Sample records for tapered slot antenna

  1. Implementation of rectangular slit-inserted ultra-wideband tapered slot antenna.

    PubMed

    Kim, Sun-Woong; Choi, Dong-You

    2016-01-01

    In this paper, a tapered slot antenna capable of ultra-wideband communication was designed. In the proposed antenna, rectangular slits were inserted to enhance the bandwidth and reduce the area of the antenna. The rectangular slit-inserted tapered slot antenna operated at a bandwidth of 8.45 GHz, and the bandwidth improved upon the basic tapered slot antenna by 4.72 GHz. The radiation pattern of the antenna was suitable for location recognition in a certain direction owing to an appropriate 3 dB beam width. The antenna gain was analyzed within the proposed bandwidth, and the highest gain characteristic at 7.55 dBi was exhibited at a 5-GHz band. The simulation and measurement results of the proposed tapered slot antenna were similar.

  2. Orthogonal feeding techniques for tapered slot antennas

    NASA Technical Reports Server (NTRS)

    Lee, Richard Q.; Simons, Rainee N.

    1998-01-01

    For array of "brick" configuration there are electrical and mechanical advantages to feed the antenna with a feed on a substrate perpendicular to the antenna substrate. Different techniques have been proposed for exciting patch antennas using such a feed structure.Rncently, an aperture-coupled dielectric resonator antenna using a perpendicular feed substrate has been demonstrated to have very good power coupling efficiency. For a two-dimensional rectangular array with tapered slot antenna elements, a power combining network on perpendicular substrate is generally required to couple power to or from the array. In this paper, we will describe two aperture-coupled techniques for coupling microwave power from a linearly tapered slot antenna (LTSA) to a microstrip feed on a perpendicular substrate. In addition, we will present measured results for return losses and radiation patterns.

  3. Tapered slot antenna design for vehicular GPR applications

    NASA Astrophysics Data System (ADS)

    Bıçak, Emrullah; Yeǧin, Korkut; Nazlı, Hakki; Daǧ, Mahmut

    2014-05-01

    Vehicular applications of UWB GPR demand multiple GPR sensors operating in a harsh environment. One of the key elements of in the sensor is its UWB antenna which has minimal inter-element coupling, low group delay, high directivity and less prone to environmental conditions. Tapered slot antennas (TSA's) provide good impedance match, but they need to be modified for above specifications. Parasitic slot loaded TSA with balanced feed is proposed and a multi-channel antenna array structure is formed. Structural parameters are numerically analyzed and a prototype is built. Measurements show good performance for UWB GPR applications.

  4. Characteristics of a Linearly Tapered Slot Antenna (LTSA) Conformed Longitudinally Around a Cylinder

    NASA Technical Reports Server (NTRS)

    Jordan, Jennifer L.; Ponchak, George E.; Tavassolian, Negar; Tentzeris, Manos M.

    2007-01-01

    The family of tapered slot antennas (TSA s) is suitable for numerous applications. Their ease of fabrication, wide bandwidth, and high gain make them desirable for military and commercial systems. Fabrication on thin, flexible substrates allows the TSA to be conformed over a given body, such as an aircraft wing or a piece of clothing for wearable networks. Previously, a Double Exponentially Tapered Slot Antenna (DETSA) was conformed around an exponential curvature, which showed that the main beam skewed towards the direction of curvature. This paper presents a Linearly Tapered Slot Antenna (LTSA) conformed longitudinally around a cylinder. Measured and simulated radiation patterns and the direction of maximum H co-polarization (Hco) as a function of the cylinder radius are presented.

  5. Nonplanar linearly tapered slot antenna with balanced microstrip feed

    NASA Technical Reports Server (NTRS)

    Simons, Rainee N.; Lee, Richard Q.; Perl, Thomas D.

    1992-01-01

    A nonplanar linearly tapered slot antenna (LTSA) has been fabricated and tested at frequencies from 8 to 32 giga-Hz. The LTSA is excited by a broadband balanced microstrip transformer. The measured results include the input term return loss as well as the radiation pattern of the antenna.

  6. Impedance Matching of Tapered Slot Antenna using a Dielectric Transformer

    NASA Technical Reports Server (NTRS)

    Simons, R. N.; Lee, R. Q.

    1998-01-01

    A new impedance matching technique for tapered slot antennas using a dielectric transformer is presented. The technique is demonstrated by measuring the input impedance, Voltage Standing Wave Ratio (VSWR) and the gain of a Vivaldi antenna (VA). Measured results at Ka-Band frequencies are presented and discussed.

  7. Design of Ultra-Wideband Tapered Slot Antenna by Using Binomial Transformer with Corrugation

    NASA Astrophysics Data System (ADS)

    Chareonsiri, Yosita; Thaiwirot, Wanwisa; Akkaraekthalin, Prayoot

    2017-05-01

    In this paper, the tapered slot antenna (TSA) with corrugation is proposed for UWB applications. The multi-section binomial transformer is used to design taper profile of the proposed TSA that does not involve using time consuming optimization. A step-by-step procedure for synthesis of the step impedance values related with step slot widths of taper profile is presented. The smooth taper can be achieved by fitting the smoothing curve to the entire step slot. The design of TSA based on this method yields results with a quite flat gain and wide impedance bandwidth covering UWB spectrum from 3.1 GHz to 10.6 GHz. To further improve the radiation characteristics, the corrugation is added on the both edges of the proposed TSA. The effects of different corrugation shapes on the improvement of antenna gain and front-to-back ratio (F-to-B ratio) are investigated. To demonstrate the validity of the design, the prototypes of TSA without and with corrugation are fabricated and measured. The results show good agreement between simulation and measurement.

  8. Phase resolved near-field imaging of propagating waves in infrared tapered slot antennas

    NASA Astrophysics Data System (ADS)

    Florence, Louis A.; Kinzel, Edward C.; Olmon, Robert L.; Ginn, James C.; Raschke, Markus B.; Boreman, Glenn D.

    2012-11-01

    Tapered slot antennas (TSAs) consist of a planar non-resonant structure which couples incident radiation to a propagating waveguide mode. They are commonly used at microwave and radio frequencies because they are fundamentally broadband and have small profiles. Because of their planar layout and broadband response they have recently been scaled to infrared frequencies where they have advantages for sensing and energy harvesting. We use scattering-type scanning near-field optical microscopy (s-SNOM) to study the mode transformation of two types of TSA operating in the thermal infrared (λ0 = 10.6 μm) with respect to electric field amplitude and phase. The results agree well with simulation showing both the phase reversal across the tapered slot and the traveling of wave fronts along the tapered slot, yet they also reveal high sensitivity of device performance to inhomogeneities in the geometry or illumination. This study will aid future design and analysis of practical non-resonant antennas operating at optical and infrared frequencies.

  9. Moment method analysis of linearly tapered slot antennas

    NASA Technical Reports Server (NTRS)

    Koeksal, Adnan

    1993-01-01

    A method of moments (MOM) model for the analysis of the Linearly Tapered Slot Antenna (LTSA) is developed and implemented. The model employs an unequal size rectangular sectioning for conducting parts of the antenna. Piecewise sinusoidal basis functions are used for the expansion of conductor current. The effect of the dielectric is incorporated in the model by using equivalent volume polarization current density and solving the equivalent problem in free-space. The feed section of the antenna including the microstripline is handled rigorously in the MOM model by including slotline short circuit and microstripline currents among the unknowns. Comparison with measurements is made to demonstrate the validity of the model for both the air case and the dielectric case. Validity of the model is also verified by extending the model to handle the analysis of the skew-plate antenna and comparing the results to those of a skew-segmentation modeling results of the same structure and to available data in the literature. Variation of the radiation pattern for the air LTSA with length, height, and taper angle is investigated, and the results are tabulated. Numerical results for the effect of the dielectric thickness and permittivity are presented.

  10. Linearly tapered slot antenna circular array for mobile communications

    NASA Technical Reports Server (NTRS)

    Simons, Rainee N.; Kelly, Eron; Lee, Richard Q.; Taub, Susan R.

    1993-01-01

    The design, fabrication and testing of a conformal K-band circular array is presented. The array consists of sixteen linearly tapered slot antennas (LTSA). It is fed by a 1:16 microstrip line power splitter via electromagnetic coupling. The array has an omni-directional pattern in the azimuth plane. In the elevation plane the beam is displaced above the horizon.

  11. Linearly Tapered Slot Antenna Radiation Characteristics at Millimeter-Wave Frequencies

    NASA Technical Reports Server (NTRS)

    Simons, Rainee N.; Lee, Richard Q.

    1998-01-01

    An endfire travelling wave antenna, such as, a linearly tapered slot antenna (LTSA) is a viable alternative to a patch antenna at millimeter-wave frequencies because of its simple design and ease of fabrication. This paper presents the radiation characteristics of LTSA at higher millimeter-wave frequencies. The measured radiation patterns are observed to be well behaved and symmetric with the main beam in the endfire direction. The measured gain is about 10 dB. The LTSAs have potential wireless applications at 50 GHz, 77 GHz, and 94 GHz.

  12. Characterization of tapered slot antenna feeds and feed arrays

    NASA Technical Reports Server (NTRS)

    Kim, Young-Sik; Yngvesson, K. Sigfrid

    1990-01-01

    A class of feed antennas and feed antenna arrays used in the focal plane of paraboloid reflectors and exhibiting higher than normal levels of cross-polarized radiation in the diagonal planes is addressed. A model which allows prediction of element gain and aperture efficiency of the feed/reflector system is presented. The predictions are in good agreement with experimental results. Tapered slot antenna (TSA) elements are used an example of an element of this type. It is shown that TSA arrays used in multibeam systems with small beam spacings are competitive in terms of aperture efficiency with other, more standard types of arrays incorporating waveguide type elements.

  13. Space Power Amplification with Active Linearly Tapered Slot Antenna Array

    NASA Technical Reports Server (NTRS)

    Simons, Rainee N.; Lee, Richard Q.

    1993-01-01

    A space power amplifier composed of active linearly tapered slot antennas (LTSA's) has been demonstrated and shown to have a gain of 30 dB at 20 GHz. In each of the antenna elements, a GaAs monolithic microwave integrated circuit (MMIC) three-stage power amplifier is integrated with two LTSA's. The LTSA and the MMIC power amplifier has a gain of 11 dB and power added efficiency of 14 percent respectively. The design is suitable for constructing a large array using monolithic integration techniques.

  14. The tapered slot antenna - A new integrated element for millimeter-wave applications

    NASA Technical Reports Server (NTRS)

    Yngvesson, K. Sigfrid; Kim, Young-Sik; Korzeniowski, T. L.; Kollberg, Erik L.; Johansson, Joakim F.

    1989-01-01

    Tapered slot antennas (TSAs) with a number of potential applications as single elements and focal-plane arrays are discussed. TSAs are fabricated with photolithographic techniques and integrated in either hybrid or MMIC circuits with receiver or transmitter components. They offer considerably narrower beams than other integrated antenna elements and have high aperture efficiency and packing density as array elements. Both the circuit and radiation properties of TSAs are reviewed. Topics covered include: antenna beamwidth, directivity, and gain of single-element TSAs; their beam shape and the effect of different taper shapes; and the input impedance and the effects of using thick dielectrics. These characteristics are also given for TSA arrays, as are the circuit properties of the array elements. Different array structures and their applications are also described.

  15. New Techniques for Exciting Linearly Tapered Slot Antennas with Coplanar Waveguide

    NASA Technical Reports Server (NTRS)

    Simons, R. N.; Lee, R. Q.; Perl, T. D.

    1992-01-01

    Two new techniques for exciting a linearly tapered slot antenna (LTSA) with coplanar waveguide (CPW) are introduced. In the first approach, an air bridge is used to couple power from a CPW to an LTSA. In the second approach, power is electromagnetically coupled from a finite CPW (FCPW) to an LTSA. Measured results at 18 GHz show excellent return loss and radiation patterns.

  16. Effect of a Dielectric Overlay on a Linearly Tapered Slot Antenna Excited by a Coplanar Waveguide

    NASA Technical Reports Server (NTRS)

    Simons, Rainee N.; Lee, Richard Q.; Perl, Thomas D.; Silvestro, John

    1993-01-01

    The effect of a dielectric overlay on a linearly tapered slot antenna (LTSA) is studied. The LTSA under study has very wide bandwidth and excellent radiation patterns. A dielectric overlay improves the patterns and directivity of the antenna by increasing the electrical length and effective aperture of the antenna. A dielectric overlay can also be used to reduce the physical length of the antenna without compromising the pattern quality.

  17. The Effects of Ground Plane and Parasitic Layer on Linearly Tapered Slot Antenna

    NASA Technical Reports Server (NTRS)

    Lee, Richard Q.; Simons, Rainee N.

    1996-01-01

    The effects of a large ground plane and an upper parasitic layer on a linearly tapered slot antenna has been experimentally investigated. Results indicate that the presence of a large ground plane causes the beam to steer by as much as 50 deg from the endfire direction in the H-plane. With the addition of a parasitic layer above the fed antenna, further beam scanning can be achieved when the spacing between the fed and parasitic layers is properly chosen.

  18. New coplanar waveguide feed network for 2 x 2 linearly tapered slot antenna subarray

    NASA Technical Reports Server (NTRS)

    Simons, Rainee N.; Perl, Thomas D.; Lee, Richard Q.

    1992-01-01

    A novel feed method is presently demonstrated for a 2 x 2 linearly tapered slot antenna (LTSA) on the basis of a coplanar-waveguide (CPW)-to-slotline transition and a coax-to-CPW in-phase, four-way power divider. The LTSA subarray exhibits excellent radiation patterns and return-loss characteristics at 18 GHz, and has symmetric beamwidth; its compactness renders it applicable as either a feed for a reflector antenna or as a building-block for large arrays.

  19. Moment method analysis of linearly tapered slot antennas: Low loss components for switched beam radiometers

    NASA Technical Reports Server (NTRS)

    Koeksal, Adnan; Trew, Robert J.; Kauffman, J. Frank

    1992-01-01

    A Moment Method Model for the radiation pattern characterization of single Linearly Tapered Slot Antennas (LTSA) in air or on a dielectric substrate is developed. This characterization consists of: (1) finding the radiated far-fields of the antenna; (2) determining the E-Plane and H-Plane beamwidths and sidelobe levels; and (3) determining the D-Plane beamwidth and cross polarization levels, as antenna parameters length, height, taper angle, substrate thickness, and the relative substrate permittivity vary. The LTSA geometry does not lend itself to analytical solution with the given parameter ranges. Therefore, a computer modeling scheme and a code are necessary to analyze the problem. This necessity imposes some further objectives or requirements on the solution method (modeling) and tool (computer code). These may be listed as follows: (1) a good approximation to the real antenna geometry; and (2) feasible computer storage and time requirements. According to these requirements, the work is concentrated on the development of efficient modeling schemes for these type of problems and on reducing the central processing unit (CPU) time required from the computer code. A Method of Moments (MoM) code is developed for the analysis of LTSA's within the parameter ranges given.

  20. Characteristics of Double Exponentially Tapered Slot Antenna (DETSA) Conformed in the Longitudinal Direction Around a Cylindrical Structure

    NASA Technical Reports Server (NTRS)

    Ponchak, George E.; Jordan, Jennifer L.; Chevalier, Christine T.

    2006-01-01

    The characteristics of a double exponentially tapered slot antenna (DETSA) as a function of the radius that the DETSA is conformed to in the longitudinal direction is presented. It is shown through measurements and simulations that the radiation pattern of the conformed antenna rotates in the direction through which the antenna is curved, and that diffraction affects the radiation pattern if the radius of curvature is too small or the frequency too high. The gain of the antenna degrades by only 1 dB if the radius of curvature is large and more than 2 dB for smaller radii. The main effect due to curving the antenna is an increased cross-polarization in the E-plane.

  1. Modern Design of Resonant Edge-Slot Array Antennas

    NASA Technical Reports Server (NTRS)

    Gosselin, R. B.

    2006-01-01

    Resonant edge-slot (slotted-waveguide) array antennas can now be designed very accurately following a modern computational approach like that followed for some other microwave components. This modern approach makes it possible to design superior antennas at lower cost than was previously possible. Heretofore, the physical and engineering knowledge of resonant edge-slot array antennas had remained immature since they were introduced during World War II. This is because despite their mechanical simplicity, high reliability, and potential for operation with high efficiency, the electromagnetic behavior of resonant edge-slot antennas is very complex. Because engineering design formulas and curves for such antennas are not available in the open literature, designers have been forced to implement iterative processes of fabricating and testing multiple prototypes to derive design databases, each unique for a specific combination of operating frequency and set of waveguide tube dimensions. The expensive, time-consuming nature of these processes has inhibited the use of resonant edge-slot antennas. The present modern approach reduces costs by making it unnecessary to build and test multiple prototypes. As an additional benefit, this approach affords a capability to design an array of slots having different dimensions to taper the antenna illumination to reduce the amplitudes of unwanted side lobes. The heart of the modern approach is the use of the latest commercially available microwave-design software, which implements finite-element models of electromagnetic fields in and around waveguides, antenna elements, and similar components. Instead of building and testing prototypes, one builds a database and constructs design curves from the results of computational simulations for sets of design parameters. The figure shows a resonant edge-slot antenna designed following this approach. Intended for use as part of a radiometer operating at a frequency of 10.7 GHz, this antenna

  2. TAPERED DEFINING SLOT

    DOEpatents

    Pressey, F.W.

    1959-09-01

    An improvement is reported in the shape and formation of the slot or opening in the collimating slot member which forms part of an ion source of the type wherein a vapor of the material to be ionized is bombarded by electrons in a magnetic field to strike an arc-producing ionization. The defining slot is formed so as to have a substantial taper away from the cathode, causing the electron bombardment from the cathode to be dispersed over a greater area reducing its temperature and at the same time bringing the principal concentration of heat from the electron bombardment nearer the anode side of the slot, thus reducing deterioration and prolonging the life of the slot member during operation.

  3. Dual Mode Slotted Monopole Antenna

    DTIC Science & Technology

    2017-01-05

    of 15 DUAL MODE SLOTTED MONOPOLE ANTENNA STATEMENT OF GOVERNMENT INTEREST [0001] The invention described herein may be manufactured and used by...to a dual mode antenna having one mode as a slotted cylinder antenna and another mode as a monopole antenna . (2) Description of the Prior Art...0004] Slotted cylinder antennas are popular antennas for use in line of sight communications systems, especially where the carrier frequency exceeds

  4. A broadband double-slot waveguide antenna

    NASA Astrophysics Data System (ADS)

    Kisliuk, M.; Axelrod, A.

    1987-09-01

    A double transverse slot broadband antenna based on the H-guide transverse-slot radiator design of Kisliuk and Axelrod (1985) is described. The double transverse slot antenna may be used in microwave and mm-wave applications (as a phased array element), in imaging systems, or as a stand-alone linearly polarized antenna. The equations for calculating the radiation efficiency and the input impedance and the experimental and theoretical curves for radiation efficiency of the double-slot antenna are presented along with diagrams of the antenna and the equivalent circuit of an individual slot in a slot array.

  5. Slotted Antenna with Uniaxial Dielectric Covering

    DTIC Science & Technology

    2016-07-08

    1 of 12 SLOTTED ANTENNA WITH UNIAXIAL DIELECTRIC COVERING STATEMENT OF GOVERNMENT INTEREST [0001] The invention described herein may be...invention is directed to a slotted antenna having enhanced broadband characteristics. (2) Description of the Prior Art [0004] Slotted cylinder antennas ...slotted cylinder antenna for use in a towed buoy. Though somewhat broadband in performance, it is not suitable for vertical mounting over a

  6. CIRCULAR CAVITY SLOT ANTENNA

    DOEpatents

    Kerley, P.L.

    1959-01-01

    A small-size antenna having a doughnut-shaped field pattern and which can act both as an antenna and a resonant circuit is described. The antenna is of the slotted type and comprises a resonant cavity with a center hole. A circular slot is provided in one wall of the cavity concentric with the hole and a radio frequency source is connected across the slot. The pattern and loading of the antenna are adjusted by varying the position and shape of a center element slidably disposed within the hole and projecting from the slotted side of the resonant cavity. The disclosed structure may also be used to propagate the oscillator signal down a transniission line by replacing the center element with one leg of the transmission line in a spaced relation from the walls of the cavity.

  7. Slotted Antenna with Anisotropic Magnetic Loading

    DTIC Science & Technology

    2016-07-26

    10 SLOTTED ANTENNA WITH ANISOTROPIC MAGNETIC LOADING STATEMENT OF GOVERNMENT INTEREST [0001] The invention described herein may be manufactured...is directed to a slotted antenna having enhanced broadband characteristics. (2) Description of the Prior Art [0004] Slotted cylinder antennas are...popular antennas for use in line of sight communications systems, especially where the carrier frequency exceeds 300 MHz. FIG. 1 provides a diagram

  8. Transverse slot antennas for high field MRI

    PubMed Central

    Lattanzi, Riccardo; Lakshmanan, Karthik; Brown, Ryan; Deniz, Cem M.; Sodickson, Daniel K.; Collins, Christopher M.

    2018-01-01

    Purpose Introduce a novel coil design using an electrically long transversely oriented slot in a conductive sheet. Theory and Methods Theoretical considerations, numerical simulations, and experimental measurements are presented for transverse slot antennas as compared with electric dipole antennas. Results Simulations show improved central and average transmit and receive efficiency, as well as larger coverage in the transverse plane, for a single slot as compared to a single dipole element. Experiments on a body phantom confirm the simulation results for a slot antenna relative to a dipole, demonstrating a large region of relatively high sensitivity and homogeneity. Images in a human subject also show a large imaging volume for a single slot and six slot antenna array. High central transmit efficiency was observed for slot arrays relative to dipole arrays. Conclusion Transverse slots can exhibit improved sensitivity and larger field of view compared with traditional conductive dipoles. Simulations and experiments indicate high potential for slot antennas in high field MRI. Magn Reson Med 80:1233–1242, 2018. © 2018 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine. This is an open access article under the terms of the Creative Commons Attribution NonCommercial License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes. PMID:29388250

  9. W-Band On-Wafer Measurement of Uniplanar Slot-Type Antennas

    NASA Technical Reports Server (NTRS)

    Raman, Sanjay; Gauthier, Gildas P.; Rebeiz, Gabriel M.

    1997-01-01

    Uniplanar slot-type antennas such as coplanar waveguide fed single- and dual-polarized slot-ring antennas and double folded-slot antennas are characterized using a millimeter-wave network analyzer and on-wafer measurement techniques. The antennas are designed to be mounted on a dielectric lens to minimize power loss into substrate modes and realize high-gain antenna patterns. On-wafer measurements are performed by placing the antenna wafer on a thick dielectric spacer of similar e(sub t) and eliminating the reflection from the probe station chuck with time-domain gating. The measured results agree well with method-of-moments simulations.

  10. Tunable Reduced Size Planar Folded Slot Antenna Utilizing Varactor Diodes

    NASA Technical Reports Server (NTRS)

    Scardelletti, Maximilian C.; Ponchak, George E.; Jordan, Jennifer L.; Jastram, Nathan; Mahaffey, Joshua V.

    2010-01-01

    A tunable folded slot antenna that utilizes varactor diodes is presented. The antenna is fabricated on Rogers 6006 Duriod with a dielectric constant and thickness of 6.15 and 635 m, respectively. A copper cladding layer of 17 m defines the antenna on the top side (no ground on backside). The antenna is fed with a CPW 50 (Omega) feed line, has a center frequency of 3 GHz, and incorporates Micrometrics microwave hyper-abrupt 500MHV varactors to tune the resonant frequency. The varactors have a capacitance range of 2.52 pF at 0 V to 0.4 pF at 20 V; they are placed across the radiating slot of the antenna. The tunable 10 dB bandwidth of the 3 GHz antenna is 150 MHz. The varactors also reduce the size of the antenna by 30% by capacitively loading the resonating slot line. At the center frequency, 3 GHz, the antenna has a measured return loss of 44 dB and a gain of 1.6 dBi. Full-wave electromagnetic simulations using HFSS are presented that validate the measured data. Index Terms capacitive loading, Duriod, folded slot antenna, varactor.

  11. Electrically Small Folded Slot Antenna Utilizing Capacitive Loaded Slot Lines

    NASA Technical Reports Server (NTRS)

    Scardelletti, Maximilian C.; Ponchak, George E.; Merritt, Shane; Minor, John S.; Zorman, Christian A.

    2007-01-01

    This paper presents an electrically small, coplanar waveguide fed, folded slot antenna that uses capacitive loading. Several antennas are fabricated with and without capacitive loading to demonstrate the ability of this design approach to reduce the resonant frequency of the antenna, which is analogous to reducing the antenna size. The antennas are fabricated on Cu-clad Rogers Duriod(TM) 6006 with multilayer chip capacitors to load the antennas. Simulated and measured results show close agreement, thus, validating the approach. The electrically small antennas have a measured return loss greater than 15 dB and a gain of 5.4, 5.6, and 2.7 dBi at 4.3, 3.95, and 3.65 GHz, respectively.

  12. Evaluation of detectable angle of mid-infrared slot antennas

    NASA Astrophysics Data System (ADS)

    Obara, R.; Horikawa, J.; Shimakage, H.; Kawakami, A.

    2017-07-01

    For evaluations of a mid-infrared (MIR) detectors with antenna, we constructed an angular dependence measurement system of the antenna properties. The fabricated MIR detector consisted of twin slot antennas and a bolometer. The area of the slot antennas was designed to be 2.6 × 0.2 μm2 as to resonate at 61 THz, and they were located parallel and separated 1.6 μm each other. The bolometer was fabricated using by a 7.0-nm thick NbN thin film, and located at the center of the twin antennas. We measured polarization angle dependence and directivity, and showed that the MIR antennas have polarization dependence and directivity like radiofrequency antennas.

  13. A Polarization Reconfigurable Slot Antenna with a Novel Switchable Feeding Network

    NASA Astrophysics Data System (ADS)

    Xie, Peng; Wang, Guang Ming

    2017-12-01

    A polarization reconfigurable slot antenna is proposed in this paper. The antenna consists of a microstrip line-to-slotline transition structure, two radiation slots and a switchable feeding network. The feeding network is a gradually changed ring slot with six switching diodes on it. By controlling the diodes states, the antenna can generate y-direction polarization, z-direction polarization, left-hand circular polarization and right-hand circular polarization. Detailed design considerations of the proposed antenna, simulated and measured results are presented and discussed. Measured results agree well with simulated. The results proved that the antenna can realize polarization reconfiguration effectively at 5 GHz.

  14. Rectangular Microstrip Antenna with Slot Embedded Geometry

    NASA Astrophysics Data System (ADS)

    Ambresh, P. A.; Hadalgi, P. M.; Hunagund, P. V.; Sujata, A. A.

    2014-09-01

    In this paper, a novel design that improves the performance of conventional rectangular microstrip antenna is discussed. Design adopts basic techniques such as probe feeding technique with rectangular inverted patch structure as superstrate, air filled dielectric medium as substrate and slot embedded patch. Prototype of the proposed antenna has been fabricated and various antenna performance parameters such as impedance bandwidth, return loss, radiation pattern and antenna gain are considered for Electromagnetic-study. The antennas are designed for the wireless application operating in the frequency range of 3.3 GHz to 3.6 GHz, and UK based fixed satellite service application (3 GHz to 4 GHz), and are named as single inverted patch conventional rectangular microstrip antenna (SIP-CRMSA) and slots embedded inverted patch rectangular microstrip antenna (SEIP-RMSA), respectively. Measurement outcomes for SEIP-RMSA1 and SEIP-RMSA2 showed the satisfactory performance with an achievable impedance bandwidth of 260 MHz (7 %) and 250 MHz (6.72 %), with return loss (RL) of -11.06 dB and -17.98 dB, achieved gain of 8.17 dB and 5.17 dB with 10% and 8% size reduction in comparison with the conventional patch antenna.

  15. Slot-Antenna/Permanent-Magnet Device for Generating Plasma

    NASA Technical Reports Server (NTRS)

    Foster, John E.

    2007-01-01

    A device that includes a rectangular-waveguide/slot-antenna structure and permanent magnets has been devised as a means of generating a substantially uniform plasma over a relatively large area, using relatively low input power and a low gas flow rate. The device utilizes electron cyclotron resonance (ECR) excited by microwave power to efficiently generate plasma in a manner that is completely electrodeless in the sense that, in principle, there is no electrical contact between the plasma and the antenna. Plasmas generated by devices like this one are suitable for use as sources of ions and/or electrons for diverse material-processing applications (e.g., etching or deposition) and for ion thrusters. The absence of plasma/electrode contact essentially prevents plasma-induced erosion of the antenna, thereby also helping to minimize contamination of the plasma and of objects exposed to the plasma. Consequently, the operational lifetime of the rectangular-waveguide/ slot-antenna structure is long and the lifetime of the plasma source is limited by the lifetime of the associated charged-particle-extraction grid (if used) or the lifetime of the microwave power source. The device includes a series of matched radiating slot pairs that are distributed along the length of a plasma-source discharge chamber (see figure). This arrangement enables the production of plasma in a distributed fashion, thereby giving rise to a uniform plasma profile. A uniform plasma profile is necessary for uniformity in any electron- or ion-extraction electrostatic optics. The slotted configuration of the waveguide/ antenna structure makes the device scalable to larger areas and higher powers. All that is needed for scaling up is the attachment of additional matched radiating slots along the length of the discharge chamber. If it is desired to make the power per slot remain constant in scaling up, then the input microwave power must be increased accordingly. Unlike in prior ECR microwave plasma

  16. Near millimeter wave imaging/multi-beam integrated antennas

    NASA Technical Reports Server (NTRS)

    Yngvesson, K. S.; Schaubert, D. H.

    1985-01-01

    This report describes the most recent work on the theory of single element Linearly Tapered Slot Antennas (LTSAs) and Constant Width Slot Antennas (CWSAs). The radiation mechanism for these is presently well understood and allows quantitative calculation of beamwidths and sidelobe levels, provided that the antennas have a sufficiently wide conducting region on either side of the tapered slot. Appendices 4 to 7 represent earlier work on the grant. This work further elucidates the properties of arrays of CWSA elements, and the effects of coupling on the beam-shape. It should be noted that typical beam-efficiencies of 65% have been estimated, and that element spacings of about one Rayleigh unit are possible. Further, two-point resolution at the Rayleigh spacing has been demonstrated for a CWSA array in a 30.4 cm paraboloid at 31 GHz. These results underscore that interest in further studies of the radiation mechanism of tapered slot arrays. Appendix 7 constitutes a final, detailed report on the work leading to a 94 GHz seven element LTSA array imaging system, which has been reported previously in less detail. Experimental results are presented.

  17. UHF coplanar-slot antenna for aircraft-to-satellite data communications

    NASA Technical Reports Server (NTRS)

    Myhre, R. W.

    1979-01-01

    A lightweight low drag coplanar slot antenna was developed for use on commercial jet aircraft that will provide upper hemisphere coverage in the UHF band at frequencies of 402 and 468 MHz is described. The antenna is designed to transmit meteorological data from wide body jet aircraft to ground users via synchronous meteorological data relay satellites. The low profile antenna (23.5 cm wide by 38.1 cm long slot by 1.9 cm high) is a conformal antenna utilizing the coplanar approach with the advantages of broad frequency bandwidth and improved electrical integrity over wide range of temperature. The antenna is circular polarized, has anon axis gain of near +2.5 dB, and a HPBW greater than 90 deg. Areas discussed include antenna design, radiation characteristics, flight testing, and system performance.

  18. FDTD Analysis of U-Slot Rectangular Patch Antenna

    NASA Technical Reports Server (NTRS)

    Luk, K. M.; Tong, K. F.; Shum, S. M.; Lee, K. F.; Lee, R. Q.

    1997-01-01

    The U-slot rectangular patch antenna (Figure I) has been found experimentally to provide impedance and gain bandwidths of about 300 without the need of stacked or coplanar parasitic elements [1,2]. In this paper, simulation results of the U-slot patch using FDTD analysis are presented. Comparison with measured results are given.

  19. Dual-slot antennas for microwave tissue heating: parametric design analysis and experimental validation.

    PubMed

    Brace, Christopher L

    2011-07-01

    Design and validate an efficient dual-slot coaxial microwave ablation antenna that produces an approximately spherical heating pattern to match the shape of most abdominal and pulmonary tumor targets. A dual-slot antenna geometry was utilized for this study. Permutations of the antenna geometry using proximal and distal slot widths from 1 to 10 mm separated by 1-20 mm were analyzed using finite-element electromagnetic simulations. From this series, the most optimal antenna geometry was selected using a two-term sigmoidal objective function to minimize antenna reflection coefficient and maximize the diameter-to-length aspect ratio of heat generation. Sensitivities to variations in tissue properties and insertion depth were also evaluated in numerical models. The most optimal dual-slot geometry of the parametric analysis was then fabricated from semirigid coaxial cable. Antenna reflection coefficients at various insertion depths were recorded in ex vivo bovine livers and compared to numerical results. Ablation zones were then created by applying 50 W for 2-10 min in simulations and ex vivo livers. Mean zone diameter, length, aspect ratio, and reflection coefficients before and after heating were then compared to a conventional monopole antenna using ANOVA with post-hoc t-tests. Statistical significance was indicated for P <0.05. Antenna performance was highly sensitive to dual-slot geometry. The best-performing designs utilized a proximal slot width of 1 mm, distal slot width of 4 mm +/- 1 mm and separation of 8 mm +/- 1 mm. These designs were characterized by an active choking mechanism that focused heating to the distal tip of the antenna. A dual-band resonance was observed in the most optimal design, with a minimum reflection coefficient of -20.9 dB at 2.45 and 1.25 GHz. Total operating bandwidth was greater than 1 GHz, but the desired heating pattern was achieved only near 2.45 GHz. As a result, antenna performance was robust to changes in insertion depth and

  20. Wideband Circularly Polarized Printed Ring Slot Antenna for 5 GHz – 6 GHz

    NASA Astrophysics Data System (ADS)

    Nasrun Osman, Mohamed; Rahim, Mohamad Helmi A.; Jusoh, Muzammil; Sabapathy, Thennarasan; Rahim, Mohamad Kamal A.; Norlyana Azemi, Saidatul

    2018-03-01

    This paper presents the design of circularly polarized printed slot antenna operating at 5 – 6 GHz. The proposed antenna consists of L-shaped feedline on the top of structure and circular ring slot positioned at the ground plane underneath the substrate as a radiator. A radial and narrow slot in the ground plane provides coupling between the L-shaped feedline and circular ring slot. The circular polarization is realized by implementing the slits perturbation located diagonally to perturb the current flow on the slot structure. The antenna prototype is fabricated on FR4 substrate. The simulated and measured results are compared and analyzed to demonstrate the performance of the antenna. Good measured of simulated results are obtained at the targeted operating frequency. The simulated -10dB reflection coefficient bandwidths and axial ratio are 750 MHz and 165 MHz, respectively. The investigation on the affect of the important parameters towards the reflection coefficient and axial are also presented. The proposed antenna is highly potential to be used for wireless local area network (WLAN) and wireless power transfer (WPT).

  1. Ultra-wideband optical leaky-wave slot antennas.

    PubMed

    Wang, Yan; Helmy, Amr S; Eleftheriades, George V

    2011-06-20

    We propose and investigate an ultra-wideband leaky-wave antenna that operates at optical frequencies for the purpose of efficient energy coupling between localized nanoscale optical circuits and the far-field. The antenna consists of an optically narrow aluminum slot on a silicon substrate. We analyze its far-field radiation pattern in the spectral region centered around 1550 nm with a 50% bandwidth ranging from 2000 nm to 1200 nm. This plasmonic leaky-wave slot produces a maximum far-field radiation angle at 32° and a 3 dB beamwidth of 24° at its center wavelength. The radiation pattern is preserved within the 50% bandwidth suffering only insignificant changes in both the radiation angle and the beamwidth. This wide-band performance is quite unique when compared to other optical antenna designs. Furthermore, the antenna effective length for radiating 90% and 99.9% of the input power is only 0.5λ(0) and 1.5λ(0) respectively at 1550 nm. The versatility and simplicity of the proposed design along with its small footprint makes it extremely attractive for integration with nano-optical components using existing technologies.

  2. Dual-slot antennas for microwave tissue heating: Parametric design analysis and experimental validation

    PubMed Central

    Brace, Christopher L.

    2011-01-01

    Purpose: Design and validate an efficient dual-slot coaxial microwave ablation antenna that produces an approximately spherical heating pattern to match the shape of most abdominal and pulmonary tumor targets.Methods: A dual-slot antenna geometry was utilized for this study. Permutations of the antenna geometry using proximal and distal slot widths from 1 to 10 mm separated by 1–20 mm were analyzed using finite-element electromagnetic simulations. From this series, the most optimal antenna geometry was selected using a two-term sigmoidal objective function to minimize antenna reflection coefficient and maximize the diameter-to-length aspect ratio of heat generation. Sensitivities to variations in tissue properties and insertion depth were also evaluated in numerical models. The most optimal dual-slot geometry of the parametric analysis was then fabricated from semirigid coaxial cable. Antenna reflection coefficients at various insertion depths were recorded in ex vivo bovine livers and compared to numerical results. Ablation zones were then created by applying 50 W for 2–10 min in simulations and ex vivo livers. Mean zone diameter, length, aspect ratio, and reflection coefficients before and after heating were then compared to a conventional monopole antenna using ANOVA with post-hoc t-tests. Statistical significance was indicated for P < 0.05.Results: Antenna performance was highly sensitive to dual-slot geometry. The best-performing designs utilized a proximal slot width of 1 mm, distal slot width of 4 mm ± 1 mm and separation of 8 mm ± 1 mm. These designs were characterized by an active choking mechanism that focused heating to the distal tip of the antenna. A dual-band resonance was observed in the most optimal design, with a minimum reflection coefficient of −20.9 dB at 2.45 and 1.25 GHz. Total operating bandwidth was greater than 1 GHz, but the desired heating pattern was achieved only near 2.45 GHz. As a result, antenna performance was

  3. Circular Microstrip Antenna with Fractal Slots for Multiband Applications

    NASA Astrophysics Data System (ADS)

    Singh, Sivia Jagtar; Singh, Gurpreet; Bharti, Gurpreet

    2017-10-01

    In this paper, a multiband, fractal, slotted, Circular Microstrip Patch Antenna for GSM, WiMAX, C and X bands (satellite communication applications) is presented. A cantor set theory is used to make fractal slots for obtaining the desired multiband. The projected antenna is simulated using Ansys HFSS v13.0 software. Simulation test of this antenna has been carried out for a frequency range of 1 GHz-10 GHz and a peak gain of 9.19 dB at a resonance frequency of 1.9 GHz is obtained. The antenna also resonates at 3.7 GHz, 6.06 GHz and 7.9 GHz with gains of 3.04 dB, 5.19 dB and 5.39 dB respectively. Parameters like voltage standing wave ratio, return loss, and gain are used to compare the results of the projected antenna with conventional CMPA's of same dimensions with full and defective grounds. The projected antenna is fabricated on a glass epoxy material and is tested using Vector Network Analyzer. The performance parameters of the antenna are found to in good agreement with each both using simulated and measured data.

  4. Improvement of antenna decoupling in radar systems

    NASA Astrophysics Data System (ADS)

    Anchidin, Liliana; Topor, Raluca; Tamas, Razvan D.; Dumitrascu, Ana; Danisor, Alin; Berescu, Serban

    2015-02-01

    In this paper we present a type of antipodal Vivaldi antenna design, which can be used for pulse radiation in UWB communication. The Vivaldi antenna is a special tapered slot antenna with planar structure which is easily to be integrated with transmitting elements and receiving elements to form a compact structure. When the permittivity is very large, the wavelength of slot mode is so short that the electromagnetic fields concentrate in the slot to form an effective and balanced transmission line. Due to its simple structure and small size the Vivaldi antennas are one of the most popular designs used in UWB applications. However, for a two-antenna radar system, there is a high mutual coupling between two such antennas due to open configuration. In this paper, we propose a new method for reducing this effect. The method was validated by simulating a system of two Vivaldi antennas in front of a standard target.

  5. Design and Measurement of Self-Matched, Dual-Frequency Coplanar-Waveguide-Fed Slot Antennas

    NASA Technical Reports Server (NTRS)

    Omar, Amjad A.; Scardelletti, Maxmilian C.; Hejazi, Zuhair M.; Dib, Nihad

    2007-01-01

    This report presents two new designs of dual-frequency, coplanar-waveguide-fed, double-folded slot antennas. An important advantage of these antennas is that, because they are self-matched to the feeding coplanar waveguide, they do not need an external matching circuit. This reduces the antenna size and simplifies its design. To verify the designs, the authors measured and compared the return loss and radiation patterns with those obtained using available commercial software with good agreement. Dual-frequency slot antennas;

  6. A 94 GHz imaging array using slot line radiators. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Korzeniowski, T. L.

    1985-01-01

    A planar endfire slotted-line antenna structure was investigated. It was found that the H-plane beamwidths are basically dependent upon the substrate properties, whereas the E-plane beamwidths are more strongly a function of the slot's shape and size. It is shown that these antennas produce symmetrical E and H-plane beamwidths while following Zucker's standard traveling-wave antenna beamwidth curves over some range of antenna normalized length. An empircally derived design formula for effective substrate thickness is shown to predict this range for linearly tapered slotted-line antennas. The experimental imaging properties of these arrays are presented and imaging theory is discussed. It is shown that a minimum spacing of elements is necessary for exact reconstruction for a sampled image in a diffraction limited system. Because these LTSA elements employ the traveling-wave mechanism of radiation, they can be spaced two times closer than a conical feed horn of comparable beamwidth.

  7. A dual-slot microwave antenna for more spherical ablation zones: ex vivo and in vivo validation.

    PubMed

    Chiang, Jason; Hynes, Kieran A; Bedoya, Mariajose; Brace, Christopher L

    2013-08-01

    To compare the performance of a microwave antenna design with two annular slots to that of a monopole antenna design in creating a more spherical ablation zone. Animal care and use committee approval was obtained before in vivo experiments were performed. Microwave ablation zones were created by using dual-slot and monopole control antennas for 2, 5, and 10 minutes at 50 and 100 W in ex vivo bovine livers. Dual-slot and monopole antennas were then used to create ablation zones at 100 W for 5 minutes in in vivo porcine livers, which also underwent intraprocedural imaging. Ablation diameter, length, and aspect ratio (diameter ÷ length) were measured at gross pathologic examination and compared at each combination of power and time by using the paired Student t test. A P value less than .05 was considered to indicate a significant difference. Aspect ratios closer to 1 reflected a more spherical ablation zone. The dual-slot antenna created ablation zones with a higher aspect ratio at 50 W for 2 minutes (0.75 vs 0.53, P = .003) and 5 minutes (0.82 vs 0.63, P = .053) than did the monopole antenna in ex vivo liver tissue, although the difference was only significant at 2 minutes. At 100 W, the dual-slot antenna had a significantly higher aspect ratio at 2 minutes (0.52 vs 0.42, P = .002). In vivo studies showed significantly higher aspect ratios at 100 W for 5 minutes (0.63 vs 0.53, respectively, P = .029). Intraprocedural imaging confirmed this characterization, showing higher rates of ablation zone growth and heating primarily at the early stages of the ablation procedure when the dual-slot antenna was used. The dual-slot microwave antenna created a more spherical ablation zone than did the monopole antenna both in vivo and ex vivo liver tissue. Greater control over power delivery can potentially extend the advantages of the dual-slot antenna design to higher power and longer treatment times.

  8. A tunable microwave slot antenna based on graphene

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dragoman, Mircea; Aldrigo, Martino; Vasilache, D.

    The paper presents the experimental and modeling results of a microwave slot antenna in a coplanar configuration based on graphene. The antennas are fabricated on a 4 in. high-resistivity Si wafer, with a ∼300 nm SiO{sub 2} layer grown through thermal oxidation. A CVD grown graphene layer is transferred on the SiO{sub 2}. The paper shows that the reflection parameter of the antenna can be tuned by a DC voltage. 2D radiation patterns at various frequencies in the X band (8–12 GHz) are then presented using as antenna backside a microwave absorbent and a metalized surface. Although the radiation efficiency is lower thanmore » a metallic antenna, the graphene antenna is a wideband antenna while the metal antennas with the same geometry and working at the same frequencies are narrowband.« less

  9. Notch Antennas

    NASA Technical Reports Server (NTRS)

    Lee, Richard Q.

    2004-01-01

    Notch antennas, also known as the tapered slot antenna (TSA), have been the topics of research for decades. TSA has demonstrated multi-octave bandwidth, moderate gain (7 to 10 dB), and symmetric E- and H- plane beam patterns and can be used for many different applications. This chapter summarizes the research activities on notch antennas over the past decade with emphasis on their most recent advances and applications. This chapter begins with some discussions on the designs of single TSA; then follows with detailed discussions of issues associated with TSA designs and performance characteristics. To conclude the chapter, some recent developments in TSA arrays and their applications are highlighted.

  10. Microwave ablation of ex vivo bovine tissues using a dual slot antenna with a floating metallic sleeve.

    PubMed

    Ibitoye, Ayo Zaccheaus; Nwoye, Ephraim Okeke; Aweda, Adebayo Moses; Oremosu, Ademola A; Anunobi, Chidozie Charles; Akanmu, Nurudeen Olanrewaju

    2016-12-01

    To study the efficiency of a dual slot antenna with a floating metallic sleeve on the ablation of different ex vivo bovine tissues. COMSOL Multiphysics® version 4.4 (Stockholm, Sweden), which is based on finite element methods (FEM), was used to design and simulate monopole and dual slot with sleeve antennas. Power, specific absorption rate (SAR), temperature and necrosis distributions in the selected tissues were determined using these antennas. Monopole and dual slot with sleeve antennas were designed, simulated, constructed and applied in this study based on a semi-rigid coaxial cable. Ex vivo experiments were performed on liver, lung, muscle and heart of bovine obtained from a public animal slaughter house. The microwave energy was delivered using a 2.45 GHz solid-state microwave generator at 40 W for 3, 5 and 10 min. Aspect ratio, ablation length and ablation diameter were also determined on ablated tissues and compared with simulated results. Student's t-test was used to compare the statistically significant difference between the performance of the two antennas. The dual slot antenna with sleeve produces localised microwave energy better than the monopole antenna in all ablated tissues using simulation and experimental validation methods. There were significant differences in ablation diameter and aspect ratio between the sleeve antenna and monopole antenna. Additionally, there were no significant differences between the simulation and experimental results. This study demonstrated that the dual slot antenna with sleeve produced larger ablation zones and higher sphericity index in ex vivo bovine tissues with minimal backward heating when compared with the monopole antenna.

  11. A Theoretical Investigation of the Input Characteristics of a Rectangular Cavity-Backed Slot Antenna

    NASA Technical Reports Server (NTRS)

    Cockrell, C. R.

    1975-01-01

    Equations which represent the magnetic and electric stored energies are derived for an infinite section of rectangular waveguide and a rectangular cavity. These representations which are referred to as being physically observable are obtained by considering the difference in the volume integrals appearing in the complex Poynting theorem. It is shown that the physically observable stored energies are determined by the field components that vanish in a reference plane outside the aperture. These physically observable representations are used to compute the input admittance of a rectangular cavity-backed slot antenna in which a single propagating wave is assumed to exist in the cavity. The slot is excited by a voltage source connected across its center; a sinusoidal distribution is assumed in the slot. Input-admittance calculations are compared with measured data. In addition, input-admittance curves as a function of electrical slot length are presented for several size cavities. For the rectangular cavity backed slot antenna, the quality factor and relative bandwidth were computed independently by using these energy relationships. It is shown that the asymptotic relationship which is usually assumed to exist between the quality bandwidth and the reciprocal of relative bandwidth is equally valid for the rectangular cavity backed slot antenna.

  12. Interventional MRI: tapering improves the distal sensitivity of the loopless antenna.

    PubMed

    Qian, Di; El-Sharkawy, AbdEl-Monem M; Atalar, Ergin; Bottomley, Paul A

    2010-03-01

    The "loopless antenna" is an interventional MRI detector consisting of a tuned coaxial cable and an extended inner conductor or "whip". A limitation is the poor sensitivity afforded at, and immediately proximal to, its distal end, which is exacerbated by the extended whip length when the whip is uniformly insulated. It is shown here that tapered insulation dramatically improves the distal sensitivity of the loopless antenna by pushing the current sensitivity toward the tip. The absolute signal-to-noise ratio is numerically computed by the electromagnetic method-of-moments for three resonant 3-T antennae with no insulation, uniform insulation, and with linearly tapered insulation. The analysis shows that tapered insulation provides an approximately 400% increase in signal-to-noise ratio in trans-axial planes 1 cm from the tip and a 16-fold increase in the sensitive area as compared to an equivalent, uniformly insulated antenna. These findings are directly confirmed by phantom experiments and by MRI of an aorta specimen. The results demonstrate that numerical electromagnetic signal-to-noise ratio analysis can accurately predict the loopless detector's signal-to-noise ratio and play a central role in optimizing its design. The manifold improvement in distal signal-to-noise ratio afforded by redistributing the insulation should improve the loopless antenna's utility for interventional MRI. (c) 2010 Wiley-Liss, Inc.

  13. Tri-Band CPW-Fed Stub-Loaded Slot Antenna Design for WLAN/WiMAX Applications

    NASA Astrophysics Data System (ADS)

    Li, Jianxing; Guo, Jianying; He, Bin; Zhang, Anxue; Liu, Qing Huo

    2016-11-01

    A novel uniplanar CPW-fed tri-band stub-loaded slot antenna is proposed for wireless local area network (WLAN) and worldwide interoperability for microwave access (WiMAX) applications. Dual resonant modes were effectively excited in the upper band by using two identical pairs of slot stubs and parasitic slots symmetrically along the arms of a traditional CPW-fed slot dipole, achieving a much wider bandwidth. The middle band was realized by the fundamental mode of the slot dipole. To obtain the lower band, two identical inverted-L-shaped open-ended slots were symmetrically etched in the ground plane. A prototype was fabricated and measured, showing that tri-band operation with 10-dB return loss bandwidths of 150 MHz from 2.375 to 2.525 GHz, 725 MHz from 3.075 to 3.8 GHz, and 1.9 GHz from 5.0 to 6.9 GHz has been achieved. Details of the antenna design as well as the measured and simulated results are presented and discussed.

  14. On-Wafer Characterization of Millimeter-Wave Antennas for Wireless Applications

    NASA Technical Reports Server (NTRS)

    Simons, Rainee N.; Lee, Richard Q.

    1998-01-01

    The paper demonstrates a de-embedding technique and a direct on-substrate measurement technique for fast and inexpensive characterization of miniature antennas for wireless applications at millimeter-wave frequencies. The technique is demonstrated by measurements on a tapered slot antenna (TSA). The measured results at Ka-Band frequencies include input impedance, mutual coupling between two TSAs and absolute gain of TSA.

  15. The Parametric Study and Fine-Tuning of Bow-Tie Slot Antenna with Loaded Stub

    PubMed Central

    2017-01-01

    A printed Bow-Tie slot antenna with loaded stub is proposed and the effects of changing the dimensions of the slot area, the stub and load sizes are considered in this paper. These parameters have a considerable effect on the antenna characteristics as well as its performance. An in-depth parametric study of these dimensions is presented. This paper proposes the necessary conditions for initial approximation of dimensions needed to design this antenna. In order to achieve the desired performance of the antenna fine tuning of all sizes of these parameters is required. The parametric studies used in this paper provide proper trends for initiation and tuning the design. A prototype of the antenna for 1.7GHz to 2.6GHz band is fabricated. Measurements conducted verify that the designed antenna has wideband characteristics with 50% bandwidth around the center frequency of 2.1GHz. Conducted measurements for reflection coefficient (S11) and radiation pattern also validate our simulation results. PMID:28114354

  16. The Parametric Study and Fine-Tuning of Bow-Tie Slot Antenna with Loaded Stub.

    PubMed

    Shafiei, M M; Moghavvemi, Mahmoud; Wan Mahadi, Wan Nor Liza

    2017-01-01

    A printed Bow-Tie slot antenna with loaded stub is proposed and the effects of changing the dimensions of the slot area, the stub and load sizes are considered in this paper. These parameters have a considerable effect on the antenna characteristics as well as its performance. An in-depth parametric study of these dimensions is presented. This paper proposes the necessary conditions for initial approximation of dimensions needed to design this antenna. In order to achieve the desired performance of the antenna fine tuning of all sizes of these parameters is required. The parametric studies used in this paper provide proper trends for initiation and tuning the design. A prototype of the antenna for 1.7GHz to 2.6GHz band is fabricated. Measurements conducted verify that the designed antenna has wideband characteristics with 50% bandwidth around the center frequency of 2.1GHz. Conducted measurements for reflection coefficient (S11) and radiation pattern also validate our simulation results.

  17. Offset fed slot antenna for broadband operation

    NASA Astrophysics Data System (ADS)

    Ritish, K.; Piyush, S.; Praveen Kumar, A. V.

    2018-03-01

    In this paper, a microstrip fed rectangular slot antenna with wideband characteristics is proposed. Both the impedance and radiation characteristics of the proposed antenna are presented. It is shown that a properly offset feed can give a dual resonance nature, which can be optimized to enable wideband behavior. From HFSS simulation, an impedance bandwidth (-10 dB) of 49.92 % (2.51 GHz to 4.18 GHz) about the center frequency of the band is obtained. Prototype measurement demonstrates a bandwidth of 45.30 % (2.51 GHz to 3.98 GHz). Simulated radiation patterns show bidirectional behavior, which is stable in the band with a peak gain of 5.7 dBi and a gain variation of 2 dBi.

  18. Dual frequency, dual polarized, multi-layered microstrip slot and dipole array antenna

    NASA Technical Reports Server (NTRS)

    Tulintseff, Ann N. (Inventor)

    1995-01-01

    An antenna array system is disclosed which uses subarrays of slots and subarrays of dipoles on separate planes. The slots and dipoles respectively are interleaved, which is to say there is minimal overlap between them. Each subarray includes a microstrip transmission line and a plurality of elements extending perpendicular thereto. The dipoles form the transmission elements and the slots form the receive elements. The plane in which the slots are formed also forms a ground plane for the dipoles--hence the feed to the dipole is on the opposite side of this ground plane as the feed to the slots. HPAs are located adjacent the dipoles on one side of the substrate and LNAs are located adjacent the slots on the other side of the substrate. The dipoles and slots are tuned by setting different offsets between each element and the microstrip transmission line.

  19. Printed wide-slot antenna design with bandwidth and gain enhancement on low-cost substrate.

    PubMed

    Samsuzzaman, M; Islam, M T; Mandeep, J S; Misran, N

    2014-01-01

    This paper presents a printed wide-slot antenna design and prototyping on available low-cost polymer resin composite material fed by a microstrip line with a rotated square slot for bandwidth enhancement and defected ground structure for gain enhancement. An I-shaped microstrip line is used to excite the square slot. The rotated square slot is embedded in the middle of the ground plane, and its diagonal points are implanted in the middle of the strip line and ground plane. To increase the gain, four L-shaped slots are etched in the ground plane. The measured results show that the proposed structure retains a wide impedance bandwidth of 88.07%, which is 20% better than the reference antenna. The average gain is also increased, which is about 4.17 dBi with a stable radiation pattern in the entire operating band. Moreover, radiation efficiency, input impedance, current distribution, axial ratio, and parametric studies of S11 for different design parameters are also investigated using the finite element method-based simulation software HFSS.

  20. Printed Wide-Slot Antenna Design with Bandwidth and Gain Enhancement on Low-Cost Substrate

    PubMed Central

    Samsuzzaman, M.; Islam, M. T.; Mandeep, J. S.; Misran, N.

    2014-01-01

    This paper presents a printed wide-slot antenna design and prototyping on available low-cost polymer resin composite material fed by a microstrip line with a rotated square slot for bandwidth enhancement and defected ground structure for gain enhancement. An I-shaped microstrip line is used to excite the square slot. The rotated square slot is embedded in the middle of the ground plane, and its diagonal points are implanted in the middle of the strip line and ground plane. To increase the gain, four L-shaped slots are etched in the ground plane. The measured results show that the proposed structure retains a wide impedance bandwidth of 88.07%, which is 20% better than the reference antenna. The average gain is also increased, which is about 4.17 dBi with a stable radiation pattern in the entire operating band. Moreover, radiation efficiency, input impedance, current distribution, axial ratio, and parametric studies of S11 for different design parameters are also investigated using the finite element method-based simulation software HFSS. PMID:24696661

  1. CPW-fed Circularly Polarized Slot Antenna with Small Gap and Stick-shaped Shorted Strip for UHF FRID Readers

    NASA Astrophysics Data System (ADS)

    Pan, Chien-Yuan; Su, Chum-Chieh; Yang, Wei-Lin

    2018-04-01

    A new circularly polarized (CP) slot antenna with a small gap and a stick-shaped shorted strip is presented. The proposed antenna has a sufficient bandwidth for ultrahigh frequency (UHF) radio-frequency identification (RFID) reader applications. The antenna structure consists of a rectangular slot with a small gap, a stick-shaped shorted strip and a 50 Ω coplanar waveguide (CPW) feedline with an asymmetrical ground plane. By using the stick -shaped shorted strip to disturb magnetic current distribution on the slot, the CP radiation can be generated. The measured results demonstrate that the proposed antenna can reach a 10 dB return loss impedance bandwidth of 14.1 % (894-1030 MHz) and a 3 dB axial ratio (AR) bandwidth of 6.4 % (910-970 MHz). The whole antenna size is 80 × 80 × 1.6 mm3.

  2. Theoretical and Experimental Investigation of Some Slot Antenna Array Problems.

    DTIC Science & Technology

    1981-10-01

    SEPTUM 1. Introduction. 2. Mutual Amittance Between Antennas. 3. Transformation of the T12 Problem to Scattering by an Eliptic Cylinder. 3.1 Modeling of...the Radiattg Slot. 3.2 Modeling of the Rceiving Slot. 4. Waves in Cylindrical Geometries. 4.1 The Incident Field. 4.2 The Green’s Function In Cirula r...to the measured data, an example being given In Figure 2.2. With fn ( ,I n) and Z n(0n n ) stored in the computer, a computation can be made of yb ms

  3. A coaxial slot antenna with frequency of 433 MHz for microwave ablation therapies: design, simulation, and experimental research.

    PubMed

    Jiang, Yingxu; Zhao, Jinzhe; Li, Weitao; Yang, Yamin; Liu, Jia; Qian, Zhiyu

    2017-11-01

    Investigation of the structures and properties of antennas is important in the design of microwave ablation (MWA) system. In this study, we studied the performance of the novel tri- and single-slot antennas with frequency of 433 MHz in ex vivo conditions. The dielectric properties of liver tissue under different thermal coagulation levels were explored, which was beneficial to evaluate ablation condition of tissue and simulate temperature field. Then, the performances of the antennas were analyzed by using numerical method based on finite element method (FEM). It indicated that the present antennas with frequency of 433 MHz could produce a gourd-shaped MWA area with a longer length. Compared to antenna with frequency of 2450 MHz, the designed single-slot antenna could obtain the larger MWA area. In addition, the multiple-point ablations and a larger MWA area could be achieved simultaneously by using the present tri-slot antenna. This study has a potential for the innovative design of MWA antenna for treatment of liver tumor with a large range and a long length.

  4. A new design of an S/X dual band circular slot antenna for radar applications.

    PubMed

    Ghnimi, Said; Wali, Rawia; Gharsallh, Ali; Razban, Tchanguiz

    2013-01-01

    A novel design of dual-band slot antenna with a circular patch for radar applications is presented and studied. It is fed by a micro-strip line and built on a FR-4 substrate with a whole size of 18 x 30 mm2. A dual band printed antenna is created by introducing slots on the radiating element. By this, two bandwidth, covering C and X band, are achieved. In order to obtain a good fundamental antenna design, the initial studies were carried out theoretically, using CST Microwave Studio simulation software. In this case, the frequency range at return loss < 10 dB is 5.24 - 6.16 GHz for low frequency and is 7.9 -11.7 GHz for high frequency. In addition, the proposed antenna has good radiation characteristics and stable gains over the whole operating bands. A prototype of antenna is fabricated and tested. Experimental data show good agreement between simulated and measured results.

  5. Nano-polarization-converter based on magnetic plasmon resonance excitation in an L-shaped slot antenna.

    PubMed

    Yang, Jing; Zhang, Jiasen

    2013-04-08

    We propose a nano-polarization-converter made of a resonant L-shaped slot antenna in a gold film and study its optical properties using the finite-difference time-domain method. Phase retardation between the fast and slow axes of the nano-polarization-converter originates from the simultaneous excitation of both single-surface first-order magnetic plasmon resonance mode and second-order magnetic plasmon resonance mode at the working wavelength. By adjusting the size of the slot antenna, which is still much smaller than the wavelength, the working wavelength can be tuned within a large wavelength range.

  6. A broadband and low cross polarization antenna with a balun of microstrip line coupling to slot line

    PubMed Central

    Sun, Kai; Liu, Sihao; Yang, Tianming

    2018-01-01

    In this paper, a wide-band low cross polarization antenna with a structure of microstrip line coupling to slot line as the balun is proposed. The radiation part of the antenna is fed by two pairs of parallel transmission line via a transition from a slot line which is coupled by a microstrip line. Because it is fed by parallel transmission lines, which is balanced-fed structure, the antenna can achieve an improved low cross-polarization performance. The height of the antenna is 0.146λ0 (λ0 is the wavelength of lowest frequency). The prototype antenna demonstrates a measured impedance bandwidth of 93.5% (2.7–7.44 GHz), a 3-dB-gain bandwidth of 77% (2.7–6.1 GHz), and a maximum gain of 10.5 dBi at 4.5 GHz. PMID:29543902

  7. A broadband and low cross polarization antenna with a balun of microstrip line coupling to slot line.

    PubMed

    Sun, Kai; Yang, Deqiang; Liu, Sihao; Yang, Tianming

    2018-01-01

    In this paper, a wide-band low cross polarization antenna with a structure of microstrip line coupling to slot line as the balun is proposed. The radiation part of the antenna is fed by two pairs of parallel transmission line via a transition from a slot line which is coupled by a microstrip line. Because it is fed by parallel transmission lines, which is balanced-fed structure, the antenna can achieve an improved low cross-polarization performance. The height of the antenna is 0.146λ0 (λ0 is the wavelength of lowest frequency). The prototype antenna demonstrates a measured impedance bandwidth of 93.5% (2.7-7.44 GHz), a 3-dB-gain bandwidth of 77% (2.7-6.1 GHz), and a maximum gain of 10.5 dBi at 4.5 GHz.

