

  12. Application of BIM Technology in Building Water Supply and Drainage Design

    NASA Astrophysics Data System (ADS)

    Wei, Tianyun; Chen, Guiqing; Wang, Junde

    2017-12-01

    Through the application of BIM technology, the idea of building water supply and drainage designers can be related to the model, the various influencing factors to affect water supply and drainage design can be considered more comprehensively. BIM(Building information model) technology assist in improving the design process of building water supply and drainage, promoting the building water supply and drainage planning, enriching the building water supply and drainage design method, improving the water supply and drainage system design level and building quality. Combined with fuzzy comprehensive evaluation method to analyze the advantages of BIM technology in building water supply and drainage design. Therefore, application prospects of BIM technology are very worthy of promotion.

  13. Copper in household drinking water in the city of Zagreb, Croatia.

    PubMed

    Pizent, Alica; Butković, Sanja

    2010-09-01

    Copper concentration was estimated in tap water samples obtained from 70 households in Zagreb, serviced by a public water supply system. First-draw and flushed samples of tap water were collected in the morning and total copper concentration was determined by graphite furnace atomic absorption spectrometry with Zeeman-effect background correction. We also estimated the contribution of plumbing material to copper concentrations in tap water. In households with copper pipes, median and range copper values were 310 μg L-1 [(27 to 632) μg L-1] in first-draw samples and 16 μg L-1 [(5 to 52) μg L-1] in flushed samples. Corresponding values for households with galvanised pipes were 140 μg L-1 [(11 to 289) μg L-1] and 8 μg L-1 [(1 to 42) μg L-1], respectively. Copper concentrations in household tap water in Zagreb were far below the proposed safe limits set by the Croatian and WHO regulations and EPA standards, and drinking water in Zagreb is not a significant source of copper exposure.

  14. Public water supplies in eastern Texas

    USGS Publications Warehouse

    Sundstrom, Raymond W.; Hastings, W.W.; Broadhurst, W.L.

    1948-01-01

    This report gives a summarized description of the public water supplies in 77 counties of eastern Texas, extending from the Louisiana boundary to a northsouth line approximately along the ninety-seventh meridian. It gives the available data as follows for each of 323 communities: The population of the community; the name of the official from whom the information was obtained; the ownership of the waterworks, whether private or municipal; the source of supply, whether ground or surface water; the amount of water consumed; the facilities for storage; the number of customers served; the character of the chemical and sanitary treatment of the water, if any; and the chemical analyses of the water. Where ground water is used the following is also given: Records of wells, including drillers' logs; character of the pumping equipment; yield of the wells and water level records where they are available.

  15. Enhancing water supply through reservoir reoperation

    NASA Astrophysics Data System (ADS)

    Rajagopal, S.; Sterle, K. M.; Jose, L.; Coors, S.; Pohll, G.; Singletary, L.

    2017-12-01

    Snowmelt is a significant contributor to water supply in western U.S. which is stored in reservoirs for use during peak summer demand. The reservoirs were built to satisfy multiple objectives, but primarily to either enhance water supply and/or for flood mitigation. The operating rules for these water supply reservoirs are based on historical assumptions of stationarity of climate, assuming peak snowmelt occurs after April 1 and hence have to let water pass through if it arrived earlier. Using the Truckee River which originates in the eastern Sierra Nevada, has seven reservoirs and is shared between California and Nevada as an example, we show enhanced water storage by altering reservoir operating rules. These results are based on a coupled hydrology (Ground-Surface water Flow, GSFLOW) and water management model (RIverware) developed for the river system. All the reservoirs in the system benefit from altering the reservoir rules, but some benefit more than others. Prosser Creek reservoir for example, historically averaged 76% of capacity, which was lowered to 46% of capacity in the future as climate warms and shifts snowmelt to earlier days of the year. This reduction in storage can be mitigated by altering the reservoir operation rules and the reservoir storage increases to 64-76% of capacity. There are limitations to altering operating rules as reservoirs operated primarily for flood control are required to maintain lower storage to absorb a flood pulse, yet using modeling we show that there are water supply benefits to adopting a more flexible rules of operation. In the future, due to changing climate we anticipate the reservoirs in the western U.S. which were typically capturing spring- summer snowmelt will have to be managed more actively as the water stored in the snowpack becomes more variable. This study presents a framework for understanding, modeling and quantifying the consequences of such a shift in hydrology and water management.

  16. Identification, toxicity and control of iodinated disinfection byproducts in cooking with simulated chlor(am)inated tap water and iodized table salt.

    PubMed

    Pan, Yang; Zhang, Xiangru; Li, Yu

    2016-01-01

    Chlorine/chloramine residuals are maintained in drinking water distribution systems to prevent microbial contamination and microorganism regrowth. During household cooking processes (e.g., soup making), the residual chlorine/chloramines in tap water may react with the iodide in iodized table salt to form hypoiodous acid, which could react with remaining natural organic matter in tap water and organic matter in food to generate iodinated disinfection byproducts (I-DBPs). However, I-DBPs formed during cooking with chloraminated/chlorinated tap water are almost completely new to researchers. In this work, by adopting precursor ion scan of m/z 127 using ultra performance liquid chromatography/electrospray ionization-triple quadrupole mass spectrometry, many new polar I-DBPs formed during cooking with chloraminated/chlorinated tap water were detected and proposed with structures, of which 3-iodo-4-hydroxybenzaldehyde, 3-iodo-4-hydroxybenzoic acid, 3-iodo-4-hydroxy-5-methylbenzoic acid, diiodoacetic acid, 3,5-diiodo-4-hydroxybenzaldehyde, 3,5-diiodo-4-hydroxybenzoic acid, 2,6-diiodo-4-nitrophenol, 2,4-diiodo-6-nitrophenol, and 2,4,6-triiodophenol were confirmed with standard compounds. With the aid of ultra fast liquid chromatography/ion trap-time of flight-mass spectrometry, molecular formula identification of five new I-DBPs (C8H5O4I, C7H4NO4I, C8H5O5I, C7H4NO5I, and C8H6O3I2) was achieved. A developmental toxicity with a recently developed sensitive bioassay was conducted for the newly identified I-DBPs, suggesting that phenolic I-DBPs (except for iodinated carboxyphenols) were about 50-200 times more developmentally toxic than aliphatic I-DBPs. The major I-DBPs in a baseline simulated cooking water sample were determined to be from 0.72 to 7.63 μg/L. Polar I-DBPs formed under various disinfection and cooking conditions were compared, and suggestions for controlling their formation were provided. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Water Supply Treatment Sustainability of Semambu Water Supply Treatment Process - Water Footprint Approach

    NASA Astrophysics Data System (ADS)

    Aziz, Edriyana A.; Malek, Marlinda Abdul; Moni, Syazwan N.; Hadi, Iqmal H.; Zulkifli, Nabil F.

    2018-03-01

    In this study, the assessment by using Water Footprint (WF) approach was conducted to assess water consumption within the water supply treatment process (WSTP) services of Semambu Water Treatment Plant (WTP). Identification of the type of WF at each stage of WSTP was carried out and later the WF accounting for the period 2010 – 2016 was calculated. Several factors that might influence the accounting such as population, and land use. The increasing value of total WF per year was due to the increasing water demand from population and land use activities. However, the pattern of rainfall intensity from the monsoonal changes was not majorly affected the total amount of WF per year. As a conclusion, if the value of WF per year keeps increasing due to unregulated development in addition to the occurrences of climate changing, the intake river water will be insufficient and may lead to water scarcity. The findings in this study suggest actions to reduce the WF will likely have a great impact on freshwater resources availability and sustainability.

  18. Sustainability issues in rural water supply in Asia.

    PubMed

    1998-03-01

    This article identifies some sustainability issues in management of water supplies in rural Asia. The International Drinking Water Supply and Sanitation Decade was 1981-90. At present, less than 50% of the rural population in several Asian countries have access to safe water, and even less have access to adequate sanitation. Access does not ensure quality of services or supplies. Data on coverage is inadequate and does not take into account water quality, hours of service, reliability of supplies, distance to the source, and community use patterns. It is difficult to improve access to the poor. There is no single uniform strategy that works for all parts of a country. Countries need to promote community management that has strategic vision and appropriate priorities. Local management is constrained by centralized authority, the orientation of sector agencies, and staff with weak managerial, financial, technical, and communications skills. Many countries lack resources to maintain water delivery infrastructures and to prevent deterioration of services. There is a need to develop low cost appropriate technologies, management requirements, health education, community participation, mobilization of women, and synergistic, nonsequential development. Demand for water and sanitation is driven by survival and privacy issues. Rural water supply programs should view water as an economic and social good. Water management is effective when decisions are made locally. Local governments need to be strengthened in order to be able to perform demand management, select institutional options, and to take care of the unserviced.

  19. Fluoride concentration in community water and bottled drinking water: a dilemma today.

    PubMed

    Dhingra, S; Marya, C M; Jnaneswar, A; Kumar, H

    2013-01-01

    Because of the potential for contamination of municipal water supplies, people appear to be turning to alternative sources for their pure drinking water. The present study analyzed the fluoride concentration in community water and bottled drinking water sold in Faridabad city. A comparative evaluation of fluoride content in community water supply and bottled drinking water was done using ion-selective electrode method. The community water samples were collected from six different areas (i.e. north zone, south zone, east zone, west zone and central zone) in the city from public health water supply taps while bottled drinking water samples were randomly picked from grocery shops or supermarkets. The fluoride concentration in the community water supply in this study ranges from 0.11 to 0.26 mg/L with mean fluoride concentration of 0.17 mg/L. The mean concentration of fluoride in bottled drinking water was 0.06 mg/L. The differences observed between mean of two water samples was statistically significant. The results obtained from the present study clearly state that the fluoride concentration was insufficient in community water supply from all the areas and also was deficient in bottled drinking water sold in Faridabad city. So, Alternative sources of fluorides should be supplemented for optimal dental benefits from the use of fluoride.

  20. Assessment of drinking water quality at the tap using fluorescence spectroscopy.

    PubMed

    Heibati, Masoumeh; Stedmon, Colin A; Stenroth, Karolina; Rauch, Sebastien; Toljander, Jonas; Säve-Söderbergh, Melle; Murphy, Kathleen R

    2017-11-15

    Treated drinking water may become contaminated while travelling in the distribution system on the way to consumers. Elevated dissolved organic matter (DOM) at the tap relative to the water leaving the treatment plant is a potential indicator of contamination, and can be measured sensitively, inexpensively and potentially on-line via fluorescence and absorbance spectroscopy. Detecting elevated DOM requires potential contamination events to be distinguished from natural fluctuations in the system, but how much natural variation to expect in a stable distribution system is unknown. In this study, relationships between DOM optical properties, microbial indicator organisms and trace elements were investigated for households connected to a biologically-stable drinking water distribution system. Across the network, humic-like fluorescence intensities showed limited variation (RSD = 3.5-4.4%), with half of measured variation explained by interactions with copper. After accounting for quenching by copper, fluorescence provided a very stable background signal (RSD < 2.2%) against which a ∼2% infiltration of soil water would be detectable. Smaller infiltrations would be detectable in the case of contamination by sewage with a strong tryptophan-like fluorescence signal. These findings indicate that DOM fluorescence is a sensitive indicator of water quality changes in drinking water networks, as long as potential interferents are taken into account. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  1. Institutional and socioeconomic aspects of water supply

    NASA Astrophysics Data System (ADS)

    Rauchenschwandtner, H.; Pachel, M.

    2012-04-01

    Institutional and socioeconomic aspects of water supply Within the project CC-WaterS the participating researchers of the Vienna University of Economics and B.A. have been responsible for the analysis of the socioeconomic aspects related to water supply and climate change, the assessment of future water demands in the City of Vienna, as well as an estimation of economic consequences of possible water shortages and possible scope for the introduction of new legal guidelines. The institutional and socioeconomic dimensions of drinking water and sanitation systems are being examined by utilisation of different prognostic scenarios in order to assess future costs of water provisioning and future demands of main water users, thus providing an information basis and recommendations for policy and decision makers in the water sector. These dimensions, for example, include EU legislation - especially the Water Framework Directive -, national legislations and strategies targeted at achieving sustainability in water usage, best practices and different forms of regulating water markets, and an analysis of the implications of demographic change. As a basis this task encompasses research of given institutional, social, and legal-political structures in the area of water supply. In this course we provide an analysis of the structural characteristics of water markets, the role of water prices, the increasing perception of water as an economic good as well as implications thereof, the public awareness in regard to climate change and water resources, as well as related legal aspects and involved actors from regional to international level; and show how water resources and the different systems of water provisioning are affected by (ideological) conflicts on various levels. Furthermore, and in order to provide a solid basis for management recommendations related to climate change and water supply, an analytical risk-assessment framework based on the concepts of new institutional

  2. Water supply studies. [management and planning of water supplies in California

    NASA Technical Reports Server (NTRS)

    Burgy, R. H.; Algazi, V. R.; Draeger, W. C.; Churchman, C. W.; Thomas, R. W.; Lauer, D. T.; Hoos, I.; Krumpe, P. F.; Nichols, J. D.; Gialdini, M. J.

    1973-01-01

    The primary test site for water supply investigations continues to be the Feather River watershed in northeastern California. This test site includes all of the area draining into and including the Oroville Reservoir. The principal effort is to determine the extent to which remote sensing techniques, when properly employed, can provide information useful to those persons concerned with the management and planning of lands and facilities for the production of water, using the Oroville Reservoir and the California Water Project as the focus for the study. In particular, emphasis is being placed on determining the cost effectiveness of information derived through remote sensing as compared with that currently being derived through more conventional means.

  3. INTERGRATING SOURCE WATER PROTECTION AND DRINKING WATER TREATMENT: U.S. ENVIRONMENTAL PROTECTION AGENCY'S WATER SUPPLY AND WATER RESOURCES DIVISION

    EPA Science Inventory

    The U.S. Environmental Protection Agency's (EPA) Water Supply and Water Resources Division (WSWRD) is an internationally recognized water research organization established to assist in responding to public health concerns related to drinking water supplies. WSWRD has evolved from...

  4. INTEGRATING SOURCE WATER PROTECTION AND DRINKING WATER TREATMENT: U.S. ENVIRONMENTAL PROTECTION AGENCY'S WATER SUPPLY AND WATER RESOURCES DIVISION

    EPA Science Inventory

    The U.S. Environmental Protection Agency's (EPA) Water Supply and Water Resources Division (WSWRD) is an internationally recognized water research organization established to assist in responding to public health concerns related to drinking water supplies. WSWRD has evolved from...

  5. Chemical and microbial characteristics of municipal drinking water supply systems in the Canadian Arctic.

    PubMed

    Daley, Kiley; Truelstrup Hansen, Lisbeth; Jamieson, Rob C; Hayward, Jenny L; Piorkowski, Greg S; Krkosek, Wendy; Gagnon, Graham A; Castleden, Heather; MacNeil, Kristen; Poltarowicz, Joanna; Corriveau, Emmalina; Jackson, Amy; Lywood, Justine; Huang, Yannan

    2017-06-13

    Drinking water in the vast Arctic Canadian territory of Nunavut is sourced from surface water lakes or rivers and transferred to man-made or natural reservoirs. The raw water is at a minimum treated by chlorination and distributed to customers either by trucks delivering to a water storage tank inside buildings or through a piped distribution system. The objective of this study was to characterize the chemical and microbial drinking water quality from source to tap in three hamlets (Coral Harbour, Pond Inlet and Pangnirtung-each has a population of <2000) on trucked service, and in Iqaluit (population ~6700), which uses a combination of trucked and piped water conveyance. Generally, the source and drinking water was of satisfactory microbial quality, containing Escherichia coli levels of <1 MPN/100 mL with a few exceptions, and selected pathogenic bacteria and parasites were below detection limits using quantitative polymerase chain reaction (qPCR) methods. Tap water in households receiving trucked water contained less than the recommended 0.2 mg/L of free chlorine, while piped drinking water in Iqaluit complied with Health Canada guidelines for residual chlorine (i.e. >0.2 mg/L free chlorine). Some buildings in the four communities contained manganese (Mn), copper (Cu), iron (Fe) and/or lead (Pb) concentrations above Health Canada guideline values for the aesthetic (Mn, Cu and Fe) and health (Pb) objectives. Corrosion of components of the drinking water distribution system (household storage tanks, premise plumbing) could be contributing to Pb, Cu and Fe levels, as the source water in three of the four communities had low alkalinity. The results point to the need for robust disinfection, which may include secondary disinfection or point-of-use disinfection, to prevent microbial risks in drinking water tanks in buildings and ultimately at the tap.

  6. Arsenic in Illinois ground water : community and private supplies

    USGS Publications Warehouse

    Warner, Kelly L.; Martin, Angel; Arnold, Terri L.

    2003-01-01

    Assessing the distribution of arsenic in ground water from community-water supplies, private supplies, or monitoring wells is part of the process of determining the risk of arsenic contamination of drinking water in Illinois. Lifestyle, genetic, and environmental factors make certain members of the population more susceptible to adverse health effects from repeated exposure to drinking water with high arsenic concentrations (Ryker, 2001). In addition, such factors may have geographic distribution patterns that complicate the analysis of the relation between arsenic in drinking water and health effects. For example, arsenic may not be the only constituent affecting the quality of drinking water in a region (Ryker, 2001); however, determining the extent and distribution of arsenic in ground water is a starting place to assess the potential risk for persons drinking from a community or private supply. Understanding the potential sources and pathways that mobilize arsenic in ground water is a necessary step in protecting the drinking-water supply in Illinois.

  7. Public water supplies in southern Texas

    USGS Publications Warehouse

    Broadhurst, W.L.; Sundstrom, R.W.; Rowley, J.H.

    1950-01-01

    This report gives a summarized description of the public water supplies in 42 counties of southern Texas, extending from the Rio Grande northward to the northern boundaries of Kinney, Uvalde, Bandera, Kendall, and Hays Counties and eastward to the eastern boundaries of Caldwell, Gonzales, DeWitt, Victoria, and Calhoun Counties. It gives the available data as follows for each of the 114 communities: Population of the community; name of the official from whom the information was obtained; ownership of water works, whether private or municipal; source of supply, whether ground or surface water; the amount of water consumed; the facilities for storage; the number of customers served; the character of the chemical and sanitary treatment, if any; and chemical analyses of the water. Where ground water is used, the following information also is given: Records of wells, including drillers' logs; character of the pumping equipment; yield of the wells and records of water levels, where they are available.

  8. Monitoring of Emerging and Legacy Contaminants in Groundwater and Tap Water of the Karst Region in Northern Puerto Rico for Assessment of Sources and Fate and Transport Processes

    NASA Astrophysics Data System (ADS)

    Padilla, I. Y.; Cotto, I.; Torres, P. M.

    2014-12-01

    The karst aquifer region of northern Puerto Rico is the area with the highest groundwater extraction in the island. Urban and industrial development has led to extensive contamination of the groundwater in the region. Of particular concern, is the presence of emerging and legacy organic contaminants, such as phthalates and chlorinated organic compounds (CVOCs), because there high risk for exposure and adverse health impact. Variable sources and the heterogeneous and dynamic conditions of karst groundwater systems, limits the ability to properly assess and manage the water quality of these precious water resources. This work develops a monitoring and water analysis scheme to assess spatial-temporal exposure of hazardous contaminants trough karst water in northern Puerto Rico. Groundwater and tap water are sampled in the region and analyzed for phthalates, CVOCs, and common ions. Detections and concentrations of phthalates and CVOCs are determined by using modified EPA methods, which rely on liquid-liquid extractions and gas chromatography techniques. The modified methods have reduced the volume of samples and solvent waste, decreased the time of analysis, increased analysis outcomes, and lower potential for hazardous exposure. Results show intermittent presence of di-ethyl, di-butyl and di (2-ethyl hexyl) phthalates in 36% of the groundwater and 53% of tap water samples, with detected concentrations ranging between 0.1-88.7 μg/L. These results indicate that karst groundwater can serve as a route of exposure for phthalates, but there are additional disperse sources in the water system. CVOCs are detected in groundwater at much higher frequencies (50%) than phthalates, and include trichloromethane (TCM), carbon tetrachloride (CT), trichloroethylene (TCE), and tetrachloroethylene (TCE). CVOCs, except for TCM, are found at lower frequencies on tap water (5.8%) than groundwater (27%). TCM is detected more frequently and at higher concentrations in tap water (56.8%) than

  9. A Novel Liquid-Liquid Extraction for the Determination of Sertraline in Tap Water and Waste Water at Trace Levels by GC-MS.

    PubMed

    Koçoğlu, Elif Seda; Bakırdere, Sezgin; Keyf, Seyfullah

    2017-09-01

    A simple, green and fast analytical method was developed for the determination of sertraline in tap and waste water samples at trace levels by using supportive liquid-liquid extraction with gas chromatography-mass spectrometry. Different parameters affecting extraction efficiency such as types and volumes of extraction and supporter solvents, extraction period, salt type and amount were optimized to get lower detection limits. Ethyl acetate was selected as optimum extraction solvent. In order to improve the precision, anthracene-D10 was used as an internal standard. The calibration plot of sertraline was linear from 1.0 to 1000 ng/mL with a correlation coefficient of 0.999. The limit of detection value under the optimum conditions was found to be 0.43 ng/mL. In real sample measurements, spiking experiments were performed to check the reliability of the method for these matrices. The spiking experiments yielded satisfactory recoveries of 91.19 ± 2.48%, 90.48 ± 5.19% and 95.46 ± 6.56% for 100, 250 and 500 ng/mL sertraline for tap water, and 85.80 ± 2.15% and 92.43 ± 4.02% for 250 and 500 ng/mL sertraline for waste water.

  10. Vulnerability of drinking water supplies to engineered nanoparticles.

    PubMed

    Troester, Martin; Brauch, Heinz-Juergen; Hofmann, Thilo

    2016-06-01

    The production and use of engineered nanoparticles (ENPs) inevitably leads to their release into aquatic environments, with the quantities involved expected to increase significantly in the future. Concerns therefore arise over the possibility that ENPs might pose a threat to drinking water supplies. Investigations into the vulnerability of drinking water supplies to ENPs are hampered by the absence of suitable analytical methods that are capable of detecting and quantifiying ENPs in complex aqueous matrices. Analytical data concerning the presence of ENPs in drinking water supplies is therefore scarce. The eventual fate of ENPs in the natural environment and in processes that are important for drinking water production are currently being investigated through laboratory based-experiments and modelling. Although the information obtained from these studies may not, as yet, be sufficient to allow comprehensive assessment of the complete life-cycle of ENPs, it does provide a valuable starting point for predicting the significance of ENPs to drinking water supplies. This review therefore addresses the vulnerability of drinking water supplies to ENPs. The risk of ENPs entering drinking water is discussed and predicted for drinking water produced from groundwater and from surface water. Our evaluation is based on reviewing published data concerning ENP production amounts and release patterns, the occurrence and behavior of ENPs in aquatic systems relevant for drinking water supply and ENP removability in drinking water purification processes. Quantitative predictions are made based on realistic high-input case scenarios. The results of our synthesis of current knowledge suggest that the risk probability of ENPs being present in surface water resources is generally limited, but that particular local conditions may increase the probability of raw water contamination by ENPs. Drinking water extracted from porous media aquifers are not generally considered to be prone to ENP

  11. Ground-water supplies of the Ypsilanti area, Michigan

    USGS Publications Warehouse

    McGuinness, Charles L.; Poindexter, O.F.; Otton, E.G.

