Mortazavi, Vajihesadat; Fathi, Mohammadhossein; Katiraei, Najmeh; Shahnaseri, Shirin; Badrian, Hamid; Khalighinejad, Navid
2012-01-01
Background: With the aim of developing methods that could increase the fracture resistance of structurally compromised endodontically treated teeth, this study was conducted to compare the effect of three esthetic post systems on the fracture resistance and failure modes of structurally compromised and normal roots. Materials and Methods: Forty five extracted and endodontically treated maxillary central teeth were assigned to 5 experimental groups (n=9). In two groups, the post spaces were prepared with the corresponding drills of the post systems to be restored with double taper light posts (DT.Light-Post) (group DT.N) and zirconia posts (Cosmopost) (group Zr.N). In other 3 groups thin wall canals were simulated to be restored with Double taper Light posts (DT.W), double taper Light posts and Ribbond fibers (DT+R.W) and Zirconia posts (Zr.W). After access cavity restoration and thermocycling, compressive load was applied and the fracture strength values and failure modes were evaluated. Data were analyzed using two-way ANOVA, Tukey and Fisher exact tests (P<0.05). Results: The mean failure loads (N) were 678.56, 638.22, 732.44, 603.44 and 573.67 for groups DT.N, Zr.N, DT.W, DT+R.W and Zr.w respectively. Group DT+R.W exhibited significantly higher resistance to fracture compared to groups Zr.N, DT.W and Zr.w (P<0.05). A significant difference was detected between groups DT.N and Zr.W (P=0.027). Zirconia posts showed significantly higher root fracture compared to fiber posts (P=0.004). Conclusion: The structurally compromised teeth restored with double taper light posts and Ribbond fibers showed the most fracture resistance and their strengths were comparable to those of normal roots restored with double taper light posts. More desirable fracture patterns were observed in teeth restored with fiber posts. PMID:22623936
Vertically-tapered optical waveguide and optical spot transformer formed therefrom
Bakke, Thor; Sullivan, Charles T.
2004-07-27
An optical waveguide is disclosed in which a section of the waveguide core is vertically tapered during formation by spin coating by controlling the width of an underlying mesa structure. The optical waveguide can be formed from spin-coatable materials such as polymers, sol-gels and spin-on glasses. The vertically-tapered waveguide section can be used to provide a vertical expansion of an optical mode of light within the optical waveguide. A laterally-tapered section can be added adjacent to the vertically-tapered section to provide for a lateral expansion of the optical mode, thereby forming an optical spot-size transformer for efficient coupling of light between the optical waveguide and a single-mode optical fiber. Such a spot-size transformer can also be added to a III-V semiconductor device by post processing.
Pruthi, Varun; Talwar, Sangeeta; Nawal, Ruchika Roongta; Pruthi, Preeti Jain; Choudhary, Sarika; Yadav, Seema
2018-01-01
The aim of this study was to evaluate retention & fracture resistance of different fibre posts. 90 extracted human permanent maxillary central incisors were used in this study. For retention evaluation, after obturation, post space preparation was done in all root canals and posts were cemented under three groups. Later, the posts were grasped & pulled out from the roots with the help of a three-jaw chuck at a cross-head speed of 5mm/min. Force required to dislodge each post was recorded in Newtons. To evaluate the fracture behavior of posts, artificial root canals were drilled into aluminium blocks and posts were cemented. Load required to fracture each post was recorded in Newtons. The results of the present study show the mean retention values for Fibrekleer Parallel post were significantly greater than those for Synca Double tapered post & Bioloren Tapered post. The mean retention values of the Double tapered post & the tapered post were not statistically different. The Synca Double tapered post had the highest mean load to fracture, and this value was significantly higher than those of FibreKleer Parallel & Bioloren Tapered post. The mean fracture resistance values of Parallel & tapered post were not statistically different. This study showed parallel posts to have better retention than tapered and double tapered posts. Regarding the fracture resistance, double tapered posts were found to be better than parallel and tapered posts.
Bhatti, Namrata; Sroa, Renu; Sikri, Vimal K
2010-04-01
To determine the shaping ability and cleaning efficiency of hand K-flexofiles, ProTaper, LightSpeed and Mtwo instruments during the preparation of curved root canals in extracted human teeth. A total of 120 root canals of mandibular and maxillary molars with curvature more than 20° were divided into four groups of 30 each. In group A, canals were prepared using hand K-flexofiles following the crown down technique. In group B LightSpeed, in group C ProTaper, and in group D Mtwo rotary instruments were used to prepare the root canals. Using pre- and post-instrumentation radiographs, straightening of the canal curvature was determined with Corel Draw 9.0 software tools. The amount of debris and smear layer were quantified at three different areas (coronal, middle, and apical thirds) of root canal using SEM. The collected data were analyzed statistically using Student's paired 't' test. The mean change in curvature for hand K-files was 7.71°, for ProTaper files 6.03°, for Mtwo 5.43°, and for LightSpeed instruments were found to be 4.57°. The percentage change in the curvature for all the four groups was statistically highly significant (P< 0.01). LightSpeed instruments maintained the original canal curvature significantly (P< 0.01) better than the other instruments. For leftover debris, the minimum percentage was found to be associated with ProTaper (65.48%) followed by Mtwo (66.22%), LightSpeed (71.67%) and the maximum with hand K-files (74.16%). However, the difference in mean leftover debris between ProTaper and Mtwo was not significant. ProTaper and Mtwo resulted in good cleaning, and LightSpeed maintained the original canal curvature better than the ProTaper, Mtwo, or Hand K-files.
NASA Astrophysics Data System (ADS)
Ren, Yundong; Zhang, Rui; Ti, Chaoyang; Liu, Yuxiang
2016-09-01
Tapered optical fibers can deliver guided light into and carry light out of micro/nanoscale systems with low loss and high spatial resolution, which makes them ideal tools in integrated photonics and microfluidics. Special geometries of tapered fibers are desired for probing monolithic devices in plane as well as optical manipulation of micro particles in fluids. However, for many specially shaped tapered fibers, it remains a challenge to fabricate them in a straightforward, controllable, and repeatable way. In this work, we fabricated and characterized two special geometries of tapered optical fibers, namely fiber loops and helices, that could be switched between one and the other. The fiber loops in this work are distinct from previous ones in terms of their superior mechanical stability and high optical quality factors in air, thanks to a post-annealing process. We experimentally measured an intrinsic optical quality factor of 32,500 and a finesse of 137 from a fiber loop. A fiber helix was used to characterize a monolithic cavity optomechanical device. Moreover, a microfluidic "roller coaster" was demonstrated, where microscale particles in water were optically trapped and transported by a fiber helix. Tapered fiber loops and helices can find various applications ranging from on-the-fly characterization of integrated photonic devices to particle manipulation and sorting in microfluidics.
Signore, Antonio; Benedicenti, Stefano; Kaitsas, Vassilios; Barone, Michele; Angiero, Francesca; Ravera, Giambattista
2009-02-01
This retrospective study investigated the clinical effectiveness over up to 8 years of parallel-sided and of tapered glass-fiber posts, in combination with either hybrid composite or dual-cure composite resin core material, in endodontically treated, maxillary anterior teeth covered with full-ceramic crowns. The study population comprised 192 patients and 526 endodontically treated teeth, with various degrees of hard-tissue loss, restored by the post-and-core technique. Four groups were defined based on post shape and core build-up materials, and within each group post-and-core restorations were assigned randomly with respect to root morphology. Inclusion criteria were symptom-free endodontic therapy, root-canal treatment with a minimum apical seal of 4mm, application of rubber dam, need for post-and-core complex because of coronal tooth loss, and tooth with at least one residual coronal wall. Survival rate of the post-and-core restorations was determined using Kaplan-Meier statistical analysis. The restorations were examined clinically and radiologically; mean observation period was 5.3 years. The overall survival rate of glass-fiber post-and-core restorations was 98.5%. The survival rate for parallel-sided posts was 98.6% and for tapered posts was 96.8%. Survival rates for core build-up materials were 100% for dual-cure composite and 96.8% for hybrid light-cure composite. For both glass-fiber post designs and for both core build-up materials, clinical performance was satisfactory. Survival was higher for teeth retaining four and three coronal walls.
Efficacy of Tramadol Extended-Release for Opioid Withdrawal: A Randomized Clinical Trial.
Dunn, Kelly E; Tompkins, D Andrew; Bigelow, George E; Strain, Eric C
2017-09-01
Opioid use disorder (OUD) is a significant public health problem. Supervised withdrawal (ie, detoxification) from opioids using clonidine or buprenorphine hydrochloride is a widely used treatment. To evaluate whether tramadol hydrochloride extended-release (ER), an approved analgesic with opioid and nonopioid mechanisms of action and low abuse potential, is effective for use in supervised withdrawal settings. A randomized clinical trial was conducted in a residential research setting with 103 participants with OUD. Participants' treatment was stabilized with morphine, 30 mg, administered subcutaneously 4 times daily. A 7-day taper using clonidine (n = 36), tramadol ER (n = 36), or buprenorphine (n = 31) was then instituted, and patients were crossed-over to double-blind placebo during a post-taper period. The study was conducted from October 25, 2010, to June 23, 2015. Retention, withdrawal symptom management, concomitant medication utilization, and naltrexone induction. Results were analyzed over time and using area under the curve for the intention-to-treat and completer groups. Of the 103 participants, 88 (85.4%) were men and 43 (41.7%) were white; mean (SD) age was 28.9 (10.4) years. Buprenorphine participants (28 [90.3%]) were significantly more likely to be retained at the end of the taper compared with clonidine participants (22 [61.1%]); tramadol ER retention was intermediate and did not differ significantly from that of the other groups (26 [72.2%]; χ2 = 8.5, P = .01). Time-course analyses of withdrawal revealed significant effects of phase (taper, post taper) for the Clinical Opiate Withdrawal Scale (COWS) score (taper mean, 5.19 [SE, .26]; post-taper mean, 3.97 [SE, .23]; F2,170 = 3.6, P = .03) and Subjective Opiate Withdrawal Scale (SOWS) score (taper mean,8.81 [SE, .40]; post-taper mean, 4.14 [SE, .30]; F2,170 = 15.7, P < .001), but no group effects or group × phase interactions. Analyses of area under the curve of SOWS total scores showed significant reductions (F2,159 = 17.7, P < .001) in withdrawal severity between the taper and post-taper periods for clonidine (taper mean, 13.1; post-taper mean, 3.2; P < .001) and tramadol ER (taper mean, 7.4; post-taper mean, 2.8; P = .03), but not buprenorphine (taper mean, 6.4; post-taper mean, 7.4). Use of concomitant medication increased significantly (F2,159 = 30.7, P < .001) from stabilization to taper in the clonidine (stabilization mean, 0.64 [SE, .05]; taper mean, 1.54 [SE, .10]; P < .001) and tramadol ER (stabilization mean, 0.53 [SE, .05]; taper mean, 1.19 [SE, .09]; P = .003) groups and from stabilization to post taper in the buprenorphine group (stabilization mean, 0.46 [SE, .05] post-taper mean, 1.17 [SE, .09]; P = .006), suggesting higher withdrawal for those groups during those periods. Naltrexone initiation was voluntary and the percentage of participants choosing naltrexone therapy within the clonidine (8 [22.2%]), tramadol ER (7 [19.4%]), or buprenorphine (3 [9.7%]) groups did not differ significantly (χ2 = 2.5, P = .29). The results of this trial suggest that tramadol ER is more effective than clonidine and comparable to buprenorphine in reducing opioid withdrawal symptoms during a residential tapering program. Data support further examination of tramadol ER as a method to manage opioid withdrawal symptoms. Clinicaltrials.gov Identifier: NCT01188421.
Rusu, M; Kivistö, Samuli; Gawith, C; Okhotnikov, O
2005-10-17
We report on successful realization of a picosecond visible-continuum source embedding a single mode fiber taper. The output of ytterbium mode-locked fiber laser was frequency doubled in a periodically-polled lithium niobate (PPLN) crystal to produce green pump light. Spectral brightness of the white light generated in the tapered fiber was improved by limiting the broadening just to the visible wavelengths. The influence of taper parameters, particularly the dispersion, on white light spectrum has been studied.
NASA Astrophysics Data System (ADS)
Rusu, M.; Kivistö, Samuli; Gawith, C. B. E.; Okhotnikov, O. G.
2005-10-01
We report on successful realization of a picosecond visible-continuum source embedding a single mode fiber taper. The output of ytterbium mode-locked fiber laser was frequency doubled in a periodically-polled lithium niobate (PPLN) crystal to produce green pump light. Spectral brightness of the white light generated in the tapered fiber was improved by limiting the broadening just to the visible wavelengths. The influence of taper parameters, particularly the dispersion, on white light spectrum has been studied.
Bolpasi, V; von Klitzing, W
2010-11-01
A 1 W tapered amplifier requiring only 200 μW of injection power at 780 nm is presented in this paper. This is achieved by injecting the seeding light into the amplifier from its tapered side and feeding the amplified light back into the small side. The amplified spontaneous emission of the tapered amplifier is suppressed by 75 dB. The double-passed tapered laser, presented here, is extremely stable and reliable. The output beam remains well coupled to the optical fiber for a timescale of months, whereas the injection of the seed light did not require realignment for over a year of daily operation.
Using a slightly tapered optical fiber to attract and transport microparticles.
Sheu, Fang-Wen; Wu, Hong-Yu; Chen, Sy-Hann
2010-03-15
We exploit a fiber puller to transform a telecom single-mode optical fiber with a 125 microm diameter into a symmetric and unbroken slightly tapered optical fiber with a 50 microm diameter at the minimum waist. When the laser light is launched into the optical fiber, we can observe that, due to the evanescent wave of the slightly tapered fiber, the nearby polystyrene microparticles with 10 microm diameters will be attracted onto the fiber surface and roll separately in the direction of light propagation. We have also simulated and compared the optical propulsion effects on the microparticles when the laser light is launched into a slightly tapered fiber and a heavily tapered (subwavelength) fiber, respectively.
Functional significance of the taper of vertebrate cone photoreceptors
Hárosi, Ferenc I.
2012-01-01
Vertebrate photoreceptors are commonly distinguished based on the shape of their outer segments: those of cones taper, whereas the ones from rods do not. The functional advantages of cone taper, a common occurrence in vertebrate retinas, remain elusive. In this study, we investigate this topic using theoretical analyses aimed at revealing structure–function relationships in photoreceptors. Geometrical optics combined with spectrophotometric and morphological data are used to support the analyses and to test predictions. Three functions are considered for correlations between taper and functionality. The first function proposes that outer segment taper serves to compensate for self-screening of the visual pigment contained within. The second function links outer segment taper to compensation for a signal-to-noise ratio decline along the longitudinal dimension. Both functions are supported by the data: real cones taper more than required for these compensatory roles. The third function relates outer segment taper to the optical properties of the inner compartment whereby the primary determinant is the inner segment’s ability to concentrate light via its ellipsoid. In support of this idea, the rod/cone ratios of primarily diurnal animals are predicted based on a principle of equal light flux gathering between photoreceptors. In addition, ellipsoid concentration factor, a measure of ellipsoid ability to concentrate light onto the outer segment, correlates positively with outer segment taper expressed as a ratio of characteristic lengths, where critical taper is the yardstick. Depending on a light-funneling property and the presence of focusing organelles such as oil droplets, cone outer segments can be reduced in size to various degrees. We conclude that outer segment taper is but one component of a miniaturization process that reduces metabolic costs while improving signal detection. Compromise solutions in the various retinas and retinal regions occur between ellipsoid size and acuity, on the one hand, and faster response time and reduced light sensitivity, on the other. PMID:22250013
Pisanello, Marco; Oldenburg, Ian A.; Sileo, Leonardo; Markowitz, Jeffrey E.; Peterson, Ralph E.; Della Patria, Andrea; Haynes, Trevor M.; Emara, Mohamed S.; Spagnolo, Barbara; Datta, Sandeep Robert; De Vittorio, Massimo; Sabatini, Bernardo L.
2017-01-01
Optogenetics promises spatiotemporal precise control of neural processes using light. However, the spatial extent of illumination within the brain is difficult to control and cannot be adjusted using standard fiber optics. We demonstrate that optical fibers with tapered tips can be used to illuminate either spatially restricted or large brain volumes. Remotely adjusting the light input angle to the fiber varies the light-emitting portion of the taper over several millimeters without movement of the implant. We use this mode to activate dorsal versus ventral striatum of individual mice and reveal different effects of each manipulation on motor behavior. Conversely, injecting light over the full numerical aperture of the fiber results in light emission from the entire taper surface, achieving broader and more efficient optogenetic activation of neurons when compared to the standard flat-faced fiber stimulation. Thus, tapered fibers permit focal or broad illumination that can be precisely and dynamically matched to experimental needs. PMID:28628101
Pisanello, Ferruccio; Mandelbaum, Gil; Pisanello, Marco; Oldenburg, Ian A; Sileo, Leonardo; Markowitz, Jeffrey E; Peterson, Ralph E; Della Patria, Andrea; Haynes, Trevor M; Emara, Mohamed S; Spagnolo, Barbara; Datta, Sandeep Robert; De Vittorio, Massimo; Sabatini, Bernardo L
2017-08-01
Optogenetics promises precise spatiotemporal control of neural processes using light. However, the spatial extent of illumination within the brain is difficult to control and cannot be adjusted using standard fiber optics. We demonstrate that optical fibers with tapered tips can be used to illuminate either spatially restricted or large brain volumes. Remotely adjusting the light input angle to the fiber varies the light-emitting portion of the taper over several millimeters without movement of the implant. We use this mode to activate dorsal versus ventral striatum of individual mice and reveal different effects of each manipulation on motor behavior. Conversely, injecting light over the full numerical aperture of the fiber results in light emission from the entire taper surface, achieving broader and more efficient optogenetic activation of neurons, compared to standard flat-faced fiber stimulation. Thus, tapered fibers permit focal or broad illumination that can be precisely and dynamically matched to experimental needs.
Photonic lantern with multimode fibers embedded
NASA Astrophysics Data System (ADS)
Yu, Hai-Jiao; Yan, Qi; Huang, Zong-Jun; Tian, He; Jiang, Yu; Liu, Yong-Jun; Zhang, Jian-Zhong; Sun, Wei-Min
2014-08-01
A photonic lantern is studied which is formed by seven multimode fibers inserted into a pure silica capillary tube. The core of the tapered end has a uniform refractive index because the polymer claddings are removed before the fibers are inserted. Consequently, the light distribution is also uniform. Two theories describing a slowly varying waveguide and multimode coupling are used to analyze the photonic lantern. The transmission loss decreases as the length of the tapered part increases. For a device with a taper length of 3.4 cm, the loss is about 1.06 dB on average for light propagating through the taper from an inserted fiber to the tapered end and 0.99 dB in the reverse direction. For a device with a taper length of 0.7 cm, the two loss values are 2.63 dB and 2.53 dB, respectively. The results show that it is possible to achieve a uniform light distribution with the tapered end and a low-loss transmission in the device if parameters related to the lantern are reasonably defined.
Cost-benefit analysis of sequential warning lights in nighttime work zone tapers.
DOT National Transportation Integrated Search
2011-06-01
Improving safety at nighttime work zones is important because of the extra visibility concerns. The deployment of sequential lights is an innovative method for improving driver recognition of lane closures and work zone tapers. Sequential lights are ...
Influence of post pattern and resin cement curing mode on the retention of glass fibre posts.
Poskus, L T; Sgura, R; Paragó, F E M; Silva, E M; Guimarães, J G A
2010-04-01
To evaluate the influence of post design and roughness and cement system (dual- or self-cured) on the retention of glass fibre posts. Two tapered and smooth posts (Exacto Cônico No. 2 and White Post No. 1) and two parallel-sided and serrated posts (Fibrekor 1.25 mm and Reforpost No. 2) were adhesively luted with two different resin cements--a dual-cured (Rely-X ARC) and a self-cured (Cement Post)--in 40 single-rooted teeth. The teeth were divided into eight experimental groups (n = 5): PFD--Parallel-serrated-Fibrekor/dual-cured; PRD--Parallel-serrated-Reforpost/dual-cured; TED--Tapered-smooth-Exacto Cônico/dual-cured; TWD--Tapered-smooth-White Post/dual-cured; PFS--Parallel-serrated-Fibrekor/self-cured; PRS--Parallel-serrated-Reforpost/self-cured; TES--Tapered-smooth-Exacto Cônico/self-cured; TWS--Tapered-smooth-White Post/self-cured. The specimens were submitted to a pull-out test at a crosshead speed of 0.5 mm min(-1). Data were analysed using analysis of variance and Bonferroni's multiple comparison test (alpha = 0.05). Pull-out results (MPa) were: PFD = 8.13 (+/-1.71); PRD = 8.30 (+/-0.46); TED = 8.68 (+/-1.71); TWD = 9.35 (+/-1.99); PFS = 8.54 (+/-2.23); PRS = 7.09 (+/-1.96); TES = 8.27 (+/-3.92); TWS = 7.57 (+/-2.35). No statistical significant difference was detected for posts and cement factors and their interaction. The retention of glass fibre posts was not affected by post design or surface roughness nor by resin cement-curing mode. These results imply that the choice for serrated posts and self-cured cements is not related to an improvement in retention.
Dimagno, Matthew J; Wamsteker, Erik-Jan; Rizk, Rafat S; Spaete, Joshua P; Gupta, Suraj; Sahay, Tanya; Costanzo, Jeffrey; Inadomi, John M; Napolitano, Lena M; Hyzy, Robert C; Desmond, Jeff S
2014-03-01
There are many published clinical guidelines for acute pancreatitis (AP). Implementation of these recommendations is variable. We hypothesized that a clinical decision support (CDS) tool would change clinician behavior and shorten hospital length of stay (LOS). Observational study, entitled, The AP Early Response (TAPER) Project. Tertiary center emergency department (ED) and hospital. Two consecutive samplings of patients having ICD-9 code (577.0) for AP were generated from the emergency department (ED) or hospital admissions. Diagnosis of AP was based on conventional Atlanta criteria. The Pre-TAPER-CDS-Tool group (5/30/06-6/22/07) had 110 patients presenting to the ED with AP per 976 ICD-9 (577.0) codes and the Post-TAPER-CDS-Tool group (5/30/06-6/22/07) had 113 per 907 ICD-9 codes (7/14/10-5/5/11). The TAPER-CDS-Tool, developed 12/2008-7/14/2010, is a combined early, automated paging-alert system, which text pages ED clinicians about a patient with AP and an intuitive web-based point-of-care instrument, consisting of seven early management recommendations. The pre- vs. post-TAPER-CDS-Tool groups had similar baseline characteristics. The post-TAPER-CDS-Tool group met two management goals more frequently than the pre-TAPER-CDS-Tool group: risk stratification (P<0.0001) and intravenous fluids >6L/1st 0-24 h (P=0.0003). Mean (s.d.) hospital LOS was significantly shorter in the post-TAPER-CDS-Tool group (4.6 (3.1) vs. 6.7 (7.0) days, P=0.0126). Multivariate analysis identified four independent variables for hospital LOS: the TAPER-CDS-Tool associated with shorter LOS (P=0.0049) and three variables associated with longer LOS: Japanese severity score (P=0.0361), persistent organ failure (P=0.0088), and local pancreatic complications (<0.0001). The TAPER-CDS-Tool is associated with changed clinician behavior and shortened hospital LOS, which has significant financial implications.
Sheu, Fang-Wen; Huang, Yen-Si
2013-01-01
A stripped no-core optical fiber with a 125 μm diameter was transformed into a symmetric and unbroken optical fiber that tapers slightly to a 45-μm-diameter waist. The laser light can be easily launched into the no-core optical fiber. The enhanced evanescent wave of the slightly tapered no-core optical fiber can attract nearby 5-μm-diameter polystyrene microparticles onto the surface of the tapered multimode optical fiber within fast flowing fluid and propel the trapped particles in the direction of the light propagation to longer delivery range than is possible using a slightly tapered telecom single-mode optical fiber. PMID:23449118
Sheu, Fang-Wen; Huang, Yen-Si
2013-02-28
A stripped no-core optical fiber with a 125 µm diameter was transformed into a symmetric and unbroken optical fiber that tapers slightly to a 45-µm-diameter waist. The laser light can be easily launched into the no-core optical fiber. The enhanced evanescent wave of the slightly tapered no-core optical fiber can attract nearby 5-µm-diameter polystyrene microparticles onto the surface of the tapered multimode optical fiber within fast flowing fluid and propel the trapped particles in the direction of the light propagation to longer delivery range than is possible using a slightly tapered telecom single-mode optical fiber.
Tapered rib fiber coupler for semiconductor optical devices
Vawter, Gregory A.; Smith, Robert Edward
2001-01-01
A monolithic tapered rib waveguide for transformation of the spot size of light between a semiconductor optical device and an optical fiber or from the fiber into the optical device. The tapered rib waveguide is integrated into the guiding rib atop a cutoff mesa type semiconductor device such as an expanded mode optical modulator or and expanded mode laser. The tapered rib acts to force the guided light down into the mesa structure of the semiconductor optical device instead of being bound to the interface between the bottom of the guiding rib and the top of the cutoff mesa. The single mode light leaving or entering the output face of the mesa structure then can couple to the optical fiber at coupling losses of 1.0 dB or less.
Guelzow, A; Stamm, O; Martus, P; Kielbassa, A M
2005-10-01
To compare ex vivo various parameters of root canal preparation using a manual technique and six different rotary nickel-titanium (Ni-Ti) instruments (FlexMaster, System GT, HERO 642, K3, ProTaper, and RaCe). A total of 147 extracted mandibular molars were divided into seven groups (n = 21) with equal mean mesio-buccal root canal curvatures (up to 70 degrees), and embedded in a muffle system. All root canals were prepared to size 30 using a crown-down preparation technique for the rotary nickel-titanium instruments and a standardized preparation (using reamers and Hedströem files) for the manual technique. Length modifications and straightening were determined by standardized radiography and a computer-aided difference measurement for every instrument system. Post-operative cross-sections were evaluated by light-microscopic investigation and photographic documentation. Procedural errors, working time and time for instrumentation were recorded. The data were analysed statistically using the Kruskal-Wallis test and the Mann-Whitney U-test. No significant differences were detected between the rotary Ni-Ti instruments for alteration of working length. All Ni-Ti systems maintained the original curvature well, with minor mean degrees of straightening ranging from 0.45 degrees (System GT) to 1.17 degrees (ProTaper). ProTaper had the lowest numbers of irregular post-operative root canal diameters; the results were comparable between the other systems. Instrument fractures occurred with ProTaper in three root canals, whilst preparation with System GT, HERO 642, K3 and the manual technique resulted in one fracture each. Ni-Ti instruments prepared canals more rapidly than the manual technique. The shortest time for instrumentation was achieved with System GT (11.7 s). Under the conditions of this ex vivo study all Ni-Ti systems maintained the canal curvature, were associated with few instrument fractures and were more rapid than a standardized manual technique. ProTaper instruments created more regular canal diameters.
White light supercontinuum generation in a Y-shaped microstructured tapered fiber pumped at 1064 nm.
Cascante-Vindas, J; Díez, A; Cruz, J L; Andrés, M V
2010-07-05
We report the generation of supercontinuum in a Ge-doped Y-shape tapered fiber pumped at 1064 nm in the ns pump regime. The taper was designed to have long taper transitions and a taper waist with a core diameter of 0.9 mum. The large air-filling fraction and diameter of the air-hole microstructure reduces the confinement loss at long wavelengths so, enabling the extension of the spectrum to longer wavelengths. Along the taper transition the zero-dispersion wavelength decreases as the diameter of the taper becomes smaller. The spectral components generated along the taper transition pump the taper waist, enhancing the generation of short wavelengths. A flat spectrum spanning from 420 nm to 1850 nm is reported.
Kim, Hyuntai; Kim, Jongki; Jung, Yongmin; Vazquez-Zuniga, Luis Alonso; Lee, Seung Jong; Choi, Geunchang; Oh, Kyunghwan; Wang, Pu; Clarkson, W A; Jeong, Yoonchan
2012-11-05
We propose a simple and efficient light launch scheme for a helical-core fiber (HCF) by using an adiabatically tapered splice technique, through which we overcome its inherent difficulty with light launch owing to the large lateral offset and angular tilt of its core. We experimentally demonstrate single-mode excitation in the HCF in this configuration, which yields the coupling efficiency of around -5.9 dB (26%) for a ~1.1-μm light input when the splice joint is tapered down to 30 μm in diameter. To our knowledge, this is the first proof-of-principle report on the fusion-splice coupling between an HCF and a conventional single-mode fiber.
Lin, Bing-Chen; Chen, Kuo-Ju; Wang, Chao-Hsun; Chiu, Ching-Hsueh; Lan, Yu-Pin; Lin, Chien-Chung; Lee, Po-Tsung; Shih, Min-Hsiung; Kuo, Yen-Kuang; Kuo, Hao-Chung
2014-01-13
A tapered AlGaN electron blocking layer with step-graded aluminum composition is analyzed in nitride-based blue light-emitting diode (LED) numerically and experimentally. The energy band diagrams, electrostatic fields, carrier concentration, electron current density profiles, and hole transmitting probability are investigated. The simulation results demonstrated that such tapered structure can effectively enhance the hole injection efficiency as well as the electron confinement. Consequently, the LED with a tapered EBL grown by metal-organic chemical vapor deposition exhibits reduced efficiency droop behavior of 29% as compared with 44% for original LED, which reflects the improvement in hole injection and electron overflow in our design.
Experimental Investigation of Superradiance in a Tapered Free-Electron Laser Amplifier
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hidaka, Y.; She, Y.; Murphy, J.B.
2011-03-28
We report experimental studies of the effect of undulator tapering on superradiance in a single-pass high-gain free-electron laser (FEL) amplifier. The experiments were performed at the Source Development Laboratory (SDL) of National Synchrotron Light Source (NSLS). Efficiency was nearly tripled with tapering. Both the temporal and spectral properties of the superradiant FEL along the uniform and tapered undulator were experimentally characterized using frequency-resolved optical gating (FROG) images. Numerical studies predicted pulse broadening and spectral cleaning by undulator tapering Pulse broadening was experimentally verified. However, spectral cleanliness degraded with tapering. We have performed first experiments with a tapered undulator and amore » short seed laser pulse. Pulse broadening with tapering expected from simulations was experimentally confirmed. However, the experimentally obtained spectra degraded with tapering, whereas the simulations predicted improvement. A further numerical study is under way to resolve this issue.« less
Tapered fibers embedded in silica aerogel.
Xiao, Limin; Grogan, Michael D W; Leon-Saval, Sergio G; Williams, Rhys; England, Richard; Wadsworth, Willam J; Birks, Tim A
2009-09-15
We have embedded thin tapered fibers (with diameters down to 1 microm) in silica aerogel with low loss. The aerogel is rigid but behaves refractively like air, protecting the taper without disturbing light propagation along it. This enables a new class of fiber devices exploiting volume evanescent interactions with the aerogel itself or with dopants or gases in the pores.
Collection of Light From an Optical Fiber With a Numerical Aperture Greater Than One
NASA Technical Reports Server (NTRS)
Egalon, Claudio O. (Inventor); Rogowski, Robert S. (Inventor)
1996-01-01
In an optical fiber having NA greater than 1, light may be internally reflected when it strikes the fiber end at a fiber-air interface. This problem may be overcome by modification of the fiber by reverse tapering the core. Light is redirected by the taper to strike the interface at an angle closer to normal. This allows light to exit the fiber end that would by internally reflected in an untapered fiber of NA greater than 1. The novelty of the present invention lies in the tapering of the fiber core for increased through transmission of light. Prior art devices have made use of fiber tapers to achieve mode control or fiber coupling. The problem of internal reflection has not been addressed as it is one that is not as important in fibers having NA less than 1, which are more common. In chemical sensing it is advantageous to make use of fibers having higher NA due to an increased sensitivity. However the advantages in sensitivity are diminished due to the loss of signal at the fiber-air interface. The present invention overcomes the problem of loss at the interface, thus facilitating the use of high NA fibers for chemical sensing.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tagliabue, Giulia; Thomas J. Watson, Sr. Laboratories of Applied Physics, California Institute of Technology, Pasadena, California 91125; Poulikakos, Dimos
2016-05-30
Gap-plasmons (GP) in metal-insulator-metal (MIM) structures have shown exceptional performance in guiding and concentrating light within deep subwavelength layers. Reported designs to date exploit tapered thicknesses of the insulating layer in order to confine and focus the GP mode. Here, we propose a mechanism for the three dimensional concentration of light in planar MIM structures which exploits exclusively the lateral tapering of the front metallic layer while keeping a constant thickness of the insulating layer. We demonstrate that an array of tapered planar GP nanocavities can efficiently concentrate light in all three dimensions. A semi-analytical, one-dimensional model provides understanding ofmore » the underlying physics and approximately predicts the behavior of the structure. Three-dimensional simulations are then used to precisely calculate the optical behavior. Cavities with effective volumes as small as 10{sup −5} λ{sup 3} are achieved in an ultrathin MIM configuration. Our design is inherently capable of efficiently coupling with free-space radiation. In addition, being composed of two electrically continuous layers separated by an ultrathin dielectric spacer, it could find interesting applications in the area of active metamaterials or plasmonic photocatalysis where both electrical access and light concentration are required.« less
Pulido-Navarro, María Guadalupe; Escamilla-Ambrosio, Ponciano Jorge; Marrujo-García, Sigifredo; Álvarez-Chávez, José Alfredo; Martínez-Piñón, Fernando
2017-07-01
In this work the feasibility of employing two well-known techniques already used on designing optical fiber sensors is explored. The first technique employed involves monomode tapered fibers, which were fabricated using a taper machine designed, built, and implemented in our laboratory. This implementation greatly reduced the costs and fabrication time allowing us to produce the desired taper length and transmission conditions. The second technique used fiber Bragg gratings, which we decided to have mechanically induced and for that reason we devised and produced our own mechanical gratings with the help of a computer numerical control tool. This grating had to be fabricated with aluminum to withstand temperatures of up to 600°C. When light traveling through an optical fiber reaches a taper it couples into the cladding layer and comes back into the core when the taper ends. In the same manner, when the light encounters gratings in the fiber, it couples to the cladding modes, and when the gratings end, the light couples back into the core. For our experimentation, the tapering machine was programmed to fabricate single-mode tapers with 3 cm length, and the mechanically induced gratings characteristics were 5 cm length, and had a period of 500 μm and depth of the period of 300 μm. For the conducting tests, the tapered fiber is positioned in between two aluminum slabs, one grooved and the other plane. These two blocks accomplish the mechanically induced long period grating (LPG); the gratings on the grooved plaque are imprinted on the taper forming the period gratings. An optical spectrum analyzer is used to observe the changes on the transmission spectrum as the temperature varies from 20°C to 600°C. The resultant attenuation peak wavelength in the transmission spectrum shifts up to 8 nm, which is a higher shift compared to what has been reported using nontapered fibers. As the temperature increases there is no longer a shift, but there is significant power loss. Such a characteristic can be used as well for sensing applications.
Changes of propagation light in optical fiber submicron wires
NASA Astrophysics Data System (ADS)
Stasiewicz, K. A.; Łukowski, A.; Jaroszewicz, L. R.
2013-05-01
At the moment technology allows to miniaturize measurement system to several micrometers. Application of an optical fiber taper in such system needs to manufacture a new one with diameters below single micrometers which is very difficult and expensive. Another way to obtain this level of diameters is the process of tapering from the existing fibers. In the paper, experimental results of propagation light from a supercontinnum sources of the wavelength generates the wavelength of 350-2000 nm, in different optical fiber submicron wires made from tapers manufactured from single mode fibers are presented. Biconical optical fibers' tapers were manufactured in low pressure gas burner technique. There are presented spectral characteristics of a propagated beam. For the test, there was manufactured an optical fiber submicron wires with a different length of waist region with a diameter near one micrometer. We put to the test a taper made from a standard telecommunication fiber SMF-28 with a cutoff wavelength equal to 1260.
Application of fiber tapers in astronomy
NASA Astrophysics Data System (ADS)
Marcel, Jaclyn; Haynes, Roger; Bland-Hawthorn, Joss
2006-06-01
Fiber tapers have the potential to significantly advance instrument technology into the realm of fully integrated optical systems. Our initial investigation was directed at the use of fiber tapers as f-ratio transformation devices. Using a technique developed for testing focal ratio degradation (FRD), a collimated light source was injected at different angles into various fiber taper samples and the far-field profile of the fiber output was observed. We compare the FRD present in the optical fiber tapers with conventional fibers and determine how effectively fiber tapers perform as image converters. We demonstrate that while silica fiber tapers may have slightly more intrinsic FRD than conventional fibers they still show promise as adiabatic mode transformers and are worth investigating further for their potential use in astronomical instruments. In this paper we present a brief review of the current status of fiber tapers with particular focus on the astronomical applications. We demonstrate the conservation of etendue in the taper transformation process and present the experimental results for a number of different taper profiles and manufacturers.
[Application of hand-use ProTaper instruments in endodontic treatment of molar canals].
Ma, Sui-qi; Xie, Qian; Zhou, Yin-feng
2010-07-01
To evaluate the application of hand-use ProTaper instruments in endodontic treatment of molar canals. A total of 203 permanent molars were randomly divided into the experimental group (99 molars) and control group (104 molars) prepared by hand-use ProTaper instruments and standard stainless steel K-file, respectively. The molars in the two groups were obturated by cold lateral condensation technique. The root canal preparation and obturation were evaluated by radiograph, and the working time of preparation and post-operative emergencies were analyzed. The preparation time in the experimental group was obviously shorter than that in the control group (P<0.01). The rate of satisfactory effect was significantly higher in the experimental group than in the control group (P<0.01), and the rate of post-operative emergencies was significantly lower in the experimental group (P<0.01). The application of hand-use ProTaper instruments may improve the effect of root canal treatment of the molars and shorten the working time and reduce the post-operative emergencies.
Supercompensation Kinetics of Physical Qualities During a Taper in Team-Sport Athletes.
Marrier, Bruno; Robineau, Julien; Piscione, Julien; Lacome, Mathieu; Peeters, Alexis; Hausswirth, Christophe; Morin, Jean-Benoît; Le Meur, Yann
2017-10-01
Peaking for major competition is considered critical for maximizing team-sport performance. However, there is little scientific information available to guide coaches in prescribing efficient tapering strategies for team-sport players. To monitor the changes in physical performance in elite team-sport players during a 3-wk taper after a preseason training camp. Ten male international rugby sevens players were tested before (Pre) and after (Post) a 4-wk preseason training camp focusing on high-intensity training and strength training with moderate loads and once each week during a subsequent 3-wk taper. During each testing session, midthigh-pull maximal strength, sprint-acceleration mechanical outputs, and performance, as well as repeated-sprint ability (RSA), were assessed. At Post, no single peak performance was observed for maximal lower-limb force output and sprint performance, while RSA peaked for only 1 athlete. During the taper, 30-m-sprint time decreased almost certainly (-3.1% ± 0.9%, large), while maximal lower-limb strength and RSA, respectively, improved very likely (+7.7% ± 5.3%, small) and almost certainly (+9.0% ± 2.6%, moderate). Of the peak performances, 70%, 80%, and 80% occurred within the first 2 wk of taper for RSA, maximal force output, and sprint performance, respectively. These results show the sensitivity of physical qualities to tapering in rugby sevens players and suggest that an ~1- to 2-wk tapering time frame appears optimal to maximize the overall physical-performance response.
Tapered undulator for SASE FELs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fawley, William M.; Huang, Zhirong; Kim, Kwang-Je
We discuss the use of tapered undulators to enhance the performance of free-electron lasers (FELs) based upon self-amplified spontaneous emission (SASE), where the radiation tends to have a relatively broad bandwidth, limited temporal phase coherence, and large amplitude fluctuations. Using the polychromatic FEL simulation code GINGER, we numerically demonstrate the effectiveness of a tapered undulator for parameters corresponding to the existing Argonne low-energy undulator test line (LEUTL) FEL. We also study possible tapering options for proposed x-ray FELs such as the Linac Coherent Light Source (LCLS).
Arslan, Hakan; Yildiz, Ezgi Doganay; Gunduz, Hicran Ates; Sumbullu, Meltem; Bayrakdar, Ibrahim Sevki; Karatas, Ertugrul; Sumbullu, Muhammed Akif
2017-01-01
Aim: The aim of this study is to evaluate the root canal transportation, centering ability, and instrumentation times with the ProTaper Gold (Dentsply Tulsa Dental, Tulsa, OK, USA), Reciproc (VDW, Munich, Germany), and ProTaper Universal (Dentsply Maillefer, Ballaigues, Switzerland) using cone-beam computed tomography (CBCT). Materials and Methods: Thirty mesial root canals of mandibular first molars with curvature angles of 35°–70° and radii of 2–6 mm were included in the study. Root canal instrumentation was performed up to F2 or R25. The instrumentation times were recorded. CBCT scanning was performed both pre- and post-instrumentation. Root canal transportation and the centering ratio were calculated for groups, and the data were analyzed using a one-way ANOVA and least significant difference post hoc tests for the instrumentation time, root canal transportation, and centering ratio at the 95% confidence level (P = 0.05). Results: At 3, 5, and 7 mm levels, there was no significant difference in the root canal transportation and centering ratio among the groups (P > 0.05). There were significant differences between the Reciproc and ProTaper Universal groups in the instrumentation times (P < 0.05). Conclusion: Root canal transportation and the centering ratio with the ProTaper Gold were similar to those obtained with the ProTaper Universal and Reciproc. PMID:29259355
Double-clad fiber with a tapered end for confocal endomicroscopy.
Lemire-Renaud, Simon; Strupler, Mathias; Benboujja, Fouzi; Godbout, Nicolas; Boudoux, Caroline
2011-11-01
We present a double-clad fiber coupler (DCFC) for use in confocal endomicroscopy to reduce speckle contrast, increase signal collection while preserving optical sectioning. The DCFC is made by incorporating a double-clad tapered fiber (DCTF) to a fused-tapered DCFC for achromatic transmission (from 1265 nm to 1325 nm) of > 95% illumination light trough the single mode (SM) core and collection of > 40% diffuse light through inner cladding modes. Its potential for confocal endomicroscopy is demonstrated in a spectrally-encoded imaging setup which shows a 3 times reduction in speckle contrast as well as 5.5 × increase in signal collection compared to imaging with a SM fiber.
Method of forming shrink-fit compression seal
NASA Technical Reports Server (NTRS)
Podgorski, T. J. (Inventor)
1977-01-01
A method for making a glass-to-metal seal is described. A domed metal enclosure having a machined seal ring is fitted to a glass post machined to a slight taper and to a desired surface finish. The metal part is then heated by induction in a vacuum. As the metal part heats and expands relative to the glass post, the metal seal ring, possessing a higher coefficient of expansion than the glass post, slides down the tapered post. Upon cooling, the seal ring crushes against the glass post forming the seal. The method results in a glass-to-metal seal possessing extremely good leak resistance, while the parts are kept clean and free of the contaminants.
Pisanello, Marco; Della Patria, Andrea; Sileo, Leonardo; Sabatini, Bernardo L; De Vittorio, Massimo; Pisanello, Ferruccio
2015-10-01
Optogenetic approaches to manipulate neural activity have revolutionized the ability of neuroscientists to uncover the functional connectivity underlying brain function. At the same time, the increasing complexity of in vivo optogenetic experiments has increased the demand for new techniques to precisely deliver light into the brain, in particular to illuminate selected portions of the neural tissue. Tapered and nanopatterned gold-coated optical fibers were recently proposed as minimally invasive multipoint light delivery devices, allowing for site-selective optogenetic stimulation in the mammalian brain [Pisanello , Neuron82, 1245 (2014)]. Here we demonstrate that the working principle behind these devices is based on the mode-selective photonic properties of the fiber taper. Using analytical and ray tracing models we model the finite conductance of the metal coating, and show that single or multiple optical windows located at specific taper sections can outcouple only specific subsets of guided modes injected into the fiber.
Supercontinuum generation from 437 to 2850 nm in a tapered fluorotellurite microstructured fiber
NASA Astrophysics Data System (ADS)
Wang, F.; Jia, Z. X.; Yao, C. F.; Wang, S. B.; Hu, M. L.; Wu, C. F.; Ohishi, Y.; Qin, W. P.; Qin, G. S.
2016-12-01
We demonstrated supercontinuum (SC) generation in a tapered fluorotellurite microstructured fiber (MF) with a sub-micrometer core diameter. Fluorotellurite MFs based on TeO2-BaF2-Y2O3 glasses were fabricated by using a rod-in-tube method and a tapered fluorotellurite MF with a minimum core diameter of ~0.65 µm was prepared by employing a tapering system. A 1560 nm femtosecond fiber laser was used as the pumping source. With increasing the peak power of the launched pump laser to ~11 kW, SC light expanding from 437 to 2850 nm was generated in the tapered fluorotellurite MF. In addition, relatively strong blue-shifted dispersive wave at ~489 nm was also observed from the tapered fluorotellurite MF.
Corrugated metal-coated tapered tip for scanning near-field optical microscope.
Antosiewicz, Tomasz J; Szoplik, Tomasz
2007-08-20
This paper addresses an important issue of light throughput of a metal-coated tapered tip for scanning near-field microscope (SNOM). Corrugations of the interface between the fiber core and metal coating in the form of parallel grooves of different profiles etched in the core considerably increase the energy throughput. In 2D FDTD simulations in the Cartesian coordinates we calculate near-field light emitted from such tips. For a certain wavelength range total intensity of forward emission from the corrugated tip is 10 times stronger than that from a classical tapered tip. When realized in practice the idea of corrugated tip may lead up to twice better resolution of SNOM.
Double-clad fiber with a tapered end for confocal endomicroscopy
Lemire-Renaud, Simon; Strupler, Mathias; Benboujja, Fouzi; Godbout, Nicolas; Boudoux, Caroline
2011-01-01
We present a double-clad fiber coupler (DCFC) for use in confocal endomicroscopy to reduce speckle contrast, increase signal collection while preserving optical sectioning. The DCFC is made by incorporating a double-clad tapered fiber (DCTF) to a fused-tapered DCFC for achromatic transmission (from 1265 nm to 1325 nm) of > 95% illumination light trough the single mode (SM) core and collection of > 40% diffuse light through inner cladding modes. Its potential for confocal endomicroscopy is demonstrated in a spectrally-encoded imaging setup which shows a 3 times reduction in speckle contrast as well as 5.5 × increase in signal collection compared to imaging with a SM fiber. PMID:22076259
NASA Astrophysics Data System (ADS)
Picard, Marie-Josée.; Latrasse, Christine; Larouche, Carl; Painchaud, Yves; Poulin, Michel; Pelletier, François; Guy, Martin
2016-03-01
One of the biggest challenges of silicon photonics is the efficient coupling of light between the sub-micron SiP waveguides and a standard optical fiber (SMF-28). We recently proposed a novel approach based on a spot-size converter (SSC) that fulfills this need. The SSC integrates a tapered silicon waveguide and a superimposed structure made of a plurality of rods of high index material, disposed in an array-like configuration and embedded in a cladding of lower index material. This superimposed structure defines a waveguide designed to provide an efficient adiabatic transfer, through evanescent coupling, to a 220 nm thick Si waveguide tapered down to a narrow tip on one side, while providing a large mode overlap to the optical fiber on the other side. An initial demonstration was made using a SSC fabricated with post-processing steps. Great coupling to a SMF-28 fiber with a loss of 0.6 dB was obtained for TEpolarized light at 1550 nm with minimum wavelength dependence. In this paper, SSCs designed for operation at 1310 and 1550 nm for TE/TM polarizations and entirely fabricated in a CMOS fab are presented.
Tapered fluorotellurite microstructured fibers for broadband supercontinuum generation.
Wang, Fang; Wang, Kangkang; Yao, Chuanfei; Jia, Zhixu; Wang, Shunbin; Wu, Changfeng; Qin, Guanshi; Ohishi, Yasutake; Qin, Weiping
2016-02-01
Fluorotellurite microstructured fibers (MFs) based on TeO2-BaF2-Y2O3 glasses are fabricated by using a rod-in-tube method. Tapered fluorotellurite MFs with varied transition region lengths are prepared by employing an elongation machine. By using a tapered fluorotellurite MF with a transition region length of ∼3.3 cm as the nonlinear medium and a 1560 nm femtosecond fiber laser as the pump source, broadband supercontinuum generation covering from 470 to 2770 nm is obtained. The effects of the transition region length of the tapered fluorotellurite MF on supercontinuum generation are also investigated. Our results show that tapered fluorotellurite MFs are promising nonlinear media for generating broadband supercontinuum light expanding from visible to mid-infrared spectral region.
Tapered fiber based high power random laser.
Zhang, Hanwei; Du, Xueyuan; Zhou, Pu; Wang, Xiaolin; Xu, Xiaojun
2016-04-18
We propose a novel high power random fiber laser (RFL) based on tapered fiber. It can overcome the power scaling limitation of RFL while maintaining good beam quality to a certain extent. An output power of 26.5 W has been achieved in a half-open cavity with one kilometer long tapered fiber whose core diameter gradually changes from 8 μm to 20 μm. The steady-state light propagation equations have been modified by taking into account the effective core area to demonstrate the tapered RFL through numerical calculations. The numerical model effectively describes the power characteristics of the tapered fiber based RFL, and both the calculating and experimental results show higher power exporting potential compared with the conventional single mode RFL.
NASA Astrophysics Data System (ADS)
Chen, Shimeng; Liu, Yun; Gao, Xiaotong; Liu, Xiuxin; Peng, Wei
2014-11-01
We present a wavelength-tunable tapered optics fiber surface Plasmon resonance (SPR) sensor by polishing the end faces of multimode fibers(MMF).Two hard plastic clad optical fibers joint closely and are used as the light input and output channels. Their end faces are polished to produce two oblique planes, which are coated with gold film to be the sensing surface and the front mirror. The presence of the tapered geometry formed by the two oblique planes in the orthogonal directions makes it possible to adjust incident angle through changing the tilt angles of the two end faces, so as to achieve tuning the SPR coupling wavelength-angle pair. Compared with previous researches based a tapered optic fiber probe, we report the approach theoretically increase the signal noise ratio (SNR) by separating incident and emergent light propagating in the different coordinate fiber. Since fabricating the sensing surface and the front mirror on the two fibers to replace one single fiber tip, there is more incident light can reach the sensing surface and satisfy SPR effective. In addition, this improvement in structure has advantages of large grinding and sensing area, which can lead to high sensitivity and simple manufacture process of the sensor. Experimental measurement demonstrates the sensor has a favorable SPR resonanceabsorption and the ability of measuring refractive index (RI) of aqueous solution. This novel tapered SPR sensor has the potential to be applied to the biological sensing field.
Yuan, Yinquan; Ding, Liyun
2011-10-24
For fiber optical sensor made of tapered fiber tip, the effects of the geometrical parameters of tapered tip on two important factors have been investigated. One factor is the intensity of the evanescent wave into fluorescent layer through core-medium interface; the other is the intensity of fluorescence signal transmitted from fluorescent layer to measurement end. A dependence relation of the intensity of fluorescence signal transmitted from fluorescent layer to measurement end upon the geometrical parameters of tapered tip has been obtained. Theoretical results show that the intensity of the evanescent wave into fluorescent layer rises with the decrease of the end diameter of tapered tip, and the increase of the tip length; and the transmitted power of fluorescence signal increases linearly with the increase of the tip length due to the contribution of the side area of tapered tip. © 2011 Optical Society of America
Bi-Tapered Fiber Sensor Using a Supercontinuum Light Source for a Broad Spectral Range
NASA Astrophysics Data System (ADS)
Garcia Mina, Diego Felipe
We describe the fabrication bi-tapered optical fiber sensors designed for shorter wavelength operation and we study their optical properties. The new sensing system designed and built for the project is a specialty optical fiber that is single-mode in the visible/near infrared wavelength region of interest. In fabricating the tapered fiber we control the taper parameters, such as the down-taper and up-taper rate, shape and length, and the fiber waist diameter and length. The sensing is mode is via the electromagnetic field, which is evanescent outside the optical fiber and is confined close to the fiber's surface (within a couple hundred nanometers). The fiber sensor system has multiple advantages as a compact, simple device with an ability to detected tiny changes in the refractive index. We developed a supercontinuum light source to provide a wide spectral wavelength range from visible to near IR. The source design was based on coupling light from a femtosecond laser in a photonic crystal fiber designed for high nonlinearity. The output light was efficiently coupled into the bi-tapered fiber sensor and good signal to noise was achieved across the wavelength region. The bi-tapered fiber starts and ends with a single mode fiber in the waist region there are many modes with different propagation constants that couple to the environment outside the fiber. The signals have a strong periodic component as the wavelength is scanned; we exploit the periodicity in the signal using a discrete Fourier transform analysis to correlate signal phase changes with the refractive index changes in the local environment. For small index changes we also measure a strong correlation with the dominant Fourier amplitude component. Our experiments show that our phase-based signal processing technique works well at shorter wavelengths and we extract a new feature, the Fourier amplitude, to measure the refractive index difference. We conducted experiments using aqueous medium with controlled refractive index, such as water-glycerol mixtures. We find sensitivity to changes in the refractive index close to 0.00002 in so-called Refractive Index Units (RIUs). That is smaller than reported in recent literature, but by no means a limiting value. The technique is not limited to aqueous solutions surrounding the fiber, but it can also be adapted to study volatile organic compounds. Future improvements in the fiber sensing system are discussed, including adding thin films to the surface for label-free detection and to draw the electromagnetic field to the fiber's surface.
Merk, Susanne; Wagner, Christina; Stock, Veronika; Eichberger, Marlis; Schmidlin, Patrick R; Roos, Malgorzata; Stawarczyk, Bogna
2016-11-08
This study investigates the retention load (RL) between ZrO₂ primary crowns and secondary polyetheretherketone (PEEK) crowns made by different fabrication methods with three different tapers. Standardized primary ZrO₂ crowns were fabricated with three different tapers: 0°, 1°, and 2° ( n = 10/group). Ten secondary crowns were fabricated (i) milled from breCam BioHPP blanks (PM); (ii) pressed from industrially fabricated PEEK pellets (PP) (BioHPP Pellet); or (iii) pressed from granular PEEK (PG) (BioHPP Granulat). One calibrated operator adjusted all crowns. In total, the RL of 90 secondary crowns were measured in pull-off tests at 50 mm/min, and each specimen was tested 20 times. Two- and one-way ANOVAs followed by a Scheffé's post-hoc test were used for data analysis ( p < 0.05). Within crowns with a 0° taper, the PP group showed significantly higher retention load values compared with the other groups. Among the 1° taper, the PM group presented significantly lower retention loads than the PP group. However, the pressing type had no impact on the results. Within the 2° taper, the fabrication method had no influence on the RL. Within the PM group, the 2° taper showed significantly higher retention load compared with the 1° taper. The taper with 0° was in the same range value as the 1° and 2° tapers. No impact of the taper on the retention value was observed between the PP groups. Within the PG groups, the 0° taper presented significantly lower RL than the 1° taper, whereas the 2° taper showed no differences. The fabrication method of the secondary PEEK crowns and taper angles showed no consistent effect within all tested groups.
Vector rectangular-shape laser based on reduced graphene oxide interacting with a long fiber taper.
Gao, Lei; Zhu, Tao; Huang, Wei; Zeng, Jing
2014-10-01
A vector dual-wavelength rectangular-shape laser (RSL) based on a long fiber taper deposited with reduced graphene oxide is proposed, where nonlinearity is enhanced due to a large evanescent-field-interacting length and strong field confinement of an 8 mm fiber taper with a waist diameter of 4 μm. Graphene flakes are deposited uniformly on the taper waist with light pressure effect, so this structure guarantees both excellent saturable absorption and high nonlinearity. The RSL with a repetition rate of 7.9 MHz shows fast polarization switching in two orthogonal polarization directions, and temporal and spectral characteristics are investigated.
Plasmonic structure: fiber grating formed by gold nanorods on a tapered fiber.
Trevisanutto, J O; Linhananta, A; Das, G
2016-12-15
The authors demonstrated the fabrication of a fiber Bragg grating-like plasmonic nanostructure on the surface of a tapered optical fiber using gold nanorods (GNRs). A multimode optical fiber with core and cladding diameters of 105 and 125 μm, respectively, was used to make a tapered fiber using a dynamic etching process. The tip diameter was ∼100 nm. Light from a laser was coupled to the untapered end of the fiber, which produced a strong evanescent field around the tapered section of the fiber. The gradient force due to the evanescent field trapped the GNRs on the surface of the tapered fiber. The authors explored possible causes of the GNR distribution. The plasmonic structure will be a good candidate for sensing based on surface enhanced Raman scattering.
The use of reinforced composite resin cement as compensation for reduced post length.
Nissan, J; Dmitry, Y; Assif, D
2001-09-01
Cements that yield high retentive values are believed to allow use of shorter posts. This study investigated the use of reinforced composite resin cement as compensation for reduced dowel length. The retention values of stainless steel posts (parallel-sided ParaPost and tapered Dentatus in 5-, 8-, and 10-mm lengths) luted with Flexi-Flow titanium-reinforced composite resin and zinc phosphate cements were evaluated. Single-rooted extracted human teeth with crowns (n = 120), removed at the cementoenamel junction, were randomly divided into 4 groups of 30 samples each. Different post lengths were luted with either Flexi-Flow or zinc phosphate. Each sample was placed into a specialized jig and on a tensile testing machine with a crosshead speed of 2 mm/min, applied until failure. The effect of different posts and cements on the force required to dislodge the dowels was evaluated with multiple analyses of variance (ANOVA). One-way ANOVA with Scheffé contrast was applied to determine the effect of different post lengths on the retentive failure of posts luted with the 2 agents. Flexi-Flow reinforced composite resin cement significantly increased retention of ParaPost and Dentatus dowels (P<.001) compared with zinc phosphate. One-way ANOVA revealed no statistically significant difference (P>.05) between mean retention of both dowels luted with Flexi-Flow for all posts length used (5 mm = 8 mm = 10 mm). Mean retention values of the groups luted with zinc phosphate showed a statistically significant difference (P<.001) for the different post lengths (10 > 8 > 5 mm). Parallel-sided ParaPost dowels demonstrated a higher mean retention than tapered Dentatus dowels (P<.001). In this study, Flexi-Flow reinforced composite resin cement compensated for the reduced length of shorter parallel-sided ParaPost and tapered Dentatus dowels.
Buprenorphine tapering schedule and illicit opioid use
Ling, Walter; Hillhouse, Maureen; Domier, Catherine; Doraimani, Geetha; Hunter, Jeremy; Thomas, Christie; Jenkins, Jessica; Hasson, Albert; Annon, Jeffrey; Saxon, Andrew; Selzer, Jeffrey; Boverman, Joshua; Bilangi, Richard
2011-01-01
Aims To compare the effects of a short or long taper schedule after buprenorphine stabilization on participant outcomes as measured by opioid-free urine tests at the end of each taper period. Design This multi-site study sponsored by Clinical Trials Network (CTN, a branch of the US National Institute on Drug Abuse) was conducted from 2003 to 2005 to compare two taper conditions (7 days and 28 days). Data were collected at weekly clinic visits to the end of the taper periods, and at 1-month and 3-month post-taper follow-up visits. Setting Eleven out-patient treatment programs in 10 US cities. Intervention Non-blinded dosing with Suboxone® during the 1-month stabilization phase included 3 weeks of flexible dosing as determined appropriate by the study physicians. A fixed dose was required for the final week before beginning the taper phase. Measurements The percentage of participants in each taper group providing urine samples free of illicit opioids at the end of the taper and at follow-up. Findings At the end of the taper, 44% of the 7-day taper group (n = 255) provided opioid-free urine specimens compared to 30% of the 28-day taper group (n = 261; P = 0.0007). There were no differences at the 1-month and 3-month follow-ups (7-day = 18% and 12%; 28-day = 18% and 13%, 1 month and 3 months, respectively). Conclusion For individuals terminating buprenorphine pharmacotherapy for opioid dependence, there appears to be no advantage in prolonging the duration of taper. PMID:19149822
Vyavahare, Nishant K; Raghavendra, Srinidhi Surya; Desai, Niranjan N
2016-01-01
Complete cleaning of the root canal is the goal for ensuring success in endodontics. Removal of debris plays an important role in achieving this goal. In spite of advancements in instrument design, apical extrusion of debris remains a source of inflammation in the periradicular region. To comparatively evaluate the amount of apically extruded debris with V-Taper, ProTaper Next, and the self-adjusting File (SAF) system. Sixty-four extracted human mandibular teeth with straight root canals were taken. Access openings were done and working length determined. The samples were randomly divided into three groups: Group I - V-Taper files (n = 20), Group II - ProTaper Next (n = 20), Group III - SAF (n = 20). Biomechanical preparation was completed and the debris collected in vials to be quantitatively determined. The data obtained was statistically analyzed using ANOVA and post hoc Tukey's test. All the specimens showed apical debris extrusion. SAF showed significantly less debris extrusion compared to V-Taper and ProTaper Next (P < 0.001). Among Groups I and II, ProTaper Next showed lesser debris extrusion as compared to V-Taper, but it was not significant (P = 0.124). The SAF showed least amount of apical debris extrusion when compared to newer rotary endodontic instruments. This indicates that the incidence of inter-treatment flare-ups due to debris extrusion would be less with the SAF.
Biocular vehicle display optical designs
NASA Astrophysics Data System (ADS)
Chu, H.; Carter, Tom
2012-06-01
Biocular vehicle display optics is a fast collimating lens (f / # < 0.9) that presents the image of the display at infinity to both eyes of the viewer. Each eye captures the scene independently and the brain merges the two images into one through the overlapping portions of the images. With the recent conversion from analog CRT based displays to lighter, more compact active-matrix organic light-emitting diodes (AMOLED) digital image sources, display optical designs have evolved to take advantage of the higher resolution AMOLED image sources. To maximize the field of view of the display optics and fully resolve the smaller pixels, the digital image source is pre-magnified by relay optics or a coherent taper fiber optics plate. Coherent taper fiber optics plates are used extensively to: 1. Convert plano focal planes to spherical focal planes in order to eliminate Petzval field curvature. This elimination enables faster lens speed and/or larger field of view of eye pieces, display optics. 2. Provide pre-magnification to lighten the work load of the optics to further increase the numerical aperture and/or field of view. 3. Improve light flux collection efficiency and field of view by collecting all the light emitted by the image source and guiding imaging light bundles toward the lens aperture stop. 4. Reduce complexity of the optical design and overall packaging volume by replacing pre-magnification optics with a compact taper fiber optics plate. This paper will review and compare the performance of biocular vehicle display designs without and with taper fiber optics plate.
Fan, Qunfang; Cao, Jie; Liu, Ye; Yao, Bo; Mao, Qinghe
2013-09-01
The process of depositing nanoparticles onto tapered fiber probes with the laser-induced chemical deposition method (LICDM) and the surface-enhanced Raman scattering (SERS) detection performance of the prepared probes are experimentally investigated in this paper. Our results show that the nanoparticle-deposited tapered fiber probes prepared with the LICDM method depend strongly on the value of the cone angle. For small-angle tapered probes the nanoparticle-deposited areas are only focused at the taper tips, because the taper surfaces are mainly covered by a relatively low-intensity evanescent field. By lengthening the reaction time or increasing the induced power or solution concentration, it is still possible to deposit nanoparticles on small-angle tapers with the light-scattering effect. With 4-aminothiophenol as the testing molecule, it was found that for given preparation conditions, the cone angles for the tapered probes with the highest SERS spectral intensities for different excitation laser powers are almost the same. However, such an optimal cone angle is determined by the combined effects of both the localized surface plasmon resonance strength and the transmission loss generated by the nanoparticles deposited.
Kim, Hyeon-Cheol; Lee, Min-Ho; Yum, Jiwan; Versluis, Antheunis; Lee, Chan-Joo; Kim, Byung-Min
2010-07-01
Nickel-titanium (NiTi) rotary files can produce cleanly tapered canal shapes with low tendency of transporting the canal lumen. Because NiTi instruments are generally perceived to have high fracture risk during use, new designs have been marketed to lower fracture risks. However, these design variations may also alter the forces on a root during instrumentation and increase dentinal defects that predispose a root to fracture. This study compared the stress conditions during rotary instrumentation in a curved root for three NiTi file designs. Stresses were calculated using finite element (FE) analysis. FE models of ProFile (Dentsply Maillefer, Ballaigues, Switzerland; U-shaped cross-section and constant 6% tapered shaft), ProTaper Universal (Dentsply; convex triangular cross-section with notch and progressive taper shaft), and LightSpeed LSX (Lightspeed Technology, Inc, San Antonio, TX; noncutting round shaft) were rotated within a curved root canal. The stress and strain conditions resulting from the simulated shaping action were evaluated in the apical root dentin. ProTaper Universal induced the highest von Mises stress concentration in the root dentin and had the highest tensile and compressive principal strain components at the external root surface. The calculated stress values from ProTaper Universal, which had the biggest taper shaft, approached the strength properties of dentin. LightSpeed generated the lowest stresses. The stiffer file designs generated higher stress concentrations in the apical root dentin during shaping of the curved canal, which raises the risk of dentinal defects that may lead to apical root cracking. Thus, stress levels during shaping and fracture susceptibility after shaping vary with instrument design. Copyright 2010 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.
Efficient generation of 509 nm light by sum-frequency mixing between two tapered diode lasers
NASA Astrophysics Data System (ADS)
Tawfieq, Mahmoud; Jensen, Ole Bjarlin; Hansen, Anders Kragh; Sumpf, Bernd; Paschke, Katrin; Andersen, Peter E.
2015-03-01
We demonstrate a concept for visible laser sources based on sum-frequency generation of beam combined tapered diode lasers. In this specific case, a 1.7 W sum-frequency generated green laser at 509 nm is obtained, by frequency adding of 6.17 W from a 978 nm tapered diode laser with 8.06 W from a 1063 nm tapered diode laser, inside a periodically poled MgO doped lithium niobate crystal. This corresponds to an optical to optical conversion efficiency of 12.1%. As an example of potential applications, the generated nearly diffraction-limited green light is used for pumping a Ti:sapphire laser, thus demonstrating good beam quality and power stability. The maximum output powers achieved when pumping the Ti:sapphire laser are 226 mW (CW) and 185 mW (mode-locked) at 1.7 W green pump power. The optical spectrum emitted by the mode-locked Ti:sapphire laser shows a spectral width of about 54 nm (FWHM), indicating less than 20 fs pulse width.
Bechman, Katie; Sin, Fang En; Ibrahim, Fowzia; Norton, Sam; Matcham, Faith; Scott, David Lloyd; Cope, Andrew; Galloway, James
2018-01-01
Tapering of anti-tumour necrosis factor (TNF) therapy appears feasible, safe and effective in selected patients with rheumatoid arthritis (RA). Depression is highly prevalent in RA and may impact on flare incidence through various mechanisms. This study aims to investigate if psychological states predict flare in patients' dose tapering their anti-TNF therapy. This study is a post-hoc analysis of the Optimizing TNF Tapering in RA trial, a multicentre, randomised, open-label study investigating anti-TNF tapering in RA patients with sustained low disease activity. Patient-reported outcomes (Health Assessment Questionnaire, EuroQol 5-dimension scale, Functional Assessment of Chronic Illness Therapy fatigue scale (FACIT-F), 36-Item Short Form Survey (SF-36)) were collected at baseline. The primary outcome was flare, defined as an increase in 28-joint count Disease Activity Score (DAS28) ≥0.6 and ≥1 swollen joint. Discrete-time survival models were used to identify patient-reported outcomes that predict flare. Ninety-seven patients were randomised to taper their anti-TNF dose by either 33% or 66%. Forty-one patients flared. Higher baseline DAS28 score was associated with flare (adjusted HR 1.96 (95% CI 1.18 to 3.24), p=0.01). Disability (SF-36 physical component score), fatigue (FACIT-F) and mental health (SF-36 mental health subscale (MH)) predicted flare in unadjusted models. In multivariate analyses, only SF-36 MH remained a statistically significant predictor of flare (adjusted HR per 10 units 0.74 (95% CI 0.60 to 0.93), p=0.01). Baseline DAS28 and mental health status are independently associated with flare in patients who taper their anti-TNF therapy. Fatigue and function also associate with flare but the effect disappears when adjusting for confounders. Given these findings, mental health and functional status should be considered in anti-TNF tapering decisions in order to optimise the likelihood of success. EudraCT Number: 2010-020738-24; ISRCTN: 28955701; Post-results.
Bechman, Katie; Sin, Fang En; Ibrahim, Fowzia; Norton, Sam; Matcham, Faith; Scott, David Lloyd; Cope, Andrew; Galloway, James
2018-01-01
Background Tapering of anti-tumour necrosis factor (TNF) therapy appears feasible, safe and effective in selected patients with rheumatoid arthritis (RA). Depression is highly prevalent in RA and may impact on flare incidence through various mechanisms. This study aims to investigate if psychological states predict flare in patients’ dose tapering their anti-TNF therapy. Methods This study is a post-hoc analysis of the Optimizing TNF Tapering in RA trial, a multicentre, randomised, open-label study investigating anti-TNF tapering in RA patients with sustained low disease activity. Patient-reported outcomes (Health Assessment Questionnaire, EuroQol 5-dimension scale, Functional Assessment of Chronic Illness Therapy fatigue scale (FACIT-F), 36-Item Short Form Survey (SF-36)) were collected at baseline. The primary outcome was flare, defined as an increase in 28-joint count Disease Activity Score (DAS28) ≥0.6 and ≥1 swollen joint. Discrete-time survival models were used to identify patient-reported outcomes that predict flare. Results Ninety-seven patients were randomised to taper their anti-TNF dose by either 33% or 66%. Forty-one patients flared. Higher baseline DAS28 score was associated with flare (adjusted HR 1.96 (95% CI 1.18 to 3.24), p=0.01). Disability (SF-36 physical component score), fatigue (FACIT-F) and mental health (SF-36 mental health subscale (MH)) predicted flare in unadjusted models. In multivariate analyses, only SF-36 MH remained a statistically significant predictor of flare (adjusted HR per 10 units 0.74 (95% CI 0.60 to 0.93), p=0.01). Conclusions Baseline DAS28 and mental health status are independently associated with flare in patients who taper their anti-TNF therapy. Fatigue and function also associate with flare but the effect disappears when adjusting for confounders. Given these findings, mental health and functional status should be considered in anti-TNF tapering decisions in order to optimise the likelihood of success. Trial registration numbers EudraCT Number: 2010-020738-24; ISRCTN: 28955701; Post-results. PMID:29862047
Fabricating fiber-reinforced composite posts.