  8. Light scattering of rectangular slot antennas: parallel magnetic vector vs perpendicular electric vector

    NASA Astrophysics Data System (ADS)

    Lee, Dukhyung; Kim, Dai-Sik

    2016-01-01

    We study light scattering off rectangular slot nano antennas on a metal film varying incident polarization and incident angle, to examine which field vector of light is more important: electric vector perpendicular to, versus magnetic vector parallel to the long axis of the rectangle. While vector Babinet’s principle would prefer magnetic field along the long axis for optimizing slot antenna function, convention and intuition most often refer to the electric field perpendicular to it. Here, we demonstrate experimentally that in accordance with vector Babinet’s principle, the incident magnetic vector parallel to the long axis is the dominant component, with the perpendicular incident electric field making a small contribution of the factor of 1/|ε|, the reciprocal of the absolute value of the dielectric constant of the metal, owing to the non-perfectness of metals at optical frequencies.

  9. Simulation of Spiral Slot Antennas on Composite Platforms

    NASA Technical Reports Server (NTRS)

    Volakis, John L.

    1996-01-01

    The project goals, plan and accomplishments up to this point are summarized in the viewgraphs. Among the various accomplishments, the most important have been: the development of the prismatic finite element code for doubly curved platforms and its validation with many different antenna configurations; the design and fabrication of a new slot spiral antennas suitable for automobile cellular, GPS and PCs communications; the investigation and development of various mesh truncation schemes, including the perfectly matched absorber and various fast integral equation methods; and the introduction of a frequency domain extrapolation technique (AWE) for predicting broadband responses using only a few samples of the response. This report contains several individual reports most of which have been submitted for publication to referred journals. For a report on the frequency extrapolation technique, the reader is referred to the UM Radiation Laboratory report A total of 14 papers have been published or accepted for publication with the full or partial support of this grant. Several more papers are in preparation.

  10. Folded Coplanar Waveguide Slot Antenna on Silicon Substrates With a Polyimide Interface Layer

    NASA Technical Reports Server (NTRS)

    Bacon, Andrew; Ponchak, George E.; Papapolymerou, John; Bushyager, Nathan; Tentzeris, Manos; Williams, W. D. (Technical Monitor)

    2002-01-01

    A novel mm-wave Coplanar Waveguide (CPW) folded slot antenna is characterized on low-resistivity Si substrate (1 omega-cm) and a high resistivity Si substrate with a polyimide interface layer for the first time. The antenna resonates around 30 GHz with a return loss greater than 14.6 dB. Measured radiation patterns indicate the existence of a main lobe, but the radiation pattern is affected by a strong surface wave mode, which is greater in the high resistivity Si wafer.

  11. Compact double-p slotted inset-fed microstrip patch antenna on high dielectric substrate.

    PubMed

    Ahsan, M R; Islam, M T; Habib Ullah, M; Mahadi, W N L; Latef, T A

    2014-01-01

    This paper presents a compact sized inset-fed rectangular microstrip patch antenna embedded with double-P slots. The proposed antenna has been designed and fabricated on ceramic-PTFE composite material substrate of high dielectric constant value. The measurement results from the fabricated prototype of the antenna show -10 dB reflection coefficient bandwidths of 200 MHz and 300 MHz with center resonant frequency of 1.5 GHz and 4 GHz, respectively. The fabricated antenna has attained gains of 3.52 dBi with 81% radiation efficiency and 5.72 dBi with 87% radiation efficiency for lower band and upper band, respectively. The measured E- and H-plane radiation patterns are also presented for better understanding. Good agreement between the simulation and measurement results and consistent radiation patterns make the proposed antenna suitable for GPS and C-band applications.

  12. Co-simulation of a complete rectenna with a circular slot loop antenna in CPW technology

    NASA Astrophysics Data System (ADS)

    Rivière, Jérôme; Douyère, Alexandre; Cazour, Jonathan; Alicalapa, Frédéric; Luk, Jean-Daniel Lan Sun

    2017-05-01

    This study starts with the design of a planar and compact CPW antenna fabricated on Arlon AD1000 substrate, ɛr=10.35. The antenna is a coplanar waveguide (CPW) fed circular slot loop antenna matched to the standard impedance 50 Ω by two stubs. The goal is to implement this antenna with a CPW RF/DC rectifier to build an optimized low power level rectenna. The rectenna design is restricted to allow easy and fast fabrication of an array with a high reproducibility. The full rectenna is simulated and achieves 10% effciency at -20 dBm.

  13. Broadband Circularly Polarized Slot Antenna Loaded by a Multiple-Circular-Sector Patch.

    PubMed

    Trinh-Van, Son; Yang, Youngoo; Lee, Kang-Yoon; Hwang, Keum Cheol

    2018-05-15

    In this paper, a microstrip-fed broadband circularly polarized (CP) slot antenna is presented. CP operation can be attained simply by embedding an S-shaped strip. By loading with a multiple-circular-sector patch, which consists of 12 circular-sector patches with identical central angles of 30° and different radii, the 3 dB axial ratio (AR) bandwidth is significantly broadened. To validate the performance of the proposed antenna, an antenna prototype is fabricated and tested. The fabricated antenna is 54 mm × 54 mm × 0.8 mm in size. The measured -10 dB reflection and 3 dB AR bandwidths are 81.06% (1.68⁻3.97 GHz) and 70.55% (1.89⁻3.95 GHz), respectively. Within the 3 dB AR bandwidth, the measured peak gain is 3.81 dBic. Reasonable agreement is also obtained between the measured and simulated results.

  14. Compact Double-P Slotted Inset-Fed Microstrip Patch Antenna on High Dielectric Substrate

    PubMed Central

    Ahsan, M. R.; Islam, M. T.; Habib Ullah, M.; Mahadi, W. N. L.; Latef, T. A.

    2014-01-01

    This paper presents a compact sized inset-fed rectangular microstrip patch antenna embedded with double-P slots. The proposed antenna has been designed and fabricated on ceramic-PTFE composite material substrate of high dielectric constant value. The measurement results from the fabricated prototype of the antenna show −10 dB reflection coefficient bandwidths of 200 MHz and 300 MHz with center resonant frequency of 1.5 GHz and 4 GHz, respectively. The fabricated antenna has attained gains of 3.52 dBi with 81% radiation efficiency and 5.72 dBi with 87% radiation efficiency for lower band and upper band, respectively. The measured E- and H-plane radiation patterns are also presented for better understanding. Good agreement between the simulation and measurement results and consistent radiation patterns make the proposed antenna suitable for GPS and C-band applications. PMID:25165750

  15. Superconducting antennas for telecommunication applications based on dual mode cross slotted patches

    NASA Astrophysics Data System (ADS)

    Cassinese, A.; Barra, M.; Fragalà, I.; Kusunoki, M.; Malandrino, G.; Nakagawa, T.; Perdicaro, L. M. S.; Sato, K.; Ohshima, S.; Vaglio, R.

    2002-08-01

    Dual mode devices based on high temperature superconducting films represent an interesting class for telecommunication applications since they combine a miniaturized size with a good power handling. Here we report on a novel compact antenna obtained by crossing a square patch with two or more slots. The proposed design has an antenna size reduction of about 40% as compared to the conventional square patch microstrip antennas. Single patch antenna both with linear (LP) and circular (CP) polarization operating in the X-band have been designed and tested at prototype level. They are realized by using double sided (YBa 2Cu 3O 7- x) YBCO and Tl 2Ba 2Ca 1Cu 2O 8 (Tl-2212) superconducting films grown on MgO substrates and tested with a portable cryocooler. They showed at T=77 K a return loss <25 dB and a power handling of 23 dBm. Exemplary 16 elements arrays LP antennas operating in the X band have been also realized by using YBCO film grown on 2 ″ diameter MgO substrate.

  16. Broadband Circularly Polarized Slot Antenna Loaded by a Multiple-Circular-Sector Patch

    PubMed Central

    Trinh-Van, Son; Yang, Youngoo; Lee, Kang-Yoon

    2018-01-01

    In this paper, a microstrip-fed broadband circularly polarized (CP) slot antenna is presented. CP operation can be attained simply by embedding an S-shaped strip. By loading with a multiple-circular-sector patch, which consists of 12 circular-sector patches with identical central angles of 30° and different radii, the 3 dB axial ratio (AR) bandwidth is significantly broadened. To validate the performance of the proposed antenna, an antenna prototype is fabricated and tested. The fabricated antenna is 54 mm × 54 mm × 0.8 mm in size. The measured −10 dB reflection and 3 dB AR bandwidths are 81.06% (1.68–3.97 GHz) and 70.55% (1.89–3.95 GHz), respectively. Within the 3 dB AR bandwidth, the measured peak gain is 3.81 dBic. Reasonable agreement is also obtained between the measured and simulated results. PMID:29762530

  17. Prediction of Slot Shape and Slot Size for Improving the Performance of Microstrip Antennas Using Knowledge-Based Neural Networks.

    PubMed

    Khan, Taimoor; De, Asok

    2014-01-01

    In the last decade, artificial neural networks have become very popular techniques for computing different performance parameters of microstrip antennas. The proposed work illustrates a knowledge-based neural networks model for predicting the appropriate shape and accurate size of the slot introduced on the radiating patch for achieving desired level of resonance, gain, directivity, antenna efficiency, and radiation efficiency for dual-frequency operation. By incorporating prior knowledge in neural model, the number of required training patterns is drastically reduced. Further, the neural model incorporated with prior knowledge can be used for predicting response in extrapolation region beyond the training patterns region. For validation, a prototype is also fabricated and its performance parameters are measured. A very good agreement is attained between measured, simulated, and predicted results.

  18. Simulation of Conformal Spiral Slot Antennas on Composite Platforms

    NASA Technical Reports Server (NTRS)

    Volakis, J. L.; Nurnberger, M. W.; Ozdemir,T.

    1998-01-01

    During the course of the grant, we wrote and distributed about 12 reports and an equal number of journal papers supported fully or in part by this grant. The list of reports (title & abstract) and papers are given in Appendices A and B. This grant has indeed been instrumental in developing a robust hybrid finite element method for the analysis of complex broadband antennas on doubly curved platforms. Previous to the grant, our capability was limited to simple printed patch antennas on mostly planar platforms. More specifically: (1) mixed element formulations were developed and new edge-based prisms were introduced; (2) these elements were important in permitting flexibility in geometry gridding for most antennas of interest; (3) new perfectly matched absorbers were introduced for mesh truncations associated with highly curved surfaces; (4) fast integral algorithms were introduced for boundary integral truncations reducing CPU time from O(N-2) down to O(N-1.5) or less; (5) frequency extrapolation schemes were developed for efficient broadband performance evaluations. This activity has been successfully continued by NASA researchers; (6) computer codes were developed and extensively tested for several broadband configurations. These include FEMA-CYL, FEMA-PRISM and FEMA-TETRA written by L. Kempel, T. Ozdemir and J. Gong, respectively; (7) a new infinite balun feed was designed nearly constant impedance over the 800-3000 MHz operational band; (8) a complete slot spiral antenna was developed, fabricated and tested at NASA Langley. This new design is a culmination of the projects goals and integrates the computational and experimental efforts. this antenna design resulted in a U.S. patent and was revised three times to achieve the desired bandwidth and gain requirements from 800-3000 MHz.

  19. Prediction of Slot Shape and Slot Size for Improving the Performance of Microstrip Antennas Using Knowledge-Based Neural Networks

    PubMed Central

    De, Asok

    2014-01-01

    In the last decade, artificial neural networks have become very popular techniques for computing different performance parameters of microstrip antennas. The proposed work illustrates a knowledge-based neural networks model for predicting the appropriate shape and accurate size of the slot introduced on the radiating patch for achieving desired level of resonance, gain, directivity, antenna efficiency, and radiation efficiency for dual-frequency operation. By incorporating prior knowledge in neural model, the number of required training patterns is drastically reduced. Further, the neural model incorporated with prior knowledge can be used for predicting response in extrapolation region beyond the training patterns region. For validation, a prototype is also fabricated and its performance parameters are measured. A very good agreement is attained between measured, simulated, and predicted results. PMID:27382616

  20. Dielectric-loaded coaxial-slot antenna for interstitial microwave hyperthermia: longitudinal control of heating patterns.

    PubMed

    Hamada, L; Saito, K; Yoshimura, H; Ito, K

    2000-01-01

    In this paper, the microwave interstitial antenna with the dielectric load in part near the tip is introduced to realize the tip-heating and to improve the dependence of the heating patterns on the insertion depth. Numerical simulations using the Finite Difference Time Domain (FDTD) method have been conducted at the frequency of 915 MHz for four different configurations of the coaxial-slot antenna inserted into a catheter: the media between the antenna and the catheter are (a) no, (b) a thin air layer, (c) a thin dielectric layer, and (d) a thin air layer and a dielectric load in part near the tip. The diameter of the antenna including the catheter is sufficiently small for minimally invasive therapy. Comparison of the SARs for the four configurations makes it clear that the dielectric-loaded antenna can realize the best tip-heating and suppress the hot spot near the surface of the human body. Dependence of the SAR distributions on the insertion depth of the antenna has also been examined. It is found from the investigation that the dielectric-loaded antenna has little dependence on the insertion depth.

  1. Efficient finite element simulation of slot spirals, slot radomes and microwave structures

    NASA Technical Reports Server (NTRS)

    Gong, J.; Volakis, J. L.

    1995-01-01

    This progress report contains the following two documents: (1) 'Efficient Finite Element Simulation of Slot Antennas using Prismatic Elements' - A hybrid finite element-boundary integral (FE-BI) simulation technique is discussed to treat narrow slot antennas etched on a planar platform. Specifically, the prismatic elements are used to reduce the redundant sampling rates and ease the mesh generation process. Numerical results for an antenna slot and frequency selective surfaces are presented to demonstrate the validity and capability of the technique; and (2) 'Application and Design Guidelines of the PML Absorber for Finite Element Simulations of Microwave Packages' - The recently introduced perfectly matched layer (PML) uniaxial absorber for frequency domain finite element simulations has several advantages. In this paper we present the application of PML for microwave circuit simulations along with design guidelines to obtain a desired level of absorption. Different feeding techniques are also investigated for improved accuracy.

  2. Measurements and modeling of the impact of weak magnetic fields on the plasma properties of a planar slot antenna driven plasma source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yoshikawa, Jun, E-mail: jun.yoshikawa@tel.com; Susa, Yoshio; Ventzek, Peter L. G.

    The radial line slot antenna plasma source is a type of surface wave plasma source driven by a planar slot antenna. Microwave power is transmitted through a slot antenna structure and dielectric window to a plasma characterized by a generation zone adjacent to the window and a diffusion zone that contacts a substrate. The diffusion zone is characterized by a very low electron temperature. This renders the source useful for soft etch applications and thin film deposition processes requiring low ion energy. Another property of the diffusion zone is that the plasma density tends to decrease from the axis tomore » the walls under the action of ambipolar diffusion at distances far from where the plasma is generated. A previous simulation study [Yoshikawa and. Ventzek, J. Vac. Sci. Technol. A 31, 031306 (2013)] predicted that the anisotropy in transport parameters due to weak static magnetic fields less than 50 G could be leveraged to manipulate the plasma profile in the radial direction. These simulations motivated experimental tests in which weak magnetic fields were applied to a radial line slot antenna source. Plasma absorption probe measurements of electron density and etch rate showed that the magnetic fields remote from the wafer were able to manipulate both parameters. A summary of these results is presented in this paper. Argon plasma simulation trends are compared with experimental plasma and etch rate measurements. A test of the impact of magnetic fields on charge up damage showed no perceptible negative effect.« less

  3. Excitation of Higher Order Modes of Cylindrical Dielectric Resonator Antenna using Dual-slot feed

    NASA Astrophysics Data System (ADS)

    Ojha, A. K.; Praveen Kumar, A. V.

    2018-03-01

    Excitation of the higher order modes (HOM) of a cylindrical dielectric resonator antenna(DRA) of high relative permittivity, using dual feed scheme is investigated. The feed scheme uses a pair of narrow slots and is chosen on the basis of the field distribution of the desired DRA modes. Numerical studies using ANSYS HFSS show that the dual-feed excited a combination of two HOMs, which are identified as HEM21δ and TM01δ. The mixed-up nature is further verified through studying the radiation pattern of the DRA which shows azimuthal asymmetry and low gain. It is suggested that if one of the HOM is suppressed, better antenna performance can be achieved.

  4. Integrated patch and slot array antenna for terahertz quantum cascade lasers at 4.7 THz

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bonzon, C., E-mail: bonzonc@phys.ethz.ch; Benea Chelmus, I. C.; Ohtani, K.

    2014-04-21

    Our work presents a slot and a patch array antenna at the front facet of a 4.7 THz quantum cascade laser as extractor, decreasing the facet reflectivity down to 2.6%. The resulting output power increases by a factor 2 and the slope efficiency by a factor 4. The simulated and the measured far-fields are in good agreement.

  5. Recent activities in printed Antennas at LeRC

    NASA Technical Reports Server (NTRS)

    Lee, Richard Q.; Simons, Rainee N.

    1993-01-01

    This paper will report two recent R&D efforts in printed antennas at NASA Lewis Research Center. These efforts are: (1) to enhance the current antenna performance in gain, bandwidth and pattern characteristics, and (2) to develop coplanar waveguide/aperture coupled feeding technique for dual excitation of a patch antenna. Research in area (1) has led to the development of a nonplanar linearly tapered slot antenna (LTSA) which has exhibited over 10 dB gain with broad bandwidth and excellent radiation patterns. This endfire antenna element is most suitable for use in MMIC arrays of 'brick' construction. A space power amplifier composed of active LTSA has been demonstrated and shown to have a gain of 30 dB at 20 GHz. In each of the antenna elements, a GaAs monolithic microwave integrated circuit (MMIC) three-stage power amplifier is integrated with two LTSA's. A single active LTSA has also been demonstrated and exhibited a power gain of 6.7 dB with the MMIC amplifier turned on. The aperture coupled feeding technique with coplanar waveguide feeds has demonstrated high coupling efficiency on both LTSA and patch antennas. Recent efforts have been focused on applying this technique for dual excitation (dual frequency and/or dual polarization) of a patch antenna. Preliminary results confirm the feasibility of this approach. Further development is required to improve the coupling efficiency and antenna radiation characteristics.

  6. A Computer-Aided Approach for Designing Edge-Slot Waveguide Arrays

    NASA Technical Reports Server (NTRS)

    Gosselin, Renee Brian

    2003-01-01

    Traditional techniques for designing resonant edge-slot waveguide arrays have required an iterative trial-and-error process of measuring slot data from several prototypes. Since very little meaningful data has been published, this technology remains relatively immature and prohibitive for many smaller programs that could benefit from some advantages this antenna has to offer. A new Computer-Aided Design technique for designing resonant edge-slot waveguide arrays was used to successfuliy design such an X-band radiometer antenna for the NASA Light Rainfall Radiometer (LRR) instrument. Having the ability to rapidly create such an extremely accurate and efficient antenna design without the need to manufacture prototypes has also enabled inexpensive research that promises to improve the system-level performance of microwave radiometers for upcoming space-flight missions. This paper will present details of the LRR antenna design and describe some other current edge-slot array accomplishments at Goddard Space Flight Center.

  7. A multifunctional solar panel antenna for cube satellites

    NASA Astrophysics Data System (ADS)

    Fawole, Olutosin C.

    The basic cube satellite (CubeSat) is a modern small satellite that has a standard size of about one liter (the 1U CubeSat). Three 1U CubeSats could be stacked to form a 3U CubeSat. Their low-cost, short development time, and ease of deployment make CubeSats popular for space research, geographical information gathering, and communication applications. An antenna is a key part of the CubeSat communication subsystem. Traditionally, antennas used on CubeSats are wrapped-up wire dipole antennas, which are deployed after satellite launch. Another antenna type used on CubeSats is the patch antenna. In addition to their low gain and efficiency, deployable dipole antennas may also fail to deploy on satellite launch. On the other hand, a solid patch antenna will compete for space with solar cells when placed on a CubeSat face, interfering with satellite power generation. Slot antennas are promising alternatives to dipole and patch antennas on CubeSats. When excited, a thin slot aperture etched on a conductive sheet (ground plane) is an efficient bidirectional radiator. This open slot antenna can be backed by a reflector or cavity for unidirectional radiation, and solar cells can be placed in spaces on the ground plane not occupied by the slot. The large surface areas of 3U CubeSats can be exploited for a multifunctional antenna by integrating multiple thin slot radiators, which are backed by a thin cavity on the CubeSat surfaces. Solar cells can then be integrated on the antenna surface. Polarization diversity and frequency diversity improve the overall performance of a communication system. Having a single radiating structure that could provide these diversities is desired. It has been demonstrated that when a probe excites a square cavity with two unequal length crossed-slots, the differential radiation from the two slots combines in the far-field to yield circular polarization. In addition, it has been shown that two equal-length proximal slots, when both fed with a

  8. An integral equation formulation for predicting radiation patterns of a space shuttle annular slot antenna

    NASA Technical Reports Server (NTRS)

    Jones, J. E.; Richmond, J. H.

    1974-01-01

    An integral equation formulation is applied to predict pitch- and roll-plane radiation patterns of a thin VHF/UHF (very high frequency/ultra high frequency) annular slot communications antenna operating at several locations in the nose region of the space shuttle orbiter. Digital computer programs used to compute radiation patterns are given and the use of the programs is illustrated. Experimental verification of computed patterns is given from measurements made on 1/35-scale models of the orbiter.

  9. A design of coaxial-to-radial line adaptors in radial line slot antennas

    NASA Astrophysics Data System (ADS)

    Natori, Makoto; Ando, Makoto; Goto, Naohisa

    1990-11-01

    A numerical design of a coaxial-to-radial line adaptor is presented for the use as a feed in a radial line slot antenna. To realize stable performances in mass production, the reflection from a probe type adaptor in which only the outer conductor of a coaxial line is in contact with the waveguide, is analyzed and suppressed. The tolerance for the change and the errors in the height of the waveguide as well as the bandwidth is highlighted; the advantages of the conical probe over the conventional shorting post and the coax-gap adaptor are emphasized.

  10. Design of tapered arm impulse radiating antenna with log periodic lens system for skin cancer treatment.

    PubMed

    Petrishia, A; Sasikala, M

    2014-04-01

    A Prolate-Spheroidal Impulse Radiating Antenna (PSIRA) is used as a non-invasive technique for generating an electromagnetic implosion to kill melanoma cells. It can launch and focus fast (100 ps) high voltage (>50 KV) pulses into the biological targets. It can be used to obtain electromagnetic focusing on the target to reduce the damage to the tissue layers surrounding the target (skin). The main aim of this work is to improve the gain of the antenna, enhance the electric field intensity and to reduce the spot size at the focal point. In this work the PSIRA with tapered arm is designed to increase the gain of the antenna. The log periodic lens system is designed to enhance the electric field and reduce the spot size. The IRA with tapered arms located at the position of φ = 60° gives a gain improvement of 14.28% when compared to a traditional IRA. In this work a 10-layer dielectric lens system is designed to match the 100 ps pulses to the skin phantom. Simulation results show that the electric field is increased by a factor of 2. The spot size is reduced from 1 cm to 0.75 cm at the focal point where the target is placed. The proposed Log periodic lens system provides an increase in electric field amplitude and reduction in spot size.

  11. Low Average Sidelobe Slot Array Antennas for Radiometer Applications

    NASA Technical Reports Server (NTRS)

    Rengarajan, Sembiam; Zawardzki, Mark S.; Hodges, Richard E.

    2012-01-01

    In radiometer applications, it is required to design antennas that meet low average sidelobe levels and low average return loss over a specified frequency bandwidth. It is a challenge to meet such specifications over a frequency range when one uses resonant elements such as waveguide feed slots. In addition to their inherent narrow frequency band performance, the problem is exacerbated due to modeling errors and manufacturing tolerances. There was a need to develop a design methodology to solve the problem. An iterative design procedure was developed by starting with an array architecture, lattice spacing, aperture distribution, waveguide dimensions, etc. The array was designed using Elliott s technique with appropriate values of the total slot conductance in each radiating waveguide, and the total resistance in each feed waveguide. Subsequently, the array performance was analyzed by the full wave method of moments solution to the pertinent integral equations. Monte Carlo simulations were also carried out to account for amplitude and phase errors introduced for the aperture distribution due to modeling errors as well as manufacturing tolerances. If the design margins for the average sidelobe level and the average return loss were not adequate, array architecture, lattice spacing, aperture distribution, and waveguide dimensions were varied in subsequent iterations. Once the design margins were found to be adequate, the iteration was stopped and a good design was achieved. A symmetric array architecture was found to meet the design specification with adequate margin. The specifications were near 40 dB for angular regions beyond 30 degrees from broadside. Separable Taylor distribution with nbar=4 and 35 dB sidelobe specification was chosen for each principal plane. A non-separable distribution obtained by the genetic algorithm was found to have similar characteristics. The element spacing was obtained to provide the required beamwidth and close to a null in the E

  12. Shear sensing based on a microstrip patch antenna

    NASA Astrophysics Data System (ADS)

    Mohammad, I.; Huang, H.

    2012-10-01

    A microstrip patch antenna sensor was studied for shear sensing with a targeted application of measuring plantar shear distribution on a diabetic foot. The antenna shear sensor consists of three components, namely an antenna patch, a soft foam substrate and a slotted ground plane. The resonant frequency of the antenna sensor is sensitive to the overlapping length between the slot in the ground plane and the antenna patch. A shear force applied along the direction of the slot deforms the foam substrate and causes a change in the overlapping length, which can be detected from the antenna frequency shift. The antenna shear sensor was designed based on simulated antenna frequency response and validated by experiments. Experimental results indicated that the antenna sensor exhibits high sensitivity to shear deformation and responds to the applied shear loads with excellent linearity and repeatability.

  13. An improved broadband E patch microstrip antenna for wireless communications

    NASA Astrophysics Data System (ADS)

    Bzeih, Amer; Chahine, Soubhi Abou; Kabalan, Karim Y.; El-Hajj, Ali; Chehab, Ali

    2007-12-01

    A broadband probe-fed microstrip antenna with E-shaped patch on a single-layer air substrate is investigated. Bandwidth enhancement of the antenna is achieved by inserting two parallel slots into its radiating patch. The effects of the antenna parameters are analyzed, and their optimal values for broadband operation are obtained. The design parameters are formulated as a function of the center frequency, and the empirical equations are validated by simulation. A 51.5% enhanced E patch antenna for modern wireless communications (Personal Communications Service, Digital Cellular System, Universal Mobile Telecommunications System, Wireless Local Area Network 802.11 b/g, and Bluetooth) is designed, simulated, fabricated, and measured. A comparison between simulated and measured results is presented, and it showed satisfactory agreement. Moreover, the effect of incorporating more parallel slots into the radiating patch is investigated. The antenna is designed and simulated for different scenarios (four slots, six slots, and eight slots), where a bandwidth of 57% is achieved in the eight-slot design.

  14. Investigation of a slot nanoantenna in optical frequency range

    NASA Astrophysics Data System (ADS)

    Dinesh kumar, V.; Asakawa, Kiyoshi

    2009-11-01

    Following the analogy of radio frequency slot antenna and its complementary dipole, we propose the implementation of a slot nanoantenna (SNA) in the optical frequency range. Using finite-difference time-domain (FDTD) method, we investigate the electromagnetic (EM) properties of a SNA formed in a thin gold film and compare the results with the properties of a gold dipole nanoantenna (DNA) of the same dimension as the slot. It is found that the response of the SNA is very similar to the DNA, like their counterparts in the radio frequency (RF) range. The SNA can enhance the near field intensity of incident field which strongly depends on its feedgap dimension. The resonance of the SNA is influenced by its slot length; for the increasing slot length, resonant frequency decreases whereas the sharpness of resonance increases. Besides, the resonance of the SNA is found sensitive to the thickness of metal film, when the latter is smaller than the skin depth. The effect of polarization of incident field on the EM response of the SNA was examined; the field enhancement is optimum when polarization is parallel to the feedgap. Finally, we calculate the radiation patterns of the DNA and SNA and compare them with those of the RF dipole antenna. The radiation pattern of the SNA is found to be independent of its slot length when excited at resonant frequency. To the best of our knowledge, this is the first study on a slot antenna in the optical frequency.

  15. Realizable feed-element patterns and optimum aperture efficiency in multibeam antenna systems

    NASA Technical Reports Server (NTRS)

    Yngvesson, K. S.; Rahmat-Samii, Y.; Johansson, J. F.; Kim, Y. S.

    1988-01-01

    The results of an earlier paper by Rahmat-Samii et al. (1981), regarding realizable patterns from feed elements that are part of an array that feeds a reflector antenna, are extended. The earlier paper used a cos exp q theta model for the element radiation pattern, whereas here a parametric study is performed, using a model that assumes a central beam of cos exp q theta shape, with a constant sidelobe level outside the central beam. Realizable q-values are constrained by the maximum directivity based on feed element area. The optimum aperture efficiency (excluding array feed network losses) in an array-reflector system is evaluated as a function of element spacing using this model as well as the model of the earlier paper. Experimental data for tapered slot antenna (TSA) arrays are in agreement with the conclusions based on the model.

  16. Compact circularly polarized truncated square ring slot antenna with suppressed higher resonances

    PubMed Central

    Sabran, Mursyidul Idzam; Leow, Chee Yen; Soh, Ping Jack; Chew, Beng Wah; Vandenbosch, Guy A. E.

    2017-01-01

    This paper presents a compact circularly polarized (CP) antenna with an integrated higher order harmonic rejection filter. The proposed design operates within the ISM band of 2.32 GHz– 2.63 GHz and is suitable for example for wireless power transfer applications. Asymmetrical truncated edges on a square ring create a defected ground structure to excite the CP property, simultaneously realizing compactness. It offers a 50.5% reduced patch area compared to a conventional design. Novel stubs and slot shapes are integrated in the transmission line to reduce higher (up to the third) order harmonics. The proposed prototype yields a -10 dB reflection coefficient (S11) impedance bandwidth of 12.53%, a 3 dB axial ratio bandwidth of 3.27%, and a gain of 5.64 dBi. Measurements also show good agreement with simulations. PMID:28192504

  17. Compact circularly polarized truncated square ring slot antenna with suppressed higher resonances.

    PubMed

    Sabran, Mursyidul Idzam; Abdul Rahim, Sharul Kamal; Leow, Chee Yen; Soh, Ping Jack; Chew, Beng Wah; Vandenbosch, Guy A E

    2017-01-01

    This paper presents a compact circularly polarized (CP) antenna with an integrated higher order harmonic rejection filter. The proposed design operates within the ISM band of 2.32 GHz- 2.63 GHz and is suitable for example for wireless power transfer applications. Asymmetrical truncated edges on a square ring create a defected ground structure to excite the CP property, simultaneously realizing compactness. It offers a 50.5% reduced patch area compared to a conventional design. Novel stubs and slot shapes are integrated in the transmission line to reduce higher (up to the third) order harmonics. The proposed prototype yields a -10 dB reflection coefficient (S11) impedance bandwidth of 12.53%, a 3 dB axial ratio bandwidth of 3.27%, and a gain of 5.64 dBi. Measurements also show good agreement with simulations.

  18. Slotted rectangular waveguide with dielectric sandwich structure inside

    NASA Astrophysics Data System (ADS)

    Abdullin, R. R.; Sokolov, R. I.

    2018-03-01

    This paper continues the series of works devoted to the investigation of leaky-wave antenna based on layered rectangular waveguide with periodic transverse slots in broad face. Previously developed wavenumber calculation technique has been adapted for analysis of slotted sandwich waveguide with three layers at least. The paper provides the numerical results of velocity factor dependencies for partially filled slotted rectangular waveguide containing a dielectric slab in the middle position inside or an air gap between two dielectric slabs. Additionally, dispersion properties are also considered for multilayer waveguide with linear laws combinations of thickness and permittivity. This allows recognizing the trends to develop new prospective antennas with complex patterns of tilt angle change. All numerical results obtained are confirmed with the in-situ measurements of transmission coefficient phase.

  19. Placement insensitive antenna for RFID, sensing, and/or communication systems

    DOEpatents

    Bernhard, Jennifer T.; Ruyle, Jessica E.

    2014-06-10

    An antenna includes a ground plane having a slot. The slot may be miniaturized using a meandered slot structure or other appropriate reactive loading method as an end load to one or both ends of the slot. An edge treatment may be included on one or more edges of the ground plane or a closely spaced reflecting plane. The antenna is structured to transmit or receive a signal independently or in response to electromagnetic radiation.

  20. L-Band Orthogonal-Mode Crossed-Slot Antenna and VHF Crossed-Loop Antenna

    DOT National Transportation Integrated Search

    1972-01-01

    A low-gain, circularly polarized, L-ban antenna; a low-gain, lineraly polarized, L-band antenna; and a low-gain, lineraly polarized, L-ban antenna; and a low-gain, circularly polarized, upper hemisphere, VHF satellite communications antenna intended ...

  1. Multifunctional Material Systems for Reconfigurable Antennas in Superconfigurable Structures

    DTIC Science & Technology

    2016-01-05

    reconFig.d states of the antenna. A polarization-reconfigurable substrate-integrated waveguide ( SIW ) cavity-resonator slot antenna has also been...the automation and control. Fig. 36 Polarization-reconfigurable substrate-integrated waveguide ( SIW ) cavity-resonator slot antenna with a...22, 3833–3839, 2012. [3] Analysis of a Variable SIW Resonator Enabled by Dielectric Material Perturbations and Applications, Barrera, J.D. ; Huff

  2. Wearable slot antenna at 2.45 GHz for off-body radiation: Analysis of efficiency, frequency shift, and body absorption.

    PubMed

    Fernandez, Marta; Espinosa, Hugo G; Thiel, David V; Arrinda, Amaia

    2018-01-01

    The interaction of body-worn antennas with the human body causes a significant decrease in antenna efficiency and a shift in resonant frequency. A resonant slot in a small conductive box placed on the body has been shown to reduce these effects. The specific absorption rate is less than international health standards for most wearable antennas due to small transmitter power. This paper reports the linear relationship between power absorbed by biological tissues at different locations on the body and radiation efficiency based on numerical modeling (r = 0.99). While the -10 dB bandwidth of the antenna remained constant and equal to 12.5%, the maximum frequency shift occurred when the antenna was close to the elbow (6.61%) and on the thigh (5.86%). The smallest change was found on the torso (4.21%). Participants with body-mass index (BMI) between 17 and 29 kg/m 2 took part in experimental measurements, where the maximum frequency shift was 2.51%. Measurements showed better agreement with simulations on the upper arm. These experimental results demonstrate that the BMI for each individual had little effect on the performance of the antenna. Bioelectromagnetics. 39:25-34, 2018. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  3. A CPW-fed circular wide-slot UWB antenna with wide tunable and flexible reconfigurable dual notch bands.

    PubMed

    Li, Yingsong; Li, Wenxing; Ye, Qiubo

    2013-01-01

    A coplanar waveguide (CPW)-fed circular slot antenna with wide tunable dual band-notched function and frequency reconfigurable characteristic is designed, and its performance is verified experimentally for ultra-wideband (UWB) communication applications. The dual band-notched function is achieved by using a T-shaped stepped impedance resonator (T-SIR) inserted inside the circular ring radiation patch and by etching a parallel stub loaded resonator (PSLR) in the CPW transmission line, while the wide tunable bands can be implemented by adjusting the dimensions of the T-SIR and the PSLR. The notch band reconfigurable characteristic is realized by integrating three switches into the T-SIR and the PSLR. The numerical and experimental results show that the proposed antenna has a wide bandwidth ranging from 2.7 GHz to 12 GHz with voltage standing wave ratio (VSWR) less than 2, except for the two notch bands operating at 3.8-5.9 GHz and 7.7-9.2 GHz, respectively. In addition, the proposed antenna has been optimized to a compact size and can provide omnidirectional radiation patterns, which are suitable for UWB communication applications.

  4. A CPW-Fed Circular Wide-Slot UWB Antenna with Wide Tunable and Flexible Reconfigurable Dual Notch Bands

    PubMed Central

    Li, Yingsong; Li, Wenxing; Ye, Qiubo

    2013-01-01

    A coplanar waveguide (CPW)-fed circular slot antenna with wide tunable dual band-notched function and frequency reconfigurable characteristic is designed, and its performance is verified experimentally for ultra-wideband (UWB) communication applications. The dual band-notched function is achieved by using a T-shaped stepped impedance resonator (T-SIR) inserted inside the circular ring radiation patch and by etching a parallel stub loaded resonator (PSLR) in the CPW transmission line, while the wide tunable bands can be implemented by adjusting the dimensions of the T-SIR and the PSLR. The notch band reconfigurable characteristic is realized by integrating three switches into the T-SIR and the PSLR. The numerical and experimental results show that the proposed antenna has a wide bandwidth ranging from 2.7 GHz to 12 GHz with voltage standing wave ratio (VSWR) less than 2, except for the two notch bands operating at 3.8–5.9 GHz and 7.7–9.2 GHz, respectively. In addition, the proposed antenna has been optimized to a compact size and can provide omnidirectional radiation patterns, which are suitable for UWB communication applications. PMID:24222733

  5. Babinet-Inverted Optical Yagi-Uda Antenna for Unidirectional Radiation to Free Space

    NASA Astrophysics Data System (ADS)

    Kim, Jineun; Roh, Young-Geun; Cheon, Sangmo; Choe, Jong-Ho; Lee, Jongcheon; Lee, Jaesoong; Jeong, Heejeong; Kim, Un Jeong; Park, Yeonsang; Song, In Yong; Park, Q.-Han; Hwang, Sung Woo; Kim, Kinam; Lee, Chang-Won

    2014-06-01

    Plasmonic nanoantennas are key elements in nanophotonics capable of directing radiation or enhancing the transition rate of a quantum emitter. Slot-type magnetic-dipole nanoantennas, which are complementary structures of typical electric-dipole-type antennas, have received little attention, leaving their antenna properties largely unexplored. Here we present a novel magnetic-dipole-fed multi-slot optical Yagi-Uda antenna. By engineering the relative phase of the interacting surface plasmon polaritons between the slot elements, we demonstrate that the optical antenna exhibits highly unidirectional radiation to free space. The unique features of the slot-based magnetic nanoantenna provide a new possibility of achieving integrated features such as energy transfer from one waveguide to another by working as a future optical via.

  6. Theory of a Traveling Wave Feed for a Planar Slot Array Antenna

    NASA Technical Reports Server (NTRS)

    Rengarajan, Sembiam

    2012-01-01

    Planar arrays of waveguide-fed slots have been employed in many radar and remote sensing applications. Such arrays are designed in the standing wave configuration because of high efficiency. Traveling wave arrays can produce greater bandwidth at the expense of efficiency due to power loss in the load or loads. Traveling wave planar slot arrays may be designed with a long feed waveguide consisting of centered-inclined coupling slots. The feed waveguide is terminated in a matched load, and the element spacing in the feed waveguide is chosen to produce a beam squinted from the broadside. The traveling wave planar slot array consists of a long feed waveguide containing resonant-centered inclined coupling slots in the broad wall, coupling power into an array of stacked radiating waveguides orthogonal to it. The radiating waveguides consist of longitudinal offset radiating slots in a standing wave configuration. For the traveling wave feed of a planar slot array, one has to design the tilt angle and length of each coupling slot such that the amplitude and phase of excitation of each radiating waveguide are close to the desired values. The coupling slot spacing is chosen for an appropriate beam squint. Scattering matrix parameters of resonant coupling slots are used in the design process to produce appropriate excitations of radiating waveguides with constraints placed only on amplitudes. Since the radiating slots in each radiating waveguide are designed to produce a certain total admittance, the scattering (S) matrix of each coupling slot is reduced to a 2x2 matrix. Elements of each 2x2 S-matrix and the amount of coupling into the corresponding radiating waveguide are expressed in terms of the element S11. S matrices are converted into transmission (T) matrices, and the T matrices are multiplied to cascade the coupling slots and waveguide sections, starting from the load end and proceeding towards the source. While the use of non-resonant coupling slots may provide an

  7. Slotted Polyimide-Aerogel-Filled-Waveguide Arrays

    NASA Technical Reports Server (NTRS)

    Rodriguez-Solis, Rafael A.; Pacheco, Hector L.; Miranda, Felix A.; Meador, Mary Ann B.

    2013-01-01

    This presentation discussed the potential advantages of developing Slotted Waveguide Arrays using polyimide aerogels. Polyimide (PI) aerogels offer great promise as an enabling technology for lightweight aerospace antenna systems. PI aerogels are highly porous solids possessing low density and low dielectric permittivity combined with good mechanical properties. For slotted waveguide array applications, there are significant advantages in mass that more than compensate for the slightly higher loss of the aerogel filled waveguide when compared to state of practice commercial waveguide.

  8. X-Antenna: A graphical interface for antenna analysis codes

    NASA Technical Reports Server (NTRS)

    Goldstein, B. L.; Newman, E. H.; Shamansky, H. T.

    1995-01-01

    This report serves as the user's manual for the X-Antenna code. X-Antenna is intended to simplify the analysis of antennas by giving the user graphical interfaces in which to enter all relevant antenna and analysis code data. Essentially, X-Antenna creates a Motif interface to the user's antenna analysis codes. A command-file allows new antennas and codes to be added to the application. The menu system and graphical interface screens are created dynamically to conform to the data in the command-file. Antenna data can be saved and retrieved from disk. X-Antenna checks all antenna and code values to ensure they are of the correct type, writes an output file, and runs the appropriate antenna analysis code. Volumetric pattern data may be viewed in 3D space with an external viewer run directly from the application. Currently, X-Antenna includes analysis codes for thin wire antennas (dipoles, loops, and helices), rectangular microstrip antennas, and thin slot antennas.

  9. Broadband Cylindrical Antenna and Method

    DTIC Science & Technology

    2016-07-27

    1 of 12 BROADBAND CYLINDRICAL ANTENNA AND METHOD STATEMENT OF GOVERNMENT INTEREST [0001] The invention described herein may be manufactured and...directed to a cylindrical antenna having a broader bandwidth and a method for making such an antenna . (2) Description of the Prior Art [0004...Slotted cylinder antennas have been proposed in submarine applications before. For example, in U.S. Patent No. 6,127,983, Rivera and Josypenko disclose

  10. UHF Antenna Design for AFIT Random Noise Radar

    DTIC Science & Technology

    2012-03-01

    relatives of monopole , dipole, and slot antennas. One particularly interesting style amongst these is the Vivaldi antenna. There are two primary... monopole versions using Earth’s surface as a ground plane [26]. Antenna design and construction caught up with these early innovations over the next...Frequency independent antennas  Electric antennas (e.g. dipoles and monopoles )  Magnetic antennas (e.g. loops)  Electrically small antennas

  11. Simulation of patch and slot antennas using FEM with prismatic elements and investigations of artificial absorber mesh termination schemes

    NASA Technical Reports Server (NTRS)

    Gong, J.; Ozdemir, T.; Volakis, J; Nurnberger, M.

    1995-01-01

    Year 1 progress can be characterized with four major achievements which are crucial toward the development of robust, easy to use antenna analysis code on doubly conformal platforms. (1) A new FEM code was developed using prismatic meshes. This code is based on a new edge based distorted prism and is particularly attractive for growing meshes associated with printed slot and patch antennas on doubly conformal platforms. It is anticipated that this technology will lead to interactive, simple to use codes for a large class of antenna geometries. Moreover, the codes can be expanded to include modeling of the circuit characteristics. An attached report describes the theory and validation of the new prismatic code using reference calculations and measured data collected at the NASA Langley facilities. The agreement between the measured and calculated data is impressive even for the coated patch configuration. (2) A scheme was developed for improved feed modeling in the context of FEM. A new approach based on the voltage continuity condition was devised and successfully tested in modeling coax cables and aperture fed antennas. An important aspect of this new feed modeling approach is the ability to completely separate the feed and antenna mesh regions. In this manner, different elements can be used in each of the regions leading to substantially improved accuracy and meshing simplicity. (3) A most important development this year has been the introduction of the perfectly matched interface (PMI) layer for truncating finite element meshes. So far the robust boundary integral method has been used for truncating the finite element meshes. However, this approach is not suitable for antennas on nonplanar platforms. The PMI layer is a lossy anisotropic absorber with zero reflection at its interface. (4) We were able to interface our antenna code FEMA_CYL (for antennas on cylindrical platforms) with a standard high frequency code. This interface was achieved by first generating

  12. International Conference on Antenna Theory and Techniques

    DTIC Science & Technology

    1999-12-03

    modeling; (5) mobile —nicaWon^a^nas^ radane? and absorbing coatings; (7) antenna measurements; (8) microwave ccmponents and feeders; (9 SSrial^d...LOW-GAIN ANTENNAS PRINTED ANTENNAS ANTENNAS FOR MOBILE COMMUNICATIONS 299 Radiation of the multi-mode slotted radiator V. Antyfeev, A. Borsov, A...band antenna alternatives for the European mobile satellite (EMSAT) network G. de Balbine (Tarzana, USA) 304 Optimization of characteristics of

  13. Resonant-tunnelling diode oscillator using a slot-coupled quasioptical open resonator

    NASA Technical Reports Server (NTRS)

    Stephan, K. D.; Brown, E. R.; Parker, C. D.; Goodhue, W. D.; Chen, C. L.

    1991-01-01

    A resonant-tunneling diode has oscillated at X-band frequencies in a microwave circuit consisting of a slot antenna coupled to a semiconfocal open resonator. Coupling between the open resonator and the slot oscillator improves the noise-to-carrier ratio by about 36 dB relative to that of the slot oscillator alone in the 100-200 kHz range. A circuit operating near 10 GHz has been designed as a scale model for millimeter- and submillimeter-wave applications.

  14. Investigation of high temperature antennas for space shuttle

    NASA Technical Reports Server (NTRS)

    Kuhlman, E. A.

    1973-01-01

    The design and development of high temperature antennas for the space shuttle orbiter are discussed. The antenna designs were based on three antenna types, an annular slot (L-Band), a linear slot (C-Band), and a horn (C-Band). The design approach was based on combining an RF window, which provides thermal protection, with an off-the-shelf antenna. Available antenna window materials were reviewed and compared, and the materials most compatible with the design requirements were selected. Two antenna window design approaches were considered: one employed a high temperature dielectric material and a low density insulation material, and the other an insulation material usable for the orbiter thermal protection system. Preliminary designs were formulated and integrated into the orbiter structure. Simple electrical models, with a series of window configurations, were constructed and tested. The results of tests and analyses for the final antenna system designs are given and show that high temperature antenna systems consisting of off-the-shelf antennas thermally protected by RF windows can be designed for the Space Shuttle Orbiter.

  15. Single-layer dual frequency patch antenna

    NASA Astrophysics Data System (ADS)

    Maci, S.; Gentili, G. B.; Avitabile, G.

    1993-08-01

    A configuration for a slotted patch antenna is introduced which allows two separate operating frequencies. Both of these frequencies are associated with a radiating mode almost identical to that of a standard patch. The two resonances are related to the patch width and the slot/patch length, respectively.

  16. Development of theoretical models of integrated millimeter wave antennas

    NASA Technical Reports Server (NTRS)

    Yngvesson, K. Sigfrid; Schaubert, Daniel H.

    1991-01-01

    Extensive radiation patterns for Linear Tapered Slot Antenna (LTSA) Single Elements are presented. The directivity of LTSA elements is predicted correctly by taking the cross polarized pattern into account. A moment method program predicts radiation patterns for air LTSAs with excellent agreement with experimental data. A moment method program was also developed for the task LTSA Array Modeling. Computations performed with this program are in excellent agreement with published results for dipole and monopole arrays, and with waveguide simulator experiments, for more complicated structures. Empirical modeling of LTSA arrays demonstrated that the maximum theoretical element gain can be obtained. Formulations were also developed for calculating the aperture efficiency of LTSA arrays used in reflector systems. It was shown that LTSA arrays used in multibeam systems have a considerable advantage in terms of higher packing density, compared with waveguide feeds. Conversion loss of 10 dB was demonstrated at 35 GHz.

  17. Miniaturized dual band multislotted patch antenna on polytetrafluoroethylene glass microfiber reinforced for C/X band applications.

    PubMed

    Islam, M T; Samsuzzaman, M

    2014-01-01

    This paper introduces a new configuration of compact, triangular- and diamond-slotted, microstrip-fed, low-profile antenna for C/X band applications on polytetrafluoroethylene glass microfiber reinforced material substrate. The antenna is composed of a rectangular-shaped patch containing eight triangles and two diamond-shaped slots and an elliptical-slotted ground plane. The rectangular-shaped patch is obtained by cutting two diamond slots in the middle of the rectangular patch, six triangular slots on the left and right side of the patch, and two triangular slots on the up and down side of the patch. The slotted radiating patch, the elliptical-slotted ground plane, and the microstrip feed enable the matching bandwidth to be widened. A prototype of the optimized antenna was fabricated on polytetrafluoroethylene glass microfiber reinforced material substrate using LPKF prototyping machine and investigated to validate the proposed design. The simulated results are compared with the measured data, and good agreement is achieved. The proposed antenna offers fractional bandwidths of 13.69% (7.78-8.91 GHz) and 10.35% (9.16-10.19 GHz) where S11 < -10 dB at center frequencies of 8.25 GHz and 9.95 GHz, respectively, and relatively stable gain, good radiation efficiency, and omnidirectional radiation patterns in the matching band.

  18. Conformal doping of topographic silicon structures using a radial line slot antenna plasma source

    NASA Astrophysics Data System (ADS)

    Ueda, Hirokazu; Ventzek, Peter L. G.; Oka, Masahiro; Horigome, Masahiro; Kobayashi, Yuuki; Sugimoto, Yasuhiro; Nozawa, Toshihisa; Kawakami, Satoru

    2014-06-01

    Fin extension doping for 10 nm front end of line technology requires ultra-shallow high dose conformal doping. In this paper, we demonstrate a new radial line slot antenna plasma source based doping process that meets these requirements. Critical to reaching true conformality while maintaining fin integrity is that the ion energy be low and controllable, while the dose absorption is self-limited. The saturated dopant later is rendered conformal by concurrent amorphization and dopant containing capping layer deposition followed by stabilization anneal. Dopant segregation assists in driving dopants from the capping layer into the sub silicon surface. Very high resolution transmission electron microscopy-Energy Dispersive X-ray spectroscopy, used to prove true conformality, was achieved. We demonstrate these results using an n-type arsenic based plasma doping process on 10 to 40 nm high aspect ratio fins structures. The results are discussed in terms of the different types of clusters that form during the plasma doping process.

  19. Large Ka-Band Slot Array for Digital Beam-Forming Applications

    NASA Technical Reports Server (NTRS)

    Rengarajan, Sembiam; Zawadzki, Mark S.; Hodges, Richard E.

    2011-01-01

    This work describes the development of a large Ka Band Slot Array for the Glacier and Land Ice Surface Topography Interferometer (GLISTIN), a proposed spaceborne interferometric synthetic aperture radar for topographic mapping of ice sheets and glaciers. GLISTIN will collect ice topography measurement data over a wide swath with sub-seasonal repeat intervals using a Ka-band digitally beamformed antenna. For technology demonstration purpose a receive array of size 1x1 m, consisting of 160x160 radiating elements, was developed. The array is divided into 16 sticks, each stick consisting of 160x10 radiating elements, whose outputs are combined to produce 16 digital beams. A transmit array stick was also developed. The antenna arrays were designed using Elliott's design equations with the use of an infinite-array mutual-coupling model. A Floquet wave model was used to account for external coupling between radiating slots. Because of the use of uniform amplitude and phase distribution, the infinite array model yielded identical values for all radiating elements but for alternating offsets, and identical coupling elements but for alternating positive and negative tilts. Waveguide-fed slot arrays are finding many applications in radar, remote sensing, and communications applications because of their desirable properties such as low mass, low volume, and ease of design, manufacture, and deployability. Although waveguide-fed slot arrays have been designed, built, and tested in the past, this work represents several advances to the state of the art. The use of the infinite array model for the radiating slots yielded a simple design process for radiating and coupling slots. Method of moments solution to the integral equations for alternating offset radiating slots in an infinite array environment was developed and validated using the commercial finite element code HFSS. For the analysis purpose, a method of moments code was developed for an infinite array of subarrays. Overall

  20. Mimicking glide symmetry dispersion with coupled slot metasurfaces

    NASA Astrophysics Data System (ADS)

    Camacho, Miguel; Mitchell-Thomas, Rhiannon C.; Hibbins, Alastair P.; Sambles, J. Roy; Quevedo-Teruel, Oscar

    2017-09-01

    In this letter, we demonstrate that the dispersion properties associated with glide symmetry can be achieved in systems that only possess reflection symmetry by balancing the influence of two sublattices. We apply this approach to a pair of coupled slots cut into an infinite perfectly conducting plane. Each slot is notched on either edge, with the complete two-slot system having only mirror symmetry. By modifying the relative size of the notches on either side of the slots, we show that a linear dispersion relation with a degeneracy with non-zero group velocity at the Brillouin zone boundary can be achieved. These properties, until now, only found in systems with glide symmetry are numerically and experimentally validated. We also show that these results can be used for the design of ultra-wideband one-dimensional leaky wave antennas in coplanar waveguide technology.

  1. Miniaturized Dual Band Multislotted Patch Antenna on Polytetrafluoroethylene Glass Microfiber Reinforced for C/X Band Applications

    PubMed Central

    Islam, M. T.; Samsuzzaman, M.

    2014-01-01

    This paper introduces a new configuration of compact, triangular- and diamond-slotted, microstrip-fed, low-profile antenna for C/X band applications on polytetrafluoroethylene glass microfiber reinforced material substrate. The antenna is composed of a rectangular-shaped patch containing eight triangles and two diamond-shaped slots and an elliptical-slotted ground plane. The rectangular-shaped patch is obtained by cutting two diamond slots in the middle of the rectangular patch, six triangular slots on the left and right side of the patch, and two triangular slots on the up and down side of the patch. The slotted radiating patch, the elliptical-slotted ground plane, and the microstrip feed enable the matching bandwidth to be widened. A prototype of the optimized antenna was fabricated on polytetrafluoroethylene glass microfiber reinforced material substrate using LPKF prototyping machine and investigated to validate the proposed design. The simulated results are compared with the measured data, and good agreement is achieved. The proposed antenna offers fractional bandwidths of 13.69% (7.78–8.91 GHz) and 10.35% (9.16–10.19 GHz) where S11 < −10 dB at center frequencies of 8.25 GHz and 9.95 GHz, respectively, and relatively stable gain, good radiation efficiency, and omnidirectional radiation patterns in the matching band. PMID:24987742

  2. CPW fed UWB antenna with enhanced bandwidth & dual band notch characteristics

    NASA Astrophysics Data System (ADS)

    Jangid, K. G.; Jain, P. K.; Sharma, B. R.; Saxena, V. K.; Kulhar, V. S.; Bhatnagar, D.

    2018-05-01

    This paper reports the design and performance of CPW fed UWB antenna having two U-shaped slots etched in the radiating structure. UWB performance of proposed structure is obtained through the truncated shape of the patch and L-slits etched in ground plane. By applying two U- shaped slots in a radiating patch, we achieved dual notch band characteristics. The proposed antenna is simulated by applying CST Microwave Studio simulator. This antenna provides wide impedance bandwidth of 12.585 GHz (2.74GHz - 15.325 GHz) with dual notched band characteristics. This antenna may be proved as a useful structure for modern wireless communication systems including UWB band.

  3. Dual-polarized feed antenna apparatus and method of use

    NASA Technical Reports Server (NTRS)

    Sarehraz, Mohammed (Inventor); Buckle, Kenneth A. (Inventor); Stefanakos, Elias (Inventor); Weller, Thomas (Inventor); Goswami, D. Yogi (Inventor)

    2009-01-01

    An antenna apparatus and method for the interception of randomly polarized electromagnetic waves utilizing a dual polarized antenna which is excited through a cross-slot aperture using two well-isolated orthogonal feeds.

  4. Dual-polarized feed antenna apparatus and method of use

    NASA Technical Reports Server (NTRS)

    Sarehraz, Mohammad (Inventor); Buckle, Kenneth A. (Inventor); Stefanakos, Elias (Inventor); Weller, Thomas (Inventor); Goswami, D. Yogi (Inventor)

    2008-01-01

    An antenna apparatus and method for the interception of randomly polarized electromagnetic waves utilizing a dual polarized antenna which is excited through a cross-slot aperture using two well-isolated orthogonal feeds.

  5. Fin-line horn antenna

    DOEpatents

    Reindel, John

    1990-01-01

    A fin line circuit card containing a fin line slot feeds a dipole antenna ich extends a quarterwave outside the waveguide and provides an energy beam focal point at or near the open end of the waveguide. The dipole antenna thus maintains a wide and nearly constant beamwidth, low VSWR and a circular symmetric radiation pattern for use in electronic warfare direction finding and surveillance applications.

  6. Slots in dielectric image line as mode launchers and circuit elements

    NASA Astrophysics Data System (ADS)

    Solbach, K.

    1981-01-01

    A planar resonator model is used to investigate slots in the ground plane of dielectric image lines. An equivalent circuit representation of the slot discontinuity is obtained, and the launching efficiency of the slot as a mode launcher is analyzed. Slots are also shown to be useful in the realization of dielectric image line array antennas. It is found that the slot discontinuity can be shown as a T-junction of the dielectric image line and a metal waveguide. The launching efficiency is found to increase with the dielectric constant of the dielectric image line, exhibiting a maximum value for guides whose height is slightly less than half a wavelength in the dielectric medium. The measured launching efficiencies of low permittivity dielectric image lines are found to be in good agreement with calculated values

  7. A survey of various enhancement techniques for square rings antennas

    NASA Astrophysics Data System (ADS)

    Mumin, Abdul Rashid O.; Alias, Rozlan; Abdullah, Jiwa; Abdulhasan, Raed Abdulkareem; Ali, Jawad; Dahlan, Samsul Haimi; Awaleh, Abdisamad A.

    2017-09-01

    The square ring shape becomes a famous reconfiguration on antenna design. The researchers have been developed the square ring by different configurations. It has high efficiency and simple calculation method. The performance enhancement for an antenna is the main reason to use this setting. Furthermore, the multi-objectives for the antenna also are considered. In this paper, different studies of square ring shape are discussed. This shape is developed in five different techniques, which are the gain enhancement, dual band antenna, reconfigurable antenna, CSRR, and circularly polarization. Moreover, the validation between these configurations also demonstrates for square ring shapes. In particular, the square ring slot improved the gain by 4.3 dB, provide dual band resonance at 1.4 and 2.6 GHz while circular polarization at 1.54 GHz, and multi-mode antenna. However, square ring strip achieved an excellent band rejection on UWB antenna at 5.5 GHz. The square ring slot length is the most influential factor on the antenna performance, which refers to the free space wavelength. Finally, comparisons between these techniques are presented.

  8. High-Aperture-Efficiency Horn Antenna

    NASA Technical Reports Server (NTRS)

    Pickens, Wesley; Hoppe, Daniel; Epp, Larry; Kahn, Abdur

    2005-01-01

    A horn antenna (see Figure 1) has been developed to satisfy requirements specific to its use as an essential component of a high-efficiency Ka-band amplifier: The combination of the horn antenna and an associated microstrip-patch antenna array is required to function as a spatial power divider that feeds 25 monolithic microwave integrated-circuit (MMIC) power amplifiers. The foregoing requirement translates to, among other things, a further requirement that the horn produce a uniform, vertically polarized electromagnetic field in its patches identically so that the MMICs can operate at maximum efficiency. The horn is fed from a square waveguide of 5.9436-mm-square cross section via a transition piece. The horn features cosine-tapered, dielectric-filled longitudinal corrugations in its vertical walls to create a hard boundary condition: This aspect of the horn design causes the field in the horn aperture to be substantially vertically polarized and to be nearly uniform in amplitude and phase. As used here, cosine-tapered signifies that the depth of the corrugations is a cosine function of distance along the horn. Preliminary results of finite-element simulations of performance have shown that by virtue of the cosine taper the impedance response of this horn can be expected to be better than has been achieved previously in a similar horn having linearly tapered dielectric- filled longitudinal corrugations. It is possible to create a hard boundary condition by use of a single dielectric-filled corrugation in each affected wall, but better results can be obtained with more corrugations. Simulations were performed for a one- and a three-corrugation cosine-taper design. For comparison, a simulation was also performed for a linear- taper design (see Figure 2). The three-corrugation design was chosen to minimize the cost of fabrication while still affording acceptably high performance. Future designs using more corrugations per wavelength are expected to provide better

  9. Microrectenna: A Terahertz Antenna and Rectifier on a Chip

    NASA Technical Reports Server (NTRS)

    Siegel, Peter

    2007-01-01

    A microrectenna that would operate at a frequency of 2.5 THz has been designed and partially fabricated. The circuit is intended to be a prototype of an extremely compact device that could be used to convert radio-beamed power to DC to drive microdevices (see Figure 1). The microrectenna (see Figure 2) circuit consists of an antenna, a diode rectifier and a DC output port. The antenna consists of a twin slot array in a conducting ground plane (denoted the antenna ground plane) over an enclosed quarter-wavelength-thick resonant cavity (denoted the reflecting ground plane). The circuit also contains a planar high-frequency low-parasitic Schottky-barrier diode, a low-impedance microstrip transmission line, capacitors, and contact beam leads. The entire 3-D circuit is fabricated monolithically from a single GaAs wafer. The resonant cavity renders the slot radiation pattern unidirectional with a half-power beam width of about 65. A unique metal mesh on the rear of the wafer forms the backplate for the cavity but allows the GaAs to be wet etched from the rear surface of the twin slot antennas and ground plane. The beam leads protrude past the edge of the chip and are used both to mount the microrectenna and to make the DC electrical connection with external circuitry. The antenna ground plane and the components on top of it are formed on a 2- m thick GaAs membrane that is grown in the initial wafer MBE (molecular beam epitaxy) process. The side walls of the antenna cavity are not metal coated and, hence, would cause some loss of power; however, the relatively high permittivity (epsilon=13) of the GaAs keeps the cavity modes well confined, without the usual surface-wave losses associated with thick dielectric substrates. The Schottky-barrier diode has the usual submicron dimensions associated with THz operation and is formed in a mesa process above the antenna ground plane. The diode is connected at the midpoint of a microstrip transmission line, which is formed on 1- m

  10. Feasibility of Using a Novel 2.45 GHz Double Short Distance Slot Coaxial Antenna for Minimally Invasive Cancer Breast Microwave Ablation Therapy: Computational Model, Phantom, and In Vivo Swine Experimentation

    PubMed Central

    Cepeda Rubio, M. F. J.; Leija, L.