    1949-01-01

    As of the date of this report (August 1945), the major water users in the Ypsilanti area are: (1) the city of Ypsilanti, (2) the Willow Run bomber plant, built by the Federal Government and operated by the Ford Motor Co., and (3) the war housing project of the Federal Public Housing Authority, designated in this report the Willow Run Townsite. The city, bomber plant, and townsite have required large quantities of water for domestic and industrial uses, and the necessary water supplies have been developed from wells. The Federal Works Agency had the responsibility of deciding whether the existing water facilities were adequate to meet the expected demands and determining the character of any additional public water-supply facilities that might be constructed with Federal assistance. In order to appraise the ground-water resources of the area the Federal Works Agency requested the Geological Survey to investigate the adequacy of the existing supplies and the availability of additional water. The present report is the result of the investigation, which was made in cooperation with the Michigan Geological Survey Division.The water supplies of the three major users are obtained from wells penetrating glacial and associated sands and gravels. Supplies for the city of Ypsilanti and the Willow Run bomber plant are obtained from wells in the valley of the Huron River; the supply for the Willow Run Townsite is obtained from wells penetrating glacial gravels underlying the upland northeast of the valley. The bedrock formations of the area either yield little water to wells or yield water that is too highly mineralized for most uses.The water supply for the bomber plant is obtained from three closely spaced, highly productive wells at the northern edge of the Huron River, a little more than 3 miles southeast of Ypsilanti. The water receives complete treatment in a modern treatment plant. River water also can be treated and has been used occasionally in the winter and spring

  12. Climate change, water rights, and water supply: The case of irrigated agriculture in Idaho

    NASA Astrophysics Data System (ADS)

    Xu, Wenchao; Lowe, Scott E.; Adams, Richard M.

    2014-12-01

    We conduct a hedonic analysis to estimate the response of agricultural land use to water supply information under the Prior Appropriation Doctrine by using Idaho as a case study. Our analysis includes long-term climate (weather) trends and water supply conditions as well as seasonal water supply forecasts. A farm-level panel data set, which accounts for the priority effects of water rights and controls for diversified crop mixes and rotation practices, is used. Our results indicate that farmers respond to the long-term surface and ground water conditions as well as to the seasonal water supply variations. Climate change-induced variations in climate and water supply conditions could lead to substantial damages to irrigated agriculture. We project substantial losses (up to 32%) of the average crop revenue for major agricultural areas under future climate scenarios in Idaho. Finally, farmers demonstrate significantly varied responses given their water rights priorities, which imply that the distributional impact of climate change is sensitive to institutions such as the Prior Appropriation Doctrine.

  13. A discussion about public health, lead and Legionella pneumophila in drinking water supplies in the United States.

    PubMed

    Rosen, Michael B; Pokhrel, Lok R; Weir, Mark H

    2017-07-15

    Lead (Pb) in public drinking water supplies has garnered much attention since the outset of the Flint water crisis. Pb is a known hazard in multiple environmental matrices, exposure from which results in long-term deleterious health effects in humans. This discussion paper aims to provide a succinct account of environmental Pb exposures with a focus on water Pb levels (WLLs) in the United States. It is understood that there is a strong correlation between WLLs and blood Pb levels (BLLs), and the associated health effects. However, within the Flint water crisis, more than water chemistry and Pb exposure occurred. A cascade of regulatory and bureaucratic failures culminated in the Flint water crisis. This paper will discuss pertinent regulations and responses including their limitations after an overview of the public health effects from Pb exposure as well as discussion on our limitations on monitoring and mitigating Pb in tap water. As the Flint water crisis also included increased Legionnares' disease, caused by Legionella pneumophila, this paper will discuss factors influencing L. pneumophila growth. This will highlight the systemic nature of changes to water chemistry and public health impacts. As we critically analyze these important aspects of water research, we offer discussions to stimulate future water quality research from a new and systemic perspective to inform and guide public health decision-making. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Multistate Evaluation of an Ultrafiltration-Based Procedure for Simultaneous Recovery of Enteric Microbes in 100-Liter Tap Water Samples▿

    PubMed Central

    Hill, Vincent R.; Kahler, Amy M.; Jothikumar, Narayanan; Johnson, Trisha B.; Hahn, Donghyun; Cromeans, Theresa L.

    2007-01-01

    Ultrafiltration (UF) is increasingly being recognized as a potentially effective procedure for concentrating and recovering microbes from large volumes of water and treated wastewater. Because of their very small pore sizes, UF membranes are capable of simultaneously concentrating viruses, bacteria, and parasites based on size exclusion. In this study, a UF-based water sampling procedure was used to simultaneously recover representatives of these three microbial classes seeded into 100-liter samples of tap water collected from eight cities covering six hydrologic areas of the United States. The UF-based procedure included hollow-fiber UF as the primary step for concentrating microbes and then used membrane filtration for bacterial culture assays, immunomagnetic separation for parasite recovery and quantification, and centrifugal UF for secondary concentration of viruses. Water samples were tested for nine water quality parameters to investigate whether water quality data correlated with measured recovery efficiencies and molecular detection levels. Average total method recovery efficiencies were 71, 97, 120, 110, and 91% for φX174 bacteriophage, MS2 bacteriophage, Enterococcus faecalis, Clostridium perfringens spores, and Cryptosporidium parvum oocysts, respectively. Real-time PCR and reverse transcription-PCR (RT-PCR) for seeded microbes and controls indicated that tap water quality could affect the analytical performance of molecular amplification assays, although no specific water quality parameter was found to correlate with reduced PCR or RT-PCR performance. PMID:17483281

  15. Associations between Perceptions of Drinking Water Service Delivery and Measured Drinking Water Quality in Rural Alabama

    PubMed Central

    Wedgworth, Jessica C.; Brown, Joe; Johnson, Pauline; Olson, Julie B.; Elliott, Mark; Forehand, Rick; Stauber, Christine E.

    2014-01-01

    Although small, rural water supplies may present elevated microbial risks to consumers in some settings, characterizing exposures through representative point-of-consumption sampling is logistically challenging. In order to evaluate the usefulness of consumer self-reported data in predicting measured water quality and risk factors for contamination, we compared matched consumer interview data with point-of-survey, household water quality and pressure data for 910 households served by 14 small water systems in rural Alabama. Participating households completed one survey that included detailed feedback on two key areas of water service conditions: delivery conditions (intermittent service and low water pressure) and general aesthetic characteristics (taste, odor and color), providing five condition values. Microbial water samples were taken at the point-of-use (from kitchen faucets) and as-delivered from the distribution network (from outside flame-sterilized taps, if available), where pressure was also measured. Water samples were analyzed for free and total chlorine, pH, turbidity, and presence of total coliforms and Escherichia coli. Of the 910 households surveyed, 35% of participants reported experiencing low water pressure, 15% reported intermittent service, and almost 20% reported aesthetic problems (taste, odor or color). Consumer-reported low pressure was associated with lower gauge-measured pressure at taps. While total coliforms (TC) were detected in 17% of outside tap samples and 12% of samples from kitchen faucets, no reported water service conditions or aesthetic characteristics were associated with presence of TC. We conclude that consumer-reported data were of limited utility in predicting potential microbial risks associated with small water supplies in this setting, although consumer feedback on low pressure—a risk factor for contamination—may be relatively reliable and therefore useful in future monitoring efforts. PMID:25046635

  16. Associations between perceptions of drinking water service delivery and measured drinking water quality in rural Alabama.

    PubMed

    Wedgworth, Jessica C; Brown, Joe; Johnson, Pauline; Olson, Julie B; Elliott, Mark; Forehand, Rick; Stauber, Christine E

    2014-07-18

    Although small, rural water supplies may present elevated microbial risks to consumers in some settings, characterizing exposures through representative point-of-consumption sampling is logistically challenging. In order to evaluate the usefulness of consumer self-reported data in predicting measured water quality and risk factors for contamination, we compared matched consumer interview data with point-of-survey, household water quality and pressure data for 910 households served by 14 small water systems in rural Alabama. Participating households completed one survey that included detailed feedback on two key areas of water service conditions: delivery conditions (intermittent service and low water pressure) and general aesthetic characteristics (taste, odor and color), providing five condition values. Microbial water samples were taken at the point-of-use (from kitchen faucets) and as-delivered from the distribution network (from outside flame-sterilized taps, if available), where pressure was also measured. Water samples were analyzed for free and total chlorine, pH, turbidity, and presence of total coliforms and Escherichia coli. Of the 910 households surveyed, 35% of participants reported experiencing low water pressure, 15% reported intermittent service, and almost 20% reported aesthetic problems (taste, odor or color). Consumer-reported low pressure was associated with lower gauge-measured pressure at taps. While total coliforms (TC) were detected in 17% of outside tap samples and 12% of samples from kitchen faucets, no reported water service conditions or aesthetic characteristics were associated with presence of TC. We conclude that consumer-reported data were of limited utility in predicting potential microbial risks associated with small water supplies in this setting, although consumer feedback on low pressure-a risk factor for contamination-may be relatively reliable and therefore useful in future monitoring efforts.

  17. Occurrence, Source, and Human Infection Potential of Cryptosporidium and Giardia spp. in Source and Tap Water in Shanghai, China▿

    PubMed Central

    Feng, Yaoyu; Zhao, Xukun; Chen, Jiaxu; Jin, Wei; Zhou, Xiaonong; Li, Na; Wang, Lin; Xiao, Lihua

    2011-01-01

    Genotyping studies on the source and human infection potential of Cryptosporidium oocysts in water have been almost exclusively conducted in industrialized nations. In this study, 50 source water samples and 30 tap water samples were collected in Shanghai, China, and analyzed by the U.S. Environmental Protection Agency (EPA) Method 1623. To find a cost-effective method to replace the filtration procedure, the water samples were also concentrated by calcium carbonate flocculation (CCF). Of the 50 source water samples, 32% were positive for Cryptosporidium and 18% for Giardia by Method 1623, whereas 22% were positive for Cryptosporidium and 10% for Giardia by microscopy of CCF concentrates. When CCF was combined with PCR for detection, the occurrence of Cryptosporidium (28%) was similar to that obtained by Method 1623. Genotyping of Cryptosporidium in 17 water samples identified the presence of C. andersoni in 14 water samples, C. suis in 7 water samples, C. baileyi in 2 water samples, C. meleagridis in 1 water sample, and C. hominis in 1 water sample. Therefore, farm animals, especially cattle and pigs, were the major sources of water contamination in Shanghai source water, and most oocysts found in source water in the area were not infectious to humans. Cryptosporidium oocysts were found in 2 of 30 tap water samples. The combined use of CCF for concentration and PCR for detection and genotyping provides a less expensive alternative to filtration and fluorescence microscopy for accurate assessment of Cryptosporidium contamination in water, although the results from this method are semiquantitative. PMID:21498768

  18. The energy and emissions footprint of water supply for Southern California

    NASA Astrophysics Data System (ADS)

    Fang, A. J.; Newell, Joshua P.; Cousins, Joshua J.

    2015-11-01

    Due to climate change and ongoing drought, California and much of the American West face critical water supply challenges. California’s water supply infrastructure sprawls for thousands of miles, from the Colorado River to the Sacramento Delta. Bringing water to growing urban centers in Southern California is especially energy intensive, pushing local utilities to balance water security with factors such as the cost and carbon footprint of the various supply sources. To enhance water security, cities are expanding efforts to increase local water supply. But do these local sources have a smaller carbon footprint than imported sources? To answer this question and others related to the urban water-energy nexus, this study uses spatially explicit life cycle assessment to estimate the energy and emissions intensity of water supply for two utilities in Southern California: Los Angeles Department of Water and Power, which serves Los Angeles, and the Inland Empire Utility Agency, which serves the San Bernardino region. This study differs from previous research in two significant ways: (1) emissions factors are based not on regional averages but on the specific electric utility and generation sources supplying energy throughout transport, treatment, and distribution phases of the water supply chain; (2) upstream (non-combustion) emissions associated with the energy sources are included. This approach reveals that in case of water supply to Los Angeles, local recycled water has a higher carbon footprint than water imported from the Colorado River. In addition, by excluding upstream emissions, the carbon footprint of water supply is potentially underestimated by up to 30%. These results have wide-ranging implications for how carbon footprints are traditionally calculated at local and regional levels. Reducing the emissions intensity of local water supply hinges on transitioning the energy used to treat and distribute water away from fossil fuel, sources such as coal.

  19. Transporters associated with antigen processing (TAP) in sea bass (Dicentrarchus labrax, L.): molecular cloning and characterization of TAP1 and TAP2.

    PubMed

    Pinto, Rute D; Pereira, Pedro J B; dos Santos, Nuno M S

    2011-11-01

    The transporters associated with antigen processing (TAP), play an important role in the MHC class I antigen presentation pathway. In this work, sea bass (Dicentrarchus labrax) TAP1 and TAP2 genes and transcripts were isolated and characterized. Only the TAP2 gene is structurally similar to its human orthologue. As other TAP molecules, sea bass TAP1 and TAP2 are formed by one N-terminal accessory domain, one core membrane-spanning domain and one canonical C-terminal nucleotide-binding domain. Homology modelling of the sea bass TAP dimer predicts that its quaternary structure is in accordance with that of other ABC transporters. Phylogenetic analysis segregates sea bass TAP1 and TAP2 into each subfamily cluster of transporters, placing them in the fish class and suggesting that the basic structure of these transport-associated proteins is evolutionarily conserved. Furthermore, the present data provides information that will enable more studies on the class I antigen presentation pathway in this important fish species. Copyright © 2011 Elsevier Ltd. All rights reserved.

  20. Status of small water supplies in the Nordic countries: Characteristics, water quality and challenges.

    PubMed

    Gunnarsdottir, Maria J; Persson, Kenneth M; Andradottir, Hrund O; Gardarsson, Sigurdur M

    2017-11-01

    Access to safe water is essential for public health and is one of the most important prerequisites for good living and safe food production. Many studies have shown that non-compliance with drinking water quality standards in small water supply systems is much higher than in large systems. Nevertheless, people served by small water supply systems have the right to the same level of health protection. Actions are therefore needed to improve the situation. The objective of the present study was to carry out a baseline analysis of the situation in the Nordic region and provide recommendations for governmental policy and actions. Data were gathered on number of water supplies, population served, compliance with regulations and waterborne disease outbreaks from various sources in the Nordic countries. The collected data showed that there are about 12500 regulated water supplies, 9400 of which serve fewer than 500 persons. The number of unregulated and poorly regulated supplies is unknown, but it can be roughly estimated that these serve 10% of the Nordic population on a permanent basis or 2.6 million people. However, this does not tell the whole story as many of the very small water supplies serve transient populations, summerhouse dwellers and tourist sites, with many more users. Non-compliance regarding microbes is much higher in the small supplies. The population weighted average fecal contamination incidence rate in the Nordic region is eleven times higher in the smaller supplies than in the large ones, 0.76% and 0.07%, respectively. Registered waterborne disease outbreaks were also more frequent in the small supplies than in the large ones. Copyright © 2017 Elsevier GmbH. All rights reserved.

  1. Indirect Potable Reuse: A Sustainable Water Supply Alternative

    PubMed Central

    Rodriguez, Clemencia; Van Buynder, Paul; Lugg, Richard; Blair, Palenque; Devine, Brian; Cook, Angus; Weinstein, Philip

    2009-01-01

    The growing scarcity of potable water supplies is among the most important issues facing many cities, in particular those using single sources of water that are climate dependent. Consequently, urban centers are looking to alternative sources of water supply that can supplement variable rainfall and meet the demands of population growth. A diversified portfolio of water sources is required to ensure public health, as well as social, economical and environmental sustainability. One of the options considered is the augmentation of drinking water supplies with advanced treated recycled water. This paper aims to provide a state of the art review of water recycling for drinking purposes with emphasis on membrane treatment processes. An overview of significant indirect potable reuse projects is presented followed by a description of the epidemiological and toxicological studies evaluating any potential human health impacts. Finally, a summary of key operational measures to protect human health and the areas that require further research are discussed. PMID:19440440

  2. Indirect potable reuse: a sustainable water supply alternative.

    PubMed

    Rodriguez, Clemencia; Van Buynder, Paul; Lugg, Richard; Blair, Palenque; Devine, Brian; Cook, Angus; Weinstein, Philip

    2009-03-01

    The growing scarcity of potable water supplies is among the most important issues facing many cities, in particular those using single sources of water that are climate dependent. Consequently, urban centers are looking to alternative sources of water supply that can supplement variable rainfall and meet the demands of population growth. A diversified portfolio of water sources is required to ensure public health, as well as social, economical and environmental sustainability. One of the options considered is the augmentation of drinking water supplies with advanced treated recycled water. This paper aims to provide a state of the art review of water recycling for drinking purposes with emphasis on membrane treatment processes. An overview of significant indirect potable reuse projects is presented followed by a description of the epidemiological and toxicological studies evaluating any potential human health impacts. Finally, a summary of key operational measures to protect human health and the areas that require further research are discussed.

  3. Modeling Integrated Water-User Decisions with Intermittent Supplies

    NASA Astrophysics Data System (ADS)

    Lund, J. R.; Rosenberg, D.

    2006-12-01

    We present an economic-engineering method to estimate urban water use demands with intermittent water supplies. A two-stage, probabilistic optimization formulation includes a wide variety of water supply enhancement and conservation actions that individual households can adopt to meet multiple water quality uses with uncertain water availability. We embed the optimization in Monte-Carlo simulations to show aggregate effects at a utility (citywide) scale for a population of user conditions and decisions. Parametric analysis provides derivations of supply curves to subsidize conservation, demand responses to alternative pricing, and customer willingness-to-pay to avoid shortages. Results show a good empirical fit for the average and distribution of billed residential water use in Amman, Jordan. Additional outputs give likely market penetration rates for household conservation actions, associated water savings, and subsidies required to entice further adoption. We discuss new insights to size, target, market, and finance conservation programs and interpret a demand curve with block pricing.

  4. 7 CFR 612.5 - Dissemination of water supply forecasts and basic data.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 6 2010-01-01 2010-01-01 false Dissemination of water supply forecasts and basic data... SUPPLY FORECASTS § 612.5 Dissemination of water supply forecasts and basic data. Water supply outlook reports prepared by NRCS and its cooperators containing water supply forecasts and basic data are usually...

  5. The northeast water supply crisis of the 1960's

    USGS Publications Warehouse

    Barksdale, Henry C.

    1968-01-01

    The water supply drought in the Northeast began in the autumn of 1961 and marked the beginning of a severe water shortage that continued with little relief through the summer of 1966. During this time, throughout much of the Northeast, water supplies remained below normal.

  6. 7 CFR 612.2 - Snow survey and water supply forecast activities.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 6 2014-01-01 2014-01-01 false Snow survey and water supply forecast activities. 612... SUPPLY FORECASTS § 612.2 Snow survey and water supply forecast activities. To carry out the cooperative snow survey and water supply forecast program, NRCS: (a) Establishes, maintains, and operates manual...

  7. 7 CFR 612.2 - Snow survey and water supply forecast activities.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 6 2013-01-01 2013-01-01 false Snow survey and water supply forecast activities. 612... SUPPLY FORECASTS § 612.2 Snow survey and water supply forecast activities. To carry out the cooperative snow survey and water supply forecast program, NRCS: (a) Establishes, maintains, and operates manual...

  8. 7 CFR 612.2 - Snow survey and water supply forecast activities.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 6 2011-01-01 2011-01-01 false Snow survey and water supply forecast activities. 612... SUPPLY FORECASTS § 612.2 Snow survey and water supply forecast activities. To carry out the cooperative snow survey and water supply forecast program, NRCS: (a) Establishes, maintains, and operates manual...

  9. 7 CFR 612.2 - Snow survey and water supply forecast activities.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 6 2012-01-01 2012-01-01 false Snow survey and water supply forecast activities. 612... SUPPLY FORECASTS § 612.2 Snow survey and water supply forecast activities. To carry out the cooperative snow survey and water supply forecast program, NRCS: (a) Establishes, maintains, and operates manual...

  10. 7 CFR 612.2 - Snow survey and water supply forecast activities.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 6 2010-01-01 2010-01-01 false Snow survey and water supply forecast activities. 612... SUPPLY FORECASTS § 612.2 Snow survey and water supply forecast activities. To carry out the cooperative snow survey and water supply forecast program, NRCS: (a) Establishes, maintains, and operates manual...

  11. Integrated risk assessment and screening analysis of drinking water safety of a conventional water supply system.

    PubMed

    Sun, F; Chen, J; Tong, Q; Zeng, S

    2007-01-01

    Management of drinking water safety is changing towards an integrated risk assessment and risk management approach that includes all processes in a water supply system from catchment to consumers. However, given the large number of water supply systems in China and the cost of implementing such a risk assessment procedure, there is a necessity to first conduct a strategic screening analysis at a national level. An integrated methodology of risk assessment and screening analysis is thus proposed to evaluate drinking water safety of a conventional water supply system. The violation probability, indicating drinking water safety, is estimated at different locations of a water supply system in terms of permanganate index, ammonia nitrogen, turbidity, residual chlorine and trihalomethanes. Critical parameters with respect to drinking water safety are then identified, based on which an index system is developed to prioritize conventional water supply systems in implementing a detailed risk assessment procedure. The evaluation results are represented as graphic check matrices for the concerned hazards in drinking water, from which the vulnerability of a conventional water supply system is characterized.

  12. Embodied energy comparison of surface water and groundwater supply options.

    PubMed

    Mo, Weiwei; Zhang, Qiong; Mihelcic, James R; Hokanson, David R

    2011-11-01

    The embodied energy associated with water provision comprises an important part of water management, and is important when considering sustainability. In this study, an input-output based hybrid analysis integrated with structural path analysis was used to develop an embodied energy model. The model was applied to a groundwater supply system (Kalamazoo, Michigan) and a surface water supply system (Tampa, Florida). The two systems evaluated have comparable total energy embodiments based on unit water production. However, the onsite energy use of the groundwater supply system is approximately 27% greater than the surface water supply system. This was primarily due to more extensive pumping requirements. On the other hand, the groundwater system uses approximately 31% less indirect energy than the surface water system, mainly because of fewer chemicals used for treatment. The results from this and other studies were also compiled to provide a relative comparison of embodied energy for major water supply options. Copyright © 2011 Elsevier Ltd. All rights reserved.

