Sample records for taq polymerase concentration

  1. Osmoregulated TAQ polymerase gene expression in Escherichia coli.

    PubMed

    Cabrera Artiles, Yeosvany; Martínez García, Duniesky; Pérez Cruz, Enrique R; Márquez Perera, Gabriel J; Feble, Manuel Luis

    2002-01-01

    The Thermus aquaticus DNA Polymerase I (Taq Pol I) gene was cloned into the pOSEX4 plasmid under the osmo-inducible promoter proU and subsequently expressed into the Escherichia coli MKH13 strain. The suitability of the enzyme in polymerase assays was determined in standard 35S dATP incorporation tests and by PCR. The Taq Pol I expression in this system, which is under the control of the osmotic pressure in the growth medium, was analyzed in different media and in different sodium chloride concentrations. A study of the osmolarity effects in the growth of the strain and in Taq Pol I expression shows that an increase in sodium chloride concentration limits the growth. At 0.25 M of NaCl maximum activity was observed; at higher values of osmolarity, we found an unexpected decline of activity. This is the first report of using the pOSEX vector for the expression of an heterologous protein and it is very advantageous to make a regulated, non toxic, simple and cost-effective manner of induction in a biotechnology process using just NaCl or other non-permeable osmolyte.

  2. Escherichia coli DNA contamination in AmpliTaq Gold polymerase interferes with TaqMan analysis of lacZ.

    PubMed

    Koponen, Jonna K; Turunen, Anna-Mari; Ylä-Herttuala, Seppo

    2002-03-01

    Real-time PCR is a powerful method for the quantification of gene expression in biological samples. This method uses TaqMan chemistry based on the 5' -exonuclease activity of the AmpliTaq Gold DNA polymerase which releases fluorescence from hybridized probes during synthesis of each new PCR product. Many gene therapy studies use lacZ, encoding Escherichia coli beta-galactosidase, as a marker gene. Our results demonstrate that E. coli DNA contamination in AmpliTaq Gold polymerase interferes with TaqMan analysis of lacZ gene expression and decreases sensitivity of the method below the level required for biodistribution and long-term gene expression studies. In biodistribution analyses the contamination can lead to false-negative results by masking low-level lacZ expression in target and ectopic tissues, and false-positive results if sufficient controls are not used. We conclude that, to get reliable TaqMan results with lacZ, adequate controls should be included in each run to rule out contamination from AmpliTaq Gold polymerase.

  3. Heat-mediated activation of affinity-immobilized Taq DNA polymerase.

    PubMed

    Nilsson, J; Bosnes, M; Larsen, F; Nygren, P A; Uhlén, M; Lundeberg, J

    1997-04-01

    A novel strategy for heat-mediated activation of recombinant Taq DNA polymerase is described. A serum albumin binding protein tag is used to affinity-immobilize an E. coli-expressed Taq DNA polymerase fusion protein onto a solid support coated with human serum albumin (HSA). Analysis of heat-mediated elution showed that elevated temperatures (> 70 degrees C) were required to significantly release the fusion protein from the solid support. A primer-extension assay showed that immobilization of the fusion protein resulted in little or no extension product. In contrast, fusion protein released from the HSA ligand by heat showed high polymerase activity. Thus, a heat-mediated release and reactivation of the Taq DNA polymerase fusion protein from the solid support can be obtained to allow for hot-start PCR with improved amplification performance.

  4. Extension of base mispairs by Taq DNA polymerase: implications for single nucleotide discrimination in PCR.

    PubMed Central

    Huang, M M; Arnheim, N; Goodman, M F

    1992-01-01

    Thermus aquaticus (Taq) DNA polymerase was used to measure the extension efficiency for all configurations of matched and mismatched base pairs at template-primer 3'-termini. The transition mispairs, A(primer).C, C.A, G.T, and T.G were extended 10(-3) to 10(-4)-fold less efficiently than their correctly paired counterparts. Relative efficiencies for extending transversion mispairs were 10(-4) to 10(-5) for T.C and T.T, about 10(-6) for A.A, and less than 10(-6) for G.A, A.G, G.G and C.C. The transversion mispair C(primer).T was extended with high efficiency, about 10(-2) compared to a correct A.T basepair. The unexpected ease of extending the C.T mismatch was not likely to have been caused by primer-template misalignment. Taq polymerase was observed to bind with similar affinities to each of the correctly paired and mispaired primer-template 3'-ends. Thus, the failure of Taq polymerase to extend mismatches efficiently appears to be an intrinsic property of the enzyme and not due to an inability to bind to 3'-terminal mispairs. For almost all of the mispairs, C.T being the exception, Taq polymerase exhibits about 100 to 1000-fold greater discrimination against mismatch extension compared to avian myeloblastosis reverse transcriptase and HIV-1 reverse transcriptase which extend most mismatched basepairs permissively. Relative mismatch extension efficiencies for Taq polymerase were measured at 45 degrees C, 55 degrees C and 70 degrees C and found to be independent of temperature. The mispair extension data should be important in designing experiments using PCR to distinguish between sequences that vary by a single nucleotide. Images PMID:1408758

  5. KlenTaq polymerase replicates unnatural base pairs by inducing a Watson-Crick geometry.

    PubMed

    Betz, Karin; Malyshev, Denis A; Lavergne, Thomas; Welte, Wolfram; Diederichs, Kay; Dwyer, Tammy J; Ordoukhanian, Phillip; Romesberg, Floyd E; Marx, Andreas

    2012-07-01

    Many candidate unnatural DNA base pairs have been developed, but some of the best-replicated pairs adopt intercalated structures in free DNA that are difficult to reconcile with known mechanisms of polymerase recognition. Here we present crystal structures of KlenTaq DNA polymerase at different stages of replication for one such pair, dNaM-d5SICS, and show that efficient replication results from the polymerase itself, inducing the required natural-like structure.

  6. Development of an on-site rapid real-time polymerase chain reaction system and the characterization of suitable DNA polymerases for TaqMan probe technology.

    PubMed

    Furutani, Shunsuke; Naruishi, Nahoko; Hagihara, Yoshihisa; Nagai, Hidenori

    2016-08-01

    On-site quantitative analyses of microorganisms (including viruses) by the polymerase chain reaction (PCR) system are significantly influencing medical and biological research. We have developed a remarkably rapid and portable real-time PCR system that is based on microfluidic approaches. Real-time PCR using TaqMan probes consists of a complex reaction. Therefore, in a rapid real-time PCR, the optimum DNA polymerase must be estimated by using actual real-time PCR conditions. In this study, we compared the performance of three DNA polymerases in actual PCR conditions using our rapid real-time PCR system. Although KAPA2G Fast HS DNA Polymerase has the highest enzymatic activity among them, SpeedSTAR HS DNA Polymerase exhibited better performance to rapidly increase the fluorescence signal in an actual real-time PCR using TaqMan probes. Furthermore, we achieved rapid detection of Escherichia coli in 7 min by using SpeedSTAR HS DNA Polymerase with the same sensitivity as that of a conventional thermal cycler.

  7. Interaction of aurintricarboxylic acid (ATA) with four nucleic acid binding proteins DNase I, RNase A, reverse transcriptase and Taq polymerase

    NASA Astrophysics Data System (ADS)

    Ghosh, Utpal; Giri, Kalyan; Bhattacharyya, Nitai P.

    2009-12-01

    In the investigation of interaction of aurintricarboxylic acid (ATA) with four biologically important proteins we observed inhibition of enzymatic activity of DNase I, RNase A, M-MLV reverse transcriptase and Taq polymerase by ATA in vitro assay. As the telomerase reverse transcriptase (TERT) is the main catalytic subunit of telomerase holoenzyme, we also monitored effect of ATA on telomerase activity in vivo and observed dose-dependent inhibition of telomerase activity in Chinese hamster V79 cells treated with ATA. Direct association of ATA with DNase I ( Kd = 9.019 μM)), RNase A ( Kd = 2.33 μM) reverse transcriptase ( Kd = 0.255 μM) and Taq polymerase ( Kd = 81.97 μM) was further shown by tryptophan fluorescence quenching studies. Such association altered the three-dimensional conformation of DNase I, RNase A and Taq polymerase as detected by circular dichroism. We propose ATA inhibits enzymatic activity of the four proteins through interfering with DNA or RNA binding to the respective proteins either competitively or allosterically, i.e. by perturbing three-dimensional structure of enzymes.

  8. Purification and Characterization of Taq Polymerase: A 9-Week Biochemistry Laboratory Project for Undergraduate Students

    ERIC Educational Resources Information Center

    Bellin, Robert M.; Bruno, Mary K.; Farrow, Melissa A.

    2010-01-01

    We have developed a 9-week undergraduate laboratory series focused on the purification and characterization of "Thermus aquaticus" DNA polymerase (Taq). Our aim was to provide undergraduate biochemistry students with a full-semester continuing project simulating a research-like experience, while having each week's procedure focus on a single…

  9. Helix–hairpin–helix motifs confer salt resistance and processivity on chimeric DNA polymerases

    PubMed Central

    Pavlov, Andrey R.; Belova, Galina I.; Kozyavkin, Sergei A.; Slesarev, Alexei I.

    2002-01-01

    Helix–hairpin–helix (HhH) is a widespread motif involved in sequence-nonspecific DNA binding. The majority of HhH motifs function as DNA-binding modules with typical occurrence of one HhH motif or one or two (HhH)2 domains in proteins. We recently identified 24 HhH motifs in DNA topoisomerase V (Topo V). Although these motifs are dispensable for the topoisomerase activity of Topo V, their removal narrows the salt concentration range for topoisomerase activity tenfold. Here, we demonstrate the utility of Topo V's HhH motifs for modulating DNA-binding properties of the Stoffel fragment of TaqDNA polymerase and Pfu DNA polymerase. Different HhH cassettes fused with either NH2 terminus or COOH terminus of DNA polymerases broaden the salt concentration range of the polymerase activity significantly (up to 0.5 M NaCl or 1.8 M potassium glutamate). We found that anions play a major role in the inhibition of DNA polymerase activity. The resistance of initial extension rates and the processivity of chimeric polymerases to salts depend on the structure of added HhH motifs. Regardless of the type of the construct, the thermal stability of chimeric Taq polymerases increases under the optimal ionic conditions, as compared with that of TaqDNA polymerase or its Stoffel fragment. Our approach to raise the salt tolerance, processivity, and thermostability of Taq and Pfu DNA polymerases may be applied to all pol1- and polB-type polymerases, as well as to other DNA processing enzymes. PMID:12368475

  10. Error Rate Comparison during Polymerase Chain Reaction by DNA Polymerase

    DOE PAGES

    McInerney, Peter; Adams, Paul; Hadi, Masood Z.

    2014-01-01

    As larger-scale cloning projects become more prevalent, there is an increasing need for comparisons among high fidelity DNA polymerases used for PCR amplification. All polymerases marketed for PCR applications are tested for fidelity properties (i.e., error rate determination) by vendors, and numerous literature reports have addressed PCR enzyme fidelity. Nonetheless, it is often difficult to make direct comparisons among different enzymes due to numerous methodological and analytical differences from study to study. We have measured the error rates for 6 DNA polymerases commonly used in PCR applications, including 3 polymerases typically used for cloning applications requiring high fidelity. Error ratemore » measurement values reported here were obtained by direct sequencing of cloned PCR products. The strategy employed here allows interrogation of error rate across a very large DNA sequence space, since 94 unique DNA targets were used as templates for PCR cloning. The six enzymes included in the study, Taq polymerase, AccuPrime-Taq High Fidelity, KOD Hot Start, cloned Pfu polymerase, Phusion Hot Start, and Pwo polymerase, we find the lowest error rates with Pfu , Phusion, and Pwo polymerases. Error rates are comparable for these 3 enzymes and are >10x lower than the error rate observed with Taq polymerase. Mutation spectra are reported, with the 3 high fidelity enzymes displaying broadly similar types of mutations. For these enzymes, transition mutations predominate, with little bias observed for type of transition.« less

  11. Novel TaqMan real-time polymerase chain reaction assay for verifying the authenticity of meat and commercial meat products from game birds.

    PubMed

    Rojas, María; González, Isabel; Pavón, Miguel Angel; Pegels, Nicolette; Lago, Adriana; Hernández, Pablo E; García, Teresa; Martín, Rosario

    2010-06-01

    Species-specific real-time polymerase chain reaction (PCR) assays using TaqMan probes have been developed for verifying the labeling of meat and commercial meat products from game birds, including quail, pheasant, partridge, guinea fowl, pigeon, Eurasian woodcock and song thrush. The method combines the use of species-specific primers and TaqMan probes that amplify small fragments (amplicons <150 base pairs) of the mitochondrial 12S rRNA gene, and an endogenous control primer pair that amplifies a 141-bp fragment of the nuclear 18S rRNA gene from eukaryotic DNA. Analysis of experimental raw and heat-treated binary mixtures as well as of commercial meat products from the target species demonstrated the suitability of the assay for the detection of the target DNAs.

  12. Conformational Dynamics of Thermus aquaticus DNA Polymerase I during Catalysis

    PubMed Central

    Suo, Zucai

    2014-01-01

    Despite the fact that DNA polymerases have been investigated for many years and are commonly used as tools in a number of molecular biology assays, many details of the kinetic mechanism they use to catalyze DNA synthesis remain unclear. Structural and kinetic studies have characterized a rapid, pre-catalytic open-to-close conformational change of the Finger domain during nucleotide binding for many DNA polymerases including Thermus aquaticus DNA polymerase I (Taq Pol), a thermostable enzyme commonly used for DNA amplification in PCR. However, little has been done to characterize the motions of other structural domains of Taq Pol or any other DNA polymerase during catalysis. Here, we used stopped-flow Förster resonance energy transfer (FRET) to investigate the conformational dynamics of all five structural domains of the full-length Taq Pol relative to the DNA substrate during nucleotide binding and incorporation. Our study provides evidence for a rapid conformational change step induced by dNTP binding and a subsequent global conformational transition involving all domains of Taq Pol during catalysis. Additionally, our study shows that the rate of the global transition was greatly increased with the truncated form of Taq Pol lacking the N-terminal domain. Finally, we utilized a mutant of Taq Pol containing a de novo disulfide bond to demonstrate that limiting protein conformational flexibility greatly reduced the polymerization activity of Taq Pol. PMID:24931550

  13. Compartmentalized self-replication under fast PCR cycling conditions yields Taq DNA polymerase mutants with increased DNA-binding affinity and blood resistance.

    PubMed

    Arezi, Bahram; McKinney, Nancy; Hansen, Connie; Cayouette, Michelle; Fox, Jeffrey; Chen, Keith; Lapira, Jennifer; Hamilton, Sarah; Hogrefe, Holly

    2014-01-01

    Faster-cycling PCR formulations, protocols, and instruments have been developed to address the need for increased throughput and shorter turn-around times for PCR-based assays. Although run times can be cut by up to 50%, shorter cycle times have been correlated with lower detection sensitivity and increased variability. To address these concerns, we applied Compartmentalized Self Replication (CSR) to evolve faster-cycling mutants of Taq DNA polymerase. After five rounds of selection using progressively shorter PCR extension times, individual mutations identified in the fastest-cycling clones were randomly combined using ligation-based multi-site mutagenesis. The best-performing combinatorial mutants exhibit 35- to 90-fold higher affinity (lower Kd ) for primed template and a moderate (2-fold) increase in extension rate compared to wild-type Taq. Further characterization revealed that CSR-selected mutations provide increased resistance to inhibitors, and most notably, enable direct amplification from up to 65% whole blood. We discuss the contribution of individual mutations to fast-cycling and blood-resistant phenotypes.

  14. An Evolutionary/Biochemical Connection Between Promoter- and Primer-Dependent Polymerases Revealed by Selective Evolution of Ligands by Exponential Enrichment (SELEX).

    PubMed

    Fenstermacher, Katherine J; Achuthan, Vasudevan; Schneider, Thomas D; DeStefano, Jeffrey J

    2018-01-16

    DNA polymerases (DNAPs) recognize 3' recessed termini on duplex DNA and carry out nucleotide catalysis. Unlike promoter-specific RNA polymerases (RNAPs), no sequence specificity is required for binding or initiation of catalysis. Despite this, previous results indicate that viral reverse transcriptases bind much more tightly to DNA primers that mimic the polypurine tract. In the current report, primer sequences that bind with high affinity to Taq and Klenow polymerases were identified using a modified Selective Evolution of Ligands by Exponential Enrichment (SELEX) approach. Two Taq -specific primers that bound ∼10 (Taq1) and over 100 (Taq2) times more stably than controls to Taq were identified. Taq1 contained 8 nucleotides (5' -CACTAAAG-3') that matched the phage T3 RNAP "core" promoter. Both primers dramatically outcompeted primers with similar binding thermodynamics in PCR reactions. Similarly, exonuclease minus Klenow polymerase also selected a high affinity primer that contained a related core promoter sequence from phage T7 RNAP (5' -ACTATAG-3'). For both Taq and Klenow, even small modifications to the sequence resulted in large losses in binding affinity suggesting that binding was highly sequence-specific. The results are discussed in the context of possible effects on multi-primer (multiplex) PCR assays, molecular information theory, and the evolution of RNAPs and DNAPs. Importance This work further demonstrates that primer-dependent DNA polymerases can have strong sequence biases leading to dramatically tighter binding to specific sequences. These may be related to biological function, or be a consequences of the structural architecture of the enzyme. New sequence specificity for Taq and Klenow polymerases were uncovered and among them were sequences that contained the core promoter elements from T3 and T7 phage RNA polymerase promoters. This suggests the intriguing possibility that phage RNA polymerases exploited intrinsic binding affinities of

  15. Associations of Cholesteryl Ester Transfer Protein TaqIB Polymorphism with the Composite Ischemic Cardiovascular Disease Risk and HDL-C Concentrations: A Meta-Analysis

    PubMed Central

    Guo, Shu-xia; Yao, Ming-hong; Ding, Yu-song; Zhang, Jing-yu; Yan, Yi-zhong; Liu, Jia-ming; Zhang, Mei; Rui, Dong-sheng; Niu, Qiang; He, Jia; Guo, Heng; Ma, Ru-lin

    2016-01-01

    Background: Previous studies have evaluated the associations between the cholesteryl ester transfer protein (CETP) TaqIB polymorphism (rs708272), the risk of developing composite ischemic cardiovascular disease (CVD) and the concentration of high-density lipoprotein cholesterol (HDL-C), but results remain controversial. The objective of this study was to investigate whether a relationship exists between these factors. Methods: We conducted a meta-analysis of available studies to clarify the associations of the CETP TaqIB polymorphism with HDL-C concentration and the composite ischemic CVD risk in both Asians and Caucasians. All statistical analyses were done with Stata 12.0. Results: Through utilization of the Cochrane Library, Embase, PubMed, Web of Science, Springer, China Science and Technology Journal Database, China National Knowledge Infrastructure, Google Scholar, and Baidu Library, a total of 45 studies from 44 papers with 20,866 cases and 21,298 controls were combined showing a significant association between the CETP TaqIB variant and composite ischemic CVD risk. Carriers of allele TaqIB-B1 were found to have a higher risk of composite ischemic CVD than non-carriers: OR = 1.15, 95% CI = 1.09–1.21, p < 0.001. Meanwhile, 28 studies with 23,959 subjects were included in the association between the CETP TaqIB polymorphism and the concentration of HDL-C. Results suggested that carriers of the B1B1 genotype had lower concentrations of HDL-C than those of the B2B2 genotype: SMD = 0.50, 95% CI = 0.36–0.65, p < 0.001. Conclusions: The synthesis of available evidence demonstrates that the CETP TaqIB polymorphism protects against composite ischemic CVD risk and is associated with a higher HDL-C concentration in both Asians and Caucasians. PMID:27608031

  16. Adenovirus-mediated in utero gene transfer in mice and guinea pigs: tissue distribution of recombinant adenovirus determined by quantitative TaqMan-polymerase chain reaction assay.

    PubMed

    Senoo, M; Matsubara, Y; Fujii, K; Nagasaki, Y; Hiratsuka, M; Kure, S; Uehara, S; Okamura, K; Yajima, A; Narisawa, K

    2000-04-01

    Fetal somatic cell gene therapy could become an attractive solution for some congenital genetic diseases or the disorders which manifest themselves during the fetal period. We performed adenovirus-mediated gene transfer to mice and guinea pig fetuses in utero and evaluated the efficiency of gene transfer by histochemical analysis and a quantitative TaqMan-polymerase chain reaction (TaqMan-PCR) assay. We first injected a replication-deficient recombinant adenovirus containing the Escherichia coli LacZ gene driven by a CAG promoter (AxCALacZ) into pregnant mice through the amniotic space, placenta, or intraperitoneal space of the fetus. Histochemical analysis showed limited transgene expression in fetal tissues. We then administered AxCALacZ to guinea pig fetuses in the late stage of pregnancy through the umbilical vein. The highest beta-galactosidase expression was observed in liver followed by moderate expression in heart, spleen, and adrenal gland. The transgene expression was also present in kidney, intestine, and placenta to a lesser degree. No positively stained cells were observed in lung, muscle, or pancreas except in the vascular endothelium of these organs. Quantitative measurement of recombinant adenoviral DNA by the TaqMan-PCR assay showed that the vast majority of the injected viruses was present in liver. The current study indicated that adenovirus-mediated gene transfer into guinea pig fetus through the umbilical vein is feasible and results in efficient transgene expression in fetal tissues. The experimental procedures using pregnant guinea pigs might serve as a good experimental model for in utero gene transfer. Since our TaqMan-PCR assay detects the LacZ gene, one of the most widely used reporter genes, it may be generally applicable to adenovirus quantification in various gene transfer experiments.

  17. PCR performance of a thermostable heterodimeric archaeal DNA polymerase

    PubMed Central

    Killelea, Tom; Ralec, Céline; Bossé, Audrey; Henneke, Ghislaine

    2014-01-01

    DNA polymerases are versatile tools used in numerous important molecular biological core technologies like the ubiquitous polymerase chain reaction (PCR), cDNA cloning, genome sequencing, and nucleic acid based diagnostics. Taking into account the multiple DNA amplification techniques in use, different DNA polymerases must be optimized for each type of application. One of the current tendencies is to reengineer or to discover new DNA polymerases with increased performance and broadened substrate spectra. At present, there is a great demand for such enzymes in applications, e.g., forensics or paleogenomics. Current major limitations hinge on the inability of conventional PCR enzymes, such as Taq, to amplify degraded or low amounts of template DNA. Besides, a wide range of PCR inhibitors can also impede reactions of nucleic acid amplification. Here we looked at the PCR performances of the proof-reading D-type DNA polymerase from P. abyssi, Pab-polD. Fragments, 3 kilobases in length, were specifically PCR-amplified in its optimized reaction buffer. Pab-polD showed not only a greater resistance to high denaturation temperatures than Taq during cycling, but also a superior tolerance to the presence of potential inhibitors. Proficient proof-reading Pab-polD enzyme could also extend a primer containing up to two mismatches at the 3' primer termini. Overall, we found valuable biochemical properties in Pab-polD compared to the conventional Taq, which makes the enzyme ideally suited for cutting-edge PCR-applications. PMID:24847315

  18. Problem-Solving Test: Real-Time Polymerase Chain Reaction

    ERIC Educational Resources Information Center

    Szeberenyi, Jozsef

    2009-01-01

    Terms to be familiar with before you start to solve the test: polymerase chain reaction, DNA amplification, electrophoresis, breast cancer, "HER2" gene, genomic DNA, "in vitro" DNA synthesis, template, primer, Taq polymerase, 5[prime][right arrow]3[prime] elongation activity, 5[prime][right arrow]3[prime] exonuclease activity, deoxyribonucleoside…

  19. Directed evolution of polymerase function by compartmentalized self-replication.

    PubMed

    Ghadessy, F J; Ong, J L; Holliger, P

    2001-04-10

    We describe compartmentalized self-replication (CSR), a strategy for the directed evolution of enzymes, especially polymerases. CSR is based on a simple feedback loop consisting of a polymerase that replicates only its own encoding gene. Compartmentalization serves to isolate individual self-replication reactions from each other. In such a system, adaptive gains directly (and proportionally) translate into genetic amplification of the encoding gene. CSR has applications in the evolution of polymerases with novel and useful properties. By using three cycles of CSR, we obtained variants of Taq DNA polymerase with 11-fold higher thermostability than the wild-type enzyme or with a >130-fold increased resistance to the potent inhibitor heparin. Insertion of an extra stage into the CSR cycle before the polymerase reaction allows its application to enzymes other than polymerases. We show that nucleoside diphosphate kinase and Taq polymerase can form such a cooperative CSR cycle based on reciprocal catalysis, whereby nucleoside diphosphate kinase produces the substrates required for the replication of its own gene. We also find that in CSR the polymerase genes themselves evolve toward more efficient replication. Thus, polymerase genes and their encoded polypeptides cooperate to maximize postselection copy number. CSR should prove useful for the directed evolution of enzymes, particularly DNA or RNA polymerases, as well as for the design and study of in vitro self-replicating systems mimicking prebiotic evolution and viral replication.

  20. Directed evolution of DNA polymerase, RNA polymerase and reverse transcriptase activity in a single polypeptide.

    PubMed

    Ong, Jennifer L; Loakes, David; Jaroslawski, Szymon; Too, Kathleen; Holliger, Philipp

    2006-08-18

    DNA polymerases enable key technologies in modern biology but for many applications, native polymerases are limited by their stringent substrate recognition. Here we describe short-patch compartmentalized self-replication (spCSR), a novel strategy to expand the substrate spectrum of polymerases in a targeted way. spCSR is based on the previously described CSR, but unlike CSR only a short region (a "patch") of the gene under investigation is diversified and replicated. This allows the selection of polymerases under conditions where catalytic activity and processivity are compromised to the extent that full self-replication is inefficient. We targeted two specific motifs involved in substrate recognition in the active site of DNA polymerase I from Thermus aquaticus (Taq) and selected for incorporation of both ribonucleotide- (NTP) and deoxyribonucleotide-triphosphates (dNTPs) using spCSR. This allowed the isolation of multiple variants of Taq with apparent dual substrate specificity. They were able to synthesize RNA, while still retaining essentially wild-type (wt) DNA polymerase activity as judged by PCR. One such mutant (AA40: E602V, A608V, I614M, E615G) was able to incorporate both NTPs and dNTPs with the same catalytic efficiency as the wt enzyme incorporates dNTPs. AA40 allowed the generation of mixed RNA-DNA amplification products in PCR demonstrating DNA polymerase, RNA polymerase as well as reverse transcriptase activity within the same polypeptide. Furthermore, AA40 displayed an expanded substrate spectrum towards other 2'-substituted nucleotides and was able to synthesize nucleic acid polymers in which each base bore a different 2'-substituent. Our results suggest that spCSR will be a powerful strategy for the generation of polymerases with altered substrate specificity for applications in nano- and biotechnology and in the enzymatic synthesis of antisense and RNAi probes.

  1. Comprehensive Panel of Real-Time TaqMan™ Polymerase Chain Reaction Assays for Detection and Absolute Quantification of Filoviruses, Arenaviruses, and New World Hantaviruses

    PubMed Central

    Trombley, Adrienne R.; Wachter, Leslie; Garrison, Jeffrey; Buckley-Beason, Valerie A.; Jahrling, Jordan; Hensley, Lisa E.; Schoepp, Randal J.; Norwood, David A.; Goba, Augustine; Fair, Joseph N.; Kulesh, David A.

    2010-01-01

    Viral hemorrhagic fever is caused by a diverse group of single-stranded, negative-sense or positive-sense RNA viruses belonging to the families Filoviridae (Ebola and Marburg), Arenaviridae (Lassa, Junin, Machupo, Sabia, and Guanarito), and Bunyaviridae (hantavirus). Disease characteristics in these families mark each with the potential to be used as a biological threat agent. Because other diseases have similar clinical symptoms, specific laboratory diagnostic tests are necessary to provide the differential diagnosis during outbreaks and for instituting acceptable quarantine procedures. We designed 48 TaqMan™-based polymerase chain reaction (PCR) assays for specific and absolute quantitative detection of multiple hemorrhagic fever viruses. Forty-six assays were determined to be virus-specific, and two were designated as pan assays for Marburg virus. The limit of detection for the assays ranged from 10 to 0.001 plaque-forming units (PFU)/PCR. Although these real-time hemorrhagic fever virus assays are qualitative (presence of target), they are also quantitative (measure a single DNA/RNA target sequence in an unknown sample and express the final results as an absolute value (e.g., viral load, PFUs, or copies/mL) on the basis of concentration of standard samples and can be used in viral load, vaccine, and antiviral drug studies. PMID:20439981

  2. Quantum dots for a high-throughput Pfu polymerase based multi-round polymerase chain reaction (PCR).

    PubMed

    Sang, Fuming; Zhang, Zhizhou; Yuan, Lin; Liu, Deli

    2018-02-26

    Multi-round PCR is an important technique for obtaining enough target DNA from rare DNA resources, and is commonly used in many fields including forensic science, ancient DNA analysis and cancer research. However, multi-round PCR is often aborted, largely due to the accumulation of non-specific amplification during repeated amplifications. Here, we developed a Pfu polymerase based multi-round PCR technique assisted by quantum dots (QDs). Different PCR assays, DNA polymerases (Pfu and Taq), DNA sizes and GC amounts were compared in this study. In the presence of QDs, PCR specificity could be retained even in the ninth-round amplification. Moreover, the longer and more complex the targets were, the earlier the abortion happened in multi-round PCR. However, no obvious enhancement of specificity was found in multi-round PCR using Taq DNA polymerase. Significantly, the fidelity of Pfu polymerase based multi-round PCR was not sacrificed in the presence of QDs. Besides, pre-incubation at 50 °C for an hour had no impact on multi-round PCR performance, which further authenticated the hot start effect of QDs modulated in multi-round PCR. The findings of this study demonstrated that a cost-effective and promising multi-round PCR technique for large-scale and high-throughput sample analysis could be established with high specificity, sensibility and accuracy.

  3. Compartmentalized self-replication: a novel method for the directed evolution of polymerases and other enzymes.

    PubMed

    Ghadessy, Farid J; Holliger, Philipp

    2007-01-01

    Compartmentalized self-replication (CSR) is a novel method for the directed evolution of enzymes and, in particular, polymerases. In its simplest form, CSR consists of a simple feedback loop involving a polymerase that replicates only its own encoding gene (self-replication). Self-replication occurs in discrete, spatially separate, noncommunicating compartments formed by a heat-stable water-in-oil emulsion. Compartmentalization ensures the linkage of phenotype and genotype (i.e., it ensures that each polymerase replicates only its own encoding gene to the exclusion of those in the other compartments). As a result, adaptive gains by the polymerase directly (and proportionally) translate into genetic amplification of the encoding polymerase gene. CSR has proven to be a useful strategy for the directed evolution of polymerases directly from diverse repertoires of polymerase genes. In this chapter, we describe some of the CSR protocols used successfully to evolve variants of T. aquaticus Pol I (Taq) polymerase with novel and useful properties, such as increased thermostability or resistance to the potent inhibitor, heparin, from a repertoire of randomly mutated Taq polymerase genes.

  4. Quantitative Tetraplex Real-Time Polymerase Chain Reaction Assay with TaqMan Probes Discriminates Cattle, Buffalo, and Porcine Materials in Food Chain.

    PubMed

    Hossain, M A Motalib; Ali, Md Eaqub; Sultana, Sharmin; Asing; Bonny, Sharmin Quazi; Kader, Md Abdul; Rahman, M Aminur

    2017-05-17

    Cattle, buffalo, and porcine materials are widely adulterated, and their quantification might safeguard health, religious, economic, and social sanctity. Recently, conventional polymerase chain reaction (PCR) and PCR-restriction fragment length polymorphism (RFLP) assays have been documented but they are just suitable for identification, cannot quantify adulterations. We described here a quantitative tetraplex real-time PCR assay with TaqMan Probes to quantify contributions from cattle, buffalo, and porcine materials simultaneously. Amplicon-sizes were very short (106-, 90-, and 146-bp for cattle, buffalo, and porcine) because longer targets could be broken down, bringing serious ambiguity in molecular diagnostics. False negative detection was eliminated through an endogenous control (141-bp site of eukaryotic 18S rRNA). Analysis of 27 frankfurters and 27 meatballs reflected 84-115% target recovery at 0.1-10% adulterations. Finally, a test of 36 commercial products revealed 71% beef frankfurters, 100% meatballs, and 85% burgers contained buffalo adulteration, but no porcine was found in beef products.

  5. Engineering of DNA polymerase I from Thermus thermophilus using compartmentalized self-replication.

    PubMed

    Aye, Seaim Lwin; Fujiwara, Kei; Ueki, Asuka; Doi, Nobuhide

    2018-05-05

    Although compartmentalized self-replication (CSR) and compartmentalized partnered replication (CPR) are powerful tools for directed evolution of proteins and gene circuits, limitations remain in the emulsion PCR process with the wild-type Taq DNA polymerase used so far, including long run times, low amounts of product, and false negative results due to inhibitors. In this study, we developed a high-efficiency mutant of DNA polymerase I from Thermus thermophilus HB27 (Tth pol) suited for CSR and CPR. We modified the wild-type Tth pol by (i) deletion of the N-terminal 5' to 3' exonuclease domain, (ii) fusion with the DNA-binding protein Sso7d, (iii) introduction of four known effective point mutations from other DNA polymerase mutants, and (iv) codon optimization to reduce the GC content. Consequently, we obtained a mutant that provides higher product yields than the conventional Taq pol without decreased fidelity. Next, we performed four rounds of CSR selection with a randomly mutated library of this modified Tth pol and obtained mutants that provide higher product yields in fewer cycles of emulsion PCR than the parent Tth pol as well as the conventional Taq pol. Copyright © 2018 Elsevier Inc. All rights reserved.

  6. Detection and quantification of genetically modified organisms using very short, locked nucleic acid TaqMan probes.

    PubMed

    Salvi, Sergio; D'Orso, Fabio; Morelli, Giorgio

    2008-06-25

    Many countries have introduced mandatory labeling requirements on foods derived from genetically modified organisms (GMOs). Real-time quantitative polymerase chain reaction (PCR) based upon the TaqMan probe chemistry has become the method mostly used to support these regulations; moreover, event-specific PCR is the preferred method in GMO detection because of its high specificity based on the flanking sequence of the exogenous integrant. The aim of this study was to evaluate the use of very short (eight-nucleotide long), locked nucleic acid (LNA) TaqMan probes in 5'-nuclease PCR assays for the detection and quantification of GMOs. Classic TaqMan and LNA TaqMan probes were compared for the analysis of the maize MON810 transgene. The performance of the two types of probes was tested on the maize endogenous reference gene hmga, the CaMV 35S promoter, and the hsp70/cryIA(b) construct as well as for the event-specific 5'-integration junction of MON810, using plasmids as standard reference molecules. The results of our study demonstrate that the LNA 5'-nuclease PCR assays represent a valid and reliable analytical system for the detection and quantification of transgenes. Application of very short LNA TaqMan probes to GMO quantification can simplify the design of 5'-nuclease assays.

  7. Identification and quantification of three genetically modified insect resistant cotton lines using conventional and TaqMan real-time polymerase chain reaction methods.

    PubMed

    Yang, Litao; Pan, Aihu; Zhang, Kewei; Guo, Jinchao; Yin, Changsong; Chen, Jianxiu; Huang, Cheng; Zhang, Dabing

    2005-08-10

    As the genetically modified organisms (GMOs) labeling policies are issued in many countries, qualitative and quantitative polymerase chain reaction (PCR) techniques are increasingly used for the detection of genetically modified (GM) crops in foods. Qualitative PCR and TaqMan real-time quantitative PCR methods to detect and identify three varieties of insect resistant cotton, i.e., Mon531 cotton (Monsanto Co.) and GK19 and SGK321 cottons (Chinese Academy of Agricultural Sciences), which were approved for commercialization in China, were developed in this paper. Primer pairs specific to inserted DNAs, such as Cowpea trypsin inhibitor (CpTI) gene of SGK321 cotton and the specific junction DNA sequences containing partial Cry1A(c) gene and NOS terminator of Mon531, GK19, and SGK321 cotton varieties were designed to conduct the identified PCR assays. In conventional specific identified PCR assays, the limit of detection (LOD) was 0.05% for Mon531, GK19, or SGK321 in 100 ng of cotton genomic DNA for one reaction. Also, the multiplex PCR method for screening the three GM cottons was also established, which could save time and cost in practical detection. Furthermore, a real-time quantitative PCR assay based on TaqMan chemistry for detection of insect resistant gene, Cry1A(c), was developed. This assay also featured the use of a standard plasmid as a reference molecule, which contained both a specific region of the transgene Cry1A(c) and an endogenous stearoyl-acyl carrier protein desaturase (Sad1) gene of the cotton. In quantitative PCR assay, the quantification range was from 0.01 to 100% in 100 ng of the genome DNA template, and in the detection of 1.0, 3.0, and 5.0% levels of three insect resistant cotton lines, respectively, all of the relative standard deviations (RSDs) were less than 8.2% except for the GM cotton samples with 1.0% Mon531 or GK19, which meant that our real-time PCR assays involving the use of reference molecule were reliable and practical for GM

  8. Rapid diagnosis of sepsis with TaqMan-Based multiplex real-time PCR.

    PubMed

    Liu, Chang-Feng; Shi, Xin-Ping; Chen, Yun; Jin, Ye; Zhang, Bing

    2018-02-01

    The survival rate of septic patients mainly depends on a rapid and reliable diagnosis. A rapid, broad range, specific and sensitive quantitative diagnostic test is the urgent need. Thus, we developed a TaqMan-Based Multiplex real-time PCR assays to identify bloodstream pathogens within a few hours. Primers and TaqMan probes were designed to be complementary to conserved regions in the 16S rDNA gene of different kinds of bacteria. To evaluate accurately, sensitively, and specifically, the known bacteria samples (Standard strains, whole blood samples) are determined by TaqMan-Based Multiplex real-time PCR. In addition, 30 blood samples taken from patients with clinical symptoms of sepsis were tested by TaqMan-Based Multiplex real-time PCR and blood culture. The mean frequency of positive for Multiplex real-time PCR was 96% at a concentration of 100 CFU/mL, and it was 100% at a concentration greater than 1000 CFU/mL. All the known blood samples and Standard strains were detected positively by TaqMan-Based Multiplex PCR, no PCR products were detected when DNAs from other bacterium were used in the multiplex assay. Among the 30 patients with clinical symptoms of sepsis, 18 patients were confirmed positive by Multiplex real-time PCR and seven patients were confirmed positive by blood culture. TaqMan-Based Multiplex real-time PCR assay with highly sensitivity, specificity and broad detection range, is a rapid and accurate method in the detection of bacterial pathogens of sepsis and should have a promising usage in the diagnosis of sepsis. © 2017 Wiley Periodicals, Inc.

  9. A real-time TaqMan polymerase chain reaction for the identification of Culex vectors of West Nile and Saint Louis encephalitis viruses in North America.

    PubMed

    Sanogo, Yibayiri O; Kim, Chang-Hyun; Lampman, Richard; Novak, Robert J

    2007-07-01

    In North America, West Nile and St. Louis encephalitis viruses have been detected in a wide range of vector species, but the majority of isolations continue to be from pools of mixed mosquitoes in the Culex subgenus Culex. Unfortunately, the morphologic identification of these important disease vectors is often difficult, particularly in regions of sympatry. We developed a sensitive real-time TaqMan polymerase chain reaction assay that allows reliable identification of Culex mosquitoes including Culex pipiens pipiens, Cx. p. quinquefasciatus, Cx. restuans, Cx. salinarius, Cx. nigripalpus, and Cx. tarsalis. Primers and fluorogenic probes specific to each species were designed based on sequences of the acetylcholinesterase gene (Ace2). Both immature and adult mosquitoes were successfully identified as individuals and as mixed species pools. This identification technique provides the basis for a rapid, sensitive, and high-throughput method for expounding the species-specific contribution of vectors to various phases of arbovirus transmission.

  10. APOE and CETP TaqIB polymorphisms influence metabolic responses to Hibiscus sabdariffa L. and Gynostemma pentaphyllum Makino tea consumption in hypercholesterolemic subjects.

    PubMed

    Jeenduang, Nutjaree; Sangkaew, Boonnisa; Chantaracha, Pacharee; Chanchareonsri, Sirada; Plyduang, Thunyaluk; Thitdee, Wanida; Samae, Cathaleeya; Pitumanon, Wacharaporn

    2017-03-01

    Hibiscus sabdariffa L. (HS) and Gynostemma pentaphyllum Makino (GP) have been used as traditional medicines to treat diabetes and hypercholesterolemia. Nevertheless, there is interindividual variation in the metabolic responses to HS and GP consumption. This may be due to genetic factors. The aim of this study was to investigate the effects of HS and GP tea consumption on anthropometric data, fasting blood glucose (FBG), and lipid concentrations in hypercholesterolemia subjects with different genotypes of the APOE and CETP TaqIB polymorphisms. Forty-eight subjects with hypercholesterolemia were given either HS or GP tea for 30 days. Anthropometric and biochemical variables were determined, and APOE and CETP TaqIB polymorphisms were analyzed using the polymerase chain reaction- restriction fragment length polymorphism (PCR-RFLP). E4 (p=0.008) and homozygous B1B1 (p=0.010) carriers had significantly decreased HDL-C concentrations after HS consumption; in addition, B2 carriers who consumed HS showed significantly decreased triglyceride (TG) concentrations (p=0.039). Regarding GP consumption, non-E4 carriers had significantly decreased HDL-C (p=0.009) and FBG (p=0.042) concentrations. Furthermore, B2 carriers had significantly decreased total cholesterol (TC) (p=0.045), HDL-C (p=0.004), and FBG (p=0.026) concentrations. HS consumption may have beneficial effects with respect to TG concentrations in the B2 carriers, but it may adversely affect HDL-C concentrations in homozygous B1B1 and E4 carriers. In contrast, GP consumption may have favorable effects on TC and FBG concentrations but not on HDL-C concentrations for B2 and/or non-E4 carriers.

  11. A TaqMan-based real-time PCR assay for porcine parvovirus 4 detection and quantification in reproductive tissues of sows

    USDA-ARS?s Scientific Manuscript database

    Porcine parvovirus 4 (PPV4) is a DNA virus, and a member of the Parvoviridae family within the Bocavirus genera. It was recently detected in swine, but its epidemiology and pathology remain unclear. A TaqMan-based real-time polymerase chain reaction (qPCR) assay targeting a conserved region of the O...

  12. A sensitive and high throughput TaqMan-based reverse transcription quantitative polymerase chain reaction assay efficiently discriminates ALK rearrangement from overexpression for lung cancer FFPE specimens.

    PubMed

    Lung, Jrhau; Lin, Yu-Ching; Hung, Ming-Szu; Jiang, Yuan Yuan; Lee, Kuan-Der; Lin, Paul Yann; Tsai, Ying Huang

    2016-04-01

    ALK fusion gene is an oncogenic driver in lung cancer with low prevalence, which can be ameliorated by crizotinib. Currently, ALK fusion gene can be diagnosed by fluorescence in situ hybridization (FISH) and immunohistochemistry (IHC), but inconstistnt results between the two methods are encountered regularly. To make the ALK fusion gene screening more efficient and to provide a simple solution to clarify the discrepancy between FISH and IHC results, a sensitive TaqMan-based reverse transcription quantitative polymerase chain reaction (RT-qPCR) assay was established. The 3-plex TaqMan-based RT-qPCR assay was established and performed on 102 archived formalin-fixed, paraffin-embedded (FFPE) NSCLC samples to detect ALK rearrangement and overexpression. Break-apart FISH and automatic immunohistochemistry based ALK assays were performed side by side using tissue microarray. The RT-qPCR was performed successfully for 80 samples and 10 of them showed positive signals. Three out of the 10 qPCR positive cases were further confirmed by FISH and IHC test. Two others were IHC positive and FISH negative, and expressed full-length ALK transcript. The rest were neither FISH nor IHC positive and their ALK expression level was significantly lower than those FISH or IHC positive cases. Our RT-qPCR assay demonstrates that the capability and reliability of ALK detection is comparable to FISH and IHC, but it is more effective at discriminating ALK rearrangement from overexpression. The RT-qPCR assay easily clarifies the discrepancy between FISH and IHC, and can be incorporated into routine ALK screening for lung cancer. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  13. Comparative evaluation of new TaqMan real-time assays for the detection of hepatitis A virus.