    2018-01-01

    Microwave ablation (MWA) by using coaxial antennas is a promising alternative for breast cancer treatment. A double short distance slot coaxial antenna as a newly optimized applicator for minimally invasive treatment of breast cancer is proposed. To validate and to analyze the feasibility of using this method in clinical treatment, a computational model, phantom, and breast swine in vivo experimentation were carried out, by using four microwave powers (50 W, 30 W, 20 W, and 10 W). The finite element method (FEM) was used to develop the computational model. Phantom experimentation was carried out in breast phantom. The in vivo experimentation was carried out in a 90 kg swine sow. Tissue damage was estimated by comparing control and treated micrographs of the porcine mammary gland samples. The coaxial slot antenna was inserted in swine breast glands by using image-guided ultrasound. In all cases, modeling, in vivo and phantom experimentation, and ablation temperatures (above 60°C) were reached. The in vivo experiments suggest that this new MWA applicator could be successfully used to eliminate precise and small areas of tissue (around 20–30 mm2). By modulating the power and time applied, it may be possible to increase/decrease the ablation area. PMID:29854360

  11. Bandwidth enhancement of a microstrip patch antenna for ultra-wideband applications

    NASA Astrophysics Data System (ADS)

    Anum, Khanda; Singh, Milind Saurabh; Mishra, Rajan; Tripathi, G. S.

    2018-04-01

    The microstrip antennas are used where size, weight, cost, and performance are constraints. Microstrip antennas (MSA) are being used in many government and commercial applications among which it is mostly used in wireless communication. The proposed antenna is designed for Ultra-wideband (UWB), it is designed on FR4 substrate material with ɛr = 4.3 and 0.0025 loss tangent. The shape and size of patch in microstrip patch antenna plays an important role in its performance. In the proposed antenna design the respective changes have been introduced which includes slotting the feedline,adding a curved slot in patch and change in patch shape itself to improve the bandwidth of the conventional antenna. The simulated results of proposed antenna shows impedance bandwidth (defined by 10 dB return loss) of 2-11.1GHz, VSWR<2 for entire bandwidth of antenna and peak gain is 5.2 dB. Thus the antenna covers the UWB range and it can also be used for bands such as 2.4/3.6/5 -GHz WLAN bands, 2.5/3.5/5.5GHz WiMAX bands and X band satellite communication at 7.25-8.395 GHz.

  12. Design of a compact and integrated TM-rotated/TE-through polarization beam splitter for silicon-based slot waveguides.

    PubMed

    Xu, Yin; Xiao, Jinbiao

    2016-01-20

    A compact and integrated TM-rotated/TE-through polarization beam splitter for silicon-based slot waveguides is proposed and characterized. For the input TM mode, it is first transferred into the cross strip waveguide using a tapered directional coupler (DC), and then efficiently rotated to the corresponding TE mode using an L-shaped bending polarization rotator (PR). Finally, the TE mode for slot waveguide at the output end is obtained with the help of a strip-to-slot mode converter. By contrast, for the input TE mode, it almost passes through the slot waveguide directly and outputs at the bar end with nearly neglected coupling due to a large mode mismatch. Moreover, an additional S-bend connecting the tapered DC and bending PR is used to enhance the performance. Results show that a total device length of 19.6 μm is achieved, where the crosstalk (CT) and polarization conversion loss are, respectively -26.09 and 0.54 dB, for the TM mode, and the CT and insertion loss are, respectively, -22.21 and 0.41 dB, for the TE mode, both at 1.55 μm. The optical bandwidth is approximately 50 nm with a CT<-20  dB. In addition, fabrication tolerances and field evolution are also presented.

  13. A microfabricated low-profile wideband antenna array for terahertz communications.

    PubMed

    Luk, K M; Zhou, S F; Li, Y J; Wu, F; Ng, K B; Chan, C H; Pang, S W

    2017-04-28

    While terahertz communications are considered to be the future solutions for the increasing demands on bandwidth, terahertz equivalents of radio frequency front-end components have not been realized. It remains challenging to achieve wideband, low profile antenna arrays with highly directive beams of radiation. Here, based on the complementary antenna approach, a wideband 2 × 2 cavity-backed slot antenna array with a corrugated surface is proposed. The approach is based on a unidirectional antenna with a cardiac radiation pattern and stable frequency characteristics that is achieved by integrating a series-resonant electric dipole with a parallel-resonant magnetic dipole. In this design, the slots work as magnetic dipoles while the corrugated surface radiates as an array of electric dipoles. The proposed antenna is realized at 1 THz operating frequency by stacking multiple metallized layers using the microfabrication technology. S-parameter measurements of this terahertz low-profile metallic antenna array demonstrate high efficiency at terahertz frequencies. Fractional bandwidth and gain are measured to be 26% and 14 dBi which are consistent with the simulated results. The proposed antenna can be used as the building block for larger antenna arrays with more directive beams, paving the way to develop high gain low-profile antennas for future communication needs.

  14. Millimeter-wave and terahertz integrated circuit antennas

    NASA Technical Reports Server (NTRS)

    Rebeiz, Gabriel M.

    1992-01-01

    This paper presents a comprehensive review of integrated circuit antennas suitable for millimeter and terahertz applications. A great deal of research was done on integrated circuit antennas in the last decade and many of the problems associated with electrically thick dielectric substrates, such as substrate modes and poor radiation patterns, have been understood and solved. Several new antennas, such as the integrated horn antenna, the dielectric-filled parabola, the Fresnel plate antenna, the dual-slot antenna, and the log-periodic and spiral antennas on extended hemispherical lenses, have resulted in excellent performance at millimeter-wave frequencies, and are covered in detail in this paper. Also, a review of the efficiency definitions used with planar antennas is given in detail in the appendix.

  15. Multi-Band Miniaturized Patch Antennas for a Compact, Shielded Microwave Breast Imaging Array.

    PubMed

    Aguilar, Suzette M; Al-Joumayly, Mudar A; Burfeindt, Matthew J; Behdad, Nader; Hagness, Susan C

    2013-12-18

    We present a comprehensive study of a class of multi-band miniaturized patch antennas designed for use in a 3D enclosed sensor array for microwave breast imaging. Miniaturization and multi-band operation are achieved by loading the antenna with non-radiating slots at strategic locations along the patch. This results in symmetric radiation patterns and similar radiation characteristics at all frequencies of operation. Prototypes were fabricated and tested in a biocompatible immersion medium. Excellent agreement was obtained between simulations and measurements. The trade-off between miniaturization and radiation efficiency within this class of patch antennas is explored via a numerical analysis of the effects of the location and number of slots, as well as the thickness and permittivity of the dielectric substrate, on the resonant frequencies and gain. Additionally, we compare 3D quantitative microwave breast imaging performance achieved with two different enclosed arrays of slot-loaded miniaturized patch antennas. Simulated array measurements were obtained for a 3D anatomically realistic numerical breast phantom. The reconstructed breast images generated from miniaturized patch array data suggest that, for the realistic noise power levels assumed in this study, the variations in gain observed across this class of multi-band patch antennas do not significantly impact the overall image quality. We conclude that these miniaturized antennas are promising candidates as compact array elements for shielded, multi-frequency microwave breast imaging systems.

  16. Structural Response of the Slotted Waveguide Antenna Stiffened Structure Components Under Compression

    DTIC Science & Technology

    2010-03-01

    mounted in its center point. One can see the 62 Figure 45 Shear Specimen Drawing for ASTM Test D7078 wire lead pads coming from the gage in the ±45...wall is much stronger without the slots cut in it. This inward buckling motion tilts the three slots towards inward bulging and this crumpling of the...Structural Composites with Piezoelectric Micro-Constituents. Tech. rep., U.S. Army Research Office. 15. Thomas, J., Qidwai, M., Baucom, J., and Pogue, W

  17. Wideband Microstrip Antenna-Feeding Array

    NASA Technical Reports Server (NTRS)

    Huang, John

    1990-01-01

    Special impedance-matching probes help reduce feed complexity. Lightweight array of microstrip antenna elements designed to transmit and illuminate reflector antenna with circularly polarized radiation at 1,545 to 1,550 MHz and to receive circularly polarized radiation at 1,646 to 1,660 MHz. Microstrip array is cluster of 7 subarrays containing total of 28 microstrip patches. Produces cicularly polarized beam with suitable edge taper to illuminate reflector antenna. Teardrop-shaped feed probe provides gradual change of field from coaxial transmission line into microstrip substrate. Intended to be part of larger overlapping-cluster array generating multiple contiguous beams.

  18. Distributed Antenna-Coupled TES for FIR Detectors Arrays

    NASA Technical Reports Server (NTRS)

    Day, Peter K.; Leduc, Henry G.; Dowell, C. Darren; Lee, Richard A.; Zmuidzinas, Jonas

    2007-01-01

    We describe a new architecture for a superconducting detector for the submillimeter and far-infrared. This detector uses a distributed hot-electron transition edge sensor (TES) to collect the power from a focal-plane-filling slot antenna array. The sensors lay directly across the slots of the antenna and match the antenna impedance of about 30 ohms. Each pixel contains many sensors that are wired in parallel as a single distributed TES, which results in a low impedance that readily matches to a multiplexed SQUID readout These detectors are inherently polarization sensitive, with very low cross-polarization response, but can also be configured to sum both polarizations. The dual-polarization design can have a bandwidth of 50The use of electron-phonon decoupling eliminates the need for micro-machining, making the focal plane much easier to fabricate than with absorber-coupled, mechanically isolated pixels. We discuss applications of these detectors and a hybridization scheme compatible with arrays of tens of thousands of pixels.

  19. Inverted S-Shaped Compact Antenna for X-Band Applications

    PubMed Central

    Samsuzzaman, M.; Islam, M. T.

    2014-01-01

    A novel probe-fed compact inverted S-shaped multifrequency patch antenna is designed. By employing two rectangular slots that change the conventional rectangular patch into an inverted S-shaped patch, the antenna is able to operate in triple frequency in the X-band. The performance criteria of the proposed design have been experimentally verified by fabricating a printed prototype. The measured results show that the −10 dB impedance bandwidth of the proposed antenna at lower band is 5.02% (8.69–9.14 GHz), at middle band is 9.13% (10.47–11.48 GHz), and at upper band is 3.79% (11.53–11.98 GHz). Two elliptical slots are introduced in the ground plane to increase the peak gain. The antenna is excited by a simple probe feeding mechanism. The overall antenna dimension is  0.52λ × 0.60λ × 0.046λ at a lower resonance frequency of 9.08 GHz. The antenna configuration and parametric investigation are conducted with the help of the high frequency structural simulator, and a good agreement is achieved between the simulated and measured data. The stable gain, omnidirectional radiation pattern, and consistent radiation efficiency in the achieved operating band make the proposed antenna a suitable candidate for X-band applications. PMID:24895656

  20. Transition-edge superconducting antenna-coupled bolometer

    NASA Astrophysics Data System (ADS)

    Hunt, Cynthia L.

    2004-10-01

    The temperature anisotropy of the cosmic microwave background (CMB) is now being probed with unprecedented accuracy and sky coverage by the Wilkinson Microwave Anisotropy Probe (WMAP), and will be definitively mapped by the Planck Surveyor after its launch in 2007. However, the polarization of the CMB will not be mapped with sufficient accuracy. In particular, the measurement of the curl-polarization, which may be used to probe the energy scale of the inflationary epoch, requires a large advance in the format of millimeter-wave bolometer arrays. SAMBA (Superconducting Antenna-coupled Multi-frequency Bolometric Array) is being developed to address these needs for the next generation of submillimeter astronomical detectors. SAMBA consists of a focal plane populated with microstrip-coupled slot antennas, whose signals are coherently added and sent to transition-edge superconducting (TES) bolometers via microstrip lines. SAMBA eliminates the need for the feedhorns and optical filters currently used on CMB observational instruments, such as Planck and Boomerang. The SAMBA architecture allows for a high density of pixels in the focal plane with minimal sub-Kelvin mass. As a precursor to a full monolithic high-density antenna array, we are developing a single-band antenna-coupled Bolometric detector. In this thesis, I report test results for a single-pixel antenna-coupled Bolometric detector. Our device consists of a dual slot microstrip-coupled slot antenna coupled to an Al/Ti/Au voltage-biased TES. The coupling architecture involves propagating the signal along super conducting microstrip lines and terminating the lines at a normal metal resistor collocated with a TES on a thermally isolated island. The device, which is inherently polarization sensitive, is optimized for 140 GHz measurements. In the thermal bandwidth of the TES, we measure a noise equivalent power (NEP) of 2.0 x 10 -17 W/[Special characters omitted.] in dark tests which agrees with the calculated NEP

  1. Design of Dual Band Microstrip Patch Antenna using Metamaterial

    NASA Astrophysics Data System (ADS)

    Rafiqul Islam, Md; Alsaleh Adel, A. A.; Mimi, Aminah W. N.; Yasmin, M. Sarah; Norun, Farihah A. M.

    2017-11-01

    Metamaterial has received great attention due to their novel electromagnetic properties. It consists of artificial metallic structures with negative permittivity (ɛ) and permeability (µ). The average cell size of metamaterial must be less than a quarter of wavelength, hence, size reduction for the metamaterial antenna is possible. In addition, metamaterial can be used to enhance the low gain and efficiency in conventional patch antenna, which is important in wireless communication. In this paper, dual band microstrip patch antenna design using metamaterial for mobile GSM and WiMax application is introduced. The antenna structure consists of microstrip feed line connected to a rectangular patch. An array of five split ring resonators (SRRs) unit cells is inserted under the patch. The presented antenna resonates at 1.8 GHz for mobile GSM and 2.4 GHz for WIMAX applications. The return loss in the FR4 antenna at 1.8 GHz is -22.5 dB. Using metamaterial the return loss has improved to -25 dB at 2.4 GHz and -23.5 dB at 1.8 GHz. A conventional microstrip patch antenna using pair of slots is also designed which resonates at 1.8 GHz and 2.4 GHz. The return loss at 1.8 GHz and 2.4 GHz were -12.1 dB and -21.8 dB respectively. The metamaterial antenna achieved results with major size reduction of 45%, better bandwidth and better returns loss if it is compared to the pair of slots antenna. The software used to design, simulate and optimize is CST microwave studio.

  2. Design and analysis of coplanar waveguide triple-band antenna based on defected ground structure

    NASA Astrophysics Data System (ADS)

    Lv, Hong; Chen, Wanli; Xia, Xinsheng; Qi, Peng; Sun, Quanling

    2017-11-01

    A kind of coplanar waveguide triple-band antenna based on defected ground structure is proposed, which has novel structure. Three batches with different frequency band are constructed by utilizing line combination, overlapping, and symmetry method. Stop band signals among three frequency bands are effectively suppressed by slots with different structures. More satisfactory impedance matching is realized by means of changing slot structure and improving return-loss. The presented antenna can operates simultaneously in various systems such as 3G / 4G wireless communication, Bluetooth, Worldwide Interoperability for Microwave Access, Wireless LAN. Test results show that the antenna has good radiation and gain in its working frequency band, and that it has great application potentials.

  3. Design of modified pentagonal patch antenna on defective ground for Wi-Max/WLAN application

    NASA Astrophysics Data System (ADS)

    Rawat, Sanyog; Sharma, K. K.

    2016-04-01

    This paper presents the design and performance of a modified pentagonal patch antenna with defective ground plane. A pentagonal slot is inserted in the pentagonal patch and slot loaded ground through optimized dimensions is used in the antenna to resonate it at dual frequency. The geometry operates at two resonant frequencies (2.5 GHz and 5.58 GHz) and offers impedance bandwidth of 864 MHz and 554 MHz in the two bands of interest. The proposed antenna covers the lower band (2.45 to 2.484/2.495 to 2.695 GHz) and upper band (5.15 to 5.825 GHz/5.25 to 5.85 GHz) allocated for Wi-Max and WLAN communication systems.

  4. Evaluation of slot-to-slot coupling between dielectric slot waveguides and metal-insulator-metal slot waveguides.

    PubMed

    Kong, Deqing; Tsubokawa, Makoto

    2015-07-27

    We numerically analyzed the power-coupling characteristics between a high-index-contrast dielectric slot waveguide and a metal-insulator-metal (MIM) plasmonic slot waveguide as functions of structural parameters. Couplings due mainly to the transfer of evanescent components in two waveguides generated high transmission efficiencies of 62% when the slot widths of the two waveguides were the same and 73% when the waveguides were optimized by slightly different widths. The maximum transmission efficiency in the slot-to-slot coupling was about 10% higher than that in the coupling between a normal slab waveguide and an MIM waveguide. Large alignment tolerance of the slot-to-slot coupling was also proved. Moreover, a small gap inserted into the interface between two waveguides effectively enhances the transmission efficiency, as in the case of couplings between a normal slab waveguide and an MIM waveguide. In addition, couplings with very wideband transmissions over a wavelength region of a few hundred nanometers were validated.

  5. Compact Planar Ultrawideband Antennas with 3.5/5.2/5.8 GHz Triple Band-Notched Characteristics for Internet of Things Applications.

    PubMed

    Dong, Jian; Li, Qianqian; Deng, Lianwen

    2017-02-10

    Ultrawideband (UWB) antennas, as core devices in high-speed wireless communication, are widely applied to mobile handsets, wireless sensor networks, and Internet of Things (IoT). A compact printed monopole antenna for UWB applications with triple band-notched characteristics is proposed in this paper. The antenna has a very compact size of 10 x 16 mm2 and is composed of a square slotted radiation patch and a narrow rectangular ground plane on the back of the substrate. First, by etching a pair of inverted T-shaped slots at the bottom of the radiation patch, one notched band at 5-6 GHz for rejecting the Wireless Local Area Network (WLAN) is generated. Then, by cutting a comb-shaped slot on the top of the radiation patch, a second notched band for rejecting 3.5 GHz Worldwide Interoperability for Microwave Access (WiMAX) is obtained. Further, by cutting a pair of rectangular slots and a C-shaped slot as well as adding a pair of small square parasitic patches at the center of the radiating patch, two separate notched bands for rejecting 5.2 GHz lower WLAN and 5.8 GHz upper WLAN are realized, respectively. Additionally, by integrating the slotted radiation patch with the narrow rectangular ground plane, an enhanced impedance bandwidth can be achieved, especially at the higher band. The antenna consists of linear symmetrical sections only and is easy for fabrication and fine-tuning. The measured results show that the designed antenna provides a wide impedance bandwidth of 150% from 2.12 to 14.80 GHz for VSWR < 2, except for three notched bands of 3.36-4.16, 4.92-5.36, and 5.68-6.0 GHz. Additionally, the antenna exhibits nearly omnidirectional radiation characteristics, low gain at the stopbands, and flat group delay over the whole UWB except at the stopbands. Simulated and experimental results show that the proposed antenna can provide good frequency-domain and time-domain performances at desired UWB frequencies and be an attractive candidate for portable Io

  6. Conformal dual-band textile antenna with metasurface for WBAN application

    NASA Astrophysics Data System (ADS)

    Giman, Fatin Nabilah; Soh, Ping Jack; Jamlos, Mohd Faizal; Lago, Herwansyah; Al-Hadi, Azremi Abdullah; Abdulmalek, Mohamedfareq; Abdulaziz, Nidhal

    2017-01-01

    This paper presents the design of a dual-band wearable planar slotted dipole integrated with a metasurface. It operates in the 2.45 GHz (lower) and 5.8 GHz (upper) bands and made fully using textiles to suit wireless body area network applications. The metasurface in the form of an artificial magnetic conductor (AMC) plane is formed using a rectangular patch incorporated with a diamond-shaped slot to generate dual-phase response. This plane is then integrated with the planar slotted dipole antenna prior to its assessment in free space and bent configurations. Simulations and measurements indicated a good agreement, and the antenna featured an impedance bandwidth of 164 and 592 MHz in the lower and upper band, respectively. The presence of the AMC plane also minimized the backward radiation toward the human body and enhanced realized gains by up to 3.01 and 7.04 dB in the lower and upper band.

  7. Board-to-board optical interconnection using novel optical plug and slot

    NASA Astrophysics Data System (ADS)

    Cho, In K.; Yoon, Keun Byoung; Ahn, Seong H.; Kim, Jin Tae; Lee, Woo Jin; Shin, Kyoung Up; Heo, Young Un; Park, Hyo Hoon

    2004-10-01

    A novel optical PCB with transmitter/receiver system boards and optical bakcplane was prepared, which is board-to-board interconnection by optical plug and slot. We report an 8Gb/s PRBS NRZ data transmission between transmitter system board and optical backplane embedded multimode polymeric waveguide arrays. The basic concept of ETRI's optical PCB is as follows; 1) Metal optical bench is integrated with optoelectronic devices, driver and receiver circuits, polymeric waveguide and access line PCB module. 2) Multimode polymeric waveguide inside an optical backplane, which is embedded into PCB. 3) Optical slot and plug for high-density(channel pitch : 500um) board-to-board interconnection. The polymeric waveguide technology can be used for transmission of data on transmitter/ receiver system boards and for backplane interconnections. The main components are low-loss tapered polymeric waveguides and a novel optical plug and slot for board-to-board interconnections, respectively. The optical PCB is characteristic of low coupling loss, easy insertion/extraction of the boards and, especially, reliable optical coupling unaffected from external environment after board insertion.

  8. Exploitation of Multi-beam Directional Antennas for a Wireless TDMA/FDD MAC

    NASA Astrophysics Data System (ADS)

    Atmaca, Sedat; Ceken, Celal; Erturk, Ismail

    2008-05-01

    The effects of the multi-beam directional antennas on the performance of a new wireless TDMA/FDD MAC system are presented. Directional antennas intrinsically enable development of the SDMA systems and allow transmitting and receiving signals simultaneously at the same time slot. Employing a dynamic slot allocation table at a base station with 4 or 8 sector directional antennas and holding the wireless terminals' location information, a new SDMA/TDMA/FDD frame structure has been developed for wireless communications. The simulation studies realized using OPNET Modeler show that the proposed SDMA/TDMA/FDD system has substantially increased the traditional TDMA/FDD system capacity and provides 1.37 to 4 times better mean delay results when the number of users is increased from 4 to 32 under the same load in the wireless network models.

  9. Multifrequency synthetic aperture radar antenna comparison study. [for remote sensing

    NASA Technical Reports Server (NTRS)

    Blevins, B. A.

    1983-01-01

    Three multifrequency, dual polarization SAR antenna designs are reviewed. The SAR antenna design specifications were for a "straw man' SAR which would approximate the requirements for projected shuttle-based SAR's. Therefore, the physical dimensions were constrained to be compatible with the space shuttle. The electrical specifications were similar to those of SIR-A and SIR-B with the addition of dual polarization and the addition of C and X band operation. Early in the antenna design considerations, three candidate technologies emerged as having promise. They were: (1) microstrip patch planar array antennas, (2) slotted waveguide planar array antennas, and (3) open-ended waveguide planar array antennas.

  10. Integrated Nanoscale Antenna-LED for On-Chip Optical Communication

    NASA Astrophysics Data System (ADS)

    Fortuna, Seth

    Traditional semiconductor light emitting diodes (LEDs) have low modulation speed because of long spontaneous emission lifetime. Spontaneous emission in semiconductors (and indeed most light emitters) is an inherently slow process owing to the size mismatch between the dipole length of the optical dipole oscillators responsible for light emission and the wavelength of the emitted light. More simply stated: semiconductors behave as a poor antenna for its own light emission. By coupling a semiconductor at the nanoscale to an external antenna, the spontaneous emission rate can be dramatically increased alluding to the exciting possibility of an antenna-LED that can be directly modulated faster than the laser. Such an antenna-LED is well-suited as a light source for on-chip optical communication where small size, fast speed, and high efficiency are needed to achieve the promised benefit of reduced power consumption of on-chip optical interconnect links compared with less efficient electrical interconnect links. Despite the promise of the antenna-LED, significant challenges remain to implement an antenna-coupled device in a monolithically integrated manner. Notably, most demonstrations of antenna-enhanced spontaneous emission have relied upon optical pumping of the light emitting material which is useful for fundamental studies; however, an electrical injection scheme is required for practical implementation of an antenna-LED. In this dissertation, demonstration of an electrically-injected III-V antenna-LED is reported: an important milestone toward on-chip optical interconnects. In the first part of this dissertation, the general design principles of enhancing the spontaneous emission rate of a semiconductor with an optical antenna is discussed. The cavity-backed slot antenna is shown to be uniquely suited for an electrically-injected antenna-LED because of large spontaneous emission enhancement, simple fabrication, and directional emission of light. The design

  11. Circularly Polarized S Band Dual Frequency Square Patch Antenna Using Glass Microfiber Reinforced PTFE Composite

    PubMed Central

    Samsuzzaman, M.; Islam, M. T.; Arshad, Haslina; Mandeep, J. S.; Misran, N.

    2014-01-01

    Circularly polarized (CP) dual frequency cross-shaped slotted patch antenna on 1.575 mm thick glass microfiber reinforced polytetrafluoroethylene (PTFE) composite material substrate is designed and fabricated for satellite applications. Asymmetric cross-shaped slots are embedded in the middle of the square patch for CP radiation and four hexagonal slots are etched on the four sides of the square patch for desired dual frequency. Different substrate materials have been analysed to achieve the desired operating band. The experimental results show that the impedance bandwidth is approximately 30 MHz (2.16 GHz to 2.19 GHz) for lower band and 40 MHz (3.29 GHz to 3.33 GHz) for higher band with an average peak gain of 6.59 dBiC and 5.52 dBiC, respectively. Several optimizations are performed to obtain the values of the antenna physical parameters. Moreover, the proposed antenna possesses compactness, light weight, simplicity, low cost, and circularly polarized. It is an attractive candidate for dual band satellite antennas where lower band can be used for uplink and upper band can be used for downlink. PMID:24982943

  12. Miniaturized printed K shaped monopole antenna with truncated ground plane for 2.4/5.2/5.5/5.8 wireless lan applications

    NASA Astrophysics Data System (ADS)

    Chandan, Bharti, Gagandeep; Srivastava, Toolika; Rai, B. S.

    2018-04-01

    A novel truncated ground plane monopole antenna is proposed for wide band wireless local area network (WLAN) applications. The antenna contains a rectangular patch with a rectangular ring, a circular slot and a truncated ground plane printed on opposite sides of a low cost substrate FR4. The operating frequency bands for the antenna are band1 (2.4-2.88 GHz) and band 2 (4.8-6.3 GHz) with ≤ - 10 dB return loss which covers 2.4/5.2/5.5/5.8 GHz WLAN bands. The antenna is compact with overall dimension 26×40×0.8 mmł and with the dimension of patch 16×16×0.8 mm3. The two bands of antenna is obtained by cutting a rectangular ring and a circular slot in the patch and return loss is improved by cutting two rectangular slot in the ground plane. Performance measures of the antenna are shown in terms of return loss, current distribution, radiation pattern and gain. To verify the simulated results, the antenna is also fabricated and tested. The simulated and fabricated results have been found in good agreement.

  13. Two-port active coupled microstrip antenna

    NASA Astrophysics Data System (ADS)

    Avitabile, G. F.; Maci, S.; Biffi Gentili, G.; Roselli, L.; Manes, G. F.

    1992-12-01

    A multilayer structure, based on a patch antenna coupled through a nonresonant slot to a pair of feeding microstrips is a versatile module which can be used as a radiating and resonating element in a number of different configurations. Direct connection to a low cost transistor in a feedback loop results in a very simple active antenna, as reported in the Letter. Different termination conditions at the four microstrip ports give rise to a number of alternative configurations for active generation/detection and multipatch arrays.

  14. Features and technologies of ERS-1 (ESA) and X-SAR antennas

    NASA Technical Reports Server (NTRS)

    Schuessler, R.; Wagner, R.

    1986-01-01

    Features and technologies of planar waveguide array antennas developed for spaceborne microwave sensors are described. Such antennas are made from carbon fiber reinforced plastic (CFRP) employing special manufacturing and metallization techniques to achieve satisfactory electrical properties. Mechanical design enables deployable antenna structures necessary for satellite applications (e.g., ESA ERS-1). The slotted waveguide concept provides high aperture efficiency, good beamshaping capabilities, and low losses. These CFRP waveguide antennas feature low mass, high accuracy and stiffness, and can be operated within wide temperature ranges.

  15. Analysis of microstrip dipoles and slots transversely coupled to a microstrip line using the FDTD method

    NASA Technical Reports Server (NTRS)

    Tulintseff, A. N.

    1993-01-01

    Printed dipole elements and their complement, linear slots, are elementary radiators that have found use in low-profile antenna arrays. Low-profile antenna arrays, in addition to their small size and low weight characteristics, offer the potential advantage of low-cost, high-volume production with easy integration with active integrated circuit components. The design of such arrays requires that the radiation and impedance characteristics of the radiating elements be known. The FDTD (Finite-Difference Time-Domain) method is a general, straight-forward implementation of Maxwell's equations and offers a relatively simple way of analyzing both printed dipole and slot elements. Investigated in this work is the application of the FDTD method to the analysis of printed dipole and slot elements transversely coupled to an infinite transmission line in a multilayered configuration. Such dipole and slot elements may be used in dipole and slot series-fed-type linear arrays, where element offsets and interelement line lengths are used to obtain the desired amplitude distribution and beam direction, respectively. The design of such arrays is achieved using transmission line theory with equivalent circuit models for the radiating elements. In an equivalent circuit model, the dipole represents a shunt impedance to the transmission line, where the impedance is a function of dipole offset, length, and width. Similarly, the slot represents a series impedance to the transmission line. The FDTD method is applied to single dipole and slot elements transversely coupled to an infinite microstrip line using a fixed rectangular grid with Mur's second order absorbing boundary conditions. Frequency-dependent circuit and scattering parameters are obtained by saving desired time-domain quantities and using the Fourier transform. A Gaussian pulse excitation is applied to the microstrip transmission line, where the resulting reflected signal due to the presence of the radiating element is used

  16. Wideband dual frequency modified ellipse shaped patch antenna for WLAN/Wi-MAX/UWB application

    NASA Astrophysics Data System (ADS)

    Jain, P. K.; Jangid, K. G.; R. Sharma, B.; Saxena, V. K.; Bhatnagar, D.

    2018-05-01

    This paper communicates the design and performance of microstrip line fed modified ellipses shaped radiating patch with defected ground structure. Wide impedance bandwidth performance is achieved by applying a pentagonal slot and T slot structure in ground plane. By inserting two semi ellipses shaped ring in ground, we obtained axial ratio bandwidth approx 600 MHz. The proposed antenna is simulated by utilizing CST Microwave Studio simulator 2014. This antenna furnishes wide impedance bandwidth approx. 4.23 GHz, which has spread into two bands 2.45 GHz - 5.73 GHz and 7.22 GHz - 8.17 GHz with nearly flat gain in operating frequency range. This antenna may be proved as a practicable structure for modern wireless communication systems including Wi-MAX, WLAN and lower band of UWB.

  17. A Very Compact and Low Profile UWB Planar Antenna with WLAN Band Rejection.

    PubMed

    Syed, Avez; Aldhaheri, Rabah W

    2016-01-01

    A low-cost coplanar waveguide fed compact ultrawideband (UWB) antenna with band rejection characteristics for wireless local area network (WLAN) is proposed. The notch band characteristic is achieved by etching half wavelength C-shaped annular ring slot in the radiating patch. By properly choosing the radius and position of the slot, the notch band can be adjusted and controlled. With an overall size of 18.7 mm × 17.6 mm, the antenna turns out to be one of the smallest UWB antennas with band-notched characteristics. It has a wide fractional bandwidth of 130% (2.9-13.7 GHz) with VSWR < 2 and rejecting IEEE 802.11a and HIPERLAN/2 frequency band of 5.1-5.9 GHz. Stable omnidirectional radiation patterns in the H plane with an average gain of 4.4 dBi are obtained. The band-notch mechanism of the proposed antenna is examined by HFSS simulator. A good agreement is found between measured and simulated results indicating that the proposed antenna is well suited for integration into portable devices for UWB applications.

  18. Antenna analysis using properties of metamaterials

    NASA Astrophysics Data System (ADS)

    Mitra, Atindra K.; Hu, Colin; Maxwell, Kasandra

    2010-04-01

    As part of the Student Internship Programs at Wright-Patterson Air Force Base, including the AFRL Wright Scholar Program for High School Students and the AFRL STEP Program, sample results from preliminary investigation and analysis of integrated antenna structures are reported. Investigation of these novel integrated antenna geometries can be interpreted as a continuation of systems analysis under the general topic area of potential integrated apertures for future software radar/radio solutions [1] [2]. Specifically, the categories of novel integrated aperture geometries investigated in this paper include slotted-fractal structures on microstrip rectangular patch antenna models in tandem with the analysis of exotic substrate materials comprised of a type of synthesized electromagnetic structure known as metamaterials [8] - [10].

  19. Compact Planar Ultrawideband Antennas with 3.5/5.2/5.8 GHz Triple Band-Notched Characteristics for Internet of Things Applications

    PubMed Central

    Dong, Jian; Li, Qianqian; Deng, Lianwen

    2017-01-01

    Ultrawideband (UWB) antennas, as core devices in high-speed wireless communication, are widely applied to mobile handsets, wireless sensor networks, and Internet of Things (IoT). A compact printed monopole antenna for UWB applications with triple band-notched characteristics is proposed in this paper. The antenna has a very compact size of 10 × 16 mm2 and is composed of a square slotted radiation patch and a narrow rectangular ground plane on the back of the substrate. First, by etching a pair of inverted T-shaped slots at the bottom of the radiation patch, one notched band at 5–6 GHz for rejecting the Wireless Local Area Network (WLAN) is generated. Then, by cutting a comb-shaped slot on the top of the radiation patch, a second notched band for rejecting 3.5 GHz Worldwide Interoperability for Microwave Access (WiMAX) is obtained. Further, by cutting a pair of rectangular slots and a C-shaped slot as well as adding a pair of small square parasitic patches at the center of the radiating patch, two separate notched bands for rejecting 5.2 GHz lower WLAN and 5.8 GHz upper WLAN are realized, respectively. Additionally, by integrating the slotted radiation patch with the narrow rectangular ground plane, an enhanced impedance bandwidth can be achieved, especially at the higher band. The antenna consists of linear symmetrical sections only and is easy for fabrication and fine-tuning. The measured results show that the designed antenna provides a wide impedance bandwidth of 150% from 2.12 to 14.80 GHz for VSWR < 2, except for three notched bands of 3.36–4.16, 4.92–5.36, and 5.68–6.0 GHz. Additionally, the antenna exhibits nearly omnidirectional radiation characteristics, low gain at the stopbands, and flat group delay over the whole UWB except at the stopbands. Simulated and experimental results show that the proposed antenna can provide good frequency-domain and time-domain performances at desired UWB frequencies and be an attractive candidate for portable Io

  20. Mid-infrared refractive index sensing using optimized slotted photonic crystal waveguides

    NASA Astrophysics Data System (ADS)

    Kassa-Baghdouche, Lazhar; Cassan, Eric

    2018-02-01

    Slotted photonic crystal waveguides (SPCWs) were designed to act as refractive index sensing devices at mid-infrared (IR) wavelengths around λ = 3.6 μm. In particular, effort was made to engineer the input and output slot waveguide interfaces in order to increase the effective sensitivity through resonant tapering. A slotted PhC waveguide immersed in air and liquid cladding layers was considered. To determine the performance of the sensor, the sensitivity of the device was estimated by calculating the shift in the upper band edge of the output transmission spectrum. The results showed that the sensitivity of a conventionally designed SPCW followed by modifications in the structure parameter yielded a 510 nm shift in the wavelength position of the upper band edge, indicating a sensitivity of more than 1150 nm per refractive index unit (RIU) with an insertion loss level of -0.3 dB. This work demonstrates the viability of photonic crystal waveguide high sensitivity devices in the Mid-IR, following a transposition of the concepts inherited from the telecom band and an optimization of the design, in particular a minimization of photonic device insertion losses.

  1. Low-Profile Multiband and Flush-Mountable Wideband Antennas for HF/VHF and K/Ka Band Applications

    NASA Astrophysics Data System (ADS)

    Garrido Lopez, David

    emissions are planned. Following the same trend of antenna system size reduction with extension of capabilities in a congested spectral environment, the millimeter wave spectrum is explored next. Specifically, antenna systems for wideband amplitude only (AO) direction finding (DF) are thoroughly considered. Theory and design considerations are developed to fill gaps in open literature. Typical sources of errors are theoretically analyzed, and a discussion on limitations and advantages of different AO DF architectures is given. Practical millimeter wave realizations of AO DF antenna front-ends in the K/Ka/Q bands (18-45 GHz) are developed using two different architectures: a passive phased-array and a squinted antenna system. For the former, a tightly coupled two-element tapered slot antenna (TSA) array with a stacked arrangement is developed. A novel enclosure of the array inside an absorbing cavity is proposed and improved system performance with flush mounted configuration is demonstrated. The squinted antenna system avoids the use of a beamformer, therefore reducing insertion loss and amplitude/phase imbalances to reduce DF errors. For design robustness, the same TSA element used in the phased-array configuration is used. A novel tapered cavity is also developed to stabilize H-plane radiation patterns and suppress sidelobes. It is seen that the squinted antenna AO DF front-end has better performance than the phased-array antenna system at the expense of larger size.

  2. Frequency-reconfigurable water antenna of circular polarization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zou, Meng; Pan, Jin; Shen, Zhongxiang, E-mail: ezxshen@ntu.edu.sg

    A circularly polarized frequency-reconfigurable water antenna with high radiation efficiency is proposed based on the design concept of combining a frequency-reconfigurable radiating structure with a frequency-independent feeding structure. In this letter, a resonator made of distilled water and an Archimedean spiral slot are employed as the radiating and feeding structures, respectively. The operating frequency of the antenna can be continuously tuned over a very wide range while maintaining good impendence matching and circular polarization by changing the dimensions of the water resonator. A prototype antenna is designed, fabricated, and measured. Simulated and measured results demonstrate that the designed antenna exhibitsmore » a wide tuning frequency range from 155 MHz to 400 MHz with an average radiation efficiency of about 90% and good circular polarization.« less

  3. Planar Submillimeter-Wave Mixer Technology with Integrated Antenna

    NASA Technical Reports Server (NTRS)

    Chattopadhyay, Gautam; Mehdi, Imran; Gill, John J.; Lee, Choonsup; lombart, Muria L.; Thomas, Betrand

    2010-01-01

    High-performance mixers at terahertz frequencies require good matching between the coupling circuits such as antennas and local oscillators and the diode embedding impedance. With the availability of amplifiers at submillimeter wavelengths and the need to have multi-pixel imagers and cameras, planar mixer architecture is required to have an integrated system. An integrated mixer with planar antenna provides a compact and optimized design at terahertz frequencies. Moreover, it leads to a planar architecture that enables efficient interconnect with submillimeter-wave amplifiers. In this architecture, a planar slot antenna is designed on a thin gallium arsenide (GaAs) membrane in such a way that the beam on either side of the membrane is symmetric and has good beam profile with high coupling efficiency. A coplanar waveguide (CPW) coupled Schottky diode mixer is designed and integrated with the antenna. In this architecture, the local oscillator (LO) is coupled through one side of the antenna and the RF from the other side, without requiring any beam sp litters or diplexers. The intermediate frequency (IF) comes out on a 50-ohm CPW line at the edge of the mixer chip, which can be wire-bonded to external circuits. This unique terahertz mixer has an integrated single planar antenna for coupling both the radio frequency (RF) input and LO injection without any diplexer or beamsplitters. The design utilizes novel planar slot antenna architecture on a 3- mthick GaAs membrane. This work is required to enable future multi-pixel terahertz receivers for astrophysics missions, and lightweight and compact receivers for planetary missions to the outer planets in our solar system. Also, this technology can be used in tera hertz radar imaging applications as well as for testing of quantum cascade lasers (QCLs).

  4. A Very Compact and Low Profile UWB Planar Antenna with WLAN Band Rejection

    PubMed Central

    Syed, Avez; Aldhaheri, Rabah W.

    2016-01-01

    A low-cost coplanar waveguide fed compact ultrawideband (UWB) antenna with band rejection characteristics for wireless local area network (WLAN) is proposed. The notch band characteristic is achieved by etching half wavelength C-shaped annular ring slot in the radiating patch. By properly choosing the radius and position of the slot, the notch band can be adjusted and controlled. With an overall size of 18.7 mm × 17.6 mm, the antenna turns out to be one of the smallest UWB antennas with band-notched characteristics. It has a wide fractional bandwidth of 130% (2.9–13.7 GHz) with VSWR < 2 and rejecting IEEE 802.11a and HIPERLAN/2 frequency band of 5.1–5.9 GHz. Stable omnidirectional radiation patterns in the H plane with an average gain of 4.4 dBi are obtained. The band-notch mechanism of the proposed antenna is examined by HFSS simulator. A good agreement is found between measured and simulated results indicating that the proposed antenna is well suited for integration into portable devices for UWB applications. PMID:27088125

  5. Fiber Volume Fraction Influence on Fiber Compaction in Tapered Resin Injection Pultrusion Manufacturing

    NASA Astrophysics Data System (ADS)

    Masuram, N. B.; Roux, J. A.; Jeswani, A. L.

    2016-06-01

    Liquid resin is injected into the tapered injection chamber through the injection slots to completely wetout the fiber reinforcements in a resin injection pultrusion process. As the resin penetrates through the fibers, the resin also pushes the fibers away from the wall towards the centerline causing compaction of the fiber reinforcements. The fibers are squeezed together due to compaction, making resin penetration more difficult; thus higher resin injection pressures are required to effectively penetrate through the fibers and achieve complete wetout. Fiber volume fraction in the final pultruded composite is a key to decide the mechanical and/or chemical properties of the composite. If the fiber volume fraction is too high, more fibers are squeezed together creating a fiber lean region near the wall and fiber rich region away from the wall. Also, the design of the injection chamber significantly affects the minimum injection pressure required to completely wet the fibers. A tapered injection chamber is considered such that wetout occurs at lower injection pressures due to the taper angle of the injection chamber. In this study, the effect of fiber volume fraction on the fiber reinforcement compaction and complete fiber wetout for a tapered injection chamber is investigated.

  6. Bandwidth enhancement of monopole antenna with DGS for SHF and reconfigurable structure for WiMAX, WLAN and C-band applications

    NASA Astrophysics Data System (ADS)

    Beigi, P.; Mohammadi, P.

    2017-11-01

    In this study a reconfigurable antenna for WiMAX, WLAN, C-bands and SHF applications has been presented. The main body of antenna includes rectangular and L-shaped slotted ground plane and a rectangular patch with slotted feed line, for impedance bandwidth enhancement. In the proposed antenna, a PIN diode is used to adjust the frequency band to SHF, WiMAX, WLAN and C-bands applications. When PIN diode is forward-biased, the antenna covers the 3.5-31 GHz frequency range (i.e. a 160% bandwidth) and when the PIN diode is in its off-state, it operates between 3.4-5.8 GHz. The designed antenna, with a very small size of 12 × 18 × 1.6 mm3, has been fabricated and tested. The radiation pattern is approximately omnidirectional. Simulations and experimental results are in a good agreement with each other and suggest good performance for the presented antenna.

  7. An experimental verification of metamaterial coupled enhanced transmission for antenna applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pushpakaran, Sarin V.; Raj, Rohith K.; Pradeep, Anju

    2014-02-10

    Inspired by the work of Bethe on electromagnetic transmission through subwavelength hole, there has been immense interest on the extraordinary transmission through subwavelength slot/slit on metal plates. The invention of metamaterials has boosted the extra ordinary transmission through subwavelength slots. We examine computationally and experimentally the concept of metamaterial cover using an array of split ring resonators (SRRs), for enhancing the transmission in a stacked dipole antenna working in the S band. The front to back ratio is considerably improved by enhancing the magnetic resonant strength in close proximity of the slit of the upper parasitic dipole. The effect ofmore » stacking height of the SRR monolayer on the resonant characteristics of the split ring resonators and its effect on antenna radiation characteristics has been studied.« less

  8. Fully optical backplane system using novel optical plug and slot

    NASA Astrophysics Data System (ADS)

    Cho, In-Kui; Ahn, Seung-Ho; Lee, Woo-Jin; Han, Sang-Pil; Kim, Jin-Tae; Choi, Chun-Ki; Shin, Kyung-Up; Yoon, Keun Byoung; Jeong, Myung-Yung; Park, Hyo Hoon

    2005-10-01

    A fully optical PCB with transmitter/receiver system boards and optical bakcplane was prepared, which is board-to-board interconnection by an optical slot. We report a 10 Gb/s PRBS NRZ data transmission between transmitter system board and optical backplane embedded multimode polymeric waveguide arrays. The basic concept of the optical PCB is as follows; 1) Metal optical bench is integrated with optoelectronic devices, driver and receiver circuits, polymeric waveguide and access line PCB module. 2) Multimode polymeric waveguide inside an optical backplane, which is embedded into PCB, 3) Optical slot and plug for high-density (channel pitch : 500 um) board-to-board interconnection. The polymeric waveguide technology can be used for transmission of data between transmitter/receiver processing boards and backplane boards. The main components are low-loss tapered polymeric waveguides and a novel optical plug and slot for board-to-board interconnections, respectively. The transmitter/receiver processing boards are designed as plug types, and can be easily plugged-in and -out at an optical backplane board. The optical backplane boards are prepared by employing the lamination processes for conventional electrical PCBs. A practical optical backplane system was implemented with two processing boards and an optical backplane. As connection components between the transmitter/receiver processing boards and backplane board, optical slots made of a 90°-bending structure-embedded optical plug was used. A 10 Gb/s data link was successfully demonstrated. The bit error rate (BER) was determined and is 5.6×10 -9(@10Gb/s) and the BER of 8 Gb/s is < 10 -12.

  9. A Wideband Circularly Polarized Pixelated Dielectric Resonator Antenna.

    PubMed

    Trinh-Van, Son; Yang, Youngoo; Lee, Kang-Yoon; Hwang, Keum Cheol

    2016-08-23

    The design of a wideband circularly polarized pixelated dielectric resonator antenna using a real-coded genetic algorithm (GA) is presented for far-field wireless power transfer applications. The antenna consists of a dielectric resonator (DR) which is discretized into 8 × 8 grid DR bars. The real-coded GA is utilized to estimate the optimal heights of the 64 DR bars to realize circular polarization. The proposed antenna is excited by a narrow rectangular slot etched on the ground plane. A prototype of the proposed antenna is fabricated and tested. The measured -10 dB reflection and 3 dB axial ratio bandwidths are 32.32% (2.62-3.63 GHz) and 14.63% (2.85-3.30 GHz), respectively. A measured peak gain of 6.13 dBic is achieved at 3.2 GHz.

  10. Flexible ultra-wideband antenna incorporated with metamaterial structures: multiple notches for chipless RFID application

    NASA Astrophysics Data System (ADS)

    Jalil, M. E.; Rahim, M. K. A.; Samsuri, N. A.; Dewan, R.; Kamardin, K.

    2017-01-01

    A coplanar waveguide (CPW) ultra-wideband (UWB) antenna incorporated with metamaterial—split ring resonator structure—that operates from 3.0 to 12.0 GHz is proposed for chipless RFID tag. The 30 mm × 40 mm flexible chipless RFID tag is designed on the fleece substrate ( ɛ r = 1.35, thickness = 1 mm and tan δ = 0.025). A six-slotted modified complementary split ring resonator (MCSRR) is introduced into the ultra-wideband antenna to produce multiple band notches at 3.0, 4.0, 5.0, 6.0 and 7.0 GHz. The frequency shifting technique is introduced for designing a high-capacity chipless RFID tag with compact size. Each MCSRR is able to code in four different allocations (00, 01, 10 and 11). To achieve encoding of 10-bits data (10,234 number), six MCSRRs are proposed with three-slotted MCSRR in the radiator and three-slotted MCSRR in the ground plane.

  11. Textile antenna integrated with compact AMC and parasitic elements for WLAN/WBAN applications

    NASA Astrophysics Data System (ADS)

    Lago, Herwansyah; Soh, Ping Jack; Jamlos, Mohd Faizal; Shohaimi, Nursuriati; Yan, Sen; Vandenbosch, Guy A. E.

    2016-12-01

    A wearable antenna fully designed and fabricated using textile is presented. Both antenna and artificial magnetic conductor plane are designed for operation in the wireless local area network (WLAN)/wireless body area network (WBAN) band from 2.4 to 2.5 GHz. The AMC unit element is designed based on the rectangular patch structure, which is then integrated using slots and slits for bandwidth broadening. Meanwhile, the combination of the slits and L-shaped parasitic elements applied at four edges of the rectangular antenna structure enabled unidirectional radiation outwards from the body. The structure is coaxially fed using a rectangular ring slot centered on the radiating element. Simulated and measured reflection and radiation performance indicate a satisfactory agreement, fulfilling the requirements for WLAN/WBAN applications both in free space and on body. The shielding effectiveness provided by the AMC plane is also evaluated numerically in terms of specific absorption rate, indicating levels below the European regulatory limit of 2 W/kg.

  12. Finite difference time domain modeling of spiral antennas

    NASA Technical Reports Server (NTRS)

    Penney, Christopher W.; Beggs, John H.; Luebbers, Raymond J.

    1992-01-01

    The objectives outlined in the original proposal for this project were to create a well-documented computer analysis model based on the finite-difference, time-domain (FDTD) method that would be capable of computing antenna impedance, far-zone radiation patterns, and radar cross-section (RCS). The ability to model a variety of penetrable materials in addition to conductors is also desired. The spiral antennas under study by this project meet these requirements since they are constructed of slots cut into conducting surfaces which are backed by dielectric materials.

  13. Ultra-wideband horn antenna with abrupt radiator

    DOEpatents

    McEwan, Thomas E.

    1998-01-01

    An ultra-wideband horn antenna transmits and receives impulse waveforms for short-range radars and impulse time-of flight systems. The antenna reduces or eliminates various sources of close-in radar clutter, including pulse dispersion and ringing, sidelobe clutter, and feedline coupling into the antenna. Dispersion is minimized with an abrupt launch point radiator element; sidelobe and feedline coupling are minimized by recessing the radiator into a metallic horn. Low frequency cut-off associated with a horn is extended by configuring the radiator drive impedance to approach a short circuit at low frequencies. A tapered feed plate connects at one end to a feedline, and at the other end to a launcher plate which is mounted to an inside wall of the horn. The launcher plate and feed plate join at an abrupt edge which forms the single launch point of the antenna.

  14. Dual band multi frequency rectangular patch microstrip antenna with flyswatter shaped slot for wireless systems

    NASA Astrophysics Data System (ADS)

    Bhardwaj, Dheeraj; Saraswat, Shriti; Gulati, Gitansh; Shekhar, Snehanshu; Joshi, Kanika; Sharma, Komal

    2016-03-01

    In this paper a dual band planar antenna has been proposed for IEEE 802.16 Wi-MAX /IEEE 802.11 WLAN/4.9 GHz public safety applications. The antenna comprises a frequency bandwidth of 560MHz (3.37GHz-3.93GHz) for WLAN and WiMAX and 372MHz (4.82GHz-5.192GHz) for 4.9 GHz public safety applications and Radio astronomy services (4.8-4.94 GHz). The proposed antenna constitutes of a single microstrip patch reactively loaded with three identical steps positioned in a zig-zag manner towards the radiating edges of the patch. The coaxially fed patch antenna characteristics (radiation pattern, antenna gain, antenna directivity, current distribution, S11) have been investigated. The antenna design is primarily focused on achieving a dual band operation.

  15. Dual band multi frequency rectangular patch microstrip antenna with flyswatter shaped slot for wireless systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bhardwaj, Dheeraj, E-mail: dbhardwaj.bit@gmail.com; Saraswat, Shriti, E-mail: saraswat.srishti@gmail.com; Gulati, Gitansh, E-mail: gitanshgulati@gmail.com

    In this paper a dual band planar antenna has been proposed for IEEE 802.16 Wi-MAX /IEEE 802.11 WLAN/4.9 GHz public safety applications. The antenna comprises a frequency bandwidth of 560MHz (3.37GHz-3.93GHz) for WLAN and WiMAX and 372MHz (4.82GHz-5.192GHz) for 4.9 GHz public safety applications and Radio astronomy services (4.8-4.94 GHz). The proposed antenna constitutes of a single microstrip patch reactively loaded with three identical steps positioned in a zig-zag manner towards the radiating edges of the patch. The coaxially fed patch antenna characteristics (radiation pattern, antenna gain, antenna directivity, current distribution, S{sub 11}) have been investigated. The antenna design is primarily focused onmore » achieving a dual band operation.« less

  16. Simple taper: Taper equations for the field forester

    Treesearch

    David R. Larsen

    2017-01-01

    "Simple taper" is set of linear equations that are based on stem taper rates; the intent is to provide taper equation functionality to field foresters. The equation parameters are two taper rates based on differences in diameter outside bark at two points on a tree. The simple taper equations are statistically equivalent to more complex equations. The linear...

  17. Antenna design for microwave hepatic ablation using an axisymmetric electromagnetic model

    PubMed Central

    Bertram, John M; Yang, Deshan; Converse, Mark C; Webster, John G; Mahvi, David M

    2006-01-01

    Background An axisymmetric finite element method (FEM) model was employed to demonstrate important techniques used in the design of antennas for hepatic microwave ablation (MWA). To effectively treat deep-seated hepatic tumors, these antennas should produce a highly localized specific absorption rate (SAR) pattern and be efficient radiators at approved generator frequencies. Methods and results As an example, a double slot choked antenna for hepatic MWA was designed and implemented using FEMLAB™ 3.0. Discussion This paper emphasizes the importance of factors that can affect simulation accuracy, which include boundary conditions, the dielectric properties of liver tissue, and mesh resolution. PMID:16504153

  18. Eight-Element Antenna Array for LTE 3.4-3.8 GHz Mobile Handset Applications

    NASA Astrophysics Data System (ADS)

    Yang, Lingsheng; Ji, Ming; Cheng, Biyu; Ni, Bo

    2017-05-01

    In this letter, an eight-element Multiple-input multiple-output (MIMO) antenna system for LTE mobile handset applications is proposed. The antenna array consists of eight 3D inverted F-shaped antennas (3D-IFA), and the measured -10 dB impedance bandwidth is 3.2-3.9 GHz which can cover the LTE bands 42 and 43 (3.4-3.8 GHz). By controlling the rotation of the antenna elements, no less than 10 dB isolation between antenna elements can be obtained. After using the specially designed meandered slots on the ground as decoupling structures, the measured isolation can be further improved to higher than 13 dB between the antenna elements at the whole operating band.

  19. Ultra-wideband horn antenna with abrupt radiator

    DOEpatents

    McEwan, T.E.

    1998-05-19

    An ultra-wideband horn antenna transmits and receives impulse waveforms for short-range radars and impulse time-of flight systems. The antenna reduces or eliminates various sources of close-in radar clutter, including pulse dispersion and ringing, sidelobe clutter, and feedline coupling into the antenna. Dispersion is minimized with an abrupt launch point radiator element; sidelobe and feedline coupling are minimized by recessing the radiator into a metallic horn. Low frequency cut-off associated with a horn is extended by configuring the radiator drive impedance to approach a short circuit at low frequencies. A tapered feed plate connects at one end to a feedline, and at the other end to a launcher plate which is mounted to an inside wall of the horn. The launcher plate and feed plate join at an abrupt edge which forms the single launch point of the antenna. 8 figs.

  20. A New Metasurface Superstrate Structure for Antenna Performance Enhancement.

    PubMed

    Islam, Mohammad Tariqul; Ullah, Mohammad Habib; Singh, Mandeep Jit; Faruque, Mohammad Rashed Iqbal

    2013-07-31

    A new metasurface superstrate structure (MSS)-loaded dual band microstrip line-fed small patch antenna is presented in this paper. The proposed antenna was designed on a ceramic-filled bioplastic sandwich substrate with a high dielectric constant. The proposed 7 × 6 element, square-shaped, single-sided MSS significantly improved the bandwidth and gain of the proposed antenna. The proposed MSS incorporated a slotted patch antenna that effectively increased the measured operating bandwidth from 13.3% to 18.8% and from 14.8% to 23.2% in the lower and upper bands, respectively. Moreover, the average gain of the proposed MSS-based antenna was enhanced from 2.12 dBi to 3.02 dBi in the lower band and from 4.10 dBi to 5.28 dBi in the upper band compared to the patch antenna alone. In addition to the bandwidth and gain improvements, more directive radiation characteristics were also observed from the MSS antenna compared to the patch itself. The effects of the MSS elements and the ground plane length on the reflection coefficient of the antenna were analyzed and optimized. The overall performance makes the proposed antenna appropriate for RFID and WLAN applications.

  1. Dielectric Covered Planar Antennas at Submillimeter Wavelengths for Terahertz Imaging

    NASA Technical Reports Server (NTRS)

    Chattopadhyay, Goutam; Gill, John J.; Skalare, Anders; Lee, Choonsup; Llombart, Nuria; Siegel, Peter H.

    2011-01-01

    Most optical systems require antennas with directive patterns. This means that the physical area of the antenna will be large in terms of the wavelength. When non-cooled systems are used, the losses of microstrip or coplanar waveguide lines impede the use of standard patch or slot antennas for a large number of elements in a phased array format. Traditionally, this problem has been solved by using silicon lenses. However, if an array of such highly directive antennas is to be used for imaging applications, the fabrication of many closely spaced lenses becomes a problem. Moreover, planar antennas are usually fed by microstrip or coplanar waveguides while the mixer or the detector elements (usually Schottky diodes) are coupled in a waveguide environment. The coupling between the antenna and the detector/ mixer can be a fabrication challenge in an imaging array at submillimeter wavelengths. Antennas excited by a waveguide (TE10) mode makes use of dielectric superlayers to increase the directivity. These antennas create a kind of Fabry- Perot cavity between the ground plane and the first layer of dielectric. In reality, the antenna operates as a leaky wave mode where a leaky wave pole propagates along the cavity while it radiates. Thanks to this pole, the directivity of a small antenna is considerably enhanced. The antenna consists of a waveguide feed, which can be coupled to a mixer or detector such as a Schottky diode via a standard probe design. The waveguide is loaded with a double-slot iris to perform an impedance match and to suppress undesired modes that can propagate on the cavity. On top of the slot there is an air cavity and on top, a small portion of a hemispherical lens. The fractional bandwidth of such antennas is around 10 percent, which is good enough for heterodyne imaging applications.The new geometry makes use of a silicon lens instead of dielectric quarter wavelength substrates. This design presents several advantages when used in the submillimeter

  2. Microstrip-antenna design for hyperthermia treatment of superficial tumors.

    PubMed

    Montecchia, F

    1992-06-01

    Microstrip antennas have many different advantages over other RF/MW radiative applicators employed for superficial hyperthermia treatment. This is mainly due to their compact and body-conformable structure as well as to printed circuit board techniques, both of which allow a wide design flexibility for superficial tumor heating. Among the wide variety of radiator configurations, three microstrip antennas of increasing complexity with electromagnetic and heating characteristics potentially suitable as applicators for superficial hyperthermia have been designed, developed, and tested in different radiative conditions: a microstrip disk, a microstrip annular-slot, and a microstrip spiral. Electromagnetic design criteria are presented together with the determinations of the applicator return loss versus frequency and thermograms of the near-field heating pattern in muscle-like phantom. The results are in good agreement with theory and indicate that: i) the operating frequency is either single or multiple according to the applicator-mode, "resonant" or "traveling-wave," and can be chosen in the useful frequency range for hyperthermia (200-1000 MHz) according to the tumor cross-section and depth; ii) the heating pattern flexibility increases going from the simple geometry disk to the annular-slot and spiral applicators; iii) a distilled-water bolus is required; iv) the annular-slot applicator exhibits the highest efficiency, while the spiral applicator provides the best performance.

  3. Slot silicon-gallium nitride waveguide in MMI structures based 1x8 wavelength demultiplexer

    NASA Astrophysics Data System (ADS)

    Ben Zaken, Bar Baruch; Zanzury, Tal; Malka, Dror

    2017-06-01

    We propose a novel 8-channel wavelength multimode interference (MMI) demultiplexer in slot waveguide structures that operated at 1530 nm, 1535 nm, 1540 nm, 1545 nm, 1550 nm, 1555 nm, 1560 nm and 1565 nm wavelengths. Gallium nitride (GaN) surrounded by silicon (Si) was founded as suitable materials for the slot-waveguide structures. The proposed device was designed by seven 1x2 MMI couplers, fourteen S-band and one input taper. Numerical investigations were carried out on the geometrical parameters by using a full vectorial-beam propagation method (FVBPM). Simulation results show that the proposed device can transmit 8-channel that works in the whole C-band (1530- 1565 nm) with low crosstalk ((-19.97)-(-13.77) dB) and bandwidth (1.8-3.6 nm). Thus, the device can be very useful in optical networking systems that work on dense wavelength division multiplexing (DWDM) technology.

  4. Analysis of a Waveguide-Fed Metasurface Antenna

    NASA Astrophysics Data System (ADS)

    Smith, David R.; Yurduseven, Okan; Mancera, Laura Pulido; Bowen, Patrick; Kundtz, Nathan B.

    2017-11-01

    The metasurface concept has emerged as an advantageous reconfigurable antenna architecture for beam forming and wave-front shaping, with applications that include satellite and terrestrial communications, radar, imaging, and wireless power transfer. The metasurface antenna consists of an array of metamaterial elements distributed over an electrically large structure, each subwavelength in dimension and with subwavelength separation between elements. In the antenna configuration we consider, the metasurface is excited by the fields from an attached waveguide. Each metamaterial element can be modeled as a polarizable dipole that couples the waveguide mode to radiation modes. Distinct from the phased array and electronically-scanned-antenna architectures, a dynamic metasurface antenna does not require active phase shifters and amplifiers but rather achieves reconfigurability by shifting the resonance frequency of each individual metamaterial element. We derive the basic properties of a one-dimensional waveguide-fed metasurface antenna in the approximation in which the metamaterial elements do not perturb the waveguide mode and are noninteracting. We derive analytical approximations for the array factors of the one-dimensional antenna, including the effective polarizabilities needed for amplitude-only, phase-only, and binary constraints. Using full-wave numerical simulations, we confirm the analysis, modeling waveguides with slots or complementary metamaterial elements patterned into one of the surfaces.

  5. Electromagnetic Wave Excitation by a Longitudinal Slot in a Broad Wall of Rectangular Waveguide in the Presence of Passive Impedance Vibrators Outside the Waveguide

    NASA Astrophysics Data System (ADS)

    Berdnik, S. L.; Katrich, V. A.; Nesterenko, M. V.; Penkin, Yu. M.

    2016-09-01

    Purpose: A problem of electromagnetic wave diffraction by a longitudinal slot cut in a waveguide wide wall is solved. The slot is cut in a wide wall of a rectangular waveguide and radiates in a half-space above a perfectly conducting plane where two vertical impedance monopoles with arbitrary lengths placed with their bases placed on the plane. The paper is aimed at studying the electrodynamic characteristics of vibratorwaveguide-slot structures which allow to form the emission fields as that in a Clavin element with two identical passive ideally conducting monopoles of a fixed length located on a set distance from a slot center on both sides of a narrow halfwave slot. Design/methodology/approach: The problem is solved by a generalized method of induced electromotive and magnetomotive forces in approximation of electric currents in the vibrators and equivalent magnetic current in the slot by the functions obtained by the asymptotic averaging method. Findings: The influence of geometric parameters of the structure on the directional characteristics of Clavin type element is analyzed on the assumption of simultaneous account for relative level of sidelobes in the E-plane and beamwidth differences at -3 dB level in the main planes. It is shown that the directional characteristics and energy characteristics of the radiators: radiation and reflection coefficients, antenna directivity and gain can be varied within wide limits by changing the electrical length and/or distributed surface impedances of the vibrators, providing at that a low level of radiation within a slot plane. Conclusions: The results obtained can be useful when designing both small-size and multi-element antenna arrays with Clavin elements.