Manhart, Jürgen
2011-03-01
Endodontic posts do not increase the strength of the remaining tooth structure in endodontically treated teeth. On the contrary, depending on the post design employed (tapered versus parallel-sided), the root can be weakened relative to the amount of tooth removed during preparation. In many cases, if there has been a high degree of damage to the clinical crown, conservative preparation for an anatomic tapered (biomimetic) post with the incorporation of a ferrule on solid tooth structure is necessary to protect the reaming root structure as well as for the long-term retention of the composite resin core and the definitive restoration. Adhesively luted endodontic posts reinforced with glass or quartz fiber lead to better homogeneous tension distribution when loaded than rigid metal or zirconium oxide ceramic posts. Fiber-reinforced posts also possess advantageous optical properties over metal or metal oxide post systems. The clinician should realize that there are admittedly substantial differences in the mechanical loading capacity of the different fiber-reinforced endodontic posts and should be aware of such differences in order to research and select a suitable post system for use.
NASA Astrophysics Data System (ADS)
Song, Yong-Won; Morimune, Keiyo; Set, Sze Y.; Yamashita, Shinji
2007-01-01
The authors demonstrate a nonblocked all-fiber mode locker operated by the interaction of carbon nanotubes with the evanescent field of propagating light in a tapered fiber. Symmetric cross section of the device with the randomly oriented nanotubes guarantees the polarization insensitive operation of the pulse formation. In order to minimize the scattering, the carbon nanotubes are deposited within a designed area around the tapered waist. The demonstrated passively pulsed laser has the repetition rate of 7.3MHz and the pulse width of 829fs.
Vyavahare, Nishant K.; Raghavendra, Srinidhi Surya; Desai, Niranjan N.
2016-01-01
Background: Complete cleaning of the root canal is the goal for ensuring success in endodontics. Removal of debris plays an important role in achieving this goal. In spite of advancements in instrument design, apical extrusion of debris remains a source of inflammation in the periradicular region. Aim: To comparatively evaluate the amount of apically extruded debris with V-Taper, ProTaper Next, and the self-adjusting File (SAF) system. Materials and Methods: Sixty-four extracted human mandibular teeth with straight root canals were taken. Access openings were done and working length determined. The samples were randomly divided into three groups: Group I - V-Taper files (n = 20), Group II - ProTaper Next (n = 20), Group III - SAF (n = 20). Biomechanical preparation was completed and the debris collected in vials to be quantitatively determined. The data obtained was statistically analyzed using ANOVA and post hoc Tukey's test. Results: All the specimens showed apical debris extrusion. SAF showed significantly less debris extrusion compared to V-Taper and ProTaper Next (P < 0.001). Among Groups I and II, ProTaper Next showed lesser debris extrusion as compared to V-Taper, but it was not significant (P = 0.124). Conclusion: The SAF showed least amount of apical debris extrusion when compared to newer rotary endodontic instruments. This indicates that the incidence of inter-treatment flare-ups due to debris extrusion would be less with the SAF. PMID:27217636
NASA Astrophysics Data System (ADS)
Diehl, Stefan; Bremer, Daniel; Brinkmann, Kai-Thomas; Dormenev, Valery; Eissner, Tobias; Novotny, Rainer W.; Rosenbaum, Christoph; Zaunick, Hans-Georg; PANDA Collaboration
2017-06-01
The uniformity of the light collection is a crucial parameter for detectors based on inorganic scintillation crystals to guarantee a response proportional to the deposited energy. Especially in case of tapered crystals, like they are widely used to realize a 4π geometry of electromagnetic calorimeters (EMC) in high energy physics experiments, a strong non-uniformity is introduced by an additional focusing of the scintillation light due to the tapered geometry. The paper will discuss the determination and the reduction of the non-uniformity in strongly tapered lead tungstate crystals as used for the construction of the electromagnetic calorimeter of the PANDA detector at the future Facility for Antiproton and Ion Research (FAIR). Among different concepts for an uniformization a single de-polished lateral side face provided the optimum result with a remaining non-uniformity below 5% in good agreement with similar studies for the CMS ECAL at LHC. The impact on the achievable energy resolution in the energy regime of photons below 800 MeV is discussed in detail in comparison to GEANT4 simulations. The comparison of the response of two arrays with polished and de-polished crystals, respectively, shows in the latter case a significant improvement of the constant term of the parametrization of the energy resolution down to 0.5% accompanied by only very slight increase of the statistical term.
Radiation Losses Due to Tapering of a Double-Core Optical Waveguide
NASA Technical Reports Server (NTRS)
Lyons, Donald R.; Khet, Myat; Pencil, Eric (Technical Monitor)
2001-01-01
The theoretical model we designed parameterizes the power losses as a function of .the profile shape for a tapered, single mode, optical dielectric coupler. The focus of this project is to produce a working model that determines the power losses experienced by the fibers when light crosses a taper region. This phenomenon can be examined using coupled mode theory. The optical directional coupler consists of a parallel, dual-channel, waveguide with minimal spacing between the channels to permit energy exchange. Thus, power transfer is essentially a function of the taper profile. To find the fields in the fibers, the approach used was that of solving the Helmholtz equation in cylindrical coordinates involving Bessel and modified Bessel functions depending on the location.
Acoustic vibration sensor based on nonadiabatic tapered fibers.
Xu, Ben; Li, Yi; Sun, Miao; Zhang, Zhen-Wei; Dong, Xin-Yong; Zhang, Zai-Xuan; Jin, Shang-Zhong
2012-11-15
A simple and low-cost vibration sensor based on single-mode nonadiabatic fiber tapers is proposed and demonstrated. The environmental vibrations can be detected by demodulating the transmission loss of the nonadiabatic fiber taper. Theoretical simulations show that the transmission loss is related to the microbending of the fiber taper induced by vibrations. Unlike interferometric sensors, this vibration sensor does not need any feedback loop to control the quadrature point to obtain a stable performance. In addition, it has no requirement for the coherence of the light source and is insensitive to temperature changes. Experimental results show that this sensing system has a wide frequency response range from a few hertz to tens of kilohertz with the maximal signal to noise ratio up to 73 dB.
Studies on low-loss coupling of non-node anti-resonant hollow-core fiber and tapered fiber
NASA Astrophysics Data System (ADS)
Zhang, Naiqian; Wang, Zefeng; Liu, Wenbo; Xi, Xiaoming
2017-10-01
Up to now, near almost optical fiber gas lasers employ/adopt the scheme of free-space coupling, which increases the difficulty to adjust the optical path, and has poor stability. All-fiber structure fiber-gas lasers are important development directions in the future. We established the numerical model of SMF-28 type tapered single-mode fiber and non-node hollow-core fiber. When the SMF-28 type single-mode fiber has a waist diameter of 40μm when the light source is LP01 fundamental mode with 1550nm wavelength, the mode field diameter is the largest. Meanwhile, we simulated that the equivalent mode field diameter of non-node anti-resonant hollow-core fiber is about 75μm at the same 1550nm wavelength light source. Then, we use different waist diameters of SMF-28 type tapered fibers injected to the non-node anti-resonant hollow-core fiber in simulation and experiments. In the scheme of the single-ended low-loss coupling, the simulation results indicate that the best waist diameter of tapered fiber is 40μm, and the calculated maximum coupling efficiency is 83.55%. Meanwhile, the experimental result of maximum coupling efficiency is 80.74% when the best waist diameter of tapered fiber is also 40μm. As for the double-ended low-loss coupling, the calculated maximum coupling efficiency is near 83.38%.
Tu, Tianyu; Pang, Fufei; Zhu, Shan; Cheng, Jiajing; Liu, Huanhuan; Wen, Jianxiang; Wang, Tingyun
2017-04-17
We have theoretically and experimentally demonstrated a novel approach to excite Bloch surface wave (BSW) on tapered optical fibers, which are coated with one-dimensional photonic crystal (1DPC) consisting of periodic TiO2 and Al2O3 by atomic layer deposition technology. Two resonant dips are found in transmission spectra that are originated from the excitation of BSW for p-polarized light and s-polarized light, respectively. For the first time, we have demonstrated the developed device for refractive index (RI) sensing.
Sideband instability analysis based on a one-dimensional high-gain free electron laser model
Tsai, Cheng-Ying; Wu, Juhao; Yang, Chuan; ...
2017-12-18
When an untapered high-gain free electron laser (FEL) reaches saturation, the exponential growth ceases and the radiation power starts to oscillate about an equilibrium. The FEL radiation power or efficiency can be increased by undulator tapering. For a high-gain tapered FEL, although the power is enhanced after the first saturation, it is known that there is a so-called second saturation where the FEL power growth stops even with a tapered undulator system. The sideband instability is one of the primary reasons leading to this second saturation. In this paper, we provide a quantitative analysis on how the gradient of undulatormore » tapering can mitigate the sideband growth. The study is carried out semianalytically and compared with one-dimensional numerical simulations. The physical parameters are taken from Linac Coherent Light Source-like electron bunch and undulator systems. The sideband field gain and the evolution of the radiation spectra for different gradients of undulator tapering are examined. It is found that a strong undulator tapering (~10 % ) provides effective suppression of the sideband instability in the postsaturation regime.« less
Sideband instability analysis based on a one-dimensional high-gain free electron laser model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tsai, Cheng-Ying; Wu, Juhao; Yang, Chuan
When an untapered high-gain free electron laser (FEL) reaches saturation, the exponential growth ceases and the radiation power starts to oscillate about an equilibrium. The FEL radiation power or efficiency can be increased by undulator tapering. For a high-gain tapered FEL, although the power is enhanced after the first saturation, it is known that there is a so-called second saturation where the FEL power growth stops even with a tapered undulator system. The sideband instability is one of the primary reasons leading to this second saturation. In this paper, we provide a quantitative analysis on how the gradient of undulatormore » tapering can mitigate the sideband growth. The study is carried out semianalytically and compared with one-dimensional numerical simulations. The physical parameters are taken from Linac Coherent Light Source-like electron bunch and undulator systems. The sideband field gain and the evolution of the radiation spectra for different gradients of undulator tapering are examined. It is found that a strong undulator tapering (~10 % ) provides effective suppression of the sideband instability in the postsaturation regime.« less
Sideband instability analysis based on a one-dimensional high-gain free electron laser model
NASA Astrophysics Data System (ADS)
Tsai, Cheng-Ying; Wu, Juhao; Yang, Chuan; Yoon, Moohyun; Zhou, Guanqun
2017-12-01
When an untapered high-gain free electron laser (FEL) reaches saturation, the exponential growth ceases and the radiation power starts to oscillate about an equilibrium. The FEL radiation power or efficiency can be increased by undulator tapering. For a high-gain tapered FEL, although the power is enhanced after the first saturation, it is known that there is a so-called second saturation where the FEL power growth stops even with a tapered undulator system. The sideband instability is one of the primary reasons leading to this second saturation. In this paper, we provide a quantitative analysis on how the gradient of undulator tapering can mitigate the sideband growth. The study is carried out semianalytically and compared with one-dimensional numerical simulations. The physical parameters are taken from Linac Coherent Light Source-like electron bunch and undulator systems. The sideband field gain and the evolution of the radiation spectra for different gradients of undulator tapering are examined. It is found that a strong undulator tapering (˜10 %) provides effective suppression of the sideband instability in the postsaturation regime.
Das, Sanjib; Pradhan, Prasanti Kumari; Lata, S.; Sinha, Sachidananda Prasad
2018-01-01
Introduction: The purpose of this study was to compare the incidence of dentinal crack formation after root canal preparation using ProTaper Next, OneShape, and Hyflex electrodischarge machining (HEDM). Materials and Methods: A total of 75 extracted mandibular premolars were selected. The root canals were instrumented using ProTaper Next, OneShape, and HEDM rotary files. All roots were horizontally sectioned at 3, 6, and 9 mm from apex with slow-speed saw under water cooling. The sections were observed under a stereomicroscope at ×25 to determine the absence or presence of crack. Data were analyzed using post hoc test and one-way ANOVA. Results: ProTaper Next and HEDM produced significantly less cracks than OneShape. Conclusion: Within the limitation of this in vitro study, it can be concluded that nickel–titanium instruments may cause cracks on the root surface. ProTaper Next and HEDM tend to produce less number of cracks as compared to OneShape. PMID:29674816
Ristić, Davor; Rasoloniaina, Alphonse; Chiappini, Andrea; Féron, Patrice; Pelli, Stefano; Conti, Gualtiero Nunzi; Ivanda, Mile; Righini, Giancarlo C; Cibiel, Gilles; Ferrari, Maurizio
2013-09-09
Coatings of spherical optical microresonators are widely employed for different applications. Here the effect of the thickness of a homogeneous coating layer on the coupling of light from a tapered fiber to a coated microsphere has been studied. Spherical silica microresonators were coated using a 70SiO(2)- 30HfO(2) glass doped with 0.3 mol% Er(3+) ions. The coupling of a 1480 nm pump laser inside the sphere has been assessed using a tapered optical fiber and observing the 1530-1580 nm Er(3+) emission outcoupled to the same tapered fiber. The measurements were done for different coating thicknesses and compared with theoretical calculations to understand the relationship of the detected signal with the whispering gallery mode electric field profiles.
Characterization of a 3D optrode array for infrared neural stimulation
Abaya, T.V.F.; Diwekar, M.; Blair, S.; Tathireddy, P.; Rieth, L.; Clark, G.A.; Solzbacher, F.
2012-01-01
This paper characterizes the Utah Slant Optrode Array (USOA) as a means to deliver infrared light deep into tissue. An undoped crystalline silicon (100) substrate was used to fabricate 10 × 10 arrays of optrodes with rows of varying lengths from 0.5 mm to 1.5 mm on a 400-μm pitch. Light delivery from optical fibers and loss mechanisms through these Si optrodes were characterized, with the primary loss mechanisms being Fresnel reflection, coupling, radiation losses from the tapered shank and total internal reflection in the tips. Transmission at the optrode tips with different optical fiber core diameters and light in-coupling interfaces was investigated. At λ = 1.55μm, the highest optrode transmittance of 34.7%, relative to the optical fiber output power, was obtained with a 50-μm multi-mode fiber butt-coupled to the optrode through an intervening medium of index n = 1.66. Maximum power is directed into the optrodes when using fibers with core diameters of 200 μm or less. In addition, the output power varied with the optrode length/taper such that longer and less tapered optrodes exhibited higher light transmission efficiency. Output beam profiles and potential impacts on physiological tests were also examined. Future work is expected to improve USOA efficiency to greater than 64%. PMID:23024914
Characterization of a 3D optrode array for infrared neural stimulation.
Abaya, T V F; Diwekar, M; Blair, S; Tathireddy, P; Rieth, L; Clark, G A; Solzbacher, F
2012-09-01
This paper characterizes the Utah Slant Optrode Array (USOA) as a means to deliver infrared light deep into tissue. An undoped crystalline silicon (100) substrate was used to fabricate 10 × 10 arrays of optrodes with rows of varying lengths from 0.5 mm to 1.5 mm on a 400-μm pitch. Light delivery from optical fibers and loss mechanisms through these Si optrodes were characterized, with the primary loss mechanisms being Fresnel reflection, coupling, radiation losses from the tapered shank and total internal reflection in the tips. Transmission at the optrode tips with different optical fiber core diameters and light in-coupling interfaces was investigated. At λ = 1.55μm, the highest optrode transmittance of 34.7%, relative to the optical fiber output power, was obtained with a 50-μm multi-mode fiber butt-coupled to the optrode through an intervening medium of index n = 1.66. Maximum power is directed into the optrodes when using fibers with core diameters of 200 μm or less. In addition, the output power varied with the optrode length/taper such that longer and less tapered optrodes exhibited higher light transmission efficiency. Output beam profiles and potential impacts on physiological tests were also examined. Future work is expected to improve USOA efficiency to greater than 64%.
Apical extrusion of debris in primary molar root canals using mechanical and manual systems.
Buldur, B; Hascizmeci, C; Aksoy, S; Nur Aydin, M; Guvendi, O N
2018-03-01
Apical extrusion of debris in primary root canal treatment has not been well elucidated. The purpose of this study is to compare the amount of apically extruded debris during the preparation of primary molar root canals using ProTaper, ProTaper Next, Self-adjusting File (SAF) and hand files. One hundred sixty extracted primary mandibular molar teeth were assigned to 2 groups: Group 1: Resorbed (n=80) and Group 2: Non-resorbed (n=80) and randomly to four subgroups (n=20 teeth for each subgroup) according to the instruments used, ProTaper, ProTaper Next, SAF, and hand file. The apically extruded debris was collected and dried in preweighed Eppendof tubes. The dry weight was calculated by subtracting the preoperative weight from the postoperative weight. Data were analysed statistically using the ANOVA and the Bonferroni post hoc t-test. The amount of apically extruded debris was significantly less for the non-resorbed group compared to the resorbed group (P<0.05). Regardless of the resorption groups, ProTaper Next and SAF extruded significantly less debris than did the ProTaper and hand files (P<0.05), while no statistically significant difference was found between ProTaper Next and SAF (P>0.05). All instruments caused apically extruded debris in primary teeth.
High-efficiency power transfer for silicon-based photonic devices
NASA Astrophysics Data System (ADS)
Son, Gyeongho; Yu, Kyoungsik
2018-02-01
We demonstrate an efficient coupling of guided light of 1550 nm from a standard single-mode optical fiber to a silicon waveguide using the finite-difference time-domain method and propose a fabrication method of tapered optical fibers for efficient power transfer to silicon-based photonic integrated circuits. Adiabatically-varying fiber core diameters with a small tapering angle can be obtained using the tube etching method with hydrofluoric acid and standard single-mode fibers covered by plastic jackets. The optical power transmission of the fundamental HE11 and TE-like modes between the fiber tapers and the inversely-tapered silicon waveguides was calculated with the finite-difference time-domain method to be more than 99% at a wavelength of 1550 nm. The proposed method for adiabatic fiber tapering can be applied in quantum optics, silicon-based photonic integrated circuits, and nanophotonics. Furthermore, efficient coupling within the telecommunication C-band is a promising approach for quantum networks in the future.
Okada, Kozo; Honda, Yasuhiro; Kitahara, Hideki; Otagiri, Kyuhachi; Tanaka, Shigemitsu; Hollak, M Brooke; Yock, Paul G; Popma, Jeffrey J; Kusano, Hajime; Cheong, Wai-Fung; Sudhir, Krishnankutty; Fitzgerald, Peter J; Kimura, Takeshi
2018-04-09
The aim of this study was to characterize post-procedural intravascular ultrasound (IVUS) findings in the ABSORB Japan trial, specifically stratified by the size of target coronary arteries. Despite overall noninferiority confirmed in recent randomized trials comparing bioresorbable vascular scaffolds (BVS) (Absorb BVS) and cobalt-chromium everolimus-eluting metallic stents (CoCr-EES), higher event rates of Absorb BVS have been reported with suboptimal deployment, especially in small coronary arteries. In the ABSORB Japan trial, 150 patients (2:1 randomization) were scheduled in the IVUS cohort. Small vessel was defined as mean reference lumen diameter <2.75 mm. Tapered-vessel lesions were defined as tapering index (proximal/distal reference lumen diameter) ≥1.2. Overall, IVUS revealed that the Absorb BVS arm had smaller device expansion than the CoCr-EES arm did, which was particularly prominent in small- and tapered-vessel lesions. Higher tapering index was also associated with higher rates of incomplete strut apposition in Absorb BVS, but not in CoCr-EES. With respect to procedural techniques, small-vessel lesions were treated more frequently with noncompliant balloons at post-dilatation but using significantly lower pressure in the Absorb BVS arm. In contrast, tapered-vessel lesions were post-dilated at equivalent pressure but with significantly smaller balloon catheters in the Absorb BVS arm, compared with the CoCr-EES arm. The significantly smaller device expansion especially in small vessels may account for the poorer outcomes of Absorb BVS in this lesion type. Appropriate optimization strategy, possibly different between polymeric and metallic devices, needs to be established for bioresorbable scaffold technology. (AVJ-301 Clinical Trial: A Clinical Evaluation of AVJ-301 Absorb™ BVS) in Japanese Population [ABSORB JAPAN]; NCT01844284). Copyright © 2018 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.
Reddy, A V Gurava; Eachempati, Krishna Kiran; Mugalur, Aakash; Suchinder, A; Rao, V B N Prasad; Kamurukuru, Nalanda
2017-01-01
Introduction: Periprosthetic fractures and dislocation in the early post-operative period can be disastrous both for the surgeon and the patient. However, undisplaced periprosthetic fractures presenting with dislocation is uncommon. We describe successful management of two cases (one bilateral dislocation and one unilateral dislocation) of undisplaced iatrogenic fractures in total hip arthroplasty (THA) presenting as early dislocation. Case Report: Case 1 was a 45-year-old female with osteoarthritis of hip secondary to developmental dysplasia of the hip with bilateral early nontraumatic dislocation with bilateral identical periprosthetic fracture. It was managed by revision to long stem and encirclage wiring. Case 2 presented with early dislocation in the 2nd week post THA. We found an intertrochanteric fracture intra-operatively with unstable implant. Acetabular component and femoral component revision were done with reconstruction of the greater trochanter. Discussion: These fractures could be occult iatrogenic fractures characteristic of taper wedge stems which presented as early nontraumatic dislocation in the post-operative period. The prosthesis subsidence, loss of muscle tension and change of version might be the factors leading to dislocation. Conclusion: Unrecognized incomplete intraoperative fracture can occur with tapered wedge uncemented stems which can present as a dislocation in the immediate post-operative period. This will require early revision of the femoral component. PMID:29051875
NASA Astrophysics Data System (ADS)
Kavungal, Vishnu; Farrell, Gerald; Wu, Qiang; Kumar Mallik, Arun; Semenova, Yuliya
2018-03-01
This paper experimentally demonstrates a method for geometrical profiling of asymmetries in fabricated thin microfiber tapers with waist diameters ranging from ∼10 to ∼50 μm with submicron accuracy. The method is based on the analysis of whispering gallery mode resonances excited in cylindrical fiber resonators as a result of evanescent coupling of light propagating through the fiber taper. The submicron accuracy of the proposed method has been verified by SEM studies. The method can be applied as a quality control tool in fabrication of microfiber based devices and sensors or for fine-tuning of microfiber fabrication set-ups.
A tapered dielectric waveguide solar concentrator for a compound semiconductor photovoltaic cell.
Park, Minkyu; Oh, Kyunghwan; Kim, Jeong; Shin, Hyun Woo; Oh, Byung Du
2010-01-18
A novel tapered dielectric waveguide solar concentrator is proposed for compound semiconductor solar cells utilizing optical fiber preform. Its light collecting capability is numerically simulated and experimentally demonstrated for feasibility and potential assessments. Utilizing tapered shape of an optical fiber preform with a step-index profile, low loss guidance was enhanced and the limitation in the acceptance angle of solar radiation was alleviated by an order of magnitude. Using a solar simulator the device performances were experimentally investigated and discussed in terms of the photocurrent improvements. Total acceptance angle exceeding +/- 6 degrees was experimentally achieved sustaining a high solar flux.
Ren, Fang; Takashima, Hideaki; Tanaka, Yoshito; Fujiwara, Hideki; Sasaki, Keiji
2013-11-18
A simple tapered fiber based photonic-plasmonic hybrid nanostructure composed of a thin tapered fiber and a pseudoisocyanine (PIC)-attached Au-coated tip was demonstrated. Using this simple hybrid nanostructure, we succeeded in observing two-photon excited fluorescence from the PIC dye molecules under a weak continuous wave excitation condition. From the results of the tip-fiber distance dependence and excitation polarization dependence, we found that using a thin tapered fiber and an Au-coated tip realized efficient coupling of the incident light (~95%) and LSP excitation at the Au-coated tip, suggesting the possibility of efficiently inducing two-photon excited fluorescence from the PIC dye molecules attached on the Au-coated tip. This simple photonic-plasmonic hybrid system is one of the promising tools for single photon sources, highly efficient plasmonic sensors, and integrated nonlinear plasmonic devices.
Wavelength interrogation of fiber Bragg grating sensors using tapered hollow Bragg waveguides.
Potts, C; Allen, T W; Azar, A; Melnyk, A; Dennison, C R; DeCorby, R G
2014-10-15
We describe an integrated system for wavelength interrogation, which uses tapered hollow Bragg waveguides coupled to an image sensor. Spectral shifts are extracted from the wavelength dependence of the light radiated at mode cutoff. Wavelength shifts as small as ~10 pm were resolved by employing a simple peak detection algorithm. Si/SiO₂-based cladding mirrors enable a potential operational range of several hundred nanometers in the 1550 nm wavelength region for a taper length of ~1 mm. Interrogation of a strain-tuned grating was accomplished using a broadband amplified spontaneous emission (ASE) source, and potential for single-chip interrogation of multiplexed sensor arrays is demonstrated.
High-brightness 1.3 μm InAs/GaAs quantum dot tapered laser with high temperature stability.
Cao, Yulian; Ji, Haiming; Xu, Pengfei; Gu, Yongxian; Ma, Wenquan; Yang, Tao
2012-10-01
We demonstrate high-brightness 1.3 μm tapered lasers with high temperature stability by using p-doped InAs/GaAs quantum dots (QDs) as the active region. It is found that the beam quality factor M(2) for the devices is almost unchanged as the light power and temperature increase. The almost constant M(2) results from the p-doped QD active region.
Strong focusing effect of 660 nm laser by microsized tapered glass tubes with different diameters
NASA Astrophysics Data System (ADS)
Lin, Chongnan; Luo, Xujia; Zhu, Xiaoyang; Zhu, Li; Wang, Hongcheng; Zhang, Ao; Xu, Runyu; Qu, Zheng; Chen, Ximeng; Zhang, Weiyi; Shao, Jianxiong
2017-09-01
A laser with a wavelength of 660 nm was focused by microsized tapered glass tubes with different diameters of the exit. By using the 3-μm optical fiber and micrometer displacement stages, we measured the light intensity distribution around the focal spot, the focal distance, and the transmission coefficient of the light transmitted through these tubes. The focusing effect for the glass tubes with smaller outlet diameters of the exit was found to be much stronger than those with larger diameters of the exit. Furthermore, the dependence of the size and distance and the maximum intensity of the focal spot on the tubes' diameter of exit are obtained.
Apical extrusion of debris by supplementary files used for retreatment: An ex vivo comparative study
Pawar, Ajinkya M.; Pawar, Mansing; Metzger, Zvi; Thakur, Bhagyashree
2016-01-01
Aim: This study evaluated whether using supplementary files for removing root canal filling residues after ProTaper Universal Retreatment files (RFs) increased the debris extrusion apically. Materials and Methods: Eighty mandibular premolars with single root and canal were instrumented with ProTaper Universal rotary system (SX-F3) and obturated. The samples were divided randomly into four groups (n = 20). Group 1 served as a control; only ProTaper Universal RFs D1–D3 were used, and the extruded debris was weighed. Groups 2, 3, and 4 were the experimental groups, receiving a twofold retreatment protocol: Removal of the bulk, followed by the use of supplementary files. The bulk was removed by RFs, followed by the use of ProTaper NEXT (PTN), WaveOne (WO), and Self-Adjusting File (SAF) for removal of the remaining root filling residues. Debris extruded apically were weighed and compared to the control group. Statistical analysis was performed using one-way analysis of variance (ANOVA) and post hoc Tukey's test. Results: All the three experimental groups presented significant difference (P < .01). The post hoc Tukey's test confirmed that Group 4 (SAF) exhibited significantly less (P < .01) debris extrusion between the three groups tested. Conclusion: SAF results in less extrusion of debris when used as supplementary file to remove root-filling residues, compared to WO and PTN. PMID:27099416
Ceyhanli, K T; Kamaci, A; Taner, M; Erdilek, N; Celik, D
2015-01-01
The aim of this study was to evaluate the shaping effects of two M-wire and two traditional nickel-titanium (NiTi) rotary systems in simulated S-shaped resin canals. Forty simulated S-shaped canals in resin blocks were instrumented with two traditional (ProTaper, Sendoline S5) and two M-wire (WaveOne, GT series X) NiTi systems according to the manufacturers' instructions. Ten resin blocks were used for each system. Pre- and post-instrumentation images were captured using a stereomicroscope and superimposed with an image program. Canal transportation, material removal, and aberrations were evaluated and recorded as numeric parameters. Data were analyzed using one-way ANOVA and post-hoc Tukey tests with a 95% confidence interval. There were significant differences between systems in terms of transportation and material removal (P<0.05). Coronal danger zone was the most common aberration. Within the limits of this ex vivo study, it was found that the manufacturing methods (M-wire or traditional NiTi) and kinematics (rotary or reciprocating motion) did not affect the shaping abilities of the systems. The extended file designs of highly tapered NiTi systems (ProTaper, WaveOne) resulted in greater deviations from the original root canal trace and more material removal when compared to less tapered systems (Sendoline S5, GT series X).
Mechanical properties and micro-morphology of fiber posts.
Zicari, F; Coutinho, E; Scotti, R; Van Meerbeek, B; Naert, I
2013-04-01
To evaluate flexural properties of different fiber posts systems and to morphologically characterize their micro-structure. Six types of translucent fiber posts were selected: RelyX Post (3M ESPE), ParaPost Taper Lux (Colthéne-Whaledent), GC Fiber Post (GC), LuxaPost (DMG), FRC Postec Plus (Ivoclar-Vivadent), D.T. Light-Post (RTD). For each post system and size, ten specimens were subjected to a three-points bending test. Maximum fracture load, flexural strength and flexural modulus were determined using a universal loading device (5848 MicroTester(®), Instron). Besides, for each system, three intact posts of similar dimensions were processed for scanning electron microscopy to morphologically characterize the micro-structure. The following structural characteristics were analyzed: fibers/matrix ratio, density of fibers, diameter of fibers and distribution of fibers. Data were statistically analyzed with ANOVA. Type and diameter of posts were found to significantly affect the fracture load, flexural strength and flexural modulus (p<0.05). Regarding maximum fracture load, it was found to increase with post diameter, in each post system (p<0.001). Regarding flexural strength and flexural modulus, the highest values were recorded for posts with the smallest diameter (p<0.001). Finally, structural characteristics significantly varied among the post systems tested. However, any correlation has been found between flexural strength and structural characteristics. Flexural strength appeared not to be correlated to structural characteristics of fiber posts, but it may rather be affected by mechanical properties of the resin matrix and the interfacial adhesion between fibers and resin matrix. Copyright © 2013. Published by Elsevier Ltd.
Choi, Wonsuk; Kim, Hoon Young; Jeon, Jin Woo; Chang, Won Seok; Cho, Sung-Hak
2017-02-21
This study investigates the effect of focal plane variation using vibration in a femtosecond laser hole drilling process on Invar alloy fabrication quality for the production of fine metal masks (FMMs). FMMs are used in the red, green, blue (RGB) evaporation process in Active Matrix Organic Light-Emitting Diode (AMOLED) manufacturing. The taper angle of the hole is adjusted by attaching the objective lens to a micro-vibrator and continuously changing the focal plane position. Eight laser pulses were used to examine how the hole characteristics vary with the first focal plane's position, where the first pulse is focused at an initial position and the focal planes of subsequent pulses move downward. The results showed that the hole taper angle can be controlled by varying the amplitude of the continuously operating vibrator during femtosecond laser hole machining. The taper angles were changed between 31.8° and 43.9° by adjusting the vibrator amplitude at a frequency of 100 Hz. Femtosecond laser hole drilling with controllable taper angles is expected to be used in the precision micro-machining of various smart devices.
NASA Astrophysics Data System (ADS)
Doney, Robert L.; Agui, Juan H.; Sen, Surajit
2009-09-01
Rapid absorption of impulses using light-weight, small, reusable systems is a challenging problem. An axially aligned set of progressively shrinking elastic spheres, a "tapered chain," has been shown to be a versatile and scalable shock absorber in earlier simulational, theoretical, and experimental works by several authors. We have recently shown (see R. L. Doney and S. Sen, Phys. Rev. Lett. 97, 155502 (2006)) that the shock absorption ability of a tapered chain can be dramatically enhanced by placing small interstitial grains between the regular grains in the tapered chain systems. Here we focus on a detailed study of the problem introduced in the above mentioned letter, present extensive dynamical simulations using parameters for a titanium-aluminum-vanadium alloy Ti6Al4V, derive attendant hard-sphere analyses based formulae to describe energy dispersion, and finally discuss some preliminary experimental results using systems with chrome spheres and small Nitinol interstitial grains to present the underlying nonlinear dynamics of this so-called decorated tapered granular alignment. We are specifically interested in small systems, comprised of several grains. This is because in real applications, mass and volume occupied must inevitably be minimized. Our conclusion is that the decorated tapered chain offers enhanced energy dispersion by locking in much of the input energy in the grains of the tapered chain rather than in the small interstitial grains. Thus, the present study offers insights into how the shock absorption capabilities of these systems can be pushed even further by improving energy absorption capabilities of the larger grains in the tapered chains. We envision that these scalable, decorated tapered chains may be used as shock absorbing components in body armor, armored vehicles, building applications and in perhaps even in applications in rehabilitation science.
Tapered laser rods as a means of minimizing the path length of trapped barrel mode rays
Beach, Raymond J.; Honea, Eric C.; Payne, Stephen A.; Mercer, Ian; Perry, Michael D.
2005-08-30
By tapering the diameter of a flanged barrel laser rod over its length, the maximum trapped path length of a barrel mode can be dramatically reduced, thereby reducing the ability of the trapped spontaneous emission to negatively impact laser performance through amplified spontaneous emission (ASE). Laser rods with polished barrels and flanged end caps have found increasing application in diode array end-pumped laser systems. The polished barrel of the rod serves to confine diode array pump light within the rod. In systems utilizing an end-pumping geometry and such polished barrel laser rods, the pump light that is introduced into one or both ends of the laser rod, is ducted down the length of the rod via the total internal reflections (TIRs) that occur when the light strikes the rod's barrel. A disadvantage of using polished barrel laser rods is that such rods are very susceptible to barrel mode paths that can trap spontaneous emission over long path lengths. This trapped spontaneous emission can then be amplified through stimulated emission resulting in a situation where the stored energy available to the desired lasing mode is effectively depleted, which then negatively impacts the laser's performance, a result that is effectively reduced by introducing a taper onto the laser rod.
Yang, Xiupei; Huo, Feng; Yuan, Hongyan; Zhang, Bo; Xiao, Dan; Choi, Martin M F
2011-01-01
This paper reports the enhancement of sensitivity of detection for in-column fiber optic-induced fluorescence detection system in CE by tapered optical fiber (TOF). Two types of optical fiber, TOF and conventional cylindrical optical fiber (COF), were employed to construct the CE (TOF-CE and COF-CE) and were compared for sensitivity to riboflavin (RF). The fluorescence intensities from a RF sample with excitation light sources and fibers at various coupling angles were investigated. The fluorescence signal from TOF-CE was ca. ten times that of COF-CE. In addition, the detection performance of four excitation light source-fiber configurations including Laser-TOF, Laser-COF, LED-TOF, and LED-COF were compared. The LODs for RF were 0.21, 0.82, 0.80, and 7.5 nM, respectively, for the four excitation light source-fiber configurations. The results demonstrate that the sensitivity obtained by LED-TOF is close to that of Laser-COF. Both Laser-TOF and LED-TOF can greatly improve the sensitivity of detection in CE. TOF has the major attribute of collecting and focusing the excitation light intensity. Thus, the sensitivity obtained by LED-TOF without focusing lens is just same as that of LED-COF with a focusing lens. This demonstrates that the CE system can be further simplified by eliminating the focusing lens for excitation light. LED-TOF-CE and LED-COF-CE system were applied to the separation and determination of RF in real sample (green tea), respectively. The tapered fiber optic-induced fluorescence detection system in CE is an ideal tool for trace analysis. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Fujii, T; Taguchi, Y; Saiki, T; Nagasaka, Y
2012-12-01
A novel local temperature measurement method using fluorescence near-field optics thermal nanoscopy (Fluor-NOTN) has been developed. Fluor-NOTN enables nanoscale temperature measurement in situ by detecting the temperature-dependent fluorescence lifetime of CdSe quantum dots (QDs). In this paper, we report a novel triple-tapered near-field optical fiber probe that can increase the temperature measurement sensitivity of Fluor-NOTN. The performance of the proposed probe was numerically evaluated by the finite difference time domain method. Due to improvements in both the throughput and collection efficiency of near-field light, the sensitivity of the proposed probe was 1.9 times greater than that of typical double-tapered probe. The proposed shape of the triple-tapered core was successfully fabricated utilizing a geometrical model. The detected signal intensity of dried layers of QDs was greater by more than two orders than that of auto-fluorescence from the fiber core. In addition, the near-field fluorescence lifetime of the QDs and its temperature dependence were successfully measured by the fabricated triple-tapered near-field optical fiber probe. These measurement results verified the capability of the proposed triple-tapered near-field optical fiber probe to improve the collection efficiency of near-field fluorescence.
Wigler, Ronald; Koren, Tal; Tsesis, Igor
2015-11-01
To compare the cleaning effectiveness and shaping ability of SafeSider, ProTaper Universal and Lightspeed rotary instruments during the preparation of curved root canals in extracted human teeth. A total of 63 roots with curved root canals were divided into three groups. Canals were prepared using SafeSider, ProTaper Universal or Lightspeed LSX. Using pre- and post-instrumentation radiographs, straightening of the canal curvatures and loss of working length were determined with a computer image analysis program. The amounts of debris at the apical 5 mm were quantified on the basis of a numerical evaluation scale. The data were analyzed statistically using the two-way analysis of variance (ANOVA). There was significantly more transportation among the Lightspeed LSX group compared to the SafeSider and ProTaper Universal groups only at the 4 mm level (p < 0.05). The ProTaper Universal instruments performed significantly faster than other groups. No significant differences were observed between the three engine-driven instruments with regards to debris removal. SafeSider, ProTaper Universal and Lightspeed LSX rotary instruments maintained the original canal curvature well at the apical 3 mm and were safe to use. No difference was found in cleaning efficacy and none rendered the apical part of the canal free of debris. SafeSider, ProTaper Universal and Lightspeed LSX rotary instruments are safe to use in curved root canals.
Madfa, A A; Kadir, M R Abdul; Kashani, J; Saidin, S; Sulaiman, E; Marhazlinda, J; Rahbari, R; Abdullah, B J J; Abdullah, H; Abu Kasim, N H
2014-07-01
Different dental post designs and materials affect the stability of restoration of a tooth. This study aimed to analyse and compare the stability of two shapes of dental posts (parallel-sided and tapered) made of five different materials (titanium, zirconia, carbon fibre and glass fibre) by investigating their stress transfer through the finite element (FE) method. Ten three-dimensional (3D) FE models of a maxillary central incisor restored with two different designs and five different materials were constructed. An oblique loading of 100 N was applied to each 3D model. Analyses along the centre of the post, the crown-cement/core and the post-cement/dentine interfaces were computed, and the means were calculated. One-way ANOVAs followed by post hoc tests were used to evaluate the effectiveness of the post materials and designs (p=0.05). For post designs, the tapered posts introduced significantly higher stress compared with the parallel-sided post (p<0.05), especially along the centre of the post. Of the materials, the highest level of stress was found for stainless steel, followed by zirconia, titanium, glass fibre and carbon fibre posts (p<0.05). The carbon and glass fibre posts reduced the stress distribution at the middle and apical part of the posts compared with the stainless steel, zirconia and titanium posts. The opposite results were observed at the crown-cement/core interface. Copyright © 2014 IPEM. Published by Elsevier Ltd. All rights reserved.
Weiss, Roger D.; Potter, Jennifer Sharpe; Fiellin, David A.; Byrne, Marilyn; Connery, Hilary S.; Dickinson, William; Gardin, John; Griffin, Margaret L.; Gourevitch, Marc N.; Haller, Deborah L.; Hasson, Albert L.; Huang, Zhen; Jacobs, Petra; Kosinski, Andrzej S.; Lindblad, Robert; McCance-Katz, Elinore F.; Provost, Scott E.; Selzer, Jeffrey; Somoza, Eugene C.; Sonne, Susan C.; Ling, Walter
2012-01-01
Context No randomized trials have examined treatments for prescription opioid dependence, despite its increasing prevalence. Objective To evaluate the efficacy of brief and extended buprenorphine-naloxone treatment, with different counseling intensities, for patients dependent upon prescription opioids. Setting, Participants 653 treatment-seeking outpatients dependent on prescription opioids, at 10 U.S. sites from June 2006-July 2009. Design Multi-site, randomized clinical trial, using a two-phase adaptive treatment research design. Brief treatment (Phase 1) included 2-week buprenorphine-naloxone stabilization, 2-week taper, and 8-week post-medication follow-up. Patients with successful opioid use outcomes exited the study; unsuccessful patients entered Phase 2: extended (12-week) buprenorphine-naloxone treatment, 4-week taper, and 8-week post-medication follow-up. Main outcome measures Pre-defined “successful outcome” in each phase: composite measures indicating minimal or no opioid use, based on urine-confirmed self-reports. Interventions In both phases, patients were randomized to Standard Medical Management (SMM) or SMM+Opioid Drug Counseling (ODC); all received buprenorphine-naloxone. Results During Phase 1, only 6.6% (43/653) of patients had successful outcomes, with no difference between the SMM and SMM+ODC. In contrast, 49.2% (177/360) attained successful outcomes in Phase 2 during extended buprenorphine-naloxone treatment (week 12), with no difference between counseling conditions. Success rates 8 weeks after completing the buprenorphine-naloxone taper (Phase 2, week 24) dropped sharply to 8.6% (31/360), again with no counseling difference. In secondary analyses, successful Phase 2 outcomes were far more common while taking buprenorphine-naloxone than 8 weeks post-taper (49.2% (177/360) vs. 8.6% (31/360), p<0.001). Chronic pain did not affect opioid use outcomes; a history of ever using heroin was associated with lower Phase 2 success rates while taking buprenorphine-naloxone. Conclusions Prescription opioid-dependent patients are most likely to reduce opioid use during buprenorphine-naloxone treatment; if tapered off buprenorphine-naloxone, even after 12 weeks of treatment, the likelihood of unsuccessful outcome is extremely high, even among patients receiving counseling in addition to medical management. Trial Registration ClinicalTrials.gov number NCT00316277 PMID:22065255
Kfir, A; Elkes, D; Pawar, A; Weissman, A; Tsesis, I
2017-01-01
The objective of this study is to determine the potential for microcracks in the radicular dentin of first maxillary premolars using three different mechanized endodontic instrumentation systems. Eighty extracted maxillary first premolars with two root canals and no externally visible microcracks were selected. Root canal instrumentation was performed with either the ProTaper file system, the WaveOne primary file, or the self-adjusting file (SAF). Teeth with intact roots served as controls. The roots were cut into segments and examined with an intensive, small-diameter light source that was applied diagonally to the entire periphery of the root slice under ×20 magnification; the presence of microcracks and fractures was recorded. Pearson's chi-square method was used for statistical analysis, and significance was set at p < 0.05. Microcracks were present in 30 and 20 % of roots treated with the ProTaper and WaveOne systems, respectively, while no microcracks were present in the roots treated with the SAF (p = 0.008 and p = 0.035, respectively). Intact teeth presented with cracks in 5 % of the roots. The intensive, small-diameter light source revealed microcracks that could not be detected when using the microscope's light alone. Within the limitations of this study, it could be concluded that mechanized root canal instrumentation with the ProTaper and WaveOne systems in maxillary first premolars causes microcracks in the radicular dentin, while the use of the SAF file causes no such microcracks. Rotary and reciprocating files with large tapers may cause microcracks in the radicular dentin of maxillary first premolars. Less aggressive methods should be considered for these teeth.
Comparative evaluation of tensile strength of Gutta-percha cones with a herbal disinfectant.
Mahali, Raghunandhan Raju; Dola, Binoy; Tanikonda, Rambabu; Peddireddi, Suresh
2015-01-01
To evaluate and compare the tensile strength values and influence of taper on the tensile strength of Gutta-percha (GP) cones after disinfection with sodium hypochlorite (SH) and Aloe vera gel (AV). Sixty GP cones of size 110, 2% taper, 60 GP cones F3 ProTaper, and 60 GP of size 30, 6% taper were obtained from sealed packs as three different groups. Experimental groups were disinfected with 5.25% SH and 90% AV gel except the control group. Tensile strengths of GP were measured using the universal testing machine. The mean tensile strength values for Group IA, IIA and IIIA are 11.8 MPa, 8.69 MPa, and 9.24 MPa, respectively. Results were subjected to statistical analysis one-way analysis of variance test and Tukey post-hoc test. 5.25% SH solutions decreased the tensile strength of GP cones whereas with 90% AV gel it was not significantly altered. Ninety percent Aloe vera gel as a disinfectant does not alter the tensile strength of GP cones.
Hansen, A K; Christensen, M; Noordegraaf, D; Heist, P; Papastathopoulos, E; Loyo-Maldonado, V; Jensen, O B; Skovgaard, P M W
2016-11-10
Watt-level yellow emitting lasers are interesting for medical applications, due to their high hemoglobin absorption, and for efficient detection of certain fluorophores. In this paper, we demonstrate a compact and robust diode-based laser system in the yellow spectral range. The system generates 1.9 W of single-frequency light at 562.4 nm by cascaded single-pass frequency doubling of the 1124.8 nm emission from a distributed Bragg reflector (DBR) tapered laser diode. The absence of a free-space cavity makes the system stable over a base-plate temperature range of 30 K. At the same time, the use of a laser diode enables the modulation of the pump wavelength by controlling the drive current. This is utilized to achieve a power modulation depth above 90% for the second harmonic light, with a rise time below 40 μs.
Yin, Xiang; Long, Chang; Li, Junhao; Zhu, Hua; Chen, Lin; Guan, Jianguo; Li, Xun
2015-10-19
Microwave absorbers have important applications in various areas including stealth, camouflage, and antenna. Here, we have designed an ultra-broadband light absorber by integrating two different-sized tapered hyperbolic metamaterial (HMM) waveguides, each of which has wide but different absorption bands due to broadband slow-light response, into a unit cell. Both the numerical and experimental results demonstrate that in such a design strategy, the low absorption bands between high absorption bands with a single-sized tapered HMM waveguide array can be effectively eliminated, resulting in a largely expanded absorption bandwidth ranging from 2.3 to 40 GHz. The presented ultra-broadband light absorber is also insensitive to polarization and robust against incident angle. Our results offer a further step in developing practical artificial electromagnetic absorbers, which will impact a broad range of applications at microwave frequencies.
All-fiber orbital angular momentum mode generation and transmission system
NASA Astrophysics Data System (ADS)
Heng, Xiaobo; Gan, Jiulin; Zhang, Zhishen; Qian, Qi; Xu, Shanhui; Yang, Zhongmin
2017-11-01
We proposed and demonstrated an all-fiber system for generating and transmitting orbital angular momentum (OAM) mode light. A specially designed multi-core fiber (MCF) was used to endow with guide modes different phase change and two tapered transition regions were used for providing low-loss interfaces between different fiber structures. By arranging the refractive index distribution among the multi-cores and controlling the length of MCF, which essentially change the phase difference between the neighboring cores, OAM modes with different topological charge l can be generated selectively. Through two tapered transition regions, the non-OAM mode light can be effectively injected into the MCF and the generated OAM mode light can be easily launched into OAM mode supporting fiber for long distance and high purity transmission. Such an all-fiber OAM mode generation and transmission system owns the merits of flexibility, compactness, portability, and would have practical application value in OAM optical fiber communication systems.
Salit, K; Salit, M; Krishnamurthy, Subramanian; Wang, Y; Kumar, P; Shahriar, M S
2011-11-07
We demonstrate an ultra-low light level optical modulator using a tapered nano fiber embedded in a hot rubidium vapor. The control and signal beams are co-propagating but orthogonally polarized, leading to a degenerate V-system involving coherent superpositions of Zeeman sublevels. The modulation is due primarily to the quantum Zeno effect for the signal beam induced by the control beam. For a control power of 40 nW and a signal power of 100 pW, we observe near 100% modulation. The ultra-low power level needed for the modulation is due to a combination of the Zeno effect and the extreme field localization in the evanescent field around the taper.
The study of the thermally expanded core technique in end-pumped (N+1)×1 type combiner
NASA Astrophysics Data System (ADS)
Wu, Juan; Sun, Yinhong; Wang, Yanshan; Li, Tenglong; Feng, Yujun; Ma, Yi
2015-02-01
Tapering will raise the signal loss in an end-pumped (N+1)×1 type combiner. In this paper, the Thermally Expanded Core (TEC) technique is used in the signal loss optimization experiment with the tapering ratio of the pump combiner is 0.6. The experimental results indicate that the coupling efficiency of the 1.55μm signal light increases from 81.1% to 86.6%, after being heated 10 minutes at the homo-waist region of the tapered signal fiber with an 8mm wide hydroxygen flame. Detail analysis shows that the TEC technique can both reduce the loss of the LP01 mode and the LP11 mode in the signal fiber.
SiN-assisted polarization-insensitive multicore fiber to silicon photonics interface
NASA Astrophysics Data System (ADS)
Poulopoulos, Giannis N.; Kalavrouziotis, Dimitrios; Mitchell, Paul; Macdonald, John R.; Bakopoulos, Paraskevas; Avramopoulos, Hercules
2015-06-01
We demonstrate a polarization-insensitive coupler interfacing multicore-fiber (MCF) to silicon waveguides. It comprises a 3D glass fanout transforming the circular MCF core-arrangement to linear and performing initial tapering, followed by a Spot-Size-Converter on the silicon chip. Glass waveguides are formed of multiple overlapped modification elements and appropriate offsetting thereof yields tapers with symmetric cross-section. The Spot-Size-Converter is an inverselytapered silicon waveguide with a tapered polymer overcladding where light is initially coupled, whereas phase-matching gradually shifts it towards the silicon core. Co-design of the glass fanout and Spot-Size-Converter obtains theoretical loss below 1dB for the overall Si-to-MCF transition in both polarizations.
Saccomandi, P; Di Matteo, F M; Schena, E; Quero, G; Massaroni, C; Giurazza, F; Costamagna, G; Silvestri, S
2017-07-01
Laser Ablation (LA) is a minimally invasive technique for tumor removal. The laser light is guided into the target tissue by a fiber optic applicator; thus the physical features of the applicator tip strongly influence size and shape of the tissue lesion. This study aims to verify the geometry of the lesion achieved by a tapered-tip applicator, and to investigate the percentage of thermally damaged cells induced by the tapered-tip fiber optic applicator. A theoretical model was implemented to simulate: i) the distribution of laser light fluence rate in the tissue through Monte Carlo method, ii) the induced temperature distribution, by means of the Bio Heat Equation, iii) the tissue injury, by Arrhenius integral. The results obtained by the implementation of the theoretical model were experimentally assessed. Ex vivo porcine liver underwent LA with tapered-tip applicator, at different laser settings (laser power of 1 W and 1.7 W, deposited energy equal to 330 J and 500 J, respectively). Almost spherical volume lesions were produced. The thermal damage was assessed by measuring the diameter of the circular-shaped lesion. The comparison between experimental results and theoretical prediction shows that the thermal damage discriminated by visual inspection always corresponds to a percentage of damaged cells of 96%. A tapered-tip applicator allows obtaining localized and reproducible damage close to spherical shape, whose diameter is related to the laser settings, and the simple theoretical model described is suitable to predict the effects, in terms of thermal damage, on ex vivo liver. Further trials should be addressed to adapt the model also on in vivo tissue, aiming to develop a tool useful to support the physician in clinical application of LA.
Electrode support for gas arc welding torch having coaxial vision
NASA Technical Reports Server (NTRS)
Richardson, Richard W. (Inventor)
1987-01-01
An improved electrode mounting structure for a gas tungsten arc welding torch having a coaxial imaging system. The electrode mounting structure includes a support having a central hub and a plurality of spokes which extend from the hub generally radially with respect to the axis of the torch into supporting engagement with the interior walls of the torch. The spaces between the spokes are optical passages for transmission of light to form the image. A tubular collet holder is threadedly engaged at its upper end to the hub and extends downwardly toward the open end of the torch. The collet holder has an inwardly tapering constriction near its lower end. An electrode-retaining, tubular collet is mounted within the collet holder and has a longitudinally split and tapered end seating against the tapered constriction. A spring seats against the upper end of the collet and forces the split end against the tapered constriction to wedge the split end radially inwardly to grip the electrode within the collet.
Choi, Wonsuk; Kim, Hoon Young; Jeon, Jin Woo; Chang, Won Seok; Cho, Sung-Hak
2017-01-01
This study investigates the effect of focal plane variation using vibration in a femtosecond laser hole drilling process on Invar alloy fabrication quality for the production of fine metal masks (FMMs). FMMs are used in the red, green, blue (RGB) evaporation process in Active Matrix Organic Light-Emitting Diode (AMOLED) manufacturing. The taper angle of the hole is adjusted by attaching the objective lens to a micro-vibrator and continuously changing the focal plane position. Eight laser pulses were used to examine how the hole characteristics vary with the first focal plane’s position, where the first pulse is focused at an initial position and the focal planes of subsequent pulses move downward. The results showed that the hole taper angle can be controlled by varying the amplitude of the continuously operating vibrator during femtosecond laser hole machining. The taper angles were changed between 31.8° and 43.9° by adjusting the vibrator amplitude at a frequency of 100 Hz. Femtosecond laser hole drilling with controllable taper angles is expected to be used in the precision micro-machining of various smart devices. PMID:28772571
Elnaghy, A M; Elsaka, S E
2017-08-01
To assess and compare the mechanical properties of TRUShape (TRS) with several nickel-titanium rotary instruments. Cyclic fatigue, torsional resistance, flexibility and surface microhardness of TRS (size 25, 0.06v taper), ProTaper Next X2 (PTN X2, size 25, 0.06 taper), ProTaper Gold (PTG F2; size 25, 0.08 taper) and ProTaper Universal (PTU F2; size 25, 0.08 taper) instruments were evaluated. The topographical structures of the fracture surfaces of instruments were assessed using a scanning electron microscope. The cyclic fatigue resistance, torsional resistance and microhardness data were analysed using one-way analysis of variance (anova) and Tukey's post hoc tests. The fragment length and bending resistance data were analysed statistically with the Kruskal-Wallis H-test and Mann-Whitney U-tests. The statistical significance level was set at P < 0.05. PTN and PTG instruments revealed significantly higher resistance to cyclic fatigue than TRS and PTU instruments (P < 0.001). PTN instruments revealed significantly higher torsional resistance compared with the other instruments (P < 0.001). PTG instrument had significantly higher flexibility than the other tested brands (P < 0.05). However, for microhardness, the PTU had significantly higher surface microhardness values compared with other tested brands (P < 0.05). TRS instruments had lower resistance to cyclic fatigue and lower flexibility compared with PTG and PTN instruments. TRS, PTG and PTU instruments had lower resistance to torsional stress than PTN instruments. TRS and PTG instruments had comparable surface microhardness. © 2016 International Endodontic Journal. Published by John Wiley & Sons Ltd.
Cyclic fatigue resistance of ProTaper Next nickel-titanium rotary files.
Elnaghy, A M
2014-11-01
To compare the cyclic fatigue resistance of ProTaper Next files (PTN; Dentsply Maillefer, Ballaigues, Switzerland) with Twisted Files (TF; SybronEndo, Orange, CA, USA), HyFlex CM (HF; ColténeEndo/Whaledent, Inc, Cuyahoga Falls, OH, USA) and ProTaper Universal (PT; Dentsply Maillefer). Size 25, .06 taper for PTN X2, TF, HF and PT F1 size 20, .07 taper were rotated in simulated canals until failure, and the number of cycles to failure (NCF) was recorded to evaluate their cyclic fatigue resistance. A scanning electron microscope was used to characterize the topographic features of the fracture surfaces of broken files. The data of the NCF and fragment length values were analysed statistically using one-way analysis of variance and Tukey post hoc tests. Statistical significance level was set at P < 0.05. Twisted Files had a significantly higher resistance to cyclic fatigue than the other instruments (P < 0.05). No significant difference was found in NCF between PTN and HF (P > 0.05); however, there was a significant difference (P < 0.05) of both these systems with PT, which exhibited the lowest mean NCF. The ranking in the NCF values was: TF > PTN > HF > PT. The fracture cross-sections of all brands revealed similar fractographic features, including crack origins, fatigue zone and an overload fast fracture zone. The new ProTaper Next had greater resistance to cyclic fatigue compared with ProTaper and HyFlex CM but not the Twisted Files. © 2014 International Endodontic Journal. Published by John Wiley & Sons Ltd.
Harandi, Azade; Mohammadpour Maleki, Fatemeh; Moudi, Ehsan; Ehsani, Maryam; Khafri, Soraya
2017-01-01
The aim of this study was to compare the dentine removing efficacy of Gates-Glidden drills with hand files, ProTaper and OneShape single-instrument system using cone-beam computed tomography (CBCT). A total of 39 extracted bifurcated maxillary first premolars were divided into 3 groups ( n =13) and were prepared using either Gates-Glidden drills and hand instruments, ProTaper and OneShape systems. Pre- and post-instrumentation CBCT images were obtained. The dentin thickness of canals was measured at furcation, and 1 and 2 mm from the furcation area in buccal, palatal, mesial and distal walls. Data were analyzed using one-way ANOVA test. Tukey's post hoc tests were used for two-by-two comparisons. Gates-Glidden drills with hand files removed significantly more ( P <0.001) dentine than the engine-driven systems in all canal walls (buccal, palatal, mesial and distal). There were no significant differences between OneShape and ProTaper rotary systems ( P >0.05). The total cervical dentine removal during canal instrumentation was significantly less with engine-driven file systems compared to Gates-Glidden drills. There were no significant differences between residual dentine thicknesses left between the various canal walls.
Upadhyaya, Viram; Bhargava, Akshay; Parkash, Hari; Chittaranjan, B; Kumar, Vivek
2016-01-01
Different postdesigns and materials are available; however, no consensus exists regarding superiority for stress distribution. The aim of this study was to evaluate the effect of design and material of post with or without ferrule on stress distribution using finite element analysis. A total of 12 three-dimensional (3D) axisymmetric models of postretained central incisors were made: Six with ferrule design and six without it. Three of these six models had tapered posts, and three had parallel posts. The materials tested were titanium post with a composite resin core, nickel chromium cast post and core, and fiber reinforced composite (FRC) post with a composite resin core. The stress analysis was done using ANSYS software. The load of 100 N at an angle of 45 was applied 2 mm cervical to incisal edge on the palatal surface and results were analyzed using 3D von Mises criteria. The highest amount of stress was in the cervical region. Overall, the stress in the tapered postsystem was more than the parallel one. FRC post and composite resin core recorded minimal stresses within the post but the stresses transmitted to cervical dentin were more as compared to other systems. Minimal stresses in cervical dentine were observed where the remaining coronal dentin was strengthen by ferrule. A rigid material with high modulus of elasticity for post and core system creates most uniform stress distribution pattern. Ferrule provides uniform distribution of stresses and decreases the cervical stresses.
1.9 W yellow, CW, high-brightness light from a high efficiency semiconductor laser-based system
NASA Astrophysics Data System (ADS)
Hansen, A. K.; Christensen, M.; Noordegraaf, D.; Heist, P.; Papastathopoulos, E.; Loyo-Maldonado, V.; Jensen, O. B.; Stock, M. L.; Skovgaard, P. M. W.
2017-02-01
Semiconductor lasers are ideal sources for efficient electrical-to-optical power conversion and for many applications where their small size and potential for low cost are required to meet market demands. Yellow lasers find use in a variety of bio-related applications, such as photocoagulation, imaging, flow cytometry, and cancer treatment. However, direct generation of yellow light from semiconductors with sufficient beam quality and power has so far eluded researchers. Meanwhile, tapered semiconductor lasers at near-infrared wavelengths have recently become able to provide neardiffraction- limited, single frequency operation with output powers up to 8 W near 1120 nm. We present a 1.9 W single frequency laser system at 562 nm, based on single pass cascaded frequency doubling of such a tapered laser diode. The laser diode is a monolithic device consisting of two sections: a ridge waveguide with a distributed Bragg reflector, and a tapered amplifier. Using single-pass cascaded frequency doubling in two periodically poled lithium niobate crystals, 1.93 W of diffraction-limited light at 562 nm is generated from 5.8 W continuous-wave infrared light. When turned on from cold, the laser system reaches full power in just 60 seconds. An advantage of using a single pass configuration, rather than an external cavity configuration, is increased stability towards external perturbations. For example, stability to fluctuating case temperature over a 30 K temperature span has been demonstrated. The combination of high stability, compactness and watt-level power range means this technology is of great interest for a wide range of biological and biomedical applications.
Dispersion tuning in sub-micron tapers for third-harmonic and photon triplet generation.
Hammer, Jonas; Cavanna, Andrea; Pennetta, Riccardo; Chekhova, Maria V; Russell, Philip St J; Joly, Nicolas Y
2018-05-15
Precise control of the dispersion landscape is of crucial importance if optical fibers are to be successfully used for the generation of three-photon states of light-the inverse of third-harmonic generation (THG). Here we report gas-tuning of intermodal phase-matched THG in sub-micron-diameter tapered optical fiber. By adjusting the pressure of the surrounding argon gas up to 50 bars, intermodally phase-matched third-harmonic light can be generated for pump wavelengths within a 15 nm range around 1.38 μm. We also measure the infrared fluorescence generated in the fiber when pumped in the visible and estimate that the accidental coincidence rate in this signal is lower than the predicted detection rate of photon triplets.
Spillane, S M; Pati, G S; Salit, K; Hall, M; Kumar, P; Beausoleil, R G; Shahriar, M S
2008-06-13
We report the observation of low-light level optical interactions in a tapered optical nanofiber (TNF) embedded in a hot rubidium vapor. The small optical mode area plays a significant role in the optical properties of the hot vapor Rb-TNF system, allowing nonlinear optical interactions with nW level powers even in the presence of transit-time dephasing rates much larger than the intrinsic linewidth. We demonstrate nonlinear absorption and V-type electromagnetically induced transparency with cw powers below 10 nW, comparable to the best results in any Rb-optical waveguide system. The good performance and flexibility of the Rb-TNF system makes it a very promising candidate for ultralow power resonant nonlinear optical applications.
Does Surface Topography Play a Role in Taper Damage in Head-neck Modular Junctions?
Pourzal, Robin; Hall, Deborah J; Ha, Nguyen Q; Urban, Robert M; Levine, Brett R; Jacobs, Joshua J; Lundberg, Hannah J
2016-10-01
There are increasing reports of total hip arthroplasty failure subsequent to modular taper junction corrosion. The surfaces of tapers are machined to have circumferential machining marks, resulting in a surface topography of alternating peaks and valleys on the scale of micrometers. It is unclear if the geometry of this machined surface topography influences the degree of fretting and corrosion damage present on modular taper junctions or if there are differences between modular taper junction material couples. (1) What are the differences in damage score and surface topography between CoCr/CoCr and CoCr/Ti modular junctions? (2) How are initial surface topography, flexural rigidity, taper angle mismatch, and time in situ related to visual taper damage scores for CoCr/CoCr couples? (3) How are initial surface topography, flexural rigidity, taper angle mismatch, and time in situ related to visual taper damage scores for CoCr/Ti couples? Damage on stem and head tapers was evaluated with a modified Goldberg score. Differences in damage scores were determined between a group of 140 CoCr/CoCr couples and 129 CoCr/Ti couples using a chi-square test. For a subgroup of 70 retrievals, selected at random, we measured five variables, including initial stem taper machining mark height and spacing, initial head taper roughness, flexural rigidity, and taper angle mismatch. All retrievals were obtained at revision surgeries. None were retrieved as a result of metal-on-metal failures or were recalled implants. Components were chosen so there was a comparable number of each material couple and damage score. Machining marks around the circumference of the tapers were measured using white light interferometry to characterize the initial stem taper surface topography in terms of the height of and spacing between machining mark peaks as well as initial head taper roughness. The taper angle mismatch was assessed with a coordinate measuring machine. Flexural rigidity was determined based on measurements of gross taper dimensions and material properties. Differences of median or mean values of all variables between material couples were determined (Wilcoxon rank-sum tests and t-tests). The effect of all five variables along with time in situ on stem and head taper damage scores was tested with a multiple regression model. With 70 retrievals, a statistical power of 0.8 could be achieved for the model. Damage scores were different between CoCr/CoCr and CoCr/Ti modular taper junction material couples. CoCr/CoCr stem tapers were less likely to be mildly damaged (11%, p = 0.006) but more likely to be severely damaged (4%, p = 0.02) than CoCr/Ti stem tapers (28% and 1%, respectively). CoCr/CoCr couples were less likely to have moderately worn head tapers (7% versus 17%, p = 0.003). Stem taper machining mark height and spacing and head taper roughness were 11 (SD 3), 185 (SD 46), and 0.57 (SD 0.5) for CoCr/CoCr couples and 10 (SD 3), 170 (SD 56), and 0.64 (SD 0.4) for CoCr/Ti couples, respectively. There was no difference (p = 0.09, p = 0.1, p = 0.16, respectively) for either factor between material couples. Larger stem taper machining mark heights (p = 0.001) were associated with lower stem taper damage scores, and time in situ (p = 0.006) was associated with higher stem taper damage scores for CoCr/CoCr material couples. Stem taper machining marks that had higher peaks resulted in slower damage progression over time. For CoCr/Ti material couples, head taper roughness was associated with higher stem (p = 0.001) and head taper (p = 0.003) damage scores, and stem taper machining mark height, but not time in situ, was associated with lower stem taper damage scores (p = 0.007). Stem taper surface topography was related to damage scores on retrieved head-neck modular junctions; however, it affected CoCr/CoCr and CoCr/Ti couples differently. A taper topography of circumferential machining marks with higher peaks appears to enable slower damage progression and, subsequently, a reduction of the reported release of corrosion products. This may be of interest to implant designers and manufacturers in an effort to reduce the effects of metal release from modular femoral components.
Qiu, Ning; Wang, Chu-yu; Liu, Yu-fei; Yu, Xiao-qing; Xue, Ming
2016-04-01
To compare the shaping ability of three rotary Ni-Ti instruments in simulated root canals. A total of 30 simulated resin blocks were divided randomly into 3 groups: ProTaper Universal, ProTaper Next and TF Adaptive. Each group consisted of 10 root canals. The preparation time and changes in canal curvature were measured. Pre- and post-instrumentation photograghs were taken by precise camera and superimposed through Photoshop. The material removed from the inner and outer canal walls at 9 points beginning at 0 mm from the foramen were measured with Image Pro Plus. Centering ability was determined accordingly. The data was analyzed with SPSS13.0 software package. During root canal preparation, no instruments fractured. ProTaper Next was much faster than ProTaper Universal(P<0.05). At the apical curvature, transportation was the least with TF Adaptive, followed by Protaper Next (P<0.05). There were no significant differences in 3 groups with respect to coronal curvature transportation (P>0.05). Under the conditions of this study, ProTaper Next was the most efficient instrument. TF Adaptive and Protaper Next showed better shaping ability. In general, all the instruments respected original canal curvature well and were safe to be used.
Mesoscopic effect of spectral modulation for the light transmitted by a SNOM tip
NASA Astrophysics Data System (ADS)
Rähn, M.; Pärs, M.; Palm, V.; Jaaniso, R.; Hizhnyakov, V.
2010-06-01
The effect of a tapered metal-coated optical fiber terminated by a sub-wavelength aperture (SWA) on the spectrum of the transmitted light is investigated experimentally. Under certain conditions a remarkable spectral modulation of the transmitted light can be observed. This effect is of a mesoscopic origin, occurring only for a certain interval of SWA diameters. One can conclude that a noticeable modulation appears when the number of the transmitted fiber modes is small but exceeds unity, thus indicating the presence of a phase shift between different modes. To discern between two possible sources of such phase shift, the fiber length dependence of the output spectrum has been studied. According to the results obtained for the used sample of 200 nm SNOM tip, the observed phase shift is mostly caused rather by the inherent modal dispersion of the multimode fiber than by the mode-dependent light slowdown in the tapered region close to SWA due to the coupling to surface plasmons of the metal coating. The SWA acts here mainly as an effective mode filter.
Topcu, K Meltem; Karatas, Ertugrul; Ozsu, Damla; Ersoy, Ibrahim
2014-07-01
The aim of this study was to compare the canal debridement capabilities of three single file systems, ProTaper, and K-files in oval-shaped canals. Seventy-five extracted human mandibular central incisors with oval-shaped root canals were selected. A radiopaque contrast medium (Metapex; Meta Biomed Co. Ltd., Chungcheongbuk-do, Korea) was introduced into the canal systems and the self-adjusting file (SAF), WaveOne, Reciproc, ProTaper, and K-files were used for the instrumentation of the canals. The percentage of removed contrast medium was calculated using pre- and post-operative radiographs. An overall comparison between the groups revealed that the hand file (HF) and SAF groups presented the lowest percentage of removed contrast medium, whereas the WaveOne group showed the highest percentage (P < 0.001). The ProTaper group removed more contrast medium than the SAF and HF groups (P < 0.05). None of the instruments was able to remove the contrast medium completely. WaveOne performed significantly better than other groups.