  13. PFAS - A threat for groundwater and drinking water supply in Sweden?

    NASA Astrophysics Data System (ADS)

    Lewis, Jeffrey; Banzhaf, Stefan; Ahlkrona, Malva; Arnheimer, Berit; Barthel, Roland; Bergvall, Martin; Blomquist, Niklas; Jacks, Gunnar; Jansson, Cecilia; Lissel, Patrik; Marklund, Lars; Olofsson, Bo; Persson, Kenneth M.; Sjöström, Jan; Sparrenbom, Charlotte

    2015-04-01

    , namely, A Non-Toxic Environment, Flourishing Lakes and Streams and Good-Quality Groundwater. Although the survey of PFAS in our groundwater supplies will take time, it is feasible. Much research in the field of hydrogeology and geochemistry remains before a viable and cost-effective groundwater remediation method can be operational. Until then, it is essential that measures are taken to identify the present distribution and magnitude of PFAS in groundwater and prevents its further spread in our most important aquifers. Afzelius, H. et al., 2014. Vågar vi dricka kranvattnet? (Do we dare drinking tap water?), Svenska Dagbladet. Bergman, Å., Hansson, S.O., Hellsten, E., 2014. En miljöskandal av historiska mått (An environmental scandal of historic proportions), Svenska Dagbladet. Lewis, J. et al., 2014. Kartlägg det förorenade dricksvattnet (Survey the contaminated drinking water), Svenska Dagbladet. OECD, 2002. Hazard Assessment of Perfluorooctane Sulfonate (PFOS) and its Salt.

  14. 40 CFR 230.50 - Municipal and private water supplies.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... quality of water supplies with respect to color, taste, odor, chemical content and suspended particulate... water supplies. In addition, certain commonly used water treatment chemicals have the potential for combining with some suspended or dissolved substances from dredged -or fill material to form other prod-ucts...

  15. Membrane bioreactor for the drinking water treatment of polluted surface water supplies.

    PubMed

    Li, Xiao-yan; Chu, Hiu Ping

    2003-11-01

    A laboratory membrane bioreactor (MBR) using a submerged polyethylene hollow-fibre membrane module with a pore size of 0.4 microm and a total surface area of 0.2 m2 was used for treating a raw water supply slightly polluted by domestic sewage. The feeding influent had a total organic carbon (TOC) level of 3-5 mg/L and an ammonia nitrogen (NH(3)-N) concentration of 3-4 mg/L. The MBR ran continuously for more than 500 days, with a hydraulic retention time (HRT) as short as 1h or less. Sufficient organic degradation and complete nitrification were achieved in the MBR effluent, which normally had a TOC of less than 2 mg/L and a NH(3)-N of lower than 0.2 mg/L. The process was also highly effective for eliminating conventional water impurities, as demonstrated by decreases in turbidity from 4.50+/-1.11 to 0.08+/-0.03 NTU, in total coliforms from 10(5)/mL to less than 5/mL and in UV(254) absorbance from 0.098+/-0.019 to 0.036+/-0.007 cm(-1). With the MBR treatment, the 3-day trihalomethane formation potential (THMFP) was significantly reduced from 239.5+/-43.8 to 60.4+/-23.1 microg/L. The initial chlorine demand for disinfection decreased from 22.3+/-5.1 to 0.5+/-0. 1mg/L. The biostability of the effluent improved considerably as the assimilable organic carbon (AOC) decreased from 134.5+/-52.7 to 25.3+/-19.9 microg/L. All of these water quality parameters show the superior quality of the MBR-treated water, which was comparable to or even better than the local tap water. Molecular size distribution analysis and the hydrophobic characterisation of the MBR effluent, in comparison to the filtered liquor from the bioreactor, suggest that the MBR had an enhanced filtration mechanism. A sludge layer on the membrane surface could have functioned as an additional barrier to the passage of typical THM precursors, such as large organic molecules and hydrophobic compounds. These results indicate that the MBR with a short HRT could be developed as an effective biological water

  16. 46 CFR 76.25-15 - Pumps and water supply.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 3 2010-10-01 2010-10-01 false Pumps and water supply. 76.25-15 Section 76.25-15... EQUIPMENT Automatic Sprinkling System, Details § 76.25-15 Pumps and water supply. (a) An automatically controlled pump shall be provided to supply the sprinkling system and shall be used for no other purpose. The...

  17. 46 CFR 76.25-15 - Pumps and water supply.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 3 2011-10-01 2011-10-01 false Pumps and water supply. 76.25-15 Section 76.25-15 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) PASSENGER VESSELS FIRE PROTECTION EQUIPMENT Automatic Sprinkling System, Details § 76.25-15 Pumps and water supply. (a) An automatically controlled pump shall be provided to supply the...

  18. Water Supply Provision in Sarbagita Metropolitan Area

    NASA Astrophysics Data System (ADS)

    Maryati, S.; Humaira, ANS; Rachmat, SY

    2017-07-01

    Sarbagita (Denpasar, Badung, Gianyar, and Tabanan) Metropolitan Area is one of seven metropolitan areas in Indonesia, located in the coastal region of Bali Island. Providing clean water in the coastal region is generally constrained by the limited sources of water. Besides, there is also disparity issue between the core and peri-urban area. The purpose of this study is to explore the conditions of water supply provision in Metropolitan Sarbagita in the context of coastal and peri-urban region. The methods of analysis used are descriptive and association analysis. The analysis shows that the location in the coastal area and peri-urban area does not affect the water supply provision for the case of daily safe water yet it does affect significantly in the specific context of drinking water source.

  19. Effects of inequality of supply hours on consumers' coping strategies and perceptions of intermittent water supply in Kathmandu Valley, Nepal.

    PubMed

    Guragai, B; Takizawa, S; Hashimoto, T; Oguma, K

    2017-12-01

    To investigate the effects of unequal supply hours on consumers' coping strategies and perceptions of the intermittent water supply (IWS) in the Kathmandu Valley (KV), Nepal we conducted a randomized household survey (n=369) and on-site water quality tests. Half of the households received piped water for 6 or fewer hours per week. To augment or cope with the inadequate supply, 28% of the households used highly contaminated and expensive tanker-delivered water. Half of the piped water samples (n=13) were contaminated with Escherichia coli. Free chlorine concentration in all piped water samples was below the national standards (0.1-0.2mg/L), but combined chlorine was detected at an average of 0.24mg/L, indicating ingression of contaminants in the network. Point-of-use devices could increase access to safe water in the KV from 42% to 80%. The use of Lorenz curves and Gini coefficients revealed inequality of piped water supply hours per week both between and within service areas in the KV, due mainly to a small percentage of households who receive longer supply hours. To cope with reduced supply hours, home owners pay more to get water from alternative sources, while tenants compromise their water consumption. Under IWS, expectations for improvements in piped water quality and supply regularity are higher than those for supply volume. Consumers' perceptions of the piped water services worsen with the reduction in supply hours, but perceptions of piped water tariff are independent of supply hours. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. NASA/UK TAP

    NASA Technical Reports Server (NTRS)

    1987-01-01

    The purpose of the Technology Applications Program (TAP) is to provide problem solving information and assistance to both the public and private sectors in the Commonwealth of Kentucky, with emphasis primarily in the public sector. The TAP accesses over 1200 online computer databases, including files from the U.S., Canada, Europe, and Australia. During the 1985 to 1986 contract period, TAP responded to 645 inquiries which resulted in an increase of 16 percent over the 1984 to 1985 contract period. The activities of TAP for the 1985 to 1986 contract period are summarized.

  1. Drinking water management: health risk perceptions and choices in First Nations and non-First Nations communities in Canada.

    PubMed

    Dupont, Diane; Waldner, Cheryl; Bharadwaj, Lalita; Plummer, Ryan; Carter, Blair; Cave, Kate; Zagozewski, Rebecca

    2014-05-30

    The relationship between tap water and health has been a topic of public concern and calls for better management in Canada since well-publicized contamination events in two provinces (Ontario and Saskatchewan) in 2000-2001. This study reports the perspectives on health risks from tap water and corresponding use of, and spending on, bottled water in a number of different communities in Canada. In 2009-2010, four First Nations communities (three from Ontario and one from Saskatchewan) and a geographically diverse sample of non-First Nations Canadians were surveyed about their beliefs concerning health risks from tap water and their spending practices for bottled water as a substitute. Responses to five identical questions were examined, revealing that survey respondents from Ontario First Nations communities were more likely than non-First Nations Canadians to believe bottled water is safer than tap water (OR 1.6); more likely to report someone became ill from tap water (OR 3.6); more likely to express water and health concerns related to tap water consumption (OR 2.4); and more likely to spend more on bottled water (OR 4.9). On the other hand, participants from one Saskatchewan First Nations community were less likely than non-First Nations Canadians to believe that someone had become ill from drinking tap water (OR 3.8), less likely to believe bottled water is safer than tap (OR 2.0), and less likely to have health concerns with tap water (OR 1.5). These differences, however, did not translate into differences in the likelihood of high bottled water expenditures or being a 100% bottled water consumer. The paper discusses how the differences observed may be related to water supply and regulation, trust, perceived control, cultural background, location, and past experience.

  2. Drinking Water Management: Health Risk Perceptions and Choices in First Nations and Non-First Nations Communities in Canada

    PubMed Central

    Dupont, Diane; Waldner, Cheryl; Bharadwaj, Lalita; Plummer, Ryan; Carter, Blair; Cave, Kate; Zagozewski, Rebecca

    2014-01-01

    The relationship between tap water and health has been a topic of public concern and calls for better management in Canada since well-publicized contamination events in two provinces (Ontario and Saskatchewan) in 2000–2001. This study reports the perspectives on health risks from tap water and corresponding use of, and spending on, bottled water in a number of different communities in Canada. In 2009–2010, four First Nations communities (three from Ontario and one from Saskatchewan) and a geographically diverse sample of non-First Nations Canadians were surveyed about their beliefs concerning health risks from tap water and their spending practices for bottled water as a substitute. Responses to five identical questions were examined, revealing that survey respondents from Ontario First Nations communities were more likely than non-First Nations Canadians to believe bottled water is safer than tap water (OR 1.6); more likely to report someone became ill from tap water (OR 3.6); more likely to express water and health concerns related to tap water consumption (OR 2.4); and more likely to spend more on bottled water (OR 4.9). On the other hand, participants from one Saskatchewan First Nations community were less likely than non-First Nations Canadians to believe that someone had become ill from drinking tap water (OR 3.8), less likely to believe bottled water is safer than tap (OR 2.0), and less likely to have health concerns with tap water (OR 1.5). These differences, however, did not translate into differences in the likelihood of high bottled water expenditures or being a 100% bottled water consumer. The paper discusses how the differences observed may be related to water supply and regulation, trust, perceived control, cultural background, location, and past experience. PMID:24886757

  3. Present and Future Water Supply for Mammoth Cave National Park, Kentucky

    USGS Publications Warehouse

    Cushman, R.V.; Krieger, R.A.; McCabe, John A.

    1965-01-01

    The increase in the number of visitors during the past several years at Mammoth Cave National Park has rendered the present water supply inadequate. Emergency measures were necessary during August 1962 to supplement the available supply. The Green River is the largest potential source of water supply for Mammoth Cave. The 30-year minimum daily discharge is 40 mgd (million gallons per day) . The chemical quality is now good, but in the past the river has been contaminated by oil-field-brine wastes. By mixing it with water from the existing supply, Green River water could be diluted to provide water of satisfactory quality in the event of future brine pollution. The Nolin River is the next largest potential source of water (minimum releases from Nolin Reservoir, 97-129 mgd). The quality is satisfactory, but use of this source would require a 8-mile pipeline. The present water supply comes from springs draining a perched aquifer in the Haney Limestone Member of the Golconda Formation on Flint Ridge. Chemical quality is excellent but the minimum observed flow of all the springs on Flint Ridge plus Bransford well was only 121,700 gpd (gallons per day). This supply is adequate for present needs but not for future requirements; it could be augmented with water from the Green River. Wet Prong Buffalo Creek is the best of several small-stream supplies in the vicinity of Mammoth Cave. Minimum flow of the creek is probably about 300,000 gpd and the quality is good. The supply is about 5 miles from Mammoth Cave. This supply also may be utilized for a future separate development in the northern part of the park. The maximum recorded yield of wells drilled into the basal ground water in the Ste. Genevieve and St. Louis Limestone is 36 gpm (gallons per minute). Larger supplies may be developed if a large underground stream is struck. Quality can be expected to be good unless the well is drilled too far below the basal water table and intercepts poorer quality water at a lower

  4. Food and water supply

    NASA Technical Reports Server (NTRS)

    Popov, I. G.

    1975-01-01

    Supplying astronauts with adequate food and water on short and long-term space flights is discussed based on experiences gained in space flight. Food consumption, energy requirements, and suitability of the foodstuffs for space flight are among the factors considered. Physicochemical and biological methods of food production and regeneration of water from astronaut metabolic wastes, as well as wastes produced in a closed ecological system, or as a result of technical processes taking place in various spacecraft systems are suggested for long-term space flights.

  5. National water summary 1987: Hydrologic events and water supply and use

    USGS Publications Warehouse

    Carr, Jerry E.; Chase, Edith B.; Paulson, Richard W.; Moody, David W.

    1990-01-01

    Water use in the United States, as measured by freshwater withdrawals in 1985, averaged 338,000 Mgal/d (million gallons per day), which is enough water to cover the 48 conterminous States to a depth of about 2.4 inches. Only 92,300 Mgal/d, or 27.3 percent of the water withdrawn, was consumptive use and thus lost to immediate further use; the remainder of the withdrawals (72.7 percent) was return flow available for reuse a number of times as the water flowed to the sea. The 1985 freshwater withdrawals were much less than the average 30 inches of precipitation that falls on the conterminous States each year; consumptive use accounted for only 7 percent of the estimated annual runoff of 1,230,000 Mgal/d. Nonetheless, as the State summaries on water supply and use clearly show, water is not always available when and where it is needed. Balancing water demands with available water supplies constitutes one of the major resource allocation issues that will face the United States in the coming decade.Of the 1985 freshwater withdrawals, 78.3 percent (265,000 Mgal/d) came from surface-water sources (streams and lakes), and 21.7 percent (73,300 Mgal/d) came from ground water. Surface water provided drinking water for about 47 percent of the Nation's total population. It was the source of 59.9 percent of the Nation's public-supply systems. For self-supplied withdrawals, surface water accounted for 1.6 percent of the domestic and commercial uses; 64.0 percent of the industrial and mining use; 99.4 percent of the thermoelectric generation withdrawals, mainly for cooling water; and 65.6 percent of the agricultural withdrawals. Eight States accounted for 43 percent of the surface-water use; California, Colorado, and Idaho used surface water primarily for irrigation, and Dlinois, Michigan, Ohio, Pennsylvania, and Texas used surface-water primarily for cooling condensers or reactors in thermoelectric plants.Ground water provided drinking water for 53 percent of the Nation's total

  6. More than just tapping: index finger-tapping measures procedural learning in schizophrenia.

    PubMed

    Da Silva, Felipe N; Irani, Farzin; Richard, Jan; Brensinger, Colleen M; Bilker, Warren B; Gur, Raquel E; Gur, Ruben C

    2012-05-01

    Finger-tapping has been widely studied using behavioral and neuroimaging paradigms. Evidence supports the use of finger-tapping as an endophenotype in schizophrenia, but its relationship with motor procedural learning remains unexplored. To our knowledge, this study presents the first use of index finger-tapping to study procedural learning in individuals with schizophrenia or schizoaffective disorder (SCZ/SZA) as compared to healthy controls. A computerized index finger-tapping test was administered to 1169 SCZ/SZA patients (62% male, 88% right-handed), and 689 healthy controls (40% male, 93% right-handed). Number of taps per trial and learning slopes across trials for the dominant and non-dominant hands were examined for motor speed and procedural learning, respectively. Both healthy controls and SCZ/SZA patients demonstrated procedural learning for their dominant hand but not for their non-dominant hand. In addition, patients showed a greater capacity for procedural learning even though they demonstrated more variability in procedural learning compared to healthy controls. Left-handers of both groups performed better than right-handers and had less variability in mean number of taps between non-dominant and dominant hands. Males also had less variability in mean tap count between dominant and non-dominant hands than females. As expected, patients had a lower mean number of taps than healthy controls, males outperformed females and dominant-hand trials had more mean taps than non-dominant hand trials in both groups. The index finger-tapping test can measure both motor speed and procedural learning, and motor procedural learning may be intact in SCZ/SZA patients. Copyright © 2012 Elsevier B.V. All rights reserved.

  7. On-plot drinking water supplies and health: A systematic review.

    PubMed

    Overbo, Alycia; Williams, Ashley R; Evans, Barbara; Hunter, Paul R; Bartram, Jamie

    2016-07-01

    Many studies have found that household access to water supplies near or within the household plot can reduce the probability of diarrhea, trachoma, and other water-related diseases, and it is generally accepted that on-plot water supplies produce health benefits for households. However, the body of research literature has not been analyzed to weigh the evidence supporting this. A systematic review was conducted to investigate the impacts of on-plot water supplies on diarrhea, trachoma, child growth, and water-related diseases, to further examine the relationship between household health and distance to water source and to assess whether on-plot water supplies generate health gains for households. Studies provide evidence that households with on-plot water supplies experience fewer diarrheal and helminth infections and greater child height. Findings suggest that water-washed (hygiene associated) diseases are more strongly impacted by on-plot water access than waterborne diseases. Few studies analyzed the effects of on-plot water access on quantity of domestic water used, hygiene behavior, and use of multiple water sources, and the lack of evidence for these relationships reveals an important gap in current literature. The review findings indicate that on-plot water access is a useful health indicator and benchmark for the progressive realization of the Sustainable Development Goal target of universal safe water access as well as the human right to safe water. Copyright © 2016 Elsevier GmbH. All rights reserved.

  8. Rapid and ratiometric detection of hypochlorite with real application in tap water: molecules to low cost devices (TLC sticks).

    PubMed

    Goswami, Shyamaprosad; Manna, Abhishek; Paul, Sima; Quah, Ching Kheng; Fun, Hoong-Kun

    2013-12-25

    We have designed a chemodosimeter DPNO (weak fluorescence) which can be oxidized to HPNO (strong blue fluorescence) by OCl(-) with high selectivity and sensitivity in a ratiometric approach with a noticeably lower detection limit. The sensor could be useful for the detection of hypochlorites in tap water.

  9. 46 CFR 76.25-15 - Pumps and water supply.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 3 2012-10-01 2012-10-01 false Pumps and water supply. 76.25-15 Section 76.25-15... EQUIPMENT Automatic Sprinkling System, Details § 76.25-15 Pumps and water supply. (a) An automatically... water from the two highest fire hose outlets in a manner similar to that described in § 76.10-5(c...

  10. Rural drinking water at supply and household levels: quality and management.

    PubMed

    Hoque, Bilqis A; Hallman, Kelly; Levy, Jason; Bouis, Howarth; Ali, Nahid; Khan, Feroze; Khanam, Sufia; Kabir, Mamun; Hossain, Sanower; Shah Alam, Mohammad

    2006-09-01

    Access to safe drinking water has been an important national goal in Bangladesh and other developing countries. While Bangladesh has almost achieved accepted bacteriological drinking water standards for water supply, high rates of diarrheal disease morbidity indicate that pathogen transmission continues through water supply chain (and other modes). This paper investigates the association between water quality and selected management practices by users at both the supply and household levels in rural Bangladesh. Two hundred and seventy tube-well water samples and 300 water samples from household storage containers were tested for fecal coliform (FC) concentrations over three surveys (during different seasons). The tube-well water samples were tested for arsenic concentration during the first survey. Overall, the FC was low (the median value ranged from 0 to 4 cfu/100ml) in water at the supply point (tube-well water samples) but significantly higher in water samples stored in households. At the supply point, 61% of tube-well water samples met the Bangladesh and WHO standards of FC; however, only 37% of stored water samples met the standards during the first survey. When arsenic contamination was also taken into account, only 52% of the samples met both the minimum microbiological and arsenic content standards of safety. The contamination rate for water samples from covered household storage containers was significantly lower than that of uncovered containers. The rate of water contamination in storage containers was highest during the February-May period. It is shown that safe drinking water was achieved by a combination of a protected and high quality source at the initial point and maintaining quality from the initial supply (source) point through to final consumption. It is recommended that the government and other relevant actors in Bangladesh establish a comprehensive drinking water system that integrates water supply, quality, handling and related educational

  11. Development and Application of a Taiwan Domestic Generalized Water Supply Model

    NASA Astrophysics Data System (ADS)

    Ho, C. C.; Chang, L. C.

    2016-12-01

    Water allocation in Taiwan is more complicated than other countries because high river turbidity caused by rainstorm, reservoir management governed by different organization and conjunctive use of inter-basin reservoirs and dams. Those properties cause water resource planners need make extra effort on developing customized model to simulate the impact of water supply strategies on water resources. Hence, the study develops a Generalized Water Supply Model (GWSM) to analysis Multi-reservoirs water allocation in Taiwan for advancing the planning process. The model has following functions: (1) considering reservoirs operating rule curve. (2) considering the rule of multi-reservoir operation. Such as setting supply priority of different reservoirs or using "index balance" rule. (3) considering optimal hydroelectric power operation. (4) estimating the impact of high river turbidity on water supply. (5) considering the supply priority of different water use. (6) considering irrigation supply under special constraint. Such as the maximum irrigation supply is subject to natural inflow without reservoir storage. (7) considering two-way conduit transport. (8) considering environmental flow reservation. Conjunctive use Taan and Dajia Rivers was selected to demonstrate the ability of GWSM. The results also can be provided to different authorities to realize the impact of different strategies and that is good for negotiation and reaching a consensus.

  12. ARSENIC IN DRINKING WATER SUPPLY WELLS: A MULTI ...

    EPA Pesticide Factsheets

    Studies have indicated that arsenic concentrations greater than the new U.S. Environmental Protection Agency (EPA) maximum contaminant level (MCL) concentration of 10 micrograms per liter (µg/L) occur in numerous aquifers around the United States. One such aquifer is the Central Oklahoma aquifer, which supplies drinking water to numerous communities in central Oklahoma. Concentrations as high as 230 µg/L have been reported in some drinking water supply wells from this aquifer. The city of Norman, like most other affected cities, is actively seeking a cost-effective solution to the arsenic problem. Only six of the city’s 32 wells exceeded the old MCL of 50 µg/L. With implementation of the new MCL this year, 18 of the 32 wells exceed the allowable concentration of arsenic. Arsenic-bearing shaly sandstones appear to be the source of the arsenic. It may be possible to isolate these arsenic-bearing zones from water supply wells, enabling production of water that complies with drinking water standards. It is hypothesized that geologic mapping together with detailed hydrogeochemical investigations will yield correlations which predict high arsenic occurrence for the siting of new drinking water production wells. More data and methods to assess the specific distribution, speciation, and mode of transport of arsenic in aquifers are needed to improve our predictions for arsenic occurrence in water supply wells. Research is also needed to assess whether we can ret

  13. Socioeconomic impacts of climate change on U.S. water supplies

    USGS Publications Warehouse

    Frederick, K.D.; Schwarz, G.E.

    1999-01-01

    A greenhouse warming would have major effects on water supplies and demands. A framework for examining the socioeconomic impacts associated with changes in the long-term availability of water is developed and applied to the hydrologic implications of the Canadian and British Hadley2 general circulation models (GCMs) for the 18 water resource regions in the conterminous United States. The climate projections of these two GCMs have very different implications for future water supplies and costs. The Canadian model suggests most of the nation would be much drier in the year 2030. Under the least-cost management scenario the drier climate could add nearly $105 billion to the estimated costs of balancing supplies and demands relative to the costs without climate change. Measures to protect instream flows and irrigation could result in significantly higher costs. In contrast, projections based on the Hadley model suggest water supplies would increase throughout much of the nation, reducing the costs of balancing water supplies with demands relative to the no-climate-change case.

