Sample records for tapio seppnen juhani

  1. The Quantum and Fluid Mechanics of Global Warming

    NASA Astrophysics Data System (ADS)

    Marston, Brad

    2008-03-01

    Quantum physics and fluid mechanics are the foundation of any understanding of the Earth's climate. In this talk I invoke three well-known aspects of quantum mechanics to explore what will happen as the concentrations of greenhouse gases such as carbon dioxide continue to increase. Fluid dynamical models of the Earth's atmosphere, demonstrated here in live simulations, yield further insight into past, present, and future climates. Statistics of geophysical flows can, however, be ascertained directly without recourse to numerical simulation, using concepts borrowed from nonequilibrium statistical mechanicsootnotetextJ. B. Marston, E. Conover, and Tapio Schneider, ``Statistics of an Unstable Barotropic Jet from a Cumulant Expansion,'' arXiv:0705.0011, J. Atmos. Sci. (in press).. I discuss several other ways that theoretical physics may be able to contribute to a deeper understanding of climate changeootnotetextJ. Carlson, J. Harte, G. Falkovich, J. B. Marston, and R. Pierrehumbert, ``Physics of Climate Change'' 2008 Program of the Kavli Institute for Theoretical Physics..

  2. Empirical Research on Decoupling Relationship between Energy-Related Carbon Emission and Economic Growth in Guangdong Province Based on Extended Kaya Identity

    PubMed Central

    Wang, Wenxiu; Huang, Ningsheng; Zhao, Daiqing

    2014-01-01

    The decoupling elasticity decomposition quantitative model of energy-related carbon emission in Guangdong is established based on the extended Kaya identity and Tapio decoupling model for the first time, to explore the decoupling relationship and its internal mechanism between energy-related carbon emission and economic growth in Guangdong. Main results are as follows. (1) Total production energy-related carbon emissions in Guangdong increase from 4128 × 104 tC in 1995 to 14396 × 104 tC in 2011. Decoupling elasticity values of energy-related carbon emission and economic growth increase from 0.53 in 1996 to 0.85 in 2011, and its decoupling state turns from weak decoupling in 1996–2004 to expansive coupling in 2005–2011. (2) Land economic output and energy intensity are the first inhibiting factor and the first promoting factor to energy-related carbon emission decoupling from economic growth, respectively. The development speeds of land urbanization and population urbanization, especially land urbanization, play decisive roles in the change of total decoupling elasticity values. (3) Guangdong can realize decoupling of energy-related carbon emission from economic growth effectively by adjusting the energy mix and industrial structure, coordinating the development speed of land urbanization and population urbanization effectively, and strengthening the construction of carbon sink. PMID:24782666

  3. Empirical research on decoupling relationship between energy-related carbon emission and economic growth in Guangdong province based on extended Kaya identity.

    PubMed

    Wang, Wenxiu; Kuang, Yaoqiu; Huang, Ningsheng; Zhao, Daiqing

    2014-01-01

    The decoupling elasticity decomposition quantitative model of energy-related carbon emission in Guangdong is established based on the extended Kaya identity and Tapio decoupling model for the first time, to explore the decoupling relationship and its internal mechanism between energy-related carbon emission and economic growth in Guangdong. Main results are as follows. (1) Total production energy-related carbon emissions in Guangdong increase from 4128 × 10⁴ tC in 1995 to 14396 × 10⁴ tC in 2011. Decoupling elasticity values of energy-related carbon emission and economic growth increase from 0.53 in 1996 to 0.85 in 2011, and its decoupling state turns from weak decoupling in 1996-2004 to expansive coupling in 2005-2011. (2) Land economic output and energy intensity are the first inhibiting factor and the first promoting factor to energy-related carbon emission decoupling from economic growth, respectively. The development speeds of land urbanization and population urbanization, especially land urbanization, play decisive roles in the change of total decoupling elasticity values. (3) Guangdong can realize decoupling of energy-related carbon emission from economic growth effectively by adjusting the energy mix and industrial structure, coordinating the development speed of land urbanization and population urbanization effectively, and strengthening the construction of carbon sink.