Topcu, K. Meltem; Karatas, Ertugrul; Ozsu, Damla; Ersoy, Ibrahim
2014-01-01
Objectives: The aim of this study was to compare the canal debridement capabilities of three single file systems, ProTaper, and K-files in oval-shaped canals. Materials and Methods: Seventy-five extracted human mandibular central incisors with oval-shaped root canals were selected. A radiopaque contrast medium (Metapex; Meta Biomed Co. Ltd., Chungcheongbuk-do, Korea) was introduced into the canal systems and the self-adjusting file (SAF), WaveOne, Reciproc, ProTaper, and K-files were used for the instrumentation of the canals. The percentage of removed contrast medium was calculated using pre- and post-operative radiographs. Results: An overall comparison between the groups revealed that the hand file (HF) and SAF groups presented the lowest percentage of removed contrast medium, whereas the WaveOne group showed the highest percentage (P < 0.001). The ProTaper group removed more contrast medium than the SAF and HF groups (P < 0.05). Conclusions: None of the instruments was able to remove the contrast medium completely. WaveOne performed significantly better than other groups. PMID:25202211
WGM-Resonator/Tapered-Waveguide White-Light Sensor Optics
NASA Technical Reports Server (NTRS)
Stekalov, Dmitry; Maleki, Lute; Matsko, Andrey; Savchenkov, Anatoliy; Iltchenko, Vladimir
2007-01-01
Theoretical and experimental investigations have demonstrated the feasibility of compact white-light sensor optics consisting of unitary combinations of (1) low-profile whispering-gallery-mode (WGM) resonators and (2) tapered rod optical waveguides. These sensors are highly wavelength-dispersive and are expected to be especially useful in biochemical applications for measuring absorption spectra of liquids. These sensor optics exploit the properties of a special class of non-diffracting light beams that are denoted Bessel beams because their amplitudes are proportional to Bessel functions of the radii from their central axes. High-order Bessel beams can have large values of angular momentum. In a sensor optic of this type, a low-profile WGM resonator that supports modes having large angular momenta is used to generate high-order Bessel beams. As used here, "low-profile" signifies that the WGM resonator is an integral part of the rod optical waveguide but has a radius slightly different from that of the adjacent part(s).
Tapered optical fiber tip probes based on focused ion beam-milled Fabry-Perot microcavities
NASA Astrophysics Data System (ADS)
André, Ricardo M.; Warren-Smith, Stephen C.; Becker, Martin; Dellith, Jan; Rothhardt, Manfred; Zibaii, M. I.; Latifi, H.; Marques, Manuel B.; Bartelt, Hartmut; Frazão, Orlando
2016-09-01
Focused ion beam technology is combined with dynamic chemical etching to create microcavities in tapered optical fiber tips, resulting in fiber probes for temperature and refractive index sensing. Dynamic chemical etching uses hydrofluoric acid and a syringe pump to etch standard optical fibers into cone structures called tapered fiber tips where the length, shape, and cone angle can be precisely controlled. On these tips, focused ion beam is used to mill several different types of Fabry-Perot microcavities. Two main cavity types are initially compared and then combined to form a third, complex cavity structure. In the first case, a gap is milled on the tapered fiber tip which allows the external medium to penetrate the light guiding region and thus presents sensitivity to external refractive index changes. In the second, two slots that function as mirrors are milled on the tip creating a silica cavity that is only sensitive to temperature changes. Finally, both cavities are combined on a single tapered fiber tip, resulting in a multi-cavity structure capable of discriminating between temperature and refractive index variations. This dual characterization is performed with the aid of a fast Fourier transform method to separate the contributions of each cavity and thus of temperature and refractive index. Ultimately, a tapered optical fiber tip probe with sub-standard dimensions containing a multi-cavity structure is projected, fabricated, characterized and applied as a sensing element for simultaneous temperature and refractive index discrimination.
Worley, Matthew J; Heinzerling, Keith G; Shoptaw, Steven; Ling, Walter
2017-07-01
Buprenorphine-naloxone (BUP-NLX) can be used to manage prescription opioid addiction among persons with chronic pain, but post-treatment relapse is common and difficult to predict. This study estimated whether changes in pain over time and pain volatility during BUP-NLX maintenance would predict opioid use during the taper BUP-NLX taper. Secondary analysis of a multi-site clinical trial for prescription opioid addiction, using data obtained during a 12-week BUP-NLX stabilization and 4-week BUP-NLX taper. Community clinics affiliated with a national clinical trials network in 10 US cities. Subjects with chronic pain who entered the BUP-NLX taper phase (n = 125) with enrollment occurring from June 2006 to July 2009 (52% male, 88% Caucasian, 31% married). Outcomes were weekly biologically verified and self-reported opioid use from the 4-week taper phase. Predictors were estimates of baseline severity, rate of change and volatility in pain from weekly self-reports during the 12-week maintenance phase. Controlling for baseline pain and treatment condition, increased pain [odds ratio (OR) = 2.38, P = 0.02] and greater pain volatility (OR = 2.43, P = 0.04) predicted greater odds of positive opioid urine screen during BUP-NLX taper. Increased pain (IRR = 1.40, P = 0.04) and greater pain volatility [incidence-rate ratio (IRR) = 1.66, P = 0.009] also predicted greater frequency of self-reported opioid use. Adults with chronic pain receiving out-patient treatment with buprenorphine-naloxone (BUP-NLX) for prescription opioid addiction have an elevated risk for opioid use when tapering off maintenance treatment. Those with relative persistence in pain over time and greater volatility in pain during treatment are less likely to sustain abstinence during BUP-NLX taper. © 2017 Society for the Study of Addiction.
Topçuoğlu, Hüseyin Sinan; Topçuoğlu, Gamze; Akti, Ahmet; Düzgün, Salih
2016-06-01
The aim of this study was to compare the resistance to cyclic fatigue of ProTaper Next X2 (PTN X2; size 25, 0.06 taper), Hyflex CM (HCM; size 25, 0.06 taper), OneShape (OS; size 25, 0.06 taper), and ProTaper Universal F2 (PTU F2; size 25, 0.08 taper) nickel-titanium files in an artificial root canal with a double (S-shaped) curvature. A total of 160 new PTN X2, OS, HCM, and PTU F2 files were tested in an artificial stainless steel canal with a double curvature. Forty files from each system were rotated until fracture to calculate the number of cycles to failure. The length of each fractured fragment was recorded. Data were analyzed by using one-way analysis of variance and Tukey post hoc tests. The resistance to cyclic fatigue of the PTN X2 and HCM instruments was significantly greater than the OS and PTU F2 instruments in the apical curvature (P < .05). There was no statistical difference in the cyclic fatigue resistance of the PTN X2 and HCM instruments in the apical curvature (P > .05). In addition, there was no statistical difference between the OS and PTU F2 instruments in the apical curvature (P > .05). PTN X2, OS, HCM, and PTU F2 instruments showed similar cyclic fatigue resistance values in the coronal curvature (P > .05). This study showed that PTN X2 and HCM instruments exhibit greater resistance to cyclic fatigue than OS and PTU F2 instruments in the apical curvature of an artificial canal with a double curvature. Copyright © 2016 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.
Compact plasmonic memristor with high extinction efficiency
NASA Astrophysics Data System (ADS)
Tian, Ye; Jiang, Lianjun; Zhang, Xuejun; Zhang, Guangfu
2017-10-01
Here we present a plasmonic memristor operated at the telecommunication wavelength with compact size (0.61 μm), and high extinction efficiency (4.6 dB/μm). The plasmonic memristor consists of a triangle-shaped metal taper mounted on the top of a Si waveguide with rational doping in the area below the apex of the taper. This device can achieve vertical coupling of light energy from the Si waveguide to the plasmonic region and at the same time concentrates the plasmon to the apex of the metal taper. Moreover, the area with concentrated plasmon is overlap with that where the memristive behavior occurs due to the formation/removal of the metallic nanofilament. As a result, the highly distinct transmission induced by the switching of the plasmonic memristor can be achieved due to the maximized interaction between the plasmon and the filament.
NASA Astrophysics Data System (ADS)
Liu, Fukun; Cui, Minxin; Ma, Jiajun; Zou, Gang; Zhang, Qijin
2017-07-01
In this work, we report a novel optical fiber taper fluorescent probe for detection of nitro-explosives. The probe was fabricated by an in-situ photo-plating through evanescent wave and transmitted light initiated thiol-ene ;click; reaction, from which a cross-linked fluorescence porous polymer film was covalently bonded on the surface of the fiber taper. The film exhibits well-organized porous structure due to the presence of polyhedral oligomeric vinylsilsesquioxane moieties, and simultaneously displays strong fluorescence from tetraphenylethylene with aggregation-induced emission property. These two characters make the probe show a remarkable sensitivity, anti-photo-bleaching and a repeatability in detection of TNT and DNT vapors by fluorescence quenching. In addition, the detection is not interfered in the presence of other volatile organic gases.
Polynkin, PaveL; Polynkin, Alexander; Peyghambarian, N; Mansuripur, Masud
2005-06-01
We report a simple optical sensing device capable of measuring the refractive index of liquids propagating in microfluidic channels. The sensor is based on a single-mode optical fiber that is tapered to submicrometer dimensions and immersed in a transparent curable soft polymer. A channel for liquid analyte is created in the immediate vicinity of the taper waist. Light propagating through the tapered section of the fiber extends into the channel, making the optical loss in the system sensitive to the refractive-index difference between the polymer and the liquid. The fabrication process and testing of the prototype sensing devices are described. The sensor can operate both as a highly responsive on-off device and in the continuous measurement mode, with an estimated accuracy of refractive-index measurement of approximately 5 x 10(-4).
Differential optoacoustic absorption detector
NASA Technical Reports Server (NTRS)
Shumate, M. S. (Inventor)
1978-01-01
A differential optoacoustic absorption detector employed two tapered cells in tandem or in parallel. When operated in tandem, two mirrors were used at one end remote from the source of the beam of light directed into one cell back through the other, and a lens to focus the light beam into the one cell at a principal focus half way between the reflecting mirror. Each cell was tapered to conform to the shape of the beam so that the volume of one was the same as for the other, and the volume of each received maximum illumination. The axes of the cells were placed as close to each other as possible in order to connect a differential pressure detector to the cells with connecting passages of minimum length. An alternative arrangement employed a beam splitter and two lenses to operate the cells in parallel.
Harandi, Azade; Mohammadpour Maleki, Fatemeh; Moudi, Ehsan; Ehsani, Maryam; Khafri, Soraya
2017-01-01
Introduction: The aim of this study was to compare the dentine removing efficacy of Gates-Glidden drills with hand files, ProTaper and OneShape single-instrument system using cone-beam computed tomography (CBCT). Methods and Materials: A total of 39 extracted bifurcated maxillary first premolars were divided into 3 groups (n=13) and were prepared using either Gates-Glidden drills and hand instruments, ProTaper and OneShape systems. Pre- and post-instrumentation CBCT images were obtained. The dentin thickness of canals was measured at furcation, and 1 and 2 mm from the furcation area in buccal, palatal, mesial and distal walls. Data were analyzed using one-way ANOVA test. Tukey’s post hoc tests were used for two-by-two comparisons. Results: Gates-Glidden drills with hand files removed significantly more (P<0.001) dentine than the engine-driven systems in all canal walls (buccal, palatal, mesial and distal). There were no significant differences between OneShape and ProTaper rotary systems (P>0.05). Conclusion: The total cervical dentine removal during canal instrumentation was significantly less with engine-driven file systems compared to Gates-Glidden drills. There were no significant differences between residual dentine thicknesses left between the various canal walls. PMID:28179920
Özyürek, Taha; Yılmaz, Koray; Uslu, Gülşah
2017-11-01
It was aimed to compare the cyclic fatigue resistances of ProTaper Universal (PTU), ProTaper Next (PTN), and ProTaper Gold (PTG) and the effects of sterilization by autoclave on the cyclic fatigue life of nickel-titanium (NiTi) instruments. Eighty PTU, 80 PTN, and 80 PTG were included to the present study. Files were tested in a simulated canal. Each brand of the NiTi files were divided into 4 subgroups: group 1, as received condition; group 2, pre-sterilized instruments exposed to 10 times sterilization by autoclave; group 3, instruments tested were sterilized after being exposed to 25%, 50%, and 75% of the mean cycles to failure, then cycled fatigue test was performed; group 4, instruments exposed to the same experiment with group 3 without sterilization. The number of cycles to failure (NCF) was calculated. The data was statistically analyzed by using one-way analysis of variance and post hoc Tukey tests. PTG showed significantly higher NCF than PTU and PTN in group 1 ( p < 0.05). Sterilization significantly increased the NCF of PTN and PTG ( p < 0.05) in group 2. PTN in group 3 had significantly higher cyclic fatigue resistance than PTN group 4 ( p < 0.05). Also, significantly higher NCF was observed for PTG in group 2 than in groups 3 and 4 ( p < 0.05). PTG instrument made of new gold alloy was more resistant to fatigue failure than PTN and PTU. Autoclaving increased the cyclic fatigue resistances of PTN and PTG.
Yeung, Wing-Fai; Chung, Ka-Fai; Zhang, Zhang-Jin; Chan, Wai-Chi; Zhang, Shi-Ping; Ng, Roger Man-Kin; Chan, Connie Lai-Wah; Ho, Lai-Ming; Yu, Yee-Man; Lao, Li-Xing
2017-03-31
Conventional approaches for benzodiazepine tapering have their limitations. Anecdotal studies have shown that acupuncture is a potential treatment for facilitating successful benzodiazepine tapering. As of today, there was no randomized controlled trial examining its efficacy and safety. The purpose of the study is to evaluate the efficacy of using electroacupuncture as an adjunct treatment to gradual tapering of benzodiazepine doses in complete benzodiazepine cessation in long-term benzodiazepine users. The study protocol of a randomized, assessor- and subject-blinded, controlled trial is presented. One hundred and forty-four patients with histories of using benzodiazepines in ≥50% of days for more than 3 months will be randomly assigned in a 1:1 ratio to receive either electroacupuncture or placebo electroacupuncture combined with gradual benzodiazepine tapering schedule. Both experimental and placebo treatments will be delivered twice per week for 4 weeks. Major assessments will be conducted at baseline, week 6 and week 16 post-randomization. Primary outcome is the cessation rate of benzodiazepine use. Secondary outcomes include the percentage change in the doses of benzodiazepine usage and the severity of withdrawal symptoms experienced based on the Benzodiazepine Withdrawal Symptom Questionnaire, insomnia as measured by the Insomnia Severity Index, and anxiety and depressive symptoms as evaluated by the Hospital Anxiety and Depression Scale. Adverse events will also be measured at each study visit. Results of this study will provide high quality evidence of the efficacy and safety of electroacupuncture as an adjunct treatment for benzodiazepine tapering in long-term users. ClinicalTrials.gov NCT02475538 .
Reddy, K Balakoti; Dash, Shreemoy; Kallepalli, Sowmya; Vallikanthan, Sangeetha; Chakrapani, N; Kalepu, Vamsi
2013-11-01
The present study was conducted to compare the cleaning efficacy (debris and smear layer removal) of hand and two NiTi rotary instrumentation systems (K3 and ProTaper). Sixty single rooted human maxillary anterior teeth decoronated at the cementoenamel junction were used. All the specimens were divided into four groups of 15 teeth each, group I--ProTaper rotary instrumentation done, group II--K3 rotary instrumentation done, group III--Stainless steel K-file instrumentation done, group IV--root canal irrigation without instrumentation. Root canal preparation was done in a crown down manner and 3% sodium hypochlorite was used as irrigant after each file followed by final rinse with 5 ml of 17% EDTA solution, then specimens were scanning electron microscopic (SEM) examination. Statistical analysis was done using one-way ANOVA followed by post hoc Tukey's HSD test. Group I showed highly statistical significant difference compared to other groups. There was no statistically significant difference considering smear layer at any levels among the groups with no smear layer formation in group IV. ProTaper rotary instrumentation showed the maximum cleaning efficacy followed by K3 rotary instrumentation in the coronal, middle and apical thirds of the root canal. ProTaper rotary instruments are more efficient than hand and K3 rotary instruments during root canal treatment.
Optical fiber refractometer based on tapered tilted-fiber Bragg grating
NASA Astrophysics Data System (ADS)
Wang, Tao; Liu, Tiegen; Liu, Kun; Jiang, Junfeng; Yu, Zhe; Xue, Meng
2016-11-01
Tilted fiber Bragg gratings (TFBGs) have been demonstrated to be accurate refractometers as they couple light from the fiber core to the cladding. In our experiment, we changed the physical structure of the TFBGs to improve the refractive index sensing ability. One way is to stretch the grating section 5 mm longer. The result showed that not only the number of the cladding mode of the TFBG decreases but also the full width half-maximum (FWHM) of the cladding modes and core mode changes. The FWHM of the cladding mode of the tapered TFBG is more than twice than that of the original. However, the refractive index sensitivity of the tapered TFBG has no obvious improvement. Another way is to etch the grating section with 20% hydrofluoric acid solution. We find that the smaller the clad diameter, the higher the refractive index sensitivity of the TFBG.
Refractive index and strain sensor based on twin-core fiber with a novel T-shaped taper
NASA Astrophysics Data System (ADS)
Zhang, Chuanbiao; Ning, Tigang; Li, Jing; Zheng, JingJing; Gao, Xuekai; Pei, Li
2018-06-01
A compact in-fiber Mach-Zehnder interferometer (MZI) based on twin-core fiber (TCF) with a novel T-shaped taper is proposed and demonstrated. The taper was firstly fabricated by a short section of TCF, and then spliced with a section of cleaved single mode fiber (SMF). When the light transmit into the TCF, multiple modes will be excited and will propagate within the TCF. In experiment, the proposed device had a maximum interferometric extinction ratio about 17 dB. And the refractive index (RI), strain, and temperature response properties of the sensor have been investigated, which show a relatively high RI, strain sensitivity and low temperature cross sensitivity. Hence, the sensor can be a suitable candidate in the biochemical and physical sensing applications. And due to its easy and controllable fabrication, the novel drawing technology can be applied to more multicore optical fibers.
Single-mode tapered optical fiber loop immunosensor II: assay of anti-cholera toxin immunoglobulins
NASA Astrophysics Data System (ADS)
Marks, Robert S.; Hale, Zoe M.; Levine, Myron M.; Lowe, C. R.; Payne, Frank P.
1994-07-01
An evanescent wave immunoassay for cholera antitoxin immunoglobulins was performed using a single mode tapered optical fiber loop sensor. The transducer was silanized with 3- glycidoxypropyltrimethoxysilane and chemically modified to link covalently either cholera toxin B subunit or a synthetic peptide derived from it, CTP3. The sensor was exposed to seral fluids, obtained from human volunteers having been exposed to live virulent Vibrio cholerae 01 and shown to produce rice-water stools. Other toxins of interest, such as Clostridium botulinum toxin A, have been tested on similar systems. The bound unlabelled immunoglobulins were then exposed to a mixture of FITC-anti-IgG and TRITC-anti-IgA, without requirement for a separation step. The emanating fluorescent emissions of fluorescein and rhodamine, excited by the input laser light, were coupled back into the guided mode of the tapered fiber, and used to determine the concentrations of the complementary antigens.
Tapered fiber based Brillouin random fiber laser and its application for linewidth measurement.
Gao, Song; Zhang, Liang; Xu, Yanping; Lu, Ping; Chen, Liang; Bao, Xiaoyi
2016-12-12
A one-end pumping Brillouin random fiber laser (BRFL) based on a 5-km tapered fiber (TF) is demonstrated. The enhanced Rayleigh scattering and the increased power density from tapering in the TF provide good directionality and a high degree of coherent feedback. Both the transmitting and TF enhanced Rayleigh scattered pump lights formed effective bi-direction pumping for the Brillouin gain in the standing cavity configuration in the distributed way as the gain and random feedback in the same fiber. The linewidth of the laser shows ~1.17 kHz while the relative intensity noise (RIN) has been verified to be suppressed comparing with that of the two-end pumping of the standard single mode fiber (SMF). Furthermore, utilizing the proposed laser, a high-resolution (~kHz) linewidth measurement method is demonstrated without long delay fiber (>100km) and extra frequency shifter thanks to the acoustic frequency shift from fiber itself.
Tambe, Varsha Harshal; Nagmode, Pradnya Sunil; Abraham, Sathish; Patait, Mahendra; Lahoti, Pratik Vinod; Jaju, Neha
2014-01-01
Aim: The aim of the present study was to compare the canal transportation and centering ability of Rotary ProTaper, One Shape and Wave One systems using cone beam computed tomography (CBCT) in curved root canals to find better instrumentation technique for maintaining root canal geometry. Materials and Methods: Total 30 freshly extracted premolars having curved root canals with at least 10 degrees of curvature were divided into three groups of 10 teeth each. All teeth were scanned by CBCT to determine the root canal shape before instrumentation. In Group 1, the canals were prepared with Rotary ProTaper files, in Group 2 the canals were prepared with One Shape files and in Group 3 canals were prepared with Wave One files. After preparation, post-instrumentation scan was performed. Pre-instrumentation and post-instrumentation images were obtained at three levels, 3 mm apical, 3 mm coronal and 8 mm apical above the apical foramen were compared using CBCT software. Amount of transportation and centering ability were assessed. The three groups were statistically compared with analysis of variance and Tukey honestly significant. Results: All instruments maintained the original canal curvature with significant differences between the different files. Data suggested that Wave One files presented the best outcomes for both the variables evaluated. Wave One files caused lesser transportation and remained better centered in the canal than One Shape and Rotary ProTaper files. Conclusion: The canal preparation with Wave One files showed lesser transportation and better centering ability than One Shape and ProTaper. PMID:25506145
Design and Manufacture of Structurally Efficient Tapered Struts
NASA Technical Reports Server (NTRS)
Brewster, Jebediah W.
2009-01-01
Composite materials offer the potential of weight savings for numerous spacecraft and aircraft applications. A composite strut is just one integral part of the node-to-node system and the optimization of the shut and node assembly is needed to take full advantage of the benefit of composites materials. Lockheed Martin designed and manufactured a very light weight one piece composite tapered strut that is fully representative of a full scale flight article. In addition, the team designed and built a prototype of the node and end fitting system that will effectively integrate and work with the full scale flight articles.
Jedrzejczyk, Daniel; Güther, Reiner; Paschke, Katrin; Jeong, Woo-Jin; Lee, Han-Young; Erbert, Götz
2011-02-01
We report on efficient single-pass, high-power second-harmonic generation in a periodically poled MgO-doped LiNbO3 planar waveguide using a distributed Bragg reflector tapered diode laser as a pump source. A coupling efficiency into the planar waveguide of 73% was realized, and 1.07 W of visible laser light at 532 nm was generated. Corresponding optical and electro-optical conversion efficiencies of 26% and 8.4%, respectively, were achieved. Good agreement between the experimental data and the theoretical predictions was observed.
NASA Astrophysics Data System (ADS)
Teng, Chuanxin; Yu, Fangda; Jing, Ning; Zheng, Jie
2016-11-01
The temperature dependence of a refractive index (RI) sensing probe based on a U-shape tapered plastic optical fiber (POF) was investigated experimentally. The changes in light propagation loss in the probe induced by temperature are of the same order of magnitude as those induced by measured RI changes. The temperature dependence loss and temperature dependence RI deviation of the sensing probe were measured (at the wavelength of 635 nm) in temperature of 10-60 °C. By extracting pure temperature dependence of the sensing probe alone, the influence of temperature to the sensor was characterized.
Troiano, Giuseppe; Dioguardi, Mario; Cocco, Armando; Giannatempo, Giovanni; Laino, Luigi; Ciavarella, Domenico; Berutti, Elio; Lo Muzio, Lorenzo
2016-01-01
To assess the influence of operator experience on: shaping and centering ability, mean preparation time and presence of canal aberrations of ProTaper Universal and WaveOne systems on simulated root canals. Sixty S-shaped canals in resin blocks were assigned to four groups (n=15 for each group). Group1 (Experienced operator, ProTaper), Group2 (Experienced operator, WaveOne), Group3 (Inexperienced operator, ProTaper), Group4 (Inexperienced operator, WaveOne). Photographic method was used to record pre- and post-instrumentations images. After superimposition, it has been evaluated presence of canal aberrations and differences in shaping and centering ability between groups. WaveOne system produced a lower amount of canal aberrations both in the hand of expert than inexpert operators. However, a WaveOne instrument breakage occurred in the hands of an inexperienced operator. No differences have been found in the evaluation of shaping ability with both systematics. Operator's experience doesn't influence the shaping ability of ProTaper and WaveOne systems. Experience factor could influence the centering ability in the use of both the systematics. However, WaveOne Primary reduce the mean preparation time and the presence of canal aberrations.
300 mW of coherent light at 488 nm using a generic approach
NASA Astrophysics Data System (ADS)
Karamehmedović, Emir; Pedersen, Christian; Andersen, Martin T.; Tidemand-Lichtenberg, Peter
2008-02-01
We present a generic approach for efficient generation of CW light with a predetermined wavelength within the visible or UV spectrum. Based on sum-frequency generation (SFG), the circulating intra-cavity field of a high-finesse diode pumped CW solid-state laser (DPSSL) and the output from a tapered, single-frequency external cavity diode laser (ECDL) are mixed inside a 10 mm periodically poled KTP crstal (pp-KTP). The pp-KTP is situated inside the DPSSL cavity to enhance conversion efficiency of the nonlinear mixing process. This approach combines different solid state technologies; the tuneability of ECDLs, the high intra-cavity filed of DPSSLs and flexible quasi phase matching in pp-tapered ECDL with a center wavelength of 766 nm in combination with a high finesse Nd:YVo4 laser at 1342 nm. Up to 308 mW of light at 488nm was measured in our experiments. The conversion of te ECDL beam was up to 47% after it was transmitted through a PM fiber, and up to 32% without fiber coupling. Replacing the seed laser and the nonlinear crystal makes it possible to generate light at virtually any desired wavelength withing the visible spectrum.
NASA Astrophysics Data System (ADS)
Jia, Z. X.; Yao, C. F.; Jia, S. J.; Wang, F.; Wang, S. B.; Zhao, Z. P.; Liao, M. S.; Qin, G. S.; Hu, L. L.; Ohishi, Y.; Qin, W. P.
2018-02-01
Enormous efforts have been made to realize supercontinuum (SC) generation covering the entire transmission window of fiber materials for their wide applications in many fields. Here we demonstrate ultra-broadband SC generation from 400 to 5140 nm in a tapered ultra-high numerical aperture (NA) all-solid fluorotellurite fiber pumped by a 1560 nm mode-locked fiber laser. The fluorotellurite fibers are fabricated using a rod-in-tube method. The core and cladding materials are TeO2-BaF2-Y2O3- and TeO2-modified fluoroaluminate glasses, respectively, which have large refractive index contrast and similar thermal expansion coefficients and softening temperatures. The NA at 3200 nm of the fluorotellurite fiber is about 1.11. Furthermore, tapered fluorotellurite fibers are prepared using an elongation machine. SC generation covering the entire 0.4-5 µm transmission window is achieved in a tapered fluorotellurite fiber for a pumping peak power of ~10.5 kW through synergetic control of dispersion, nonlinearity, confinement loss and other unexpected effects (e.g. the attachment of dust or water to the surface of the fiber core) of the fiber. Our results show that tapered ultra-high NA all-solid soft glass fibers have a potential for generating SC light covering their entire transmission window.
Large-aperture, tapered fiber-coupled, 10-kHz particle-image velocimetry.
Hsu, Paul S; Roy, Sukesh; Jiang, Naibo; Gord, James R
2013-02-11
We demonstrate the design and implementation of a fiber-optic beam-delivery system using a large-aperture, tapered step-index fiber for high-speed particle-image velocimetry (PIV) in turbulent combustion flows. The tapered fiber in conjunction with a diffractive-optical-element (DOE) fiber-optic coupler significantly increases the damage threshold of the fiber, enabling fiber-optic beam delivery of sufficient nanosecond, 532-nm, laser pulse energy for high-speed PIV measurements. The fiber successfully transmits 1-kHz and 10-kHz laser pulses with energies of 5.3 mJ and 2 mJ, respectively, for more than 25 min without any indication of damage. It is experimentally demonstrated that the tapered fiber possesses the high coupling efficiency (~80%) and moderate beam quality for PIV. Additionally, the nearly uniform output-beam profile exiting the fiber is ideal for PIV applications. Comparative PIV measurements are made using a conventionally (bulk-optic) delivered light sheet, and a similar order of measurement accuracy is obtained with and without fiber coupling. Effective use of fiber-coupled, 10-kHz PIV is demonstrated for instantaneous 2D velocity-field measurements in turbulent reacting flows. Proof-of-concept measurements show significant promise for the performance of fiber-coupled, high-speed PIV using a tapered optical fiber in harsh laser-diagnostic environments such as those encountered in gas-turbine test beds and the cylinder of a combustion engine.
Low-loss adiabatically-tapered high-contrast gratings for slow-wave modulators on SOI
NASA Astrophysics Data System (ADS)
Sciancalepore, Corrado; Hassan, Karim; Ferrotti, Thomas; Harduin, Julie; Duprez, Hélène; Menezo, Sylvie; Ben Bakir, Badhise
2015-02-01
In this communication, we report about the design, fabrication, and testing of Silicon-based photonic integrated circuits (Si-PICs) including low-loss flat-band slow-light high-contrast-gratings (HCGs) waveguides at 1.31 μm. The light slowdown is achieved in 300-nm-thick silicon-on-insulator (SOI) rib waveguides by patterning adiabatically-tapered highcontrast gratings, capable of providing slow-light propagation with extremely low optical losses, back-scattering, and Fabry-Pérot noise. In detail, the one-dimensional (1-D) grating architecture is capable to provide band-edge group indices ng ~ 25, characterized by overall propagation losses equivalent to those of the index-like propagation regime (~ 1-2 dB/cm). Such photonic band-edge slow-light regime at low propagation losses is made possible by the adiabatic apodization of such 1-D HCGs, thus resulting in a win-win approach where light slow-down regime is reached without additional optical losses penalty. As well as that, a tailored apodization optimized via genetic algorithms allows the flattening of slow-light regime over the wavelength window of interest, therefore suiting well needs for group index stability for modulation purposes and non-linear effects generation. In conclusion, such architectures provide key features suitable for power-efficient high-speed modulators in silicon as well as an extremely low-loss building block for non-linear optics (NLO) which is now available in the Si photonics toolbox.
Türker, Sevinç-Aktemur
2015-01-01
Background This study aimed to compare glide path preparation of different pathfinding systems and their effects on the apical transportation of ProTaper Next (Dentsply Maillefer, Ballaigues, Switzerland) in mesial root canals of extracted human mandibular molars, using digital subtraction radiography. Material and Methods The mesial canals of 40 mandibular first molars (with curvature angles between 25° and 35°) were selected for this study. The specimens were divided randomly into 4 groups with 10 canals each. Glide paths were created in group 1 with #10, #15 and #20 K-type (Dentsply Maillefer, Ballaigues, Switzerland) stainless steel manual files; in group 2 with Path-File (Dentsply Maillefer) #1, #2, and #3 and in group 3 with #16 ProGlider (Dentsply Maillefer) rotary instruments; in group 4 no glide paths were created. All canals were instrumented up to ProTaper Next X2 to the working length. A double digital radiograph technique was used, pre and post-instrumentation, to assess whether apical transportation and/or aberration in root canal morphology occurred. Instrument failures were also recorded. The data were analyzed statistically using ANOVA and Tukey tests (p<0.05). Results No significant differences were found among groups regarding apical transportation (p>0.05). Two ProTaper Next instruments failed in-group 4. Conclusions Within the parameters of this study, there was no difference between the performance of path-finding files and ProTaper Next system maintained root canal curvature well and was safe to use either with path-finding files or alone. Key words:Glide path, PathFile, ProGlider, ProTaper Next, transportation. PMID:26330936
2017-01-01
Objectives It was aimed to compare the cyclic fatigue resistances of ProTaper Universal (PTU), ProTaper Next (PTN), and ProTaper Gold (PTG) and the effects of sterilization by autoclave on the cyclic fatigue life of nickel-titanium (NiTi) instruments. Materials and Methods Eighty PTU, 80 PTN, and 80 PTG were included to the present study. Files were tested in a simulated canal. Each brand of the NiTi files were divided into 4 subgroups: group 1, as received condition; group 2, pre-sterilized instruments exposed to 10 times sterilization by autoclave; group 3, instruments tested were sterilized after being exposed to 25%, 50%, and 75% of the mean cycles to failure, then cycled fatigue test was performed; group 4, instruments exposed to the same experiment with group 3 without sterilization. The number of cycles to failure (NCF) was calculated. The data was statistically analyzed by using one-way analysis of variance and post hoc Tukey tests. Results PTG showed significantly higher NCF than PTU and PTN in group 1 (p < 0.05). Sterilization significantly increased the NCF of PTN and PTG (p < 0.05) in group 2. PTN in group 3 had significantly higher cyclic fatigue resistance than PTN group 4 (p < 0.05). Also, significantly higher NCF was observed for PTG in group 2 than in groups 3 and 4 (p < 0.05). Conclusions PTG instrument made of new gold alloy was more resistant to fatigue failure than PTN and PTU. Autoclaving increased the cyclic fatigue resistances of PTN and PTG. PMID:29142878
High Efficiency Electron-Laser Interactions in Tapered Helical Undulators
NASA Astrophysics Data System (ADS)
Duris, Joseph Patrick
Efficient coupling of relativistic electron beams with high power radiation lies at the heart of advanced accelerator and light source research and development. The inverse free electron laser is a stable accelerator capable of harnessing very high intensity laser electric fields to efficiently transfer large powers from lasers to electron beams. In this dissertation, we first present the theoretical framework to describe the interaction, and then apply our improved understanding of the IFEL to the design and numerical study of meter-long, GeV IFELs for compact light sources. The central experimental work of the dissertation is the UCLA BNL helical inverse free electron laser experiment at the Accelerator Test Facility in Brookhaven National Laboratory which used a strongly tapered 54cm long, helical, permanent magnet undulator and a several hundred GW CO2 laser to accelerate electrons from 52 to 106MeV, setting new records for inverse free electron laser energy gain (54MeV) and average accelerating gradient (100MeV/m). The undulator design and fabrication as well as experimental diagnostics are presented. In order to improve the stability and quality of the accelerated electron beam, we redesigned the undulator for a slightly reduced output energy by modifying the magnet gap throughout the undulator, and we used this modified undulator to demonstrated capture of >25% of the injected beam without prebunching. In the study of heavily loaded GeV inverse free electron lasers, we show that a majority of the power may be transferred from a laser to the accelerated electron beam. Reversing the process to decelerate high power electron beams, a mechanism we refer to as tapering enhanced stimulated superradiant amplification, offers a clear path to high power light sources. We present studies of radiation production for a wide range of wavelengths (10mum, 13nm, and 0.3nm) using this method and discuss the design for a deceleration experiment using the same undulator used for acceleration in this experiment. By accounting for the evolving radiation field in the design of the undulator tapering, a large fraction of energy may be transferred between the electrons and laser, enabling compact, high-current GeV accelerators and various wavelength light-sources of unprecedented peak powers.
Labbaf, Hossein; Nazari Moghadam, Kiumars; Shahab, Shahriar; Mohammadi Bassir, Mahshid; Fahimi, Mohammad Amin
2017-01-01
As a consequence of root canal preparation, dentinal chips, irrigants and pulp remnants are extruded into preradicular space. This phenomenon may lead to post endodontic flare-ups. The purpose of this study was to compare the amount of extruded debris with four endodontic NiTi engine-driven systems. Sixty mesiobuccal roots of maxillary molars with 15-30˚ curvature were divided randomly into four groups ( n =15). Each group was instrumented up to apical size of 25 using Reciproc, ProTaper Universal, Neolix and Hyflex. Bidistilled water was used as irrigant and extruded debris was collected in pre-weighted Eppendorf tubes. Tubes were stored in incubator for drying the debris. Extruded debris were weighted in electronic microbalance with accuracy of 0.0001 g. The raw data was analyzed with one way analysis of variance (ANOVA) and Tukey's HSD post hoc test. Level of significance was set at 0.05. The debris extrusion with Reciproc files was significantly higher than the other groups ( P <0.05). Hyflex significantly extruded less debris than other files ( P <0.05). There was no significant difference between ProTaper Universal and Neolix regarding the amount of extruded debris ( P =0.98). All systems extruded debris during the instrumentation. Reciproc system significantly extruded more debris. Caution should be taken when interpreting the results of this study and applying it to the real clinical situation.
Topçuoğlu, Gamze; Topçuoğlu, Hüseyin Sinan; Akpek, Firdevs
2016-09-01
To assess the amount of debris extruded apically during root canal preparation using various nickel titanium instrumentation systems and hand files in primary molar teeth. Sixty extracted primary first mandibular molar human teeth were randomly assigned to four groups (n = 15 teeth for each group). The canals were then instrumented with the following instrument systems: Revo-S, Mtwo, ProTaper Next, and hand files. Apically extruded debris during instrumentation was collected into pre-weighed Eppendorf tubes. The Eppendorf tubes were then stored in an incubator at 70°C for 5 days. The weight of the dry extruded debris was established by subtracting the pre-instrumentation and post-instrumentation weight of the Eppendorf tubes for each group. The data were analyzed using one-way analysis of variance (anova) and Tukey's post hoc tests. ProTaper Next files were associated with less apically extruded debris than the Mtwo, Revo-S, and hand files (P < 0.05). Hand files extruded more debris than Mtwo and Revo-S instruments (P < 0.05), but there was no significant difference found between the Mtwo and Revo-S instruments (P > 0.05). All instruments were associated with apical extrusion of debris. ProTaper Next files caused less debris extrusion compared to the other systems used. © 2015 BSPD, IAPD and John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Automated touch sensing in the mouse tapered beam test using Raspberry Pi.
Ardesch, Dirk Jan; Balbi, Matilde; Murphy, Timothy H
2017-11-01
Rodent models of neurological disease such as stroke are often characterized by motor deficits. One of the tests that are used to assess these motor deficits is the tapered beam test, which provides a sensitive measure of bilateral motor function based on foot faults (slips) made by a rodent traversing a gradually narrowing beam. However, manual frame-by-frame scoring of video recordings is necessary to obtain test results, which is time-consuming and prone to human rater bias. We present a cost-effective method for automated touch sensing in the tapered beam test. Capacitive touch sensors detect foot faults onto the beam through a layer of conductive paint, and results are processed and stored on a Raspberry Pi computer. Automated touch sensing using this method achieved high sensitivity (96.2%) as compared to 'gold standard' manual video scoring. Furthermore, it provided a reliable measure of lateralized motor deficits in mice with unilateral photothrombotic stroke: results indicated an increased number of contralesional foot faults for up to 6days after ischemia. The automated adaptation of the tapered beam test produces results immediately after each trial, without the need for labor-intensive post-hoc video scoring. It also increases objectivity of the data as it requires less experimenter involvement during analysis. Automated touch sensing may provide a useful adaptation to the existing tapered beam test in mice, while the simplicity of the hardware lends itself to potential further adaptations to related behavioral tests. Copyright © 2017 Elsevier B.V. All rights reserved.
Rogers, III, C. E.; Gould, P. L.
2016-02-01
Here, we describe a system for generating frequency-chirped and amplitude-shaped pulses on time scales from sub-nanosecond to ten nanoseconds. The system starts with cw diode-laser light at 780 nm and utilizes fiber-based electro-optical phase and intensity modulators, driven by an arbitrary waveform generator, to generate the shaped pulses. These pulses are subsequently amplified to several hundred mW with a tapered amplifier in a delayed double-pass configuration. Frequency chirps up to 5 GHz in 2 ns and pulse widths as short as 0.15 ns have been realized.
High power (2+1) ×1 taper-fused all-fiber side-pumped combiner
NASA Astrophysics Data System (ADS)
Wu, Juan; Ma, Yi; Yan, Hong
2018-03-01
A novel design and fabrication method of a (2+1) ×1 taper-fused all-fiber side-pumped combiner is reported. The pump coupling efficiency of this pump combiner was studied theoretically and experimentally. The measurement results indicated that the coupling efficiency of the pump light is 96.5%, the signal-to-pump isolation reaches 31dB, and the signal loss of the combiner is 0.19dB. A backward-pumped fiber laser system was established by using this (2+1) ×1 side-pumped combiner directly, achieving a signal laser output of 1007W with M2=1.33.
Rogers, C E; Gould, P L
2016-02-08
We describe a system for generating frequency-chirped and amplitude-shaped pulses on time scales from sub-nanosecond to ten nanoseconds. The system starts with cw diode-laser light at 780 nm and utilizes fiber-based electro-optical phase and intensity modulators, driven by an arbitrary waveform generator, to generate the shaped pulses. These pulses are subsequently amplified to several hundred mW with a tapered amplifier in a delayed double-pass configuration. Frequency chirps up to 5 GHz in 2 ns and pulse widths as short as 0.15 ns have been realized.
Fiber optic engine for micro projection display.
Arabi, Hesam Edin; An, Sohee; Oh, Kyunghwan
2010-03-01
A novel compact optical engine for a micro projector display is experimentally demonstrated, which is composed of RGB light sources, a tapered 3 x 1 Fiber Optic Color Synthesizer (FOCS) along with a fiberized ball-lens, and a two dimensional micro electromechanical scanning mirror. In the proposed optical engine, we successfully employed an all-fiber beam shaping technique combining optical fiber taper and fiberized ball lens that can render a narrow beam and enhance the resolution of the screened image in the far field. Optical performances of the proposed device assembly are investigated in terms of power loss, collimating strength of the collimator assembly, and color gamut of the output.
The Seismicity of Two Hyperextended Margins
NASA Astrophysics Data System (ADS)
Redfield, Tim; Terje Osmundsen, Per
2013-04-01
A seismic belt marks the outermost edge of Scandinavia's proximal margin, inboard of and roughly parallel to the Taper Break. A similar near- to onshore seismic belt runs along its inner edge, roughly parallel to and outboard of the asymmetric, seaward-facing escarpment. The belts converge at both the northern and southern ends of Scandinavia, where crustal taper is sharp and the proximal margin is narrow. Very few seismic events have been recorded on the intervening, gently-tapering Trøndelag Platform. Norway's distribution of seismicity is systematically ordered with respect to 1) the structural templates of high-beta extension that shaped the thinning gradient during Late Jurassic or Early Cretaceous time, and 2) the topographically resurgent Cretaceous-Cenozoic "accommodation phase" family of escarpments that approximate the innermost limit of crustal thinning [See Redfield and Osmundsen (2012) for diagrams, definitions, discussion, and supporting citations.] Landwards from the belt of earthquake epicenters that mark the Taper Break the crust consistently thickens, and large fault arrays tend to sole out at mid crustal levels. Towards the sea the crystalline continental crust is hyperextended, pervasively faulted, and generally very thin. Also, faulting and serpentinization may have affected the uppermost parts of the distal margin's lithospheric mantle. Such contrasting structural conditions may generate a contrasting stiffness: for a given stress, more strain can be accommodated in the distal margin than in the less faulted proximal margin. By way of comparison, inboard of the Taper Break on the gently-tapered Trøndelag Platform, faulting was not penetrative. There, similar structural conditions prevail and proximal margin seismicity is negligible. Because stress concentration can occur where material properties undergo significant contrast, the necking zone may constitute a natural localization point for post-thinning phase earthquakes. In Scandinavia, loads generated by escarpment erosion, offshore sedimentary deposition, and post-glacial rebound have been periodically superimposed throughout the Neogene. Their vertical stress patterns are mutually-reinforcing during deglaciation. However, compared to the post-glacial dome the pattern of maximum uplift/unloading generated by escarpment erosion will be longer, more linear, and located atop the emergent proximal margin. The pattern of offshore maximum deposition/loading will be similar. This may help explain the asymmetric expenditure of Fennoscandia's annual seismic energy budget. It may also help explain the obvious Conundrum: if stress generated by erosion and deposition is sufficiently great, fault reactivation and consequent seismicity can occur at any hyperextended passive margin sector regardless of its glacial history. Onshore Scandinavia, episodic footwall uplift and escarpment rejuvenation may have been driven by just such a mechanism throughout much of the later Cretaceous and Cenozoic. SE Brasil offers a glimpse of how Norway's hyperextended margin might manifest itself seismically in the absence of post-glacial rebound. Compilations suggest two seismic belts may exist. One, offshore, follows the thinned crust of the ultra-deep, hyperextended Campos and Santos basins. Onshore, earthquakes occur more commonly in the elevated highlands of the escarpments, and track especially the long, linear ranges such as the Serra de Mantiquiera and Serra do Espinhaço. Seismicity is more rare in the coastal lowlands, and largely absent in the Brasilian hinterland. Although never glaciated since the time of hyperextension and characterized by significantly fewer earthquakes in toto, SE Brasil's pattern of seismicity closely mimics Scandinavia. Commencing after perhaps just a few tens of millions of years of 'sag' basin infill, accommodation phase fault reactivation and footwall uplift at passive margins is the inexorable product of hyperextension. CITATIONS Redfield, T.F. and P.T. Osmundsen, 2012, GSA Bulletin, doi: 10.1130/B30691.1
Comparison of cyclic fatigue resistance of novel nickel-titanium rotary instruments.
Capar, Ismail Davut; Ertas, Huseyin; Arslan, Hakan
2015-04-01
New files (ProTaper Next/HyFlex/OneShape) are made from novel nickel-titanium (NiTi) alloys/treatments. The purpose of this study was to compare the cyclic fatigue resistance of these new instruments with that of Revo-S instruments. Four groups of 20 NiTi endodontic instruments were tested in steel canals with a 3 mm radius and a 60° angle of curvature. The cyclic fatigue of the following NiTi instruments with a tip size 25 and 0.06 taper that were manufactured with different alloys was tested: ProTaper Next X2 (M-Wire), OneShape (conventional NiTi), Revo-S Shaping Universal (conventional NiTi) and HyFlex 25/0.6 (controlled memory NiTi wire). A one-way anova and post-hoc Tukey's test (α = 0.05) revealed that the HyFlex files had the highest fatigue resistance and the Revo-S had the least fatigue resistance among the groups (P < 0.001). © 2014 Australian Society of Endodontology.
NASA Astrophysics Data System (ADS)
Hansen, Anders K.; Jensen, Ole B.; Sumpf, Bernd; Erbert, Götz; Unterhuber, Angelika; Drexler, Wolfgang; Andersen, Peter E.; Petersen, Paul Michael
2014-02-01
Many applications, e.g., within biomedicine stand to benefit greatly from the development of diode laser-based multi- Watt efficient compact green laser sources. The low power of existing diode lasers in the green area (about 100 mW) means that the most promising approach remains nonlinear frequency conversion of infrared tapered diode lasers. Here, we describe the generation of 3.5 W of diffraction-limited green light from SHG of a single tapered diode laser, itself yielding 10 W at 1063 nm. This SHG is performed in single pass through a cascade of two PPMgO:LN crystals with re-focusing and dispersion compensating optics between the two nonlinear crystals. In the low-power limit, such a cascade of two crystals has the theoretical potential for generation of four times as much power as a single crystal without adding significantly to the complexity of the system. The experimentally achieved power of 3.5 W corresponds to a power enhancement greater than 2 compared to SHG in each of the crystals individually and is the highest visible output power generated by frequency conversion of a single diode laser. Such laser sources provide the necessary pump power for biophotonics applications, such as optical coherence tomography or multimodal imaging devices, e.g., FTCARS-OCT, based on a strongly pumped ultrafast Ti:Sapphire laser.
NASA Technical Reports Server (NTRS)
Naik, D. A.; Ostowari, C.
1987-01-01
A series of wind tunnel experiments have been conducted to investigate the aerodynamic characteristics of several planar and nonplanar wingtip planforms. Seven different configurations: base-line rectangular, elliptical, swept and tapered, swept and tapered with dihedral, swept and tapered with anhedral, rising arc, and drooping arc, were investigated for two different spans. The data are available in terms of coefficient plots of force data, flow visualization photographs, and velocity and pressure flowfield surveys. All planforms, particularly the nonplanar, have some advantages over the baseline rectangular planform. Span efficiencies up to 20-percent greater than baseline are a possibility. However, it is suggested that the span efficiency concept might need refinement for nonplanar wings. Flow survey data show the change in effective span with vortex roll-up. The flow visualization shows the occurrence of mushroom-cell-separation flow patterns at angles of attack corresponding to stall. These grow with an increase in post-stall angle of attack. For the larger aspect ratios, the cells are observed to split into sub-cells at the higher angles of attack. For all angles of attack, some amount of secondary vortex flow is observed for the planar and nonplanar out-board planforms with sweep and taper.
Arrays of Segmented, Tapered Light Guides for Use With Large, Planar Scintillation Detectors
NASA Astrophysics Data System (ADS)
Raylman, Raymond R.; Vaigneur, Keith; Stolin, Alexander V.; Jaliparthi, Gangadhar
2015-06-01
Metabolic imaging techniques can potentially improve detection and diagnosis of cancer in women with radiodense and/or fibrocystic breasts. Our group has previously developed a high-resolution positron emission tomography imaging and biopsy device (PEM-PET) to detect and guide the biopsy of suspicious breast lesions. Initial testing revealed that the imaging field-of-view (FOV) of the scanner was smaller than the physical size of the detector's active area, which could hinder sampling of breast areas close to the chest wall. The purpose of this work was to utilize segmented, tapered light guides for optically coupling the scintillator arrays to arrays of position-sensitive photomultipliers to increase both the active FOV and identification of individual scintillator elements. Testing of the new system revealed that the optics of these structures made it possible to discern detector elements from the complete active area of the detector face. In the previous system the top and bottom rows and left and right columns were not identifiable. Additionally, use of the new light guides increased the contrast of individual detector elements by up to 129%. Improved element identification led to a spatial resolution increase by approximately 12%. Due to attenuation of light in the light guides the detector energy resolution decreased from 18.5% to 19.1%. Overall, these improvements should increase the field-of-view and spatial resolution of the dedicated breast-PET system.
Du, Juan; Wang, Qingkai; Jiang, Guobao; Xu, Changwen; Zhao, Chujun; Xiang, Yuanjiang; Chen, Yu; Wen, Shuangchun; Zhang, Han
2014-01-01
By coupling few-layer Molybdenum Disulfide (MoS2) with fiber-taper evanescent light field, a new type of MoS2 based nonlinear optical modulating element had been successfully fabricated as a two-dimensional layered saturable absorber with strong light-matter interaction. This MoS2-taper-fiber device is not only capable of passively mode-locking an all-normal-dispersion ytterbium-doped fiber laser and enduring high power laser excitation (up to 1 W), but also functions as a polarization sensitive optical modulating component (that is, different polarized light can induce different nonlinear optical response). Thanks to the combined advantages from the strong nonlinear optical response in MoS2 together with the sufficiently-long-range interaction between light and MoS2, this device allows for the generation of high power stable dissipative solitons at 1042.6 nm with pulse duration of 656 ps and a repetition rate of 6.74 MHz at a pump power of 210 mW. Our work may also constitute the first example of MoS2-enabled wave-guiding photonic device, and potentially give some new insights into two-dimensional layered materials related photonics. PMID:25213108
Deep and tapered silicon photonic crystals for achieving anti-reflection and enhanced absorption.
Hung, Yung-Jr; Lee, San-Liang; Coldren, Larry A
2010-03-29
Tapered silicon photonic crystals (PhCs) with smooth sidewalls are realized using a novel single-step deep reactive ion etching. The PhCs can significantly reduce the surface reflection over the wavelength range between the ultra-violet and near-infrared regions. From the measurements using a spectrophotometer and an angle-variable spectroscopic ellipsometer, the sub-wavelength periodic structure can provide a broad and angular-independent antireflective window in the visible region for the TE-polarized light. The PhCs with tapered rods can further reduce the reflection due to a gradually changed effective index. On the other hand, strong optical resonances for TM-mode can be found in this structure, which is mainly due to the existence of full photonic bandgaps inside the material. Such resonance can enhance the optical absorption inside the silicon PhCs due to its increased optical paths. With the help of both antireflective and absorption-enhanced characteristics in this structure, the PhCs can be used for various applications.
Taking a look at the calibration of a CCD detector with a fiber-optic taper
Alkire, R. W.; Rotella, F. J.; Duke, N. E. C.; Otwinowski, Zbyszek; Borek, Dominika
2016-01-01
At the Structural Biology Center beamline 19BM, located at the Advanced Photon Source, the operational characteristics of the equipment are routinely checked to ensure they are in proper working order. After performing a partial flat-field calibration for the ADSC Quantum 210r CCD detector, it was confirmed that the detector operates within specifications. However, as a secondary check it was decided to scan a single reflection across one-half of a detector module to validate the accuracy of the calibration. The intensities from this single reflection varied by more than 30% from the module center to the corner of the module. Redistribution of light within bent fibers of the fiber-optic taper was identified to be a source of this variation. The degree to which the diffraction intensities are corrected to account for characteristics of the fiber-optic tapers depends primarily upon the experimental strategy of data collection, approximations made by the data processing software during scaling, and crystal symmetry. PMID:27047303
Wu, Kan; Guo, Chaoshi; Wang, Hao; Zhang, Xiaoyan; Wang, Jun; Chen, Jianping
2017-07-24
All-optical phase shifters and switches play an important role for various all-optical applications including all-optical signal processing, sensing and communication. In this paper, we demonstrate a fiber all-optical phase shifter using few-layer 2D material tungsten disulfide (WS 2 ) deposited on a tapered fiber. WS 2 absorbs injected 980 nm pump (control light) and generates heat, which changes the refractive index of both WS 2 and tapered fiber due to thermo-optic effect and achieves a maximum phase shift of 6.1π near 1550 nm. The device has a loss of 3.7 dB. By constructing a Mach-Zehnder interferometer with WS 2 based phase shifter in one arm, an all-optical switch is also obtained with an extinction ratio of 15 dB and a rise time of 7.3 ms. This all fiber low-cost and compact optical phase shifter and switch demonstrates the potential of 2D transition metal dichalcogenides for all-optical signal processing devices.
Wide-field lensless fluorescent microscopy using a tapered fiber-optic faceplate on a chip.
Coskun, Ahmet F; Sencan, Ikbal; Su, Ting-Wei; Ozcan, Aydogan
2011-09-07
We demonstrate lensless fluorescent microscopy over a large field-of-view of ~60 mm(2) with a spatial resolution of <4 µm. In this on-chip fluorescent imaging modality, the samples are placed on a fiber-optic faceplate that is tapered such that the density of the fiber-optic waveguides on the top facet is >5 fold larger than the bottom one. Placed on this tapered faceplate, the fluorescent samples are pumped from the side through a glass hemisphere interface. After excitation of the samples, the pump light is rejected through total internal reflection that occurs at the bottom facet of the sample substrate. The fluorescent emission from the sample is then collected by the smaller end of the tapered faceplate and is delivered to an opto-electronic sensor-array to be digitally sampled. Using a compressive sampling algorithm, we decode these raw lensfree images to validate the resolution (<4 µm) of this on-chip fluorescent imaging platform using microparticles as well as labeled Giardia muris cysts. This wide-field lensfree fluorescent microscopy platform, being compact and high-throughput, might provide a valuable tool especially for cytometry, rare cell analysis (involving large area microfluidic systems) as well as for microarray imaging applications.
Beach, R.J.; Benett, W.J.
1994-04-26
A lensing duct to condense (intensify) light using a combination of front surface lensing and reflective waveguiding is described. The duct tapers down from a wide input side to a narrow output side, with the input side being lens-shaped and coated with an antireflective coating for more efficient transmission into the duct. The four side surfaces are uncoated, preventing light from escaping by total internal reflection as it travels along the duct (reflective waveguiding). The duct has various applications for intensifying light, such as in the coupling of diode array pump light to solid state lasing materials, and can be fabricated from inexpensive glass and plastic. 3 figures.
Yılmaz, K; Uslu, G; Gündoğar, M; Özyürek, T; Grande, N M; Plotino, G
2018-01-31
To compare the cyclic fatigue resistance of the One G, ProGlider, HyFlex EDM and R-Pilot glide path NiTi files at body temperature. Twenty One G (size 14, .03 taper), 20 ProGlider (size 16, .02 taper), 20 HyFlex EDM (size 10, .05 taper) and 20 R-Pilot (size 12.5, .04 taper) instruments were operated in rotation at 300 rpm (One G, ProGlider and HyFlex) or in reciprocation (R-Pilot) at 35 °C in artificial canals that were manufactured by reproducing the size and taper of the instrument until fracture occurred. The time to fracture was recorded in seconds using a digital chronometer, and the length of the fractured fragments was registered. Mean data were analysed statistically using the Kruskal-Wallis test and post hoc Tukey tests via SPSS 21.0 software. The statistical significance level was set at 5%. The cyclic fatigue resistance of the R-Pilot files was significantly greater than the other instruments, and the One G was significantly lower (P < 0.05). There was no difference between the HyFlex EDM and the ProGlider (P > 0.05). No significant difference (P > 0.05) was evident in the mean length of the fractured fragments of the various instruments. The cyclic fatigue resistance of the R-Pilot reciprocating glide path file was significantly greater than that of the rotary HyFlex EDM, ProGlider and One G glide path files. © 2018 International Endodontic Journal. Published by John Wiley & Sons Ltd.
Screw-in forces during instrumentation by various file systems.
Ha, Jung-Hong; Kwak, Sang Won; Kim, Sung-Kyo; Kim, Hyeon-Cheol
2016-11-01
The purpose of this study was to compare the maximum screw-in forces generated during the movement of various Nickel-Titanium (NiTi) file systems. Forty simulated canals in resin blocks were randomly divided into 4 groups for the following instruments: Mtwo size 25/0.07 (MTW, VDW GmbH), Reciproc R25 (RPR, VDW GmbH), ProTaper Universal F2 (PTU, Dentsply Maillefer), and ProTaper Next X2 (PTN, Dentsply Maillefer, n = 10). All the artificial canals were prepared to obtain a standardized lumen by using ProTaper Universal F1. Screw-in forces were measured using a custom-made experimental device (AEndoS- k , DMJ system) during instrumentation with each NiTi file system using the designated movement. The rotation speed was set at 350 rpm with an automatic 4 mm pecking motion at a speed of 1 mm/sec. The pecking depth was increased by 1 mm for each pecking motion until the file reach the working length. Forces were recorded during file movement, and the maximum force was extracted from the data. Maximum screw-in forces were analyzed by one-way ANOVA and Tukey's post hoc comparison at a significance level of 95%. Reciproc and ProTaper Universal files generated the highest maximum screw-in forces among all the instruments while M-two and ProTaper Next showed the lowest ( p < 0.05). Geometrical differences rather than shaping motion and alloys may affect the screw-in force during canal instrumentation. To reduce screw-in forces, the use of NiTi files with smaller cross-sectional area for higher flexibility is recommended.
Labbaf, Hossein; Nazari Moghadam, Kiumars; Shahab, Shahriar; Mohammadi Bassir, Mahshid; Fahimi, Mohammad Amin
2017-01-01
Introduction: As a consequence of root canal preparation, dentinal chips, irrigants and pulp remnants are extruded into preradicular space. This phenomenon may lead to post endodontic flare-ups. The purpose of this study was to compare the amount of extruded debris with four endodontic NiTi engine-driven systems. Methods and Materials: Sixty mesiobuccal roots of maxillary molars with 15-30˚ curvature were divided randomly into four groups (n=15). Each group was instrumented up to apical size of 25 using Reciproc, ProTaper Universal, Neolix and Hyflex. Bidistilled water was used as irrigant and extruded debris was collected in pre-weighted Eppendorf tubes. Tubes were stored in incubator for drying the debris. Extruded debris were weighted in electronic microbalance with accuracy of 0.0001 g. The raw data was analyzed with one way analysis of variance (ANOVA) and Tukey’s HSD post hoc test. Level of significance was set at 0.05. Results: The debris extrusion with Reciproc files was significantly higher than the other groups (P<0.05). Hyflex significantly extruded less debris than other files (P<0.05). There was no significant difference between ProTaper Universal and Neolix regarding the amount of extruded debris (P=0.98). Conclusion: All systems extruded debris during the instrumentation. Reciproc system significantly extruded more debris. Caution should be taken when interpreting the results of this study and applying it to the real clinical situation. PMID:28808456
A nanowaveguide platform for collective atom-light interaction
NASA Astrophysics Data System (ADS)
Meng, Y.; Lee, J.; Dagenais, M.; Rolston, S. L.
2015-08-01
We propose a nanowaveguide platform for collective atom-light interaction through evanescent field coupling. We have developed a 1 cm-long silicon nitride nanowaveguide can use evanescent fields to trap and probe an ensemble of 87Rb atoms. The waveguide has a sub-micrometer square mode area and was designed with tapers for high fiber-to-waveguide coupling efficiencies at near-infrared wavelengths (750 nm to 1100 nm). Inverse tapers in the platform adiabatically transfer a weakly guided mode of fiber-coupled light into a strongly guided mode with an evanescent field to trap atoms and then back to a weakly guided mode at the other end of the waveguide. The coupling loss is -1 dB per facet (˜80% coupling efficiency) at 760 nm and 1064 nm, which is estimated by a propagation loss measurement with waveguides of different lengths. The proposed platform has good thermal conductance and can guide high optical powers for trapping atoms in ultra-high vacuum. As an intermediate step, we have observed thermal atom absorption of the evanescent component of a nanowaveguide and have demonstrated the U-wire mirror magneto-optical trap that can transfer atoms to the proximity of the surface.
Tri-functional cannula for retinal endovascular surgery
Weiss, Jonathan D [Albuquerque, NM
2010-07-27
A tri-functional cannula combines the functions of tissue Plasminogen Activator (tPA) solution delivery, illumination and venous pressure measurement. The cannula utilizes a tapered hollow-core optical fiber having an inlet for tPA solution, an attached fiber optic splitter configured to receive illumination light from an optical source such and a LED. A window in the cannula transmits the light to and from a central retinal vein. The return light is coupled to an optical detector to measure the pressure within the vein and determine whether an occlusion has been removed.
Sterzenbach, Guido; Franke, Alexandra; Naumann, Michael
2012-12-01
This is the first clinical long-term pilot study that tested the biomimetic concept of using more flexible, dentine-like (low Young modulus) glass fiber-reinforced epoxy resin posts (GFREPs) compared with rather rigid, stiff (higher Young modulus) titanium posts (TPs) in order to improve the survival rate of severely damaged endodontically treated teeth. Ninety-one subjects in need of postendodontic restorations in teeth with 2 or less remaining cavity walls were randomly assigned to receive either a tapered TP (n = 46) or a tapered GFREP (n = 45). The posts were adhesively luted using self-adhesive resin cement. The composite core build-ups were prepared ensuring a circumferential 2-mm ferrule. The primary endpoint was a loss of restoration for any reason. To study group differences, the log-rank test was calculated (P < .05). Hazard plots were constructed. After 84 months of observation (mean = 71.2 months), 7 restorations failed (ie, 4 GFREPs and 3 TPs). The failure modes were as follows: GFREP:root fracture (n = 3), core fracture (n = 1) and TP:endodontic failure (n = 3). No statistical difference was found between the survival rates (GFREPs = 90.2%, TPs = 93.5%, P = .642). The probability of no failure was comparable for both post materials (risk ratio; 95% confidence interval, 0.965-0.851/1.095). When using self-adhesive luted prefabricated posts in severely destroyed abutment teeth with 2 or less cavity walls and a 2-mm ferrule, postendodontic restorations achieved high long-term survival rates irrespective of the post material used (ie, glass fiber vs titanium). Copyright © 2012 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.
Bright nanoscale source of deterministic entangled photon pairs violating Bell's inequality.
Jöns, Klaus D; Schweickert, Lucas; Versteegh, Marijn A M; Dalacu, Dan; Poole, Philip J; Gulinatti, Angelo; Giudice, Andrea; Zwiller, Val; Reimer, Michael E
2017-05-10
Global, secure quantum channels will require efficient distribution of entangled photons. Long distance, low-loss interconnects can only be realized using photons as quantum information carriers. However, a quantum light source combining both high qubit fidelity and on-demand bright emission has proven elusive. Here, we show a bright photonic nanostructure generating polarization-entangled photon pairs that strongly violates Bell's inequality. A highly symmetric InAsP quantum dot generating entangled photons is encapsulated in a tapered nanowire waveguide to ensure directional emission and efficient light extraction. We collect ~200 kHz entangled photon pairs at the first lens under 80 MHz pulsed excitation, which is a 20 times enhancement as compared to a bare quantum dot without a photonic nanostructure. The performed Bell test using the Clauser-Horne-Shimony-Holt inequality reveals a clear violation (S CHSH > 2) by up to 9.3 standard deviations. By using a novel quasi-resonant excitation scheme at the wurtzite InP nanowire resonance to reduce multi-photon emission, the entanglement fidelity (F = 0.817 ± 0.002) is further enhanced without temporal post-selection, allowing for the violation of Bell's inequality in the rectilinear-circular basis by 25 standard deviations. Our results on nanowire-based quantum light sources highlight their potential application in secure data communication utilizing measurement-device-independent quantum key distribution and quantum repeater protocols.
Morphological characterization of the antennal sensilla of the dogwood borer (Lepidoptera: Sesiidae)
USDA-ARS?s Scientific Manuscript database
The external morphology of the dogwood borer antennae and their sensilla was investigated using light and scanning electron microscopy. Male and female antennaes were clavate before tapering to an apical point and consisted of three main segments; the scape, pedicel, and flagellum. Although, there...
NASA Astrophysics Data System (ADS)
Khor, Jian Wei; Hua, Yu; Bick, Alison; Tang, Sindy
2017-11-01
In this study, we investigate the effect of an obstacle on the breakup probability of droplets within a concentrated emulsion flowing into a constriction. We introduce a concentrated emulsion as a 2D monolayer through a tapered channel into a narrow constriction. This geometry is commonly used for the serial interrogation of droplet content in droplet microfluidics applications. We found that certain drop-drop interactions near the constriction entrance lead to the breakup of these drops at a high flow rates. Such breakup sets the upper limit for the droplet interrogation throughput. Incidentally, previous findings have shown that strategic placement of a circular post near a narrow exit can reduce the conflict from the interactions among living organisms (humans, ants, and sheep) or a cluster of particles when entering a narrow exit. Inspired by these results, we modify the tapered channel by placing a circular post in a strategic location near the constriction entrance in order to reduce catastrophic drop-drop interactions and to avoid breakup. Preliminary work shows that the circular posts can reduce the breakup fraction of drops by up to 17%. The optimization of the location and size of the obstacle is expected to further reduce the breakup fraction.
Zakaria, Rozalina; Sheng, Ong Yong; Wern, Kam; Shamshirband, Shahaboddin; Wahab, Ainuddin Wahid Abdul; Petković, Dalibor; Saboohi, Hadi
2014-05-01
A soft methodology study has been applied on tapered plastic multimode sensors. This study basically used tapered plastic multimode fiber [polymethyl methacrylate (PMMA)] optics as a sensor. The tapered PMMA fiber was fabricated using an etching method involving deionized water and acetone to achieve a waist diameter and length of 0.45 and 10 mm, respectively. In addition, a tapered PMMA probe, which was coated by silver film, was fabricated and demonstrated using a calcium hypochlorite (G70) solution. The working mechanism of such a device is based on the observation increment in the transmission of the sensor that is immersed in solutions at high concentrations. As the concentration was varied from 0 to 6 ppm, the output voltage of the sensor increased linearly. The silver film coating increased the sensitivity of the proposed sensor because of the effective cladding refractive index, which increases with the coating and thus allows more light to be transmitted from the tapered fiber. In this study, the polynomial and radial basis function (RBF) were applied as the kernel function of the support vector regression (SVR) to estimate and predict the output voltage response of the sensors with and without silver film according to experimental tests. Instead of minimizing the observed training error, SVR_poly and SVR_rbf were used in an attempt to minimize the generalization error bound so as to achieve generalized performance. An adaptive neuro-fuzzy interference system (ANFIS) approach was also investigated for comparison. The experimental results showed that improvements in the predictive accuracy and capacity for generalization can be achieved by the SVR_poly approach in comparison to the SVR_rbf methodology. The same testing errors were found for the SVR_poly approach and the ANFIS approach.
Optimization of freeform lightpipes for light-emitting-diode projectors.
Fournier, Florian; Rolland, Jannick
2008-03-01
Standard nonimaging components used to collect and integrate light in light-emitting-diode-based projector light engines such as tapered rods and compound parabolic concentrators are compared to optimized freeform shapes in terms of transmission efficiency and spatial uniformity. We show that the simultaneous optimization of the output surface and the profile shape yields transmission efficiency within the étendue limit up to 90% and spatial uniformity higher than 95%, even for compact sizes. The optimization process involves a manual study of the trends for different shapes and the use of an optimization algorithm to further improve the performance of the freeform lightpipe.
Beach, Raymond J.; Honea, Eric C.; Bibeau, Camille; Mitchell, Scott; Lang, John; Maderas, Dennis; Speth, Joel; Payne, Stephen A.
2000-01-01
A hollow lensing duct to condense (intensify) light using a combination of focusing using a spherical or cylindrical lens followed by reflective waveguiding. The hollow duct tapers down from a wide input side to a narrow output side, with the input side consisting of a lens that may be coated with an antireflective coating for more efficient transmission into the duct. The inside surfaces of the hollow lens duct are appropriately coated to be reflective, preventing light from escaping by reflection as it travels along the duct (reflective waveguiding). The hollow duct has various applications for intensifying light, such as in the coupling of diode array pump light to solid state lasing materials.
Optimization of freeform lightpipes for light-emitting-diode projectors
NASA Astrophysics Data System (ADS)
Fournier, Florian; Rolland, Jannick
2008-03-01
Standard nonimaging components used to collect and integrate light in light-emitting-diode-based projector light engines such as tapered rods and compound parabolic concentrators are compared to optimized freeform shapes in terms of transmission efficiency and spatial uniformity. We show that the simultaneous optimization of the output surface and the profile shape yields transmission efficiency within the étendue limit up to 90% and spatial uniformity higher than 95%, even for compact sizes. The optimization process involves a manual study of the trends for different shapes and the use of an optimization algorithm to further improve the performance of the freeform lightpipe.
CT evaluation of canal preparation using rotary and hand NI-TI instruments: An in vitro study
Nagaraja, Shruthi; Sreenivasa Murthy, B V
2010-01-01
Background: Controlled, uniformly tapered radicular preparation is a great challenge in endodontics. Improper preparation can lead to procedural errors like transportation of foramen, uneven dentine thickness, stripping of root canal, formation of ledge, zip, and elbow in curved canals. These procedural errors and their sequel can adversely affect the prognosis of treatment. Aim/Objectives: The present in vitro study aims to evaluate canal preparation based on the following factors: canal transportation, remaining dentine thickness and comparing centering ability between hand Ni-Ti K files and ProTaper rotary Ni-Ti instruments using computed tomography (CT). Materials and Methods: For evaluation, 30 mesiobuccal roots of maxillary molars were selected. Of these, 15 roots were distributed into two groups where Group 1 included hand instrumentation with Ni-Ti K-files; and Group 2 comprised ProTaper NiTi rotary system. Pre instrumentation and post instrumentation three-dimensional CT images were obtained from root cross-sections that were 1 mm thick from apex to the canal orifice; scanned images were then superimposed and compared. Result: It was observed that the manual technique using hand Ni-Ti K-file produced lesser canal transportation and maintained greater dentine thickness than the rotary ProTaper technique at middle and coronal third and this difference was statistically significant. No significant difference was seen with regard to canal transportation and remaining root dentine at apical levels. With regard to centering ratio, no significant difference was seen between both the groups at all levels. Conclusion: ProTaper should be used judiciously, especially in curved canals, as it causes higher canal transportation and thinning of root dentine at middle and coronal levels. None of the groups showed optimal centering ability. PMID:20582214
CT evaluation of canal preparation using rotary and hand NI-TI instruments: An in vitro study.