  6. A Millimeter-Wave Cavity-Backed Suspended Substrate Stripline Antenna

    NASA Technical Reports Server (NTRS)

    Simons, Rainee N.

    1999-01-01

    Future generation satellite communication systems in near-Earth orbit will operate at frequencies in the higher mm-wave frequency bands. These satellite systems require low-profile, high gain, light weight and low cost antennas for communications to and from Earth as well as for inter-satellite links (ISL). At higher mm-wave frequencies, the conductor loss of conventional microstrip line is high and consequently the feed network loss of patch antenna arrays is also high. The high loss lowers the array efficiency, and in addition lowers the G/T ratio in a receiving array. Recently a radial line slot antenna array has been demonstrated to have high gain and efficiency at 60 GHz. In this paper, the design, fabrication and characterization of a V-Band (50-75 GHz), cavity backed, circular aperture antenna with suspended substrate stripline (SSS) feed is presented.

  7. Tapered optical fiber tip probes based on focused ion beam-milled Fabry-Perot microcavities

    NASA Astrophysics Data System (ADS)

    André, Ricardo M.; Warren-Smith, Stephen C.; Becker, Martin; Dellith, Jan; Rothhardt, Manfred; Zibaii, M. I.; Latifi, H.; Marques, Manuel B.; Bartelt, Hartmut; Frazão, Orlando

    2016-09-01

    Focused ion beam technology is combined with dynamic chemical etching to create microcavities in tapered optical fiber tips, resulting in fiber probes for temperature and refractive index sensing. Dynamic chemical etching uses hydrofluoric acid and a syringe pump to etch standard optical fibers into cone structures called tapered fiber tips where the length, shape, and cone angle can be precisely controlled. On these tips, focused ion beam is used to mill several different types of Fabry-Perot microcavities. Two main cavity types are initially compared and then combined to form a third, complex cavity structure. In the first case, a gap is milled on the tapered fiber tip which allows the external medium to penetrate the light guiding region and thus presents sensitivity to external refractive index changes. In the second, two slots that function as mirrors are milled on the tip creating a silica cavity that is only sensitive to temperature changes. Finally, both cavities are combined on a single tapered fiber tip, resulting in a multi-cavity structure capable of discriminating between temperature and refractive index variations. This dual characterization is performed with the aid of a fast Fourier transform method to separate the contributions of each cavity and thus of temperature and refractive index. Ultimately, a tapered optical fiber tip probe with sub-standard dimensions containing a multi-cavity structure is projected, fabricated, characterized and applied as a sensing element for simultaneous temperature and refractive index discrimination.

  8. Miniaturized Pi (Π) - Slit monopole antenna for 2.4/5.2/5.8 applications

    NASA Astrophysics Data System (ADS)

    Chandan, Bharti, Gagandeep; Bharti, Pradutt Kumar; Rai, B. S.

    2018-04-01

    In present paper, two - shaped slots are inserted in a rectangular patch of a monopole antenna for dual band operation. The antenna design is very simple, compact and light weight with overall dimension 29×38×0.8 mm3. Prototype of the proposed antenna is constructed and tested to verify its usefulness for 2.4/5.2/5.8 ghz wlan/wimax applications. It has been observed that both simulated and measured results have good agreement and measured peak gain and radiation pattern are suitable as per the need of application.

  9. A PML-FDTD ALGORITHM FOR SIMULATING PLASMA-COVERED CAVITY-BACKED SLOT ANTENNAS. (R825225)

    EPA Science Inventory

    A three-dimensional frequency-dependent finite-difference time-domain (FDTD) algorithm with perfectly matched layer (PML) absorbing boundary condition (ABC) and recursive convolution approaches is developed to model plasma-covered open-ended waveguide or cavity-backed slot antenn...

  10. Design of band-notched antenna with DG-CEBG

    NASA Astrophysics Data System (ADS)

    Jaglan, Naveen; Kanaujia, Binod Kumar; Gupta, Samir Dev; Srivastava, Shweta

    2018-01-01

    Ultra-wideband (UWB) disc monopole antenna with crescent shaped slot for double band-notched features is presented. Planned antenna discards worldwide interoperability for microwave access (WiMAX) band (3.3-3.6 GHz) and wireless local area network (WLAN) band (5-6 GHz). Defected ground compact electromagnetic band gap (DG-CEBG) designs are used to accomplish band notches in WiMAX and WLAN bands. Defected ground planes are utilised to achieve compactness in electromagnetic band gap (EBG) structures. The proposed WiMAX and WLAN DG-CEBG designs show a compactness of around 46% and 50%, respectively, over mushroom EBG structures. Parametric analyses of DG-CEBG design factors are carried out to control the notched frequencies. Stepwise notch transition from upper to lower frequencies is presented with incremental inductance augmentation. The proposed antenna is made-up on low-cost FR-4 substrate of complete extents as (42 × 50 × 1.6) mm3.Fabricated sample antenna shows excellent consistency in simulated and measured outcomes.

  11. A New Metasurface Superstrate Structure for Antenna Performance Enhancement

    PubMed Central

    Islam, Mohammad Tariqul; Ullah, Mohammad Habib; Singh, Mandeep Jit; Faruque, Mohammad Rashed Iqbal

    2013-01-01

    A new metasurface superstrate structure (MSS)-loaded dual band microstrip line-fed small patch antenna is presented in this paper. The proposed antenna was designed on a ceramic-filled bioplastic sandwich substrate with a high dielectric constant. The proposed 7 × 6 element, square-shaped, single-sided MSS significantly improved the bandwidth and gain of the proposed antenna. The proposed MSS incorporated a slotted patch antenna that effectively increased the measured operating bandwidth from 13.3% to 18.8% and from 14.8% to 23.2% in the lower and upper bands, respectively. Moreover, the average gain of the proposed MSS-based antenna was enhanced from 2.12 dBi to 3.02 dBi in the lower band and from 4.10 dBi to 5.28 dBi in the upper band compared to the patch antenna alone. In addition to the bandwidth and gain improvements, more directive radiation characteristics were also observed from the MSS antenna compared to the patch itself. The effects of the MSS elements and the ground plane length on the reflection coefficient of the antenna were analyzed and optimized. The overall performance makes the proposed antenna appropriate for RFID and WLAN applications. PMID:28811432

  12. A Millimeter-wave Cavity-backed Suspended Substrate Stripline Antenna

    NASA Technical Reports Server (NTRS)

    Simons, Rainee N.

    1999-01-01

    Future generation satellite communication systems in near-Earth orbit will operate at frequencies in the higher mm-wave frequency hands. These satellite systems require low-profile, high gain, light weight and low cost antennas for communications to and from Earth as well as for inter-satellite links (ISL). At higher mm-wave frequencies, the conductor loss of conventional microstrip line is high and consequently the feed network loss of patch antenna arrays is also high. The high loss lowers the array efficiency and in addition lowers the G/T ratio in a receiving array. Recently a radial line slot antenna array has been demonstrated to have high gain and efficiency at 60 GHz. In this paper, the design, fabrication and characterization of a V-Band (50-75 GHz) 4 x 4 planar array of cavity backed circular aperture antennas with suspended substrate stripline (SSS) corporate feed is presented.

  13. Sloppy-slotted ALOHA

    NASA Technical Reports Server (NTRS)

    Crozier, Stewart N.

    1990-01-01

    Random access signaling, which allows slotted packets to spill over into adjacent slots, is investigated. It is shown that sloppy-slotted ALOHA can always provide higher throughput than conventional slotted ALOHA. The degree of improvement depends on the timing error distribution. Throughput performance is presented for Gaussian timing error distributions, modified to include timing error corrections. A general channel capacity lower bound, independent of the specific timing error distribution, is also presented.

  14. Design of Compact Flower Shape Dual Notched-Band Monopole Antenna for Extended UWB Wireless Applications

    NASA Astrophysics Data System (ADS)

    Sharma, Manish; Awasthi, Y. K.; Singh, Himanshu; Kumar, Raj; Kumari, Sarita

    2016-11-01

    In this letter, a compact monopole antenna for ultra wideband (UWB) applications is proposed with small size of 18×20=360 mm2. Antenna consist of a flower shape radiating patch with a pair of C-shaped slots which offer two notch bands for WiMAX (3.04-3.68 GHz) & WLAN (4.73-5.76 GHz) and two rectangular shaped slots in the ground plane which provides a wide measured usable fractional extended bandwidth of 163 % (2.83-14.0 GHz) with improved VSWR. Moreover, it is also convenient for other wireless application as close range radar, 8-12 GHz in X-band. Measured radiation patterns exhibits nearly omnidirectional in H-plane and dipole like pattern in E-plane across the bandwidth and furthermore exhibits good time domain performance.

  15. Impedance matching of a coaxial antenna for microwave in-situ processing of polluted soils.

    PubMed

    Pauli, Mario; Kayser, Thorsten; Wiesbeck, Werner; Komarov, Vyacheslav

    2011-01-01

    The present paper is focused on the minimization of return loss of a slotted coaxial radiator proposed for a decontamination system for soils contaminated by volatile or semi-volatile organic compounds such as oils or fuels. The antenna upgrade is achieved by coating it with a 5 mm thick Teflon layer. The electromagnetic characteristics reflection coefficient and power density distribution around the antenna surrounded by soils with different moisture levels are analyzed numerically. Simplified analytical approaches are employed to accelerate the optimization of the given antenna for microwave heating systems. The improved antenna design shows a good matching of the antenna to the surrounding soil with varying moisture levels. This ensures a high efficiency of the proposed in-situ soil decontamination system.

  16. Modulated Elliptical Slot

    NASA Technical Reports Server (NTRS)

    Abou-Khousa, M. A.

    2009-01-01

    A novel modulated slot design has been proposed and tested. The proposed slot is aimed to replace the inefficient small dipoles used in conventional MST-based imaging systems. The developed slot is very attractive as MST array element due to its small size and high efficiency/modulation depth. In fact, the developed slot has been successfully used to implement the first prototype of a microwave camera operating at 24 GHZ. It is also being used in the design of the second generation of the camera. Finally, the designed elliptical slot can be used as an electronically controlled waveguide iris for many other purposes (for instance in constructing waveguide reflective phase shifters and multiplexers/switches).

  17. Global Positioning System Antenna Fixed Height Tripod Adapter

    NASA Technical Reports Server (NTRS)

    Dinardo, Steven J.; Smith, Mark A.

    1997-01-01

    An improved Global Positioning em antenna adaptor allows fixed antenna height measurements by removably attaching an adaptor plate to a conventional surveyor's tripod. Antenna height is controlled by an antenna boom which is a fixed length rod. The antenna is attached to one end of the boom. The opposite end of the boom tapers to a point sized to fit into a depression at the center of survey markers. The boom passes through the hollow center of a universal ball joint which is mounted at the center of the adaptor plate so that the point of the rod can be fixed in the marker's central depression. The mountains of the ball joint allow the joint to be moved horizontally in any direction relative to the tripod. When the ball joint is moved horizontally, the angle between the boom and the vertical changes because the boom's position is fixed at its lower end. A spirit level attached to the rod allows an operator to determine when the boom is plumb. The position of the ball joint is adjusted horizontally until the boom is plumb. At that time the antenna is positioned exactly over the center of the monument and the elevation of the antenna is precisely set by the length of the boom.

  18. Self-contained sub-millimeter wave rectifying antenna integrated circuit

    NASA Technical Reports Server (NTRS)

    Siegel, Peter H. (Inventor)

    2004-01-01

    The invention is embodied in a monolithic semiconductor integrated circuit in which is formed an antenna, such as a slot dipole antenna, connected across a rectifying diode. In the preferred embodiment, the antenna is tuned to received an electromagnetic wave of about 2500 GHz so that the device is on the order of a wavelength in size, or about 200 microns across and 30 microns thick. This size is ideal for mounting on a microdevice such as a microrobot for example. The antenna is endowed with high gain in the direction of the incident radiation by providing a quarter-wavelength (30 microns) thick resonant cavity below the antenna, the cavity being formed as part of the monolithic integrated circuit. Preferably, the integrated circuit consists of a thin gallium arsenide membrane overlying the resonant cavity and supporting an epitaxial Gallium Arsenide semiconductor layer. The rectifying diode is a Schottky diode formed in the GaAs semiconductor layer and having an area that is a very small fraction of the wavelength of the 2500 GHz incident radiation. The cavity provides high forward gain in the antenna and isolation from surrounding structure.

  19. Multiport Circular Polarized RFID-Tag Antenna for UHF Sensor Applications.

    PubMed

    Zaid, Jamal; Abdulhadi, Abdulhadi; Kesavan, Arun; Belaizi, Yassin; Denidni, Tayeb A

    2017-07-05

    A circular polarized patch antenna for UHF RFID tag-based sensor applications is presented, with the circular polarization (CP) generated by a new antenna shape, an asymmetric stars shaped slotted microstrip patch antenna (CP-ASSSMP). Four stars etched on the patch allow the antenna's size to be reduced by close to 20%. The proposed antenna is matched with two RFID chips via inductive-loop matching. The first chip is connected to a resistive sensor and acts as a sensor node, and the second is used as a reference node. The proposed antenna is used for two targets, serving as both reference and sensor simultaneously, thereby eliminating the need for a second antenna. Its reader can read the RFID chips at any orientation of the tag due to the CP. The measured reading range is about 25 m with mismatch polarization. The operating frequency band is 902-929 MHz for the two ports, which is covered by the US RFID band, and the axial-ratio bandwidth is about 7 MHz. In addition, the reader can also detect temperature, based on the minimum difference in the power required by the reference and sensor.

  20. Optically Transparent Split-Ring Antennas for 1 to 10 GHz

    NASA Technical Reports Server (NTRS)

    Lee, Richard Q.; Simons, Rainee N.

    2007-01-01

    Split-ring antennas made from optically transparent, electrically conductive films have been invented for applications in which there are requirements for compact antennas capable of operation over much or all of the frequency band from 1 to 10 GHz. Primary examples of such applications include wireless local-area networks and industrial, scientific, and medical (ISM) applications. These antennas can be conveniently located on such surfaces as those of automobile windows and display screens of diverse hand-held electronic units. They are fabricated by conventional printed-circuit techniques and can easily be integrated with solid-state amplifier circuits to enhance gain. The structure of an antenna of this type includes an antenna/feed layer supported on the top or outer face of a dielectric (e.g., glass) and, optionally, a ground layer on the bottom or inner face of the substrate. The ring can be in the form of either a conductive strip or a slot in the antenna/feed layer. The ring can be of rectangular, square, circular, elliptical, or other suitable shape and can be excited by means of a microstrip, slot line, or coplanar waveguide. For example, the antenna shown in the figure features a square conductive-strip split ring with a microstrip feed. In general, an antenna fed at its external boundary in the manner of this invention presents very high impedance, thereby creating an impedance-matching problem. Splitting the ring . that is, cutting a notch through the ring . offers a solution to the problem in that the notch fixes the location of maximum electric field, which location is directly related to the impedance. Thus, an excellent impedance match can be achieved through proper choice of the location of the notch. In geometric layout, such a ring antenna structure is typically between 1.4 and 1.3 the size of a patch antenna capable of operating in the same frequency range. This miniaturization of the antenna is desirable, not only because it contributes to

  1. Slotted Waveguide and Antenna Study for HPM and RF Applications

    DTIC Science & Technology

    2017-07-25

    parallel metal plates separated by lmm, depending on the particular characteristics of the case (waveguide dimensions, SEY (secondary e lectron yield...waveguide antenna, shown in Figure 23, was studied . A new feed ing network based on a composite right-hand/left-hand (CRLH) waveguide structure was...approach is based on the assumption that the external coupling between the array elements is negligible, which is acceptable in the case of the

  2. When to Perform Antenna Measurements in a Near-Field Range or a Short Tapered Chamber

    DTIC Science & Technology

    2017-03-01

    study was undertaken to quantify and compare electromagnetic device (i.e., antenna) measurements using the US Army Research Laboratory’s (ARL’s) near...results for future antennas under test in the most cost-effective manner (man-hours, custom mount, etc.) 15. SUBJECT TERMS electromagnetic , chamber...study was undertaken to quantify and compare electromagnetic (EM) device (i.e., antenna) measurements using the US Army Research Laboratory’s (ARL

  3. Acrylic and metal based Y-branch plastic optical fiber splitter with optical NOA63 polymer waveguide taper region

    NASA Astrophysics Data System (ADS)

    Ehsan, Abang Annuar; Shaari, Sahbudin; Rahman, Mohd Kamil Abd.

    2011-01-01

    We proposed a simple low-cost acrylic and metal-based Y-branch plastic optical fiber (POF) splitter which utilizes a low cost optical polymer glue NOA63 as the main waveguiding medium at the waveguide taper region. The device is composed of three sections: an input POF waveguide, a middle waveguide taper region and output POF waveguides. A desktop high speed CNC engraver is utilized to produce the mold inserts used for the optical devices. Short POF fibers are inserted into the engraved slots at the input and output ports. UV curable optical polymer glue NOA63 is injected into the waveguide taper region and cured. The assembling is completed when the top plate is positioned to enclose the device structure and connecting screws are secured. Both POF splitters have an average insertion loss of 7.8 dB, coupling ratio of 55: 45 and 57: 43 for the acrylic and metal-based splitters respectively. The devices have excess loss of 4.82 and 4.73 dB for the acrylic and metal-based splitters respectively.

  4. A Novel Compact Wideband TSA Array for Near-Surface Ice Sheet Penetrating Radar Applications

    NASA Astrophysics Data System (ADS)

    Zhang, Feng; Liu, Xiaojun; Fang, Guangyou

    2014-03-01

    A novel compact tapered slot antenna (TSA) array for near-surface ice sheet penetrating radar applications is presented. This TSA array is composed of eight compact antenna elements which are etched on two 480mm × 283mm FR4 substrates. Each antenna element is fed by a wideband coplanar waveguide (CPW) to coupled strip-line (CPS) balun. The two antenna substrates are connected together with a metallic baffle. To obtain wideband properties, another two metallic baffles are used along broadsides of the array. This array is fed by a 1 × 8 wideband power divider. The measured S11 of the array is less than -10dB in the band of 500MHz-2GHz, and the measured gain is more than 6dBi in the whole band which agrees well with the simulated results.

  5. Predicting the performance of airborne antennas in the microwave regime

    NASA Astrophysics Data System (ADS)

    Carroll, David P.

    1990-12-01

    This study investigated the application of a high-frequency model (Uniform Geometrical Theory of Diffraction) of electromagnetic sources mounted on a curved surface of a complex structure. In particular, the purpose of the study was to determine if the model could be used to predict the radiation patterns of cavity-backed spiral antennas mounted on aircraft fuselages so that the optimum locations for the antennas could be chosen during the aircraft design phase. A review of literature revealed a good deal of work in modeling communications, navigation, identification antennas (blade monopoles and aperture slots) mounted on a wide variety of aircraft fuselages and successful validation against quarter-scale model measurements. This study developed a monopole-array model of a spiral antenna's radiation at vertical polarization and an ellipsoid-plate model of the FB-111A. Using the antenna and aircraft models, the existing Uniform Geometrical Theory of Diffraction model generated radiation patterns which agreed favorably with full-scale measured data. The study includes plots of predicted and measured radiation patterns from 2.5 to 15 Gigahertz.

  6. Multiport Circular Polarized RFID-Tag Antenna for UHF Sensor Applications

    PubMed Central

    Zaid, Jamal; Abdulhadi, Abdulhadi; Kesavan, Arun; Belaizi, Yassin; Denidni, Tayeb A.

    2017-01-01

    A circular polarized patch antenna for UHF RFID tag-based sensor applications is presented, with the circular polarization (CP) generated by a new antenna shape, an asymmetric stars shaped slotted microstrip patch antenna (CP-ASSSMP). Four stars etched on the patch allow the antenna’s size to be reduced by close to 20%. The proposed antenna is matched with two RFID chips via inductive-loop matching. The first chip is connected to a resistive sensor and acts as a sensor node, and the second is used as a reference node. The proposed antenna is used for two targets, serving as both reference and sensor simultaneously, thereby eliminating the need for a second antenna. Its reader can read the RFID chips at any orientation of the tag due to the CP. The measured reading range is about 25 m with mismatch polarization. The operating frequency band is 902–929 MHz for the two ports, which is covered by the US RFID band, and the axial-ratio bandwidth is about 7 MHz. In addition, the reader can also detect temperature, based on the minimum difference in the power required by the reference and sensor. PMID:28678178

  7. PVD Silicon Carbide as a Thin Film Packaging Technology for Antennas on LCP Substrates for Harsh Environments

    NASA Technical Reports Server (NTRS)

    Scardelletti, Maximilian C.; Stanton, John W.; Ponchak, George E.; Jordan, Jennifer L.; Zorman, Christian A.

    2010-01-01

    This paper describes an effort to develop a thin film packaging technology for microfabricated planar antennas on polymeric substrates based on silicon carbide (SiC) films deposited by physical vapor deposition (PVD). The antennas are coplanar waveguide fed dual frequency folded slot antennas fabricated on liquid crystal polymer (LCP) substrates. The PVD SiC thin films were deposited directly onto the antennas by RF sputtering at room temperature at a chamber pressure of 30 mTorr and a power level of 300 W. The SiC film thickness is 450 nm. The return loss and radiation patterns were measured before and after the SiC-coated antennas were submerged into perchloric acid for 1 hour. No degradation in RF performance or physical integrity of the antenna was observed.

  8. Design of Miniaturized Dual-Band Microstrip Antenna for WLAN Application

    PubMed Central

    Yang, Jiachen; Wang, Huanling; Lv, Zhihan; Wang, Huihui

    2016-01-01

    Wireless local area network (WLAN) is a technology that combines computer network with wireless communication technology. The 2.4 GHz and 5 GHz frequency bands in the Industrial Scientific Medical (ISM) band can be used in the WLAN environment. Because of the development of wireless communication technology and the use of the frequency bands without the need for authorization, the application of WLAN is becoming more and more extensive. As the key part of the WLAN system, the antenna must also be adapted to the development of WLAN communication technology. This paper designs two new dual-frequency microstrip antennas with the use of electromagnetic simulation software—High Frequency Structure Simulator (HFSS). The two antennas adopt ordinary FR4 material as a dielectric substrate, with the advantages of low cost and small size. The first antenna adopts microstrip line feeding, and the antenna radiation patch is composed of a folded T-shaped radiating dipole which reduces the antenna size, and two symmetrical rectangular patches located on both sides of the T-shaped radiating patch. The second antenna is a microstrip patch antenna fed by coaxial line, and the size of the antenna is diminished by opening a stepped groove on the two edges of the patch and a folded slot inside the patch. Simulation experiments prove that the two designed antennas have a higher gain and a favourable transmission characteristic in the working frequency range, which is in accordance with the requirements of WLAN communication. PMID:27355954

  9. Design of Miniaturized Dual-Band Microstrip Antenna for WLAN Application.

    PubMed

    Yang, Jiachen; Wang, Huanling; Lv, Zhihan; Wang, Huihui

    2016-06-27

    Wireless local area network (WLAN) is a technology that combines computer network with wireless communication technology. The 2.4 GHz and 5 GHz frequency bands in the Industrial Scientific Medical (ISM) band can be used in the WLAN environment. Because of the development of wireless communication technology and the use of the frequency bands without the need for authorization, the application of WLAN is becoming more and more extensive. As the key part of the WLAN system, the antenna must also be adapted to the development of WLAN communication technology. This paper designs two new dual-frequency microstrip antennas with the use of electromagnetic simulation software-High Frequency Structure Simulator (HFSS). The two antennas adopt ordinary FR4 material as a dielectric substrate, with the advantages of low cost and small size. The first antenna adopts microstrip line feeding, and the antenna radiation patch is composed of a folded T-shaped radiating dipole which reduces the antenna size, and two symmetrical rectangular patches located on both sides of the T-shaped radiating patch. The second antenna is a microstrip patch antenna fed by coaxial line, and the size of the antenna is diminished by opening a stepped groove on the two edges of the patch and a folded slot inside the patch. Simulation experiments prove that the two designed antennas have a higher gain and a favourable transmission characteristic in the working frequency range, which is in accordance with the requirements of WLAN communication.

  10. Design of compact electromagnetic impulse radiating antenna for melanoma treatment.

    PubMed

    Arockiasamy, Petrishia; Mohan, Sasikala

    2016-01-01

    Cancer therapy is one of the several new applications which use nanosecond and subnanosecond high voltage pulses. New treatment based on electromagnetic (EM) fields have been developed as non-surgical and minimally invasive treatments of tumors. In particular, subnanosecond pulses can introduce important non-thermal changes in cell biology, especially the permeabilization of the cell membrane. The motivation behind this work is to launch intense subnanosecond pulses to the target (tumors) non-invasively. This works focuses on the design of a compact intense pulsed EM radiating antenna. In tense EM waves radiated at the first focal point of the Prolate Spheroidal Reflector (PSR) are focused at the second focal point where the target (tumor) is present. Two antennas with PSR but fed with different compact wave radiator are designed to focus pulsed field at the second focal point. The PSR with modified bicone antenna feed and PSR with elliptically tapered horn antenna feed are designed. The design parameters and radiation performance are discussed.

  11. Ultra-wideband, omni-directional, low distortion coaxial antenna

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eubanks, Travis Wayne; Gibson, Christopher Lawrence

    An antenna for producing an omni-directional pattern, and using all frequencies of a frequency range simultaneously, is provided with first and second electrically conductive elements disposed coaxially relative to a central axis. The first element has a first surface of revolution about the axis, the first surface of revolution tapering radially outwardly while extending axially away from the second element to terminate at a first axial end of the first element. The second element has a second surface of revolution about the axis, the second surface of revolution tapering radially outwardly while extending axially toward the first element to terminatemore » at a first axial end of the second element. The first and second surfaces of revolution overlap one another radially and axially, and are mutually non-conformal.« less

  12. A low profile rectangular patch microstrip antenna for dual-band operation of wireless communication system

    NASA Astrophysics Data System (ADS)

    Rambe, A. H.; Abdillah, K.

    2018-02-01

    This paper discussed a low profile rectangular patch microstrip antenna design working on dual-band 1.8 GHz and 2.4 GHz. Dual-band characteristic is achieved by using inset-feed point and slot size adjustment. The designed antenna was printed on a FR4 substrate with relative permittivity of 4.4 and a thickness of 1.6 mm with patch size 40 x 29 mm. The measurement results show that the realized antenna successfully working on dual-band, achieving bandwidth of 45 MHz and 95 MHz, gain of 4.08 dBi and 5.79 dBi for 1.8 GHz and 2.4 GHz subsequently.

  13. Fan-shaped antennas: Realization of wideband characteristics and generation of stop bands

    NASA Astrophysics Data System (ADS)

    Nakano, H.; Morishita, K.; Iitsuka, Y.; Mimaki, H.; Yoshida, T.; Yamauchi, J.

    2008-08-01

    This paper presents four fan-shaped antennas: U.S.-FAN, CROSS-FAN, CROSS-FAN-W, and CROSS-FAN-S. Each of these antennas stands upright above a ground plane, and has edges expressed by an exponential function and a circle function. The four antennas are investigated using frequencies from 1.5 GHz to 11 GHz. The CROSS-FAN is found to have a lower VSWR over a wide frequency band compared to the U.S.-FAN. The CROSS-FAN-W and CROSS-FAN-S are modified versions of the CROSS-FAN, each designed to have a stop band (a high VSWR frequency range) for interference cancellation. The stop band for the CROSS-FAN-W is controlled by a wire (total length 4Lwire) that connects the fan-shaped elements. The center frequency of the stop band fstop is close to the frequency corresponding to a wire segment length Lwire of half the wavelength. It is also found that the stop band in the CROSS-FAN-S can be controlled by four slots, one cut into each of the fan-shaped elements. The center frequency of the stop band fstop is close to the frequency corresponding to a slot length Lslot of one-quarter of the wavelength. Experimental work is performed to confirm the theoretical results, using the CROSS-FAN-S.

  14. A compact 5.5 GHz band-rejected UWB antenna using complementary split ring resonators.

    PubMed

    Islam, M M; Faruque, M R I; Islam, M T

    2014-01-01

    A band-removal property employing microwave frequencies using complementary split ring resonators (CSRRs) is applied to design a compact UWB antenna wishing for the rejection of some frequency band, which is meanwhile exercised by the existing wireless applications. The reported antenna comprises optimization of a circular radiating patch, in which slotted complementary SRRs are implanted. It is printed on low dielectric FR4 substrate material fed by a partial ground plane and a microstrip line. Validated results exhibit that the reported antenna shows a wide bandwidth covering from 3.45 to more than 12 GHz, with a compact dimension of 22 × 26 mm(2), and VSWR < 2, observing band elimination of 5.5 GHz WLAN band.

  15. A Near-Zero Refractive Index Meta-Surface Structure for Antenna Performance Improvement.

    PubMed

    Ullah, Mohammad Habib; Islam, Mohammad Tariqul; Faruque, Mohammad Rashed Iqbal

    2013-11-06

    A new meta-surface structure (MSS) with a near-zero refractive index (NZRI) is proposed to enhance the performance of a square loop antenna array. The main challenge to improve the antenna performance is increment of the overall antenna volume that is mitigated by assimilating the planar NZRI MSS at the back of the antenna structure. The proposed NZRI MSS-loaded CPW-fed (Co-Planar Waveguide) four-element array antenna is designed on ceramic-bioplastic-ceramic sandwich substrate using high-frequency structure simulator (HFSS), a finite-element-method-based simulation tool. The gain and directivity of the antenna are significantly enhanced by incorporating the NZRI MSS with a 7 × 6 set of elements at the back of the antenna structure. Measurement results show that the maximum gains of the antenna increased from 6.21 dBi to 8.25 dBi, from 6.52 dBi to 9.05 dBi and from 10.54 dBi to 12.15 dBi in the first, second and third bands, respectively. The effect of the slot configuration in the ground plane on the reflection coefficient of the antenna was analyzed and optimized. The overall performance makes the proposed antenna appropriate for UHFFM (Ultra High Frequency Frequency Modulation) telemetry-based space applications as well as mobile satellite, microwave radiometry and radio astronomy applications.

  16. A Near-Zero Refractive Index Meta-Surface Structure for Antenna Performance Improvement

    PubMed Central

    Ullah, Mohammad Habib; Islam, Mohammad Tariqul; Faruque, Mohammad Rashed Iqbal

    2013-01-01

    A new meta-surface structure (MSS) with a near-zero refractive index (NZRI) is proposed to enhance the performance of a square loop antenna array. The main challenge to improve the antenna performance is increment of the overall antenna volume that is mitigated by assimilating the planar NZRI MSS at the back of the antenna structure. The proposed NZRI MSS-loaded CPW-fed (Co-Planar Waveguide) four-element array antenna is designed on ceramic-bioplastic-ceramic sandwich substrate using high-frequency structure simulator (HFSS), a finite-element-method-based simulation tool. The gain and directivity of the antenna are significantly enhanced by incorporating the NZRI MSS with a 7 × 6 set of elements at the back of the antenna structure. Measurement results show that the maximum gains of the antenna increased from 6.21 dBi to 8.25 dBi, from 6.52 dBi to 9.05 dBi and from 10.54 dBi to 12.15 dBi in the first, second and third bands, respectively. The effect of the slot configuration in the ground plane on the reflection coefficient of the antenna was analyzed and optimized. The overall performance makes the proposed antenna appropriate for UHFFM (Ultra High Frequency Frequency Modulation) telemetry-based space applications as well as mobile satellite, microwave radiometry and radio astronomy applications. PMID:28788376

  17. Rotary slot dog

    DOEpatents

    Cutburth, Ronald W.; Smauley, David A.

    1987-01-01

    A clamp or dog is disclosed which preferably comprises a slotted stepped cylindrical body which is inserted into a hole in a workpiece and then fastened to a base or fixture using a screw which is inserted through the slot. The stepped configuration provides an annular clamping surface which securely clamps the workpiece against the base or fixture. The slotted cylindrical configuration permits adjustment of the workpiece and retaining clamp in any direction, i.e., over 360.degree., relative to the mounting position of the screw in the base or fixture.

  18. Resin Viscosity Influence on Fiber Compaction in Tapered Resin Injection Pultrusion Manufacturing

    NASA Astrophysics Data System (ADS)

    Masuram, N. B.; Roux, J. A.; Jeswani, A. L.

    2018-06-01

    Viscosity of the liquid resin effects the chemical and mechanical properties of the pultruded composite. In resin injection pultrusion manufacturing the liquid resin is injected into a specially designed tapered injection chamber through the injection slots present on top and bottom of the chamber. The resin is injected at a pressure so as to completely wetout the fiber reinforcements inside the tapered injection chamber. As the resin penetrates through the fibers, the resin also pushes the fibers away from the wall towards the center of chamber causing compaction of the fiber reinforcements. The fibers are squeezed together due to compaction, making resin penetration more difficult; thus higher resin injection pressures are required to efficaciously penetrate through the compacted fibers and achieve complete wetout. The impact of resin viscosity on resin flow, fiber compaction, wetout and on the final product is further discussed. Injection chamber design predominantly effects the resin flow inside the chamber and the minimum injection pressure required to completely wet the fibers. Therefore, a desirable injection chamber design is such that wetout occurs at lower injection pressures and at low internal pressures inside the injection chamber.

  19. Resin Viscosity Influence on Fiber Compaction in Tapered Resin Injection Pultrusion Manufacturing

    NASA Astrophysics Data System (ADS)

    Masuram, N. B.; Roux, J. A.; Jeswani, A. L.

    2017-08-01

    Viscosity of the liquid resin effects the chemical and mechanical properties of the pultruded composite. In resin injection pultrusion manufacturing the liquid resin is injected into a specially designed tapered injection chamber through the injection slots present on top and bottom of the chamber. The resin is injected at a pressure so as to completely wetout the fiber reinforcements inside the tapered injection chamber. As the resin penetrates through the fibers, the resin also pushes the fibers away from the wall towards the center of chamber causing compaction of the fiber reinforcements. The fibers are squeezed together due to compaction, making resin penetration more difficult; thus higher resin injection pressures are required to efficaciously penetrate through the compacted fibers and achieve complete wetout. The impact of resin viscosity on resin flow, fiber compaction, wetout and on the final product is further discussed. Injection chamber design predominantly effects the resin flow inside the chamber and the minimum injection pressure required to completely wet the fibers. Therefore, a desirable injection chamber design is such that wetout occurs at lower injection pressures and at low internal pressures inside the injection chamber.

  20. The finite ground plane effect on the microstrip antenna radiation patterns

    NASA Technical Reports Server (NTRS)

    Huang, J.

    1983-01-01

    The uniform geometrical theory of diffraction (GTD) is employed for calculating the edge diffracted fields from the finite ground plane of a microstrip antenna. The source field from the radiating patch is calculated by two different methods: the slot theory and the modal expansion theory. Many numerical and measured results are presented to demonstrate the accuracy of the calculations and the finite ground plane edge effect.

  1. 14 CFR 93.223 - Slot withdrawal.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... shall assign, by random lottery, withdrawal priority numbers for the recall priority of slots at each... that slot or one acquired by trade of that slot, if the resulting total of slots held or operated at...

  2. Gain and Bandwidth Enhancement of Ferrite-Loaded CBS Antenna Using Material Shaping and Positioning

    NASA Astrophysics Data System (ADS)

    Askarian Amiri, Mikal

    Loading a cavity-backed slot (CBS) antenna with ferrite material and applying a biasing static magnetic field can be used to control its resonant frequency. Such a mechanism results in a frequency reconfigurable antenna. However, placing a lossy ferrite material inside the cavity can reduce the gain or negatively impact the impedance bandwidth. This thesis develops guidelines, based on a non-uniform applied magnetic field and non-uniform magnetic field internal to the ferrite specimen, for the design of ferrite-loaded CBS antennas which enhance their gain and tunable bandwidth by shaping the ferrite specimen and judiciously locating it within the cavity. To achieve these objectives, it is necessary to examine the influence of the shape and relative location of the ferrite material, and also the proximity of the ferrite specimen from the probe on the DC magnetic field and RF electric field distributions inside the cavity. The geometry of the probe and its impacts on figures-of-merit of the antenna is of interest as well. Two common cavity backed-slot antennas (rectangular and circular cross-section) were designed, and corresponding simulations and measurements were performed and compared. The cavities were mounted on 30 cm × 30 cm perfect electric conductor (PEC) ground planes and partially loaded with ferrite material. The ferrites were biased with an external magnetic field produced by either an electromagnet or permanent magnets. Simulations were performed using FEM-based commercial software, Ansys' Maxwell 3D and HFSS. Maxwell 3D is utilized to model the non-uniform DC applied magnetic field and non-uniform magnetic field internal to the ferrite specimen; HFSS however, is used to simulate and obtain the RF characteristics of the antenna. To validate the simulations they were compared with measurements performed in ASU's EM Anechoic Chamber. After many examinations using simulations and measurements, some optimal designs guidelines with respect to the gain

  3. Design and development of a unit element microstrip antenna for aircraft collision avoidance system

    NASA Astrophysics Data System (ADS)

    De, Debajit; Sahu, Prasanna Kumar

    2017-10-01

    Aircraft/traffic alert and collision avoidance system (ACAS/TCAS) is an airborne system which is designed to provide the service as a last defense equipment for avoiding mid-air collisions between the aircraft. In the existing system, four monopole stub-elements are used as ACAS directional antenna and one blade type element is used as ACAS omnidirectional antenna. The existing ACAS antenna has some drawbacks such as low gain, large beamwidth, frequency and beam tuning/scanning issues etc. Antenna issues like unwanted signals reception may create difficulties to identify the possible threats. In this paper, the focus is on the design and development of a unit element microstrip antenna which can be used for ACAS application and to overcome the possible limitations associated with the existing techniques. Two proposed antenna models are presented here, which are single feed and dual feed microstrip dual patch slotted antenna. These are designed and simulated in CST Microwave Studio tool. The performance and other antenna characteristics have been explored from the simulation results followed by the antenna fabrication and measurement. A good reflection coefficient, Voltage Standing Wave Ratio (VSWR), narrow beamwidth, perfect directional radiation pattern, high gain and directivity make this proposed antenna a good candidate for this application.

  4. Reduced-size spiral antenna design using dielectric overlay loading for use in ground penetrating radar and design of alternative antennas using Vivaldi radiators

    NASA Astrophysics Data System (ADS)

    Paolino, Donald D.; Neel, Michael M.; Franck, Charmaine C.

    2002-08-01

    Spiral antennas are one of the common radiators used in ground penetrating radar (GPR). Mine detection is generally performed in a frequency band of interest between 500 MHz to 4 GHz. This paper discusses technical recommendations and R&D performed by Naval Air Warfare Center (NAWC), China Lake, CA , resulting in our best effort spiral design emphasizing highest low band gain while maintaining overall axial ratio purity. This design consisted of a spiral printed on a high dielectric substrate that allowed the antenna to be used at lower frequencies then conventional plastic substrate based two arm spirals of the same diameter. A graded dielectric overlay scheme was employed to facilitate matching to free space on one side, and absorber lined cavity on the other. Test data is given in terms of match and free space patterns using spin linear sources to obtain antenna axial ratios. The low-end gain was improved from -17 dBi to -5 dBi. Two Vivaldi slot antennas (star junction fed and an antipodal construction) are discussed as alternative antennas offering broadband high gain and economical construction. Both designs produced good patterns with a +5 dBi average gain over the band. Patterns for the log spiral and Archimedean spiral, together with recommendations for future improvements are provided.

  5. Orthodontic Bracket Manufacturing Tolerances and Dimensional Differences between Select Self-Ligating Brackets

    PubMed Central

    Major, Thomas W.; Carey, Jason P.; Nobes, David S.; Major, Paul W.

    2010-01-01

    In all manufacturing processes there are tolerances; however, orthodontic bracket manufacturers seldom state the slot dimensional tolerances. This experiment develops a novel method of analyzing slot profile dimensions using photographs of the slot. Five points are selected along each wall, and lines are fitted to define a trapezoidal slot shape. This investigation measures slot height at the slot's top and bottom, angles between walls, slot taper, and the linearity of each wall. Slot dimensions for 30 upper right central incisor self-ligating stainless steel brackets from three manufacturers were evaluated. Speed brackets have a slot height 2% smaller than the nominal 0.559 mm size and have a slightly convergent taper. In-Ovation brackets have a divergent taper at an average angle of 1.47 degrees. In-Ovation is closest to the nominal value of slot height at the slot base and has the smallest manufacturing tolerances. Damon Q brackets are the most rectangular in shape, with nearly 90-degree corners between the slot bottom and walls. Damon slot height is on average 3% oversized. PMID:20981299

  6. The study of microstrip antenna arrays and related problems

    NASA Technical Reports Server (NTRS)

    Lo, R. Q.

    1984-01-01

    The work on rectangular microstrip antennas for dual frequency operation is reported on. The principle of this approach is based on the excitation of a patch for two or more different modes which correspond to different frequencies. However, for a given geometry, the modal frequencies have a fixed relationship; therefore, the usefulness of such a design is greatly limited. In this study three different methods have been contrived to control the frequency ratio over a wide range. First, as found prevously, if shorting pins are inserted at certain locations in the patch, the low frequency can be raised substantially. Second, if slots are cut in the patch, the high frequency can be lowered considerably. By using both techniques, the two frequency ratio can be varied approximately from 3 to 1.3. After that, the addition of more pins or slots becomes ineffective.

  7. Parabolic tapers for overmoded waveguides

    DOEpatents

    Doane, J.L.

    1983-11-25

    A waveguide taper with a parabolic profile, in which the distance along the taper axis varies as the square of the tapered dimension, provides less mode conversion than equal length linear tapers and is easier to fabricate than other non-linear tapers.

  8. Slotted Aircraft Wing

    NASA Technical Reports Server (NTRS)

    Vassberg, John C. (Inventor); Gea, Lie-Mine (Inventor); McLean, James D. (Inventor); Witowski, David P. (Inventor); Krist, Steven E. (Inventor); Campbell, Richard L. (Inventor)

    2006-01-01

    An aircraft wing includes a leading airfoil element and a trailing airfoil element. At least one slot is defined by the wing during at least one transonic condition of the wing. The slot may either extend spanwise along only a portion of the wingspan, or it may extend spanwise along the entire wingspan. In either case, the slot allows a portion of the air flowing along the lower surface of the leading airfoil element to split and flow over the upper surface of the trailing airfoil element so as to achieve a performance improvement in the transonic condition.

  9. A Compact 5.5 GHz Band-Rejected UWB Antenna Using Complementary Split Ring Resonators

    PubMed Central

    Islam, M. M.; Faruque, M. R. I.; Islam, M. T.

    2014-01-01

    A band-removal property employing microwave frequencies using complementary split ring resonators (CSRRs) is applied to design a compact UWB antenna wishing for the rejection of some frequency band, which is meanwhile exercised by the existing wireless applications. The reported antenna comprises optimization of a circular radiating patch, in which slotted complementary SRRs are implanted. It is printed on low dielectric FR4 substrate material fed by a partial ground plane and a microstrip line. Validated results exhibit that the reported antenna shows a wide bandwidth covering from 3.45 to more than 12 GHz, with a compact dimension of 22 × 26 mm2, and VSWR < 2, observing band elimination of 5.5 GHz WLAN band. PMID:24971379

  10. Multi-Polarization Reconfigurable Antenna for Wireless Biomedical System.

    PubMed

    Wong, Hang; Lin, Wei; Huitema, Laure; Arnaud, Eric

    2017-06-01

    This paper presents a multi-polarization reconfigurable antenna with four dipole radiators for biomedical applications in body-centric wireless communication system (BWCS). The proposed multi-dipole antenna with switchable 0°, +45°, 90° and -45° linear polarizations is able to overcome the polarization mismatching and multi-path distortion in complex wireless channels as in BWCS. To realize this reconfigurable feature for the first time among all the reported antenna designs, we assembled four dipoles together with 45° rotated sequential arrangements. These dipoles are excited by the same feeding source provided by a ground tapered Balun. A metallic reflector is placed below the dipoles to generate a broadside radiation. By introducing eight PIN diodes as RF switches between the excitation source and the four dipoles, we can control a specific dipole to operate. As the results, 0°, +45°, 90° and -45° linear polarizations can be switched correspondingly to different operating dipoles. Experimental results agree with the simulation and show that the proposed antenna well works in all polarization modes with desirable electrical characteristics. The antenna has a wide impedance bandwidth of 34% from 2.2 to 3.1 GHz (for the reflection coefficient ≤ -10 dB) and exhibits a stable cardioid-shaped radiation pattern across the operating bandwidth with a peak gain of 5.2 dBi. To validate the effectiveness of the multi-dipole antenna for biomedical applications, we also designed a meandered PIFA as the implantable antenna. Finally, the communication link measurement shows that our proposed antenna is able to minimize the polarization mismatching and maintains the optimal communication link thanks to its polarization reconfigurability.

  11. A Comparison of Antenna Measurements in a Near-Field Range and a Newly Renovated Short-Tapered Chamber

    DTIC Science & Technology

    2016-09-01

    SUPPLEMENTARY NOTES 14. ABSTRACT This study was undertaken to quantify and compare electromagnetic device (i.e., antenna) measurements using the US Army...15. SUBJECT TERMS electromagnetic , chamber, near-field range, anechoic chamber, antenna measurement 16. SECURITY CLASSIFICATION OF: 17...undertaken to quantify and compare electromagnetic (EM) device (i.e., antenna) measurements using the US Army Research Laboratory’s (ARL’s) near-field

  12. Design of a graphene-based dual-slot hybrid plasmonic electro-absorption modulator with high-modulation efficiency and broad optical bandwidth for on-chip communication.

    PubMed

    Wu, Zhongwei; Xu, Yin

    2018-04-20

    The hybrid plasmonic effect with lower loss and comparable light confinement than surface plasmon polariton opens new avenues for strengthening light-matter interactions with low loss. Here, we propose and numerically analyze a graphene-based electro-absorption modulator (EAM) with high-modulation efficiency and broad optical bandwidth using a dual-slot hybrid plasmonic waveguide (HPW), which consists of a central dual-slot HPW connected with two taper transitions and two additional dual-slot HPWs for coupling it with the input and output silicon nanowires, where graphene layers are located at the bottom and top side of the whole dual-slot HPW region. By combining the huge light enhancement effect of the dual-slot HPW and graphene's tunable conductivity, we obtain a high-modulation efficiency (ME) of 1.76 dB/μm for the graphene-based dual-slot HPW (higher ME of 2.19 dB/μm can also be obtained). Based upon this promising result, we further design a graphene-based hybrid plasmonic EAM, achieving a modulation depth (MD) of 15.95 dB and insertion loss of 1.89 dB @1.55 μm, respectively, in a total length of only 10 μm, where its bandwidth can reach over 500 nm for keeping MD>15  dB; MD can also be improved by slightly increasing the device length or shrinking the waveguide thickness, showing strong advantages for applying it into on-chip high-performance silicon modulators.

  13. Large-Aperture Membrane Active Phased-Array Antennas

    NASA Technical Reports Server (NTRS)

    Karasik, Boris; McGrath, William; Leduc, Henry

    2009-01-01

    Large-aperture phased-array microwave antennas supported by membranes are being developed for use in spaceborne interferometric synthetic aperture radar systems. There may also be terrestrial uses for such antennas supported on stationary membranes, large balloons, and blimps. These antennas are expected to have areal mass densities of about 2 kg/sq m, satisfying a need for lightweight alternatives to conventional rigid phased-array antennas, which have typical areal mass densities between 8 and 15 kg/sq m. The differences in areal mass densities translate to substantial differences in total mass in contemplated applications involving aperture areas as large as 400 sq m. A membrane phased-array antenna includes patch antenna elements in a repeating pattern. All previously reported membrane antennas were passive antennas; this is the first active membrane antenna that includes transmitting/receiving (T/R) electronic circuits as integral parts. Other integral parts of the antenna include a network of radio-frequency (RF) feed lines (more specifically, a corporate feed network) and of bias and control lines, all in the form of flexible copper strip conductors on flexible polymeric membranes. Each unit cell of a prototype antenna (see Figure 1) contains a patch antenna element and a compact T/R module that is compatible with flexible membrane circuitry. There are two membrane layers separated by a 12.7-mm air gap. Each membrane layer is made from a commercially available flexible circuit material that, as supplied, comprises a 127-micron-thick polyimide dielectric layer clad on both sides with 17.5-micron-thick copper layers. The copper layers are patterned into RF, bias, and control conductors. The T/R module is located on the back side of the ground plane and is RF-coupled to the patch element via a slot. The T/R module is a hybrid multilayer module assembled and packaged independently and attached to the membrane array. At the time of reporting the information for

  14. An extraordinary transmission analogue for enhancing microwave antenna performance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pushpakaran, Sarin V., E-mail: sarincrema@gmail.com; Purushothaman, Jayakrishnan M.; Chandroth, Aanandan

    2015-10-15

    The theory of diffraction limit proposed by H.A Bethe limits the total power transfer through a subwavelength hole. Researchers all over the world have gone through different techniques for boosting the transmission through subwavelength holes resulting in the Extraordinary Transmission (EOT) behavior. We examine computationally and experimentally the concept of EOT nature in the microwave range for enhancing radiation performance of a stacked dipole antenna working in the S band. It is shown that the front to back ratio of the antenna is considerably enhanced without affecting the impedance matching performance of the design. The computational analysis based on Finitemore » Difference Time Domain (FDTD) method reveals that the excitation of Fabry-Perot resonant modes on the slots is responsible for performance enhancement.« less

  15. Planar slot coupled microwave hybrid

    DOEpatents

    Petter, Jeffrey K.

    1991-01-01

    A symmetrical 180.degree. microwave hybrid is constructed by opening a slot line in a ground plane below a conducting strip disposed on a dielectric substrate, creating a slot coupled conductor. Difference signals propagating on the slot coupled conductor are isolated on the slot line leaving sum signals to propagate on the microstrip. The difference signal is coupled from the slot line onto a second microstrip line for transmission to a desired location. The microstrip branches in a symmetrical fashion to provide the input/output ports of the 180.degree. hybrid. The symmetry of the device provides for balance and isolation between sum and difference signals, and provides an advantageous balance between the power handling capabilities and the bandwidth of the device.

  16. Differentially Fed Metal Frame Antenna With Common Mode Suppression for Biomedical Smartband Applications

    NASA Astrophysics Data System (ADS)

    Xu, Li-Jie; Duan, Zhu

    2018-04-01

    This paper proposes a differentially fed metal frame antenna for biomedical smartband applications. It occupies a planar area of 40 × 20 mm, operating at 2.45-GHz industrial, scientific, and medical band. The proposed antenna is composed of an external metal frame and an internal metal box acting as ground for electronics. Through a differential feeding to two copper strips located between the metal frame and the metal box, a rectangular ring slot is excited with common mode suppression capability. The antenna prototype is designed in free space, and then adapted to on-body scenario for both repeater and transmitter cases. Additionally, the proposed differential feeding is modified to the traditional single port, demonstrating the half-size miniaturization technique. Finally, the simulated results are verified by measurement. The proposed antenna's simple structure and satisfactory performance makes it a perfect candidate for future medical smartband applications, monitoring the physiological parameters of humans for health-care purposes.

  17. Bandwidth enhancement of a dual band planar monopole antenna using meandered microstrip feeding.

    PubMed

    Ahsan, M R; Islam, M T; Habib Ullah, M; Misran, N

    2014-01-01

    A meandered-microstrip fed circular shaped monopole antenna loaded with vertical slots on a high dielectric material substrate (ε r = 15) is proposed in this paper. The performance criteria of the proposed antenna have been experimentally verified by fabricating a printed prototype. The experimental results show that the proposed antenna has achieved wider bandwidth with satisfactory gain by introducing meandered-microstrip feeding in assistant of partial ground plane. It is observed that, the -10 dB impedance bandwidth of the proposed antenna at lower band is 44.4% (600 MHz-1 GHz) and at upper band is 28% (2.25 GHz-2.95 GHz). The measured maximum gains of -1.18 dBi and 4.87 dBi with maximum radiation efficiencies have been observed at lower band and upper band, respectively. The antenna configuration and parametric study have been carried out with the help of commercially available computer-aided EM simulator, and a good accordance is perceived in between the simulated and measured results. The analysis of performance criteria and almost consistent radiation pattern make the proposed antenna a suitable candidate for UHF RFID, WiMAX, and WLAN applications.

  18. Auctioning Airport Slots?

    NASA Technical Reports Server (NTRS)

    Gruyer, Nicolas; Lenoir, Nathalie

    2003-01-01

    The current allocation of slots on congested European airports constitutes an obstacle to the effective liberalisation of air transportation undertaken in Europe. With a view to favouring effluent slot utilisation and competition, as is the goal of the Euopean commission, we propose to use a market mechanism, based on temporary" utilisation licences. In order to allocate those licences, we propose and describe an iterated combinatorial auction mechanism where a percentage of licences would be reallocated each season. A secondary market would also be set up in order to reallocate slots during a season. Since a combinatorial auction involve a complex optimisation procedure, we describe how it can be made to work in the case of auctions.

  19. A Minimized MIMO-UWB Antenna with High Isolation and Triple Band-Notched Functions

    NASA Astrophysics Data System (ADS)

    Kong, Yuanyuan; Li, Yingsong; Yu, Kai

    2016-11-01

    A compact high isolation MIMO-UWB antenna with triple frequency rejection bands is proposed for UWB communication applications. The proposed MIMO-UWB antenna consists of two identical UWB antennas and each antenna element has a semicircle ring shaped radiation patch fed by a bend microstrip feeding line for covering the UWB band, which operates from 2.85 GHz to 11.79 GHz with an impedance bandwidth of 122.1 %. By etching a L-shaped slot on the ground plane, and embedding an "anchor" shaped stub into the patch and integrating an open ring under the semicircle shaped radiation patch, three notch bands are realized to suppress WiMAX (3.3-3.6 GHz), WLAN(5.725-5.825 GHz) and uplink of X-band satellite (7.9-8.4 GHz) signals. The high isolation with S21<-20 dB in most UWB band is obtained by adding a protruded decoupling structure. The design procedure of the MIMO-UWB antenna is given in detail. The proposed MIMO-UWB antenna is simulated, fabricated and measured. Experimental results demonstrate that the proposed MIMO-UWB antenna has a stable gain, good impedance match, high isolation, low envelope correlation coefficient and good radiation pattern at the UWB operating band and it can provide three designated notch bands.

  20. Tapering Practices of Strongman Athletes.

    PubMed

    Winwood, Paul W; Dudson, Mike K; Wilson, Daniel; Mclaren-Harrison, Justice K H; Redjkins, Vladislav; Pritchard, Hayden J; Keogh, Justin W L

    2018-05-01

    Winwood, PW, Dudson, MK, Wilson, D, Mclaren-Harrison, JKH, Redjkins, V, Pritchard, HJ, and Keogh, JWL. Tapering practices of strongman athletes. J Strength Cond Res 32(5): 1181-1196, 2018-This study provides the first empirical evidence of how strongman athletes taper for strongman competitions. Strongman athletes (n = 454) (mean ± SD: 33.2 ± 8.0 years, 178.1 ± 10.6 cm, 108.6 ± 27.9 kg, 12.6 ± 8.9 years general resistance training, 5.3 ± 5.0 years strongman implement training) completed a self-reported 4-page internet survey on tapering practices. Analysis by sex (male and female), age (≤30 and >30 years), body mass (≤105 and >105 kg), and competitive standard (local/regional amateur, national amateur and professional) was conducted. Eighty-seven percent (n = 396) of strongman athletes reported that they used a taper. Athletes stated that their typical taper length was 8.6 ± 5.0 days, with the step taper the most commonly performed taper (52%). Training volume decreased during the taper by 45.5 ± 12.9%, and all training ceased 3.9 ± 1.8 days out from competition. Typically, athletes reported that training frequency and training duration stayed the same or decreased and training intensity decreased to around 50% in the last week. Athletes generally stated that tapering was performed to achieve recovery, rest, and peak performance; the deadlift, yoke walk, and stone lifts/work took longer to recover from than other lifts; assistance exercises were reduced or removed in the taper; massage, foam rolling, nutritional changes, and static stretching were strategies used in the taper; and, poor tapering occurred when athletes trained too heavy/hard or had too short a taper. These data will assist strongman athletes and coaches in the optimization of tapering variables leading to more peak performances. Future research could investigate the priming and preactivation strategies strongman athletes use on competition day.

  1. Study on Miniaturized UHF Antennas for Partial Discharge Detection in High-Voltage Electrical Equipment.

    PubMed

    Liu, Jingcun; Zhang, Guogang; Dong, Jinlong; Wang, Jianhua

    2015-11-20

    Detecting partial discharge (PD) is an effective way to evaluate the condition of high-voltage electrical equipment insulation. The UHF detection method has attracted attention due to its high sensitivity, strong interference resistance, and ability to locate PDs. In this paper, a miniaturized equiangular spiral antenna (ESA) for UHF detection that uses a printed circuit board is proposed. I-shaped, L-shaped, and C-shaped microstrip baluns were designed to match the impedance between the ESA and coaxial cable and were verified by a vector network analyzer. For comparison, three other types of UHF antenna were also designed: A microstrip patch antenna, a microstrip slot antenna, and a printed dipole antenna. Their antenna factors were calibrated in a uniform electric field of different frequencies modulated in a gigahertz transverse electromagnetic cell. We performed comparison experiments on PD signal detection using an artificial defect model based on the international IEC 60270 standard. We also conducted time-delay test experiments on the ESA sensor to locate a PD source. It was found that the proposed ESA sensor meets PD signal detection requirements. The sensor's compact size makes it suitable for internal installation in high-voltage electrical equipment.

  2. Study on Miniaturized UHF Antennas for Partial Discharge Detection in High-Voltage Electrical Equipment

    PubMed Central

    Liu, Jingcun; Zhang, Guogang; Dong, Jinlong; Wang, Jianhua

    2015-01-01

    Detecting partial discharge (PD) is an effective way to evaluate the condition of high-voltage electrical equipment insulation. The UHF detection method has attracted attention due to its high sensitivity, strong interference resistance, and ability to locate PDs. In this paper, a miniaturized equiangular spiral antenna (ESA) for UHF detection that uses a printed circuit board is proposed. I-shaped, L-shaped, and C-shaped microstrip baluns were designed to match the impedance between the ESA and coaxial cable and were verified by a vector network analyzer. For comparison, three other types of UHF antenna were also designed: A microstrip patch antenna, a microstrip slot antenna, and a printed dipole antenna. Their antenna factors were calibrated in a uniform electric field of different frequencies modulated in a gigahertz transverse electromagnetic cell. We performed comparison experiments on PD signal detection using an artificial defect model based on the international IEC 60270 standard. We also conducted time-delay test experiments on the ESA sensor to locate a PD source. It was found that the proposed ESA sensor meets PD signal detection requirements. The sensor’s compact size makes it suitable for internal installation in high-voltage electrical equipment. PMID:26610506

  3. Hybrid method to predict the resonant frequencies and to characterise dual band proximity coupled microstrip antennas

    NASA Astrophysics Data System (ADS)

    Varma, Ruchi; Ghosh, Jayanta

    2018-06-01

    A new hybrid technique, which is a combination of neural network (NN) and support vector machine, is proposed for designing of different slotted dual band proximity coupled microstrip antennas. Slots on the patch are employed to produce the second resonance along with size reduction. The proposed hybrid model provides flexibility to design the dual band antennas in the frequency range from 1 to 6 GHz. This includes DCS (1.71-1.88 GHz), PCS (1.88-1.99 GHz), UMTS (1.92-2.17 GHz), LTE2300 (2.3-2.4 GHz), Bluetooth (2.4-2.485 GHz), WiMAX (3.3-3.7 GHz), and WLAN (5.15-5.35 GHz, 5.725-5.825 GHz) bands applications. Also, the comparative study of this proposed technique is done with the existing methods like knowledge based NN and support vector machine. The proposed method is found to be more accurate in terms of % error and root mean square % error and the results are in good accord with the measured values.

  4. Integrated Lens Antennas for Multi-Pixel Receivers

    NASA Technical Reports Server (NTRS)

    Lee, Choonsup; Chattopadhyay, Goutam

    2011-01-01

    Future astrophysics and planetary experiments are expected to require large focal plane arrays with thousands of detectors. Feedhorns have excellent performance, but their mass, size, fabrication challenges, and expense become prohibitive for very large focal plane arrays. Most planar antenna designs produce broad beam patterns, and therefore require additional elements for efficient coupling to the telescope optics, such as substrate lenses or micromachined horns. An antenna array with integrated silicon microlenses that can be fabricated photolithographically effectively addresses these issues. This approach eliminates manual assembly of arrays of lenses and reduces assembly errors and tolerances. Moreover, an antenna array without metallic horns will reduce mass of any planetary instrument significantly. The design has a monolithic array of lens-coupled, leaky-wave antennas operating in the millimeter- and submillimeter-wave frequencies. Electromagnetic simulations show that the electromagnetic fields in such lens-coupled antennas are mostly confined in approximately 12 15 . This means that one needs to design a small-angle sector lens that is much easier to fabricate using standard lithographic techniques, instead of a full hyper-hemispherical lens. Moreover, this small-angle sector lens can be easily integrated with the antennas in an array for multi-pixel imager and receiver implementation. The leaky antenna is designed using double-slot irises and fed with TE10 waveguide mode. The lens implementation starts with a silicon substrate. Photoresist with appropriate thickness (optimized for the lens size) is spun on the substrate and then reflowed to get the desired lens structure. An antenna array integrated with individual lenses for higher directivity and excellent beam profile will go a long way in realizing multi-pixel arrays and imagers. This technology will enable a new generation of compact, low-mass, and highly efficient antenna arrays for use in multi

  5. Surface normal coupling to multiple-slot and cover-slotted silicon nanocrystalline waveguides and ring resonators

    NASA Astrophysics Data System (ADS)

    Covey, John; Chen, Ray T.