  4. Towards a Global High Resolution Peatland Map in 2020

    NASA Astrophysics Data System (ADS)

    Barthelmes, Alexandra; Barthelmes, Karen-Doreen; Joosten, Hans; Dommain, Rene; Margalef, Olga

    2015-04-01

    discuss the perspectives and opportunities to complete a global map by collaborative action by 2020. References: Holden J., Chapman P.J., Labadz J.C. 2004 Artificial drainage of peatlands: hydrological and hydrochemical process and wetland restoration. Prog. Phys. Geogr, 28, 95-123. Joosten H. 2011. Sensitising global conventions for climate change mitigation by peatlands. In: Tanneberger F., Wichtmann W. (eds.) 2011. Carbon credits from peatland rewetting. Climate - biodiversity - land use. Science, policy, implementation and recommendations of a pilot project in Belarus. Schweizerbart, Stuttgart, p. 90-94. Joosten H., Tapio-Biström M.-L., Tol S. (eds.) 2012. Peatlands - guidance for climate change mitigation by conservation, rehabilitation and sustainable use. Mitigation of Climate Change in Agriculture Series 5. FAO, Rome, L + 96 p. http://www.fao.org/docrep/015/an762e/an762e.pdf. Victoria R., Banwart S., Black H., Ingram J., Joosten H., Milne E., Noellemeyer E. 2012. The benefits of soil carbon. Managing soils for multiple economic, societal, and environmental benefits. UNEP Yearbook 2012, UNEP, Nairobi, pp. 18-33.

  5. Towards a Global High Resolution Peatland Map in 2020

    NASA Astrophysics Data System (ADS)

    Barthelmes, Alexandra; Barthelmes, Karen-Doreen; Dommain, Rene; Margalef, Olga; Joosten, Hans

    2014-05-01

    the Southeast African countries Zambia, Zimbabwe, Mozambique and Malawi) and discuss the perspectives and opportunities to complete a global map by collaborative action by 2020. References: Holden J., Chapman P.J., Labadz J.C. 2004 Artificial drainage of peatlands: hydrological and hydrochemical process and wetland restoration. Prog. Phys. Geogr, 28, 95-123. Joosten H. 2011. Sensitising global conventions for climate change mitigation by peatlands. In: Tanneberger F., Wichtmann W. (eds.) 2011. Carbon credits from peatland rewetting. Climate - biodiversity - land use. Science, policy, implementation and recommendations of a pilot project in Belarus. Schweizerbart, Stuttgart, p. 90-94. Joosten H., Tapio-Biström M.-L., Tol S. (eds.) 2012. Peatlands - guidance for climate change mitigation by conservation, rehabilitation and sustainable use. Mitigation of Climate Change in Agriculture Series 5. FAO, Rome, L + 96 p. http://www.fao.org/docrep/015/an762e/an762e.pdf. Victoria R., Banwart S., Black H., Ingram J., Joosten H., Milne E., Noellemeyer E. 2012. The benefits of soil carbon. Managing soils for multiple economic, societal, and environmental benefits. UNEP Yearbook 2012, UNEP, Nairobi, pp. 18-33.

  6. Overcoming the risk of inaction from emissions uncertainty in smallholder agriculture

    NASA Astrophysics Data System (ADS)

    Berry, N. J.; Ryan, C. M.

    2013-03-01

    proof of this concept and a platform on which greater functionality and flexibility can be built. We hope that this, and other similar initiatives, will deliver approaches to greenhouse gas accounting that reduce risks and maximize benefits to smallholder farmers. References Beddington J R et al 2012 What next for agriculture after Durban? Science 335 289-90 Coleman K and Jenkinson D S 1996 RothC 26.3 a model for the turnover of carbon in soil Evaluation of Soil Organic Matter Models Using Existing, Long-Term Datasets ed D S Powlson, P Smith and J U Smith (Heidelberg: Springer) Del Grosso S J, Ojima D S, Parton W J, Mosier A R, Petereson G A and Schimel D S 2002 Simulated effects of dryland cropping intensification on soil organic matter and greenhouse gas exchanges using the DAYCENT ecosystem model Environ. Pollut. 116 S75-83 IPCC (Intergovenmental Panel on Climate Change) 2006 Guidelines for National Greenhouse Gas Inventories. Prepared by the National Greenhouse Gas Inventories Programme (Hayama: IGES) (www.ipcc-nggip.iges.or.jp/public/2006gl/index.html) Li C, Frolking S and Harris R 1994 Modeling carbon biogeochemistry in agricultural soils Glob. Biogeochem. Cycles 8 237-54 Milori D M B P, Segini A, Da Silva W T L, Posadas A, Mares V, Quiroz R and Ladislau M N 2012 Emerging techniques for soil carbon measurements Climate Change Mitigation and Agriculture ed E Wollenberg, A Nihart, M-L Tapio-Bistrom and M Greig-Gran (Abingdon: Earthscan) Olander L P 2012 Using biogeochemical process models to quantify greenhouse gas mitigation from agricultural management Climate Change Mitigation and Agriculture ed E Wollenberg, A Nihart, M-L Tapio-Bistrom and M Greig-Gran (Abingdon: Earthscan) Parton W J, Schimel D S, Cole C V and Ojima D S 1987 Analysis of factors controlling soil organic matter levels in Great Plains grasslands Soil Sci. Soc. Am. J. 51 1173-9 Plan Vivo 2012 The Plan Vivo Standard For Community Payments for Ecosystem Services Programmes Version 2012 (available