Nagaraja, Shruthi; Sreenivasa Murthy, B V
2010-01-01
Controlled, uniformly tapered radicular preparation is a great challenge in endodontics. Improper preparation can lead to procedural errors like transportation of foramen, uneven dentine thickness, stripping of root canal, formation of ledge, zip, and elbow in curved canals. These procedural errors and their sequel can adversely affect the prognosis of treatment. The present in vitro study aims to evaluate canal preparation based on the following factors: canal transportation, remaining dentine thickness and comparing centering ability between hand Ni-Ti K files and ProTaper rotary Ni-Ti instruments using computed tomography (CT). For evaluation, 30 mesiobuccal roots of maxillary molars were selected. Of these, 15 roots were distributed into two groups where Group 1 included hand instrumentation with Ni-Ti K-files; and Group 2 comprised ProTaper NiTi rotary system. Pre instrumentation and post instrumentation three-dimensional CT images were obtained from root cross-sections that were 1 mm thick from apex to the canal orifice; scanned images were then superimposed and compared. It was observed that the manual technique using hand Ni-Ti K-file produced lesser canal transportation and maintained greater dentine thickness than the rotary ProTaper technique at middle and coronal third and this difference was statistically significant. No significant difference was seen with regard to canal transportation and remaining root dentine at apical levels. With regard to centering ratio, no significant difference was seen between both the groups at all levels. ProTaper should be used judiciously, especially in curved canals, as it causes higher canal transportation and thinning of root dentine at middle and coronal levels. None of the groups showed optimal centering ability.
Wizard CD Plus and ProTaper Universal: analysis of apical transportation using new software
GIANNASTASIO, Daiana; da ROSA, Ricardo Abreu; PERES, Bernardo Urbanetto; BARRETO, Mirela Sangoi; DOTTO, Gustavo Nogara; KUGA, Milton Carlos; PEREIRA, Jefferson Ricardo; SÓ, Marcus Vinícius Reis
2013-01-01
Objective This study has two aims: 1) to evaluate the apical transportation of the Wizard CD Plus and ProTaper Universal after preparation of simulated root canals; 2) to compare, with Adobe Photoshop, the ability of a new software (Regeemy) in superposing and subtracting images. Material and Methods Twenty five simulated root canals in acrylic-resin blocks (with 20º curvature) underwent cone beam computed tomography before and after preparation with the rotary systems (70 kVp, 4 mA, 10 s and with the 8×8 cm FoV selection). Canals were prepared up to F2 (ProTaper) and 24.04 (Wizard CD Plus) instruments and the working length was established to 15 mm. The tomographic images were imported into iCAT Vision software and CorelDraw for standardization. The superposition of pre- and post-instrumentation images from both systems was performed using Regeemy and Adobe Photoshop. The apical transportation was measured in millimetres using Image J. Five acrylic resin blocks were used to validate the superposition achieved by the software. Student's t-test for independent samples was used to evaluate the apical transportation achieved by the rotary systems using each software individually. Student's t-test for paired samples was used to compare the ability of each software in superposing and subtracting images from one rotary system per time. Results The values obtained with Regeemy and Adobe Photoshop were similar to rotary systems (P>0.05). ProTaper Universal and Wizard CD Plus promoted similar apical transportation regardless of the software used for image's superposition and subtraction (P>0.05). Conclusion Wizard CD Plus and ProTaper Universal promoted little apical transportation. Regeemy consists in a feasible software to superpose and subtract images and appears to be an alternative to Adobe Photoshop. PMID:24212994
Wizard CD Plus and ProTaper Universal: analysis of apical transportation using new software.
Giannastasio, Daiana; Rosa, Ricardo Abreu da; Peres, Bernardo Urbanetto; Barreto, Mirela Sangoi; Dotto, Gustavo Nogara; Kuga, Milton Carlos; Pereira, Jefferson Ricardo; Só, Marcus Vinícius Reis
2013-01-01
This study has two aims: 1) to evaluate the apical transportation of the Wizard CD Plus and ProTaper Universal after preparation of simulated root canals; 2) to compare, with Adobe Photoshop, the ability of a new software (Regeemy) in superposing and subtracting images. Twenty five simulated root canals in acrylic-resin blocks (with 20º curvature) underwent cone beam computed tomography before and after preparation with the rotary systems (70 kVp, 4 mA, 10 s and with the 8×8 cm FoV selection). Canals were prepared up to F2 (ProTaper) and 24.04 (Wizard CD Plus) instruments and the working length was established to 15 mm. The tomographic images were imported into iCAT Vision software and CorelDraw for standardization. The superposition of pre- and post-instrumentation images from both systems was performed using Regeemy and Adobe Photoshop. The apical transportation was measured in millimetres using Image J. Five acrylic resin blocks were used to validate the superposition achieved by the software. Student's t-test for independent samples was used to evaluate the apical transportation achieved by the rotary systems using each software individually. Student's t-test for paired samples was used to compare the ability of each software in superposing and subtracting images from one rotary system per time. The values obtained with Regeemy and Adobe Photoshop were similar to rotary systems (P>0.05). ProTaper Universal and Wizard CD Plus promoted similar apical transportation regardless of the software used for image's superposition and subtraction (P>0.05). Wizard CD Plus and ProTaper Universal promoted little apical transportation. Regeemy consists in a feasible software to superpose and subtract images and appears to be an alternative to Adobe Photoshop.
Spontaneous reductions in smoking during double-blind buprenorphine detoxification.
Patrick, Mollie E; Dunn, Kelly E; Badger, Gary J; Heil, Sarah H; Higgins, Stephen T; Sigmon, Stacey C
2014-09-01
Evidence suggests a positive association between administration of psychoactive drugs and rates of cigarette smoking. Prevalence of smoking among opioid-dependent individuals, for example, is four times greater than the general population. We recently completed a randomized double-blind trial evaluating outpatient buprenorphine taper for prescription opioid (PO) abusers, which provided a unique opportunity to examine naturalistic changes in smoking among participants who detoxified without resumption of illicit opioid use. Participants received no smoking-cessation services and were not encouraged to alter their smoking in any way. A subset of 10 opioid-dependent smokers, who were randomized to receive the same 4-week buprenorphine taper and successfully completed detoxification, were included in the present study. They provided staff-observed urine specimens thrice-weekly throughout the 12-week trial. Specimens were analyzed on-site via enzyme-multiplied immunoassay for urinary cotinine, a metabolite of nicotine that provides a sensitive biochemical measure of smoking status. Mean cotinine levels were significantly different across study phases, with significantly lower cotinine levels during taper (1317.5 ng/ml) and post-taper (1015.8 ng/ml) vs. intake (1648.5 ng/ml) phases (p''s<.05). Overall, mean cotinine levels decreased by 38% between intake and end-of-study, reflecting a reduction of approximately eight cigarettes per day. These data provide additional evidence that opioids influence smoking and extend prior findings to include primary PO abusers, rigorous double-blind opioid dosing conditions and urinary cotinine. These results also suggest that, while likely insufficient for complete cessation, patients who successfully taper from opioids may also experience concurrent reductions in smoking and thus may be ideal candidates for smoking cessation services. Copyright © 2014 Elsevier Ltd. All rights reserved.
Portable fiber-optic taper coupled optical microscopy platform
NASA Astrophysics Data System (ADS)
Wang, Weiming; Yu, Yan; Huang, Hui; Ou, Jinping
2017-04-01
The optical fiber taper coupled with CMOS has advantages of high sensitivity, compact structure and low distortion in the imaging platform. So it is widely used in low light, high speed and X-ray imaging systems. In the meanwhile, the peculiarity of the coupled structure can meet the needs of the demand in microscopy imaging. Toward this end, we developed a microscopic imaging platform based on the coupling of cellphone camera module and fiber optic taper for the measurement of the human blood samples and ascaris lumbricoides. The platform, weighing 70 grams, is based on the existing camera module of the smartphone and a fiber-optic array which providing a magnification factor of 6x.The top facet of the taper, on which samples are placed, serves as an irregular sampling grid for contact imaging. The magnified images of the sample, located on the bottom facet of the fiber, are then projected onto the CMOS sensor. This paper introduces the portable medical imaging system based on the optical fiber coupling with CMOS, and theoretically analyzes the feasibility of the system. The image data and process results either can be stored on the memory or transmitted to the remote medical institutions for the telemedicine. We validate the performance of this cell-phone based microscopy platform using human blood samples and test target, achieving comparable results to a standard bench-top microscope.
Taking a look at the calibration of a CCD detector with a fiber-optic taper
Alkire, R. W.; Rotella, F. J.; Duke, Norma E. C.; ...
2016-02-16
At the Structural Biology Center beamline 19BM, located at the Advanced Photon Source, the operational characteristics of the equipment are routinely checked to ensure they are in proper working order. After performing a partial flat-field calibration for the ADSC Quantum 210r CCD detector, it was confirmed that the detector operates within specifications. However, as a secondary check it was decided to scan a single reflection across one-half of a detector module to validate the accuracy of the calibration. The intensities from this single reflection varied by more than 30% from the module center to the corner of the module. Redistributionmore » of light within bent fibers of the fiber-optic taper was identified to be a source of this variation. As a result, the degree to which the diffraction intensities are corrected to account for characteristics of the fiber-optic tapers depends primarily upon the experimental strategy of data collection, approximations made by the data processing software during scaling, and crystal symmetry.« less
Wu, Juhao; Hu, Newman; Setiawan, Hananiel; ...
2016-11-20
There is a great interest in generating high-power hard X-ray Free Electron Laser (FEL) in the terawatt (TW) level that can enable coherent diffraction imaging of complex molecules like proteins and probe fundamental high-field physics. A feasibility study of producing such X-ray pulses was carried out in this paper employing a configuration beginning with a Self-Amplified Spontaneous Emission FEL, followed by a “self-seeding” crystal monochromator generating a fully coherent seed, and finishing with a long tapered undulator where the coherent seed recombines with the electron bunch and is amplified to high power. The undulator tapering profile, the phase advance inmore » the undulator break sections, the quadrupole focusing strength, etc. are parameters to be optimized. A Genetic Algorithm (GA) is adopted for this multi-dimensional optimization. Concrete examples are given for LINAC Coherent Light Source (LCLS) and LCLS-II-type systems. Finally, analytical estimate is also developed to cross check the simulation and optimization results as a quick and complimentary tool.« less
NASA Astrophysics Data System (ADS)
Tiwari, Divya; Mullaney, Kevin; Korposh, Serhiy; James, Stephen W.; Lee, Seung-Woo; Tatam, Ralph P.
2016-05-01
The development of an ammonia sensor, formed by the deposition of a functionalised titanium dioxide film onto a tapered optical fibre is presented. The titanium dioxide coating allows the coupling of light from the fundamental core mode to a lossy mode supported by the coating, thus creating lossy mode resonance (LMR) in the transmission spectrum. The porphyrin compound that was used to functionalise the coating was removed from the titanium dioxide coating upon exposure to ammonia, causing a change in the refractive index of the coating and a concomitant shift in the central wavelength of the lossy mode resonance. Concentrations of ammonia as small as 1ppm was detected with a response time of less than 1min.
NASA Astrophysics Data System (ADS)
She, Xuan; Li, Bei; Chen, Kan; Li, Ke; Shu, Xiaowu; Liu, Cheng
2017-02-01
We present a design of a laterally tapered optical waveguide mode-size converter from super luminescent diode (SLD) to silica-based planar lightwave circuit (PLC). The mode-size converter is based on silica-based PLC. By using three dimensional semi-vectorial beam propagation methods, laterally tapered waveguides with different boundaries are simulated and compared with each other, where the factors of polarization-dependent loss and coupling loss are mainly focused on. The results show that the most influential factor for polarization-dependent loss is the ratio of the divergence angle of SLD in the horizontal direction and the vertical direction. The refractive index difference Δ between core layer and cladding layer, core width of endface and taper length influence coupling loss mostly, while the effect of all side boundaries is within 0.05 dB. We also investigate the SLD misalignment tolerance and wavelength bandwidth's impact on coupling loss. Furthermore, we examine the performance of the mode-size converter based on a particular SLD which has a divergence angle of 30°×45°. By optimizing the parameters of the tapered waveguide, the coupling efficiency is increased to 62.4% and the polarization-dependent loss is reduced to 0.035 dB. Meanwhile, it eΔnables us to reduce the coupling loss variation to 0.05dB with core width of endface fabrication tolerance of ±0.5 μm and taper length tolerance of ±0.5 mm. The proposed mode-size converter has been demonstrated to be well performed, implying its application in the optical transceiver module using SLD as light source and hybrid integration of III-V semiconductor waveguiding devices and PLCs.
1999-01-01
Short, length about 0.5 mm; widest at base, tapering distally; index 2.5-3.3 (width mea- sured at base); lightly and evenly tanned. Pecten with 3-9...compressed and expanded distally, with hooked tip. Segment X: Saddle incomplete; lightly tanned; length about 0.25 mm, siphon/saddle index about...cylindrical; index about 3.6 (2.5-4.1) (width measured at midlength). Ab- domen: Lightly tanned, anterior margins of sterna II-VI noticeably darker; length
Particle trapping in 3-D using a single fiber probe with an annular light distribution.
Taylor, R; Hnatovsky, C
2003-10-20
A single optical fiber probe has been used to trap a solid 2 ìm diameter glass bead in 3-D in water. Optical confinement in 2-D was produced by the annular light distribution emerging from a selectively chemically etched, tapered, hollow tipped metalized fiber probe. Confinement of the bead in 3-D was achieved by balancing an electrostatic force of attraction towards the tip and the optical scattering force pushing the particle away from the tip.
Attosecond nanoscale near-field sampling
Forg, B.; Schotz, J.; SuBmann, F.; ...
2016-05-31
The promise of ultrafast light-field-driven electronic nanocircuits has stimulated the development of the new research field of attosecond nanophysics. An essential prerequisite for advancing this new area is the ability to characterize optical near fields from light interaction with nanostructures, with sub-cycle resolution. Here we experimentally demonstrate attosecond near-field retrieval for a tapered gold nanowire. Furthermore, by comparison of the results to those obtained from noble gas experiments and trajectory simulations, the spectral response of the nanotaper near field arising from laser excitation can be extracted.
Jorgensen, Ben; Williamson, Anne; Chu, Rene; Qian, Fang
2017-06-01
This ex vivo study aimed to evaluate the efficacy of retreating GuttaCore (Dentsply Tulsa Dental Specialties, Tulsa, OK) and warm vertically condensed gutta-percha in moderately curved canals with 2 different systems: ProTaper Universal Retreatment (Dentsply Tulsa Dental) and WaveOne (Dentsply Tulsa Dental). Eighty mesial roots of mandibular molars were used in this study. The mesiobuccal canals in each sample were prepared to length with the WaveOne Primary file (Dentsply Tulsa Dental). The canals were obturated with either a warm vertical approach or with GuttaCore and divided into 4 retreatment groups with the same mean root curvature: warm vertical retreated with ProTaper, warm vertical retreated with WaveOne, GuttaCore retreated with ProTaper, and GuttaCore retreated with WaveOne. The warm vertical groups were obturated using a continuous-wave technique of gutta-percha compaction, and the GuttaCore groups were obturated according to the manufacturer's instructions. After allowing sealer to set, each specimen was retreated with either the ProTaper Universal Retreatment files D1, D2, or D3 or with the WaveOne Primary file to the predetermined working length. The time taken to reach the working length was recorded. Instrument fatigue and failure were also evaluated. The post hoc 2-sample t tests showed that the overall mean total time taken to reach the working length for the warm vertical groups was significantly greater than that observed for the GuttaCore groups (mean = 87.11 vs 60.16 seconds, respectively), and the overall mean total time taken to reach the working length for WaveOne was significantly greater than that observed for ProTaper (99.09 vs 48.18 seconds, respectively). Two-way analysis of variance showed a significant main effect for both the type of experiment groups (F 1,76 = 15.32, P = .0002) and the type of retreatments (F 1,76 = 54.67, P < .0001). Also, the WaveOne Primary file underwent more separations than the ProTaper files. The WaveOne Primary file underwent more separations and was unable to remove gutta-percha as efficiently as the ProTaper Universal Retreatment files. Also, canals obturated with GuttaCore were retreated more efficiently and with fewer file separations than the canals obturated using continuous wave of warm gutta-percha. Copyright © 2017 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.
Side-pumping combiner for high-power fiber laser based on tandem pumping
NASA Astrophysics Data System (ADS)
Gu, Yanran; Lei, Chengmin; Liu, Jun; Li, Ruixian; Liu, Le; Xiao, Hu; Chen, Zilun
2017-11-01
We investigate a (2+1)×1 side-pumping combiner numerically and experimentally for high-power fiber laser based on tandem pumping for the first time. The influence of taper ratio and launch mode on the 1018-nm pump coupling efficiency and the leakage power into the coating of the signal fiber (LPC) is analyzed numerically. A side-pumping combiner is developed successfully by tapered-fused splicing technique based on the numerical analysis, consisting of two pump fibers (220/242 μm, NA=0.22) and a signal fiber (40/400 μm, NA=0.06/0.46). The total 1018-nm pump efficiency of the combiner is 98.1%, and the signal light insertion loss is <3%. The results show that, compared with laser diodes pumping, the combiner appears to have a better LPC performance and power handling capability when using 1018-nm fiber as the pump light. Meanwhile, an all-fiber MOPA laser based on tandem pumping with 1080-nm output of 2533 W and the slope efficiency of 82.8% is achieved based on the home-made combiner.
Transportation and Centering Ability of Neoniti and ProTaper Instruments; A CBCT Assessment
Madani, Zahrasadat; Soleymani, Ali; Bagheri, Tasnim; Moudi, Ehsan; Bijani, Ali; Rakhshan, Vahid
2017-01-01
Introduction: Transportation is an important iatrogenic endodontic error which might cause failure. This study evaluated the canal transportation caused by Neoniti and ProTaper instruments, using cone-beam computed tomography (CBCT) cross sections. Methods and Materials: This in vitro experimental study was performed on 40 mesiobuccal roots of maxillary first molars. The teeth were scanned with CBCT. They were randomly divided into 2 groups (n=20) that were prepared using either Neoniti or ProTaper files. An endodontist prepared the canal according to the manufacturer’s guidelines. Prepared canals were re-scanned. The pre-instrumentation and post-instrumentation CBCT volumes were sectioned at 1 to 9-mm distances from the apex. The extent of canal dentine removal in mesial and distal directions were measured in each cross-section. Canal transportation and instrument centering ability were estimated based on the extents of root wall removal and were compared in both groups. Results: The groups were rather similar in terms of transportation and centering ability (P>0.05). However, canal preparation on mesial and distal walls was statistically significantly less in the Neoniti group, at most cross-sections. Transportation of both groups was not significantly different (P>0.05). Centering ability of both instruments was not significantly different (P>0.05). Conclusion: Neoniti and ProTaper instruments might have proper centering ability and minimum transportations. Both instruments might cause similar extents of transportation and centering abilities. PMID:28179923
Smart-phone based computational microscopy using multi-frame contact imaging on a fiber-optic array.
Navruz, Isa; Coskun, Ahmet F; Wong, Justin; Mohammad, Saqib; Tseng, Derek; Nagi, Richie; Phillips, Stephen; Ozcan, Aydogan
2013-10-21
We demonstrate a cellphone based contact microscopy platform, termed Contact Scope, which can image highly dense or connected samples in transmission mode. Weighing approximately 76 grams, this portable and compact microscope is installed on the existing camera unit of a cellphone using an opto-mechanical add-on, where planar samples of interest are placed in contact with the top facet of a tapered fiber-optic array. This glass-based tapered fiber array has ~9 fold higher density of fiber optic cables on its top facet compared to the bottom one and is illuminated by an incoherent light source, e.g., a simple light-emitting-diode (LED). The transmitted light pattern through the object is then sampled by this array of fiber optic cables, delivering a transmission image of the sample onto the other side of the taper, with ~3× magnification in each direction. This magnified image of the object, located at the bottom facet of the fiber array, is then projected onto the CMOS image sensor of the cellphone using two lenses. While keeping the sample and the cellphone camera at a fixed position, the fiber-optic array is then manually rotated with discrete angular increments of e.g., 1-2 degrees. At each angular position of the fiber-optic array, contact images are captured using the cellphone camera, creating a sequence of transmission images for the same sample. These multi-frame images are digitally fused together based on a shift-and-add algorithm through a custom-developed Android application running on the smart-phone, providing the final microscopic image of the sample, visualized through the screen of the phone. This final computation step improves the resolution and also removes spatial artefacts that arise due to non-uniform sampling of the transmission intensity at the fiber optic array surface. We validated the performance of this cellphone based Contact Scope by imaging resolution test charts and blood smears.
Smart-phone based computational microscopy using multi-frame contact imaging on a fiber-optic array
Navruz, Isa; Coskun, Ahmet F.; Wong, Justin; Mohammad, Saqib; Tseng, Derek; Nagi, Richie; Phillips, Stephen; Ozcan, Aydogan
2013-01-01
We demonstrate a cellphone based contact microscopy platform, termed Contact Scope, which can image highly dense or connected samples in transmission mode. Weighing approximately 76 grams, this portable and compact microscope is installed on the existing camera unit of a cellphone using an opto-mechanical add-on, where planar samples of interest are placed in contact with the top facet of a tapered fiber-optic array. This glass-based tapered fiber array has ∼9 fold higher density of fiber optic cables on its top facet compared to the bottom one and is illuminated by an incoherent light source, e.g., a simple light-emitting-diode (LED). The transmitted light pattern through the object is then sampled by this array of fiber optic cables, delivering a transmission image of the sample onto the other side of the taper, with ∼3× magnification in each direction. This magnified image of the object, located at the bottom facet of the fiber array, is then projected onto the CMOS image sensor of the cellphone using two lenses. While keeping the sample and the cellphone camera at a fixed position, the fiber-optic array is then manually rotated with discrete angular increments of e.g., 1-2 degrees. At each angular position of the fiber-optic array, contact images are captured using the cellphone camera, creating a sequence of transmission images for the same sample. These multi-frame images are digitally fused together based on a shift-and-add algorithm through a custom-developed Android application running on the smart-phone, providing the final microscopic image of the sample, visualized through the screen of the phone. This final computation step improves the resolution and also gets rid of spatial artefacts that arise due to non-uniform sampling of the transmission intensity at the fiber optic array surface. We validated the performance of this cellphone based Contact Scope by imaging resolution test charts and blood smears. PMID:23939637
NASA Astrophysics Data System (ADS)
Diehl, Stefan; Brinkmann, Kai-Thomas; Drexler, Peter; Dormenev, Valery; Novotny, Rainer W.; Rosenbaum, Christoph; Zaunick, Hans-Georg;
2017-11-01
The electromagnetic calorimeter (EMC) of the PANDA detector at the future FAIR facility comprises more than 15,000 lead tungstate (PWO) crystals. The barrel part will consist of 11 crystal geometries with different degree of tapering, which causes a non-uniformity in light collection as an interplay between the focusing and the internal absorption of the light. For the most tapered crystals the detected light is enhanced by 40%, if the scintillation process is created in the front part of the crystal. Due to the shower development and its fluctuations the non-uniformity leads to a reduction of the energy resolution. To reduce this effect, one lateral crystal side face has been de-polished to a roughness of 0.3 μm. Measurements confirm an increase of the light yield in the rear part of the crystal. In contrast, only a slight decrease can be observed in the front part. The overall non-uniformity is significantly reduced below 5%. This paper will discuss the experimental studies based on GEANT4 and optical simulations to understand the impact of a de-polished side face on the light collection. For consequences on the future performance, a 3×3 sub-array of de-polished crystals was directly studied using a tagged photon beam in the energy range from 50 MeV up to 800 MeV, respectively, performed at the tagged photon facility at MAMI, Mainz. The comparison to an array composed of polished crystals confirms a significant improvement of the constant term of the energy resolution from above 2 % down to 0.5 % and only a small increase of the statistical term. The results can be reproduced in GEANT4 simulations.
Assessment of apically extruded debris produced by the self-adjusting file system.
De-Deus, Gustavo André; Nogueira Leal Silva, Emmanuel João; Moreira, Edson Jorge; de Almeida Neves, Aline; Belladonna, Felipe Gonçalves; Tameirão, Michele
2014-04-01
This study was designed to quantitatively evaluate the amount of apically extruded debris by the Self-Adjusting-File system (SAF; ReDent-Nova, Ra'anana, Israel). Hand and rotary instruments were used as references for comparison. Sixty mesial roots of mandibular molars were randomly assigned to 3 groups (n = 20). The root canals were instrumented with hand files using a crown-down technique. The ProTaper (Dentsply Maillefer, Ballaigues, Switzerland) and SAF systems were used according to the manufacturers' instructions. Sodium hypochlorite was used as an irrigant, and the apically extruded debris was collected in preweighted glass vials and dried afterward. The mean weight of debris was assessed with a microbalance and statistically analyzed using 1-way analysis of variance and the post hoc Tukey multiple comparison test. Hand file instrumentation produced significantly more debris compared with the ProTaper and SAF systems (P < .05). The ProTaper system produced significantly more debris compared with the SAF system (P < .05). Under the conditions of this study, all systems caused apical debris extrusion. SAF instrumentation was associated with less debris extrusion compared with the use of hand and rotary files. Copyright © 2014 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.
Modulation of frequency doubled DFB-tapered diode lasers for medical treatment
NASA Astrophysics Data System (ADS)
Christensen, Mathias; Hansen, Anders K.; Noordegraaf, Danny; Jensen, Ole B.; Skovgaard, Peter M. W.
2017-02-01
The use of visible lasers for medical treatments is on the rise, and together with this comes higher expectations for the laser systems. For many medical treatments, such as ophthalmology, doctors require pulse on demand operation together with a complete extinction of the light between pulses. We have demonstrated power modulation from 0.1 Hz to 10 kHz at 532 nm with a modulation depth above 97% by wavelength detuning of the laser diode. The laser diode is a 1064 nm monolithic device with a distributed feedback (DFB) laser as the master oscillator (MO), and a tapered power amplifier (PA). The MO and PA have separate electrical contacts and the modulation is achieved with wavelength tuning by adjusting the current through the MO 40 mA.
The point-spread function of fiber-coupled area detectors
Holton, James M.; Nielsen, Chris; Frankel, Kenneth A.
2012-01-01
The point-spread function (PSF) of a fiber-optic taper-coupled CCD area detector was measured over five decades of intensity using a 20 µm X-ray beam and ∼2000-fold averaging. The ‘tails’ of the PSF clearly revealed that it is neither Gaussian nor Lorentzian, but instead resembles the solid angle subtended by a pixel at a point source of light held a small distance (∼27 µm) above the pixel plane. This converges to an inverse cube law far from the beam impact point. Further analysis revealed that the tails are dominated by the fiber-optic taper, with negligible contribution from the phosphor, suggesting that the PSF of all fiber-coupled CCD-type detectors is best described as a Moffat function. PMID:23093762
Magnetic Field Sensing Based on Bi-Tapered Optical Fibers Using Spectral Phase Analysis.
Herrera-Piad, Luis A; Haus, Joseph W; Jauregui-Vazquez, Daniel; Sierra-Hernandez, Juan M; Estudillo-Ayala, Julian M; Lopez-Dieguez, Yanelis; Rojas-Laguna, Roberto
2017-10-20
A compact, magnetic field sensor system based on a short, bi-tapered optical fiber (BTOF) span lying on a magnetic tape was designed, fabricated, and characterized. We monitored the transmission spectrum from a broadband light source, which displayed a strong interference signal. After data collection, we applied a phase analysis of the interference optical spectrum. We here report the results on two fabricated, BTOFs with different interference spectrum characteristics; we analyzed the signal based on the interference between a high-order modal component and the core fiber mode. The sensor exhibited a linear response for magnetic field increments, and we achieved a phase sensitivity of around 0.28 rad/mT. The sensing setup presented remote sensing operation and low-cost transducer magnetic material.
Magnetic Field Sensing Based on Bi-Tapered Optical Fibers Using Spectral Phase Analysis
Herrera-Piad, Luis A.; Jauregui-Vazquez, Daniel; Sierra-Hernandez, Juan M.; Lopez-Dieguez, Yanelis
2017-01-01
A compact, magnetic field sensor system based on a short, bi-tapered optical fiber (BTOF) span lying on a magnetic tape was designed, fabricated, and characterized. We monitored the transmission spectrum from a broadband light source, which displayed a strong interference signal. After data collection, we applied a phase analysis of the interference optical spectrum. We here report the results on two fabricated, BTOFs with different interference spectrum characteristics; we analyzed the signal based on the interference between a high-order modal component and the core fiber mode. The sensor exhibited a linear response for magnetic field increments, and we achieved a phase sensitivity of around 0.28 rad/mT. The sensing setup presented remote sensing operation and low-cost transducer magnetic material. PMID:29053570
USDA-ARS?s Scientific Manuscript database
Two new species of Paurodontella collected around the roots of wheat (Triticum aestivum L.) are described and illustrated. One new species is characterized by having a short cylindrical, robust body markedly tapering at both ends with an anteriorly located vulva, short post-uterine sac, lateral fiel...
Gao, Yang; Shi, Tielin; Tan, Xianhua; Liao, Guanglan
2014-06-01
We have developed a novel method to fabricate micro/nano structure based on the coherent diffraction lithography, and acquired periodic silicon tubular gratings with deep nano-scale tapered profiles at the top part. The optical properties of these tubular gratings were similar to an effective gradient-index antireflective surface, resulting in a broadband antireflective combining super-hydrophobic behavior. The mechanism of the method was simulated by rigorous coupled wave analysis algorithms. Then coherent diffraction lithography by use of suitable mask, in which periodic micro-scale circular opaque patters were distributed, was realized on the traditional aligner. Due to coherent diffraction, we obtained enough light intensity for photoresist exposure under the center of the opaque area in the mask together with transparent areas. The tapered line profiles and hollow photoresist gratings over large areas could be fabricated on the silicon wafer after development. The dry etching process was carried out, and high aspect ratio silicon tubular gratings with deep tapered profiles at the top were fabricated. The optical property and wettability of the structure were verified, proving that the proposed method and obtained micro/nano structure provide application potential in the future.
Microstructure and Mechanical Performance of Friction Stir Spot-Welded Aluminum-5754 Sheets
NASA Astrophysics Data System (ADS)
Pathak, N.; Bandyopadhyay, K.; Sarangi, M.; Panda, Sushanta Kumar
2013-01-01
Friction stir spot welding (FSSW) is a recent trend of joining light-weight sheet metals while fabricating automotive and aerospace body components. For the successful application of this solid-state welding process, it is imperative to have a thorough understanding of the weld microstructure, mechanical performance, and failure mechanism. In the present study, FSSW of aluminum-5754 sheet metal was tried using tools with circular and tapered pin considering different tool rotational speeds, plunge depths, and dwell times. The effects of tool design and process parameters on temperature distribution near the sheet-tool interface, weld microstructure, weld strength, and failure modes were studied. It was found that the peak temperature was higher while welding with a tool having circular pin compared to tapered pin, leading to a bigger dynamic recrystallized stir zone (SZ) with a hook tip bending towards the upper sheet and away from the keyhole. Hence, higher lap shear separation load was observed in the welds made from circular pin compared to those made from tapered pin. Due to influence of size and hardness of SZ on crack propagation, three different failure modes of weld nugget were observed through optical cross-sectional micrograph and SEM fractographs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Koptev, M Yu; Anashkina, E A; Lipatov, D S
2015-05-31
We report a new ytterbium-doped active tapered fibre used in the output amplifier stage of a fibre laser system for the generation of megawatt peak power ultrashort pulses in the microjoule energy range. The tapered fibre is single-mode at its input end (core and cladding diameters of 10 and 80 μm) and multimode at its output end (diameters of 45 and 430 μm), but ultrashort pulses are amplified in a quasi-single-mode regime. Using a hybrid Er/Yb fibre system comprising an erbium master oscillator and amplifier at a wavelength near 1.5 μm, a nonlinear wavelength converter to the 1 μm rangemore » and a three-stage ytterbium-doped fibre amplifier, we obtained pulses of 1 μJ energy and 7 ps duration, which were then compressed by a grating-pair dispersion compressor with 60% efficiency to a 130 fs duration, approaching the transform-limited pulse duration. The present experimental data agree well with numerical simulation results for pulse amplification in the threestage amplifier. (extreme light fields and their applications)« less
Efficient fiber-coupled single-photon source based on quantum dots in a photonic-crystal waveguide
DAVEAU, RAPHAËL S.; BALRAM, KRISHNA C.; PREGNOLATO, TOMMASO; LIU, JIN; LEE, EUN H.; SONG, JIN D.; VERMA, VARUN; MIRIN, RICHARD; NAM, SAE WOO; MIDOLO, LEONARDO; STOBBE, SØREN; SRINIVASAN, KARTIK; LODAHL, PETER
2017-01-01
Many photonic quantum information processing applications would benefit from a high brightness, fiber-coupled source of triggered single photons. Here, we present a fiber-coupled photonic-crystal waveguide single-photon source relying on evanescent coupling of the light field from a tapered out-coupler to an optical fiber. A two-step approach is taken where the performance of the tapered out-coupler is recorded first on an independent device containing an on-chip reflector. Reflection measurements establish that the chip-to-fiber coupling efficiency exceeds 80 %. The detailed characterization of a high-efficiency photonic-crystal waveguide extended with a tapered out-coupling section is then performed. The corresponding overall single-photon source efficiency is 10.9 % ± 2.3 %, which quantifies the success probability to prepare an exciton in the quantum dot, couple it out as a photon in the waveguide, and subsequently transfer it to the fiber. The applied out-coupling method is robust, stable over time, and broadband over several tens of nanometers, which makes it a highly promising pathway to increase the efficiency and reliability of planar chip-based single-photon sources. PMID:28584859
NASA Technical Reports Server (NTRS)
Dean, Richard J. (Inventor); Hacker, Scott C. (Inventor); Burge, Scott W. (Inventor); Dartez, Toby W. (Inventor)
2007-01-01
An adapter for installing a connector to a terminal post, wherein the connector is attached to a cable, is presented. In an embodiment, the adapter is comprised of an elongated collet member having a longitudinal axis comprised of a first collet member end, a second collet member end, an outer collet member surface, and an inner collet member surface. The inner collet member surface at the first collet member end is used to engage the connector. The outer collet member surface at the first collet member end is tapered for a predetermined first length at a predetermined taper angle. The collet includes a longitudinal slot that extends along the longitudinal axis initiating at the first collet member end for a predetermined second length. The first collet member end is formed of a predetermined number of sections segregated by a predetermined number of channels and the longitudinal slot.
Simple taper: Taper equations for the field forester
David R. Larsen
2017-01-01
"Simple taper" is set of linear equations that are based on stem taper rates; the intent is to provide taper equation functionality to field foresters. The equation parameters are two taper rates based on differences in diameter outside bark at two points on a tree. The simple taper equations are statistically equivalent to more complex equations. The linear...
Parabolic tapers for overmoded waveguides
Doane, J.L.
1983-11-25
A waveguide taper with a parabolic profile, in which the distance along the taper axis varies as the square of the tapered dimension, provides less mode conversion than equal length linear tapers and is easier to fabricate than other non-linear tapers.
Attosecond nanoscale near-field sampling
Förg, B.; Schötz, J.; Süßmann, F.; Förster, M.; Krüger, M.; Ahn, B.; Okell, W. A.; Wintersperger, K.; Zherebtsov, S.; Guggenmos, A.; Pervak, V.; Kessel, A.; Trushin, S. A.; Azzeer, A. M.; Stockman, M. I.; Kim, D.; Krausz, F.; Hommelhoff, P.; Kling, M. F.
2016-01-01
The promise of ultrafast light-field-driven electronic nanocircuits has stimulated the development of the new research field of attosecond nanophysics. An essential prerequisite for advancing this new area is the ability to characterize optical near fields from light interaction with nanostructures, with sub-cycle resolution. Here we experimentally demonstrate attosecond near-field retrieval for a tapered gold nanowire. By comparison of the results to those obtained from noble gas experiments and trajectory simulations, the spectral response of the nanotaper near field arising from laser excitation can be extracted. PMID:27241851
Light-Induced Pulling and Pushing by the Synergic Effect of Optical Force and Photophoretic Force
NASA Astrophysics Data System (ADS)
Lu, Jinsheng; Yang, Hangbo; Zhou, Lina; Yang, Yuanqing; Luo, Si; Li, Qiang; Qiu, Min
2017-01-01
Optical force, coming from momentum exchange during light-matter interactions, has been widely utilized to manipulate microscopic objects, though mostly in vacuum or in liquids. By contrast, due to the light-induced thermal effect, photophoretic force provides an alternative and effective way to transport light-absorbing particles in ambient gases. However, in most cases these forces work independently. Here, by employing the synergy of optical force and photophoretic force, we propose and experimentally demonstrate a configuration which can drive a micron-size metallic plate moving back and forth on a tapered fiber with supercontinuum light in ambient air. Optical pulling and oscillation of the metallic plate are experimentally realized. The results might open exhilarating possibilities in applications of optical driving and energy conversion.
Glass light pipes for solar concentration
NASA Astrophysics Data System (ADS)
Madsen, C. K.; Dogan, Y.; Morrison, M.; Hu, C.; Atkins, R.
2018-02-01
Glass waveguides are fabricated using laser processing techniques that have low optical loss with >90% optical throughput. Advanced light pipes are demonstrated, including angled facets for turning mirrors used for lens-to-light pipe coupling, tapers that increase the concentration, and couplers for combining the outputs from multiple lens array elements. Because they are fabricated from glass, these light pipes can support large optical concentrations and propagate broadband solar over long distances with minimal loss and degradation compared to polymer waveguides. Applications include waveguiding solar concentrators using multi-junction PV cells, solar thermal applications and remoting solar energy, such as for daylighting. Ray trace simulations are used to estimate the surface smoothness required to achieve low loss. Optical measurements for fabricated light pipes are reported for use in waveguiding solar concentrator architectures.
Rainbow Trapping in Hyperbolic Metamaterial Waveguide
Hu, Haifeng; Ji, Dengxin; Zeng, Xie; Liu, Kai; Gan, Qiaoqiang
2013-01-01
The recent reported trapped “rainbow” storage of light using metamaterials and plasmonic graded surface gratings has generated considerable interest for on-chip slow light. The potential for controlling the velocity of broadband light in guided photonic structures opens up tremendous opportunities to manipulate light for optical modulation, switching, communication and light-matter interactions. However, previously reported designs for rainbow trapping are generally constrained by inherent difficulties resulting in the limited experimental realization of this intriguing effect. Here we propose a hyperbolic metamaterial structure to realize a highly efficient rainbow trapping effect, which, importantly, is not limited by those severe theoretical constraints required in previously reported insulator-negative-index-insulator, insulator-metal-insulator and metal-insulator-metal waveguide tapers, and therefore representing a significant promise to realize the rainbow trapping structure practically. PMID:23409240
Ehsani, Maryam; Harandi, Azadeh; Tavanafar, Saeid; Raoof, Maryam; Galledar, Saeedeh
2016-01-01
Objectives: During root canal preparation, apical extrusion of debris can cause inflammation, flare-ups, and delayed healing. Therefore, instrumentation techniques that cause the least extrusion of debris are desirable. This study aimed to compare apical extrusion of debris by five single-file, full-sequence rotary and reciprocating systems. Materials and Methods: One hundred twenty human mandibular premolars with similar root lengths, apical diameters, and canal curvatures were selected and randomly assigned to six groups (n=20): Reciproc R25 (25, 0.08), WaveOne Primary (25, 0.08), OneShape (25, 0.06), F360 (25, 0.04), Neoniti A1 (25, 0.08), and ProTaper Universal. Instrumentation of the root canals was performed in accordance with the manufacturers’ instructions. Each tooth's debris was collected in a pre-weighed vial. After drying the debris in an incubator, the mass was measured three times consecutively; the mean was then calculated. The preparation time by each system was also measured. For data analysis, one-way ANOVA and Games-Howell post hoc test were used. Results: The mean masses (±standard deviation) of the apical debris were as follows: 2.071±1.38mg (ProTaper Universal), 1.702±1.306mg (Neoniti A1), 1.295±0.839mg (OneShape), 1.109±0.676mg (WaveOne), 0.976±0.478mg (Reciproc) and 0.797±0.531mg (F360). Compared to ProTaper Universal, F360 generated significantly less debris (P=0.02). The ProTaper system required the longest preparation time (mean=88.6 seconds); the Reciproc (P=0.008), OneShape (P=0.006), and F360 (P=0.001) required significantly less time (P<0.05). Conclusions: All instruments caused extrusion of debris through the apex. The F360 produced significantly less debris than did the ProTaper Universal. PMID:28243300
Ehsani, Maryam; Farhang, Robab; Harandi, Azadeh; Tavanafar, Saeid; Raoof, Maryam; Galledar, Saeedeh
2016-11-01
During root canal preparation, apical extrusion of debris can cause inflammation, flare-ups, and delayed healing. Therefore, instrumentation techniques that cause the least extrusion of debris are desirable. This study aimed to compare apical extrusion of debris by five single-file, full-sequence rotary and reciprocating systems. One hundred twenty human mandibular premolars with similar root lengths, apical diameters, and canal curvatures were selected and randomly assigned to six groups (n=20): Reciproc R25 (25, 0.08), WaveOne Primary (25, 0.08), OneShape (25, 0.06), F360 (25, 0.04), Neoniti A1 (25, 0.08), and ProTaper Universal. Instrumentation of the root canals was performed in accordance with the manufacturers' instructions. Each tooth's debris was collected in a pre-weighed vial. After drying the debris in an incubator, the mass was measured three times consecutively; the mean was then calculated. The preparation time by each system was also measured. For data analysis, one-way ANOVA and Games-Howell post hoc test were used. The mean masses (±standard deviation) of the apical debris were as follows: 2.071±1.38mg (ProTaper Universal), 1.702±1.306mg (Neoniti A1), 1.295±0.839mg (OneShape), 1.109±0.676mg (WaveOne), 0.976±0.478mg (Reciproc) and 0.797±0.531mg (F360). Compared to ProTaper Universal, F360 generated significantly less debris (P=0.02). The ProTaper system required the longest preparation time (mean=88.6 seconds); the Reciproc (P=0.008), OneShape (P=0.006), and F360 (P=0.001) required significantly less time (P<0.05). All instruments caused extrusion of debris through the apex. The F360 produced significantly less debris than did the ProTaper Universal.
Topçuoğlu, Hüseyin Sinan; Aktı, Ahmet; Tuncay, Öznur; Dinçer, Asiye Nur; Düzgün, Salih; Topçuoğlu, Gamze
2014-12-01
The aim of this study was to evaluate the amount of debris extruded apically during the removal of root canal filling material using ProTaper (Dentsply Maillefer, Ballaigues, Switzerland), D-RaCe (FKG Dentaire, La Chaux-de-Fonds, Switzerland), and R-Endo (Micro-Mega, Besançon, France) nickel-titanium (NiTi) rotary retreatment instruments and hand files. Sixty extracted single-rooted mandibular premolar teeth were prepared with K-files and filled with gutta-percha and AH Plus sealer (Dentsply DeTrey, Konstanz, Germany). The teeth were then randomly assigned to 4 groups (n = 15 for each group) for retreatment. The removal of canal filling material was performed as follows: hand files, ProTaper, D-RaCe, and R-Endo retreatment instruments. Debris extruded apically during the removal of canal filling material was collected into preweighed Eppendorf tubes. The tubes were then stored in an incubator at 70°C for 5 days. The weight of the dry extruded debris was established by subtracting the preretreatment and postretreatment weight of the Eppendorf tubes for each group. The data obtained were analyzed using 1-way analysis of variance and Tukey post hoc tests. All retreatment techniques caused the apical extrusion of debris. Hand files produced significantly more debris when compared with ProTaper, D-RaCe, and R-Endo rotary systems (P < .05). There was no statistical difference between the ProTaper, D-RaCe, and R-Endo retreatment systems (P > .05). The findings showed that during the removal of root canal filling material, rotary NiTi retreatment instruments used in this study caused less apical extrusion of debris compared with hand files. Copyright © 2014 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.
Demonstration of a memory for tightly guided light in an optical nanofiber.
Gouraud, B; Maxein, D; Nicolas, A; Morin, O; Laurat, J
2015-05-08
We report the experimental observation of slow-light and coherent storage in a setting where light is tightly confined in the transverse directions. By interfacing a tapered optical nanofiber with a cold atomic ensemble, electromagnetically induced transparency is observed and light pulses at the single-photon level are stored in and retrieved from the atomic medium. The decay of efficiency with storage time is also measured and related to concurrent decoherence mechanisms. Collapses and revivals can be additionally controlled by an applied magnetic field. Our results based on subdiffraction-limited optical mode interacting with atoms via the strong evanescent field demonstrate an alternative to free-space focusing and a novel capability for information storage in an all-fibered quantum network.
Elnaghy, A M; Elsaka, S E
2018-05-01
To compare the torsional resistance of XP-endo Shaper (XPS; size 30, .01 taper, FKG Dentaire, La Chaux-de-Fonds, Switzerland) instruments at body temperature with TRUShape (TRS; size 30, .06 taper, Dentsply Tulsa Dental Specialties, Tulsa, OK, USA), ProFile Vortex (PV; size 30, .04 taper, Dentsply Tulsa Dental Specialties) and FlexMaster (FM; size 30, .04 taper, VDW GmbH, Munich, Germany) nickel-titanium rotary instruments. A metal block with a square-shaped mould (5 mm × 5 mm × 5 mm) was positioned inside a glass container. Five millimetres of the tip of each instrument was held inside the metal block by filling the mould with a resin composite. The instruments were tested for torsional resistance in saline solution at 37 °C. Data were analysed using one-way analysis of variance (anova) and Tukey post hoc tests. The significance level was set at P < 0.05. FM had the greatest torsional resistance amongst the instruments tested (P < 0.001). There was no significant difference between FM and PV instruments (P = 0.211). The ranking for torsional resistance values was: FM > PV > TRS > XPS. FlexMaster and ProFile Vortex instruments were more resistant to torsional stress compared with TRUShape and XP-endo Shaper instruments. The manufacturing process used to produce XP-endo Shaper instruments did not enhance their resistance to torsional stress as compared with the other instruments. © 2017 International Endodontic Journal. Published by John Wiley & Sons Ltd.
Microwave Photonics Systems Based on Whispering-gallery-mode Resonators
Coillet, Aurélien; Henriet, Rémi; Phan Huy, Kien; Jacquot, Maxime; Furfaro, Luca; Balakireva, Irina; Larger, Laurent; Chembo, Yanne K.
2013-01-01
Microwave photonics systems rely fundamentally on the interaction between microwave and optical signals. These systems are extremely promising for various areas of technology and applied science, such as aerospace and communication engineering, sensing, metrology, nonlinear photonics, and quantum optics. In this article, we present the principal techniques used in our lab to build microwave photonics systems based on ultra-high Q whispering gallery mode resonators. First detailed in this article is the protocol for resonator polishing, which is based on a grind-and-polish technique close to the ones used to polish optical components such as lenses or telescope mirrors. Then, a white light interferometric profilometer measures surface roughness, which is a key parameter to characterize the quality of the polishing. In order to launch light in the resonator, a tapered silica fiber with diameter in the micrometer range is used. To reach such small diameters, we adopt the "flame-brushing" technique, using simultaneously computer-controlled motors to pull the fiber apart, and a blowtorch to heat the fiber area to be tapered. The resonator and the tapered fiber are later approached to one another to visualize the resonance signal of the whispering gallery modes using a wavelength-scanning laser. By increasing the optical power in the resonator, nonlinear phenomena are triggered until the formation of a Kerr optical frequency comb is observed with a spectrum made of equidistant spectral lines. These Kerr comb spectra have exceptional characteristics that are suitable for several applications in science and technology. We consider the application related to ultra-stable microwave frequency synthesis and demonstrate the generation of a Kerr comb with GHz intermodal frequency. PMID:23963358
Microwave photonics systems based on whispering-gallery-mode resonators.
Coillet, Aurélien; Henriet, Rémi; Phan Huy, Kien; Jacquot, Maxime; Furfaro, Luca; Balakireva, Irina; Larger, Laurent; Chembo, Yanne K
2013-08-05
Microwave photonics systems rely fundamentally on the interaction between microwave and optical signals. These systems are extremely promising for various areas of technology and applied science, such as aerospace and communication engineering, sensing, metrology, nonlinear photonics, and quantum optics. In this article, we present the principal techniques used in our lab to build microwave photonics systems based on ultra-high Q whispering gallery mode resonators. First detailed in this article is the protocol for resonator polishing, which is based on a grind-and-polish technique close to the ones used to polish optical components such as lenses or telescope mirrors. Then, a white light interferometric profilometer measures surface roughness, which is a key parameter to characterize the quality of the polishing. In order to launch light in the resonator, a tapered silica fiber with diameter in the micrometer range is used. To reach such small diameters, we adopt the "flame-brushing" technique, using simultaneously computer-controlled motors to pull the fiber apart, and a blowtorch to heat the fiber area to be tapered. The resonator and the tapered fiber are later approached to one another to visualize the resonance signal of the whispering gallery modes using a wavelength-scanning laser. By increasing the optical power in the resonator, nonlinear phenomena are triggered until the formation of a Kerr optical frequency comb is observed with a spectrum made of equidistant spectral lines. These Kerr comb spectra have exceptional characteristics that are suitable for several applications in science and technology. We consider the application related to ultra-stable microwave frequency synthesis and demonstrate the generation of a Kerr comb with GHz intermodal frequency.
Barclay, Paul; Srinivasan, Kartik; Painter, Oskar
2005-02-07
A technique is demonstrated which efficiently transfers light between a tapered standard single-mode optical fiber and a high-Q, ultra-small mode volume, silicon photonic crystal resonant cavity. Cavity mode quality factors of 4.7x10(4) are measured, and a total fiber-to-cavity coupling efficiency of 44% is demonstrated. Using this efficient cavity input and output channel, the steady-state nonlinear absorption and dispersion of the photonic crystal cavity is studied. Optical bistability is observed for fiber input powers as low as 250 microW, corresponding to a dropped power of 100 microW and 3 fJ of stored cavity energy. A high-density effective free-carrier lifetime for these silicon photonic crystal resonators of ~ 0.5 ns is also estimated from power dependent loss and dispersion measurements.
Supercontinuum generation in a tapered tellurite microstructured optical fiber
NASA Astrophysics Data System (ADS)
Yan, X.; Ohishi, Y.
2014-07-01
Supercontinuum generation (SCG) was investigated in tapered tellurite microstructured optical fibers (MOFs) for various taper profiles. We emphasize on the procedure for finding the dispersion profile that achieve the best width of the SC spectra. An enhancement of the SCG is achieved by varying the taper waist diameter along its length in a carefully designed, and an optimal degree of tapering is found to exist for tapers with an axially uniform waist. We also show the XFROG spectrograms of the pulses propagating through different tapered fibers, confirming the optimized taper conditions.
An unusual surgical indication for cerebral tuberculosis: status dystonicus. Case report.
Franzini, Andrea; Franzini, Angelo; Levi, Vincenzo; Cordella, Roberto; Messina, Giuseppe
2018-05-15
Actual indications for surgery in tuberculosis are limited to obtaining a diagnosis, acquiring tissue for culture studies, treating hydrocephalus, aspiring a brain abscess, and reducing intracranial pressure in patients with multiple tuberculomas. Tuberculosis-related movement disorders are usually treated pharmacologically. We report on a child affected by post-tubercular generalized dystonia, who progressed to status dystonicus (SD) and underwent stereotactic bilateral pallidotomy. After surgery, SD resolved, and drugs were rapidly tapered. The successful reversal of SD and the motor improvement observed in our patient demonstrate the safety, feasibility, and clinical efficacy of pallidotomy in post-tuberculous-meningoencephalitis dystonia and SD.
Denney, Helen A; Whittle, Robert J; Lai, Jennifer; Jacques, Richard M; Taylor, Peter C
2017-01-01
Induction of immune tolerance by an increase in regulatory T (Treg) cells after extracorporeal photopheresis (ECP) is thought to contribute to how ECP exerts its therapeutic effect in patients with chronic graft-versus-host disease (cGvHD). We investigated whether percentages and absolute counts of Treg cells changed post-ECP, and examined correlation with response. Absolute counts and % of CD4+ T cells and Treg cells (CD4 + CD25 + FOXP3 + CD127dim/-) were evaluated using flow cytometry in 32 patients with cGvHD treated by ECP for a minimum of 3 months, and up to 12 months. CD4+ or Treg cells at baseline to 12 months post-ECP were compared with changes in skin disease scores or global organ involvement, or the ability to taper steroids, at 14, 28, and 56 weeks. Regulatory T cells % increased significantly above any overall changes in CD4+ % at 6, 9, and 12 months post-ECP. There was no statistically significant association between Treg cells and skin or steroid response, whereas a larger increase in CD4+ count from baseline to 1 to 3 months corresponded to increased odds of being able to reduce steroid dose by 50% or greater at 14 weeks. Skin and global organ responders at 28 weeks had higher median Treg cell counts 3 months post-ECP than nonresponders, as did steroid responders at 56 weeks who were 12 months post-ECP. Regulatory T cell counts and % varied greatly among cGvHD patients, and the increase post-ECP was not significant until 6 months. No clear correlation was found between Treg cells and clinical improvement, suggesting that increases in Treg cell numbers and/or proportions are not driving the mechanism leading to a response after ECP.
Krull, Annika; Morlock, Michael M; Bishop, Nicholas E
2017-10-01
Intraoperative interface contamination of modular head-stem taper junctions of hip implants can lead to poor fixation strength, causing fretting and crevice corrosion or even stem taper fracture. Careful cleaning before assembly should help to reduce these problems. The purpose of this study was to determine the effect of cleaning (with and without drying) contaminated taper interfaces on the taper fixation strength. Metal or ceramic heads were impacted onto titanium alloy stem tapers with cleaned or contaminated (fat or saline solution) interfaces. The same procedure was performed after cleaning and drying the contaminated interfaces. Pull-off force was used to determine the influence of contamination and cleaning on the taper strength. Pull-off forces after contamination with fat were significantly lower than those for uncontaminated interfaces for both head materials. Pull-off forces after application of saline solution were not significantly different from those for uncontaminated tapers. However, a large variation in taper strength was observed, pull-off forces for cleaned and dried tapers were similar to those for uncontaminated tapers for both head materials. Intraoperative contamination of taper interfaces may be difficult to detect but has a major influence on taper fixation strength. Cleaning of the stem taper with saline solution and drying with gauze directly before assembly allows the taper strength of the pristine components to be achieved. Not drying the taper results in a large variation in pull-off forces, emphasizing that drying is essential for sufficient and reproducible fixation strength. Copyright © 2017 Elsevier Inc. All rights reserved.
Early outcomes following low dose naltrexone enhancement of opioid detoxification.
Mannelli, Paolo; Patkar, Ashwin A; Peindl, Kathleen; Gottheil, Edward; Wu, Li-Tzy; Gorelick, David A
2009-01-01
Although withdrawal severity and treatment completion are the initial focus of opioid detoxification, post-detoxification outcome better defines effective interventions. Very low dose naltrexone (VLNTX) in addition to methadone taper was recently associated with attenuated withdrawal intensity during detoxification. We describe the results of a seven-day follow-up evaluation of 96 subjects who completed inpatient detoxification consisting of the addition of VLNTX (0.125 or 0.250 mg per day) or placebo to methadone taper in a double blind, randomized investigation. Individuals receiving VLNTX during detoxification reported reduced withdrawal and drug use during the first 24 hours after discharge. VLNTX addition was also associated with higher rates of negative drug tests for opioids and cannabis and increased engagement in outpatient treatment after one week. Further studies are needed to test the utility of this approach in easing the transition from detoxification to various follow-up treatment modalities designed to address opioid dependence.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Asano, M.; Ikuta, R.; Imoto, N.
We report controllable manipulation of slow and fast light in a whispering-gallery-mode microtoroid resonator fabricated from Erbium (Er{sup 3+}) doped silica. We observe continuous transition of the coupling between the fiber-taper waveguide and the microresonator from undercoupling to critical coupling and then to overcoupling regimes by increasing the pump power even though the spatial distance between the resonator and the waveguide was kept fixed. This, in turn, enables switching from fast to slow light and vice versa just by increasing the optical gain. An enhancement of delay of two-fold over the passive silica resonator (no optical gain) was observed inmore » the slow light regime. Moreover, we show dynamic pulse splitting and its control in slow/fast light systems using optical gain.« less
Salzman, Gary C.; Mullaney, Paul F.
1976-01-01
The disclosure relates to a system incorporating an ellipsoidal flow chamber having light reflective walls for low level light detection in practicing cellular analysis. The system increases signal-to-noise ratio by a factor of ten over prior art systems. In operation, laser light passes through the primary focus of the ellipsoid. A controlled flow of cells simultaneously passes through this focus so that the laser light impinges on the cells and is modulated by the cells. The reflective walls of the ellipsoid reflect the cell-modulated light to the secondary focus of the ellipsoid. A tapered light guide at the secondary focus picks up a substantial portion of modulated reflective light and directs it onto a light detector to produce a signal. The signal is processed to obtain the intensity distribution of the modulated light and hence sought after characteristics of the cells. In addition, cells may be dyed so as to fluoresce in response to the laser light and their fluorescence may be processed as cell-modulated light above described. A light discriminating filter would be used to distinguish reflected modulated laser light from reflected fluorescent light.
Photonic Crystals from Order to Disorder: Perturbative Methods in Nanophotonics
Johnson, Steven G. [MIT, Cambridge, Massachusetts, United States
2017-12-09
Photonic crystals are periodic dielectric structures in which light can behave much differently than in a homogeneous medium. This talk gives an overview of some of the interesting properties and applications of these media, from switching in subwavelength microcavities to slow-light devices, to guiding light in air. However, some of the most interesting and challenging problems occur when the periodicity is disturbed, either by design or by inevitable fabrication imperfections. The talk focuses especially on small perturbations that have important effects, from slow-light tapers to surface roughness disorder, and will show that many classic perturbative approaches must be rethought for high-contrast nanophotonics. The combination of strong periodicity with large field discontinuities at interfaces causes standard methods to fail, but succumbs to new generalizations, while some problems remain open.
Tsumori, Nobuhiro; Takahashi, Motoki; Sakuma, Yoshiki; Saiki, Toshiharu
2011-10-10
We examined the near-field collection efficiency of near-infrared radiation for an aperture probe. We used InAs quantum dots as ideal point light sources with emission wavelengths ranging from 1.1 to 1.6 μm. We experimentally investigated the wavelength dependence of the collection efficiency and compared the results with computational simulations that modeled the actual probe structure. The observed degradation in the collection efficiency is attributed to the cutoff characteristics of the gold-clad tapered waveguide, which approaches an ideal conductor at near-infrared wavelengths. © 2011 Optical Society of America
Review: Adjunctive pharmacologic approaches for benzodiazepine tapers.
Welsh, Justine W; Tretyak, Valeria; McHugh, R Kathryn; Weiss, Roger D; Bogunovic, Olivera
2018-05-31
Many patients require discontinuation of benzodiazepines due to a reduction in drug efficacy over time, the development of a sedative use disorder, or unwanted side effects. Benzodiazepine discontinuation can pose a significant challenge for prescribing clinicians due to potential withdrawal symptoms and a recurrence of psychiatric complaints. A PubMed literature search was conducted using the medical subject heading of benzodiazepines in combination with the following key words: discontinuation, withdrawal, detoxification, cessation, dependence, addiction, substance use disorders, or long term. Twenty-one studies met the search criteria. Few medications facilitated the successful discontinuation of benzodiazepines or relief from benzodiazepine withdrawal symptoms. Studies were heterogeneous with respect to sample selection, sample size, and outcome measures. Medications targeting insomnia yielded mixed results. Similarly, studies of agents targeting anxiety symptoms demonstrated inconsistent findings in the reduction of anxiety, improvement in withdrawal symptoms, or enhancement of benzodiazepine completion rates. Anticonvulsants have supporting evidence from small case reports; carbamazepine shows some potential in assisting taper completion and reducing withdrawal severity. These conclusions should be considered in light of a number of inconsistencies across studies in the literature. The results of this review article highlight the need for additional research on optimal strategies for facilitating successful benzodiazepine tapers. Copyright © 2018 Elsevier B.V. All rights reserved.
Moreno-Hernández, Carlos; Monzón-Hernández, David; Hernández-Romano, Iván; Villatoro, Joel
2015-08-24
We demonstrate the capability of an air cavity Fabry-Perot interferometer (FPI), built with a tapered lead-in fiber tip, to measure three parameters simultaneously, distance, group refractive index and thickness of transparent samples introduced in the cavity. Tapering the lead-in fiber enhances the light coupling back efficiency, therefore is possible to enlarge the air cavity without a significant deterioration of the fringe visibility. Fourier transformation, used to analyze the reflected optical spectrum of our FPI, simplify the calculus to determine the position, thickness and refractive index. Samples made of 7 different glasses; fused silica, BK7, BalF5, SF2, BaF51, SF15, and glass slides were used to test our FPI. Each sample was measured nine times and the results for position, thickness and refractive index showed differences of ± 0.7%, ± 0.1%, and ± 0.16% respectively. The evolution of thickness and refractive index of a block of polydimethylsiloxane (PDMS) elastomer due to temperature changes in the range of 25°C to 90°C were also measured. The coefficients of the thermal expansion and thermo-optic estimated were α = 4.71x10(-4)/°C and dn/dT = -4.66 x10(-4) RIU/°C, respectively.
NASA Astrophysics Data System (ADS)
Laskar, S.; Bordoloi, S.
2016-01-01
This paper presents an instrumentation system to measure the degradation in lubricating oil using a bare, tapered and bent multi-mode optical fiber (BTBMOF) sensor probe and a temperature probe. The sensor system consists of (i) a bare, tapered and bent multi-mode optical fiber (BTBMOF) as optical sensor along with a laser source and a LDR (Light Dependent Resistor) as detector (ii) a temperature sensor (iii) a ATmega microcontroller based data acquisition system and (iv) a trained ANN for processing and calibration. The BTBMOF sensor and the temperature sensor are used to provide the measure of refractive index (RI) and the temperature of a lubricating oil sample. A microcontroller based instrumentation system with trained ANN algorithm has been developed to determine the degradation of the lubricating oil sample by sampling the readings of the optical fiber sensor, and the temperature sensor.
Strong field acceleration and steering of ultrafast electron pulses from a sharp metallic nanotip.
Park, Doo Jae; Piglosiewicz, Bjoern; Schmidt, Slawa; Kollmann, Heiko; Mascheck, Manfred; Lienau, Christoph
2012-12-14
We report a strong, laser-field induced modification of the propagation direction of ultrashort electron pulses emitted from nanometer-sized gold tapers. Angle-resolved kinetic energy spectra of electrons emitted from such tips are recorded using ultrafast near-infrared light pulses of variable wavelength and intensity for excitation. For sufficiently long wavelengths, we observe a pronounced strong-field acceleration of electrons within the field gradient at the taper apex. We find a distinct narrowing of the emission cone angle of the fastest electrons. We ascribe this to the field-induced steering of subcycle electrons as opposed to the diverging emission of quiver electrons. Our findings are corroborated by simulations based on a modified Simpleman model incorporating the curved, vectorial field gradient in the vicinity of the tip. Our results indicate new pathways for designing highly directional nanometer-sized ultrafast electron sources.
[Shaping ability of multi-taper nickel-titanium files in simulated resin curved root canal].
Luo, Hong-Xia; Huang, Ding-Ming; Jia, Liu-He; Luo, Shi-Gao; Gao, Xiao-Jie; Tan, Hong; Zhou, Xue-Dong
2006-08-01
To compare the shaping ability of ISO standard stainless steel K files and multi-taper ProTaper nickel-titanium files in simulated resin curved root canals. METHODS Thirty simulated resin root canals were randomly divided into three groups and prepared by stainless steel K files, hand ProTaper, rotary ProTaper, respectively. The amount of material removed from inner and outer wall and canal width after canal preparation was measured, while the canal curvature before and after canal preparation and canals aberrations were recorded. The stainless steel K files removed more material than hand ProTaper and rotary ProTaper at the outer side of apex and inner side of curvature (P < 0.05). The mean degree of straightening in stainless steel K files group was significantly bigger than in ProTaper group (P < 0.05). The canals prepared by ProTaper had no evident aberration. The shaping ability of ProTaper is better than stainless steel K files.
Martinho, Frederico C; Freitas, Lilian F; Nascimento, Gustavo G; Fernandes, Aleteia M; Leite, Fabio R M; Gomes, Ana P M; Camões, Izabel C G
2015-07-01
This clinical study was conducted to compare the effectiveness of single-file reciprocating systems and rotary systems in removing endotoxins and cultivable bacteria in endodontic retreatment. Thirty endodontically treated teeth with post-treatment apical periodontitis were selected. The specimens were divided into three groups according to the system used: WaveOne (n = 10), Reciproc instrument (n = 10), and ProTaper Universal Retreatment system (n = 10). Samples were collected before and after chemomechanical preparation. The irrigation was performed by using 2.5% sodium hypochlorite. A chromogenic limulus amebocyte lysate assay test was used to quantify endotoxins. Culture techniques were used to determine bacterial colony-forming unit counts. At baseline, endotoxins and cultivable bacteria were recovered from 100% of the root canal samples in a median value of 5.84 EU/mL and 4.98 × 10(3) CFU/mL, respectively. After CMP, no differences were found in the median percentage values of endotoxin reduction achieved with reciprocating systems-WaveOne [94.11%] and Reciproc [93.29%] and with rotary systems-ProTaper [94.98%] (P > 0.05). Both single-file reciprocating systems [WaveOne (98.27%) and Reciproc (99.54%)] and rotary system [ProTaper (98.73%)] were effective in reducing bacterial load (P > 0.05). Moreover, no differences were found among the systems tested. The Reciproc and WaveOne reciprocating systems were as effective as the ProTaper system for removal of endotoxins and bacteria in endodontic retreatment. All systems tested were effective to remove cultivable bacteria and endotoxin in endodontic retreatment. As no differences among systems were observed, it is possible to suggest that clinicians should choose the preferred technique to perform endodontic.
Celik, Davut; Taşdemir, Tamer; Er, Kürşat
2013-02-01
Some improvements have been developed with new generations of nickel-titanium (NiTi) rotary instruments that led to their successful and extensive application in clinical practice. The purpose of this in vitro study was to compare the root canal preparations performed by using GT Series X and Twisted File systems produced by innovative manufacturing process with Revo-S, RaCe, Mtwo, and ProTaper Universal systems manufactured directly from conventional nitinol and with stainless steel K-Flexofile instruments. The mesiobuccal root canals of 140 maxillary first permanent molars that had between 30°-40° curvature angle and 4- to 9-mm curvature radius of the root canal were used. After root canal preparations made by using GT Series X, Twisted File, Revo-S, RaCe, Mtwo, and ProTaper Universal NiTi rotary systems and stainless steel K-Flexofile instruments, transportation occurred in the root canal, and alteration of working length (WL) was assessed by using a modified double-digital radiographic technique. The data were compared by the post hoc Tukey honestly significant difference test. NiTi rotary systems caused less canal transportation and alteration of WL than K-Flexofile instruments (P < .05). There was no significant difference between NiTi rotary system groups at any levels (P > .05) except 2.5 mm from the WL. At this level ProTaper Universal system caused significant canal transportation (P < .05). GT Series X and Twisted File rotary systems produced with innovative process were concluded to shape the curved canals to result in minimal canal transportation, similar to Revo-S, RaCe, Mtwo, and ProTaper Universal rotary systems manufactured by traditional methods. Copyright © 2013 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.
Soi, Sonal; Yadav, Suman; Sharma, Sumeet; Sharma, Mohit
2015-01-01
Background and aims. During root canal preparation, debris extruded beyond the apical foramen may result in periapical inflammation and postoperative pain. To date no root canal preparation method has been developed that extrudes no periapical debris. The purpose of this study was to identify a system leading to minimal extrusion of debris from the apical foramen. The study was conducted to comparatively evaluate the amount of apical extrusion of debris during root canal preparation using hand ProTaper and GT rotary and RaCe rotary instruments using crown-down technique. Materials and methods. Ninety freshly extracted human single-rooted mandibular premolars were equally assigned to three groups (n=30). The root canals were instrumented using hand ProTaper, GT rotary and RaCe rotary systems. Debris and irrigant extruded from the apical foramen were collected into vials. The mean weight of the remaining debris was calculated for each group and subjected to statistical analysis. Results. ANOVA was used to compare the mean dry weights of the debris extruded in the three groups, followedby post hoc Tukey tests for multiple comparisons the between groups. Highly significant differences were found in the amount of debris extruded among all the groups (P<0.001). The ProTaper group exhibited the highest mean debris weight (0.8293±0.05433 mg) and the RaCe system exhibited the lowest mean debris weight (0.1280±0.01606 mg). Conclusion. All the systems tested resulted in apical extrusion of debris. However, the hand ProTaper files extruded a significantly higher amount of debris than GT and RaCe systems.
Cyclic fatigue of three types of rotary nickel-titanium files in a dynamic model.