  14. Synthesis and characterization of triazole based supramolecule for interaction with cefuroxime in tap water and blood plasma.

    PubMed

    Ahmed, Farid; Perveen, Samina; Shah, Kiramat; Shah, Muhammad Raza; Ahmed, Shakil

    2018-01-01

    In this study a new calix[4]arene triazole 5 was successfully synthesized using click reaction and characterized through UV-visible, FT-IR, 1 H NMR spectroscopes and Mass Spectrometry. The supramolecular interaction of compound 5 towards commonly used drugs has been carried out using UV-Visible spectroscopy. The supramolecule 5 showed characteristic enhancement in the absorbance intensity after mixing with Cefuroxime at pH (2-12). Compound 5 displayed considerably good interactions with cefuroxime in the presence of other drugs. Compound 5 exhibits linear relationship with cefuroxime concentration in the range of (10-80µM) with regression value of 0.9954. The standard deviation for 50µM Cefuroxime was found to be 0.01 and the limit of detection for cefuroxime was calculated to be 2µM. Job's plot experiments showed 1:1 (5: cefuroxime) binding stoichiometry between compound 5 and cefuroxime. Supramolecule 5 displayed fairly good spectrophotometric recognition of Cefuroxime in human blood plasma and tap water thus showing that the ingredients of tap water and plasma sample was inert in the recognition of cefuroxime. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Water Loss Reduction as the Basis of Good Water Supply Companies' Management

    NASA Astrophysics Data System (ADS)

    Ociepa-Kubicka, Agnieszka; Wilczak, Krzysztof

    2017-10-01

    Companies using water distribution systems to reduce the operating costs and increase the reliability of water supply systems, as well as to protect disposable water resources, must search for ways to reduce water losses. The article points out the economic and environmental aspects of water losses. The possibilities of using international water loss assessment standards have been analysed. The reflections presented in the paper refer to the current trends and world standards in the field of water distribution systems management. The article presents the results and analysis of water losses for the water supply network operated by the Water Supply and Sewerage Company in Gliwice (Przedsiębiorstwo Wodociągów i Kanalizacji w Gliwicach, PWiK). The losses were determined on the basis of numerous indicators and compared with other distribution systems. At present, most indicators of water loss are at a very good or good level. The Infrastructure Leakage Index (ILI), as one of the most reliable loss indicators for the surveyed distribution system, assumed values from 3.33 in 2012 to 2.06 in 2015. The recent drop in ILI values indicates the effectiveness of the Company's strategy for water leakage reduction. The success comprises a number of undertakings, such as ongoing monitoring, pressure reduction and stabilisation, repairs and replacement of the most emergency wires.

  16. Measuring household consumption and waste in unmetered, intermittent piped water systems

    NASA Astrophysics Data System (ADS)

    Kumpel, Emily; Woelfle-Erskine, Cleo; Ray, Isha; Nelson, Kara L.

    2017-01-01

    Measurements of household water consumption are extremely difficult in intermittent water supply (IWS) regimes in low- and middle-income countries, where water is delivered for short durations, taps are shared, metering is limited, and household storage infrastructure varies widely. Nonetheless, consumption estimates are necessary for utilities to improve water delivery. We estimated household water use in Hubli-Dharwad, India, with a mixed-methods approach combining (limited) metered data, storage container inventories, and structured observations. We developed a typology of household water access according to infrastructure conditions based on the presence of an overhead storage tank and a shared tap. For households with overhead tanks, container measurements and metered data produced statistically similar consumption volumes; for households without overhead tanks, stored volumes underestimated consumption because of significant water use directly from the tap during delivery periods. Households that shared taps consumed much less water than those that did not. We used our water use calculations to estimate waste at the household level and in the distribution system. Very few households used 135 L/person/d, the Government of India design standard for urban systems. Most wasted little water even when unmetered, however, unaccounted-for water in the neighborhood distribution systems was around 50%. Thus, conservation efforts should target loss reduction in the network rather than at households.

  17. Simultaneous Determination of 13 Priority Polycyclic Aromatic Hydrocarbons in Tehran’s Tap Water and Water for Injection Samples Using Dispersive Liquid-Liquid Micro Extraction Method and Gas Chromatography-Mass Spectrometry

    PubMed Central

    Sadeghi, Ramezan; Kobarfard, Farzad; Yazdanpanah, Hassan; Eslamizad, Samira; Bayate, Mitra

    2016-01-01

    Polycyclic aromatic hydrocarbons (PAHs) are classified as persistent and carcinogenic organic pollutants. PAHs contamination has been reported in water. Many of relevant regulatory bodies such as EU and EPA have regulated the limit levels for PAHs in drinking water. In this study, 13 priority polycyclic aromatic hydrocarbons (PAHs) were determined in tap water samples of Tehran and water for injection. Dispersive liquid-liquid microextraction procedure combined with gas chromatography-mass spectrometry was used for the extraction and determination of PAHs in the samples. Under the optimized conditions, the range of extraction recoveries and relative standard deviations (RSDs) of PAHs in water using internal standard (anthracene-d10) were in the range of 71-90% and 4-16%, respectively. Limit of detection for different PAHs were between 0.03 and 0.1 ngmL-1. The concentration of PAHs in all tap water as well as water for injection samples were lower than the limit of quantification of PAHs. This is the first study addressing the occurrence of PAHs in water for injection samples in Iran using dispersive liquid-liquid micro extraction procedure combined with gas chromatography-mass spectrometry. PMID:27642318

  18. Freely Chosen Index Finger Tapping Frequency Is Increased in Repeated Bouts of Tapping.

    PubMed

    Hansen, Ernst Albin; Ebbesen, Brian Duborg; Dalsgaard, Ane; Mora-Jensen, Mark Holten; Rasmussen, Jakob

    2015-01-01

    Healthy individuals (n = 40) performed index finger tapping at freely chosen frequency during repeated bouts and before and after near-maximal muscle action consisting of 3 intense flexions of the index finger metacarpal phalangeal joint. One experiment showed, unexpectedly, that a bout of tapping increased the tapping frequency in the subsequent bout. Thus, a cumulating increase of 8.2 ± 5.4% (p < .001) occurred across 4 bouts, which were all separated by 10 min rest periods. Follow-up experiments revealed that tapping frequency was still increased in consecutive bouts when rest periods were extended to 20 min. Besides, near-maximal muscle activation, followed by 5 min rest, did not affect the tapping frequency. In conclusion, freely chosen tapping frequency was increased in repeated bouts of tapping, which were separated by 10-20 min rest periods. The observed phenomenon is suggested to be termed repeated bout rate enhancement.

  19. THE OCCURRENCE OF CONTAMINANT ACCUMULATION IN LEAD PIPE SCALES FROM DOMESTIC DRINKING WATER DISTRIBUTION SYSTEMS

    EPA Science Inventory

    Previous work has shown that contaminants, such as Al, As and Ra, can accumulate in drinking water distribution system solids. The release of accumulated contaminants back into the water supply could result in elevated levels at consumers’ taps, and current monitoring practices d...

  20. Sources of emergency water supplies in Santa Clara County, California

    USGS Publications Warehouse

    Akers, J.P.

    1977-01-01

    Water distribution systems in Santa Clara County, Calif., may be damaged and rendered inoperable by a large earthquake or other disaster. In such an event, individual agencies may have to implement emergency measures to supply water for drinking, firefighting, decontamination, or other purposes. In Santa Clara County, 128 wells have been identified as potential water-supply sources in emergencies. The criteria used to select the wells are: yield of at least 3 liters per second (50 gallons per minute), good water quality, ready accessibility, and available emergency power. Purification methods of small water supplies are described. (Woodard-USGS)

  1. Study on hydraulic characteristics of mine dust-proof water supply network

    NASA Astrophysics Data System (ADS)

    Deng, Quanlong; Jiang, Zhongan; Han, Shuo; Fu, Enqi

    2018-01-01

    In order to study the hydraulic characteristics of mine dust-proof water supply network and obtain the change rule of water consumption and water pressure, according to the similarity principle and the fluid continuity equation and energy equation, the similarity criterion of mine dust-proof water supply network is deduced, and a similar model of dust-proof water supply network is established based on the prototype of Kailuan Group, the characteristics of hydraulic parameters in water supply network are studied experimentally. The results show that water pressure at each point is a dynamic process, and there is a negative correlation between water pressure and water consumption. With the increase of water consumption, the pressure of water points show a decreasing trend. According to the structure of the pipe network and the location of the water point, the influence degree on the pressure of each point is different.

  2. Hydrogeologic framework, availability of water supplies, and saltwater intrusion, Cape May County, New Jersey

    USGS Publications Warehouse

    Lacombe, Pierre J.; Carleton, Glen B.

    2002-01-01

    developed in the estuarine sand aquifer; the water-level altitude near the center of the cone was about -5 ft in 1991. An extensive cone of depression has developed in the Cohansey aquifer; the water-level altitude near the center of the cone was about -20 ft. A small cone of depression has developed in the Rio Grande water-bearing zone; the altitude near the center was -5 ft. An elongated cone of depression has developed in the Atlantic City 800-foot sand; the water-level altitude was about -70 ft in Ocean City and -20 ft in Stone Harbor. Waterlevel maps from predevelopment, 1958, 1978, 1983, and 1988 show that the cones of depression are getting deeper and are expanding in the Atlantic City 800-foot sand. The 250-mg/L (milligram per liter) line of equal chloride concentration and 50 mg/L line of equal sodium concentration have moved inland, possibly since the early 1900's. Chloride concentrations have increased in many wells in the confined aquifers along the coastline in the southern part of the county. Nitrate concentrations greater than 1 mg/L were present in water samples collected from 10 wells that tap the Holly Beach water-bearing zone. Concentrations of nitrate greater than 10 mg/L in samples collected in Lower, Middle, Upper, and Dennis Townships may result from effluent from septic systems or from agricultural activities. A water budget shows that the mean annual precipitation is about 42 in., and about 119,000 Mgal falls each year on uplands and freshwater wetlands in the county. About 63,600 Mgal/yr is evapotranspired, 8,200 Mgal/yr becomes overland flow, and 47,200 Mgal/yr recharges the Holly Beach water-bearing zone. In northern Cape MayCounty, most recharge ultimately is discharged to streams. In southern Cape May County, about 20 percent of recharge is diverted to withdrawal wells. Because saltwater intrusion has occurred in the confined aquifers along the Atlantic and Delaware Bay coastlines, new supply wells placed along th

  3. Occurrence of nonylphenol and bisphenol A in household water pipes made of different materials.

    PubMed

    Cheng, Yang-Chen; Chen, Huei-Wen; Chen, Wen-Ling; Chen, Chia-Yang; Wang, Gen-Shuh

    2015-10-01

    We assessed the occurrence of nonylphenol (NP) and bisphenol A (BPA) in tap water supplied through polyvinyl chloride (PVC), stainless steel, and galvanized pipes. Water samples were collected from selected households in Taipei and Kaohsiung (Northern and Southern Taiwan, respectively) in different seasons to elucidate the effects of pipeline materials and ambient temperatures on NP and BPA concentrations in tap water. We detected higher concentrations of NP in tap water from households using PVC pipes (64-195 ng/L) than from those using stainless steel pipes (17-44 ng/L) and galvanized pipes (27-96 ng/L). To verify that water can absorb NP and BPA from PVC pipes, we sealed Milli-Q and tap water in PVC and stainless steel pipes to assess the potential release of NP and BPA from the pipes into the water. Both NP and BPA concentrations initially increased with contact time in the PVC pipes, and the concentration profiles during the retention appeared to be more strongly affected by ambient temperatures. Concentration variations in the stainless steel pipes were smaller than those in the PVC pipes.

  4. Persistent Distress after Water Contamination.

    PubMed

    Schade, Charles P; Gupta, Rahul; Jha, Ayan; Wright, Nasandra

    2016-01-01

    A chemical spill contaminated the public water supply of Charleston, West Virginia in January 2014 for at least a week. Psychological distress is common after disasters. We surveyed the exposed population to assess psychological distress during and three months after the incident. We inquired about stressors that might predict distress, adequacy of communication from public officials, and use of the water supply and perceptions of its safety three months after the incident. Twenty six percent of interviewees had persistent symptoms of distress. Female sex, negative household experiences during the episode (especially having someone sick), and poor perception of communication increased odds of persistent distress. Households of respondents without persistent distress were significantly more likely to report drinking tap water (RR=1.95) than those with persistent distress. Distress in Charleston area residents persisted and may have resulted in continuing mistrust of the water supply.

  5. Using an Integrated Hydrologic-Economic Model to Develop Minimum Cost Water Supply Portfolios and Manage Supply Risk

    NASA Astrophysics Data System (ADS)

    Characklis, G. W.; Ramsey, J.

    2004-12-01

    Water scarcity has become a reality in many areas as a result of population growth, fewer available sources, and reduced tolerance for the environmental impacts of developing the new supplies that do exist. As a result, successfully managing future water supply risk will become more dependent on coordinating the use of existing resources. Toward that end, flexible supply strategies that can rapidly respond to hydrologic variability will provide communities with increasing economic advantages, particularly if the frequency of more extreme events (e.g., drought) increases due to global climate change. Markets for established commodities (e.g., oil, gas) often provide a framework for efficiently responding to changes in supply and demand. Water markets, however, have remained relatively crude, with most transactions involving permanent transfers and long regulatory processes. Recently, interest in the use of flexible short-term transfers (e.g., leases, options) has begun to motivate consideration of more sophisticated strategies for managing supply risk, strategies similar to those used in more mature markets. In this case, communities can benefit from some of the advantages that water enjoys over other commodities, in particular, the ability to accurately characterize the stochastic nature of supply and demand through hydrologic modeling. Hydrologic-economic models are developed for two different water scarce regions supporting active water markets: Edward Aquifer and Lower Rio Grande Valley. These models are used to construct portfolios of water supply transfers (e.g., permanent transfers, options, and spot leases) that minimize the cost of meeting a probabilistic reliability constraint. Real and simulated spot price distributions allow each type of transfer to be priced in a manner consistent with financial theory (e.g., Black-Scholes). Market simulations are integrated with hydrologic models such that variability in supply and demand are linked with price behavior

  6. Removal of 16 pesticide residues from strawberries by washing with tap and ozone water, ultrasonic cleaning and boiling.

    PubMed

    Lozowicka, Bozena; Jankowska, Magdalena; Hrynko, Izabela; Kaczynski, Piotr

    2016-01-01

    The effects of washing with tap and ozone water, ultrasonic cleaning and boiling on 16 pesticide (ten fungicides and six insecticides) residue levels in raw strawberries were investigated at different processing times (1, 2 and 5 min). An analysis of these pesticides was conducted using gas chromatography with nitrogen-phosphorous and electron capture detection (GC-NPD/ECD). The processing factor (PF) for each pesticide in each processing technique was determined. Washing with ozonated water was demonstrated to be more effective (reduction from 36.1 to 75.1 %) than washing with tap water (reduction from 19.8 to 68.1 %). Boiling decreased the residues of the most compounds, with reductions ranging from 42.8 to 92.9 %. Ultrasonic cleaning lowered residues for all analysed pesticides with removal of up to 91.2 %. The data indicated that ultrasonic cleaning and boiling were the most effective treatments for the reduction of 16 pesticide residues in raw strawberries, resulting in a lower health risk exposure. Calculated PFs for alpha-cypermethrin were used to perform an acute risk assessment of dietary exposure. To investigate the relationship between the levels of 16 pesticides in strawberry samples and their physicochemical properties, a principal component analysis (PCA) was performed. Graphical abstract ᅟ.

  7. Tapping mode SPM local oxidation nanolithography with sub-10 nm resolution

    NASA Astrophysics Data System (ADS)

    Nishimura, S.; Ogino, T.; Takemura, Y.; Shirakashi, J.

    2008-03-01

    Tapping mode SPM local oxidation nanolithography with sub-10 nm resolution is investigated by optimizing the applied bias voltage (V), scanning speed (S) and the oscillation amplitude of the cantilever (A). We fabricated Si oxide wires with an average width of 9.8 nm (V = 17.5 V, S = 250 nm/s, A = 292 nm). In SPM local oxidation with tapping mode operation, it is possible to decrease the size of the water meniscus by enhancing the oscillation amplitude of cantilever. Hence, it seems that the water meniscus with sub-10 nm dimensions could be formed by precisely optimizing the oxidation conditions. Moreover, we quantitatively explain the size (width and height) of Si oxide wires with a model based on the oxidation ratio, which is defined as the oxidation time divided by the period of the cantilever oscillation. The model allows us to understand the mechanism of local oxidation in tapping mode operation with amplitude modulation. The results imply that the sub-10 nm resolution could be achieved using tapping mode SPM local oxidation technique with the optimization of the cantilever dynamics.

  8. Carcinogenic and non-carcinogenic health risks of metal(oid)s in tap water from Ilam city, Iran.

    PubMed

    Fakhri, Yadolah; Saha, Narottam; Ghanbari, Sahebeh; Rasouli, Milad; Miri, Ali; Avazpour, Moayed; Rahimizadeh, Aziz; Riahi, Seyed-Mohammad; Ghaderpoori, Mansour; Keramati, Hassan; Moradi, Bigard; Amanidaz, Nazak; Mousavi Khaneghah, Amin

    2018-04-20

    One of the most important pathways for exposure to metals is drinking water ingestion. Chronic or acute exposure to metals can endanger the health of the exposed population, and hence, estimation of human health risks is crucial. In the current study for the first time, the concentrations of Mercury (Hg), Arsenic (As), Zinc (Zn), Lead (Pb) and Cobalt (Co) in 120 collected tap water samples (2015, July-November) from Ilam city, Iran were investigated using flame atomic absorption spectrophotometer. Also, the metal-induced carcinogenic and non-carcinogenic risks for consumers exposed to tap drinking water were calculated. The average (range) concentrations of Hg, Zn, As, Pb and Co were defined as 0.40 ± 0.10 μg/L (ND-0.9 μg/L), 5014 ± 5707 μg/L (2900.00-5668.33 μg/L), 21.008 ± 2.876 μg/L (3.5-62 μg/L), 30.38 ± 5.56 μg/L (6-87 μg/L), and 11.34 ± 1.61 μg/L (0.1-50 μg/L), respectively. Average concentrations of all examined metals were significantly higher than WHO and national standard recommended limits. The ranking order of metals concentrations in the tap drinking water was Zn > Pb > As > Co > Hg. Except for Hg and Co, at least one age group consumers were at considerable non-carcinogenic risks induced by Zn, As and Pb [Target Hazard Quotient (THQ > 1)]. The rank order of age groups consumers based on THQ and Incremental lifetime cancer risk (ILCR) was <1 years >1-9 years > 20 + years > 10-19 years. The calculated ILCR for As in all age groups were higher than 10 -3 value. All age groups of consumers in Ilam city, especially infants (<1 years) and children (1-10 years), are at considerable non-carcinogenic and carcinogenesis risk. Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. Ground water for public water supply at Windigo, Isle Royale National Park, Michigan

    USGS Publications Warehouse

    Grannemann, N.G.; Twenter, F.R.

    1982-01-01

    Three test holes drilled at Windigo in Isle Royale National Park in 1981 indicate that the ophitic basaltic lava flows underlying the area contain little water and cannot be considered a source for public water supply. The holes were 135, 175, and 71 feet deep. One hole yielded about 1 gallon of water perminute; the other two yielded less. Glacial deposits seem to offer the best opportunity for developing a ground-water supply of 5 to 10 gallons per minute.

  10. Water Filter

    NASA Technical Reports Server (NTRS)

    1982-01-01

    A compact, lightweight electrolytic water sterilizer available through Ambassador Marketing, generates silver ions in concentrations of 50 to 100 parts per billion in water flow system. The silver ions serve as an effective bactericide/deodorizer. Tap water passes through filtering element of silver that has been chemically plated onto activated carbon. The silver inhibits bacterial growth and the activated carbon removes objectionable tastes and odors caused by addition of chlorine and other chemicals in municipal water supply. The three models available are a kitchen unit, a "Tourister" unit for portable use while traveling and a refrigerator unit that attaches to the ice cube water line. A filter will treat 5,000 to 10,000 gallons of water.

  11. Pressure: the politechnics of water supply in Mumbai.

    PubMed

    Anand, Nikhil

    2011-01-01

    In Mumbai, most all residents are delivered their daily supply of water for a few hours every day, on a water supply schedule. Subject to a more precarious supply than the city's upper-class residents, the city's settlers have to consistently demand that their water come on “time” and with “pressure.” Taking pressure seriously as both a social and natural force, in this article I focus on the ways in which settlers mobilize the pressures of politics, pumps, and pipes to get water. I show how these practices not only allow settlers to live in the city, but also produce what I call hydraulic citizenship—a form of belonging to the city made by effective political and technical connections to the city's infrastructure. Yet, not all settlers are able to get water from the city water department. The outcomes of settlers' efforts to access water depend on a complex matrix of socionatural relations that settlers make with city engineers and their hydraulic infrastructure. I show how these arrangements describe and produce the cultural politics of water in Mumbai. By focusing on the ways in which residents in a predominantly Muslim settlement draw water despite the state's neglect, I conclude by pointing to the indeterminacy of water, and the ways in which its seepage and leakage make different kinds of politics and publics possible in the city.

  12. Bacteria-free water for automatic washer-disinfectors: an impossible dream?

    PubMed

    Cooke, R P; Whymant-Morris, A; Umasankar, R S; Goddard, S V

    1998-05-01

    The ability of a new automatic washer-disinfector system (AWDS), fitted with a water filtration system to provide bacteria-free water and so avoid the risk of mycobacterial contamination of fibreoptic bronchoscopes, was examined. Four new Astec 'MP' Safescope washer-disinfectors, with coarse and fine (0.2 micron) filters attached close to the outlet taps, were supplied with non-softened mains water. Water samples from the tank supply and outlet taps were regularly assessed for bacterial quality over a six-month period. Outlet samples were also analysed after fine filter change and purgation with peracetic acid. All bronchoalveolar lavage specimens (BALS) were stained and cultured for mycobacteria. Only 13 out of 53 outlet samples (24%) were culture-negative. There was no improvement after filter change. Residual anti-bacterial effect of peracetic acid lasted up to 48 h following AWDS purgation. No tank samples were bacteria-free. Sixty BALS were processed, two samples were culture-positive and grew M. tuberculosis and one was also smear-positive. Though mycobacterial contamination of bronchoscopes was not evident, the water filtration system was unable to reliably provide sterile rinse water.

  13. The Occurrence of Contaminant Accumulation in Lead Pipe Scales from Domestic Drinking Water Distribution Systems-ABSTRACT

    EPA Science Inventory

    Previous work has shown that contaminants such as Al, As and Ra, can accumulate in drinking water distribution system solids. The release of accumulated contaminants back into the water supply could conceivably result in elevated levels at consumers’ taps. The current regulatory...