  7. Global Cropland Area Database (GCAD) derived from Remote Sensing in Support of Food Security in the Twenty-first Century: Current Achievements and Future Possibilities

    USGS Publications Warehouse

    Teluguntla, Pardhasaradhi G.; Thenkabail, Prasad S.; Xiong, Jun N.; Gumma, Murali Krishna; Giri, Chandra; Milesi, Cristina; Ozdogan, Mutlu; Congalton, Russ; Tilton, James; Sankey, Temuulen Tsagaan; Massey, Richard; Phalke, Aparna; Yadav, Kamini

    2015-01-01

    to biofuels (Bindraban et al., 2009), limited water resources for irrigation expansion (Turral et al., 2009), limits on agricultural intensifications, loss of croplands to urbanization (Khan and Hanjra, 2008), increasing meat consumption (and associated demands on land and water) (Vinnari and Tapio, 2009), environmental infeasibility for cropland expansion (Gordon et al., 2009), and changing climate have all put pressure on our continued ability to sustain global food security in the twenty-first century. So, how does the World continue to meet its food and nutrition needs?. Solutions may come from bio-technology and precision farming, however developments in these fields are not currently moving at rates that will ensure global food security over next few decades. Further, there is a need for careful consideration of possible harmful effects of bio-technology. We should not be looking back 30– 50 years from now, like we have been looking back now at many mistakes made during the green revolution. During the green revolution the focus was only on getting more yield per unit area. Little thought was put about serious damage done to our natural environments, water resources, and human health as a result of detrimental factors such as uncontrolled use of herbicides-pesticides-nutrients, drastic groundwater mining, and salinization of fertile soils due to over irrigation. Currently, there is talk of a “second green revolution” or even an “ever green revolution”, but clear ideas on what these terms actually mean are still debated and are evolving. One of the biggest issues that are not given adequate focus is the use of large quantities of water for food production. Indeed, an overwhelming proportion (60-90%) of all human water use in India goes for producing their food (Falkenmark, M., & Rockström, 2006). But such intensive water use for food production is no longer tenable due to increasing pressure for water use alternatives such as increasing urbanization

  8. EDITORIAL: Incoming Editor-in-Chief

    NASA Astrophysics Data System (ADS)

    Lidström, Suzanne

    2012-04-01

    , in his hands, the expansion continued and the transition to electronic production took place. In 2005, an agreement was signed with IOP Publishing and the bustling production work of the in-house team moved abroad to Bristol, leaving just the Editor-in-Chief to man the ship at the Royal Swedish Academy of Sciences. In 2011, however, as Roger prepared to step down, submissions had reached astounding levels as is evident from figure 1: that year, almost 1500 manuscripts were received by Physica Scripta, now acknowledged to be amongst the fastest growing journals in IOP Publishing, when measured in these terms. The year on year increase stands at 20% and, once again, of the extensive range of topics covered, condensed matter physics had been identified as the subject area in most need of attention because the burden of reviewing had become too great for one editor to oversee alone. Thus, when I joined Physica Scripta in January of this year, securing new External Editors for this field was perceived to be the most urgent task. It is, therefore, with the greatest of pleasure that I am able to announce the arrival of two new editors for this section: Professors David Keen and Tapio Rantala. Physica Scripta statistics Figure 1. The annual submissions made to Physica Scripta in recent years have rocketed and the rejection rate (given as a percentage) has increased rapidly. The modest increase in the number of articles accepted (shaded in blue) reflects a deliberate policy to augment the scientific quality. Professor Rantala has been selected by the Finnish Physical Society to replace Professor Matti Manninen, who is stepping down as the Finnish representative on the journal's Editorial Board. Professor Rantala is a prominent theorist and has been engaged in active research in a number of fields. In his early work, he was interested in surface science and molecular physics, however his expertise is predominantly in the domain of solid or materials physics related to