Yao, James H; Schwartz, Scott A; Beeson, Thomas J
2006-01-01
The cyclic fatigue resistance of three types of nickel-titanium rotary files was compared in a model using reciprocating axial movement. The influence of file size and taper was also investigated and fracture patterns were examined under SEM. The 10 experimental groups consisted of ProFiles, K3s, and RaCe files, size 25 in .04 and .06 tapers, as well as ProFiles and K3s, size 40 in .04 and .06 tapers. Each file was rotated freely at 300 rpm inside a stainless steel tube with a 60 degree and 5 mm radius of curvature. A continuous 3 mm oscillating axial motion was applied at 1 cycle per second by attaching an electric dental handpiece to the most inferior load cell of an Instron machine using a custom-made jig. The number of rotations to failure was determined and analyzed using analysis of variance and Tukey's post hoc tests. Overall, K3 25/.04 files were significantly more resistant to cyclic fatigue compared to any other group in this study. In the 25/.04 category, K3s were significantly more resistant to failure than ProFiles and RaCe files. Also in the same category, ProFiles significantly outlasted RaCe files. In the 25/.06 group, K3s and ProFiles were significantly more resistant to failure than RaCe files, but K3s were not significantly different than ProFiles. In the 40/.04 and 40/.06 groups, K3s were significantly more resistant to cyclic fatigue than ProFiles. SEM observations demonstrated mostly a ductile mode of fracture. The results suggest that different cross-sectional designs, diameters, and tapers all contribute to a nickel-titanium instrument's vulnerability to cyclic failure.
Mohammadzadeh Akhlaghi, Nahid; Rahimifard, Nahid; Moshari, Amirabbas; Vatanpour, Mehdi; Darmiani, Soheila
2014-01-01
Bacteria and their byproducts are major etiologic factors in endodontic diseases. Prevention or reduction of root canal bacterial contamination is the main aim of endodontic treatment. The purpose of this in vitro study was to evaluate the effect of size and taper of master apical file (MAF) in reducing bacteria from the apical third of the curved canals using a quantitative scanning electron microscope (SEM) study. Eighty-nine human mandibular first molars with curved MB canals (20(º)-35(º)) were divided into one control group (n=5) (without rotary instrumentation) and 6 experimental groups (n=14). The canals were prepared using RaCe rotary files to the MAF sizes 25/0.04, 25/0.06, 30/0.04, 30/0.06, 35/0.04 and 35/0.06, in groups 1 to 6, respectively. All the experimental groups were finally rinsed with 2 mL of 17% EDTA followed by 3 mL of 5.25% NaOCl. The mesial roots were split longitudinally. Remaining bacteria in the apical third of MB canals were evaluated using SEM (2000×). Data analysis was performed using one way ANOVA with Tukey's post hoc test. The level of significance was set at 0.05. All the experimental groups showed significant bacterial reduction (P<0.001). Although the greater size and/or taper resulted in decrease in bacteria, differences between the groups were not significant. Based on this in vitro study the MAF #25/0.04 had no significant difference compared to other groups with greater apical size/taper; all groups could effectively reduce intra-canal bacteria.
Kaval, Mehmet Emin; Capar, Ismail Davut; Ertas, Hüseyin; Sen, Bilge Hakan
2017-06-01
The purpose of the present study was to evaluate the cyclic fatigue resistance of F6 SkyTaper (Komet Brasseler, Lemgo, Germany), K3XF (SybronEndo, Orange, CA, USA), new generation OneShape (Micro Mega, Besancon, France) and TRUShape 3D conforming files (Dentsply Tulsa Dental Specialties, Tulsa, OK, USA). Ten instruments from each group were selected and allowed to rotate using a low-torque motor in a stainless steel block with 1.5 mm diameter, 3 mm radius of 60° angle of curvature at the manufacturer's recommended speed, and the number of cycles (NCF) from the beginning to the fracture was recorded. The data were analyzed using one-way ANOVA followed by post-hoc Tukey's test (P = 0.05). The ranking of the groups from the highest to the lowest NCF was as follows: F6 SkyTaper (959 ± 92), K3XF (725 ± 71), TRUShape (575 ± 84) and OneShape (289 ± 58). Statistically significant differences were detected between all groups (P < 0.05). Within the limitations of this study, F6 SkyTaper instruments presented the highest cyclic fatigue resistance among the tested instruments. The S-shaped cross-sectional design of F6 SkyTaper instruments could be the most important factor on the superior cyclic life span of these instruments. In endodontic practice, preferring the instruments with higher cyclic fatigue resistance would help to minimize the risk of instrument fractures; therefore especially during the preparation of curved canals, instruments with smaller core area and less cross-sectional metal mass, which could lead higher flexibility, can be proposed.
Pasqualini, Damiano; Alovisi, Mario; Cemenasco, Andrea; Mancini, Lucia; Paolino, Davide Salvatore; Bianchi, Caterina Chiara; Roggia, Andrea; Scotti, Nicola; Berutti, Elio
2015-10-01
The aim of this micro-computed tomography study was to describe the shaping properties of ProGlider/ProTaper Next (PG/PTN) and ScoutRace/BioRace (SR/BR) nickel-titanium rotary systems. Thirty maxillary first permanent molars were selected. Mesiobuccal canals were randomly assigned (n = 15) to PG/PTN or SR/BR groups. Irrigation was performed with 5% NaOCl and 10% EDTA. Specimens were scanned (voxel size, 9.1 μm) for matching volumes and surface areas and post-treatment analyses. Root canal centering ability, canal geometry enlargement, and thickness of dentinal wall at inner curvature were assessed at apical level and point of maximum curvature. Results were analyzed with 4 one-way analyses of variance. Canal centering ability was superior in PG/PTN (P = .006 at apical level, P = .025 at point of maximum curvature). PG/PTN demonstrated a more conservative increase of canal areas (P = .027 at apical level, P = .038 at point of maximum curvature). Centrifugal increase in canal diameters did not significantly differ between groups (P = .65 at apical level, P = .61 at point of maximum curvature). Inner dentinal wall thickness was less reduced with PG/PTN compared with SR/BR, with no statistical differences (P = .23 at point of maximum curvature, P = .89 at apical level). PG/PTN shaping taper ranged between 6% and 7%. Neither system produced significant shaping errors in curved canals. PG/PTN system showed better preservation of canal anatomy. PTN offset section did not influence final preparation taper. Copyright © 2015 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.
Soi, Sonal; Yadav, Suman; Sharma, Sumeet; Sharma, Mohit
2015-01-01
Background and aims. During root canal preparation, debris extruded beyond the apical foramen may result in periapical inflammation and postoperative pain. To date no root canal preparation method has been developed that extrudes no periapical debris. The purpose of this study was to identify a system leading to minimal extrusion of debris from the apical foramen. The study was conducted to comparatively evaluate the amount of apical extrusion of debris during root canal preparation using hand ProTaper and GT rotary and RaCe rotary instruments using crown-down technique. Materials and methods. Ninety freshly extracted human single-rooted mandibular premolars were equally assigned to three groups (n=30). The root canals were instrumented using hand ProTaper, GT rotary and RaCe rotary systems. Debris and irrigant extruded from the apical foramen were collected into vials. The mean weight of the remaining debris was calculated for each group and subjected to statistical analysis. Results. ANOVA was used to compare the mean dry weights of the debris extruded in the three groups, followedby post hoc Tukey tests for multiple comparisons the between groups. Highly significant differences were found in the amount of debris extruded among all the groups (P<0.001). The ProTaper group exhibited the highest mean debris weight (0.8293±0.05433 mg) and the RaCe system exhibited the lowest mean debris weight (0.1280±0.01606 mg). Conclusion. All the systems tested resulted in apical extrusion of debris. However, the hand ProTaper files extruded a significantly higher amount of debris than GT and RaCe systems. PMID:26697144
Mittal, Rakesh; Singla, Meenu G; Garg, Ashima; Dhawan, Anu
2015-12-01
Apical extrusion of irrigants and debris is an inherent limitation associated with cleaning and shaping of root canals and has been studied extensively because of its clinical relevance as a cause of flare-ups. Many factors affect the amount of extruded intracanal materials. The purpose of this study was to assess the bacterial extrusion by using manual, multiple-file continuous rotary system (ProTaper) and single-file continuous rotary system (One Shape). Forty-two human mandibular premolars were inoculated with Enterococcus faecalis by using a bacterial extrusion model. The teeth were divided into 3 experimental groups (n = 12) and 1 control group (n = 6). The root canals of experimental groups were instrumented according to the manufacturers' instructions by using manual technique, ProTaper rotary system, or One Shape rotary system. Sterilized saline was used as an irrigant, and bacterial extrusion was quantified as colony-forming units/milliliter. The results obtained were statistically analyzed by using one-way analysis of variance for intergroup comparison and post hoc Tukey test for pair-wise comparison. The level for accepting statistical significance was set at P < .05. All the instrumentation techniques resulted in bacterial extrusion, with manual step-back technique exhibiting significantly more bacterial extrusion than the engine-driven systems. Of the 2 engine-driven systems, ProTaper rotary extruded significantly more bacteria than One Shape rotary system (P < .05). The engine-driven nickel-titanium systems were associated with less apical extrusion. The instrument design may play a role in amount of extrusion. Copyright © 2015 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.
Bazyler, Caleb D; Mizuguchi, Satoshi; Harrison, Alex P; Sato, Kimitake; Kavanaugh, Ashley A; DeWeese, Brad H; Stone, Michael H
2017-10-01
The purpose of this study was to examine the effects of an overreach and taper on measures of muscle architecture, jumping, and throwing performance in Division I collegiate throwers preparing for conference championships. Six collegiate track and field throwers (3 hammer, 2 discus, 1 javelin) trained for 12 weeks using a block-periodization model culminating with a 1-week overreach followed by a 3-week taper (ORT). Session rating of perceived exertion training load (RPETL) and strength training volume-load times bar displacement (VLd) were recorded weekly. Athletes were tested pre-ORT and post-ORT on measures of vastus lateralis architecture, unloaded and loaded squat and countermovement jump performance, underhand and overhead throwing performance, and competition throwing performance. There was a statistical reduction in weight training VLd/session (d = 1.21, p ≤ 0.05) and RPETL/session (d = 0.9, p ≤ 0.05) between the in-season and ORT training phases. Five of 6 athletes improved overhead throw and competition throwing performance after the ORT (d = 0.50, p ≤ 0.05). Vastus lateralis muscle thickness statistically increased after the in-season training phase (d = 0.28, p ≤ 0.05) but did not change after the ORT. Unloaded countermovement jump peak force and relative peak power improved significantly after the ORT (d = 0.59, p ≤ 0.05, d = 0.31, p ≤ 0.05, respectively). These findings demonstrate that an overreaching week followed by a 3-week taper is an effective means of improving explosive ability and throwing performance in collegiate track and field throwers despite the absence of detectable changes in muscle architecture.
Where science meets practice: Olympic coaches' crafting of the tapering process.
Ritchie, Darren; Allen, Justine B; Kirkland, Andrew
2018-05-01
Although there is research providing physiologically-based guidance for the content of the taper, this study was the first to examine how coaches actually implement the taper. The purpose of this study was to examine the taper planning and implementation processes of successful Olympic coaches leading up to major competitions and how they learned about tapering. Seven track and field coaches participated in semi-structured interviews exploring their tapering processes. To be considered for inclusion, coaches were required to have coached one or more athletes to an Olympic or Paralympic medal. Through a process of axial and open coding interview transcripts were analysed and lower and higher order themes developed describing the coaches' tapering processes. Our findings indicate that the strategies employed to achieve the desired physiological adaptions of the taper were consistent with research (e.g., reduction in volume whilst maintaining intensity and frequency). However, our findings also suggest that tapering is far from a straight forward "textbook" process. The taper was not restricted to physiological outcomes with coaches considering athletes' psychological as well as physical state. Coaches also involved the athlete in the process, adapted the taper to the athlete, continually monitored its progress, and adapted it further as required.
Tapering Practices of Croatian Open-Class Powerlifting Champions.
Grgic, Jozo; Mikulic, Pavle
2017-09-01
Grgic, J and Mikulic, P. Tapering practices of Croatian open-class powerlifting champions. J Strength Cond Res 31(9): 2371-2378, 2017-The aim of this study was to explore tapering practices among 10 Croatian open-class powerlifting champions (mean ± SD: age 29.2 ± 3.2 years; Wilks coefficient 355.1 ± 54.8). The athletes were interviewed about their tapering practices using a semi-structured interview after which the audio content was transcribed. The athletes reported decreasing training volume during the taper by 50.5 ± 11.7% using a step type or an exponential type of taper with a fast decay. Training intensity was maintained or increased during the taper, and it reached its highest values 8 ± 3 days before the competition. Training frequency was reduced or maintained during the taper. The final week included a reduction in training frequency by 47.9 ± 17.5% with the last training session performed 3 ± 1 days before the competition. The participants typically stated that the main reasons for conducting the taper were maintaining strength and reducing the amount of fatigue. They also stated that (a) the taper was structured identically for the squat, bench press, and the deadlift; (b) the training during the taper was highly specific, the assistance exercises were removed, and the same equipment was used as during competition; (c) the source of information for tapering was their coach, and training fluctuated based on the coach's feedback; and (d) nutrition, foam rolling, static stretching, and massage were all given extra attention during the taper. These results may aid athletes and coaches in strength sports in terms of the optimization of tapering variables.
In-situ Tapering of Chalcogenide Fiber for Mid-infrared Supercontinuum Generation
Rudy, Charles W.; Marandi, Alireza; Vodopyanov, Konstantin L.; Byer, Robert L.
2013-01-01
Supercontinuum generation (SCG) in a tapered chalcogenide fiber is desirable for broadening mid-infrared (or mid-IR, roughly the 2-20 μm wavelength range) frequency combs1, 2 for applications such as molecular fingerprinting, 3 trace gas detection, 4 laser-driven particle acceleration, 5 and x-ray production via high harmonic generation. 6 Achieving efficient SCG in a tapered optical fiber requires precise control of the group velocity dispersion (GVD) and the temporal properties of the optical pulses at the beginning of the fiber, 7 which depend strongly on the geometry of the taper. 8 Due to variations in the tapering setup and procedure for successive SCG experiments-such as fiber length, tapering environment temperature, or power coupled into the fiber, in-situ spectral monitoring of the SCG is necessary to optimize the output spectrum for a single experiment. In-situ fiber tapering for SCG consists of coupling the pump source through the fiber to be tapered to a spectral measurement device. The fiber is then tapered while the spectral measurement signal is observed in real-time. When the signal reaches its peak, the tapering is stopped. The in-situ tapering procedure allows for generation of a stable, octave-spanning, mid-IR frequency comb from the sub harmonic of a commercially available near-IR frequency comb. 9 This method lowers cost due to the reduction in time and materials required to fabricate an optimal taper with a waist length of only 2 mm. The in-situ tapering technique can be extended to optimizing microstructured optical fiber (MOF) for SCG10 or tuning of the passband of MOFs, 11 optimizing tapered fiber pairs for fused fiber couplers12 and wavelength division multiplexers (WDMs), 13 or modifying dispersion compensation for compression or stretching of optical pulses.14-16 PMID:23748947
Critical Coupling Between Optical Fibers and WGM Resonators
NASA Technical Reports Server (NTRS)
Matsko, Andrey; Maleki, Lute; Itchenko, Vladimir; Savchenkov, Anatoliy
2009-01-01
Two recipes for ensuring critical coupling between a single-mode optical fiber and a whispering-gallery-mode (WGM) optical resonator have been devised. The recipes provide for phase matching and aperture matching, both of which are necessary for efficient coupling. There is also a provision for suppressing intermodal coupling, which is detrimental because it drains energy from desired modes into undesired ones. According to one recipe, the tip of the single-mode optical fiber is either tapered in diameter or tapered in effective diameter by virtue of being cleaved at an oblique angle. The effective index of refraction and the phase velocity at a given position along the taper depend on the diameter (or effective diameter) and the index of refraction of the bulk fiber material. As the diameter (or effective diameter) decreases with decreasing distance from the tip, the effective index of refraction also decreases. Critical coupling and phase matching can be achieved by placing the optical fiber and the resonator in contact at the proper point along the taper. This recipe is subject to the limitation that the attainable effective index of refraction lies between the indices of refraction of the bulk fiber material and the atmosphere or vacuum to which the resonator and fiber are exposed. The other recipe involves a refinement of the previously developed technique of prism coupling, in which the light beam from the optical fiber is collimated and focused onto one surface of a prism that has an index of refraction greater than that of the resonator. Another surface of the prism is placed in contact with the resonator. The various components are arranged so that the collimated beam is focused at the prism/resonator contact spot. The recipe includes the following additional provisions:
NASA Astrophysics Data System (ADS)
Ilev, Ilko K.; Waynant, Ronald W.
2001-01-01
We present a novel all-optical-waveguide method for ultraviolet (UV), visible (VIS) and infrared (IR) laser delivery including a lens-free method of laser-to-fiber coupling using a simple uncoated glass hollow taper. Based on the grazing incidence effect, the hollow taper provides a way of direct launching, without any intermediate focusing elements, high power laser radiation into delivery fibers. Because of the mutual action of the nearly parallel laser excitation, the mode coupling process, and mode filtering effect, the hollow taper serves as a mode converter that transforms the highly multimode profile of the input laser emission into a high-quality Gaussian-shaped profile at the taper output. When the grazing incidence effect of the taper is applied to laser delivery, the maintenance of high reflectance coefficients in a wide spectral region allows to utilize the same uncoated hollow taper for laser radiation in the UV, VIS and IR ranges. Applying the experimental hollow-taper based delivery systems, we obtain high laser- to-taper and taper-to-fiber coupling efficiencies.
Tapering Practices of Strongman Athletes.
Winwood, Paul W; Dudson, Mike K; Wilson, Daniel; Mclaren-Harrison, Justice K H; Redjkins, Vladislav; Pritchard, Hayden J; Keogh, Justin W L
2018-05-01
Winwood, PW, Dudson, MK, Wilson, D, Mclaren-Harrison, JKH, Redjkins, V, Pritchard, HJ, and Keogh, JWL. Tapering practices of strongman athletes. J Strength Cond Res 32(5): 1181-1196, 2018-This study provides the first empirical evidence of how strongman athletes taper for strongman competitions. Strongman athletes (n = 454) (mean ± SD: 33.2 ± 8.0 years, 178.1 ± 10.6 cm, 108.6 ± 27.9 kg, 12.6 ± 8.9 years general resistance training, 5.3 ± 5.0 years strongman implement training) completed a self-reported 4-page internet survey on tapering practices. Analysis by sex (male and female), age (≤30 and >30 years), body mass (≤105 and >105 kg), and competitive standard (local/regional amateur, national amateur and professional) was conducted. Eighty-seven percent (n = 396) of strongman athletes reported that they used a taper. Athletes stated that their typical taper length was 8.6 ± 5.0 days, with the step taper the most commonly performed taper (52%). Training volume decreased during the taper by 45.5 ± 12.9%, and all training ceased 3.9 ± 1.8 days out from competition. Typically, athletes reported that training frequency and training duration stayed the same or decreased and training intensity decreased to around 50% in the last week. Athletes generally stated that tapering was performed to achieve recovery, rest, and peak performance; the deadlift, yoke walk, and stone lifts/work took longer to recover from than other lifts; assistance exercises were reduced or removed in the taper; massage, foam rolling, nutritional changes, and static stretching were strategies used in the taper; and, poor tapering occurred when athletes trained too heavy/hard or had too short a taper. These data will assist strongman athletes and coaches in the optimization of tapering variables leading to more peak performances. Future research could investigate the priming and preactivation strategies strongman athletes use on competition day.
Coupled tapering/uptapering of Thirring type soliton pair in nonlinear media
NASA Astrophysics Data System (ADS)
Prasad, Shraddha; Dutta, Manoj Kumar; Sarkar, Ram Krishna
2018-03-01
The paper investigates coupled tapering/uptapering of Thirring type soliton pair, employing Beam Propagation Method. It is seen that, the pair uptapers in presence of losses and tapers in presence of gain. When the first beam has gain and the second one has losses in the nonlinear medium, the second beam induces uptapering in the first beam, while, first beam induces tapering in the second beam. When the medium provides gain/losses to only one of the two beams, the beam undergoes tapering/uptapering and also induces tapering/uptapering to the other loss less beam; however, magnitude of tapering/uptapering are different.
NASA Astrophysics Data System (ADS)
Lee, Hui Jing; Abdullah, Fairuz; Ismail, Aiman
2017-11-01
This paper presents finite numerical modelling on the cross-sectional region of tapered single mode fiber and graphene-clad tapered fiber. Surface acoustic wave propagation across the tapered surface region on tapered single mode fiber has a high threshold power at 61.87 W which is challenging to overcome by the incident pump wave. Surface acoustic wave propagation of fiber surface however made tapered wave plausible in the optical sensor application. This research introduces graphene as the cladding layer on tapered fiber, acoustic confinement occurs due to the graphene cladding which lowers the threshold power from 61.87 W to 2.17 W.
Basmaci, F; Oztan, M D; Kiyan, M
2013-09-01
To evaluate ex vivo the effectiveness of single-file instrumentation techniques compared with serial Ni-Ti rotary instrumentation with several irrigation regimens in reducing E. faecalis within root canals. A total of 81 extracted human mandibular premolar teeth with a single root canal were infected with E. faecalis before and after canal preparation. Samples were divided randomly into 9 groups, as follows: group 1-A: sterile phosphate-buffered saline + Self-adjusting file, group 1-B: 5% sodium hypochlorite + 15% EDTA + Self-adjusting file, group 1-C: 5% sodium hypochlorite + 7% maleic acid + Self-adjusting file, group 2-A: sterile phosphate-buffered saline + Reciproc (R25), group 2-B: 5% sodium hypochlorite + 15% EDTA + Reciproc (R25), group 2-C: 5% sodium hypochlorite + 7% maleic acid + Reciproc (R25), group 3-A: sterile phosphate-buffered saline + ProTaper, group 3-B: 5% sodium hypochlorite + 15% EDTA + ProTaper, group 3-C: 5% sodium hypochlorite + 7% maleic acid + ProTaper. anova was used to analyse statistically the differences in terms of reduction in colony counts between the groups, and Dunn's post hoc test was used for multiple comparisons. All techniques and irrigation regimens significantly reduced the number of bacterial cells in the root canal (P < 0.001). Comparisons amongst the groups revealed significant differences between group 1A (sterile phosphate-buffered saline + Self-adjusting file)/group 1B (5% sodium hypochlorite + 15% EDTA + Self-adjusting file) (P = 0.031), group 1A (sterile phosphate-buffered saline + Self-adjusting file)/group 2C (5% sodium hypochlorite + 7% maleic acid + Reciproc) (P = 0.003), group 2A (sterile phosphate-buffered saline + Reciproc)/group 3B (5% sodium hypochlorite + 15% EDTA + ProTaper) (P = 0.036), group 3B (5% sodium hypochlorite + 15% EDTA + ProTaper)/group 1A (sterile phosphate-buffered saline + Self-adjusting file) (P < 0.001), and group 3C (5% sodium hypochlorite + 7% maleic acid + ProTaper)/group 1A (sterile phosphate-buffered saline + Self-adjusting file) (P = 0.033). No significant differences in terms of reduction in microbial counts were observed between single-file techniques (SAF and Reciproc) and serial Ni-Ti instrumentation technique (ProTaper) in combination with irrigants. © 2013 International Endodontic Journal. Published by John Wiley & Sons Ltd.
Monitoring the fabrication of tapered optical fibres
NASA Astrophysics Data System (ADS)
Mullaney, K.; Correia, R.; Staines, S. E.; James, S. W.; Tatam, R. P.
2017-04-01
A variety of optical methods to enhance the process of making optical fibre tapers are explored. A thermal camera was used to both refine the alignment of the optical components and optimize the laser power profile during the tapering process. The fibre transmission was measured to verify that the tapers had the requisite optical characteristics while the strain experienced by the fibre while tapering was assessed using an optical fibre Bragg grating. Using these techniques, adiabatic tapers were fabricated with a 2% insertion loss.
Post and core build-ups in crown and bridge abutments: Bio-mechanical advantages and disadvantages.
Mamoun, John
2017-06-01
Dentists often place post and core buildups on endodontically treated abutments for crown and bridge restorations. This article analyzes the bio-mechanical purposes, advantages and disadvantages of placing a core or a post and core in an endodontically treated tooth and reviews literature on post and core biomechanics. The author assesses the scientific rationale of the claim that the main purpose of a post is to retain a core, or the claim that posts weaken teeth. More likely, the main function of a post is to help prevent the abutment, on which a crown is cemented, from fracturing such that the abutment separates from the tooth root, at a fracture plane that is located approximately and theoretically at the level of the crown (or ferrule) margin. A post essentially improves the ferrule effect that is provided by the partial fixed denture prosthesis. This paper also explores the difference between bio-mechanical failures of crowns caused by lack of retention or excess taper, versus failures due to a sub-optimal ferrule effect in crown and bridge prostheses.
Pseudo-circulator implemented as a multimode fiber coupler
NASA Astrophysics Data System (ADS)
Bulota, F.; Bélanger, P.; Leduc, M.; Boudoux, C.; Godbout, N.
2016-03-01
We present a linear all-fiber device exhibiting the functionality of a circulator, albeit for multimode fibers. We define a pseudo-circulator as a linear three-port component that transfers most of a multimode light signal from Port 1 to Port 2, and from Port 2 to Port 3. Unlike a traditional circulator which depends on a nonlinear phenomenon to achieve a non-reciprocal behavior, our device is a linear component that seemingly breaks the principle of reciprocity by exploiting the variations of etendue of the multimode fibers in the coupler. The pseudo-circulator is implemented as a 2x2 asymmetric multimode fiber coupler, fabricated using the fusion-tapering technique. The coupler is asymmetric in its transverse fused section. The two multimode fibers differ in area, thus favoring the transfer of light from the smaller to the bigger fiber. The desired difference of area is obtained by tapering one of the fiber before the fusion process. Using this technique, we have successfully fabricated a pseudo-circulator surpassing in efficiency a 50/50 beam-splitter. In all the visible and near-IR spectrum, the transmission ratio exceeds 77% from Port 1 to Port 2, and 80% from Port 2 to Port 3. The excess loss is less than 0.5 dB, regardless of the entry port.
NASA Astrophysics Data System (ADS)
de Moor, A.; Trehu, A. M.; Tryon, M. D.
2015-12-01
To investigate the dynamic response of the outer accretionary wedge updip from the patch of greatest slip during the Mw8.8 2010 Maule earthquake, 10 Ocean Bottom Seismometers (OBS) were deployed from May 2012 to March 2013 in a small array with an inter-instrument spacing of ~12 km . Nine instruments were recovered, with 4 recording data on 3 intermediate-band 3-component seismometers and a differential pressure gauge and 5 recording data from absolute pressure gauges. [note: All instruments were also equipped with a fluid flow meter sensitive to flow rates as low as 0.0001 cm/yr in or out of the sediments. However, no flow signal was detected.] Here we present hypocenters for 569 local events that have S-P times less than 17 seconds (i.e. within ~125 km of the array) using hand-picked arrival times and a 1D velocity model derived from a 2D seismic refraction profile through the region (Moscoso et al 2011, EPSL). We analyze the distribution of seismicity in the context of published slip models, ChilePEPPER high-resolution seismic reflection data, critical taper analysis done by Cubas et al 2013 (EPSL), and offshore gravity data. The data show distinct segmentation within the outer prism. The northern section of the study area is characterized by a lack of seismicity, accretion of nearly all incoming sediment and a prism at critical taper. In contrast, abundant seismicity, significant sediment underthrusting at the deformation front and a prism below critical taper angle characterize the southern part of the study area. Both coseismic slip and post-rupture local seismicity can be related to density anomalies within the upper plate as revealed by free air gravity data corrected for the effects of bathymetry and the subducting plate. [ChilePEPPER - Project Evaluating Prism Post-Earthquake Response
Rigidity and retention of ceramic root canal posts.
Purton, D G; Love, R M; Chandler, N P
2000-01-01
Ceramic root-canal posts offer potential advantages over other types with respect to aesthetics and biocompatibility. Any post must be sufficiently rigid and retentive to withstand functional forces. Ceraposts (1.2 mm coronal diameter, ceramic, tapering, smooth posts) and Paraposts (1.25 mm, stainless-steel, parallel, serrated posts) were tested for rigidity by means of a three-point bending test. To test retention in roots, ceramic posts were cemented using one of three protocols: (1) glass-ionomer cement, (2) silane coupling agent and resin cement, or (3) sandblasted post surface, silane coupling agent, and resin cement. Stainless-steel posts were cemented with resin. The tensile force required to dislodge the posts, following four weeks of storage in water, was recorded. Data were compared using Student's t-test and Mann-Whitney U analysis. Ceraposts were significantly more rigid than Paraposts (p < 0.001). Paraposts cemented with resin were significantly more strongly retained than Ceraposts following any cementation protocol (p < 0.001). Retention of the ceramic posts was significantly greater with a silane coupling agent and resin cement than with glass-ionomer cement (p < 0.001). Sandblasting the ceramic posts produced variable results and needs further investigation before it could be recommended.
Innovative FEL schemes using variable-gap undulators
NASA Astrophysics Data System (ADS)
Schneidmiller, E. A.; Yurkov, M. V.
2017-06-01
We discuss theoretical background and experimental verification of advanced schemes for X-ray FELs using variable gap undulators (harmonic lasing self-seeded FEL, reverse taper etc.) Harmonic lasing in XFELs is an opportunity to extend operating range of existing and planned X-ray FEL user facilities. Contrary to nonlinear harmonic generation, harmonic lasing can provide much more intense, stable, and narrow-band FEL beam which is easier to handle due to the suppressed fundamental. Another interesting application of harmonic lasing is Harmonic Lasing Self-Seeded (HLSS) FEL that allows to improve longitudinal coherence and spectral power of a SASE FEL. Recently this concept was successfully tested at the soft X-ray FEL user facility FLASH in the wavelength range between 4.5 nm and 15 nm. That was also the first experimental demonstration of harmonic lasing in a high-gain FEL and at a short wavelength (before it worked only in infrared FEL oscillators). Another innovative scheme that was tested at FLASH2 is the reverse tapering that can be used to produce circularly polarized radiation from a dedicated afterburner with strongly suppressed linearly polarized radiation from the main undulator. This scheme can also be used for an efficient background-free production of harmonics in an afterburner. Experiments on the frequency doubling that allowed to reach the shortest wavelength at FLASH as well as on post-saturation tapering to produce a record intencity in XUV regime are also discussed.
2D constant-loss taper for mode conversion
NASA Astrophysics Data System (ADS)
Horth, Alexandre; Kashyap, Raman; Quitoriano, Nathaniel J.
2015-03-01
Proposed in this manuscript is a novel taper geometry, the constant-loss taper (CLT). This geometry is derived with 1D slabs of silicon embedded in silicon dioxide using coupled-mode theory (CMT). The efficiency of the CLT is compared to both linear and parabolic tapers using CMT and 2D finite-difference time-domain simulations. It is shown that over a short 2D, 4.45 μm long taper the CLT's mode conversion efficiency is ~90% which is 10% and 18% more efficient than a 2D parabolic or linear taper, respectively.
Savaliya, Priten; Dhawan, Anuj
2016-10-01
Employing finite difference time domain simulations, we demonstrate that electromagnetic field enhancement is substantially greater for tapered optical fibers with plasmonic nanostructures present on their tips as compared with non-tapered optical fibers having those plasmonic nanostructures, or with tapered optical fibers without the plasmonic nanostructures. We also carried out fabrication of plasmonic nanostructures on optical fiber tips.
NASA Astrophysics Data System (ADS)
Zhao, Yong; Chen, Mao-qing; Xia, Feng; Hu, Hai-feng
2017-11-01
A novel refractive index (RI) sensor based on an asymmetrical Mach-Zehnder interferometer (MZI) with two different step-like tapers is proposed. The step-like taper is fabricated by fusion splicing two half tapers with an appropriate offset. By further applying offset and discharging to the last fabricated step-like taper of MZI, influence of taper parameters on interference spectrum is investigated using only one device. This simple technique provides an on-line method to sweep parameters of step-like tapers and speeds up the optimization process of interference spectrum, meanwhile. In RI sensing experiment, the sensor has a high sensitivity of -185.79 nm/RIU (refractive index unit) in the RI range of 1.3333-1.3673.
[Shaping ability of two nickel-titanium rotary systems in simulated S-shaped canals].
Luo, Hong-xia; Huang, Ding-ming; Zhang, Fu-hua; Tan, Hong; Zhou, Xue-dong
2008-01-01
To evaluate the shaping ability of two nickel-titanium rotary systems (ProTaper and Hero642) in simulated S-shaped canals. Thirty simulated S-shaped canals were randomly divided into three groups and prepared by ProTaper, Hero642, ProTaper combined with Hero642 respectively. All the canals were scanned before and after instrumentation, and the amount of material removed in the inner and outer wall and the canal width after instrumentation were measured with a computer image analysis program. There was significant difference in the amount of material removed at the inner side of apical curvature and outer side of apex between ProTaper combined with Hero642 and ProTaper files (P < 0.05) at the same tip size. The inner and outer wall of the canals were evenly prepared by ProTaper combined with Hero642, and the taper of canals were better than those prepared by Hero642. ProTaper combined with Hero 642 had better shaping ability to maintain the original shape and could create good taper canals in the simulated S-shaped canal model.
Octave spanning supercontinuum in an As₂S₃ taper using ultralow pump pulse energy.
Hudson, Darren D; Dekker, Stephen A; Mägi, Eric C; Judge, Alexander C; Jackson, Stuart D; Li, Enbang; Sanghera, J S; Shaw, L B; Aggarwal, I D; Eggleton, Benjamin J
2011-04-01
An octave spanning spectrum is generated in an As₂S₃ taper via 77 pJ pulses from an ultrafast fiber laser. Using a previously developed tapering method, we construct a 1.3 μm taper that has a zero-dispersion wavelength around 1.4 μm. The low two-photon absorption of sulfide-based chalcogenide fiber allows for higher input powers than previous efforts in selenium-based chalcogenide tapered fibers. This higher power handling capability combined with input pulse chirp compensation allows an octave spanning spectrum to be generated directly from the taper using the unamplified laser output.
Komasawa, Nobuyasu; Mihara, Ryosuke; Imagawa, Kentaro; Hattori, Kazuo; Minami, Toshiaki
2015-01-01
The present study compared changes in cuff pressure by head and neck position between high-volume low-pressure (HVLP) and taper-shaped (taper) cuffs in a prospective randomized clinical trial. Methods. Forty patients were intubated using tracheal tubes with either HVLP (n = 20; HVLP group) or taper-shaped (n = 20; Taper group) cuffs. Initial cuff pressure was adjusted to 15, 20, or 25 cmH2O in the neutral position. Cuff pressure was evaluated after changing the head and neck positions to flexion, extension, and rotation. Results. Cuff pressure significantly increased with flexion in both HVLP and Taper groups at all initial cuff pressures. It significantly increased with extension in the HVLP group, but not in the Taper group. Cuff pressure did not significantly differ with rotation in either group and was significantly smaller in the Taper group during flexion and extension than in the HVLP group, regardless of initial cuff pressure. Conclusion. Cuff pressure changes with head and neck flexion and extension were smaller in the Taper group than in the HVLP group. Our results highlight the potential for taper cuffs to prevent excessive cuff pressure increases with positional changes in the head and neck. This trial is registered with UMIN000016119. PMID:26509152
Comparison of two techniques for removing fiber posts.
Gesi, A; Magnolfi, S; Goracci, C; Ferrari, M
2003-09-01
The purpose of this study was to evaluate the time needed to remove several types of fiber posts using two different bur kits. Estimates refer to the time needed to pass the fiber post until arriving at the gutta-percha. Sixty extracted anterior teeth were treated endodontically. A post space with a standard depth of 10 mm was prepared in each root canal. The sample was randomly divided into 3 groups of 20 specimens each. Three different types of posts were cemented: group 1, Conic 6% tapered fiber posts (Ghimas); group 2, FRC Poster fiber posts (Ivoclar-Vivadent); and group 3, Composipost carbon fiber posts (RTD). To remove the post, for half of each group's specimens the burs from the RTD fiber posts removal kit were used (subgroup A). From the other half of the teeth in each group (subgroup B), posts were removed by using a diamond bur and a Largo bur. Composipost carbon fiber posts (group 3) took significantly less time to remove than the other two types of posts (p < 0.05). For the bur kits, the procedure involving the use of a diamond and a Largo bur (subgroup B) was significantly faster (p < 0.05). The interaction between the type of post and the type of bur kit used was not significant (p > 0.05).
2006-04-15
was amplified by injection locking of a high power diode laser and further amplified to -300 mW with a semiconductor optical amplifier. This light...amplifiers at 793nm, cascaded injection locked amplifiers at 793nm, and frequency chirped lasers at 793nm. 15. SUBJECT TERMS Optical Coherent Transients...injection- locking for broadband optical signal amplification ................. 34 2.10. Tapered semiconductor optical amplifier
Optical microfiber-based photonic crystal cavity
NASA Astrophysics Data System (ADS)
Yu, Yang; Sun, Yi-zhi; Andrews, Steve; Li, Zhi-yuan; Ding, Wei
2016-01-01
Using a focused ion beam milling technique, we fabricate broad stop band (∼10% wide) photonic crystal (PhC) cavities in adiabatically-tapered silica fibers. Abrupt structural design of PhC mirrors efficiently reduces radiation loss, increasing the cavity finesse to ∼7.5. Further experiments and simulations verify that the remaining loss is mainly due to Ga ion implantation. Such a microfiber PhC cavity probably has potentials in many light-matter interaction applications.
Sigmon, Stacey C.; Strain, Eric C.; Heil, Sarah H.; Higgins, Stephen T.
2011-01-01
Background The association between buprenorphine taper duration and treatment outcomes is not well understood. This review evaluated whether duration of outpatient buprenorphine taper is significantly associated with treatment outcomes. Methods Studies that were published in peer-reviewed journals, administered buprenorphine as an outpatient taper to opioid-dependent participants, and provided data on at least one of three primary treatment outcome measures (opioid abstinence, retention, peak withdrawal severity) were reviewed. Primary treatment outcomes were evaluated as a function of taper duration using hierarchical linear regressions using pre-taper maintenance as a cofactor. Results Twenty-eight studies were reviewed. Taper duration significantly predicted percent of opioid-negative samples provided during treatment, however pre-taper maintenance period predicted percent participants abstinent on the final day of treatment. High rates of relapse were reported. No significant association between taper duration and retention in treatment or peak withdrawal severity was observed. Conclusion The data reviewed here suggest taper duration is associated with opioid abstinence achieved during detoxification but not with other markers of treatment outcome. The reviewed studies varied widely on several parameters (e.g., frequency of urinalysis testing, provision of ancillary medications) that may influence treatment outcome and thus could have interfered with the ability to identify relationships between taper duration and outcomes. Future studies evaluating opioid detoxification should utilize rigorous experimental methods and report a wider range of outcome measures in order to help advance our understanding of the association between taper duration and treatment outcomes. PMID:21741781
Pawar, Ajinkya M.; Pawar, Mansing G.; Metzger, Zvi; Kokate, Sharad R.
2015-01-01
Aim: The present ex vivo study aimed to evaluate the debris extrusion after instrumenting the root canals by three different files systems. Materials and Methods: Sixty extracted human mandibular premolars with single canals were selected and randomly divided into three groups (n = 20) for instrumentation with three different files. Group 1: WaveOne (primary) single reciprocating file (WO; Dentsply Maillefer, Ballaigues, Switzerland) (25/08), Group 2: Self-adjusting file (SAF; ReDent-Nova, Ra’anana, Israel) (1.5 mm), and Group 3: ProTaper NEXT X1 and X2 (PTN; Dentsply Tulsa Dental, Tulsa, OK) (25/06). Debris extruding by instrumentation were collected into pre-weighed Eppendorf tubes. These tubes were then stored in an incubator at 70°C for 5 days. The tubes were then weighed to obtain the final weight, with the extruded debris. Statistical analysis for the debris extruded apically was performed using one-way analysis of variance and post hoc Tukey's test. Results: The statistical analysis showed a significant difference between all the three groups tested (P < 0.01). The following post hoc Tukey's test confirmed that Group 2 (SAF) exhibited significantly least (P < 0.01) debris extrusion between the three groups tested. Conclusions: The SAF resulted in significantly less extrusion of debris when compared to reciprocating WO and rotary PTN. PMID:25829683
Near-Field Magneto-Optical Microscope
Vlasko-Vlasov, Vitalii; Welp, Ulrich; and Crabtree, George W.
2005-12-06
A device and method for mapping magnetic fields of a sample at a resolution less than the wavelength of light without altering the magnetic field of the sample is disclosed. A device having a tapered end portion with a magneto-optically active particle positioned at the distal end thereof in communication with a fiber optic for transferring incoming linearly polarized light from a source thereof to the particle and for transferring reflected light from the particle is provided. The fiber optic has a reflective material trapping light within the fiber optic and in communication with a light detector for determining the polarization of light reflected from the particle as a function of the strength and direction of the magnetic field of the sample. Linearly polarized light from the source thereof transferred to the particle positioned proximate the sample is affected by the magnetic field of the sample sensed by the particle such that the difference in polarization of light entering and leaving the particle is due to the magnetic field of the sample. Relative movement between the particle and sample enables mapping.
Near Field Magneto-Optical Microscope
Vlasko-Vlasov, Vitalii K.; Welp, Ulrich; Crabtree, George W.
2005-12-06
A device and method for mapping magnetic fields of a sample at a resolution less than the wavelength of light without altering the magnetic field of the sample is disclosed. A device having a tapered end portion with a magneto-optically active particle positioned at the distal end thereof in communication with a fiber optic for transferring incoming linearly polarized light from a source thereof to the particle and for transferring reflected light from the particle is provided. The fiber optic has a reflective material trapping light within the fiber optic and in communication with a light detector for determining the polarization of light reflected from the particle as a function of the strength and direction of the magnetic field of the sample. Linearly polarized light from the source thereof transferred to the particle positioned proximate the sample is affected by the magnetic field of the sample sensed by the particle such that the difference in polarization of light entering and leaving the particle is due to the magnetic field of the sample. Relative movement between the particle and sample enables mapping.
Ibrahim, Fowzia; Lorente-Cánovas, Beatriz; Doré, Caroline J; Bosworth, Ailsa; Ma, Margaret H; Galloway, James B; Cope, Andrew P; Pande, Ira; Walker, David; Scott, David L
2017-11-01
RA patients receiving TNF inhibitors (TNFi) usually maintain their initial doses. The aim of the Optimizing Treatment with Tumour Necrosis Factor Inhibitors in Rheumatoid Arthritis trial was to evaluate whether tapering TNFi doses causes loss of clinical response. We enrolled RA patients receiving etanercept or adalimumab and a DMARD with DAS28 under 3.2 for over 3 months. Initially (months 0-6) patients were randomized to control (constant TNFi) or two experimental groups (tapering TNFi by 33 or 66%). Subsequently (months 6-12) control subjects were randomized to taper TNFi by 33 or 66%. Disease flares (DAS28 increasing ⩾0.6 with at least one additional swollen joint) were the primary outcome. Two hundred and forty-four patients were screened, 103 randomized and 97 treated. In months 0-6 there were 8/50 (16%) flares in controls, 3/26 (12%) with 33% tapering and 6/21 (29%) with 66% tapering. Multivariate Cox analysis showed time to flare was unchanged with 33% tapering but was reduced with 66% tapering compared with controls (adjusted hazard ratio 2.81, 95% CI: 0.99, 7.94; P = 0.051). Analysing all tapered patients after controls were re-randomized (months 6-12) showed differences between groups: there were 6/48 (13%) flares with 33% tapering and 14/39 (36%) with 66% tapering. Multivariate Cox analysis showed 66% tapering reduced time to flare (adjusted hazard ratio 3.47, 95% CI: 1.26, 9.58; P = 0.016). Tapering TNFi by 33% has no impact on disease flares and appears practical in patients in sustained remission and low disease activity states. EudraCT, https://www.clinicaltrialsregister.eu, 2010-020738-24; ISRCTN registry, https://www.isrctn.com, 28955701. © The Author 2017. Published by Oxford University Press on behalf of the British Society for Rheumatology.
Quantification of the Contact Area at the Head-Stem Taper Interface of Modular Hip Prostheses.
Witt, Florian; Gührs, Julian; Morlock, Michael M; Bishop, Nicholas E
2015-01-01
Corrosion of modular taper junctions of hip implants may be associated with clinical failure. Taper design parameters, as well as the intraoperatively applied assembly forces, have been proposed to affect corrosion. Fretting corrosion is related to relative interface shear motion and fluid ingress, which may vary with contact force and area. It was hypothesised in this study that assembly forces modify the extent and distribution of the surface contact area at the taper interface between a cobalt chrome head and titanium stem taper with a standard threaded surface profile. Local abrasion of a thin gold coating applied to the stem taper prior to assembly was used to determine the contact area after disassembly. Profilometry was then used to assess permanent deformation of the stem taper surface profile. With increasing assembly force (500 N, 2000 N, 4000 N and 8000 N) the number of stem taper surface profile ridges in contact with the head taper was found to increase (9.2±9.3%, 65.4±10.8%, 92.8±6.0% and 100%) and the overall taper area in contact was also found to increase (0.6±0.7%, 5.5±1.0%, 9.9±1.1% and 16.1±0.9%). Contact was inconsistently distributed over the length of the taper. An increase in plastic radial deformation of the surface ridges (-0.05±0.14 μm, 0.1±0.14 μm, 0.21±0.22 μm and 0.96±0.25 μm) was also observed with increasing assembly force. The limited contact of the taper surface ridges at lower assembly forces may influence corrosion rates, suggesting that the magnitude of the assembly force may affect clinical outcome. The method presented provides a simple and practical assessment of the contact area at the taper interface.
Quantification of the Contact Area at the Head-Stem Taper Interface of Modular Hip Prostheses
Witt, Florian; Gührs, Julian; Morlock, Michael M.; Bishop, Nicholas E.
2015-01-01
Corrosion of modular taper junctions of hip implants may be associated with clinical failure. Taper design parameters, as well as the intraoperatively applied assembly forces, have been proposed to affect corrosion. Fretting corrosion is related to relative interface shear motion and fluid ingress, which may vary with contact force and area. It was hypothesised in this study that assembly forces modify the extent and distribution of the surface contact area at the taper interface between a cobalt chrome head and titanium stem taper with a standard threaded surface profile. Local abrasion of a thin gold coating applied to the stem taper prior to assembly was used to determine the contact area after disassembly. Profilometry was then used to assess permanent deformation of the stem taper surface profile. With increasing assembly force (500 N, 2000 N, 4000 N and 8000 N) the number of stem taper surface profile ridges in contact with the head taper was found to increase (9.2±9.3%, 65.4±10.8%, 92.8±6.0% and 100%) and the overall taper area in contact was also found to increase (0.6±0.7%, 5.5±1.0%, 9.9±1.1% and 16.1±0.9%). Contact was inconsistently distributed over the length of the taper. An increase in plastic radial deformation of the surface ridges (-0.05±0.14 μm, 0.1±0.14 μm, 0.21±0.22 μm and 0.96±0.25 μm) was also observed with increasing assembly force. The limited contact of the taper surface ridges at lower assembly forces may influence corrosion rates, suggesting that the magnitude of the assembly force may affect clinical outcome. The method presented provides a simple and practical assessment of the contact area at the taper interface. PMID:26280914
Lorente-Cánovas, Beatriz; Doré, Caroline J; Bosworth, Ailsa; Ma, Margaret H; Galloway, James B; Cope, Andrew P; Pande, Ira; Walker, David; Scott, David L
2017-01-01
Abstract Objectives RA patients receiving TNF inhibitors (TNFi) usually maintain their initial doses. The aim of the Optimizing Treatment with Tumour Necrosis Factor Inhibitors in Rheumatoid Arthritis trial was to evaluate whether tapering TNFi doses causes loss of clinical response. Methods We enrolled RA patients receiving etanercept or adalimumab and a DMARD with DAS28 under 3.2 for over 3 months. Initially (months 0–6) patients were randomized to control (constant TNFi) or two experimental groups (tapering TNFi by 33 or 66%). Subsequently (months 6–12) control subjects were randomized to taper TNFi by 33 or 66%. Disease flares (DAS28 increasing ⩾0.6 with at least one additional swollen joint) were the primary outcome. Results Two hundred and forty-four patients were screened, 103 randomized and 97 treated. In months 0–6 there were 8/50 (16%) flares in controls, 3/26 (12%) with 33% tapering and 6/21 (29%) with 66% tapering. Multivariate Cox analysis showed time to flare was unchanged with 33% tapering but was reduced with 66% tapering compared with controls (adjusted hazard ratio 2.81, 95% CI: 0.99, 7.94; P = 0.051). Analysing all tapered patients after controls were re-randomized (months 6–12) showed differences between groups: there were 6/48 (13%) flares with 33% tapering and 14/39 (36%) with 66% tapering. Multivariate Cox analysis showed 66% tapering reduced time to flare (adjusted hazard ratio 3.47, 95% CI: 1.26, 9.58; P = 0.016). Conclusion Tapering TNFi by 33% has no impact on disease flares and appears practical in patients in sustained remission and low disease activity states. Trail registration EudraCT, https://www.clinicaltrialsregister.eu, 2010-020738-24; ISRCTN registry, https://www.isrctn.com, 28955701 PMID:28968858
Refractive index sensors based on the fused tapered special multi-mode fiber
NASA Astrophysics Data System (ADS)
Fu, Xing-hu; Xiu, Yan-li; Liu, Qin; Xie, Hai-yang; Yang, Chuan-qing; Zhang, Shun-yang; Fu, Guang-wei; Bi, Wei-hong
2016-01-01
In this paper, a novel refractive index (RI) sensor is proposed based on the fused tapered special multi-mode fiber (SMMF). Firstly, a section of SMMF is spliced between two single-mode fibers (SMFs). Then, the SMMF is processed by a fused tapering machine, and a tapered fiber structure is fabricated. Finally, a fused tapered SMMF sensor is obtained for measuring external RI. The RI sensing mechanism of tapered SMMF sensor is analyzed in detail. For different fused tapering lengths, the experimental results show that the RI sensitivity can be up to 444.517 81 nm/RIU in the RI range of 1.334 9—1.347 0. The RI sensitivity is increased with the increase of fused tapering length. Moreover, it has many advantages, including high sensitivity, compact structure, fast response and wide application range. So it can be used to measure the solution concentration in the fields of biochemistry, health care and food processing.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ding Xueyong; Li Hongfan; Lv Zhensu
Based on the mode-coupling method, numerical analysis is presented to demonstrate the influence of ripple taper on band-gap overlap in a coaxial Bragg structure operating at terahertz frequency. Results show that the interval between the band-gaps of the competing mode and the desired working mode is narrowed by use of positive-taper ripples, but is expanded if negative-taper ripples are employed, and the influence of the negative-taper ripples is obviously more advantageous than the positive-taper ripples; the band-gap overlap of modes can be efficiently separated by use of negative-taper ripples. The residual side-lobes of the frequency response in a coaxial Braggmore » structure with ripple taper also can be effectively suppressed by employing the windowing-function technique. These peculiarities provide potential advantage in constructing a coaxial Bragg cavity with high quality factor for single higher-order-mode operation of a high-power free-electron maser in the terahertz frequency range.« less
Kwon, Young-Min
2016-07-01
Although dual taper modular-neck total hip arthroplasty (THA) design with additional neck-stem modularity has the potential to optimize hip biomechanical parameters by facilitating adjustments of leg length, femoral neck version and offset, there is increasing concern regarding this stem design as a result of the growing numbers of adverse local tissue reactions due to fretting and corrosion at the neck-stem taper junction. Implant factors such as taper cone angle, taper surface roughness, taper contact area, modular neck taper metallurgy, and femoral head size play important roles in influencing extent of taper corrosion. There should be a low threshold to conduct a systematic clinical evaluation of patients with dual-taper modular-neck stem THA using systematic risk stratification algorithms as early recognition and diagnosis will ensure prompt and appropriate treatment. Although specialized tests such as metal ion analysis and cross-sectional imaging modalities such as metal artifact reduction sequence magnetic resonance imaging (MARS MRI) are useful in optimizing clinical decision-making, overreliance on any single investigative tool in the clinical decision-making process for revision surgery should be avoided. Copyright © 2016 Elsevier Inc. All rights reserved.
Measuring bacterial growth by refractive index tapered fiber optic biosensor.
Zibaii, Mohammad Ismail; Kazemi, Alireza; Latifi, Hamid; Azar, Mahmoud Karimi; Hosseini, Seyed Masoud; Ghezelaiagh, Mohammad Hossein
2010-12-02
A single-mode tapered fiber optic biosensor was utilized for real-time monitoring of the Escherichia coli (E. coli K-12) growth in an aqueous medium. The applied fiber tapers were fabricated using heat-pulling method with waist diameter and length of 6-7μm and 3mm, respectively. The bacteria were immobilized on the tapered surface using Poly-l-Lysine. By providing the proper condition, bacterial population growth on the tapered surface increases the average surface density of the cells and consequently the refractive index (RI) of the tapered region would increase. The adsorption of the cells on the tapered fiber leads to changes in the optical characteristics of the taper. This affects the evanescent field leading to changes in optical throughput. The bacterial growth rate was monitored at room temperature by transmission of a 1558.17nm distributed feedback (DFB) laser through the tapered fiber. At the same condition, after determining the growth rate of E. coli by means of colony counting method, we compared the results with that obtained from the fiber sensor measurements. This novel sensing method, promises new application such as rapid analysis of the presence of bacteria. Copyright © 2010 Elsevier B.V. All rights reserved.
Effect of reciprocating file motion on microcrack formation in root canals: an SEM study.
Ashwinkumar, V; Krithikadatta, J; Surendran, S; Velmurugan, N
2014-07-01
To compare dentinal microcrack formation whilst using Ni-Ti hand K-files, ProTaper hand and rotary files and the WaveOne reciprocating file. One hundred and fifty mandibular first molars were selected. Thirty teeth were left unprepared and served as controls, and the remaining 120 teeth were divided into four groups. Ni-Ti hand K-files, ProTaper hand files, ProTaper rotary files and WaveOne Primary reciprocating files were used to prepare the mesial canals. Roots were then sectioned 3, 6 and 9 mm from the apex, and the cut surface was observed under scanning electron microscope (SEM) and checked for the presence of dentinal microcracks. The control and Ni-Ti hand K-files groups were not associated with microcracks. In roots prepared with ProTaper hand files, ProTaper rotary files and WaveOne Primary reciprocating files, dentinal microcracks were present. There was a significant difference between control/Ni-Ti hand K-files group and ProTaper hand files/ProTaper rotary files/WaveOne Primary reciprocating file group (P < 0.001) with ProTaper rotary files producing the most microcracks. No significant difference was observed between teeth prepared with ProTaper hand files and WaveOne Primary reciprocating files. ProTaper rotary files were associated with significantly more microcracks than ProTaper hand files and WaveOne Primary reciprocating files. Ni-Ti hand K-files did not produce microcracks at any levels inside the root canals. © 2013 International Endodontic Journal. Published by John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Wan, Hongdan; Liu, Linqian; Ding, Zuoqin; Wang, Jie; Xiao, Yu; Zhang, Zuxing
2018-06-01
This paper proposes and demonstrates a single-longitudinal-mode, narrow bandwidth fiber laser, using an ultra-high roundness microsphere resonator (MSR) with a stabilized package as the single-longitudinal-mode selector inside a double-ring fiber cavity. By improving the heating technology and surface cleaning process, MSR with high Q factor are obtained. With the optimized coupling condition, light polarization state and fiber taper diameter, we achieve whispering gallery mode (WGM) spectra with a high extinction ratio of 23 dB, coupling efficiency of 99.5%, a 3 dB bandwidth of 1 pm and a side-mode-suppression-ratio of 14.5 dB. The proposed fiber laser produces single-longitudinal-mode laser output with a 20-dB frequency linewidth of about 340 kHz, a signal-to-background ratio of 54 dB and a high long-term stability without mode-hopping, which is potential for optical communication and sensing applications.
In situ TEM Raman spectroscopy and laser-based materials modification.
Allen, F I; Kim, E; Andresen, N C; Grigoropoulos, C P; Minor, A M
2017-07-01
We present a modular assembly that enables both in situ Raman spectroscopy and laser-based materials processing to be performed in a transmission electron microscope. The system comprises a lensed Raman probe mounted inside the microscope column in the specimen plane and a custom specimen holder with a vacuum feedthrough for a tapered optical fiber. The Raman probe incorporates both excitation and collection optics, and localized laser processing is performed using pulsed laser light delivered to the specimen via the tapered optical fiber. Precise positioning of the fiber is achieved using a nanomanipulation stage in combination with simultaneous electron-beam imaging of the tip-to-sample distance. Materials modification is monitored in real time by transmission electron microscopy. First results obtained using the assembly are presented for in situ pulsed laser ablation of MoS 2 combined with Raman spectroscopy, complimented by electron-beam diffraction and electron energy-loss spectroscopy. Copyright © 2016 Elsevier B.V. All rights reserved.
Nonimaging optics in luminescent solar concentration.
Markman, B D; Ranade, R R; Giebink, N C
2012-09-10
Light trapped within luminescent solar concentrators (LSCs) is naturally limited in angular extent by the total internal reflection critical angle, θcrit, and hence the principles of nonimaging optics can be leveraged to increase LSC concentration ratio by appropriately reshaping the edges. Here, we use rigorous ray-tracing simulations to explore the potential of this concept for realistic LSCs with compound parabolic concentrator (CPC)-tapered edges and show that, when applied to a single edge, the concentration ratio is increased by 23% while maintaining >90% of the original LSC optical efficiency. Importantly, we find that CPC-tapering all of the edges enables a significantly greater intensity enhancement up to 35% at >90% of the original optical efficiency, effectively enabling two-dimensional concentration through a cooperative, ray-recycling effect in which rays rejected by one CPC are accepted by another. These results open up a significant opportunity to improve LSC performance at virtually no added manufacturing cost by incorporating nonimaging optics into their design.
Spines of the porcupine fish: Structure, composition, and mechanical properties.
Su, Frances Y; Bushong, Eric A; Deerinck, Thomas J; Seo, Kyungah; Herrera, Steven; Graeve, Olivia A; Kisailus, David; Lubarda, Vlado A; McKittrick, Joanna
2017-09-01
This paper explores the structure, composition, and mechanical properties of porcupine fish spines for the first time. The spine was found to be composed of nanocrystalline hydroxyapatite, protein (collagen), and water using X-ray diffraction, energy-dispersive X-ray spectroscopy, and thermogravimetric analysis. Microstructures have mineralized fibrillar sheets in the longitudinal direction and in a radial orientation in the transverse direction that were observed using light and electron microscopy. Based on the images, the hierarchical structure of the spine shows both concentric and radial reinforcement. Mechanical properties were obtained using cantilever beam and nanoindentation tests. A tapered cantilever beam model was developed and compared to that of a uniform cantilever beam. The tapered beam model showed that while the stresses experienced were similar to those of the uniform beam, the location of the maximum stress was near the distal region of the beam rather than at the base, which allows the porcupine fish to conserve energy and resources if the spine is fractured. Copyright © 2017 Elsevier Ltd. All rights reserved.
Tourinho Filho, H; Pires, M; Puggina, E F; Papoti, M; Barbieri, R; Martinelli, C E
2017-02-01
The GH/IGF-I axis is a system of growth mediators, receptors, and binding proteins that regulate somatic and tissue growth; and it has been shown that exercise programs are related to the anabolic function of this axis. The aim of this study was to analyse the changes of serum IGF-I concentration and that of its binding proteins IGFBP-3 and ALS in adolescent swimmers at different stages of a training season, and compare them with physical performance parameters and body composition of the athletes. Nine male athletes, aged 16 to 19years and who trained regularly throughout the season, were included in this study. Serum IGF-I, IGFBP-3, and ALS concentrations were recorded before and after (pre×post) standardized training sessions during the different stages of a training season (extensive×intensive×tapering). Endurance in freestyle, anaerobic fitness in tied swimming (Peak Force and Average Force), body mass, fat percentage, and lean body mass were also analysed at the different stages of training in order to compare the changes of the IGF-I/IGFBP/ALS system with the physical performance and body composition of the athletes. Variations in the IGF-I/IGFBP-3-ALS system before and after a standardized training session, and at the different stages of training were analysed by the Wilcoxon and Friedman non-parametric tests, respectively. Significance was considered at 5%. The results from this study demonstrate that IGF-I is sensitive to the acute and chronic effects of training, exhibiting biphasic behaviour throughout the season. The catabolic phase was characterized by a reduction in serum IGF-I concentrations during the intensive stage (∆ IGF-I : - 43.33±47.32ng/ml; P<0.05) while the anabolic phase was marked by similar basal concentrations at the different stages of training and an increase in post-training serum IGF-I concentrations during the tapering stage (320±40; 298±36 and 359±94ng/ml; P<0.05). IGFBP-3 was only sensitive to the chronic effects of training, with a reduction in post-training serum concentrations during the intensive stage and an increase during the tapering stage (4.7±0.7, 4.6±0.4 and 5.0±0.7mg/l; P<0.05). No significant difference (P>0.05) was observed in pre- or post-training IGFBP-3 concentrations (∆ IGFBP-3 ) at the different stages. ALS concentrations remained unchanged throughout the season, demonstrating that in adolescent athletes they are unaffected by the acute or chronic effects of swimming. Peak Force (25.0±6.3, 24.2±5.7 and 28.5±6.5N; P<0.05) and Average Force (10.3±3.6, 8.8±1.8 and 14.7±1.8N; P<0.05) followed IGF-I and IGFBP-3 variations, with a decrease during the intensive stage and a significant (P<0.05) increase during the tapering stage. The body composition and cardiorespiratory condition of the swimmers did not vary significantly throughout the season, exhibiting behaviour independent of IGF-I or IGFBP-3. Serum IGF-I and IGFPB-3 concentrations have proven to be sensitive markers of training status and, thus, may be used as guides for coaches and athletes in the challenging task of modulating training intensity in young athletes. Copyright © 2016 Elsevier Ltd. All rights reserved.
Electromagnetic field tapering using all-dielectric gradient index materials.
Yi, Jianjia; Piau, Gérard-Pascal; de Lustrac, André; Burokur, Shah Nawaz
2016-07-28
The concept of transformation optics (TO) is applied to control the flow of electromagnetic fields between two sections of different dimensions through a tapering device. The broadband performance of the field taper is numerically and experimentally validated. The taper device presents a graded permittivity profile and is fabricated through three-dimensional (3D) polyjet printing technology using low-cost all-dielectric materials. Calculated and measured near-field mappings are presented in order to validate the proposed taper. A good qualitative agreement is obtained between full-wave simulations and experimental tests. Such all-dielectric taper paves the way to novel types of microwave devices that can be easily fabricated through low-cost additive manufacturing processes.
In-line optical fiber sensors based on cladded multimode tapered fibers.
Villatoro, Joel; Monzón-Hernández, David; Luna-Moreno, Donato
2004-11-10
The use of uniform-waist cladded multimode tapered optical fibers is demonstrated for evanescent wave spectroscopy and sensors. The tapering is a simple, low-loss process and consists of stretching the fiber while it is being heated with an oscillating flame torch. As examples, a refractive-index sensor and a hydrogen sensor are demonstrated by use of a conventional graded-index multimode optical fiber. Also, absorbance spectra are measured while the tapers are immersed in an absorbing liquid. It is found experimentally that the uniform waist is the part of the taper that contributes most to the sensor sensitivity. The taper waist diameter may also be used to adjust the sensor dynamic range.
Tapered enlarged ends in multimode optical fibers.
Brenci, M; Falciai, R; Scheggi, A M
1982-01-15
Radiation characteristics of multimode fibers with enlarged tapers were investigated on a number of samples obtained by varying the fiber drawing speed with a given law corresponding to a prefixed taper profile. The characterization of the fibers was made by near- and far-field intensity pattern measurements as well as by measuring the losses introduced by the taper. With a suitable choice of parameters the taper constitutes a reasonable low-loss component useful, for example, for either efficient coupling to large-spot high-power density sources or connecting fibers of different sizes. Conversely at the exit of the fiber the taper can be used for beam shaping which is of interest for mechanical or surgical applications.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-08-01
... DEPARTMENT OF COMMERCE International Trade Administration [A-570-601] Tapered Roller Bearings and... new shipper review (``NSR'') of the antidumping duty order on tapered roller bearings from the People... The notice announcing the antidumping duty order on tapered roller bearings from the PRC was published...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-02-04
... DEPARTMENT OF COMMERCE International Trade Administration [A-570-601] Tapered Roller Bearings and... on tapered roller bearings (``TRBs'') from the People's Republic of China (``PRC'') meets the... published in the Federal Register on June 15, 1987. See Antidumping Duty Order; Tapered Roller Bearings and...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-08-01
... DEPARTMENT OF COMMERCE International Trade Administration [A-570-601] Tapered Roller Bearings and... tapered roller bearings (``TRBs'') from the People's Republic of China (``PRC'') meets the statutory and... Register on June 15, 1987. See Antidumping Duty Order; Tapered Roller Bearings and Parts Thereof, Finished...
Simple Expressions for the Design of Linear Tapers in Overmoded Corrugated Waveguides
Schaub, S. C.; Shapiro, M. A.; Temkin, R. J.
2015-08-16
In this paper, simple analytical formulae are presented for the design of linear tapers with very low mode conversion loss in overmoded corrugated waveguides. For tapers from waveguide radius a2 to a1, with a11a 2/λ. Here, λ is the wavelength of radiation. The fractional loss of the HE 11 mode in an optimized taper is 0.0293(a 2-a 1) 4/amore » $$2\\atop{1}$$1a$$2\\atop{2}$$. These formulae are accurate when a2≲2a 1. Slightly more complex formulae, accurate for a 2≤4a 1, are also presented in this paper. The loss in an overmoded corrugated linear taper is less than 1 % when a 2≤2.12a 1 and less than 0.1 % when a 2≤1.53a 1. The present analytic results have been benchmarked against a rigorous mode matching code and have been found to be very accurate. The results for linear tapers are compared with the analogous expressions for parabolic tapers. Finally, parabolic tapers may provide lower loss, but linear tapers with moderate values of a 2/a 1 may be attractive because of their simplicity of fabrication.« less
Enhancing sensitivity of biconical tapered fiber sensors with multiple passes through the taper
NASA Astrophysics Data System (ADS)
Cohoon, Gregory; Boyter, Chris; Errico, Michael; Vandervoort, Kurt; Salik, Ertan
2010-03-01
A single biconical fiber taper is a simple and low-cost yet powerful sensor. With a distinct strength in refractive index (RI) sensing, biconical tapered fiber sensors can find their place in handheld sensor platforms, especially as biosensors that are greatly needed in health care, environmental protection, food safety, and biodefense. We report doubling of sensitivity for these sensors with two passes through the tapered region, which becomes possible through the use of sensitive and high-dynamic-range photodetectors. In a proof-of-principle experiment, we measured transmission through the taper when it was immersed in isopropyl alcohol-water mixtures of varying concentrations, in which a thin gold layer at the tip of the fiber acted as a mirror enabling two passes through the tapered region. This improved the sensitivity from 0.43 dB/vol % in the single-pass case to 0.78 dB/vol % with two passes through the taper. The refractive index detection limit was estimated to be ~1.2×10-5 RI units (RIU) and ~0.6×10-5 RIU in the single- and double-pass schemes, respectively. We predict that further enhancement of sensitivity may be achieved with a higher number of passes through the taper.
Jindal, Rahul; Singh, Smita; Gupta, Siddharth; Jindal, Punita
2012-01-01
The purpose of this study was to evaluate and compare the apical extrusion of debris and irrigant using various rotary instruments with crown down technique in the instrumentation of root canals. Thirty freshly extracted human permanent straight rooted mandibular premolars with minimum root curvature of 0-10 ° were divided in three groups with 10 teeth in each group. Each group was instrumented using one of the three rotary instrumentation systems: Rotary Hero shapers, Rotary ProTaper and Rotary Mtwo. One ml of sterile water was used as an irrigant after using each instrument. Debris extruded was collected in pre weighed glass vials and the extruded irrigant was measured quantitatively by Myers and Montgomery method and was later evaporated. The weight of the dry extruded debris was calculated by comparing the pre and post instrumentation weight of glass vials for each group. Statistical analysis was done by using by a Kruskal-Wallis One-way ANOVA test. Statistical analysis showed that all the rotary instruments used in this study caused apical extrusion of debris and irrigant. A Statistically significant difference was observed with Rotary ProTaper and Rotary Mtwo groups when compared with Rotary Hero shapers. But no significant difference was observed between Rotary ProTaper and Rotary Mtwo groups. After instrumentation with different rotary instruments, Hero shapers showed a less apical extrusion of debris and irrigant.
Tu, Ming-Gene; Chen, San-Yue; Huang, Heng-Li; Tsai, Chi-Cheng
2008-05-01
Preparing a continuous tapering conical shape and maintaining the original shape of a canal are obligatory in root canal preparation. The purpose of this study was to compare the shaping performance in simulated curved canal resin blocks of the same novice dental students using hand-prepared and engine-driven nickel-titanium (NiTi) rotary ProTaper instruments in an endodontic laboratory class. Twenty-three fourth-year dental students attending China Medical University Dental School prepared 46 simulated curved canals in resin blocks with two types of NiTi rotary systems: hand and motor ProTaper files. Composite images were prepared for estimation. Material removed, canal width and canal deviation were measured at five levels in the apical 4 mm of the simulated curved canals using AutoCAD 2004 software. Data were analyzed using Wilcoxon's rank-sum test. The hand ProTaper group cut significantly wider than the motor rotary ProTaper group in the outer wall, except for the apical 0 mm point. The total canal width was cut significantly larger in the hand group than in the motor group. There was no significant difference between the two groups in centering canal shape, except at the 3 mm level. These findings show that the novice students prepared the simulated curved canal that deviated more outwardly from apical 1 mm to 4 mm using the hand ProTaper. The ability to maintain the original curvature was better in the motor rotary ProTaper group than in the hand ProTaper group. Undergraduate students, if following the preparation sequence carefully, could successfully perform canal shaping by motor ProTaper files and achieve better root canal geometry than by using hand ProTaper files within the same teaching and practicing sessions.