    PubMed

    Houde, Alain; Guévremont, Evelyne; Poitras, Elyse; Leblanc, Danielle; Ward, Pierre; Simard, Carole; Trottier, Yvon-Louis

    2007-03-01

    Three novel real-time TaqMan RT-PCR assays targeting the 5'-UTR, the viral protease and the viral polymerase regions of the hepatitis A virus (HAV) were developed, evaluated and compared against a new published 5'-UTR TaqMan assay (JN) and a widely used conventional RT-PCR assay (HAVc). All conventional RT-PCR (HAV, SH-Prot and SH-Poly systems) and TaqMan (SH-Prot, SH-Poly, JN and SH-5U systems) assays evaluated were consistent for the detection of the three different HAV strains (HM-175, HAS-15 and LSH/S) used and reproducible for both RNA duplicates with the exception of two reproducibility discrepancies observed with both 5'-UTR real-time systems (JN and SH-5U). Limits of detection for conventional HAV, SH-Prot and SH-Poly RT-PCR systems were found to be equivalent when tested with serially diluted suspensions of the HM-175 strain. Although the four real-time RT-PCR TaqMan assays evaluated herein produced similar and consistent quantification data down to the level of one genomic equivalent copy with their respectively cloned amplicons, significant and important differences were observed for the detection of HAV genomic RNA. Results showed that the new real-time TaqMan SH-Poly and SH-Prot primer and probe systems were more consistent and sensitive by 5 logs as compared to both 5'-UTR designs (JN and SH-5U) used for the detection of HAV genomic RNA as well as for the detection in cell culture by cytopathic effect. Considering their higher analytical sensitivity, the proposed SH-Poly and SH-Prot amplification systems could therefore represent valuable tools for the detection of HAV in clinical, environmental and food samples.

  14. Identification and quantification of genetically modified Moonshade carnation lines using conventional and TaqMan real-time polymerase chain reaction methods.

    PubMed

    Li, Peng; Jia, Junwei; Bai, Lan; Pan, Aihu; Tang, Xueming

    2013-07-01

    Genetically modified carnation (Dianthus caryophyllus L.) Moonshade was approved for planting and commercialization in several countries from 2004. Developing methods for analyzing Moonshade is necessary for implementing genetically modified organism labeling regulations. In this study, the 5'-transgene integration sequence was isolated using thermal asymmetric interlaced (TAIL)-PCR. Based upon the 5'-transgene integration sequence, conventional and TaqMan real-time PCR assays were established. The relative limit of detection for the conventional PCR assay was 0.05 % for Moonshade using 100 ng total carnation genomic DNA, corresponding to approximately 79 copies of the carnation haploid genome, and the limits of detection and quantification of the TaqMan real-time PCR assay were estimated to be 51 and 254 copies of haploid carnation genomic DNA, respectively. These results are useful for identifying and quantifying Moonshade and its derivatives.

  15. TaqMan probe real-time polymerase chain reaction assay for the quantification of canine DNA in chicken nugget.

    PubMed

    Rahman, Md Mahfujur; Hamid, Sharifah Bee Abd; Basirun, Wan Jefrey; Bhassu, Subha; Rashid, Nur Raifana Abdul; Mustafa, Shuhaimi; Mohd Desa, Mohd Nasir; Ali, Md Eaqub

    2016-01-01

    This paper describes a short-amplicon-based TaqMan probe quantitative real-time PCR (qPCR) assay for the quantitative detection of canine meat in chicken nuggets, which are very popular across the world, including Malaysia. The assay targeted a 100-bp fragment of canine cytb gene using a canine-specific primer and TaqMan probe. Specificity against 10 different animals and plants species demonstrated threshold cycles (Ct) of 16.13 ± 0.12 to 16.25 ± 0.23 for canine DNA and negative results for the others in a 40-cycle reaction. The assay was tested for the quantification of up to 0.01% canine meat in deliberately spiked chicken nuggets with 99.7% PCR efficiency and 0.995 correlation coefficient. The analysis of the actual and qPCR predicted values showed a high recovery rate (from 87% ± 28% to 112% ± 19%) with a linear regression close to unity (R(2) = 0.999). Finally, samples of three halal-branded commercial chicken nuggets collected from different Malaysian outlets were screened for canine meat, but no contamination was demonstrated.

  16. Specific and straightforward molecular investigation of β-thalassemia mutations in the Malaysian Malays and Chinese using direct TaqMan genotyping assays.

    PubMed

    Kho, S L; Chua, K H; George, E; Tan, J A M A

    2013-07-15

    Beta-thalassemia is a life-threatening inherited blood disorder. Rapid characterization of β-globin gene mutations is necessary because of the high frequency of Malaysian β-thalassemia carriers. A combination real-time polymerase chain reaction genotyping assay using TaqMan probes was developed to confirm β-globin gene mutations. In this study, primers and probes were designed to specifically identify 8 common β-thalassemia mutations in the Malaysian Malay and Chinese ethnic groups using the Primer Express software. "Blind tests" using DNA samples from healthy individuals and β-thalassemia patients with different genotypes were performed to determine the specificity and sensitivity of this newly designed assay. Our results showed 100% sensitivity and specificity for this novel assay. In conclusion, the TaqMan genotyping assay is a straightforward assay that allows detection of β-globin gene mutations in less than 40 min. The simplicity and reproducibility of the TaqMan genotyping assay permit its use in laboratories as a rapid and cost-effective diagnostic tool for confirmation of common β-thalassemia mutations in Malaysia.

  17. Detection of viable Salmonella in ice cream by TaqMan real-time polymerase chain reaction assay combining propidium monoazide.

    PubMed

    Wang, Yuexia; Yang, Ming; Liu, Shuchun; Chen, Wanyi; Suo, Biao

    2015-09-01

    Real-time polymerase chain reaction (PCR) allows rapid detection of Salmonella in frozen dairy products, but it might cause a false positive detection result because it might amplify DNA from dead target cells as well. In this study, Salmonella-free frozen ice cream was initially inoculated with heat-killed Salmonella Typhimurium cells and stored at -18°C. Bacterial DNA extracted from the sample was amplified using TaqMan probe-based real-time PCR targeting the invA gene. Our results indicated that DNA from the dead cells remained stable in frozen ice cream for at least 20 days, and could produce fluorescence signal for real-time PCR as well. To overcome this limitation, propidium monoazide (PMA) was combined with real-time PCR. PMA treatment can effectively prevent PCR amplification from heat-killed Salmonella cells in frozen ice cream. The PMA real-time PCR assay can selectively detect viable Salmonella at as low as 10 3  CFU/mL. Combining 18 hours of pre-enrichment with the assay allows for the detection of viable Salmonella at 10 0  CFU/mL and avoiding the false-positive result of dead cells. The PMA real-time PCR assay provides an alternative specifically for detection of viable Salmonella in ice cream. However, when the PMA real-time PCR assay was evaluated in ice cream subjected to frozen storage, it obviously underestimated the contamination situation of viable Salmonella, which might lead to a false negative result. According to this result, the use of enrichment prior to PMA real-time PCR analysis remains as the more appropriate approach. Copyright © 2015. Published by Elsevier B.V.

  18. Concordance of HIV-1 RNA Values by Amplicor and TaqMan 2.0 in Patients With Confirmed Suppression in Clinical Trials

    PubMed Central

    Garner, Will; White, Kirsten; Szwarcberg, Javier; McCallister, Scott; Zhong, Lijie; Wulfsohn, Mike

    2016-01-01

    Background. The COBAS AMPLICOR HIV-1 MONITOR Test, version 1.5 (Amplicor) has been replaced with the COBAS AmpliPrep/COBAS TaqMan HIV-1 Test, version 2.0 (TaqMan 2.0), a real-time polymerase chain reaction human immunodeficiency virus type 1 (HIV-1) assay with higher sensitivity and broader dynamic range. HIV-1 RNA values at the 50 copies/mL cutoff drive major patient management decisions and clinical study outcomes. Methods. A total of 2217 samples were collected from 1922 HIV-1–infected subjects taking antiretroviral therapy for at least 48 weeks and had at least 2 consecutive samples with HIV-1 RNA <50 copies/mL by Amplicor from 7 recent clinical trials. HIV-1 RNA results were obtained from the Amplicor and TaqMan 2.0 assays in parallel by a reference laboratory. Results. The overall concordance between assay results was 96% at the cutoff of 50 copies/mL. However, statistically significant discordance at the 50 copies/mL cutoff was found between the assays for 3.9% of samples (n = 87). By TaqMan 2.0, virologic failure defined as HIV-1 RNA ≥50 copies/mL was reported for 2.8% more samples than Amplicor. Of these 87 samples, 68 samples fell within the predicted range of assay variability. Retesting of HIV-1 RNA by TaqMan 2.0 confirmed the discordance in only 28 of the 87 samples. Conclusions. The TaqMan 2.0 assay reports fewer subjects below the clinical endpoint of HIV-1 RNA <50 copies/mL in HIV clinical trials than the Amplicor assay. This difference must be considered when assessing disease progression, designing clinical trials, and comparisons with historical trials that used the Amplicor assay. PMID:26689956

  19. TaqMan real-time polymerase chain reaction for detection of Ophidiomyces ophiodiicola, the fungus associated with snake fungal disease.

    PubMed

    Bohuski, Elizabeth; Lorch, Jeffrey M; Griffin, Kathryn M; Blehert, David S

    2015-04-15

    Fungal skin infections associated with Ophidiomyces ophiodiicola, a member of the Chrysosporium anamorph of Nannizziopsis vriesii (CANV) complex, have been linked to an increasing number of cases of snake fungal disease (SFD) in captive snakes around the world and in wild snake populations in eastern North America. The emergence of SFD in both captive and wild situations has led to an increased need for tools to better diagnose and study the disease. We developed two TaqMan real-time polymerase chain reaction (PCR) assays to rapidly detect O. ophiodiicola in clinical samples. One assay targets the internal transcribed spacer region (ITS) of the fungal genome while the other targets the more variable intergenic spacer region (IGS). The PCR assays were qualified using skin samples collected from 50 snakes for which O. ophiodiicola had been previously detected by culture, 20 snakes with gross skin lesions suggestive of SFD but which were culture-negative for O. ophiodiicola, and 16 snakes with no clinical signs of infection. Both assays performed equivalently and proved to be more sensitive than traditional culture methods, detecting O. ophiodiicola in 98% of the culture-positive samples and in 40% of the culture-negative snakes that had clinical signs of SFD. In addition, the assays did not cross-react with a panel of 28 fungal species that are closely related to O. ophiodiicola or that commonly occur on the skin of snakes. The assays did, however, indicate that some asymptomatic snakes (~6%) may harbor low levels of the fungus, and that PCR should be paired with histology when a definitive diagnosis is required. These assays represent the first published methods to detect O. ophiodiicola by real-time PCR. The ITS assay has great utility for assisting with SFD diagnoses whereas the IGS assay offers a valuable tool for research-based applications.

  20. Bat white-nose syndrome: a real-time TaqMan polymerase chain reaction test targeting the intergenic spacer region of Geomyces destructanstructans.

    USGS Publications Warehouse

    Muller, Laura K.; Lorch, Jeffrey M.; Lindner, Daniel L.; O'Connor, Michael; Gargas, Andrea; Blehert, David S.

    2013-01-01

    The fungus Geomyces destructans is the causative agent of white-nose syndrome (WNS), a disease that has killed millions of North American hibernating bats. We describe a real-time TaqMan PCR test that detects DNA from G. destructans by targeting a portion of the multicopy intergenic spacer region of the rRNA gene complex. The test is highly sensitive, consistently detecting as little as 3.3 fg of genomic DNA from G. destructans. The real-time PCR test specifically amplified genomic DNA from G. destructans but did not amplify target sequence from 54 closely related fungal isolates (including 43 Geomyces spp. isolates) associated with bats. The test was further qualified by analyzing DNA extracted from 91 bat wing skin samples, and PCR results matched histopathology findings. These data indicate the real-time TaqMan PCR method described herein is a sensitive, specific, and rapid test to detect DNA from G. destructans and provides a valuable tool for WNS diagnostics and research.

  1. Detection of KIT Genotype in Pigs by TaqMan MGB Real-Time Quantitative Polymerase Chain Reaction.

    PubMed

    Li, Xiuxiu; Li, Xiaoning; Luo, Rongrong; Wang, Wenwen; Wang, Tao; Tang, Hui

    2018-05-01

    The dominant white phenotype in domestic pigs is caused by two mutations in the KIT gene: a 450 kb duplication containing the entire KIT gene together with flanking sequences and one splice mutation with a G:A substitution in intron 17. The purpose of this study was to establish a simple, rapid method to determine KIT genotype in pigs. First, to detect KIT copy number variation (CNV), primers for exon 2 of the KIT gene, along with a TaqMan minor groove binder (MGB) probe, were designed. The single-copy gene, estrogen receptor (ESR), was used as an internal control. A real-time fluorescence-based quantitative PCR (FQ-PCR) protocol was developed to accurately detect KIT CNVs. Second, to detect the splice mutation ratio of the G:A substitution in intron 17, a 175 bp region, including the target mutation, was amplified from genomic DNA. Based on the sequence of the resulting amplified fragment, an MGB probe set was designed to detect the ratio of splice mutation to normal using FQ-PCR. A series of parallel amplification curves with the same internal distances were obtained using gradually diluted DNA as templates. The CT values among dilutions were significantly different (p < 0.001) and the coefficients of variation from each dilution were low (from 0.13% to 0.26%). The amplification efficiencies for KIT and ESR were approximately equal, indicating ESR was an appropriate control gene. Furthermore, use of the MGB probe set resulted in detection of the target mutation at a high resolution and stability; standard curves illustrated that the amplification efficiencies of KIT1 (G) and KIT2 (A) were approximately equal (98.8% and 97.2%). In conclusion, a simple, rapid method, with high specificity and stability, for the detection of the KIT genotype in pigs was established using TaqMan MGB probe real-time quantitative PCR.

  2. Evolving a polymerase for hydrophobic base analogues.

    PubMed

    Loakes, David; Gallego, José; Pinheiro, Vitor B; Kool, Eric T; Holliger, Philipp

    2009-10-21

    Hydrophobic base analogues (HBAs) have shown great promise for the expansion of the chemical and coding potential of nucleic acids but are generally poor polymerase substrates. While extensive synthetic efforts have yielded examples of HBAs with favorable substrate properties, their discovery has remained challenging. Here we describe a complementary strategy for improving HBA substrate properties by directed evolution of a dedicated polymerase using compartmentalized self-replication (CSR) with the archetypal HBA 5-nitroindole (d5NI) and its derivative 5-nitroindole-3-carboxamide (d5NIC) as selection substrates. Starting from a repertoire of chimeric polymerases generated by molecular breeding of DNA polymerase genes from the genus Thermus, we isolated a polymerase (5D4) with a generically enhanced ability to utilize HBAs. The selected polymerase. 5D4 was able to form and extend d5NI and d5NIC (d5NI(C)) self-pairs as well as d5NI(C) heteropairs with all four bases with efficiencies approaching, or exceeding, those of the cognate Watson-Crick pairs, despite significant distortions caused by the intercalation of the d5NI(C) heterocycles into the opposing strand base stack, as shown by nuclear magnetic resonance spectroscopy (NMR). Unlike Taq polymerase, 5D4 was also able to extend HBA pairs such as Pyrene: varphi (abasic site), d5NI: varphi, and isocarbostyril (ICS): 7-azaindole (7AI), allowed bypass of a chemically diverse spectrum of HBAs, and enabled PCR amplification with primers comprising multiple d5NI(C)-substitutions, while maintaining high levels of catalytic activity and fidelity. The selected polymerase 5D4 promises to expand the range of nucleobase analogues amenable to replication and should find numerous applications, including the synthesis and replication of nucleic acid polymers with expanded chemical and functional diversity.

  3. [A novel TaqMan® MGB probe for specifically detecting Streptococcus mutans].

    PubMed

    Zheng, Hui; Lin, Jiu-Xiang; DU, Ning; Chen, Feng

    2013-10-18

    To design a new TaqMan® MGB probe for improving the specificity of Streptococcus mutans's detection. We extracted six DNA samples from different streptococcal strains for PCR reaction. Conventional nested PCR and TaqMan® MGB real-time PCR were applied independently. The first round of nested PCR was carried out with the bacterial universal primers, while a second PCR was conducted by using primers specific for the 16S rRNA gene of Streptococcus mutans. The TaqMan® MGB probe for Streptococcus mutans was designed from sequence analyses, and the primers were the same as nested PCR. Streptococcus mutans DNA with 2.5 mg/L was sequentially diluted at 5-fold intervals to 0.16 μg/L. Standard DNA samples were used to generate standard curves by TaqMan® MGB real-time PCR. In the nested PCR, the primers specific for Streptococcus mutans also detected Streptococcus gordonii with visible band of 282 bp, giving false-positive results. In the TaqMan® MGB real-time PCR reaction, only Streptococcus mutans was detected. The detection limitation of TaqMan® MGB real-time PCR for Streptococcus mutans 16S rRNA gene was 20 μg/L. We designed a new TaqMan® MGB probe, and successfully set up a PCR based method for detecting oral Streptococcus mutans. TaqMan® MGB real-time PCR is a both specific and sensitive bacterial detection method.

  4. Development of a real-time TaqMan assay to detect mendocina sublineage Pseudomonas species in contaminated metalworking fluids.

    PubMed

    Saha, Ratul; Donofrio, Robert S; Bagley, Susan T

    2010-08-01

    A TaqMan quantitative real-time polymerase chain reaction (qPCR) assay was developed for the detection and enumeration of three Pseudomonas species belonging to the mendocina sublineage (P. oleovorans, P. pseudoalcaligenes, and P. oleovorans subsp. lubricantis) found in contaminated metalworking fluids (MWFs). These microbes are the primary colonizers and serve as indicator organisms of biodegradation of used MWFs. Molecular techniques such as qPCR are preferred for the detection of these microbes since they grow poorly on typical growth media such as R2A agar and Pseudomonas isolation agar (PIA). Traditional culturing techniques not only underestimate the actual distribution of these bacteria but are also time-consuming. The primer-probe pair developed from gyrase B (gyrB) sequences of the targeted bacteria was highly sensitive and specific for the three species. qPCR was performed with both whole cell and genomic DNA to confirm the specificity and sensitivity of the assay. The sensitivity of the assay was 10(1) colony forming units (CFU)/ml for whole cell and 13.7 fg with genomic DNA. The primer-probe pair was successful in determining concentrations from used MWF samples, indicating levels between 2.9 x 10(3) and 3.9 x 10(6) CFU/ml. In contrast, the total count of Pseudomonas sp. recovered on PIA was in the range of <1.0 x 10(1) to 1.4 x 10(5) CFU/ml for the same samples. Based on these results from the qPCR assay, the designed TaqMan primer-probe pair can be efficiently used for rapid (within 2 h) determination of the distribution of these species of Pseudomonas in contaminated MWFs.

  5. Bat white-nose syndrome: A real-time TaqMan polymerase chain reaction test targeting the intergenic spacer region of Geomyces destructans

    Treesearch

    Laura K Muller; Jeffrey M. Lorch; Daniel L. Lindner; Michael O' Connor; Andrea Gargas; David S. Blehert

    2013-01-01

    The fungus Geomyces destructans is the causative agent of white-nose syndrome (WNS), a disease that has killed millions of North American hibernating bats. We describe a real-time TaqMan PCR test that detects DNA from G. destructans by targeting a portion of the multicopy intergenic spacer region of the rRNA gene complex. The...

  6. Association of vitamin D receptor gene polymorphism (TaqI and Apa1) with bone mineral density in North Indian postmenopausal women.

    PubMed

    Ahmad, Israr; Jafar, Tabrez; Mahdi, Farzana; Ameta, Keerti; Arshad, Md; Das, Siddharth Kumar; Waliullah, Shah; Rizvi, Imran; Mahdi, Abbas Ali

    2018-06-15

    Vitamin D receptor (VDR) gene has an important role as a candidate gene for the regulation of bone mass in osteoporosis. However, its association with bone mineral density (BMD) is controversial and has not been established in different ethnic populations. To enhance the understanding of VDR gene polymorphism in the context of BMD, we investigated the plausible genetic association of TaqI and ApaI polymorphism with BMD in North Indian postmenopausal women with osteoporosis.254 osteoporotic women (Age 55.82 ± 6.91) and 254 postmenopausal non osteoporotic women (Age 54.76 ± 6.26) were included in the study. VDR TaqI and ApaI polymorphism were determined by PCR (polymerase chain reaction) and RFLP (restriction fragment length polymorphism). BMD was assessed by dual energy X-ray absorptiometry (DXA) at the lumbar spine (L 1 -L 4 ), hip, forearm and femoral neck. The average BMD with TT genotype was significantly lower at lumbar spine, hip and forearm. The Frequency of TT genotype and t allele was significantly high in osteoporotic women when compared with controls. The average BMD with Aa genotype was higher in ApaI. Furthermore, comparison of frequency distribution of genotype and allele for VDR ApaI between osteoporotic patients and controls did not show any significant difference. Our findings revealed that TaqI gene TT genotype was associated with low BMD in North Indian osteoporotic women. Moreover, TT genotype and t allele associated significantly with osteoporosis in postmenopausal women. Therefore, VDR TaqI gene is an important determinant of risk factor for osteoporosis. Copyright © 2018 Elsevier B.V. All rights reserved.

  7. Comparison of Versant HBV DNA 3.0 and COBAS AmpliPrep-COBAS TaqMan assays for hepatitis B DNA quantitation: Possible clinical implications.

    PubMed

    Garbuglia, A R; Angeletti, C; Lauria, F N; Zaccaro, P; Cocca, A M; Pisciotta, M; Solmone, M; Capobianchi, M R

    2007-12-01

    We compared two commercial assays for HBV DNA quantitation, Versant HBV 3.0, System 340 (bDNA; Bayer Diagnostics) and COBAS AmpliPrep-COBAS TaqMan HBV Test (TaqMan; Roche Diagnostics). Analytical sensitivity, calculated on WHO International Standard, predicted 95% detection rate at 11.4 and 520.2IU/ml for TaqMan and bDNA, respectively. Specificity, established on 50 blood donor samples, was 100% and 84% for TaqMan and bDNA, respectively. When using clinical samples, HBV DNA was detected by TaqMan in 21/55 samples negative to bDNA. Mean values of HBV DNA obtained with bDNA were higher than those obtained with TaqMan (4.09log(10)+/-1.90 versus 3.39log(10)+/-2.41, p<0.001), and 24.4% of samples showed differences in viral load values >0.5log(10), without association with HBV genotype. There was a good correlation for HBV DNA concentrations measured by the two assays (r=0.94; p<0.001) within the overlapping range, and the distribution of results with respect to relevant clinical threshold recently confirmed (20,000 and 2000IU/ml) was similar. Approximately 50% of samples with low HBV DNA, appreciated by TaqMan but not by bDNA, were successfully sequenced in pol region, where drug resistance mutations are located.

  8. Vitamin D receptor gene Alw I, Fok I, Apa I, and Taq I polymorphisms in patients with urinary stone.

    PubMed

    Seo, Ill Young; Kang, In-Hong; Chae, Soo-Cheon; Park, Seung Chol; Lee, Young-Jin; Yang, Yun Sik; Ryu, Soo Bang; Rim, Joung Sik

    2010-04-01

    To evaluate vitamin D receptor (VDR) gene polymorphisms in Korean patients so as to identify the candidate genes associated with urinary stones. Urinary stones are a multifactorial disease that includes various genetic factors. A normal control group of 535 healthy subjects and 278 patients with urinary stones was evaluated. Of 125 patients who presented stone samples, 102 had calcium stones on chemical analysis. The VDR gene Alw I, Fok I, Apa I, and Taq I polymorphisms were evaluated using the polymerase chain reaction-restriction fragment length polymorphism analysis. Allelic and genotypic frequencies were calculated to identify associations in both groups. The haplotype frequencies of the VDR gene polymorphisms for multiple loci were also determined. For the VDR gene Alw I, Fok I, Apa I, and Taq I polymorphisms, there was no statistically significant difference between the patients with urinary stones and the healthy controls. There was also no statistically significant difference between the patients with calcium stones and the healthy controls. A novel haplotype (Ht 4; CTTT) was identified in 13.5% of the patients with urinary stones and in 8.3% of the controls (P = .001). The haplotype frequencies were significantly different between the patients with calcium stones and the controls (P = .004). The VDR gene Alw I, Fok I, Apa I, and Taq I polymorphisms does not seem to be candidate genetic markers for urinary stones in Korean patients. However, 1 novel haplotype of the VDR gene polymorphisms for multiple loci might be a candidate genetic marker. Copyright 2010 Elsevier Inc. All rights reserved.

  9. Engineering of a DNA Polymerase for Direct m6 A Sequencing.

    PubMed

    Aschenbrenner, Joos; Werner, Stephan; Marchand, Virginie; Adam, Martina; Motorin, Yuri; Helm, Mark; Marx, Andreas

    2018-01-08

    Methods for the detection of RNA modifications are of fundamental importance for advancing epitranscriptomics. N 6 -methyladenosine (m 6 A) is the most abundant RNA modification in mammalian mRNA and is involved in the regulation of gene expression. Current detection techniques are laborious and rely on antibody-based enrichment of m 6 A-containing RNA prior to sequencing, since m 6 A modifications are generally "erased" during reverse transcription (RT). To overcome the drawbacks associated with indirect detection, we aimed to generate novel DNA polymerase variants for direct m 6 A sequencing. Therefore, we developed a screen to evolve an RT-active KlenTaq DNA polymerase variant that sets a mark for N 6 -methylation. We identified a mutant that exhibits increased misincorporation opposite m 6 A compared to unmodified A. Application of the generated DNA polymerase in next-generation sequencing allowed the identification of m 6 A sites directly from the sequencing data of untreated RNA samples. © 2017 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.

  10. Polymerase/DNA interactions and enzymatic activity: multi-parameter analysis with electro-switchable biosurfaces

    NASA Astrophysics Data System (ADS)

    Langer, Andreas; Schräml, Michael; Strasser, Ralf; Daub, Herwin; Myers, Thomas; Heindl, Dieter; Rant, Ulrich

    2015-07-01

    The engineering of high-performance enzymes for future sequencing and PCR technologies as well as the development of many anticancer drugs requires a detailed analysis of DNA/RNA synthesis processes. However, due to the complex molecular interplay involved, real-time methodologies have not been available to obtain comprehensive information on both binding parameters and enzymatic activities. Here we introduce a chip-based method to investigate polymerases and their interactions with nucleic acids, which employs an electrical actuation of DNA templates on microelectrodes. Two measurement modes track both the dynamics of the induced switching process and the DNA extension simultaneously to quantitate binding kinetics, dissociation constants and thermodynamic energies. The high sensitivity of the method reveals previously unidentified tight binding states for Taq and Pol I (KF) DNA polymerases. Furthermore, the incorporation of label-free nucleotides can be followed in real-time and changes in the DNA polymerase conformation (finger closing) during enzymatic activity are observable.

  11. The development of a real-time reverse transcription-polymerase chain reaction (rRT-PCR) assay using TaqMan technology for the pan detection of bluetongue virus (BTV).

    PubMed

    Mulholland, Catherine; McMenamy, Michael J; Hoffmann, Bernd; Earley, Bernadette; Markey, Bryan; Cassidy, Joseph; Allan, Gordon; Welsh, Michael D; McKillen, John

    2017-07-01

    Bluetongue virus (BTV) is an infectious, non-contagious viral disease of domestic and wild ruminants that is transmitted by adult females of certain Culicoides species. Since 2006, several serotypes including BTV-1, 2, 4, 6, 8, 9 and 16, have spread from the Mediterranean basin into Northern Europe for the first time. BTV-8 in particular, caused a major epidemic in northern Europe. As a result, it is evident that most European countries are at risk of BTV infection. The objective of this study was to develop and validate a real-time reverse transcriptase-polymerase chain reaction (rRT-PCR) assay based on TaqMan technology for the detection of representative strains of all BTV serotypes. Primers and probes were based on genome segment 10 of the virus, the NS3 gene. The assay was tested for sensitivity, and specificity. The analytical sensitivity of the rRT-PCR assay was 200 copies of RNA per reaction. The assay did not amplify the closely related orbivirus epizootic hemorrhagic disease virus (EHDV) but successfully detected all BTV reference strains including clinical samples from animals experimentally infected with BTV-8. This real time RT-PCR assay offers a sensitive, specific and rapid alternative assay for the pan detection of BTV that could be used as part of a panel of diagnostic assays for the detection of all serotypes of BTV. Crown Copyright © 2017. Published by Elsevier B.V. All rights reserved.

  12. MeltMan: Optimization, Evaluation, and Universal Application of a qPCR System Integrating the TaqMan qPCR and Melting Analysis into a Single Assay

    PubMed Central

    Nagy, Alexander; Černíková, Lenka; Vitásková, Eliška; Křivda, Vlastimil; Dán, Ádám; Dirbáková, Zuzana; Jiřincová, Helena; Procházka, Bohumír; Sedlák, Kamil; Havlíčková, Martina

    2016-01-01

    In the present work, we optimised and evaluated a qPCR system integrating 6-FAM (6-carboxyfluorescein)-labelled TaqMan probes and melting analysis using the SYTO 82 (S82) DNA binding dye in a single reaction. We investigated the influence of the S82 on various TaqMan and melting analysis parameters and defined its optimal concentration. In the next step, the method was evaluated in 36 different TaqMan assays with a total of 729 paired reactions using various DNA and RNA templates, including field specimens. In addition, the melting profiles of interest were correlated with the electrophoretic patterns. We proved that the S82 is fully compatible with the FAM-TaqMan system. Further, the advantages of this approach in routine diagnostic TaqMan qPCR were illustrated with practical examples. These included solving problems with flat or other atypical amplification curves or even false negativity as a result of probe binding failure. Our data clearly show that the integration of the TaqMan qPCR and melting analysis into a single assay provides an additional control option as well as the opportunity to perform more complex analyses, get more data from the reactions, and obtain analysis results with higher confidence. PMID:27031831

  13. TaqMan DNA technology confirms likely overestimation of cod (Gadus morhua L.) egg abundance in the Irish Sea: implications for the assessment of the cod stock and mapping of spawning areas using egg-based methods.

    PubMed

    Fox, C J; Taylor, M I; Pereyra, R; Villasana, M I; Rico, C

    2005-03-01

    Recent substantial declines in northeastern Atlantic cod stocks necessitate improved biological knowledge and the development of techniques to complement standard stock assessment methods (which largely depend on accurate commercial catch data). In 2003, an ichthyoplankton survey was undertaken in the Irish Sea and subsamples of 'cod-like' eggs were analysed using a TaqMan multiplex, PCR (polymerase chain reaction) assay (with specific probes for cod, haddock and whiting). The TaqMan method was readily applied to the large number of samples (n = 2770) generated during the survey and when combined with a manual DNA extraction protocol had a low failure rate of 6%. Of the early stage 'cod-like' eggs (1.2-1.75 mm diameter) positively identified: 34% were cod, 8% haddock and 58% whiting. As previous stock estimates based on egg surveys for Irish Sea cod assumed that the majority of 'cod-like' eggs were from cod, the TaqMan results confirm that there was probably substantial contamination by eggs of whiting and haddock that would have inflated estimates of the stock biomass.

  14. Quantification of M13 and T7 bacteriophages by TaqMan and SYBR green qPCR.

    PubMed

    Peng, Xiujuan; Nguyen, Alex; Ghosh, Debadyuti

    2018-02-01

    TaqMan and SYBR Green quantitative PCR (qPCR) methods were developed as DNA-based approaches to reproducibly enumerate M13 and T7 phages from phage display selection experiments individually and simultaneously. The genome copies of M13 and T7 phages were quantified by TaqMan or SYBR Green qPCR referenced against M13 and T7 DNA standard curves of known concentrations. TaqMan qPCR was capable of quantifying M13 and T7 phage DNA simultaneously with a detection range of 2.75*10 1 -2.75*10 8 genome copies(gc)/μL and 2.66*10 1 -2.66*10 8 genome copies(gc)/μL respectively. TaqMan qPCR demonstrated an efficient amplification efficiency (E s ) of 0.97 and 0.90 for M13 and T7 phage DNA, respectively. SYBR Green qPCR was ten-fold more sensitive than TaqMan qPCR, able to quantify 2.75-2.75*10 7 gc/μL and 2.66*10 1 -2.66*10 7 gc/μL of M13 and T7 phage DNA, with an amplification efficiency E s of 1.06 and 0.78, respectively. Due to its superior sensitivity, SYBR Green qPCR was used to enumerate M13 and T7 phage display clones selected against a cell line, and quantified titers demonstrated accuracy comparable to titers from traditional double-layer plaque assay. Compared to enzyme linked immunosorbent assay, both qPCR methods exhibited increased detection sensitivity and reproducibility. These qPCR methods are reproducible, sensitive, and time-saving to determine their titers and to quantify a large number of phage samples individually or simultaneously, thus avoiding the need for time-intensive double-layer plaque assay. These findings highlight the attractiveness of qPCR for phage enumeration for applications ranging from selection to next-generation sequencing (NGS). Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Effects of aripiprazole and the Taq1A polymorphism in the dopamine D2 receptor gene on the clinical response and plasma monoamine metabolites level during the acute phase of schizophrenia.

    PubMed

    Miura, Itaru; Takeuchi, Satoshi; Katsumi, Akihiko; Mori, Azuma; Kanno, Keiko; Yang, Qiaohui; Mashiko, Hirobumi; Numata, Yoshihiko; Niwa, Shin-Ichi

    2012-02-01

    The Taq1A polymorphism in the dopamine D2 receptor (DRD2) gene could be related to the response to antipsychotics. We examined the effects of the Taq1A polymorphism on the plasma monoamine metabolites during the treatment of schizophrenia with aripiprazole, a DRD2 partial agonist. Thirty Japanese patients with schizophrenia were treated with aripiprazole for 6 weeks. We measured plasma levels of homovanillic acid (pHVA) and 3-methoxy-4hydroxyphenylglycol (pMHPG) before and after treatment. The Taq1A polymorphism was genotyped with polymerase chain reaction. Aripiprazole improved the acute symptoms of schizophrenia and decreased pHVA in responders (P = 0.023) but not in nonresponders (P = 0.28). Although A1 allele carriers showed a tendency to respond to aripiprazole (61.5%) compared to A1 allele noncarriers (29.4%) (P = 0.078), there was not statistically significant difference in the response between the 2 genotype groups. There were significant effect for response (P = 0.013) and genotype × response interaction (P = 0.043) on the change of pHVA. The changes of pHVA differ between responders and nonresponders in A1 allele carriers but not in A1 allele noncarriers. There were no genotype or response effects or genotype × response interaction on the changes of the plasma levels of 3-methoxy-4hydroxyphenylglycol. Our preliminary results suggest that Taq1A polymorphism may be partly associated with changes in pHVA during acute schizophrenia.

  16. Evaluation of sensitivity of TaqMan RT-PCR for rubella virus detection in clinical specimens.

    PubMed

    Okamoto, Kiyoko; Mori, Yoshio; Komagome, Rika; Nagano, Hideki; Miyoshi, Masahiro; Okano, Motohiko; Aoki, Yoko; Ogura, Atsushi; Hotta, Chiemi; Ogawa, Tomoko; Saikusa, Miwako; Kodama, Hiroe; Yasui, Yoshihiro; Minagawa, Hiroko; Kurata, Takako; Kanbayashi, Daiki; Kase, Tetsuo; Murata, Sachiko; Shirabe, Komei; Hamasaki, Mitsuhiro; Kato, Takashi; Otsuki, Noriyuki; Sakata, Masafumi; Komase, Katsuhiro; Takeda, Makoto

    2016-07-01

    An easy and reliable assay for detection of the rubella virus is required to strengthen rubella surveillance. Although a TaqMan RT-PCR assay for detection of the rubella virus has been established in Japan, its utility for diagnostic purposes has not been tested. To allow introduction of the TaqMan RT-PCR into the rubella surveillance system in Japan, the sensitivity of the assay was determined using representative strains for all genotypes and clinical specimens. The detection limits of the method for individual genotypes were examined using viral RNA extracted from 13 representative strains. The assay was also tested at 10 prefectural laboratories in Japan, designated as local reference laboratories for measles and rubella, to allow nationwide application of the assay. The detection limits and amplification efficiencies of the assay were similar among all the representative strains of the 13 genotypes. The TaqMan RT-PCR could detect approximately 90% of throat swab and urine samples taken up to 5days of illness. These samples were determined positive by a highly sensitive nested RT-PCR. The TaqMan RT-PCR could detect at least 10 pfu of rubella virus. Although the sensitivity was somewhat lower than that of the conventional nested RT-PCR, the TaqMan RT-PCR could be more practical to routine tests for rubella laboratory diagnosis and detection in view of the rapid response and reducing risks of contamination. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Development of polymerase chain reaction-based diagnostic tests for detection of Malsoor virus & adenovirus isolated from Rousettus species of bats in Maharashtra, India.

    PubMed

    Shete, Anita M; Yadav, Pragya; Kumar, Vimal; Nikam, Tushar; Mehershahi, Kurosh; Kokate, Prasad; Patil, Deepak; Mourya, Devendra T

    2017-01-01

    Bats are recognized as important reservoirs for emerging infectious disease and some unknown viral diseases. Two novel viruses, Malsoor virus (family Bunyaviridae, genus, Phlebovirus) and a novel adenovirus (AdV) (family, Adenoviridae genus, Mastadenovirus), were identified from Rousettus bats in the Maharashtra State of India. This study was done to develop and optimize real time reverse transcription - polymerase chain reaction (RT-PCR) assays for Malsoor virus and real time and nested PCR for adenovirus from Rousettus bats. For rapid and accurate screening of Malsoor virus and adenovirus a nested polymerase chain reaction and TaqMan-based real-time PCR were developed. Highly conserved region of nucleoprotein gene of phleboviruses and polymerase gene sequence from the Indian bat AdV isolate polyprotein gene were selected respectively for diagnostic assay development of Malsoor virus and AdV. Sensitivity and specificity of assays were calculated and optimized assays were used to screen bat samples. Molecular diagnostic assays were developed for screening of Malsoor virus and AdV and those were found to be specific. Based on the experiments performed with different parameters, nested PCR was found to be more sensitive than real-time PCR; however, for rapid screening, real-time PCR can be used and further nested PCR can be used for final confirmation or in those laboratories where real-time facility/expertise is not existing. This study reports the development and optimization of nested RT-PCR and a TaqMan-based real-time PCR for Malsoor virus and AdV. The diagnostic assays can be used for rapid detection of these novel viruses to understand their prevalence among bat population.

  18. A universal TaqMan-based RT-PCR protocol for cost-efficient detection of small noncoding RNA.

    PubMed

    Jung, Ulrike; Jiang, Xiaoou; Kaufmann, Stefan H E; Patzel, Volker

    2013-12-01

    Several methods for the detection of RNA have been developed over time. For small RNA detection, a stem-loop reverse primer-based protocol relying on TaqMan RT-PCR has been described. This protocol requires an individual specific TaqMan probe for each target RNA and, hence, is highly cost-intensive for experiments with small sample sizes or large numbers of different samples. We describe a universal TaqMan-based probe protocol which can be used to detect any target sequence and demonstrate its applicability for the detection of endogenous as well as artificial eukaryotic and bacterial small RNAs. While the specific and the universal probe-based protocol showed the same sensitivity, the absolute sensitivity of detection was found to be more than 100-fold lower for both than previously reported. In subsequent experiments, we found previously unknown limitations intrinsic to the method affecting its feasibility in determination of mature template RISC incorporation as well as in multiplexing. Both protocols were equally specific in discriminating between correct and incorrect small RNA targets or between mature miRNA and its unprocessed RNA precursor, indicating the stem-loop RT-primer, but not the TaqMan probe, triggers target specificity. The presented universal TaqMan-based RT-PCR protocol represents a cost-efficient method for the detection of small RNAs.

  19. Vitamin D Receptor TaqI Gene Variant in Exon 9 and Polycystic Ovary Syndrome Risk

    PubMed Central

    Bagheri, Morteza; Abdi Rad, Isa; Hosseini Jazani, Nima; Nanbakhsh, Fariba

    2013-01-01

    Background: Polycystic ovary syndrome (PCOS) is known as a metabolic disorder. The results of recent studies implied that vitamin D receptor (VDR) genetic variants may impact PCOS and insulin resistance in women with PCOS. The aim of the present study was to determine the VDR TaqI gene variant in exon 9 (T/C) (rs731236) in normal controls and patients with PCOS for the first time in Iranian Azeri women. Materials and Methods: In this case control study between April 2011 and June 2012, a total of 76 women aged 18-40 years (38 patients with PCOS and 38 healthy women as normal controls) participated. Genotypes of VDR TaqI in exon 9 (T/C) (rs731236) were determined using the PCR-RFLP method. Results: The frequencies of VDR TaqI T anc C alleles were 0.605 and 0.395 in cases and 0.697 and 0.303 in controls. Also, the genotypic frequencies of VDR TaqI were 16) (42.11), 14(36.84), and 8(21.05) in cases, and 17(44.74), 19(50), and 2(5.26) in controls for TT, TC and CC genotypes respectively. There was no difference in genotype and allele frequencies between PCOS and controls (p value>0.05) with the exception of the CC genotype (p value=0.04). Conclusion: This report, a first of its own kind in Iranian Azeri patients, suggests that the CC genotype of VDR TaqI in exon 9 (rs731236) is associated with PCOS. PMID:24520473

  20. Development and validation of a SYBR Green I-based real-time polymerase chain reaction method for detection of haptoglobin gene deletion in clinical materials.

    PubMed

    Soejima, Mikiko; Tsuchiya, Yuji; Egashira, Kouichi; Kawano, Hiroyuki; Sagawa, Kimitaka; Koda, Yoshiro

    2010-06-01

    Anhaptoglobinemic patients run the risk of severe anaphylactic transfusion reaction because they produce serum haptoglobin (Hp) antibodies. Being homozygous for the Hp gene deletion (HP(del)) is the only known cause of congenital anhaptoglobinemia, and clinical diagnosis of HP(del) before transfusion is important to prevent anaphylactic shock. We recently developed a 5'-nuclease (TaqMan) real-time polymerase chain reaction (PCR) method. A SYBR Green I-based duplex real-time PCR assay using two forward primers and a common reverse primer followed by melting curve analysis was developed to determine HP(del) zygosity in a single tube. In addition, to obviate initial DNA extraction, we examined serially diluted blood samples as PCR templates. Allelic discrimination of HP(del) yielded optimal results at blood sample dilutions of 1:64 to 1:1024. The results from 2231 blood samples were fully concordant with those obtained by the TaqMan-based real-time PCR method. The detection rate of the HP(del) allele by the SYBR Green I-based method is comparable with that using the TaqMan-based method. This method is readily applicable due to its low initial cost and analyzability using economical real-time PCR machines and is suitable for high-throughput analysis as an alternative method for allelic discrimination of HP(del).

  1. Diagnostic application of polymerase chain reaction for detection of Ehrlichia risticii in equine monocytic ehrlichiosis (Potomac horse fever).

    PubMed

    Biswas, B; Mukherjee, D; Mattingly-Napier, B L; Dutta, S K

    1991-10-01

    Genomic amplification by the polymerase chain reaction (PCR) was used to identify a unique genomic sequence of Ehrlichia risticii directly in DNA isolated from peripheral-blood buffy coat cells of E. risticii-infected horses (Potomac horse fever) and from infected cell cultures. A specific primer pair, selected from a cloned, species-specific, 1-kb DNA fragment of the E. risticii genome as a template, was used for the amplification of the target DNA of 247 bp. The optimal number of 40 PCR cycles, determined by analyzing an amplification profile obtained with a constant Taq polymerase concentration, was used to achieve maximum amplification of the E. risticii DNA segment. Efficient amplification of target DNA was achieved with specimens processed by either the phenol extraction or rapid lysis method. The specificity of the amplified DNA product was confirmed by the proper size (247 bp) and appropriate restriction enzyme cleavage pattern of the amplified target DNA, as well as by the specific hybridization signal obtained by using a PCR-amplified 185-bp internal DNA probe. A 10(5)- to 10(6)-fold amplification of target DNA, which allowed detection of E. risticii from as few as two to three infected cells in culture and from a very small volume of buffy coat cells from infected horses, was achieved. This PCR amplification procedure was found to be highly specific and sensitive for the detection of E. risticii for the study of Potomac horse fever.

  2. Quantification of measles, mumps and rubella viruses using real-time quantitative TaqMan-based RT-PCR assay.

    PubMed

    Ammour, Y; Faizuloev, E; Borisova, T; Nikonova, A; Dmitriev, G; Lobodanov, S; Zverev, V

    2013-01-01

    In this study, a rapid quantitative method using TaqMan-based real-time reverse transcription-polymerase chain reaction (qPCR-RT) has been developed for estimating the titers of measles, mumps and rubella (MMR) viruses in infected cell culture supernatants. The qPCR-RT assay was demonstrated to be a specific, sensitive, efficient and reproducible method. For MMR viral samples obtained during MMR viral propagations in Vero cells at a different multiplicity of infection, titers determined by the qPCR-RT assay have been compared with estimates of infectious virus obtained by a traditional commonly used method for MMR viruses - 50% cell culture infective dose (CCID(50)) assay, in paired samples. Pearson analysis evidenced a significant correlation between both methods for a certain period after viral inoculation. Furthermore, the established qPCR-RT assay was faster and less-laborious. The developed method could be used as an alternative method or a supplementary tool for the routine titer estimation during MMR vaccine production. Copyright © 2012 Elsevier B.V. All rights reserved.