    2014-03-01

    Grating couplers are ideal for coupling into the tightly confined propagation modes of semiconductor waveguides. In addition, nonlinear optics has benefited from the sub-diffraction limit confinement of horizontal slot waveguides. By combining these two advancements, slot-based nonlinear optics with mode areas less than 0.02 μm2 can become as routine as twisting fiber connectors together. Surface normal fiber alignment to a chip is also highly desirable from time, cost, and manufacturing considerations. To meet these considerable design challenges, a custom genetic algorithm is created which, starting from purely random designs, creates a unique four stage grating coupler for two novel horizontal slot waveguide platforms. For horizontal multiple-slot waveguides filled with silicon nanocrystal, a theoretical fiber-towaveguide coupling efficiency of 68% is obtained. For thin silicon waveguides clad with optically active silicon nanocrystal, known as cover-slot waveguides, a theoretical fiber-to-waveguide coupling efficiency of 47% is obtained, and 1 dB and 3 dB theoretical bandwidths of 70 nm and 150 nm are obtained, respectively. Both waveguide platforms are fabricated from scratch, and their respective on-chip grating couplers are experimentally measured from a standard single mode fiber array that is mounted surface normally. The horizontal multiple-slot grating coupler achieved an experimental 60% coupling efficiency, and the horizontal cover-slot grating coupler achieved an experimental 38.7% coupling efficiency, with an extrapolated 1 dB bandwidth of 66 nm. This report demonstrates the promise of genetic algorithm-based design by reducing to practice the first large bandwidth vertical grating coupler to a novel silicon nanocrystal horizontal cover-slot waveguide.

  6. Transition-edge superconducting antenna-coupled bolometer

    NASA Astrophysics Data System (ADS)

    Hunt, Cynthia L.; Bock, James J.; Day, Peter K.; Goldin, Alexey; Lange, Andrew E.; LeDuc, Henry G.; Vayonakis, Anastasios; Zmuidzinas, Jonas

    2003-02-01

    We report test results for a single pixel antenna-coupled bolometric detector. Our device consists of a dual slot microstrip antenna coupled to an Al/Ti/Au voltage-biased transition edge superconducting bolometer (TES). The coupling architecture involves propagating the signal along superconducting microstrip lines and terminating the lines at a normal metal resistor colocated with a TES on a thermally isolated island. The device, which is inherently polarization sensitive, is optimized for 140 GHz band measurements. In the thermal bandwidth of the TES, we measure a noise equivalent power of 2.0 × 10-17 W/√Hz in dark tests that agrees with calculated NEP including only contributions from thermal, Johnson and amplifier noise. We do not measure any excess noise at frequencies between 1 and 200 Hz. We measure a thermal conductance G ~5.5 × 10-11 W/K. We measure a thermal time constant as low as 437μs at 3μV bias when stimulating the TES directly using an LED.

  7. Bandwidth Enhancement of a Dual Band Planar Monopole Antenna Using Meandered Microstrip Feeding

    PubMed Central

    Ahsan, M. R.; Islam, M. T.; Habib Ullah, M.; Misran, N.

    2014-01-01

    A meandered-microstrip fed circular shaped monopole antenna loaded with vertical slots on a high dielectric material substrate (ε r = 15) is proposed in this paper. The performance criteria of the proposed antenna have been experimentally verified by fabricating a printed prototype. The experimental results show that the proposed antenna has achieved wider bandwidth with satisfactory gain by introducing meandered-microstrip feeding in assistant of partial ground plane. It is observed that, the −10 dB impedance bandwidth of the proposed antenna at lower band is 44.4% (600 MHz–1 GHz) and at upper band is 28% (2.25 GHz–2.95 GHz). The measured maximum gains of −1.18 dBi and 4.87 dBi with maximum radiation efficiencies have been observed at lower band and upper band, respectively. The antenna configuration and parametric study have been carried out with the help of commercially available computer-aided EM simulator, and a good accordance is perceived in between the simulated and measured results. The analysis of performance criteria and almost consistent radiation pattern make the proposed antenna a suitable candidate for UHF RFID, WiMAX, and WLAN applications. PMID:24723832

  8. Enhancing sensitivity of biconical tapered fiber sensors with multiple passes through the taper

    NASA Astrophysics Data System (ADS)

    Cohoon, Gregory; Boyter, Chris; Errico, Michael; Vandervoort, Kurt; Salik, Ertan

    2010-03-01

    A single biconical fiber taper is a simple and low-cost yet powerful sensor. With a distinct strength in refractive index (RI) sensing, biconical tapered fiber sensors can find their place in handheld sensor platforms, especially as biosensors that are greatly needed in health care, environmental protection, food safety, and biodefense. We report doubling of sensitivity for these sensors with two passes through the tapered region, which becomes possible through the use of sensitive and high-dynamic-range photodetectors. In a proof-of-principle experiment, we measured transmission through the taper when it was immersed in isopropyl alcohol-water mixtures of varying concentrations, in which a thin gold layer at the tip of the fiber acted as a mirror enabling two passes through the tapered region. This improved the sensitivity from 0.43 dB/vol % in the single-pass case to 0.78 dB/vol % with two passes through the taper. The refractive index detection limit was estimated to be ~1.2×10-5 RI units (RIU) and ~0.6×10-5 RIU in the single- and double-pass schemes, respectively. We predict that further enhancement of sensitivity may be achieved with a higher number of passes through the taper.

  9. Fabrication of Antenna-Coupled KID Array for Cosmic Microwave Background Detection

    NASA Astrophysics Data System (ADS)

    Tang, Q. Y.; Barry, P. S.; Basu Thakur, R.; Kofman, A.; Nadolski, A.; Vieira, J.; Shirokoff, E.

    2018-05-01

    Kinetic inductance detectors (KIDs) have become an attractive alternative to traditional bolometers in the sub-mm and mm observing community due to their innate frequency multiplexing capabilities and simple lithographic processes. These advantages make KIDs a viable option for the O(500,000) detectors needed for the upcoming Cosmic Microwave Background-Stage 4 experiment. We have fabricated an antenna-coupled MKID array in the 150 GHz band optimized for CMB detection. Our design uses a twin-slot antenna coupled to an inverted microstrip made from a superconducting Nb/Al bilayer as the strip, a Nb ground plane and a SiN_x dielectric layer in between, which is then coupled to an Al KID grown on high-resistivity Si. We present the fabrication process and measurements of SiN_x microstrip resonators.

  10. Slot-coupled CW standing wave accelerating cavity

    DOEpatents

    Wang, Shaoheng; Rimmer, Robert; Wang, Haipeng

    2017-05-16

    A slot-coupled CW standing wave multi-cell accelerating cavity. To achieve high efficiency graded beta acceleration, each cell in the multi-cell cavity may include different cell lengths. Alternatively, to achieve high efficiency with acceleration for particles with beta equal to 1, each cell in the multi-cell cavity may include the same cell design. Coupling between the cells is achieved with a plurality of axially aligned kidney-shaped slots on the wall between cells. The slot-coupling method makes the design very compact. The shape of the cell, including the slots and the cone, are optimized to maximize the power efficiency and minimize the peak power density on the surface. The slots are non-resonant, thereby enabling shorter slots and less power loss.

  11. Application of fiber tapers in astronomy

    NASA Astrophysics Data System (ADS)

    Marcel, Jaclyn; Haynes, Roger; Bland-Hawthorn, Joss

    2006-06-01

    Fiber tapers have the potential to significantly advance instrument technology into the realm of fully integrated optical systems. Our initial investigation was directed at the use of fiber tapers as f-ratio transformation devices. Using a technique developed for testing focal ratio degradation (FRD), a collimated light source was injected at different angles into various fiber taper samples and the far-field profile of the fiber output was observed. We compare the FRD present in the optical fiber tapers with conventional fibers and determine how effectively fiber tapers perform as image converters. We demonstrate that while silica fiber tapers may have slightly more intrinsic FRD than conventional fibers they still show promise as adiabatic mode transformers and are worth investigating further for their potential use in astronomical instruments. In this paper we present a brief review of the current status of fiber tapers with particular focus on the astronomical applications. We demonstrate the conservation of etendue in the taper transformation process and present the experimental results for a number of different taper profiles and manufacturers.

  12. Slotted Aircraft Wing

    NASA Technical Reports Server (NTRS)

    McLean, James D. (Inventor); Witkowski, David P. (Inventor); Campbell, Richard L. (Inventor)

    2006-01-01

    A swept aircraft wing includes a leading airfoil element and a trailing airfoil element. At least one full-span slot is defined by the wing during at least one transonic condition of the wing. The full-span slot allows a portion of the air flowing along the lower surface of the leading airfoil element to split and flow over the upper surface of the trailing airfoil element so as to achieve a performance improvement in the transonic condition.

  13. Tapered structure construction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, Eric D.; Takata, Rosalind K.; Slocum, Alexander H.

    Feeding stock used to form a tapered structure into a curving device such that each point on the stock undergoes rotational motion about a peak location of the tapered structure; and the stock meets a predecessor portion of stock along one or more adjacent edges.

  14. Design and Realization of a Planar Ultrawideband Antenna with Notch Band at 3.5 GHz

    PubMed Central

    2014-01-01

    A small antenna with single notch band at 3.5 GHz is designed for ultrawideband (UWB) communication applications. The fabricated antenna comprises a radiating monopole element and a perfectly conducting ground plane with a wide slot. To achieve a notch band at 3.5 GHz, a parasitic element has been inserted in the same plane of the substrate along with the radiating patch. Experimental results shows that, by properly adjusting the position of the parasitic element, the designed antenna can achieve an ultrawide operating band of 3.04 to 11 GHz with a notched band operating at 3.31–3.84 GHz. Moreover, the proposed antenna achieved a good gain except at the notched band and exhibits symmetric radiation patterns throughout the operating band. The prototype of the proposed antenna possesses a very compact size and uses simple structures to attain the stop band characteristic with an aim to lessen the interference between UWB and worldwide interoperability for microwave access (WiMAX) band. PMID:25133245

  15. Babinet-inverted optical Yagi-Uda antenna for unidirectional radiation to free space.

    PubMed

    Kim, Jineun; Roh, Young-Geun; Cheon, Sangmo; Choe, Jong-Ho; Lee, Jongcheon; Lee, Jaesoong; Jeong, Heejeong; Kim, Un Jeong; Park, Yeonsang; Song, In Yong; Park, Q-Han; Hwang, Sung Woo; Kim, Kinam; Lee, Chang-Won

    2014-06-11

    Nanophotonics capable of directing radiation or enhancing quantum-emitter transition rates rely on plasmonic nanoantennas. We present here a novel Babinet-inverted magnetic-dipole-fed multislot optical Yagi-Uda antenna that exhibits highly unidirectional radiation to free space, achieved by engineering the relative phase of the interacting surface plasmon polaritons between the slot elements. The unique features of this nanoantenna can be harnessed for realizing energy transfer from one waveguide to another by working as a future "optical via".

  16. Circularly polarized triple band glass shaped monopole patch antenna with metallic reflector for bluetooth & wireless applications

    NASA Astrophysics Data System (ADS)

    Jangid, K. G.; Choudhary, N.; Jain, P.; Sharma, B. R.; Saini, J. S.; Kulhar, V. S.; Bhatnagar, D.

    2016-03-01

    This paper presents the design and performance of strip line fed glass shaped monopole patch antenna having with overall size 30mm × 30 mm × 1.59 mm. In the patch; an eight shaped slot and in the ground plane an eight shaped ring are introduced. A metallic ground plane is also introduced at appropriate location beneath the ground plane. The proposed antenna is simulated by applying CST Microwave Studio simulator. Antenna provides circularly polarized radiations, triple broad impedance bandwidth of 203MHz (2.306GHz to 2.510GHz), 42MHz (2.685GHz to 2.757GHz) & GHz (3.63 GHz to 6.05 GHz), high flat gain (close to 5dBi) and good radiation properties in the desired frequency range. This antenna may be a very useful tool for 2.45GHz Bluetooth communication band as well as for 2.4GHz/5.2 GHz /5.8 GHz WLAN bands & 3.7GHz/5.5 GHz Wi-Max bands.

  17. Dual Band Notched EBG Structure based UWB MIMO/Diversity Antenna with Reduced Wide Band Electromagnetic Coupling

    NASA Astrophysics Data System (ADS)

    Jaglan, Naveen; Kanaujia, Binod Kumar; Gupta, Samir Dev; Srivastava, Shweta

    2017-10-01

    A dual band-notched MIMO/Diversity antenna is proposed in this paper. The proposed antenna ensures notches in WiMAX band (3.3-3.6 GHz) besides WLAN band (5-6 GHz). Mushroom Electromagnetic Band Gap (EBG) arrangements are employed for discarding interfering frequencies. The procedure followed to attain notches is antenna shape independent with established formulas. The electromagnetic coupling among two narrowly set apart Ultra-Wide Band (UWB) monopoles is reduced by means of decoupling bands and slotted ground plane. Monopoles are 90° angularly parted with steps on the radiator. This aids to diminish mutual coupling and also adds in the direction of impedance matching by long current route. S21 or else mutual coupling of fewer than 15 dB is established over antenna operating range. Two-port envelope correlation coefficient is lower than 0.02 in UWB range of 3.1 GHz-10.6 GHz. The shifting in notch frequencies by varying variables in formulas is also reported. The suggested antenna is designed on low budget FR-4 substrate with measurements as (58 × 45 × 1.6) mm3. Simulated and measured results of fabricated antenna are found to be in close agreement.

  18. A Wideband Circularly Polarized Antenna with a Multiple-Circular-Sector Dielectric Resonator.

    PubMed

    Trinh-Van, Son; Yang, Youngoo; Lee, Kang-Yoon; Hwang, Keum Cheol

    2016-11-03

    This paper presents the design of a wideband circularly polarized antenna using a multiple-circular-sector dielectric resonator (DR). The DR is composed of twelve circular-sector DRs with identical central angles of 30 ∘ but with different radii. A genetic algorithm is utilized to optimize the radii of the twelve circular-sector DRs to realize wideband circular polarization. The proposed antenna is excited using an aperture-coupled feeding technique through a narrow rectangular slot etched onto the ground plane. An antenna prototype is experimentally verified. The measured -10 dB reflection and 3 dB axial ratio (AR) bandwidths are 31.39% (1.88-2.58 GHz) and 19.30% (2.06-2.50 GHz), respectively, covering the operating bands of the following systems: UMTS-2100 (2.145 GHz), WiMAX (2.3 GHz), and Wi-Fi (2.445 GHz). A measured peak gain of 7.65 dBic at 2.225 GHz and gain variation of less than 2.70 dBic within the measured 3 dB AR bandwidth are achieved. In addition, the radiation patterns of the proposed antenna are presented and discussed.

  19. A Wideband Circularly Polarized Antenna with a Multiple-Circular-Sector Dielectric Resonator

    PubMed Central

    Trinh-Van, Son; Yang, Youngoo; Lee, Kang-Yoon; Hwang, Keum Cheol

    2016-01-01

    This paper presents the design of a wideband circularly polarized antenna using a multiple-circular-sector dielectric resonator (DR). The DR is composed of twelve circular-sector DRs with identical central angles of 30∘ but with different radii. A genetic algorithm is utilized to optimize the radii of the twelve circular-sector DRs to realize wideband circular polarization. The proposed antenna is excited using an aperture-coupled feeding technique through a narrow rectangular slot etched onto the ground plane. An antenna prototype is experimentally verified. The measured −10 dB reflection and 3 dB axial ratio (AR) bandwidths are 31.39% (1.88–2.58 GHz) and 19.30% (2.06–2.50 GHz), respectively, covering the operating bands of the following systems: UMTS-2100 (2.145 GHz), WiMAX (2.3 GHz), and Wi-Fi (2.445 GHz). A measured peak gain of 7.65 dBic at 2.225 GHz and gain variation of less than 2.70 dBic within the measured 3 dB AR bandwidth are achieved. In addition, the radiation patterns of the proposed antenna are presented and discussed. PMID:27827881

  20. Study of Dual Band Wearable Antennas Using Commonly Worn Fabric Materials

    NASA Astrophysics Data System (ADS)

    Das, Dipen Kumar

    In recent years, body-centric communication has become one of the most attractive fields of study. The versatile applications of body-centric communication not only being used for health monitoring, but also for real-time communication purposes in special occupations. They are important for supporting a population with increasing life expectancy and increase the probability of survival for the people suffering from chronic illness. For both wearable and implantable form of body-centric communication, characterizing the system electromagnetically is very important. Given the constraints in power, size, weight and conformity, one of the most challenging parts become the designing antenna for such communication systems. Wearable antennas are the most popular option regarding these issues. Wearable antennas are easier and simpler to mount on clothing when they are made of textile materials. In the process of designing a textile antenna, the availability of the fabrics is pivotal to mount on regularly worn clothes. In this report, several designs of a co-planar waveguide microstrip patch antenna are presented. Instead of felt fabric, the antenna was modified using 100% polyester and cotton fabric for the substrate material. A parasitic patch slot was created on the co-planar ground plane to achieve the dual band resonance frequencies at 2.4 GHz and 5.15 GHz. The geometrical modifications of the antennas were described and their performances were analyzed. The antenna achieved resonating frequency with a thinner substrate as the dielectric constant went higher for the fabrics. The design with different fabric materials was first simulated in CST Microwave Studio, then fabricated and measured in a regular environment. They were also mounted on a 3-D printed human body model to analyze the bending effect. The design of the antennas shows satisfactory performance with a good -10dB bandwidth for both the lower and higher desired resonating frequency band.

  1. Slot configuration for axial-flow turbomachinery blades

    NASA Technical Reports Server (NTRS)

    Taylor, W. E.

    1972-01-01

    Machining of slot in turbine blades of axial flow turbines to provide flow path between pressure and suction surfaces is discussed. Slot configuration and improvements in blade performance are described. Diagram of blade slot to show geometry of modification is included.

  2. Feather seal slot for vanes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Del Mastro, B. P.; Eckart, F.

    1985-10-22

    The slots for accommodating feather seals in the turbine vanes of a gas turbine engine has the end thereof sealed off by use of weld wire inserted into the slot and simultaneously welded and cut to the required length.

  3. Tapered fiber nanoprobes: plasmonic nanopillars on tapered optical fiber tips for large EM enhancement.

    PubMed

    Savaliya, Priten; Dhawan, Anuj

    2016-10-01

    Employing finite difference time domain simulations, we demonstrate that electromagnetic field enhancement is substantially greater for tapered optical fibers with plasmonic nanostructures present on their tips as compared with non-tapered optical fibers having those plasmonic nanostructures, or with tapered optical fibers without the plasmonic nanostructures. We also carried out fabrication of plasmonic nanostructures on optical fiber tips.

  4. Shuttle Experimental Radar for Geological Exploration (SERGE); antenna and integration concept definition study

    NASA Technical Reports Server (NTRS)

    Kierein, J. W.

    1977-01-01

    The baseline configuration defined has the SERGE antenna panel array mounted on the OFT-2 pallet sufficiently high in the bay that negligible amounts of radiation from the beam are reflected from orbiter surfaces into the shuttle payload bay. The array is symmetrically mounted to the pallet along the array long dimension with the pallet at the center. It utilizes a graphite epoxy trusswork support structure. The antenna panels are of SEASAT engineering model design and construction. The antenna array has 7 panels and a 7-way naturally tapered coax corporate feed system. The performance of the system is predicted to exceed 33 db gain, have -15 db sidelobes in the E-plane and even lower in the H-plane, and have and E-plane beamwidth less than 2.2 deg, all within performance specification. The primary support structure is predicted to exceed the specified greater than 25 hertz fundamental frequency, although individual panels will have hertz fundamental frequency.

  5. Tapered GRIN fiber microsensor.

    PubMed

    Beltrán-Mejía, Felipe; Biazoli, Claudecir R; Cordeiro, Cristiano M B

    2014-12-15

    The sensitivity of an optical fiber microsensor based on inter-modal interference can be considerably improved by tapering a short extension of the multimode fiber. In the case of Graded Index fibers with a parabolic refractive index profile, a meridional ray exhibits a sinusoidal path. When these fibers are tapered, the period of the propagated beam decrease down-taper and increase up-taper. We take advantage of this modulation -along with the enhanced overlap between the evanescent field and the external medium- to substantially increase the sensitivity of these devices by tuning the sensor's maximum sensitivity wavelength. Moreover, the extension of this device is reduced by one order of magnitude, making it more propitious for reduced space applications. Numerical and experimental results demonstrate the success and feasibility of this approach.

  6. Analysis of dual-frequency MEMS antenna using H-MRTD method

    NASA Astrophysics Data System (ADS)

    Yu, Wenge; Zhong, Xianxin; Chen, Yu; Wu, Zhengzhong

    2004-10-01

    For applying micro/nano technologies and Micro-Electro-Mechanical System (MEMS) technologies in the Radio Frequency (RF) field to manufacture miniature microstrip antennas. A novel MEMS dual-band patch antenna designed using slot-loaded and short-circuited size-reduction techniques is presented in this paper. By controlling the short-plane width, the two resonant frequencies, f10 and f30, can be significantly reduced and the frequency ratio (f30/f10) is tunable in the range 1.7~2.3. The Haar-Wavelet-Based multiresolution time domain (H-MRTD) with compactly supported scaling function for a full three-dimensional (3-D) wave to Yee's staggered cell is used for modeling and analyzing the antenna for the first time. Associated with practical model, an uniaxial perfectly matched layer (UPML) absorbing boundary conditions was developed, In addition , extending the mathematical formulae to an inhomogenous media. Numerical simulation results are compared with those using the conventional 3-D finite-difference time-domain (FDTD) method and measured. It has been demonstrated that, with this technique, space discretization with only a few cells per wavelength gives accurate results, leading to a reduction of both memory requirement and computation time.

  7. Compact Single-Layer Traveling-Wave Antenna DesignUsing Metamaterial Transmission Lines

    NASA Astrophysics Data System (ADS)

    Alibakhshikenari, Mohammad; Virdee, Bal Singh; Limiti, Ernesto

    2017-12-01

    This paper presents a single-layer traveling-wave antenna (TWA) that is based on composite right/left-handed (CRLH)-metamaterial (MTM) transmission line (TL) structure, which is implemented by using a combination of interdigital capacitors and dual-spiral inductive slots. By embedding dual-spiral inductive slots inside the CRLH MTM-TL results in a compact TWA. Dimensions of the proposed CRLH MTM-TL TWA is 21.5 × 30.0 mm2 or 0.372λ0 × 0.520λ0 at 5.2 GHz (center frequency). The fabricated TWA operates over 1.8-8.6 GHz with a fractional bandwidth greater than 120%, and it exhibits a peak gain and radiation efficiency of 4.2 dBi and 81%, respectively, at 5 GHz. By avoiding the use of lumped components, via-holes or defected ground structures, the proposed TWA design is economic for mass production as well as easy to integrate with wireless communication systems.

  8. Microwave Antennas for Avionics. Lecture Series of the Avionics Panel and the Consultant and Exchange Programme Held in Rome, Italy on 7-8 May 1987; Guenzburg, Germany on 11-12 May 1987 and Ankara, Turkey on 14-15 May 1987.

    DTIC Science & Technology

    1987-04-01

    capabilities. The antennas are mounted to two-dimensional scanning mechanisms (gimbal) which provide fast and accurate motion of the antennas over...important for the ovet—all antenna weight which should be as low as possible to allow fast scanning). The slots in the waveguide walls are fed by the...degree of beam flexibility and the fast reconfigurability required for hopping and scanning beams with TDMA. Ultimately, BFNs are expected to include

  9. Buprenorphine tapering schedule and illicit opioid use

    PubMed Central

    Ling, Walter; Hillhouse, Maureen; Domier, Catherine; Doraimani, Geetha; Hunter, Jeremy; Thomas, Christie; Jenkins, Jessica; Hasson, Albert; Annon, Jeffrey; Saxon, Andrew; Selzer, Jeffrey; Boverman, Joshua; Bilangi, Richard

    2011-01-01

    Aims To compare the effects of a short or long taper schedule after buprenorphine stabilization on participant outcomes as measured by opioid-free urine tests at the end of each taper period. Design This multi-site study sponsored by Clinical Trials Network (CTN, a branch of the US National Institute on Drug Abuse) was conducted from 2003 to 2005 to compare two taper conditions (7 days and 28 days). Data were collected at weekly clinic visits to the end of the taper periods, and at 1-month and 3-month post-taper follow-up visits. Setting Eleven out-patient treatment programs in 10 US cities. Intervention Non-blinded dosing with Suboxone® during the 1-month stabilization phase included 3 weeks of flexible dosing as determined appropriate by the study physicians. A fixed dose was required for the final week before beginning the taper phase. Measurements The percentage of participants in each taper group providing urine samples free of illicit opioids at the end of the taper and at follow-up. Findings At the end of the taper, 44% of the 7-day taper group (n = 255) provided opioid-free urine specimens compared to 30% of the 28-day taper group (n = 261; P = 0.0007). There were no differences at the 1-month and 3-month follow-ups (7-day = 18% and 12%; 28-day = 18% and 13%, 1 month and 3 months, respectively). Conclusion For individuals terminating buprenorphine pharmacotherapy for opioid dependence, there appears to be no advantage in prolonging the duration of taper. PMID:19149822

  10. Student-Led Objective Tutorial (SLOT) in Medical Education.

    PubMed

    Sivagnanam, Gurusamy; Saraswathi, Simansalam; Rajasekaran, Aiyalu

    2006-12-01

    Purpose - To assess an innovative tutoring program named 'Student-Led Objective Tutorial' (SLOT) among undergraduate medical students. Method - The program was conceptualized by the Pharmacology Unit of Faculty of Medicine and Health Sciences, Asian Institute of Medicine Science & Technology (AIMST), Malaysia and implemented in the middle of 2005. A cohort of 246 medical undergraduate students (spread across 5 consecutive batches) participated. Following a brief explanation on the purpose and nature of SLOT, each batch was divided into small groups and was given a reading assignment on 4 previously delivered lecture topics. Each group was asked to prepare 3-5 multiple choice questions (MCQs) of their own in PowerPoint format to be presented, in turns, to the whole class on the day of SLOT. The proceedings were facilitated by 2 lecturers. Student feedback on the efficacy and benefits were assessed through an anonymous self administered questionnaire. Results - About 76% (188) of the students favored SLOT. The acceptance rate of SLOT was higher among males. There was no significant difference between batches in their opinions on whether to pursue SLOT in future. The most prevalent positive comment was that SLOT enhanced learning skills, and the negative comment being, it consumed more time. Conclusions - SLOT is a novel tutorial method which can offset faculty shortage with advantages like enhanced interest among teachers and learners, uniform reach of content, opportunities for group learning, and involvement of visual aids as teaching-learning (T-L) method. SLOT unraveled the students' potential of peer tutoring both inside as well as outside the classroom. Consumer tutors (students) can be tapped as a resource for SLOT for all subjects and courses in healthcare teaching.

  11. Circularly polarized triple band glass shaped monopole patch antenna with metallic reflector for bluetooth & wireless applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jangid, K. G.; Kulhar, V. S.; Choudhary, N.

    This paper presents the design and performance of strip line fed glass shaped monopole patch antenna having with overall size 30mm × 30 mm × 1.59 mm. In the patch; an eight shaped slot and in the ground plane an eight shaped ring are introduced. A metallic ground plane is also introduced at appropriate location beneath the ground plane. The proposed antenna is simulated by applying CST Microwave Studio simulator. Antenna provides circularly polarized radiations, triple broad impedance bandwidth of 203MHz (2.306GHz to 2.510GHz), 42MHz (2.685GHz to 2.757GHz) & GHz (3.63 GHz to 6.05 GHz), high flat gain (close to 5dBi) and good radiationmore » properties in the desired frequency range. This antenna may be a very useful tool for 2.45GHz Bluetooth communication band as well as for 2.4GHz/5.2 GHz /5.8 GHz WLAN bands & 3.7GHz/5.5 GHz Wi-Max bands.« less

  12. Antenna-coupled photon emission from hexagonal boron nitride tunnel junctions.

    PubMed

    Parzefall, M; Bharadwaj, P; Jain, A; Taniguchi, T; Watanabe, K; Novotny, L

    2015-12-01

    The ultrafast conversion of electrical signals to optical signals at the nanoscale is of fundamental interest for data processing, telecommunication and optical interconnects. However, the modulation bandwidths of semiconductor light-emitting diodes are limited by the spontaneous recombination rate of electron-hole pairs, and the footprint of electrically driven ultrafast lasers is too large for practical on-chip integration. A metal-insulator-metal tunnel junction approaches the ultimate size limit of electronic devices and its operating speed is fundamentally limited only by the tunnelling time. Here, we study the conversion of electrons (localized in vertical gold-hexagonal boron nitride-gold tunnel junctions) to free-space photons, mediated by resonant slot antennas. Optical antennas efficiently bridge the size mismatch between nanoscale volumes and far-field radiation and strongly enhance the electron-photon conversion efficiency. We achieve polarized, directional and resonantly enhanced light emission from inelastic electron tunnelling and establish a novel platform for studying the interaction of electrons with strongly localized electromagnetic fields.

  13. Dual-Band Operation of a Microstrip Patch Antenna on a Duroid 5870 Substrate for Ku- and K-Bands

    PubMed Central

    Islam, M. M.; Islam, M. T.; Faruque, M. R. I.

    2013-01-01

    The dual-band operation of a microstrip patch antenna on a Duroid 5870 substrate for Ku- and K-bands is presented. The fabrication of the proposed antenna is performed with slots and a Duroid 5870 dielectric substrate and is excited by a 50 Ω microstrip transmission line. A high-frequency structural simulator (HFSS) is used which is based on the finite element method (FEM) in this research. The measured impedance bandwidth (2 : 1 VSWR) achieved is 1.07 GHz (15.93 GHz–14.86 GHz) on the lower band and 0.94 GHz (20.67–19.73 GHz) on the upper band. A stable omnidirectional radiation pattern is observed in the operating frequency band. The proposed prototype antenna behavior is discussed in terms of the comparisons of the measured and simulated results. PMID:24385878

  14. Dual-band operation of a microstrip patch antenna on a Duroid 5870 substrate for Ku- and K-bands.

    PubMed

    Islam, M M; Islam, M T; Faruque, M R I

    2013-01-01

    The dual-band operation of a microstrip patch antenna on a Duroid 5870 substrate for Ku- and K-bands is presented. The fabrication of the proposed antenna is performed with slots and a Duroid 5870 dielectric substrate and is excited by a 50 Ω microstrip transmission line. A high-frequency structural simulator (HFSS) is used which is based on the finite element method (FEM) in this research. The measured impedance bandwidth (2 : 1 VSWR) achieved is 1.07 GHz (15.93 GHz-14.86 GHz) on the lower band and 0.94 GHz (20.67-19.73 GHz) on the upper band. A stable omnidirectional radiation pattern is observed in the operating frequency band. The proposed prototype antenna behavior is discussed in terms of the comparisons of the measured and simulated results.

  15. Simulation of thin slot spirals and dual circular patch antennas using the finite element method with mixed elements

    NASA Technical Reports Server (NTRS)

    Gong, Jian; Volakis, John L.; Nurnberger, Michael W.

    1995-01-01

    This semi-annual report describes progress up to mid-January 1995. The report contains five sections all dealing with the modeling of spiral and patch antennas recessed in metallic platforms. Of significance is the development of decomposition schemes which separate the different regions of the antenna volume. Substantial effort was devoted to improving the feed model in the context of the finite element method (FEM). Finally, an innovative scheme for truncating finite element meshes is presented.

  16. Monitoring the fabrication of tapered optical fibres

    NASA Astrophysics Data System (ADS)

    Mullaney, K.; Correia, R.; Staines, S. E.; James, S. W.; Tatam, R. P.

    2017-04-01

    A variety of optical methods to enhance the process of making optical fibre tapers are explored. A thermal camera was used to both refine the alignment of the optical components and optimize the laser power profile during the tapering process. The fibre transmission was measured to verify that the tapers had the requisite optical characteristics while the strain experienced by the fibre while tapering was assessed using an optical fibre Bragg grating. Using these techniques, adiabatic tapers were fabricated with a 2% insertion loss.

  17. Balancing Uplink and Downlink under Asymmetric Traffic Environments Using Distributed Receive Antennas

    NASA Astrophysics Data System (ADS)

    Sohn, Illsoo; Lee, Byong Ok; Lee, Kwang Bok

    Recently, multimedia services are increasing with the widespread use of various wireless applications such as web browsers, real-time video, and interactive games, which results in traffic asymmetry between the uplink and downlink. Hence, time division duplex (TDD) systems which provide advantages in efficient bandwidth utilization under asymmetric traffic environments have become one of the most important issues in future mobile cellular systems. It is known that two types of intercell interference, referred to as crossed-slot interference, additionally arise in TDD systems; the performances of the uplink and downlink transmissions are degraded by BS-to-BS crossed-slot interference and MS-to-MS crossed-slot interference, respectively. The resulting performance unbalance between the uplink and downlink makes network deployment severely inefficient. Previous works have proposed intelligent time slot allocation algorithms to mitigate the crossed-slot interference problem. However, they require centralized control, which causes large signaling overhead in the network. In this paper, we propose to change the shape of the cellular structure itself. The conventional cellular structure is easily transformed into the proposed cellular structure with distributed receive antennas (DRAs). We set up statistical Markov chain traffic model and analyze the bit error performances of the conventional cellular structure and proposed cellular structure under asymmetric traffic environments. Numerical results show that the uplink and downlink performances of the proposed cellular structure become balanced with the proper number of DRAs and thus the proposed cellular structure is notably cost-effective in network deployment compared to the conventional cellular structure. As a result, extending the conventional cellular structure into the proposed cellular structure with DRAs is a remarkably cost-effective solution to support asymmetric traffic environments in future mobile cellular

  18. Tapering the sky response for angular power spectrum estimation from low-frequency radio-interferometric data.

    PubMed

    Choudhuri, Samir; Bharadwaj, Somnath; Roy, Nirupam; Ghosh, Abhik; Ali, Sk Saiyad

    2016-06-11

    It is important to correctly subtract point sources from radio-interferometric data in order to measure the power spectrum of diffuse radiation like the Galactic synchrotron or the Epoch of Reionization 21-cm signal. It is computationally very expensive and challenging to image a very large area and accurately subtract all the point sources from the image. The problem is particularly severe at the sidelobes and the outer parts of the main lobe where the antenna response is highly frequency dependent and the calibration also differs from that of the phase centre. Here, we show that it is possible to overcome this problem by tapering the sky response. Using simulated 150 MHz observations, we demonstrate that it is possible to suppress the contribution due to point sources from the outer parts by using the Tapered Gridded Estimator to measure the angular power spectrum C ℓ of the sky signal. We also show from the simulation that this method can self-consistently compute the noise bias and accurately subtract it to provide an unbiased estimation of C ℓ .

  19. Investigation of antenna pattern constraints for passive geosynchronous microwave imaging radiometers

    NASA Technical Reports Server (NTRS)

    Gasiewski, A. J.; Skofronick, G. M.

    1992-01-01

    Progress by investigators at Georgia Tech in defining the requirements for large space antennas for passive microwave Earth imaging systems is reviewed. In order to determine antenna constraints (e.g., the aperture size, illumination taper, and gain uncertainty limits) necessary for the retrieval of geophysical parameters (e.g., rain rate) with adequate spatial resolution and accuracy, a numerical simulation of the passive microwave observation and retrieval process is being developed. Due to the small spatial scale of precipitation and the nonlinear relationships between precipitation parameters (e.g., rain rate, water density profile) and observed brightness temperatures, the retrieval of precipitation parameters are of primary interest in the simulation studies. Major components of the simulation are described as well as progress and plans for completion. The overall goal of providing quantitative assessments of the accuracy of candidate geosynchronous and low-Earth orbiting imaging systems will continue under a separate grant.

  20. Tunable ferrite-based metamaterial structure and its application to a leaky-wave antenna

    NASA Astrophysics Data System (ADS)

    Berneti, Elahe Kargar; Ghalibafan, Javad

    2018-06-01

    In this paper, a new magnetically tunable substrate integrated waveguide (SIW) with composite right/left-handed (CRLH) response is presented. The structure consists of an array of interdigital slots on the upper wall of a SIW line with normally magnetized ferrite substrate. The electromagnetic properties of this structure are studied and the dispersion diagram is considered. The simulated results show that the proposed structure has a separate right- and left-handed leakage frequency region which can be simply controlled by varying the applied ferrite magnetic bias field. As an application, this leakage frequency band is exploited to build a new leaky-wave antenna (LWA) which its radiation pattern can be independently scanned by varying the frequency or the magnetic bias field. As another advantage, there is not any mechanical switch or electrical tuning chip in the proposed leaky-wave antenna.

  1. Design and Development of Aerogel-Based Antennas for Aerospace Applications: A Final Report to the NARI Seedling

    NASA Technical Reports Server (NTRS)

    Meador, Mary Ann B.; Miranda, Felix A.

    2014-01-01

    As highly porous solids possessing low density and low dielectric permittivity combined with good mechanical properties, polyimide (PI) aerogels offer great promise as an enabling technology for lightweight aircraft antenna systems. While they have been aggressively explored for thermal insulation, barely any effort has been made to leverage these materials for antennas or other applications that take advantage of their aforementioned attributes. In Phase I of the NARI Seedling Project, we fabricated PI aerogels with properties tailored to enable new antenna concepts with performance characteristics (wide bandwidth and high gain) and material properties (low density, environmental stability, and robustness) superior to the state of practice (SOP). We characterized electromagnetic properties, including permittivity, reflectivity, and propagation losses for the aerogels. Simple, prototype planar printed circuit patch antennas from down-selected aerogel formulations were fabricated by molding the aerogels to net shapes and by gold-metalizing the pattern onto the templates via electron beam evaporation in a clean room environment. These aerogel based antennas were benchmarked against current antenna SOP, and exhibited both broader bandwidth and comparable or higher gain performance at appreciably lower mass. Phase II focused on the success of the Phase I results pushing the PI aerogel based antenna technology further by exploring alternative antenna design (i.e., slot coupled antennas) and by examining other techniques for fabricating the antennas including ink jet printing with the goal of optimizing antenna performance and simplifying production. We also examined new aerogel formulations with better moisture and solvent resistance to survive processing conditions. In addition, we investigated more complex antenna designs including passive phased arrays such as 2x4 and 4x8 element arrays to assess the scalability of the aerogel antenna concept. Furthermore, we

  2. Highly sensitive and selective sugar detection by terahertz nano-antennas

    NASA Astrophysics Data System (ADS)

    Lee, Dong-Kyu; Kang, Ji-Hun; Lee, Jun-Seok; Kim, Hyo-Seok; Kim, Chulki; Hun Kim, Jae; Lee, Taikjin; Son, Joo-Hiuk; Park, Q.-Han; Seo, Minah

    2015-10-01

    Molecular recognition and discrimination of carbohydrates are important because carbohydrates perform essential roles in most living organisms for energy metabolism and cell-to-cell communication. Nevertheless, it is difficult to identify or distinguish various carbohydrate molecules owing to the lack of a significant distinction in the physical or chemical characteristics. Although there has been considerable effort to develop a sensing platform for individual carbohydrates selectively using chemical receptors or an ensemble array, their detection and discrimination limits have been as high in the millimolar concentration range. Here we show a highly sensitive and selective detection method for the discrimination of carbohydrate molecules using nano-slot-antenna array-based sensing chips which operate in the terahertz (THz) frequency range (0.5-2.5 THz). This THz metamaterial sensing tool recognizes various types of carbohydrate molecules over a wide range of molecular concentrations. Strongly localized and enhanced terahertz transmission by nano-antennas can effectively increase the molecular absorption cross sections, thereby enabling the detection of these molecules even at low concentrations. We verified the performance of nano-antenna sensing chip by both THz spectra and images of transmittance. Screening and identification of various carbohydrates can be applied to test even real market beverages with a high sensitivity and selectivity.

  3. Highly sensitive and selective sugar detection by terahertz nano-antennas

    PubMed Central

    Lee, Dong-Kyu; Kang, Ji-Hun; Lee, Jun-Seok; Kim, Hyo-Seok; Kim, Chulki; Hun Kim, Jae; Lee, Taikjin; Son, Joo-Hiuk; Park, Q-Han; Seo, Minah

    2015-01-01

    Molecular recognition and discrimination of carbohydrates are important because carbohydrates perform essential roles in most living organisms for energy metabolism and cell-to-cell communication. Nevertheless, it is difficult to identify or distinguish various carbohydrate molecules owing to the lack of a significant distinction in the physical or chemical characteristics. Although there has been considerable effort to develop a sensing platform for individual carbohydrates selectively using chemical receptors or an ensemble array, their detection and discrimination limits have been as high in the millimolar concentration range. Here we show a highly sensitive and selective detection method for the discrimination of carbohydrate molecules using nano-slot-antenna array-based sensing chips which operate in the terahertz (THz) frequency range (0.5–2.5 THz). This THz metamaterial sensing tool recognizes various types of carbohydrate molecules over a wide range of molecular concentrations. Strongly localized and enhanced terahertz transmission by nano-antennas can effectively increase the molecular absorption cross sections, thereby enabling the detection of these molecules even at low concentrations. We verified the performance of nano-antenna sensing chip by both THz spectra and images of transmittance. Screening and identification of various carbohydrates can be applied to test even real market beverages with a high sensitivity and selectivity. PMID:26494203

  4. Tapering Practices of Croatian Open-Class Powerlifting Champions.

    PubMed

    Grgic, Jozo; Mikulic, Pavle

    2017-09-01

    Grgic, J and Mikulic, P. Tapering practices of Croatian open-class powerlifting champions. J Strength Cond Res 31(9): 2371-2378, 2017-The aim of this study was to explore tapering practices among 10 Croatian open-class powerlifting champions (mean ± SD: age 29.2 ± 3.2 years; Wilks coefficient 355.1 ± 54.8). The athletes were interviewed about their tapering practices using a semi-structured interview after which the audio content was transcribed. The athletes reported decreasing training volume during the taper by 50.5 ± 11.7% using a step type or an exponential type of taper with a fast decay. Training intensity was maintained or increased during the taper, and it reached its highest values 8 ± 3 days before the competition. Training frequency was reduced or maintained during the taper. The final week included a reduction in training frequency by 47.9 ± 17.5% with the last training session performed 3 ± 1 days before the competition. The participants typically stated that the main reasons for conducting the taper were maintaining strength and reducing the amount of fatigue. They also stated that (a) the taper was structured identically for the squat, bench press, and the deadlift; (b) the training during the taper was highly specific, the assistance exercises were removed, and the same equipment was used as during competition; (c) the source of information for tapering was their coach, and training fluctuated based on the coach's feedback; and (d) nutrition, foam rolling, static stretching, and massage were all given extra attention during the taper. These results may aid athletes and coaches in strength sports in terms of the optimization of tapering variables.

  5. Silicon-based horizontal nanoplasmonic slot waveguides for on-chip integration.

    PubMed

    Zhu, Shiyang; Liow, T Y; Lo, G Q; Kwong, D L

    2011-04-25

    Horizontal metal/insulator/Si/insulator/metal nanoplasmonic slot waveguide (PWG), which is inserted in a conventional Si wire waveguide, is fabricated using the standard Si-CMOS technology. A thin insulator between the metal and the Si core plays a key role: it not only increases the propagation distance as the theoretical prediction, but also prevents metal diffusion and/or metal-Si reaction. Cu-PWGs with the Si core width of ~134-21 nm and ~12-nm-thick SiO2 on each side exhibit a relatively low propagation loss of ~0.37-0.63 dB/µm around the telecommunication wavelength of 1550 nm, which is ~2.6 times smaller than the Al-counterparts. A simple tapered coupler can provide an effective coupling between the PWG and the conventional Si wire waveguide. The coupling efficiency as high as ~0.1-0.4 dB per facet is measured. The PWG allows a sharp bending. The pure bending loss of a Cu-PWG direct 90° bend is measured to be ~0.6-1.0 dB. These results indicate the potential for seamless integration of various functional nanoplasmonic devices in existing Si electronic photonic integrated circuits (Si-EPICs).

  6. Tailoring the dispersion behavior of silicon nanophotonic slot waveguides.

    PubMed

    Mas, Sara; Caraquitena, José; Galán, José V; Sanchis, Pablo; Martí, Javier

    2010-09-27

    We investigate the chromatic dispersion properties of silicon channel slot waveguides in a broad spectral region centered at ~1.5 μm. The variation of the dispersion profile as a function of the slot fill factor, i.e., the ratio between the slot and waveguide widths, is analyzed. Symmetric as well as asymmetric geometries are considered. In general, two different dispersion regimes are identified. Furthermore, our analysis shows that the zero and/or the peak dispersion wavelengths can be tailored by a careful control of the geometrical waveguide parameters including the cross-sectional area, the slot fill factor, and the slot asymmetry degree.

  7. Subreflector extension for improved efficiencies in Cassegrain antennas - GTD/PO analysis. [Geometrical Theory of Diffraction/Physical Optics

    NASA Technical Reports Server (NTRS)

    Rahmat-Samii, Yahya

    1986-01-01

    Both offset and symmetric Cassegrain reflector antennas are used in satellite and ground communication systems. It is known that the subreflector diffraction can degrade the performance of these reflectors. A geometrical theory of diffraction/physical optics analysis technique is used to investigate the effects of the extended subreflector, beyond its optical rim, on the reflector efficiency and far-field patterns. Representative numerical results are shown for an offset Cassegrain reflector antenna with different feed illumination tapers and subreflector extensions. It is observed that for subreflector extensions as small as one wavelength, noticeable improvements in the overall efficiencies can be expected. Useful design data are generated for the efficiency curves and far-field patterns.

  8. Comparative evaluation of apically extruded debris with V-Taper, ProTaper Next, and the Self-adjusting File systems.

    PubMed

    Vyavahare, Nishant K; Raghavendra, Srinidhi Surya; Desai, Niranjan N

    2016-01-01

    Complete cleaning of the root canal is the goal for ensuring success in endodontics. Removal of debris plays an important role in achieving this goal. In spite of advancements in instrument design, apical extrusion of debris remains a source of inflammation in the periradicular region. To comparatively evaluate the amount of apically extruded debris with V-Taper, ProTaper Next, and the self-adjusting File (SAF) system. Sixty-four extracted human mandibular teeth with straight root canals were taken. Access openings were done and working length determined. The samples were randomly divided into three groups: Group I - V-Taper files (n = 20), Group II - ProTaper Next (n = 20), Group III - SAF (n = 20). Biomechanical preparation was completed and the debris collected in vials to be quantitatively determined. The data obtained was statistically analyzed using ANOVA and post hoc Tukey's test. All the specimens showed apical debris extrusion. SAF showed significantly less debris extrusion compared to V-Taper and ProTaper Next (P < 0.001). Among Groups I and II, ProTaper Next showed lesser debris extrusion as compared to V-Taper, but it was not significant (P = 0.124). The SAF showed least amount of apical debris extrusion when compared to newer rotary endodontic instruments. This indicates that the incidence of inter-treatment flare-ups due to debris extrusion would be less with the SAF.

  9. Novel Dynamic Framed-Slotted ALOHA Using Litmus Slots in RFID Systems

    NASA Astrophysics Data System (ADS)

    Yim, Soon-Bin; Park, Jongho; Lee, Tae-Jin

    Dynamic Framed Slotted ALOHA (DFSA) is one of the most popular protocols to resolve tag collisions in RFID systems. In DFSA, it is widely known that the optimal performance is achieved when the frame size is equal to the number of tags. So, a reader dynamically adjusts the next frame size according to the current number of tags. Thus it is important to estimate the number of tags exactly. In this paper, we propose a novel tag estimation and identification method using litmus (test) slots for DFSA. We compare the performance of the proposed method with those of existing methods by analysis. We conduct simulations and show that our scheme improves the speed of tag identification.

  10. Slotted Polyimide-Aerogel-Filled-Waveguide Arrays

    NASA Technical Reports Server (NTRS)

    Rodriguez-Solis, Rafael A.; Pacheco, Hector L.; Miranda, Felix A.; Meador, Mary Ann B.

    2013-01-01

    Polyimide aerogels were considered to serve as a filling for millimeter-wave waveguides. While these waveguides present a slightly higher loss than hollow waveguides, they have less losses than Duroid substrate integrated waveguides (less than 0.15 dB at Ka-band, in a 20 mm section), and exhibit an order of magnitude of mass reduction when compared to commercial waveguides. A Ka-band slotted aerogel-filled-waveguide array was designed, which provided the same gain (9 dBi) as its standard waveguide counterpart, and a slotted aerogel-filled-waveguide array using folded-slots was designed for comparison, obtaining a gain of 9 dB and a bandwidth of 590 MHz.

  11. Supercontinuum generation in a tapered tellurite microstructured optical fiber

    NASA Astrophysics Data System (ADS)

    Yan, X.; Ohishi, Y.

    2014-07-01

    Supercontinuum generation (SCG) was investigated in tapered tellurite microstructured optical fibers (MOFs) for various taper profiles. We emphasize on the procedure for finding the dispersion profile that achieve the best width of the SC spectra. An enhancement of the SCG is achieved by varying the taper waist diameter along its length in a carefully designed, and an optimal degree of tapering is found to exist for tapers with an axially uniform waist. We also show the XFROG spectrograms of the pulses propagating through different tapered fibers, confirming the optimized taper conditions.

  12. Tapered undulator for SASE FELs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fawley, William M.; Huang, Zhirong; Kim, Kwang-Je

    We discuss the use of tapered undulators to enhance the performance of free-electron lasers (FELs) based upon self-amplified spontaneous emission (SASE), where the radiation tends to have a relatively broad bandwidth, limited temporal phase coherence, and large amplitude fluctuations. Using the polychromatic FEL simulation code GINGER, we numerically demonstrate the effectiveness of a tapered undulator for parameters corresponding to the existing Argonne low-energy undulator test line (LEUTL) FEL. We also study possible tapering options for proposed x-ray FELs such as the Linac Coherent Light Source (LCLS).

  13. Comparative evaluation of apically extruded debris with V-Taper, ProTaper Next, and the Self-adjusting File systems

    PubMed Central

    Vyavahare, Nishant K.; Raghavendra, Srinidhi Surya; Desai, Niranjan N.

    2016-01-01

    Background: Complete cleaning of the root canal is the goal for ensuring success in endodontics. Removal of debris plays an important role in achieving this goal. In spite of advancements in instrument design, apical extrusion of debris remains a source of inflammation in the periradicular region. Aim: To comparatively evaluate the amount of apically extruded debris with V-Taper, ProTaper Next, and the self-adjusting File (SAF) system. Materials and Methods: Sixty-four extracted human mandibular teeth with straight root canals were taken. Access openings were done and working length determined. The samples were randomly divided into three groups: Group I - V-Taper files (n = 20), Group II - ProTaper Next (n = 20), Group III - SAF (n = 20). Biomechanical preparation was completed and the debris collected in vials to be quantitatively determined. The data obtained was statistically analyzed using ANOVA and post hoc Tukey's test. Results: All the specimens showed apical debris extrusion. SAF showed significantly less debris extrusion compared to V-Taper and ProTaper Next (P < 0.001). Among Groups I and II, ProTaper Next showed lesser debris extrusion as compared to V-Taper, but it was not significant (P = 0.124). Conclusion: The SAF showed least amount of apical debris extrusion when compared to newer rotary endodontic instruments. This indicates that the incidence of inter-treatment flare-ups due to debris extrusion would be less with the SAF. PMID:27217636

  14. Tapered enlarged ends in multimode optical fibers.

    PubMed

    Brenci, M; Falciai, R; Scheggi, A M

    1982-01-15

    Radiation characteristics of multimode fibers with enlarged tapers were investigated on a number of samples obtained by varying the fiber drawing speed with a given law corresponding to a prefixed taper profile. The characterization of the fibers was made by near- and far-field intensity pattern measurements as well as by measuring the losses introduced by the taper. With a suitable choice of parameters the taper constitutes a reasonable low-loss component useful, for example, for either efficient coupling to large-spot high-power density sources or connecting fibers of different sizes. Conversely at the exit of the fiber the taper can be used for beam shaping which is of interest for mechanical or surgical applications.

  15. Metasurface Reflector (MSR) Loading for High Performance Small Microstrip Antenna Design

    PubMed Central

    Ahsan, Md Rezwanul; Islam, Mohammad Tariqul; Ullah, Mohammad Habib; Singh, Mandeep Jit; Ali, Mohd Tarmizi

    2015-01-01

    A meander stripline feed multiband microstrip antenna loaded with metasurface reflector (MSR) structure has been designed, analyzed and constructed that offers the wireless communication services for UHF/microwave RFID and WLAN/WiMAX applications. The proposed MSR assimilated antenna comprises planar straight forward design of circular shaped radiator with horizontal slots on it and 2D metasurface formed by the periodic square metallic element that resembles the behavior of metamaterials. A custom made high dielectric bio-plastic substrate (ε r = 15) is used for fabricating the prototype of the MSR embedded planar monopole antenna. The details of the design progress through numerical simulations and experimental results are presented and discussed accordingly. The measured impedance bandwidth, radiation patterns and gain of the proposed MSR integrated antenna are compared with the obtained results from numerical simulation, and a good compliance can be observed between them. The investigation shows that utilization of MSR structure has significantly broadened the -10dB impedance bandwidth than the conventional patch antenna: from 540 to 632 MHz (17%), 467 to 606 MHz (29%) and 758 MHz to 1062 MHz (40%) for three distinct operating bands centered at 0.9, 3.5 and 5.5 GHz. Additionally, due to the assimilation of MSR, the overall realized gains have been upgraded to a higher value of 3.62 dBi, 6.09 dBi and 8.6 dBi for lower, middle and upper frequency band respectively. The measured radiation patterns, impedance bandwidths (S11<-10 dB) and gains from the MSR loaded antenna prototype exhibit reasonable characteristics that can satisfy the requirements of UHF/microwave (5.8 GHz) RFID, WiMAX (3.5/5.5 GHz) and WLAN (5.2/5.8 GHz) applications. PMID:26018795

  16. Metasurface Reflector (MSR) Loading for High Performance Small Microstrip Antenna Design.

    PubMed

    Ahsan, Md Rezwanul; Islam, Mohammad Tariqul; Ullah, Mohammad Habib; Singh, Mandeep Jit; Ali, Mohd Tarmizi

    2015-01-01

    A meander stripline feed multiband microstrip antenna loaded with metasurface reflector (MSR) structure has been designed, analyzed and constructed that offers the wireless communication services for UHF/microwave RFID and WLAN/WiMAX applications. The proposed MSR assimilated antenna comprises planar straight forward design of circular shaped radiator with horizontal slots on it and 2D metasurface formed by the periodic square metallic element that resembles the behavior of metamaterials. A custom made high dielectric bio-plastic substrate (εr = 15) is used for fabricating the prototype of the MSR embedded planar monopole antenna. The details of the design progress through numerical simulations and experimental results are presented and discussed accordingly. The measured impedance bandwidth, radiation patterns and gain of the proposed MSR integrated antenna are compared with the obtained results from numerical simulation, and a good compliance can be observed between them. The investigation shows that utilization of MSR structure has significantly broadened the -10 dB impedance bandwidth than the conventional patch antenna: from 540 to 632 MHz (17%), 467 to 606 MHz (29%) and 758 MHz to 1062 MHz (40%) for three distinct operating bands centered at 0.9, 3.5 and 5.5 GHz. Additionally, due to the assimilation of MSR, the overall realized gains have been upgraded to a higher value of 3.62 dBi, 6.09 dBi and 8.6 dBi for lower, middle and upper frequency band respectively. The measured radiation patterns, impedance bandwidths (S11<-10 dB) and gains from the MSR loaded antenna prototype exhibit reasonable characteristics that can satisfy the requirements of UHF/microwave (5.8 GHz) RFID, WiMAX (3.5/5.5 GHz) and WLAN (5.2/5.8 GHz) applications.

  17. Energy dissipation of slot-type flip buckets

    NASA Astrophysics Data System (ADS)

    Wu, Jian-hua; Li, Shu-fang; Ma, Fei

    2018-03-01

    The energy dissipation is a key index in the evaluation of energy dissipation elements. In the present work, a flip bucket with a slot, called the slot-type flip bucket, is theoretically and experimentally investigated by the method of estimating the energy dissipation. The theoretical analysis shows that, in order to have the energy dissipation, it is necessary to determine the sequent flow depth h 1 and the flow speed V 1 at the corresponding position through the flow depth h 2 after the hydraulic jump. The relative flow depth h 2 / h 。 is a function of the approach flow Froude number Fr 。, the relative slot width b/B 。, and the relative slot angle θ/β. The expression for estimating the energy dissipation is developed, and the maximum error is not larger than 9.21%.

  18. Energy dissipation of slot-type flip buckets

    NASA Astrophysics Data System (ADS)

    Wu, Jian-hua; Li, Shu-fang; Ma, Fei

    2018-04-01

    The energy dissipation is a key index in the evaluation of energy dissipation elements. In the present work, a flip bucket with a slot, called the slot-type flip bucket, is theoretically and experimentally investigated by the method of estimating the energy dissipation. The theoretical analysis shows that, in order to have the energy dissipation, it is necessary to determine the sequent flow depth h 1 and the flow speed V 1 at the corresponding position through the flow depth h 2 after the hydraulic jump. The relative flow depth h 2 / h o is a function of the approach flow Froude number Fr o, the relative slot width b/ B o, and the relative slot angle θ/ β. The expression for estimating the energy dissipation is developed, and the maximum error is not larger than 9.21%.

  19. Dual band monopole antenna for WLAN 2.4/5.2/5.8 with truncated ground

    NASA Astrophysics Data System (ADS)

    Chandan, Bharti, Gagandeep; Srivastava, Toolika; Rai, B. S.

    2018-04-01

    A dual-band mono-pole antenna is proposed for Wireless LAN applications. The WLAN band is obtained by cutting a rectangular ring and a circular slot in the radiating patch. The overall dimension of antenna is 17×16.5×0.8 mmł. The frequency bands obtained are 2.38-2.9 GHz and 4.7-6.1 GHz with ≤ - 10 dB return loss which covers WLAN 2.4/5.2/5.8 GHz bands. The behavior of the antenna is analyzed in terms of radiation pattern, peak realized gain, radiation efficiency and surface current density. It has dipole like radiation pattern with gain of 2.33 - 4.31 dBi for lower frequency band and 4.29 - 5.16 dBi for upper frequency band with radiation efficiency of 95-98% and 93-96% respectively. The parametric analysis is carried out to understand the consequence of the various shape parameters and to get an optimum design. The simulation and measurement gave the results having close agreement.

  20. Controlling temperature dependence of silicon waveguide using slot structure.

    PubMed

    Lee, Jong-Moo; Kim, Duk-Jun; Kim, Gwan-Ha; Kwon, O-Kyun; Kim, Kap-Joong; Kim, Gyungock

    2008-02-04

    We show that the temperature dependence of a silicon waveguide can be controlled well by using a slot waveguide structure filled with a polymer material. Without a slot, the amount of temperature-dependent wavelength shift for TE mode of a silicon waveguide ring resonator is very slightly reduced from 77 pm/ degrees C to 66 pm/ degrees C by using a polymer (WIR30-490) upper cladding instead of air upper cladding. With a slot filled with the same polymer, however, the reduction of the temperature dependence is improved by a pronounced amount and can be controlled down to -2 pm/ degrees C by adjusting several variables of the slot structure, such as the width of the slot between the pair of silicon wires, the width of the silicon wire pair, and the height of the silicon slab in our experiment. This measurement proves that a reduction in temperature dependence can be improved about 8 times more by using the slot structure.

  1. Fully suspended slot waveguide platform

    NASA Astrophysics Data System (ADS)

    Zhou, Wen; Cheng, Zhenzhou; Wu, Xinru; Sun, Xiankai; Tsang, Hon Ki

    2018-02-01

    A fully suspended slot waveguide (FSSWG) platform, including straight slot waveguides, 90° bends, high-Q racetrack resonators, and strip-to-slot mode converters, is demonstrated for broadband and low-loss operation in the mid-infrared spectral region. The proposed FSSWG platform has inherent merits of a broad spectral range of transparency which is limited only by the absorption of silicon, strong light-analyte interaction, good mechanical stability, and single lithography step fabrication process. By using asymmetric FSSWGs, the propagation loss, bending loss, and intrinsic optical Q factor are demonstrated to be 2.8 dB/cm, 0.15 dB/90°, and 12 600, respectively. The average conversion efficiency of a mode converter is 95.4% over a bandwidth of 170 nm and 97.0% at 2231 nm. The FSSWG platform would be promising for a long-range and cavity-enhanced light-analyte interaction.

  2. 2D constant-loss taper for mode conversion

    NASA Astrophysics Data System (ADS)

    Horth, Alexandre; Kashyap, Raman; Quitoriano, Nathaniel J.

    2015-03-01

    Proposed in this manuscript is a novel taper geometry, the constant-loss taper (CLT). This geometry is derived with 1D slabs of silicon embedded in silicon dioxide using coupled-mode theory (CMT). The efficiency of the CLT is compared to both linear and parabolic tapers using CMT and 2D finite-difference time-domain simulations. It is shown that over a short 2D, 4.45 μm long taper the CLT's mode conversion efficiency is ~90% which is 10% and 18% more efficient than a 2D parabolic or linear taper, respectively.

  3. 49 CFR 236.809 - Signal, slotted mechanical.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Signal, slotted mechanical. 236.809 Section 236.809 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD... § 236.809 Signal, slotted mechanical. A mechanically operated signal with an electromagnetic device...

  4. Soliton propagation in tapered silicon core fibers.

    PubMed

    Peacock, Anna C

    2010-11-01

    Numerical simulations are used to investigate soliton-like propagation in tapered silicon core optical fibers. The simulations are based on a realistic tapered structure with nanoscale core dimensions and a decreasing anomalous dispersion profile to compensate for the effects of linear and nonlinear loss. An intensity misfit parameter is used to establish the optimum taper dimensions that preserve the pulse shape while reducing temporal broadening. Soliton formation from Gaussian input pulses is also observed--further evidence of the potential for tapered silicon fibers to find use in a range of signal processing applications.

  5. Optimal slot dimension for skirt support structure of coke drums

    NASA Astrophysics Data System (ADS)

    Wang, Edward; Xia, Zihui

    2018-03-01

    The skirt-to-shell junction weld on coke drums is susceptible to fatigue failure due to severe thermal cyclic stresses. One method to decrease junction stress is to add slots near the top of the skirt, thereby reducing the local stiffness close to the weld. The most common skirt slot design is thin relative to its circumferential spacing. A new slot design, which is significantly wider, is proposed. In this study, thermal-mechanical elastoplastic 3-D finite element models of coke drums are created to analyze the effect of different skirt designs on the stress/strain field near the shell-to-skirt junction weld, as well as any other critical stress locations in the overall skirt design. The results confirm that the inclusion of the conventional slot design effectively reduces stress in the junction weld. However, it has also been found that the critical stress location migrates from the shell-to-skirt junction weld to the slot ends. A method is used to estimate the fatigue life near the critical areas of each skirt slot design. It is found that wider skirt slots provide a significant improvement on fatigue life in the weld and slot area.