Martín-Biedma, Benjamín; Varela-Patiño, Purificación; Ruíz-Piñón, Manuel; Castelo-Baz, Pablo
2017-01-01
Background One of the causative factors of root defects is the increased friction produced by rotary instrumentation. A high canal curvature may increase stress, making the tooth more susceptible to dentinal cracks. The purpose of this study was to evaluate dentinal micro-crack formation with the ProTaper NEXT and ProTaper Universal systems using LED transillumination, and to analyze the micro-crack generated at the point of maximum canal curvature. Material and Methods 60 human mandibular premolars with curvatures between 30–49° and radii between 2–4 mm were used. The root canals were instrumented using the Protaper Universal® and Protaper NEXT® systems, with the aid of the Proglider® system. The obtained samples were sectioned transversely before subsequent analysis with LED transillumination at 2 mm and 8 mm from the apex and at the point of maximum canal curvature. Defects were scored: 0 for no defects; and 1 for micro-cracks. Results Root defects were not observed in the control group. The ProTaper NEXT system caused fewer defects (16.7%) than the ProTaper Universal system (40%) (P<0.05). The ProTaper Universal system caused significantly more micro-cracks at the point of maximum canal curvature than the ProTaper NEXT system (P<0.05). Conclusions Rotary instrumentation systems often generate root defects, but the ProTaper NEXT system generated fewer dentinal defects than the ProTaper Universal system. A higher prevalence of defects was found at the point of maximum curvature in the ProTaper Universal group. Key words:Curved root, Micro-crack, point of maximum canal curvature, ProTaper NEXT, ProTaper Universal, Vertical root fracture. PMID:29167712
Soliton propagation in tapered silicon core fibers.
Peacock, Anna C
2010-11-01
Numerical simulations are used to investigate soliton-like propagation in tapered silicon core optical fibers. The simulations are based on a realistic tapered structure with nanoscale core dimensions and a decreasing anomalous dispersion profile to compensate for the effects of linear and nonlinear loss. An intensity misfit parameter is used to establish the optimum taper dimensions that preserve the pulse shape while reducing temporal broadening. Soliton formation from Gaussian input pulses is also observed--further evidence of the potential for tapered silicon fibers to find use in a range of signal processing applications.
Monitoring techniques for the manufacture of tapered optical fibers.
Mullaney, Kevin; Correia, Ricardo; Staines, Stephen E; James, Stephen W; Tatam, Ralph P
2015-10-01
The use of a range of optical techniques to monitor the process of fabricating optical fiber tapers is investigated. Thermal imaging was used to optimize the alignment of the optical system; the transmission spectrum of the fiber was monitored to confirm that the tapers had the required optical properties and the strain induced in the fiber during tapering was monitored using in-line optical fiber Bragg gratings. Tapers were fabricated with diameters down to 5 μm and with waist lengths of 20 mm using single-mode SMF-28 fiber.
Huang, Ligang; Wang, Jie; Peng, Weihua; Zhang, Wending; Bo, Fang; Yu, Xuanyi; Gao, Feng; Chang, Pengfa; Song, Xiaobo; Zhang, Guoquan; Xu, Jingjun
2016-02-01
Based on the conversion between the fundamental mode (LP01) and the higher-order mode (LP11) in a tapered fiber via a whispering gallery mode resonator, an add/drop filter was proposed and demonstrated experimentally, in which the resonator only interacted with one tapered fiber, rather than two tapered fibers as in conventional configurations. The filter gains advantages of easy alignment and low scattering loss over the other filters based on tapered fiber and resonator, and will be useful in application.
The fabrication of a tapered fiber connector and its coupling efficiency
NASA Astrophysics Data System (ADS)
Qinggui, Hu; Chengzhong, Li
2017-11-01
In order to reduce the adverse influence of transversal displacement of the optical fiber connector, we propose the directional tapered communication fiber connector, in which the fiber head is tapered according to the signal transmission direction to improve efficiency. We used a flame-brush technique to produce the tapered fiber successfully. In the next step, two experiments in different environments were performed; one in a static environment and the other in a vibration environment. The first experiment shows that the efficiency of the tapered connector is higher than that of the common connector in the same transversal displacement. The second experiment shows that the efficiency of the tapered connector is higher than that of the common connector in the same frequency and amplitude.
Multiple-taper spectral analysis: A stand-alone C-subroutine
NASA Astrophysics Data System (ADS)
Lees, Jonathan M.; Park, Jeffrey
1995-03-01
A simple set of subroutines in ANSI-C are presented for multiple taper spectrum estimation. The multitaper approach provides an optimal spectrum estimate by minimizing spectral leakage while reducing the variance of the estimate by averaging orthogonal eigenspectrum estimates. The orthogonal tapers are Slepian nπ prolate functions used as tapers on the windowed time series. Because the taper functions are orthogonal, combining them to achieve an average spectrum does not introduce spurious correlations as standard smoothed single-taper estimates do. Furthermore, estimates of the degrees of freedom and F-test values at each frequency provide diagnostics for determining levels of confidence in narrow band (single frequency) periodicities. The program provided is portable and has been tested on both Unix and Macintosh systems.
Compact RGBY light sources with high luminance for laser display applications
NASA Astrophysics Data System (ADS)
Paschke, Katrin; Blume, Gunnar; Werner, Nils; Müller, André; Sumpf, Bernd; Pohl, Johannes; Feise, David; Ressel, Peter; Sahm, Alexander; Bege, Roland; Hofmann, Julian; Jedrzejczyk, Daniel; Tränkle, Günther
2018-02-01
Watt-class visible laser light with a high luminance can be created with high-power GaAs-based lasers either directly in the red spectral region or using single-pass second harmonic generation (SHG) for the colors in the blue-yellow spectral region. The concepts and results of red- and near infrared-emitting distributed Bragg reflector tapered lasers and master oscillator power amplifier systems as well as their application for SHG bench-top experiments and miniaturized modules are presented. Examples of these high-luminance light sources aiming at different applications such as flying spot display or holographic 3D cinema are discussed in more detail. The semiconductor material allows an easy adaptation of the wavelength allowing techniques such as six-primary color 3D projection or color space enhancement by adding a fourth yellow color.
Toward jet injection by continuous-wave laser cavitation
NASA Astrophysics Data System (ADS)
Berrospe-Rodriguez, Carla; Visser, Claas Willem; Schlautmann, Stefan; Rivas, David Fernandez; Ramos-Garcia, Ruben
2017-10-01
This is a study motivated by the need to develop a needle-free device for eliminating major global healthcare problems caused by needles. The generation of liquid jets by means of a continuous-wave laser, focused into a light absorbing solution, was studied with the aim of developing a portable and affordable jet injector. We designed and fabricated glass microfluidic devices, which consist of a chamber where thermocavitation is created and a tapered channel. The growth of a vapor bubble displaces and expels the liquid through the channel as a fast traveling jet. Different parameters were varied with the purpose of increasing the jet velocity. The velocity increases with smaller channel diameters and taper ratios, whereas larger chambers significantly reduce the jet speed. It was found that the initial position of the liquid-air meniscus interface and its dynamics contribute to increased jet velocities. A maximum velocity of 94±3 m/s for a channel diameter of D=120 μm, taper ratio n=0.25, and chamber length E=200 μm was achieved. Finally, agarose gel-based skin phantoms were used to demonstrate the potential of our devices to penetrate the skin. The maximum penetration depth achieved was ˜1 mm, which is sufficient to penetrate the stratum corneum and for most medical applications. A meta-analysis shows that larger injection volumes will be required as a next step to medical relevance for laser-induced jet injection techniques in general.
Low-loss saturable absorbers based on tapered fibers embedded in carbon nanotube/polymer composites
NASA Astrophysics Data System (ADS)
Martinez, Amos; Al Araimi, Mohammed; Dmitriev, Artemiy; Lutsyk, Petro; Li, Shen; Mou, Chengbo; Rozhin, Alexey; Sumetsky, Misha; Turitsyn, Sergei
2017-12-01
The emergence of low-dimensional materials has opened new opportunities in the fabrication of compact nonlinear photonic devices. Single-walled carbon nanotubes were among the first of those materials to attract the attention of the photonics community owing to their high third order susceptibility, broadband operation, and ultrafast response. Saturable absorption, in particular, has become a widespread application for nanotubes in the mode-locking of a fiber laser where they are used as nonlinear passive amplitude modulators to initiate pulsed operation. Numerous approaches have been proposed for the integration of nanotubes in fiber systems; these can be divided into those that rely on direct interaction (where the nanotubes are sandwiched between fiber connectors) and those that rely on lateral interaction with the evanescence field of the propagating wave. Tapered fibers, in particular, offer excellent flexibility to adjust the nonlinearity of nanotube-based devices but suffer from high losses (typically exceeding 50%) and poor saturable to non-saturable absorption ratios (typically above 1:5). In this paper, we propose a method to fabricate carbon nanotube saturable absorbers with controllable saturation power, low-losses (as low as 15%), and large saturable to non-saturable loss ratios approaching 1:1. This is achieved by optimizing the procedure of embedding tapered fibers in low-refractive index polymers. In addition, this study sheds light in the operation of these devices, highlighting a trade-off between losses and saturation power and providing guidelines for the design of saturable absorbers according to their application.
Singla, Mamta; Aggarwal, Vivek; Logani, Ajay; Shah, Naseem
2010-03-01
The purpose of this in vitro study was to evaluate the effect of various root canal instrumentation techniques with different instrument tapers on cleaning efficacy and resultant vertical root fracture (VRF) strength of the roots. Fifty human mandibular first premolar roots were enlarged to ISO size 20, inoculated with Enterococcus faecalis [ATCC2912] for 72 hours and divided into 5 groups: group I: prepared with .02 taper hand instruments ISO size 40; group II: Profile .04 taper size 40; group III: Profile .06 taper size 40; group IV: ProTaper size F4; and group V (control group) further divided into: Va: with bacterial inoculation and no mechanical instrumentation; and Group Vb: neither bacterial inoculation nor mechanical instrumentation. Cleaning efficacy was evaluated in terms of reduction of colony forming units (CFUs). The VRF strength was evaluated using D11 spreader as wedge in an Instron testing machine. Root canals instrumented with ProTaper and 6% Profile instruments showed maximum reduction in CFUs, with statistically insignificant difference between them. The VRF resistance decreased in all instrumented groups. The difference of VRF between 2% and 4% taper Profile groups was statistically insignificant (P = .195). One-way analysis of variance showed that canals instrumented with ProTaper F4 showed maximum reduction in VRF resistance compared with control uninstrumented group. Profile 6% taper instruments offer the advantage of maximum debridement without significant reduction in root fracture resistance. Copyright 2010 Mosby, Inc. All rights reserved.
Mann, Charles J; Costi, John J; Stanley, Richard M; Dobson, Peter J
2005-10-01
The effect of screw geometry on the pullout strength of an anterior cruciate ligament reconstruction is well documented. The effect of a truly tapered screw has not been previously investigated. Thirty bovine knees in right and left knee pairs were collected. Superficial digital flexors from the hind legs of sheep were harvested to form a quadruple tendon graft. For each knee pair, one tendon graft was fixed using a tapered screw (n=15) and the other with a non-tapered screw (n=15). Interference screws were manufactured from stainless steel, and apart from the tapered or non-tapered profile were identical. The screws were inserted into a tibial tunnel already containing the tendon graft. The interference fit was tested by extensile load to failure tests. The insertion torque of the screws and first sign of load to failure (by pullout) of the interference fit were recorded. Results were analysed using paired t-tests. The results indicated that tapered screws have significantly higher resistance to interference failure (p=0.007) and insertion torque (p<0.001) than non-tapered screws. The improved biomechanical performance of tapered screws demonstrated in this study may translate into superior clinical results, particularly at the tibial attachment of hamstring anterior cruciate ligament reconstruction, and also of hamstring fixation to the medial femoral condyle for patella instability.
NASA Astrophysics Data System (ADS)
Zibaii, M. I.; Kazemi, A.; Latifi, H.; Karimi Azar, M.; Hosseini, S. M.; Ghezelaiagh, M. H.
2010-09-01
A single-mode tapered fiber optic biosensor was utilized for real-time monitoring of the Escherichia coli (E. coli K-12) growth in an aqueous medium. The applied fiber tapers were fabricated using heat-pulling method with waist diameter and length of 6-7μm and 3mm, respectively. The bacteria were immobilized on the tapered surface using Poly-L-Lysine. By providing the proper condition, bacterial population growth on the tapered surface increases the average surface density of the cells and consequently the refractive index (RI) of the tapered region would increase. The adsorption of the cells on the tapered fiber leads to changes in the optical characteristics of the taper. This affects the evanescent field leading to changes in optical throughput. The bacterial growth rate was monitored at room temperature by transmission of a 1558.17nm distributed feedback (DFB) laser through the tapered fiber. At the same condition, after determining the growth rate of E. coli by means of colony counting method, we compared the results with that obtained from the fiber sensor measurements. This novel sensing method, promises new application such as rapid analysis of the presence of bacteria.
Ceramic Heads Decrease Metal Release Caused by Head-taper Fretting and Corrosion.
Kocagoz, Sevi B; Underwood, Richard J; MacDonald, Daniel W; Gilbert, Jeremy L; Kurtz, Steven M
2016-04-01
Metal release resulting from taper fretting and corrosion is a clinical concern, because wear and corrosion products may stimulate adverse local tissue reactions. Unimodular hip arthroplasties have a conical taper between the femoral head (head bore taper) and the femoral stem (stem cone taper). The use of ceramic heads has been suggested as a way of reducing the generation of wear and corrosion products from the head bore/stem cone taper junction. A previous semiquantitative study found that ceramic heads had less visual evidence of fretting-corrosion damage compared with CoCr heads; but, to our knowledge, no studies have quantified the volumetric material loss from the head bore and stem cone tapers of a matched cohort of ceramic and metal heads. We asked: (1) Do ceramic heads result in less volume of material loss at the head-stem junction compared with CoCr heads; (2) do stem cone tapers have less volumetric material loss compared with CoCr head bore tapers; (3) do visual fretting-corrosion scores correlate with volumetric material loss; and (4) are device, patient, or intraoperative factors associated with volumetric material loss? A quantitative method was developed to estimate volumetric material loss from the head and stem taper in previously matched cohorts of 50 ceramic and 50 CoCr head-stem pairs retrieved during revision surgery for causes not related to adverse reactions to metal particles. The cohorts were matched according to (1) implantation time, (2) stem flexural rigidity, and (3) lateral offset. Fretting corrosion was assessed visually using a previously published four-point, semiquantitative scoring system. The volumetric loss was measured using a precision roundness machine. Using 24 equally spaced axial traces, the volumetric loss was estimated using a linear least squares fit to interpolate the as-manufactured surfaces. The results of this analysis were considered in the context of device (taper angle clearance, head size, head offset, lateral offset, stem material, and stem surface finish) and patient factors that were obtained from the patients' operative records (implantation time, age at insertion, activity level, and BMI). The cumulative volumetric material losses estimated for the ceramic cohort had a median of 0.0 mm(3) per year (range, 0.0-0.4 mm(3)). The cumulative volumetric material losses estimated for the CoCr cohort had a median of 0.1 mm(3) per year (range, 0.0-8.8 mm(3)). An order of magnitude reduction in volumetric material loss was found when a ceramic head was used instead of a CoCr head (p < 0.0001). In the CoCr cohort, the femoral head bore tapers had a median material loss of 0.02 mm(3) (range, 0.0-8.7 mm(3)) and the stem cone tapers had a median material loss of 0.0 mm(3) (range, 0.0-0.32 mm(3)/year). There was greater material loss from femoral head bore tapers compared with stem cone tapers in the CoCr cohort (p < 0.001). There was a positive correlation between visual scoring and volumetric material loss (Spearman's ρ = 0.67, p < 0.01). Although visual scoring was effective for preliminary screening to separate tapers with no or mild damage from tapers with moderate to severe damage, it was not capable of discriminating in the large range of material loss observed at the taper surfaces with moderate to severe fretting-corrosion damage, indicated with a score of 3 or 4. We observed no correlations between volumetric material loss and device and patient factors. The majority of estimated material loss from the head bore-stem cone junctions resulting from taper fretting and corrosion was from the CoCr head bore tapers as opposed to the stem cone tapers. Additionally, the total material loss from the ceramic cohort showed a reduction in the amount of metal released by an order of magnitude compared with the CoCr cohort. We found that ceramic femoral heads may be an effective means by which to reduce metal release caused by taper fretting and corrosion at the head bore-stem cone modular interface in THAs.
NASA Astrophysics Data System (ADS)
Müller, André; Zink, Christof; Fricke, Jörg; Bugge, Frank; Erbert, Götz; Sumpf, Bernd; Tränkle, Günther
2018-02-01
1030 nm DBR tapered diode lasers with different lateral layouts are presented. The layout comparison includes lasers with straight waveguide and grating, tapered waveguide and straight grating, and straight waveguide and tapered grating. The lasers provide narrowband emission and optical output powers up to 15 W. The highest diffraction-limited central lobe output power of 10.5 W is obtained for lasers with tapered gratings only. Small variations in central lobe output power with RW injection current density also indicate the robustness of that layout. For lasers with tapered waveguides, high RW injection current densities up to 150 A/mm2 have to be applied in order to obtain high central lobe output powers. Lasers with straight waveguide and grating operate best at low RW injection current densities, 50 A/mm2 applied in this study. Using the layout optimizations discussed in this study may help to increase the application potential of DBR tapered diode lasers.
Pasqualini, Damiano; Scotti, Nicola; Tamagnone, Lorenzo; Ellena, Federica; Berutti, Elio
2008-03-01
The aim of this study was to compare the effective shaping time and number of rotations required by an endodontist working with hand and rotary ProTaper instruments to completely shape simulated root canals. Eighty Endo Training Blocks (curved canal shape) were used. Manual preflaring was performed with K-Flexofiles #08-10-12-15-17 and #20 Nitiflex at a working length of 18 mm. Specimens were then randomly assigned to 2 different groups (n = 40); group 1 was shaped by using hand ProTaper and group 2 with ProTaper rotary. The number of rotations made in the canal and the effective time required to achieve complete canal shaping were recorded for each instrument. Differences between groups were analyzed with the nonparametric Mann-Whitney U test (P < .05). Hand ProTaper required significantly fewer rotations (P < .001) than rotary ProTaper, whereas the effective working time to fully shape the simulated canal was significantly higher (P < .001) with hand ProTaper.
Wang, Yingying; Dai, Shixun; Li, Guangtao; Xu, Dong; You, Chenyang; Han, Xin; Zhang, Peiqing; Wang, Xunsi; Xu, Peipeng
2017-09-01
We report a broadband supercontinuum (SC) generation in chalcogenide (ChG) step-index tapered fibers pumped in the normal dispersion regime. The fibers consisting of As 2 S 3 core and As 38 S 62 cladding glasses were fabricated using the isolated stacked extrusion method. A homemade tapering platform allows us to accurately control the core diameters and transition region lengths of the tapered fibers. An SC generation spanning from 1.4 to 7.2 μm was achieved by pumping a 12-cm-long tapered fiber with femtosecond laser pulses at 3.25 μm. To the best of our knowledge, this is the broadest SC generation obtained experimentally in tapered fibers when pumped in the normal dispersion regime so far. The effects of waist diameter and transition region length of the tapered fiber on the SC spectral behavior were also investigated.
Ultra-low-loss optical fiber nanotapers.
Brambilla, Gilberto; Finazzi, Vittoria; Richardson, David
2004-05-17
Optical fiber tapers with a waist size larger than 1microm are commonplace in telecommunications and sensor applications. However the fabrication of low-loss optical fiber tapers with subwavelength diameters was previously thought to be impractical due to difficulties associated with control of the surface roughness and diameter uniformity. In this paper we show that very-long ultra-low-loss tapers can in fact be produced using a conventional fiber taper rig incorporating a simple burner configuration. For single-mode operation, the optical losses we achieve at 1.55microm are one order of magnitude lower than losses previously reported in the literature for tapers of a similar size. SEM images confirm excellent taper uniformity. We believe that these low-loss structures should pave the way to a whole range of fiber nanodevices.
1987-09-01
porphyries with olivine phenocrysts. Individual flows may be about 50 feet thick around Pisgah Crater but taper out to a few feet thick at the flow’s...Pleistocene in age (Dibblee, 1966b). SUNSHINE PEAK The dominant rock of Sunshine Peak is dacite porphyry , a gray-white to light greenish- gray rock, with 40...northwest-trending andesite porphyry dikes. 14 ’-WC TP 6747 Roof pendants of biotite quartz monzonite and quartz monzonite occur in the dacite porphyry . The
Excitation of short-wavelength spin waves in magnonic waveguides
NASA Astrophysics Data System (ADS)
Demidov, V. E.; Kostylev, M. P.; Rott, K.; Münchenberger, J.; Reiss, G.; Demokritov, S. O.
2011-08-01
By using phase-resolved micro-focus Brillouin light scattering spectroscopy, we demonstrate experimentally a phenomenon of wavelength conversion of spin waves propagating in tapered Permalloy waveguides. We show that this phenomenon enables efficient excitation of spin waves with sub-micrometer wavelengths being much smaller than the width of the microstrip antenna used for the excitation. The proposed excitation mechanism removes restrictions on the spin-wave wavelength imposed by the size of the antenna and enables improvement of performances of integrated magnonic devices.
Dwarf mistletoe does not increase trunk taper in released red firs in California
Robert F. Scharpf
1977-01-01
Dwarf mistletoe had no noticeable effect on trunk taper of young, dominant and codominant red firs 4 to 22 inches (10.2 to 55.9 cm) d.b.h. Also, taper was not influenced by live crown ratio of infected and uninfected trees. Trees less than 7 inches d.b.h. had significantly more taper than larger trees, irrespective of dwarf mistletoe.
Comparison of the fracture resistance of dental implants with different abutment taper angles.
Wang, Kun; Geng, Jianping; Jones, David; Xu, Wei
2016-06-01
To investigate the effects of abutment taper angles on the fracture strength of dental implants with TIS (taper integrated screwed-in) connection. Thirty prototype cylindrical titanium alloy 5.0mm-diameter dental implants with different TIS-connection designs were divided into six groups and tested for their fracture strength, using a universal testing machine. These groups consisted of combinations of 3.5 and 4.0 mm abutment diameter, each with taper angles of 6°, 8° or 10°. 3-Dimensional finite element analysis (FEA) was also used to analyze stress states at implant-abutment connection areas. In general, the mechanical tests found an increasing trend of implant fracture forces as the taper angle enlarged. When the abutment diameter was 3.5 mm, the mean fracture forces for 8° and 10° taper groups were 1638.9 N ± 20.3 and 1577.1 N ± 103.2, respectively, both larger than that for the 6° taper group of 1475.0 N ± 24.4, with the largest increasing rate of 11.1%. Furthermore, the difference between 8° and 6° taper groups was significant, based on Tamhane's multiple comparison test (P<0.05). In 4.0 mm-diameter abutment groups, as the taper angle was enlarged from 6° to 8° and 10°, the mean fracture value was increased from 1066.7 N ± 56.1 to 1241.4 N ± 6.4 and 1419.3 N ± 20.0, with the largest increasing rate of 33.1%, and the differences among the three groups were significant (P<0.05). The FEA results showed that stress values varied in implants with different abutment taper angles and supported the findings of the static tests. In conclusion, increases of the abutment taper angle could significantly increase implant fracture resistance in most cases established in the study, which is due to the increased implant wall thickness in the connection part resulting from the taper angle enlargement. The increasing effects were notable when a thin implant wall was present to accommodate wide abutments. Copyright © 2016 Elsevier B.V. All rights reserved.
Cyclic fatigue resistance of two nickel-titanium rotary instruments in interrupted rotation.
Pedullà, E; Lizio, A; Scibilia, M; Grande, N M; Plotino, G; Boninelli, S; Rapisarda, E; Lo Giudice, G
2017-02-01
To investigate the influence of interrupted rotation on cyclic fatigue of two nickel-titanium rotary instruments. Cyclic fatigue of 300 new ProTaper Next size X1; X2 and Mtwo size 10, .04 taper; size 15, .05 taper; size 20, .06 taper and size 25, .06 taper instruments was tested in continuous or interrupted rotation. Fifty files of the same brand and size were randomly assigned to five groups (n = 10). Group 1 instruments were tested in continuous rotation; groups 2 and 3 in paused rotation for 1 s every 10 or 20 s, respectively; groups 4 and 5 in interrupted rotation for 5 s every 10 or 20 s, respectively. Cyclic fatigue was expressed in time to fracture (TtF) in an artificial canal with 60° angle and 5 mm radius of curvature. The fracture surface was examined with a scanning electron microscope (SEM). Data were evaluated by two-way analysis of variance. Cyclic fatigue of groups 2 and 4 of ProTaper Next X2 and Mtwo size 25, .06 taper was significantly lower than that of group 1 of the same instruments (P < 0.01). ProTaper Next X2 had significantly reduced cyclic fatigue in groups 3 and 5 (P < 0.05). No differences were found by interrupting the rotation for 1 or 5 s in all instruments (P > 0.05). Fatigue of other instruments was not affected by interrupted rotation (P > 0.05). Interrupted rotation reduced cyclic fatigue resistance of ProTaper Next X2 and Mtwo size 25, .06 taper, especially when a higher number of interruptions was performed. © 2016 International Endodontic Journal. Published by John Wiley & Sons Ltd.
Three-dimensional patterning in polymer optical waveguides using focused ion beam milling
NASA Astrophysics Data System (ADS)
Kruse, Kevin; Burrell, Derek; Middlebrook, Christopher
2016-07-01
Waveguide (WG) photonic-bridge taper modules are designed for symmetric planar coupling between silicon WGs and single-mode fibers (SMFs) to minimize photonic chip and packaging footprint requirements with improving broadband functionality. Micromachined fabrication and evaluation of polymer WG tapers utilizing high-resolution focused ion beam (FIB) milling is performed and presented. Polymer etch rates utilizing the FIB and optimal methods for milling polymer tapers are identified for three-dimensional patterning. Polymer WG tapers with low sidewall roughness are manufactured utilizing FIB milling and optically tested for fabrication loss. FIB platforms utilize a focused beam of ions (Ga+) to etch submicron patterns into substrates. Fabricating low-loss polymer WG taper prototypes with the FIB before moving on to mass-production techniques provides theoretical understanding of the polymer taper and its feasibility for connectorization devices between silicon WGs and SMFs.
Logani, Ajay; Shah, Naseem
2008-01-01
To comparatively evaluate the amount of apically extruded debris when ProTaper hand, ProTaper rotary and ProFile systems were used for the instrumentation of root canals. Thirty minimally curved, mature, human mandibular premolars with single canals were randomly divided into three groups of ten teeth each. Each group was instrumented using one of the three instrumentation systems: ProTaper hand, ProTaper rotary and ProFile. Five milliliters of sterile water were used as an irrigant. Debris extruded was collected in preweighed polyethylene vials and the extruded irrigant was evaporated. The weight of the dry extruded debris was established by comparing the pre- and postinstrumentation weight of polyethylene vials for each group. The Kruskal-Wallis nonparametric test and Mann-Whitney U test were applied to determine if significant differences existed among the groups ( P< 0.05). All instruments tested produced a measurable amount of debris. No statistically significant difference was observed between ProTaper hand and ProFile system ( P > 0.05). Although ProTaper rotary extruded a relatively higher amount of debris, no statistically significant difference was observed between this type and the ProTaper hand instruments ( P > 0.05). The ProTaper rotary extruded significantly more amount of debris compared to the ProFile system ( P< 0.05). Within the limitations of this study, it can be concluded that all instruments tested produced apical extrusion of debris. The ProTaper rotary extruded a significantly higher amount of debris than the ProFile.
Stability of tapered and parallel-walled dental implants: A systematic review and meta-analysis.
Atieh, Momen A; Alsabeeha, Nabeel; Duncan, Warwick J
2018-05-15
Clinical trials have suggested that dental implants with a tapered configuration have improved stability at placement, allowing immediate placement and/or loading. The aim of this systematic review and meta-analysis was to evaluate the implant stability of tapered dental implants compared to standard parallel-walled dental implants. Applying the guidelines of Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA) statement, randomized controlled trials (RCTs) were searched for in electronic databases and complemented by hand searching. The risk of bias was assessed using the Cochrane Collaboration's Risk of Bias tool and data were analyzed using statistical software. A total of 1199 studies were identified, of which, five trials were included with 336 dental implants in 303 participants. Overall meta-analysis showed that tapered dental implants had higher implant stability values than parallel-walled dental implants at insertion and 8 weeks but the difference was not statistically significant. Tapered dental implants had significantly less marginal bone loss compared to parallel-walled dental implants. No significant differences in implant failure rate were found between tapered and parallel-walled dental implants. There is limited evidence to demonstrate the effectiveness of tapered dental implants in achieving greater implant stability compared to parallel-walled dental implants. Superior short-term results in maintaining peri-implant marginal bone with tapered dental implants are possible. Further properly designed RCTs are required to endorse the supposed advantages of tapered dental implants in immediate loading protocol and other complex clinical scenarios. © 2018 Wiley Periodicals, Inc.
Tapered fiber optical tweezers for microscopic particle trapping: fabrication and application
NASA Astrophysics Data System (ADS)
Liu, Zhihai; Guo, Chengkai; Yang, Jun; Yuan, Libo
2006-12-01
A novel single tapered fiber optical tweezers is proposed and fabricated by heating and drawing technology. The microscopic particle tapping performance of this special designed tapered fiber probe is demonstrated and investigated. The distribution of the optical field emerging from the tapered fiber tip is numerically calculated based on the beam propagation method. The trapping force FDTD analysis results, both axial and transverse, are also given.
Supercontinuum generation in an imaging fiber taper
NASA Astrophysics Data System (ADS)
Shi, Kebin; Omenetto, Fiorenzo G.; Liu, Zhiwen
2006-12-01
We report on supercontinuum generation in individual fibers of a commercial Schott imaging fiber taper. Supercontinuum spectrum covering a wavelength range from about 500 nm to 1 μm was obtained. Unlike conventional approaches which use either a single micro-structured photonic crystal fiber (PCF) or an individual fiber or PCF taper, the availability of many fibers in an imaging taper can open new possibilities to independently and controllably generate supercontinuum arrays.
UEZU, Mary Kinue Nakamune; BRITTO, Maria Leticia Borges; NABESHIMA, Cleber K.; PALLOTTA, Raul Capp
2010-01-01
Objective The aim of this study was to evaluate the in vitro action of ProTaper retreatment files and ProTaper Universal in the retreatment of mandibular premolars. Material and methods The amount of debris extruded apically was measured and the time to reach the working length and to complete the removal of gutta-percha was observed. Thirty teeth had their canals prepared using ProTaper Universal files and were obturated by the single cone technique. The teeth were then stored at 37ºC in a humid environment for 7 days. During the use of the rotary instruments for root canal filling removal, the apical portions of the teeth were attached to the open end of a resin tube to collect the apically extruded debris. Results ProTaper Universal files were significantly faster (p=0.0011) than the ProTaper retreatment files to perform gutta-percha removal, but no significant difference was found between the files regarding the time to reach the working length or the amount of apical extrusion. Conclusions ProTaper Universal rotary had better results for endodontic retreatment, and both techniques promote similar apical extrusion of debris. PMID:21308282
Strain energy release rate analysis of delamination in a tapered laminate subjected to tension load
NASA Technical Reports Server (NTRS)
Salpekar, S. A.; Raju, I. S.; Obrien, T. K.
1990-01-01
A tapered composite laminate subjected to tension load was analyzed using the finite-element method. The glass/epoxy laminate has a (+ or - 45)sub 3 group of plies dropped in three distinct steps, each 20 ply-thicknesses apart, thus forming a taper angle of 5.71 degrees. Steep gradients of interlaminar normal and shear stress on a potential delamination interface suggest the existence of stress singularities at the points of material and geometric discontinuities created by the internal plydrops. The delamination was assumed to initiate at the thin end of the taper on a -45/+45 interface and the delamination growth was simulated in both directions, i.e., along the taper and into the thin region. The strain-energy-release rate for a delamination growing into the thin laminate consisted predominantly of mode I (opening) component. For a delamination growing along the tapered region, the strain-energy-release rate was initially all mode I, but the proportion of mode I decreased with increase in delamination size until eventually total G was all mode II. The total G for both delamination tips increased with increase in delamination size, indicating that a delamination initiating at the end of the taper will grow unstably along the taper and into the thin laminate simultaneously.
NASA Astrophysics Data System (ADS)
Wang, Yingying; Dai, Shixun; Peng, Xuefeng; Zhang, Peiqing; Wang, Xunsi; You, Chenyang
2018-01-01
We report a broadband supercontinuum generation in a chalcogenide fiber taper with an ultra-high numerical aperture. The chalcogenide step-index fiber consisting of As2Se3 core and As2S3 cladding was fabricated by using the isolated stacked extrusion method. The fiber taper with a core diameter of 1.75 μm was prepared by employing a homemade tapering setup. By pumping the fiber taper with a femtosecond laser pulses at 3.3 μm, a broadband supercontinuum generation spanning from 1.9 to 5.7 μm was achieved.
Multimode Brillouin spectrum in a long tapered birefringent photonic crystal fiber.
Tchahame, Joël Cabrel; Beugnot, Jean-Charles; Kudlinski, Alexandre; Sylvestre, Thibaut
2015-09-15
We investigate the stimulated Brillouin scattering (SBS) in a long tapered birefringent solid-core photonic crystal fiber (PCF) and compare our results with a similar but untapered PCF. It is shown that the taper generates a broadband and multipeaked Brillouin spectrum, while significantly increasing the threshold power. Furthermore, we observe that the strong fiber birefringence gives rise to a frequency shift of the Brillouin spectrum which increases along the fiber. Numerical simulations are also presented to account for the taper effect and the birefringence. Our findings open a new means to control or inhibit the SBS by tapering photonic crystal fibers.
Welding-fume-induced transmission loss in tapered optical fibers
NASA Astrophysics Data System (ADS)
Yi, Ji-Haeng
2015-09-01
This paper presents a method for sensing welding fumes in real time. This method is based on the results of nanoparticle-induced optical-fiber loss experiments that show that the losses are determined by the nanoparticle density and the taper waist. The tapered fiber is obtained by applying heat radiated from hot quartz, and monitoring is done in real time. First, the durability of the tapered fiber during the welding process is proven. Then, the loss is categorized by using the sizes of welding fume particles. The sensitivity to welding fumes increases with increasing size of the particles; consequently, the dimension of the taper waist decreases.
Ultra-low-loss tapered optical fibers with minimal lengths
NASA Astrophysics Data System (ADS)
Nagai, Ryutaro; Aoki, Takao
2014-11-01
We design and fabricate ultra-low-loss tapered optical fibers (TOFs) with minimal lengths. We first optimize variations of the torch scan length using the flame-brush method for fabricating TOFs with taper angles that satisfy the adiabaticity criteria. We accordingly fabricate TOFs with optimal shapes and compare their transmission to TOFs with a constant taper angle and TOFs with an exponential shape. The highest transmission measured for TOFs with an optimal shape is in excess of 99.7 % with a total TOF length of only 23 mm, whereas TOFs with a constant taper angle of 2 mrad reach 99.6 % transmission for a 63 mm TOF length.
Effect of ultrasonic tip designs on intraradicular post removal.
Aguiar, Anny Carine Barros; de Meireles, Daniely Amorim; Marques, André Augusto Franco; Sponchiado Júnior, Emílio Carlos; Garrido, Angela Delfina Bitencourt; Garcia, Lucas da Fonseca Roberti
2014-11-01
To evaluate the effect of different ultrasonic tip designs on intraradicular post removal. The crowns of forty human canine teeth were removed, and after biomechanical preparation and filling, the roots were embedded in acrylic resin blocks. The post spaces were made, and root canal molding was performed with self-cured acrylic resin. After casting (Cu-Al), the posts were cemented with zinc phosphate cement. The specimens were randomly separated into 4 groups (n = 10), as follows: G1 - no ultrasonic vibration (control); G2 - ultrasonic vibration using an elongated cylindrical-shaped and active rounded tip; G3 - ultrasonic vibration with a flattened convex and linear active tip; G4 - ultrasonic vibration with active semicircular tapered tip. Ultrasonic vibration was applied for 15 seconds on each post surface and tensile test was performed in a Universal Testing Machine (Instron 4444 - 1 mm/min). G4 presented the highest mean values, however, with no statistically significant difference in comparison to G3 (P > 0.05). G2 presented the lowest mean values with statistically significant difference to G3 and G4 (P < 0.05). Ultrasonic vibration with elongated cylindrical-shaped and active rounded tip was most effective in reducing force required for intraradicular post removal.
Dennis J. Shaw; Ralph S. Meldahl; John S. Kush; Greg L. Somers
2003-01-01
We used data from 322 natural longleaf pine (Pinus palustris Mill.) trees to include crown ratio as a continuous variable in taper equations. The data were divided into 10 crown-ratio classes and fitted taper equations into each class to detect trends in the coefficients. For application to longleaf pine, we replaced coefficients that exhibited a...
STIR-Physics: Cold Atoms and Nanocrystals in Tapered Nanofiber and High-Q Resonator Potentials
2016-11-02
STIR- Physics : Cold Atoms and Nanocrystals in Tapered Nanofiber and High-Q Resonator Potentials We worked on a tapered fiber in cold atomic cloud...reviewed journals: Number of Papers published in non peer-reviewed journals: Final Report: STIR- Physics : Cold Atoms and Nanocrystals in Tapered Nanofiber...other than abstracts): Number of Peer-Reviewed Conference Proceeding publications (other than abstracts): Books Number of Manuscripts: 0.00Number of
NASA Astrophysics Data System (ADS)
Shuja, S. Z.; Yilbas, B. S.
2013-02-01
Jet emerging from a conical nozzle and impinging onto a tapered hole in relation to laser drilling is investigated and the influence taper location on the heat transfer and skin friction at the hole wall surface is examined. The study is extended to include four different gases as working fluid. The Reynolds stress model is incorporated to account for the turbulence effect in the flow field. The hole wall surface temperature is kept at 1500 K to resemble the laser drilled hole. It is found that the location of tapering in the hole influences the heat transfer rates and skin friction at the hole wall surface. The maximum skin friction coefficient increases for taper location of 0.25 H, where H is the thickness of the workpiece, while Nusselt number is higher in the hole for taper location of 0.75 H.
Pulse compression using a tapered microstructure optical fiber.
Hu, Jonathan; Marks, Brian S; Menyuk, Curtis R; Kim, Jinchae; Carruthers, Thomas F; Wright, Barbara M; Taunay, Thierry F; Friebele, E J
2006-05-01
We calculate the pulse compression in a tapered microstructure optical fiber with four layers of holes. We show that the primary limitation on pulse compression is the loss due to mode leakage. As a fiber's diameter decreases due to the tapering, so does the air-hole diameter, and at a sufficiently small diameter the guided mode loss becomes unacceptably high. For the four-layer geometry we considered, a compression factor of 10 can be achieved by a pulse with an initial FWHM duration of 3 ps in a tapered fiber that is 28 m long. We find that there is little difference in the pulse compression between a linear taper profile and a Gaussian taper profile. More layers of air-holes allows the pitch to decrease considerably before losses become unacceptable, but only a moderate increase in the degree of pulse compression is obtained.
Trial of Tocilizumab in Giant-Cell Arteritis.
Stone, John H; Tuckwell, Katie; Dimonaco, Sophie; Klearman, Micki; Aringer, Martin; Blockmans, Daniel; Brouwer, Elisabeth; Cid, Maria C; Dasgupta, Bhaskar; Rech, Juergen; Salvarani, Carlo; Schett, Georg; Schulze-Koops, Hendrik; Spiera, Robert; Unizony, Sebastian H; Collinson, Neil
2017-07-27
Giant-cell arteritis commonly relapses when glucocorticoids are tapered, and the prolonged use of glucocorticoids is associated with side effects. The effect of the interleukin-6 receptor alpha inhibitor tocilizumab on the rates of relapse during glucocorticoid tapering was studied in patients with giant-cell arteritis. In this 1-year trial, we randomly assigned 251 patients, in a 2:1:1:1 ratio, to receive subcutaneous tocilizumab (at a dose of 162 mg) weekly or every other week, combined with a 26-week prednisone taper, or placebo combined with a prednisone taper over a period of either 26 weeks or 52 weeks. The primary outcome was the rate of sustained glucocorticoid-free remission at week 52 in each tocilizumab group as compared with the rate in the placebo group that underwent the 26-week prednisone taper. The key secondary outcome was the rate of remission in each tocilizumab group as compared with the placebo group that underwent the 52-week prednisone taper. Dosing of prednisone and safety were also assessed. Sustained remission at week 52 occurred in 56% of the patients treated with tocilizumab weekly and in 53% of those treated with tocilizumab every other week, as compared with 14% of those in the placebo group that underwent the 26-week prednisone taper and 18% of those in the placebo group that underwent the 52-week prednisone taper (P<0.001 for the comparisons of either active treatment with placebo). The cumulative median prednisone dose over the 52-week period was 1862 mg in each tocilizumab group, as compared with 3296 mg in the placebo group that underwent the 26-week taper (P<0.001 for both comparisons) and 3818 mg in the placebo group that underwent the 52-week taper (P<0.001 for both comparisons). Serious adverse events occurred in 15% of the patients in the group that received tocilizumab weekly, 14% of those in the group that received tocilizumab every other week, 22% of those in the placebo group that underwent the 26-week taper, and 25% of those in the placebo group that underwent the 52-week taper. Anterior ischemic optic neuropathy developed in one patient in the group that received tocilizumab every other week. Tocilizumab, received weekly or every other week, combined with a 26-week prednisone taper was superior to either 26-week or 52-week prednisone tapering plus placebo with regard to sustained glucocorticoid-free remission in patients with giant-cell arteritis. Longer follow-up is necessary to determine the durability of remission and safety of tocilizumab. (Funded by F. Hoffmann-La Roche; ClinicalTrials.gov number, NCT01791153 .).
Thakur, Bhagyashree; Pawar, Ajinkya M; Kfir, Anda; Neelakantan, Prasanna
2017-11-01
To assess the amount of debris extruded apically during instrumentation of distal canals of extracted primary molars by three instrument systems [ProTaper Universal (PTU), ProTaper NEXT (PTN), and self-adjusting file (SAF)] compared with conventional stainless steel hand K-files (HF, control). Primary mandibular molars (n = 120) with a single distal canal were selected and randomly divided into four groups (n = 30) for root canal instrumentation using group I, HF (to size 0.30/0.02 taper), group II, PTU (to size F3), group III, PTN (to size X3), and group IV, SAF. Debris extruded during instrumentation was collected in preweighed Eppendorf tubes, stored in an incubator at 70°C for 5 days and then weighed. Statistical analysis was performed by one-way analysis of variance (ANOVA), followed by Turkey's post hoc test (p = 0.05). All the groups resulted in extrusion of debris. There was statistically significant difference (p < 0.001) in the debris extrusion between the three groups: HF (0.00133 ± 0.00012), PTU (0.00109 ± 0.00005), PTN (0.00052 ± 0.00008), and SAF (0.00026 ± 0.00004). Instrumentation with SAF resulted in the least debris extrusion when used for shaping root canals of primary molar teeth. Debris extrusion in primary teeth poses an adverse effect on the stem cells and may also alter the permanent dental germ. Debris extrusion is rarely reported for primary teeth and it is important for the clinician to know which endodontic instrumentation leads to less extrusion of debris.
History and current status of strontium iodide scintillators
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cherepy, Nerine J.; Beck, Patrick R.; Payne, Stephen A.
Eu-doped strontium iodide single crystal growth has reached maturity and prototype SrI 2(Eu)-based gamma ray spectrometers provide detection performance advantages over standard detectors. SrI 2(Eu) offers a high, proportional light yield of >80,000 photons/MeV. Energy resolution of <3% at 662 keV with 1.5” x 1.5” SrI2(Eu) crystals is routinely achieved, by employing either a small taper at the top of the crystal or a digital readout technique. These methods overcome light-trapping, in which scintillation light is re-absorbed and re-emitted in Eu 2+-doped crystals. As a result, its excellent energy resolution, lack of intrinsic radioactivity or toxicity, and commercial availability makemore » SrI 2(Eu) the ideal scintillator for use in handheld radioisotope identification devices. A 6-lb SrI 2(Eu) radioisotope identifier is described.« less
History and current status of strontium iodide scintillators
Cherepy, Nerine J.; Beck, Patrick R.; Payne, Stephen A.; ...
2017-09-15
Eu-doped strontium iodide single crystal growth has reached maturity and prototype SrI 2(Eu)-based gamma ray spectrometers provide detection performance advantages over standard detectors. SrI 2(Eu) offers a high, proportional light yield of >80,000 photons/MeV. Energy resolution of <3% at 662 keV with 1.5” x 1.5” SrI2(Eu) crystals is routinely achieved, by employing either a small taper at the top of the crystal or a digital readout technique. These methods overcome light-trapping, in which scintillation light is re-absorbed and re-emitted in Eu 2+-doped crystals. As a result, its excellent energy resolution, lack of intrinsic radioactivity or toxicity, and commercial availability makemore » SrI 2(Eu) the ideal scintillator for use in handheld radioisotope identification devices. A 6-lb SrI 2(Eu) radioisotope identifier is described.« less
Rao, M S Rama; Shameem, Abdul; Nair, Rashmi; Ghanta, Sureshbabu; Thankachan, Rekha P; Issac, Johnson K
2013-07-01
The aim of the present study was to compare the remaining dental thickness (RDT) in the mesiobuccal root of mandibular first molars at 3 and 7 mm from the anatomic apex after instrumentation with ProTaper, light speed LSX, K3 and M2 and to compare with that of K-files. In this study, 60 extracted, untreated human mandibular first molars with fully formed apices, with curvature less than 35° and no root resorption were used. Prepared specimens were cut horizontally at 3 and 7 mm short of anatomic apex. The least dentin thickness from canal to external root surface was observed under 3× magnification and recorded using Clemax measuring tool and the sections were reassembled. Group I-instrumentation with ProTaper, group II-instrumentation with K3, group III-instrumentation with Light Speed LSX, group IV-instrumentation with M2 and group V- instrumentation with K-files and RDT was measured. Results showed that group V removed lesser amount of dentin compared to all other groups while all the three instrumentation techniques removed almost equal amount of dentin apically. Cleaning and shaping of the root canal space involves the elimination of pathogenic contents as well as attaining a uniform specific shape. However, the RDT following the use of various intraradicular procedures is an important factor to be considered as an iatrogenic cause that may result in root fracture. To avoid this, newer rotary instruments are being introduced.
NASA Astrophysics Data System (ADS)
Ma, Xiaoxue; Chen, Xin; Nie, Hongrui; Yang, Daquan
2018-01-01
Recently, due to its superior characteristics and simple manufacture, such as small size, low loss, high sensitivity and convenience to couple, the optical fiber sensor has become one of the most promising sensors. In order to achieve the most effective realization of light propagation by changing the structure of sensors, FOM(S •Q/λres) ,which is determined by two significant variables Q-factor and sensitivity, as a trade-off parameter should be optimized to a high value. In typical sensors, a high Q can be achieved by confining the optical field in the high refractive index dielectric region to make an interaction between analytes and evanescent field of the resonant mode. However, the ignored sensitivity is relatively low with a high Q achieved, which means that the resonant wavelength shift changes non-obviously when the refractive index increases. Meanwhile, the sensitivity also leads to a less desirable FOM. Therefore, a gradient structure, which can enhance the performance of sensors by achieving high Q and high sensitivity, has been developed by Kim et al. later. Here, by introducing parabolic-tapered structure, the light field localized overlaps strongly and sufficiently with analytes. And based on a one-dimensional photonic-crystal nanofiber air-mode cavity, a creative optical fiber sensor is proposed by combining good stability and transmission characteristics of fiber and strengths of tapered structure, realizing excellent FOM {4.7 x 105 with high Q-factors (Q{106) and high sensitivities (<700 nm/RIU).
Yang, Xiupei; Qian, Fan; Xie, Linxiang; Yang, Xiaocui; Cheng, Xiumei; Choi, Martin M F
2014-03-01
This paper proposes a novel strategy to enhance detection of doxorubicin in human plasma, using homemade CE combined with normal stacking mode (NSM). The detection system of CE named as in-column tapered optic-fiber light-emitting diode induced fluorescence detection system is economic and more sensitive that has been demonstrated in our previous work. The influence of sample matrix, BGE, applied voltage, and injection time on the efficiency of NSM were systematically investigated. The clean extracts were subjected to CE separation with optimal experimental conditions: Ethanol-water (1:1, v/v) was used as sample matrix, pH 4.12 15 mM sodium phosphate buffer solution containing 70% v/v ACN, applied voltage 23 kV and 45 s hydrodynamic injection at a height of 20 cm. The detection system displayed linear dynamic range from 6.4 to 1.13 × 10(3) ng/mL with a correlation coefficient of 0.9990 and LOD 2.2 ng/mL for doxorubicin (DOX). The proposed CE method has been successfully applied to determine DOX in human plasma which the recoveries of standard DOX added to human plasma were found to been the range of 93.8-104.6%. The results obtained demonstrate that our detection system combined with NSM is a good idea to enhance sensitivity in CE for routine determination of DOX in some biological specimens. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Tapering strategies in elite British endurance runners.
Spilsbury, Kate L; Fudge, Barry W; Ingham, Stephen A; Faulkner, Steve H; Nimmo, Myra A
2015-01-01
The aim of the study was to explore pre-competition training practices of elite endurance runners. Training details from elite British middle distance (MD; 800 m and 1500 m), long distance (LD; 3000 m steeplechase to 10,000 m) and marathon (MAR) runners were collected by survey for 7 days in a regular training (RT) phase and throughout a pre-competition taper. Taper duration was [median (interquartile range)] 6 (3) days in MD, 6 (1) days in LD and 14 (8) days in MAR runners. Continuous running volume was reduced to 70 (16)%, 71 (24)% and 53 (12)% of regular levels in MD, LD and MAR runners, respectively (P < 0.05). Interval running volume was reduced compared to regular training (MD; 53 (45)%, LD; 67 (23)%, MAR; 64 (34)%, P < 0.05). During tapering, the peak interval training intensity was above race speed in LD and MAR runners (112 (27)% and 114 (3)%, respectively, P < 0.05), but not different in MD (100 (2)%). Higher weekly continuous running volume and frequency in RT were associated with greater corresponding reductions during the taper (R = -0.70 and R = -0.63, respectively, both P < 0.05). Running intensity during RT was positively associated with taper running intensity (continuous intensity; R = 0.97 and interval intensity; R = 0.81, both P < 0.05). Algorithms were generated to predict and potentially prescribe taper content based on the RT of elite runners. In conclusion, training undertaken prior to the taper in elite endurance runners is predictive of the tapering strategy implemented before competition.
Song, Jiangxin; Lin, Jintian; Tang, Jialei; Liao, Yang; He, Fei; Wang, Zhaohui; Qiao, Lingling; Sugioka, Koji; Cheng, Ya
2014-06-16
We report on fabrication of a microtoroid resonator of a high-quality factor (i.e., Q-factor of ~3.24 × 10(6) measured under the critical coupling condition) integrated in a microfluidic channel using femtosecond laser three-dimensional (3D) micromachining. Coupling of light into and out of the microresonator has been realized with a fiber taper that is reliably assembled with the microtoroid. The assembly of the fiber to the microtoroid is achieved by welding the fiber taper onto the sidewall of the microtoroid using CO2 laser irradiation. The integrated microresonator maintains a high Q-factor of 3.21 × 10(5) as measured in air, which should still be sufficient for many sensing applications. We test the functionality of the integrated optofluidic sensor by performing bulk refractive index sensing of purified water doped with tiny amount of salt. It is shown that a detection limit of ~1.2 × 10(-4) refractive index unit can be achieved. Our result showcases the capability of integration of high-Q microresonators with complex microfluidic systems using femtosecond laser 3D micromachining.
Diffraction-limited 577 nm true-yellow laser by frequency doubling of a tapered diode laser
NASA Astrophysics Data System (ADS)
Christensen, Mathias; Vilera, Mariafernanda; Noordegraaf, Danny; Hansen, Anders K.; Buß, Thomas; Jensen, Ole B.; Skovgaard, Peter M. W.
2018-02-01
A wide range of laser medical treatments are based on coagulation of blood by absorption of the laser radiation. It has, therefore, always been a goal of these treatments to maximize the ratio of absorption in the blood to that in the surrounding tissue. For this purpose lasers at 577 nm are ideal since this wavelength is at the peak of the absorption in oxygenated hemoglobin. Furthermore, 577 nm has a lower absorption in melanin when compared to green wavelengths (515 - 532 nm), giving it an advantage when treating at greater penetration depth. Here we present a laser system based on frequency doubling of an 1154 nm Distributed Bragg Reflector (DBR) tapered diode laser, emitting 1.1 W of single frequency and diffraction limited yellow light at 577 nm, corresponding to a conversion efficiency of 30.5%. The frequency doubling is performed in a single pass configuration using a cascade of two bulk non-linear crystals. The system is power stabilized over 10 hours with a standard deviation of 0.13% and the relative intensity noise is measured to be 0.064 % rms.
Structural Efficiency of Composite Struts for Aerospace Applications
NASA Technical Reports Server (NTRS)
Jegley, Dawn C.; Wu, K. Chauncey; McKenney, Martin J.; Oremont, Leonard
2011-01-01
The structural efficiency of carbon-epoxy tapered struts is considered through trade studies, detailed analysis, manufacturing and experimentation. Since some of the lunar lander struts are more highly loaded than struts used in applications such as satellites and telescopes, the primary focus of the effort is on these highly loaded struts. Lunar lander requirements include that the strut has to be tapered on both ends, complicating the design and limiting the manufacturing process. Optimal stacking sequences, geometries, and materials are determined and the sensitivity of the strut weight to each parameter is evaluated. The trade study results indicate that the most efficient carbon-epoxy struts are 30 percent lighter than the most efficient aluminum-lithium struts. Structurally efficient, highly loaded struts were fabricated and loaded in tension and compression to determine if they met the design requirements and to verify the accuracy of the analyses. Experimental evaluation of some of these struts demonstrated that they could meet the greatest Altair loading requirements in both tension and compression. These results could be applied to other vehicles requiring struts with high loading and light weight.
Integrated microfluidic flowmeter based on a micro-FBG inscribed in Co²⁺-doped optical fiber.
Liu, Zhengyong; Tse, Ming-Leung Vincent; Zhang, A Ping; Tam, Hwa-Yaw
2014-10-15
A novel microfluidic flowmeter integrated with microfiber Bragg grating (µFBG) is presented. Two glass capillaries and a short length of high-light-absorption Co²⁺-doped optical fiber were stacked inside a larger outer capillary tube. The stack was then drawn into a tapered device. Two microchannels with the diameter of ~50 μm were formed inside the capillaries for flowing of microfluidics. An FBG was inscribed in the tapered Co²⁺-doped fiber with waist diameter of ~70 μm, and acts as a flow-rate sensor. A pump laser with wavelength of 1480 nm was utilized to locally heat the µFBG, rendering the µFBG as miniature "hot-wire" flowmeter. The flow rate of the liquid in the microchannels is determined by the induced wavelength shift of the µFBG. The experimental results achieve a minimum detectable change of ~16 nL/s in flow rate, which is very promising in the use as part of biochips.
Cameron, Stephen M; Morris, W Jack; Keesee, Stephen M; Barsky, Todd B; Parker, M Harry
2006-06-01
Clinicians have used resistance form as a basis for determining guidelines for preparation design to ensure clinical success of cemented cast restorations. Disagreement on whether clinical success follows the on-off or linear nature of resistance form continues. The purpose of this study was to evaluate the number of cycles required to dislodge a cemented complete crown casting under a cyclic lateral load as a function of taper and to compare this relationship for the resistive and nonresistive ranges of taper. Three dies were milled from stainless steel at each of the following tapers: 4, 8, 12, 16, 20, 24, 28, and 32 degrees. A gold-palladium metal-ceramic alloy crown was fabricated for each die, cemented, and subjected to lateral cyclic loading until failure or 1,000,000 cycles. The limiting taper for the dies with their given height and base was 26.6 degrees. Dies with taper less than 26.6 degrees had resistance form, whereas dies with taper larger than 26.6 degrees did not. A linear regression (alpha=.05) was used to evaluate the relation of cycles at dislodgement to taper. The average number of cycles to crown dislodgement or completion for each taper (SD), in units of 10,000, was as follows: 4 degrees, 100 (0); 8 degrees, 100 (0); 12 degrees, 93.54 (16.56); 16 degrees, 61.33 (38.47); 20 degrees, 25.73 (34.67); 24 degrees, 4.33 (7.36); 28 degrees, 0.06 (0.08); and 32 degrees, 0.05 (0.09). The crowns in the resistive area less than 26.6 degrees that demonstrated failure showed a linear regression with a correlation coefficient of -0.995 between the average number of cycles to dislodge the crown and the taper. The slope was significantly different from zero (P=.0048), with a value of -7.58 and a standard error of 0.53. The number of cycles required to cause crown dislodgement was linear after 12 degrees in the resistive area and nearly zero for preparations in the nonresistive area. The limiting taper concept closely predicted the transition point where the slope of the graph of cycles to dislodgement as a function of taper abruptly changed.
Effects of taper and space settings of telescopic Ce-TZP/A crowns on retentive force and settling.
Nakagawa, Shusuke; Torii, Katsunori; Tanaka, Masahiro
2017-03-31
The aim of this study was to investigate the effect of the taper and space setting of using Ce-TZP/A on retentive force and secondary crown settling. The taper were 2°, 4°, and 6°, and the space settings were 0 and 10 μm. The applied loads were 50 and 100 N. The taper had a significant effect on retentive force and settling at both loads (p<0.05). The space settings did not have a significant effect on retentive force or settling at either load (p<0.05). The taper of the telescopic crowns and the load affected the retentive force and the settling.
Zou, Weiwen; Jiang, Wenning; Chen, Jianping
2013-03-11
This paper demonstrates stimulated Brillouin scattering (SBS) characterization in silica optical fiber tapers drawn from commercial single mode optical fibers by hydrogen flame. They have different waist diameters downscaled from 5 μm to 42 μm. The fully-distributed SBS measurement along the fiber tapers is implemented by Brillouin optical correlation domain analysis technique with millimeter spatial resolution. It is found that the Brillouin frequency shift (BFS) in the waist of all fiber tapers is approximately the same (i.e., ~11.17 GHz at 1550 nm). However, the BFS is gradually reduced and the Brillouin gain decreases from the waist to the untapered zone in each fiber taper.
Measuring the charge density of a tapered optical fiber using trapped microparticles.
Kamitani, Kazuhiko; Muranaka, Takuya; Takashima, Hideaki; Fujiwara, Masazumi; Tanaka, Utako; Takeuchi, Shigeki; Urabe, Shinji
2016-03-07
We report the measurements of charge density of tapered optical fibers using charged particles confined in a linear Paul trap at ambient pressure. A tapered optical fiber is placed across the trap axis at a right angle, and polystyrene microparticles are trapped along the trap axis. The distance between the equilibrium position of a positively charged particle and the tapered fiber is used to estimate the amount of charge per unit length of the fiber without knowing the amount of charge of the trapped particle. The charge per unit length of a tapered fiber with a diameter of 1.6 μm was measured to be 2-1+3×10 -11 C/m.
Influence of resonance tube geometry shape on performance of thermoacoustic engine.
Bao, Rui; Chen, Guobang; Tang, Ke; Jia, Zhengzhong; Cao, Weihua
2006-12-22
Based on the linear thermoacoustics, a symmetrical standing-wave thermoacoustic engine is simulated with a cylindrical tube and a tapered one as the resonance tube, respectively. The experiments with both cylindrical and tapered tubes are carried out. The suppression of nonlinear effects due to tapered tube as the resonance tube is discussed. Both simulation and experimental results show that the performance of the tapered tube is better than cylindrical one as the resonance tube.
NASA Astrophysics Data System (ADS)
Zhang, Naiqian; Wang, Zefeng; Xi, Xiaoming
2017-10-01
In this paper, we demonstrate a novel method for the low-loss coupling between solid-core multi-mode fibers (MMFs) and anti-resonant hollow-core fibers (AR-HCFs). The core/cladding diameter of the MMF is 50/125μm and the mode field diameter of the AR-HCFs are 33.3μm and 71.2μm of the ice-cream type AR-HCFs and the non-node type ARHCFs, respectively. In order to match the mode field diameters of these two specific AR-HCFs, the mode field diameter of the MMFs is increased or decreased by up-tapering or down-tapering the MMFs. Then, according to the principle of coupled fiber mode matching, the optimal diameter of tapered fiber for low-loss coupling is calculated. Based on beam propagation method, the calculated coupling losses without tapering process are 0.31dB and 0.89dB, respectively for a MMF-HCF-MMF structure of the ice-cream type AR-HCFs and the non-node type AR-HCFs. These values can be reduced to 0.096dB and 0.047dB when the outer diameters of the MMF are down-tapered to 116μm and up-tapered to 269μm, respectively. What's more, these results can also be verified by existing experiments.
Shankarappa, Pushpa; Misra, Abhinav; Sawhney, Asheesh; Sridevi, Nandamuri; Singh, Anu
2016-01-01
Introduction. The aim of the present study was to evaluate the dentinal cracks after root canal preparation with rotary files: Gates Glidden, ProTaper Universal, ProTaper Next, and HyFlex CM at different instrumentation lengths. Methodology. Sixty-five mandibular premolars were mounted in the acrylic tube with simulated periodontal ligaments and the apex was exposed. The root canals were instrumented with different rotary files, namely, ProTaper Universal, ProTaper Next, and HyFlex CM, to the major apical foramen (AF), short AF, and beyond AF. The root apex was stained with 1% methylene blue dye and digital images of apical surface of every tooth were taken and development of dentinal defects was determined by using stereomicroscope. Multinomial logistic regression test was performed to identify influencing factors. Results. Instrumentation with rotary files terminated 2 mm short AF and did not cause any cracks. Significantly less cracks were seen when instrumentation with rotary files terminated 1 mm short apical foramen when compared with the instrumentation terminated at or beyond apical foramen (p < 0.05). Conclusion. ProTaper Universal rotary files caused more dentinal cracks than ProTaper Next and HyFlex CM. Instrumentation short AF reduced the risk of dentinal defects. PMID:27446636
Damage Patterns at the Head-Stem Taper Junction Helps Understand the Mechanisms of Material Loss.
Hothi, Harry S; Panagiotopoulos, Andreas C; Whittaker, Robert K; Bills, Paul J; McMillan, Rebecca A; Skinner, John A; Hart, Alister J
2017-01-01
Material loss at the taper junction of metal-on-metal total hip arthroplasties has been implicated in their early failure. The mechanisms of material loss are not fully understood; analysis of the patterns of damage at the taper can help us better understand why material loss occurs at this junction. We mapped the patterns of material loss in a series of 155 metal-on-metal total hip arthroplasties received at our center by scanning the taper surface using a roundness-measuring machine. We examined these material loss maps to develop a 5-tier classification system based on visual differences between different patterns. We correlated these patterns to surgical, implant, and patient factors known to be important for head-stem taper damage. We found that 63 implants had "minimal damage" at the taper (material loss <1 mm 3 ), and the remaining 92 implants could be categorized by 4 distinct patterns of taper material loss. We found that (1) head diameter and (2) time to revision were key significant variables separating the groups. These material loss maps allow us to suggest different mechanisms that dominate the cause of the material loss in each pattern: (1) corrosion, (2) mechanically assisted corrosion, or (3) intraoperative damage or poor size tolerances leading to toggling of trunnion in taper. Copyright © 2016 Elsevier Inc. All rights reserved.
The phototransduction machinery in the rod outer segment has a strong efficacy gradient
Mazzolini, Monica; Facchetti, Giuseppe; Andolfi, Laura; Proietti Zaccaria, Remo; Tuccio, Salvatore; Treu, Johannes; Altafini, Claudio; Di Fabrizio, Enzo M.; Lazzarino, Marco; Rapp, Gert; Torre, Vincent
2015-01-01
Rod photoreceptors consist of an outer segment (OS) and an inner segment. Inside the OS a biochemical machinery transforms the rhodopsin photoisomerization into electrical signal. This machinery has been treated as and is thought to be homogenous with marginal inhomogeneities. To verify this assumption, we developed a methodology based on special tapered optical fibers (TOFs) to deliver highly localized light stimulations. By using these TOFs, specific regions of the rod OS could be stimulated with spots of light highly confined in space. As the TOF is moved from the OS base toward its tip, the amplitude of saturating and single photon responses decreases, demonstrating that the efficacy of the transduction machinery is not uniform and is 5–10 times higher at the base than at the tip. This gradient of efficacy of the transduction machinery is attributed to a progressive depletion of the phosphodiesterase along the rod OS. Moreover we demonstrate that, using restricted spots of light, the duration of the photoresponse along the OS does not increase linearly with the light intensity as with diffuse light. PMID:25941368
Freeway work zone lane capacity.
DOT National Transportation Integrated Search
2009-01-01
The focus of this report is a capacity analysis of two long-term urban freeway Work Zones. Work Zone #1 : tapered four mainline lanes to two, using two separate tapers; Work Zone #2 tapered two mainline lanes to one. : Work Zone throughput was analyz...
Tapered structure construction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, Eric D.; Takata, Rosalind K.; Slocum, Alexander H.
Feeding stock used to form a tapered structure into a curving device such that each point on the stock undergoes rotational motion about a peak location of the tapered structure; and the stock meets a predecessor portion of stock along one or more adjacent edges.
Bills, Paul; Racasan, Radu; Bhattacharya, Saugatta; Blunt, Liam; Isaac, Graham
2017-08-01
There have been a number of reports on the occurrence of taper corrosion and/or fretting and some have speculated on a link to the occurrence of adverse local tissue reaction specifically in relation to total hip replacement which have a metal-on-metal bearing. As such a study was carried out to compare the magnitude of material loss at the taper in a series of retrieved femoral heads used in metal-on-polyethylene bearings with that in a series of retrieved heads used in metal-on-metal bearings. A total of 36 metal-on-polyethylene and 21 metal-on-metal femoral components were included in the study all of which were received from a customer complaint database. Furthermore, a total of nine as-manufactured femoral components were included to provide a baseline for characterisation. All taper surfaces were assessed using an established corrosion scoring method and measurements were taken of the female taper surface using a contact profilometry. In the case of metal-on-metal components, the bearing wear was also assessed using coordinate metrology to determine whether or not there was a relationship between bearing and taper material loss in these cases. The study found that in this cohort the median value of metal-on-polyethylene taper loss was 1.25 mm 3 with the consequent median value for metal-on-metal taper loss being 1.75 mm 3 . This study also suggests that manufacturing form can result in an apparent loss of material from the taper surface determined to have a median value of 0.59 mm 3 . Therefore, it is clear that form variability is a significant confounding factor in the measurement of material loss from the tapers of femoral heads retrieved following revision surgery.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Myer, Michael; Goettel, Russell T.; Kinzey, Bruce R.
2012-09-30
A review of five post-top light-emitting diode (LED) pedestrian luminaires installed in New York City's Central Park for possible replacement to the existing metal halide post-top luminaire. This report reviews the energy savings potential and lighting delivered by the LED post-top luminaires.
Toward jet injection by continuous-wave laser cavitation.
Berrospe-Rodriguez, Carla; Visser, Claas Willem; Schlautmann, Stefan; Rivas, David Fernandez; Ramos-Garcia, Ruben
2017-10-01
This is a study motivated by the need to develop a needle-free device for eliminating major global healthcare problems caused by needles. The generation of liquid jets by means of a continuous-wave laser, focused into a light absorbing solution, was studied with the aim of developing a portable and affordable jet injector. We designed and fabricated glass microfluidic devices, which consist of a chamber where thermocavitation is created and a tapered channel. The growth of a vapor bubble displaces and expels the liquid through the channel as a fast traveling jet. Different parameters were varied with the purpose of increasing the jet velocity. The velocity increases with smaller channel diameters and taper ratios, whereas larger chambers significantly reduce the jet speed. It was found that the initial position of the liquid-air meniscus interface and its dynamics contribute to increased jet velocities. A maximum velocity of 94±3 m/s for a channel diameter of D=120 μm, taper ratio n=0.25, and chamber length E=200 μm was achieved. Finally, agarose gel-based skin phantoms were used to demonstrate the potential of our devices to penetrate the skin. The maximum penetration depth achieved was ∼1 mm, which is sufficient to penetrate the stratum corneum and for most medical applications. A meta-analysis shows that larger injection volumes will be required as a next step to medical relevance for laser-induced jet injection techniques in general. (2017) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE).
Wang, Qi; Li, Chunyue; Zhao, Chengwu; Li, Weizheng
2016-06-01
A cascaded symmetrical dual-taper Mach-Zehnder interferometer structure based on guided-mode and leaky-mode interference is proposed in this paper. Firstly, the interference spectrum characteristics of interferometer has been analyzed by the Finite Difference-Beam Propagation Method (FD-BPM). When the diameter of taper waist is 20 μm-30 μm, dual-taper length is 1 mm and taper distance is 4 cm-6 cm, the spectral contrast is higher, which is suitable for sensing. Secondly, experimental research on refractive index sensitivity is carried out. A refractive index sensitivity of 62.78 nm/RIU (refractive index unit) can achieved in the RI range of 1.3333-1.3792 (0%~25% NaCl solution), when the sensor structure parameters meet the following conditions: diameter of taper waist is 24 μm, dual-taper length is 837 μm and taper distance is 5.5 cm. The spectrum contrast is 0.8 and measurement resolution is 1.6 × 10(-5) RIU. The simulation analysis is highly consistent with experimental results. Research shows that the sensor has promising application in low RI fields where high-precision measurement is required due to its high sensitivity and stability.
Modeling and simulation performance of sucker rod beam pump
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aditsania, Annisa, E-mail: annisaaditsania@gmail.com; Rahmawati, Silvy Dewi, E-mail: silvyarahmawati@gmail.com; Sukarno, Pudjo, E-mail: psukarno@gmail.com
2015-09-30
Artificial lift is a mechanism to lift hydrocarbon, generally petroleum, from a well to surface. This is used in the case that the natural pressure from the reservoir has significantly decreased. Sucker rod beam pumping is a method of artificial lift. Sucker rod beam pump is modeled in this research as a function of geometry of the surface part, the size of sucker rod string, and fluid properties. Besides its length, sucker rod string also classified into tapered and un-tapered. At the beginning of this research, for easy modeling, the sucker rod string was assumed as un-tapered. The assumption provedmore » non-realistic to use. Therefore, the tapered sucker rod string modeling needs building. The numerical solution of this sucker rod beam pump model is computed using finite difference method. The numerical result shows that the peak of polished rod load for sucker rod beam pump unit C-456-D-256-120, for non-tapered sucker rod string is 38504.2 lb, while for tapered rod string is 25723.3 lb. For that reason, to avoid the sucker rod string breaks due to the overload, the use of tapered sucker rod beam string is suggested in this research.« less
Polymer taper bridge for silicon waveguide to single mode waveguide coupling
NASA Astrophysics Data System (ADS)
Kruse, Kevin; Middlebrook, Christopher T.