  3. Association of dopamine receptor D2 gene (DRD2) Taq1 polymorphisms with eating behaviors and obesity among Chinese and Indian Malaysian university students.

    PubMed

    Lek, Fang-Ying; Ong, Hing-Huat; Say, Yee-How

    2018-01-01

    This study investigated the association of DRD2 Taq1A, Taq1B and Taq1D gene polymorphisms with eating behavior, the preference/intake frequency/craving of high-fat foods and obesity in 394 Malaysian adults (161 males, 233 females; 308 Chinese, 86 Indians; 67 obese, 327 non-obese). Eating behaviors namely Cognitive Restraint, Uncontrolled Eating and Emotional Eating scores were assessed by the Three Factor Eating Questionnaire-R18. The preference/intake frequency/craving of 26 common high-fat Malaysian foods was assessed using a 7-point hedonic scale. Anthropometric measurements were taken and Taq1 gene polymorphisms were genotyped by PCR-Restriction Fragment Length Polymorphism using DNA extracted from mouthwash samples. The overall minor allele frequencies of Taq1A, Taq1B and Taq1D according to ethnicities (Chinese/Indian) were 0.37/0.29, 0.39/0.28, 0.06/0.30, respectively; genotype and allele distributions of Taq1B and Taq1D were significantly different between ethnicities. Eating behaviorscores were not significantly different between gender and ethnicities. Those with A1 or B1 allele had lower Cognitive Restraint score and higher Uncontrolled Eating score, while those with A1/A1 or B1/B1 genotype had higher fast food preference. D1 allele was associated with increased starchy food craving and mamak (Malaysian Indian-Muslim) food preference, but not eating behavior scores. All three gene variants were not associated with obesity and adiposity. Taken together, we posit that three DRD2 Taq1 gene polymorphisms influence the eating behavior and preference/intake frequency/craving of certain high-fat foods in Malaysian adults, but their role in obesity and adiposity is still inconclusive and needs further investigation.

  4. A novel electrochemical biosensor based on dynamic polymerase-extending hybridization for E. coli O157:H7 DNA detection.

    PubMed

    Wang, Lijiang; Liu, Qingjun; Hu, Zhaoying; Zhang, Yuanfan; Wu, Chunsheng; Yang, Mo; Wang, Ping

    2009-05-15

    A novel biosensor based on single-stranded DNA (ssDNA) probe functionalized aluminum anodized oxide (AAO) nanopore membranes was demonstrated for Escherichia coli O157:H7 DNA detection. An original and dynamic polymerase-extending (PE) DNA hybridization procedure is proposed, where hybridization happens in the existence of Taq DNA polymerase and dNTPs under controlled reaction temperature. The probe strand would be extended as long as the target DNA strand, then the capability to block the ionic flow in the pores has been prominently enhanced by the double strand complex. We have investigated the variation of ionic conductivity during the fabrication of the film and the hybridization using cyclic voltammetry and impedance spectroscopy. The present approach provides low detection limit for DNA (a few hundreds of pmol), rapid label-free and easy-to-use bacteria detection, which holds the potential for future use in various ss-DNA analyses by integrated into a self-contained biochip.

  5. A TaqMan-PCR protocol for quantification and differentiation of the phytopathogenic Clavibacter michiganensis subspecies.

    PubMed

    Bach, H-J; Jessen, I; Schloter, M; Munch, J C

    2003-01-01

    Real-time TaqMan-PCR assays were developed for detection, differentiation and absolute quantification of the pathogenic subspecies of Clavibacter michiganensis (Cm) in one single PCR run. The designed primer pair, targeting intergenic sequences of the rRNA operon (ITS) common in all subspecies, was suitable for the amplification of the expected 223-nt DNA fragments of all subspecies. Closely related bacteria were completely discriminated, except of Rathayibacter iranicus, from which weak PCR product bands appeared on agarose gel after 35 PCR cycles. Sufficient specificity of PCR detection was reached by introduction of the additional subspecies specific probes used in TaqMan-PCR. Only Cm species were detected and there was clear differentiation among the subspecies C. michiganensis sepedonicus (Cms), C. michiganensis michiganensis (Cmm), C. michiganensis nebraskensis (Cmn), C. michiganensis insidiosus (Cmi) and C. michiganensis tessellarius (Cmt). The TaqMan assays were optimized to enable a simultaneous quantification of each subspecies. Validity is shown by comparison with cell counts.

  6. Identification of Atlantic salmon (Salmo salar) and rainbow trout (Oncorhynchus mykiss) by using polymerase chain reaction amplification and restriction analysis of the mitochondrial cytochrome b gene.

    PubMed

    Carrera, E; García, T; Céspedes, A; González, I; Sanz, B; Hernández, P E; Martín, R

    1998-04-01

    Restriction site analysis of polymerase chain reaction (PCR) products from a conserved region of the cytochrome b gene has been used for the identification of fresh and smoked samples of Atlantic salmon (Salmo salar) and rainbow trout (Oncorhynchus mykiss). Digestion of the 359-bp PCR product with the endonucleases EcoRV and TaqI yielded specific banding patterns for salmon and trout. This genetic marker can be very useful for detecting fraudulent substitution of the cheaper smoked trout for the more expensive smoked salmon.

  7. Evaluation of TaqMan qPCR System Integrating Two Identically Labelled Hydrolysis Probes in Single Assay

    PubMed Central

    Nagy, Alexander; Vitásková, Eliška; Černíková, Lenka; Křivda, Vlastimil; Jiřincová, Helena; Sedlák, Kamil; Horníčková, Jitka; Havlíčková, Martina

    2017-01-01

    Ongoing evolution of viral pathogens is a significant issue in diagnostic virology employing TaqMan qPCR/RT-qPCR. Specific concerns are related to false negativity due to probe binding failure. One option for compensating for such deficiency is to integrate a second identically labelled probe in the assay. However, how this alteration influences the reaction parameters has not been comprehensively demonstrated. In the present study, we evaluate a TaqMan protocol using two identically labelled hydrolysis probes (simple, LNA (locked-nucleic-acid)) and MGB (minor-groove-binder) modified probes and combinations thereof in a single assay. Our results based on a synthetic amplicon suggest that the second probe does not compromise the TaqMan qPCR/RT-qPCR parameters, which repeatedly and reproducibly remained comparable to those of the corresponding single-probe assays, irrespective of the relative probe orientation, whether opposite or tandem, and probe modifications or combinations thereof. On the other hand, the second probe additively contributed to the overall fluorescence signal. The utility of the dual-probe approach was demonstrated on practical examples by using field specimens. We hope that the present study might serve as a theoretical basis for the development or improvement of TaqMan qPCR/RT-qPCR assays for the detection of highly variable nucleic acid templates. PMID:28120891

  8. Development and validation of a real-time TaqMan assay for the detection and enumeration of Pseudomonas fluorescens ATCC 13525 used as a challenge organism in testing of food equipments.

    PubMed

    Saha, Ratul; Bestervelt, Lorelle L; Donofrio, Robert S

    2012-02-01

    Pseudomonas fluorescens ATCC 13525 is used as the challenge organism to evaluate the efficacy of the clean-in-place (CIP) process of food equipment (automatic ice-maker) as per NSF/ANSI Standard 12. Traditional culturing methodology is presently used to determine the concentration of the challenge organism, which takes 48 h to confirm the cell density. Storage of the challenge preparation in the refrigerator might alter the cell density as P. fluorescens is capable of growing at 4 °C. Also, background organism can grow on the Pseudomonas F agar (PFA) used for the recovery of P. fluorescens thus affecting the results of the test. Real-time TaqMan assay targeting the cpn60 gene was developed for the enumeration and the identification of P. fluorescens because of its specificity, accuracy, and shorter turnaround time. The TaqMan primer-probe pair developed using the Allele ID® 7.0 probe design software was highly specific and sensitive for the target organism. The sensitivity of the assay was 10 colony forming units (CFU)/mL. The assay was also successful in determining the concentration of the challenge preparation within 2 h. Based on these observations, TaqMan assay targeting the cpn60 gene can be efficiently used for strain level identification and enumeration of bacteria. Pseudomonas fluorescens ATCC 13525 is used as a challenge organism in the efficacy testing of clean-in-place process of food equipments. Currently, culturing technique is used for its identification and estimation, which is not only time-consuming but also prone to error. Real-time TaqMan assay is more specific, sensitive, and accurate along with a shorter turnaround time compared to culturing techniques, thereby increasing the overall quality of the testing methodology to evaluate the clean-in-place process critical for the food industry to protect public health and safety. © 2012 Institute of Food Technologists®

  9. Prediction of striatal D2 receptor binding by DRD2/ANKK1 TaqIA allele status

    PubMed Central

    Eisenstein, Sarah A.; Bogdan, Ryan; Love-Gregory, Latisha; Corral-Frías, Nadia S.; Koller, Jonathan M.; Black, Kevin J.; Moerlein, Stephen M.; Perlmutter, Joel S.; Barch, Deanna M.; Hershey, Tamara

    2016-01-01

    In humans, the A1 (T) allele of the dopamine (DA) D2 receptor/ankyrin repeat and kinase domain containing 1 (DRD2/ANKK1) TaqIA (rs1800497) single nucleotide polymorphism has been associated with reduced striatal DA D2/D3 receptor (D2/D3R) availability. However, radioligands used to estimate D2/D3R are displaceable by endogenous DA and are non-selective for D2R, leaving the relationship between TaqIA genotype and D2R specific binding uncertain. Using the positron emission tomography (PET) radioligand, (N‐[11C]methyl)benperidol ([11C]NMB), which is highly selective for D2R over D3R and is not displaceable by endogenous DA, the current study examined whether DRD2/ANKK1 TaqIA genotype predicts D2R specific binding in 2 independent samples. Sample 1 (n = 39) was composed of obese and non-obese adults; sample 2 (n = 18) was composed of healthy controls, unmedicated individuals with schizophrenia, and siblings of individuals with schizophrenia. Across both samples, A1 allele carriers (A1+) had 5-12% less striatal D2R specific binding relative to individuals homozygous for the A2 allele (A1−), regardless of body mass index or diagnostic group. This reduction is comparable to previous PET studies of D2/D3R availability (10-14%). The pooled effect size for the difference in total striatal D2R binding between A1+ and A1− was large (0.84). In summary, in line with studies using displaceable D2/D3R radioligands, our results indicate that DRD2/ANKK1 TaqIA allele status predicts striatal D2R specific binding as measured by D2R-selective [11C]NMB. These findings support the hypothesis that DRD2/ANKK1 TaqIA allele status may modify D2R, perhaps conferring risk for certain disease states. GRAPHICAL ABSTRACT We investigated the difference in striatal dopamine D2 receptor binding, as measured by PET with (N-[11C]methyl)benperidol ([11C]NMB), between A1 allele carriers (A1+) and individuals homozygous for the A2 allele (A1−) of the DRD2/ANKK1 TaqIA single nucleotide

  10. Detection of cashew nut DNA in spiked baked goods using a real-time polymerase chain reaction method.

    PubMed

    Brzezinski, Jennifer L

    2006-01-01

    The detection of potentially allergenic foods, such as tree nuts, in food products is a major concern for the food processing industry. A real-time polymerase chain reaction (PCR) method was designed to determine the presence of cashew DNA in food products. The PCR amplifies a 67 bp fragment of the cashew 2S albumin gene, which is detected with a cashew-specific, dual-labeled TaqMan probe. This reaction will not amplify DNA derived from other tree nut species, such as almond, Brazil nut, hazelnut, and walnut, as well as 4 varieties of peanut. This assay was sensitive enough to detect 5 pg purified cashew DNA as well as cashew DNA in a spiked chocolate cookie sample containing 0.01% (100 mg/kg) cashew.

  11. Cortical NMDA receptor expression in human chronic alcoholism: influence of the TaqIA allele of ANKK1.

    PubMed

    Ridge, Justin P; Dodd, Peter R

    2009-10-01

    Real-time RT-PCR normalized to GAPDH was used to assay N-methyl-D-aspartate (NMDA) receptor NR1, NR2A and NR2B subunit mRNA in human autopsy cortex tissue from chronic alcoholics with and without comorbid cirrhosis of the liver and matched controls. Subunit expression was influenced by the subject's genotype. The TaqIA polymorphism selectively modulated NMDA receptor mean transcript expression in cirrhotic-alcoholic superior frontal cortex, in diametrically opposite ways in male and female subjects. Genetic make-up may differentially influence vulnerability to brain damage by altering the excitation: inhibition balance, particularly in alcoholics with comorbid cirrhosis of the liver. The TaqIA polymorphism occurs within the poorly characterised ankyrin-repeat containing kinase 1 (ANKK1) gene. Using PCR, ANKK1 mRNA transcript was detected in inferior temporal, occipital, superior frontal and primary motor cortex of control human brain. ANKK1 expression may mediate the influence of the TaqIA polymorphism on phenotype.

  12. New approach to real-time nucleic acids detection: folding polymerase chain reaction amplicons into a secondary structure to improve cleavage of Förster resonance energy transfer probes in 5′-nuclease assays

    PubMed Central

    Kutyavin, Igor V.

    2010-01-01

    The article describes a new technology for real-time polymerase chain reaction (PCR) detection of nucleic acids. Similar to Taqman, this new method, named Snake, utilizes the 5′-nuclease activity of Thermus aquaticus (Taq) DNA polymerase that cleaves dual-labeled Förster resonance energy transfer (FRET) probes and generates a fluorescent signal during PCR. However, the mechanism of the probe cleavage in Snake is different. In this assay, PCR amplicons fold into stem–loop secondary structures. Hybridization of FRET probes to one of these structures leads to the formation of optimal substrates for the 5′-nuclease activity of Taq. The stem–loop structures in the Snake amplicons are introduced by the unique design of one of the PCR primers, which carries a special 5′-flap sequence. It was found that at a certain length of these 5′-flap sequences the folded Snake amplicons have very little, if any, effect on PCR yield but benefit many aspects of the detection process, particularly the signal productivity. Unlike Taqman, the Snake system favors the use of short FRET probes with improved fluorescence background. The head-to-head comparison study of Snake and Taqman revealed that these two technologies have more differences than similarities with respect to their responses to changes in PCR protocol, e.g. the variations in primer concentration, annealing time, PCR asymmetry. The optimal PCR protocol for Snake has been identified. The technology’s real-time performance was compared to a number of conventional assays including Taqman, 3′-MGB-Taqman, Molecular Beacon and Scorpion primers. The test trial showed that Snake supersedes the conventional assays in the signal productivity and detection of sequence variations as small as single nucleotide polymorphisms. Due to the assay’s cost-effectiveness and simplicity of design, the technology is anticipated to quickly replace all known conventional methods currently used for real-time nucleic acid detection

  13. Quantification of concentrated Chinese medicine granules by quantitative polymerase chain reaction.

    PubMed

    Lo, Yat-Tung; Shaw, Pang-Chui

    2017-10-25

    Determination of the amount of constituent in a multi-herb product is important for quality control. In concentrated Chinese medicine granules (CCMG), no dregs are left after dissolution of the CCMG. This study is the first to examine the feasibility of using quantitative polymerase chain reaction (qPCR) to find the amount of CCMG in solution form. DNA was extracted from Hirudo and Zaocys CCMG mixed at different ratios and amplified in qPCR using species-specific primers. The threshold cycle (C T ) obtained was compared with the respective standard curves. Results showed that reproducible quantification results could be obtained (1) for 5-50mg CCMG using a modified DNA extraction protocol, (2) amongst DNA extracted from the same batch of CCMG and (3) amongst different batches of CCMG from the same company. This study demonstrated the constitute amount of CCMG in a mixture could be determined using qPCR. This work has extended the application of DNA techniques for the quantification of herbal products and this approach may be developed for quality assurance in the CCMG industry. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Regional specialization in human nuclei: visualization of discrete sites of transcription by RNA polymerase III.

    PubMed Central

    Pombo, A; Jackson, D A; Hollinshead, M; Wang, Z; Roeder, R G; Cook, P R

    1999-01-01

    Mammalian nuclei contain three different RNA polymerases defined by their characteristic locations and drug sensitivities; polymerase I is found in nucleoli, and polymerases II and III in the nucleoplasm. As nascent transcripts made by polymerases I and II are concentrated in discrete sites, the locations of those made by polymerase III were investigated. HeLa cells were lysed with saponin in an improved 'physiological' buffer that preserves transcriptional activity and nuclear ultrastructure; then, engaged polymerases were allowed to extend nascent transcripts in Br-UTP, before the resulting Br-RNA was immunolabelled indirectly with fluorochromes or gold particles. Biochemical analysis showed that approximately 10 000 transcripts were being made by polymerase III at the moment of lysis, while confocal and electron microscopy showed that these transcripts were concentrated in only approximately 2000 sites (diameter approximately 40 nm). Therefore, each site contains approximately five active polymerases. These sites contain specific subunits of polymerase III, but not the hyperphosphorylated form of the largest subunit of polymerase II. The results indicate that the active forms of all three nuclear polymerases are concentrated in their own dedicated transcription sites or 'factories', suggesting that different regions of the nucleus specialize in the transcription of different types of gene. PMID:10205177

  15. Comparison of culture and a novel 5' Taq nuclease assay for direct detection of Campylobacter fetus subsp. venerealis in clinical specimens from cattle.

    PubMed

    McMillen, Lyle; Fordyce, Geoffry; Doogan, Vivienne J; Lew, Ala E

    2006-03-01

    A Campylobacter fetus subsp. venerealis-specific 5' Taq nuclease PCR assay using a 3' minor groove binder-DNA probe (TaqMan MGB) was developed based on a subspecies-specific fragment of unknown identity (S. Hum, K. Quinn, J. Brunner, and S. L. On, Aust. Vet. J. 75:827-831, 1997). The assay specifically detected four C. fetus subsp. venerealis strains with no observed cross-reaction with C. fetus subsp. fetus-related Campylobacter species or other bovine venereal microflora. The 5' Taq nuclease assay detected approximately one single cell compared to 100 and 10 cells in the conventional PCR assay and 2,500 and 25,000 cells from selective culture from inoculated smegma and mucus, respectively. The respective detection limits following the enrichments from smegma and mucus were 5,000 and 50 cells/inoculum for the conventional PCR compared to 500 and 50 cells/inoculum for the 5' Taq nuclease assay. Field sampling confirmed the sensitivity and the specificity of the 5' Taq nuclease assay by detecting an additional 40 bulls that were not detected by culture. Urine-inoculated samples demonstrated comparable detection of C. fetus subsp. venerealis by both culture and the 5' Taq nuclease assay; however, urine was found to be less effective than smegma for bull sampling. Three infected bulls were tested repetitively to compare sampling tools, and the bull rasper proved to be the most suitable, as evidenced by the improved ease of specimen collection and the consistent detection of higher levels of C. fetus subsp. venerealis. The 5' Taq nuclease assay demonstrates a statistically significant association with culture (chi2 = 29.8; P < 0.001) and significant improvements for the detection of C. fetus subsp. venerealis-infected animals from crude clinical extracts following prolonged transport.

  16. Fast real-time polymerase chain reaction for quantitative detection of Lactobacillus delbrueckii bacteriophages in milk.

    PubMed

    Martín, Maria Cruz; del Rio, Beatriz; Martínez, Noelia; Magadán, Alfonso H; Alvarez, Miguel A

    2008-12-01

    One of the main microbiological problems of the dairy industry is the susceptibility of starter bacteria to virus infections. Lactobacillus delbrueckii, a component of thermophilic starter cultures used in the manufacture of several fermented dairy products, including yogurt, is also sensitive to bacteriophage attacks. To avoid the problems associated with these viruses, quick and sensitive detection methods are necessary. In the present study, a fast real-time quantitative polymerase chain reaction assay for the direct detection and quantification of L. delbrueckii phages in milk was developed. A set of primers and a TaqMan MGB probe was designed, based on the lysin gene sequence of different L. delbrueckii phages. The results show the proposed method to be a rapid (total processing time 30 min), specific and highly sensitive technique for detecting L. delbrueckii phages in milk.

  17. A TaqI PCR-RFLP detecting a novel SNP in exon 2 of the bovine POU1F1 gene.

    PubMed

    Pan, Chuanying; Lan, Xianyong; Chen, Hong; Guo, Yikun; Shu, Jianhong; Lei, Chuzhao; Wang, Xinzhuang

    2008-08-01

    PCR-SSCP and DNA sequencing methods were applied to reveal three novel single nucleotide polymorphisms (SNPs) in exon 2 of the POU1F1 gene in 963 Chinese cattle belonging to eight breeds. Among them, a silent SNP (NM_174579:c.545G > A) detected by TaqI endonuclease is described. Frequencies of the POU1F1-G allele varied from 0.685 to 1.000. The association of TaqI polymorphism with growth traits was analyzed in 251 Nanyang cattle. No significant associations of the TaqI polymorphism with body weight and average daily gain for different growth periods (6, 12, 18, and 24 months old) were observed (P > 0.05), as well as for body sizes (P > 0.05).

  18. A new TaqMan method for the reliable diagnosis of Ehrlichia spp. in canine whole blood.

    PubMed

    Thomson, Kirsty; Yaaran, Tal; Belshaw, Alex; Curson, Lucia; Tisi, Laurence; Maurice, Sarah; Kiddle, Guy

    2018-06-18

    Ehrlichiosis is an important emerging infectious disease of the canid family and humans worldwide. To date, no extensive evaluation or validation of a molecular diagnostic test for ehrlichiosis has been published. Here, we present data for a newly designed TaqMan assay and compare its performance to a commercial technology (PCRun®). Both of these real-time methods of analysis were evaluated using a comprehensive number of prospective and retrospective samples collected from dogs exhibiting symptoms of ehrlichiosis. Whole blood samples collected from dogs, retrospectively in the United Kingdom and prospectively in Israel, were analysed for the presence of Ehrlichia canis and Ehrlichia minasensis DNA using the TaqMan PCR, developed specifically for this study. The results were compared to those of a real time commercial isothermal amplification method (PCRun® system developed by Biogal Galed Labs ACS, Galed, Israel). The sensitivity and specificity (CI: 95%) of the TaqMan PCR and PCRun® were both determined to be 100% and absolute, for all of the samples tested. Interestingly, both tests were demonstrated to be highly comparable, irrespective of differences in amplification chemistry or sequences targeted. Host differences, incidence of disease and geographical location of the isolates had little impact on the positivity recorded by each of the diagnostic methods. It was evident that both amplification methods were equally suited for diagnosing canine ehrlichiosis and while the PCRun® clearly amplified all clinically relevant Ehrlichia species known to infect dogs and humans, the TaqMan method was more specific for E. canis and E. minasensis. This work demonstrates that despite good analytical sensitivities and specificities for Ehrlichia spp. neither method could fully account for the clinical diagnosis of thrombocytopenia.

  19. Event specific qualitative and quantitative polymerase chain reaction detection of genetically modified MON863 maize based on the 5'-transgene integration sequence.

    PubMed

    Yang, Litao; Xu, Songci; Pan, Aihu; Yin, Changsong; Zhang, Kewei; Wang, Zhenying; Zhou, Zhigang; Zhang, Dabing

    2005-11-30

    Because of the genetically modified organisms (GMOs) labeling policies issued in many countries and areas, polymerase chain reaction (PCR) methods were developed for the execution of GMO labeling policies, such as screening, gene specific, construct specific, and event specific PCR detection methods, which have become a mainstay of GMOs detection. The event specific PCR detection method is the primary trend in GMOs detection because of its high specificity based on the flanking sequence of the exogenous integrant. This genetically modified maize, MON863, contains a Cry3Bb1 coding sequence that produces a protein with enhanced insecticidal activity against the coleopteran pest, corn rootworm. In this study, the 5'-integration junction sequence between the host plant DNA and the integrated gene construct of the genetically modified maize MON863 was revealed by means of thermal asymmetric interlaced-PCR, and the specific PCR primers and TaqMan probe were designed based upon the revealed 5'-integration junction sequence; the conventional qualitative PCR and quantitative TaqMan real-time PCR detection methods employing these primers and probes were successfully developed. In conventional qualitative PCR assay, the limit of detection (LOD) was 0.1% for MON863 in 100 ng of maize genomic DNA for one reaction. In the quantitative TaqMan real-time PCR assay, the LOD and the limit of quantification were eight and 80 haploid genome copies, respectively. In addition, three mixed maize samples with known MON863 contents were detected using the established real-time PCR systems, and the ideal results indicated that the established event specific real-time PCR detection systems were reliable, sensitive, and accurate.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    McInerney, Peter; Adams, Paul; Hadi, Masood Z.

    As larger-scale cloning projects become more prevalent, there is an increasing need for comparisons among high fidelity DNA polymerases used for PCR amplification. All polymerases marketed for PCR applications are tested for fidelity properties (i.e., error rate determination) by vendors, and numerous literature reports have addressed PCR enzyme fidelity. Nonetheless, it is often difficult to make direct comparisons among different enzymes due to numerous methodological and analytical differences from study to study. We have measured the error rates for 6 DNA polymerases commonly used in PCR applications, including 3 polymerases typically used for cloning applications requiring high fidelity. Error ratemore » measurement values reported here were obtained by direct sequencing of cloned PCR products. The strategy employed here allows interrogation of error rate across a very large DNA sequence space, since 94 unique DNA targets were used as templates for PCR cloning. The six enzymes included in the study, Taq polymerase, AccuPrime-Taq High Fidelity, KOD Hot Start, cloned Pfu polymerase, Phusion Hot Start, and Pwo polymerase, we find the lowest error rates with Pfu , Phusion, and Pwo polymerases. Error rates are comparable for these 3 enzymes and are >10x lower than the error rate observed with Taq polymerase. Mutation spectra are reported, with the 3 high fidelity enzymes displaying broadly similar types of mutations. For these enzymes, transition mutations predominate, with little bias observed for type of transition.« less

  1. TaqMan RT-PCR and VERSANT HIV-1 RNA 3.0 (bDNA) assay Quantification of HIV-1 RNA viral load in breast milk.

    PubMed

    Israel-Ballard, Kiersten; Ziermann, Rainer; Leutenegger, Christian; Di Canzio, James; Leung, Kimmy; Strom, Lynn; Abrams, Barbara; Chantry, Caroline

    2005-12-01

    Transmission of HIV via breast milk is a primary cause of pediatric HIV infection in developing countries. Reliable methods to detect breast milk viral load are important. To correlate the ability of the VERSANT HIV 3.0 (bDNA) assay to real-time (RT) TaqMan PCR in quantifying breast milk HIV-1 RNA. Forty-six breast milk samples that had been spiked with cell-free HIV-1 and eight samples spiked with cell-associated HIV-1 were assayed for HIV-1 RNA by both VERSANT HIV 3.0 and TaqMan RNA assays. Only assays on the cell-free samples were statistically compared. Both a Deming regression slope and a Bland-Altman slope indicated a linear relationship between the two assays. TaqMan quantitations were on average 2.6 times higher than those of HIV 3.0. A linear relationship was observed between serial dilutions of spiked cell-free HIV-1 and both the VERSANT HIV 3.0 and the TaqMan RNA assays. The two methods correlated well although the VERSANT HIV 3.0 research protocol quantified HIV-1 RNA slightly lower than TaqMan.

  2. One-Step Reverse Transcription-Polymerase Chain Reaction for Ebola and Marburg Viruses.

    PubMed

    Park, Sun-Whan; Lee, Ye-Ji; Lee, Won-Ja; Jee, Youngmee; Choi, WooYoung

    2016-06-01

    Ebola and Marburg viruses (EBOVs and MARVs, respectively) are causative agents of severe hemorrhagic fever with high mortality rates in humans and nonhuman primates. In 2014, there was a major Ebola outbreak in various countries in West Africa, including Guinea, Liberia, Republic of Sierra Leone, and Nigeria. EBOV and MARV are clinically difficult to diagnose and distinguish from other African epidemic diseases. Therefore, in this study, we aimed to develop a method for rapid identification of the virus to prevent the spread of infection. We established a conventional one-step reverse transcription-polymerase chain reaction (RT-PCR) assay for these pathogens based on the Superscript Reverse Transcriptase-Platinum Taq polymerase enzyme mixture. All assays were thoroughly optimized using in vitro-transcribed RNA. We designed seven primer sets of nucleocapsid protein (NP) genes based on sequences from seven filoviruses, including five EBOVs and two MARVs. To evaluate the sensitivity of the RT-PCR assay for each filovirus, 10-fold serial dilutions of synthetic viral RNA transcripts of EBOV or MARV NP genes were used to assess detection limits of viral RNA copies. The potential for these primers to cross react with other filoviruses was also examined. The results showed that the primers were specific for individual genotype detection in the examined filoviruses. The assay established in this study may facilitate rapid, reliable laboratory diagnosis in suspected cases of Ebola and Marburg hemorrhagic fevers.

  3. Kinetics and thermodynamics of exonuclease-deficient DNA polymerases

    NASA Astrophysics Data System (ADS)

    Gaspard, Pierre

    2016-04-01

    A kinetic theory is developed for exonuclease-deficient DNA polymerases, based on the experimental observation that the rates depend not only on the newly incorporated nucleotide, but also on the previous one, leading to the growth of Markovian DNA sequences from a Bernoullian template. The dependencies on nucleotide concentrations and template sequence are explicitly taken into account. In this framework, the kinetic and thermodynamic properties of DNA replication, in particular, the mean growth velocity, the error probability, and the entropy production are calculated analytically in terms of the rate constants and the concentrations. Theory is compared with numerical simulations for the DNA polymerases of T7 viruses and human mitochondria.

  4. Dopamine Genes (DRD2/ANKK1-TaqA1 and DRD4-7R) and Executive Function: Their Interaction with Obesity

    PubMed Central

    Ariza, Mar; Garolera, Maite; Jurado, Maria Angeles; Garcia-Garcia, Isabel; Hernan, Imma; Sánchez-Garre, Consuelo; Vernet-Vernet, Maria; Sender-Palacios, Maria Jose; Marques-Iturria, Idoia; Pueyo, Roser; Segura, Barbara; Narberhaus, Ana

    2012-01-01

    Obesity is a multifactorial disease caused by the interaction between genotype and environment, and it is considered to be a type of addictive alteration. The A1 allele of the DRD2/ANKK1-TaqIA gene has been associated with addictive disorders, with obesity and with the performance in executive functions. The 7 repeat allele of the DRD4 gene has likewise been associated with the performance in executive functions, as well as with addictive behaviors and impulsivity. Participants were included in the obesity group (N = 42) if their body mass index (BMI) was equal to or above 30, and in the lean group (N = 42) if their BMI was below 25. The DRD2/ANKK1-TaqIA and DRD4 VNTR polymorphisms were obtained. All subjects underwent neuropsychological assessment. Eating behavior traits were evaluated. The ‘DRD2/ANKK1-TaqIA A1-allele status’ had a significant effect on almost all the executive variables, but no significant ‘DRD4 7R-allele status’ effects were observed for any of the executive variables analyzed. There was a significant ‘group’ x ‘DRD2/ANKK1-TaqIA A1-allele status’ interaction effect on LN and ‘group’ x ‘DRD4 7R-allele status’ interaction effect on TMT B-A score. Being obese and a carrier of the A1 allele of DRD2/ANKK1-TaqIA or the 7R allele of DRD4 VNTR polymorphisms could confer a weakness as regards the performance of executive functions. PMID:22848508

  5. Comparison of allelic discrimination by dHPLC, HRM, and TaqMan in the detection of BRAF mutation V600E.

    PubMed

    Carbonell, Pablo; Turpin, María C; Torres-Moreno, Daniel; Molina-Martínez, Irene; García-Solano, José; Perez-Guillermo, Miguel; Conesa-Zamora, Pablo

    2011-09-01

    The V600E mutation in the BRAF oncogene is associated with colorectal carcinomas, with mismatch-repair deficiency and, recently, with nonresponse to epidermal growth factor receptor inhibitor therapy. The use of reliable techniques for its detection is important. The aim of our study was to compare the performance characteristics in V600E detection of denaturing high-performance liquid chromatography (dHPLC) and high-resolution melting (HRM) with TaqMan allelic discrimination as well as direct-sequencing methods in a series of 195 colorectal paraffin-embedded specimens up to the age of 15 years. The effectiveness for obtaining results on mutation status was best using TaqMan (96.9%), followed by dHPLC (93.3%), HRM (88.7%), and sequencing (88.2%). In general, TaqMan was best for analyzing older tissues, whereas sequencing was the least efficient. Heterozygotic V600E was detected in 11.6%, 9.9%, 11.6%, and 9.9% of tissues using TaqMan, dHPLC, HRM, and sequencing, respectively. Result concordances between dHPLC and TaqMan or sequencing were excellent (κ = 0.9411 and κ = 0.8988, respectively); for HRM, the concordances were good (κ = 0.7973 and κ = 0.7488, respectively). By using DNA dilutions from tumor tissue, a minimum of 10% of V600E harboring cancer content was required for the analysis by dHPLC and HRM. dHPLC could detect four non-V600E mutations, whereas HRM detected one. Our results indicate that dHPLC and HRM are techniques that can be reliably used for the detection of the BRAFV600E mutation in archival paraffin-embedded tissues. Copyright © 2011 American Society for Investigative Pathology and the Association for Molecular Pathology. Published by Elsevier Inc. All rights reserved.

  6. Modeling RNA polymerase interaction in mitochondria of chordates

    PubMed Central

    2012-01-01

    Background In previous work, we introduced a concept, a mathematical model and its computer realization that describe the interaction between bacterial and phage type RNA polymerases, protein factors, DNA and RNA secondary structures during transcription, including transcription initiation and termination. The model accurately reproduces changes of gene transcription level observed in polymerase sigma-subunit knockout and heat shock experiments in plant plastids. The corresponding computer program and a user guide are available at http://lab6.iitp.ru/en/rivals. Here we apply the model to the analysis of transcription and (partially) translation processes in the mitochondria of frog, rat and human. Notably, mitochondria possess only phage-type polymerases. We consider the entire mitochondrial genome so that our model allows RNA polymerases to complete more than one circle on the DNA strand. Results Our model of RNA polymerase interaction during transcription initiation and elongation accurately reproduces experimental data obtained for plastids. Moreover, it also reproduces evidence on bulk RNA concentrations and RNA half-lives in the mitochondria of frog, human with or without the MELAS mutation, and rat with normal (euthyroid) or hyposecretion of thyroid hormone (hypothyroid). The transcription characteristics predicted by the model include: (i) the fraction of polymerases terminating at a protein-dependent terminator in both directions (the terminator polarization), (ii) the binding intensities of the regulatory protein factor (mTERF) with the termination site and, (iii) the transcription initiation intensities (initiation frequencies) of all promoters in all five conditions (frog, healthy human, human with MELAS syndrome, healthy rat, and hypothyroid rat with aberrant mtDNA methylation). Using the model, absolute levels of all gene transcription can be inferred from an arbitrary array of the three transcription characteristics, whereas, for selected genes only

  7. Real-time polymerase chain reaction-based approach for quantification of the pat gene in the T25 Zea mays event.

    PubMed

    Weighardt, Florian; Barbati, Cristina; Paoletti, Claudia; Querci, Maddalena; Kay, Simon; De Beuckeleer, Marc; Van den Eede, Guy

    2004-01-01

    In Europe, a growing interest for reliable techniques for the quantification of genetically modified component(s) of food matrixes is arising from the need to comply with the European legislative framework on novel food products. Real-time polymerase chain reaction (PCR) is currently the most powerful technique for the quantification of specific nucleic acid sequences. Several real-time PCR methodologies based on different molecular principles have been developed for this purpose. The most frequently used approach in the field of genetically modified organism (GMO) quantification in food or feed samples is based on the 5'-3'-exonuclease activity of Taq DNA polymerase on specific degradation probes (TaqMan principle). A novel approach was developed for the establishment of a TaqMan quantification system assessing GMO contents around the 1% threshold stipulated under European Union (EU) legislation for the labeling of food products. The Zea mays T25 elite event was chosen as a model for the development of the novel GMO quantification approach. The most innovative aspect of the system is represented by the use of sequences cloned in plasmids as reference standards. In the field of GMO quantification, plasmids are an easy to use, cheap, and reliable alternative to Certified Reference Materials (CRMs), which are only available for a few of the GMOs authorized in Europe, have a relatively high production cost, and require further processing to be suitable for analysis. Strengths and weaknesses of the use of novel plasmid-based standards are addressed in detail. In addition, the quantification system was designed to avoid the use of a reference gene (e.g., a single copy, species-specific gene) as normalizer, i.e., to perform a GMO quantification based on an absolute instead of a relative measurement. In fact, experimental evidences show that the use of reference genes adds variability to the measurement system because a second independent real-time PCR-based measurement

  8. Dispersion quality of amine functionalized multiwall carbon nanotubes plays critical roles in polymerase chain reaction enhancement

    NASA Astrophysics Data System (ADS)

    Yuce, Meral; Budak, Hikmet

    2014-12-01

    Impact of dispersion quality of NH2-MWCNTs (13-18 nm in diameter with a length between 1 and 12 µm, >99 % purity) in the amplification efficiency of a random DNA oligonucleotide library (96 bp) was investigated. Amplification yield in the presence of non-filtered NH2-MWCNT dispersion, filtered NH2-MWCNT dispersion and surface-attached NH2-MWCNTs was explored, and physical interactions between NH2-MWCNTs and major PCR reagents including DNA template, wild type Taq DNA polymerase enzyme and primers were determined using high resolution polyacrylamide gel electrophoresis, dynamic light scattering, UV-Vis-NIR spectroscopy and scanning electron microscopy techniques. The results revealed that presence of NH2-MWCNT dispersion which was sonicated, centrifuged and filtered, enhanced the total PCR efficiency up to 70 % while the presence of NH2-MWCNT only centrifuged after sonication, inhibited the reaction significantly at similar concentrations. Furthermore, the NH2-MWCNTs coupled covalently onto magnetic microspheres, contributed for the specificity enhancement whilst decreasing the amplification efficiency by 30 % at the maximum concentration, which suggests a removable enhancement system for sensitive applications. On the other hand, the relative hydrodynamic size distribution measurements displayed a clear difference between the filtered NH2 and non-filtered NH2-MWCNT water dispersions, which justifies the inhibition of the amplification by the non-filtered NH2-MWCNTs containing big agglomerates and bundles. Finally, we demonstrated that major PCR components adsorb onto the NH2-MWCNTs with diverse affinities, and maintain their functions after adsorption, which provides a good framework to further develop tunable NH2-MWCNT-carriers to be utilized in various nanobiotechnology and material science applications.

  9. [Application of transcription mediated amplification and real-time reverse transcription polymerase chain reaction in detection of human immunodeficiency virus RNA].

    PubMed

    Wu, Daxian; Tao, Shuhui; Liu, Shuiping; Zhou, Jiebin; Tan, Deming; Hou, Zhouhua

    2017-07-28

    To observe the sensitivity of transcription mediated amplification (TMA), and to compare its performance with real-time reverse transcription polymerase chain reaction (real-time RT-PCR) in detecting human immunodeficiency virus RNA (HIV RNA).
 Methods: TMA system was established with TaqMan probes, specific primers, moloney murine leukemia virus (MMLV) reverse transcriptase, T7 RNA polymerase, and reaction substrates. The sensitivity of TMA was evaluated by amplifying a group of 10-fold diluted HIV RNA standards which were transcribed in vitro. A total of 60 plasma of HIV infected patients were measured by TMA and Cobas Amplicor HIV-1 Monitor test to observe the positive rate. The correlation and concordance of the above two technologies were investigated by linear regression and Bland-Altman analysis.
 Results: TMA system was established successfully and HIV RNA transcribed standards at concentration of equal or more than 10 copies/mL could be detected by TMA technology. Among 60 samples of plasma from HIV infected patients, 46 were positively detected and 12 were negatively amplified by both TMA and Cobas reagents; 2 samples were positively tested by Cobas reagent but negatively tested by TMA system. The concordance rate of the two methods was 97.1% and the difference of positive detection rate between the two methods was not statistically significant (P>0.05). Linear regression was used for 46 samples which were positively detected by both TMA and Cobas reagents and showed an excellent correlation between the two reagents (r=0.997, P<0.001). Bland-Altma analysis revealed that the mean different value of HIV RNA levels for denary logarithm was 0.02. Forty-four samples were included in 95% of credibility interval of concordance.
 Conclusion: TMA system has the potential of high sensitivity. TMA and real-time RT-PCR keep an excellent correlation and consistency in detecting HIV RNA.

  10. Linguistic Grammar Learning and DRD2-TAQ-IA Polymorphism

    PubMed Central

    Wong, Patrick C. M.; Ettlinger, Marc; Zheng, Jing

    2013-01-01

    As research into the neurobiology of language has focused primarily on the systems level, fewer studies have examined the link between molecular genetics and normal variations in language functions. Because the ability to learn a language varies in adults and our genetic codes also vary, research linking the two provides a unique window into the molecular neurobiology of language. We consider a candidate association between the dopamine receptor D2 gene (DRD2) and linguistic grammar learning. DRD2-TAQ-IA polymorphism (rs1800497) is associated with dopamine receptor D2 distribution and dopamine impact in the human striatum, such that A1 allele carriers show reduction in D2 receptor binding relative to carriers who are homozygous for the A2 allele. The individual differences in grammatical rule learning that are particularly prevalent in adulthood are also associated with striatal function and its role in domain-general procedural memory. Therefore, we reasoned that procedurally-based grammar learning could be associated with DRD2-TAQ-IA polymorphism. Here, English-speaking adults learned artificial concatenative and analogical grammars, which have been respectively associated with procedural and declarative memory. Language learning capabilities were tested while learners’ neural hemodynamic responses were simultaneously measured by fMRI. Behavioral learning and brain activation data were subsequently compared with the learners’ DRD2 (rs1800497) genotype. Learners who were homozygous for the A2 allele were better at concatenative (but not analogical) grammar learning and had higher striatal responses relative to those who have at least one A1 allele. These results provide preliminary evidence for the neurogenetic basis of normal variations in linguistic grammar learning and its link to domain-general functions. PMID:23741438

  11. Quantitative and specific detection of the biocontrol agent, Serratia plymuthica, in plant extracts using a real-time TaqMan® assay.

    PubMed

    Czajkowski, Robert; van der Wolf, Jan M

    2012-11-01

    A Serratia plymuthica-specific TaqMan® assay was designed based on the consensus nucleotide sequence from the 3'- end of the luxS gene present in all S. plymuthica strains tested. The specificity of the assay was demonstrated by testing 21 Serratia spp. strains and 30 isolates belonging to various species that can potentially coexist with S. plymuthica in the same environment. Positive reactions in the TaqMan® assay were observed only for S. plymuthica isolates and not for other bacteria. The TaqMan® assay could detect down to 1.95 ng of S. plymuthica DNA, down to 5 bacterial cells per reaction (100 cfu ml(-1)) in vitro, down to 50 bacterial cells per reaction (1,000 cfu ml(-1)) in spiked potato root extracts and down to 5 bacterial cells per reaction (100 cfu ml(-1)) in spiked potato haulm extracts. We used this assay to quantify S. plymuthica A30 cells in potato and tomato haulms and roots grown from S. plymuthica A30-inoculated potato seed tubers and tomato seeds. The results were comparable with the spread-plating of plant extracts on a newly developed S. plymuthica A30 selective medium (CVTR2Arif). The TaqMan® assay can be used to quantify S. plymuthica isolates in different ecosystems and in complex substrates.

  12. Universal detection of phytoplasmas and Xylella spp. by TaqMan singleplex and multiplex real-time PCR with dual priming oligonucleotides.

    PubMed

    Ito, Takao; Suzaki, Koichi

    2017-01-01

    Phytoplasmas and Xylella spp. are bacteria that cause many economically important plant diseases worldwide. TaqMan probe-based quantitative real-time polymerase chain reaction (qPCR) assays have been utilized to universally detect phytoplasmas or Xylella fastidiosa. To develop a superior universal qPCR method, we used a dual priming oligonucleotide (DPO) with two annealing sites as a reverse primer to target the well-conserved bacterial 16S rDNA. The new qPCR assays universally detected various species of phytoplasmas and subspecies of X. fastidiosa as well as Xylella taiwanensis, and generally showed superior threshold cycle values when amplifying specific or non-specific products compared to current universal qPCR assays. The proposed qPCR assays were integrated to develop a multiplex qPCR assay that simultaneously detected phytoplasmas, Xylella spp., and an internal plant DNA positive control within 1 hour. This assay could detect a minimum of ten bacterial cells and was compatible with crude extractions used in the rapid screening of various plants. The amplicons were of sufficient lengths to be directly sequenced for preliminary identification, and the primers could be used in universal conventional PCR assays. Additionally, reverse DPO primers can be utilized to improve other probe-based qPCR assays.