  14. Chemical Characteristics, Water Sources and Pathways, and Age Distribution of Ground Water in the Contributing Recharge Area of a Public-Supply Well near Tampa, Florida, 2002-05

    USGS Publications Warehouse

    Katz, Brian G.; Crandall, Christy A.; Metz, Patricia A.; McBride, W. Scott; Berndt, Marian P.

    2007-01-01

    In 2001, the National Water-Quality Assessment (NAWQA) Program of the U.S. Geological Survey began a series of studies on the transport of anthropogenic and natural contaminants (TANC) to public-supply wells. The main goal of the TANC program was to better understand the source, transport, and receptor factors that control contaminant movement to public-supply wells in representative aquifers of the United States. Studies were first conducted at regional scales at four of the eight TANC study areas during 2002-03 and at small (local) scales during 2003-05 in California, Nebraska, Connecticut, and Florida. In the Temple Terrace study area near Tampa, Florida, multiple chemical indicators and geochemical and ground-water flow modeling techniques were used to assess the vulnerability of a public-supply well in the karstic Upper Floridan aquifer to contamination from anthropogenic and naturally occurring contaminants. During 2003-05, water samples were collected from the public-supply well and 13 surrounding monitoring wells that all tap the Upper Floridan aquifer, and from 15 monitoring wells in the overlying surficial aquifer system and the intermediate confining unit that are located within the modeled ground-water contributing recharge area of the public-supply well. Six volatile organic compounds and four pesticides were detected in trace concentrations (well below drinking-water standards) in water from the public-supply well, which had an open interval from 36 to 53 meters below land surface. These contaminants were detected more frequently in water samples from monitoring wells in the overlying clastic surficial aquifer system than in water from monitoring wells in the Upper Floridan aquifer in the study area. Likewise, nitrate-N concentrations in the public-supply well (0.72-1.4 milligrams per liter) were more similar to median concentrations in the oxic surficial aquifer system (2.1 milligrams per liter) than to median nitrate-N concentrations in the anoxic

  15. Water demand and supply co-adaptation to mitigate climate change impacts in agricultural water management

    NASA Astrophysics Data System (ADS)

    Giuliani, Matteo; Mainardi, Matteo; Castelletti, Andrea; Gandolfi, Claudio

    2013-04-01

    Agriculture is the main land use in the world and represents also the sector characterised by the highest water demand. To meet projected growth in human population and per-capita food demand, agricultural production will have to significantly increase in the next decades. Moreover, water availability is nowadays a limiting factor for agricultural production, and is expected to decrease over the next century due to climate change impacts. To effectively face a changing climate, agricultural systems have therefore to adapt their strategies (e.g., changing crops, shifting sowing and harvesting dates, adopting high efficiency irrigation techniques). Yet, farmer adaptation is only one part of the equation because changes in water supply management strategies, as a response to climate change, might impact on farmers' decisions as well. Despite the strong connections between water demand and supply, being the former dependent on agricultural practices, which are affected by the water available that depends on the water supply strategies designed according to a forecasted demand, an analysis of their reciprocal feedbacks is still missing. Most of the recent studies has indeed considered the two problems separately, either analysing the impact of climate change on farmers' decisions for a given water supply scenario or optimising water supply for different water demand scenarios. In this work, we explicitly connect the two systems (demand and supply) by activating an information loop between farmers and water managers, to integrate the two problems and study the co-evolution and co-adaptation of water demand and water supply systems under climate change. The proposed approach is tested on a real-world case study, namely the Lake Como serving the Muzza-Bassa Lodigiana irrigation district (Italy). In particular, given an expectation of water availability, the farmers are able to solve a yearly planning problem to decide the most profitable crop to plant. Knowing the farmers

  16. Implementations of Riga city water supply system founded on groundwater sources

    NASA Astrophysics Data System (ADS)

    Lāce, I.; Krauklis, K.; Spalviņš, A.; Laicāns, J.

    2017-10-01

    Drinking water for Riga city is provided by the groundwater well field complex “Baltezers, Zakumuiza, Rembergi” and by the Daugava river as a surface water source. Presently (2016), the both sources jointly supply 122 thous.metre3day-1 of drinking water. It seems reasonable to use in future only groundwater, because river water is of low quality and its treatment is expensive. The research on this possibility was done by scientists of Riga Technical university as the task drawn up by the company “Aqua-Brambis”. It was required to evaluate several scenario of the groundwater supply for Riga city. By means of hydrogeological modelling, it was found out that groundwater well fields could provide 120-122 thous.metre3day-1 of drinking water for the Riga city and it is possible further not to use water of the Daugava river. However, in order to provide more extensive use of groundwater sources, existing water distribution network shall be adapted to the change of the water sources and supply directions within the network. Safety of water supply shall be ensured. The publication may be of interest for specialists dealing with problems of water supply for large towns.

  17. Bulawayo water supplies: Sustainable alternatives for the next decade

    NASA Astrophysics Data System (ADS)

    Mkandla, Noel; Van der Zaag, Pieter; Sibanda, Peter

    Bulawayo is the second largest city in Zimbabwe with a population of nearly one million people. It is located on the watershed of Umzingwane and Gwayi catchments. The former is part of the Limpopo basin, while the latter drains into the Zambezi basin. Bulawayo has a good potential of economic development but has been stymied by lack of sufficient water. The city currently relies on five surface sources in the Umzingwane catchment where it has to compete with evaporation. The well field from the Nyamandlovu aquifer in the Gwayi catchment, which was constructed as an emergency measure during the 1992 drought, is currently not operational. Alternative water supply sources are far and expensive. A multilinear regression model was developed to analyse and quantify the factors affecting water consumption. It was found that per capita water consumption is very low, indicating suppressed demand. Water rationing, tariffs, rainfall, population growth and gross domestic product are the main factors influencing water consumption in Bulawayo. Assuming that these factors will continue to be influential, future water consumption was projected for intensive, regular and slack water demand management. Future water consumption was then compared with the current water supply capacity in order to determine the date by which the next water supply source is required. With slack demand management, the Nyamandlovu well field should have been operational by 2003, while by the year 2007 an additional source of water is required. With intensive demand management and assuming low population growth, current capacities may suffice to satisfy the suppressed demand until the year 2015, by which time Nyamandlovu wells should be operational again. The additional water supply sources that are currently being considered for Bulawayo (namely the Zambezi water pipeline; Gwayi Shangani dam; Mtshabezi dam; Lower Tuli dam; and Glass block dam) were then compared with an alternative water source not yet

  18. 43 CFR 404.3 - What is the Reclamation Rural Water Supply Program?

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 43 Public Lands: Interior 1 2010-10-01 2010-10-01 false What is the Reclamation Rural Water Supply... RECLAMATION, DEPARTMENT OF THE INTERIOR RECLAMATION RURAL WATER SUPPLY PROGRAM Overview § 404.3 What is the Reclamation Rural Water Supply Program? This program addresses domestic, municipal, and industrial water...

  19. Sustainability of water-supply at military installations, Kabul Basin, Afghanistan

    USGS Publications Warehouse

    Mack, Thomas J.; Chornack, Michael P.; Verstraeten, Ingrid M.; Linkov, Igor

    2014-01-01

    The Kabul Basin, including the city of Kabul, Afghanistan, is host to several military installations of Afghanistan, the United States, and other nations that depend on groundwater resources for water supply. These installations are within or close to the city of Kabul. Groundwater also is the potable supply for the approximately four million residents of Kabul. The sustainability of water resources in the Kabul Basin is a concern to military operations, and Afghan water-resource managers, owing to increased water demands from a growing population and potential mining activities. This study illustrates the use of chemical and isotopic analysis, groundwater flow modeling, and hydrogeologic investigations to assess the sustainability of groundwater resources in the Kabul Basin.Water supplies for military installations in the southern Kabul Basin were found to be subject to sustainability concerns, such as the potential drying of shallow-water supply wells as a result of declining water levels. Model simulations indicate that new withdrawals from deep aquifers may have less of an impact on surrounding community water supply wells than increased withdrawals from near- surface aquifers. Higher rates of recharge in the northern Kabul Basin indicate that military installations in that part of the basin may have fewer issues with long-term water sustainability. Simulations of groundwater withdrawals may be used to evaluate different withdrawal scenarios in an effort to manage water resources in a sustainable manner in the Kabul Basin.

  20. Source-Water Protection and Water-Quality Investigations in the Cambridge, Massachusetts, Drinking-Water Supply System

    USGS Publications Warehouse

    Waldron, Marcus C.; Norton, Chip; MacDonald, Timothy W.D.

    1998-01-01

    Introduction The Cambridge Water Department (CWD) supplies about 15 million gallons of water each day to more than 95,000 customers in the City of Cambridge, Massachusetts. Most of this water is obtained from a system of reservoirs located in Cambridge and in parts of five other suburban-Boston communities. The drainage basin that contributes water to these reservoirs includes several potential sources of drinking-water contaminants, including major highways, secondary roads, areas of commercial and industrial development, and suburban residential tracts. The CWD is implementing a comprehensive Source-Water Protection Plan to ensure that the highest quality water is delivered to the treatment plant. A key element of this plan is a program that combines systematic monitoring of the drainage basin with detailed investigations of the effects of nonpoint-source contaminants, such as highway-deicing chemicals, nutrients, oxygen-demanding organic compounds, bacteria, and trace metals arising from stormwater runoff. The U.S. Geological Survey (USGS) is working with the CWD and the Massachusetts Highway Department (MassHighway) to develop a better understanding of the sources, transport, and fate of many of these contaminants. This Fact Sheet describes source-water protection and water-quality investigations currently underway in the Cambridge drinking-water supply system. The investigations are designed to complement a national effort by the USGS to provide water suppliers and regulatory agencies with information on the vulnerability of water supplies and the movement and fate of source-water contaminants.

  1. Dealing with uncertainty in modeling intermittent water supply

    NASA Astrophysics Data System (ADS)

    Lieb, A. M.; Rycroft, C.; Wilkening, J.

    2015-12-01

    Intermittency in urban water supply affects hundreds of millions of people in cities around the world, impacting water quality and infrastructure. Building on previous work to dynamically model the transient flows in water distribution networks undergoing frequent filling and emptying, we now consider the hydraulic implications of uncertain input data. Water distribution networks undergoing intermittent supply are often poorly mapped, and household metering frequently ranges from patchy to nonexistent. In the face of uncertain pipe material, pipe slope, network connectivity, and outflow, we investigate how uncertainty affects dynamical modeling results. We furthermore identify which parameters exert the greatest influence on uncertainty, helping to prioritize data collection.

  2. Disinfection of Mycobacterium avium subspecies hominissuis in drinking tap water using ultraviolet germicidal irradiation.

    PubMed

    Schiavano, Giuditta Fiorella; De Santi, Mauro; Sisti, Maurizio; Amagliani, Giulia; Brandi, Giorgio

    2017-09-13

    Nontuberculous mycobacteria are resistant to conventional water treatments, and are opportunistic human pathogen, particularly in hospitalized patients. The aim of this investigation was to assess the effectiveness of an ultraviolet UV-C lamp treatment against Mycobacterium avium subspecies hominissuis in drinking tap water. Ultraviolet treatments (0-192 mJ/cm 2 ) were performed using UV lamp immerged onto cylindrical glass tubes containing artificially contaminated water. The results showed that susceptibility to UV varied considerably according to the strains and the diameter of the tube. With a dose of 32 mJ/cm 2 , a significant inactivation (p < .05) of 3 log (99.9%) or more was obtained in only 5 of the 14 strains. To obtain a complete inactivation of all strains an irradiation of 192 mJ/cm 2 was needed, a dose that is much higher than the limits recommended by the international standards for UV disinfection of drinking water. In conclusion, it may be difficult to standardize a UV dose for the elimination of waterborne mycobacteria.

  3. Large-Scale Water Resources Management within the Framework of GLOWA-Danube - Part B: The Water Supply Model

    NASA Astrophysics Data System (ADS)

    Nickel, D.; Barthel, R.; Schmid, C.; Braun, J.

    2003-04-01

    The research project GLOWA-Danube, financed by the German Federal Government, investigates long-term changes in the water cycle of the Upper Danube river basin in light of global climatic change. Its concrete aim is to build a fully integrated decision support tool that combines the competence of eleven different institutes in domains covering all major aspects governing the water cycle - from the formation of clouds to groundwater flow patterns to the behaviour of the water consumer. The research group "Water Supply" at the Institute of Hydraulic Engineering (IWS), Universitaet Stuttgart, has the central task of creating an agent-based model of the water supply sector. The Water Supply model will act as a link between the various physical models determining water quality and availability on the one hand and the actors models determining water demand on the other, which together form the tool DANUBIA. Ultimately, with the help of scenario testing, the water supply model will indicate the ability of the water supply system in the Upper Danube catchment to adapt to changing boundary conditions using different management approaches. The specific aim of the Water Supply model is the creation of a model which is not only able to simulate the present day system of water extraction, treatment and distribution but also its development and change with time. As most changes to the system are brought about by decisions made by relevant actors in the field of water management or their behaviour (in response to political and economic boundary conditions, changes in water demand or water quality, advances in technology etc.), the use of agent-based modelling was chosen, whereby an agent is seen as a computer system (in our case representing a human or group of humans) which is aware of its environment, has defined objectives and is able to act independently in order to meet these objectives. Whereas agent-based modelling has received much attention over the past decades, the use

  4. Water Quality of Hills Water, Supply Water and RO Water Machine at Ulu Yam Selangor

    NASA Astrophysics Data System (ADS)

    Ngadiman, N.; ‘I Bahari, N.; Kaamin, M.; Hamid, N. B.; Mokhtar, M.; Sahat, S.

    2016-07-01

    The rapid development resulted in the deterioration of the quality of drinking water in Malaysia. Recognizing the importance of water quality, new alternatives for drinking water such as mineral water processing from reverse osmosis (RO) machine become more popular. Hence, the demand for mineral water, natural spring water or water from the hills or mountains rose lately. More consumers believed the quality of these spring water better than other source of drinking water. However, the quality of all the drinking water sources is to meet the required quality standard. Therefore, this paper aims to measure the quality of the waters from hills, from RO machine and the water supply in Ulu Yam, Selangor Batang Kali, Malaysia. The water quality was determined based on following parameters: ammoniacal nitrogen (NH3), iron (Fe), turbidity (NTU) and pH. The results show that the water from hills has better quality compared to water supply and water from RO machine. The value of NH3 ranged from 0.03 mg/L- 0.67 mg/L; Fe was from 0.03mg/L - 0.12 mg/L, turbidity at 0.42 NTU - 0.88 NTU and pH is at 6.60 - 0.71. Based on the studied parameters, all three types of water are fit for drinking and have met the required national drinking water quality standard.

  5. Integrated urban water management in commercial buildings.

    PubMed

    Trowsdale, S; Gabe, J; Vale, R

    2011-01-01

    Monitoring results are presented as an annual water balance from the pioneering Landcare Research green building containing commercial laboratory and office space. The building makes use of harvested roof runoff to flush toilets and urinals and irrigate glasshouse experiments, reducing the demand for city-supplied water and stormwater runoff. Stormwater treatment devices also manage the runoff from the carpark, helping curb stream degradation. Composting toilets and low-flow tap fittings further reduce the water demand. Despite research activities requiring the use of large volumes of water, the demand for city-supplied water is less than has been measured in many other green buildings. In line with the principles of sustainability, the composting toilets produce a useable product from wastes and internalise the wastewater treatment process.

  6. Boron exposure assessment using drinking water and urine in the North of Chile.

    PubMed

    Cortes, S; Reynaga-Delgado, E; Sancha, A M; Ferreccio, C

    2011-12-01

    Boron is an essential trace element for plants and humans however it is still an open question what levels of boron are actually safe for humans. This study, conducted between 2006 and 2010, measured exposure levels of boron in drinking water and urine of volunteers in Arica, an area in the North of Chile with high levels of naturally occurring boron. Samples were taken of tap and bottled water (173 and 22, respectively), as well as urine from 22 volunteers, and subsequently analyzed by inductively coupled plasma spectroscopy (ICP-OES). Boron varied in public tap water from 0.22 to 11.3mgL(-1), with a median value of 2.9mgL(-1), while concentrations of boron in bottled water varied from 0.01 to 12.2mgL(-1). Neither tap nor bottled water samples had concentrations of boron within WHO recommended limits. The concentration of boron in urine varied between 0.45 and 17.4mgL(-1), with a median of 4.28mgL(-1) and was found to be correlated with tap water sampled from the homes of the volunteers (r=0.64). Authors highly recommend that in northern Chile - where levels of boron are naturally high - that the tap and bottled water supplies be monitored in order to protect public health and that regulatory standards also be established for boron in drinking water in order to limit exposure. Copyright © 2011 Elsevier B.V. All rights reserved.

  7. Integrating Water Supply Constraints into Irrigated Agricultural Simulations of California

    NASA Technical Reports Server (NTRS)

    Winter, Jonathan M.; Young, Charles A.; Mehta, Vishal K.; Ruane, Alex C.; Azarderakhsh, Marzieh; Davitt, Aaron; McDonald, Kyle; Haden, Van R.; Rosenzweig, Cynthia E.

    2017-01-01

    Simulations of irrigated croplands generally lack key interactions between water demand from plants and water supply from irrigation systems. We coupled the Water Evaluation and Planning system (WEAP) and Decision Support System for Agrotechnology Transfer (DSSAT) to link regional water supplies and management with field-level water demand and crop growth. WEAP-DSSAT was deployed and evaluated over Yolo County in California for corn, rice, and wheat. WEAP-DSSAT is able to reproduce the results of DSSAT under well-watered conditions and reasonably simulate observed mean yields, but has difficulty capturing yield interannual variability. Constraining irrigation supply to surface water alone reduces yields for all three crops during the 1987-1992 drought. Corn yields are reduced proportionally with water allocation, rice yield reductions are more binary based on sufficient water for flooding, and wheat yields are least sensitive to irrigation constraints as winter wheat is grown during the wet season.

  8. The biological threat to U.S. water supplies: Toward a national water security policy.

    PubMed

    Nuzzo, Jennifer B

    2006-01-01

    In addition to providing potable drinking water, U.S. water systems are critical to the maintenance of many vital public services, such as fire suppression and power generation. Disruption of these systems would produce severe public health and safety risks, as well as considerable economic losses. Thus, water systems have been designated as critical to national security by the U.S. government. Previous outbreaks of waterborne disease have demonstrated the vulnerability of both the water supply and the public's health to biological contamination of drinking water. Such experiences suggest that a biological attack, or even a credible threat of an attack, on water infrastructure could seriously jeopardize the public's health, its confidence, and the economic vitality of a community. Despite these recognized vulnerabilities, protecting water supplies from a deliberate biological attack has not been sufficiently addressed. Action in this area has suffered from a lack of scientific understanding of the true vulnerability of water supplies to intentional contamination with bioweapons, insufficient tools for detecting biological agents, and a lack of funds to implement security improvements. Much of what is needed to address the vulnerability of the national water supply falls outside the influence of individual utilities. This includes developing a national research agenda to appropriately identify and characterize waterborne threats and making funds available to implement security improvements.

  9. Public water supplies of the 100 largest cities of the United States, 1962

    USGS Publications Warehouse

    Durfor, Charles N.; Becker, Edith

    1964-01-01

    The report is divided into two sections. The first describes the uses of water in large cities, the raw-water supplies available for public supplies, tl-<; major and minor constituents and the properties of water, the methods of analyses, the treatment of water, the effects of chemical treatment on constituents and properties of water, and the costs of water treatment. The second is a city-by-city inventory that gives (a) the population of the city, (b) the adjacent communities supplied by the city water system, (c) the total population served, (d) the sources of water supply (including auxiliary and emergency supplies), (e) the average amount of water used daily, (f) the lowest 30-day mean discharge of streams used for public supply during recent years, (g) the treatment of water, (h) the rated capacity of each water-treatment plant, and (i) the storage capacity for raw and finished water. For 58 of the cities, the sources of water, the location of water-treatment plants, and the areas served by the city system are shown on maps. Chemical, spectrographic, and radiochemical analyses of treated water and chemical and spectrographic analyses for many of the raw-water supplies are presented in tabular form.

  10. Scheduling Future Water Supply Investments Under Uncertainty

    NASA Astrophysics Data System (ADS)

    Huskova, I.; Matrosov, E. S.; Harou, J. J.; Kasprzyk, J. R.; Reed, P. M.

    2014-12-01

    Uncertain hydrological impacts of climate change, population growth and institutional changes pose a major challenge to planning of water supply systems. Planners seek optimal portfolios of supply and demand management schemes but also when to activate assets whilst considering many system goals and plausible futures. Incorporation of scheduling into the planning under uncertainty problem strongly increases its complexity. We investigate some approaches to scheduling with many-objective heuristic search. We apply a multi-scenario many-objective scheduling approach to the Thames River basin water supply system planning problem in the UK. Decisions include which new supply and demand schemes to implement, at what capacity and when. The impact of different system uncertainties on scheme implementation schedules are explored, i.e. how the choice of future scenarios affects the search process and its outcomes. The activation of schemes is influenced by the occurrence of extreme hydrological events in the ensemble of plausible scenarios and other factors. The approach and results are compared with a previous study where only the portfolio problem is addressed (without scheduling).

  11. Occurrence of antidepressant residues in the sewage-impacted Vistula and Utrata rivers and in tap water in Warsaw (Poland).

    PubMed

    Giebułtowicz, Joanna; Nałęcz-Jawecki, Grzegorz

    2014-06-01

    Antidepressants, even at low concentrations, can reveal some adverse effects on aquatic life due to disturbing homeostasis throughout the central and peripheral nervous system both in vertebrates and invertebrates. To date there have not been any reports regarding the presence of these pharmaceuticals in surface and tap waters in Eastern Europe. Therefore the aim of this study was to determine the presence of 21 antidepressant pharmaceuticals at specific points of the main Polish river - the Vistula, a smaller river of the Warsaw region - the Utrata, as well as in tap water samples of Warsaw. Samples were collected twice at one month intervals and analysed using solid-phase extraction (SPE) technique coupled with the liquid chromatography-electrospray ionisation-tandem mass spectrometer (LC-MS/MS) method operated under the multiple reaction monitoring mode (MRM). This is the first study where active compounds such as moclobemid or trazodone in the environment have been investigated. Environmental risk assessment of antidepressants in Poland was estimated on the basis of annuals sale data extracted from the NFZ (Narodowy Fundusz Zdrowia-National Health Service) base of reimbursed pharmaceuticals(1). Predicted environmental concentration (PEC) of target pharmaceuticals were compared with their measured concentration (MEC). Moreover, the application of the EMEA/CHMP guideline for environmental risk assessment of the antidepressants was discussed. The highest concentration of antidepressants was observed in the small river Utrata. In tap water only trace amounts of antidepressants including citalopram (up to 1.5ng/l), mianserin (up to 0.9ng/l), sertraline (<3.1ng/l), moclobemid (up to 0.3ng/l) and venlafaxine (up to 1.9ng/l) were detected. However this highlights their inadequate elimination in the drinking waste treatment facility. The presence of antidepressants in drinking water and the aquatic environment could have long-term effects even at low exposure level

  12. Geolocation Support for Water Supply and Sewerage Projects in Azerbaijan

    NASA Astrophysics Data System (ADS)

    Qocamanov, M. H.; Gurbanov, Ch. Z.