2016-03-01
Coupling of optical power from high-density silicon waveguides to silica optical fibers for signal routing can incur high losses and often requires complex end-face preparation/processing. Novel coupling device taper structures are proposed for low coupling loss between silicon photonic waveguides and single mode fibers are proposed and devices are fabricated and measured in terms of performance. Theoretical mode conversion models for waveguide tapers are derived for optimal device structure design and performance. Commercially viable vertical and multi-layer taper designs using polymer waveguide materials are proposed as innovative, cost-efficient, and mass-manufacturable optical coupling devices. The coupling efficiency for both designs is determined to evaluate optimal device dimensions and alignment tolerances with both silicon rib waveguides and silicon nanowire waveguides. Propagation loss as a function of waveguide roughness and metallic loss are determined and correlated to waveguide dimensions to obtain total insertion loss for the proposed taper designs. Multi-layer tapers on gold-sputtered substrates are fabricated through photolithography as proof-of-concept devices and evaluated for device loss optimization. Tapered waveguide coupling loss with Si WGs (2.74 dB) was experimentally measured with high correlation to theoretical results.
5 CFR 353.303 - Restoration rights of TAPER employees.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 5 Administrative Personnel 1 2010-01-01 2010-01-01 false Restoration rights of TAPER employees... Restoration rights of TAPER employees. An employee serving in the competitive service under a temporary... she left or an equivalent one in the same commuting area. ...
Merging taper lengths for short duration lane closure : final report, December 2009.
DOT National Transportation Integrated Search
2009-12-01
The Utility Industry has requested that the Florida Department of Transportation provide for the use of merging taper lengths that are significantly shorter than the lengths computed using the taper length equations published in the MUTCD Section 6C....
NASA Astrophysics Data System (ADS)
Arregui, Francisco J.; Matias, Ignacio R.; Bariain, Candido; Lopez-Amo, Manuel
1998-06-01
Tapered optical fibers are used to design couplers, wavelength division multiplexers, near field scanning optical microscopy, just to mention a few. Moreover, and due to its strong transmission dependence to external medium the tapered fiber may also be used to sense distinct parameters such as temperature, humidity, PH, etc. In this work bending effects in tapers are exploited to achieved displacement sensors and to present design rules for implementing these sensors according to the desired both range and sensitivity.
Fabrication of longitudinally arbitrary shaped fiber tapers
NASA Astrophysics Data System (ADS)
Nold, J.; Plötner, M.; Böhme, S.; Sattler, B.; deVries, O.; Schreiber, T.; Eberhardt, R.; Tünnermann, A.
2018-02-01
We present our current results on the fabrication of arbitrary shaped fiber tapers on our tapering rig using a CO2-laser as heat source. Single mode excitation of multimode fibers as well as changing the fiber geometry in an LPG-like fashion is presented. It is shown that this setup allows for reproducible fabrication of single-mode excitation tapers to extract the fundamental mode (M2 < 1.1) from a 30 μm core having an NA of 0.09.
Effect of Instrumentation Techniques and Preparation Taper on Apical Extrusion of Bacteria.
Aksel, Hacer; Küçükkaya Eren, Selen; Çakar, Aslı; Serper, Ahmet; Özkuyumcu, Cumhur; Azim, Adham A
2017-06-01
The aim of this in vitro study was to evaluate the effects of different root canal instrumentation techniques and preparation tapers on the amount of apically extruded bacteria. The root canals of 98 extracted human mandibular incisors were contaminated with Enterococcus faecalis suspension. After incubation at 37°C for 24 hours, the root canals were instrumented with K3 rotary files in a crown-down (CD) or full-length linear instrumentation technique (FL) by using 3 different root canal tapers (0.02, 0.04, and 0.06). During instrumentation, apically extruded bacteria were collected into vials containing saline solution. The microbiological samples were taken from the vials and incubated in brain-heart agar medium for 24 hours, and the numbers of colony-forming units (CFUs) were determined. The obtained results were analyzed with t test and one-way analysis of variance for the comparisons between the instrumentation techniques (CD and FL) and the preparation tapers (0.02, 0.04, and 0.06), respectively. Tukey honestly significant difference test was used for pairwise comparisons. The preparation taper had no effect on the number of CFUs when a FL instrumentation technique was used (P > .05). There was a statistically significant difference in the CFUs between FL and CD techniques when the preparation taper was 0.02 (P < .05). There was no statistically significant difference between the 0.04 and 0.06 preparation tapers in any of the instrumentation techniques (P > .05). Using a 0.02 taper in a CD manner results in the least amount of bacterial extrusion. The instrumentation technique did not seem to affect the amount of bacterial extrusion when 0.04 and 0.06 taper instruments were used for cleaning and shaping the root canal space. Published by Elsevier Inc.
A CFD Database for Airfoils and Wings at Post-Stall Angles of Attack
NASA Technical Reports Server (NTRS)
Petrilli, Justin; Paul, Ryan; Gopalarathnam, Ashok; Frink, Neal T.
2013-01-01
This paper presents selected results from an ongoing effort to develop an aerodynamic database from Reynolds-Averaged Navier-Stokes (RANS) computational analysis of airfoils and wings at stall and post-stall angles of attack. The data obtained from this effort will be used for validation and refinement of a low-order post-stall prediction method developed at NCSU, and to fill existing gaps in high angle of attack data in the literature. Such data could have potential applications in post-stall flight dynamics, helicopter aerodynamics and wind turbine aerodynamics. An overview of the NASA TetrUSS CFD package used for the RANS computational approach is presented. Detailed results for three airfoils are presented to compare their stall and post-stall behavior. The results for finite wings at stall and post-stall conditions focus on the effects of taper-ratio and sweep angle, with particular attention to whether the sectional flows can be approximated using two-dimensional flow over a stalled airfoil. While this approximation seems reasonable for unswept wings even at post-stall conditions, significant spanwise flow on stalled swept wings preclude the use of two-dimensional data to model sectional flows on swept wings. Thus, further effort is needed in low-order aerodynamic modeling of swept wings at stalled conditions.
NASA Astrophysics Data System (ADS)
He, J. R.; Xu, S. L.; Xue, L.
2017-11-01
Exact chirped self-similar optical pulses propagating in tapered centrosymmetric nonlinear waveguides doped with resonant impurities are reported. The propagation behaviors of the pulses are studied by tailoring of the tapering function. Numerical simulations and stability analysis reveal that the tapering can be used to postpone the wave dispersion and the addition of a small cubic self-focusing term to the governing equation could stabilize the chirped bright pulses. An example of possible experimental protocol that may generate the pulses in realistic waveguides is given. The obtained chirped self-similar optical pulses are particularly useful in the design of amplifying or attenuating pulse compressors for chirped solitary waves in tapered centrosymmetric nonlinear waveguides doped with resonant impurities.
Adiabatic tapered optical fiber fabrication in two step etching
NASA Astrophysics Data System (ADS)
Chenari, Z.; Latifi, H.; Ghamari, S.; Hashemi, R. S.; Doroodmand, F.
2016-01-01
A two-step etching method using HF acid and Buffered HF is proposed to fabricate adiabatic biconical optical fiber tapers. Due to the fact that the etching rate in second step is almost 3 times slower than the previous droplet etching method, terminating the fabrication process is controllable enough to achieve a desirable fiber diameter. By monitoring transmitted spectrum, final diameter and adiabaticity of tapers are deduced. Tapers with losses about 0.3 dB in air and 4.2 dB in water are produced. The biconical fiber taper fabricated using this method is used to excite whispering gallery modes (WGMs) on a microsphere surface in an aquatic environment. So that they are suitable to be used in applications like WGM biosensors.
Tapered GRIN fiber microsensor.
Beltrán-Mejía, Felipe; Biazoli, Claudecir R; Cordeiro, Cristiano M B
2014-12-15
The sensitivity of an optical fiber microsensor based on inter-modal interference can be considerably improved by tapering a short extension of the multimode fiber. In the case of Graded Index fibers with a parabolic refractive index profile, a meridional ray exhibits a sinusoidal path. When these fibers are tapered, the period of the propagated beam decrease down-taper and increase up-taper. We take advantage of this modulation -along with the enhanced overlap between the evanescent field and the external medium- to substantially increase the sensitivity of these devices by tuning the sensor's maximum sensitivity wavelength. Moreover, the extension of this device is reduced by one order of magnitude, making it more propitious for reduced space applications. Numerical and experimental results demonstrate the success and feasibility of this approach.
Composite resin reinforcement of flared canals using light-transmitting plastic posts.
Lui, J L
1994-05-01
Composite resins have been advocated as a reinforcing build-up material for badly damaged endodontically treated teeth with flared canals. However, the control of an autocuring composite resin is difficult because it polymerizes rapidly within the root canal. While the light-curing composite resins are more user friendly, their polymerization can be a problem deep in the root canal. Light-transmitting plastic posts allow the transmission of light into the root canal and enable intraradicular composite resin reconstitution and reinforcement of weakened roots. At the same time, the light-transmitting plastic post forms an optimal post canal in the rehabilitated root and can accurately fit a matching retentive final post. These light-transmitting posts are a useful addition to the dental armamentarium.
Ozsu, Damla; Karatas, Ertugrul; Arslan, Hakan; Topcu, Meltem C.
2014-01-01
Objectives: The aim of this study was to compare the amount of apically extruded debris during preparation with ProTaper Universal (Dentsply Maillefer, Ballaigues, Switzerland), ProTaper Next (Dentsply Maillefer), a reciprocating single-file (WaveOne; VDW GmbH, Munich, Germany), and a self-adjusting file (SAF; ReDent Nova, Ra’anna, Israel). Materials and Methods: Fifty-six intact mandibular premolar teeth were randomly assigned to four groups. The root canals were prepared according to the manufacturers’ instructions using the ProTaper Universal, ProTaper Next, WaveOne, and SAF. Apically extruded debris was collected in preweighted Eppendorf tubes during instrumentation. The net weight of the apically extruded debris was determined by subtracting the preweights and postweights of the tubes. The data were statistically analyzed using the one-way analysis of variance and the least significant difference tests at a significance level of P < 0.05. Results: A measurable amount of debris was apically extruded in all groups, and the amounts of debris extrusion in the groups were statistically significant (P < 0.001). The ProTaper Next and WaveOne groups resulted in less debris extrusion than the ProTaper Universal group (P < 0.05), and the SAF group resulted in the least debris extrusion. Conclusions: Within the limitations of the present study, it can be concluded that all systems extruded debris beyond the apical foramen. PMID:25512732
Effect of blade planform variation on the forward-flight performance of small-scale rotors
NASA Technical Reports Server (NTRS)
Noonan, Kevin W.; Althoff, Susan L.; Samak, Dhananjay K.; Green, Michael D.
1992-01-01
An investigation was conducted in the Glenn L. Martin Wind Tunnel to determine the effect of blade planform variation on the forward-flight performance of four small-scale rotors. The rotors were 5.417 ft in diameter and differed only in blade planform geometry. The four planforms were: (1) rectangular; (2) 3:1 linear taper starting at 94 percent radius; (3) 3:1 linear taper starting at 75 percent radius; and (4) 3:1 linear taper starting at 50 percent radius. Each planform had a thrust-weighted solidity of 0.098. The investigation included forward-flight simulation at advance ratios from 0.14 to 0.43 for a range of rotor lift and drag coefficients. Among the four rotors, the rectangular rotor required the highest torque for the entire range of rotor drag coefficients attained at advanced ratios greater than 0.14 for rotor lift coefficients C sub L from 0.004 to 0.007. Among the rotors with tapered blades and for C sub L = 0.004 to 0.007, either the 75 percent tapered rotor or the 50 percent tapered rotor required the least amount of torque for the full range of rotor drag coefficients attained at each advance ratio. The performance of the 94 percent tapered rotor was generally between that of the rectangular rotor and the 75 and 50 percent tapered rotors at each advance ratio for this range of rotor lift coefficients.
Mechanics of the taper integrated screwed-in (TIS) abutments used in dental implants.
Bozkaya, Dinçer; Müftü, Sinan
2005-01-01
The tapered implant-abutment interface is becoming more popular due to the mechanical reliability of retention it provides. Consequently, understanding the mechanical properties of the tapered interface with or without a screw at the bottom has been the subject of a considerable amount of studies involving experiments and finite element (FE) analysis. This paper focuses on the tapered implant-abutment interface with a screw integrated at the bottom of the abutment. The tightening and loosening torques are the main factors in determining the reliability and the stability of the attachment. Analytical formulas are developed to predict tightening and loosening torque values by combining the equations related to the tapered interface with screw mechanics equations. This enables the identification of the effects of the parameters such as friction, geometric properties of the screw, the taper angle, and the elastic properties of the materials on the mechanics of the system. In particular, a relation between the tightening torque and the screw pretension is identified. It was shown that the loosening torque is smaller than the tightening torque for typical values of the parameters. Most of the tightening load is carried by the tapered section of the abutment, and in certain combinations of the parameters the pretension in the screw may become zero. The calculations performed to determine the loosening torque as a percentage of tightening torque resulted in the range 85-137%, depending on the values of taper angle and the friction coefficient.
1983-01-01
experiments of (aggerneier ( rvf . 44). The observed, pronounced reduction in the available traction coefficient with just a few degrees of misalinement...Co., 1979. (AFAPL-TR-79-2007, AD-A069440.) 6. Crecelius, W. J.; and Milke , D. R,: Dynamic and Thermal Analysis of High Speed Tapered Roller Bearings...appearance of milk . When the narrow band of intense light crossed the fan of white oil, a bright line of it was illuminated so that it could be L GRIT BEAM
Hirschfeld, T.B.
1985-09-24
Method and apparatus are provided for measuring temperature and for generating optical signals related to temperature. Light from a fiber optic is directed to a material whose fluorescent response varies with ambient temperature. The same fiber optic delivering the excitation beam also collects a portion of the fluorescent emission for analysis. Signal collection efficiency of the fiber optic is enhanced by requiring that the fluorescent probe material be in the shape of an oblong parabolically tapered solid. Reproducibility is enhanced by using Raman backscatter to monitor excitation beam fluctuations, and by using measurements of fluorescence lifetime. 10 figs.
Multimode fiber devices with single-mode performance
NASA Astrophysics Data System (ADS)
Leon-Saval, S. G.; Birks, T. A.; Bland-Hawthorn, J.; Englund, M.
2005-10-01
A taper transition can couple light between a multimode fiber and several single-mode fibers. If the number of single-mode fibers matches the number of spatial modes in the multimode fiber, the transition can have low loss in both directions. This enables the high performance of single-mode fiber devices to be attained in multimode fibers. We report an experimental proof of concept by using photonic crystal fiber techniques to make the transitions, demonstrating a multimode fiber filter with the transmission spectrum of a single-mode fiber grating.
NASA Astrophysics Data System (ADS)
Ackerstaff, K.; Bisplinghoff, J.; Bollmann, R.; Cloth, P.; Dohrmann, F.; Diehl, O.; Dorner, G.; Drüke, V.; Engelhardt, H. J.; Eisenhardt, S.; Ernst, J.; Eversheim, P. D.; Filges, D.; Fritz, S.; Gasthuber, M.; Gebel, R.; Gross, A.; Gross-Hardt, R.; Hinterberger, F.; Jahn, R.; Lahr, U.; Langkau, R.; Lippert, G.; Mayer-Kuckuk, T.; Maschuw, R.; Mertler, G.; Metsch, B.; Mosel, F.; Paetz gen. Schieck, H.; Petry, H. R.; Prasuhn, D.; v. Przewoski, B.; Radtke, M.; Rohdjess, H.; Rosendaal, D.; von Rossen, P.; Scheid, H.; Schirm, N.; Schwandt, F.; Scobel, W.; Theis, D.; Weber, J.; Wiedmann, W.; Woller, K.; Ziegler, R.; EDDA Collaboration
1993-10-01
For the EDDA experiment at COSY, the response of the small, linear focused photomultipliers Hamamatsu R 1450 and R 1355 has been studied with fast light pulses generating yields up to 2 × 10 3 photoelectrons/cm 2 or peak currents of 24 mA. Linearity was obtained with a tapered bleeder chain at a tolerable loss of gain. The serial test of altogether 140 photomultipliers revealed the close correlation between single electron and amplitude resolution. The influence of the photoelectron statistics on this correlation is discussed.
Hirschfeld, Tomas B.
1985-01-01
Method and apparatus are provided for measuring temperature and for generating optical signals related to temperature. Light from a fiber optic is directed to a material whose fluorescent response varies with ambient temperature. The same fiber optic delivering the excitation beam also collects a portion of the fluorescent emission for analysis. Signal collection efficiency of the fiber optic is enhanced by requiring that the fluorescent probe material be in the shape of an oblong parabolically tapered solid. Reproducibility is enhanced by using Raman backscatter to monitor excitation beam fluctuations, and by using measurements of fluorescence lifetime.
Catalog of Window Taper Functions for Sidelobe Control
DOE Office of Scientific and Technical Information (OSTI.GOV)
Doerry, Armin W.
Window taper functions of finite apertures are well-known to control undesirable sidelobes, albeit with performance trades. A plethora of various taper functions have been developed over the years to achieve various optimizations. We herein catalog a number of window functions, and com pare principal characteristics.
Optically driven self-oscillations of a silica nanospike at low gas pressures
NASA Astrophysics Data System (ADS)
Xie, Shangran; Pennetta, Riccardo; Noskov, Roman E.; Russell, Philip St. J.
2016-09-01
We report light-driven instability and optomechanical self-oscillation of a fused silica "nanospike" at low gas pressures. The nanospike (tip diameter 400 nm), fabricated by thermally tapering and HF-etching a single mode fiber (SMF), was set pointing at the endface of a hollow-core photonic crystal fiber (HC-PCF) into the field created by the fundamental optical mode emerging from the HC-PCF. At low pressures, the nanospike became unstable and began to self-oscillate for optical powers above a certain threshold, acting like a phonon laser or "phaser". Because the nanospike is robustly connected to the base, direct measurement of the temporal dynamics of the instability is possible. The experiment sheds light on why particles escape from optical traps at low pressures.
Nanowire-based single-cell endoscopy
NASA Astrophysics Data System (ADS)
Yan, Ruoxue; Park, Ji-Ho; Choi, Yeonho; Heo, Chul-Joon; Yang, Seung-Man; Lee, Luke P.; Yang, Peidong
2012-03-01
One-dimensional smart probes based on nanowires and nanotubes that can safely penetrate the plasma membrane and enter biological cells are potentially useful in high-resolution and high-throughput gene and drug delivery, biosensing and single-cell electrophysiology. However, using such probes for optical communication across the cellular membrane at the subwavelength level remains limited. Here, we show that a nanowire waveguide attached to the tapered tip of an optical fibre can guide visible light into intracellular compartments of a living mammalian cell, and can also detect optical signals from subcellular regions with high spatial resolution. Furthermore, we show that through light-activated mechanisms the endoscope can deliver payloads into cells with spatial and temporal specificity. Moreover, insertion of the endoscope into cells and illumination of the guided laser did not induce any significant toxicity in the cells.
Alovisi, M; Cemenasco, A; Mancini, L; Paolino, D; Scotti, N; Bianchi, C C; Pasqualini, D
2017-04-01
To evaluate the ability of ProGlider instruments, PathFiles and K-files to maintain canal anatomy during glide path preparation using X-ray computed micro-tomography (micro-CT). Forty-five extracted maxillary first permanent molars were selected. Mesio-buccal canals were randomly assigned (n = 15) to manual K-file, PathFile or ProGlider groups for glide path preparation. Irrigation was achieved with 5% NaOCl and 10% EDTA. After glide path preparation, each canal was shaped with ProTaper Next X1 and X2 to working length. Specimens were scanned (isotropic voxel size 9.1 μm) for matching volumes and surface areas and post-treatment analyses. Canal volume, surface area, centroid shift, canal geometry variation through ratio of diameter ratios and ratio of cross-sectional areas were assessed in the apical and coronal levels and at the point of maximum canal curvature. One-way factorial anovas were used to evaluate the significance of instrument in the various canal regions. Post-glide path analysis revealed that instrument factor was significant at the apical level for both the ratio of diameter ratios and the ratio of cross-sectional areas (P < 0.001), with an improved maintenance of root canal geometry by ProGlider and PathFile. At the coronal level and point of maximum canal curvature, ProGlider demonstrated a tendency to pre-flare the root canal compared with K-file and PathFile. PathFile and ProGlider demonstrated a significantly lower centroid shift compared with K-file at the apical level (P = 0.023). Post-shaping analysis demonstrated a more centred preparation of ProGlider, compared with PathFile and K-files, with no significant differences for other parameters. Use of ProGlider instruments led to less canal transportation than PathFiles and K-files. © 2016 International Endodontic Journal. Published by John Wiley & Sons Ltd.
Imaging characteristics of cervical spine extra-arachnoid fluid collections managed conservatively.
Lawrence, David A; Trotta, Brian; Shen, Francis H; Druzgal, Jason T; Fox, Michael G
2016-09-01
Determine the MRI characteristics of large post-traumatic cervical spine extra-arachnoid collections managed conservatively in clinically stable patients and whether evidence of clinical or imaging deterioration materialized. Following IRB approval, we conducted a retrospective search for all patients (>16 years old) over a 17-months period who had an extra-arachnoid fluid collection reported on a post-traumatic cervical spine MRI. Patients were excluded if they had surgery for an unstable fracture (n = 21), emergent decompression (n = 1) or lacked a follow-up MRI within 15 days (n = 1). Two MSK radiologists recorded the size, morphology and MRI signal characteristics of the collections. Eight patients (5 male, 3 female) met the inclusion criteria (mean age 40 years; range 19-78 years). Seven of the eight patients had fluid collections that demonstrated thin, tapered margins, extended >7 vertebral bodies and involved >180 degrees of the spinal canal. The signal characteristics of these collections varied: hyper-T1/iso-T2 (n = 1), iso-T1/T2 (n = 3), hyper-T1/hypo-T2 (n = 3) and mixed-T1/T2 (n = 1). Six of seven collections were ventral. Follow-up MRI demonstrated resolution/significant decrease in size (n = 4 between 1 and 12 days) or no change/slight decrease in size (n = 3; between 2 and 11 days). None of the seven fluid collections enlarged, no patient had abnormal cord signal, and no patient's neurologic symptoms worsened. One of eight patients had a dorsal "mass-like" collection that was slightly smaller 9 days later. In stable patients with large, tapered post-traumatic cervical spine extra-arachnoid collections managed non-surgically, none developed (1) clinical worsening, (2) abnormal cord signal or (3) collection enlargement, regardless of the collection's signal characteristics.
77 FR 12326 - Tapered Roller Bearings From China; Scheduling of a Full Five-Year Review
Federal Register 2010, 2011, 2012, 2013, 2014
2012-02-29
... INTERNATIONAL TRADE COMMISSION [Investigation No. 731-TA-344 (Third Review)] Tapered Roller Bearings From China; Scheduling of a Full Five- Year Review AGENCY: United States International Trade... whether revocation of the antidumping duty order on tapered roller bearings from China would be likely to...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-08-01
... DEPARTMENT OF COMMERCE International Trade Administration [A-570-601] Tapered Roller Bearings and... new shipper review (``NSR'') of the antidumping duty order on tapered roller bearings (``TRBs'') from... from Zhejiang Zhengda Bearing Co., Ltd. (``Zhejiang Zhengda''). Zhejiang Zhengda's request was made in...
Polymer optical fiber tapering using hot water
NASA Astrophysics Data System (ADS)
Mizuno, Yosuke; Ujihara, Hiroki; Lee, Heeyoung; Hayashi, Neisei; Nakamura, Kentaro
2017-06-01
We perform a pilot trial of highly convenient taper fabrication for polymer optical fibers (POFs) using hot water. A ∼380-mm-long POF taper is successfully fabricated, and its ∼150-mm-long waist has a uniform outer diameter of ∼230 µm. The shape is in good agreement with the theoretical prediction. The optical loss dependence on the strain applied to the waist shows an interesting behavior exhibiting three regimes, the origins of which are inferred by microscopic observations. We then discuss the controllability of the taper length.
Free torsional vibrations of tapered cantilever I-beams
NASA Astrophysics Data System (ADS)
Rao, C. Kameswara; Mirza, S.
1988-08-01
Torsional vibration characteristics of linearly tapered cantilever I-beams have been studied by using the Galerkin finite element method. A third degree polynomial is assumed for the angle of twist. The analysis presented is valid for long beams and includes the effect of warping. The individual as well as combined effects of linear tapers in the width of the flanges and the depth of the web on the torsional vibration of cantilever I-beams are investigated. Numerical results generated for various values of taper ratios are presented in graphical form.
CORROSION RESISTANT JACKETED METAL BODY
Brugmann, E.W.
1958-08-26
Jacketed metal bodies of the type used as fuel elements for nuclear reactors, which contain an internal elongated body of fissionable material jacketed in a corrosion resistant metal are described. The ends of the internal bodies are provided with screw threads having a tapered outer end. The jacket material overlaps the ends and extends into the tapered section of the screw threaded opening. Screw caps with a mating tapered section are screwed into the ends of the body to compress the jacket material in the tapered sections to provtde an effective seal against corrosive gases and liquids.
Racetrack resonator as a loss measurement platform for photonic components.
Jones, Adam M; DeRose, Christopher T; Lentine, Anthony L; Starbuck, Andrew; Pomerene, Andrew T S; Norwood, Robert A
2015-11-02
This work represents the first complete analysis of the use of a racetrack resonator to measure the insertion loss of efficient, compact photonic components. Beginning with an in-depth analysis of potential error sources and a discussion of the calibration procedure, the technique is used to estimate the insertion loss of waveguide width tapers of varying geometry with a resulting 95% confidence interval of 0.007 dB. The work concludes with a performance comparison of the analyzed tapers with results presented for four taper profiles and three taper lengths.
Vaughn, Norman L.; Lowden, Richard A.
2003-04-15
The non-lead hollow point bullet of the instant invention comprises a mixed construction slug further comprising, a monolithic metal insert having a tapered (preferred conical) hollow point tip and a tapered (preferred conical) tail protrusion, and an unsintered powdered metal composite core in tandem alignment with the insert. The core has a hollow tapered (preferred conical) cavity tip portion coupled with the tapered (preferred conical) tail protrusion on the insert. An open tip jacket envelops at least a portion of the insert and the core. The jacket is swaged at the open tip.
Twist-induced tuning in tapered fiber couplers.
Birks, T A
1989-10-01
The power-splitting ratio of fused tapered single-mode fiber couplers can be reversibly tuned by axial twisting without affecting loss. The twist-tuning behavior of a range of different tapered couplers is described. A simple expression for twist-tuning can be derived by representing the effects of twist by a change in the refractive index profile. Good agreement between this expression and experimental results is demonstrated. Repeated tuning over tens of thousands of cycles is found not to degrade coupler performance, and a number of practical applications, including a freely tunable tapered coupler, are described.
Racetrack resonator as a loss measurement platform for photonic components
Jones, Adam M.; Univ. of Arizona, Tucson, AZ; DeRose, Christopher T.; ...
2015-10-27
This work represents the first complete analysis of the use of a racetrack resonator to measure the insertion loss of efficient, compact photonic components. Beginning with an in-depth analysis of potential error sources and a discussion of the calibration procedure, the technique is used to estimate the insertion loss of waveguide width tapers of varying geometry with a resulting 95% confidence interval of 0.007 dB. Furthermore, the work concludes with a performance comparison of the analyzed tapers with results presented for four taper profiles and three taper lengths.
Fretting-corrosion at the modular tapers interface: Inspection of standard ASTM F1875-98.
Bingley, Rachel; Martin, Alan; Manfredi, Olivia; Nejadhamzeeigilani, Mahdiyar; Oladokun, Abimbola; Beadling, Andrew Robert; Siddiqui, Sohail; Anderson, James; Thompson, Jonathan; Neville, Anne; Bryant, Michael
2018-05-01
Interest in the degradation mechanisms at the modular tapers interfaces has been renewed due to increased reported cases of adverse reactions to metal debris and the appearance of wear and corrosion at the modular tapers interfaces at revision. Over the past two decades, a lot of research has been expended to understand the degradation mechanisms, with two primary implant loading procedures and orientations used consistently across the literature. ASTM F1875-98 is often used as a guide to understand and benchmark the tribocorrosion processes occurring within the modular tapers interface. This article presents a comparison of the two methods outlined in ASTM F1875-98 as well as a critique of the standard considering the current paradigm in pre-clinical assessment of modular tapers.
NASA Astrophysics Data System (ADS)
Grobnic, D.; Mihailov, S. J.; Ding, H.; Bilodeau, F.; Smelser, C. W.
2006-05-01
Multimode sapphire fibre Bragg gratings (SFBG) made with an ultrafast Ti:sapphire 800 nm laser and a phase mask were probed using a tapered single mode fibre of different taper diameters to produce single and low order mode reflection/transmission responses. A configuration made of an input single mode tapered fibre and multimode silica fibre used for output coupling was also tested and has delivered a filtered multimode transmission spectrum. The tapered coupling improved the spectral resolution of the SFBG. Such improvements facilitate the utilization of the SFBG as a high temperature sensor. Wavelength shifts of the single mode response were monitored as a function of temperature up to 1500 °C with no detectable degradation in the grating strength or hysteresis in the Bragg resonance.
Buckling analysis of non-prismatic columns based on modified vibration modes
NASA Astrophysics Data System (ADS)
Rahai, A. R.; Kazemi, S.
2008-10-01
In this paper, a new procedure is formulated for the buckling analysis of tapered column members. The calculation of the buckling loads was carried out by using modified vibrational mode shape (MVM) and energy method. The change of stiffness within a column is characterized by introducing a tapering index. It is shown that, the changes in the vibrational mode shapes of a tapered column can be represented by considering a linear combination of various modes of uniform-section columns. As a result, by making use of these modified mode shapes (MVM) and applying the principle of stationary total potential energy, the buckling load of tapered columns can be obtained. Several numerical examples on tapered columns demonstrate the accuracy and efficiency of the proposed analytical method.
Implementation of rectangular slit-inserted ultra-wideband tapered slot antenna.
Kim, Sun-Woong; Choi, Dong-You
2016-01-01
In this paper, a tapered slot antenna capable of ultra-wideband communication was designed. In the proposed antenna, rectangular slits were inserted to enhance the bandwidth and reduce the area of the antenna. The rectangular slit-inserted tapered slot antenna operated at a bandwidth of 8.45 GHz, and the bandwidth improved upon the basic tapered slot antenna by 4.72 GHz. The radiation pattern of the antenna was suitable for location recognition in a certain direction owing to an appropriate 3 dB beam width. The antenna gain was analyzed within the proposed bandwidth, and the highest gain characteristic at 7.55 dBi was exhibited at a 5-GHz band. The simulation and measurement results of the proposed tapered slot antenna were similar.
Tapered fiber Mach-Zehnder interferometers for vibration and elasticity sensing applications.
Chen, Nan-Kuang; Hsieh, Yu-Hsin; Lee, Yi-Kun
2013-05-06
We demonstrate the optical measurements of heart-beat pulse rate and also elasticity of a polymeric tube, using a tapered fiber Mach-Zehnder interferometer. This device has two abrupt tapers in the Er/Yb codoped fiber and thus fractional amount of core mode is converted into cladding modes at the first abrupt taper. The core and cladding modes propagate through different optical paths and meet again at the second abrupt taper to produce interferences. The mechanical vibration signals generated by the blood vessels and by an inflated polymeric tube can perturb the optical paths of resonant modes to move around the resonant wavelengths. Thus, the cw laser signal is modulated to become pulses to reflect the heart-beat pulse rate and the elasticity of a polymeric tube, respectively.
NASA Astrophysics Data System (ADS)
Zhang, Yang; Yu, Da-Peng
2009-08-01
Tapered dielectric structures in metal have exhibited extraordinary performance in both surface plasmon polariton (SPP) waveguiding and SPP focusing. This is crucial to plasmonic research and industrial plasmonic device integration. We present a method that facilitates easy fabrication of smooth-surfaced sub-micron tapered structures in large scale simply with electron beam lithography (EBL). When a PMMA layer is spin-coated on previously-EBL-defined PMMA structures, steep edges can be transformed into a declining slope to form tapered PMMA structures, scaled from 10 nm to 1000 nm. Despite the simplicity of our method, patterns with PMMA surface smoothness can be well-positioned and replicated in large numbers, which therefore gives scientists easy access to research on the properties of tapered structures.
Yin, Xingzhe; Cheung, Gary Shun-Pan; Zhang, Chengfei; Masuda, Yoshiko Murakami; Kimura, Yuichi; Matsumoto, Koukichi
2010-04-01
The purpose of this study was to assess the efficacy of instrumentation of C-shaped canals with ProTaper rotary system and traditional instruments by using micro-computed tomography (micro-CT). Twenty-four mandibular molars with C-shaped canals were selected in pairs and sorted equally into 2 groups, which were assigned for instrumentation by ProTaper rotary system (ProTaper group) or by K-files and Gates-Glidden burs (Hand Instrument group). Three-dimensional images were constructed by micro-CT. The volume of dentin removed, uninstrumented canal area, time taken for instrumentation, and iatrogenic error of instrumentation were investigated. Hand Instrument group showed greater amount of volumetric dentin removal and left less uninstrumented canal area than ProTaper group (P < .01). The time needed for instrumentation was shorter for ProTaper group than for Hand Instrument group (P < .05). No instrument breakage occurred in both groups, but more conspicuous procedural errors were detected in Hand Instrument group than for ProTaper group. It was concluded that ProTaper rotary system maintained the canal curvature with speediness and few procedural errors, whereas traditional instrumentation can clean more canal surface. Copyright (c) 2010 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.
Wang, Qi; Li, Chunyue; Zhao, Chengwu; Li, Weizheng
2016-01-01
A cascaded symmetrical dual-taper Mach-Zehnder interferometer structure based on guided-mode and leaky-mode interference is proposed in this paper. Firstly, the interference spectrum characteristics of interferometer has been analyzed by the Finite Difference-Beam Propagation Method (FD-BPM). When the diameter of taper waist is 20 μm–30 μm, dual-taper length is 1 mm and taper distance is 4 cm–6 cm, the spectral contrast is higher, which is suitable for sensing. Secondly, experimental research on refractive index sensitivity is carried out. A refractive index sensitivity of 62.78 nm/RIU (refractive index unit) can achieved in the RI range of 1.3333–1.3792 (0%~25% NaCl solution), when the sensor structure parameters meet the following conditions: diameter of taper waist is 24 μm, dual-taper length is 837 μm and taper distance is 5.5 cm. The spectrum contrast is 0.8 and measurement resolution is 1.6 × 10−5 RIU. The simulation analysis is highly consistent with experimental results. Research shows that the sensor has promising application in low RI fields where high-precision measurement is required due to its high sensitivity and stability. PMID:27258281
Gupta, Priyanka; Sharma, Amil; Pathak, Vivek K; Mankeliya, Saurabh; Bhardwaj, Shivanshu; Dhanare, Poorvasha
2017-12-01
Post and core restorations are routinely used for restoring grossly decayed tooth structures. Various chemical agents are known to affect the interfacial adhesions between the post and the core. Hence, we planned the present study to evaluate the effect of various post-surface treatments on the interfacial strength between the posts and composite materials that are used for building up the core portion. The present study included assessment of the effect of surface conditioning of posts on the interfacial adhesion in post-core restorations. A total of 80 clear post-tapers were included and were divided broadly into four study groups based on the type of chemical testing protocols used. Various chemical treatments included alkaline potassium permanganate, hydrogen peroxide, and phosphoric acid. The fourth group was the control group. The composite core material was used for building up the core. Testing of the tensile load was done on a universal testing machine. All the results were analyzed by the Statistical Package for the Social Sciences (SPSS) software. The highest bond strength was observed in the study group treated with alkaline potassium permanganate, while the lowest was observed in the control group followed by the hydrogen peroxide group. While comparing the mean bond strength in between various study groups, significant results were obtained. Chemical treatment protocol significantly alters the mean bond strength of the post and core restoration. Potassium permanganate significantly increases the bond strength between the fiber post and core restoration.
Cunningham, Julie L; Evans, Michele M; King, Susan M; Gehin, Jessica M; Loukianova, Larissa L
2016-09-01
Despite current guideline recommendations against the use of opioids for the treatment of fibromyalgia pain, opioid use is reported in approximately 30% of the patient population. There is a lack of information describing the process and results of tapering of chronic opioids. The purpose of this study is to describe opioid tapering and withdrawal symptoms in fibromyalgia patients on opioids. This retrospective research study included a baseline analysis of 159 patients consecutively admitted to the Mayo Clinic Pain Rehabilitation Center from 2006 through 2012 with a pain diagnosis of fibromyalgia completing a 3-week outpatient interdisciplinary pain rehabilitation program. Opioid tapering analysis included 55 (35%) patients using daily opioids. Opioid tapering was individualized to each patient based on interdisciplinary pain rehabilitation team determination. Opioid withdrawal symptoms were assessed daily, utilizing the Clinical Opioid Withdrawal Scale. Patients taking daily opioids had a morphine equivalent mean dose of 99 mg/day. Patients on < 100 mg/day were tapered off over a mean of 10 days compared with patients on > 200 mg/day over a mean of 28 days (P < 0.001). Differences in peak withdrawal symptoms were not statistically significant based on the mean equivalent dose (P = 22). Patients taking opioids for <2 years did not differ in length of tapering (P =0.63) or peak COWS score (P =0.80) compared with >2 years duration. Patients had significant improvements in pain-related measures including numeric pain scores, depression catastrophizing, health perception, interference with life, and perceived life control at program completion. Fibromyalgia patients on higher doses of opioids were tapered off over a longer period of time but no differences in withdrawal symptoms were seen based on opioid dose. Duration of opioid use did not affect the time to complete opioid taper or withdrawal symptoms. Despite opioid tapering, pain-related measures improved at the completion of the rehabilitation program. © 2016 American Academy of Pain Medicine. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Zamboni, Sandra C; Baldissara, Paolo; Pelogia, Fernanda; Bottino, Marco Antonio; Scotti, Roberto; Valandro, Luiz Felipe
2008-01-01
This study evaluated the effect of post surface conditioning on the fatigue resistance of bovine teeth restored with resin-bonded fiber-reinforced composite (FRC). Root canals of 20 single-rooted bovine teeth (16 mm long) were prepared to 12 mm using a preparation drill of a double-tapered fiber post system. Using acrylic resin, each specimen was embedded (up to 3.0 mm from the cervical part of the specimen) in a PVC cylinder and allocated into one of two groups (n = 10) based on the post surface conditioning method: acid etching plus silanization or tribochemical silica coating (30 pm SiO(x) + silanization). The root canal dentin was etched (H2PO3 for 30 seconds), rinsed, and dried. A multi-step adhesive system was applied to the root dentin and the fiber posts were cemented with resin cement. The specimens were submitted to one million fatigue cycles. After fatigue testing, a score was given based on the number of fatigue cycles until fracture. All of the specimens were resistant to fatigue. No fracture of the root or the post and no loss of retention of the post were observed. The methodology and the results of this study indicate that tribochemical silica coating and acid etching performed equally well when dynamic mechanical loading was used.
Peters, O A; Gluskin, A K; Weiss, R A; Han, J T
2012-11-01
To determine several properties including torsional and fatigue limits, as well as torque during canal preparation, of Hyflex, a rotary instrument manufactured from so-called controlled memory nickel-titanium alloy. The instruments were tested in vitro using a special torque bench that permits both stationary torque tests according to ISO3630-1 and fatigue limit determination, as well as measurement of torque (in Ncm) and apical force (in N) during canal preparation. Fatigue limit (in numbers of cycles to failure) was determined in a 90°, 5 mm radius block-and-rod assembly. Simulated canals in plastic blocks were prepared using both a manufacturer-recommended single-length technique as well as a generic crown-down approach. anova with Bonferroni post hoc procedures was used for statistical analysis. Torque at failure ranged from 0.47 to 1.38 Ncm, with significant differences between instrument sizes (P < 0.0001). Fatigue life ranged from 260 to 2565, with the shortest and longest lifespan for instruments size 20, .04 taper and size 25, .08 taper, respectively. Torque during canal preparation was significantly higher for small instruments used in the single-length technique but lower for the size 40, .04 taper, compared to a crown-down approach. No instrument fractured; 82% of the instruments used were plastically deformed; however, only 37% of these remained deformed after a sterilization cycle. Hyflex rotary instruments are bendable and flexible and have similar torsional resistance compared to instruments made of conventional NiTi. Fatigue resistance is much higher, and torque during preparation is less, compared to other rotary instruments tested previously under similar conditions. © 2012 International Endodontic Journal.
Musale, P K; Mujawar, S A V
2014-04-01
This in vitro study aimed to evaluate the efficacy of rotary ProFile, ProTaper, Hero Shaper and K-files in shaping ability, cleaning efficacy, preparation time and instrument distortion in primary molars. Sixty extracted primary mandibular second molars were divided into four equal groups: Group I K-file, Group II ProFile, Group III ProTaper file and Group IV Hero Shaper file. The shaping ability was determined by comparing pre- and post-instrumentation CBCT scans and data analysed with SPSS program using the Chi-square test. Cleaning efficacy was evaluated by the degree of India ink removal from the canal walls under stereomicroscopy. Instrumentation times were calculated for each tooth and instrument distortion was visually checked and duly noted. The cleaning efficacy and instrumentation time were determined using ANOVA with Tukey's correction. Instrument distortion was analysed using Chi-square test. The canal taper was significantly more conical for rotary files as compared to K-files with Chi-square test (p < 0.05). Cleaning efficacy of rotary files with average scores (Groups II- 0.68, III- 0.48 and IV- 0.58) was significantly better than K-files (Group I- 0.93) (p < 0.05). Mean instrumentation time with K-file (20.7 min) was significantly higher than rotary files (Groups II 8.9, III 5.6, and IV 8.1 min) (p < 0.05). Instrument distortion was observed in Group I (4.3%), while none of the rotary files were distorted. Rotary files prepared more conical canals in primary teeth than manual instruments. Reduced preparation time with rotary files enhances patient cooperation especially in young children.
Salivary Biomarkers and Training Load during Training and Competition in Paralympic Swimmers.
Sinnott-O'Connor, Ciara; Comyns, Tom; Nevill, Alan M; Warrington, Giles
2017-11-28
Stress responses in athletes can be attributed to training and also competition, where increased physiological and psychological stress may negatively impact on performance and recovery. The aim of this study was to examine the relationship between training load and salivary biomarkers IgA, alpha-amylase (AA) and cortisol across a 16-week preparation phase and 10-day competition phase in Paralympic swimmers. Four Paralympic swimmers provided bi-weekly saliva samples during three training phases - 1) normal training, 2) intensified training and 3) taper as well as daily saliva samples in the 10 day Paralympic competition (2016 Paralympic Games). Training load (TL) was measured using session-RPE. Multi-level analysis identified a significant increase in sIgA (94.98 (27.69) μg.ml -1 ), sAA (45.78 (19.07) μg.ml -1 ) and salivary cortisol (7.92 (2.17) ng.ml) during intensified training concurrent with a 38.3% increase in TL. During taper phase, a 49.5% decrease in TL from the intensified training phase resulted in decrease in sIgA, sAA and salivary cortisol; however, all three remained higher than baseline levels. A further significant increase was observed during competition in sIgA (168.69(24.19) μg.ml -1 ), sAA (35.86(16.67) μg.ml -1 ) and salivary cortisol (10.49(1.89) ng.ml) despite a continued decrease (77.8%) in TL from taper phase. Results demonstrate performance in major competition such as Paralympic Games despite a noticeable reduction in TL induces a stress response in athletes. Due to elevated stress response observed, modifications to individual post-race recovery protocols may be required to enable athletes to maximise performance across all ten days of competition.
The Effects of Torsional Preloading on the Torsional Resistance of Nickel-titanium Instruments.
Oh, Seung-Hei; Ha, Jung-Hong; Kwak, Sang Won; Ahn, Shin Wook; Lee, WooCheol; Kim, Hyeon-Cheol
2017-01-01
This study evaluated the effect of torsional preloading on the torsional resistance of nickel-titanium (NiTi) endodontic instruments. WaveOne Primary (Dentsply Maillefer, Ballaigues, Switzerland) and ProTaper Universal F2 (Dentsply Maillefer) files were used. The ultimate torsional strength until fracture was determined for each instrument. In the phase 1 experiment, the ProTaper and WaveOne files were loaded to have a maximum load from 2.0 up to 2.7 or 2.8 Ncm, respectively. In the phase 2 experiment, the number of repetitions of preloading for each file was increased from 50 to 200, whereas the preloading torque was fixed at 2.4 Ncm. Using torsionally preloaded specimens from phase 1 and 2, the torsional resistances were calculated to determine the ultimate strength, distortion angle, and toughness. The results were analyzed using 1-way analysis of variance and Duncan post hoc comparison. The fracture surfaces and longitudinal aspect of 5 specimens per group were examined under a scanning electron microscope. All preloaded groups showed significantly higher ultimate strength than the unpreloaded groups (P < .05). There was no significant difference among all groups for distortion angle and toughness. Although WaveOne had no significant difference between the repetition groups for ultimate strength, fracture angle, and toughness, ProTaper had a higher distortion angle and toughness in the 50-repetition group compared with the other repetition groups (P < .05). Scanning electron microscopic examinations of the fractured surface showed typical features of torsional fracture. Torsional preloading within the ultimate values could enhance the torsional strength of NiTi instruments. The total energy until fracture was maintained constantly, regardless of the alloy type. Copyright © 2016 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.
Kuszak, J R; Mazurkiewicz, M; Jison, L; Madurski, A; Ngando, A; Zoltoski, R K
2006-01-01
The results of a recent study on accommodation in humans and baboons has revealed that lens fiber structure and organization are key components of the mechanism of accommodation. Dynamic focusing involves the controlled displacement and replacement, or realignment, of cortical fiber-ends at sutures as the mechanism of accommodation at the fiber level. This emended explanation of the mechanism of accommodation raises the following question: as the structure of crystalline lenses are only similar, not identical between species, is accommodative amplitude related to differences in the structure and organization of fibers between species? To address this question, we have quantitatively examined the structure and organization of fibers in a number of the more commonly used animal models (mice, cattle, frogs, rabbits and chickens) for lens research. Lenses (a minimum of 12-18 lenses/species) from mice, cattle, frogs and rabbits were used for this study. Prior to fixation for structural analysis, measurements of the gross shape of the lenses (equatorial diameter, anterior and posterior minor radii [anterior + posterior minor radius = polar axis]) were taken directly through a stereo surgical dissecting microscope equipped with an ocular reticle. Lenses were then prepared for and examined by light (LM), transmission (TEM) and scanning electron microscopy (SEM). Scale computer-assisted drawings (CADs) of lenses and lens fibers were then constructed from quantitative data as described above and from quantitative data contained in micrographs. The differences in fiber structure and organization that effect accommodative range arise early in development and are continued throughout lifelong lens growth. In umbilical suture lenses (avian) secondary fibers develop with almost completely tapered anterior ends (85-90% reduction of their measures of width and thickness at the equator). By comparison, in lenses with line sutures (e.g. frogs and rabbits) secondary fibers develop with just a 50-60% reduction in anterior fiber taper. In lenses with Y sutures (mice and cattle), fiber width taper is only 25-40%. However, in all cases, while the taper of the posterior end width of fibers is just slightly less (approx. 15-20%) than that of anterior ends, posterior end thickness is only reduced by one half that of anterior thickness. In humans, the mechanism of accommodation at the fiber level involves the controlled realignment of very flattened and flared, rather than tapered fiber-ends at sutures. In this manner, the simultaneous increase in lens thickness and surface curvature in the accommodated state is the result of fiber-ends being overlapped along multiple (9-12) suture branches covering the majority of the anterior and posterior surfaces. The results of this animal study strongly suggest that accommodative range is directly related to quantitative differences in fiber structure and organization in the different suture types. The very broad accommodative range in birds is made possible, at least in part, by the almost complete tapering of fiber-ends at umbilical sutures. In contrast, the essentially negligible accommodative range of animals that have line- and Y-suture lenses is at least partially the result of the fact that these lenses have fibers with very little end taper. Thus, the blunt ends of fibers in line- and Y-suture lenses precludes any significant overlap of end segments to effect accommodation.
Grant, Tanner W; Lovro, Luke R; Licini, David J; Warth, Lucian C; Ziemba-Davis, Mary; Meneghini, Robert M
2017-03-01
Femoral component stability and resistance to subsidence is critical for osseointegration and clinical success in cementless total hip arthroplasty. The purpose of this study was to radiographically evaluate the anatomic fit and subsidence of 2 different proximally tapered, porous-coated modern cementless femoral component designs. A retrospective cohort study of 126 consecutive cementless total hip arthroplasties was performed. Traditional fit-and-fill stems were implanted in the first 61 hips with the remaining 65 receiving morphometric tapered wedge stems. Preoperative bone morphology was radiographically assessed by the canal flare index. Canal fill in the coronal plane, subsidence, and the sagittal alignment of stems was measured digitally on immediate and 1-month postoperative radiographs. Demographics and canal flare indices were similar between groups. The percentage of femoral canal fill was greater in the tapered wedge compared to the fit-and-fill stem (P = .001). There was significantly less subsidence in the tapered wedge design (0.3 mm) compared to the fit-and-fill design (1.1 mm) (P = .001). Subsidence significantly increased as body mass index (BMI) increased in the fit-and-fill stems, a finding not observed in the tapered wedge design (P = .013). An anatomically designed morphometric tapered wedge femoral stem demonstrated greater axial stability and decreased subsidence with increasing BMI than a traditional fit-and-fill stem. The resistance to subsidence, irrespective of BMI, is likely due to the inherent axial stability of a tapered wedge design and may be the optimal stem design for obese patients. Copyright © 2016 Elsevier Inc. All rights reserved.
Bowton, David L; Hite, R Duncan; Martin, R Shayn; Sherertz, Robert
2013-10-01
Aspiration of colonized oropharyngeal secretions is a major factor in the pathogenesis of ventilator-associated pneumonia (VAP). A tapered-cuff endotracheal tube (ETT) has been demonstrated to reduce aspiration around the cuff. Whether these properties are efficacious in reducing VAP is not known. This 2-period, investigator-initiated observational study was designed to assess the efficacy of a tapered-cuff ETT to reduce the VAP rate. All intubated, mechanically ventilated patients over the age of 18 were included. During the baseline period a standard, barrel-shaped-cuff ETT (Mallinckrodt Hi-Lo) was used. All ETTs throughout the hospital were then replaced with a tapered-cuff ETT (TaperGuard). The primary outcome variable was the incidence of VAP per 1,000 ventilator days. We included 2,849 subjects, encompassing 15,250 ventilator days. The mean ± SD monthly VAP rate was 3.29 ± 1.79/1,000 ventilator days in the standard-cuff group and 2.77 ± 2.00/1,000 ventilator days in the tapered-cuff group (P = .65). While adherence to the VAP prevention bundle was high throughout the study, bundle adherence was significantly higher during the standard-cuff period (96.5 ± 2.7%) than in the tapered-cuff period (90.3 ± 3.5%, P = .01). In the setting of a VAP rate very near the average of ICUs in the United States, and where there was high adherence to a VAP prevention bundle, the use of a tapered-cuff ETT was not associated with a reduction in the VAP rate.
The effects of tapering on strength performance in trained athletes.
Gibala, M J; MacDougall, J D; Sale, D G
1994-11-01
The optimum pre-competition taper procedure for "strength athletes" is not known. We examined voluntary strength and evoked contractile properties of the elbow flexors over a 10 day rest only (ROT) and a 10 day reduced volume taper (RVT) in 8 resistance trained males (23 +/- 2.1 years). Following 3 wks of standardized training of the elbow flexors, subjects were randomly assigned to one of the tapers. Upon completion, they resumed training for 3 wks and completed the other taper. No arm training was performed during the ROT, while high intensity, low volume training was done every second day during the RVT. Maximum isometric (MVC), low (0.52 rad.s-1; LV) and high velocity (3.14 rad.s-1; HV) concentric peak torque, and evoked isometric twitch contractile properties were measured before and after each training phase and every 48 h during each taper. ANOVA comparison of the tapers revealed that MVC increased (p < or = 0.05) over pre-taper values throughout the RVT (measurement days 2, 4, 6, 8 and 10), as did LV at 2, 4, 6, and 8 d. MVC did not change over the ROT but LV was significantly higher on day 2 and lower on days 8 and 10. LV was also greater on days 4, 6, 8 and 10 during the RVT compared to the ROT. The evoked contractile properties remained largely unchanged. The data indicate that resistance-trained athletes can improve low velocity concentric strength for at least 8 days by greatly reducing training volume, but maintaining training intensity.
Arnholt, Christina M; MacDonald, Daniel W; Underwood, Richard J; Guyer, Eric P; Rimnac, Clare M; Kurtz, Steven M; Mont, Michael A; Klein, Gregg R; Lee, Gwo-Chin; Chen, Antonia F; Hamlin, Brian R; Cates, Harold E; Malkani, Arthur L; Kraay, Matthew J
2017-04-01
Previous studies identified imprinting of the stem morphology onto the interior head bore, leading researchers to hypothesize an influence of taper topography on mechanically assisted crevice corrosion. The purpose of this study was to analyze whether microgrooved stem tapers result in greater fretting corrosion damage than smooth stem tapers. A matched cohort of 120 retrieved head-stem pairs from metal-on-polyethylene bearings was created controlling for implantation time, flexural rigidity, apparent length of engagement, and head size. There were 2 groups of 60 heads each, mated with either smooth or microgrooved stem tapers. A high-precision roundness machine was used to measure and categorize the surface morphology. Fretting corrosion damage at the head-neck junction was characterized using the Higgs-Goldberg scoring method. Fourteen of the most damaged heads were analyzed for the maximum depth of material loss and focused ion beam cross-sectioned to view oxide and base metal. Fretting corrosion damage was not different between the 2 cohorts at the femoral head (P = .14, Mann-Whitney) or stem tapers (P = .35). There was no difference in the maximum depths of material loss between the cohorts (P = .71). Cross-sectioning revealed contact damage, signs of micro-motion, and chromium-rich oxide layers in both cohorts. Microgroove imprinting did not appear to have a different effect on the fretting corrosion behavior. The results of this matched cohort retrieval study do not support the hypothesis that taper surfaces with microgrooved stems exhibit increased in vivo fretting corrosion damage or material release. Copyright © 2016 Elsevier Inc. All rights reserved.
Thompson, A; Madan, N; Hesselink, J R; Weinstein, G; Munoz del Rio, A; Haughton, V
2016-04-01
The cause of syringomyelia in patients with Chiari I remains uncertain. Cervical spine anatomy modifies CSF velocities, flow patterns, and pressure gradients, which may affect the spinal cord. We tested the hypothesis that cervical spinal anatomy differs between Chiari I patients with and without syringomyelia. We identified consecutive patients with Chiari I at 3 institutions and divided them into groups with and without syringomyelia. Five readers measured anteroposterior cervical spinal diameters, tonsillar herniation, and syrinx dimensions on cervical MR images. Taper ratios for C1-C7, C1-C4, and C4-C7 spinal segments were calculated by linear least squares fitting to the appropriate spinal canal diameters. Mean taper ratios and tonsillar herniation for groups were compared and tested for statistical significance with a Kruskal-Wallis test. Inter- and intrareader agreement and correlations in the data were measured. One hundred fifty patients were included, of which 49 had syringomyelia. C1-C7 taper ratios were smaller and C4-C7 taper ratios greater for patients with syringomyelia than for those without it. C1-C4 taper ratios did not differ significantly between groups. Patients with syringomyelia had, on average, greater tonsillar herniation than those without a syrinx. However, C4-C7 taper ratios were steeper, for all degrees of tonsil herniation, in patients with syringomyelia. Differences among readers did not exceed differences among patient groups. The tapering of the lower cervical spine may contribute to the development of syringomyelia in patients with Chiari I. © 2016 by American Journal of Neuroradiology.
Dhingra, Anil; Kochar, Rohit; Banerjee, Satyabrat; Srivastava, Punit
2014-03-01
This study compared the canal curvature modifications after instrumentation with One Shape (Micro Mega) rotary file and Wave One primary reciprocating file (Dentsply Maillefer, Ballaigues, Switzerland). Thirty International Organization for Standardization 15, 0.02 taper, Endo Training Blocks (Dentsply Maillefer) were used. In all specimens working length (WL) was established at the reference point 0. Glide path was achieved with Path-File 1, 2 and 3 (Dentsply Maillefer) at the WL. Group 1 were shaped with One Shape file and group 2 with Wave One files. Pre and post-digital images were superimposed, processed with Corel draw Graphic Suite X5 (Corel Corporation, Ottawa, Canada), Adobe Photoshop CS3 (Adobe Systems Inc., San Jose, CA) and Solid works student Edition software (Dassault Systems Solid Works Corp, S.A., Velizy, France). Mean was more for Wave One compared with One Shape. One-way ANOVA and t-test showed a significant difference between One Shape and Wave One at 5% level of significance (P < 0.05). Canals prepared with Wave One file preserved canal shape, respected the anatomical shape of J-shaped canal and produced a continuously tapered funnel.
Tapering Practices of Strongman Athletes: Test-Retest Reliability Study
Pritchard, Hayden J; Keogh, Justin WL
2017-01-01
Background Little is currently known about the tapering practices of strongman athletes. We have developed an Internet-based comprehensive self-report questionnaire examining the training and tapering practices of strongman athletes. Objective The objective of this study was to document the test-retest reliability of questions associated with the Internet-based comprehensive self-report questionnaire on the tapering practices of strongman athletes. The information will provide insight on the reliability and usefulness of the online questionnaire for use with strongman athletes. Methods Invitations to complete an Internet questionnaire were sent via Facebook Messenger to identified strongman athletes. The survey consisted of four main areas of inquiry, including demographics and background information, training practices, tapering, and tapering practices. Of the 454 athletes that completed the survey over the 8-week period, 130 athletes responded on Facebook Messenger indicating that they intended to complete, or had completed, the survey. These participants were asked if they could complete the online questionnaire a second time for a test-retest reliability analysis. Sixty-four athletes (mean age 33.3 years, standard deviation [SD] 7.7; mean height 178.2 cm, SD 11.0; mean body mass 103.7 kg, SD 24.8) accepted this invitation and completed the survey for the second time after a minimum 7-day period from the date of their first completion. Agreement between athlete responses was measured using intraclass correlation coefficients (ICCs) and kappa statistics. Confidence intervals (at 95%) were reported for all measures and significance was set at P<.05. Results Test-retest reliability for demographic and training practices items were significant (P<.001) and showed excellent (ICC range=.84 to .98) and fair to almost perfect agreement (κ range=.37-.85). Moderate to excellent agreements (ICC range=.56-.84; P<.01) were observed for all tapering practice measures except for the number of days athletes started their usual taper before a strongman competition (ICC=.30). When the number of days were categorized with additional analyses, moderate reliability was observed (κ=.43; P<.001). Fair to substantial agreement was observed for the majority of tapering practices measures (κrange=.38-.73; P<.001) except for how training frequency (κ=.26) and the percentage and type of resistance training performed, which changed in the taper (κ=.20). Good to excellent agreement (ICC=.62-.93; P<.05) was observed for items relating to strongman events and traditional exercises performed during the taper. Only the time at which the Farmer’s Walk was last performed before competition showed poor reliability (ICC=.27). Conclusions We have developed a low cost, self-reported, online retrospective questionnaire, which provided stable and reliable answers for most of the demographic, training, and tapering practice questions. The results of this study support the inferences drawn from the Tapering Practices of Strongman Athletes Study. PMID:29089292
Federal Register 2010, 2011, 2012, 2013, 2014
2011-11-22
... INTERNATIONAL TRADE COMMISSION [Investigation No. 731-TA-344 (Third Review)] Tapered Roller Bearings From China; Notice of Commission determination To Conduct a Full Five-Year Review AGENCY: United...(c)(5)) to determine whether revocation of the antidumping duty order on tapered roller bearings from...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-07-30
... DEPARTMENT OF COMMERCE International Trade Administration [A-570-601] Tapered Roller Bearings and... Bearing Co., Ltd.'s (Tainai's) request for a new shipper review (NSR) of the antidumping duty order on tapered roller bearings and parts thereof, finished and unfinished (TRBs), from the People's Republic of...
A Volume and Taper Prediction System for Bald Cypress
Bernard R. Parresol; James E. Hotvedt; Quang V. Cao
1987-01-01
A volume and taper prediction system based on d10 and consisting of a total volume equation, two volume ratio equations (one for diameter limits, the other for height limits), and a taper equation was developed for bald cypress using sample tree data collected in Louisiana. Normal diameter (dn), a subjective variable-...
Akbulut, Makbule Bilge; Akman, Melek; Terlemez, Arslan; Magat, Guldane; Sener, Sevgi; Shetty, Heeresh
2016-01-01
The aim of this study was to evaluate the efficacy of Twisted File (TF) Adaptive, Reciproc, and ProTaper Universal Retreatment (UR) System instruments for removing root-canal-filling. Sixty single rooted teeth were decoronated, instrumented and obturated. Preoperative CBCT scans were taken and the teeth were retreated with TF Adaptive, Reciproc, ProTaper UR, or hand files (n=15). Then, the teeth were rescanned, and the percentage volume of the residual root-canal-filling material was established. The total time for retreatment was recorded, and the data was statistically analyzed. The statistical ranking of the residual filling material volume was as follows: hand file=TF Adaptive>ProTaper UR=Reciproc. The ProTaper UR and Reciproc systems required shorter periods of time for retreatment. Root canal filling was more efficiently removed by using Reciproc and ProTaper UR instruments than TF Adaptive instruments and hand files. The TF Adaptive system was advantageous over hand files with regard to operating time.
Aguiar, Carlos M; Câmara, Andréa C
2008-12-01
This study evaluated, by means of the radiography examination, the occurrence of deviations in the apical third of root canals shaped with hand and rotary instruments. Sixty mandibular human molars were divided into three groups. The root canals in group 1 were instrumented with ProTaper (Dentsply/Maillefer, Ballaigues, Switzerland) for hand use, group 2 with ProTaper and group 3 with RaCe. The images obtained by double superimposition of the pre- and postoperative radiographs were evaluated by two endodontists with the aid of a magnifier-viewer and a fivefold magnifier. Statistical analysis was performed using the Fisher-Freeman-Halton. The instrumentation using the ProTaper for hand use showed 25% of the canals with a deviation in the apical third, as did the ProTaper, while the corresponding figure for the RaCe (FKG Dentaire, La-Chaux-de-Fonds, Switzerland) was 20%, but these results were not statistically significant. There was no correlation between the occurrence of deviations in the apical third and the systems used.
Asheibi, Fatma; Qualtrough, Alison J E; Mellor, Anthony; Withers, Philip J; Lowe, Tristan
2014-01-01
This study compares the effectiveness of ProTaper rotary files with ProTaper retreatment and K-files in the removal of Resilon or gutta percha (GP) from canals filled either by cold lateral condensation or thermal obturation using micro-CT. Ninety-six teeth were prepared using ProTaper files and allocated into four groups (n=24): Group-1 was filled with GP/AH-Plus and Group-2 with Resilon/RealSeal using cold lateral condensation. Group-3 was filled with GP/AH-Plus and Group-4 with Resilon/RealSeal using System B and Obtura II. The roots were scanned by micro-CT. Each group was divided into two subgroups (n=12): A, retreated using ProTaper files and B, using ProTaper retreatment and K-files. The roots were scanned to calculate the volume of the remaining material. With thermal obturation, roots filled with Resilon had significantly more remaining material than GP. Obturation using thermal technique resulted in significantly less remaining material than cold condensation except Resilon retreated using ProTaper retreatment and K-files.
Flexural-torsional vibration of a tapered C-section beam
NASA Astrophysics Data System (ADS)
Dennis, Scott T.; Jones, Keith W.
2017-04-01
Previous studies have shown that numerical models of tapered thin-walled C-section beams based on a stepped or piecewise prismatic beam approximation are inaccurate regardless of the number of elements assumed in the discretization. Andrade recently addressed this problem by extending Vlasov beam theory to a tapered geometry resulting in new terms that vanish for the uniform beam. (See One-Dimensional Models for the Spatial Behaviour of Tapered Thin-Walled Bars with Open Cross-Sections: Static, Dynamic and Buckling Analyses, PhD Thesis, University of Coimbra, Portugal, 2012, https://estudogeral.sib.uc.pt) In this paper, we model the coupled bending-twisting vibration of a cantilevered tapered thin-walled C-section using a Galerkin approximation of Andrade's beam equations resulting in an 8-degree-of-freedom beam element. Experimental natural frequencies and mode shapes for 3 prismatic and 2 tapered channel beams are compared to model predictions. In addition, comparisons are made to detailed shell finite element models and exact solutions for the uniform beams to confirm the validity of the approach. Comparisons to the incorrect stepped model are also presented.
Multitaper spectral analysis of atmospheric radar signals
NASA Astrophysics Data System (ADS)
Anandan, V.; Pan, C.; Rajalakshmi, T.; Ramachandra Reddy, G.
2004-11-01
Multitaper spectral analysis using sinusoidal taper has been carried out on the backscattered signals received from the troposphere and lower stratosphere by the Gadanki Mesosphere-Stratosphere-Troposphere (MST) radar under various conditions of the signal-to-noise ratio. Comparison of study is made with sinusoidal taper of the order of three and single tapers of Hanning and rectangular tapers, to understand the relative merits of processing under the scheme. Power spectra plots show that echoes are better identified in the case of multitaper estimation, especially in the region of a weak signal-to-noise ratio. Further analysis is carried out to obtain three lower order moments from three estimation techniques. The results show that multitaper analysis gives a better signal-to-noise ratio or higher detectability. The spectral analysis through multitaper and single tapers is subjected to study of consistency in measurements. Results show that the multitaper estimate is better consistent in Doppler measurements compared to single taper estimates. Doppler width measurements with different approaches were studied and the results show that the estimation was better in the multitaper technique in terms of temporal resolution and estimation accuracy.
The shaping effects of three nickel-titanium rotary instruments in simulated S-shaped canals.
Yoshimine, Y; Ono, M; Akamine, A
2005-05-01
The purpose of this study was to compare the shaping effects of three nickel-titanium rotary instruments, ProTaper, K3, and RaCe, with emphasis on canal transportation. Simulated canals with an S-shaped curvature in clear resin blocks were prepared with a torque-control, low-speed engine. Canals were prepared using the crown-down technique to the size of #30. Canal aberrations were assessed by comparing the pre- and postinstrumentation images under a stereomicroscope. ProTaper instruments caused greater widening of canals compared to K3 or RaCe. Furthermore, ProTaper files showed a tendency to ledge or zip formation at the end-point of preparation. These canal aberrations may be caused by ProTaper finishing files, which appear to be less flexible than other files of the same tip-size, because of their greater taper-size. These results suggest that nickel-titanium file systems including less tapered, more flexible instruments, like K3 and RaCe should be used in the apical preparation of canals with a complicated curvature.
Correspondence between fiber post and drill dimensions for post canal preparation.
Portigliatti, Ricardo Pablo; Tumini, José Luis; Bertoldi Hepburn, Alejandro Daniel; Aromando, Romina Flavia; Olmos, Jorge Lorenzo
2017-12-01
To compare fiber posts of several calibers and trademarks to their corresponding root canal preparation drills. Three widely used endodontic post brands and their drills were evaluated: Exacto, ParaPost Taper Lux, and Macro-Lock Illusion X-RO. Fiber posts and drills were microphotographed with a scanning electron microscope and images were analyzed using ImageJ image processing software. Fiber post diameter on apical extreme (Pd0), fiber post diameter at 5 mm from the apical extreme (Pd5), drill diameter on apical extreme (Dd0) and drill diameter at 5 mm from the apical extreme (Dd5) were analyzed. The data were statistically analyzed using student t-test. Exacto posts 0.5 showed larger dimensions than their corresponding drills (P< 0.05) at Pd0. Macro-Lock posts showed no significant differences vs. their drills at Pd0 in any of the studied groups. ParaPost drills 4.5, 5 and 5.5 were statistically significantly larger than their posts at Dd0 (P< 0.05). Exacto posts 0.5 and 1 showed larger dimensions than their drills measured at Pd5 (P< 0.05). Exacto posts number 2 showed smaller calibers than their corresponding drills at Pd5 (P< 0.05). Macro-Lock drills number 4 and ParaPost drills number 5 were larger than their posts at Dd5 (P< 0.05). Poor spatial correspondence between post and drill dimensions can adversely affect the film thickness of the resin cement, diminishing bond strength due to polymerization shrinkage. The lack of correspondence in size between posts and drills may lead to the formation of empty chambers between the post and endodontic obturation with excessive luting cement thickness, thus inducing critical C-Factor stresses.
Gascoyne, Trevor C; Dyrkacz, Richard M; Turgeon, Thomas R; Burnell, Colin D; Wyss, Urs P; Brandt, Jan-M
2014-10-01
Eight retrieved metal-on-metal total hip replacements displayed corrosion damage along the cobalt-chromium alloy liner taper junction with the Ti alloy acetabular shell. Scanning electron microscopy indicated the primary mechanism of corrosion to be grain boundary and associated crevice corrosion, which was likely accelerated through mechanical micromotion and galvanic corrosion resulting from dissimilar alloys. Coordinate measurements revealed up to 4.3mm(3) of the cobalt-chromium alloy taper surface was removed due to corrosion, which is comparable to previous reports of corrosion damage on head-neck tapers. The acetabular liner-shell taper appears to be an additional source of metal corrosion products in modular total hip replacements. Patients with these prostheses should be closely monitored for signs of adverse reaction towards corrosion by-products. Copyright © 2014 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Grobnic, Dan; Mihailov, Stephen J.; Ding, H.; Bilodeau, F.; Smelser, Christopher W.