  6. Calculated shape dependence of electromagnetic field in tip-enhanced Raman scattering by using a monopole antenna model

    NASA Astrophysics Data System (ADS)

    Kitahama, Yasutaka; Itoh, Tamitake; Suzuki, Toshiaki

    2018-05-01

    To evaluate the shape of an Ag tip with regard to tip-enhanced Raman scattering (TERS) signal, the enhanced electromagnetic (EM) field and scattering spectrum, arising from surface plasmon resonance at the apex of the tip, were calculated using a finite-difference time domain (FDTD) method. In the calculated forward scattering spectra from the smooth Ag tip, the band appeared within the visible region, similar to the experimental results and calculation for a corrugated Ag cone. In the FDTD calculation of TERS, the Ag tip acting as a monopole antenna was adopted by insertion of a perfect electric conductor between the root of the tip and a top boundary surface of the calculation space. As a result, the EM field was only enhanced at the apex. The shape dependence i.e. the EM field calculated at the apex with various curvatures on the different tapered tips, obtained using the monopole antenna model, was different from that simulated using a conventional dipole antenna model.

  7. Downstream influence of swept slot injection in hypersonic turbulent flow

    NASA Technical Reports Server (NTRS)

    Hefner, J. N.; Cary, A. M., Jr.; Bushnell, D. B.

    1977-01-01

    Results of an experimental and numerical investigation of tangential swept slot injection into a thick turbulent boundary layer at Mach 6 are presented. Film cooling effectiveness, skin friction, and flow structure downstream of the swept slot injection were investigated. The data were compared with that for unswept slots, and it was found that cooling effectiveness and skin friction reductions are not significantly affected by sweeping the slot.

  8. Bending stiffness, torsional stability, and insertion force of cementless femoral stems.

    PubMed

    Incavo, S J; Johnson, C C; Churchill, D L; Beynnon, B D

    2001-04-01

    In cementless total hip arthroplasty, increased femoral stem flexibility and decreased fracture propensity are desirable characteristics. The slotting and tapering of the stem have been introduced to achieve this. These features should not, however, be allowed to interfere with the ability of the distal stem to provide initial mechanical stability, especially under rotation. This study was done to investigate the ability of slotted and tapered stem designs to reduce stiffness and insertion force while still maintaining adequate torsional strength. The torsional strength, maximum insertion force, and insertional work of straight, slotted, and taper stems were measured by inserting each type into rigid polyurethane foam and torque testing to failure. Bending stiffness of each stem design was calculated using numerical methods. When compared to a straight stem, a unislot stem has similar torsional strength, maximum insertional force, and work of insertion. The bending stiffness is decreased by 19% to 82% depending on the bending direction. A trislot design decreased torque strength by 29%, maximal insertion force by 36%, and work by 11%. Bending stiffness was decreased by 74% and was not dependent on bending direction. A 0.5-mm taper decreased torque strength by 11% and insertional work by 14%. No difference was seen in maximum insertional force. We conclude that the design features studied (slots and taper) are effective in decreasing stem stiffness and reducing fracture propensity.

  9. Rectangular-cladding silicon slot waveguide with improved nonlinear performance

    NASA Astrophysics Data System (ADS)

    Huang, Zengzhi; Huang, Qingzhong; Wang, Yi; Xia, Jinsong

    2018-04-01

    Silicon slot waveguides have great potential in hybrid silicon integration to realize nonlinear optical applications. We propose a rectangular-cladding hybrid silicon slot waveguide. Simulation result shows that, with a rectangular-cladding, the slot waveguide can be formed by narrower silicon strips, so the two-photon absorption (TPA) loss in silicon is decreased. When the cladding material is a nonlinear polymer, the calculated TPA figure of merit (FOMTPA) is 4.4, close to the value of bulk nonlinear polymer of 5.0. This value confirms the good nonlinear performance of rectangular-cladding silicon slot waveguides.

  10. 49 CFR 236.809 - Signal, slotted mechanical.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 4 2011-10-01 2011-10-01 false Signal, slotted mechanical. 236.809 Section 236..., INSPECTION, MAINTENANCE, AND REPAIR OF SIGNAL AND TRAIN CONTROL SYSTEMS, DEVICES, AND APPLIANCES Definitions § 236.809 Signal, slotted mechanical. A mechanically operated signal with an electromagnetic device...

  11. 49 CFR 236.809 - Signal, slotted mechanical.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 4 2012-10-01 2012-10-01 false Signal, slotted mechanical. 236.809 Section 236..., INSPECTION, MAINTENANCE, AND REPAIR OF SIGNAL AND TRAIN CONTROL SYSTEMS, DEVICES, AND APPLIANCES Definitions § 236.809 Signal, slotted mechanical. A mechanically operated signal with an electromagnetic device...

  12. 49 CFR 236.809 - Signal, slotted mechanical.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 4 2013-10-01 2013-10-01 false Signal, slotted mechanical. 236.809 Section 236..., INSPECTION, MAINTENANCE, AND REPAIR OF SIGNAL AND TRAIN CONTROL SYSTEMS, DEVICES, AND APPLIANCES Definitions § 236.809 Signal, slotted mechanical. A mechanically operated signal with an electromagnetic device...

  13. 49 CFR 236.809 - Signal, slotted mechanical.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 4 2014-10-01 2014-10-01 false Signal, slotted mechanical. 236.809 Section 236..., INSPECTION, MAINTENANCE, AND REPAIR OF SIGNAL AND TRAIN CONTROL SYSTEMS, DEVICES, AND APPLIANCES Definitions § 236.809 Signal, slotted mechanical. A mechanically operated signal with an electromagnetic device...

  14. Slot Optimization Design of Induction Motor for Electric Vehicle

    NASA Astrophysics Data System (ADS)

    Shen, Yiming; Zhu, Changqing; Wang, Xiuhe

    2018-01-01

    Slot design of induction motor has a great influence on its performance. The RMxprt module based on magnetic circuit method can be used to analyze the influence of rotor slot type on motor characteristics and optimize slot parameters. In this paper, the authors take an induction motor of electric vehicle for a typical example. The first step of the design is to optimize the rotor slot by RMxprt, and then compare the main performance of the motor before and after the optimization through Ansoft Maxwell 2D. After that, the combination of optimum slot type and the optimum parameters are obtained. The results show that the power factor and the starting torque of the optimized motor have been improved significantly. Furthermore, the electric vehicle works at a better running status after the optimization.

  15. Tapering strategies in elite British endurance runners.

    PubMed

    Spilsbury, Kate L; Fudge, Barry W; Ingham, Stephen A; Faulkner, Steve H; Nimmo, Myra A

    2015-01-01

    The aim of the study was to explore pre-competition training practices of elite endurance runners. Training details from elite British middle distance (MD; 800 m and 1500 m), long distance (LD; 3000 m steeplechase to 10,000 m) and marathon (MAR) runners were collected by survey for 7 days in a regular training (RT) phase and throughout a pre-competition taper. Taper duration was [median (interquartile range)] 6 (3) days in MD, 6 (1) days in LD and 14 (8) days in MAR runners. Continuous running volume was reduced to 70 (16)%, 71 (24)% and 53 (12)% of regular levels in MD, LD and MAR runners, respectively (P < 0.05). Interval running volume was reduced compared to regular training (MD; 53 (45)%, LD; 67 (23)%, MAR; 64 (34)%, P < 0.05). During tapering, the peak interval training intensity was above race speed in LD and MAR runners (112 (27)% and 114 (3)%, respectively, P < 0.05), but not different in MD (100 (2)%). Higher weekly continuous running volume and frequency in RT were associated with greater corresponding reductions during the taper (R = -0.70 and R = -0.63, respectively, both P < 0.05). Running intensity during RT was positively associated with taper running intensity (continuous intensity; R = 0.97 and interval intensity; R = 0.81, both P < 0.05). Algorithms were generated to predict and potentially prescribe taper content based on the RT of elite runners. In conclusion, training undertaken prior to the taper in elite endurance runners is predictive of the tapering strategy implemented before competition.

  16. Predictors of return rate discrimination in slot machine play.

    PubMed

    Coates, Ewan; Blaszczynski, Alex

    2014-09-01

    The purpose of this study was to investigate the extent to which accurate estimates of payback percentages and volatility combined with prior learning, enabled players to successfully discriminate between multi-line/multi-credit slot machines that provided differing rates of reinforcement. The aim was to determine if the capacity to discriminate structural characteristics of gaming machines influenced player choices in selecting 'favourite' slot machines. Slot machine gambling history, gambling beliefs and knowledge, impulsivity, illusions of control, and problem solving style were assessed in a sample of 48 first year undergraduate psychology students. Participants were subsequently exposed to a choice paradigm where they could freely select to play either of two concurrently presented PC-simulated slot machines programmed to randomly differ in expected player return rates (payback percentage) and win frequency (volatility). Results suggest that prior learning and cognitions (particularly gambler's fallacy) but not payback, were major contributors to the ability of a player to discriminate volatility between slot machines. Participants displayed a general tendency to discriminate payback, but counter-intuitively placed more bets on the slot machine with lower payback percentage rates.

  17. Integrated Antenna/Solar Array Cell (IA/SAC) System for Flexible Access Communications

    NASA Technical Reports Server (NTRS)

    Lee, Ricard Q.; Clark, Eric B.; Pal, Anna Maria T.; Wilt, David M.; Mueller, Carl H.

    2004-01-01

    Present satellite communications systems normally use separate solar cells and antennas. Since solar cells generally account for the largest surface area of the spacecraft, co-locating the antenna and solar cells on the same substrate opens the possibility for a number of data-rate-enhancing communications link architecture that would have minimal impact on spacecraft weight and size. The idea of integrating printed planar antenna and solar array cells on the same surface has been reported in the literature. The early work merely attempted to demonstrate the feasibility by placing commercial solar cells besides a patch antenna. Recently, Integrating multiple antenna elements and solar cell arrays on the same surface was reported for both space and terrestrial applications. The application of photovoltaic solar cell in a planar antenna structure where the radiating patch antenna is replaced by a Si solar cell has been demonstrated in wireless communication systems (C. Bendel, J. Kirchhof and N. Henze, 3rd Would Photovotaic Congress, Osaka, Japan, May 2003). Based on a hybrid approach, a 6x1 slot array with circularly polarized crossdipole elements co-located on the same surface of the solar cells array has been demonstrated (S. Vaccaro, J. R. Mosig and P. de Maagt, IEEE Trans. Ant. and Propag., Vol. 5 1, No. 8, Aug. 2003). Amorphous silicon solar cells with about 5-10% efficiency were used in these demonstrations. This paper describes recent effort to integrate advanced solar cells with printed planar antennas. Compared to prior art, the proposed WSAC concept is unique in the following ways: 1) Active antenna element will be used to achieve dynamic beam steering; 2) High efficiency (30%) GaAs multi-junction solar cells will be used instead of Si, which has an efficiency of about 15%; 3) Antenna and solar cells are integrated on a common GaAs substrate; and 4) Higher data rate capability. The IA/SAC is designed to operate at X-band (8-12 GH) and higher frequencies

  18. The Role of Auditory Features Within Slot-Themed Social Casino Games and Online Slot Machine Games.

    PubMed

    Bramley, Stephanie; Gainsbury, Sally M

    2015-12-01

    Over the last few years playing social casino games has become a popular entertainment activity. Social casino games are offered via social media platforms and mobile apps and resemble gambling activities. However, social casino games are not classified as gambling as they can be played for free, outcomes may not be determined by chance, and players receive no monetary payouts. Social casino games appear to be somewhat similar to online gambling activities in terms of their visual and auditory features, but to date little research has investigated the cross over between these games. This study examines the auditory features of slot-themed social casino games and online slot machine games using a case study design. An example of each game type was played on three separate occasions during which, the auditory features (i.e., music, speech, sound effects, and the absence of sound) within the games were logged. The online slot-themed game was played in demo mode. This is the first study to provide a qualitative account of the role of auditory features within a slot-themed social casino game and an online slot machine game. Our results found many similarities between how sound is utilised within the two games. Therefore the sounds within these games may serve functions including: setting the scene for gaming, creating an image, demarcating space, interacting with visual features, prompting players to act, communicating achievements to players, providing reinforcement, heightening player emotions and the gaming experience. As a result this may reduce the ability of players to make a clear distinction between these two activities, which may facilitate migration between games.

  19. Slot angle detecting method for fiber fixed chip

    NASA Astrophysics Data System (ADS)

    Zhang, Jiaquan; Wang, Jiliang; Zhou, Chaochao

    2018-04-01

    The slot angle of fiber fixed chip has a significant impact on performance of photoelectric devices. In order to solve the actual engineering problem, this paper put forward a detecting method based on imaging processing. Because the images have very low contrast that is hardly segmented, so this paper proposes imaging segment methods based on edge character. Then get fixed chip edge line slope k2 and calculate the fiber fixed slot line slope k1, which can be used calculating the slot angle. Lastly, test the repeatability and accuracy of system, which show that this method has very fast operation speed and good robustness. Clearly, it is also satisfied to the actual demand of fiber fixed chip slot angle detection.

  20. Computational analysis of forebody tangential slot blowing

    NASA Technical Reports Server (NTRS)

    Gee, Ken; Agosta-Greenman, Roxana M.; Rizk, Yehia M.; Schiff, Lewis B.; Cummings, Russell M.

    1994-01-01

    An overview of the computational effort to analyze forebody tangential slot blowing is presented. Tangential slot blowing generates side force and yawing moment which may be used to control an aircraft flying at high-angle-of-attack. Two different geometries are used in the analysis: (1) The High Alpha Research Vehicle; and (2) a generic chined forebody. Computations using the isolated F/A-18 forebody are obtained at full-scale wind tunnel test conditions for direct comparison with available experimental data. The effects of over- and under-blowing on force and moment production are analyzed. Time-accurate solutions using the isolated forebody are obtained to study the force onset timelag of tangential slot blowing. Computations using the generic chined forebody are obtained at experimental wind tunnel conditions, and the results compared with available experimental data. This computational analysis compliments the experimental results and provides a detailed understanding of the effects of tangential slot blowing on the flow field about simple and complex geometries.

  1. Passage of native riverine fishes through geometrically different sections of a vertical slot fishway on the Moselle River, Germany

    USGS Publications Warehouse

    Pitsch, Matthias; Mockenhaupt, Bernd; Castro-Santos, Theodore R.

    2014-01-01

    In order to study effects of different geometric types of pools or change of the flow direction on the passability of fish, sets of PIT antennas were installed inside a modern vertical slot fishway at the mouth of the River Moselle. Fish of 13 abundant species were caught and tagged with PIT tags in 2013 and released in the tailwater of Koblenz. 16% of the tagged fish were detected entering the fishway a short time after release. These individuals provided data on entry and passage rates for different sections of the fishway. Preliminary results show differences in passage time and passage rates between different sections of the fishway.

  2. Bandwidth enhancement of electromagnetic coupled nonuniform H-shaped microstrip patch antenna for higher band of Wi-MAX applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bhardwaj, Dheeraj, E-mail: dbhardwaj.bit@gmail.com; Gulati, Gitansh, E-mail: gitanshgulati@gmail.com; Saraswat, Srishti, E-mail: saraswat.srishti@yahoo.in

    The bandwidth enhancement of a stacked non-uniform electromagnetically coupled H-shaped Microstrip Antenna (SNHMA) with tapered edges is analyzed and simulated using the IE3D simulator. The proposed antenna prototype is drafted on FR-4 material and stacked further with an air discontinuity of 0.3 mm to the next layer. The various parameters optimized to achieve the best performance from the modified SNHMA primarily include a)length b)width of the patch c)air gap thickness. The redesigned antenna serves at two distinct frequencies with an elevated bandwidth of 30.85 % at the central frequency 5.762 GHz, approximately four times the bandwidth of the standard patch having themore » same dimensions. The simulated radiation patterns (E-plane and H-plane) are exhibited within the range of frequencies where the broadband response is observed. The specifications of the proposed structure make it promising for the higher band of Wi-MAX applications.« less

  3. Do Stem Taper Microgrooves Influence Taper Corrosion in Total Hip Arthroplasty? A Matched Cohort Retrieval Study.

    PubMed

    Arnholt, Christina M; MacDonald, Daniel W; Underwood, Richard J; Guyer, Eric P; Rimnac, Clare M; Kurtz, Steven M; Mont, Michael A; Klein, Gregg R; Lee, Gwo-Chin; Chen, Antonia F; Hamlin, Brian R; Cates, Harold E; Malkani, Arthur L; Kraay, Matthew J

    2017-04-01

    Previous studies identified imprinting of the stem morphology onto the interior head bore, leading researchers to hypothesize an influence of taper topography on mechanically assisted crevice corrosion. The purpose of this study was to analyze whether microgrooved stem tapers result in greater fretting corrosion damage than smooth stem tapers. A matched cohort of 120 retrieved head-stem pairs from metal-on-polyethylene bearings was created controlling for implantation time, flexural rigidity, apparent length of engagement, and head size. There were 2 groups of 60 heads each, mated with either smooth or microgrooved stem tapers. A high-precision roundness machine was used to measure and categorize the surface morphology. Fretting corrosion damage at the head-neck junction was characterized using the Higgs-Goldberg scoring method. Fourteen of the most damaged heads were analyzed for the maximum depth of material loss and focused ion beam cross-sectioned to view oxide and base metal. Fretting corrosion damage was not different between the 2 cohorts at the femoral head (P = .14, Mann-Whitney) or stem tapers (P = .35). There was no difference in the maximum depths of material loss between the cohorts (P = .71). Cross-sectioning revealed contact damage, signs of micro-motion, and chromium-rich oxide layers in both cohorts. Microgroove imprinting did not appear to have a different effect on the fretting corrosion behavior. The results of this matched cohort retrieval study do not support the hypothesis that taper surfaces with microgrooved stems exhibit increased in vivo fretting corrosion damage or material release. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Remote drill bit loader

    DOEpatents

    Dokos, J.A.

    1997-12-30

    A drill bit loader is described for loading a tapered shank of a drill bit into a similarly tapered recess in the end of a drill spindle. The spindle has a transverse slot at the inner end of the recess. The end of the tapered shank of the drill bit has a transverse tang adapted to engage in the slot so that the drill bit will be rotated by the spindle. The loader is in the form of a cylinder adapted to receive the drill bit with the shank projecting out of the outer end of the cylinder. Retainer pins prevent rotation of the drill bit in the cylinder. The spindle is lowered to extend the shank of the drill bit into the recess in the spindle and the spindle is rotated to align the slot in the spindle with the tang on the shank. A spring unit in the cylinder is compressed by the drill bit during its entry into the recess of the spindle and resiliently drives the tang into the slot in the spindle when the tang and slot are aligned. 5 figs.

  5. Remote drill bit loader

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dokos, James A.

    A drill bit loader for loading a tapered shank of a drill bit into a similarly tapered recess in the end of a drill spindle. The spindle has a transverse slot at the inner end of the recess. The end of the tapered shank of the drill bit has a transverse tang adapted to engage in the slot so that the drill bit will be rotated by the spindle. The loader is in the form of a cylinder adapted to receive the drill bit with the shank projecting out of the outer end of the cylinder. Retainer pins prevent rotationmore » of the drill bit in the cylinder. The spindle is lowered to extend the shank of the drill bit into the recess in the spindle and the spindle is rotated to align the slot in the spindle with the tang on the shank. A spring unit in the cylinder is compressed by the drill bit during its entry into the recess of the spindle and resiliently drives the tang into the slot in the spindle when the tang and slot are aligned.« less

  6. Remote drill bit loader

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dokos, J.A.

    A drill bit loader is described for loading a tapered shank of a drill bit into a similarly tapered recess in the end of a drill spindle. The spindle has a transverse slot at the inner end of the recess. The end of the tapered shank of the drill bit has a transverse tang adapted to engage in the slot so that the drill bit will be rotated by the spindle. The loader is in the form of a cylinder adapted to receive the drill bit with the shank projecting out of the outer end of the cylinder. Retainer pinsmore » prevent rotation of the drill bit in the cylinder. The spindle is lowered to extend the shank of the drill bit into the recess in the spindle and the spindle is rotated to align the slot in the spindle with the tang on the shank. A spring unit in the cylinder is compressed by the drill bit during its entry into the recess of the spindle and resiliently drives the tang into the slot in the spindle when the tang and slot are aligned. 5 figs.« less

  7. Effect of Exit-Slot Position and Opening on the Available Cooling Pressure for NACA Nose-Slot Cowlings

    NASA Technical Reports Server (NTRS)

    Stickle, George W; Naiman, Irven; Crigler, John L

    1940-01-01

    Report presents the results of an investigation of full-scale nose-slot cowlings conducted in the NACA 20-foot wind tunnel to furnish information on the pressure drop available for cooling. Engine conductances from 0 to 0.12 and exit-slot conductances from 0 to 0.30 were covered. Two basic nose shapes were tested to determine the effect of the radius of curvature of the nose contour; the nose shape with the smaller radius of curvature gave the higher pressure drop across the engine. The best axial location of the slot for low-speed operation was found to be in the region of maximum negative pressure for the basic shape for the particular operating condition. The effect of the pressure operating condition on the available cooling pressure is shown.

  8. Tapered waveguides for guided wave optics.

    PubMed

    Campbell, J C

    1979-03-15

    Strip waveguides having half-paraboloid shaped tapers that permit efficient fiber to waveguide coupling have been fabricated by Ag ion exchange in soda-lime glass. A reduction in the input coupling loss has been accomplished by tailoring the diffusion to provide a gradual transition from a single-mode waveguide to a multimode waveguide having cross-sectional dimensions comparable to the core diameter of a single-mode fiber. Waveguides without tapers exhibit an attenuation of 1.0 dB/cm and an input coupling loss of 0.6 dB. The additional loss introduced by the tapered region is 0.5 dB. By way of contrast, an input coupling loss of 2.4 dB is obtained by coupling directly to a single-mode waveguide, indicating a net improvement of 1.3 dB for the tapered waveguides.

  9. Potential Space Applications for Body-Centric Wireless and E-Textile Antennas

    NASA Technical Reports Server (NTRS)

    Kennedy, Timothy F.; Fink, Patrick W.; Chu, Andrew W.; Studor, George F.

    2007-01-01

    Space environment benefits of body-centric wireless communications are numerous, particularly in the context of long duration Lunar and Martian outposts that are in planning stages at several space agencies around the world. Since crew time for such missions is a scarce commodity, seamless integration of body-centric wireless from various sources is paramount. Sources include traditional data, such as audio, video, tracking, and biotelemetry. Newer data sources include positioning, orientation, and status of handheld tools and devices, as well as management and status of on-body inventories. In addition to offering lighter weight and flexibility, performance benefits of e-textile antennas are anticipated due to advantageous use of the body s surface area. In creating e-textile antennas and RF devices, researchers are faced with the challenge of transferring conventional and novel designs to textiles. Lack of impedance control, limited conductivity, and the inability to automatically create intricate designs are examples of limitations frequently attributed to e-textiles. Reliable interfaces between e-textiles and conventional hardware also represent significant challenges. Addressing these limitations is critical to the continued development and acceptance of fabric-based circuits for body-centric wireless applications. Here we present several examples of e-textile antennas and RF devices, created using a NASA-developed process, that overcome several of these limitations. The design and performance of an equiangular spiral, miniaturized spiral-loaded slot antenna, and a hybrid coupler are considered, with the e-textile devices showing comparable performance to like designs using conventional materials.

  10. The Role of Ring Current on Slot Region Penetration

    NASA Technical Reports Server (NTRS)

    Fok, Mei-Ching; Elkington, Scot

    2006-01-01

    During magnetic quiet times, the inner belt, slot region and the outer belt are well defined regions. However, during some major storms, outer belt particles penetrate inward and significantly fill the slot region. In some extreme events, the outer belt particles travel through the slot and create a new belt in the inner region that persists from months to years. In this paper, we examine the role of the ring current on this radiation belt penetration into the slot region. The storm-time intensification of the ring current produces strong magnetic depression in the inner magnetosphere. This perturbation and its fluctuation enhance the radial transport and diffusion of the outer radiation belt particles. We perform kinetic and test-particle calculations to quantitatively assess the effects of the ring current field on filling of the slot region. Simulation results during major storms will be presented and discussed.

  11. Dual-mode antenna design for microwave heating and noninvasive thermometry of superficial tissue disease.

    PubMed

    Jacobsen, S; Stauffer, P R; Neuman, D G

    2000-11-01

    Hyperthermia therapy of superficial skin disease has proven clinically useful, but current heating equipment is somewhat clumsy and technically inadequate for many patients. The present effort describes a dual-purpose, conformal microwave applicator that is fabricated from thin, flexible, multilayer printed circuit board (PCB) material to facilitate heating of surface areas overlaying contoured anatomy. Preliminary studies document the feasibility of combining Archimedean spiral microstrip antennas, located concentrically within the central region of square dual concentric conductor (DCC) annular slot antennas. The motivation is to achieve homogeneous tissue heating simultaneously with noninvasive thermometry by radiometric sensing of blackbody radiation from the target tissue under the applicator. Results demonstrate that the two antennas have complimentary regions of influence. The DCC ring antenna structure produces a peripherally enhanced power deposition pattern with peaks in the outer corners of the aperture and a broad minimum around 50% of maximum centrally. In contrast, the Archimedean spiral radiates (or receives) energy predominantly along the boresight axis of the spiral, thus confining the region of influence to tissue located within the central broad minimum of the DCC pattern. Analysis of the temperature-dependent radiometer signal (brightness temperature) showed linear correlation of radiometer output with test load temperature using either the spiral or DCC structure as the receive antenna. The radiometric performance of the broadband Archimedean antenna was superior compared to the DCC, providing improved temperature resolution (0.1 degree C-0.2 degree C) and signal sensitivity (0.3 degree C-0.8 degree C/degree C) at all four 500 MHz integration bandwidths tested within the frequency range from 1.2 to 3.0 GHz.

  12. Radio antennas

    NASA Astrophysics Data System (ADS)

    Gibson, S. W.

    This book is concerned with providing an explanation of the function of an antenna without delving too deeply into the mathematics or theory. The characteristics of an antenna are examined, taking into account aspects of antenna radiation, wave motion on the antenna, resistance in the antenna, impedance, the resonant antenna, the effect of the ground, polarization, radiation patterns, coupling effects between antenna elements, and receiving vs. transmitting. Aspects of propagation are considered along with the types of antennas, transmission lines, matching devices, questions of antenna design, antennas for the lower frequency bands, antennas for more than one band, limited space antennas, VHF antennas, and antennas for 20, 15, and 10 meters. Attention is given to devices for measuring antenna parameters, approaches for evaluating the antenna, questions of safety, and legal aspects.

  13. Metal membrane with dimer slots as a universal polarizer

    NASA Astrophysics Data System (ADS)

    Zhukovsky, Sergej; Zalkovskij, Maksim; Malureanu, Radu; Kremers, Christian; Chigrin, Dmitry; Tang, Peter T.; Jepsen, Peter U.; Lavrinenko, Andrei V.

    2014-03-01

    In this work, we show theoretically and confirm experimentally that thin metal membranes patterned with an array of slot dimers (or their Babinet analogue with metal rods) can function as a versatile spectral and polarization filter. We present a detailed covariant multipole theory for the electromagnetic response of an arbitrary dimer based on the Green functions approach. The theory confirms that a great variety of polarization properties, such as birefringence, chirality and elliptical dichroism, can be achieved in a metal layer with such slot-dimer patterning (i.e. in a metasurface). Optical properties of the metasurface can be extensively tuned by varying the geometry (shape and dimensions) of the dimer, for example, by adjusting the sizes and mutual placement of the slots (e.g. inter-slot distance and alignment angle). Three basic shapes of dimers are analyzed: II-shaped (parallel slots), V-shaped, and T-shaped. These particular shapes of dimers are found to be sensitive to variations of the slots lengths and orientation of elements. Theoretical results are well supported by full-wave three-dimensional simulations. Our findings were verified experimentally on the metal membranes fabricated using UV lithography with subsequent Ni growth. Such metasurfaces were characterized using time-domain THz spectroscopy. The samples exhibit pronounced optical activity (500 degrees per wavelength) and high transmission: even though the slots cover only 4.3 % of the total membrane area the amplitude transmission reaches 0.67 at the resonance frequency 0.56 THz.

  14. Improving the detectability and imaging capability of ground penetrating radar using novel antenna concepts

    NASA Astrophysics Data System (ADS)

    Koyadan Koroth, Ajith; Bhattacharya, Amitabha

    2017-04-01

    Antennas are key components of Ground Penetrating Radar (GPR) instrumentation. A carefully designed antenna can improve the detectability and imaging capability of a GPR to a great extent without changing the other instrumentations. In this work, we propose four different types of antennas for GPR. They are modifications of a conventional bowtie antenna with great improvement in performance parameters. The designed antennas has also been tested in a stepped frequency type GPR and two dimensional scan images of various targets are presented. Bowtie antennas have been traditionally employed in GPR for its wide impedance bandwidth and radiation properties. The researchers proposed resistive loading to improve the bandwidth of the bowtie antenna and for low ringing pulse radiation. But this method was detrimental for antenna gain and efficiency. Bowtie antennas have a very wide impedance bandwidth. But the useful bandwidth of the antenna has been limited by the radiation pattern bandwidth. The boresight gain of bowtie antennas are found to be unstable beyond a 4:1 bandwidth. In this work, these problems have been addressed and maximum usable bandwidth for the bowtie antennas has been achieved. In this work, four antennas have been designed: namely, 1.) RC loaded bowtie antennas, 2.) RC loaded bowtie with metamaterial lens, 3.) Loop loaded bowtie, 4.) Loop loaded bowtie with directors. The designed antennas were characterized for different parameters like impedance bandwidth, radiation pattern and, gain. In antenna 1, a combined resistive-capacitive loading has been applied by periodic slot cut on the arms of the bowtie and pasting a planar graphite sheet over it. Graphite having a less conductance compared to copper acts as resistive loading. This would minimize the losses compared to lumped resistive loading. The antenna had a 10:1 impedance bandwidth and, a 5:1 pattern bandwidth. In antenna 2, a metamaterial lens has been designed to augment the antenna 1, to improve

  15. AAH Cage Out-Link and In-Link Antenna Characterization

    NASA Technical Reports Server (NTRS)

    Jeutter, Dean C.

    1998-01-01

    documentation was accomplished at the Biotelemetry Laboratory at Marquette University with Out-Link (slot) antenna design assistance was provided.

  16. Humanizing machines: Anthropomorphization of slot machines increases gambling.

    PubMed

    Riva, Paolo; Sacchi, Simona; Brambilla, Marco

    2015-12-01

    Do people gamble more on slot machines if they think that they are playing against humanlike minds rather than mathematical algorithms? Research has shown that people have a strong cognitive tendency to imbue humanlike mental states to nonhuman entities (i.e., anthropomorphism). The present research tested whether anthropomorphizing slot machines would increase gambling. Four studies manipulated slot machine anthropomorphization and found that exposing people to an anthropomorphized description of a slot machine increased gambling behavior and reduced gambling outcomes. Such findings emerged using tasks that focused on gambling behavior (Studies 1 to 3) as well as in experimental paradigms that included gambling outcomes (Studies 2 to 4). We found that gambling outcomes decrease because participants primed with the anthropomorphic slot machine gambled more (Study 4). Furthermore, we found that high-arousal positive emotions (e.g., feeling excited) played a role in the effect of anthropomorphism on gambling behavior (Studies 3 and 4). Our research indicates that the psychological process of gambling-machine anthropomorphism can be advantageous for the gaming industry; however, this may come at great expense for gamblers' (and their families') economic resources and psychological well-being. (c) 2015 APA, all rights reserved).

  17. Do Stem Taper Microgrooves Influence Taper Corrosion in Total Hip Arthroplasty? A Matched Cohort Retrieval Study

    PubMed Central

    Arnholt, Christina M.; MacDonald, Daniel W.; Underwood, Richard; Guyer, Eric P.; Rimnac, Clare M.; Kurtz, Steven M.; Mont, Michael A.; Klein, Gregg; Lee, Gwo-Chin; Chen, Antonia F.; Hamlin, Brian; Cates, Harold; Malkani, Arthur; Kraay, Matthew

    2017-01-01

    Background Previous studies identified imprinting of the stem morphology onto the interior head bore, leading researchers to hypothesize an influence of taper topography on mechanically assisted crevice corrosion (MACC). The purpose of this study was to analyze whether micro-grooved stem tapers result in greater fretting corrosion damage than smooth stem tapers. Methods A matched cohort of 120 retrieved head-stem pairs from metal-on-polyethylene bearings was created controlling for implantation time, flexural rigidity, apparent length of engagement, and head size. There were two groups of 60 heads each, mated with either smooth or micro-grooved stem tapers. A high precision roundness machine was used to measure and categorize the surface morphology. Fretting corrosion damage at the head/neck junction was characterized using the Higgs-Goldberg scoring method. Fourteen of the most damaged heads, were analyzed for the maximum depth of material loss and focused ion beam (FIB) cross-sectioned to view oxide and base metal. Results Fretting corrosion damage was not different between the two cohorts at the femoral head (p = 0.14, Mann Whitney) or stem tapers (p = 0.35). There was no difference in the maximum depths of material loss between the cohorts (p = 0.71). Cross sectioning revealed contact damage, signs of micro-motion, and chromium rich oxide layers in both cohorts. Micro-groove imprinting did not appear to have a different effect on the fretting corrosion behavior. Conclusion The results of this matched cohort retrieval study do not support the hypothesis that taper surfaces with micro-grooved stems exhibit increased in vivo fretting corrosion damage or material release. PMID:28111124

  18. Broadband standard dipole antenna for antenna calibration

    NASA Astrophysics Data System (ADS)

    Koike, Kunimasa; Sugiura, Akira; Morikawa, Takao

    1995-06-01

    Antenna calibration of EMI antennas is mostly performed by the standard antenna method at an open-field test site using a specially designed dipole antenna as a reference. In order to develop broadband standard antennas, the antenna factors of shortened dipples are theoretically investigated. First, the effects of the dipole length are analyzed using the induced emf method. Then, baluns and loads are examined to determine their influence on the antenna factors. It is found that transformer-type baluns are very effective for improving the height dependence of the antenna factors. Resistive loads are also useful for flattening the frequency dependence. Based on these studies, a specification is developed for a broadband standard antenna operating in the 30 to 150 MHz frequency range.

  19. Flow around a slotted circular cylinder at various angles of attack

    NASA Astrophysics Data System (ADS)

    Gao, Dong-Lai; Chen, Wen-Li; Li, Hui; Hu, Hui

    2017-10-01

    We experimentally investigated the flow characteristics around a circular cylinder with a slot at different angles of attack. The experimental campaign was performed in a wind tunnel at the Reynolds number of Re = 2.67 × 104. The cylindrical test model was manufactured with a slot at the slot width S = 0.075 D ( D is the diameter of the cylinder). The angle of attack α was varied from 0° to 90°. In addition to measuring the pressure distributions around the cylinder surface, a digital particle image velocimetry (PIV) system was employed to quantify the wake flow characteristics behind the baseline cylinder (i.e., baseline case of the cylinder without slot) and slotted cylinder at various angles of attack. Measurement results suggested that at low angles of attack, the passive jet flow generated by the slot would work as an effective control scheme to modify the wake flow characteristics and contribute to reducing the drag and suppressing the fluctuating lift. The flip-flop phenomenon was also identified and discussed with the slot at 0° angle of attack. As the angle of attack α became 45°, the effects of the slot were found to be minimal. When the angle of attack α of the slot approached 90°, the self-organized boundary layer suction and blowing were realized. As a result, the flow separations on both sides of the test model were found to be notably delayed, the wake width behind the slotted cylinder was decreased and the vortex formation length was greatly shrunk, in comparison with the baseline case. Instantaneous pressure measurement results revealed that the pressure difference between the two slot ends and the periodically fluctuating pressure distributions would cause the alternative boundary layer suction and blowing at α = 90°.

  20. Design of Dielectric-Loaded Circumferential Slot Antennas of Arbitrary Size for Conical and Cylindrical Bodies

    DTIC Science & Technology

    1974-09-01

    designed in the surface of small or large dielectric structures and results in durable antennas that may operate in the UHF or microwave frequerncy...in tne guide is given by g g =, o (i) 0c 1Moreno, T. Microwave Transmission Design Data, McGraw-Hill Book Co., N.Y., 1948. 2 Sevenson, A. F., Jr...size and a high Q that makes it useful in the UHF and microwave frequency regions. Such a resonant cavity is shown in figure 1. Normally, waveguide

  1. Supercontinuum generation in an imaging fiber taper

    NASA Astrophysics Data System (ADS)

    Shi, Kebin; Omenetto, Fiorenzo G.; Liu, Zhiwen

    2006-12-01

    We report on supercontinuum generation in individual fibers of a commercial Schott imaging fiber taper. Supercontinuum spectrum covering a wavelength range from about 500 nm to 1 μm was obtained. Unlike conventional approaches which use either a single micro-structured photonic crystal fiber (PCF) or an individual fiber or PCF taper, the availability of many fibers in an imaging taper can open new possibilities to independently and controllably generate supercontinuum arrays.

  2. Third generation of correlators for six antennas

    NASA Astrophysics Data System (ADS)

    Torres, Marc

    2000-07-01

    The technical evolution of the correlators of the Plateau de Bure interferometer since the first fringes, 14 years ago, is shortly presented. The progressive addition of antennas over this period has allowed the Grenoble correlator group to undertake several 'start-from-scratch' designs, which have replaced on-site equipment as it came obsolete. The tradeoff between design cycle time and lifetime of such equipment is discussed. The latest design is described in detail. The new correlator can be set to analyze up to eight simultaneous windows, adjustable in size and center frequency, thanks to a 2 X 220 MHz image rejection mixer. Advantages of analog IF processing are presented. The frequency plan of the IF processor has been designed to be fully compatible with MarkIV VLBI recording. The correlator is then used to sum up the signals of the 6 antennas over 256 MHz. The digital section mainly uses an IRAM-designed low-power, low-cost ASIC. Delay lines use FPGA's and phase rotators use DDS's. Surface-mount technology is used everywhere. A commercial CPU module runs the real-time software under Linux. A 21-slot VME chassis hosts the hardware. Test results and measurements of performance on the full-size machine are presented. The difficulties encountered in achieving this kind of machine within schedule in today's industrial environment are retrospectively analyzed.

  3. A Miniaturized Antenna with Negative Index Metamaterial Based on Modified SRR and CLS Unit Cell for UWB Microwave Imaging Applications

    PubMed Central

    Islam, Md. Moinul; Islam, Mohammad Tariqul; Samsuzzaman, Md.; Faruque, Mohammad Rashed Iqbal; Misran, Norbahiah; Mansor, Mohd Fais

    2015-01-01

    A miniaturized antenna employing a negative index metamaterial with modified split-ring resonator (SRR) and capacitance-loaded strip (CLS) unit cells is presented for Ultra wideband (UWB) microwave imaging applications. Four left-handed (LH) metamaterial (MTM) unit cells are located along one axis of the antenna as the radiating element. Each left-handed metamaterial unit cell combines a modified split-ring resonator (SRR) with a capacitance-loaded strip (CLS) to obtain a design architecture that simultaneously exhibits both negative permittivity and negative permeability, which ensures a stable negative refractive index to improve the antenna performance for microwave imaging. The antenna structure, with dimension of 16 × 21 × 1.6 mm3, is printed on a low dielectric FR4 material with a slotted ground plane and a microstrip feed. The measured reflection coefficient demonstrates that this antenna attains 114.5% bandwidth covering the frequency band of 3.4–12.5 GHz for a voltage standing wave ratio of less than 2 with a maximum gain of 5.16 dBi at 10.15 GHz. There is a stable harmony between the simulated and measured results that indicate improved nearly omni-directional radiation characteristics within the operational frequency band. The stable surface current distribution, negative refractive index characteristic, considerable gain and radiation properties make this proposed negative index metamaterial antenna optimal for UWB microwave imaging applications. PMID:28787945

  4. A Miniaturized Antenna with Negative Index Metamaterial Based on Modified SRR and CLS Unit Cell for UWB Microwave Imaging Applications.

    PubMed

    Islam, Md Moinul; Islam, Mohammad Tariqul; Samsuzzaman, Md; Faruque, Mohammad Rashed Iqbal; Misran, Norbahiah; Mansor, Mohd Fais

    2015-01-23

    A miniaturized antenna employing a negative index metamaterial with modified split-ring resonator (SRR) and capacitance-loaded strip (CLS) unit cells is presented for Ultra wideband (UWB) microwave imaging applications. Four left-handed (LH) metamaterial (MTM) unit cells are located along one axis of the antenna as the radiating element. Each left-handed metamaterial unit cell combines a modified split-ring resonator (SRR) with a capacitance-loaded strip (CLS) to obtain a design architecture that simultaneously exhibits both negative permittivity and negative permeability, which ensures a stable negative refractive index to improve the antenna performance for microwave imaging. The antenna structure, with dimension of 16 × 21 × 1.6 mm³, is printed on a low dielectric FR4 material with a slotted ground plane and a microstrip feed. The measured reflection coefficient demonstrates that this antenna attains 114.5% bandwidth covering the frequency band of 3.4-12.5 GHz for a voltage standing wave ratio of less than 2 with a maximum gain of 5.16 dBi at 10.15 GHz. There is a stable harmony between the simulated and measured results that indicate improved nearly omni-directional radiation characteristics within the operational frequency band. The stable surface current distribution, negative refractive index characteristic, considerable gain and radiation properties make this proposed negative index metamaterial antenna optimal for UWB microwave imaging applications.

  5. Design and optimization of an ultra wideband and compact microwave antenna for radiometric monitoring of brain temperature.

    PubMed

    Rodrigues, Dario B; Maccarini, Paolo F; Salahi, Sara; Oliveira, Tiago R; Pereira, Pedro J S; Limao-Vieira, Paulo; Snow, Brent W; Reudink, Doug; Stauffer, Paul R

    2014-07-01

    We present the modeling efforts on antenna design and frequency selection to monitor brain temperature during prolonged surgery using noninvasive microwave radiometry. A tapered log-spiral antenna design is chosen for its wideband characteristics that allow higher power collection from deep brain. Parametric analysis with the software HFSS is used to optimize antenna performance for deep brain temperature sensing. Radiometric antenna efficiency (η) is evaluated in terms of the ratio of power collected from brain to total power received by the antenna. Anatomical information extracted from several adult computed tomography scans is used to establish design parameters for constructing an accurate layered 3-D tissue phantom. This head phantom includes separate brain and scalp regions, with tissue equivalent liquids circulating at independent temperatures on either side of an intact skull. The optimized frequency band is 1.1-1.6 GHz producing an average antenna efficiency of 50.3% from a two turn log-spiral antenna. The entire sensor package is contained in a lightweight and low-profile 2.8 cm diameter by 1.5 cm high assembly that can be held in place over the skin with an electromagnetic interference shielding adhesive patch. The calculated radiometric equivalent brain temperature tracks within 0.4 °C of the measured brain phantom temperature when the brain phantom is lowered 10 °C and then returned to the original temperature (37 °C) over a 4.6-h experiment. The numerical and experimental results demonstrate that the optimized 2.5-cm log-spiral antenna is well suited for the noninvasive radiometric sensing of deep brain temperature.

  6. Wind tunnel tests of the GA(W)-2 airfoil with 20% aileron, 25% slotted flap, 30% Fowler flap and 10% slot-lip spoiler

    NASA Technical Reports Server (NTRS)

    Wentz, W. H., Jr.

    1977-01-01

    Two dimensional wind tunnel tests were conducted for the GA(W)-2 airfoil section with: 20% aileron, 25% slotted flap; 30% Fowler flap, and 10% slot-lip spoiler. All tests were conducted at a Reynolds number of 2,200,000 and a Mach Number of 0.13. In addition to force measurements, tuft studies were conducted for the slotted and Fowler flap configurations. Aileron and spoiler hinge moments were obtained by integration of surface pressure measurements. Tests results show that a value of 3.82 was obtained with 30% Fowler flap. Aileron control effectiveness and hinge moments were similar to other airfoils. The slot-lip spoiler provided powerful, positive roll control at all flap settings.

  7. Practical Tests with the "auto Control Slot." Part II : Discussion

    NASA Technical Reports Server (NTRS)

    Lachmann, G

    1930-01-01

    For some time the D.V.L. has been investigating the question of applicability of Handley Page slotted wings to German airplanes. Comparitive gliding tests were made with open and closed slots on an Albatros L 75 airplane equipped with the Handley Page "auto control slots." This investigation served to determine the effect of the auto control slot on the properties and performances of airplanes at large angles of attack. The most important problems were whether the angle of glide at small angles of attack can be increased by the adoption of the auto control slot and, in particular, as to whether the flight characteristics at large angles of attack are improved thereby and equilibrium in gliding flight is guaranteed even at larger than ordinary angles of attack.

  8. Practical Tests with the "auto Control Slot." Part I : Lecture

    NASA Technical Reports Server (NTRS)

    Lachmann, G

    1930-01-01

    For some time the D.V.L. has been investigating the question of applicability of Handley Page slotted wings to German airplanes. Comparitive gliding tests were made with open and closed slots on an Albatros L 75 airplane equipped with the Handley Page "auto control slots." This investigation served to determine the effect of the auto control slot on the properties and performances of airplanes at large angles of attack. The most important problems were whether the angle of glide at small angles of attack can be increased by the adoption of the auto control slot and, in particular, as to whether the flight characteristics at large angles of attack are improved thereby and equilibrium in gliding flight is guaranteed even at larger than ordinary angles of attack.

  9. Novel 2D CRLH TL and Its ZOR and FOR Applied on Dual-Band Omnidirectional Radiation Antenna

    NASA Astrophysics Data System (ADS)

    Li, Tian-Peng; Wang, Guang-Ming; Duan, Feifei; Zhou, Cheng; Tan, Rui-Lian

    2015-11-01

    A new type of two-dimensional (2D) composite right/left-handed transmission lines (CRLH TL) which is composed of four one-dimensional (1D) CRLH TL is proposed in this letter. Each 1D CRLH TL consists of three metallic vias added for shunt inductance and an etched patch slot for series capacitance. Based on this structure, an antenna operating on zeroth-order resonance (ZOR) and first-order resonance (FOR) is designed and fabricated. By taking advantage of coaxially center feed and symmetric structure, a well omnidirectional radiation in XoY plane both in ZOR and FOR and a homogeneously suppressed cross-polarization is obtained. Also, the antenna has a gain value of 2.06 dB in ZOR f1 = 3.52 GHz and 2.94 dB in FOR f2 = 5.25 GHz, respectively.

  10. Tapered fiber based high power random laser.

    PubMed

    Zhang, Hanwei; Du, Xueyuan; Zhou, Pu; Wang, Xiaolin; Xu, Xiaojun

    2016-04-18

    We propose a novel high power random fiber laser (RFL) based on tapered fiber. It can overcome the power scaling limitation of RFL while maintaining good beam quality to a certain extent. An output power of 26.5 W has been achieved in a half-open cavity with one kilometer long tapered fiber whose core diameter gradually changes from 8 μm to 20 μm. The steady-state light propagation equations have been modified by taking into account the effective core area to demonstrate the tapered RFL through numerical calculations. The numerical model effectively describes the power characteristics of the tapered fiber based RFL, and both the calculating and experimental results show higher power exporting potential compared with the conventional single mode RFL.

  11. Design and Performance of the Antenna-Coupled Lumped-Element Kinetic Inductance Detector

    NASA Astrophysics Data System (ADS)

    Barry, P. S.; Doyle, S.; Hornsby, A. L.; Kofman, A.; Mayer, E.; Nadolski, A.; Tang, Q. Y.; Vieira, J.; Shirokoff, E.

    2018-05-01

    Focal plane arrays consisting of low-noise, polarisation-sensitive detectors have made possible the pioneering advances in the study of the cosmic microwave background (CMB). To make further progress, the next generation of CMB experiments (e.g. CMB-S4) will require a substantial increase in the number of detectors compared to current instruments. Arrays of kinetic inductance detectors (KIDs) provide a possible path to realising such large-format arrays owing to their intrinsic multiplexing advantage and relative cryogenic simplicity. In this paper, we report on the design of a variant of the traditional KID design: the antenna-coupled lumped-element KID. A polarisation-sensitive twin-slot antenna placed behind an optimised hemispherical lens couples power onto a thin-film superconducting microstrip line. The power is then guided into the inductive section of an aluminium KID, where it is absorbed and modifies both the resonant frequency and quality factor of the KID. We present the various aspects of the design and preliminary results from the first set of seven-element prototype arrays and compare to the expected modelled performance.

  12. Optical antenna gain. I - Transmitting antennas

    NASA Technical Reports Server (NTRS)

    Klein, B. J.; Degnan, J. J.

    1974-01-01

    The gain of centrally obscured optical transmitting antennas is analyzed in detail. The calculations, resulting in near- and far-field antenna gain patterns, assume a circular antenna illuminated by a laser operating in the TEM-00 mode. A simple polynomial equation is derived for matching the incident source distribution to a general antenna configuration for maximum on-axis gain. An interpretation of the resultant gain curves allows a number of auxiliary design curves to be drawn that display the losses in antenna gain due to pointing errors and the cone angle of the beam in the far field as a function of antenna aperture size and its central obscuration. The results are presented in a series of graphs that allow the rapid and accurate evaluation of the antenna gain which may then be substituted into the conventional range equation.

  13. Calculated shape dependence of electromagnetic field in tip-enhanced Raman scattering by using a monopole antenna model.

    PubMed

    Kitahama, Yasutaka; Itoh, Tamitake; Suzuki, Toshiaki

    2018-05-15

    To evaluate the shape of an Ag tip with regard to tip-enhanced Raman scattering (TERS) signal, the enhanced electromagnetic (EM) field and scattering spectrum, arising from surface plasmon resonance at the apex of the tip, were calculated using a finite-difference time domain (FDTD) method. In the calculated forward scattering spectra from the smooth Ag tip, the band appeared within the visible region, similar to the experimental results and calculation for a corrugated Ag cone. In the FDTD calculation of TERS, the Ag tip acting as a monopole antenna was adopted by insertion of a perfect electric conductor between the root of the tip and a top boundary surface of the calculation space. As a result, the EM field was only enhanced at the apex. The shape dependence i.e. the EM field calculated at the apex with various curvatures on the different tapered tips, obtained using the monopole antenna model, was different from that simulated using a conventional dipole antenna model. Copyright © 2018 Elsevier B.V. All rights reserved.

  14. Beam Scanning Antenna with Wideband Broadside Radiation Based on Multilayered Substrate Integrated Waveguide Composite Right/Left-Handed Structure

    NASA Astrophysics Data System (ADS)

    Zhang, Qin; Wu, Guo-cheng; Wang, Guang-ming; Liang, Jian-gang; Gao, Xiang-jun

    2017-01-01

    In this paper, a novel multilayered substrate integrated waveguide (SIW) composite right/left-handed (CRLH) structure is proposed to design beam scanning antenna for wideband broadside radiation. The unit cell of the SIW-CRLH structure is formed by spiral interdigital fingers etched on the upper ground of SIW, and a parasitic patch beneath the slot, has a continuous change of phase constant from negative to positive value within its passband. The proposed beam scanning antenna, which consists of consists of 15 identical elementary cells of the SIW-CRLH, is simulated, fabricated and measured. According to the measured results, the proposed antenna not only realizes a continuous main beam scanning from backward -78° to forward +80° within the operating frequency range from 8.25 to 12.2 GHz, but also obtains the measured broadside gain of 11.5 dB with variation of 1.0 dB over the frequency range of 8.8-9.25 GHz (4.99 %). Besides, compared with the same works in the references, this one has the most wonderful performance.

  15. A Fast MoM Solver (GIFFT) for Large Arrays of Microstrip and Cavity-Backed Antennas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fasenfest, B J; Capolino, F; Wilton, D

    2005-02-02

    A straightforward numerical analysis of large arrays of arbitrary contour (and possibly missing elements) requires large memory storage and long computation times. Several techniques are currently under development to reduce this cost. One such technique is the GIFFT (Green's function interpolation and FFT) method discussed here that belongs to the class of fast solvers for large structures. This method uses a modification of the standard AIM approach [1] that takes into account the reusability properties of matrices that arise from identical array elements. If the array consists of planar conducting bodies, the array elements are meshed using standard subdomain basismore » functions, such as the RWG basis. The Green's function is then projected onto a sparse regular grid of separable interpolating polynomials. This grid can then be used in a 2D or 3D FFT to accelerate the matrix-vector product used in an iterative solver [2]. The method has been proven to greatly reduce solve time by speeding up the matrix-vector product computation. The GIFFT approach also reduces fill time and memory requirements, since only the near element interactions need to be calculated exactly. The present work extends GIFFT to layered material Green's functions and multiregion interactions via slots in ground planes. In addition, a preconditioner is implemented to greatly reduce the number of iterations required for a solution. The general scheme of the GIFFT method is reported in [2]; this contribution is limited to presenting new results for array antennas made of slot-excited patches and cavity-backed patch antennas.« less

  16. Fabrication of longitudinally arbitrary shaped fiber tapers

    NASA Astrophysics Data System (ADS)

    Nold, J.; Plötner, M.; Böhme, S.; Sattler, B.; deVries, O.; Schreiber, T.; Eberhardt, R.; Tünnermann, A.

    2018-02-01

    We present our current results on the fabrication of arbitrary shaped fiber tapers on our tapering rig using a CO2-laser as heat source. Single mode excitation of multimode fibers as well as changing the fiber geometry in an LPG-like fashion is presented. It is shown that this setup allows for reproducible fabrication of single-mode excitation tapers to extract the fundamental mode (M2 < 1.1) from a 30 μm core having an NA of 0.09.

  17. Demonstration of slot-waveguide structures on silicon nitride / silicon oxide platform.

    PubMed

    Barrios, C A; Sánchez, B; Gylfason, K B; Griol, A; Sohlström, H; Holgado, M; Casquel, R

    2007-05-28

    We report on the first demonstration of guiding light in vertical slot-waveguides on silicon nitride/silicon oxide material system. Integrated ring resonators and Fabry-Perot cavities have been fabricated and characterized in order to determine optical features of the slot-waveguides. Group index behavior evidences guiding and confinement in the low-index slot region at O-band (1260-1370nm) telecommunication wavelengths. Propagation losses of <20 dB/cm have been measured for the transverse-electric mode of the slot-waveguides.

  18. Electromagnetic field tapering using all-dielectric gradient index materials.

    PubMed

    Yi, Jianjia; Piau, Gérard-Pascal; de Lustrac, André; Burokur, Shah Nawaz

    2016-07-28

    The concept of transformation optics (TO) is applied to control the flow of electromagnetic fields between two sections of different dimensions through a tapering device. The broadband performance of the field taper is numerically and experimentally validated. The taper device presents a graded permittivity profile and is fabricated through three-dimensional (3D) polyjet printing technology using low-cost all-dielectric materials. Calculated and measured near-field mappings are presented in order to validate the proposed taper. A good qualitative agreement is obtained between full-wave simulations and experimental tests. Such all-dielectric taper paves the way to novel types of microwave devices that can be easily fabricated through low-cost additive manufacturing processes.

  19. Pulse compression using a tapered microstructure optical fiber.

    PubMed

    Hu, Jonathan; Marks, Brian S; Menyuk, Curtis R; Kim, Jinchae; Carruthers, Thomas F; Wright, Barbara M; Taunay, Thierry F; Friebele, E J

    2006-05-01

    We calculate the pulse compression in a tapered microstructure optical fiber with four layers of holes. We show that the primary limitation on pulse compression is the loss due to mode leakage. As a fiber's diameter decreases due to the tapering, so does the air-hole diameter, and at a sufficiently small diameter the guided mode loss becomes unacceptably high. For the four-layer geometry we considered, a compression factor of 10 can be achieved by a pulse with an initial FWHM duration of 3 ps in a tapered fiber that is 28 m long. We find that there is little difference in the pulse compression between a linear taper profile and a Gaussian taper profile. More layers of air-holes allows the pitch to decrease considerably before losses become unacceptable, but only a moderate increase in the degree of pulse compression is obtained.

  20. Thulium fiber laser lithotripsy using tapered fibers.

    PubMed

    Blackmon, Richard L; Irby, Pierce B; Fried, Nathaniel M

    2010-01-01

    The Thulium fiber laser has recently been tested as a potential alternative to the Holmium:YAG laser for lithotripsy. This study explores use of a short taper for expanding the Thulium fiber laser beam at the distal tip of a small-core fiber. Thulium fiber laser radiation with a wavelength of 1,908 nm, 10 Hz pulse rate, 70 mJ pulse energy, and 1-millisecond pulse duration was delivered through a 2-m-length fiber with 150-microm-core-input-end, 300-microm-core-output-end, and 5-mm-length taper, in contact with human uric acid (UA) and calcium oxalate monohydrate (COM) stones, ex vivo (n = 10 each). Stone mass loss, stone crater depths, fiber transmission losses, fiber burn-back, irrigation rates, and deflection through a flexible ureteroscope were measured for the tapered fiber and compared with conventional fibers. After delivery of 1,800 pulses through the tapered fiber, mass loss measured 12.7+/-2.6 mg for UA and 7.2+/-0.8 mg COM stones, comparable to conventional 100-microm-core fibers (12.6+/-2.5 mg for UA and 6.8+/-1.7 mg for COM stones). No transmission losses or burn-back occurred for the tapered fiber after 36,000 pulses, while a conventional 150-microm fiber experienced significant tip degradation after only 1,800 pulses. High irrigation rates were measured with the tapered fiber inserted through the working port of a flexible ureteroscope without hindering its deflection, mimicking that of a conventional 150 microm fiber. The short tapered distal fiber tip allows expansion of the laser beam, resulting in decreased fiber tip damage compared to conventional small-core fibers, without compromising fiber bending, stone vaporization efficiency, or irrigation rates.

  1. Polymer optical fiber tapering using hot water

    NASA Astrophysics Data System (ADS)

    Mizuno, Yosuke; Ujihara, Hiroki; Lee, Heeyoung; Hayashi, Neisei; Nakamura, Kentaro

    2017-06-01

    We perform a pilot trial of highly convenient taper fabrication for polymer optical fibers (POFs) using hot water. A ∼380-mm-long POF taper is successfully fabricated, and its ∼150-mm-long waist has a uniform outer diameter of ∼230 µm. The shape is in good agreement with the theoretical prediction. The optical loss dependence on the strain applied to the waist shows an interesting behavior exhibiting three regimes, the origins of which are inferred by microscopic observations. We then discuss the controllability of the taper length.

  2. 100-GHz Phase Switch/Mixer Containing a Slot-Line Transition

    NASA Technical Reports Server (NTRS)

    Gaier, Todd; Wells, Mary; Dawson, Douglas

    2009-01-01

    A circuit that can function as a phase switch, frequency mixer, or frequency multiplier operates over a broad frequency range in the vicinity of 100 GHz. Among the most notable features of this circuit is a grounded uniplanar transition (in effect, a balun) between a slot line and one of two coplanar waveguides (CPWs). The design of this circuit is well suited to integration of the circuit into a microwave monolithic integrated circuit (MMIC) package. One CPW is located at the input end and one at the output end of the top side of a substrate on which the circuit is fabricated (see Figure 1). The input CPW feeds the input signal to antiparallel flip-chip Schottky diodes connected to the edges of the slot line. Phase switching is effected by the combination of (1) the abrupt transition from the input CPW to the slot line and (2) CPW ground tuning effected by switching of the bias on the diodes. Grounding of the slot metal to the bottom metal gives rise to a frequency cutoff in the slot. This cutoff is valuable for separating different frequency components when the circuit is used as a mixer or multiplier. Proceeding along the slot line toward the output end, one encounters the aforementioned transition, which couples the slot line to the output CPW. Impedance tuning of the transition is accomplished by use of a high-impedance section immediately before the transition.

  3. 14 CFR 93.227 - Slot use and loss.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Operations at High Density Traffic Airports § 93.227 Slot use and loss. (a) Except as provided in paragraphs... commuter operator or other person holding a slot at a high density airport shall, within 14 days after the... High Density Traffic Airport on Thanksgiving Day, the Friday following Thanksgiving Day, and the period...

  4. 14 CFR 93.227 - Slot use and loss.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Operations at High Density Traffic Airports § 93.227 Slot use and loss. (a) Except as provided in paragraphs... commuter operator or other person holding a slot at a high density airport shall, within 14 days after the... High Density Traffic Airport on Thanksgiving Day, the Friday following Thanksgiving Day, and the period...

  5. 14 CFR 93.227 - Slot use and loss.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... Operations at High Density Traffic Airports § 93.227 Slot use and loss. (a) Except as provided in paragraphs... commuter operator or other person holding a slot at a high density airport shall, within 14 days after the... High Density Traffic Airport on Thanksgiving Day, the Friday following Thanksgiving Day, and the period...

  6. 14 CFR 93.227 - Slot use and loss.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... Operations at High Density Traffic Airports § 93.227 Slot use and loss. (a) Except as provided in paragraphs... commuter operator or other person holding a slot at a high density airport shall, within 14 days after the... High Density Traffic Airport on Thanksgiving Day, the Friday following Thanksgiving Day, and the period...

  7. 14 CFR 93.227 - Slot use and loss.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... Operations at High Density Traffic Airports § 93.227 Slot use and loss. (a) Except as provided in paragraphs... commuter operator or other person holding a slot at a high density airport shall, within 14 days after the... High Density Traffic Airport on Thanksgiving Day, the Friday following Thanksgiving Day, and the period...

  8. Multiple-taper spectral analysis: A stand-alone C-subroutine

    NASA Astrophysics Data System (ADS)

    Lees, Jonathan M.; Park, Jeffrey

    1995-03-01

    A simple set of subroutines in ANSI-C are presented for multiple taper spectrum estimation. The multitaper approach provides an optimal spectrum estimate by minimizing spectral leakage while reducing the variance of the estimate by averaging orthogonal eigenspectrum estimates. The orthogonal tapers are Slepian nπ prolate functions used as tapers on the windowed time series. Because the taper functions are orthogonal, combining them to achieve an average spectrum does not introduce spurious correlations as standard smoothed single-taper estimates do. Furthermore, estimates of the degrees of freedom and F-test values at each frequency provide diagnostics for determining levels of confidence in narrow band (single frequency) periodicities. The program provided is portable and has been tested on both Unix and Macintosh systems.

  9. Mechanism Design for Multi-slot Ads Auction in Sponsored Search Markets

    NASA Astrophysics Data System (ADS)

    Deng, Xiaotie; Sun, Yang; Yin, Ming; Zhou, Yunhong

    In this paper, we study pricing models for multi-slot advertisements, where advertisers can bid to place links to their sales webpages at one or multiple slots on a webpage, called the multi-slot AD auction problem. We develop and analyze several important mechanisms, including the VCG mechanism for multi-slot ads auction, the optimal social welfare solution, as well as two weighted GSP-like protocols (mixed and hybrid). Furthermore, we consider that forward-looking Nash equilibrium and prove its existence in the weighted GSP-like pricing protocols.