    2016-10-01

    Drinking water supply and sewerage system designing and reconstruction projects are being extensively conducted in Azerbaijan Republic. During implementation of such projects, collecting large amount of information about the area and detailed investigations are crucial. Joint use of the aerospace monitoring and GIS play an essential role for the studies of the impact of environmental factors, development of the analytical information systems and others, while achieving the reliable performance of the existing and designed major water supply pipelines, as well as construction and exploitation of the technical installations. With our participation the GIS has been created in "Azersu" OJSC that includes systematic database of the drinking water supply and sewerage system, and rain water networks to carry out necessary geo information analysis. GIScreated based on "Microstation" platform and aerospace data. Should be mentioned that, in the country, specifically in large cities (i.e. Baku, Ganja, Sumqait, etc.,) drinking water supply pipelines cross regions with different physico-geographical conditions, geo-morphological compositions and seismotectonics.Mains water supply lines in many accidents occur during the operation, it also creates problems with drinking water consumers. In some cases the damage is caused by large-scale accidents. Long-term experience gives reason to say that the elimination of the consequences of accidents is a major cost. Therefore, to avoid such events and to prevent their exploitation and geodetic monitoring system to improve the rules on key issues. Therefore, constant control of the plan-height positioning, geodetic measurements for the detailed examination of the dynamics, repetition of the geodetic measurements for certain time intervals, or in other words regular monitoring is very important. During geodetic monitoring using the GIS has special significance. Given that, collecting geodetic monitoring measurements of the main pipelines

  13. Summary of water-quality data for City of Albuquerque drinking-water supply wells, 1988-97

    USGS Publications Warehouse

    Bexfield, Laura M.; Lindberg, William E.; Anderholm, Scott K.

    1999-01-01

    The City of Albuquerque has collected and analyzed more than 5,000 water-quality samples from 113 water-supply wells in the Albuquerque area, including many drinking-water supply wells, since May of 1988. As a result, a large water-quality data base has been compiled that includes data for major ions, nutrients, trace elements, carbon, volatile organic compounds, radiological constituents, and bacteria. These data are intended to improve the understanding and management of the ground-water resources of the region, rather than demonstrate compliance with Federal and State drinking-water standards. This report gives summary statistics for selected physical properties and chemical constituents for ground water from wells used by the City of Albuquerque for drinking-water supply between 1988 and 1997. Maps are provided to show the general spatial distribution of selected parameters and water types around the region. Although the values of some parameters vary substantially across the city, median values for all parameters included in this report are less than their respective maximum contaminant levels in each drinking-water supply well. The dominant water types are sodium plus potassium / carbonate plus bicarbonate in the western part of the city and calcium / carbonate plus bicarbonate in the eastern part of the city.

  14. Conducting Sanitary Surveys of Water Supply Systems. Student Workbook.

    ERIC Educational Resources Information Center

    1976

    This workbook is utilized in connection with a 40-hour course on sanitary surveys of water supply systems for biologists, chemists, and engineers with experience as a water supply evaluator. Practical training is provided in each of the 21 self-contained modules. Each module outlines the purpose, objectives and content for that section. The course…

  15. Health safety of main water pipe materials supplied in China market.

    PubMed

    Lu, Kai; Ding, Liang; Wang, Hong-Wei; Jing, Hai-Ning; Zhao, Xiao-Ning; Lin, Shao-Bin; Li, Ya-Dong; Jin, Yin-Long; Liu, Feng-Mao; Jiang, Shu-Ren

    2006-04-01

    To assess the health safety of copper, steel and plastic water pipes by field water quality investigations. Four consumers were randomly selected for each type of water pipes. Two consumers of every type of the water pipes had used the water pipes for more than 1 year and the other 2 consumers had used the water pipes for less than 3 months. The terminal volume of tap water in copper and steel water pipes should be not less than 0.1 liter, whereas that in plastic water pipes should be not less than 1 liter. The mean values of the experimental results in the second field water quality investigation of the copper and steel water pipes met the Sanitary Standards for Drinking Water Quality. The items of water sample of the plastic water pipes met the requirements of the Sanitary Standards for Drinking Water Quality. Copper, steel, and plastic pipes can be used as drinking water pipes.

  16. Monitoring from source to tap: the new paradigm for ensuring water security and quality

    NASA Astrophysics Data System (ADS)

    Kroll, Dan

    2011-06-01

    The threat of terrorist action targeting water supplies is often overlooked for the more historically obvious threats of an air attack or a dirty bomb. Studies have shown that an attack on water is simple to orchestrate, inexpensive and can result in mass casualties. The twin motivators of the terrorist threat to water along with consumer demands for safe and potable supplies has lead to a sea change in the drinking water industry. From a historical perspective, most monitoring in the distribution system as well as source water has been relegated to the occasional snapshot provided by grab sampling for a few limited parameters or the infrequent regulatory testing required by mandates such as the Total Coliform Rule. New technologies are being deployed to ameliorate the threat from both intentional and accidental water contamination. The threat to water and these new technologies are described as well as needs and requirements for new sensors to improve the monitoring structure.

  17. [The occurrence of aeromonads in a drinking water supply system].

    PubMed

    Stelzer, W; Jacob, J; Feuerpfeil, I; Schulze, E

    1992-01-01

    This study concerns with the occurrence of aeromonads, coliforms and colony counts in a drinking water supply. Aeromonas contents were detected in the range of 15.0 to greater than 2,400/100 ml in the raw water samples of the man made lake. After the drinking water treatment process including fast sand filtration and chlorination aeromonads indicated in comparison to total coliforms and colony counts early and significant an after-growth of maximal 240 aeromonads/100 ml in the peripheric drinking water supply. Drinking water samples characterized by a higher water temperature resulted in the highest contents of aeromonads. The Aeromonas-Species Aeromonas sobria and Aeromonas hydrophila were isolated most frequently with 56.9 and 37.4 percent, respectively. The role of aeromonads as an indicator of after-growth in drinking water supplies is discussed.

  18. Irrigation, risk aversion, and water right priority under water supply uncertainty

    NASA Astrophysics Data System (ADS)

    Li, Man; Xu, Wenchao; Rosegrant, Mark W.

    2017-09-01

    This paper explores the impacts of a water right's allocative priority—as an indicator of farmers' risk-bearing ability—on land irrigation under water supply uncertainty. We develop and use an economic model to simulate farmers' land irrigation decision and associated economic returns in eastern Idaho. Results indicate that the optimal acreage of land irrigated increases with water right priority when hydroclimate risk exhibits a negatively skewed or right-truncated distribution. Simulation results suggest that prior appropriation enables senior water rights holders to allocate a higher proportion of their land to irrigation, 6 times as much as junior rights holders do, creating a gap in the annual expected net revenue reaching up to 141.4 acre-1 or 55,800 per farm between the two groups. The optimal irrigated acreage, expected net revenue, and shadow value of a water right's priority are subject to substantial changes under a changing climate in the future, where temporal variation in water supply risks significantly affects the profitability of agricultural land use under the priority-based water sharing mechanism.

  19. Irrigation, risk aversion, and water right priority under water supply uncertainty.

    PubMed

    Li, Man; Xu, Wenchao; Rosegrant, Mark W

    2017-09-01

    This paper explores the impacts of a water right's allocative priority-as an indicator of farmers' risk-bearing ability-on land irrigation under water supply uncertainty. We develop and use an economic model to simulate farmers' land irrigation decision and associated economic returns in eastern Idaho. Results indicate that the optimal acreage of land irrigated increases with water right priority when hydroclimate risk exhibits a negatively skewed or right-truncated distribution. Simulation results suggest that prior appropriation enables senior water rights holders to allocate a higher proportion of their land to irrigation, 6 times as much as junior rights holders do, creating a gap in the annual expected net revenue reaching up to $141.4 acre -1 or $55,800 per farm between the two groups. The optimal irrigated acreage, expected net revenue, and shadow value of a water right's priority are subject to substantial changes under a changing climate in the future, where temporal variation in water supply risks significantly affects the profitability of agricultural land use under the priority-based water sharing mechanism.

  20. Irrigation, risk aversion, and water right priority under water supply uncertainty

    PubMed Central

    Xu, Wenchao; Rosegrant, Mark W.

    2017-01-01

    Abstract This paper explores the impacts of a water right's allocative priority—as an indicator of farmers' risk‐bearing ability—on land irrigation under water supply uncertainty. We develop and use an economic model to simulate farmers' land irrigation decision and associated economic returns in eastern Idaho. Results indicate that the optimal acreage of land irrigated increases with water right priority when hydroclimate risk exhibits a negatively skewed or right‐truncated distribution. Simulation results suggest that prior appropriation enables senior water rights holders to allocate a higher proportion of their land to irrigation, 6 times as much as junior rights holders do, creating a gap in the annual expected net revenue reaching up to $141.4 acre−1 or $55,800 per farm between the two groups. The optimal irrigated acreage, expected net revenue, and shadow value of a water right's priority are subject to substantial changes under a changing climate in the future, where temporal variation in water supply risks significantly affects the profitability of agricultural land use under the priority‐based water sharing mechanism. PMID:29200529

  1. Assessment of trace elements in terminal tap water of Hunan Province, South China, and the potential health risks.

    PubMed

    Li, Mansha; Du, Yong; Chen, Lv; Liu, Lulu; Duan, Yanying

    2018-05-02

    A total of 116 terminal tap water (TTW) samples from Xiangjiang, Zijiang, Yuanjiang, and Lishui river basins of Hunan province were collected and concentrations of As, Cd, Cr, Pb, Mn, Zn, Fe, Al, and Cu were determined using inductively coupled plasma mass spectrometry. The results showed that 10% of the water samples exceeded the limit level of Cd established by World Health Organization (WHO) of 0.003 mg L -1 . Three percent of the samples had Fe level and 1% had As level above the WHO limits of 0.3 and 0.01 mg L -1 , respectively. Multivariate statistic approach (cluster analysis and principal component analysis) results revealed that anthropogenic activities and pipeline corrosion were major sources of TTW contamination in Hunan province. The individual and total hazard quotient values estimated by deterministic and probabilistic approaches were both less than 1. However, the mean cancer risk values of Cd were 2.2 × 10 -4 and 1.4 × 10 -4 for Xiangjiang and Yuanjiang river basin, respectively, both greater than 10 -4 . The 95th percentile value of cancer risk for Cr was slightly greater than 10 -4 in Xiangjiang river basins. Long-term exposure to Cd and Cr through tap water consumption poses moderate carcinogenic health risks to the local residents.

  2. Designing water supplies: Optimizing drinking water composition for maximum economic benefit.

    PubMed

    Rygaard, M; Arvin, E; Bath, A; Binning, P J

    2011-06-01

    It is possible to optimize drinking water composition based on a valuation of the impacts of changed water quality. This paper introduces a method for assessing the potential for designing an optimum drinking water composition by the use of membrane desalination and remineralization. The method includes modeling of possible water quality blends and an evaluation of corrosion indices. Based on concentration-response relationships a range of impacts on public health, material lifetimes and consumption of soap have been valued for Perth, Western Australia and Copenhagen, Denmark. In addition to water quality aspects, costs of water production, fresh water abstraction and CO(2)-emissions are integrated into a holistic economic assessment of the optimum share of desalinated water in water supplies. Results show that carefully designed desalination post-treatment can have net benefits up to €0.3 ± 0.2 per delivered m(3) for Perth and €0.4(±0.2) for Copenhagen. Costs of remineralization and green house gas emission mitigation are minor when compared to the potential benefits of an optimum water composition. Finally, a set of optimum water quality criteria is proposed for the guidance of water supply planning and management. Copyright © 2011 Elsevier Ltd. All rights reserved.

  3. Finger-tapping motion analysis in cervical myelopathy by magnetic-sensor tapping device.

    PubMed

    Miwa, Toshitada; Hosono, Noboru; Mukai, Yoshihiro; Makino, Takahiro; Kandori, Akihiko; Fuji, Takeshi

    2013-08-01

    Case-control study. The purpose of this study is to determine finger motion of patients with cervical myelopathy during finger-tapping cycles. A major symptom of patients with compressive cervical myelopathy is finger clumsiness. Therefore, understanding finger motion is prerequisite in assessing the severity of myelopathy. The popular grip-and-release test evaluates only the number of motion cycles, which is insufficient to fully describe complex finger motion. Forty-three patients with cervical myelopathy and 41 healthy controls tapped their index fingers against their thumbs as rapidly as possible for 30 seconds and the motion was recorded by a magnetic-sensor coil attached to the nail surface. Output signals were stored in a computer, which automatically calculated tapping frequency, distance moved, ratio of opening/closing velocity and the SD of the tapping interval. The SD of the tapping interval was significantly greater and all other measures were significantly smaller in patients with cervical myelopathy, than in healthy controls. All indices significantly improved after surgical decompression of the cervical spine. Distance moved (Pearson correlation coefficient: r=0.590, P<0.001) and the SD of the tapping interval (r=-0.451; P=0.002) were significantly correlated with the Japanese Orthopedic Association score (neurological scale). The quantitative evaluation of finger paralysis was performed by this tapping device. Speed and regularity in repetitive motion of fingers were correlated with the severity of cervical myelopathy.

  4. Method for detecting organic contaminants in water supplies

    DOEpatents

    Dooley, Kirk J.; Barrie, Scott L.; Buttner, William J.

    1999-01-01

    A system for detecting organic contaminants in water supplies. A sampling unit is employed which includes a housing having at least one opening therein and a tubular member positioned within the housing having a central passageway surrounded by a side wall. The side wall is made of a composition designed to absorb the contaminants. In use, the sampling unit is immersed in a water supply. The water supply contacts the tubular member through the opening in the housing, with any contaminants being absorbed into the side wall of the tubular member. A carrier gas is then passed through the central passageway of the tubular member. The contaminants will diffuse out of the side wall and into the central passageway where they will subsequently combine with the carrier gas, thereby yielding a gaseous product. The gaseous product is then analyzed to determine the amount and type of contaminants therein.

  5. 76 FR 49787 - Rural Water Supply Program Approved Appraisal Reports; Availability

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-11

    ...., prohibit rural residential growth) and water conservation (e.g., leak detection surveys). Dated: July 11... DEPARTMENT OF THE INTERIOR Bureau of Reclamation Rural Water Supply Program Approved Appraisal...: Reclamation provides assistance for appraisal investigations and feasibility studies for rural water supply...

  6. Water-Resources Manpower: Supply and Demand Patterns to 1980.

    ERIC Educational Resources Information Center

    Lewis, James E.

    Relating the supply of scientific manpower to the educational potential of the general population and the productive capacity of the educational system, this study disaggregates independent projections of scientific manpower supply and demand to yield projections for water resources manpower. This supply of engineers, natural scientists, and…

  7. Elution Is a Critical Step for Recovering Human Adenovirus 40 from Tap Water and Surface Water by Cross-Flow Ultrafiltration

    PubMed Central

    Shi, Hang; Xagoraraki, Irene; Bruening, Merlin L.

    2016-01-01

    ABSTRACT This paper examines the recovery of the enteric adenovirus human adenovirus 40 (HAdV 40) by cross-flow ultrafiltration and interprets recovery values in terms of physicochemical interactions of virions during sample concentration. Prior to ultrafiltration, membranes were either blocked by exposure to calf serum (CS) or coated with a polyelectrolyte multilayer (PEM). HAdV 40 is a hydrophobic virus with a point of zero charge between pH 4.0 and pH 4.3. In accordance with predictions from the extended Derjaguin-Landau-Verwey-Overbeek theory, the preelution recovery of HAdV (rpre) from deionized water was higher with PEM-coated membranes (rprePEM = 74.8% ± 9.7%) than with CS-blocked membranes (rpreCS = 54.1% ± 6.2%). With either membrane type, the total virion recovery after elution (rpost) was high for both deionized water (rpostPEM = 99.5% ± 6.6% and rpostCS = 98.8% ± 7.7%) and tap water (rpostPEM = 89% ± 15% and rpostCS = 93.7% ± 6.9%). The nearly 100% recoveries suggest that the polyanion (sodium polyphosphate) and surfactant (Tween 80) in the eluent disrupt electrostatic and hydrophobic interactions between the virion and the membrane. Addition of EDTA to the eluent greatly improved the elution efficacy (rpostCS = 88.6% ± 4.3% and rpostPEM = 87.0% ± 6.9%) with surface water, even when the organic carbon concentration in the water was high (9.4 ± 0.1 mg/liter). EDTA likely disrupts cation bridging between virions and particles in the feed water matrix or the fouling layer on the membrane surface. For complex water matrices, the eluent composition is the most important factor for achieving high virion recovery. IMPORTANCE Herein we present the results of a comprehensive physicochemical characterization of HAdV 40, an important human pathogen. The data on HAdV 40 surface properties enabled rigorous modeling to gain an understanding of the energetics of virion-virion and virion-filter interactions. Cross-flow filtration for concentration and recovery

  8. 43 CFR 404.3 - What is the Reclamation Rural Water Supply Program?

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... and identify opportunities to ensure safe and adequate rural water supplies for domestic, municipal... 43 Public Lands: Interior 1 2011-10-01 2011-10-01 false What is the Reclamation Rural Water Supply... RECLAMATION, DEPARTMENT OF THE INTERIOR RECLAMATION RURAL WATER SUPPLY PROGRAM Overview § 404.3 What is the...

  9. Economic Impacts of Surface Mining on Household Drinking Water Supplies

    EPA Science Inventory

    This report provides information on the economic and social impacts of contaminated surface and ground water supplies on residents and households near surface mining operations. The focus is on coal slurry contamination of water supplies in Mingo County, West Virginia, and descr...

  10. A management and optimisation model for water supply planning in water deficit areas

    NASA Astrophysics Data System (ADS)

    Molinos-Senante, María; Hernández-Sancho, Francesc; Mocholí-Arce, Manuel; Sala-Garrido, Ramón

    2014-07-01

    The integrated water resources management approach has proven to be a suitable option for efficient, equitable and sustainable water management. In water-poor regions experiencing acute and/or chronic shortages, optimisation techniques are a useful tool for supporting the decision process of water allocation. In order to maximise the value of water use, an optimisation model was developed which involves multiple supply sources (conventional and non-conventional) and multiple users. Penalties, representing monetary losses in the event of an unfulfilled water demand, have been incorporated into the objective function. This model represents a novel approach which considers water distribution efficiency and the physical connections between water supply and demand points. Subsequent empirical testing using data from a Spanish Mediterranean river basin demonstrated the usefulness of the global optimisation model to solve existing water imbalances at the river basin level.

  11. Kentucky Public Water-Supply Withdrawals During 1995, 2000, and 2005

    USGS Publications Warehouse

    Downs, Aimee C.; Caldwell, William E.

    2007-01-01

    The U.S. Geological Survey, in cooperation with the Kentucky Division of Water, has compiled the reported permitted public water-supply-withdrawal data for Kentucky for 2005. Water-withdrawal data for 1995 and 2000 were previously published in Solley and others (1998) and Hutson and others (2004), respectively. This report is a graphical representation of permitted withdrawals for 1995, 2000, and 2005. Public suppliers that are regulated through the Kentucky Division of Water, Water-Withdrawal Permitting Program, withdrew a total of 496, 525, and 558 million gallons per day (Mgal/d) in 1995, 2000, and 2005, respectively. In 2005, 489 Mgal/d (88 percent) came from surface-water sources, and 69 Mgal/d (12 percent) came from ground-water sources. Small increases and decreases in permitted public water-supply withdrawals can be attributed to population changes. Large increases and decreases can be attributed to merging of supply systems, change(s) in source, or purchases from other counties.

  12. Pollution source localization in an urban water supply network based on dynamic water demand.

    PubMed

    Yan, Xuesong; Zhu, Zhixin; Li, Tian

    2017-10-27

    Urban water supply networks are susceptible to intentional, accidental chemical, and biological pollution, which pose a threat to the health of consumers. In recent years, drinking-water pollution incidents have occurred frequently, seriously endangering social stability and security. The real-time monitoring for water quality can be effectively implemented by placing sensors in the water supply network. However, locating the source of pollution through the data detection obtained by water quality sensors is a challenging problem. The difficulty lies in the limited number of sensors, large number of water supply network nodes, and dynamic user demand for water, which leads the pollution source localization problem to an uncertainty, large-scale, and dynamic optimization problem. In this paper, we mainly study the dynamics of the pollution source localization problem. Previous studies of pollution source localization assume that hydraulic inputs (e.g., water demand of consumers) are known. However, because of the inherent variability of urban water demand, the problem is essentially a fluctuating dynamic problem of consumer's water demand. In this paper, the water demand is considered to be stochastic in nature and can be described using Gaussian model or autoregressive model. On this basis, an optimization algorithm is proposed based on these two dynamic water demand change models to locate the pollution source. The objective of the proposed algorithm is to find the locations and concentrations of pollution sources that meet the minimum between the analogue and detection values of the sensor. Simulation experiments were conducted using two different sizes of urban water supply network data, and the experimental results were compared with those of the standard genetic algorithm.

  13. Industrial water supplies of the United States

    USGS Publications Warehouse

    Love, Samuel K.

    1954-01-01

    The availability of adequate supplies of water of suitable quality determines in large measure the potential for industrial development in any community. However, the pattern of availability of water for industrial use is not so generally recognized. It is the purpose of this paper to point out the more important factors affecting the distribution and quality of existing and potential sources of water with particular reference to industrial development. From a nation-wide standpoint our country is blessed with plenty of water. If the available water could be distributed completely in accordance with needs, it is probable that no part of the country would suffer from lack of water either now or in the foreseeable future. As nature has not dealt so providently however, or perhaps as man has not been able to cope with the vagaries of nature, we find ourselves beset with droughts and floods. Added to the natural deficiencies of nature are man-made difficulties such as lowered ground-water tables and salt-water encroachment of fresh water supplies resulting from overpumping of ground waters, pollution in all its forms, and wasteful use of water for many purposes. It becomes necessary, therefore, to study and evaluate our most important natural resource in order that we may use it more intelligently. This is particularly true in regard to continued industrial growth of our country.

  14. Public supply and domestic water use in the United States, 2015

    USGS Publications Warehouse

    Dieter, Cheryl A.; Maupin, Molly A.