  13. Universal detection of phytoplasmas and Xylella spp. by TaqMan singleplex and multiplex real-time PCR with dual priming oligonucleotides

    PubMed Central

    Suzaki, Koichi

    2017-01-01

    Phytoplasmas and Xylella spp. are bacteria that cause many economically important plant diseases worldwide. TaqMan probe-based quantitative real-time polymerase chain reaction (qPCR) assays have been utilized to universally detect phytoplasmas or Xylella fastidiosa. To develop a superior universal qPCR method, we used a dual priming oligonucleotide (DPO) with two annealing sites as a reverse primer to target the well-conserved bacterial 16S rDNA. The new qPCR assays universally detected various species of phytoplasmas and subspecies of X. fastidiosa as well as Xylella taiwanensis, and generally showed superior threshold cycle values when amplifying specific or non-specific products compared to current universal qPCR assays. The proposed qPCR assays were integrated to develop a multiplex qPCR assay that simultaneously detected phytoplasmas, Xylella spp., and an internal plant DNA positive control within 1 hour. This assay could detect a minimum of ten bacterial cells and was compatible with crude extractions used in the rapid screening of various plants. The amplicons were of sufficient lengths to be directly sequenced for preliminary identification, and the primers could be used in universal conventional PCR assays. Additionally, reverse DPO primers can be utilized to improve other probe-based qPCR assays. PMID:28957362

  14. An A-T linker adapter polymerase chain reaction method for chromosome walking without restriction site cloning bias.

    PubMed

    Trinh, Quoclinh; Xu, Wentao; Shi, Hui; Luo, Yunbo; Huang, Kunlun

    2012-06-01

    A-T linker adapter polymerase chain reaction (PCR) was modified and employed for the isolation of genomic fragments adjacent to a known DNA sequence. The improvements in the method focus on two points. The first is the modification of the PO(4) and NH(2) groups in the adapter to inhibit the self-ligation of the adapter or the generation of nonspecific products. The second improvement is the use of the capacity of rTaq DNA polymerase to add an adenosine overhang at the 3' ends of digested DNA to suppress self-ligation in the digested DNA and simultaneously resolve restriction site clone bias. The combination of modifications in the adapter and in the digested DNA leads to T/A-specific ligation, which enhances the flexibility of this method and makes it feasible to use many different restriction enzymes with a single adapter. This novel A-T linker adapter PCR overcomes the inherent limitations of the original ligation-mediated PCR method such as low specificity and a lack of restriction enzyme choice. Moreover, this method also offers higher amplification efficiency, greater flexibility, and easier manipulation compared with other PCR methods for chromosome walking. Experimental results from 143 Arabidopsis mutants illustrate that this method is reliable and efficient in high-throughput experiments. Copyright © 2012 Elsevier Inc. All rights reserved.

  15. A preliminary study: novelty seeking, frontal executive function, and dopamine receptor (D2) TaqI A gene polymorphism in patients with methamphetamine dependence.

    PubMed

    Han, Doug Hyun; Yoon, Sujung J; Sung, Young Hoon; Lee, Young Sik; Kee, Baik Seok; Lyoo, In Kyoon; Renshaw, Perry F; Cho, Soo Churl

    2008-01-01

    Dopamine receptor polymorphisms have been associated with specific patterns of novelty seeking (NS) temperamental nature and frontal executive function. In addition, carriers of dopamine receptor type 2 (DRD2)-TaqI A1 have been hypothesized to be potentially vulnerable to addictive behaviors. In the present study, the association between dopamine D2 polymorphisms, NS, and frontal executive function was studied. Thirty-seven methamphetamine (MA)-dependent subjects and 40 healthy comparison subjects participated in the current study. The severity of addiction, NS temperament, and frontal executive functions were measured using the Addiction Severity Index, the NS subscale in the Temperament and Character Inventory, and the Wisconsin Card Sorting Test, respectively. All subjects were genotyped with regard to DRD2-TaqI polymorphisms. The prevalence of DRD2-TaqI A1 allele polymorphisms was greater in the MA-abuser group than in the comparison group. Patients with MA dependence also had higher NS characteristics and high scores in total trials, errors, and perseverative errors of the Wisconsin Card Sorting Test than comparison subjects. Within patients with MA dependence, the subgroup of DRD2-TaqI A1 carrier had greater NS scores relative to those without, whereas there was only a trend level of lower frontal executive function in the first subgroup. In the present study, the MA-dependent patients with DRD2-TaqI A1 allele had significantly greater NS scores and lower frontal executive function with a trend level than those without. These preliminary results suggest that MA-dependent patients may have the possibility of genetic and biogenic vulnerability to MA.

  16. The cobas p 630 instrument: a dedicated pre-analytic solution to optimize COBAS® AmpliPrep/COBAS® TaqMan® system workflow and turn-around-time.

    PubMed

    Vallefuoco, L; Sorrentino, R; Spalletti Cernia, D; Colucci, G; Portella, G

    2012-12-01

    The cobas p 630, a fully automated pre-analytical instrument for primary tube handling recently introduced to complete the Cobas(®) TaqMan systems portfolio, was evaluated in conjunction with: the COBAS(®) AmpliPrep/COBAS(®) TaqMan HBV Test, v2.0, COBAS(®) AmpliPrep/COBAS(®) TaqMan HCV Test, v1.0 and COBAS(®) AmpliPrep/COBAS(®) TaqMan HIV Test, v2.0. The instrument performance in transferring samples from primary to secondary tubes, its impact in improving COBAS(®) AmpliPrep/COBAS(®) TaqMan workflow and hands-on reduction and the risk of possible cross-contamination were assessed. Samples from 42 HBsAg positive, 42 HCV and 42 HIV antibody (Ab) positive patients as well as 21 healthy blood donors were processed with or without automated primary tubes. HIV, HCV and HBsAg positive samples showed a correlation index of 0.999, 0.987 and of 0.994, respectively. To assess for cross-contamination, high titer HBV DNA positive samples, HCV RNA and HIV RNA positive samples were distributed in the cobas p 630 in alternate tube positions, adjacent to negative control samples within the same rack. None of the healthy donor samples showed any reactivity. Based on these results, the cobas p 630 can improve workflow and sample tracing in laboratories performing molecular tests, and reduce turnaround time, errors, and risks. Copyright © 2012 Elsevier B.V. All rights reserved.

  17. A new family of polymerases related to superfamily A DNA polymerases and T7-like DNA-dependent RNA polymerases.

    PubMed

    Iyer, Lakshminarayan M; Abhiman, Saraswathi; Aravind, L

    2008-10-04

    Using sequence profile methods and structural comparisons we characterize a previously unknown family of nucleic acid polymerases in a group of mobile elements from genomes of diverse bacteria, an algal plastid and certain DNA viruses, including the recently reported Sputnik virus. Using contextual information from domain architectures and gene-neighborhoods we present evidence that they are likely to possess both primase and DNA polymerase activity, comparable to the previously reported prim-pol proteins. These newly identified polymerases help in defining the minimal functional core of superfamily A DNA polymerases and related RNA polymerases. Thus, they provide a framework to understand the emergence of both DNA and RNA polymerization activity in this class of enzymes. They also provide evidence that enigmatic DNA viruses, such as Sputnik, might have emerged from mobile elements coding these polymerases.

  18. Development and validation of a novel hydrolysis probe real-time polymerase chain reaction for agamid adenovirus 1 in the central bearded dragon (Pogona vitticeps).

    PubMed

    Fredholm, Daniel V; Coleman, James K; Childress, April L; Wellehan, James F X

    2015-03-01

    Agamid adenovirus 1 (AgAdv-1) is a significant cause of disease in bearded dragons (Pogona sp.). Clinical manifestations of AgAdv-1 infection are variable and often nonspecific; the manifestations range from lethargy, weight loss, and inappetence, to severe enteritis, hepatitis, and sudden death. Currently, diagnosis of AgAdv-1 infection is achieved through a single published method: standard nested polymerase chain reaction (nPCR) and sequencing. Standard nPCR with sequencing provides reliable sensitivity, specificity, and validation of PCR products. However, this process is comparatively expensive, laborious, and slow. Probe hybridization, as used in a TaqMan assay, represents the best option for validating PCR products aside from the time-consuming process of sequencing. This study developed a real-time PCR (qPCR) assay using a TaqMan probe-based assay, targeting a highly conserved region of the AgAdv-1 genome. Standard curves were generated, detection results were compared with the gold standard conventional PCR and sequencing assay, and limits of detection were determined. Additionally, the qPCR assay was run on samples known to be positive for AgAdv-1 and samples known to be positive for other adenoviruses. Based on the results of these evaluations, this assay allows for a less expensive, rapid, quantitative detection of AgAdv-1 in bearded dragons. © 2015 The Author(s).

  19. Detection and Quantification of Viable and Nonviable Trypanosoma cruzi Parasites by a Propidium Monoazide Real-Time Polymerase Chain Reaction Assay

    PubMed Central

    Cancino-Faure, Beatriz; Fisa, Roser; Alcover, M. Magdalena; Jimenez-Marco, Teresa; Riera, Cristina

    2016-01-01

    Molecular techniques based on real-time polymerase chain reaction (qPCR) allow the detection and quantification of DNA but are unable to distinguish between signals from dead or live cells. Because of the lack of simple techniques to differentiate between viable and nonviable cells, the aim of this study was to optimize and evaluate a straightforward test based on propidium monoazide (PMA) dye action combined with a qPCR assay (PMA-qPCR) for the selective quantification of viable/nonviable epimastigotes of Trypanosoma cruzi. PMA has the ability to penetrate the plasma membrane of dead cells and covalently cross-link to the DNA during exposure to bright visible light, thereby inhibiting PCR amplification. Different concentrations of PMA (50–200 μM) and epimastigotes of the Maracay strain of T. cruzi (1 × 105–10 parasites/mL) were assayed; viable and nonviable parasites were tested and quantified by qPCR with a TaqMan probe specific for T. cruzi. In the PMA-qPCR assay optimized at 100 μM PMA, a significant qPCR signal reduction was observed in the nonviable versus viable epimastigotes treated with PMA, with a mean signal reduction of 2.5 logarithm units and a percentage of signal reduction > 98%, in all concentrations of parasites assayed. This signal reduction was also observed when PMA-qPCR was applied to a mixture of live/dead parasites, which allowed the detection of live cells, except when the concentration of live parasites was low (10 parasites/mL). The PMA-qPCR developed allows differentiation between viable and nonviable epimastigotes of T. cruzi and could thus be a potential method of parasite viability assessment and quantification. PMID:27139452

  20. Optimization of the elution buffer and concentration method for detecting hepatitis E virus in swine liver using a nested reverse transcription-polymerase chain reaction and real-time reverse transcription-polymerase chain reaction.

    PubMed

    Son, Na Ry; Seo, Dong Joo; Lee, Min Hwa; Seo, Sheungwoo; Wang, Xiaoyu; Lee, Bog-Hieu; Lee, Jeong-Su; Joo, In-Sun; Hwang, In-Gyun; Choi, Changsun

    2014-09-01

    The aim of this study was to develop an optimal technique for detecting hepatitis E virus (HEV) in swine livers. Here, three elution buffers and two concentration methods were compared with respect to enhancing recovery of HEV from swine liver samples. Real-time reverse transcription-polymerase chain reaction (RT-PCR) and nested RT-PCR were performed to detect HEV RNA. When phosphate-buffered saline (PBS, pH 7.4) was used to concentrate HEV in swine liver samples using ultrafiltration, real-time RT-PCR detected HEV in 6 of the 26 samples. When threonine buffer was used to concentrate HEV using polyethylene glycol (PEG) precipitation and ultrafiltration, real-time RT-PCR detected HEV in 1 and 3 of the 26 samples, respectively. When glycine buffer was used to concentrate HEV using ultrafiltration and PEG precipitation, real-time RT-PCR detected HEV in 1 and 3 samples of the 26 samples, respectively. When nested RT-PCR was used to detect HEV, all samples tested negative regardless of the type of elution buffer or concentration method used. Therefore, the combination of real-time RT-PCR and ultrafiltration with PBS buffer was the most sensitive and reliable method for detecting HEV in swine livers. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. A new family of polymerases related to superfamily A DNA polymerases and T7-like DNA-dependent RNA polymerases

    PubMed Central

    Iyer, Lakshminarayan M; Abhiman, Saraswathi; Aravind, L

    2008-01-01

    Using sequence profile methods and structural comparisons we characterize a previously unknown family of nucleic acid polymerases in a group of mobile elements from genomes of diverse bacteria, an algal plastid and certain DNA viruses, including the recently reported Sputnik virus. Using contextual information from domain architectures and gene-neighborhoods we present evidence that they are likely to possess both primase and DNA polymerase activity, comparable to the previously reported prim-pol proteins. These newly identified polymerases help in defining the minimal functional core of superfamily A DNA polymerases and related RNA polymerases. Thus, they provide a framework to understand the emergence of both DNA and RNA polymerization activity in this class of enzymes. They also provide evidence that enigmatic DNA viruses, such as Sputnik, might have emerged from mobile elements coding these polymerases. This article was reviewed by Eugene Koonin and Mark Ragan. PMID:18834537

  2. Scarless assembly of unphosphorylated DNA fragments with a simplified DATEL method.

    PubMed

    Ding, Wenwen; Weng, Huanjiao; Jin, Peng; Du, Guocheng; Chen, Jian; Kang, Zhen

    2017-05-04

    Efficient assembly of multiple DNA fragments is a pivotal technology for synthetic biology. A scarless and sequence-independent DNA assembly method (DATEL) using thermal exonucleases has been developed recently. Here, we present a simplified DATEL (sDATEL) for efficient assembly of unphosphorylated DNA fragments with low cost. The sDATEL method is only dependent on Taq DNA polymerase and Taq DNA ligase. After optimizing the committed parameters of the reaction system such as pH and the concentration of Mg 2+ and NAD+, the assembly efficiency was increased by 32-fold. To further improve the assembly capacity, the number of thermal cycles was optimized, resulting in successful assembly 4 unphosphorylated DNA fragments with an accuracy of 75%. sDATEL could be a desirable method for routine manual and automated assembly.

  3. [DNA-dependent DNA polymerase induced by herpes virus papio (HVP) in producing cells].

    PubMed

    D'iachenko, A G; Beriia, L Ia; Matsenko, L D; Kakubava, V V; Kokosh, L V

    1980-11-01

    A new DNA polymerase was found in the cells of suspension lymphoblastoid cultures, which produce lymphotropic baboon herpes virus (HVP). The enzyme was isolated in a partially purified form. In some properties the enzyme differs from other cellular DNA polymerases. The HVP-induced DNA polymerase has the molecular weight of 1,6 x 10(5) and sedimentation coefficient of about 8S. The enzyme is resistant to high salt concentrations and N-ethylmaleimide, but shows a pronounced sensitivity to phosphonoacetate. The enzyme effectively copies "activated" DNA and synthetic deoxyribohomopolymers. The attempts to detect the DNA polymerase activity in HVP virions were unsuccessful.

  4. Regulatory role of Cdx-2 and Taq I polymorphism of vitamin D receptor gene on chemokine expression in pulmonary tuberculosis.

    PubMed

    Harishankar, M; Selvaraj, P

    2016-06-01

    Vitamin D receptor (VDR) gene variants have been shown to be regulating the immune response in tuberculosis. We studied the regulatory role of VDR promoter Cdx-2 and 3'UTR TaqI gene variants on chemokine levels from culture filtrate antigen (CFA) stimulated with or without 1,25(OH)2D3 treated peripheral blood mononuclear cells of 50 pulmonary tuberculosis patients (PTB) and 51 normal healthy controls (HCs). In CFA with 1,25(OH)2D3 treated cultures, the MIP-1α, MIP-1β, RANTES levels were significantly decreased in Cdx-2 AA genotype compared to GG genotype, while a significantly increased MIG level was observed in Cdx-2 AA genotype (p<0.05). In TaqI polymorphism, tt genotype significantly decreased MIP-1β and RANTES levels compared to TT genotype. Moreover, a significantly increased level of IP-10 and MIG was observed in TaqI tt genotype compared with TT genotype (p<0.05). The results suggests that the 1,25(OH)2D3 may alter the chemokine response through the VDR polymorphic variants during infection. Copyright © 2016 American Society for Histocompatibility and Immunogenetics. Published by Elsevier Inc. All rights reserved.

  5. [Effect of BSA on random amplified polymorphic DNA (RAPD) in plants].

    PubMed

    Bian, Cai-Miao; Li, Jun-Min; Jin, Ze-Xin; Ge, Ming-Ju

    2002-05-01

    Using Metasequoia glyptostroboides and Heptacodium miconioides DNA as templates,the effect of bovine serum albumin (BSA) on RAPD in plants was studied. The results showed that suitable concentrations of BSA used in Metasequoia glyptostroboides and Heptacodium miconioides RAPD were different, which were 0.6 microg/microl and 1 microg/microl, respectively. The inhibition of acetylated BSA on the amplification of plant RAPD could be relieved by BSA. BSA could reduce the dosage of Taq DNA polymerase.

  6. Influence of PCR reagents on DNA polymerase extension rates measured on real-time PCR instruments.

    PubMed

    Montgomery, Jesse L; Wittwer, Carl T

    2014-02-01

    Radioactive DNA polymerase activity methods are cumbersome and do not provide initial extension rates. A simple extension rate assay would enable study of basic assumptions about PCR and define the limits of rapid PCR. A continuous assay that monitors DNA polymerase extension using noncovalent DNA dyes on common real-time PCR instruments was developed. Extension rates were measured in nucleotides per second per molecule of polymerase. To initiate the reaction, a nucleotide analog was heat activated at 95 °C for 5 min, the temperature decreased to 75 °C, and fluorescence monitored until substrate exhaustion in 30-90 min. The assay was linear with time for over 40% of the reaction and for polymerase concentrations over a 100-fold range (1-100 pmol/L). Extension rates decreased continuously with increasing monovalent cation concentrations (lithium, sodium, potassium, cesium, and ammonium). Melting-temperature depressors had variable effects. DMSO increased rates up to 33%, whereas glycerol had little effect. Betaine, formamide, and 1,2-propanediol decreased rates with increasing concentrations. Four common noncovalent DNA dyes inhibited polymerase extension. Heat-activated nucleotide analogs were 92% activated after 5 min, and hot start DNA polymerases were 73%-90% activated after 20 min. Simple DNA extension rate assays can be performed on real-time PCR instruments. Activity is decreased by monovalent cations, DNA dyes, and most melting temperature depressors. Rational inclusion of PCR components on the basis of their effects on polymerase extension is likely to be useful in PCR, particularly rapid-cycle or fast PCR.

  7. Interaction of the TaqIA polymorphism and poor parental socialization on changes in adolescent marijuana use.

    PubMed

    Vaske, Jamie

    2013-02-01

    The current study uses data from the genetic subsample from the National Longitudinal Study of Adolescent Health (Add Health) in waves I and II (ages of 11-19 and 12-20 respectively) to investigate the interaction of the TaqIA polymorphism and poor parental socialization on changes in adolescent marijuana use. Results reveal that TaqIA interacts with poor parental rule setting, but not quality of mother-child communication, to influence changes in marijuana use. Adolescents who are homozygous for the A1 and whose parents allow the youth to set their own curfew experience significant increases in marijuana use during adolescence. In contrast, youths with the A1/A1 genotype whose parents do not allow the adolescent to set their own curfew experience significant decreases in the frequency of marijuana use. These results suggest that direct parental social control may effectively suppress the genetic risk of the A1/A1 genotype on marijuana use in adolescence. The study's limitations are noted.

  8. Meta-analysis of Cholesteryl Ester Transfer Protein TaqIB Polymorphism and Risk of Myocardial Infarction

    PubMed Central

    Cao, Min; Zhou, Zhi-Wen; Fang, Bang-Jiang; Zhao, Cheng-Gen; Zhou, Duan

    2014-01-01

    Abstract A number of studies have been conducted to explore the association between the cholesteryl ester transfer protein (CETP) TaqIB polymorphism and risk of myocardial infarction (MI); however, the results are inconsistent. Therefore, we conducted this meta-analysis to clarify the issue based on all the data available. Eligible studies were retrieved by searching PubMed, Embase, Web of Science, and Google Scholar. We calculated the crude odds ratios (ORs) and corresponding 95% confidence intervals (95% CIs) to assess the association between the TaqIB polymorphism and risk of MI. We included 13 studies involving 8733 MI cases and 8573 controls in the meta-analysis. The pooled results from all included studies showed decreased MI risk in the analysis of the B2B2 versus B1B1 (OR = 0.78, 95% CI = 0.68–0.91), dominant (OR = 0.88, 95% CI = 0.77–0.99), and recessive genetic models (OR = 0.84, 95% CI = 0.78–0.91). The frequency of the B2B2 genotype in MI patients was lower (OR = 0.87, 95% CI = 0.81–0.94). However, there was no significant association in the B1B2 versus B1B1 analysis (OR = 0.92, 95% CI = 0.81–1.05) and no significant difference for the B1B1 genotype (OR = 1.04, 95% CI = 0.98–1.11) and B1B2 genotype (OR = 1.03, 95% CI = 0.97–1.08). Cumulative analysis confirmed these results. Our results suggest that the B2B2 genotype of the CETP TaqIB polymorphism is a protective factor against the development of MI. PMID:25474428

  9. Meta-analysis of cholesteryl ester transfer protein TaqIB polymorphism and risk of myocardial infarction.

    PubMed

    Cao, Min; Zhou, Zhi-Wen; Fang, Bang-Jiang; Zhao, Cheng-Gen; Zhou, Duan

    2014-11-01

    A number of studies have been conducted to explore the association between the cholesteryl ester transfer protein (CETP) TaqIB polymorphism and risk of myocardial infarction (MI); however, the results are inconsistent. Therefore, we conducted this meta-analysis to clarify the issue based on all the data available.Eligible studies were retrieved by searching PubMed, Embase, Web of Science, and Google Scholar. We calculated the crude odds ratios (ORs) and corresponding 95% confidence intervals (95% CIs) to assess the association between the TaqIB polymorphism and risk of MI.We included 13 studies involving 8733 MI cases and 8573 controls in the meta-analysis. The pooled results from all included studies showed decreased MI risk in the analysis of the B2B2 versus B1B1 (OR = 0.78, 95% CI = 0.68-0.91), dominant (OR = 0.88, 95% CI = 0.77-0.99), and recessive genetic models (OR = 0.84, 95% CI = 0.78-0.91). The frequency of the B2B2 genotype in MI patients was lower (OR = 0.87, 95% CI = 0.81-0.94). However, there was no significant association in the B1B2 versus B1B1 analysis (OR = 0.92, 95% CI = 0.81-1.05) and no significant difference for the B1B1 genotype (OR = 1.04, 95% CI = 0.98-1.11) and B1B2 genotype (OR = 1.03, 95% CI = 0.97-1.08). Cumulative analysis confirmed these results.Our results suggest that the B2B2 genotype of the CETP TaqIB polymorphism is a protective factor against the development of MI.

  10. Development of a Tandem Repeat-Based Polymerase Chain Displacement Reaction Method for Highly Sensitive Detection of 'Candidatus Liberibacter asiaticus'.

    PubMed

    Lou, Binghai; Song, Yaqin; RoyChowdhury, Moytri; Deng, Chongling; Niu, Ying; Fan, Qijun; Tang, Yan; Zhou, Changyong

    2018-02-01

    Huanglongbing (HLB) is one of the most destructive diseases in citrus production worldwide. Early detection of HLB pathogens can facilitate timely removal of infected citrus trees in the field. However, low titer and uneven distribution of HLB pathogens in host plants make reliable detection challenging. Therefore, the development of effective detection methods with high sensitivity is imperative. This study reports the development of a novel method, tandem repeat-based polymerase chain displacement reaction (TR-PCDR), for the detection of 'Candidatus Liberibacter asiaticus', a widely distributed HLB-associated bacterium. A uniquely designed primer set (TR2-PCDR-F/TR2-PCDR-1R) and a thermostable Taq DNA polymerase mutant with strand displacement activity were used for TR-PCDR amplification. Performed in a regular thermal cycler, TR-PCDR could produce more than two amplicons after each amplification cycle. Sensitivity of the developed TR-PCDR was 10 copies of target DNA fragment. The sensitive level was proven to be 100× higher than conventional PCR and similar to real-time PCR. Data from the detection of 'Ca. L. asiaticus' with filed samples using the above three methods also showed similar results. No false-positive TR-PCDR amplification was observed from healthy citrus samples and water controls. These results thereby illustrated that the developed TR-PCDR method can be applied to the reliable, highly sensitive, and cost-effective detection of 'Ca. L. asiaticus'.

  11. T.I.M.S: TaqMan Information Management System, tools to organize data flow in a genotyping laboratory

    PubMed Central

    Monnier, Stéphanie; Cox, David G; Albion, Tim; Canzian, Federico

    2005-01-01

    Background Single Nucleotide Polymorphism (SNP) genotyping is a major activity in biomedical research. The Taqman technology is one of the most commonly used approaches. It produces large amounts of data that are difficult to process by hand. Laboratories not equipped with a Laboratory Information Management System (LIMS) need tools to organize the data flow. Results We propose a package of Visual Basic programs focused on sample management and on the parsing of input and output TaqMan files. The code is written in Visual Basic, embedded in the Microsoft Office package, and it allows anyone to have access to those tools, without any programming skills and with basic computer requirements. Conclusion We have created useful tools focused on management of TaqMan genotyping data, a critical issue in genotyping laboratories whithout a more sophisticated and expensive system, such as a LIMS. PMID:16221298

  12. Effect of 2',3'-dideoxythymidine-5'-triphosphate on HeLa cell in vitro DNA synthesis: evidence that DNA polymerase alpha is the only polymerase required for cellular DNA replication.

    PubMed Central

    Waqar, M A; Evans, M J; Huberman, J A

    1978-01-01

    We have studied the effects of the nucleotide analogue, 2',3'-dideoxythymidine-5'-triphosphate (ddTTP) on replicative DNA synthesis in HeLa cell lysates. As previously demonstrated (1), such lysates carry out extensive DNA synthesis in vitro, at rates and in a fashion similar to in vivo DNA replication. We report here that all aspects of DNA synthesis in such lysates (total dNTP incorporation, elongation of continuous nascent strands, and the initiation, elongation, and joining of Okazaki pieces) are only slightly inhibited by concentrations of ddTTP as high as 100-500 micrometer when the dTTP concentration is maintained at 10 micrometer. This finding is consistent with the report by Edenberg, Anderson, and DePamphilis (2) that all aspects of replicative in vitro simian virus 40 DNA synthesis are also resistant to ddTTP. We also find, in agreement with Edenberg, Anderson, and DePamphilis (2), that DNA synthesis catalyzed by DNA polymerases beta or gamma is easily inhibited by ddTTP, while synthesis catalyzed by DNA polymerase alpha is very resistant. These observations suggest that DNA polymerase alpha may be the only DNA polymerase required for all aspects of cellular DNA synthesis. PMID:673840

  13. Independent Structural Domains in Paramyxovirus Polymerase Protein*

    PubMed Central

    Dochow, Melanie; Krumm, Stefanie A.; Crowe, James E.; Moore, Martin L.; Plemper, Richard K.

    2012-01-01

    All enzymatic activities required for genomic replication and transcription of nonsegmented negative strand RNA viruses (or Mononegavirales) are believed to be concentrated in the viral polymerase (L) protein. However, our insight into the organization of these different enzymatic activities into a bioactive tertiary structure remains rudimentary. Fragments of Mononegavirales polymerases analyzed to date cannot restore bioactivity through trans-complementation, unlike the related L proteins of segmented NSVs. We investigated the domain organization of phylogenetically diverse Paramyxovirus L proteins derived from measles virus (MeV), Nipah virus (NiV), and respiratory syncytial virus (RSV). Through a comprehensive in silico and experimental analysis of domain intersections, we defined MeV L position 615 as an interdomain candidate in addition to the previously reported residue 1708. Only position 1708 of MeV and the homologous positions in NiV and RSV L also tolerated the insertion of epitope tags. Splitting of MeV L at residue 1708 created fragments that were unable to physically interact and trans-complement, but strikingly, these activities were reconstituted by the addition of dimerization tags to the fragments. Equivalently split fragments of NiV, RSV, and MeV L oligomerized with comparable efficiency in all homo- and heterotypic combinations, but only the homotypic pairs were able to trans-complement. These results demonstrate that synthesis as a single polypeptide is not required for the Mononegavirales polymerases to adopt a proper tertiary conformation. Paramyxovirus polymerases are composed of at least two truly independent folding domains that lack a traditional interface but require molecular compatibility for bioactivity. The functional probing of the L domain architecture through trans-complementation is anticipated to be applicable to all Mononegavirales polymerases. PMID:22215662

  14. T7-RNA Polymerase

    NASA Technical Reports Server (NTRS)

    1997-01-01

    T7-RNA Polymerase grown on STS-81. Structure-Function Relationships of RNA Polymerase: DNA-dependent RNA polymerase is the key enzyme responsible for the biosynthesis of RNA, a process known as transcription. Principal Investigator's include Dr. Dan Carter, Dr. B.C. Wang, and Dr. John Rose of New Century Pharmaceuticals.

  15. Clinical evaluation of a quantitative real time polymerase chain reaction assay for diagnosis of primary Epstein-Barr virus infection in children.

    PubMed

    Pitetti, Raymond D; Laus, Stella; Wadowsky, Robert M

    2003-08-01

    Epstein-Barr virus (EBV) infectious mononucleosis is often diagnosed based on characteristic clinical features and either a positive heterophil antibody test or serology, both of which can be unreliable in young children. Real time quantitative PCR assays that measure EBV DNA load in serum or plasma are highly sensitive in young children, but serum and plasma contain inhibitors of PCR which must be removed by DNA extraction techniques. A real time TaqMan PCR assay was designed and evaluated for simultaneously measuring EBV DNA load and validating the removal of PCR inhibitors from serum samples. A serum sample was available from patients classified serologically as primary EBV infection (n = 28), EBV-seronegative (n = 25) and EBV-seropositive (n = 26). Patients were classified as having EBV infectious mononucleosis if they had specified clinical findings and > or =10% atypical lymphocytes in peripheral blood or had a positive Monospot test result. DNA was purified by a spin column method and tested in PCR reactions with primers for EBV DNA polymerase gene and internal control targets. Amplification of the two PCR products was measured in real time with separate TaqMan DNA probes labeled with various fluorescent reporters. The mean age of study patients was 9 years, 4 months. Twenty-one (75%) of the patients in the primary EBV infection group, one (4%) of the seronegatives and none of the seropositives had detectable EBV DNA. Within the primary infection group, those with detectable virus were more likely than those without detectable virus to have evidence of lymphadenopathy (14 of 16 vs.1 of 5; P = 0.011), higher mean atypical (11.7 vs.0.9%; P = 0.002) and absolute atypical (1.5 vs.0.1 x 109/l; P = 0.004) lymphocyte count, higher mean absolute lymphocyte count (4.7 vs.2.3 x 109/l; P = 0.026) and higher mean aspartate aminotransferase value (119.8 vs.37.3 IU/l; P = 0.036). Ten patients, all in the primary infection group, had EBV infectious mononucleosis, and all

  16. TaqMan PCR for Detection of Vibrio cholerae O1, O139, Non-O1, and Non-O139 in Pure Cultures, Raw Oysters, and Synthetic Seawater†

    PubMed Central

    Lyon, W. J.

    2001-01-01

    Vibrio cholerae is recognized as a leading human waterborne pathogen. Traditional diagnostic testing for Vibrio is not always reliable, because this bacterium can enter a viable but nonculturable state. Therefore, nucleic acid-based tests have emerged as a useful alternative to traditional enrichment testing. In this article, a TaqMan PCR assay is presented for quantitative detection of V. cholerae in pure cultures, oysters, and synthetic seawater. Primers and probe were designed from the nonclassical hemolysin (hlyA) sequence of V. cholerae strains. This probe was applied to DNA from 60 bacterial strains comprising 21 genera. The TaqMan PCR assay was positive for all of the strains of V. cholerae tested and negative for all other species of Vibrio tested. In addition, none of the other genera tested was amplified with the TaqMan primers and probe used in this study. The results of the TaqMan PCR with raw oysters and spiked with V. cholerae serotypes O1 and O139 were comparable to those of pure cultures. The sensitivity of the assay was in the range of 6 to 8 CFU g−1 and 10 CFU ml−1 in spiked raw oyster and synthetic seawater samples, respectively. The total assay could be completed in 3 h. Quantification of the Vibrio cells was linear over at least 6 log units. The TaqMan probe and primer set developed in this study can be used as a rapid screening tool for the presence of V. cholerae in oysters and seawater without prior isolation and characterization of the bacteria by traditional microbiological methods. PMID:11571173

  17. Inhibition of herpes simplex virus DNA polymerase by purine ribonucleoside monophosphates.

    PubMed

    Frank, K B; Cheng, Y C

    1986-02-05

    Purine ribonucleoside monophosphates were found to inhibit chain elongation catalyzed by herpes simplex virus (HSV) DNA polymerase when DNA template-primer concentrations were rate-limiting. Inhibition was fully competitive with DNA template-primer during chain elongation; however, DNA polymerase-associated exonuclease activity was inhibited noncompetitively with respect to DNA. Combinations of 5'-GMP and phosphonoformate were kinetically mutually exclusive in dual inhibitor studies. Pyrimidine nucleoside monophosphates and deoxynucleoside monophosphates were less inhibitory than purine riboside monophosphates. The monophosphates of 9-beta-D-arabinofuranosyladenine, Virazole (1-beta-D-ribofuranosyl-1,2,4-triazole-3-carboxamide), 9-(2-hydroxyethoxymethyl)guanine, and 9-(1,3-dihydroxy-2-propoxymethyl)guanine exerted little or no inhibition. In contrast to HSV DNA polymerase, human DNA polymerase alpha was not inhibited by purine ribonucleoside monophosphates. These studies suggest the possibility of a physiological role of purine ribonucleoside monophosphates as regulators of herpesvirus DNA synthesis and a new approach to developing selective anti-herpesvirus compounds.

  18. Fluorescence resonance energy transfer analysis of escherichia coli RNA polymerase and polymerase-DNA complexes.

    PubMed

    Heyduk, T; Niedziela-Majka, A

    Fluorescence resonance energy transfer (FRET) is a technique allowing measurements of atomic-scale distances in diluted solutions of macromolecules under native conditions. This feature makes FRET a powerful tool to study complicated biological assemblies. In this report we review the applications of FRET to studies of transcription initiation by Escherichia coli RNA polymerase. The versatility of FRET for studies of a large macromolecular assembly such as RNA polymerase is illustrated by examples of using FRET to address several different aspects of transcription initiation by polymerase. FRET has been used to determine the architecture of polymerase, its complex with single-stranded DNA, and the conformation of promoter fragment bound to polymerase. FRET has been also used as a binding assay to determine the thermodynamics of promoter DNA fragment binding to the polymerase. Functional conformational changes in the specificity subunit of polymerase responsible for the modulation of the promoter binding activity of the enzyme and the mechanistic aspects of the transition from the initiation to the elongation complex were also investigated. Copyright 2002 Wiley Periodicals, Inc.

  19. Comparative diagnostic evaluation of OMP31 gene based TaqMan® real-time PCR assay with visual LAMP assay and indirect ELISA for caprine brucellosis.

    PubMed

    Saini, Suman; Gupta, V K; Gururaj, K; Singh, D D; Pawaiya, R V S; Gangwar, N K; Mishra, A K; Dwivedi, Deepak; Andani, Dimple; Kumar, Ashok; Goswami, T K

    2017-08-01

    Brucellosis is one of the leading causes of abortion in domestic animals that imposes costs on both economy and society. The disease is highly zoonotic and poses risk to animal handlers due to its zoonotic nature. It causes stillbirth, loss of kids and abortion in last term of pregnancy. Reproductive damage includes infertility in does and orchitis and epididymitis in breeding bucks, which result in high financial losses to farmers and the agriculture industry as a whole. It requires highly sensitive and specific assays to diagnose the disease at field level. In the current study, a visual loop-mediated isothermal amplification (LAMP) assay and the TaqMan® real-time PCR were developed with high sensitivity and specificity. For the TaqMan® probe, real-time PCR primers were developed using Omp31 gene as target and primers were designed using discontiguous conserved sequences of Omp31 gene. The Omp31 probes were designed by attaching 6-FAM reporter dye at the 5' end and BHQ-1 quencher at the 3' end. Published primers were used for visual LAMP assay targeting the Omp25 gene. Sensitivity of the standardized visual LAMP assay and TaqMan® real-time PCR assay was determined by serial dilution of positive Brucella melitensis DNA (10 2 to 10 -4  ng) obtained from standard culture. The TaqMan® probe real-time assay can detect as low as 100 fg of B. melitensis DNA, whereas culture from vaginal swab washings has a limit of detection (LOD) of only 1 cfu/ml. Similarly, the visual LAMP assay can detect as low as 10 fg of B. melitensis DNA as compared to an LOD of 30 cfu/ml from culture of vaginal swab washings. Both assays were compared with serological tests (serum tube agglutination test (STAT) and indirect enzyme-linked immunosorbent assay (iELISA)) for diagnostic sensitivity and specificity. Diagnostic sensitivities and specificities for TaqMan® real-time PCR vs. LAMP assays were 98 and 100% vs. 100 and 97.8%, respectively. Results of visual LAMP assay indicated that

  20. A new building block for DNA network formation by self-assembly and polymerase chain reaction.

    PubMed

    Bußkamp, Holger; Keller, Sascha; Robotta, Marta; Drescher, Malte; Marx, Andreas

    2014-01-01

    The predictability of DNA self-assembly is exploited in many nanotechnological approaches. Inspired by naturally existing self-assembled DNA architectures, branched DNA has been developed that allows self-assembly to predesigned architectures with dimensions on the nanometer scale. DNA is an attractive material for generation of nanostructures due to a plethora of enzymes which modify DNA with high accuracy, providing a toolbox for many different manipulations to construct nanometer scaled objects. We present a straightforward synthesis of a rigid DNA branching building block successfully used for the generation of DNA networks by self-assembly and network formation by enzymatic DNA synthesis. The Y-shaped 3-armed DNA construct, bearing 3 primer strands is accepted by Taq DNA polymerase. The enzyme uses each arm as primer strand and incorporates the branched construct into large assemblies during PCR. The networks were investigated by agarose gel electrophoresis, atomic force microscopy, dynamic light scattering, and electron paramagnetic resonance spectroscopy. The findings indicate that rather rigid DNA networks were formed. This presents a new bottom-up approach for DNA material formation and might find applications like in the generation of functional hydrogels.

  1. Specific Reaction Patterns to Distinct Positive Emotional Cues Related to Incentive Motivation in Dependence of the Taq1A-Polymorphism: Molecular Genetic Associations of Early and Late Event-Related Potentials.

    PubMed

    Munk, Aisha J L; Wielpuetz, Catrin; Osinsky, Roman; Müller, Erik M; Grant, Phillip; Hennig, Jürgen

    2016-01-01

    Early and late event-related potential (ERP) responses, representing early subconscious and late motivational processes, were recorded for positive emotional words related to 'wanting' and 'liking', in dependence of the dopamine-related Taq1A genotype (ANKK1/DRD2). Research suggests that 'wanting' as opposed to 'liking' is related to dopaminergic processes. Therefore, it was hypothesized that risk allele carriers of the Taq1A polymorphism exhibit late ERP changes in reaction to words representing incentive motivation, i.e. 'wanting' (word categories 'lust' and 'anticipation'), but not to words representing 'liking' ('closeness'). Seventy-two male participants performed an emotional-word Stroop task during EEG recording and were genotyped according to the Taq1A polymorphism of ANKK1/DRD2. Positive emotional words related to anticipation and lust revealed blunted responses in the late positive potential (LPP) in carriers of the A1 allele, an effect absent in response to 'liking'-related words. These differences were not evident in the earlier posterior negativity (EPN). As no differences in dependence of the Taq1A genotype were observed in reaction to 'wanting'- and 'liking'-related words in the EPN, but merely in the LPP, it can be assumed that incentive-motivational stimuli only modify motivation-related ERP responses in carriers of the A1 allele of the Taq1A polymorphism, indicating the role of dopamine in late ERP components. © 2016 S. Karger AG, Basel.

  2. Vitamin D receptor gene methylation is associated with ethnicity, tuberculosis and TaqI polymorphism

    PubMed Central

    Andraos, Charlene; Koorsen, Gerrit; Knight, Julian C; Bornman, Liza

    2014-01-01

    The Vitamin D Receptor (VDR) gene encodes a transcription factor which, on activation by vitamin D, modulates diverse biological processes including calcium homeostasis and immune function. Genetic variation involving VDR shows striking differences in allele frequency between populations and has been associated with disease susceptibility including tuberculosis and autoimmunity, although results have often been conflicting. We hypothesized that methylation of VDR may be population specific and that the combination of differential methylation and genetic variation may characterise TB predisposition. We use bisulphite conversion and/or pyrosequencing to analyse the methylation status of 17 CpGs of VDR and to genotype 7 SNPs in the 3′ CpG Island (CGI 1060), including the commonly studied SNPs ApaI (rs7975232) and TaqI (rs731236). We show that for lymphoblastoid cell lines from two ethnically diverse populations (Yoruba from HapMap, n=30 and Caucasians, n=30) together with TB cases (n=32) and controls (n=29) from the Venda population of South Africa there are methylation variable positions (MVPs) in the 3′ end that significantly distinguish ethnicity (9/17 CpGs) and TB status (3/17 CpGs). Moreover methylation status shows complex association with TaqI genotype highlighting the need to consider both genetic and epigenetic variants in genetic studies of VDR association with disease. PMID:21168462

  3. Detection and quantification of Renibacterium salmoninarum DNA in salmonid tissues by real-time quantitative polymerase chain reaction analysis

    USGS Publications Warehouse

    Chase, D.M.; Elliott, D.G.; Pascho, R.J.

    2006-01-01

    Renibacterium salmoninarum is an important salmonid pathogen that is difficult to culture. We developed and assessed a real-time, quantitative, polymerase chain reaction (qPCR) assay for the detection and enumeration of R. salmoninarum. The qPCR is based on TaqMan technology and amplifies a 69-base pair (bp) region of the gene encoding the major soluble antigen (MSA) of R. salmoninarum. The qPCR assay consistently detected as few as 5 R. salmoninarum cells per reaction in kidney tissue. The specificity of the qPCR was confirmed by testing the DNA extracts from a panel of microorganisms that were either common fish pathogens or reported to cause false-positive reactions in the enzyme-linked immunosorbent assay (ELISA). Kidney samples from 38 juvenile Chinook salmon (Oncorhynchus tshawytscha) in a naturally infected population were examined by real-time qPCR, a nested PCR, and ELISA, and prevalences of R. salmoninarum detected were 71, 66, and 71%, respectively. The qPCR should be a valuable tool for evaluating the R. salmoninarum infection status of salmonids.

  4. DNA polymerases in the rat pituitary gland. Effect of oestrogens and sulpiride.

    PubMed

    Jahn, G A; Kalbermann, L E; Machiavelli, G; Szijan, I; Burdman, J A

    1980-06-01

    Changes in the activity of DNA polymerase and [3H]thymidine incorporation into the DNA of the anterior pituitary gland were studied in oestrogenized male and pregnant rats. The activities of DNA polymerases alpha and beta, extracted in Tris--HCl or in sodium phosphate buffer were characterized according to their optimum pH and sensitivity to N-ethyl-maleimide. In the Tris-soluble fraction DNA polymerase activity is almost exclusively alpha, while in the phosphate soluble fraction it is a mixture of alpha and beta. The administration of oestrogens to male rats increases [3H]thymidine incorporation and enhances the activity of DNA polymerases in the Tris-soluble fraction, while the activity of the phosphate-soluble enzyme does not change. Sulpiride administration results in a further increment of [3H]thymidine incorporation and of DNA polymerase activity in the Tris-soluble fraction. In pregnant rats sulpiride also produces an increment of DNA polymerase activity only in the Tris-soluble fraction. Thus, the activity of the Tris-soluble fraction from APG behaves as DNA polymerase alpha. This activity changes in parallel with [3H]thymidine incorporation into DNA which is an indication of cell proliferation in the gland. This is discussed with respect to a negative feedback mechanism between intracellular prolactin concentration and DNA synthesis in the APG.

  5. Rapid identification of tomato Sw-5 resistance-breaking isolates of Tomato spotted wilt virus using high resolution melting and TaqMan SNP Genotyping assays as allelic discrimination techniques.