  10. Experimental Investigation of Superradiance in a Tapered Free-Electron Laser Amplifier

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hidaka, Y.; She, Y.; Murphy, J.B.

    2011-03-28

    We report experimental studies of the effect of undulator tapering on superradiance in a single-pass high-gain free-electron laser (FEL) amplifier. The experiments were performed at the Source Development Laboratory (SDL) of National Synchrotron Light Source (NSLS). Efficiency was nearly tripled with tapering. Both the temporal and spectral properties of the superradiant FEL along the uniform and tapered undulator were experimentally characterized using frequency-resolved optical gating (FROG) images. Numerical studies predicted pulse broadening and spectral cleaning by undulator tapering Pulse broadening was experimentally verified. However, spectral cleanliness degraded with tapering. We have performed first experiments with a tapered undulator and amore » short seed laser pulse. Pulse broadening with tapering expected from simulations was experimentally confirmed. However, the experimentally obtained spectra degraded with tapering, whereas the simulations predicted improvement. A further numerical study is under way to resolve this issue.« less

  11. Wideband Low Side Lobe Aperture Coupled Patch Phased Array Antennas

    NASA Astrophysics Data System (ADS)

    Poduval, Dhruva

    Low profile printed antenna arrays with wide bandwidth, high gain, and low Side Lobe Level (SLL) are in great demand for current and future commercial and military communication systems and radar. Aperture coupled patch antennas have been proposed to obtain wide impedance bandwidths in the past. Aperture coupling is preferred particularly for phased arrays because of their advantage of integration to other active devices and circuits, e.g. phase shifters, power amplifiers, low noise amplifiers, mixers etc. However, when designing such arrays, the interplay between array performance characteristics, such as gain, side lobe level, back lobe level, mutual coupling etc. must be understood and optimized under multiple design constraints, e.g. substrate material properties and thicknesses, element to element spacing, and feed lines and their orientation and arrangements with respect to the antenna elements. The focus of this thesis is to investigate, design, and develop an aperture coupled patch array with wide operating bandwidth (30%), high gain (17.5 dBi), low side lobe level (20 dB), and high Forward to Backward (F/B) ratio (21.8 dB). The target frequency range is 2.4 to 3 GHz given its wide application in WLAN, LTE (Long Term Evolution) and other communication systems. Notwithstanding that the design concept can very well be adapted at other frequencies. Specifically, a 16 element, 4 by 4 planar microstrip patch array is designed using HFSS and experimentally developed and tested. Starting from mutual coupling minimization a corporate feeding scheme is designed to achieve the needed performance. To reduce the SLL the corporate feeding network is redesigned to obtain a specific amplitude taper. Studies are conducted to determine the optimum location for a metallic reflector under the feed line to improve the F/B. An experimental prototype of the antenna was built and tested validating and demonstrating the performance levels expected from simulation predictions

  12. Fiber up-tapering and down-tapering for low-loss coupling between anti-resonant hollow-core fiber and solid-core fiber

    NASA Astrophysics Data System (ADS)

    Zhang, Naiqian; Wang, Zefeng; Xi, Xiaoming

    2017-10-01

    In this paper, we demonstrate a novel method for the low-loss coupling between solid-core multi-mode fibers (MMFs) and anti-resonant hollow-core fibers (AR-HCFs). The core/cladding diameter of the MMF is 50/125μm and the mode field diameter of the AR-HCFs are 33.3μm and 71.2μm of the ice-cream type AR-HCFs and the non-node type ARHCFs, respectively. In order to match the mode field diameters of these two specific AR-HCFs, the mode field diameter of the MMFs is increased or decreased by up-tapering or down-tapering the MMFs. Then, according to the principle of coupled fiber mode matching, the optimal diameter of tapered fiber for low-loss coupling is calculated. Based on beam propagation method, the calculated coupling losses without tapering process are 0.31dB and 0.89dB, respectively for a MMF-HCF-MMF structure of the ice-cream type AR-HCFs and the non-node type AR-HCFs. These values can be reduced to 0.096dB and 0.047dB when the outer diameters of the MMF are down-tapered to 116μm and up-tapered to 269μm, respectively. What's more, these results can also be verified by existing experiments.

  13. Monitoring techniques for the manufacture of tapered optical fibers.

    PubMed

    Mullaney, Kevin; Correia, Ricardo; Staines, Stephen E; James, Stephen W; Tatam, Ralph P

    2015-10-01

    The use of a range of optical techniques to monitor the process of fabricating optical fiber tapers is investigated. Thermal imaging was used to optimize the alignment of the optical system; the transmission spectrum of the fiber was monitored to confirm that the tapers had the required optical properties and the strain induced in the fiber during tapering was monitored using in-line optical fiber Bragg gratings. Tapers were fabricated with diameters down to 5 μm and with waist lengths of 20 mm using single-mode SMF-28 fiber.

  14. A Critical Review on Slotted Design for Propellers

    NASA Astrophysics Data System (ADS)

    Seeni, A.; Rajendran, P.; Kutty, H. A.

    2018-05-01

    The usage of slots has gained renewed interest in aerospace particularly on propeller design. Most of the works have focused on improving the aerodynamic performance and efficiency. Modern research on propeller design aims to design propellers with high thrust performance under low torque conditions without any weight penalty. This paper aims to review recent studies made in slotted designs of aerospace structures as well as other applications such as wind turbines. A review on the usage of slots is performed in order to understand the state-of-the-art in current technology. A review of the various studies has been made and general recommendations are provided in order to perform future research in propeller design.

  15. Coupled tapering/uptapering of Thirring type soliton pair in nonlinear media

    NASA Astrophysics Data System (ADS)

    Prasad, Shraddha; Dutta, Manoj Kumar; Sarkar, Ram Krishna

    2018-03-01

    The paper investigates coupled tapering/uptapering of Thirring type soliton pair, employing Beam Propagation Method. It is seen that, the pair uptapers in presence of losses and tapers in presence of gain. When the first beam has gain and the second one has losses in the nonlinear medium, the second beam induces uptapering in the first beam, while, first beam induces tapering in the second beam. When the medium provides gain/losses to only one of the two beams, the beam undergoes tapering/uptapering and also induces tapering/uptapering to the other loss less beam; however, magnitude of tapering/uptapering are different.

  16. Where science meets practice: Olympic coaches' crafting of the tapering process.

    PubMed

    Ritchie, Darren; Allen, Justine B; Kirkland, Andrew

    2018-05-01

    Although there is research providing physiologically-based guidance for the content of the taper, this study was the first to examine how coaches actually implement the taper. The purpose of this study was to examine the taper planning and implementation processes of successful Olympic coaches leading up to major competitions and how they learned about tapering. Seven track and field coaches participated in semi-structured interviews exploring their tapering processes. To be considered for inclusion, coaches were required to have coached one or more athletes to an Olympic or Paralympic medal. Through a process of axial and open coding interview transcripts were analysed and lower and higher order themes developed describing the coaches' tapering processes. Our findings indicate that the strategies employed to achieve the desired physiological adaptions of the taper were consistent with research (e.g., reduction in volume whilst maintaining intensity and frequency). However, our findings also suggest that tapering is far from a straight forward "textbook" process. The taper was not restricted to physiological outcomes with coaches considering athletes' psychological as well as physical state. Coaches also involved the athlete in the process, adapted the taper to the athlete, continually monitored its progress, and adapted it further as required.

  17. In-situ Tapering of Chalcogenide Fiber for Mid-infrared Supercontinuum Generation

    PubMed Central

    Rudy, Charles W.; Marandi, Alireza; Vodopyanov, Konstantin L.; Byer, Robert L.

    2013-01-01

    Supercontinuum generation (SCG) in a tapered chalcogenide fiber is desirable for broadening mid-infrared (or mid-IR, roughly the 2-20 μm wavelength range) frequency combs1, 2 for applications such as molecular fingerprinting, 3 trace gas detection, 4 laser-driven particle acceleration, 5 and x-ray production via high harmonic generation. 6 Achieving efficient SCG in a tapered optical fiber requires precise control of the group velocity dispersion (GVD) and the temporal properties of the optical pulses at the beginning of the fiber, 7 which depend strongly on the geometry of the taper. 8 Due to variations in the tapering setup and procedure for successive SCG experiments-such as fiber length, tapering environment temperature, or power coupled into the fiber, in-situ spectral monitoring of the SCG is necessary to optimize the output spectrum for a single experiment. In-situ fiber tapering for SCG consists of coupling the pump source through the fiber to be tapered to a spectral measurement device. The fiber is then tapered while the spectral measurement signal is observed in real-time. When the signal reaches its peak, the tapering is stopped. The in-situ tapering procedure allows for generation of a stable, octave-spanning, mid-IR frequency comb from the sub harmonic of a commercially available near-IR frequency comb. 9 This method lowers cost due to the reduction in time and materials required to fabricate an optimal taper with a waist length of only 2 mm. The in-situ tapering technique can be extended to optimizing microstructured optical fiber (MOF) for SCG10 or tuning of the passband of MOFs, 11 optimizing tapered fiber pairs for fused fiber couplers12 and wavelength division multiplexers (WDMs), 13 or modifying dispersion compensation for compression or stretching of optical pulses.14-16 PMID:23748947

  18. Tapered fibers embedded in silica aerogel.

    PubMed

    Xiao, Limin; Grogan, Michael D W; Leon-Saval, Sergio G; Williams, Rhys; England, Richard; Wadsworth, Willam J; Birks, Tim A

    2009-09-15

    We have embedded thin tapered fibers (with diameters down to 1 microm) in silica aerogel with low loss. The aerogel is rigid but behaves refractively like air, protecting the taper without disturbing light propagation along it. This enables a new class of fiber devices exploiting volume evanescent interactions with the aerogel itself or with dopants or gases in the pores.

  19. Functional significance of the taper of vertebrate cone photoreceptors

    PubMed Central

    Hárosi, Ferenc I.

    2012-01-01

    Vertebrate photoreceptors are commonly distinguished based on the shape of their outer segments: those of cones taper, whereas the ones from rods do not. The functional advantages of cone taper, a common occurrence in vertebrate retinas, remain elusive. In this study, we investigate this topic using theoretical analyses aimed at revealing structure–function relationships in photoreceptors. Geometrical optics combined with spectrophotometric and morphological data are used to support the analyses and to test predictions. Three functions are considered for correlations between taper and functionality. The first function proposes that outer segment taper serves to compensate for self-screening of the visual pigment contained within. The second function links outer segment taper to compensation for a signal-to-noise ratio decline along the longitudinal dimension. Both functions are supported by the data: real cones taper more than required for these compensatory roles. The third function relates outer segment taper to the optical properties of the inner compartment whereby the primary determinant is the inner segment’s ability to concentrate light via its ellipsoid. In support of this idea, the rod/cone ratios of primarily diurnal animals are predicted based on a principle of equal light flux gathering between photoreceptors. In addition, ellipsoid concentration factor, a measure of ellipsoid ability to concentrate light onto the outer segment, correlates positively with outer segment taper expressed as a ratio of characteristic lengths, where critical taper is the yardstick. Depending on a light-funneling property and the presence of focusing organelles such as oil droplets, cone outer segments can be reduced in size to various degrees. We conclude that outer segment taper is but one component of a miniaturization process that reduces metabolic costs while improving signal detection. Compromise solutions in the various retinas and retinal regions occur between

  20. Cavity-excited Huygens' metasurface antennas for near-unity aperture illumination efficiency from arbitrarily large apertures

    PubMed Central

    Epstein, Ariel; Wong, Joseph P. S.; Eleftheriades, George V.

    2016-01-01

    One of the long-standing problems in antenna engineering is the realization of highly directive beams using low-profile devices. In this paper, we provide a solution to this problem by means of Huygens' metasurfaces (HMSs), based on the equivalence principle. This principle states that a given excitation can be transformed to a desirable aperture field by inducing suitable electric and (equivalent) magnetic surface currents. Building on this concept, we propose and demonstrate cavity-excited HMS antennas, where the single-source-fed cavity is designed to optimize aperture illumination, while the HMS facilitates the current distribution that ensures phase purity of aperture fields. The HMS breaks the coupling between the excitation and radiation spectra typical to standard partially reflecting surfaces, allowing tailoring of the aperture properties to produce a desirable radiation pattern, without incurring edge-taper losses. The proposed low-profile design yields near-unity aperture illumination efficiencies from arbitrarily large apertures, offering new capabilities for microwave, terahertz and optical radiators. PMID:26790605

  1. Cavity-excited Huygens' metasurface antennas for near-unity aperture illumination efficiency from arbitrarily large apertures.

    PubMed

    Epstein, Ariel; Wong, Joseph P S; Eleftheriades, George V

    2016-01-21

    One of the long-standing problems in antenna engineering is the realization of highly directive beams using low-profile devices. In this paper, we provide a solution to this problem by means of Huygens' metasurfaces (HMSs), based on the equivalence principle. This principle states that a given excitation can be transformed to a desirable aperture field by inducing suitable electric and (equivalent) magnetic surface currents. Building on this concept, we propose and demonstrate cavity-excited HMS antennas, where the single-source-fed cavity is designed to optimize aperture illumination, while the HMS facilitates the current distribution that ensures phase purity of aperture fields. The HMS breaks the coupling between the excitation and radiation spectra typical to standard partially reflecting surfaces, allowing tailoring of the aperture properties to produce a desirable radiation pattern, without incurring edge-taper losses. The proposed low-profile design yields near-unity aperture illumination efficiencies from arbitrarily large apertures, offering new capabilities for microwave, terahertz and optical radiators.

  2. Effect of injection screen slot geometry on hydraulic conductivity tests

    NASA Astrophysics Data System (ADS)

    Klammler, Harald; Nemer, Bassel; Hatfield, Kirk

    2014-04-01

    Hydraulic conductivity and its spatial variability are important hydrogeological parameters and are typically determined through injection tests at different scales. For injection test interpretation, shape factors are required to account for injection screen geometry. Shape factors act as proportionality constants between hydraulic conductivity and observed ratios of injection flow rate and injection head at steady-state. Existing results for such shape factors assume either an ideal screen (i.e., ignoring effects of screen slot geometry) or infinite screen length (i.e., ignoring effects of screen extremes). In the present work, we investigate the combined effects of circumferential screen slot geometry and finite screen length on injection shape factors. This is done in terms of a screen entrance resistance by solving a steady-state potential flow mixed type boundary value problem in a homogeneous axi-symmetric flow domain using a semi-analytical solution approach. Results are compared to existing analytical solutions for circumferential and longitudinal slots on infinite screens, which are found to be identical. Based on an existing approximation, an expression is developed for a dimensionless screen entrance resistance of infinite screens, which is a function of the relative slot area only. For anisotropic conditions, e.g., when conductivity is smaller in the vertical direction than in the horizontal, screen entrance losses for circumferential slots increase, while they remain unaffected for longitudinal slots. This work is not concerned with investigating the effects of (possibly turbulent) head losses inside the injection device including the passage through the injection slots prior to entering the porous aquifer.

  3. Twist-induced tuning in tapered fiber couplers.

    PubMed

    Birks, T A

    1989-10-01

    The power-splitting ratio of fused tapered single-mode fiber couplers can be reversibly tuned by axial twisting without affecting loss. The twist-tuning behavior of a range of different tapered couplers is described. A simple expression for twist-tuning can be derived by representing the effects of twist by a change in the refractive index profile. Good agreement between this expression and experimental results is demonstrated. Repeated tuning over tens of thousands of cycles is found not to degrade coupler performance, and a number of practical applications, including a freely tunable tapered coupler, are described.

  4. Vehicle antenna for the mobile satellite experiment

    NASA Technical Reports Server (NTRS)

    Peng, Sheng Y.; Chung, H. H.; Leggiere, D.; Foy, W.; Schaffner, G.; Nelson, J.; Pagels, W.; Vayner, M.; Faller, H. L.; Messer, L.

    1988-01-01

    A low profile, low cost, printed circuit, electronically steered, right hand circularly polarized phase array antenna system has been developed for the Mobile Satellite Experiment (MSAT-X) Program. The success of this antenna is based upon the development of a crossed-slot element array and detailed trade-off analyses for both the phased array and pointing system design. The optimized system provides higher gain at low elevation angles (20 degrees above the horizon) and broader frequency coverage (approximately 8 1/2 percent bandwidth) than is possible with a patch array. Detailed analysis showed that optimum performance could be achieved with a 19 element array of a triangular lattice geometry of 3.9 inch element spacing. This configuration has the effect of minimizing grating lobes at large scan angles plus it improves the intersatellite isolation. The array has an aperture 20 inches in diameter and is 0.75 inch thick overall, exclusive of the RF and power connector. The pointing system employs a hybrid approach that operates with both an external rate sensor and an internal error signal as a means of fine tuning the beam acquisition and track. Steering the beam is done electronically via 18, 3-bit diode phase shifters. A nineteenth phase shifter is not required as the center element serves as a reference only. Measured patterns and gain show that the array meets the stipulated performance specifications everywhere except at some low elevation angles.

  5. A Typology of UK Slot Machine Gamblers: A Longitudinal Observational and Interview Study

    ERIC Educational Resources Information Center

    Griffiths, Mark D.

    2011-01-01

    Slot machine gambling is a popular leisure activity worldwide yet there has been very little research into different types of slot machine gamblers. Earlier typologies of slot machine gamblers have only concentrated on adolescents in arcade environments. This study presents a new typology of slot machine players based on over 1000 h of participant…

  6. 14 CFR 93.226 - Allocation of slots in low-demand periods.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 2 2011-01-01 2011-01-01 false Allocation of slots in low-demand periods... low-demand periods. (a) If there are available slots in the following time periods and there are no... available less than 5 days per week. (2) Any time period for which a slot is available for less than a full...

  7. 14 CFR 93.226 - Allocation of slots in low-demand periods.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 2 2010-01-01 2010-01-01 false Allocation of slots in low-demand periods... low-demand periods. (a) If there are available slots in the following time periods and there are no... available less than 5 days per week. (2) Any time period for which a slot is available for less than a full...

  8. Tapered fluorotellurite microstructured fibers for broadband supercontinuum generation.

    PubMed

    Wang, Fang; Wang, Kangkang; Yao, Chuanfei; Jia, Zhixu; Wang, Shunbin; Wu, Changfeng; Qin, Guanshi; Ohishi, Yasutake; Qin, Weiping

    2016-02-01

    Fluorotellurite microstructured fibers (MFs) based on TeO2-BaF2-Y2O3 glasses are fabricated by using a rod-in-tube method. Tapered fluorotellurite MFs with varied transition region lengths are prepared by employing an elongation machine. By using a tapered fluorotellurite MF with a transition region length of ∼3.3  cm as the nonlinear medium and a 1560 nm femtosecond fiber laser as the pump source, broadband supercontinuum generation covering from 470 to 2770 nm is obtained. The effects of the transition region length of the tapered fluorotellurite MF on supercontinuum generation are also investigated. Our results show that tapered fluorotellurite MFs are promising nonlinear media for generating broadband supercontinuum light expanding from visible to mid-infrared spectral region.

  9. Discrete-Slots Models of Visual Working-Memory Response Times

    PubMed Central

    Donkin, Christopher; Nosofsky, Robert M.; Gold, Jason M.; Shiffrin, Richard M.

    2014-01-01

    Much recent research has aimed to establish whether visual working memory (WM) is better characterized by a limited number of discrete all-or-none slots or by a continuous sharing of memory resources. To date, however, researchers have not considered the response-time (RT) predictions of discrete-slots versus shared-resources models. To complement the past research in this field, we formalize a family of mixed-state, discrete-slots models for explaining choice and RTs in tasks of visual WM change detection. In the tasks under investigation, a small set of visual items is presented, followed by a test item in 1 of the studied positions for which a change judgment must be made. According to the models, if the studied item in that position is retained in 1 of the discrete slots, then a memory-based evidence-accumulation process determines the choice and the RT; if the studied item in that position is missing, then a guessing-based accumulation process operates. Observed RT distributions are therefore theorized to arise as probabilistic mixtures of the memory-based and guessing distributions. We formalize an analogous set of continuous shared-resources models. The model classes are tested on individual subjects with both qualitative contrasts and quantitative fits to RT-distribution data. The discrete-slots models provide much better qualitative and quantitative accounts of the RT and choice data than do the shared-resources models, although there is some evidence for “slots plus resources” when memory set size is very small. PMID:24015956

  10. Measuring bacterial growth by refractive index tapered fiber optic biosensor.

    PubMed

    Zibaii, Mohammad Ismail; Kazemi, Alireza; Latifi, Hamid; Azar, Mahmoud Karimi; Hosseini, Seyed Masoud; Ghezelaiagh, Mohammad Hossein

    2010-12-02

    A single-mode tapered fiber optic biosensor was utilized for real-time monitoring of the Escherichia coli (E. coli K-12) growth in an aqueous medium. The applied fiber tapers were fabricated using heat-pulling method with waist diameter and length of 6-7μm and 3mm, respectively. The bacteria were immobilized on the tapered surface using Poly-l-Lysine. By providing the proper condition, bacterial population growth on the tapered surface increases the average surface density of the cells and consequently the refractive index (RI) of the tapered region would increase. The adsorption of the cells on the tapered fiber leads to changes in the optical characteristics of the taper. This affects the evanescent field leading to changes in optical throughput. The bacterial growth rate was monitored at room temperature by transmission of a 1558.17nm distributed feedback (DFB) laser through the tapered fiber. At the same condition, after determining the growth rate of E. coli by means of colony counting method, we compared the results with that obtained from the fiber sensor measurements. This novel sensing method, promises new application such as rapid analysis of the presence of bacteria. Copyright © 2010 Elsevier B.V. All rights reserved.

  11. Investigation of transonic flow over segmented slotted wind tunnel wall with mass transfer

    NASA Technical Reports Server (NTRS)

    Bhat, M. K.; Vakili, A. D.; Wu, J. M.

    1990-01-01

    The flowfield on a segmented multi-slotted wind tunnel wall was studied at transonic speeds by measurements in and near the wall layer using five port cone probes. The slotted wall flowfield was observed to be three-dimensional in nature for a relatively significant distance above the slot. The boundary layer characteristics measured on the single slotted wall were found to be very sensitive to the applied suction through the slot. The perturbation in the velocity components generated due to the flow through the slot decay rapidly in the transverse direction. A vortex-like flow existed on the single slotted wall for natural ventilation but diminished with increased suction flow rate. For flow on a segmented multi-slotted wall, the normal velocity component changes were found to be maximum for measurement points located between the segmented slots atop the active chamber. The lateral influence due to applied suction and blowing, through a compartment, exceeded only slightly that in the downstream direction. Limited upstream influence was observed. Influence coefficients were determined from the data in the least-square sense for blowing and suction applied through one and two compartments. This was found to be an adequate determination of the influence coefficients for the range of mass flows considered.

  12. Tapered capillary optics

    DOEpatents

    Hirsch, Gregory

    1998-01-01

    A metal or glass wire is etched with great precision into a very narrowly tapering cone which has the shape of the desired final capillary-optics bore. By controlling the rate of removal of the wire from an etchant bath, a carefully controlled taper is produced. A sensor measures the diameter of the wire as it leaves the surface of the etchant. This signal is used for feedback control of the withdrawal speed. The etched wire undergoes a treatment to produce an extremely low surface-roughness. The etched and smoothed wire is coated with the material of choice for optimizing the reflectivity of the radiation being focused. This could be a vacuum evaporation, sputtering, CVD or aqueous chemical process. The coated wire is either electroplated, built up with electroless plating, or encapsulated in a polymer cylinder such as epoxy to increase the diameter of the wire for easier handling and greater robustness. During this process, the wire is vertically oriented and tensioned to assure that the wire is absolutely straight. The coated and electroformed wire is bonded to a flat, rigid substrate and is then periodically segmented by cutting or etching a series of narrow slits or grooves into the wire. The wire is vertically oriented and tensioned during the bonding process to assure that it is straight. The original wire material is then chemically etched away through the slits or otherwise withdrawn to leave the hollow internal bore of the final tapered-capillary optical element.

  13. Fatigue delamination onset prediction in tapered composite laminates

    NASA Technical Reports Server (NTRS)

    Murri, Gretchen Bostaph; Salpekar, Satish A.; Obrien, T. Kevin

    1989-01-01

    Tapered (0 deg) laminates of S2/CE9000 and S2/SP250 glass/epoxies, and IM6/1827I graphite/epoxy were tested in cyclic tension. The specimens usually showed some initial stable delaminations in the tapered region, but these did not affect the stiffness of the specimens, and loading was continued until the specimens either delaminated unstably, or reached 10(exp 6) to 2 x 10(exp 7) million cycles with no unstable delamination. The final unstable delamination originated at the junction of the thin and tapered regions. A finite-element model was developed for the tapered laminate with and without the initial stable delaminations observed in the tests. The analysis showed that for both cases the most likely place for an opening (Mode 1) delamination to originate is at the junction of the taper and thin regions. For each material type, the models were used to calculate the strain energy release rate, G, associated with delaminations originating at that junction and growing either into the thin region or tapered region. For the materials tested, cyclic G(sub Imax) values from DCB tests were used with the maximum strain energy release rates calculated from the finite-element analysis to predict the onset of unstable delamination at the junction as a function of fatigue cycles. The predictions were compared to experimental values of maximum cyclic load as a function of cycles to unstable delamination from fatigue tests in tapered laminates. For the IM6/1827I and S2/SP250 laminates, the predictions agreed very well with the test data. Predicted values for the S2/CE9000 were conservative compared to the test data.

  14. Design of a Class of Antennas Utilizing MEMS, EBG and Septum Polarizers including Near-field Coupling Analysis

    NASA Astrophysics Data System (ADS)

    Kim, Ilkyu

    Recent developments in mobile communications have led to an increased appearance of short-range communications and high data-rate signal transmission. New technologies provides the need for an accurate near-field coupling analysis and novel antenna designs. An ability to effectively estimate the coupling within the near-field region is required to realize short-range communications. Currently, two common techniques that are applicable to the near-field coupling problem are 1) integral form of coupling formula and 2) generalized Friis formula. These formulas are investigated with an emphasis on straightforward calculation and accuracy for various distances between the two antennas. The coupling formulas are computed for a variety of antennas, and several antenna configurations are evaluated through full-wave simulation and indoor measurement in order to validate these techniques. In addition, this research aims to design multi-functional and high performance antennas based on MEMS (Microelectromechanical Systems) switches, EBG (Electromagnetic Bandgap) structures, and septum polarizers. A MEMS switch is incorporated into a slot loaded patch antenna to attain frequency reconfigurability. The resonant frequency of the patch antenna can be shifted using the MEM switch, which is actuated by the integrated bias networks. Furthermore, a high gain base-station antenna utilizing beam-tilting is designed to maximize gain for tilted beam applications. To realize this base-station antenna, an array of four dipole-EBG elements is constructed to implement a fixed down-tilt main beam with application in base station arrays. An improvement of the operating range with the EBG-dipole array is evaluated using a simple linkbudget analysis. The septum polarizer has been widely used in circularly polarized antenna systems due to its simple and compact design and high quality of circularity. In this research, the sigmoid function is used to smoothen the edge in the septum design, which

  15. Modeling of Slot Waveguide Sensors Based on Polymeric Materials

    PubMed Central

    Bettotti, Paolo; Pitanti, Alessandro; Rigo, Eveline; De Leonardis, Francesco; Passaro, Vittorio M. N.; Pavesi, Lorenzo

    2011-01-01

    Slot waveguides are very promising for optical sensing applications because of their peculiar spatial mode profile. In this paper we have carried out a detailed analysis of mode confinement properties in slot waveguides realized in very low refractive index materials. We show that the sensitivity of a slot waveguide is not directly related to the refractive index contrast of high and low materials forming the waveguide. Thus, a careful design of the structures allows the realization of high sensitivity devices even in very low refractive index materials (e.g., polymers) to be achieved. Advantages of low index dielectrics in terms of cost, functionalization and ease of fabrication are discussed while keeping both CMOS compatibility and integrable design schemes. Finally, applications of low index slot waveguides as substitute of bulky fiber capillary sensors or in ring resonator architectures are addressed. Theoretical results of this work are relevant to well established polymer technologies. PMID:22164020

  16. Collaborative en-route and slot allocation algorithm based on fuzzy comprehensive evaluation

    NASA Astrophysics Data System (ADS)

    Yang, Shangwen; Guo, Baohua; Xiao, Xuefei; Gao, Haichao

    2018-01-01

    To allocate the en-routes and slots to the flights with collaborative decision making, a collaborative en-route and slot allocation algorithm based on fuzzy comprehensive evaluation was proposed. Evaluation indexes include flight delay costs, delay time and the number of turning points. Analytic hierarchy process is applied to determining index weights. Remark set for current two flights not yet obtained the en-route and slot in flight schedule is established. Then, fuzzy comprehensive evaluation is performed, and the en-route and slot for the current two flights are determined. Continue selecting the flight not yet obtained an en-route and a slot in flight schedule. Perform fuzzy comprehensive evaluation until all flights have obtained the en-routes and slots. MatlabR2007b was applied to numerical test based on the simulated data of a civil en-route. Test results show that, compared with the traditional strategy of first come first service, the algorithm gains better effect. The effectiveness of the algorithm was verified.

  17. Welding-fume-induced transmission loss in tapered optical fibers

    NASA Astrophysics Data System (ADS)

    Yi, Ji-Haeng

    2015-09-01

    This paper presents a method for sensing welding fumes in real time. This method is based on the results of nanoparticle-induced optical-fiber loss experiments that show that the losses are determined by the nanoparticle density and the taper waist. The tapered fiber is obtained by applying heat radiated from hot quartz, and monitoring is done in real time. First, the durability of the tapered fiber during the welding process is proven. Then, the loss is categorized by using the sizes of welding fume particles. The sensitivity to welding fumes increases with increasing size of the particles; consequently, the dimension of the taper waist decreases.

  18. Ultra-low-loss tapered optical fibers with minimal lengths

    NASA Astrophysics Data System (ADS)

    Nagai, Ryutaro; Aoki, Takao

    2014-11-01

    We design and fabricate ultra-low-loss tapered optical fibers (TOFs) with minimal lengths. We first optimize variations of the torch scan length using the flame-brush method for fabricating TOFs with taper angles that satisfy the adiabaticity criteria. We accordingly fabricate TOFs with optimal shapes and compare their transmission to TOFs with a constant taper angle and TOFs with an exponential shape. The highest transmission measured for TOFs with an optimal shape is in excess of 99.7 % with a total TOF length of only 23 mm, whereas TOFs with a constant taper angle of 2 mrad reach 99.6 % transmission for a 63 mm TOF length.

  19. Comparison of debris extruded apically and working time used by ProTaper Universal rotary and ProTaper retreatment system during gutta-percha removal

    PubMed Central

    UEZU, Mary Kinue Nakamune; BRITTO, Maria Leticia Borges; NABESHIMA, Cleber K.; PALLOTTA, Raul Capp

    2010-01-01

    Objective The aim of this study was to evaluate the in vitro action of ProTaper retreatment files and ProTaper Universal in the retreatment of mandibular premolars. Material and methods The amount of debris extruded apically was measured and the time to reach the working length and to complete the removal of gutta-percha was observed. Thirty teeth had their canals prepared using ProTaper Universal files and were obturated by the single cone technique. The teeth were then stored at 37ºC in a humid environment for 7 days. During the use of the rotary instruments for root canal filling removal, the apical portions of the teeth were attached to the open end of a resin tube to collect the apically extruded debris. Results ProTaper Universal files were significantly faster (p=0.0011) than the ProTaper retreatment files to perform gutta-percha removal, but no significant difference was found between the files regarding the time to reach the working length or the amount of apical extrusion. Conclusions ProTaper Universal rotary had better results for endodontic retreatment, and both techniques promote similar apical extrusion of debris. PMID:21308282

  20. Tapering Practices of Strongman Athletes: Test-Retest Reliability Study

    PubMed Central

    Pritchard, Hayden J; Keogh, Justin WL

    2017-01-01

    Background Little is currently known about the tapering practices of strongman athletes. We have developed an Internet-based comprehensive self-report questionnaire examining the training and tapering practices of strongman athletes. Objective The objective of this study was to document the test-retest reliability of questions associated with the Internet-based comprehensive self-report questionnaire on the tapering practices of strongman athletes. The information will provide insight on the reliability and usefulness of the online questionnaire for use with strongman athletes. Methods Invitations to complete an Internet questionnaire were sent via Facebook Messenger to identified strongman athletes. The survey consisted of four main areas of inquiry, including demographics and background information, training practices, tapering, and tapering practices. Of the 454 athletes that completed the survey over the 8-week period, 130 athletes responded on Facebook Messenger indicating that they intended to complete, or had completed, the survey. These participants were asked if they could complete the online questionnaire a second time for a test-retest reliability analysis. Sixty-four athletes (mean age 33.3 years, standard deviation [SD] 7.7; mean height 178.2 cm, SD 11.0; mean body mass 103.7 kg, SD 24.8) accepted this invitation and completed the survey for the second time after a minimum 7-day period from the date of their first completion. Agreement between athlete responses was measured using intraclass correlation coefficients (ICCs) and kappa statistics. Confidence intervals (at 95%) were reported for all measures and significance was set at P<.05. Results Test-retest reliability for demographic and training practices items were significant (P<.001) and showed excellent (ICC range=.84 to .98) and fair to almost perfect agreement (κ range=.37-.85). Moderate to excellent agreements (ICC range=.56-.84; P<.01) were observed for all tapering practice measures except

  1. A multi-slot surface coil for MRI of dual-rat imaging at 4 T

    NASA Astrophysics Data System (ADS)

    Solis, S. E.; Wang, R.; Tomasi, D.; Rodriguez, A. O.

    2011-06-01

    A slotted surface coil inspired by the hole-and-slot cavity magnetron was developed for magnetic resonance imaging of obese rats at 4 T. Full-wave analysis of the magnetic field was carried out at 170 MHz for both the slotted and circular-shaped coils. The noise figure values of two coils were investigated via the numerical calculation of the quality factors. Fat simulated phantoms to mimic overweight rats were included in the analysis with weights ranging from 300 to 900 g. The noise figures were 1.2 dB for the slotted coil and 2.4 dB for the circular coil when loaded with 600 g of simulated phantom. A slotted surface coil with eight circular slots and a circular coil with similar dimensions were built and operated in the transceiver mode, and their performances were experimentally compared. The imaging tests in phantoms demonstrated that the slotted surface coil has a deeper RF-sensitivity and better field uniformity than the single-loop RF-coil. High quality images of two overweight Zucker rats were acquired simultaneously with the slotted surface coil using standard spin-echo pulse sequences. Experimental results showed that the slotted surface coil outperformed the circular coil for imaging considerably overweight rats. Thus, the slotted surface coil can be a good tool for MRI experiments in rats on a human whole-body 4 T scanner.

  2. Analysis of Tangential Slot Blowing on F/A-18 Isolated Forebody

    NASA Technical Reports Server (NTRS)

    Gee, Ken; Rizk, Yehia M.; Schiff, Lewis B.

    1995-01-01

    The generation of significant side forces and yawing moments on an F/A-18 fuselage through tangential slot blowing is analyzed using computational fluid dynamics. The effects of freestream Mach number, jet exit conditions, jet length, and jet location are studied. The effects of over- and underblowing on force and moment production are analyzed. Non-time-accurate solutions are obtained to determine the steady-state side forces, yawing moments, and surface pressure distributions generated by tangential slot blowing. Time-accurate solutions are obtained to study the force onset time lag of tangential slot blowing. Comparison with available experimental data from full-scale wind-tunnel and subscale wind-tunnel tests are made. This computational analysis complements the experimental results and provides a detailed understanding of the effects of tangential slot blowing on the flowfield about the isolated F/A-18 forebody. Additionally, it extends the slot-blowing database to transonic maneuvering Mach numbers.

  3. Free torsional vibrations of tapered cantilever I-beams

    NASA Astrophysics Data System (ADS)

    Rao, C. Kameswara; Mirza, S.

    1988-08-01

    Torsional vibration characteristics of linearly tapered cantilever I-beams have been studied by using the Galerkin finite element method. A third degree polynomial is assumed for the angle of twist. The analysis presented is valid for long beams and includes the effect of warping. The individual as well as combined effects of linear tapers in the width of the flanges and the depth of the web on the torsional vibration of cantilever I-beams are investigated. Numerical results generated for various values of taper ratios are presented in graphical form.

  4. Diagnosis Taper Corrosion: When Is It the Taper and When Is It Something Else?

    PubMed

    Della Valle, Craig J; Calkins, Tyler E; Jacobs, Joshua J

    2018-03-01

    There has been an increasing use of modularity at the head-neck junction in total hip arthroplasty to more closely mimic the native anatomy, allowing for optimal leg length and stability. Corrosion at this junction in metal-on-polyethylene bearings can lead to an adverse local tissue reaction (ALTR). This increasingly prevalent condition should be considered in the differential diagnosis of hip pain and difficulty ambulating. A recent symposium by the American Academy of Hip and Knee Surgeons described the diagnosis, etiology, management, and prevention of taper corrosion. This article describes the history, physical, plain and advanced imaging findings, laboratory tests, and other diagnoses that should be taken into consideration when diagnosing taper corrosion. The presence of ALTR due to taper corrosion can mimic other diagnoses such as periprosthetic joint infection, instability, or aseptic loosening. Serum metal levels have been found to be the most effective screening tool for identifying corrosion, but other common causes of hip pain and difficulty ambulating should always be ruled out with the use of radiographs and common laboratory techniques before diagnosing ALTR due to corrosion. Copyright © 2018 Elsevier Inc. All rights reserved.

  5. Thin-Ribbon Tapered Couplers For Dielectric Waveguides

    NASA Technical Reports Server (NTRS)

    Otoshi, Tom Y.; Shimabukuro, Fred I.; Yeh, Cavour

    1996-01-01

    Thin-ribbon tapered couplers proposed for launching electro-magnetic waves into dielectric waveguides, which include optical fibers. Intended for use with ribbon dielectric waveguides designed for operation at millimeter or submillimeter wavelengths, made of high-relative-permittivity, low-loss materials and thicknesses comparable to or less than free-space design wavelengths. Coupling efficiencies exceeds those of older tapered couplers.

  6. Rotational flow in tapered slab rocket motors

    NASA Astrophysics Data System (ADS)

    Saad, Tony; Sams, Oliver C.; Majdalani, Joseph

    2006-10-01

    Internal flow modeling is a requisite for obtaining critical parameters in the design and fabrication of modern solid rocket motors. In this work, the analytical formulation of internal flows particular to motors with tapered sidewalls is pursued. The analysis employs the vorticity-streamfunction approach to treat this problem assuming steady, incompressible, inviscid, and nonreactive flow conditions. The resulting solution is rotational following the analyses presented by Culick for a cylindrical motor. In an extension to Culick's work, Clayton has recently managed to incorporate the effect of tapered walls. Here, an approach similar to that of Clayton is applied to a slab motor in which the chamber is modeled as a rectangular channel with tapered sidewalls. The solutions are shown to be reducible, at leading order, to Taylor's inviscid profile in a porous channel. The analysis also captures the generation of vorticity at the surface of the propellant and its transport along the streamlines. It is from the axial pressure gradient that the proper form of the vorticity is ascertained. Regular perturbations are then used to solve the vorticity equation that prescribes the mean flow motion. Subsequently, numerical simulations via a finite volume solver are carried out to gain further confidence in the analytical approximations. In illustrating the effects of the taper on flow conditions, comparisons of total pressure and velocity profiles in tapered and nontapered chambers are entertained. Finally, a comparison with the axisymmetric flow analog is presented.

  7. Turbine airfoil fabricated from tapered extrusions

    DOEpatents

    Marra, John J

    2013-07-16

    An airfoil (30) and fabrication process for turbine blades with cooling channels (26). Tapered tubes (32A-32D) are bonded together in a parallel sequence, forming a leading edge (21), a trailing edge (22), and pressure and suction side walls (23, 24) connected by internal ribs (25). The tapered tubes may be extruded without camber to simplify the extrusion process, then bonded along matching surfaces (34), forming a non-cambered airfoil (28), which may be cambered in a hot forming process and cut (48) to length. The tubes may have tapered walls that are thinner at the blade tip (T1) than at the base (T2), reducing mass. A cap (50) may be attached to the blade tip. A mounting lug (58) may be forged (60) on the airfoil base and then machined, completing the blade for mounting in a turbine rotor disk.

  8. Measurement of the depth of narrow slotted sections in eddy current reference standards

    NASA Astrophysics Data System (ADS)

    Kim, Young-Joo; Kim, Young-gil; Ahn, Bongyoung; Yoon, Dong-Jin

    2007-02-01

    The dimensions of the slots in eddy current (EC) reference standards are too narrow to be measured by general depth measurement methods such as the optical (laser) or stylus methods. However, measurement of the dimensions of the machined slots is a prerequisite to using the blocks as references. The present paper suggests a measurement method for the slotted section using an ultrasonic test. The width and depth of the slots measured in our study are roughly 0.1 mm and 0.5 mm, respectively. The time of flight (TOF) of the ultrasonic wave was measured precisely. The ultrasonic velocity in the material of the EC reference standard was calculated with the measured values of the TOF and its thickness. Reflected waves from the tip of the slot and the bottom surface of the EC standard were successfully classified. Using this method we have successfully determined the depth of the slotted section.

  9. Manipulating Slot Machine Preference in Problem Gamblers through Contextual Control

    ERIC Educational Resources Information Center

    Nastally, Becky L.; Dixon, Mark R.; Jackson, James W.

    2010-01-01

    Pathological and nonpathological gamblers completed a task that assessed preference among 2 concurrently available slot machines. Subsequent assessments of choice were conducted after various attempts to transfer contextual functions associated with irrelevant characteristics of the slot machines. Results indicated that the nonproblem gambling…

  10. High field pulsed microwiggler comprising a conductive tube with periodically space slots

    DOEpatents

    Warren, R.W.

    1992-09-01

    A microwiggler assembly produces large magnetic fields for oscillating charged particle beams, particularly electron beams for free electron laser (FEL) application. A tube of electrically conductive material is formed with radial slots axially spaced at the period of the electron beam. The slots have alternate 180[degree] relationships and are formed to a maximum depth of 0.6 to 0.7 times the tube circumference. An optimum slot depth is selected to eliminate magnetic quadrupole fields within the microwiggler as determined from a conventional pulsed wire technique. Suitable slot configurations include single slits, double slits, triple slits, and elliptical slots. An axial electron beam direction is maintained by experimentally placing end slits adjacent entrance and exit portions of the assembly, where the end slit depth is determined by use of the pulsed wire technique outside the tube. 10 figs.

  11. High field pulsed microwiggler comprising a conductive tube with periodically space slots

    DOEpatents

    Warren, Roger W.

    1992-01-01

    A microwiggler assembly produces large magnetic fields for oscillating ched particle beams, particularly electron beams for free electron laser (FEL) application. A tube of electrically conductive material is formed with radial slots axially spaced at the period of the electron beam. The slots have alternate 180.degree. relationships and are formed to a maximum depth of 0.6 to 0.7 times the tube circumference. An optimum slot depth is selected to eliminate magnetic quadrupole fields within the microwiggler as determined from a conventional pulsed wire technique. Suitable slot configurations include single slits, double slits, triple slits, and elliptical slots. An axial electron beam direction is maintained by experimentally placing end slits adjacent entrance and exit portions of the assembly, where the end slit depth is determined by use of the pulsed wire technique outside the tube.

  12. Adiabatic tapered optical fiber fabrication in two step etching

    NASA Astrophysics Data System (ADS)

    Chenari, Z.; Latifi, H.; Ghamari, S.; Hashemi, R. S.; Doroodmand, F.

    2016-01-01

    A two-step etching method using HF acid and Buffered HF is proposed to fabricate adiabatic biconical optical fiber tapers. Due to the fact that the etching rate in second step is almost 3 times slower than the previous droplet etching method, terminating the fabrication process is controllable enough to achieve a desirable fiber diameter. By monitoring transmitted spectrum, final diameter and adiabaticity of tapers are deduced. Tapers with losses about 0.3 dB in air and 4.2 dB in water are produced. The biconical fiber taper fabricated using this method is used to excite whispering gallery modes (WGMs) on a microsphere surface in an aquatic environment. So that they are suitable to be used in applications like WGM biosensors.

  13. The impact of sound in modern multiline video slot machine play.

    PubMed

    Dixon, Mike J; Harrigan, Kevin A; Santesso, Diane L; Graydon, Candice; Fugelsang, Jonathan A; Collins, Karen

    2014-12-01

    Slot machine wins and losses have distinctive, measurable, physiological effects on players. The contributing factors to these effects remain under-explored. We believe that sound is one of these key contributing factors. Sound plays an important role in reinforcement, and thus on arousal level and stress response of players. It is the use of sound for positive reinforcement in particular that we believe influences the player. In the current study, we investigate the role that sound plays in psychophysical responses to slot machine play. A total of 96 gamblers played a slot machine simulator with and without sound being paired with reinforcement. Skin conductance responses and heart rate, as well as subjective judgments about the gambling experience were examined. The results showed that the sound influenced the arousal of participants both psychophysically and psychologically. The sound also influenced players' preferences, with the majority of players preferring to play slot machines that were accompanied by winning sounds. The sounds also caused players to significantly overestimate the number of times they won while playing the slot machine.

  14. Congestion Pricing for Aircraft Pushback Slot Allocation.

    PubMed

    Liu, Lihua; Zhang, Yaping; Liu, Lan; Xing, Zhiwei

    2017-01-01

    In order to optimize aircraft pushback management during rush hour, aircraft pushback slot allocation based on congestion pricing is explored while considering monetary compensation based on the quality of the surface operations. First, the concept of the "external cost of surface congestion" is proposed, and a quantitative study on the external cost is performed. Then, an aircraft pushback slot allocation model for minimizing the total surface cost is established. An improved discrete differential evolution algorithm is also designed. Finally, a simulation is performed on Xinzheng International Airport using the proposed model. By comparing the pushback slot control strategy based on congestion pricing with other strategies, the advantages of the proposed model and algorithm are highlighted. In addition to reducing delays and optimizing the delay distribution, the model and algorithm are better suited for use for actual aircraft pushback management during rush hour. Further, it is also observed they do not result in significant increases in the surface cost. These results confirm the effectiveness and suitability of the proposed model and algorithm.

  15. Congestion Pricing for Aircraft Pushback Slot Allocation

    PubMed Central

    Zhang, Yaping

    2017-01-01

    In order to optimize aircraft pushback management during rush hour, aircraft pushback slot allocation based on congestion pricing is explored while considering monetary compensation based on the quality of the surface operations. First, the concept of the “external cost of surface congestion” is proposed, and a quantitative study on the external cost is performed. Then, an aircraft pushback slot allocation model for minimizing the total surface cost is established. An improved discrete differential evolution algorithm is also designed. Finally, a simulation is performed on Xinzheng International Airport using the proposed model. By comparing the pushback slot control strategy based on congestion pricing with other strategies, the advantages of the proposed model and algorithm are highlighted. In addition to reducing delays and optimizing the delay distribution, the model and algorithm are better suited for use for actual aircraft pushback management during rush hour. Further, it is also observed they do not result in significant increases in the surface cost. These results confirm the effectiveness and suitability of the proposed model and algorithm. PMID:28114429

  16. Comparative study of ProTaper gold, reciproc, and ProTaper universal for root canal preparation in severely curved root canals

    PubMed Central

    Arslan, Hakan; Yildiz, Ezgi Doganay; Gunduz, Hicran Ates; Sumbullu, Meltem; Bayrakdar, Ibrahim Sevki; Karatas, Ertugrul; Sumbullu, Muhammed Akif

    2017-01-01

    Aim: The aim of this study is to evaluate the root canal transportation, centering ability, and instrumentation times with the ProTaper Gold (Dentsply Tulsa Dental, Tulsa, OK, USA), Reciproc (VDW, Munich, Germany), and ProTaper Universal (Dentsply Maillefer, Ballaigues, Switzerland) using cone-beam computed tomography (CBCT). Materials and Methods: Thirty mesial root canals of mandibular first molars with curvature angles of 35°–70° and radii of 2–6 mm were included in the study. Root canal instrumentation was performed up to F2 or R25. The instrumentation times were recorded. CBCT scanning was performed both pre- and post-instrumentation. Root canal transportation and the centering ratio were calculated for groups, and the data were analyzed using a one-way ANOVA and least significant difference post hoc tests for the instrumentation time, root canal transportation, and centering ratio at the 95% confidence level (P = 0.05). Results: At 3, 5, and 7 mm levels, there was no significant difference in the root canal transportation and centering ratio among the groups (P > 0.05). There were significant differences between the Reciproc and ProTaper Universal groups in the instrumentation times (P < 0.05). Conclusion: Root canal transportation and the centering ratio with the ProTaper Gold were similar to those obtained with the ProTaper Universal and Reciproc. PMID:29259355

  17. A terahertz in-line polarization converter based on through-via connected double layer slot structures

    PubMed Central

    Woo, Jeong Min; Hussain, Sajid; Jang, Jae-Hyung

    2017-01-01

    A terahertz (THz) in-line polarization converter that yields a polarization conversion ratio as high as 99.9% is demonstrated at 1 THz. It has double-layer slot structures oriented in orthogonal directions that are electrically connected by 1/8-wavelngth-long through-via holes beside the slot structures. The slots on the front metal-plane respond to the incident THz wave with polarization orthogonal to the slots and generates a circulating surface current around the slots. The surface current propagates along a pair of through-via holes that function as a two-wire transmission line. The propagating current generates a surface current around the backside slot structures oriented orthogonal to the slot structures on the front metal layer. The circulating current generates a terahertz wave polarized orthogonal to the backside slot structures and the 90° polarization conversion is completed. The re-radiating THz wave with 90° converted polarization propagates in the same direction as the incident THz wave. PMID:28211498

  18. Flexural-torsional vibration of a tapered C-section beam

    NASA Astrophysics Data System (ADS)

    Dennis, Scott T.; Jones, Keith W.

    2017-04-01

    Previous studies have shown that numerical models of tapered thin-walled C-section beams based on a stepped or piecewise prismatic beam approximation are inaccurate regardless of the number of elements assumed in the discretization. Andrade recently addressed this problem by extending Vlasov beam theory to a tapered geometry resulting in new terms that vanish for the uniform beam. (See One-Dimensional Models for the Spatial Behaviour of Tapered Thin-Walled Bars with Open Cross-Sections: Static, Dynamic and Buckling Analyses, PhD Thesis, University of Coimbra, Portugal, 2012, https://estudogeral.sib.uc.pt) In this paper, we model the coupled bending-twisting vibration of a cantilevered tapered thin-walled C-section using a Galerkin approximation of Andrade's beam equations resulting in an 8-degree-of-freedom beam element. Experimental natural frequencies and mode shapes for 3 prismatic and 2 tapered channel beams are compared to model predictions. In addition, comparisons are made to detailed shell finite element models and exact solutions for the uniform beams to confirm the validity of the approach. Comparisons to the incorrect stepped model are also presented.

  19. Catalog of Window Taper Functions for Sidelobe Control

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Doerry, Armin W.

    Window taper functions of finite apertures are well-known to control undesirable sidelobes, albeit with performance trades. A plethora of various taper functions have been developed over the years to achieve various optimizations. We herein catalog a number of window functions, and com pare principal characteristics.

  20. Wind Tunnel Investigation of the Effects of Slot Shape and Flap Location on the Characteristics of a Low-Drag Airfoil Equipped with a 0.25-Chord Slotted Flap

    NASA Technical Reports Server (NTRS)

    Weisman, Yale; Holtzclaw, Ralph W.

    1944-01-01

    Tests were conducted at dynamic pressure of 50 lb per square foot with lift drag and pitch moment measurements throughout useful angle of attack range for constant flap deflection and position of a low-drag airfoil. Two slots were investigated and practical flap paths were selected for each Slot shape had a negligible effect on the maximum lift coefficient flap deflected, the rounded-entry slot had lower profile drag.

  1. In-line optical fiber sensors based on cladded multimode tapered fibers.

    PubMed

    Villatoro, Joel; Monzón-Hernández, David; Luna-Moreno, Donato

    2004-11-10

    The use of uniform-waist cladded multimode tapered optical fibers is demonstrated for evanescent wave spectroscopy and sensors. The tapering is a simple, low-loss process and consists of stretching the fiber while it is being heated with an oscillating flame torch. As examples, a refractive-index sensor and a hydrogen sensor are demonstrated by use of a conventional graded-index multimode optical fiber. Also, absorbance spectra are measured while the tapers are immersed in an absorbing liquid. It is found experimentally that the uniform waist is the part of the taper that contributes most to the sensor sensitivity. The taper waist diameter may also be used to adjust the sensor dynamic range.

  2. Applied Computational Electromagnetics Society Journal, volume 9, number 1, March 1994

    NASA Astrophysics Data System (ADS)

    1994-03-01

    The partial contents of this document include the following: On the Use of Bivariate Spline Interpolation of Slot Data in the Design of Slotted Waveguide Arrays; A Technique for Determining Non-Integer Eigenvalues for Solutions of Ordinary Differential Equations; Antenna Modeling and Characterization of a VLF Airborne Dual Trailing Wire Antenna System; Electromagnetic Scattering from Two-Dimensional Composite Objects; and Use of a Stealth Boundary with Finite Difference Frequency Domain Simulations of Simple Antenna Problems.

  3. Characteristics of the Langley 8-foot Transonic Tunnel with Slotted Test Section

    NASA Technical Reports Server (NTRS)

    Wright, Ray H; Ritchie, Virgil S; Pearson, Albin O

    1958-01-01

    A large wind tunnel, approximately 8 feet in diameter, has been converted to transonic operation by means of slots in the boundary extending in the direction of flow. The usefulness of such a slotted wind tunnel, already known with respect to the reduction of the subsonic blockage interference and the production of continuously variable supersonic flows, has been augmented by devising a slot shape with which a supersonic test region with excellent flow quality could be produced. Experimental locations of detached shock waves ahead of axially symmetric bodies at low supersonic speeds in the slotted test section agreed satisfactorily with predictions obtained by use of existing approximate methods.

  4. One antenna, two antennae, big antennae, small: total antennae length, not bilateral symmetry, predicts odor-tracking performance in the American cockroach Periplaneta americana.

    PubMed

    Lockey, Jacob K; Willis, Mark A

    2015-07-01

    Determining the location of a particular stimulus is often crucial to an animal's survival. One way to determine the local distribution of an odor is to make simultaneous comparisons across multiple sensors. If the sensors detect differences in the distribution of an odor in space, the animal can then steer toward the source. American cockroaches, Periplaneta americana, have 4 cm long antennae and are thought to track odor plumes using a spatial sampling strategy, comparing the amount of odor detected between these bilateral sensors. However, it is not uncommon for cockroaches to lose parts of their antennae and still track a wind-borne odor to its source. We examined whether bilateral odor input is necessary to locate an odor source in a wind-driven environment and how the loss of increasing lengths of the antennae affects odor tracking. The tracking performances of individuals with two bilaterally symmetrical antennae of decreasing length were compared with antennal length-matched individuals with one antenna. Cockroaches with one antenna were generally able to track an odor plume to its source. In fact, the performances of unilaterally antennectomized individuals were statistically identical to those of their bilaterally symmetrical counterparts when the combined length of both antennae equaled the length of the single antenna of the antennectomized individuals. This suggests that the total length of available antennae influences odor tracking performance more than any specific piece of antenna, and that they may be doing something more complex than a simple bilateral comparison between their antennae. The possibility of an antenna-topic map is discussed. © 2015. Published by The Company of Biologists Ltd.

  5. High slot utilization systems for electric machines

    DOEpatents

    Hsu, John S

    2009-06-23

    Two new High Slot Utilization (HSU) Systems for electric machines enable the use of form wound coils that have the highest fill factor and the best use of magnetic materials. The epoxy/resin/curing treatment ensures the mechanical strength of the assembly of teeth, core, and coils. In addition, the first HSU system allows the coil layers to be moved inside the slots for the assembly purpose. The second system uses the slided-in teeth instead of the plugged-in teeth. The power density of the electric machine that uses either system can reach its highest limit.

  6. Refractive index sensors based on the fused tapered special multi-mode fiber

    NASA Astrophysics Data System (ADS)

    Fu, Xing-hu; Xiu, Yan-li; Liu, Qin; Xie, Hai-yang; Yang, Chuan-qing; Zhang, Shun-yang; Fu, Guang-wei; Bi, Wei-hong

    2016-01-01

    In this paper, a novel refractive index (RI) sensor is proposed based on the fused tapered special multi-mode fiber (SMMF). Firstly, a section of SMMF is spliced between two single-mode fibers (SMFs). Then, the SMMF is processed by a fused tapering machine, and a tapered fiber structure is fabricated. Finally, a fused tapered SMMF sensor is obtained for measuring external RI. The RI sensing mechanism of tapered SMMF sensor is analyzed in detail. For different fused tapering lengths, the experimental results show that the RI sensitivity can be up to 444.517 81 nm/RIU in the RI range of 1.334 9—1.347 0. The RI sensitivity is increased with the increase of fused tapering length. Moreover, it has many advantages, including high sensitivity, compact structure, fast response and wide application range. So it can be used to measure the solution concentration in the fields of biochemistry, health care and food processing.

  7. User Antennas

    NASA Technical Reports Server (NTRS)

    Jamnejad, Vahraz; Cramer, Paul

    1990-01-01

    The following subject areas are covered: (1) impact of frequency change of user and spacecraft antenna gain and size; (2) basic personal terminal antennas (impact of 20/30 GHz frequency separation; parametric studies - gain, size, weight; gain and figure of merit (G/T); design data for selected antenna concepts; critical technologies and development goals; and recommendations); and (3) user antenna radiation safety concerns.

  8. Numerical modelling on stimulated Brillouin scattering characterization for Graphene-clad tapered silica fiber

    NASA Astrophysics Data System (ADS)

    Lee, Hui Jing; Abdullah, Fairuz; Ismail, Aiman

    2017-11-01

    This paper presents finite numerical modelling on the cross-sectional region of tapered single mode fiber and graphene-clad tapered fiber. Surface acoustic wave propagation across the tapered surface region on tapered single mode fiber has a high threshold power at 61.87 W which is challenging to overcome by the incident pump wave. Surface acoustic wave propagation of fiber surface however made tapered wave plausible in the optical sensor application. This research introduces graphene as the cladding layer on tapered fiber, acoustic confinement occurs due to the graphene cladding which lowers the threshold power from 61.87 W to 2.17 W.

  9. Reconfigurable antenna pattern verification

    NASA Technical Reports Server (NTRS)

    Drexler, Jerome P. (Inventor); Becker, Robert C. (Inventor); Meyers, David W. (Inventor); Muldoon, Kelly P. (Inventor)

    2013-01-01

    A method of verifying programmable antenna configurations is disclosed. The method comprises selecting a desired antenna configuration from a plurality of antenna configuration patterns, with the selected antenna configuration forming at least one reconfigurable antenna from reconfigurable antenna array elements. The method validates the formation of the selected antenna configuration to determine antenna performance of the at least one reconfigurable antenna.

  10. The fabrication of a tapered fiber connector and its coupling efficiency

    NASA Astrophysics Data System (ADS)

    Qinggui, Hu; Chengzhong, Li

    2017-11-01

    In order to reduce the adverse influence of transversal displacement of the optical fiber connector, we propose the directional tapered communication fiber connector, in which the fiber head is tapered according to the signal transmission direction to improve efficiency. We used a flame-brush technique to produce the tapered fiber successfully. In the next step, two experiments in different environments were performed; one in a static environment and the other in a vibration environment. The first experiment shows that the efficiency of the tapered connector is higher than that of the common connector in the same transversal displacement. The second experiment shows that the efficiency of the tapered connector is higher than that of the common connector in the same frequency and amplitude.

  11. Equipment: Antenna systems

    NASA Astrophysics Data System (ADS)

    Petrie, L. E.

    1983-05-01

    Some antenna fundamentals as well as definitions of the principal terms used in antenna engineering are described. Methods are presented for determining the desired antenna radiation patterns for an HF communication circuit or service area. Sources for obtaining or computing radiation pattern information are outlined. Comparisons are presented between the measured and computed radiation patterns. The effect of the properties of the ground on the antenna gain and pattern are illustrated for several types of antennas. Numerous examples are given of the radiation patterns for typical antennas used on short, intermediate and long distance circuits or both mobile and fixed service operations. The application of adaptive antenna arrays and active antennas in modern HF communication systems are briefly reviewed.

  12. Equipment: Antenna systems

    NASA Astrophysics Data System (ADS)

    Petrie, L. E.

    1986-03-01

    Some antenna fundamentals as well as definitions of the principal terms used in antenna engineering are described. Methods are presented for determining the desired antenna radiation patterns for HF communication circuit or service area. Sources for obtaining or computing radiation pattern information are outlined. Comparisons are presented between the measured and computed radiation patterns. The effect of the properties of the ground on the antenna gain and the pattern are illustrated for several types of antennas. Numerous examples are given of the radiation patterns for typical antennas used on short, intermediate and long distance circuits for both mobile and fixed service operations. The application of adaptive antenna arrays and active antennas in modern HF communication systems are briefly reviewed.

  13. Near-Miss Effects on Response Latencies and Win Estimations of Slot Machine Players

    ERIC Educational Resources Information Center

    Dixon, Mark R.; Schreiber, James E.

    2004-01-01

    The present study examined the degree to which slot machine near-miss trials, or trials that displayed 2 of 3 winning symbols on the payoff line, affected response times and win estimations of 12 recreational slot machine players. Participants played a commercial slot machine in a casino-like laboratory for course extra-credit points. Videotaped…

  14. Computational Investigation of Tangential Slot Blowing on a Generic Chined Forebody

    NASA Technical Reports Server (NTRS)

    Agosta-Greenman, Roxana M.; Gee, Ken; Cummings, Russell M.; Schiff, Lewis B.

    1995-01-01

    The effect of tangential slot blowing on the flowfield about a generic chined forebody at high angles of attack is investigated numerically using solutions of the thin-layer, Reynolds-averaged, Navier-Stokes equations. The effects of jet mass now ratios, angle of attack, and blowing slot location in the axial and circumferential directions are studied. The computed results compare well with available wind-tunnel experimental data. Computational results show that for a given mass now rate, the yawing moments generated by slot blowing increase as the body angle of attack increases. It is observed that greater changes in the yawing moments are produced by a slot located closest to the lip of the nose. Also, computational solutions show that inboard blowing across the top surface is more effective at generating yawing moments than blowing outboard from the bottom surface.