2005-05-01
Multimode sapphire fiber Bragg gratings (SFBG) made with an IR femtosecond laser and a phase mask were probed using tapered single mode fibers of different taper diameters producing single and low order mode reflection/transmission responses. A configuration made of an input single mode tapered fiber and multimode silica fiber used for output coupling was also tested and has delivered a filtered multimode transmission spectrum. The tapered coupling improved the spectral resolution of the SFBG as compared to its multimode responses previously reported. Such improvements facilitate the utilization of the SFBG as a high temperature sensor. Wavelength shifts of the single mode response were monitored as a function of temperature up to 1500 °C and were consistent with the measurement obtained from the multimode response published previously.
High pressure, high current, low inductance, high reliability sealed terminals
Hsu, John S [Oak Ridge, TN; McKeever, John W [Oak Ridge, TN
2010-03-23
The invention is a terminal assembly having a casing with at least one delivery tapered-cone conductor and at least one return tapered-cone conductor routed there-through. The delivery and return tapered-cone conductors are electrically isolated from each other and positioned in the annuluses of ordered concentric cones at an off-normal angle. The tapered cone conductor service can be AC phase conductors and DC link conductors. The center core has at least one service conduit of gate signal leads, diagnostic signal wires, and refrigerant tubing routed there-through. A seal material is in direct contact with the casing inner surface, the tapered-cone conductors, and the service conduits thereby hermetically filling the interstitial space in the casing interior core and center core. The assembly provides simultaneous high-current, high-pressure, low-inductance, and high-reliability service.
Tapered waveguides for guided wave optics.
Campbell, J C
1979-03-15
Strip waveguides having half-paraboloid shaped tapers that permit efficient fiber to waveguide coupling have been fabricated by Ag ion exchange in soda-lime glass. A reduction in the input coupling loss has been accomplished by tailoring the diffusion to provide a gradual transition from a single-mode waveguide to a multimode waveguide having cross-sectional dimensions comparable to the core diameter of a single-mode fiber. Waveguides without tapers exhibit an attenuation of 1.0 dB/cm and an input coupling loss of 0.6 dB. The additional loss introduced by the tapered region is 0.5 dB. By way of contrast, an input coupling loss of 2.4 dB is obtained by coupling directly to a single-mode waveguide, indicating a net improvement of 1.3 dB for the tapered waveguides.
High-sensitivity refractive index sensors based on fused tapered photonic crystal fiber
NASA Astrophysics Data System (ADS)
Fu, Xing-hu; Xie, Hai-yang; Yang, Chuan-qing; Qu, Yu-wei; Zhang, Shun-yang; Fu, Guang-wei; Guo, Xuan; Bi, Wei-hong
2016-05-01
In this paper, a novel liquid refractive index (RI) sensor based on fused tapered photonic crystal fiber (PCF) is proposed. It is fabricated by fusing and tapering a section of PCF which is spliced with two single-mode fibers (SMFs). Due to the fused biconical taper method, the sensor becomes longer and thinner, to make the change of the outside RI has more direct effects on the internal optical field of the PCF, which finally enhances the sensitivity of this sensor. Experimental results show that the transmission spectra of the sensor are red-shifted obviously with the increase of RI. The longer the tapered region of the sensor, the higher the sensitivity is. This sensor has the advantages of simple structure, easy fabrication, high performance and so on, so it has potential applications in RI measurement.
Development of electro-conductive silver phosphate-based glass optrodes for in vivo optogenetics
NASA Astrophysics Data System (ADS)
Desjardins, Mathieu; Roudjane, Mourad; Ledemi, Yannick; Gagnon-Turcotte, Gabriel; Maghsoudloo, Esmaeel; Filion, Guillaume; Gosselin, Benoit; Messaddeq, Younès.
2018-02-01
Multifunctional fibers are developed worldwide for enabling many new advanced applications. Among the multiple new functionalities that such fibers can offer according to their design, chemical composition and materials combination, the co-transmission of light and electrical signals is of first interest for sensing applications, in particular for optogenetics and electrophysiology. Multifunctional fibers offer an all-solid approach relying on new ionic conducting glasses for the design and manufacturing of next generation optrodes, which represents a tremendous upgrade compared to conventional techniques that requires the utilization of liquid electrolytes to carry the electrical signal generated by genetically encoded neuronal gated ion channels after optical excitation. After a systematic study conducted on different ion-conductive glass systems, silver phosphate-based glasses belonging to the AgI-AgPO3-WO3 and AgI-AgPO3-Ag2WO4 systems were found to be very promising materials for the target application. Several types of fibers, including single-core step-index fibers, multimaterial fibers made of inorganic and optical polymeric glasses have been then fabricated and characterized. Light transmission ranging from 400 to 1000 nm and electrical conductivity ranging from 10-3 and 10-1 S·cm-1 at room temperature (AC frequencies from 1 Hz to 1 MHz) were demonstrated with these fibers. Very sharp fiber tapers were then produced with high repeatability by using a CO2 laser optical setup, allowing a significant shrinking from the fiber (300 μm diameter) to the taper tip (25-30 μm diameter).
Investigating the real translucency of the endodontic fiber posts
NASA Astrophysics Data System (ADS)
Camilotti, Fernando; Bonardi, Cláudia; Somer, Aloisi; Novatski, Andressa; Szesz, Anna Luiza; Loguércio, Alessandro Dourado; Kniphoff da Cruz, Gerson
2018-02-01
Researchers have been investigating the light intensity scattered by a translucent fiber post with application in dentistry by different methods. In this work, we introduce a new system capable to record a light scattered profile, step-by-step, as a function of the length of the translucent fiber post. To support our studies, an extensive characterization of the system was carried out and this is presented and discussed here. The system was implemented using the phase sensitive detection. The equipment measures the light scattered without the need of any preparing parts and the fiber post is fixed directly in the fiber post holder becoming ready for measurement. Measures can be recorded with a spatial resolution smaller than 0.01 mm throughout the length of the fiber post being investigated. The system was implemented by using a photomultiplier tube that improves sensitivity for the optical detection. The recorded result is a signal directly proportional to the scattered light and it allows us to obtain a normalized profile that can be used as a map of the scattered light of the fiber post in study. Furthermore, we are able to demonstrate a low intensity of light in the tip region of the fiber post, along with the dependency of the light attenuation with the fiber post body volume and shape. This new system will certainly contribute to achieve better results in fiber post designing and in restoration of endodontic treated teeth because it provides a more well-founded choice of the fiber post to be used, and of the time of exposure to the curing light.
65-fs Yb-doped all-fiber laser using tapered fiber for nonlinearity and dispersion management.
Yang, Peilong; Teng, Hao; Fang, Shaobo; Hu, Zhongqi; Chang, Guoqing; Wang, Junli; Wei, Zhiyi
2018-04-15
We implement an ultrafast Yb-doped all-fiber laser which incorporates tapered single-mode fibers for managing nonlinearity and dispersion. The tapered fiber placed in the oscillator cavity aims to broaden the optical spectrum of the intracavity pulse. At the oscillator output, we use another tapered fiber to perform pulse compression. The resulting 66.1-MHz Yb-doped all-fiber oscillator self-starts and generates 0.4-nJ, 65-fs pulses, which can serve as a compact and robust seed source for subsequent high-power, high-energy amplifiers.
Fusion splice between tapered inhibited coupling hypocycloid-core Kagome fiber and SMF.
Zheng, Ximeng; Debord, Benoît; Vincetti, Luca; Beaudou, Benoît; Gérôme, Frédéric; Benabid, Fetah
2016-06-27
We report for the first time on tapering inhibited coupling (IC) hypocycloid-core shape Kagome hollow-core photonic crystal fibers whilst maintaining their delicate core-contour negative curvature with a down-ratio as large as 2.4. The transmission loss of down-tapered sections reaches a figure as low as 0.07 dB at 1550 nm. The tapered IC fibers are also spliced to standard SMF with a total insertion loss of 0.48 dB. These results show that all-fiber photonic microcells with the ultra-low loss hypocycloid core-contour Kagome fibers is now possible.
Adiabatically tapered splice for selective excitation of the fundamental mode in a multimode fiber.
Jung, Yongmin; Jeong, Yoonchan; Brambilla, Gilberto; Richardson, David J
2009-08-01
We propose a simple and effective method to selectively excite the fundamental mode of a multimode fiber by adiabatically tapering a fusion splice to a single-mode fiber. We experimentally demonstrate the method by adiabatically tapering splice (taper waist=15 microm, uniform length=40 mm) between single-mode and multimode fiber and show that it provides a successful mode conversion/connection and allows for almost perfect fundamental mode excitation in the multimode fiber. Excellent beam quality (M(2) approximately 1.08) was achieved with low loss and high environmental stability.
Ji, Wen Bin; Tjin, Swee Chuan; Lin, Bo; Ng, Choong Leng
2013-01-01
We demonstrate a refractive index sensor based on a long period grating (LPG) inscribed in a special photosensitive microfiber with double-clad profile. The fiber is tapered gradually enough to ensure the adiabaticity of the fiber taper. In other words, the resulting insertion loss is sufficiently small. The boron and germanium co-doped inner cladding makes it suitable for inscribing gratings into its tapered form. The manner of wavelength shift for refractive indices (RIs) differs from conventional LPG, and the refractive index detection limit is 1.67 × 10−5. PMID:24141267
Ji, Wen Bin; Tjin, Swee Chuan; Lin, Bo; Ng, Choong Leng
2013-10-17
We demonstrate a refractive index sensor based on a long period grating (LPG) inscribed in a special photosensitive microfiber with double-clad profile. The fiber is tapered gradually enough to ensure the adiabaticity of the fiber taper. In other words, the resulting insertion loss is sufficiently small. The boron and germanium co-doped inner cladding makes it suitable for inscribing gratings into its tapered form. The manner of wavelength shift for refractive indices (RIs) differs from conventional LPG, and the refractive index detection limit is 1.67 × 10⁻⁵.
2009-01-01
The tapered CdS nanobelts and CdSe nanowires were prepared by hydrogen-assisted thermal evaporation method. Different supersaturation leads to two different kinds of 1D nanostructures. The PL measurements recorded from the as-prepared tapered CdS nanobelts and CdSe nanowires show only a bandgap emission with relatively narrow full-width half maximum, which means that they possess good optical property. The as-synthesized high-quality tapered CdS nanobelts and CdSe nanowires may be excellent building blocks for photonic devices. PMID:20596418
Experimental results for characterization of a tapered plastic optical fiber sensor based on SPR
NASA Astrophysics Data System (ADS)
Cennamo, N.; Galatus, R.; Zeni, L.
2015-05-01
The experimental results obtained with two different Plastic Optical Fiber (POF) geometries, tapered and not-tapered, for a sensor based on Surface Plasmon Resonance (SPR) are presented. SPR is used for determining the refractive index variations at the interface between a gold layer and a dielectric medium (aqueous medium). In this work SPR sensors in POF configurations, useful for bio-sensing applications, have been realized for the optimization of the sensitivity and experimentally tested. The results show as the sensitivity increases with the tapered POF configuration, when the refractive index of aqueous medium increases.
Effects of self-adjusting file, Mtwo, and ProTaper on the root canal wall.
Hin, Ellemieke S; Wu, Min-Kai; Wesselink, Paul R; Shemesh, Hagay
2013-02-01
The purpose of this ex vivo study was to observe the incidence of cracks in root dentin after root canal preparation with hand files, self-adjusting file (SAF), ProTaper, and Mtwo. One hundred extracted mandibular premolars with single canals were randomly selected. Two angulated radiographs were taken for each tooth, and the width of the canal was measured at 9 mm from the apex. Five groups of 20 teeth each were comparable in canal width. The control group was left unprepared. Four experimental groups were instrumented with hand files, ProTaper, Mtwo, and SAF. Roots were then sectioned horizontally and observed under a microscope. The presence of dentinal cracks and their location were noted. The difference between the experimental groups was analyzed with a χ(2) test. No cracks were observed in the control group. In the experimental groups, ProTaper, Mtwo, and SAF caused cracks in 35%, 25%, and 10% of teeth, respectively. The hand-file group did not show any dentinal cracks (P < .0001). ProTaper and Mtwo caused more cracks than hand files (P < .05), but SAF did not (P > .05). Instrumentation of root canals with SAF, Mtwo, and ProTaper could cause damage to root canal dentin. SAF has a tendency to cause less dentinal cracks as compared with ProTaper or Mtwo. Copyright © 2013 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.
De-Deus, Gustavo; Brandão, Maria Claudia; Barino, Bianca; Di Giorgi, Karina; Fidel, Rivail Antonio Sergio; Luna, Aderval Severino
2010-09-01
This study was designed to quantitatively evaluate the amount of dentin debris extruded from the apical foramen by comparing the conventional sequence of the ProTaper Universal nickel-titanium (NiTi) files with the single-file ProTaper F2 technique. Thirty mesial roots of lower molars were selected, and the use of different instrumentation techniques resulted in 3 groups (n=10 each). In G1, a crown-down hand-file technique was used, and in G2 conventional ProTaper Universal technique was used. In G3, ProTaper F2 file was used in a reciprocating motion. The apical finish preparation was equivalent to ISO size 25. An apparatus was used to evaluate the apically extruded debris. Statistical analysis was performed using 1-way analysis of variance and Tukey multiple comparisons. No significant difference was found in the amount of the debris extruded between the conventional sequence of the ProTaper Universal NiTi files and the single-file ProTaper F2 technique (P>.05). In contrast, the hand instrumentation group extruded significantly more debris than both NiTi groups (P<.05). The present results yielded favorable input for the F2 single-file technique in terms of apically extruded debris, inasmuch as it is the most simple and cost-effective instrumentation approach. Copyright (c) 2010 Mosby, Inc. All rights reserved.
[Evaluation of preparation of curved root canals using hand-used ProTaper].
Nie, Min; Zhao, Xin-Chen; Peng, Bin; Fan, Ming-Wen; Bian, Zhuan
2009-05-01
To evaluate the shaping ability of hand-used ProTaper on curved canals using Endodontic Cube. Fifty-four curved root canals in vitro were selected and divided into three groups according to the curved degree (alpha), group A: 0 degrees < or = alpha < 25 degrees , group B: 25 degrees < or = alpha < 40 degrees , group C: 40 degrees < or = alpha < 55 degrees . Endodontic Cube was assembled, and each sample was sectioned perpendicular to the axis of the tooth into four sections with Isomer-Buhler in low speed. Then the root canals were prepared with hand-used ProTaper. Before and after shaping, photograph of all the sections were taken under a stereomicroscope. Statistical analyses were performed. The dentin cutting quantity of the whole canal prepared with ProTaper in group B and C was larger than that of group A. The deviation distance of the whole canal prepared by ProTaper in group C was significantly larger than that in group A, and the deviation distance in middle portion larger than that in group B. The maintaining ability in the middle portion of group C by ProTaper was worse than that of group A and B. The curvature of root canal may increase the cutting quantity of the -dentin and reduce the ability of remaining original canal shape prepared by ProTaper.
Morse taper dental implants and platform switching: The new paradigm in oral implantology
Macedo, José Paulo; Pereira, Jorge; Vahey, Brendan R.; Henriques, Bruno; Benfatti, Cesar A. M.; Magini, Ricardo S.; López-López, José; Souza, Júlio C. M.
2016-01-01
The aim of this study was to conduct a literature review on the potential benefits with the use of Morse taper dental implant connections associated with small diameter platform switching abutments. A Medline bibliographical search (from 1961 to 2014) was carried out. The following search items were explored: “Bone loss and platform switching,” “bone loss and implant-abutment joint,” “bone resorption and platform switching,” “bone resorption and implant-abutment joint,” “Morse taper and platform switching.” “Morse taper and implant-abutment joint,” Morse taper and bone resorption,” “crestal bone remodeling and implant-abutment joint,” “crestal bone remodeling and platform switching.” The selection criteria used for the article were: meta-analysis; randomized controlled trials; prospective cohort studies; as well as reviews written in English, Portuguese, or Spanish languages. Within the 287 studies identified, 81 relevant and recent studies were selected. Results indicated a reduced occurrence of peri-implantitis and bone loss at the abutment/implant level associated with Morse taper implants and a reduced-diameter platform switching abutment. Extrapolation of data from previous studies indicates that Morse taper connections associated with platform switching have shown less inflammation and possible bone loss with the peri-implant soft tissues. However, more long-term studies are needed to confirm these trends. PMID:27011755
Larrucea Verdugo, Carlos; Jaramillo Núñez, Guido; Acevedo Avila, Ariel; Larrucea San Martín, Carlo
2014-09-01
This study determined the degree of marginal microleakage of the abutment-implant interface on platforms with Morse taper connection and external connection. For this in vitro study, 42 implants, 21 with external connection and 21 with Morse taper connection, were used, immersed in acrylic resin cylinders. Each implant was joined by a prosthetic abutment screw tightened at different degrees, forming the six study groups: (1) External connection, manual tightening (2) External connection, 20 Newton (N) tightening (3) External connection, 30 N tightening (4) Morse taper connection, manual tightening (5) Morse taper connection, 20 N tightening (6) orse taper connection, 30 N tightening. All samples were subjected to load cycling and thermocycling. Then, they were submerged in a solution of 0.2% methylene blue for 24 h. Finally, the microleakage was measured via 20× optical microscopy in each study group, average was obtained, and Mann-Whitney test was applied. Statistically significant differences (P < 0.001) were found between the levels of microleakage presented in the Morse taper connection implants (1.48) and external connection implants (2.8) in all three types of tightening. Microleakage levels decreases when increasing torque is applied to the screws. Morse taper connection implants showed lower levels of microleakage than external connection implants; also, it was observed that microleakage decreases in the way torque increases. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
[Factors influencing bonding fixed restorations].
Medić, Vesna; Obradović-Djuricić, Kosovka
2008-01-01
Crown displacement often occurs because the features of tooth preparations do not counteract the forces directed against restorations. The purpose of this study was to evaluate the effect of preparation designs on retention and resistance of fixed restorations. The study was performed on 64 differently sized stainless steel dies. Also, caps which were used for evaluated retention were made of stainless steel for each die. After cementing the caps on experimental dies, measuring of necessary tensile forces to separate cemented caps from dies was done. Caps, which were made of a silver-palladium alloy with a slope of 600 to the longitudinal axis formed on the occlusal surface, were used for evaluating resistance. A sudden drop in load pressure recorded by the test machine indicated failure for that cap. A significant difference was found between the tensile force required to remove the caps from the dies with different length (p < 0.05) and different taper (p < 0.01). The greatest retentive strengths (2579.2 N and 2989.8 N) were noticed in experimental dies with the greatest length and smallest taper. No statistically significant (p > 0.05) differences were found between tensile loads for caps cemented on dies with different diameter. Although there was an apparent slight increase in resistance values for caps on dies with smaller tapers, the increase in resistance for those preparation designs was not statistically significant. There was a significant difference among the resistance values for caps on dies with different length (p < 0.01) and diameter (p < 0.05). In the light of the results obtained, it could be reasonably concluded that retention and resistance of the restoration is in inverse proportion to convergence angle of the prepared teeth. But, at a constant convergence angle, retention and resistance increase with rising length and diameter.
Development of a photogrammetric method of measuring tree taper outside bark
David R. Larsen
2006-01-01
A photogrammetric method is presented for measuring tree diameters outside bark using calibrated control ground-based digital photographs. The method was designed to rapidly collect tree taper information from subject trees for the development of tree taper equations. Software that is commercially available, but designed for a different purpose, can be readily adapted...
Taper models for commercial tree species in the northeastern United States
James A. Westfall; Charles T. Scott
2010-01-01
A new taper model was developed based on the switching taper model of Valentine and Gregoire; the most substantial changes were reformulation to incorporate estimated join points and modification of a switching function. Random-effects parameters were included that account for within-tree correlations and allow for customized calibration to each individual tree. The...
A Compatible Stem Taper-Volume-Weight System For Intensively Managed Fast Growing Loblolly Pine
Yugia Zhang; Bruce E. Borders; Robert L Bailey
2002-01-01
eometry-oriented methodology yielded a compatible taper-volume-weight system of models whose parameters were estimated using data from intensively managed loblolly pine (Pinus taeda L.) plantations in the lower coastal plain of Georgia. Data analysis showed that fertilization has significantly reduced taper (inside and outside bark) on the upper...
Thin-Ribbon Tapered Couplers For Dielectric Waveguides
NASA Technical Reports Server (NTRS)
Otoshi, Tom Y.; Shimabukuro, Fred I.; Yeh, Cavour
1996-01-01
Thin-ribbon tapered couplers proposed for launching electro-magnetic waves into dielectric waveguides, which include optical fibers. Intended for use with ribbon dielectric waveguides designed for operation at millimeter or submillimeter wavelengths, made of high-relative-permittivity, low-loss materials and thicknesses comparable to or less than free-space design wavelengths. Coupling efficiencies exceeds those of older tapered couplers.
Salivary hormones, IgA, and performance during intense training and tapering in judo athletes.
Papacosta, Elena; Gleeson, Michael; Nassis, George P
2013-09-01
The aims of this study were to identify the time course of change of salivary testosterone (sT), cortisol (sC), and IgA (SIgA); mood state; and performance capacity during a 2-week taper in judo athletes and to examine the diurnal variation in these salivary markers. Eleven male judo athletes completed 5 weeks of training: 1 week of normal training (NORM), 2 weeks of intensified training (INT), and 2 weeks of exponential tapering (TAPER). Once per week subjects completed vertical and horizontal countermovement jump tests, a grip strength test, a Special Judo Fitness Test, a multistage aerobic fitness test, a 3 × 300-m run test, and anthropometric measurement. Subjects also completed questionnaires to assess mood state and muscle soreness. Two daily saliva samples (at 0700 and 1900) were collected at the end of each week during NORM and INT and every day during TAPER. Increased morning sT, decreased evening sC, lower muscle soreness, and enhanced mood state (p < 0.05) were evident by the early phases of TAPER. A significant 7.0% improvement in 3 × 300-m performance time, a 6.9% improvement in the vertical jump (p < 0.05), and increased morning and evening SIgA secretion rate (p < 0.01) were observed during the middle-late phases of TAPER. The higher values of salivary variables were observed in the morning. This study indicates that salivary hormones display diurnal variation. Furthermore, changes in hormonal responses, mood state, and muscle soreness precede enhancements in performance and mucosal immunity, suggesting that judo athletes taper for at least a week before competition.
Arnholt, Christina M.; MacDonald, Daniel W.; Underwood, Richard; Guyer, Eric P.; Rimnac, Clare M.; Kurtz, Steven M.; Mont, Michael A.; Klein, Gregg; Lee, Gwo-Chin; Chen, Antonia F.; Hamlin, Brian; Cates, Harold; Malkani, Arthur; Kraay, Matthew
2017-01-01
Background Previous studies identified imprinting of the stem morphology onto the interior head bore, leading researchers to hypothesize an influence of taper topography on mechanically assisted crevice corrosion (MACC). The purpose of this study was to analyze whether micro-grooved stem tapers result in greater fretting corrosion damage than smooth stem tapers. Methods A matched cohort of 120 retrieved head-stem pairs from metal-on-polyethylene bearings was created controlling for implantation time, flexural rigidity, apparent length of engagement, and head size. There were two groups of 60 heads each, mated with either smooth or micro-grooved stem tapers. A high precision roundness machine was used to measure and categorize the surface morphology. Fretting corrosion damage at the head/neck junction was characterized using the Higgs-Goldberg scoring method. Fourteen of the most damaged heads, were analyzed for the maximum depth of material loss and focused ion beam (FIB) cross-sectioned to view oxide and base metal. Results Fretting corrosion damage was not different between the two cohorts at the femoral head (p = 0.14, Mann Whitney) or stem tapers (p = 0.35). There was no difference in the maximum depths of material loss between the cohorts (p = 0.71). Cross sectioning revealed contact damage, signs of micro-motion, and chromium rich oxide layers in both cohorts. Micro-groove imprinting did not appear to have a different effect on the fretting corrosion behavior. Conclusion The results of this matched cohort retrieval study do not support the hypothesis that taper surfaces with micro-grooved stems exhibit increased in vivo fretting corrosion damage or material release. PMID:28111124
Bozkaya, Dinçer; Müftü, Sinan
2004-08-01
A tapered interference fit provides a mechanically reliable retention mechanism for the implant-abutment interface in a dental implant. Understanding the mechanical properties of the tapered interface with or without a screw at the bottom has been the subject of a considerable amount of studies involving experiments and finite element (FE) analysis. In this paper, approximate closed-form formulas are developed to analyze the mechanics of a tapered interference fit. In particular, the insertion force, the efficiency, defined as the ratio of the pull-out force to insertion force, and the critical insertion depth, which causes the onset of plastic deformation, are analyzed. It is shown that the insertion force is a function of the taper angle, the contact length, the inner and outer radii of the implant, the static and the kinetic coefficients of friction, and the elastic modulii of the implant/abutment materials. The efficiency of the tapered interference fit, which is defined as the ratio of the pull-out force to insertion force, is found to be greater than one, for taper angles that are less than 6 deg when the friction coefficient is 0.3. A safe range of insertion forces has been shown to exist. The lower end of this range depends on the maximum pull-out force that may occur due to occlusion in the multiple tooth restorations and the efficiency of the system; and the upper end of this range depends on the plastic deformation of the abutment and the implant due to interference fit. It has been shown that using a small taper angle and a long contact length widens the safe range of insertion forces.
Kim, Yongkwan; Chung, Yunsie; Tsao, Angela; Maboudian, Roya
2014-05-14
We present a fabrication method and friction testing of a gecko-inspired thermoplastic micropillar array with control over the tapering angle of the pillar sidewall. A combination of deep reactive ion etching of vertical silicon pillars and subsequent maskless chemical etching produces templates with various widths and degrees of taper, which are then replicated with low-density polyethylene. As the silicon pillars on the template are chemically etched in a bath consisting of hydrofluoric acid, nitric acid, and acetic acid (HNA), the pillars are progressively thinned, then shortened. The replicated polyethylene pillar arrays exhibit a corresponding increase in friction as the stiffness is reduced with thinning and then a decrease in friction as the stiffness is again increased. The dilution of the HNA bath in water influences the tapering angle of the silicon pillars. The friction of the replicated pillars is maximized for the taper angle that maximizes the contact area at the tip which in turn is influenced by the stiffness of the tapered pillars. To provide insights on how changes in microscale geometry and contact behavior may affect friction of the pillar array, the pillars are imaged by scanning electron microscopy after friction testing, and the observed deformation behavior from shearing is related to the magnitude of the macroscale friction values. It is shown that the tapering angle critically changes the pillar compliance and the available contact area. Simple finite element modeling calculations are performed to support that the observed deformation is consistent with what is expected from a mechanical analysis. We conclude that friction can be maximized via proper pillar tapering with low stiffness that still maintains enough contact area to ensure high adhesion.
Thulium fiber laser lithotripsy using tapered fibers.
Blackmon, Richard L; Irby, Pierce B; Fried, Nathaniel M
2010-01-01
The Thulium fiber laser has recently been tested as a potential alternative to the Holmium:YAG laser for lithotripsy. This study explores use of a short taper for expanding the Thulium fiber laser beam at the distal tip of a small-core fiber. Thulium fiber laser radiation with a wavelength of 1,908 nm, 10 Hz pulse rate, 70 mJ pulse energy, and 1-millisecond pulse duration was delivered through a 2-m-length fiber with 150-microm-core-input-end, 300-microm-core-output-end, and 5-mm-length taper, in contact with human uric acid (UA) and calcium oxalate monohydrate (COM) stones, ex vivo (n = 10 each). Stone mass loss, stone crater depths, fiber transmission losses, fiber burn-back, irrigation rates, and deflection through a flexible ureteroscope were measured for the tapered fiber and compared with conventional fibers. After delivery of 1,800 pulses through the tapered fiber, mass loss measured 12.7+/-2.6 mg for UA and 7.2+/-0.8 mg COM stones, comparable to conventional 100-microm-core fibers (12.6+/-2.5 mg for UA and 6.8+/-1.7 mg for COM stones). No transmission losses or burn-back occurred for the tapered fiber after 36,000 pulses, while a conventional 150-microm fiber experienced significant tip degradation after only 1,800 pulses. High irrigation rates were measured with the tapered fiber inserted through the working port of a flexible ureteroscope without hindering its deflection, mimicking that of a conventional 150 microm fiber. The short tapered distal fiber tip allows expansion of the laser beam, resulting in decreased fiber tip damage compared to conventional small-core fibers, without compromising fiber bending, stone vaporization efficiency, or irrigation rates.
Fatigue delamination onset prediction in tapered composite laminates
NASA Technical Reports Server (NTRS)
Murri, Gretchen Bostaph; Salpekar, Satish A.; Obrien, T. Kevin
1989-01-01
Tapered (0 deg) laminates of S2/CE9000 and S2/SP250 glass/epoxies, and IM6/1827I graphite/epoxy were tested in cyclic tension. The specimens usually showed some initial stable delaminations in the tapered region, but these did not affect the stiffness of the specimens, and loading was continued until the specimens either delaminated unstably, or reached 10(exp 6) to 2 x 10(exp 7) million cycles with no unstable delamination. The final unstable delamination originated at the junction of the thin and tapered regions. A finite-element model was developed for the tapered laminate with and without the initial stable delaminations observed in the tests. The analysis showed that for both cases the most likely place for an opening (Mode 1) delamination to originate is at the junction of the taper and thin regions. For each material type, the models were used to calculate the strain energy release rate, G, associated with delaminations originating at that junction and growing either into the thin region or tapered region. For the materials tested, cyclic G(sub Imax) values from DCB tests were used with the maximum strain energy release rates calculated from the finite-element analysis to predict the onset of unstable delamination at the junction as a function of fatigue cycles. The predictions were compared to experimental values of maximum cyclic load as a function of cycles to unstable delamination from fatigue tests in tapered laminates. For the IM6/1827I and S2/SP250 laminates, the predictions agreed very well with the test data. Predicted values for the S2/CE9000 were conservative compared to the test data.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sontheimer, Tobias, E-mail: tobias.sontheimer@helmholtz-berlin.de; Schnegg, Alexander; Lips, Klaus
2013-11-07
By employing electron paramagnetic resonance spectroscopy, transmission electron microscopy, and optical measurements, we systematically correlate the structural and optical properties with the deep-level defect characteristics of various tailored periodic Si microhole arrays, which are manufactured in an easily scalable and versatile process on nanoimprinted sol-gel coated glass. While tapered microhole arrays in a structured base layer are characterized by partly nanocrystalline features, poor electronic quality with a defect concentration of 10{sup 17} cm{sup −3} and a high optical sub-band gap absorption, planar polycrystalline Si layers perforated with periodic arrays of tapered microholes are composed of a compact crystalline structure and amore » defect concentration in the low 10{sup 16} cm{sup −3} regime. The low defect concentration is equivalent to the one in planar state-of-the-art solid phase crystallized Si films and correlates with a low optical sub-band gap absorption. By complementing the experimental characterization with 3-dimensional finite element simulations, we provide the basis for a computer-aided approach for the low-cost fabrication of novel high-quality structures on large areas featuring tailored opto-electronic properties.« less
NASA Astrophysics Data System (ADS)
Perry, Anna-Kristina; Pavia, Giancarlo; Passmore, Martin
2016-11-01
As vehicle manufacturers work to reduce energy consumption of all types of vehicles, external vehicle aerodynamics has become increasingly important. Whilst production vehicle shape optimisation methods are well developed, the need to make further advances requires deeper understanding of the highly three-dimensional flow around bluff bodies. In this paper, the wake flow of a generic bluff body, the Windsor body, based on a square-back car geometry, was investigated by means of balance measurements, surface pressure measurements and 2D particle image velocimetry planes. Changes in the wake topology are triggered by the application of short tapers (4 % of the model length) to the top and bottom edges of the base, representing a shape optimisation that is realistic for many modern production vehicles. The base drag is calculated and correlated with the aerodynamic drag data. The results not only show the effectiveness of such small devices in modifying the time average topology of the wake but also shed some light on the effects produced by different levels of upwash and downwash on the bi-stable nature of the wake itself.
Ultrahigh resolution radiation imaging system using an optical fiber structure scintillator plate.
Yamamoto, Seiichi; Kamada, Kei; Yoshikawa, Akira
2018-02-16
High resolution imaging of radiation is required for such radioisotope distribution measurements as alpha particle detection in nuclear facilities or high energy physics experiments. For this purpose, we developed an ultrahigh resolution radiation imaging system using an optical fiber structure scintillator plate. We used a ~1-μm diameter fiber structured GdAlO 3 :Ce (GAP) /α-Al 2 O 3 scintillator plate to reduce the light spread. The fiber structured scintillator plate was optically coupled to a tapered optical fiber plate to magnify the image and combined with a lens-based high sensitivity CCD camera. We observed the images of alpha particles with a spatial resolution of ~25 μm. For the beta particles, the images had various shapes, and the trajectories of the electrons were clearly observed in the images. For the gamma photons, the images also had various shapes, and the trajectories of the secondary electrons were observed in some of the images. These results show that combining an optical fiber structure scintillator plate with a tapered optical fiber plate and a high sensitivity CCD camera achieved ultrahigh resolution and is a promising method to observe the images of the interactions of radiation in a scintillator.
Propagation of atmospheric-pressure ionization waves along the tapered tube
NASA Astrophysics Data System (ADS)
Xia, Yang; Wang, Wenchun; Liu, Dongping; Yan, Wen; Bi, Zhenhua; Ji, Longfei; Niu, Jinhai; Zhao, Yao
2018-02-01
Gas discharge in a small radius dielectric tube may result in atmospheric pressure plasma jets with high energy and density of electrons. In this study, the atmospheric pressure ionization waves (IWs) were generated inside a tapered tube. The propagation behaviors of IWs inside the tube were studied by using a spatially and temporally resolved optical detection system. Our measurements show that both the intensity and velocity of the IWs decrease dramatically when they propagate to the tapered region. After the taper, the velocity, intensity, and electron density of the IWs are improved with the tube inner diameter decreasing from 4.0 to 0.5 mm. Our analysis indicates that the local gas conductivity and surface charges may play a role in the propagation of the IWs under such a geometrical constraint, and the difference in the dynamics of the IWs after the taper can be related to the restriction in the size of IWs.
Nunes, Matheus Henrique
2016-01-01
Tree stem form in native tropical forests is very irregular, posing a challenge to establishing taper equations that can accurately predict the diameter at any height along the stem and subsequently merchantable volume. Artificial intelligence approaches can be useful techniques in minimizing estimation errors within complex variations of vegetation. We evaluated the performance of Random Forest® regression tree and Artificial Neural Network procedures in modelling stem taper. Diameters and volume outside bark were compared to a traditional taper-based equation across a tropical Brazilian savanna, a seasonal semi-deciduous forest and a rainforest. Neural network models were found to be more accurate than the traditional taper equation. Random forest showed trends in the residuals from the diameter prediction and provided the least precise and accurate estimations for all forest types. This study provides insights into the superiority of a neural network, which provided advantages regarding the handling of local effects. PMID:27187074
Nunes, Matheus Henrique; Görgens, Eric Bastos
2016-01-01
Tree stem form in native tropical forests is very irregular, posing a challenge to establishing taper equations that can accurately predict the diameter at any height along the stem and subsequently merchantable volume. Artificial intelligence approaches can be useful techniques in minimizing estimation errors within complex variations of vegetation. We evaluated the performance of Random Forest® regression tree and Artificial Neural Network procedures in modelling stem taper. Diameters and volume outside bark were compared to a traditional taper-based equation across a tropical Brazilian savanna, a seasonal semi-deciduous forest and a rainforest. Neural network models were found to be more accurate than the traditional taper equation. Random forest showed trends in the residuals from the diameter prediction and provided the least precise and accurate estimations for all forest types. This study provides insights into the superiority of a neural network, which provided advantages regarding the handling of local effects.
NASA Astrophysics Data System (ADS)
Ortiz-Ricardo, E.; Bertoni-Ocampo, C.; Ibarra-Borja, Z.; Ramirez-Alarcon, R.; Cruz-Delgado, D.; Cruz-Ramirez, H.; Garay-Palmett, K.; U'Ren, A. B.
2017-09-01
We explore three different mechanisms designed to controllably tune the joint spectrum of photon pairs produced by the spontaneous four-wave mixing (SFWM) process in optical fibres. The first of these is fibre tapering, which exploits the modified optical dispersion resulting from reducing the core radius. We have presented a theory of SFWM for tapered fibres, as well as experimental results for the SFWM coincidence spectra as a function of the reduction in core radius due to tapering. The other two techniques that we have explored are temperature variation and application of longitudinal stress. While the maximum spectral shift observed with these two techniques is smaller than for fibre tapering, they are considerably simpler to implement and have the important advantage that they are based on the use of a single, suitably controlled, fibre specimen.
Linslal, C L; Mohan, P M S; Halder, A; Gangopadhyay, T K
2012-06-01
The core-mode cutoff plays a major role in evanescent field absorption based sensors. A method has been proposed to calculate the core-mode cutoff by solving the eigenvalue equations of a weakly guiding three layer optical waveguide graphically. The variation of normalized waveguide parameter (V) is also calculated with different wavelengths at core-mode cutoff. At the first step, theoretical analysis of tapered fiber parameters has been performed for core-mode cutoff. The taper angle of an adiabatic tapered fiber is also analyzed using the length-scale criterion. Secondly, single-mode tapered fiber has been developed to make a precision sensor element suitable for chemical detection. Finally, the sensor element has been used to detect absorption peak of ethylenediamine. Results are presented in which an absorption peak at 1540 nm is observed.
Wang, Yan; Li, Hanyang; Zhao, Liyuan; Liu, Yongjun; Liu, Shuangqiang; Yang, Jun
2017-01-23
We demonstrate efficient coupling to the optical whispering gallery modes (WGMs) of nematic liquid crystal (NLC) microdroplets immersed in an immiscible aqueous environment. An individual NLC microdroplet, confined at the tip of a microcapillary, was coupled via a tapered optical fiber waveguide positioned correctly within its vicinity. Critical coupling of the taper-microdroplet system was facilitated by adjusting the gap between the taper and the microdroplet to change the overlap of the evanescent electromagnetic fields; efficient and controlled power transfer from the taper waveguide to the NLC microdroplet is indeed possible via the proposed technique. We also found that NLC microdroplets can function as highly sensitive thermal sensors: A maximum temperature sensitivity of 267.6 pm/°C and resolution of 7.5 × 10-2 °C were achieved in a 78-μm-diameter NLC microdroplet.
Multiplexed single-mode wavelength-to-time mapping of multimode light
Chandrasekharan, Harikumar K; Izdebski, Frauke; Gris-Sánchez, Itandehui; Krstajić, Nikola; Walker, Richard; Bridle, Helen L.; Dalgarno, Paul A.; MacPherson, William N.; Henderson, Robert K.; Birks, Tim A.; Thomson, Robert R.
2017-01-01
When an optical pulse propagates along an optical fibre, different wavelengths travel at different group velocities. As a result, wavelength information is converted into arrival-time information, a process known as wavelength-to-time mapping. This phenomenon is most cleanly observed using a single-mode fibre transmission line, where spatial mode dispersion is not present, but the use of such fibres restricts possible applications. Here we demonstrate that photonic lanterns based on tapered single-mode multicore fibres provide an efficient way to couple multimode light to an array of single-photon avalanche detectors, each of which has its own time-to-digital converter for time-correlated single-photon counting. Exploiting this capability, we demonstrate the multiplexed single-mode wavelength-to-time mapping of multimode light using a multicore fibre photonic lantern with 121 single-mode cores, coupled to 121 detectors on a 32 × 32 detector array. This work paves the way to efficient multimode wavelength-to-time mapping systems with the spectral performance of single-mode systems. PMID:28120822
NASA Technical Reports Server (NTRS)
Jorgensen, B. B.; Des Marais, D. J.
1986-01-01
A fiber-optic microphobe is described which is inexpensive and simple to build and use. It consists of an 80-micrometers optical fiber which at the end is tapered down to a rounded sensing tip of 20-30-micrometers diameter. The detector is a hybrid photodiode/amplifier. The probe has a sensitivity of 0.01 microEinst m-2 s-1 and a spectral range of 300-1,100 nm. Spectral light gradients were measured in fine-grained San Francisco Bay sediment that had an undisturbed diatom coating on the surface. The photic zone of the mud was only 0.4 mm deep. Measured in situ spectra showed extinction maxima at 430-520, 620-630, 670, and 825-850 nm due to absorption by chlorophyll a, carotenoids, phycocyanin, and bacterio-chlorophyll a. Maximum light penetration in the visible range was found in both the violet and the red < or = 400 and > or = 700 nm.
Simulation on friction taper plug welding of AA6063-20Gr metal matrix composite
NASA Astrophysics Data System (ADS)
Hynes, N. Rajesh Jesudoss; Nithin, Abeyram M.
2016-05-01
Friction taper plug welding a variant of friction welding is useful in welding of similar and dissimilar materials. It could be used for joining of composites to metals in sophisticated aerospace applications. In the present work numerical simulation of friction taper plug welding process is carried out using finite element based software. Graphite reinforced AA6063 is modelled using the software ANSYS 15.0 and temperature distribution is predicted. Effect of friction time on temperature distribution is numerically investigated. When the friction time is increased to 30 seconds, the tapered part of plug gets detached and fills the hole in the AA6063 plate perfectly.
Note on performance of tapered grip tensile loading devices
NASA Technical Reports Server (NTRS)
Jones, M. H.; Brown, W. F., Jr.
1975-01-01
Alignment results are presented in terms of percent bending for a quick release, tapered grip, tensile loading device that has been proposed for testing sharply notched specimens of aluminum and magnesium alloys by a Task Group of the ASTM Committee E-24 on Fracture Testing of Metals. The results show that the bending introduced by the fixtures is strongly dependent on their relative rotational positions in respect to the loading rods which adapt them, to the tensile machine. For one set of tapered grips the highest bending was about 15%. Recommendations are made for improvement in the design of the tapered grips which should reduce the bending stresses substantially.
Development of small bore, high speed tapered roller bearing
NASA Technical Reports Server (NTRS)
Morrison, F. R.; Gassel, S. S.; Bovenkerk, R. L.
1981-01-01
The performance of four rolling bearing configurations for use on the input pinion shaft of a proposed commercial helicopter transmission was evaluated. The performance characteristics of a high speed tapered roller bearing operating under conditions comparable to those existing at this input pinion shaft were defined. The tapered roller bearing shaft support configuration was developed for the gearbox using commercially available bearing designings. The configuration was optimized and interactive thermomechanically system analyzed. Automotive pinion quality tapered roller bearings were found to be reliable under load and speed conditions in excess of those anticipated in the helicopter transmission. However, it is indicated that the elastohydrodynamic lubricant films are inadequate.
Tunable optofluidic microring laser based on a tapered hollow core microstructured optical fiber.
Li, Zhi-Li; Zhou, Wen-Yuan; Luo, Ming-Ming; Liu, Yan-Ge; Tian, Jian-Guo
2015-04-20
A tunable optofluidic microring dye laser within a tapered hollow core microstructured optical fiber was demonstrated. The fiber core was filled with a microfluidic gain medium plug and axially pumped by a nanosecond pulse laser at 532 nm. Strong radial emission and low-threshold lasing (16 nJ/pulse) were achieved. Lasing was achieved around the surface of the microfluidic plug. Laser emission was tuned by changing the liquid surface location along the tapered fiber. The possibility of developing a tunable laser within the tapered simplified hollow core microstructured optical fiber presents opportunities for developing liquid surface position sensors and biomedical analysis.
Optical microscope and tapered fiber coupling apparatus for a dilution refrigerator.
MacDonald, A J R; Popowich, G G; Hauer, B D; Kim, P H; Fredrick, A; Rojas, X; Doolin, P; Davis, J P
2015-01-01
We have developed a system for tapered fiber measurements of optomechanical resonators inside a dilution refrigerator, which is compatible with both on- and off-chip devices. Our apparatus features full three-dimensional control of the taper-resonator coupling conditions enabling critical coupling, with an overall fiber transmission efficiency of up to 70%. Notably, our design incorporates an optical microscope system consisting of a coherent bundle of 37,000 optical fibers for real-time imaging of the experiment at a resolution of ∼1 μm. We present cryogenic optical and optomechanical measurements of resonators coupled to tapered fibers at temperatures as low as 9 mK.
Temperature-independent refractometer based on a tapered photonic crystal fiber interferometer
NASA Astrophysics Data System (ADS)
Ni, Kai; Chan, Chi Chiu; Dong, Xinyong; Poh, C. L.; Li, Tao
2013-03-01
A temperature-independent refractometer by using a tapered photonic crystal fiber (PCF) based Mach-Zehnder interferometer (MZI) is proposed and experimentally demonstrated. It is fabricated by sandwiching a tapered PCF of 29 mm long between two standard single mode fibers (SMFs) with the fully collapsed air holes of the PCF in the fusion splicing region. It has been found that tapering the PCF greatly enhances the sensitivity of the refractometer. A maximum sensitivity of 1529 nm/RIU (refractive index unit) is achieved within the range from 1.3355 to 1.413. The refractometer is nearly temperature-insensitive due to the ultra low temperature dependence of the used.
Combined tension and bending testing of tapered composite laminates
NASA Astrophysics Data System (ADS)
O'Brien, T. Kevin; Murri, Gretchen B.; Hagemeier, Rick; Rogers, Charles
1994-11-01
A simple beam element used at Bell Helicopter was incorporated in the Computational Mechanics Testbed (COMET) finite element code at the Langley Research Center (LaRC) to analyze the responce of tappered laminates typical of flexbeams in composite rotor hubs. This beam element incorporated the influence of membrane loads on the flexural response of the tapered laminate configurations modeled and tested in a combined axial tension and bending (ATB) hydraulic load frame designed and built at LaRC. The moments generated from the finite element model were used in a tapered laminated plate theory analysis to estimate axial stresses on the surface of the tapered laminates due to combined bending and tension loads. Surfaces strains were calculated and compared to surface strains measured using strain gages mounted along the laminate length. The strain distributions correlated reasonably well with the analysis. The analysis was then used to examine the surface strain distribution in a non-linear tapered laminate where a similarly good correlation was obtained. Results indicate that simple finite element beam models may be used to identify tapered laminate configurations best suited for simulating the response of a composite flexbeam in a full scale rotor hub.
Salceda-Delgado, G.; Martinez-Rios, A.; Selvas-Aguilar, R.; Álvarez-Tamayo, R. I.; Castillo-Guzman, A.; Ibarra-Escamilla, B.; Durán-Ramírez, V. M.; Enriquez-Gomez, L. F.
2017-01-01
A compact, highly sensitive optical fiber displacement and curvature radius sensor is presented. The device consists of an adiabatic bi-conical fused fiber taper spliced to a single-mode fiber (SMF) segment with a flat face end. The bi-conical taper structure acts as a modal coupling device between core and cladding modes for the SMF segment. When the bi-conical taper is bent by an axial displacement, the symmetrical bi-conical shape of the tapered structure is stressed, causing a change in the refractive index profile which becomes asymmetric. As a result, the taper adiabaticity is lost, and interference between modes appears. As the bending increases, a small change in the fringe visibility and a wavelength shift on the periodical reflection spectrum of the in-fiber interferometer is produced. The displacement sensitivity and the spectral periodicity of the device can be adjusted by the proper selection of the SMF length. Sensitivities from around 1.93 to 3.4 nm/mm were obtained for SMF length between 7.5 and 12.5 cm. Both sensor interrogations, wavelength shift and visibility contrast, can be used to measure displacement and curvature radius magnitudes. PMID:28574421
Salceda-Delgado, G; Martinez-Rios, A; Selvas-Aguilar, R; Álvarez-Tamayo, R I; Castillo-Guzman, A; Ibarra-Escamilla, B; Durán-Ramírez, V M; Enriquez-Gomez, L F
2017-06-02
A compact, highly sensitive optical fiber displacement and curvature radius sensor is presented. The device consists of an adiabatic bi-conical fused fiber taper spliced to a single-mode fiber (SMF) segment with a flat face end. The bi-conical taper structure acts as a modal coupling device between core and cladding modes for the SMF segment. When the bi-conical taper is bent by an axial displacement, the symmetrical bi-conical shape of the tapered structure is stressed, causing a change in the refractive index profile which becomes asymmetric. As a result, the taper adiabaticity is lost, and interference between modes appears. As the bending increases, a small change in the fringe visibility and a wavelength shift on the periodical reflection spectrum of the in-fiber interferometer is produced. The displacement sensitivity and the spectral periodicity of the device can be adjusted by the proper selection of the SMF length. Sensitivities from around 1.93 to 3.4 nm/mm were obtained for SMF length between 7.5 and 12.5 cm. Both sensor interrogations, wavelength shift and visibility contrast, can be used to measure displacement and curvature radius magnitudes.
Graphene-doped polymer nanofibers for low-threshold nonlinear optical waveguiding
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meng, Chao; Yu, Shao-Liang; Wang, Hong -Qing
Graphene-doped polymer nanofibers are fabricated by taper drawing of solvated polyvinyl alcohol doped with liquid-phase exfoliated graphene flakes. Nanofibers drawn this way typically have diameters measured in hundreds of nanometers and lengths in tens of millimeters; they show excellent uniformity and surface smoothness for optical waveguiding. Owing to their tightly confined waveguiding behavior, light–matter interaction in these subwavelength-diameter nanofibers is significantly enhanced. Using approximately 1350-nm-wavelength femto-second pulses, we demonstrate saturable absorption behavior in these nanofibers with a saturation threshold down to 0.25 pJ pulse -1 (peak power ~1.3 W). Additionally, using 1064-nm-wavelength nanosecond pulses as switching light, we show all-opticalmore » modulation of a 1550-nm-wavelength signal light guided along a single nanofiber with a switching peak power of ~3.2 W.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bakeman, M. S.; Lawrence Berkeley National Laboratory, Berkeley, California 94720; Tilborg, J. van
We present the design and calibration of a microchannel plate based extreme ultraviolet spectrometer. Calibration was performed at the Advance Light Source (ALS) at the Lawrence Berkeley National Laboratory (LBNL). This spectrometer will be used to record the single shot spectrum of radiation emitted by the tapered hybrid undulator (THUNDER) undulator installed at the LOASIS GeV-class laser-plasma-accelerator. The spectrometer uses an aberration-corrected concave grating with 1200 lines/mm covering 11-62 nm and a microchannel plate detector with a CsI coated photocathode for increased quantum efficiency in the extreme ultraviolet. A touch screen interface controls the grating angle, aperture size, and placementmore » of the detector in vacuum, allowing for high-resolution measurements over the entire spectral range.« less
Graphene-doped polymer nanofibers for low-threshold nonlinear optical waveguiding
Meng, Chao; Yu, Shao-Liang; Wang, Hong -Qing; ...
2015-11-06
Graphene-doped polymer nanofibers are fabricated by taper drawing of solvated polyvinyl alcohol doped with liquid-phase exfoliated graphene flakes. Nanofibers drawn this way typically have diameters measured in hundreds of nanometers and lengths in tens of millimeters; they show excellent uniformity and surface smoothness for optical waveguiding. Owing to their tightly confined waveguiding behavior, light–matter interaction in these subwavelength-diameter nanofibers is significantly enhanced. Using approximately 1350-nm-wavelength femto-second pulses, we demonstrate saturable absorption behavior in these nanofibers with a saturation threshold down to 0.25 pJ pulse -1 (peak power ~1.3 W). Additionally, using 1064-nm-wavelength nanosecond pulses as switching light, we show all-opticalmore » modulation of a 1550-nm-wavelength signal light guided along a single nanofiber with a switching peak power of ~3.2 W.« less
Blue light aids in coping with the post-lunch dip: an EEG study.
Baek, Hongchae; Min, Byoung-Kyong
2015-01-01
The 'post-lunch dip' is a commonly experienced period of drowsiness in the afternoon hours. If this inevitable period can be disrupted by an environmental cue, the result will be enhanced workplace performance. Because blue light is known to be a critical cue for entraining biological rhythms, we investigated whether blue light illumination can be a practical strategy for coping with the post-lunch dip. Twenty healthy participants underwent a continuous performance test, during which the electroencephalogram (EEG) was recorded under four different illumination conditions: dark ( < 0.3 lx), 33% blue-enriched light, 66% blue-enriched light and white polychromatic light. As a result, exposure to blue-enriched light during the post-lunch dip period significantly reduced the EEG alpha activity, and increased task performance. Since desynchronisation of alpha activity reflects enhancement of vigilance, our findings imply that blue light might disrupt the post-lunch dip. Subsequent exploration of illumination parameters will be beneficial for possible chronobiological and ergonomic applications.
Femtosecond laser micromachining of waveguides in silicone-based hydrogel polymers.
Ding, Li; Blackwell, Richard I; Künzler, Jay F; Knox, Wayne H
2008-06-10
By tightly focusing 27 fs laser pulses from a Ti:sapphire oscillator with 1.3 nJ pulse energy at 93 MHz repetition rate, we are able to fabricate optical waveguides inside hydrogel polymers containing approximately 36% water by weight. A tapered lensed fiber is used to couple laser light at a wavelength of 632.8 nm into these waveguides within a water environment. Strong waveguiding is observed due to large refractive index changes. A large waveguide propagation loss is found, and we show that this is caused by surface roughness which can be reduced by optimizing the waveguides.
Optical clock signal distribution and packaging optimization
NASA Astrophysics Data System (ADS)
Wu, Linghui
Polymer-based waveguides for optoelectronic interconnects and packagings were fabricated by a fabrication process that is compatible with the Si CMOS packaging process. An optoelectronic interconnection layer (OIL) for the high-speed massive clock signal distribution for the Cray T-90 supercomputer board employing optical multimode channel waveguides in conjunction with surface-normal waveguide grating couplers and a 1-to-2 3 dB splitter was constructed. Equalized optical paths were realized using an optical H-tree structure having 48 optical fanouts. This device could be increased to 64 without introducing any additional complications. A 1-to-48 fanout H-tree structure using Ultradel 9000D series polyimide was fabricated. The propagation loss and splitting loss have been measured as 0.21 dB/cm and 0.4 dB/splitter at 850 nm. The power budget was discussed, and the H-tree waveguide fully satisfies the power budget requirement. A tapered waveguide coupler was employed to match the mode profile between the single-mode fiber and the multimode channel waveguides of the OIL. A thermo-optical based multimode switch was designed, fabricated, and tested. The finite difference method was used to simulate the thermal distribution in the polymer waveguide. Both stable and transient conditions have been calculated. The thermo-optical switch was fabricated and tested. The switching speed of 1 ms was experimentally confirmed, fitting well with the simulation results. Thermo-optic switching for randomly polarized light at wavelengths of 850 nm was experimental confirmed, as was a stable attenuation of 25 dB. The details of tapered waveguide fabrication were investigated. Compression-molded 3-D tapered waveguides were demonstrated for the first time. Not only the vertical depth variation but also the linear dimensions of the molded waveguides were well beyond the limits of what any other conventional waveguide fabrication method is capable of providing. Molded waveguides with vertical depths of 100 mum at one end and 5 mum at the other end and lengths of 1.0 cm were fabricated using a photolime gel polymer. A propagation loss of 0.5 dB/cm was achieved when light was coupled from the 5 mum x 5 mum end to the 100 mum x 100 mum end and that of 1.1 dB/cm was observed when light was coupled from the 100 mum x 100 mum end to the 5 mum x 5 mum. By confining the energy to the fundamental mode when coupling from the large end to the small end, low-loss packaging can be achieved bi-directionally. 3-D compression-molded polymeric waveguides present a promising solution to bridging the huge dynamic range of different optoelectronic device-depths varying from a few microns to several hundred microns.
Tomas, Myreen E; Mana, Thriveen S C; Wilson, Brigid M; Nerandzic, Michelle M; Joussef-Piña, Samira; Quiñones-Mateu, Miguel E; Donskey, Curtis J
2018-05-01
Vancomycin taper regimens are commonly used for the treatment of recurrent Clostridium difficile infections. One rationale for tapering and pulsing of the dose at the end of therapy is to reduce the selective pressure of vancomycin on the indigenous intestinal microbiota. Here, we used a mouse model to test the hypothesis that the indigenous microbiota that provide colonization resistance against C. difficile and vancomycin-resistant enterococci (VRE) is repopulated during tapering courses of vancomycin. Mice were treated orally with vancomycin daily for 10 days, vancomycin in a tapering dose for 42 days, fidaxomicin for 10 days, or saline. To assess colonization resistance, subsets of mice were challenged with 10 4 CFU of C. difficile or VRE at multiple time points during and after completion of treatment. The impact of the treatments on the microbiome was measured by cultures, real-time PCR for selected anaerobic bacteria, and deep sequencing. Vancomycin taper-treated mice developed alterations of the microbiota and disruption of colonization resistance that was persistent 18 days after treatment. In contrast, mice treated with a 10-day course of vancomycin exhibited recovery of the microbiota and of colonization resistance by 15 days after treatment, and fidaxomicin-treated mice maintained intact colonization resistance. These findings demonstrate that alteration of the indigenous microbiota responsible for colonization resistance to C. difficile and VRE persist during and after completion of tapering courses of vancomycin. Copyright © 2018 American Society for Microbiology.
Brock, Timothy M; Sidaginamale, Raghavendra; Rushton, Steven; Nargol, Antoni V F; Bowsher, John G; Savisaar, Christina; Joyce, Tom J; Deehan, David J; Lord, James K; Langton, David J
2015-12-01
Taper wear at the head-neck junction is a possible cause of early failure in large head metal-on-metal (LH-MoM) hip replacements. We hypothesized that: (i) taper wear may be more pronounced in certain product designs; and (ii) an increased abductor moment arm may be protective. The tapers of 104 explanted LH-MoM hip replacements revised for adverse reaction to metal debris (ARMD) from a single manufacturer were analyzed for linear and volumetric wear using a co-ordinate measuring machine. The mated stem was a shorter 12/14, threaded trunnion (n=72) or a longer, smooth 11/13 trunnion (n=32). The abductor moment arm was calculated from pre-revision radiographs. Independent predictors of linear and volumetric wear included taper angle, stem type, and the horizontal moment arm. Tapers mated with the threaded 12/14 trunnion had significantly higher rates of volumetric wear (0.402 mm3/yr vs. 0.123 mm3/yr [t=-2.145, p=0.035]). There was a trend to larger abductor moment arms being protective (p=0.055). Design variation appears to play an important role in taper-trunnion junction failure. We recommend that surgeons bear these findings in mind when considering the use of a short, threaded trunnion with a cobalt-chromium head. © 2015 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
DeCelles, P. G.; Carrapa, B.; Gehrels, G. E.; Chakraborty, T.; Ghosh, P.
2016-12-01
The Himalaya consists of thrust sheets tectonically shingled together since 58 Ma as India collided with and slid beneath Asia. Major Himalayan structures, including the South Tibetan Detachment (STD), Main Central Thrust (MCT), Lesser Himalayan Duplex (LHD), Main Boundary Thrust (MBT), and Main Frontal Thrust (MFT), persist along strike from northwestern India to Arunachal Pradesh near the eastern end of the orogenic belt. Previous work suggests significant basement involvement and a kinematic history unique to the Arunachal Himalaya. We present new geologic and geochronologic data to support a regional structural cross section and kinematic restoration of the Arunachal Himalaya. Large Paleoproterozoic orthogneiss bodies (Bomdila Gneiss) previously interpreted as Indian basement have ages of 1774-1810 Ma, approximately 50 Ma younger than Lesser Himalayan strata into which their granitic protoliths intruded. Bomdila Gneiss is therefore part of the Lesser Himalayan cover sequence, and no evidence exists for basement involvement in the Arunachal Himalaya. Minimum shortening in rocks structurally beneath the STD is 421 km. The MCT was active during the early Miocene; STD extension overlapped MCT shortening and continued until approximately 15-12 Ma; and growth of the LHD began 11 Ma, followed by slip along the MBT (post-7.5 Ma) and MFT (post-1 Ma) systems. Earlier thrusting events involved long-distance transport of strong, low-taper thrust sheets, whereas events after 12-10 Ma stacked smaller, weaker thrust sheets into a steeply tapered orogenic wedge dominated by duplexing. A coeval kinematic transition is observed in other Himalayan regions, suggesting that orogenic wedge behavior was controlled by rock strength and erodibility.
Gastrointestinal blood loss in triathletes: it's etiology and relationship to sports anaemia.
Rudzki, S J; Hazard, H; Collinson, D
1995-03-01
Twenty male triathletes (R 18-39 mean = 27.5 yrs) provided blood and faecal samples during intense training, pre-race taper and post-competition. All answered a closed-end questionnaire on intake of aspirin, NSAIDS, Vitamin C, iron and red meat. History of GIT blood loss and training distances were also obtained. Blood samples were taken on three occasions and analysed for Haemoglobin(Hb) and Serum Ferritin concentrations. Faecal specimens were collected on five occasions and assessed for blood loss using Haemoccult II and Monohaem (a monoclonal antibody test specific for human haemoglobin). Mean Hb and 95% confidence intervals at the three stages were 14.53gm/l (13.95-15.10), 14.9gm/l (14.46-15.34), 14.57gm/l (14.18-14.97) respectively. There was a small, but statistically significant, increase in Hb during the pre-race taper period (paired t = 2.65, p < 0.05), and a non-significant drop in Hb post-event (paired t = 1.89, p = 0.075). Mean ferritin, MCV and haematocrit values did not significantly change. Eighty percent of the group exhibited faecal blood loss on one or more of the tests used. There were significant increases in both Haemoccult (chi 2 = 5.44, p < 0.04) and Monohaem (chi 2 = 7.36 p < 0.02). Regression analysis demonstrated a significant relationship between training Hb and total training intensity (R = -0.61, F1,l5 = 8.98, p < 0.009) and training run intensity (R = -0.55, F1,l5 = 6.17, p < 0.026), as estimated using Coopers aerobic points system. These results confirm that GIT blood loss is common in endurance athletes, and appears to be related to exercise intensity. The possible mechanisms of blood loss are discussed.
Depth of composite polymerization within simulated root canals using light-transmitting posts.
Lui, J L
1994-01-01
In this study, the depth of cure of composite resins cured within simulated root canals by means of light-transmitting plastic posts was compared to that achieved by the conventional light-curing method. Six sizes of posts with diameters of 1.05 mm, 1.20 mm, 1.35 mm, 1.50 mm, 1.65 mm, and 1.80 mm were investigated. In general, the larger the post diameter, the greater was the depth of cure. There were significant differences in the depth of cure between the control and all sizes of posts investigated. There were also significant differences between the various post diameters except for the 1.35 mm and 1.50 mm diameter posts. It was possible to achieve a depth of cure exceeding 11 mm using these light-transmitting posts.
Validation of Volume and Taper Equations For Loblolly Shortleaf and Slash Pine
Allan E. Tiarks; V. Clark Baldwin
1999-01-01
Inside-bark diameter measurements at 6.64 intervals of 137 loblolly, 52 shortleaf, and 64 slash pines were used to calculate the actual volume and taper of each species for comparison with volumes and tapers predicted from published equations. The loblolly pine were cut in Texas (TX) and Louisiana (LA) while the shortleaf was sampled only in TX. The slash pine were...
Compatible taper and volume equations for young longleaf pine plantations in southwest Georgia
Lichun Jiang; John R. Brooks; Alexander Clark
2010-01-01
Inside and outside bark taper equations as well as compatible cubic foot volume equations were developed from felled tree data selected from young longleaf pine plantations that are part of an existing growth and yield study located in the Flint River drainage of southwest Georgia. A Max-Burkhart taper model was selected as the basic model form due to the accuracy...
Microdroplet-etched highly birefringent low-loss fiber tapers.
Mikkelsen, Jared C; Poon, Joyce K S
2012-07-01
We use hydrofluoric acid microdroplets to directly etch highly birefringent biconical fiber tapers from standard single-mode fibers. The fiber tapers have micrometer-sized cross sections, which are controlled by the etching condition. The characteristic teardrop cross section leads to a high group birefringence of B(G)≈0.017 and insertion losses <0.7 dB over waist lengths of about 2.1 mm.
Harry V., Jr. Wiant; Michael L. Spangler; John E. Baumgras
2002-01-01
Various taper systems and the centroid method were compared to unbiased volume estimates made by importance sampling for 720 hardwood trees selected throughout the state of West Virginia. Only the centroid method consistently gave volumes estimates that did not differ significantly from those made by importance sampling, although some taper equations did well for most...
Tapered holey fibers for spot-size and numerical-aperture conversion.
Town, G E; Lizier, J T
2001-07-15
Adiabatically tapered holey fibers are shown to be potentially useful for guided-wave spot-size and numerical-aperture conversion. Conditions for adiabaticity and design guidelines are provided in terms of the effective-index model. We also present finite-difference time-domain calculations of downtapered holey fiber, showing that large spot-size conversion factors are obtainable with minimal loss by use of short, optimally shaped tapers.
Subbiya, Arunajatesan; Cherkas, Pavel S.; Vivekanandhan, Paramasivam; Geethapriya, Nagarajan; Malarvizhi, Dhakshinamoorthy; Mitthra, Suresh
2017-01-01
Background: Endodontic instrumentation is liable to cause some postinstrumentation pain (PIP). Rotary endodontic instruments differ in their design, metallurgy, surface treatment, etc. Aim: This randomized clinical trial aimed to assess the incidence of PIP after root canal instrumentation with three different rotary endodontic systems which differ in their design, namely, ProTaper, Mtwo, and K3. Materials and Methods: A total of 150 patients between the ages of 25 and 50 were chosen for the study. Teeth with asymptomatic irreversible pulpitis due to carious exposure were selected. The patients received local anesthesia by inferior alveolar nerve block. After preparing the access cavity, root canal instrumentation was done with one of the three instruments (n = 50) and closed dressing was given. PIP was assessed every 12 h for 5 days, and tenderness to percussion was analyzed at the end of 1, 3, and 7 days. Statistical Analysis: Mann–Whitney U-test to determine significant differences at P < 0.01. Results: The PIP and tenderness were less in Mtwo group when compared to ProTaper and K3 groups up to 84 h and 72 h respectively and statistically significant (P < 0.05). There was no statistically significant difference between ProTaper and K3 both in PIP and tenderness. Conclusion: Rotary endodontic instrumentation causes some degree of PIP and tenderness to percussion. Among the instruments used, Mtwo causes less PIP and tenderness when compared to ProTaper and K3, and there was no difference between ProTaper and K3. Clinical Relevance: PIP is highly subjective and may vary among different subjects. The apical (3 mm) taper of ProTaper was 0.08 followed by a smaller taper, whereas, the other two files were of a constant 0.06 taper, which means there could have been a greater apical extrusion and therefore more PIP. Despite, the mean of the age was similar, there could have been a difference in the size of the canal and therefore a difference in apical extrusion and PIP. PMID:29430103
Askerbeyli Örs, S; Serper, A
2018-05-01
To evaluate the effect of three nickel-titanium (Ni-Ti) rotary systems with varying tapers on stress distribution and to analyse potential fracture patterns as well as the volume of fracture-susceptible regions in two-rooted maxillary premolars. The root canals of three single-rooted premolars were prepared with either HeroShaper (Micro-Mega, Besançon, France) to (size 30, .04 taper), Revo-S (Micro-Mega) to AS30 (size 30, .06 taper) or ProTaper Universal (Dentsply Maillefer, Ballaigues, Switzerland) to F3 (size 30, .09 taper) Ni-Ti files. The three root canals were scanned using micro-computed tomography (μCT) (Skyscan 1174, Skyscan, Kontich, Belgium) and modelled according to the μCT data. An intact tooth model with a root length of 16 mm was also constructed based on μCT images of an extracted maxillary premolar with two roots. New models were constructed by replacing both of the original canals of the intact two-rooted premolar model with the modelled canals prepared with the HeroShaper, Revo-S or ProTaper Universal system. Occlusal forces of 200 N were applied in oblique and vertical directions. Finite element analysis was performed using Abaqus FEA software (Abaqus 6.14, ABAQUS Inc., Providence, RI, USA). Upon the application of oblique occlusal forces, the palatal external cervical root surface and the bifurcation (palatal side of the buccal root) in tooth models experienced the highest maximum principal (Pmax) stresses. The application of vertical forces resulted in minor Pmax stress values. Models prepared using the ProTaper system exhibited the highest Pmax stress values. The intact models exhibited the lowest Pmax stress values followed by the models prepared with the HeroShaper system. The differences in Pmax stress values amongst the different groups of models were mathematically minimal under normal occlusal forces. Rotary systems with varying tapers might predispose the root fracture on the palatal side of the buccal root and cervical palatal root surface in two-rooted premolars. © 2017 International Endodontic Journal. Published by John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Liu, Xin; Sanner, Nicolas; Sentis, Marc; Stoian, Razvan; Zhao, Wei; Cheng, Guanghua; Utéza, Olivier
2018-02-01
Single-shot Gaussian-Bessel laser beams of 1 ps pulse duration and of 0.9 μm core size and 60 μm depth of focus are used for drilling micro-channels on front side of fused silica in ambient condition. Channels ablated at different pulse energies are fully characterized by AFM and post-processing polishing procedures. We identify experimental energy conditions (typically 1.5 µJ) suitable to fabricate non-tapered channels with mean diameter of 1.2 µm and length of 40 μm while maintaining an utmost quality of the front opening of the channels. In addition, by further applying accurate post-polishing procedure, channels with high surface quality and moderate aspect ratio down to a few units are accessible, which would find interest in the surface micro-structuring of materials, with perspective of further scalability to meta-material specifications.
Ali, Syed Farooq; Gowda, Guru S; Jaisoorya, T S; Math, Suresh Bada
2017-08-01
The resurgence of catatonia following tapering of lorazepam is a common clinical phenomenon. However, there is limited evidence on the relationship between tapering method of lorazepam and resurgence of catatonic state. We report seven (0.6%) such patients who were found to have resurgence of catatonia. The mean age is 35.7 years; five of them had schizophrenia and other psychotic spectrum disorders. Five of them had resurgence within one week of stoppage, and three of them had multiple resurgences and required maintenance treatment with lorazepam. So gradual tapering and maintenance treatment with lorazepam might be effective in preventing resurgence of catatonia. Copyright © 2017 Elsevier B.V. All rights reserved.