    PubMed

    di Rienzo, Valentina; Bubici, Giovanni; Montemurro, Cinzia; Cillo, Fabrizio

    2018-01-01

    In tomato, resistance to Tomato spotted wilt virus (TSWV) is conferred by the dominant gene, designated Sw-5. Virulent Sw-5 resistance breaking (SRB) mutants of TSWV have been reported on Sw-5 tomato cultivars. Two different PCR-based allelic discrimination techniques, namely Custom TaqMan™ SNP Genotyping and high-resolution melting (HRM) assays, were developed and compared for their ability to distinguish between avirulent (Sw-5 non-infecting, SNI) and SRB biotypes. TaqMan assays proved to be more sensitive (threshold of detection in a range of 50-70 TSWV RNA copies) and more reliable than HRM, assigning 25 TSWV isolates to their correct genotype with an accuracy of 100%. Moreover, the TaqMan SNP assays were further improved developing a rapid and simple protocol that included crude leaf extraction for RNA template preparations. On the other hand, HRM assays showed higher levels of sensitivity than TaqMan when used to co-detect both biotypes in different artificial mixtures. These diagnostic assays contributed to gain preliminary information on the epidemiology of TSWV isolates in open field conditions. In fact, the presented data suggest that SRB isolates are present as stable populations established year round, persisting on both winter (globe artichoke) and summer (tomato) crops, in the same cultivated areas of Southern Italy.

  6. Simultaneous detection and differentiation of three Potyviridae viruses by a multiplex TaqMan real time RT-PCR assay

    USDA-ARS?s Scientific Manuscript database

    A multiplex TaqMan real time RT-PCR was developed for detection and differentiation of Sweet potato virus G, Sweet potato latent virus and Sweet potato mild mottle virus in one tube. Amplification and detection of a fluorogenic cytochrome oxidase gene was included as an internal control. The assay w...

  7. Direct measurement of the poliovirus RNA polymerase error frequency in vitro

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ward, C.D.; Stokes, M.A.M.; Flanegan, J.B.

    1988-02-01

    The fidelity of RNA replication by the poliovirus-RNA-dependent RNA polymerase was examined by copying homopolymeric RNA templates in vitro. The poliovirus RNA polymerase was extensively purified and used to copy poly(A), poly(C), or poly(I) templates with equimolar concentrations of noncomplementary and complementary ribonucleotides. The error frequency was expressed as the amount of a noncomplementary nucleotide incorporated divided by the total amount of complementary and noncomplementary nucleotide incorporated. The polymerase error frequencies were very high, depending on the specific reaction conditions. The activity of the polymerase on poly(U) and poly(G) was too low to measure error frequencies on these templates. Amore » fivefold increase in the error frequency was observed when the reaction conditions were changed from 3.0 mM Mg{sup 2+} (pH 7.0) to 7.0 mM Mg{sup 2+} (pH 8.0). This increase in the error frequency correlates with an eightfold increase in the elongation rate that was observed under the same conditions in a previous study.« less

  8. Protein Affinity Chromatography with Purified Yeast DNA Polymerase α Detects Proteins that Bind to DNA Polymerase

    NASA Astrophysics Data System (ADS)

    Miles, Jeff; Formosa, Tim

    1992-02-01

    We have overexpressed the POL1 gene of the yeast Saccharomyces cerevisiae and purified the resulting DNA polymerase α polypeptide in an apparently intact form. We attached the purified DNA polymerase covalently to an agarose matrix and used this matrix to chromatograph extracts prepared from yeast cells. At least six proteins bound to the yeast DNA polymerase α matrix that did not bind to a control matrix. We speculate that these proteins might be DNA polymerase α accessory proteins. Consistent with this interpretation, one of the binding proteins, which we have named POB1 (polymerase one binding), is required for normal chromosome transmission. Mutations in this gene cause increased chromosome loss and an abnormal cell morphology, phenotypes that also occur in the presence of mutations in the yeast α or δ polymerase genes. These results suggest that the interactions detected by polymerase affinity chromatography are biologically relevant and may help to illuminate the architecture of the eukaryotic DNA replication machinery.

  9. Quantification of Paratrichodorus allius in DNA extracted from soil using TaqMan probe and SYBR green real-time PCR assays

    USDA-ARS?s Scientific Manuscript database

    The ectoparasitic stubby root nematode Paratrichodorus allius transmits Tobacco rattle virus, which causes corky ringspot disease resulting in significant economic losses in the potato industry. This study developed a diagnostic method for direct quantification of P. allius from soil DNA using a Taq...

  10. Transcription in Yeast: Separation and Properties of Multiple RNA Polymerases

    PubMed Central

    Adman, Ray; Schultz, Loren D.; Hall, Benjamin D.

    1972-01-01

    Four peaks of DNA-directed RNA polymerase activity are resolved by salt gradient elution of a sonicated yeast cell extract on DEAE-Sephadex. The enzymes, which are named IA, IB, II, and III in order of elution, all appear to come from cell nuclei. Only enzyme II is sensitive to α-amanitin. All enzymes are more active with Mn++ than with Mg++ as divalent ion. Enzymes IB and II have salt optima in the range 0.05-0.10 M (NH4)2SO4, whereas enzyme III is maximally active at 0.20-0.25 M (NH4)2SO4. With optimal salt concentration and saturating DNA, the template preference ratio, activity on native calfthymus DNA divided by activity on denatured calf-thymus DNA, is 2.2 for IB, 0.4 for II, and 3.5 for III. None of the yeast polymerases was inhibited by rifamycin SV. Rifamycin AF/013 effectively inhibited polymerases IB, II, and III. PMID:4558656

  11. NcoI and TaqI RFLPs for human M creatine kinase (CKM)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Perryman, M.B.; Hejtmancik, J.F.; Ashizawa, Tetsuo

    1988-09-12

    Probe pHMCKUT contains a 135 bp cDNA fragment inserted into pGEM 3. The probe corresponds to nucleotides 1,201 to 1,336 located in the 3{prime} untranslated region of human M creatine kinase. The probe is specific for human M creatine kinase and does not hybridize to human B cretine kinase sequences. NcoI identifies a two allele polymorphism of a band at either 2.5 kb or 3.6 kb. TaqI identifies a two allele polymorphism at either 3.8 kb or 4.5 kb. Human M creatine has been localized to chromosome 19q. Autosomal co-dominant inheritance was shown in six informative Caucasian families.

  12. Detection of Citrus leprosis virus C using specific primers and TaqMan probe in one-step real-time reverse-transcription polymerase chain reaction assays.

    PubMed

    Choudhary, Nandlal; Wei, G; Govindarajulu, A; Roy, Avijit; Li, Wenbin; Picton, Deric D; Nakhla, M K; Levy, L; Brlansky, R H

    2015-11-01

    Citrus leprosis virus C (CiLV-C), a causal agent of the leprosis disease in citrus, is mostly present in the South and Central America and spreading toward the North America. To enable better diagnosis and inhibit the further spread of this re-emerging virus a quantitative (q) real-time reverse transcription polymerase chain reaction (qRT-PCR) assay is needed for early detection of CiLV-C when the virus is present in low titer in citrus leprosis samples. Using the genomic sequence of CiLV-C, specific primers and probe were designed and synthesized to amplify a 73 nt amplicon from the movement protein (MP) gene. A standard curve of the 73 nt amplicon MP gene was developed using known 10(10)-10(1) copies of in vitro synthesized RNA transcript to estimate the copy number of RNA transcript in the citrus leprosis samples. The one-step qRT-PCR detection assays for CiLV-C were determined to be 1000 times more sensitive when compared to the one-step conventional reverse transcription polymerase chain reaction (RT-PCR) CiLV-C detection method. To evaluate the quality of the total RNA extracts, NADH dehydrogenase gene specific primers (nad5) and probe were included in reactions as an internal control. The one-step qRT-PCR specificity was successfully validated by testing for the presence of CiLV-C in the total RNA extracts of the citrus leprosis samples collected from Belize, Costa Rica, Mexico and Panama. Implementation of the one-step qRT-PCR assays for CiLV-C diagnosis should assist regulatory agencies in surveillance activities to monitor the distribution pattern of CiLV-C in countries where it is present and to prevent further dissemination into citrus growing countries where there is no report of CiLV-C presence. Published by Elsevier B.V.

  13. Development and comparison of TaqMan-based real-time PCR assays for detection and differentiation of Ralstonia solanacearum strains

    USDA-ARS?s Scientific Manuscript database

    Bacterial wilt caused by Ralstonia solanacearum is destructive to many plant species worldwide. The race 3 biovar 2 (r3b2) strains of R. solanacearum infect potatoes in temperature climates and are listed as select agents by the U.S. government. TaqMan-based real-time quantitative PCR (qPCR) is comm...

  14. DNA-polymerase induced by Herpesvirus papio (HVP) in cells of lymphoblastoid cultures derived from lymphomatous baboons. Report V.

    PubMed

    Djachenko, A G; Lapin, B A

    1981-01-01

    A new DNA-polymerase was found in the cells of suspension lymphoblastoid cultures which produce lymphotropic baboon herpesvirus (HVP). This enzyme was isolated in a partially purified form. Some of its properties vary from those of other cellular DNA-polymerases. HVP-induced DNA-polymerase has a molecule weight of 160,000 and sedimentation coefficient of about 8 S. The enzyme is resistant to high salt concentration and N-ethylmaleimide, but it is very sensitive to phosphonoacetate. It effectively copies "activated" DNA and synthetic deoxyribohomopolymers. Attempts to reveal the DNA-polymerase activity in HVP virions were unsuccessful.

  15. Development of SYBR Green and TaqMan quantitative real-time PCR assays for hepatopancreatic parvovirus (HPV) infecting Penaeus monodon in India.

    PubMed

    Yadav, Reena; Paria, Anutosh; Mankame, Smruti; Makesh, M; Chaudhari, Aparna; Rajendran, K V

    2015-12-01

    Hepatopancreatic parvovirus (HPV) infects Penaeus monodon and causes mortality in the larval stages. Further, it has been implicated in the growth retardation in cultured P. monodon. Though different geographical isolates of HPV show large sequence variations, a sensitive PCR assay specific to Indian isolate has not yet been reported. Here, we developed a sensitive SYBR Green-based and TaqMan real-time PCR for the detection and quantification of the virus. A 441-bp PCR amplicon was cloned in pTZ57 R/T vector and the plasmid copy number was estimated. A 10-fold serial dilution of the plasmid DNA from 1 × 10(9) copies to 1 copy was prepared and used as the standard. The primers were tested initially using the standard on a conventional PCR format to determine the linearity of detection. The standards were further tested on real-time PCR format using SYBR Green and TaqMan chemistry and standard curves were generated based on the Ct values from three well replicates for each dilution. The assays were found to be sensitive, specific and reproducible with a wide dynamic range (1 × 10(9) to 10 copies) with coefficient of regression (R(2)) > 0.99, calculated average slope -3.196 for SYBR Green assay whereas, for TaqMan assay it was >0.99 and -3.367, respectively. The intra- and inter-assay variance of the Ct values ranged from 0.26% to 0.94% and 0.12% to 0.81%, respectively, for SYBR Green assay, and the inter-assay variance of the Ct values for TaqMan assay ranged from 0.07% to 1.93%. The specificity of the assays was proved by testing other DNA viruses of shrimp such as WSSV, IHHNV and MBV. Standardized assays were further tested to detect and quantify HPV in the post-larvae of P. monodon. The result was further compared with conventional PCR to test the reproducibility of the test. The assay was also used to screen Litopeneaus vannamei, Macrobrachium rosenbergii and Scylla serrata for HPV. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Reducing nontemplated 3' nucleotide addition to polynucleotide transcripts

    DOEpatents

    Kao, C. Cheng

    2000-01-01

    Non-template 3' nucleotide addition to a transcript is reduced by transcribing a transcript from a template comprising an ultimate and/or penultimate 5' ribose having a C'2 substituent such as methoxy, which reduces non-template 3' nucleotide addition to the transcript. The methods are shown to be applicable to a wide variety of polymerases, including Taq, T7 RNA polymerase, etc.

  17. Structural explanation for the role of Mn2+ in the activity of phi6 RNA-dependent RNA polymerase.

    PubMed

    Poranen, Minna M; Salgado, Paula S; Koivunen, Minni R L; Wright, Sam; Bamford, Dennis H; Stuart, David I; Grimes, Jonathan M

    2008-11-01

    The biological role of manganese (Mn(2+)) has been a long-standing puzzle, since at low concentrations it activates several polymerases whilst at higher concentrations it inhibits. Viral RNA polymerases possess a common architecture, reminiscent of a closed right hand. The RNA-dependent RNA polymerase (RdRp) of bacteriophage 6 is one of the best understood examples of this important class of polymerases. We have probed the role of Mn(2+) by biochemical, biophysical and structural analyses of the wild-type enzyme and of a mutant form with an altered Mn(2+)-binding site (E491 to Q). The E491Q mutant has much reduced affinity for Mn(2+), reduced RNA binding and a compromised elongation rate. Loss of Mn(2+) binding structurally stabilizes the enzyme. These data and a re-examination of the structures of other viral RNA polymerases clarify the role of manganese in the activation of polymerization: Mn(2+) coordination of a catalytic aspartate is necessary to allow the active site to properly engage with the triphosphates of the incoming NTPs. The structural flexibility caused by Mn(2+) is also important for the enzyme dynamics, explaining the requirement for manganese throughout RNA polymerization.

  18. TaqMan Real-Time PCR Assays To Assess Arbuscular Mycorrhizal Responses to Field Manipulation of Grassland Biodiversity: Effects of Soil Characteristics, Plant Species Richness, and Functional Traits▿ †

    PubMed Central

    König, Stephan; Wubet, Tesfaye; Dormann, Carsten F.; Hempel, Stefan; Renker, Carsten; Buscot, François

    2010-01-01

    Large-scale (temporal and/or spatial) molecular investigations of the diversity and distribution of arbuscular mycorrhizal fungi (AMF) require considerable sampling efforts and high-throughput analysis. To facilitate such efforts, we have developed a TaqMan real-time PCR assay to detect and identify AMF in environmental samples. First, we screened the diversity in clone libraries, generated by nested PCR, of the nuclear ribosomal DNA internal transcribed spacer (ITS) of AMF in environmental samples. We then generated probes and forward primers based on the detected sequences, enabling AMF sequence type-specific detection in TaqMan multiplex real-time PCR assays. In comparisons to conventional clone library screening and Sanger sequencing, the TaqMan assay approach provided similar accuracy but higher sensitivity with cost and time savings. The TaqMan assays were applied to analyze the AMF community composition within plots of a large-scale plant biodiversity manipulation experiment, the Jena Experiment, primarily designed to investigate the interactive effects of plant biodiversity on element cycling and trophic interactions. The results show that environmental variables hierarchically shape AMF communities and that the sequence type spectrum is strongly affected by previous land use and disturbance, which appears to favor disturbance-tolerant members of the genus Glomus. The AMF species richness of disturbance-associated communities can be largely explained by richness of plant species and plant functional groups, while plant productivity and soil parameters appear to have only weak effects on the AMF community. PMID:20418424

  19. Two Novel Real-Time Reverse Transcriptase PCR Assays for Rapid Detection of Bacterial Contamination in Platelet Concentrates

    PubMed Central

    Dreier, Jens; Störmer, Melanie; Kleesiek, Knut

    2004-01-01

    The incidence of platelet bacterial contamination is approximately 1 per 2,000 units and has been acknowledged as the most frequent infectious risk from transfusion. In preliminary studies, the sterility of platelet concentrates (PCs) was tested with an automated bacterial blood culturing system and molecular genetic assays. Two real-time reverse transcriptase PCR (RT-PCR) assays performed in a LightCycler instrument were developed and compared regarding specificity and sensitivity by the use of different templates to detect the majority of the clinically important bacterial species in platelets. Primers and probes specific for the conserved regions of the eubacterial 23S rRNA gene or the groEL gene (encoding the 60-kDa heat shock protein Hsp60) were designed. During the development of the 23S rRNA RT-PCR, problems caused by the contamination of reagents with bacterial DNA were noted. Treatment with 8-methoxypsoralen and UV irradiation reduced the level of contaminating DNA. The sensitivity of the assays was greatly influenced by the enzyme system which was used. With rTth DNA polymerase in a one-enzyme system, we detected 500 CFU of Escherichia coli or Staphylococcus epidermidis/ml. With a two-enzyme system consisting of Moloney murine leukemia virus RT and Taq DNA polymerase, we detected 16 CFU/ml. With groEL mRNA as the target of RT-PCR under optimized conditions, we detected 125 CFU of E. coli/ml, and no problems with false-positive results caused by reagent contamination or a cross-reaction with human nucleic acids were found. Furthermore, the use of mRNA as an indicator of viability was demonstrated. Here we report the application of novel real-time RT-PCR assays for the detection of bacterial contamination of PCs that are appropriate for transfusion services. PMID:15472337

  20. RNA polymerase gene, microorganism having said gene and the production of RNA polymerase by the use of said microorganism

    DOEpatents

    Kotani, Hirokazu; Hiraoka, Nobutsugu; Obayashi, Akira

    1991-01-01

    SP6 bacteriophage RNA polymerase is produced by cultivating a new microorganism (particularly new strains of Escherichia coli) harboring a plasmid that carries SP6 bacteriophage RNA polymerase gene and recovering SP6 bacteriophage RNA polymerase from the culture broth. SP6 bacteriophage RNA polymerase gene is provided as are new microorganisms harboring a plasmid that carries SP6 bacteriophage RNA polymerase gene.

  1. Cholesterol ester transfer protein (CETP) Taq1B polymorphism influences the effect of a standardized cardiac rehabilitation program on lipid risk markers.

    PubMed

    Ayyobi, Amir F; Hill, John S; Molhuizen, Henri O F; Lear, Scott A

    2005-08-01

    Cardiac rehabilitation programs (CR) are standard treatment for patients with coronary artery disease (CAD), yet a large variation in risk factor and lipoprotein changes exists. We investigated the role of three common genetic polymorphisms (CETP Taq1B, LIPC -514 and apo E) associated with alterations of lipoprotein metabolism, in patients before and after standardized CR. Three-hundred and seven patients were recruited for this study. DNA samples were collected and all three genotypes were determined for every patient. While the hepatic lipase LIPC promoter polymorphism and apo E genotype showed little or no correlation with response to CR, CETP Taq1B showed significant association with changes in plasma lipid and lipoproteins. The B1 homozygotes for CETP Taq1B genotype showed significant reduction in TC (-0.25+/-0.07, p < 0.01), LDL-C (-0.15+/-0.06, p < 0.050) and TG (-0.20+/-0.08, p < 0.05). B2 carriers showed no significant change in these parameters. HDL-C, exercise capacity and BMI improved independent of genotype. Individuals with the B1B1 genotype appear to respond well to CR, whereas B2 carriers exhibit marginal gains in lipoprotein risk factors. Although the B2 carriers had similar benefits in exercise capacity and weight reduction, long-term consequences of little or no change in lipoprotein risk factors require further investigation to establish appropriate management strategies.

  2. Hydrogen peroxide-induced injury of cells and its prevention by inhibitors of poly(ADP-ribose) polymerase.

    PubMed Central

    Schraufstatter, I U; Hyslop, P A; Hinshaw, D B; Spragg, R G; Sklar, L A; Cochrane, C G

    1986-01-01

    H2O2, in concentrations achieved in the proximity of stimulated leukocytes, induces injury and lysis of target cells. This may be an important aspect of inflammatory injury of tissues. Cell lysis in two target cells, the murine macrophage-like tumor cell line P388D1 and human peripheral lymphocytes, was found to be associated with activation of poly(ADP-ribose) polymerase (EC 2.4.2.30), a nuclear enzyme. This enzyme is activated under various conditions of DNA damage. Poly(ADP-ribose) polymerase utilizes nicotinamide adenine dinucleotide (NAD) as substrate and has been previously shown to consume NAD during exposure of cells to oxidants that was associated with inhibition of glycolysis, a decrease in cellular ATP, and cell death. In the current studies, inhibition of poly(ADP-ribose) polymerase by 3-aminobenzamide, nicotinamide, or theophylline in cells exposed to lethal concentrations of H2O2 prevented the sequence of events that eventually led to cell lysis--i.e., the decrease in NAD, followed by depletion of ATP, influx of extracellular Ca2+, actin polymerization and, finally, cell death. DNA damage, the initial stimulus for poly(ADP-ribose) polymerase activation, occurred despite the inhibition of this enzyme. Cells exposed to oxidant in the presence of the poly(ADP-ribose) polymerase inhibitor 3-aminobenzamide failed to demonstrate repair of DNA strand breaks. PMID:2941760

  3. High resolution TaqMan real-time PCR approach to detect hazelnut DNA encoding for ITS rDNA in foods.

    PubMed

    López-Calleja, Inés María; de la Cruz, Silvia; Pegels, Nicolette; González, Isabel; García, Teresa; Martín, Rosario

    2013-12-01

    A broad range of foods have been described as causing allergies, but the majority of allergic reactions can be ascribed to a limited number of food components. Recent extensive surveys showed how tree nuts, particularly hazelnut (Corylus avellana L.) seeds, rank amongst the most important sources of food allergy. In order to protect the allergic consumer, efficient and reliable methods are required for the detection of allergenic ingredients. For this purpose, we have developed a real-time polymerase chain reaction (PCR) for detection of hazelnut in commercial food products. In this way a specific hazelnut primer pair based on the ITS marker (70 bp) and a nuclease (TaqMan) probe labelled with FAM and BHQ were designed. Sensibility of real-time PCR was determined by analysis of raw and heat treated hazelnut-wheat flour mixtures with a range of detection of 0.1-100,000 ppm. Practical applicability of the real-time PCR assay developed for determining hazelnut in different food matrices was investigated by analyzing 179 commercial foodstuffs comprising snacks, biscuits, chocolates, bonbons, creams, nut bars, ice creams, precooked meals, breads, beverages, yogurts, cereals, meat products, rice cake and nougat. From the total of samples analyzed, 40 commercial food products that didn't declare hazelnut nor traces on the label were found to contain hazelnut. The real-time PCR method proposed herein due to its high sensitivity facilitates the detection of hazelnut traces in commercial food products and can also be useful for monitoring the effectiveness of cleaning processes and as consequence, can help to prevent the food allergic consumer from unintentional ingestion of hidden allergens. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. Dual Combined Real-Time Reverse Transcription Polymerase Chain Reaction Assay for the Diagnosis of Lyssavirus Infection.

    PubMed

    Dacheux, Laurent; Larrous, Florence; Lavenir, Rachel; Lepelletier, Anthony; Faouzi, Abdellah; Troupin, Cécile; Nourlil, Jalal; Buchy, Philippe; Bourhy, Herve

    2016-07-01

    The definitive diagnosis of lyssavirus infection (including rabies) in animals and humans is based on laboratory confirmation. The reference techniques for post-mortem rabies diagnosis are still based on direct immunofluorescence and virus isolation, but molecular techniques, such as polymerase chain reaction (PCR) based methods, are increasingly being used and now constitute the principal tools for diagnosing rabies in humans and for epidemiological analyses. However, it remains a key challenge to obtain relevant specificity and sensitivity with these techniques while ensuring that the genetic diversity of lyssaviruses does not compromise detection. We developed a dual combined real-time reverse transcription polymerase chain reaction (combo RT-qPCR) method for pan-lyssavirus detection. This method is based on two complementary technologies: a probe-based (TaqMan) RT-qPCR for detecting the RABV species (pan-RABV RT-qPCR) and a second reaction using an intercalating dye (SYBR Green) to detect other lyssavirus species (pan-lyssa RT-qPCR). The performance parameters of this combined assay were evaluated with a large panel of primary animal samples covering almost all the genetic variability encountered at the viral species level, and they extended to almost all lyssavirus species characterized to date. This method was also evaluated for the diagnosis of human rabies on 211 biological samples (positive n = 76 and negative n = 135) including saliva, skin and brain biopsies. It detected all 41 human cases of rabies tested and confirmed the sensitivity and the interest of skin biopsy (91.5%) and saliva (54%) samples for intra-vitam diagnosis of human rabies. Finally, this method was successfully implemented in two rabies reference laboratories in enzootic countries (Cambodia and Morocco). This combined RT-qPCR method constitutes a relevant, useful, validated tool for the diagnosis of rabies in both humans and animals, and represents a promising tool for lyssavirus

  5. Dual Combined Real-Time Reverse Transcription Polymerase Chain Reaction Assay for the Diagnosis of Lyssavirus Infection

    PubMed Central

    Lavenir, Rachel; Lepelletier, Anthony; Faouzi, Abdellah; Troupin, Cécile; Nourlil, Jalal; Buchy, Philippe; Bourhy, Herve

    2016-01-01

    The definitive diagnosis of lyssavirus infection (including rabies) in animals and humans is based on laboratory confirmation. The reference techniques for post-mortem rabies diagnosis are still based on direct immunofluorescence and virus isolation, but molecular techniques, such as polymerase chain reaction (PCR) based methods, are increasingly being used and now constitute the principal tools for diagnosing rabies in humans and for epidemiological analyses. However, it remains a key challenge to obtain relevant specificity and sensitivity with these techniques while ensuring that the genetic diversity of lyssaviruses does not compromise detection. We developed a dual combined real-time reverse transcription polymerase chain reaction (combo RT-qPCR) method for pan-lyssavirus detection. This method is based on two complementary technologies: a probe-based (TaqMan) RT-qPCR for detecting the RABV species (pan-RABV RT-qPCR) and a second reaction using an intercalating dye (SYBR Green) to detect other lyssavirus species (pan-lyssa RT-qPCR). The performance parameters of this combined assay were evaluated with a large panel of primary animal samples covering almost all the genetic variability encountered at the viral species level, and they extended to almost all lyssavirus species characterized to date. This method was also evaluated for the diagnosis of human rabies on 211 biological samples (positive n = 76 and negative n = 135) including saliva, skin and brain biopsies. It detected all 41 human cases of rabies tested and confirmed the sensitivity and the interest of skin biopsy (91.5%) and saliva (54%) samples for intra-vitam diagnosis of human rabies. Finally, this method was successfully implemented in two rabies reference laboratories in enzootic countries (Cambodia and Morocco). This combined RT-qPCR method constitutes a relevant, useful, validated tool for the diagnosis of rabies in both humans and animals, and represents a promising tool for lyssavirus

  6. Wheat DNA Primase (RNA Primer Synthesis in Vitro, Structural Studies by Photochemical Cross-Linking, and Modulation of Primase Activity by DNA Polymerases).

    PubMed Central

    Laquel, P.; Litvak, S.; Castroviejo, M.

    1994-01-01

    DNA primase synthesizes short RNA primers used by DNA polymerases to initiate DNA synthesis. Two proteins of approximately 60 and 50 kD were recognized by specific antibodies raised against yeast primase subunits, suggesting a high degree of analogy between wheat and yeast primase subunits. Gel-filtration chromatography of wheat primase showed two active forms of 60 and 110 to 120 kD. Ultraviolet-induced cross-linking with radioactive oligothymidilate revealed a highly labeled protein of 60 kD. After limited trypsin digestion of wheat (Triticum aestivum L.) primase, a major band of 48 kD and two minor bands of 38 and 17 kD were observed. In the absence of DNA polymerases, the purified primase synthesizes long RNA products. The size of the RNA product synthesized by wheat primase is considerably reduced by the presence of DNA polymerases, suggesting a modulatory effect of the association between these two enzymes. Lowering the primase concentration in the assay also favored short RNA primer synthesis. Several properties of the wheat DNA primase using oligoadenylate [oligo(rA)]-primed or unprimed polythymidilate templates were studied. The ability of wheat primase, without DNA polymerases, to elongate an oligo(rA) primer to long RNA products depends on the primer size, temperature, and the divalent cation concentration. Thus, Mn2+ ions led to long RNA products in a very wide range of concentrations, whereas with Mg2+ long products were observed around 15 mM. We studied the ability of purified wheat DNA polymerases to initiate DNA synthesis from an RNA primer: wheat DNA polymerase A showed the highest activity, followed by DNA polymerases B and CII, whereas DNA polymerase CI was unable to initiate DNA synthesis from an RNA primer. Results are discussed in terms of understanding the role of these polymerases in DNA replication in plants. PMID:12232187

  7. The Applicability of TaqMan-Based Quantitative Real-Time PCR Assays for Detecting and Enumerating Cryptosporidium spp. Oocysts in the Environment

    PubMed Central

    Staggs, Sarah E.; Beckman, Erin M.; Keely, Scott P.; Mackwan, Reena; Ware, Michael W.; Moyer, Alan P.; Ferretti, James A.; Sayed, Abu; Xiao, Lihua; Villegas, Eric N.

    2013-01-01

    Quantitative real-time polymerase chain reaction (qPCR) assays to detect Cryptosporidium oocysts in clinical samples are increasingly being used to diagnose human cryptosporidiosis, but a parallel approach for detecting and identifying Cryptosporidium oocyst contamination in surface water sources has yet to be established for current drinking water quality monitoring practices. It has been proposed that Cryptosporidium qPCR-based assays could be used as viable alternatives to current microscopic-based detection methods to quantify levels of oocysts in drinking water sources; however, data on specificity, analytical sensitivity, and the ability to accurately quantify low levels of oocysts are limited. The purpose of this study was to provide a comprehensive evaluation of TaqMan-based qPCR assays, which were developed for either clinical or environmental investigations, for detecting Cryptosporidium oocyst contamination in water. Ten different qPCR assays, six previously published and four developed in this study were analyzed for specificity and analytical sensitivity. Specificity varied between all ten assays, and in one particular assay, which targeted the Cryptosporidium 18S rRNA gene, successfully detected all Cryptosporidium spp. tested, but also cross-amplified T. gondii, fungi, algae, and dinoflagellates. When evaluating the analytical sensitivity of these qPCR assays, results showed that eight of the assays could reliably detect ten flow-sorted oocysts in reagent water or environmental matrix. This study revealed that while a qPCR-based detection assay can be useful for detecting and differentiating different Cryptosporidium species in environmental samples, it cannot accurately measure low levels of oocysts that are typically found in drinking water sources. PMID:23805235

  8. Design principles of a microtubule polymerase

    PubMed Central

    Geyer, Elisabeth A; Miller, Matthew P; Brautigam, Chad A; Biggins, Sue

    2018-01-01

    Stu2/XMAP215 microtubule polymerases use multiple tubulin-binding TOG domains and a lattice-binding basic region to processively promote faster elongation. How the domain composition and organization of these proteins dictate polymerase activity, end localization, and processivity is unknown. We show that polymerase activity does not require different kinds of TOGs, nor are there strict requirements for how the TOGs are linked. We identify an unexpected antagonism between the tubulin-binding TOGs and the lattice-binding basic region: lattice binding by the basic region is weak when at least two TOGs engage tubulins, strong when TOGs are empty. End-localization of Stu2 requires unpolymerized tubulin, at least two TOGs, and polymerase competence. We propose a ‘ratcheting’ model for processivity: transfer of tubulin from TOGs to the lattice activates the basic region, retaining the polymerase at the end for subsequent rounds of tubulin binding and incorporation. These results clarify design principles of the polymerase. PMID:29897335

  9. DNA polymerase preference determines PCR priming efficiency.

    PubMed

    Pan, Wenjing; Byrne-Steele, Miranda; Wang, Chunlin; Lu, Stanley; Clemmons, Scott; Zahorchak, Robert J; Han, Jian

    2014-01-30

    Polymerase chain reaction (PCR) is one of the most important developments in modern biotechnology. However, PCR is known to introduce biases, especially during multiplex reactions. Recent studies have implicated the DNA polymerase as the primary source of bias, particularly initiation of polymerization on the template strand. In our study, amplification from a synthetic library containing a 12 nucleotide random portion was used to provide an in-depth characterization of DNA polymerase priming bias. The synthetic library was amplified with three commercially available DNA polymerases using an anchored primer with a random 3' hexamer end. After normalization, the next generation sequencing (NGS) results of the amplified libraries were directly compared to the unamplified synthetic library. Here, high throughput sequencing was used to systematically demonstrate and characterize DNA polymerase priming bias. We demonstrate that certain sequence motifs are preferred over others as primers where the six nucleotide sequences at the 3' end of the primer, as well as the sequences four base pairs downstream of the priming site, may influence priming efficiencies. DNA polymerases in the same family from two different commercial vendors prefer similar motifs, while another commercially available enzyme from a different DNA polymerase family prefers different motifs. Furthermore, the preferred priming motifs are GC-rich. The DNA polymerase preference for certain sequence motifs was verified by amplification from single-primer templates. We incorporated the observed DNA polymerase preference into a primer-design program that guides the placement of the primer to an optimal location on the template. DNA polymerase priming bias was characterized using a synthetic library amplification system and NGS. The characterization of DNA polymerase priming bias was then utilized to guide the primer-design process and demonstrate varying amplification efficiencies among three commercially

  10. Development of a species-specific TaqMan-MGB real-time PCR assay to quantify Olsenella scatoligenes in pigs offered a chicory root-based diet.

    PubMed

    Li, Xiaoqiong; Jensen, Bent Borg; Højberg, Ole; Noel, Samantha Joan; Canibe, Nuria

    2018-06-16

    Olsenella scatoligenes is the only skatole-producing bacterium isolated from the pig gut. Skatole, produced from microbial degradation of l-tryptophan, is the main contributor to boar taint, an off-odor and off-flavor taint, released upon heating meat from some entire male pigs. An appropriate method for quantifying O. scatoligenes would help investigating the relationship between O. scatoligenes abundance and skatole concentration in the pig gut. Thus, the present study aimed at developing a TaqMan-MGB probe-based, species-specific qPCR assay for rapid quantification of O. scatoligenes. The use of a MGB probe allowed discriminating O. scatoligenes from other closely related species. Moreover, the assay allowed quantifying down to three target gene copies per PCR reaction using genomic DNA-constructed standards, or 1.5 × 10 3  cells/g digesta, using O. scatoligenes-spiked digesta samples as reference standards. The developed assay was applied to assess the impact of dietary chicory roots on O. scatoligenes in the hindgut of pigs. Olsenella scatoligenes made up < 0.01% of the microbial population in the pig hindgut. Interestingly, the highest number of O. scatoligenes was found in young entire male pigs fed high levels of chicory roots. This indicates that the known effect of chicory roots for reducing skatole production is not by inhibiting the growth of this skatole-producing bacterium in the pig hindgut. Accordingly, the abundance of O. scatoligenes in the hindgut does not seem to be an appropriate indicator of boar taint. The present study is the first to describe a TaqMan-MGB probe qPCR assay for detection and quantification of O. scatoligenes in pigs.

  11. Rapid polymerase chain reaction-based screening assay for bacterial biothreat agents.

    PubMed

    Yang, Samuel; Rothman, Richard E; Hardick, Justin; Kuroki, Marcos; Hardick, Andrew; Doshi, Vishal; Ramachandran, Padmini; Gaydos, Charlotte A

    2008-04-01

    To design and evaluate a rapid polymerase chain reaction (PCR)-based assay for detecting Eubacteria and performing early screening for selected Class A biothreat bacterial pathogens. The authors designed a two-step PCR-based algorithm consisting of an initial broad-based universal detection step, followed by specific pathogen identification targeted for identification of the Class A bacterial biothreat agents. A region in the bacterial 16S rRNA gene containing a highly variable sequence flanked by clusters of conserved sequences was chosen as the target for the PCR assay design. A previously described highly conserved region located within the 16S rRNA amplicon was selected as the universal probe (UniProbe, Integrated DNA Technology, Coralville, IA). Pathogen-specific TaqMan probes were designed for Bacillus anthracis, Yersinia pestis, and Francisella tularensis. Performance of the assay was assessed using genomic DNA extracted from the aforementioned biothreat-related organisms (inactivated or surrogate) and other common bacteria. The UniProbe detected the presence of all tested Eubacteria (31/31) with high analytical sensitivity. The biothreat-specific probes accurately identified organisms down to the closely related species and genus level, but were unable to discriminate between very close surrogates, such as Yersinia philomiragia and Bacillus cereus. A simple, two-step PCR-based assay proved capable of both universal bacterial detection and identification of select Class A bacterial biothreat and biothreat-related pathogens. Although this assay requires confirmatory testing for definitive species identification, the method has great potential for use in ED-based settings for rapid diagnosis in cases of suspected Category A bacterial biothreat agents.

  12. A sensitive one-step TaqMan amplification approach for detection of rubella virus clade I and II genotypes in clinical samples.

    PubMed

    Claus, C; Bergs, S; Emmrich, N C; Hübschen, J M; Mankertz, A; Liebert, U G

    2017-02-01

    Although teratogenic rubella virus (RV) causes a vaccine-preventable disease, it is still endemic in several countries worldwide. Thus, there is a constant risk of RV importation into non-endemic areas. RV monitoring, especially during measles and Zika virus outbreaks, requires reliable diagnostic tools. For this study, a TaqMan-based one-step reverse transcription-quantitative PCR (RT-qPCR) assay, with the p90 gene as a novel and so far unexplored target for detection of clade I and II genotypes, was developed and evaluated. Automated nucleic acid extraction was carried out. Performance characteristics of the TaqMan RT-qPCR assay were determined for a RV plasmid standard and RNA extracted from virus-infected cell culture supernatants representing clade I and II genotypes. Diagnostic specificity and sensitivity were validated against other RNA and DNA viruses, relevant for RV diagnostic approaches and for RV-positive clinical samples, respectively. The assay is specific and highly sensitive with a limit of detection as low as five to one copies per reaction or 200 infectious virus particles per ml. The coefficients of variation (CV) were specified as intra- (within one run) and inter- (between different runs) assay variation, and calculated based on the standard deviations for the obtained Ct values of the respective samples. Intra- and inter-assay CV values were low, with a maximum of 3.4% and 2.4%, respectively. The assay was shown to be suitable and specific for the analysis of clinical samples. With p90 as a novel target, the highly sensitive and specific TaqMan assay outlined in this study is suitable for RV diagnosis worldwide.

  13. Purification and characterization of chromatin-bound DNA-dependent RNA polymerase I from parsley (Petroselinum crispum). Influence of nucleoside triphosphates.

    PubMed Central

    Grossmann, K; Friedrich, H; Seitz, U

    1980-01-01

    The isolation and purification of DNA-dependent RNA polymerase I (EC 2.7.7.6) from parsley (Petroselinum crispum) callus cells grown in suspension culture is described. The enzyme was solubilized from isolated chromatin. Purification was achieved by using DEAE- and phospho-cellulose in batches, followed by column chromatography on DEAE- and phospho-cellulose (two columns) and density-gradient centrifugation. The highly purified enzyme was stable over several months. The properties of purified parsley RNA polymerase I were investigated. Optimum concentration for Mn2+ was 1 mM, and for Mg2+ 4-6 mM, Mn2+ was slightly more stimulatory than Mg2+. The enzyme was most active at low ionic strengths [10-20 mM-(NH4)SO4]. The influence of various phosphates was tested: pyrophosphate inhibited RNA polymerase at low concentrations, whereas orthophosphate had no effect on the enzyme activity. ADP was slightly inhibitory, and AMP had no effect on the enzyme reaction. Nucleoside triphosphates and bivalent cations in equimolar concentrations in the range 4-11 mM did not influence the RNA synthesis in vitro. Free nucleoside triphosphates in excess of this 1:1 ratio inhibited the enzyme activity, unlike free bivalent cations, which stimulated RNA polymerase I. PMID:7470092

  14. relA-dependent RNA polymerase activity in Escherichia coli.

    PubMed Central

    Ryals, J; Bremer, H

    1982-01-01

    Parameters relating to RNA synthesis were measured after a temperature shift from 30 to 42 degrees C, in a relA+ and relA- isogenic pair of Escherichia coli strains containing a temperature-sensitive valyl tRNA synthetase. The following results were obtained: (i) the rRNA chain growth rate increased 2-fold in both strains; (ii) newly synthesized rRNA became unstable in both strains; (iii) the stable RNA gene activity (rRNA and tRNA, measured as stable RNA synthesis rate relative to the total instantaneous rate of RNA synthesis) decreased 1.7-fold in the relA+ strain and increased 1.9-fold in the relA mutant; and (iv) the RNA polymerase activity (measured by the percentage of total RNA polymerase enzyme active in transcription an any instant) decreased from 20 to 3.6% in the relA+ strain and remained unchanged (or increased at most to 22%) in the relA mutant. It is suggested that both rRNA gene activity and the RNA polymerase activity depend on the intracellular concentration of guanosine tetraphosphate, whereas the altered chain elongation rate and stability of rRNA are temperature or amino acid starvation effects, respectively, without involvement of relA function. PMID:6174501

  15. Polymerase chain reaction-based detection of B-cell monoclonality in cytologic specimens.

    PubMed

    Chen, Y T; Mercer, G O; Chen, Y

    1993-11-01

    Thirty-seven cytologic cell blocks were evaluated for B-cell monoclonality by polymerase chain reaction (PCR), 16 of them cytologically positive for lymphoma, and 21 suspicious for lymphoma but morphologically nondiagnostic. Of 37 specimens, 13 (35%) showed B-cell monoclonality, including six of 16 cytologically positive samples and seven of 21 cytologically suspicious ones. Of these 13 positive samples, seven were positive using crude lysates as substrates, and six additional positive samples were identified only when DNAs were purified and concentrated. Analysis of the DNAs further revealed poor polymerase chain reaction amplifiability and low DNA yield in many samples, indicating that cell block materials are suboptimal for this assay. We concluded that B-cell monoclonality can be detected in ethanol-fixed cytologic samples, and usage of unembedded material will likely improve the sensitivity. In specimens cytologically suspicious for lymphoma, polymerase chain reaction-based identification of monoclonal B-cell population supports the diagnosis of B-cell lymphoma and is a potentially useful test in solving this diagnostic dilemma.

  16. Homology between DNA polymerases of poxviruses, herpesviruses, and adenoviruses: nucleotide sequence of the vaccinia virus DNA polymerase gene.

    PubMed Central

    Earl, P L; Jones, E V; Moss, B

    1986-01-01

    A 5400-base-pair segment of the vaccinia virus genome was sequenced and an open reading frame of 938 codons was found precisely where the DNA polymerase had been mapped by transfer of a phosphonoacetate-resistance marker. A single nucleotide substitution changing glycine at position 347 to aspartic acid accounts for the drug resistance of the mutant vaccinia virus. The 5' end of the DNA polymerase mRNA was located 80 base pairs before the methionine codon initiating the open reading frame. Correspondence between the predicted Mr 108,577 polypeptide and the 110,000 purified enzyme indicates that little or no proteolytic processing occurs. Extensive homology, extending over 435 amino acids, was found upon comparing the DNA polymerase of vaccinia virus and DNA polymerase of Epstein-Barr virus. A highly conserved sequence of 14 amino acids in the carboxyl-terminal regions of the above DNA polymerases is also present at a similar location in adenovirus DNA polymerase. This structure, which is predicted to form a turn flanked by beta-pleated sheets, may form part of an essential binding or catalytic site that accounts for its presence in DNA polymerases of poxviruses, herpesviruses, and adenoviruses. Images PMID:3012524

  17. Distinguishing Heterodera filipjevi and H. avenae using polymerase chain reaction-restriction fragment length polymorphism and cyst morphology.

    PubMed

    Yan, Guiping; Smiley, Richard W

    2010-03-01

    The cereal cyst nematodes Heterodera filipjevi and H. avenae impede wheat production in the Pacific Northwest (PNW). Accurate identification of cyst nematode species and awareness of high population density in affected fields are essential for designing effective control measures. Morphological methods for differentiating these species are laborious. These species were differentiated using polymerase chain reaction restriction fragment length polymorphism (PCR-RFLP) of internal transcribed spacer (ITS)-ribosomal (r)DNA with up to six restriction endonucleases (TaqI, HinfI, PstI, HaeIII, RsaI, and AluI). The method was validated by inspecting underbridge structures of cyst vulval cones. Grid soil sampling of an Oregon field infested by both species revealed that H. filipjevi was present at most of the infested grid sites but mixtures of H. avenae and H. filipjevi also occurred. These procedures also detected and differentiated H. filipjevi and H. avenae in soil samples from nearby fields in Oregon and H. avenae in samples from Idaho and Washington. Intraspecific polymorphism was not observed within H. filipjevi or PNW H. avenae populations based on the ITS-rDNA. However, intraspecific variation was observed between H. avenae populations occurring in the PNW and France. Methods described here will improve detection and identification efficiencies for cereal cyst nematodes in wheat fields.

  18. Sensitive detection of porcine DNA in processed animal proteins using a TaqMan real-time PCR assay.

    PubMed

    Pegels, N; González, I; Fernández, S; García, T; Martín, R

    2012-01-01

    A TaqMan real-time PCR method was developed for specific detection of porcine-prohibited material in industrial feeds. The assay combines the use of a porcine-specific primer pair, which amplifies a 79 bp fragment of the mitochondrial (mt) 12 S rRNA gene, and a locked nucleic acid (LNA) TaqMan probe complementary to a target sequence lying between the porcine-specific primers. The nuclear 18 S rRNA gene system, yielding a 77 bp amplicon, was employed as a positive amplification control to monitor the total content of amplifiable DNA in the samples. The specificity of the porcine primers-probe system was verified against different animal and plant species, including mammals, birds and fish. The applicability of the real-time PCR protocol to detect the presence of porcine mt DNA in feeds was determined through the analysis of 190 industrial feeds (19 known reference and 171 blind samples) subjected to stringent processing treatments. The performance of the method allows qualitative and highly sensitive detection of short fragments from porcine DNA in all the industrial feeds declared to contain porcine material. Although the method has quantitative potential, the real quantitative capability of the assay is limited by the existing variability in terms of composition and processing conditions of the feeds, which affect the amount and quality of amplifiable DNA.