    2017-10-30

    IntroductionThe U.S. Geological Survey (USGS) National Water Use Science Project (NWUSP), part of the USGS Water Availability and Use Science Program (WAUSP), has estimated water use in the United States every 5 years since 1950. This report provides an overview of total population, public-supply use, including the population that is served by public-supply systems and the domestic deliveries to those users, and self-supplied domestic water use in the United States for 2015, continuing the task of estimating water use in the United States every 5 years. In this report, estimates for the United States include the 50 States, the District of Columbia, Puerto Rico, and the U.S. Virgin Islands (hereafter referred to as “states” for brevity).County-level data for total population, public-supply withdrawals and the population served by public-supply systems, and domestic withdrawals for 2015 were published in a data release in an effort to provide data to the public in a timely manner. Data in the current version (1.0) of Dieter and others (2017) contains county-level total withdrawals from groundwater and surface-water sources (both fresh and saline) for public-water supply, the deliveries from those suppliers to domestic users, and the quantities of water from groundwater and surface-water sources for self-supplied domestic users, and total population. Methods used to estimate the various data elements for the public-supply and domestic use categories at the county level are described by Bradley (2017).This Open-File Report is an interim report summarizing the data published in Dieter and others (2017) at the state and national level. This report includes discussions on the total population, totals for public-supply withdrawals and population served, total domestic withdrawals, and provides comparisons of the 2015 estimates to 2010 estimates (Maupin and others, 2014). Total domestic water use, as described in this report, represents the summation of deliveries from

  15. The industrial utility of public water supplies in the Mountain States, 1952

    USGS Publications Warehouse

    Lohr, E.W.; Howard, C.S.; Kiser, R.T.; Hem, J.D.; Swenson, H.A.

    1952-01-01

    The location of industrial plants is dependent on an ample water supply of suitable quality. Information relating to the chemical characteristics of the water supplies is not only essential to the location of many plants but also is an aid in the manufacture and distribution of many commodities.Public water supplies are utilized extensively as a source of supply for many industrial plants, used either as delivered for domestic consumption or with further treatment if necessary to meet specific needs of the plant, such as water· for processing, cooling, and steam generation. The industrial use of water in the United States in 1950 was estimated to be more than 75 billion gallons per day from private sources. In addition, about 6 billion gallons per day was estimated to be taken from public water supplies.U.S. Geological Survey Water-Supply Paper 658, "The industrial utility of public water supplies in the United States, 1932" contains information pertaining to the public water supplies of 670 of the larger cities throughout the United States. This report, which is still in print and being distributed, has filled an important need in the field of water-supply engineering. The demand for more up-to-date information and more extended coverage has led to studies by the Geological Survey for revision of the information contained in the 1932 report. The revised report, which will include data pertaining to public water supplies of more than 1, 200 cities in the United States, will eventually be published as a Geological Survey Water-Supply Paper. However, in order that the information might be available at the earliest possible time, nine preliminary reports are being issued which give data on the ·larger cities in each state. These nine reports are being released as Geological Survey Circulars, each covering a group of states as delineated by the Bureau of Census in taking the census of the population of the country. (See fig. 1). The reports give descriptive

  16. Ultrasensitive and selective gold film-based detection of mercury (II) in tap water using a laser scanning confocal imaging-surface plasmon resonance system in real time.

    PubMed

    Zhang, Hongyan; Yang, Liquan; Zhou, Bingjiang; Liu, Weimin; Ge, Jiechao; Wu, Jiasheng; Wang, Ying; Wang, Pengfei

    2013-09-15

    An ultrasensitive and selective detection of mercury (II) was investigated using a laser scanning confocal imaging-surface plasmon resonance system (LSCI-SPR). The detection limit was as low as 0.01ng/ml for Hg(2+) ions in ultrapure and tap water based on a T-rich, single-stranded DNA (ssDNA)-modified gold film, which can be individually manipulated using specific T-Hg(2+)-T complex formation. The quenching intensity of the fluorescence images for rhodamine-labeled ssDNA fitted well with the changes in SPR. The changes varied with the Hg(2+) ion concentration, which is unaffected by the presence of other metal ions. The coefficients obtained for ultrapure and tap water were 0.99902 and 0.99512, respectively, for the linear part over a range of 0.01-100ng/ml. The results show that the double-effect sensor has potential for practical applications with ultra sensitivity and selectivity, especially in online or real-time monitoring of Hg(2+) ions pollution in tap water with the further improvement of portable LSCI-SPR instrument. Copyright © 2013 Elsevier B.V. All rights reserved.

  17. Method for detecting organic contaminants in water supplies

    DOEpatents

    Dooley, K.J.; Barrie, S.L.; Buttner, W.J.

    1999-08-24

    A system is described for detecting organic contaminants in water supplies. A sampling unit is employed which includes a housing having at least one opening therein and a tubular member positioned within the housing having a central passageway surrounded by a side wall. The side wall is made of a composition designed to absorb the contaminants. In use, the sampling unit is immersed in a water supply. The water supply contacts the tubular member through the opening in the housing, with any contaminants being absorbed into the side wall of the tubular member. A carrier gas is then passed through the central passageway of the tubular member. The contaminants will diffuse out of the side wall and into the central passageway where they will subsequently combine with the carrier gas, thereby yielding a gaseous product. The gaseous product is then analyzed to determine the amount and type of contaminants therein. 5 figs.

  18. Self-Advancing Step-Tap Drills

    NASA Technical Reports Server (NTRS)

    Pettit, Donald R.; Camarda, Charles J.; Penner, Ronald K.; Franklin, Larry D.

    2007-01-01

    Self-advancing tool bits that are hybrids of drills and stepped taps make it possible to form threaded holes wider than about 1/2 in. (about 13 mm) without applying any more axial force than is necessary for forming narrower pilot holes. These self-advancing stepped-tap drills were invented for use by space-suited astronauts performing repairs on reinforced carbon/carbon space-shuttle leading edges during space walks, in which the ability to apply axial drilling forces is severely limited. Self-advancing stepped-tap drills could also be used on Earth for making wide holes without applying large axial forces. A self-advancing stepped-tap drill (see figure) includes several sections having progressively larger diameters, typically in increments between 0.030 and 0.060 in. (between about 0.8 and about 1.5 mm). The tip section, which is the narrowest, is a pilot drill bit that typically has a diameter between 1/8 and 3/16 in. (between about 3.2 and about 4.8 mm). The length of the pilot-drill section is chosen, according to the thickness of the object to be drilled and tapped, so that the pilot hole is completed before engagement of the first tap section. Provided that the cutting-edge geometry of the drill bit is optimized for the material to be drilled, only a relatively small axial force [typically of the order of a few pounds (of the order of 10 newtons)] must be applied during drilling of the pilot hole. Once the first tap section engages the pilot hole, it is no longer necessary for the drill operator to apply axial force: the thread engagement between the tap and the workpiece provides the axial force to advance the tool bit. Like the pilot-drill section, each tap section must be long enough to complete its hole before engagement of the next, slightly wider tap section. The precise values of the increments in diameter, the thread pitch, the rake angle of the tap cutting edge, and other geometric parameters of the tap sections must be chosen, in consideration of

  19. Developing the Water Supply System for Travel to Mars

    NASA Technical Reports Server (NTRS)

    Jones, Harry W.; Fisher, John W.; Delzeit, Lance D.; Flynn, Michael T.; Kliss, Mark H.

    2016-01-01

    What water supply method should be used on a trip to Mars? Two alternate approaches are using fuel cell and stored water, as was done for short missions such as Apollo and the Space Shuttle, or recycling most of the water, as on long missions including the International Space Station (ISS). Stored water is inexpensive for brief missions but its launch mass and cost become very large for long missions. Recycling systems have much lower total mass and cost for long missions, but they have high development cost and are more expensive to operate than storage. A Mars transit mission would have an intermediate duration of about 450 days out and back. Since Mars transit is about ten times longer than a brief mission but probably less than one-tenth as long as ISS, it is not clear if stored or recycled water would be best. Recycling system design is complicated because water is used for different purposes, drinking, food preparation, washing, and flushing the urinal, and because wastewater has different forms, humidity condensate, dirty wash water, and urine and flush water. The uses have different requirements and the wastewater resources have different contaminants and processing requirements. The most cost-effective water supply system may recycle some wastewater sources and also provide safety reserve water from storage. Different water supply technologies are compared using mass, cost, reliability, and other factors.

  20. Modeling and Optimization for Management of Intermittent Water Supply

    NASA Astrophysics Data System (ADS)

    Lieb, A. M.; Wilkening, J.; Rycroft, C.

    2014-12-01

    In many urban areas, piped water is supplied only intermittently, as valves direct water to different parts of the water distribution system at different times. The flow is transient, and may transition between free-surface and pressurized, resulting in complex dynamical features with important consequences for water suppliers and users. These consequences include degradation of distribution system components, compromised water quality, and inequitable water availability. The goal of this work is to model the important dynamics and identify operating conditions that mitigate certain negative effects of intermittent water supply. Specifically, we will look at controlling valve parameters occurring as boundary conditions in a network model of transient, transition flow through closed pipes. Gradient-based optimization will be used to find boundary values to minimize pressure gradients and ensure equitable water availability at system endpoints.

  1. Life cycle assessment of water supply alternatives in water-receiving areas of the South-to-North Water Diversion Project in China.

    PubMed

    Li, Yi; Xiong, Wei; Zhang, Wenlong; Wang, Chao; Wang, Peifang

    2016-02-01

    To alleviate the water shortage in northern China, the Chinese government launched the world's largest water diversion project, the South-to-North Water Diversion Project (SNWDP), which delivers water from water-sufficient southern China to water-deficient northern China. However, an up-to-date study has not been conducted to determine whether the project is a favorable option to augment the water supply from an environmental perspective. The life cycle assessment (LCA) methodology integrated with a freshwater withdrawal category (FWI) was adopted to compare water supply alternatives in the water-receiving areas of the SNWDP, i.e., water diversion, wastewater reclamation and seawater desalination. Beijing, Tianjin, Jinan and Qingdao were studied as representative cities because they are the primary water-receiving areas of the SNWDP. The results revealed that the operation phase played the dominant role in all but one of the life cycle impact categories considered and contributed to more than 70% of their scores. For Beijing and Tianjin, receiving water through the SNWDP is the most sustainable option to augment the water supply. The result can be drawn in all of the water-receiving areas of the middle route of the SNWDP. For Jinan and Qingdao, the most sustainable option is the wastewater reclamation system. The seawater desalination system obtains the highest score of the standard impact indicators in all of the study areas, whereas it is the most favorable water supply option when considering the freshwater withdrawal impact. Although the most sustainable water supply alternative was recommended through an LCA analysis, multi-water resources should be integrated into the region's water supply from the perspective of water sustainability. The results of this study provide a useful recommendation on the management of water resources for China. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Constraining uncertainties in water supply reliability in a tropical data scarce basin

    NASA Astrophysics Data System (ADS)

    Kaune, Alexander; Werner, Micha; Rodriguez, Erasmo; de Fraiture, Charlotte

    2015-04-01

    Assessing the water supply reliability in river basins is essential for adequate planning and development of irrigated agriculture and urban water systems. In many cases hydrological models are applied to determine the surface water availability in river basins. However, surface water availability and variability is often not appropriately quantified due to epistemic uncertainties, leading to water supply insecurity. The objective of this research is to determine the water supply reliability in order to support planning and development of irrigated agriculture in a tropical, data scarce environment. The approach proposed uses a simple hydrological model, but explicitly includes model parameter uncertainty. A transboundary river basin in the tropical region of Colombia and Venezuela with an approximately area of 2100 km² was selected as a case study. The Budyko hydrological framework was extended to consider climatological input variability and model parameter uncertainty, and through this the surface water reliability to satisfy the irrigation and urban demand was estimated. This provides a spatial estimate of the water supply reliability across the basin. For the middle basin the reliability was found to be less than 30% for most of the months when the water is extracted from an upstream source. Conversely, the monthly water supply reliability was high (r>98%) in the lower basin irrigation areas when water was withdrawn from a source located further downstream. Including model parameter uncertainty provides a complete estimate of the water supply reliability, but that estimate is influenced by the uncertainty in the model. Reducing the uncertainty in the model through improved data and perhaps improved model structure will improve the estimate of the water supply reliability allowing better planning of irrigated agriculture and dependable water allocation decisions.

  3. WATER SUPPLY PIPE REPLACEMENT CONSIDERING SUSTAINABLE TRANSITION TO POPULATION DECREASED SOCIETY

    NASA Astrophysics Data System (ADS)

    Hosoi, Yoshihiko; Iwasaki, Yoji; Aklog, Dagnachew; Masuda, Takanori

    Social infrastructures are aging and population is decreasing in Japan. The aged social infrastructures should be renewed. At the same time, they are required to be moved into new framework suitable for population decreased societies. Furthermore, they have to continue to supply sufficient services even during transition term that renewal projects are carried out. Authors propose sustainable soft landing management of infrastructures and it is tried to apply to water supply pipe replacement in this study. Methodology to replace aged pipes not only aiming for the new water supply network which suits for population decreased condition but also ensuring supply service and feasibility while the project is carried out was developed. It is applied for a model water supply network and discussions were carried out.

  4. A Clonal Lineage of Fusarium oxysporum Circulates in the Tap Water of Different French Hospitals

    PubMed Central

    Sautour, Marc; Gautheron, Nadine; Laurent, Julie; Aho, Serge; Bonnin, Alain; Sixt, Nathalie; Hartemann, Philippe; Dalle, Frédéric; Steinberg, Christian

    2016-01-01

    ABSTRACT Fusarium oxysporum is typically a soilborne fungus but can also be found in aquatic environments. In hospitals, water distribution systems may be reservoirs for the fungi responsible for nosocomial infections. F. oxysporum was previously detected in the water distribution systems of five French hospitals. Sixty-eight isolates from water representative of all hospital units that were previously sampled and characterized by translation elongation factor 1α sequence typing were subjected to microsatellite analysis and full-length ribosomal intergenic spacer (IGS) sequence typing. All but three isolates shared common microsatellite loci and a common two-locus sequence type (ST). This ST has an international geographical distribution in both the water networks of hospitals and among clinical isolates. The ST dominant in water was not detected among 300 isolates of F. oxysporum that originated from surrounding soils. Further characterization of 15 isolates by vegetative compatibility testing allowed us to conclude that a clonal lineage of F. oxysporum circulates in the tap water of the different hospitals. IMPORTANCE We demonstrated that a clonal lineage of Fusarium oxysporum inhabits the water distribution systems of several French hospitals. This clonal lineage, which appears to be particularly adapted to water networks, represents a potential risk for human infection and raises questions about its worldwide distribution. PMID:27663024

  5. [Analyses of pesticides in drinking water from small-scale water supplies in Schleswig-Holstein, Germany].

    PubMed

    Hippelein, M; Matthiessen, A; Kolychalow, O; Ostendorp, G

    2012-12-01

    In rural areas of Schleswig-Holstein, Germany, drinking water for about 37 000 people is provided by approximately 10 000 small-scale water supplies. For those wells data on pesticides in the drinking water are rare. In this study 100 small-scale water supplies, mainly situated in areas with intensive agriculture, fruit-growing or tree-nursery, were selected and the drinking water was analysed for pesticides. In 68 samples at least one agent or metabolite was detectable, 38 samples showed multiple contaminations. The metabolites dimethylsulfamide and chloridazone-desphenyl were found in nearly 40% of the wells in concentrations up to 42 µg/L. Bentazone was the most frequently detected biocidal agent. These data show that pesticides in drinking water from small-scale supplies are a notable issue in preventive public health. © Georg Thieme Verlag KG Stuttgart · New York.

  6. 1. DOMESTIC WATER SUPPLY TREATMENT HOUSE, ON PENSTOCK ABOVE SAR1. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. DOMESTIC WATER SUPPLY TREATMENT HOUSE, ON PENSTOCK ABOVE SAR-1. VIEW TO NORTWEST. - Santa Ana River Hydroelectric System, SAR-1 Domestic Water Supply Treatment House, Redlands, San Bernardino County, CA

  7. THE ANALYSIS OF THE TIME-SERIES FLUCTUATION OF WATER DEMAND FOR THE SMALL WATER SUPPLY BLOCK

    NASA Astrophysics Data System (ADS)

    Koizumi, Akira; Suehiro, Miki; Arai, Yasuhiro; Inakazu, Toyono; Masuko, Atushi; Tamura, Satoshi; Ashida, Hiroshi

    The purpose of this study is to define one apartment complex as "the water supply block" and to show the relationship between the amount of water supply for an apartment house and its time series fluctuation. We examined the observation data which were collected from 33 apartment houses. The water meters were installed at individual observation points for about 20 days in Tokyo. This study used Fourier analysis in order to grasp the irregularity in a time series data. As a result, this paper demonstrated that the smaller the amount of water supply became, the larger irregularity the time series fluctuation had. We also found that it was difficult to describe the daily cyclical pattern for a small apartment house using the dominant periodic components which were obtained from a Fourier spectrum. Our research give useful information about the design for a directional water supply system, as to making estimates of the hourly fluctuation and the maximum daily water demand.

  8. 43 CFR 404.3 - What is the Reclamation Rural Water Supply Program?

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 43 Public Lands: Interior 1 2013-10-01 2013-10-01 false What is the Reclamation Rural Water Supply Program? 404.3 Section 404.3 Public Lands: Interior Regulations Relating to Public Lands BUREAU OF RECLAMATION, DEPARTMENT OF THE INTERIOR RECLAMATION RURAL WATER SUPPLY PROGRAM Overview § 404.3 What is the Reclamation Rural Water Supply Program?...

  9. 43 CFR 404.3 - What is the Reclamation Rural Water Supply Program?

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 43 Public Lands: Interior 1 2012-10-01 2011-10-01 true What is the Reclamation Rural Water Supply Program? 404.3 Section 404.3 Public Lands: Interior Regulations Relating to Public Lands BUREAU OF RECLAMATION, DEPARTMENT OF THE INTERIOR RECLAMATION RURAL WATER SUPPLY PROGRAM Overview § 404.3 What is the Reclamation Rural Water Supply Program?...

  10. Water supply and needs for West Texas

    USDA-ARS?s Scientific Manuscript database

    This presentation focused on the water supplies and needs of West Texas, Texas High Plains. Groundwater is the most commonly used water resources on the Texas High Plains, with withdrawals from the Ogallala Aquifer dominating. The saturation thickness of the Ogallala Aquifer in Texas is such that t...

  11. Prevalence of pathogenic free-living amoeba and other protozoa in natural and communal piped tap water from Queen Elizabeth protected area, Uganda.

    PubMed

    Sente, Celsus; Erume, Joseph; Naigaga, Irene; Mulindwa, Julius; Ochwo, Sylvester; Magambo, Phillip Kimuda; Namara, Benigna Gabriela; Kato, Charles Drago; Sebyatika, George; Muwonge, Kevin; Ocaido, Michael

    2016-08-03

    Pathogenic water dwelling protozoa such as Acanthamoeba spp., Hartmannella spp., Naegleria spp., Cryptosporidium spp. and Giardia spp. are often responsible for devastating illnesses especially in children and immunocompromised individuals, yet their presence and prevalence in certain environment in sub-Saharan Africa is still unknown to most researchers, public health officials and medical practitioners. The objective of this study was to establish the presence and prevalence of pathogenic free-living amoeba (FLA), Cryptosporidium and Giardia in Queen Elizabeth Protected Area (QEPA). Samples were collected from communal taps and natural water sites in QEPA. Physical water parameters were measured in situ. The samples were processed to detect the presence of FLA trophozoites by xenic cultivation, Cryptosporidium oocysts by Ziehl-Neelsen stain and Giardia cysts by Zinc Sulphate floatation technique. Parasites were observed microscopically, identified, counted and recorded. For FLA, genomic DNA was extracted for amplification and sequencing. Both natural and tap water sources were contaminated with FLA, Cryptosporidium spp. and Giardia spp. All protozoan parasites were more abundant in the colder rainy season except for Harmannella spp. and Naegleria spp. which occurred more in the warmer months. The prevalence of all parasites was higher in tap water than in natural water samples. There was a strong negative correlation between the presence of Acanthamoeba spp., Hartmannella spp., Cryptosporidium spp. and Giardia spp. with Dissolved Oxygen (DO) (P < 0.05). The presence of Cryptosporidium spp. showed a significant positive correlation (P < 0.05) with conductivity, pH and Total Dissolved Solids (TDS); whereas the presence of Giardia spp. had only a strong positive correlation with TDS. Molecular genotyping of FLA produced 7 Acanthamoeba, 5 Echinamoeba, 2 Hartmannella, 1 Bodomorpha, 1 Nuclearia and 1 Cercomonas partial sequences. All water collection sites were

  12. Lead and Copper Tap Sample Site Plan Instructions

    EPA Pesticide Factsheets

    This document may be used by public water systems in Wyoming and on EPA R8 Tribal Lands as a guide for how to properly complete their lead and copper tap sample site plans to comply with the Lead and Copper Rule.

  13. [Comparison of different types automatic water-supply system for mouse rearing (author's transl)].

    PubMed

    Kikuchi, S; Suzuki, M; Tagashira, Y

    1979-04-01

    Rearing and breeding scores were compared between groups of mice (JCL : ICR and ddN strains) raised with two different types of automatic water-supply systems; the Japanese type and the American type, using manual water-supply system as control. The mice raised with the manual water-supply system were superior in body weight gain as compared to those with two automatic water-supply systems. As to the survival rate, however, the m; anual water-supply system and the Japanese type gave better results than the American type. As to weanling rate in the breeding test, the manual water-supply system gave somewhat better result than either of the two automatic types. Accidental water leaks, which are serious problems of automatic systems, occurred frequently only when the American type was used. Only one defect of the Japanese type revealed was that it was unfavorable for mice with smaller size (e.g., young ddN mice), resulting in lower body weight gain as well as lower breeding scores.

  14. 40 CFR 125.62 - Attainment or maintenance of water quality which assures protection of public water supplies...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...) water quality criteria shall be based on the following: (i) For aquatic life criteria: The pollutant... quality which assures protection of public water supplies; assures the protection and propagation of a... maintenance of water quality which assures protection of public water supplies; assures the protection and...

  15. 40 CFR 125.62 - Attainment or maintenance of water quality which assures protection of public water supplies...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...) water quality criteria shall be based on the following: (i) For aquatic life criteria: The pollutant... quality which assures protection of public water supplies; assures the protection and propagation of a... maintenance of water quality which assures protection of public water supplies; assures the protection and...

  16. 40 CFR 125.62 - Attainment or maintenance of water quality which assures protection of public water supplies...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...) water quality criteria shall be based on the following: (i) For aquatic life criteria: The pollutant... quality which assures protection of public water supplies; assures the protection and propagation of a... maintenance of water quality which assures protection of public water supplies; assures the protection and...

  17. 40 CFR 125.62 - Attainment or maintenance of water quality which assures protection of public water supplies...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...) water quality criteria shall be based on the following: (i) For aquatic life criteria: The pollutant... quality which assures protection of public water supplies; assures the protection and propagation of a... maintenance of water quality which assures protection of public water supplies; assures the protection and...

  18. 40 CFR 125.62 - Attainment or maintenance of water quality which assures protection of public water supplies...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...) water quality criteria shall be based on the following: (i) For aquatic life criteria: The pollutant... quality which assures protection of public water supplies; assures the protection and propagation of a... maintenance of water quality which assures protection of public water supplies; assures the protection and...

  19. Occurrence of immunosuppressive drugs and their metabolites in the sewage-impacted Vistula and Utrata Rivers and in tap water from the Warsaw region (Poland).