  15. Combined tension and bending testing of tapered composite laminates

    NASA Astrophysics Data System (ADS)

    O'Brien, T. Kevin; Murri, Gretchen B.; Hagemeier, Rick; Rogers, Charles

    1994-11-01

    A simple beam element used at Bell Helicopter was incorporated in the Computational Mechanics Testbed (COMET) finite element code at the Langley Research Center (LaRC) to analyze the responce of tappered laminates typical of flexbeams in composite rotor hubs. This beam element incorporated the influence of membrane loads on the flexural response of the tapered laminate configurations modeled and tested in a combined axial tension and bending (ATB) hydraulic load frame designed and built at LaRC. The moments generated from the finite element model were used in a tapered laminated plate theory analysis to estimate axial stresses on the surface of the tapered laminates due to combined bending and tension loads. Surfaces strains were calculated and compared to surface strains measured using strain gages mounted along the laminate length. The strain distributions correlated reasonably well with the analysis. The analysis was then used to examine the surface strain distribution in a non-linear tapered laminate where a similarly good correlation was obtained. Results indicate that simple finite element beam models may be used to identify tapered laminate configurations best suited for simulating the response of a composite flexbeam in a full scale rotor hub.

  16. Variational theory of the tapered impedance transformer

    NASA Astrophysics Data System (ADS)

    Erickson, Robert P.

    2018-02-01

    Superconducting amplifiers are key components of modern quantum information circuits. To minimize information loss and reduce oscillations, a tapered impedance transformer of new design is needed at the input/output for compliance with other 50 Ω components. We show that an optimal tapered transformer of length ℓ, joining the amplifier to the input line, can be constructed using a variational principle applied to the linearized Riccati equation describing the voltage reflection coefficient of the taper. For an incident signal of frequency ωo, the variational solution results in an infinite set of equivalent optimal transformers, each with the same form for the reflection coefficient, each able to eliminate input-line reflections. For the special case of optimal lossless transformers, the group velocity vg is shown to be constant, with characteristic impedance dependent on frequency ωc = πvg/ℓ. While these solutions inhibit input-line reflections only for frequency ωo, a subset of optimal lossless transformers with ωo significantly detuned from ωc does exhibit a wide bandpass. Specifically, by choosing ωo → 0 (ωo → ∞), we obtain a subset of optimal low-pass (high-pass) lossless tapers with bandwidth (0, ˜ ωc) [(˜ωc, ∞)]. From the subset of solutions, we derive both the wide-band low-pass and high-pass transformers, and we discuss the extent to which they can be realized given fabrication constraints. In particular, we demonstrate the superior reflection response of our high-pass transformer when compared to other taper designs. Our results have application to amplifiers, transceivers, and other components sensitive to impedance mismatch.

  17. Does Surface Topography Play a Role in Taper Damage in Head-neck Modular Junctions?

    PubMed

    Pourzal, Robin; Hall, Deborah J; Ha, Nguyen Q; Urban, Robert M; Levine, Brett R; Jacobs, Joshua J; Lundberg, Hannah J

    2016-10-01

    There are increasing reports of total hip arthroplasty failure subsequent to modular taper junction corrosion. The surfaces of tapers are machined to have circumferential machining marks, resulting in a surface topography of alternating peaks and valleys on the scale of micrometers. It is unclear if the geometry of this machined surface topography influences the degree of fretting and corrosion damage present on modular taper junctions or if there are differences between modular taper junction material couples. (1) What are the differences in damage score and surface topography between CoCr/CoCr and CoCr/Ti modular junctions? (2) How are initial surface topography, flexural rigidity, taper angle mismatch, and time in situ related to visual taper damage scores for CoCr/CoCr couples? (3) How are initial surface topography, flexural rigidity, taper angle mismatch, and time in situ related to visual taper damage scores for CoCr/Ti couples? Damage on stem and head tapers was evaluated with a modified Goldberg score. Differences in damage scores were determined between a group of 140 CoCr/CoCr couples and 129 CoCr/Ti couples using a chi-square test. For a subgroup of 70 retrievals, selected at random, we measured five variables, including initial stem taper machining mark height and spacing, initial head taper roughness, flexural rigidity, and taper angle mismatch. All retrievals were obtained at revision surgeries. None were retrieved as a result of metal-on-metal failures or were recalled implants. Components were chosen so there was a comparable number of each material couple and damage score. Machining marks around the circumference of the tapers were measured using white light interferometry to characterize the initial stem taper surface topography in terms of the height of and spacing between machining mark peaks as well as initial head taper roughness. The taper angle mismatch was assessed with a coordinate measuring machine. Flexural rigidity was determined based

  18. Tapered polysilicon core fibers for nonlinear photonics.

    PubMed

    Suhailin, Fariza H; Shen, Li; Healy, Noel; Xiao, Limin; Jones, Maxwell; Hawkins, Thomas; Ballato, John; Gibson, Ursula J; Peacock, Anna C

    2016-04-01

    We propose and demonstrate a novel approach to obtaining small-core polysilicon waveguides from the silicon fiber platform. The fibers were fabricated via a conventional drawing tower method and, subsequently, tapered down to achieve silicon core diameters of ∼1  μm, the smallest optical cores for this class of fiber to date. Characterization of the material properties have shown that the taper process helps to improve the local crystallinity of the silicon core, resulting in a significant reduction in the material loss. By exploiting the combination of small cores and low losses, these tapered fibers have enabled the first observation of nonlinear transmission within a polycrystalline silicon waveguide of any type. As the fiber drawing method is highly scalable, it opens a route for the development of low-cost and flexible nonlinear silicon photonic systems.

  19. Modified Withdrawal Slot Increases Silicon Production

    NASA Technical Reports Server (NTRS)

    Piotrowsky, P. A.; Duncan, C. S.

    1988-01-01

    New shape reduces ribbon breakage and resulting idle time. Shape for slot through which single-crystal silicon ribbon pulled from melt increases productivity. Reduces tendency of emerging ribbon to grow thin and break.

  20. Nonlinear acoustic streaming in straight and tapered tubes

    NASA Astrophysics Data System (ADS)

    Tuttle, Brian C.

    In thermoacoustic and Stirling devices such as the pulse-tube refrigerator, efficiency is diminished by the formation of a second-order mean velocity known as Rayleigh streaming. This flow emerges from the interaction of the working gas with the wall of the tube in a thin boundary layer. Recent studies have suggested that streaming velocity can be decreased in a tube by tapering it slightly. This research investigates that claim through the development of a numerical model of Rayleigh streaming in variously tapered tubes. It is found that the numerical simulation of streaming in a straight tube compares well with theory, and the application of different thermal boundary conditions at the tube wall shows that for pressurized helium, inner streaming vortices which appear near an adiabatic tube wall do not develop near an isothermal wall. An order analysis indicates that the temperature dependence of viscosity and thermal conductivity contributes appreciably to an accurate numerical model of streaming. Comparison of Rayleigh streaming in tapered tubes shows the effects of taper angle on the circulation and velocity of the mean flow.

  1. [Shaping ability of multi-taper nickel-titanium files in simulated resin curved root canal].

    PubMed

    Luo, Hong-Xia; Huang, Ding-Ming; Jia, Liu-He; Luo, Shi-Gao; Gao, Xiao-Jie; Tan, Hong; Zhou, Xue-Dong

    2006-08-01

    To compare the shaping ability of ISO standard stainless steel K files and multi-taper ProTaper nickel-titanium files in simulated resin curved root canals. METHODS Thirty simulated resin root canals were randomly divided into three groups and prepared by stainless steel K files, hand ProTaper, rotary ProTaper, respectively. The amount of material removed from inner and outer wall and canal width after canal preparation was measured, while the canal curvature before and after canal preparation and canals aberrations were recorded. The stainless steel K files removed more material than hand ProTaper and rotary ProTaper at the outer side of apex and inner side of curvature (P < 0.05). The mean degree of straightening in stainless steel K files group was significantly bigger than in ProTaper group (P < 0.05). The canals prepared by ProTaper had no evident aberration. The shaping ability of ProTaper is better than stainless steel K files.

  2. Simple Expressions for the Design of Linear Tapers in Overmoded Corrugated Waveguides

    DOE PAGES

    Schaub, S. C.; Shapiro, M. A.; Temkin, R. J.

    2015-08-16

    In this paper, simple analytical formulae are presented for the design of linear tapers with very low mode conversion loss in overmoded corrugated waveguides. For tapers from waveguide radius a2 to a1, with a11a 2/λ. Here, λ is the wavelength of radiation. The fractional loss of the HE 11 mode in an optimized taper is 0.0293(a 2-a 1) 4/amore » $$2\\atop{1}$$1a$$2\\atop{2}$$. These formulae are accurate when a2≲2a 1. Slightly more complex formulae, accurate for a 2≤4a 1, are also presented in this paper. The loss in an overmoded corrugated linear taper is less than 1 % when a 2≤2.12a 1 and less than 0.1 % when a 2≤1.53a 1. The present analytic results have been benchmarked against a rigorous mode matching code and have been found to be very accurate. The results for linear tapers are compared with the analogous expressions for parabolic tapers. Finally, parabolic tapers may provide lower loss, but linear tapers with moderate values of a 2/a 1 may be attractive because of their simplicity of fabrication.« less

  3. Evaluation, construction and endurance testing of compression sealed pyrolytic boron nitride slot insulation

    NASA Technical Reports Server (NTRS)

    Grant, W. L.

    1969-01-01

    A high-temperature statorette, consisting of an iron-27 percent cobalt magnetic lamination stack and nickel-clad silver conductors, was tested with pyrolytic boron nitride slot insulation. Temperatures were measured in each test to determine characteristics of slot linear heat conductance from statorette conductors. Testing was carried out to temperatures of approximately 1500 F in a vacuum environment of 10-8 torr. Three assemblies were built and tested, each having a different room temperature slot clearance. The final statorette assembly was subjected to a 100-hour vacuum aging test at 1400 F followed by 25 thermal cycles. Temperature data from the three assemblies showed that decreasing slot clearance and increasing compression loading did enhance heat transfer. The temperature difference between slot and lamination at 1400 F increased 4 F during the thermal aging and an additional 10 F during the 25 thermal cycles.

  4. Quantitative evaluation of apically extruded debris during root canal instrumentation with ProTaper Universal, ProTaper Next, WaveOne, and self-adjusting file systems

    PubMed Central

    Ozsu, Damla; Karatas, Ertugrul; Arslan, Hakan; Topcu, Meltem C.

    2014-01-01

    Objectives: The aim of this study was to compare the amount of apically extruded debris during preparation with ProTaper Universal (Dentsply Maillefer, Ballaigues, Switzerland), ProTaper Next (Dentsply Maillefer), a reciprocating single-file (WaveOne; VDW GmbH, Munich, Germany), and a self-adjusting file (SAF; ReDent Nova, Ra’anna, Israel). Materials and Methods: Fifty-six intact mandibular premolar teeth were randomly assigned to four groups. The root canals were prepared according to the manufacturers’ instructions using the ProTaper Universal, ProTaper Next, WaveOne, and SAF. Apically extruded debris was collected in preweighted Eppendorf tubes during instrumentation. The net weight of the apically extruded debris was determined by subtracting the preweights and postweights of the tubes. The data were statistically analyzed using the one-way analysis of variance and the least significant difference tests at a significance level of P < 0.05. Results: A measurable amount of debris was apically extruded in all groups, and the amounts of debris extrusion in the groups were statistically significant (P < 0.001). The ProTaper Next and WaveOne groups resulted in less debris extrusion than the ProTaper Universal group (P < 0.05), and the SAF group resulted in the least debris extrusion. Conclusions: Within the limitations of the present study, it can be concluded that all systems extruded debris beyond the apical foramen. PMID:25512732

  5. Dielectric image line groove antennas for millimeterwaves

    NASA Astrophysics Data System (ADS)

    Solbach, K.; Wolff, I.

    Grooves in the ground plane of dielectric image lines are proposed as a new radiating structure. A figure is included showing the proposed groove structure as a discontinuity in a dielectric image line. A wave incident on the dielectric image line is partly reflected by the discontinuity, partly transmitted across the groove, and partly radiated into space above the line. In a travelling-wave antenna, a number of grooves are arranged below a dielectric guide, with spacings around one guide wavelength to produce a beam in the upper half space. A prescribed aperture distribution can be effected by tapering the series radiation resistance of the grooves. This can be done by adjusting the depths of the grooves with a constant width or by varying the widths of the grooves with a constant depth. Attention is also given to circular grooves. Here, the widths of the holes are chosen so that they can be considered as waveguides operating far below the cut-off frequency of the fundamental circular waveguide mode.

  6. The effects of tapering on strength performance in trained athletes.

    PubMed

    Gibala, M J; MacDougall, J D; Sale, D G

    1994-11-01

    The optimum pre-competition taper procedure for "strength athletes" is not known. We examined voluntary strength and evoked contractile properties of the elbow flexors over a 10 day rest only (ROT) and a 10 day reduced volume taper (RVT) in 8 resistance trained males (23 +/- 2.1 years). Following 3 wks of standardized training of the elbow flexors, subjects were randomly assigned to one of the tapers. Upon completion, they resumed training for 3 wks and completed the other taper. No arm training was performed during the ROT, while high intensity, low volume training was done every second day during the RVT. Maximum isometric (MVC), low (0.52 rad.s-1; LV) and high velocity (3.14 rad.s-1; HV) concentric peak torque, and evoked isometric twitch contractile properties were measured before and after each training phase and every 48 h during each taper. ANOVA comparison of the tapers revealed that MVC increased (p < or = 0.05) over pre-taper values throughout the RVT (measurement days 2, 4, 6, 8 and 10), as did LV at 2, 4, 6, and 8 d. MVC did not change over the ROT but LV was significantly higher on day 2 and lower on days 8 and 10. LV was also greater on days 4, 6, 8 and 10 during the RVT compared to the ROT. The evoked contractile properties remained largely unchanged. The data indicate that resistance-trained athletes can improve low velocity concentric strength for at least 8 days by greatly reducing training volume, but maintaining training intensity.

  7. Cusp-Gun Sixth-Harmonic Slotted Gyrotron

    NASA Astrophysics Data System (ADS)

    Stutzman, R. C.; McDermott, D. B.; Hirata Luhmann, Y., Jr.; Gallagher, D. A.; Spencer, T. A.

    2000-10-01

    A high-harmonic slotted gyrotron has been constructed at UC Davis to be driven by a 70 kV, 3.5 A, axis-encircling electron beam from a Northrop Grumman Cusp gun. The 94 GHz, slotted sixth-harmonic gyrotron is predicted to generate 50 kW with an efficiency of 20%. Using the profile of the adiabatic field reversal from the UC Davis superconducting test-magnet, EGUN simulations predict that an axis-encircling electron beam will be generated with an axial velocity spread of Δ v_z/v_z=10% for the desired velocity ratio of α =v_z/v_z=1.5. The design will also be presented for an 8th-harmonic W-band gyrotron whose magnetic field can be supplied by a lightweight permanent magnet.

  8. 5 CFR 353.303 - Restoration rights of TAPER employees.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 5 Administrative Personnel 1 2010-01-01 2010-01-01 false Restoration rights of TAPER employees... Restoration rights of TAPER employees. An employee serving in the competitive service under a temporary... she left or an equivalent one in the same commuting area. ...

  9. Slotting Fins of Heat Exchangers to Provide Thermal Breaks

    NASA Technical Reports Server (NTRS)

    Scull, Timothy D.

    2003-01-01

    Heat exchangers that include slotted fins (in contradistinction to continuous fins) have been invented. The slotting of the fins provides thermal breaks that reduce thermal conduction along flow paths (longitudinal thermal conduction), which reduces heat-transfer efficiency. By increasing the ratio between transverse thermal conduction (the desired heat-transfer conduction) and longitudinal thermal conduction, slotting of the fins can be exploited to (1) increase heat-transfer efficiency (thereby reducing operating cost) for a given heat-exchanger length or to (2) reduce the length (thereby reducing the weight and/or cost) of the heat exchanger needed to obtain a given heat transfer efficiency. By reducing the length of a heat exchanger, one can reduce the pressure drop associated with the flow through it. In a case in which slotting enables the use of fins with thermal conductivity greater than could otherwise be tolerated on the basis of longitudinal thermal conduction, one can exploit the conductivity to make the fins longer (in the transverse direction) than they otherwise could be, thereby making it possible to make a heat exchanger that contains fewer channels and therefore, that weighs less, contains fewer potential leak paths, and can be constructed from fewer parts and, hence, reduced cost.

  10. Spreadsheet Calculation of Jets in Crossflow: Opposed Rows of Slots Slanted at 45 Degrees

    NASA Technical Reports Server (NTRS)

    Holderman, James D.; Clisset, James R.; Moder, Jeffrey P.

    2011-01-01

    The purpose of this study was to extend a baseline empirical model to the case of jets entering the mainstream flow from opposed rows of 45 degrees slanted slots. The results in this report were obtained using a spreadsheet modified from the one posted with NASA/TM--2010-216100. The primary conclusion in this report is that the best mixing configuration for opposed rows of 45 degrees slanted slots at any down stream distance is a parallel staggered configuration where the slots are angled in the same direction on top and bottom walls and one side is shifted by half the orifice spacing. Although distributions from perpendicular slanted slots are similar to those from parallel staggered configurations at some downstream locations, results for perpendicular slots are highly dependent on downstream distance and are no better than parallel staggered slots at locations where they are similar and are worse than parallel ones at other distances.

  11. Narrowband spectral filter based on biconical tapered fiber

    NASA Astrophysics Data System (ADS)

    Celaschi, Sergio; Malheiros-Silveira, Gilliard N.

    2018-02-01

    The ease of fabrication and compactness of devices based on tapered optical fibers contribute to its potential using in several applications ranging from telecommunication components to sensing devices. In this work, we proposed, fabricated, and characterized a spectral filter made of biconical taper from a coaxial optical fiber. This filter is defined by adiabatically tapering a depressed-cladding fiber. The adiabatic taper profile obtained during fabrication prevents the interference of other modes than HE11 and HE12 ones, which play the main role for the beating phenomenon and the filter response. The evolution of the fiber shapes during the pulling was modeled by two coupled partial differential equations, which relate the normalized cross-section area, and the axial velocity of the fiber elongation. These equations govern the mass and axial momentum conservation. The numerical results of the filter characteristics are in good accordance with the experimental ones. The filter was packaged in order to let it ready for using in optical communication bands. The characteristics are: free spectral range (FSR) of 6.19 nm, insertion loss bellow 0.5 dB, and isolation > 20 dB at C-band. Its transmission spectrum extends from 1200 to 1600 nm where the optical fiber core supports monomode transmission. Such characteristics may also be interesting to be applied in sensing applications. We show preliminary numerical results assuming a biconic taper embedded into a dielectric media, showing promising results for electro-optic sensing applications.

  12. Multimode Brillouin spectrum in a long tapered birefringent photonic crystal fiber.

    PubMed

    Tchahame, Joël Cabrel; Beugnot, Jean-Charles; Kudlinski, Alexandre; Sylvestre, Thibaut

    2015-09-15

    We investigate the stimulated Brillouin scattering (SBS) in a long tapered birefringent solid-core photonic crystal fiber (PCF) and compare our results with a similar but untapered PCF. It is shown that the taper generates a broadband and multipeaked Brillouin spectrum, while significantly increasing the threshold power. Furthermore, we observe that the strong fiber birefringence gives rise to a frequency shift of the Brillouin spectrum which increases along the fiber. Numerical simulations are also presented to account for the taper effect and the birefringence. Our findings open a new means to control or inhibit the SBS by tapering photonic crystal fibers.

  13. Unusual refilling of the slot region between the Van Allen radiation belts

    NASA Astrophysics Data System (ADS)

    Yang, X.; Yu, J.; Ni, B.; Zhang, Y.; Zhang, X.

    2017-12-01

    Using multi-satellite measurements, the dynamics of relativistic electrons in the slot region are investigated from 2000 to 2011. The dependences of relativistic electron enhancements in the slot region on interplanetary and magnetospheric conditions are researched. It is resulted that the relativistic electron enhancements in the slot region occurred under remarkable interplanetary and magnetospheric conditions. A uniquely strong and long-lived relativistic electron slot region refilling event from November 2004 to January 2005 is studied especially. Both empirically modeled and observationally estimated plasmapause locations demonstrate that the plasmasphere eroded significantly prior to the enhancement phase of this event. The estimated diffusion coefficients indicate that the radial diffusion due to ULF waves is insufficient to account for the observed enhancement of slot region electrons. However, the diffusion coefficients evaluated using the distribution of chorus wave intensities derived from low-altitude POES electron observations indicate that the local acceleration induced by chorus could account for the major feature of observed enhancement outside the plasmapause. When the plasmasphere recovered, the refilled slot region was enveloped inside the plasmapause. In the plasmasphere, while the efficiency of hiss scattering loss increases by including unusually low frequency hiss waves, the interaction with hiss alone cannot fully explain the decay of this event, especially at higher energies, which suggests that EMIC waves contribute to the relativistic electron loss process at such low L-shells for this refilling event.

  14. Wind Tunnel Results of Pneumatic Forebody Vortex Control Using Rectangular Slots a Chined Forebody

    NASA Technical Reports Server (NTRS)

    Alexander, Michael; Meyn, Larry A.

    1994-01-01

    A subsonic wind tunnel investigation of pneumatic vortex flow control on a chined forebody using slots was accomplished at a dynamic pressure of 50 psf resulting in a R(n)/ft of 1.3 x 10(exp 6). Data were acquired from angles of attack ranging from -4deg to +34deg at side slips of +0.4deg and +10.4deg. The test article used in this study was the 10% scale Fighter Lift and Control (FLAC) advanced diamond winged, vee-tailed fighter configuration. Three different slot blowing concepts were evaluated; outward, downward, and tangential with ail blowing accomplished asymmetrically. The results of three different mass flows (0.067, 0.13, and 0.26 lbm/s; C(sub mu)'s of less than or equal to 0.006, 0.011. and 0.022 respectively) were analyzed and reported. Test data are presented on the effects of mass flows, slot lengths and positions and blowing concepts on yawing moment and side force generation. Results from this study indicate that the outward and downward blowing slots developed yawing moment and side force increments in the direction opposite of the blowing side while the tangential blowing slots generated yawing moment and side force increments in the direction towards the blowing side. The outward and downward blowing slots typically produced positive pitching moment increments while the tangential blowing slots typically generated negative pitching moment increments. The slot blowing nearest the forebody apex was most effective at generating the largest increments and as the slot was moved aft or increased in length, its effectiveness at generating forces and moments diminished.

  15. Asymptomatic Pseudotumors in Patients with Taper Corrosion of a Dual-Taper Modular Femoral Stem: MARS-MRI and Metal Ion Study.

    PubMed

    Kwon, Young-Min; Khormaee, Sariah; Liow, Ming Han Lincoln; Tsai, Tsung-Yuan; Freiberg, Andrew A; Rubash, Harry E

    2016-10-19

    Modularity in total hip arthroplasty facilitates intraoperative restoration of patient anatomy. Although dual-taper modular total hip arthroplasty offers potential advantages for optimizing the hip center of rotation, it has been associated with modular taper corrosion. This corrosion has led to adverse local tissue reactions (pseudotumors) at the neck-stem junction and elevated metal-ion levels. However, the occurrence of taper-corrosion-related pseudotumors in patients who remain asymptomatic following total hip arthroplasty with a dual-taper modular femoral stem remains largely unknown. The aims of this study were (1) to determine the prevalence of asymptomatic pseudotumors by utilizing metal artifact reduction sequence magnetic resonance imaging (MARS-MRI) and (2) compare serum metal-ion levels between symptomatic and asymptomatic patients with a dual-taper modular stem total hip replacement. We performed a retrospective cross-sectional study of 97 consecutive patients who had been treated with a dual-taper modular femoral stem total hip arthroplasty. Eighty-three patients were stratified into symptomatic and asymptomatic groups and evaluated with MARS-MRI, measurement of serum metal-ion levels, and the University of California at Los Angeles (UCLA) functional hip score. The prevalence of pseudotumors as determined with MARS-MRI was 15% in our asymptomatic patients and 36% in the overall cohort. The median serum cobalt level and cobalt/chromium ratio were significantly higher in patients with a pseudotumor than in those without a pseudotumor (8.0 versus 2.0 μg/L [p = 0.004] and 10.3 versus 2.4 μg/L [p = 0.012], respectively). However, there was no significant difference in the serum cobalt level or cobalt/chromium ratio between symptomatic patients with a pseudotumor and asymptomatic patients with a pseudotumor (7.6 versus 6.2 μg/L [p = 0.37] and 8.3 versus 10.6 μg/L [p = 0.46], respectively). The UCLA scores of asymptomatic patients with a pseudotumor were

  16. Ceramic Heads Decrease Metal Release Caused by Head-taper Fretting and Corrosion.

    PubMed

    Kocagoz, Sevi B; Underwood, Richard J; MacDonald, Daniel W; Gilbert, Jeremy L; Kurtz, Steven M

    2016-04-01

    Metal release resulting from taper fretting and corrosion is a clinical concern, because wear and corrosion products may stimulate adverse local tissue reactions. Unimodular hip arthroplasties have a conical taper between the femoral head (head bore taper) and the femoral stem (stem cone taper). The use of ceramic heads has been suggested as a way of reducing the generation of wear and corrosion products from the head bore/stem cone taper junction. A previous semiquantitative study found that ceramic heads had less visual evidence of fretting-corrosion damage compared with CoCr heads; but, to our knowledge, no studies have quantified the volumetric material loss from the head bore and stem cone tapers of a matched cohort of ceramic and metal heads. We asked: (1) Do ceramic heads result in less volume of material loss at the head-stem junction compared with CoCr heads; (2) do stem cone tapers have less volumetric material loss compared with CoCr head bore tapers; (3) do visual fretting-corrosion scores correlate with volumetric material loss; and (4) are device, patient, or intraoperative factors associated with volumetric material loss? A quantitative method was developed to estimate volumetric material loss from the head and stem taper in previously matched cohorts of 50 ceramic and 50 CoCr head-stem pairs retrieved during revision surgery for causes not related to adverse reactions to metal particles. The cohorts were matched according to (1) implantation time, (2) stem flexural rigidity, and (3) lateral offset. Fretting corrosion was assessed visually using a previously published four-point, semiquantitative scoring system. The volumetric loss was measured using a precision roundness machine. Using 24 equally spaced axial traces, the volumetric loss was estimated using a linear least squares fit to interpolate the as-manufactured surfaces. The results of this analysis were considered in the context of device (taper angle clearance, head size, head offset

  17. Acoustic vibration sensor based on nonadiabatic tapered fibers.

    PubMed

    Xu, Ben; Li, Yi; Sun, Miao; Zhang, Zhen-Wei; Dong, Xin-Yong; Zhang, Zai-Xuan; Jin, Shang-Zhong

    2012-11-15

    A simple and low-cost vibration sensor based on single-mode nonadiabatic fiber tapers is proposed and demonstrated. The environmental vibrations can be detected by demodulating the transmission loss of the nonadiabatic fiber taper. Theoretical simulations show that the transmission loss is related to the microbending of the fiber taper induced by vibrations. Unlike interferometric sensors, this vibration sensor does not need any feedback loop to control the quadrature point to obtain a stable performance. In addition, it has no requirement for the coherence of the light source and is insensitive to temperature changes. Experimental results show that this sensing system has a wide frequency response range from a few hertz to tens of kilohertz with the maximal signal to noise ratio up to 73 dB.

  18. Numerical analysis of tangential slot blowing on a generic chined forebody

    NASA Technical Reports Server (NTRS)

    Agosta, Roxana M.

    1994-01-01

    A numerical study is performed to investigate the effects of tangential slot blowing on a generic chined forebody. The Reynolds-averaged, thin-layer, Navier-Stokes equations are solved to obtain the high-angle-of-attack viscous flow field about a generic chined forebody. Tangential slot blowing is investigated as a means of forebody flow control to generate side force and yawing moment on the forebody. The effects of jet mass flow ratios, angle of attack, and blowing slot location in the axial and circumferential directions are studied. The computed results are compared with available wind tunnel experimental data. The solutions with and without blowing are also analyzed using helicity density contours, surface flow patterns, and off-surface instantaneous streamlines. The results of this analysis provide details of the flow field about the generic chined forebody, as well as show that tangential slot blowing can be used as a means of forebody flow control to generate side force and yawing moment.

  19. Effect of length of Handley Page tip slots on the lateral-stability factor, damping in roll

    NASA Technical Reports Server (NTRS)

    Weick, Fred E; Wenzinger, Carl J

    1932-01-01

    Tests have been made in the NACA 7 by 10 foot wind tunnel on a Clark Y wing model equipped with various lengths of Handley Page slots extending inward from the wing tips. The slot lengths tested ranged from 20 to 100 per cent of the semi span. The effect of slot lengths on damping in roll was determined by means of both free-autorotation and forced-rotation test. In addition, the maximum lift coefficient was found with each slot length. The optimum length of slot for satisfactory damping in roll over a large range of angles of attack was found to be slightly over 50 per cent of the semispan for the form of slot tested.

  20. Magnetic antenna excitation of whistler modes. IV. Receiving antennas and reciprocity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stenzel, R. L., E-mail: stenzel@physics.ucla.edu; Urrutia, J. M.

    Antenna radiation patterns are an important property of antennas. Reciprocity holds in free space and the radiation patterns for exciting and receiving antennas are the same. In anisotropic plasmas, radiation patterns are complicated by the fact that group and phase velocities differ and certain wave properties like helicity depend on the direction of wave propagation with respect to the background magnetic field B{sub 0}. Interference and wave focusing effects are different than in free space. Reciprocity does not necessarily hold in a magnetized plasma. The present work considers the properties of various magnetic antennas used for receiving whistler modes. Itmore » is based on experimental data from exciting low frequency whistler modes in a large uniform laboratory plasma. By superposition of linear waves from different antennas, the radiation patterns of antenna arrays are derived. Plane waves are generated and used to determine receiving radiation patterns of different receiving antennas. Antenna arrays have radiation patterns with narrow lobes, whose angular position can be varied by physical rotation or electronic phase shifting. Reciprocity applies to broadside antenna arrays but not to end fire arrays which can have asymmetric lobes with respect to B{sub 0}. The effect of a relative motion between an antenna and the plasma has been modeled by the propagation of a short wave packet moving along a linear antenna array. An antenna moving across B{sub 0} has a radiation pattern characterized by an oscillatory “whistler wing.” A receiving antenna in motion can detect any plane wave within the group velocity resonance cone. The radiation pattern also depends on loop size relative to the wavelength. Motional effects prevent reciprocity. The concept of the radiation pattern loses its significance for wave packets since the received signal does not only depend on the antenna but also on the properties of the wave packet. The present results are of

  1. Small angle slot divertor concept for long pulse advanced tokamaks

    NASA Astrophysics Data System (ADS)

    Guo, H. Y.; Sang, C. F.; Stangeby, P. C.; Lao, L. L.; Taylor, T. S.; Thomas, D. M.

    2017-04-01

    SOLPS-EIRENE edge code analysis shows that a gas-tight slot divertor geometry with a small-angle (glancing-incidence) target, named the small angle slot (SAS) divertor, can achieve cold, dissipative/detached divertor conditions at relatively low values of plasma density at the outside midplane separatrix. SAS exhibits the following key features: (1) strong enhancement of the buildup of neutral density in a localized region near the plasma strike point on the divertor target; (2) spreading of the cooling front across the divertor target with the slot gradually flaring out from the strike point, thus effectively reducing both heat flux and erosion on the entire divertor target surface. Such a divertor may potentially provide a power and particle handling solution for long pulse advanced tokamaks.

  2. Polymer taper bridge for silicon waveguide to single mode waveguide coupling

    NASA Astrophysics Data System (ADS)

    Kruse, Kevin; Middlebrook, Christopher T.

    2016-03-01

    Coupling of optical power from high-density silicon waveguides to silica optical fibers for signal routing can incur high losses and often requires complex end-face preparation/processing. Novel coupling device taper structures are proposed for low coupling loss between silicon photonic waveguides and single mode fibers are proposed and devices are fabricated and measured in terms of performance. Theoretical mode conversion models for waveguide tapers are derived for optimal device structure design and performance. Commercially viable vertical and multi-layer taper designs using polymer waveguide materials are proposed as innovative, cost-efficient, and mass-manufacturable optical coupling devices. The coupling efficiency for both designs is determined to evaluate optimal device dimensions and alignment tolerances with both silicon rib waveguides and silicon nanowire waveguides. Propagation loss as a function of waveguide roughness and metallic loss are determined and correlated to waveguide dimensions to obtain total insertion loss for the proposed taper designs. Multi-layer tapers on gold-sputtered substrates are fabricated through photolithography as proof-of-concept devices and evaluated for device loss optimization. Tapered waveguide coupling loss with Si WGs (2.74 dB) was experimentally measured with high correlation to theoretical results.

  3. White light supercontinuum generation in a Y-shaped microstructured tapered fiber pumped at 1064 nm.

    PubMed

    Cascante-Vindas, J; Díez, A; Cruz, J L; Andrés, M V

    2010-07-05

    We report the generation of supercontinuum in a Ge-doped Y-shape tapered fiber pumped at 1064 nm in the ns pump regime. The taper was designed to have long taper transitions and a taper waist with a core diameter of 0.9 mum. The large air-filling fraction and diameter of the air-hole microstructure reduces the confinement loss at long wavelengths so, enabling the extension of the spectrum to longer wavelengths. Along the taper transition the zero-dispersion wavelength decreases as the diameter of the taper becomes smaller. The spectral components generated along the taper transition pump the taper waist, enhancing the generation of short wavelengths. A flat spectrum spanning from 420 nm to 1850 nm is reported.

  4. Pressure distributions on a rectangular aspect-ratio-6, slotted supercritical airfoil wing with externally blown flaps

    NASA Technical Reports Server (NTRS)

    Johnson, W. G., Jr.

    1976-01-01

    An investigation was made in the 5.18 m (17 ft) test section of the Langley 300 MPH 7 by 10 foot tunnel on a rectangular, aspect ratio 6 wing which had a slotted supercritical airfoil section and externally blown flaps. The 13 percent thick wing was fitted with two high lift flap systems: single slotted and double slotted. The designations single slotted and double slotted do not include the slot which exists near the trailing edge of the basic slotted supercritical airfoil. Tests were made over an angle of attack range of -6 deg to 20 deg and a thrust-coefficient range up to 1.94 for a free-stream dynamic pressure of 526.7 Pa (11.0 lb/sq ft). The results of the investigation are presented as curves and tabulations of the chordwise pressure distributions at the midsemispan station for the wing and each flap element.

  5. Vertically-tapered optical waveguide and optical spot transformer formed therefrom

    DOEpatents

    Bakke, Thor; Sullivan, Charles T.

    2004-07-27

    An optical waveguide is disclosed in which a section of the waveguide core is vertically tapered during formation by spin coating by controlling the width of an underlying mesa structure. The optical waveguide can be formed from spin-coatable materials such as polymers, sol-gels and spin-on glasses. The vertically-tapered waveguide section can be used to provide a vertical expansion of an optical mode of light within the optical waveguide. A laterally-tapered section can be added adjacent to the vertically-tapered section to provide for a lateral expansion of the optical mode, thereby forming an optical spot-size transformer for efficient coupling of light between the optical waveguide and a single-mode optical fiber. Such a spot-size transformer can also be added to a III-V semiconductor device by post processing.

  6. Clean Air Slots Amid Atmospheric Pollution

    NASA Technical Reports Server (NTRS)

    Hobbs, Peter V.

    2002-01-01

    Layering in the Earth's atmosphere is most commonly seen where parts of the atmosphere resist the incursion of air parcels from above and below - for example, when there is an increase in temperature with height over a particular altitude range. Pollutants tend to accumulate underneath the resulting stable layers. which is why visibility often increases markedly above certain altitudes. Here we describe the occurrence of an opposite effect, in which stable layers generate a layer of remarkably clean air (we refer to these layers as clean-air 'slots') sandwiched between layers of polluted air. We have observed clean-air slots in various locations around the world, but they are particularly well defined and prevalent in southern Africa during the dry season August-September). This is because at this time in this region, stable layers are common and pollution from biomass burning is widespread.

  7. Tapered fiber optical tweezers for microscopic particle trapping: fabrication and application

    NASA Astrophysics Data System (ADS)

    Liu, Zhihai; Guo, Chengkai; Yang, Jun; Yuan, Libo

    2006-12-01

    A novel single tapered fiber optical tweezers is proposed and fabricated by heating and drawing technology. The microscopic particle tapping performance of this special designed tapered fiber probe is demonstrated and investigated. The distribution of the optical field emerging from the tapered fiber tip is numerically calculated based on the beam propagation method. The trapping force FDTD analysis results, both axial and transverse, are also given.

  8. Octave spanning supercontinuum in an As₂S₃ taper using ultralow pump pulse energy.

    PubMed

    Hudson, Darren D; Dekker, Stephen A; Mägi, Eric C; Judge, Alexander C; Jackson, Stuart D; Li, Enbang; Sanghera, J S; Shaw, L B; Aggarwal, I D; Eggleton, Benjamin J

    2011-04-01

    An octave spanning spectrum is generated in an As₂S₃ taper via 77 pJ pulses from an ultrafast fiber laser. Using a previously developed tapering method, we construct a 1.3 μm taper that has a zero-dispersion wavelength around 1.4 μm. The low two-photon absorption of sulfide-based chalcogenide fiber allows for higher input powers than previous efforts in selenium-based chalcogenide tapered fibers. This higher power handling capability combined with input pulse chirp compensation allows an octave spanning spectrum to be generated directly from the taper using the unamplified laser output.

  9. Remote drill bit loader

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dokos, J.A.

    1996-12-31

    A drill bit loader is described for loading a tapered shank of a drill bit into a similarly tapered recess in the end of a drill spindle. The spindle has a transverse slot at the inner end of the recess. The end of the tapered shank of the drill bit has a transverse tang adapted to engage in the slot so that the drill bit will be rotated by the spindle. The loader is in the form of a cylinder adapted to receive the drill bit with the shank projecting out of the outer end of the cylinder. Retainer pinsmore » prevent rotation of the drill bit in the cylinder. The spindle is lowered to extend the shank of the drill bit into the recess in the spindle and the spindle is rotated to align the slot in the spindle with the tang on the shank. A spring unit in the cylinder is compressed by the drill bit during its entry into the recess of the spindle and resiliently drives the tang into the slot in the spindle when the tang and slot are aligned. In typical remote drilling operations, whether in hot cells or water pits, drill bits have been held using a collet or end mill type holder with set screws. In either case, to load or change a drill bit required the use master-slave manipulators to position the bits and tighten the collet or set screws. This requirement eliminated many otherwise useful work areas because they were not equipped with slaves, particularly in water pits.« less

  10. Drilling Precise Orifices and Slots

    NASA Technical Reports Server (NTRS)

    Richards, C. W.; Seidler, J. E.

    1983-01-01

    Reaction control thrustor injector requires precisely machined orifices and slots. Tooling setup consists of rotary table, numerical control system and torque sensitive drill press. Components used to drill oxidizer orifices. Electric discharge machine drills fuel-feed orifices. Device automates production of identical parts so several are completed in less time than previously.

  11. Microdroplet-etched highly birefringent low-loss fiber tapers.

    PubMed

    Mikkelsen, Jared C; Poon, Joyce K S

    2012-07-01

    We use hydrofluoric acid microdroplets to directly etch highly birefringent biconical fiber tapers from standard single-mode fibers. The fiber tapers have micrometer-sized cross sections, which are controlled by the etching condition. The characteristic teardrop cross section leads to a high group birefringence of B(G)≈0.017 and insertion losses <0.7 dB over waist lengths of about 2.1 mm.

  12. Kinetic theory analysis of rarefied gas flow through finite length slots

    NASA Technical Reports Server (NTRS)

    Raghuraman, P.

    1972-01-01

    An analytic study is made of the flow a rarefied monatomic gas through a two dimensional slot. The parameters of the problem are the ratios of downstream to upstream pressures, the Knudsen number at the high pressure end (based on slot half width) and the length to slot half width ratio. A moment method of solution is used by assuming a discontinuous distribution function consisting of four Maxwellians split equally in angular space. Numerical solutions are obtained for the resulting equations. The characteristics of the transition regime are portrayed. The solutions in the free molecule limit are systematically lower than the results obtained in that limit by more accurate numerical methods.

  13. Realistic Free-Spins Features Increase Preference for Slot Machines.

    PubMed

    Taylor, Lorance F; Macaskill, Anne C; Hunt, Maree J

    2017-06-01

    Despite increasing research into how the structural characteristics of slot machines influence gambling behaviour there have been no experimental investigations into the effect of free-spins bonus features-a structural characteristic that is commonly central to the design of slot machines. This series of three experiments investigated the free-spins feature using slot machine simulations to determine whether participants allocate more wagers to a machine with free spins, and, which components of free-spins features drive this preference. In each experiment, participants were exposed to two computer-simulated slot machines-one with a free-spins feature or similar bonus feature and one without. Participants then completed a testing phase where they could freely switch between the two machines. In Experiment 1, participants did not prefer the machine with a simple free-spins feature. In Experiment 2 the free-spins feature incorporated additional elements such as sounds, animations, and an increased win frequency; participants preferred to gamble on this machine. The Experiment 3 "bonus feature" machine resembled the free spins machine in Experiment 2 except spins were not free; participants showed a clear preference for this machine also. These findings indicate that (1) free-spins features have a major influence over machine choice and (2) the "freeness" of the free-spins bonus features is not an important driver of preference, contrary to self-report and interview research with gamblers.

  14. Note on performance of tapered grip tensile loading devices

    NASA Technical Reports Server (NTRS)

    Jones, M. H.; Brown, W. F., Jr.

    1975-01-01

    Alignment results are presented in terms of percent bending for a quick release, tapered grip, tensile loading device that has been proposed for testing sharply notched specimens of aluminum and magnesium alloys by a Task Group of the ASTM Committee E-24 on Fracture Testing of Metals. The results show that the bending introduced by the fixtures is strongly dependent on their relative rotational positions in respect to the loading rods which adapt them, to the tensile machine. For one set of tapered grips the highest bending was about 15%. Recommendations are made for improvement in the design of the tapered grips which should reduce the bending stresses substantially.

  15. Development of small bore, high speed tapered roller bearing

    NASA Technical Reports Server (NTRS)

    Morrison, F. R.; Gassel, S. S.; Bovenkerk, R. L.

    1981-01-01

    The performance of four rolling bearing configurations for use on the input pinion shaft of a proposed commercial helicopter transmission was evaluated. The performance characteristics of a high speed tapered roller bearing operating under conditions comparable to those existing at this input pinion shaft were defined. The tapered roller bearing shaft support configuration was developed for the gearbox using commercially available bearing designings. The configuration was optimized and interactive thermomechanically system analyzed. Automotive pinion quality tapered roller bearings were found to be reliable under load and speed conditions in excess of those anticipated in the helicopter transmission. However, it is indicated that the elastohydrodynamic lubricant films are inadequate.

  16. Tapered rib fiber coupler for semiconductor optical devices

    DOEpatents

    Vawter, Gregory A.; Smith, Robert Edward

    2001-01-01

    A monolithic tapered rib waveguide for transformation of the spot size of light between a semiconductor optical device and an optical fiber or from the fiber into the optical device. The tapered rib waveguide is integrated into the guiding rib atop a cutoff mesa type semiconductor device such as an expanded mode optical modulator or and expanded mode laser. The tapered rib acts to force the guided light down into the mesa structure of the semiconductor optical device instead of being bound to the interface between the bottom of the guiding rib and the top of the cutoff mesa. The single mode light leaving or entering the output face of the mesa structure then can couple to the optical fiber at coupling losses of 1.0 dB or less.

  17. A price- and-time-slot-negotiation mechanism for Cloud service reservations.

    PubMed

    Son, Seokho; Sim, Kwang Mong

    2012-06-01

    When making reservations for Cloud services, consumers and providers need to establish service-level agreements through negotiation. Whereas it is essential for both a consumer and a provider to reach an agreement on the price of a service and when to use the service, to date, there is little or no negotiation support for both price and time-slot negotiations (PTNs) for Cloud service reservations. This paper presents a multi-issue negotiation mechanism to facilitate the following: 1) PTNs between Cloud agents and 2) tradeoff between price and time-slot utilities. Unlike many existing negotiation mechanisms in which a negotiation agent can only make one proposal at a time, agents in this work are designed to concurrently make multiple proposals in a negotiation round that generate the same aggregated utility, differing only in terms of individual price and time-slot utilities. Another novelty of this work is formulating a novel time-slot utility function that characterizes preferences for different time slots. These ideas are implemented in an agent-based Cloud testbed. Using the testbed, experiments were carried out to compare this work with related approaches. Empirical results show that PTN agents reach faster agreements and achieve higher utilities than other related approaches. A case study was carried out to demonstrate the application of the PTN mechanism for pricing Cloud resources.

  18. Numerical study on non-locally reacting behavior of nacelle liners incorporating drainage slots

    NASA Astrophysics Data System (ADS)

    Chen, Chao; Li, Xiaodong; Thiele, Frank

    2018-06-01

    For acoustic liners used in current commercial nacelles, in order to prevent any liquid accumulating in the resonators, drainage slots are incorporated on the partition walls between closely packed cavities. Recently, an experimental study conducted by Busse-Gerstengarbe et al. shown that the cell interaction introduced by drainage slots causes an additional dissipation peak which increases with the size of the slot. However, the variation of damping process due to drainage slots is still not fully understood. Therefore, a numerical study based on computational aeroacoustic methods is carried out to investigate the mechanism of the changed attenuation characteristics due to drainage slots in presence of grazing incident sound waves with low or high intensities. Different slot configurations are designed based on the generic non-locally reacting liner model adopted in the experimental investigation. Both 2-D and 3-D numerical simulations of only slit resonators are carried out. Numerical results indicate that the extra peak is a result of a resonance excited in the second cavity at specific frequency. Under high sound pressure level incoming waves, the basic characteristics of the acoustic performance remain. However, vortex shedding transpires at the resonances around both the slits and the drainage slot. Vorticity contours show that the connection of two coupled cavities decreases the strength of vortex shedding around the basic Helmholtz resonance due to a higher energy reflection. Meanwhile, the cell interaction significantly increases the vorticity magnitude near the extra resonant frequency. Finally, a semi-empirical model is derived to predict the extra attenuation peak frequency.

  19. Stress intensity factor in a tapered specimen

    NASA Technical Reports Server (NTRS)

    Xue-Hui, L.; Erdogan, F.

    1985-01-01

    The general problem of a tapered specimen containing an edge crack is formulated in terms of a system of singular integral equations. The equations are solved and the stress intensity factor is calculated for a compact and for a slender tapered specimen, the latter simulating the double cantilever beam. The results are obtained primarily for a pair of concentrated forces and for crack surface wedge forces. The stress intensity factors are also obtained for a long strip under uniform tension which contains inclined edge cracks.

  20. Slotted Photonic Crystal Sensors

    PubMed Central

    Scullion, Mark G.; Krauss, Thomas F.; Di Falco, Andrea

    2013-01-01

    Optical biosensors are increasingly being considered for lab-on-a-chip applications due to their benefits such as small size, biocompatibility, passive behaviour and lack of the need for fluorescent labels. The light guiding mechanisms used by many of them results in poor overlap of the optical field with the target molecules, reducing the maximum sensitivity achievable. This review article presents a new platform for optical biosensors, namely slotted photonic crystals, which provide higher sensitivities due to their ability to confine, spatially and temporally, the optical mode peak within the analyte itself. Loss measurements showed values comparable to standard photonic crystals, confirming their ability to be used in real devices. A novel resonant coupler was designed, simulated, and experimentally tested, and was found to perform better than other solutions within the literature. Combining with cavities, microfluidics and biological functionalization allowed proof-of-principle demonstrations of protein binding to be carried out. Higher sensitivities were observed in smaller structures than possible with most competing devices reported in the literature. This body of work presents slotted photonic crystals as a realistic platform for complete on-chip biosensing; addressing key design, performance and application issues, whilst also opening up exciting new ideas for future study. PMID:23503295

  1. Using a slightly tapered optical fiber to attract and transport microparticles.

    PubMed

    Sheu, Fang-Wen; Wu, Hong-Yu; Chen, Sy-Hann

    2010-03-15

    We exploit a fiber puller to transform a telecom single-mode optical fiber with a 125 microm diameter into a symmetric and unbroken slightly tapered optical fiber with a 50 microm diameter at the minimum waist. When the laser light is launched into the optical fiber, we can observe that, due to the evanescent wave of the slightly tapered fiber, the nearby polystyrene microparticles with 10 microm diameters will be attracted onto the fiber surface and roll separately in the direction of light propagation. We have also simulated and compared the optical propulsion effects on the microparticles when the laser light is launched into a slightly tapered fiber and a heavily tapered (subwavelength) fiber, respectively.

  2. A Volume and Taper Prediction System for Bald Cypress

    Treesearch

    Bernard R. Parresol; James E. Hotvedt; Quang V. Cao

    1987-01-01

    A volume and taper prediction system based on d10 and consisting of a total volume equation, two volume ratio equations (one for diameter limits, the other for height limits), and a taper equation was developed for bald cypress using sample tree data collected in Louisiana. Normal diameter (dn), a subjective variable-...

  3. Two-slot coiled coaxial cable resonator: reaching critical coupling at a reduced number of coils.

    PubMed

    Hefferman, Gerald; Chen, Zhen; Wei, Tao

    2014-11-01

    This paper reports the experimental demonstration of a coiled coaxial cable resonator capable of meeting the critical coupling condition using a reduced number of coils relative to previously reported coiled resonators. By introducing a second slot along the length of the device, a two-slot coiled coaxial cable resonator was fabricated and critical coupling observed at 22 turns. An additional device with one-slot, but otherwise identically constructed, was also fabricated. After 44 turns, the one-slot device had yet to reach critical coupling. An ultrahigh signal-to-noise ratio (greater than 70 dB) was observed at critical coupling of the two-slot device. This reduction in number of slots necessary to reach critical coupling, and the corresponding reduction of physical length of the device, makes this demonstration of the control of critical coupling a potentially important step towards the successful application of coiled coaxial cable resonators to microwave communication and robust sensing applications.

  4. Low-speed aerodynamic test of an axisymmetric supersonic inlet with variable cowl slot

    NASA Technical Reports Server (NTRS)

    Powell, A. G.; Welge, H. R.; Trefny, C. J.

    1985-01-01

    The experimental low-speed aerodynamic characteristics of an axisymmetric mixed-compression supersonic inlet with variable cowl slot are described. The model consisted of the NASA P-inlet centerbody and redesigned cowl with variable cowl slot powered by the JT8D single-stage fan simulator and driven by an air turbine. The model was tested in the NASA Lewis Research Center 9- by 15-foot low-speed tunnel at Mach numbers of 0, 0.1, and 0.2 over a range of flows, cowl slot openings, centerbody positions, and angles of attack. The variable cowl slot was effective in minimizing lip separation at high velocity ratios, showed good steady-state and dynamic distortion characteristics, and had good angle-of-attack tolerance.

  5. A hybrid finite element-boundary integral for the analysis of cavity-backed antennas of arbitrary shape

    NASA Technical Reports Server (NTRS)

    Gong, Jian; Volakis, John L.; Woo, A. C.; Wang, H. T. G.

    1993-01-01

    This is the final report on this project which was concerned with the analysis of cavity-backed antennas and more specifically spiral antennas. The project was a continuation of a previous analysis, which employed rectangular brick elements, and was, thus, restricted to planar rectangular patch antennas. A total of five reports were submitted under this project and we expect that at least four journal papers will result from the research described in these reports. The abstracts of the four previous reports are included. The first of the reports (028918-1-T) is over 75 pages and describes the general formulation using tetrahedral elements and the computer program. Report 028918-2-T was written after the completion of the computer program and reviews the capability of the analysis and associated software for planar circular rectangular patches and for a rectangular planar spiral. Measurements were also done at the University of Michigan and at Mission Research Corp. for the purpose of validating the software. We are pleased to acknowledge a partial support from Mission Research Corp. in carrying out the work described in this report. The third report (028918-3-T) describes the formulation and partial validation (using 2D data) for patch antennas on a circular platform. The 3D validation and development of the formulation for patch antennas on circular platforms is still in progress. The fourth report (028918-4-T) is basically an invited journal paper which will appear in the 'J. Electromagnetic Waves and Applications' in early 1994. It describes the application of the finite element method in electromagnetics and is primarily based on our work here at U-M. This final report describes the culmination of our efforts in characterizing complex cavity-backed antennas on planar platforms. The report describes for the first time the analysis of non-planar spirals and non-rectangular slot antennas as well as traditional planar patch antennas. The comparisons between

  6. Antenna theory: Analysis and design

    NASA Astrophysics Data System (ADS)

    Balanis, C. A.

    The book's main objective is to introduce the fundamental principles of antenna theory and to apply them to the analysis, design, and measurements of antennas. In a description of antennas, the radiation mechanism is discussed along with the current distribution on a thin wire. Fundamental parameters of antennas are examined, taking into account the radiation pattern, radiation power density, radiation intensity, directivity, numerical techniques, gain, antenna efficiency, half-power beamwidth, beam efficiency, bandwidth, polarization, input impedance, and antenna temperature. Attention is given to radiation integrals and auxiliary potential functions, linear wire antennas, loop antennas, linear and circular arrays, self- and mutual impedances of linear elements and arrays, broadband dipoles and matching techniques, traveling wave and broadband antennas, frequency independent antennas and antenna miniaturization, the geometrical theory of diffraction, horns, reflectors and lens antennas, antenna synthesis and continuous sources, and antenna measurements.

  7. 14 CFR 93.221 - Transfer of slots.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Operations at High Density Traffic Airports § 93.221 Transfer of slots. (a) Except as otherwise provided in... high density traffic airport. Transfers, including leases, shall comply with the following conditions...

  8. 14 CFR 93.221 - Transfer of slots.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... Operations at High Density Traffic Airports § 93.221 Transfer of slots. (a) Except as otherwise provided in... high density traffic airport. Transfers, including leases, shall comply with the following conditions...

  9. 14 CFR 93.221 - Transfer of slots.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Operations at High Density Traffic Airports § 93.221 Transfer of slots. (a) Except as otherwise provided in... high density traffic airport. Transfers, including leases, shall comply with the following conditions...

  10. 14 CFR 93.221 - Transfer of slots.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... Operations at High Density Traffic Airports § 93.221 Transfer of slots. (a) Except as otherwise provided in... high density traffic airport. Transfers, including leases, shall comply with the following conditions...

  11. 14 CFR 93.221 - Transfer of slots.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... Operations at High Density Traffic Airports § 93.221 Transfer of slots. (a) Except as otherwise provided in... high density traffic airport. Transfers, including leases, shall comply with the following conditions...

  12. Fundamental Fractal Antenna Design Process

    NASA Astrophysics Data System (ADS)

    Zhu, L. P.; Kim, T. C.; Kakas, G. D.

    2017-12-01

    Antenna designers are always looking to come up with new ideas to push the envelope for new antennas, using a smaller volume while striving for higher bandwidth, wider bandwidth, and antenna gain. One proposed method of increasing bandwidth or shrinking antenna size is via the use of fractal geometry, which gives rise to fractal antennas. Fractals are those fun shapes that if one zooms in or zoom out, the structure is always the same. Design a new type of antenna based on fractal antenna design by utilize the Design of Experiment (DOE) will be shown in fractal antenna design process. Investigate conformal fractal antenna design for patterns, dimensions, and size, of the antenna but maintaining or improving the antenna performance. Research shows an antenna designer how to create basic requirements of the fractal antenna through a step by step process, and provides how to optimize the antenna design with the model prediction, lab measurement, and actual results from the compact range measurement on the antenna patterns.

  13. View north of the antenna array, note the communications antenna ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View north of the antenna array, note the communications antenna in the middleground - Over-the-Horizon Backscatter Radar Network, Christmas Valley Radar Site Transmit Sector Four Antenna Array, On unnamed road west of Lost Forest Road, Christmas Valley, Lake County, OR

  14. View of antenna tunnel end. Right to Antenna Silo #1, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View of antenna tunnel end. Right to Antenna Silo #1, left to Antenna Silo #2 - Titan One Missile Complex 2A, .3 miles west of 129 Road and 1.5 miles north of County Line Road, Aurora, Adams County, CO

  15. Three-dimensional imaging of intracochlear tissue by scanning laser optical tomography (SLOT)

    NASA Astrophysics Data System (ADS)

    Tinne, N.; Nolte, L.; Antonopoulos, G. C.; Schulze, J.; Andrade, J.; Heisterkamp, A.; Meyer, H.; Warnecke, A.; Majdani, O.; Ripken, T.

    2016-02-01

    The presented study focuses on the application of scanning laser optical tomography (SLOT) for non-destructive visualization of anatomical structures inside the human cochlea ex vivo. SLOT is a laser-based highly efficient microscopy technique, which allows for tomographic imaging of the internal structure of transparent large-scale specimens (up to 1 cm3). Thus, in the field of otology this technique is best convenient for an ex vivo study of the inner ear anatomy. For this purpose, the preparation before imaging comprises mechanically assisted decalcification, dehydration as well as optical clearing of the cochlea samples. Here, we demonstrate results of SLOT visualizing hard and soft tissue structures of the human cochlea with an optical resolution in the micrometer range using absorption and autofluorescence as contrast mechanisms. Furthermore, we compare our results with the method of X-ray micro tomography (micro-CT, μCT) as clinical gold standard which is based only on absorption. In general, SLOT can provide the advantage of covering all contrast mechanisms known from other light microscopy techniques, such as fluorescence or scattering. For this reason, a protocol for antibody staining has been developed, which additionally enables selective mapping of cellular structures within the cochlea. Thus, we present results of SLOT imaging rodent cochleae showing specific anatomical structures such as hair cells and neurofilament via fluorescence. In conclusion, the presented study has shown that SLOT is an ideally suited tool in the field of otology for in toto visualization of the inner ear microstructure.

  16. RF MEMS devices for multifunctional integrated circuits and antennas

    NASA Astrophysics Data System (ADS)

    Peroulis, Dimitrios

    Micromachining and RF Micro-Electro-Mechanical Systems (RF MEMS) have been identified as two of the most significant enabling technologies in developing miniaturized low-cost communications systems and sensor networks. The key components in these MEMS-based architectures are the RF MEMS switches and varactors. The first part of this thesis focuses on three novel RF MEMS components with state-of-the-art performance. In particular, a broadband 6 V capacitive MEMS switch is presented with insertion loss of only 0.04 and 0.17 dB at 10 and 40 GHz respectively. Special consideration is given to particularly challenging issues, such as residual stress, planarity, power handling capability and switching speed. The need for switches operating below 1 GHz is also identified and a spring-loaded metal-to-metal contact switch is developed. The measured on-state contact resistance and off-state series capacitance are 0.5 O and 10 fF respectively for this switch. An analog millimeter-wave variable capacitor is the third MEMS component presented in this thesis. This variable capacitor shows an ultra high measured tuning range of nearly 4:1, which is the highest reported value for the millimeter-wave region. The second part of this thesis primarily concentrates on MEMS-based reconfigurable systems and their potential to revolutionize the design of future RF/microwave multifunctional systems. High-isolation switches and switch packets with isolation of more than 60 dB are designed and implemented. Furthermore, lowpass and bandpass tunable filters with 3:1 and 2:1 tuning ratios respectively are demonstrated. Similar methods have been also applied to the field of slot antennas and a novel design technique for compact reconfigurable antennas has been developed. The main advantage of these antennas is that they essentially preserve their impedance, radiation pattern, polarization, gain and efficiency for all operating frequencies. The thesis concludes by discussing the future challenges

  17. Analysis of the characteristics of slot design affecting resistance to sliding during active archwire configurations

    PubMed Central

    2013-01-01

    Background During orthodontic treatment, a low resistance to slide (RS) is desirable when sliding mechanics are used. Many studies showed that several variables affect the RS at the bracket-wire interface; among these, the design of the bracket slot has not been deeply investigated yet. This study aimed to clarify the effect of different slot designs on the RS expressed by five types of low-friction brackets in vertical and horizontal active configurations of the wire. Methods Five low-friction brackets (Damon SL II, Ormco, Orange, CA, USA; In-Ovation, GAC International, Bohemia, NY, USA; Quick, Forestadent, Pforzheim, Germany; Time 2, AO, Sheboygan, WI, USA; Synergy, RMO, Denver, CO, USA) coupled with an 0.014-in NiTi thermal wire (Therma-Lite, AO) were tested in two three-bracket experimental models simulating vertical and horizontal bracket displacements. A custom-made machine was used to measure frictional resistance with tests repeated on ten occasions for each bracket-wire combination. Design characteristics such as the mesio-distal slot width, slot depth, and presence of chamfered edges at the extremities of the slot were evaluated on SEM images (SUPRA, Carl Zeiss, Oberkochen, Germany) and analyzed in relation to the data of RS recorded. Results Time 2 was found to show the higher frictional forces (1.50 and 1.35 N) in both experimental models (p < 0.05), while Quick and Synergy brackets showed the lower frictional values in the vertical (0.66 N) and in the horizontal (0.68 N) bracket displacements, respectively. With vertically displaced brackets, the increased mesio-distal slot width and the presence of clear angle at mesial and distal slot edges increase the values of RS. With brackets horizontally displaced, the RS expressed by the wire is influenced simultaneously by the depth of the slot, the mesio-distal slot width, and the presence of clear angle at the extremities of the slot base, the clip, or the slide. Conclusion In order to select the proper low

  18. Millimeter-Wave Wireless Power Transfer Technology for Space Applications

    NASA Technical Reports Server (NTRS)

    Chattopadhyay, Goutam; Manohara, Harish; Mojarradi, Mohammad M.; Vo, Tuan A.; Mojarradi, Hadi; Bae, Sam Y.; Marzwell, Neville

    2008-01-01

    In this paper we present a new compact, scalable, and low cost technology for efficient receiving of power using RF waves at 94 GHz. This technology employs a highly innovative array of slot antennas that is integrated on substrate composed of gold (Au), silicon (Si), and silicon dioxide (SiO2) layers. The length of the slots and spacing between them are optimized for a highly efficient beam through a 3-D electromagnetic simulation process. Antenna simulation results shows a good beam profile with very low side lobe levels and better than 93% antenna efficiency.

  19. Hydraulic servo control spool valve

    DOEpatents

    Miller, Donald M.

    1983-01-01

    A servo operated spool valve having a fixed sleeve and axially movable spool. The sleeve is machined in two halves to form a long, narrow tapered orifice slot across which a transverse wall of the spool is positioned. The axial position of the spool wall along the slot regulates the open orifice area with extreme precision.

  20. Coplanar waveguide metamaterials: The role of bandwidth modifying slots

    NASA Astrophysics Data System (ADS)

    Ibraheem, Ibraheem A.; Koch, Martin

    2007-09-01

    The authors propose a coplanar waveguide stopband metasurface based on the Babinet principle. The resulting layout is a compact planar metal structure with complementary split ring resonators, which exhibits a high rejection stop band. The complementary rings provide a frequency band with an effective negative dielectric permittivity. Moreover, the rejected bandwidth can be expanded by introducing slots close to the rings. The authors provide a simple physical model which explains the impact of the slots. Simulations confirm the expected behavior and are in excellent agreement with the measurements.