  19. The DRD2 Taq1A A1 Allele May Magnify the Risk of Alzheimer's in Aging African-Americans.

    PubMed

    Blum, Kenneth; Badgaiyan, Rajendra D; Dunston, Georgia M; Baron, David; Modestino, Edward J; McLaughlin, Thomas; Steinberg, Bruce; Gold, Mark S; Gondré-Lewis, Marjorie C

    2017-09-30

    Alzheimer's disease is an irreversible, progressive brain disorder that slowly destroys cognitive skills and the ability to perform the simplest tasks. More than 5 million Americans are afflicted with Alzheimer's; a disorder which ranks third, just behind heart disease and cancer, as a cause of death for older people. With no real cure and in spite of enormous efforts worldwide, the disease remains a mystery in terms of treatment. Importantly, African-Americans are two times as likely as Whites to develop late-onset Alzheimer's disease and less likely to receive timely diagnosis and treatment. Dopamine function is linked to normal cognition and memory and carriers of the DRD2 Taq1A A1 allele have significant loss of D2 receptor density in the brain. Recent research has shown that A1 carriers have worse memory performance during long-term memory (LTM) updating, compared to non-carriers or A2-carriers. A1carriers also show less blood oxygen level-dependent (BOLD) activation in the left caudate nucleus which is important for LTM updating. This latter effect was only seen in older adults, suggesting magnification of genetic effects on brain functioning in the elderly. Moreover, the frequency of the A1 allele is 0.40 in African-Americans, with an approximate prevalence of the DRD2 A1 allele in 50% of an African-American subset of individuals. This is higher than what is found in a non-screened American population (≤ 28%) for reward deficiency syndrome (RDS) behaviors. Based on DRD2 known genetic polymorphisms, we hypothesize that the DRD2 Taq1A A1 allele magnifies the risk of Alzheimer's in aging African-Americans. Research linking this high risk for Alzheimer's in the African-American population, with DRD2/ANKK1-TaqIA polymorphism and neurocognitive deficits related to LTM, could pave the way for novel, targeted pro-dopamine homeostatic treatment.

  20. RNA Polymerase in Mumps Virion

    PubMed Central

    Bernard, Jacqueline P.; Northrop, Robert L.

    1974-01-01

    Mumps virions of the Enders' strain were examined for polymerase activity in vitro. An RNA-dependent RNA polymerase was found to be associated with the virion. The general properties of the reaction appear to be similar to those described for other paramyxoviruses. PMID:4836602

  1. DNA Polymerase Eta and Chemotherapeutic Agents

    PubMed Central

    2011-01-01

    Abstract The discovery of human DNA polymerase eta (pol η) has a major impact on the fields of DNA replication/repair fields. Since the discovery of human pol η, a number of new DNA polymerases with the ability to bypass various DNA lesions have been discovered. Among these polymerases, pol η is the most extensively studied lesion bypass polymerase with a defined major biological function, that is, to replicate across the cyclobutane pyrimidine dimers introduced by UV irradiation. Cyclobutane pyrimidine dimer is a major DNA lesion that causes distortion of DNA structure and block the replicative DNA polymerases during DNA replication process. Genetic defects in the pol η gene, Rad30, results in a disease called xeroderma pigmentosum variant. This review focuses on the overall properties of pol η and the mechanism that involved in regulating its activity in cells. In addition, the role of pol η in the action of DNA-targeting anticancer compounds is also discussed. Antioxid. Redox Signal. 14, 2521–2529. PMID:21050139

  2. The expanding polymerase universe.

    PubMed

    Goodman, M F; Tippin, B

    2000-11-01

    Over the past year, the number of known prokaryotic and eukaryotic DNA polymerases has exploded. Many of these newly discovered enzymes copy aberrant bases in the DNA template over which 'respectable' polymerases fear to tread. The next step is to unravel their functions, which are thought to range from error-prone copying of DNA lesions, somatic hypermutation and avoidance of skin cancer, to restarting stalled replication forks and repairing double-stranded DNA breaks.

  3. [Comparative analysis of real-time quantitative PCR-Sanger sequencing method and TaqMan probe method for detection of KRAS/BRAF mutation in colorectal carcinomas].

    PubMed

    Zhang, Xun; Wang, Yuehua; Gao, Ning; Wang, Jinfen

    2014-02-01

    To compare the application values of real-time quantitative PCR-Sanger sequencing and TaqMan probe method in the detection of KRAS and BRAF mutations, and to correlate KRAS/BRAF mutations with the clinicopathological characteristics in colorectal carcinomas. Genomic DNA of the tumor cells was extracted from formalin fixed paraffin embedded (FFPE) tissue samples of 344 colorectal carcinomas by microdissection. Real-time quantitative PCR-Sanger sequencing and TaqMan probe method were performed to detect the KRAS/BRAF mutations. The frequency and types of KRAS/BRAF mutations, clinicopathological characteristics and survival time were analyzed. KRAS mutations were detected in 39.8% (137/344) and 38.7% (133/344) of 344 colorectal carcinomas by using real-time quantitative PCR-Sanger sequencing and TaqMan probe method, respectively. BRAF mutation was detected in 4.7% (16/344) and 4.1% (14/344), respectively. There was no significant correlation between the two methods. The frequency of the KRAS mutation in female was higher than that in male (P < 0.05). The frequency of the BRAF mutation in colon was higher than that in rectum. The frequency of the BRAF mutation in stage III-IV cases was higher than that in stageI-II cases. The frequency of the BRAF mutation in signet ring cell carcinoma was higher than that in mucinous carcinoma and nonspecific adenocarcinoma had the lowest mutation rate. The frequency of the BRAF mutation in grade III cases was higher than that in grade II cases (P < 0.05). The overall concordance for the two methods of KRAS/BRAF mutation detection was 98.8% (kappa = 0.976). There was statistic significance between BRAF and KRAS mutations for the survival time of colorectal carcinomas (P = 0.039). There were no statistic significance between BRAF mutation type and BRAF/KRAS wild type (P = 0.058). (1) Compared with real-time quantitative PCR-Sanger sequencing, TaqMan probe method is better with regard to handling time, efficiency, repeatability, cost

  4. Biological Characterization of Novel Inhibitors of the Gram-Positive DNA Polymerase IIIC Enzyme

    PubMed Central

    Kuhl, Alexander; Svenstrup, Niels; Ladel, Christoph; Otteneder, Michael; Binas, Annegret; Schiffer, Guido; Brands, Michael; Lampe, Thomas; Ziegelbauer, Karl; Rübsamen-Waigmann, Helga; Haebich, Dieter; Ehlert, Kerstin

    2005-01-01

    Novel N-3-alkylated 6-anilinouracils have been identified as potent and selective inhibitors of bacterial DNA polymerase IIIC, the enzyme essential for the replication of chromosomal DNA in gram-positive bacteria. A nonradioactive assay measuring the enzymatic activity of the DNA polymerase IIIC in gram-positive bacteria has been assembled. The 6-anilinouracils described inhibited the polymerase IIIC enzyme at concentrations in the nanomolar range in this assay and displayed good in vitro activity (according to their MICs) against staphylococci, streptococci, and enterococci. The MICs of the most potent derivatives were about 4 μg/ml for this panel of bacteria. The 50% effective dose of the best compound (6-[(3-ethyl-4-methylphenyl)amino]-3-{[1-(isoxazol-5-ylcarbonyl)piperidin-4-yl]methyl}uracil) was 10 mg/kg of body weight after intravenous application in a staphylococcal sepsis model in mice, from which in vivo pharmacokinetic data were also acquired. PMID:15728893

  5. N7-platinated ribonucleotides are not incorporated by RNA polymerases. New perspectives for a rational design of platinum antitumor drugs.

    PubMed

    Benedetti, Michele; Romano, Alessandro; De Castro, Federica; Girelli, Chiara R; Antonucci, Daniela; Migoni, Danilo; Verri, Tiziano; Fanizzi, Francesco P

    2016-10-01

    In this work, we assessed the capacity of RNA polymerases to use platinated ribonucleotides as substrates for RNA synthesis by testing the incorporation of the model compound [Pt(dien)(N7-5'-GTP)] (dien=diethylenetriamine; GTP=5'-guanosine triphosphate) into a natural RNA sequence. The yield of in vitro transcription operated by T7 RNA polymerase, on the LacZ (Escherichia coli gene encoding for β-galactosidase) sequence, decreases progressively with decreasing the concentration of natural GTP, in favor of the platinated nucleotide, [Pt(dien)(N7-5'-GTP)]. Comparison of the T7 RNA polymerase transcription activities for [Pt(dien)(N7-5'-GTP)] compound incorporation reaction test, with respect to the effect of a decreasing concentration of natural GTP, showed no major differences. A specific inhibitory effect of compound [Pt(dien)(N7-5'-GTP)] (which may pair the complementary base on the DNA strand, without being incorporated in the RNA by the T7 RNA polymerase) was evidenced. Our findings therefore suggest that RNA polymerases, unlike DNA polymerases, are unable to incorporate N7-platinated nucleotides into newly synthesized nucleic acids. In this respect, specifically designed N7-platinated nucleotides based compounds could be used in alternative to the classical platinum based drugs. This approach may offer a possible strategy to target specifically DNA, without affecting RNA, and is potentially able to better modulate pharmacological activity. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. IDENTIFYING POTENTIAL SOURCES OF BACKGROUND CONTAMINATION IN RT-PCR

    EPA Science Inventory

    Extraction of nucleic acids from low biomass samples, such as drinking water, is particularly sensitive to potential background contamination because the contaminating material is minimally diluted by the sample. The presence of bacterial DNA in Taq DNA polymerase is wel...

  7. Association of vitamin D receptor BsmI, TaqI, FokI, and ApaI polymorphisms with susceptibility of chronic periodontitis: A systematic review and meta-analysis based on 38 case -control studies.

    PubMed

    Mashhadiabbas, Fatemeh; Neamatzadeh, Hossein; Nasiri, Rezvan; Foroughi, Elnaz; Farahnak, Soudabeh; Piroozmand, Parisa; Mazaheri, Mahta; Zare-Shehneh, Masoud

    2018-01-01

    There has been increasing interest in the study of the association between Vitamin D receptor (VDR) gene polymorphisms and risk of chronic periodontitis. However, the results remain inconclusive. To better understand the roles of VDR polymorphisms (BsmI, TaqI, FokI, and ApaI) in chronic periodontitis susceptibility, we conducted this systematic review and meta-analysis. The PubMed, Google Scholar, and Web of Science database were systemically searched to determine all the eligible studies about VDR polymorphisms and risk of chronic periodontitis up to April 2017. Odds ratio (OR) and 95% confidence interval (CI) were used to evaluate the associations between VDR polymorphisms and chronic periodontitis risk. All the statistical analyses were performed by Comprehensive Meta-Analysis. All P values were two-tailed with a significant level at 0.05. Finally, a total of 38 case-control studies in 19 publications were identified which met our inclusion criteria. There are ten studies with 866 chronic periodontitis cases and 786 controls for BsmI, 16 studies with 1570 chronic periodontitis cases and 1676 controls for TaqI, five studies with 374 chronic periodontitis cases and 382 controls for FokI, and seven studies with 632 chronic periodontitis cases and 604 controls for ApaI. Overall, no significant association was observed between VDR gene BsmI, TaqI, FokI, and ApaI polymorphisms and risk of chronic periodontitis in any genetic model. Subgroup analysis stratified by ethnicity suggested a significant association between BsmI polymorphism and chronic periodontitis risk in the Caucasian subgroup under allele model (A vs. G: OR = 1.747, 95% CI = 1.099-2.778, P = 0.018). Further, no significant associations were observed when stratified by Hardy-Weinberg equilibrium status for BsmI, TaqI, and ApaI. Our results suggest that BsmI, TaqI, FokI, and ApaI polymorphisms in the VDR gene might not be associated with risk of chronic periodontitis in overall population.

  8. The TaqIA RFLP is associated with attenuated intervention-induced body weight loss and increased carbohydrate intake in post-menopausal obese women.

    PubMed

    Cameron, Jameason D; Riou, Marie-Ève; Tesson, Frédérique; Goldfield, Gary S; Rabasa-Lhoret, Rémi; Brochu, Martin; Doucet, Éric

    2013-01-01

    Polymorphisms of the dopamine receptor D2 (DRD2) gene have been associated with obesity phenotypes. Our aim was to examine if the genotype of TaqIA Restriction Fragment Length Polymorphism (RFPL) was related to an attenuated weight loss response or to changes in energy expenditure (EE) and food preference before and after weight loss. methods: Obese post-menopausal women (age=57.1 ± 4.6 yr, weight=85.4 ± 15.4 kg and BMI=32.8 ± 4.5 kg/m(2)) were genotyped for TaqIA (n=127) by using PCR-RFLP analysis and categorized as possessing at least one copy of the A1 allele (A1(+)) or no copy (A1(-)). Women were randomized into two groups, caloric restriction (CR) and caloric restriction+resistance training (CRRT) and in this study were further classified as follows: A1(+)CR, A1(+)CRRT, A1-(-)CR and (-)A1(-)CRRT. Body composition, total daily EE, physical activity EE, Resting EE (REE), and energy intake were obtained at baseline and post-intervention using DXA, doubly-labeled water, indirect calorimetry, and 3-day dietary records, respectively. Overall, all of the anthropometric variables and REE significantly decreased post-intervention (p<0.001). Women in the CRRT group lost significantly more fat mass (FM) than the CR women (p<0.05). There were significant time by group by allele interactions for attenuated body weight (BW), BMI, and FM loss for A1(+) (vs. A1(-)) in CRRT (p<0.05) and for increased % carbohydrate intake (p<0.01). TaqIA genotype was associated with body weight loss post-intervention; more specifically, carriers of the A1 allele lost significantly less BW and FM than the A1(-) and had increased carbohydrate intake in the CRRT group. Copyright © 2012 Elsevier Ltd. All rights reserved.

  9. Polyphosphate present in DNA preparations from fungal species of Collectotrichum inhibits restriction endonucleases and other enzymes

    USGS Publications Warehouse

    Rodriguez, R.J.

    1993-01-01

    During the development of a procedure for the isolation of total genomic DNA from filamentous fungi (Rodriguez, R. J., and Yoder, 0. C., Exp. Mycol. 15, 232-242, 1991) a cell fraction was isolated which inhibited the digestion of DNA by restriction enzymes. After elimination of DNA, RNA, proteins, and lipids, the active compound was purified by gel filtration to yield a single fraction capable of complete inhibition of restriction enzyme activity. The inhibitor did not absorb uv light above 220 nm, and was resistant to alkali and acid at 25°C and to temperatures as high as 100°C. More extensive analyses demonstrated that the inhibitor was also capable of inhibiting T4 DNA ligase and TaqI DNA polymerase, but not DNase or RNase. Chemical analyses indicated that the inhibitor was devoid of carbohydrates, proteins, lipids, and nucleic acids but rich in phosphorus. A combination of nuclear magnetic resonance, metachromatic shift of toluidine blue, and gel filtration indicated that the inhibitor was a polyphosphate (polyP) containing approximately 60 phosphate molecules. The mechanism of inhibition appeared to involve complexing of polyP to the enzymatic proteins. All species of Colletotrichum analyzed produced polyP equivalent in chain length and concentration. A modification to the original DNA extraction procedure is described which eliminates polyP and reduces the time necessary to obtain DNA of sufficient purity for restriction enzyme digestion and TaqI polymerase amplification.

  10. Development of a Real-Time, TaqMan Reverse Transcription-PCR Assay for Detection and Differentiation of Lyssavirus Genotypes 1, 5, and 6

    PubMed Central

    Wakeley, P. R.; Johnson, N.; McElhinney, L. M.; Marston, D.; Sawyer, J.; Fooks, A. R.

    2005-01-01

    Several reverse transcription-PCR (RT-PCR) methods have been reported for the detection of rabies and rabies-related viruses. These methods invariably involve multiple transfers of nucleic acids between different tubes, with the risk of contamination leading to the production of false-positive results. Here we describe a single, closed-tube, nonnested RT-PCR with TaqMan technology that distinguishes between classical rabies virus (genotype 1) and European bat lyssaviruses 1 and 2 (genotypes 5 and 6) in real time. The TaqMan assay is rapid, sensitive, and specific and allows for the genotyping of unknown isolates concomitant with the RT-PCR. The assay can be applied quantitatively and the use of an internal control enables the quality of the isolated template to be assessed. Despite sequence heterogeneity in the N gene between the different genotypes, a universal forward and reverse primer set has been designed, allowing for the simplification of previously described assays. We propose that within a geographically constrained area, this assay will be a useful tool for the detection and differentiation of members of the Lyssavirus genus. PMID:15956398

  11. Mechanism of Ribonucleotide Incorporation by Human DNA Polymerase η*

    PubMed Central

    Su, Yan; Egli, Martin; Guengerich, F. Peter

    2016-01-01

    Ribonucleotides and 2′-deoxyribonucleotides are the basic units for RNA and DNA, respectively, and the only difference is the extra 2′-OH group on the ribonucleotide sugar. Cellular rNTP concentrations are much higher than those of dNTP. When copying DNA, DNA polymerases not only select the base of the incoming dNTP to form a Watson-Crick pair with the template base but also distinguish the sugar moiety. Some DNA polymerases use a steric gate residue to prevent rNTP incorporation by creating a clash with the 2′-OH group. Y-family human DNA polymerase η (hpol η) is of interest because of its spacious active site (especially in the major groove) and tolerance of DNA lesions. Here, we show that hpol η maintains base selectivity when incorporating rNTPs opposite undamaged DNA and the DNA lesions 7,8-dihydro-8-oxo-2′-deoxyguanosine and cyclobutane pyrimidine dimer but with rates that are 103-fold lower than for inserting the corresponding dNTPs. X-ray crystal structures show that the hpol η scaffolds the incoming rNTP to pair with the template base (dG) or 7,8-dihydro-8-oxo-2′-deoxyguanosine with a significant propeller twist. As a result, the 2′-OH group avoids a clash with the steric gate, Phe-18, but the distance between primer end and Pα of the incoming rNTP increases by 1 Å, elevating the energy barrier and slowing polymerization compared with dNTP. In addition, Tyr-92 was identified as a second line of defense to maintain the position of Phe-18. This is the first crystal structure of a DNA polymerase with an incoming rNTP opposite a DNA lesion. PMID:26740629

  12. Systematic analysis of enzymatic DNA polymerization using oligo-DNA templates and triphosphate analogs involving 2',4'-bridged nucleosides.

    PubMed

    Kuwahara, Masayasu; Obika, Satoshi; Nagashima, Jun-ichi; Ohta, Yuki; Suto, Yoshiyuki; Ozaki, Hiroaki; Sawai, Hiroaki; Imanishi, Takeshi

    2008-08-01

    In order to systematically analyze the effects of nucleoside modification of sugar moieties in DNA polymerase reactions, we synthesized 16 modified templates containing 2',4'-bridged nucleotides and three types of 2',4'-bridged nucleoside-5'-triphospates with different bridging structures. Among the five types of thermostable DNA polymerases used, Taq, Phusion HF, Vent(exo-), KOD Dash and KOD(exo-), the KOD Dash and KOD(exo-) DNA polymerases could smoothly read through the modified templates containing 2'-O,4'-C-methylene-linked nucleotides at intervals of a few nucleotides, even at standard enzyme concentrations for 5 min. Although the Vent(exo-) DNA polymerase also read through these modified templates, kinetic study indicates that the KOD(exo-) DNA polymerase was found to be far superior to the Vent(exo-) DNA polymerase in accurate incorporation of nucleotides. When either of the DNA polymerase was used, the presence of 2',4'-bridged nucleotides on a template strand substantially decreased the reaction rates of nucleotide incorporations. The modified templates containing sequences of seven successive 2',4'-bridged nucleotides could not be completely transcribed by any of the DNA polymerases used; yields of longer elongated products decreased in the order of steric bulkiness of the modified sugars. Successive incorporation of 2',4'-bridged nucleotides into extending strands using 2',4'-bridged nucleoside-5'-triphospates was much more difficult. These data indicate that the sugar modification would have a greater effect on the polymerase reaction when it is adjacent to the elongation terminus than when it is on the template as well, as in base modification.

  13. Vitamin-D receptor (VDR) gene polymorphisms (Taq-I & Apa-I) in Syrian healthy population.

    PubMed

    Haddad, Shaden

    2014-12-01

    The vitamin D endocrine system regulates bone metabolism and calcium homeostasis as well as cellular proliferation and differentiation. Vitamin D receptor (VDR) mediates Vit-D activity, thus VDR gene polymorphisms may correlate with different diseases. This study aimed to determine the distribution of VDR gene (Taq-I and Apa-I) polymorphisms using a RFLP in unrelated normal healthy individuals of Syrian population. Allelic frequencies were 65% vs 35% and 66% vs 34% for T vs t and A vs a alleles, respectively. Genotype distribution was 36%, 58% and 6% for TT, Tt and tt and 42%, 47% and 10% for AA, Aa and aa, respectively. These results demonstrate that the frequency and distribution of the VDR polymorphisms in Syrian population are different from other populations worldwide.

  14. Evaluation of the clinical sensitivity for the quantification of human immunodeficiency virus type 1 RNA in plasma: Comparison of the new COBAS TaqMan HIV-1 with three current HIV-RNA assays--LCx HIV RNA quantitative, VERSANT HIV-1 RNA 3.0 (bDNA) and COBAS AMPLICOR HIV-1 Monitor v1.5.

    PubMed

    Katsoulidou, Antigoni; Petrodaskalaki, Maria; Sypsa, Vana; Papachristou, Eleni; Anastassopoulou, Cleo G; Gargalianos, Panagiotis; Karafoulidou, Anastasia; Lazanas, Marios; Kordossis, Theodoros; Andoniadou, Anastasia; Hatzakis, Angelos

    2006-02-01

    The COBAS TaqMan HIV-1 test (Roche Diagnostics) was compared with the LCx HIV RNA quantitative assay (Abbott Laboratories), the Versant HIV-1 RNA 3.0 (bDNA) assay (Bayer) and the COBAS Amplicor HIV-1 Monitor v1.5 test (Roche Diagnostics), using plasma samples of various viral load levels from HIV-1-infected individuals. In the comparison of TaqMan with LCx, TaqMan identified as positive 77.5% of the 240 samples versus 72.1% identified by LCx assay, while their overall agreement was 94.6% and the quantitative results of samples that were positive by both methods were strongly correlated (r=0.91). Similarly, in the comparison of TaqMan with bDNA 3.0, both methods identified 76.3% of the 177 samples as positive, while their overall agreement was 95.5% and the quantitative results of samples that were positive by both methods were strongly correlated (r=0.95). Finally, in the comparison of TaqMan with Monitor v1.5, TaqMan identified 79.5% of the 156 samples as positive versus 80.1% identified by Monitor v1.5, while their overall agreement was 95.5% and the quantitative results of samples that were positive by both methods were strongly correlated (r=0.96). In conclusion, the new COBAS TaqMan HIV-1 test showed excellent agreement with other widely used commercially available tests for the quantitation of HIV-1 viral load.

  15. Dembo polymerase chain reaction technique for detection of bovine abortion, diarrhea, and respiratory disease complex infectious agents in potential vectors and reservoirs.

    PubMed

    Rahpaya, Sayed Samim; Tsuchiaka, Shinobu; Kishimoto, Mai; Oba, Mami; Katayama, Yukie; Nunomura, Yuka; Kokawa, Saki; Kimura, Takashi; Kobayashi, Atsushi; Kirino, Yumi; Okabayashi, Tamaki; Nonaka, Nariaki; Mekata, Hirohisa; Aoki, Hiroshi; Shiokawa, Mai; Umetsu, Moeko; Morita, Tatsushi; Hasebe, Ayako; Otsu, Keiko; Asai, Tetsuo; Yamaguchi, Tomohiro; Makino, Shinji; Murata, Yoshiteru; Abi, Ahmad Jan; Omatsu, Tsutomu; Mizutani, Tetsuya

    2018-05-31

    Bovine abortion, diarrhea, and respiratory disease complexes, caused by infectious agents, result in high and significant economic losses for the cattle industry. These pathogens are likely transmitted by various vectors and reservoirs including insects, birds, and rodents. However, experimental data supporting this possibility are scarce. We collected 117 samples and screened them for 44 bovine abortive, diarrheal, and respiratory disease complex pathogens by using Dembo polymerase chain reaction (PCR), which is based on TaqMan real-time PCR. Fifty-seven samples were positive for at least one pathogen, including bovine viral diarrhea virus, bovine enterovirus, Salmonella enterica ser. Dublin, Salmonella enterica ser. Typhimurium, and Neospora caninum ; some samples were positive for multiple pathogens. Bovine viral diarrhea virus and bovine enterovirus were the most frequently detected pathogens, especially in flies, suggesting an important role of flies in the transmission of these viruses. Additionally, we detected the N. caninum genome from a cockroach sample for the first time. Our data suggest that insects (particularly flies), birds, and rodents are potential vectors and reservoirs of abortion, diarrhea, and respiratory infectious agents, and that they may transmit more than one pathogen at the same time.

  16. Vitamin-D Receptor (VDR) Gene Polymorphisms (TaqI, FokI) in Turkish Patients with Hashimoto's Thyroiditis: Relationship to the Levels of Vit-D and Cytokines.

    PubMed

    Guleryuz, Bedia; Akin, Fulya; Ata, Melek Tunc; Dalyanoglu, Mukaddes Mergen; Turgut, Sebahat

    2016-01-01

    Hashimoto's thyroiditis (HT) is a common autoimmune disease. Vitamin D is an important regulator of immune system. It has been shown in several studies that vitamin D prevents the development of lots of autoimmune diseases. There are some studies that prove vitamin D receptor (VDR) gene polymorphism increases the risk of Hashimoto's thyroiditis. In this study, we aimed to investigate the association between HT and level of 25(OH)D3, IL-2, IL-4, IL-5, TNF-α and IFN-γ and VDR FokI and TaqI gene polymorphism. Moreover, to find out whether low levels of vitamin D affect HT pathogenesis over inflammatory parameters. We performed a case-control study that included 136 cases with HT (49 euthyroid, 49 subclinical hypothyroid, 38 hypothyroid patients) and 50 healthy control. Serum levels of 25(OH)D3, glucose, insulin, parathyroid hormone, calcium, phosphorus, alkaline phosphatase were measured and IL-4, IL-5, TNF-α, IFN-γ analysis were performed with ELISA kits in all 186 subjects. Genetic analysis for VDR FokI and TaqI gene polymorphisms were done by RFLP in all subjects. Mean serum 25(OH)D levels were 14.88±8.23 ng/ml in patient with HT and 15.52±1.34 ng/ml in healthy controls. There were no statically significant differences between the groups in terms of vitamin D levels (P=0.977). Prevalence of vitamin D insufficiency in HT cases was significantly higher than controls (p=0.02). Although serum IL-2, IL-4, TNF-α and IFN-γ were significantly higher in HT patients, there were no significant differences regarding IL-5 levels. Significant differences were observed between the groups regarding the genotype of TaqI but no differences regarding FokI genotype. Vitamin D insufficiency is associated with HT. There is a relationship between VDR TaqI gene polymorphism and HT. Although vitamin D levels are low in both patient and control group, detection of high level of inflammatory parameters in HT group makes us think that low level of vitamin D does not affect HT

  17. A METHOD TO REMOVE ENVIRONMENTAL INHIBITORS PRIOR TO THE DETECTION OF WATERBORNE ENTERIC VIRUSES BY REVERSE TRANSCRIPTION-POLYMERASE CHAIN REACTION

    EPA Science Inventory

    A method was developed to remove environmental inhibitors from sample concentrates prior to detection of human enteric viruses using the reverse transcription-polymerase chain reaction (RT-PCR).Environmental inhibitors, concentrated along with viruses during water sample processi...

  18. Association of vitamin D receptor BsmI, TaqI, FokI, and ApaI polymorphisms with susceptibility of chronic periodontitis: A systematic review and meta-analysis based on 38 case –control studies

    PubMed Central

    Mashhadiabbas, Fatemeh; Neamatzadeh, Hossein; Nasiri, Rezvan; Foroughi, Elnaz; Farahnak, Soudabeh; Piroozmand, Parisa; Mazaheri, Mahta; Zare-Shehneh, Masoud

    2018-01-01

    Background: There has been increasing interest in the study of the association between Vitamin D receptor (VDR) gene polymorphisms and risk of chronic periodontitis. However, the results remain inconclusive. To better understand the roles of VDR polymorphisms (BsmI, TaqI, FokI, and ApaI) in chronic periodontitis susceptibility, we conducted this systematic review and meta-analysis. Materials and Methods: The PubMed, Google Scholar, and Web of Science database were systemically searched to determine all the eligible studies about VDR polymorphisms and risk of chronic periodontitis up to April 2017. Odds ratio (OR) and 95% confidence interval (CI) were used to evaluate the associations between VDR polymorphisms and chronic periodontitis risk. All the statistical analyses were performed by Comprehensive Meta-Analysis. All P values were two-tailed with a significant level at 0.05. Results: Finally, a total of 38 case–control studies in 19 publications were identified which met our inclusion criteria. There are ten studies with 866 chronic periodontitis cases and 786 controls for BsmI, 16 studies with 1570 chronic periodontitis cases and 1676 controls for TaqI, five studies with 374 chronic periodontitis cases and 382 controls for FokI, and seven studies with 632 chronic periodontitis cases and 604 controls for ApaI. Overall, no significant association was observed between VDR gene BsmI, TaqI, FokI, and ApaI polymorphisms and risk of chronic periodontitis in any genetic model. Subgroup analysis stratified by ethnicity suggested a significant association between BsmI polymorphism and chronic periodontitis risk in the Caucasian subgroup under allele model (A vs. G: OR = 1.747, 95% CI = 1.099–2.778, P = 0.018). Further, no significant associations were observed when stratified by Hardy–Weinberg equilibrium status for BsmI, TaqI, and ApaI. Conclusion: Our results suggest that BsmI, TaqI, FokI, and ApaI polymorphisms in the VDR gene might not be associated with risk of

  19. Delayed vaccine virus replication in chickens vaccinated subcutaneously with an immune complex infectious bursal disease vaccine: Quantification of vaccine virus by real-time polymerase chain reaction

    PubMed Central

    2005-01-01

    Abstract The distribution of the immune complex vaccine virus for infectious bursal disease (IBD) in tissue was examined and the viral loads of the organs were quantitatively compared. One-day-old specific pathogen free (SPF) and maternally immune broiler chickens were injected subcutaneously with the vaccine. Lymphoid and non-lymphoid tissues were collected at various time intervals during the experiment to test for infectious bursal disease virus (IBDV)-RNA by using reverse transcriptase-polymerase chain reaction (RT-PCR). Only the bursa of Fabricius was found to be positive with unusually long viral persistence in the broiler group. The positive bursa samples were further investigated by using real-time PCR coupled with a TaqMan probe. The highest amounts of the virus were detected at its first appearance in the bursa: on day 14 post vaccination (PV) in the SPF chickens and on day 17 and day 21 PV in the maternally immune broiler group. The virus then gradually cleared, most likely due to the parallel appearance of the active immune response indicated by seroconversion. PMID:15971678

  20. DNA polymerase ζ cooperates with polymerases κ and ι in translesion DNA synthesis across pyrimidine photodimers in cells from XPV patients

    PubMed Central

    Ziv, Omer; Geacintov, Nicholas; Nakajima, Satoshi; Yasui, Akira; Livneh, Zvi

    2009-01-01

    Human cells tolerate UV-induced cyclobutane pyrimidine dimers (CPD) by translesion DNA synthesis (TLS), carried out by DNA polymerase η, the POLH gene product. A deficiency in DNA polymerase η due to germ-line mutations in POLH causes the hereditary disease xeroderma pigmentosum variant (XPV), which is characterized by sunlight sensitivity and extreme predisposition to sunlight-induced skin cancer. XPV cells are UV hypermutable due to the activity of mutagenic TLS across CPD, which explains the cancer predisposition of the patients. However, the identity of the backup polymerase that carries out this mutagenic TLS was unclear. Here, we show that DNA polymerase ζ cooperates with DNA polymerases κ and ι to carry out error-prone TLS across a TT CPD. Moreover, DNA polymerases ζ and κ, but not ι, protect XPV cells against UV cytotoxicity, independently of nucleotide excision repair. This presents an extreme example of benefit-risk balance in the activity of TLS polymerases, which provide protection against UV cytotoxicity at the cost of increased mutagenic load. PMID:19564618

  1. DNA polymerase zeta cooperates with polymerases kappa and iota in translesion DNA synthesis across pyrimidine photodimers in cells from XPV patients.

    PubMed

    Ziv, Omer; Geacintov, Nicholas; Nakajima, Satoshi; Yasui, Akira; Livneh, Zvi

    2009-07-14

    Human cells tolerate UV-induced cyclobutane pyrimidine dimers (CPD) by translesion DNA synthesis (TLS), carried out by DNA polymerase eta, the POLH gene product. A deficiency in DNA polymerase eta due to germ-line mutations in POLH causes the hereditary disease xeroderma pigmentosum variant (XPV), which is characterized by sunlight sensitivity and extreme predisposition to sunlight-induced skin cancer. XPV cells are UV hypermutable due to the activity of mutagenic TLS across CPD, which explains the cancer predisposition of the patients. However, the identity of the backup polymerase that carries out this mutagenic TLS was unclear. Here, we show that DNA polymerase zeta cooperates with DNA polymerases kappa and iota to carry out error-prone TLS across a TT CPD. Moreover, DNA polymerases zeta and kappa, but not iota, protect XPV cells against UV cytotoxicity, independently of nucleotide excision repair. This presents an extreme example of benefit-risk balance in the activity of TLS polymerases, which provide protection against UV cytotoxicity at the cost of increased mutagenic load.

  2. Selective Modification of Adenovirus Replication Can Be Achieved through Rational Mutagenesis of the Adenovirus Type 5 DNA Polymerase

    PubMed Central

    Capella, Cristina; Beltejar, Michael-John; Brown, Caitlin; Fong, Vincent; Daddacha, Waaqo; Kim, Baek

    2012-01-01

    Mutations that reduce the efficiency of deoxynucleoside (dN) triphosphate (dNTP) substrate utilization by the HIV-1 DNA polymerase prevent viral replication in resting cells, which contain low dNTP concentrations, but not in rapidly dividing cells such as cancer cells, which contain high levels of dNTPs. We therefore tested whether mutations in regions of the adenovirus type 5 (Ad5) DNA polymerase that interact with the dNTP substrate or DNA template could alter virus replication. The majority of the mutations created, including conservative substitutions, were incompatible with virus replication. Five replication-competent mutants were recovered from 293 cells, but four of these mutants failed to replicate in A549 lung carcinoma cells and Wi38 normal lung cells. Purified polymerase proteins from these viruses exhibited only a 2- to 4-fold reduction in their dNTP utilization efficiency but nonetheless could not be rescued, even when intracellular dNTP concentrations were artificially raised by the addition of exogenous dNs to virus-infected A549 cells. The fifth mutation (I664V) reduced biochemical dNTP utilization by the viral polymerase by 2.5-fold. The corresponding virus replicated to wild-type levels in three different cancer cell lines but was significantly impaired in all normal cell lines in which it was tested. Efficient replication and virus-mediated cell killing were rescued by the addition of exogenous dNs to normal lung fibroblasts (MRC5 cells), confirming the dNTP-dependent nature of the polymerase defect. Collectively, these data provide proof-of-concept support for the notion that conditionally replicating, tumor-selective adenovirus vectors can be created by modifying the efficiency with which the viral DNA polymerase utilizes dNTP substrates. PMID:22811532

  3. Aptamer Selection Express: A Novel Method for Rapid Single-Step Selection and Sensing of Aptamers

    DTIC Science & Technology

    2008-12-01

    sample) was as follows: 5 µL buffer, 2 µL MgCl2, 2.5 µL DMSO, 1 µL betaine , 1 µL each dNTP, 2.5 µL F primer, 2.5 µL R primer, 0.54 µL taq polymerase...and 25.1 µL H2O. Betaine and increased DMSO were added to the master mix to eliminate polymerase jumping during PCR ampli- fication.10 Using the

  4. A domain of the Klenow fragment of Escherichia coli DNA polymerase I has polymerase but no exonuclease activity.

    PubMed

    Freemont, P S; Ollis, D L; Steitz, T A; Joyce, C M

    1986-09-01

    The Klenow fragment of DNA polymerase I from Escherichia coli has two enzymatic activities: DNA polymerase and 3'-5' exonuclease. The crystal structure showed that the fragment is folded into two distinct domains. The smaller domain has a binding site for deoxynucleoside monophosphate and a divalent metal ion that is thought to identify the 3'-5' exonuclease active site. The larger C-terminal domain contains a deep cleft that is believed to bind duplex DNA. Several lines of evidence suggested that the large domain also contains the polymerase active site. To test this hypothesis, we have cloned the DNA coding for the large domain into an expression system and purified the protein product. We find that the C-terminal domain has polymerase activity (albeit at a lower specific activity than the native Klenow fragment) but no measurable 3'-5' exonuclease activity. These data are consistent with the hypothesis that each of the three enzymatic activities of DNA polymerase I from E. coli resides on a separate protein structural domain.

  5. The C-terminal region of translesion synthesis DNA polymerase η is partially unstructured and has high conformational flexibility

    PubMed Central

    Powers, Kyle T; Washington, M Todd

    2018-01-01

    Abstract Eukaryotic DNA polymerase η catalyzes translesion synthesis of thymine dimers and 8-oxoguanines. It is comprised of a polymerase domain and a C-terminal region, both of which are required for its biological function. The C-terminal region mediates interactions with proliferating cell nuclear antigen (PCNA) and other translesion synthesis proteins such as Rev1. This region contains a ubiquitin-binding/zinc-binding (UBZ) motif and a PCNA-interacting protein (PIP) motif. Currently little structural information is available for this region of polymerase η. Using a combination of approaches—including genetic complementation assays, X-ray crystallography, Langevin dynamics simulations, and small-angle X-ray scattering—we show that the C-terminal region is partially unstructured and has high conformational flexibility. This implies that the C-terminal region acts as a flexible tether linking the polymerase domain to PCNA thereby increasing its local concentration. Such tethering would facilitate the sampling of translesion synthesis polymerases to ensure that the most appropriate one is selected to bypass the lesion. PMID:29385534

  6. RNA binding and replication by the poliovirus RNA polymerase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oberste, M.S.

    1988-01-01

    RNA binding and RNA synthesis by the poliovirus RNA-dependent RNA polymerase were studied in vitro using purified polymerase. Templates for binding and RNA synthesis studies were natural RNAs, homopolymeric RNAs, or subgenomic poliovirus-specific RNAs synthesized in vitro from cDNA clones using SP6 or T7 RNA polymerases. The binding of the purified polymerase to poliovirion and other RNAs was studied using a protein-RNA nitrocellulose filter binding assay. A cellular poly(A)-binding protein was found in the viral polymerase preparations, but was easily separated from the polymerase by chromatography on poly(A) Sepharose. The binding of purified polymerase to {sup 32}P-labeled ribohomopolymeric RNAs wasmore » examined, and the order of binding observed was poly(G) >>> poly(U) > poly(C) > poly(A). The K{sub a} for polymerase binding to poliovirion RNA and to a full-length negative strand transcript was about 1 {times} 10{sup 9} M{sup {minus}1}. The polymerase binds to a subgenomic RNAs which contain the 3{prime} end of the genome with a K{sub a} similar to that for virion RNA, but binds less well to 18S rRNA, globin mRNA, and subgenomic RNAs which lack portions of the 3{prime} noncoding region.« less

  7. Development of a Quantitative Recombinase Polymerase Amplification Assay with an Internal Positive Control

    PubMed Central

    Richards-Kortum, Rebecca

    2015-01-01

    It was recently demonstrated that recombinase polymerase amplification (RPA), an isothermal amplification platform for pathogen detection, may be used to quantify DNA sample concentration using a standard curve. In this manuscript, a detailed protocol for developing and implementing a real-time quantitative recombinase polymerase amplification assay (qRPA assay) is provided. Using HIV-1 DNA quantification as an example, the assembly of real-time RPA reactions, the design of an internal positive control (IPC) sequence, and co-amplification of the IPC and target of interest are all described. Instructions and data processing scripts for the construction of a standard curve using data from multiple experiments are provided, which may be used to predict the concentration of unknown samples or assess the performance of the assay. Finally, an alternative method for collecting real-time fluorescence data with a microscope and a stage heater as a step towards developing a point-of-care qRPA assay is described. The protocol and scripts provided may be used for the development of a qRPA assay for any DNA target of interest. PMID:25867513

  8. Development of a quantitative recombinase polymerase amplification assay with an internal positive control.

    PubMed

    Crannell, Zachary A; Rohrman, Brittany; Richards-Kortum, Rebecca

    2015-03-30

    It was recently demonstrated that recombinase polymerase amplification (RPA), an isothermal amplification platform for pathogen detection, may be used to quantify DNA sample concentration using a standard curve. In this manuscript, a detailed protocol for developing and implementing a real-time quantitative recombinase polymerase amplification assay (qRPA assay) is provided. Using HIV-1 DNA quantification as an example, the assembly of real-time RPA reactions, the design of an internal positive control (IPC) sequence, and co-amplification of the IPC and target of interest are all described. Instructions and data processing scripts for the construction of a standard curve using data from multiple experiments are provided, which may be used to predict the concentration of unknown samples or assess the performance of the assay. Finally, an alternative method for collecting real-time fluorescence data with a microscope and a stage heater as a step towards developing a point-of-care qRPA assay is described. The protocol and scripts provided may be used for the development of a qRPA assay for any DNA target of interest.

  9. Modified concentration method for the detection of enteric viruses on fruits and vegetables by reverse transcriptase-polymerase chain reaction or cell culture.

    PubMed

    Dubois, Eric; Agier, Cécilia; Traoré, Ousmane; Hennechart, Catherine; Merle, Ghislaine; Crucière, Catherine; Laveran, Henri

    2002-12-01

    Fruits and vegetables may act as a vehicle of human enteric virus if they are irrigated with sewage-contaminated water or prepared by infected food handlers. An elution-concentration method was modified to efficiently detect, by reverse transcriptase-polymerase chain reaction (RT-PCR) or by cell culture, contamination by poliovirus, hepatitis A virus (HAV), and Norwalk-like virus (NLV) of various fresh and frozen berries and fresh vegetables. The protocol included washing the fruit or vegetable surface with 100 mM Tris-HCl, 50 mM glycine, and 3% beef extract, pH 9.5 buffer, which favors viral elution from acid-releasing berries, supplemented with 50 mM MgCl2 to reduce the decrease in viral infectivity during the process. The viral concentration method was based on polyethylene glycol precipitation. Copurified RT-PCR inhibitors and cytotoxic compounds were removed from viral concentrates by chloroform-butanol extraction. Viruses from 100 g of vegetal products could be recovered in volumes of 3 to 5 ml. Viral RNAs were isolated by a spin column method before molecular detection or concentrates were filtered (0.22-microm porosity) and inoculated on cell culture for infectious virus detection. About 15% of infectious poliovirus and 20% of infectious HAV were recovered from frozen raspberry surfaces. The percentage of viral RNA recovery was estimated by RT-PCR to be about 13% for NLV, 17% for HAV, and 45 to 100% for poliovirus. By this method, poliovirus and HAV RNA were detected on products inoculated with a titer of about 5 x 10(1) 50% tissue culture infectious dose per 100 g. NLV RNA was detected at an initial inoculum of 1.2 x 10(3) RT-PCR amplifiable units. This method would be useful for the viral analysis of fruits or vegetables during an epidemiological investigation of foodborne diseases.

  10. The effect of main urine inhibitors on the activity of different DNA polymerases in loop-mediated isothermal amplification.

    PubMed

    Jevtuševskaja, Jekaterina; Krõlov, Katrin; Tulp, Indrek; Langel, Ülo

    2017-04-01

    The use of rapid amplification methods to detect pathogens in biological samples is mainly limited by the amount of pathogens present in the sample and the presence of inhibiting substances. Inhibitors can affect the amplification efficiency by either binding to the polymerase, interacting with the DNA, or interacting with the polymerase during primer extension. Amplification is performed using DNA polymerase enzymes and even small changes in their activity can influence the sensitivity and robustness of molecular assays Methods: The main purpose of this research was to examine which compounds present in urine inhibit polymerases with strand displacement activity. To quantify the inhibition, we employed quantitative loop-mediated isothermal amplification Results: The authors found that the presence of BSA, Mg 2+, and urea at physiologically relevant concentrations, as well as acidic or alkaline conditions did not affect the activity of any of the tested polymerases. However, addition of salt significantly affected the activity of the tested polymerases. These findings may aid in the development of more sensitive, robust, cost effective isothermal amplification based molecular assays suitable for both point-of-care testing and on-site screening of pathogens directly from unprocessed urine which avoid the need for long and tedious DNA purification steps prior to amplification.