    PubMed

    Giebułtowicz, Joanna; Nałęcz-Jawecki, Grzegorz

    2016-04-01

    Immunosuppresive therapy following organ transplant frequently includes treatment with tacrolimus and mycophenolic acid derivatives. These pharmaceuticals may enter the environment through wastewater treatment plant (WWTP) effluents and may have a potentially harmful effect on aquatic biota. Tacrolimus, mycophenolic acid and their metabolites were measured at specific points of a large Polish river (Vistula), a smaller river (Utrata) and in tap water samples from the Warsaw region. Analysis was performed using liquid chromatography tandem mass spectrometry, after solid phase extraction for water samples, or QuEChERS extraction for sediments. Residues of tacrolimus were below quantitation limits in both water and sediment samples. However, in water samples mycophenolic acid concentrations were measured at up to 180 ng L(-1) downstream of WWTP outfalls. No immunosuppressive drugs were detected in tap water. Concentrations of mycophenolic acid exceeded the predicted no effect concentration (PNEC) value in some Polish surface water, and risk calculations predicted at least twice higher concentrations in some other countries of the European Union. To the best of the authors' knowledge, this is the first report of these immunosuppressive drug concentrations in the environment. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Contamination of piped medical gas supply with water.

    PubMed

    Hay, H

    2000-08-01

    The failure of anaesthetic equipment as a result of maintenance is extremely rare. The ingress of water into the flowmeters of an anaesthetic machine from the piped medical air supply is reported and is possibly unique. The piped medical air supply was open to the atmosphere during maintenance. Water condensed in the gas pipeline and this was not noticed during subsequent testing. Water was seen leaking from the orthopaedic air tools used for surgery but was assumed to be from the autoclaving process. Later the same day, when medical air from the piped source was used as part of the gas mixture for a general anaesthetic, water was seen filling the barrel of the flowmeter air control valve. This could have had far-reaching and dangerous consequences for the patient, which were fortunately averted.

  1. Viruses in non-disinfected drinking water from municipal wells are related to community rates of acute gastrointestinal illness

    USDA-ARS?s Scientific Manuscript database

    Groundwater supplies for drinking water are frequently contaminated with low-levels of human enteric virus genomes, yet evidence for waterborne disease transmission is lacking. We related qPCR-measured enteric viruses in the tap water of 14 non-chlorinating communities in the U.S. to acute gastroint...

  2. Modelling Parameters Characterizing Selected Water Supply Systems in Lower Silesia Province

    NASA Astrophysics Data System (ADS)

    Nowogoński, Ireneusz; Ogiołda, Ewa

    2017-12-01

    The work presents issues of modelling water supply systems in the context of basic parameters characterizing their operation. In addition to typical parameters, such as water pressure and flow rate, assessing the age of the water is important, as a parameter of assessing the quality of the distributed medium. The analysis was based on two facilities, including one with a diverse spectrum of consumers, including residential housing and industry. The carried out simulations indicate the possibility of the occurrence of water quality degradation as a result of excessively long periods of storage in the water supply network. Also important is the influence of the irregularity of water use, especially in the case of supplying various kinds of consumers (in the analysed case - mining companies).

  3. Fish assemblage responses to water withdrawals and water supply reservoirs in Piedmont streams

    USGS Publications Warehouse

    Freeman, Mary C.; Marcinek, P.A.

    2006-01-01

    Understanding effects of flow alteration on stream biota is essential to developing ecologically sustainable water supply strategies. We evaluated effects of altering flows via surface water withdrawals and instream reservoirs on stream fish assemblages, and compared effects with other hypothesized drivers of species richness and assemblage composition. We sampled fishes during three years in 28 streams used for municipal water supply in the Piedmont region of Georgia, U.S.A. Study sites had permitted average withdrawal rates that ranged from 13 times the stream?s seven-day, ten-year recurrence low flow (7Q10), and were located directly downstream either from a water supply reservoir or from a withdrawal taken from an unimpounded stream. Ordination analysis of catch data showed a shift in assemblage composition at reservoir sites corresponding to dominance by habitat generalist species. Richness of fluvial specialists averaged about 3 fewer species downstream from reservoirs, and also declined as permitted withdrawal rate increased above about 0.5 to one 7Q10-equivalent of water. Reservoir presence and withdrawal rate, along with drainage area, accounted for 70% of the among-site variance in fluvial specialist richness and were better predictor variables than percent of the catchment in urban land use or average streambed sediment size. Increasing withdrawal rate also increased the odds that a site?s Index of Biotic Integrity score fell below a regulatory threshold indicating biological impairment. Estimates of reservoir and withdrawal effects on stream biota could be used in predictive landscape models to support adaptive water supply planning intended to meet societal needs while conserving biological resources.

  4. Water supply and management concepts

    USGS Publications Warehouse

    Leopold, Luna Bergere

    1965-01-01

    If I had to cite one fact about water in the United States which would be not only the most important but also the most informative, the one I would choose would k this: Over 50 percent of all the water presently being used in the United States is used by industry, and nearly all of that is used for cooling.The large amount of attention recently being given to water shortage and the expected rapid increase in demand for water is probably to some extent clouded because there are certain simple facts about water availability and water use which, though readily available, are not generally either known or understood.Probably most people react to information in the public press about present and possible future water shortages with the thought that it is going to be more difficult in the future to supply the ordinary household with water for drinking, washing, and tbe culinary arts. As a matter of fact that may be true to some extent, but it is not the salient aspect.

  5. Summary of geology and ground-water resources of Passaic County, New Jersey

    USGS Publications Warehouse

    Carswell, L.D.; Rooney, J.G.

    1976-01-01

    Ground water in Passaic County occurs in intergranular openings of unconsolidated stratified deposits of Quaternary age and in joints and fractures in consolidated rocks of Precambrian, Paleozoic, and Triassic age.The Brunswick Formation of Triassic age is the most important aquifer in the southeastern one-third of Passaic County. Reported yields of public supply and industrial wells range from 50 to 510 gallons per minute (3 to 32 litres per second) and the median yield is 130 gallons per minute (8 litres per second). Most of these wells are 200 to 400 feet (61 to 122 metres) deep. The median yield of all public supply and industrial wells over 300 feet (91 metres) deep and 8 inches (203 millimetres) or larger in diameter is 230 gallons per minute (15 litres per second). Crystalline rocks of Precambrian age are the major source of ground water for domestic use in the northwestern two-thirds of Passaic County. Reported well yields range from 1 to 200 gallons per minute (.06 to 13 litres per second). The median reported yield of domestic wells is 5 gallons per minute (.31 litres per second) and that of public supply wells is 30 gallons per minute (2 litres per second).Other consolidated rocks--rocks of Paleozoic age and the Watchung Basalt of Traissic age--are utilized primarily for domestic water supplies in Passaic County. Reported yields of wells tapping the Paleozoic rocks range from less than 1 to 35 gallons per minute (.06 to 2 litres per second) and the median yield is 10 gallons per minute (.63 litres per second). Reported yields of domestic wells tapping the Watchung Basalt range from less than 1 to 40 gallons per minute (.06 to 3 litres per second) and the median yield is 12 gallons per minute (.76 litres per second). However, reported yields of nine industrial and commercial wells range from 50 to 180 gallons per minute (3 to 11 litres per second).Unconsolidated stratified deposits of Quaternary age are locally an important source of ground water for

  6. Factors affecting continued use of ceramic water purifiers distributed to tsunami-affected communities in Sri Lanka.

    PubMed

    Casanova, Lisa M; Walters, Adam; Naghawatte, Ajith; Sobsey, Mark D

    2012-11-01

    There is little information about continued use of point-of-use technologies after disaster relief efforts. After the 2004 tsunami, the Red Cross distributed ceramic water filters in Sri Lanka. This study determined factors associated with filter disuse and evaluate the quality of household drinking water. A cross-sectional survey of water sources and treatment, filter use and household characteristics was administered by in-person oral interview, and household water quality was tested. Multivariable logistic regression was used to model probability of filter non-use. At the time of survey, 24% of households (107/452) did not use filters; the most common reason given was breakage (42%). The most common household water sources were taps and wells. Wells were used by 45% of filter users and 28% of non-users. Of households with taps, 75% had source water Escherichia coli in the lowest World Health Organisation risk category (<1/100 ml), vs. only 30% of households reporting wells did. Tap households were approximately four times more likely to discontinue filter use than well households. After 2 years, 24% of households were non-users. The main factors were breakage and household water source; households with taps were more likely to stop use than households with wells. Tap water users also had higher-quality source water, suggesting that disuse is not necessarily negative and monitoring of water quality can aid decision-making about continued use. To promote continued use, disaster recovery filter distribution efforts must be joined with capacity building for long-term water monitoring, supply chains and local production. © 2012 Blackwell Publishing Ltd.

  7. Biomechanical loading on the upper extremity increases from single key tapping to directional tapping.

    PubMed

    Qin, Jin; Trudeau, Matthieu; Katz, Jeffrey N; Buchholz, Bryan; Dennerlein, Jack T

    2011-08-01

    Musculoskeletal disorders associated with computer use span the joints of the upper extremity. Computing typically involves tapping in multiple directions. Thus, we sought to describe the loading on the finger, wrist, elbow and shoulder joints in terms of kinematic and kinetic difference across single key switch tapping to directional tapping on multiple keys. An experiment with repeated measures design was conducted. Six subjects tapped with their right index finger on a stand-alone number keypad placed horizontally in three conditions: (1) on single key switch (the number key 5); (2) left and right on number key 4 and 6; (3) top and bottom on number key 8 and 2. A force-torque transducer underneath the keypad measured the fingertip force. An active-marker infrared motion analysis system measured the kinematics of the fingertip, hand, forearm, upper arm and torso. Joint moments for the metacarpophalangeal, wrist, elbow, and shoulder joints were estimated using inverse dynamics. Tapping in the top-bottom orientation introduced the largest biomechanical loading on the upper extremity especially for the proximal joint, followed by tapping in the left-right orientation, and the lowest loading was observed during single key switch tapping. Directional tapping on average increased the fingertip force, joint excursion, and peak-to-peak joint torque by 45%, 190% and 55%, respectively. Identifying the biomechanical loading patterns associated with these fundamental movements of keying improves the understanding of the risks of upper extremity musculoskeletal disorders for computer keyboard users. Copyright © 2010 Elsevier Ltd. All rights reserved.

  8. Future water supply management adaptation measures - case study of Ljubljana field aquifer

    NASA Astrophysics Data System (ADS)

    Čenčur Curk, B.; Zajc Benda, T.; Souvent, P.; Bračič Železnik, B.; Bogardi, I.

    2012-04-01

    The main drinking water supply problems are related to the significant change of groundwater quantity and quality observed in the last decades as an effect of land use practices and very likely also climate change. The latter may affect the ability of drinking water suppliers to provide enough water of sufficient quality to the consumers. These topics were studied in the frame of SEE project CC-WaterS (Climate Change and Impact on Water Supply) with the main goal to develop a water supply management system regarding optimisation of water extraction and land use restrictions under climate change scenarios for water suppliers, since existing management practices are mostly inadequate to reduce impacts of CC on water supply reliability. The main goal was a designation of appropriate measures and risk assessment to adapt water supply to changing climate and land use activities considering socio-economic aspects. This was accomplished by using 'Fuzzy Decimaker', which is a tool for selecting and ranking risk reduction measures or management actions for local waterworks or water authorities under the pressure of climate change. Firstly, management options were selected and ranked. For public water supply of Ljubljana, the capital of Slovenia, several management options were selected. For improvement of water supply and preservation of water resource quantities there is a need for engineering interventions, such as reducing water losses on pipelines. For improving drinking water safety and preserving water resource quality farmers are not allowed to use fertilisers in the first safeguarding zone and they get compensations for income reduction because of lower farming production. Compensations for farming restrictions in the second safeguarding zone were applied as additional management option. On the other hand, drinking water treatment is another management option to be considered. Trends in groundwater level are decreasing, above all recharge areas of waterworks

  9. Public water supplies in central and north-central Texas

    USGS Publications Warehouse

    Sundstrom, Raymond W.; Broadhurst, W.L.; Dwyer, B.C.

    1949-01-01

    This report gives a summarized description of the public water supplies in 35 counties of central and north-central Texas, extending from the southern boundaries of Travis, Blanco, Gillespie, and Kerr Counties northward to the TexasOklahoma State line. It gives the available data as follows for each of the 145 communities: Population of the community; name of the official from whom the information was obtained; ownership of water works, whether private or municipal source of supply, whether ground water or surface water; the amount of water consumed; the facilities for storage; the number of customers served; the character of the chemical and sanitary treatment, if any; and chemical analyses of the water. Where ground water is used, the following is also given: Records of wells, including drillers' logs; character of the pumping equipment; yields of the wells, and records of water levels, if available.

  10. TAPS for Pupils

    ERIC Educational Resources Information Center

    Earle, Sarah

    2018-01-01

    By placing the Focused Assessment approach within the TAPS pyramid framework, schools are beginning to find a number of ways in which learning in science can be enhanced for pupils. The quotations in this article provide examples of the ways in which science subject leaders (SSL) describe the impact of TAPS on their pupils.

  11. COMMUNITY WATER QUALITY INFORMATION SYSTEM FOR A NEW AND SUSTAINABLE WATER SUPPLY

    EPA Science Inventory

    Clearwater Renewable Resource Facility. The Clearwater facility will provide a carefully selected blend of recharged Colorado River water and groundwater to the community beginning in 2001, thereby providing a renewable drinking water supply, lessening dependence on Tucson's p...

  12. How Do Households Respond to Unreliable Water Supplies? A Systematic Review.

    PubMed

    Majuru, Batsirai; Suhrcke, Marc; Hunter, Paul R

    2016-12-09

    Although the Millennium Development Goal (MDG) target for drinking water was met, in many developing countries water supplies are unreliable. This paper reviews how households in developing countries cope with unreliable water supplies, including coping costs, the distribution of coping costs across socio-economic groups, and effectiveness of coping strategies in meeting household water needs. Structured searches were conducted in peer-reviewed and grey literature in electronic databases and search engines, and 28 studies were selected for review, out of 1643 potentially relevant references. Studies were included if they reported on strategies to cope with unreliable household water supplies and were based on empirical research in developing countries. Common coping strategies include drilling wells, storing water, and collecting water from alternative sources. The choice of coping strategies is influenced by income, level of education, land tenure and extent of unreliability. The findings of this review highlight that low-income households bear a disproportionate coping burden, as they often engage in coping strategies such as collecting water from alternative sources, which is labour and time-intensive, and yields smaller quantities of water. Such alternative sources may be of lower water quality, and pose health risks. In the absence of dramatic improvements in the reliability of water supplies, a point of critical avenue of enquiry should be what coping strategies are effective and can be readily adopted by low income households.

  13. How Do Households Respond to Unreliable Water Supplies? A Systematic Review

    PubMed Central

    Majuru, Batsirai; Suhrcke, Marc; Hunter, Paul R.

    2016-01-01

    Although the Millennium Development Goal (MDG) target for drinking water was met, in many developing countries water supplies are unreliable. This paper reviews how households in developing countries cope with unreliable water supplies, including coping costs, the distribution of coping costs across socio-economic groups, and effectiveness of coping strategies in meeting household water needs. Structured searches were conducted in peer-reviewed and grey literature in electronic databases and search engines, and 28 studies were selected for review, out of 1643 potentially relevant references. Studies were included if they reported on strategies to cope with unreliable household water supplies and were based on empirical research in developing countries. Common coping strategies include drilling wells, storing water, and collecting water from alternative sources. The choice of coping strategies is influenced by income, level of education, land tenure and extent of unreliability. The findings of this review highlight that low-income households bear a disproportionate coping burden, as they often engage in coping strategies such as collecting water from alternative sources, which is labour and time-intensive, and yields smaller quantities of water. Such alternative sources may be of lower water quality, and pose health risks. In the absence of dramatic improvements in the reliability of water supplies, a point of critical avenue of enquiry should be what coping strategies are effective and can be readily adopted by low income households. PMID:27941695

  14. Game theory competition analysis of reservoir water supply and hydropower generation

    NASA Astrophysics Data System (ADS)

    Lee, T.

    2013-12-01

    The total installed capacity of the power generation systems in Taiwan is about 41,000 MW. Hydropower is one of the most important renewable energy sources, with hydropower generation capacity of about 4,540 MW. The aim of this research is to analyze competition between water supply and hydropower generation in water-energy systems. The major relationships between water and energy systems include hydropower generation by water, energy consumption for water system operation, and water consumption for energy system. In this research, a game-theoretic Cournot model is formulated to simulate oligopolistic competition between water supply, hydropower generation, and co-fired power generation in water-energy systems. A Nash equilibrium of the competitive market is derived and solved by GAMS with PATH solver. In addition, a case study analyzing the competition among water supply and hydropower generation of De-ji and Ku-Kuan reservoirs, Taipower, Star Energy, and Star-Yuan power companies in central Taiwan is conducted.

  15. Potential effects of landscape change on water supplies in the presence of reservoir storage

    NASA Astrophysics Data System (ADS)

    Guswa, Andrew J.; Hamel, Perrine; Dennedy-Frank, P. James

    2017-04-01

    This work presents a set of methods to evaluate the potential effects of landscape changes on water supplies. Potential impacts are a function of the seasonality of precipitation, losses of water to evapotranspiration and deep recharge, the flow-regulating ability of watersheds, and the availability of reservoir storage. For a given reservoir capacity, simple reservoir simulations with daily precipitation and streamflow enable the determination of the maximum steady supply of water for both the existing watershed and a hypothetical counter-factual that has neither flow-regulating benefits nor any losses. These two supply values, representing land use end-members, create an envelope that defines the water-supply service and bounds the effect of landscape change on water supply. These bounds can be used to discriminate between water supplies that may be vulnerable to landscape change and those that are unlikely to be affected. Two indices of the water-supply service exhibit substantial variability across 593 watersheds in the continental United States. Rcross, the reservoir capacity at which landscape change is unlikely to have any detrimental effect on water supply has an interquartile range of 0.14-4% of mean-annual-streamflow. Steep, forested watersheds with seasonal climates tend to have greater service values, and the indices of water-supply service are positively correlated with runoff ratios during the months with lowest flows.

  16. Assessment of climate change impact on water diversion strategies of Melamchi Water Supply Project in Nepal

    NASA Astrophysics Data System (ADS)

    Shrestha, Sangam; Shrestha, Manish; Babel, Mukand S.

    2017-04-01

    This paper analyzes the climate change impact on water diversion plan of Melamchi Water Supply Project (MWSP) in Nepal. The MWSP is an interbasin water transfer project aimed at diverting water from the Melamchi River of the Indrawati River basin to Kathmandu Valley for drinking water purpose. Future temperature and precipitation of the basin were predicted using the outputs of two regional climate models (RCMs) and two general circulation models (GCMs) under two representative concentration pathway (RCP) scenarios which were then used as inputs to Soil and Water Assessment Tool (SWAT) to predict the water availability and evaluate the water diversion strategies in the future. The average temperature of the basin is projected to increase by 2.35 to 4.25 °C under RCP 4.5 and RCP 8.5, respectively, by 2085s. The average precipitation in the basin is projected to increase by 6-18 % in the future. The annual water availability is projected to increase in the future; however, the variability is observed in monthly water availability in the basin. The water supply and demand scenarios of Kathmandu Valley was also examined by considering the population increase, unaccounted for water and water diversion from MWSP in the future. It is observed that even with the additional supply of water from MWSP and reduction of unaccounted for water, the Kathmandu Valley will be still under water scarcity in the future. The findings of this study can be helpful to formulate water supply and demand management strategies in Kathmandu Valley in the context of climate change in the future.

  17. The development of community water supplies in Ghana*

    PubMed Central

    Ferguson, W. R. W.

    1962-01-01

    Ghana, with a population of 6 700 000, largely distributed in rural districts, is representative of many a country where the problem of water supply is associated with the construction of numerous small supplies for the villages and towns scattered over the whole area. This paper gives a general impression of the various methods in use for tackling the problem. Well-sinking, drilling, and pond-digging, and the advantages and disadvantages of a variety of methods, are described, and the problems met with under different geological conditions are considered. Details of the various systems for pumping the water from the source to the villages and towns are given. The important question of standardization, both in design and equipment, is dealt with, and reference is made to the operation of supplies and to the training of operatives. PMID:13892347

  18. 49 CFR 192.151 - Tapping.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 3 2010-10-01 2010-10-01 false Tapping. 192.151 Section 192.151 Transportation... BY PIPELINE: MINIMUM FEDERAL SAFETY STANDARDS Design of Pipeline Components § 192.151 Tapping. (a) Each mechanical fitting used to make a hot tap must be designed for at least the operating pressure of...

  19. Optimal crop selection and water allocation under limited water supply in irrigation

    NASA Astrophysics Data System (ADS)

    Stange, Peter; Grießbach, Ulrike; Schütze, Niels

    2015-04-01

    Due to climate change, extreme weather conditions such as droughts may have an increasing impact on irrigated agriculture. To cope with limited water resources in irrigation systems, a new decision support framework is developed which focuses on an integrated management of both irrigation water supply and demand at the same time. For modeling the regional water demand, local (and site-specific) water demand functions are used which are derived from optimized agronomic response on farms scale. To account for climate variability the agronomic response is represented by stochastic crop water production functions (SCWPF). These functions take into account different soil types, crops and stochastically generated climate scenarios. The SCWPF's are used to compute the water demand considering different conditions, e.g., variable and fixed costs. This generic approach enables the consideration of both multiple crops at farm scale as well as of the aggregated response to water pricing at a regional scale for full and deficit irrigation systems. Within the SAPHIR (SAxonian Platform for High Performance IRrigation) project a prototype of a decision support system is developed which helps to evaluate combined water supply and demand management policies.

  20. A Clonal Lineage of Fusarium oxysporum Circulates in the Tap Water of Different French Hospitals.

    PubMed

    Edel-Hermann, Véronique; Sautour, Marc; Gautheron, Nadine; Laurent, Julie; Aho, Serge; Bonnin, Alain; Sixt, Nathalie; Hartemann, Philippe; Dalle, Frédéric; Steinberg, Christian

    2016-11-01

    Fusarium oxysporum is typically a soilborne fungus but can also be found in aquatic environments. In hospitals, water distribution systems may be reservoirs for the fungi responsible for nosocomial infections. F. oxysporum was previously detected in the water distribution systems of five French hospitals. Sixty-eight isolates from water representative of all hospital units that were previously sampled and characterized by translation elongation factor 1α sequence typing were subjected to microsatellite analysis and full-length ribosomal intergenic spacer (IGS) sequence typing. All but three isolates shared common microsatellite loci and a common two-locus sequence type (ST). This ST has an international geographical distribution in both the water networks of hospitals and among clinical isolates. The ST dominant in water was not detected among 300 isolates of F. oxysporum that originated from surrounding soils. Further characterization of 15 isolates by vegetative compatibility testing allowed us to conclude that a clonal lineage of F. oxysporum circulates in the tap water of the different hospitals. We demonstrated that a clonal lineage of Fusarium oxysporum inhabits the water distribution systems of several French hospitals. This clonal lineage, which appears to be particularly adapted to water networks, represents a potential risk for human infection and raises questions about its worldwide distribution. Copyright © 2016, American Society for Microbiology. All Rights Reserved.