  11. Pseudomonas aeruginosa phage PaP1 DNA polymerase is an A-family DNA polymerase demonstrating ssDNA and dsDNA 3'-5' exonuclease activity.

    PubMed

    Liu, Binyan; Gu, Shiling; Liang, Nengsong; Xiong, Mei; Xue, Qizhen; Lu, Shuguang; Hu, Fuquan; Zhang, Huidong

    2016-08-01

    Most phages contain DNA polymerases, which are essential for DNA replication and propagation in infected host bacteria. However, our knowledge on phage-encoded DNA polymerases remains limited. This study investigated the function of a novel DNA polymerase of PaP1, which is the lytic phage of Pseudomonas aeruginosa. PaP1 encodes its sole DNA polymerase called Gp90 that was predicted as an A-family DNA polymerase with polymerase and 3'-5' exonuclease activities. The sequence of Gp90 is homologous but not identical to that of other A-family DNA polymerases, such as T7 DNA polymerases (Pol) and DNA Pol I. The purified Gp90 demonstrated a polymerase activity. The processivity of Gp90 in DNA replication and its efficiency in single-dNTP incorporation are similar to those of T7 Pol with processive thioredoxin (T7 Pol/trx). Gp90 can degrade ssDNA and dsDNA in 3'-5' direction at a similar rate, which is considerably lower than that of T7 Pol/trx. The optimized conditions for polymerization were a temperature of 37 °C and a buffer consisting of 40 mM Tris-HCl (pH 8.0), 30 mM MgCl2, and 200 mM NaCl. These studies on DNA polymerase encoded by PaP1 help advance our knowledge on phage-encoded DNA polymerases and elucidate PaP1 propagation in infected P. aeruginosa.

  12. Genetic variation in C-reactive protein (CRP) gene may be associated with risk of systemic lupus erythematosus and CRP concentrations.

    PubMed

    Shih, P Betty; Manzi, Susan; Shaw, Penny; Kenney, Margaret; Kao, Amy H; Bontempo, Franklin; Barmada, M Michael; Kammerer, Candace; Kamboh, M Ilyas

    2008-11-01

    The gene coding for C-reactive protein (CRP) is located on chromosome 1q23.2, which falls within a linkage region thought to harbor a systemic lupus erythematosus (SLE) susceptibility gene. Recently, 2 single-nucleotide polymorphisms (SNP) in the CRP gene (+838, +2043) have been shown to be associated with CRP concentrations and/or SLE risk in a British family-based cohort. Our study was done to confirm the reported association in an independent population-based case-control cohort, and also to investigate the influence of 3 additional CRP tagSNP (-861, -390, +90) on SLE risk and serum CRP concentrations. DNA from 337 Caucasian women who met the American College of Rheumatology criteria for definite (n = 324) or probable (n = 13) SLE and 448 Caucasian healthy female controls was genotyped for 5 CRP tagSNP (-861, -390, +90, +838, +2043). Genotyping was performed using restriction fragment length polymorphism-polymerase chain reaction, pyrosequencing, or TaqMan assays. Serum CRP levels were measured using ELISA. Association studies were performed using the chi-squared distribution, Z-test, Fisher's exact test, and analysis of variance. Haplotype analysis was performed using EH software and the haplo.stats package in R 2.1.2. While none of the SNP were found to be associated with SLE risk individually, there was an association with the 5 SNP haplotypes (p < 0.001). Three SNP (-861, -390, +90) were found to significantly influence serum CRP level in SLE cases, both independently and as haplotypes. Our data suggest that unique haplotype combinations in the CRP gene may modify the risk of developing SLE and influence circulating CRP levels.

  13. Polymerase Gamma Disease through the Ages

    ERIC Educational Resources Information Center

    Saneto, Russell P.; Naviaux, Robert K.

    2010-01-01

    The most common group of mitochondrial disease is due to mutations within the mitochondrial DNA polymerase, polymerase gamma 1 ("POLG"). This gene product is responsible for replication and repair of the small mitochondrial DNA genome. The structure-function relationship of this gene product produces a wide variety of diseases that at times, seems…

  14. Picornaviral Polymerase Structure, Function, and Fidelity Modulation

    PubMed Central

    Peersen, Olve B.

    2017-01-01

    Like all positive strand RNA viruses, the picornaviruses replicate their genomes using a virally encoded RNA-dependent RNA polymerase enzyme known as 3Dpol. Over the past decade we have made tremendous advances in our understanding of 3Dpol structure and function, including the discovery of a novel mechanism for closing the active site that allows these viruses to easily fine tune replication fidelity and quasispecies distributions. This review summarizes current knowledge of picornaviral polymerase structure and how the enzyme interacts with RNA and other viral proteins to form stable and processive elongation complexes. The picornaviral RdRPs are among the smallest viral polymerases, but their fundamental molecular mechanism for catalysis appears to be generally applicable as a common feature of all positive strand RNA virus polymerases. PMID:28163093

  15. Laser crosslinking of E. coli RNA polymerase and T7 DNA.

    PubMed Central

    Harrison, C A; Turner, D H; Hinkle, D C

    1982-01-01

    The first photochemical crosslinking of a protein to a nucleic acid using laser excitation is reported. A single, 120 mJ, 20 ns pulse at 248 nm crosslinks about 10% of bound E. coli RNA polymerase to T7 DNA under the conditions studied. The crosslinking yield depends on mercaptoethanol concentration, and is a linear function of laser intensity. The protein subunits crosslinked to DNA are beta, beta' and sigma. PMID:7045809

  16. Yeast Cells Expressing the Human Mitochondrial DNA Polymerase Reveal Correlations between Polymerase Fidelity and Human Disease Progression*

    PubMed Central

    Qian, Yufeng; Kachroo, Aashiq H.; Yellman, Christopher M.; Marcotte, Edward M.; Johnson, Kenneth A.

    2014-01-01

    Mutations in the human mitochondrial polymerase (polymerase-γ (Pol-γ)) are associated with various mitochondrial disorders, including mitochondrial DNA (mtDNA) depletion syndrome, Alpers syndrome, and progressive external opthamalplegia. To correlate biochemically quantifiable defects resulting from point mutations in Pol-γ with their physiological consequences, we created “humanized” yeast, replacing the yeast mtDNA polymerase (MIP1) with human Pol-γ. Despite differences in the replication and repair mechanism, we show that the human polymerase efficiently complements the yeast mip1 knockouts, suggesting common fundamental mechanisms of replication and conserved interactions between the human polymerase and other components of the replisome. We also examined the effects of four disease-related point mutations (S305R, H932Y, Y951N, and Y955C) and an exonuclease-deficient mutant (D198A/E200A). In haploid cells, each mutant results in rapid mtDNA depletion, increased mutation frequency, and mitochondrial dysfunction. Mutation frequencies measured in vivo equal those measured with purified enzyme in vitro. In heterozygous diploid cells, wild-type Pol-γ suppresses mutation-associated growth defects, but continuous growth eventually leads to aerobic respiration defects, reduced mtDNA content, and depolarized mitochondrial membranes. The severity of the Pol-γ mutant phenotype in heterozygous diploid humanized yeast correlates with the approximate age of disease onset and the severity of symptoms observed in humans. PMID:24398692

  17. Visualizing polynucleotide polymerase machines at work

    PubMed Central

    Steitz, Thomas A

    2006-01-01

    The structures of T7 RNA polymerase (T7 RNAP) captured in the initiation and elongation phases of transcription, that of φ29 DNA polymerase bound to a primer protein and those of the multisubunit RNAPs bound to initiating factors provide insights into how these proteins can initiate RNA synthesis and synthesize 6–10 nucleotides while remaining bound to the site of initiation. Structural insight into the translocation of the product transcript and the separation of the downstream duplex DNA is provided by the structures of the four states of nucleotide incorporation. Single molecule and biochemical studies show a distribution of primer terminus positions that is altered by the binding of NTP and PPi ligands. This article reviews the insights that imaging the structure of polynucleotide polymerases at different steps of the polymerization reaction has provided on the mechanisms of the polymerization reaction. Movies are shown that allow the direct visualization of the conformational changes that the polymerases undergo during the different steps of polymerization. PMID:16900098

  18. Rapid and Specific Detection of Salmonella spp. in Animal Feed Samples by PCR after Culture Enrichment

    PubMed Central

    Löfström, Charlotta; Knutsson, Rickard; Axelsson, Charlotta Engdahl; Rådström, Peter

    2004-01-01

    A PCR procedure has been developed for routine analysis of viable Salmonella spp. in feed samples. The objective was to develop a simple PCR-compatible enrichment procedure to enable DNA amplification without any sample pretreatment such as DNA extraction or cell lysis. PCR inhibition by 14 different feed samples and natural background flora was circumvented by the use of the DNA polymerase Tth. This DNA polymerase was found to exhibit a high level of resistance to PCR inhibitors present in these feed samples compared to DyNAzyme II, FastStart Taq, Platinum Taq, Pwo, rTth, Taq, and Tfl. The specificity of the Tth assay was confirmed by testing 101 Salmonella and 43 non-Salmonella strains isolated from feed and food samples. A sample preparation method based on culture enrichment in buffered peptone water and DNA amplification with Tth DNA polymerase was developed. The probability of detecting small numbers of salmonellae in feed, in the presence of natural background flora, was accurately determined and found to follow a logistic regression model. From this model, the probability of detecting 1 CFU per 25 g of feed in artificially contaminated soy samples was calculated and found to be 0.81. The PCR protocol was evaluated on 155 naturally contaminated feed samples and compared to an established culture-based method, NMKL-71. Eight percent of the samples were positive by PCR, compared with 3% with the conventional method. The reasons for the differences in sensitivity are discussed. Use of this method in the routine analysis of animal feed samples would improve safety in the food chain. PMID:14711627

  19. Quantification of HIV-1 DNA using real-time recombinase polymerase amplification.

    PubMed

    Crannell, Zachary Austin; Rohrman, Brittany; Richards-Kortum, Rebecca

    2014-06-17

    Although recombinase polymerase amplification (RPA) has many advantages for the detection of pathogenic nucleic acids in point-of-care applications, RPA has not yet been implemented to quantify sample concentration using a standard curve. Here, we describe a real-time RPA assay with an internal positive control and an algorithm that analyzes real-time fluorescence data to quantify HIV-1 DNA. We show that DNA concentration and the onset of detectable amplification are correlated by an exponential standard curve. In a set of experiments in which the standard curve and algorithm were used to analyze and quantify additional DNA samples, the algorithm predicted an average concentration within 1 order of magnitude of the correct concentration for all HIV-1 DNA concentrations tested. These results suggest that quantitative RPA (qRPA) may serve as a powerful tool for quantifying nucleic acids and may be adapted for use in single-sample point-of-care diagnostic systems.

  20. Multiple two-polymerase mechanisms in mammalian translesion DNA synthesis.

    PubMed

    Livneh, Zvi; Ziv, Omer; Shachar, Sigal

    2010-02-15

    The encounter of replication forks with DNA lesions may lead to fork arrest and/or the formation of single-stranded gaps. A major strategy to cope with these replication irregularities is translesion DNA synthesis (TLS), in which specialized error-prone DNA polymerases bypass the blocking lesions. Recent studies suggest that TLS across a particular DNA lesion may involve as many as four different TLS polymerases, acting in two-polymerase reactions in which insertion by a particular polymerase is followed by extension by another polymerase. Insertion determines the accuracy and mutagenic specificity of the TLS reaction, and is carried out by one of several polymerases such as poleta, polkappa or poliota. In contrast, extension is carried out primarily by polzeta. In cells from XPV patients, which are deficient in TLS across cyclobutane pyrimidine dimers (CPD) due to a deficiency in poleta, TLS is carried out by at least two backup reactions each involving two polymerases: One reaction involves polkappa and polzeta, and the other poliota and polzeta. These mechanisms may also assist poleta in normal cells under an excessive amount of UV lesions.

  1. Lack of association between TaqI A1 Allele of dopamine D2 receptor gene and alcohol-use disorders in Atayal natives of Taiwan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chia-Hsiang Chen; Shih-Hsiang Chien; Hai-Gwo Hwu

    1996-09-20

    Association studies between the A1 allele of the dopamine D2 receptor (DRD2) gene TaqI A polymorphism and alcoholism remain controversial. A recent study from Japan demonstrated that the A1 allele is associated with severe alcoholism in the Japanese population. We were interested in knowing if this association also exists in the Atayals of Taiwan, who were found to have a higher prevalence of alcohol-use disorders than the Han Chinese in Taiwan. Genotype and allele frequencies were determined in alcohol-abusing, alcohol-dependent, and nonalcoholic control Atayal natives in Taiwan. A1 allele frequencies in alcohol-dependent, alcohol-abusing, and normal control Atayals were 0.39, 0.42,more » and 0.39, respectively. No difference in A1 allele frequency was found among these three groups. Our data do not support the hypothesis that the A1 allele of the TaqI A polymorphism of the DRD2 gene increases susceptibility to alcohol-use disorders in the Atayals of Taiwan. 18 refs., 1 tab.« less

  2. DNA polymerase gamma from Xenopus laevis. I. The identification of a high molecular weight catalytic subunit by a novel DNA polymerase photolabeling procedure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Insdorf, N.F.; Bogenhagen, D.F.

    1989-12-25

    DNA polymerase gamma has been purified over 10,000-fold from mitochondria of Xenopus laevis ovaries. We have developed a novel technique which specifically photolabels DNA polymerases. This procedure, the DNA polymerase trap, was used to identify a catalytic subunit of 140,000 Da from X. laevis DNA polymerase gamma. Additional catalytically active polypeptides of 100,000 and 55,000 Da were identified in the highly purified enzyme. These appear to be products of degradation of the 140,000-Da subunit. The DNA polymerase trap, which does not require large amounts of enzyme or renaturation from sodium dodecyl sulfate, is an alternative to the classic activity gel.

  3. Single-molecule visualization of fast polymerase turnover in the bacterial replisome

    PubMed Central

    Lewis, Jacob S; Spenkelink, Lisanne M; Jergic, Slobodan; Wood, Elizabeth A; Monachino, Enrico; Horan, Nicholas P; Duderstadt, Karl E; Cox, Michael M; Robinson, Andrew; Dixon, Nicholas E; van Oijen, Antoine M

    2017-01-01

    The Escherichia coli DNA replication machinery has been used as a road map to uncover design rules that enable DNA duplication with high efficiency and fidelity. Although the enzymatic activities of the replicative DNA Pol III are well understood, its dynamics within the replisome are not. Here, we test the accepted view that the Pol III holoenzyme remains stably associated within the replisome. We use in vitro single-molecule assays with fluorescently labeled polymerases to demonstrate that the Pol III* complex (holoenzyme lacking the β2 sliding clamp), is rapidly exchanged during processive DNA replication. Nevertheless, the replisome is highly resistant to dilution in the absence of Pol III* in solution. We further show similar exchange in live cells containing labeled clamp loader and polymerase. These observations suggest a concentration-dependent exchange mechanism providing a balance between stability and plasticity, facilitating replacement of replisomal components dependent on their availability in the environment. DOI: http://dx.doi.org/10.7554/eLife.23932.001 PMID:28432790

  4. Evaluation of the Cobas TaqMan MTB Test for the Detection of Mycobacterium tuberculosis Complex According to Acid-Fast-Bacillus Smear Grades in Respiratory Specimens

    PubMed Central

    Huh, Hee Jae; Koh, Won-Jung; Song, Dong Joon

    2014-01-01

    We evaluated the performance of the Cobas TaqMan MTB test (Roche Diagnostics, Basel, Switzerland), stratified by acid-fast bacilli (AFB) smear grades. The sensitivity of this test in smear-positive specimens was >95% in all grades, while that in trace and negative specimens was 85.3% and 34.4%, respectively. PMID:25428157

  5. An outbreak of West Nile Virus infection in the region of Monastir, Tunisia, 2003

    PubMed Central

    Riabi, Samira; Gaaloul, Imed; Mastouri, Maha; Hassine, Mohsen; Aouni, Mahjoub

    2014-01-01

    Background A West Nile (WN) fever epidemic occurred in the region of Monastir, Tunisia, between August and October 2003. Aim of the study We attempt to describe the epidemiology, clinical presentation, and outcome of patients with confirmed West Nile virus (WNV) infection. Methods Three groups of specimens were prepared. One was made up of serum only (n  =  43), the other of cerebrospinal fluid (CSF) only (n  =  30), and the third group was made up of both (n  =  40). These specimens were obtained from 113 patients. A serological diagnosis and evidence of WNV genome by nested reverse-transcriptase polymerase chain reaction (nRT-PCR) and TaqMan reverse transcription-polymerase chain reaction (RT-PCR) were carried out. Results Thirty-eight cases (33.6%) were serologically positive. Results of nRT-PCR showed a total of 10 positive cases of WNV (8.8%) detected in group 1 (n  =  1/43), group 2 (n  =  5/30), and group 3 (n  =  4/40) whereas the PCR TaqMan showed 18 positive samples (15.9%) found in group 1 (n  =  3/43), group 2 (n  =  9/30), and group 3 (n  =  6/40). All TaqMan PCR positive cases were nRT-PCR positive. In addition, four serologically probable cases were confirmed by TaqMan PCR. The attempts to isolate WNV by cell culture were unsuccessful. Considering the results of TaqMan assay and the serological diagnosis, WNV infection was confirmed in a total of 42 patients. The main clinical presentations were meningoencephalitis (40%), febrile disease (95%), and meningitis (36%). Eight patients (19%) died. The highest case-fatality rates occurred among patients aged ≧55 years. The phylogenetic analysis revealed that isolates of WNV were closely related to the Tunisian strain 1997 (PAH001) and the Israeli one (Is-98). Conclusions West Nile virus is a reemerging global pathogen that remains an important public health challenge in the next decade. PMID:24766339

  6. Inhibition of poly(ADP-ribose)polymerase-1 and DNA repair by uranium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cooper, Karen L.; Dashner, Erica J.; Tsosie, Ranalda

    Uranium has radiological and non-radiological effects within biological systems and there is increasing evidence for genotoxic and carcinogenic properties attributable to uranium through its heavy metal properties. In this study, we report that low concentrations of uranium (as uranyl acetate; < 10 μM) is not cytotoxic to human embryonic kidney cells or normal human keratinocytes; however, uranium exacerbates DNA damage and cytotoxicity induced by hydrogen peroxide, suggesting that uranium may inhibit DNA repair processes. Concentrations of uranyl acetate in the low micromolar range inhibited the zinc finger DNA repair protein poly(ADP-ribose) polymerase (PARP)-1 and caused zinc loss from PARP-1 protein.more » Uranyl acetate exposure also led to zinc loss from the zinc finger DNA repair proteins Xeroderma Pigmentosum, Complementation Group A (XPA) and aprataxin (APTX). In keeping with the observed inhibition of zinc finger function of DNA repair proteins, exposure to uranyl acetate enhanced retention of induced DNA damage. Co-incubation of uranyl acetate with zinc largely overcame the impact of uranium on PARP-1 activity and DNA damage. These findings present evidence that low concentrations of uranium can inhibit DNA repair through disruption of zinc finger domains of specific target DNA repair proteins. This may provide a mechanistic basis to account for the published observations that uranium exposure is associated with DNA repair deficiency in exposed human populations. - Highlights: • Low micromolar concentration of uranium inhibits polymerase-1 (PARP-1) activity. • Uranium causes zinc loss from multiple DNA repair proteins. • Uranium enhances retention of DNA damage caused by ultraviolet radiation. • Zinc reverses the effects of uranium on PARP activity and DNA damage repair.« less

  7. Development of a real-time polymerase chain reaction assay for the detection of the invasive Mediterranean fanworm, Sabella spallanzanii, in environmental samples.

    PubMed

    Wood, Susanna A; Zaiko, Anastasija; Richter, Ingrid; Inglis, Graeme J; Pochon, Xavier

    2017-07-01

    The Mediterranean fanworm, Sabella spallanzanii Gmelin 1791, was first detected in the Southern Hemisphere in the 1990s and is now abundant in many parts of southern Australia and in several locations around northern New Zealand. Once established, it can proliferate rapidly, reaching high densities with potential ecological and economic impacts. Early detection of new S. spallanzanii incursions is important to prevent its spread, guide eradication or control efforts and to increase knowledge on the species' dispersal pathways. In this study, we developed a TaqMan probe real-time polymerase chain reaction assay targeting a region of the mitochondrial cytochrome oxidase I gene. The assay was validated in silico and in vitro using DNA from New Zealand and Australian Sabellidae with no cross-reactivity detected. The assay has a linear range of detection over seven orders of magnitude with a limit of detection reached at 12.4 × 10 -4  ng/μL of DNA. We analysed 145 environmental (water, sediment and biofouling) samples and obtained positive detections only from spiked samples and those collected at a port where S. spallanzanii is known to be established. This assay has the potential to enhance current morphological and molecular-based methods, through its ability to rapidly and accurately identify S. spallanzanii in environmental samples.

  8. Studying the effect of graphene-ZnO nanocomposites on polymerase chain reaction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sharma, Vinay, E-mail: winn201@gmail.com; Rajaura, Rajveer; Sharma, Preetam Kumar

    An emerging area of research is improving the efficiency of the polymerase chain reaction (PCR) by using nanoparticles. With graphene nano-flakes showing promising results, in this paper we report the effect of Graphene-ZnO nanocomposites on Polymerase Chain reaction (PCR) efficiency. G-ZnO nanocomposites were efficiently synthesized via in situ chemical method. Transmission electron microscopy (TEM) and scanning electron microscopy (SEM) image confirms the formation of nanocomposites. ZnO nanoparticles of size range ~20-30 nm are uniformly attached on the graphene sheets. No amplification during PCR indicates inhibitory activity of G-ZnO nanocomposites which points the fingers at ZnO moiety of the G-ZnO compositemore » for no amplification during our PCR reaction. Further work should concentrate on finding out the main inhibitory mechanism involved in inhibition of PCR using G-ZnO composites.« less

  9. Detection of rabbit and hare processed material in compound feeds by TaqMan real-time PCR.

    PubMed

    Pegels, N; López-Calleja, I; García, T; Martín, R; González, I

    2013-01-01

    Food and feed traceability has become a priority for governments due to consumer demand for comprehensive and integrated safety policies. In the present work, a TaqMan real-time PCR assay targeting the mitochondrial 12S rRNA gene was developed for specific detection of rabbit and hare material in animal feeds and pet foods. The technique is based on the use of three species-specific primer/probe detection systems targeting three 12S rRNA gene fragments: one from rabbit species, another one from hare species and a third fragment common to rabbit and hare (62, 102 and 75 bp length, respectively). A nuclear 18S rRNA PCR system, detecting a 77-bp amplicon, was used as positive amplification control. Assay performance and sensitivity were assessed through the analysis of a batch of laboratory-scale feeds treated at 133°C at 3 bar for 20 min to reproduce feed processing conditions dictated by European regulations. Successful detection of highly degraded rabbit and hare material was achieved at the lowest target concentration assayed (0.1%). Furthermore, the method was applied to 96 processed commercial pet food products to determine whether correct labelling had been used at the market level. The reported real-time PCR technique detected the presence of rabbit tissues in 80 of the 96 samples analysed (83.3%), indicating a possible labelling fraud in some pet foods. The real-time PCR method reported may be a useful tool for traceability purposes within the framework of feed control.

  10. DNA polymerase having modified nucleotide binding site for DNA sequencing

    DOEpatents

    Tabor, Stanley; Richardson, Charles

    1997-01-01

    Modified gene encoding a modified DNA polymerase wherein the modified polymerase incorporates dideoxynucleotides at least 20-fold better compared to the corresponding deoxynucleotides as compared with the corresponding naturally-occurring DNA polymerase.

  11. Discovery of cyanophage genomes which contain mitochondrial DNA polymerase.

    PubMed

    Chan, Yi-Wah; Mohr, Remus; Millard, Andrew D; Holmes, Antony B; Larkum, Anthony W; Whitworth, Anna L; Mann, Nicholas H; Scanlan, David J; Hess, Wolfgang R; Clokie, Martha R J

    2011-08-01

    DNA polymerase γ is a family A DNA polymerase responsible for the replication of mitochondrial DNA in eukaryotes. The origins of DNA polymerase γ have remained elusive because it is not present in any known bacterium, though it has been hypothesized that mitochondria may have inherited the enzyme by phage-mediated nonorthologous displacement. Here, we present an analysis of two full-length homologues of this gene, which were found in the genomes of two bacteriophages, which infect the chlorophyll-d containing cyanobacterium Acaryochloris marina. Phylogenetic analyses of these phage DNA polymerase γ proteins show that they branch deeply within the DNA polymerase γ clade and therefore share a common origin with their eukaryotic homologues. We also found homologues of these phage polymerases in the environmental Community Cyberinfrastructure for Advanced Microbial Ecology Research and Analysis (CAMERA) database, which fell in the same clade. An analysis of the CAMERA assemblies containing the environmental homologues together with the filter fraction metadata indicated some of these assemblies may be of bacterial origin. We also show that the phage-encoded DNA polymerase γ is highly transcribed as the phage genomes are replicated. These findings provide data that may assist in reconstructing the evolution of mitochondria.

  12. Detection of hepatitis C virus RNA using ligation-dependent polymerase chain reaction in formalin-fixed, paraffin-embedded liver tissues.

    PubMed Central

    Park, Y. N.; Abe, K.; Li, H.; Hsuih, T.; Thung, S. N.; Zhang, D. Y.

    1996-01-01

    Reverse transcription polymerase chain reaction (RT-PCR) has been used to detect hepatitis C virus (HCV) sequences in liver tissue. However, RT-PCR has a variable detection sensitivity, especially on routinely processed formalin-fixed, paraffin-embedded (FFPE) specimens. RNA-RNA and RNA-protein cross-links formed during formalin fixation is the major limiting factor preventing reverse trans criptase from extending the primers. To overcome this problem, we applied the ligation-dependent PCR (LD-PCR) for the detection of HCV RNA in FFPE liver tissue. This method uses two capture probes for RNA isolation and two hemiprobes for the subsequent PCR. Despite cross-links, the capture probes and the hemiprobes are able to form hybrids with HCV RNAs released from the FFPE tissue. The hybrids are isolated through binding of the capture probes to paramagnetic beads. The hemiprobes are then ligated by a T4 DNA ligase to form a full probe that serves as a template for the Taq DNA polymerase. A total of 22 FFPE liver specimens, 21 with hepatocellular carcinoma (HCC) and 1 with biliary cirrhosis secondary to bile duct atresia were selected for this study, of which 13 patients were HCV seropositive and 9 seronegative. HCV RNA was detectable by ID-PCR from all 13 HCV-seropositive HCCs and from 5 of 8 HCV-seronegative HCCs but not from the HCV-seronegative liver with biliary atresia. By contrast, RT-PCR detected HCV sequences in only 5 of the HCV-sero-positive and in 1 of the HCV-seronegative HCCs. To resolve the discordance between the LD-PCR and RT-PCR results, RT-PCR was performed on frozen liver tissue of the discrepant specimens, which confirmed the LD-PCR positive results. In conclusion, LD-PCR is a more sensitive method than RT-PCR for the detection of HCV sequences in routinely processed liver tissues. A high rate of HCV infection (86%) is found in HCC specimens, indicating a previously underestimated role of HCV in HCC pathogenesis. Images Figure 2 PMID:8909238

  13. Differential binding of ppGpp and pppGpp to E. coli RNA polymerase: photo-labeling and mass spectral studies.

    PubMed

    Syal, Kirtimaan; Chatterji, Dipankar

    2015-12-01

    (p)ppGpp, a secondary messenger, is induced under stress and shows pleiotropic response. It binds to RNA polymerase and regulates transcription in Escherichia coli. More than 25 years have passed since the first discovery was made on the direct interaction of ppGpp with E. coli RNA polymerase. Several lines of evidence suggest different modes of ppGpp binding to the enzyme. Earlier cross-linking experiments suggested that the β-subunit of RNA polymerase is the preferred site for ppGpp, whereas recent crystallographic studies pinpoint the interface of β'/ω-subunits as the site of action. With an aim to validate the binding domain and to follow whether tetra- and pentaphosphate guanosines have different location on RNA polymerase, this work was initiated. RNA polymerase was photo-labeled with 8-azido-ppGpp/8-azido-pppGpp, and the product was digested with trypsin and subjected to mass spectrometry analysis. We observed three new peptides in the trypsin digest of the RNA polymerase labeled with 8-azido-ppGpp, of which two peptides correspond to the same pocket on β'-subunit as predicted by X-ray structural analysis, whereas the third peptide was mapped on the β-subunit. In the case of 8-azido-pppGpp-labeled RNA polymerase, we have found only one cross-linked peptide from the β'-subunit. However, we were unable to identify any binding site of pppGpp on the β-subunit. Interestingly, we observed that pppGpp at high concentration competes out ppGpp bound to RNA polymerase more efficiently, whereas ppGpp cannot titrate out pppGpp. The competition between tetraphosphate guanosine and pentaphosphate guanosine for E. coli RNA polymerase was followed by gel-based assay as well as by a new method known as DRaCALA assay. © 2015 The Molecular Biology Society of Japan and Wiley Publishing Asia Pty Ltd.

  14. D2 Dopamine receptor Taq1A polymorphism, body weight, and dietary intake in type 2 diabetes

    PubMed Central

    Barnard, Neal D.; Noble, Ernest P.; Ritchie, Terry; Cohen, Joshua; Jenkins, David J.A.; Turner-McGrievy, Gabrielle; Gloede, Lise; Ferdowsian, Hope

    2008-01-01

    OBJECTIVE Certain D2 dopamine receptor Taq 1A genotypes (A1A1, A1A2) have been associated with obesity and substance abuse. We hypothesized that their presence would be associated with reduced efficacy of dietary interventions in individuals with type 2 diabetes. RESEARCH METHODS & PROCEDURES In the course of a randomized clinical trial in an outpatient research center in which 93 adults with type 2 diabetes were assigned to a low-fat vegan diet or a diet following 2003 American Diabetes Association guidelines for 74 weeks, Taq 1A genotype was determined. Nutrient intake, body weight, and hemoglobin A1c (A1c) were measured over 74 weeks. RESULTS The A1 allele was highly prevalent, occurring in 47% of white participants (n = 49), which was significantly higher than the 29% prevalence previously reported in nondiabetic whites (P=0.01). The A1 allele was found in 55% of black participants (n = 44). Black participants with A1+ genotypes had significantly greater mean body weight (11.2 kg heavier, P=0.05), and greater intake of fat (P=0.002), saturated fat (P=0.01) and cholesterol (P=0.02), compared with A2A2 (A1-) individuals; dietary changes during the study did not favor one genotype group. Among whites, baseline anthropometric and nutrient differences between gene groups were small. However, among whites in the vegan group, A1+ individuals reduced fat intake (P=0.04) and A1c (P=0.01) significantly less than did A1- individuals. CONCLUSIONS The A1 allele appears to be highly prevalent among individuals with type 2 diabetes. Potential influences on diet, weight, and glycemic control merit further exploration. PMID:18834717

  15. DNA polymerase having modified nucleotide binding site for DNA sequencing

    DOEpatents

    Tabor, S.; Richardson, C.

    1997-03-25

    A modified gene encoding a modified DNA polymerase is disclosed. The modified polymerase incorporates dideoxynucleotides at least 20-fold better compared to the corresponding deoxynucleotides as compared with the corresponding naturally-occurring DNA polymerase. 6 figs.

  16. Multicentre study of Y chromosome microdeletions in 1,808 Chinese infertile males using multiplex and real-time polymerase chain reaction.

    PubMed

    Zhu, X-B; Gong, Y-H; He, J; Guo, A-L; Zhi, E-L; Yao, J-E; Zhu, B-S; Zhang, A-J; Li, Z

    2017-06-01

    Azoospermia factor (AZF) genes on the long arm of the human Y chromosome are involved in spermatogenesis, and microdeletions in the AZF region have been recognised to be the second major genetic cause of spermatogenetic failure resulting in male infertility. While screening for these microdeletions can avoid unnecessary medical and surgical treatments, current methods are generally time-consuming. Therefore, we established a new method to detect and analyse microdeletions in the AZF region quickly, safely and efficiently. In total, 1,808 patients with spermatogenetic failure were recruited from three hospitals in southern China, of which 600 patients were randomly selected for screening for Y chromosome microdeletions in AZF regions employing real-time polymerase chain reaction with a TaqMan probe. In our study, of 1,808 infertile patients, 150 (8.3%) were found to bear microdeletions in the Y chromosome using multiplex PCR, while no deletions were found in the controls. Among the AZF deletions detected, two were in AZFa, three in AZFb, 35 in AZFc, three in AZFb+c and two in AZFa+b+c. Our method is fast-it permits the scanning of DNA from a patient in one and a half hours-and reliable, minimising the risk of cross-contamination and false-positive and false-negative results. © 2016 Blackwell Verlag GmbH.

  17. Rapid detection of Enterovirus and Coxsackievirus A10 by a TaqMan based duplex one-step real time RT-PCR assay.

    PubMed

    Chen, Jingfang; Zhang, Rusheng; Ou, Xinhua; Yao, Dong; Huang, Zheng; Li, Linzhi; Sun, Biancheng

    2017-06-01

    A TaqMan based duplex one-step real time RT-PCR (rRT-PCR) assay was developed for the rapid detection of Coxsackievirus A10 (CV-A10) and other enterovirus (EVs) in clinical samples. The assay was fully evaluated and found to be specific and sensitive. When applied in 115 clinical samples, a 100% diagnostic sensitivity in CV-A10 detection and 97.4% diagnostic sensitivity in other EVs were found. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Human DNA polymerase η accommodates RNA for strand extension.

    PubMed

    Su, Yan; Egli, Martin; Guengerich, F Peter

    2017-11-03

    Ribonucleotides are the natural analogs of deoxyribonucleotides, which can be misinserted by DNA polymerases, leading to the most abundant DNA lesions in genomes. During replication, DNA polymerases tolerate patches of ribonucleotides on the parental strands to different extents. The majority of human DNA polymerases have been reported to misinsert ribonucleotides into genomes. However, only PrimPol, DNA polymerase α, telomerase, and the mitochondrial human DNA polymerase (hpol) γ have been shown to tolerate an entire RNA strand. Y-family hpol η is known for translesion synthesis opposite the UV-induced DNA lesion cyclobutane pyrimidine dimer and was recently found to incorporate ribonucleotides into DNA. Here, we report that hpol η is able to bind DNA/DNA, RNA/DNA, and DNA/RNA duplexes with similar affinities. In addition, hpol η, as well as another Y-family DNA polymerase, hpol κ, accommodates RNA as one of the two strands during primer extension, mainly by inserting dNMPs opposite unmodified templates or DNA lesions, such as 8-oxo-2'-deoxyguanosine or cyclobutane pyrimidine dimer, even in the presence of an equal amount of the DNA/DNA substrate. The discovery of this RNA-accommodating ability of hpol η redefines the traditional concept of human DNA polymerases and indicates potential new functions of hpol η in vivo . © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  19. Specific Inhibition of Herpes Simplex Virus DNA Polymerase by Helical Peptides Corresponding to the Subunit Interface

    NASA Astrophysics Data System (ADS)

    Digard, Paul; Williams, Kevin P.; Hensley, Preston; Brooks, Ian S.; Dahl, Charles E.; Coen, Donald M.

    1995-02-01

    The herpes simplex virus DNA polymerase consists of two subunits-a catalytic subunit and an accessory subunit, UL42, that increases processivity. Mutations affecting the extreme C terminus of the catalytic subunit specifically disrupt subunit interactions and ablate virus replication, suggesting that new antiviral drugs could be rationally designed to interfere with polymerase heterodimerization. To aid design, we performed circular dichroism (CD) spectroscopy and analytical ultracentrifugation studies, which revealed that a 36-residue peptide corresponding to the C terminus of the catalytic subunit folds into a monomeric structure with partial α-helical character. CD studies of shorter peptides were consistent with a model where two separate regions of α-helix interact to form a hairpin-like structure. The 36-residue peptide and a shorter peptide corresponding to the C-terminal 18 residues blocked UL42-dependent long-chain DNA synthesis at concentrations that had no effect on synthesis by the catalytic subunit alone or by calf thymus DNA polymerase δ and its processivity factor. These peptides, therefore, represent a class of specific inhibitors of herpes simplex virus DNA polymerase that act by blocking accessory-subunit-dependent synthesis. These peptides or their structures may form the basis for the synthesis of clinically effective drugs.

  20. Messenger RNA transcripts

    Treesearch

    Dan Cullen

    2004-01-01

    In contrast to DNA, messenger RNA (mRNA) in complex substrata is rarely analyzed, in large part because labile RNA molecules are difficult to purify. Nucleic acid extractions from fungi that colonize soil are particularly difficult and plagued by humic substances that interfere with Taq polymerase (Tebbe and Vahjen 1993 and references therein). Magnetic capture...

  1. Investigation of Influenza Virus Polymerase Activity in Pig Cells

    PubMed Central

    Moncorgé, Olivier; Long, Jason S.; Cauldwell, Anna V.; Zhou, Hongbo; Lycett, Samantha J.

    2013-01-01

    Reassortant influenza viruses with combinations of avian, human, and/or swine genomic segments have been detected frequently in pigs. As a consequence, pigs have been accused of being a “mixing vessel” for influenza viruses. This implies that pig cells support transcription and replication of avian influenza viruses, in contrast to human cells, in which most avian influenza virus polymerases display limited activity. Although influenza virus polymerase activity has been studied in human and avian cells for many years by use of a minigenome assay, similar investigations in pig cells have not been reported. We developed the first minigenome assay for pig cells and compared the activities of polymerases of avian or human influenza virus origin in pig, human, and avian cells. We also investigated in pig cells the consequences of some known mammalian host range determinants that enhance influenza virus polymerase activity in human cells, such as PB2 mutations E627K, D701N, G590S/Q591R, and T271A. The two typical avian influenza virus polymerases used in this study were poorly active in pig cells, similar to what is seen in human cells, and mutations that adapt the avian influenza virus polymerase for human cells also increased activity in pig cells. In contrast, a different pattern was observed in avian cells. Finally, highly pathogenic avian influenza virus H5N1 polymerase activity was tested because this subtype has been reported to replicate only poorly in pigs. H5N1 polymerase was active in swine cells, suggesting that other barriers restrict these viruses from becoming endemic in pigs. PMID:23077313

  2. Development and in-house validation of the event-specific polymerase chain reaction detection methods for genetically modified soybean MON89788 based on the cloned integration flanking sequence.

    PubMed

    Liu, Jia; Guo, Jinchao; Zhang, Haibo; Li, Ning; Yang, Litao; Zhang, Dabing

    2009-11-25

    Various polymerase chain reaction (PCR) methods were developed for the execution of genetically modified organism (GMO) labeling policies, of which an event-specific PCR detection method based on the flanking sequence of exogenous integration is the primary trend in GMO detection due to its high specificity. In this study, the 5' and 3' flanking sequences of the exogenous integration of MON89788 soybean were revealed by thermal asymmetric interlaced PCR. The event-specific PCR primers and TaqMan probe were designed based upon the revealed 5' flanking sequence, and the qualitative and quantitative PCR assays were established employing these designed primers and probes. In qualitative PCR, the limit of detection (LOD) was about 0.01 ng of genomic DNA corresponding to 10 copies of haploid soybean genomic DNA. In the quantitative PCR assay, the LOD was as low as two haploid genome copies, and the limit of quantification was five haploid genome copies. Furthermore, the developed PCR methods were in-house validated by five researchers, and the validated results indicated that the developed event-specific PCR methods can be used for identification and quantification of MON89788 soybean and its derivates.

  3. Development of melting temperature-based SYBR Green I polymerase chain reaction methods for multiplex genetically modified organism detection.

    PubMed

    Hernández, Marta; Rodríguez-Lázaro, David; Esteve, Teresa; Prat, Salomé; Pla, Maria

    2003-12-15

    Commercialization of several genetically modified crops has been approved worldwide to date. Uniplex polymerase chain reaction (PCR)-based methods to identify these different insertion events have been developed, but their use in the analysis of all commercially available genetically modified organisms (GMOs) is becoming progressively insufficient. These methods require a large number of assays to detect all possible GMOs present in the sample and thereby the development of multiplex PCR systems using combined probes and primers targeted to sequences specific to various GMOs is needed for detection of this increasing number of GMOs. Here we report on the development of a multiplex real-time PCR suitable for multiple GMO identification, based on the intercalating dye SYBR Green I and the analysis of the melting curves of the amplified products. Using this method, different amplification products specific for Maximizer 176, Bt11, MON810, and GA21 maize and for GTS 40-3-2 soybean were obtained and identified by their specific Tm. We have combined amplification of these products in a number of multiplex reactions and show the suitability of the methods for identification of GMOs with a sensitivity of 0.1% in duplex reactions. The described methods offer an economic and simple alternative to real-time PCR systems based on sequence-specific probes (i.e., TaqMan chemistry). These methods can be used as selection tests and further optimized for uniplex GMO quantification.

  4. Application of TaqMan fluorescent probe-based quantitative real-time PCR assay for the environmental survey of Legionella spp. and Legionella pneumophila in drinking water reservoirs in Taiwan.

    PubMed

    Kao, Po-Min; Hsu, Bing-Mu; Hsu, Tsui-Kang; Ji, Wen-Tsai; Huang, Po-Hsiang; Hsueh, Chih-Jen; Chiang, Chuen-Sheue; Huang, Shih-Wei; Huang, Yu-Li

    2014-08-15

    In this study, TaqMan fluorescent quantitative real-time PCR was performed to quantify Legionella species in reservoirs. Water samples were collected from 19 main reservoirs in Taiwan, and 12 (63.2%) were found to contain Legionella spp. The identified species included uncultured Legionella spp., L. pneumophila, L. jordanis, and L. drancourtii. The concentrations of Legionella spp. and L. pneumophila in the water samples were in the range of 1.8×10(2)-2.6×10(3) and 1.6×10(2)-2.4×10(2) cells/L, respectively. The presence and absence of Legionella spp. in the reservoir differed significantly in pH values. These results highlight the importance that L. pneumophila, L. jordanis, and L. drancourtii are potential pathogens in the reservoirs. The presence of L. pneumophila in reservoirs may be a potential public health concern that must be further examined. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Evaluation of the Cobas TaqMan MTB test for the detection of Mycobacterium tuberculosis complex according to acid-fast-bacillus smear grades in respiratory specimens.

    PubMed

    Huh, Hee Jae; Koh, Won-Jung; Song, Dong Joon; Ki, Chang-Seok; Lee, Nam Yong

    2015-02-01

    We evaluated the performance of the Cobas TaqMan MTB test (Roche Diagnostics, Basel, Switzerland), stratified by acid-fast bacilli (AFB) smear grades. The sensitivity of this test in smear-positive specimens was >95% in all grades, while that in trace and negative specimens was 85.3% and 34.4%, respectively. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  6. Identification of four squid species by quantitative real-time polymerase chain reaction.

    PubMed

    Ye, Jian; Feng, Junli; Liu, Shasha; Zhang, Yanping; Jiang, Xiaona; Dai, Zhiyuan

    2016-02-01

    Squids are distributed worldwide, including many species of commercial importance, and they are often made into varieties of flavor foods. The rapid identification methods for squid species especially their processed products, however, have not been well developed. In this study, quantitative real-time PCR (qPCR) systems based on specific primers and TaqMan probes have been established for rapid and accurate identification of four common squid species (Ommastrephes bartramii, Dosidicus gigas, Illex argentinus, Todarodes pacificus) in Chinese domestic market. After analyzing mitochondrial genes reported in GenBank, the mitochondrial cytochrome b (Cytb) gene was selected for O. bartramii detection, cytochrome c oxidase subunit I (COI) gene for D. gigas and T. Pacificus detection, ATPase subunit 6 (ATPase 6) gene for I. Argentinus detection, and 12S ribosomal RNA (12S rDNA) gene for designing Ommastrephidae-specific primers and probe. As a result, all the TaqMan systems are of good performance, and efficiency of each reaction was calculated by making standard curves. This method could detect target species either in single or mixed squid specimen, and it was applied to identify 12 squid processed products successfully. Thus, it would play an important role in fulfilling labeling regulations and squid fishery control. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. New Deoxyribonucleic Acid Polymerase Induced by Bacillus subtilis Bacteriophage PBS2

    PubMed Central

    Price, Alan R.; Cook, Sandra J.

    1972-01-01

    The deoxyribonucleic acid (DNA) of Bacillus subtilis phage PBS2 has been confirmed to contain uracil instead of thymine. PBS2 phage infection of wild-type cells or DNA polymerase-deficient cells results in an increase in the specific activity of DNA polymerase. This induction of DNA polymerase activity is prevented by actinomycin D and chloramphenicol. In contrast to the major B. subtilis DNA polymerase, which prefers deoxythymidine triphosphate (dTTP) to deoxyuridine triphosphate (dUTP), the DNA polymerase in crude extracts of PBS2-infected cells is equally active whether dTTP or dUTP is employed. This phage-induced polymerase may be responsible for the synthesis of uracil-containing DNA during PBS2 phage infection. PMID:4623224

  8. A TaqMan real-time PCR-based assay for the identification of Fasciola spp.

    PubMed

    Alasaad, Samer; Soriguer, Ramón C; Abu-Madi, Marawan; El Behairy, Ahmed; Jowers, Michael J; Baños, Pablo Díez; Píriz, Ana; Fickel, Joerns; Zhu, Xing-Quan

    2011-06-30

    Real time quantitative PCR (qPCR) is one of the key technologies of the post-genome era, with clear advantages compared to normal end-point PCR. In this paper, we report the first qPCR-based assay for the identification of Fasciola spp. Based on sequences of the second internal transcribed spacers (ITS-2) of the ribosomal rRNA gene, we used a set of genus-specific primers for Fasciola ITS-2 amplification, and we designed species-specific internal TaqMan probes to identify F. hepatica and F. gigantica, as well as the hybrid 'intermediate'Fasciola. These primers and probes were used for the highly specific, sensitive, and simple identification of Fasciola species collected from different animal host from China, Spain, Niger and Egypt. The novel qPCR-based technique for the identification of Fasciola spp. may provide a useful tool for the epidemiological investigation of Fasciola infection, including their intermediate snail hosts. Copyright © 2011 Elsevier B.V. All rights reserved.

  9. DNA polymerases eta and kappa exchange with the polymerase delta holoenzyme to complete common fragile site synthesis.

    PubMed

    Barnes, Ryan P; Hile, Suzanne E; Lee, Marietta Y; Eckert, Kristin A

    2017-09-01

    Common fragile sites (CFSs) are inherently unstable genomic loci that are recurrently altered in human tumor cells. Despite their instability, CFS are ubiquitous throughout the human genome and associated with large tumor suppressor genes or oncogenes. CFSs are enriched with repetitive DNA sequences, one feature postulated to explain why these loci are inherently difficult to replicate, and sensitive to replication stress. We have shown that specialized DNA polymerases (Pols) η and κ replicate CFS-derived sequences more efficiently than the replicative Pol δ. However, we lacked an understanding of how these enzymes cooperate to ensure efficient CFS replication. Here, we designed a model of lagging strand replication with RFC loaded PCNA that allows for maximal activity of the four-subunit human Pol δ holoenzyme, Pol η, and Pol κ in polymerase mixing assays. We discovered that Pol η and κ are both able to exchange with Pol δ stalled at repetitive CFS sequences, enhancing Normalized Replication Efficiency. We used this model to test the impact of PCNA mono-ubiquitination on polymerase exchange, and found no change in polymerase cooperativity in CFS replication compared with unmodified PCNA. Finally, we modeled replication stress in vitro using aphidicolin and found that Pol δ holoenzyme synthesis was significantly inhibited in a dose-dependent manner, preventing any replication past the CFS. Importantly, Pol η and κ were still proficient in rescuing this stalled Pol δ synthesis, which may explain, in part, the CFS instability phenotype of aphidicolin-treated Pol η and Pol κ-deficient cells. In total, our data support a model wherein Pol δ stalling at CFSs allows for free exchange with a specialized polymerase that is not driven by PCNA. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Polymerase chain reaction with phase change as intrinsic thermal control

    NASA Astrophysics Data System (ADS)

    Hsieh, Yi-Fan; Yonezawa, Eri; Kuo, Long-Sheng; Yeh, Shiou-Hwei; Chen, Pei-Jer; Chen, Ping-Hei

    2013-04-01

    This research demonstrated that without any external temperature controller, the capillary convective polymerase chain reaction (ccPCR) powered by a candle can operate with the help of phase change. The candle ccPCR system productively amplified hepatitis B virus 122 base-pairs DNA fragment. The detection sensitivity can achieve at an initial DNA concentration to 5 copies per reaction. The results also show that the candle ccPCR system can operate functionally even the ambient temperature varies from 7 °C to 45 °C. These features imply that the candle ccPCR system can provide robust medical detection services.

  11. Modified pseudomonas oleovorans phaC1 nucleic acids encoding bispecific polyhydroxyalkanoate polymerase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Srienc, Friedrich; Jackson, John K.; Somers, David A.

    A genetically engineered Pseudomonas oleovorans phaC1 polyhydroxyalkanoate (PHA) polymerase having tailored substrate specificity is provided. The modified PHA polymerase is preferably a "bispecific" PHA polymerase capable of copolymerizing a short chain length monomer and a medium chain length monomer is provided. Methods for making the modified PHA polymerase and for making nucleic acids encoding the modified PHA polymerase are also disclosed, as are methods of producing PHA using the modified PHA polymerase. The invention further includes methods to assay for altered substrate specificity.

  12. The origin and early evolution of nucleic acid polymerases

    NASA Technical Reports Server (NTRS)

    Lazcano, A.; Cappello, R.; Valverde, V.; Llaca, V.; Oro, J.

    1992-01-01

    The hypothesis that vestiges of the ancestral RNA-dependent RNA polymerase involved in the replication of RNA genomes of Archean cells are present in the eubacterial RNA-polymerase beta-prime subunit and its homologues is discussed. It is shown that, in the DNA-dependent RNA polymerases from three cellular lineages, a very conserved sequence of eight amino acids, also found in a small RNA-binding site previously described for the E. coli polynucleotide phosphorylase and the S1 ribosomal protein, is present. The optimal conditions for the replicase activity of the avian-myeloblastosis-virus reverse transcriptase are presented. The evolutionary significance of the in vitro modifications of substrate and template specificities of RNA polymerases and reverse transcriptases is discussed.

  13. Evaluation of immunomagnetic separation for the detection of Salmonella in surface waters by polymerase chain reaction.

    PubMed

    Hsu, Chao-Yu; Hsu, Bing-Mu; Chang, Tien-Yu; Hsu, Tsui-Kang; Shen, Shu-Min; Chiu, Yi-Chou; Wang, Hung-Jen; Ji, Wen-Tsai; Fan, Cheng-Wei; Chen, Jyh-Larng

    2014-09-19

    Salmonella spp. is associated with fecal pollution and capable of surviving for long periods in aquatic environments. Instead of the traditional, time-consuming biochemical detection, polymerase chain reaction (PCR) allows rapid identification of Salmonella directly concentrated from water samples. However, prevalence of Salmonella may be underestimated because of the vulnerability of PCR to various environmental chemicals like humic acid, compounded by the fact that various DNA polymerases have different susceptibility to humic acid. Because immunomagnetic separation (IMS) theoretically could isolate Salmonella from other microbes and facilitate removal of aquatic PCR inhibitors of different sizes, this study aims to compare the efficiency of conventional PCR combined with immunomagnetic separation (IMS) for Salmonella detection within a moderately polluted watershed. In our study, the positive rate was increased from 17.6% to 47% with nearly ten-fold improvement in the detection limit. These results suggest the sensitivity of Salmonella detection could be enhanced by IMS, particularly in low quality surface waters. Due to its effects on clearance of aquatic pollutants, IMS may be suitable for most DNA polymerases for Salmonella detection.

  14. Repair of Clustered Damage and DNA Polymerase Iota.

    PubMed

    Belousova, E A; Lavrik, O I

    2015-08-01

    Multiple DNA lesions occurring within one or two turns of the DNA helix known as clustered damage are a source of double-stranded DNA breaks, which represent a serious threat to the cells. Repair of clustered lesions is accomplished in several steps. If a clustered lesion contains oxidized bases, an individual DNA lesion is repaired by the base excision repair (BER) mechanism involving a specialized DNA polymerase after excising DNA damage. Here, we investigated DNA synthesis catalyzed by DNA polymerase iota using damaged DNA templates. Two types of DNA substrates were used as model DNAs: partial DNA duplexes containing breaks of different length, and DNA duplexes containing 5-formyluracil (5-foU) and uracil as a precursor of apurinic/apyrimidinic sites (AP) in opposite DNA strands. For the first time, we showed that DNA polymerase iota is able to catalyze DNA synthesis using partial DNA duplexes having breaks of different length as substrates. In addition, we found that DNA polymerase iota could catalyze DNA synthesis during repair of clustered damage via the BER system by using both undamaged and 5-foU-containing templates. We found that hPCNA (human proliferating cell nuclear antigen) increased efficacy of DNA synthesis catalyzed by DNA polymerase iota.

  15. Comparison of specific binding sites for Escherichia coli RNA polymerase with naturally occurring hairpin regions in single-stranded DNA of coliphage M13. [Aspergillus oryzae

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Niyogi, S.K.; Mitra, S.

    Escherichia coli RNA polymerase binds specifically to the single-stranded circular DNA of coliphage M13 in the presence of a saturating concentration of the bacterial DNA binding protein presumably as an essential step in the synthesis of the RNA primer required for synthesizing the complementary DNA strand in parental replicative-form DNA. The RNA polymerase-protected DNA regions were isolated after extensive digestion with pancreatic DNase, S1 endonuclease of Aspergillus oryzae, and exonuclease I of E. coli. The physicochemical properties of the RNA polymerase-protected segments (called PI and PII) were compared with those of the naturally occurring hairpin regions.

  16. Initiation, extension, and termination of RNA synthesis by a paramyxovirus polymerase.

    PubMed

    Jordan, Paul C; Liu, Cheng; Raynaud, Pauline; Lo, Michael K; Spiropoulou, Christina F; Symons, Julian A; Beigelman, Leo; Deval, Jerome

    2018-02-01

    Paramyxoviruses represent a family of RNA viruses causing significant human diseases. These include measles virus, the most infectious virus ever reported, in addition to parainfluenza virus, and other emerging viruses. Paramyxoviruses likely share common replication machinery but their mechanisms of RNA biosynthesis activities and details of their complex polymerase structures are unknown. Mechanistic and functional details of a paramyxovirus polymerase would have sweeping implications for understanding RNA virus replication and for the development of new antiviral medicines. To study paramyxovirus polymerase structure and function, we expressed an active recombinant Nipah virus (NiV) polymerase complex assembled from the multifunctional NiV L protein bound to its phosphoprotein cofactor. NiV is an emerging highly pathogenic virus that causes severe encephalitis and has been declared a global public health concern due to its high mortality rate. Using negative-stain electron microscopy, we demonstrated NiV polymerase forms ring-like particles resembling related RNA polymerases. We identified conserved sequence elements driving recognition of the 3'-terminal genomic promoter by NiV polymerase, and leading to initiation of RNA synthesis, primer extension, and transition to elongation mode. Polyadenylation resulting from NiV polymerase stuttering provides a mechanistic basis for transcription termination. It also suggests a divergent adaptation in promoter recognition between pneumo- and paramyxoviruses. The lack of available antiviral therapy for NiV prompted us to identify the triphosphate forms of R1479 and GS-5734, two clinically relevant nucleotide analogs, as substrates and inhibitors of NiV polymerase activity by delayed chain termination. Overall, these findings provide low-resolution structural details and the mechanism of an RNA polymerase from a previously uncharacterized virus family. This work illustrates important functional differences yet remarkable

  17. On-chip isothermal, chemical cycling polymerase chain reaction (ccPCR)

    NASA Astrophysics Data System (ADS)

    Persat, Alexandre; Santiago, Juan

    2008-11-01

    We demonstrate a novel ccPCR technique for microfluidic DNA amplification where temperature is held constant in space and time. The polymerase chain reaction is a platform of choice for biological assays and typically based on a three-step thermal cycling: DNA denaturation, primers annealing and extension by an enzyme. We here demonstrate a novel technique where high concentration chemical denaturants (solvents) denature DNA. We leverage the high electrophoretic mobility of DNA and the electrical neutrality of denaturants to achieve chemical cycling. We focus DNA with isotachophoresis (ITP); a robust electrophoretic preconcentration technique which generates strong electric field gradients and protects the sample from dispersion. We apply a pressure-driven flow to balance electromigration velocity and keep the DNA sample stationary in a microchannel. We drive the DNA through a series of high denaturant concentration zones. DNA denatures at high denaturant concentration. At low denaturant concentration, the enzyme creates complementary strands. DNA reaction kinetics are slower than buffer reactions involved in ITP. We demonstrate successful ccPCR amplification for detection of E. Coli. The ccPCR has the potential for simpler chemistry than traditional PCR.

  18. Simultaneous detection of wheat dwarf virus, northern cereal mosaic virus, barley yellow striate mosaic virus and rice black-streaked dwarf virus in wheat by multiplex RT-PCR.

    PubMed

    Zhang, Peipei; Liu, Yan; Liu, Wenwen; Massart, Sebastien; Wang, Xifeng

    2017-11-01

    Wheat dwarf virus (WDV), barley yellow striate mosaic virus (BYSMV), rice black-streaked dwarf virus (RBSDV) and northern cereal mosaic virus (NCMV) are four viruses infecting wheat and causing similar symptoms. In this paper, a multiplex reverse transcription polymerase chain reaction (m-RT-PCR) method has been developed for the simultaneous detection and discrimination of these viruses. The protocol uses specific primer set for each virus and produces four distinct fragments (273, 565, 783 and 1296bp), detecting the presence of RBSDV, BYSMV, WDV and NCMV, respectively. Annealing temperature, concentrations of dNTP, Taq polymerase and Mg 2+ were optimized for the m-RT-PCR. The detection limit of the assay was up to 10 -2 dilution. The amplification specificity of these primers was tested against a range of field samples from different regions of China, where RBSDV, BYSMV, WDV have been detected. This study fulfills the need for a rapid and specific wheat virus detection that also has the potential for investigating the epidemiology of these new viral diseases. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Mammalian proliferating cell nuclear antigen stimulates the processivity of two wheat embryo DNA polymerases.

    PubMed Central

    Laquel, P; Litvak, S; Castroviejo, M

    1993-01-01

    Multiple DNA polymerases have been described in all organisms studied to date. Their specific functions are not easy to determine, except when powerful genetic and/or biochemical tools are available. However, the processivity of a DNA polymerase could reflect the physiological role of the enzyme. In this study, analogies between plant and animal DNA polymerases have been investigated by analyzing the size of the products synthesized by wheat DNA polymerases A, B, CI, and CII as a measure of their processivity. Thus, incubations have been carried out with poly(dA)-oligo(dT) as a template-primer under varying assay conditions. In the presence of MgCl2, DNA polymerase A was highly processive, whereas DNA polymerases B, CI, and CII synthesized much shorter products. With MnCl2 instead of MgCl2, DNA polymerase A was highly processive, DNA polymerases B and CII were moderately processive, and DNA polymerase CI remained strictly distributive. The effect of calf thymus proliferating cell nuclear antigen (PCNA) on wheat polymerases was studied as described for animal DNA polymerases. The high processivity of DNA polymerase A was PCNA independent, whereas both enzyme activity and processivity of wheat DNA polymerases B and CII were significantly stimulated by PCNA. On the other hand, DNA polymerase CI was not stimulated by PCNA and, like animal DNA polymerase beta, was distributive in all cases. From these results, we propose that wheat DNA polymerase A could correspond to a DNA polymerase alpha, DNA polymerases B and CII could correspond to the delta-like enzyme, and DNA polymerase CI could correspond to DNA polymerase beta. PMID:7906418

  20. Mapping DNA polymerase errors by single-molecule sequencing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, David F.; Lu, Jenny; Chang, Seungwoo

    Genomic integrity is compromised by DNA polymerase replication errors, which occur in a sequence-dependent manner across the genome. Accurate and complete quantification of a DNA polymerase's error spectrum is challenging because errors are rare and difficult to detect. We report a high-throughput sequencing assay to map in vitro DNA replication errors at the single-molecule level. Unlike previous methods, our assay is able to rapidly detect a large number of polymerase errors at base resolution over any template substrate without quantification bias. To overcome the high error rate of high-throughput sequencing, our assay uses a barcoding strategy in which each replicationmore » product is tagged with a unique nucleotide sequence before amplification. Here, this allows multiple sequencing reads of the same product to be compared so that sequencing errors can be found and removed. We demonstrate the ability of our assay to characterize the average error rate, error hotspots and lesion bypass fidelity of several DNA polymerases.« less

  1. Mapping DNA polymerase errors by single-molecule sequencing

    DOE PAGES

    Lee, David F.; Lu, Jenny; Chang, Seungwoo; ...

    2016-05-16

    Genomic integrity is compromised by DNA polymerase replication errors, which occur in a sequence-dependent manner across the genome. Accurate and complete quantification of a DNA polymerase's error spectrum is challenging because errors are rare and difficult to detect. We report a high-throughput sequencing assay to map in vitro DNA replication errors at the single-molecule level. Unlike previous methods, our assay is able to rapidly detect a large number of polymerase errors at base resolution over any template substrate without quantification bias. To overcome the high error rate of high-throughput sequencing, our assay uses a barcoding strategy in which each replicationmore » product is tagged with a unique nucleotide sequence before amplification. Here, this allows multiple sequencing reads of the same product to be compared so that sequencing errors can be found and removed. We demonstrate the ability of our assay to characterize the average error rate, error hotspots and lesion bypass fidelity of several DNA polymerases.« less

  2. DNA Polymerase in Virions of a Reptilian Type C Virus

    PubMed Central

    Twardzik, Daniel R.; Papas, Takis S.; Portugal, Frank H.

    1974-01-01

    A study was made of the DNA polymerase of reptilian type C virus isolated from Russell's viper spleen cells. Simultaneous detection experiments demonstrated the presence of 70S RNA and RNA-dependent DNA polymerase activity in reptilian type C virions. The endogenous activity was dependent on the addition of all four deoxynucleotide triphosphates and demonstrated an absolute requirement for a divalent cation. The reptilian viral DNA polymerase elutes from phosphocellulose at 0.22 M salt. In this respect, it is similar to the avian (avian myeloblastosis virus; AMV) viral enzyme but is different from the mammalian (Rauscher leukemia virus; RLV) viral enzyme which elutes at 0.4 M salt. The molecular weight of the viper DNA polymerase as estimated from glycerol gradient centrifugation is 109,000. It is a smaller enzyme than the AMV DNA polymerase (180,000 daltons) and somewhat larger than the RLV enzyme (70,000 daltons). A comparison of other properties of the type C reptilian DNA polymerase with the enzyme found in other type C oncogenic viruses is made. PMID:4129837

  3. Development and Evaluation of a Multiplex Real-Time Polymerase Chain Reaction Procedure to Clinically Type Prevalent Salmonella enterica Serovars

    PubMed Central

    Muñoz, Nélida; Diaz-Osorio, Miguel; Moreno, Jaime; Sánchez-Jiménez, Miryan; Cardona-Castro, Nora

    2010-01-01

    A multiplex real-time polymerase chain reaction procedure was developed to identify the most prevalent clinical isolates of Salmonella enterica subsp. enterica. Genes from the rfb, fliC, fljB, and viaB groups that encode the O, H, and Vi antigens were used to design 15 primer pairs and TaqMan probes specific for the genes rfbJ, wzx, fliC, fljB, wcdB, the sdf-l sequence, and invA, which was used as an internal amplification control. The primers and probes were variously combined into six sets. The first round of reactions used two of these sets to detect Salmonella O:4, O:9, O:7, O:8, and O:3,10 serogroups. Once the serogroups were identified, the results of a second round of reactions that used primers and probes for the flagellar antigen l genes, 1,2; e,h; g,m; d; e,n,x; and z10, and the Vi gene were used to identify individual serovars. The procedure was standardized using 18 Salmonella reference strains and other enterobacteria. The procedure's reliability and sensitivity was evaluated using 267 randomly chosen serotyped Salmonella clinical isolates. The procedure had a sensitivity of 95.5% and was 100% specific. Thus, our technique is a quick, sensitive, reliable, and specific means of identifying S. enterica serovars and can be used in conjunction with traditional serotyping. Other primer and probe combinations could be used to increase the number of identifiable serovars. PMID:20110454

  4. Kaposi's Sarcoma-Associated Herpesvirus Hijacks RNA Polymerase II To Create a Viral Transcriptional Factory

    PubMed Central

    Chen, Christopher Phillip; Lyu, Yuanzhi; Chuang, Frank; Nakano, Kazushi; Izumiya, Chie; Jin, Di; Campbell, Mel

    2017-01-01

    ABSTRACT Locally concentrated nuclear factors ensure efficient binding to DNA templates, facilitating RNA polymerase II recruitment and frequent reutilization of stable preinitiation complexes. We have uncovered a mechanism for effective viral transcription by focal assembly of RNA polymerase II around Kaposi's sarcoma-associated herpesvirus (KSHV) genomes in the host cell nucleus. Using immunofluorescence labeling of latent nuclear antigen (LANA) protein, together with fluorescence in situ RNA hybridization (RNA-FISH) of the intron region of immediate early transcripts, we visualized active transcription of viral genomes in naturally infected cells. At the single-cell level, we found that not all episomes were uniformly transcribed following reactivation stimuli. However, those episomes that were being transcribed would spontaneously aggregate to form transcriptional “factories,” which recruited a significant fraction of cellular RNA polymerase II. Focal assembly of “viral transcriptional factories” decreased the pool of cellular RNA polymerase II available for cellular gene transcription, which consequently impaired cellular gene expression globally, with the exception of selected ones. The viral transcriptional factories localized with replicating viral genomic DNAs. The observed colocalization of viral transcriptional factories with replicating viral genomic DNA suggests that KSHV assembles an “all-in-one” factory for both gene transcription and DNA replication. We propose that the assembly of RNA polymerase II around viral episomes in the nucleus may be a previously unexplored aspect of KSHV gene regulation by confiscation of a limited supply of RNA polymerase II in infected cells. IMPORTANCE B cells infected with Kaposi's sarcoma-associated herpesvirus (KSHV) harbor multiple copies of the KSHV genome in the form of episomes. Three-dimensional imaging of viral gene expression in the nucleus allows us to study interactions and changes in the

  5. Polymerase chain displacement reaction.

    PubMed

    Harris, Claire L; Sanchez-Vargas, Irma J; Olson, Ken E; Alphey, Luke; Fu, Guoliang

    2013-02-01

    Quantitative PCR assays are now the standard method for viral diagnostics. These assays must be specific, as well as sensitive, to detect the potentially low starting copy number of viral genomic material. We describe a new technique, polymerase chain displacement reaction (PCDR), which uses multiple nested primers in a rapid, capped, one-tube reaction that increases the sensitivity of normal quantitative PCR (qPCR) assays. Sensitivity was increased by approximately 10-fold in a proof-of-principle test on dengue virus sequence. In PCDR, when extension occurs from the outer primer, it displaces the extension strand produced from the inner primer by utilizing a polymerase that has strand displacement activity. This allows a greater than 2-fold increase of amplification product for each amplification cycle and therefore increased sensitivity and speed over conventional PCR. Increased sensitivity in PCDR would be useful in nucleic acid detection for viral diagnostics.

  6. A meiotic DNA polymerase from a mushroom, Agaricus bisporus.

    PubMed Central

    Takami, K; Matsuda, S; Sono, A; Sakaguchi, K

    1994-01-01

    A meiotic DNA polymerase [DNA nucleotidyltransferase (DNA-directed), EC 2.7.7.7], which likely has a role in meiotic DNA repair, was isolated from a mushroom, Agaricus bisporus. The purified fraction displays three bands in SDS/PAGE, at molecular masses of 72 kDa, 65 kDa and 36 kDa. Optimal activity is at pH 7.0-8.0 in the presence of 5 mM Mg2+ and 50 mM KCl and at 28-30 degrees C, which is the temperature for meiosis. This enzyme is resistant to N-ethylmaleimide and sensitive to 2',3'-dideoxythymidine 5'-triphosphate, suggesting that it is a beta-like DNA polymerase. These characteristics are similar to those of Coprinus DNA polymerase beta [Sakaguchi and Lu (1982) Mol. Cell. Biol. 2, 752-757]. In Western-blot analysis, the antiserum against the Coprinus polymerase reacts only with the 65 kDa band, which coincides with the molecular mass of the Coprinus polymerase. Western-blot analysis also showed that the antiserum could react with crude extracts not only from the Agaricales family, to which Agaricus and Coprinus belong, but also from different mushroom families and Saccharomyces. The Agaricus polymerase activity can be found only in the meiotic-cell-rich fraction, but the enzyme is also present in the somatic cells in an inactive state. Images Figure 2 Figure 5 Figure 6 PMID:8172591

  7. Functional Architecture of T7 RNA Polymerase Transcription Complexes

    PubMed Central

    Nayak, Dhananjaya; Guo, Qing; Sousa, Rui

    2007-01-01

    Summary T7 RNA polymerase is the best-characterized member of a widespread family of single-subunit RNA polymerases. Crystal structures of T7 RNA polymerase initiation and elongation complexes have provided a wealth of detailed information on RNA polymerase interactions with the promoter and transcription bubble, but the absence of DNA downstream of the melted region of the template in the initiation complex structure, and the absence of DNA upstream of the transcription bubble in the elongation complex structure means that our picture of the functional architecture of T7 RNA polymerase transcription complexes remains incomplete. Here we use the site-specifically tethered chemical nucleases and functional characterization of directed T7 RNAP mutants to both reveal the architecture of the duplex DNA that flanks the transcription bubble in the T7 RNAP initiation and elongation complexes, and to define the function of the interactions made by these duplex elements. We find that downstream duplex interactions made with a cluster of lysines (K711/K713/K714) are present during both elongation and initiation where they contribute to stabilizing a bend in the downstream DNA that is important for promoter opening. The upstream DNA in the elongation complex is also found to be sharply bent at the upstream edge of the transcription bubble, thereby allowing formation of upstream duplex:polymerase interactions that contribute to elongation complex stability. PMID:17580086

  8. Results of the Abbott RealTime HIV-1 assay for specimens yielding "target not detected" results by the Cobas AmpliPrep/Cobas TaqMan HIV-1 Test.

    PubMed

    Babady, N Esther; Germer, Jeffrey J; Yao, Joseph D C

    2010-03-01

    No significantly discordant results were observed between the Abbott RealTime HIV-1 assay and the COBAS AmpliPrep/COBAS TaqMan HIV-1 Test (CTM) among 1,190 unique clinical plasma specimens obtained from laboratories located in 40 states representing all nine U.S. geographic regions and previously yielding "target not detected" results by CTM.

  9. Dynamic structure mediates halophilic adaptation of a DNA polymerase from the deep-sea brines of the Red Sea.

    PubMed

    Takahashi, Masateru; Takahashi, Etsuko; Joudeh, Luay I; Marini, Monica; Das, Gobind; Elshenawy, Mohamed M; Akal, Anastassja; Sakashita, Kosuke; Alam, Intikhab; Tehseen, Muhammad; Sobhy, Mohamed A; Stingl, Ulrich; Merzaban, Jasmeen S; Di Fabrizio, Enzo; Hamdan, Samir M

    2018-01-24

    The deep-sea brines of the Red Sea are remote and unexplored environments characterized by high temperatures, anoxic water, and elevated concentrations of salt and heavy metals. This environment provides a rare system to study the interplay between halophilic and thermophilic adaptation in biologic macromolecules. The present article reports the first DNA polymerase with halophilic and thermophilic features. Biochemical and structural analysis by Raman and circular dichroism spectroscopy showed that the charge distribution on the protein's surface mediates the structural balance between stability for thermal adaptation and flexibility for counteracting the salt-induced rigid and nonfunctional hydrophobic packing. Salt bridge interactions via increased negative and positive charges contribute to structural stability. Salt tolerance, conversely, is mediated by a dynamic structure that becomes more fixed and functional with increasing salt concentration. We propose that repulsive forces among excess negative charges, in addition to a high percentage of negatively charged random coils, mediate this structural dynamism. This knowledge enabled us to engineer a halophilic version of KOD DNA polymerase.-Takahashi, M., Takahashi, E., Joudeh, L. I., Marini, M., Das, G., Elshenawy, M. M., Akal, A., Sakashita, K., Alam, I., Tehseen, M., Sobhy, M. A., Stingl, U., Merzaban, J. S., Di Fabrizio, E., Hamdan, S. M. Dynamic structure mediates halophilic adaptation of a DNA polymerase from the deep-sea brines of the Red Sea.

  10. BLM helicase facilitates RNA polymerase I-mediated ribosomal RNA transcription

    PubMed Central

    Grierson, Patrick M.; Lillard, Kate; Behbehani, Gregory K.; Combs, Kelly A.; Bhattacharyya, Saumitri; Acharya, Samir; Groden, Joanna

    2012-01-01

    Bloom's syndrome (BS) is an autosomal recessive disorder that is invariably characterized by severe growth retardation and cancer predisposition. The Bloom's syndrome helicase (BLM), mutations of which lead to BS, localizes to promyelocytic leukemia protein bodies and to the nucleolus of the cell, the site of RNA polymerase I-mediated ribosomal RNA (rRNA) transcription. rRNA transcription is fundamental for ribosome biogenesis and therefore protein synthesis, cellular growth and proliferation; its inhibition limits cellular growth and proliferation as well as bodily growth. We report that nucleolar BLM facilitates RNA polymerase I-mediated rRNA transcription. Immunofluorescence studies demonstrate the dependance of BLM nucleolar localization upon ongoing RNA polymerase I-mediated rRNA transcription. In vivo protein co-immunoprecipitation demonstrates that BLM interacts with RPA194, a subunit of RNA polymerase I. 3H-uridine pulse-chase assays demonstrate that BLM expression is required for efficient rRNA transcription. In vitro helicase assays demonstrate that BLM unwinds GC-rich rDNA-like substrates that form in the nucleolus and normally inhibit progression of the RNA polymerase I transcription complex. These studies suggest that nucleolar BLM modulates rDNA structures in association with RNA polymerase I to facilitate RNA polymerase I-mediated rRNA transcription. Given the intricate relationship between rDNA metabolism and growth, our data may help in understanding the etiology of proportional dwarfism in BS. PMID:22106380

  11. BLM helicase facilitates RNA polymerase I-mediated ribosomal RNA transcription.

    PubMed

    Grierson, Patrick M; Lillard, Kate; Behbehani, Gregory K; Combs, Kelly A; Bhattacharyya, Saumitri; Acharya, Samir; Groden, Joanna

    2012-03-01

    Bloom's syndrome (BS) is an autosomal recessive disorder that is invariably characterized by severe growth retardation and cancer predisposition. The Bloom's syndrome helicase (BLM), mutations of which lead to BS, localizes to promyelocytic leukemia protein bodies and to the nucleolus of the cell, the site of RNA polymerase I-mediated ribosomal RNA (rRNA) transcription. rRNA transcription is fundamental for ribosome biogenesis and therefore protein synthesis, cellular growth and proliferation; its inhibition limits cellular growth and proliferation as well as bodily growth. We report that nucleolar BLM facilitates RNA polymerase I-mediated rRNA transcription. Immunofluorescence studies demonstrate the dependance of BLM nucleolar localization upon ongoing RNA polymerase I-mediated rRNA transcription. In vivo protein co-immunoprecipitation demonstrates that BLM interacts with RPA194, a subunit of RNA polymerase I. (3)H-uridine pulse-chase assays demonstrate that BLM expression is required for efficient rRNA transcription. In vitro helicase assays demonstrate that BLM unwinds GC-rich rDNA-like substrates that form in the nucleolus and normally inhibit progression of the RNA polymerase I transcription complex. These studies suggest that nucleolar BLM modulates rDNA structures in association with RNA polymerase I to facilitate RNA polymerase I-mediated rRNA transcription. Given the intricate relationship between rDNA metabolism and growth, our data may help in understanding the etiology of proportional dwarfism in BS.

  12. Polymerase chain reaction system

    DOEpatents

    Benett, William J.; Richards, James B.; Stratton, Paul L.; Hadley, Dean R.; Milanovich, Fred P.; Belgrader, Phil; Meyer, Peter L.

    2004-03-02

    A portable polymerase chain reaction DNA amplification and detection system includes one or more chamber modules. Each module supports a duplex assay of a biological sample. Each module has two parallel interrogation ports with a linear optical system. The system is capable of being handheld.

  13. The translesion DNA polymerases Pol ζ and Rev1 are activated independently of PCNA ubiquitination upon UV radiation in mutants of DNA polymerase δ

    PubMed Central

    Ma, Emilie; Veaute, Xavier; Coïc, Eric

    2017-01-01

    Replicative DNA polymerases cannot insert efficiently nucleotides at sites of base lesions. This function is taken over by specialized translesion DNA synthesis (TLS) polymerases to allow DNA replication completion in the presence of DNA damage. In eukaryotes, Rad6- and Rad18-mediated PCNA ubiquitination at lysine 164 promotes recruitment of TLS polymerases, allowing cells to efficiently cope with DNA damage. However, several studies showed that TLS polymerases can be recruited also in the absence of PCNA ubiquitination. We hypothesized that the stability of the interactions between DNA polymerase δ (Pol δ) subunits and/or between Pol δ and PCNA at the primer/template junction is a crucial factor to determine the requirement of PCNA ubiquitination. To test this hypothesis, we used a structural mutant of Pol δ in which the interaction between Pol3 and Pol31 is inhibited. We found that in yeast, rad18Δ-associated UV hypersensitivity is suppressed by pol3-ct, a mutant allele of the POL3 gene that encodes the catalytic subunit of replicative Pol δ. pol3-ct suppressor effect was specifically dependent on the Rev1 and Pol ζ TLS polymerases. This result strongly suggests that TLS polymerases could rely much less on PCNA ubiquitination when Pol δ interaction with PCNA is partially compromised by mutations. In agreement with this model, we found that the pol3-FI allele suppressed rad18Δ-associated UV sensitivity as observed for pol3-ct. This POL3 allele carries mutations within a putative PCNA Interacting Peptide (PIP) motif. We then provided molecular and genetic evidence that this motif could contribute to Pol δ-PCNA interaction indirectly, although it is not a bona fide PIP. Overall, our results suggest that the primary role of PCNA ubiquitination is to allow TLS polymerases to outcompete Pol δ for PCNA access upon DNA damage. PMID:29281621

  14. Poly(A) polymerase contains multiple functional domains.

    PubMed Central

    Raabe, T; Murthy, K G; Manley, J L

    1994-01-01

    Poly(A) polymerase (PAP) contains regions of similarity with several known protein domains. Through site-directed mutagenesis, we provide evidence that PAP contains a functional ribonucleoprotein-type RNA binding domain (RBD) that is responsible for primer binding, making it the only known polymerase to contain such a domain. The RBD is adjacent to, and probably overlaps with, an apparent catalytic region responsible for polymerization. Despite the presence of sequence similarities, this catalytic domain appears to be distinct from the conserved polymerase module found in a large number of RNA-dependent polymerases. PAP contains two nuclear localization signals (NLSs) in its C terminus, each by itself similar to the consensus bipartite NLS found in many nuclear proteins. Mutagenesis experiments indicate that both signals, which are separated by nearly 140 residues, play important roles in directing PAP exclusively to the nucleus. Surprisingly, basic amino acids in the N-terminal-most NLS are also essential for AAUAAA-dependent polyadenylation but not for nonspecific poly(A) synthesis, suggesting that this region of PAP is involved in interactions both with nuclear targeting proteins and with nuclear polyadenylation factors. The serine/threonine-rich C terminus is multiply phosphorylated, including at sites affected by mutations in either NLS. Images PMID:8164653

  15. Concentration of 2'C-methyladenosine triphosphate by Leishmania guyanensis enables specific inhibition of Leishmania RNA virus 1 via its RNA polymerase.

    PubMed

    Robinson, John I; Beverley, Stephen M

    2018-04-27

    Leishmania is a widespread trypanosomatid protozoan parasite causing significant morbidity and mortality in humans. The endobiont dsRNA virus Leishmania RNA virus 1 (LRV1) chronically infects some strains, where it increases parasite numbers and virulence in murine leishmaniasis models, and correlates with increased treatment failure in human disease. Previously, we reported that 2'-C-methyladenosine (2CMA) potently inhibited LRV1 in Leishmania guyanensis ( Lgy ) and Leishmania braziliensis , leading to viral eradication at concentrations above 10 μm Here we probed the cellular mechanisms of 2CMA inhibition, involving metabolism, accumulation, and inhibition of the viral RNA-dependent RNA polymerase (RDRP). Activation to 2CMA triphosphate (2CMA-TP) was required, as 2CMA showed no inhibition of RDRP activity from virions purified on cesium chloride gradients. In contrast, 2CMA-TP showed IC 50 values ranging from 150 to 910 μm, depending on the CsCl density of the virion (empty, ssRNA-, and dsRNA-containing). Lgy parasites incubated in vitro with 10 μm 2CMA accumulated 2CMA-TP to 410 μm, greater than the most sensitive RDRP IC 50 measured. Quantitative modeling showed good agreement between the degree of LRV1 RDRP inhibition and LRV1 levels. These results establish that 2CMA activity is due to its conversion to 2CMA-TP, which accumulates to levels that inhibit RDRP and cause LRV1 loss. This attests to the impact of the Leishmania purine uptake and metabolism pathways, which allow even a weak RDRP inhibitor to effectively eradicate LRV1 at micromolar concentrations. Future RDRP inhibitors with increased potency may have potential therapeutic applications for ameliorating the increased Leishmania pathogenicity conferred by LRV1. © 2018 by The American Society for Biochemistry and Molecular Biology, Inc.

  16. General misincorporation frequency: Re-evaluation of the fidelity of DNA polymerases.

    PubMed

    Yang, Jie; Li, Bianbian; Liu, Xiaoying; Tang, Hong; Zhuang, Xiyao; Yang, Mingqi; Xu, Ying; Zhang, Huidong; Yang, Chun

    2018-02-19

    DNA replication in cells is performed in the presence of four dNTPs and four rNTPs. In this study, we re-evaluated the fidelity of DNA polymerases using the general misincorporation frequency consisting of three incorrect dNTPs and four rNTPs but not using the traditional special misincorporation frequency with only the three incorrect dNTPs. We analyzed both the general and special misincorporation frequencies of nucleotide incorporation opposite dG, rG, or 8-oxoG by Pseudomonas aeruginosa phage 1 (PaP1) DNA polymerase Gp90 or Sulfolobus solfataricus DNA polymerase Dpo4. Both misincorporation frequencies of other DNA polymerases published were also summarized and analyzed. The general misincorporation frequency is obviously higher than the special misincorporation frequency for many DNA polymerases, indicating the real fidelity of a DNA polymerase should be evaluated using the general misincorporation frequency. Copyright © 2018 Elsevier Inc. All rights reserved.

  17. Family A and B DNA Polymerases in Cancer: Opportunities for Therapeutic Interventions

    PubMed Central

    Shanbhag, Vinit; Sachdev, Shrikesh; Flores, Jacqueline A.; Modak, Mukund J.; Singh, Kamalendra

    2018-01-01

    DNA polymerases are essential for genome replication, DNA repair and translesion DNA synthesis (TLS). Broadly, these enzymes belong to two groups: replicative and non-replicative DNA polymerases. A considerable body of data suggests that both groups of DNA polymerases are associated with cancer. Many mutations in cancer cells are either the result of error-prone DNA synthesis by non-replicative polymerases, or the inability of replicative DNA polymerases to proofread mismatched nucleotides due to mutations in 3′-5′ exonuclease activity. Moreover, non-replicative, TLS-capable DNA polymerases can negatively impact cancer treatment by synthesizing DNA past lesions generated from treatments such as cisplatin, oxaliplatin, etoposide, bleomycin, and radiotherapy. Hence, the inhibition of DNA polymerases in tumor cells has the potential to enhance treatment outcomes. Here, we review the association of DNA polymerases in cancer from the A and B families, which participate in lesion bypass, and conduct gene replication. We also discuss possible therapeutic interventions that could be used to maneuver the role of these enzymes in tumorigenesis. PMID:29301327

  18. Eukaryotic DNA polymerase ζ

    PubMed Central

    Makarova, Alena V.; Burgers, Peter M.

    2015-01-01

    This review focuses on eukaryotic DNA polymerase ζ (Pol ζ), the enzyme responsible for the bulk of mutagenesis in eukaryotic cells in response to DNA damage. Pol ζ is also responsible for a large portion of mutagenesis during normal cell growth, in response to spontaneous damage or to certain DNA structures and other blocks that stall DNA replication forks. Novel insights in mutagenesis have been derived from recent advances in the elucidation of the subunit structure of Pol ζ. The lagging strand DNA polymerase δ shares the small Pol31 and Pol32 subunits with the Rev3-Rev7 core assembly giving a four subunit Pol ζ complex that is the active form in mutagenesis. Furthermore, Pol ζ forms essential interactions with the mutasome assembly factor Rev1 and with proliferating cell nuclear antigen (PCNA). These interactions are modulated by posttranslational modifications such as ubiquitination and phosphorylation that enhance translesion synthesis (TLS) and mutagenesis. PMID:25737057

  19. A fluorescence-based alkaline phosphatase-coupled polymerase assay for identification of inhibitors of dengue virus RNA-dependent RNA polymerase.

    PubMed

    Niyomrattanakit, Pornwaratt; Abas, Siti Nurdiana; Lim, Chin Chin; Beer, David; Shi, Pei-Yong; Chen, Yen-Liang

    2011-02-01

    The flaviviral RNA-dependent RNA polymerase (RdRp) is an attractive drug target. To discover new inhibitors of dengue virus RdRp, the authors have developed a fluorescence-based alkaline phosphatase-coupled polymerase assay (FAPA) for high-throughput screening (HTS). A modified nucleotide analogue (2'-[2-benzothiazoyl]-6'-hydroxybenzothiazole) conjugated adenosine triphosphate (BBT-ATP) and 3'UTR-U(30) RNA were used as substrates. After the polymerase reaction, treatment with alkaline phosphatase liberates the BBT fluorophore from the polymerase reaction by-product, BBT(PPi), which can be detected at excitation and emission wavelengths of 422 and 566 nm, respectively. The assay was evaluated by examining the time dependency, assay reagent effects, reaction kinetics, and signal stability and was validated with 3'dATP and an adenosine-nucleotide triphosphate inhibitor, giving IC(50) values of 0.13 µM and 0.01 µM, respectively. A pilot screen of a diverse compound library of 40,572 compounds at 20 µM demonstrated good performance with an average Z factor of 0.81. The versatility and robustness of FAPA were evaluated with another substrate system, BBT-GTP paired with 3'UTR-C(30) RNA. The FAPA method presented here can be readily adapted for other nucleotide-dependent enzymes that generate PPi.

  20. DNA Carrier Testing and Newborn Screening for Maple Syrup Urine Disease in Old Order Mennonite Communities

    PubMed Central

    Carleton, Stephanie M.; Peck, Dawn S.; Grasela, Julie; Dietiker, Kristin L.

    2010-01-01

    Maple syrup urine disease (MSUD) is an inherited metabolic disorder caused by mutations in the branched chain α-keto acid dehydrogenase complex. Worldwide incidence of MSUD is 1:225,000 live births. However, within Old Order Mennonite communities, the incidence is 1:150 live births and results from a common tyrosine to asparagine substitution (Y438N) in the E1α subunit of branched chain α-keto acid dehydrogenase. We developed a new DNA diagnostic assay utilizing TaqMan® technology and compared its efficacy, sensitivity, and duration with an existing polymerase chain reaction–restriction fragment length polymorphism (PCR-RFLP) assay. Carrier testing was performed by both TaqMan technology and PCR-RFLP on DNA isolated from buccal swabs of 160 individuals as well as from buccal swabs and blood spots of nine at-risk newborns; assay time, sensitivity, and reliability were also evaluated. The TaqMan assay, like the PCR-RFLP assay, accurately determined Y438N E1α allele status. However, the TaqMan assay appeared (1) more sensitive than the PCR-RFLP assay, requiring 10-fold less DNA (10 ng) to reliably determine genotype status and (2) faster, reducing the assay time required for diagnosis from ∼12 to 5 h. TaqMan technology allowed more rapid DNA diagnoses of MSUD in the neonate, thereby reducing the likelihood of neurological impairment while enhancing health and prognosis for affected infants. PMID:20136525

  1. Stochastic resetting in backtrack recovery by RNA polymerases

    NASA Astrophysics Data System (ADS)

    Roldán, Édgar; Lisica, Ana; Sánchez-Taltavull, Daniel; Grill, Stephan W.

    2016-06-01

    Transcription is a key process in gene expression, in which RNA polymerases produce a complementary RNA copy from a DNA template. RNA polymerization is frequently interrupted by backtracking, a process in which polymerases perform a random walk along the DNA template. Recovery of polymerases from the transcriptionally inactive backtracked state is determined by a kinetic competition between one-dimensional diffusion and RNA cleavage. Here we describe backtrack recovery as a continuous-time random walk, where the time for a polymerase to recover from a backtrack of a given depth is described as a first-passage time of a random walker to reach an absorbing state. We represent RNA cleavage as a stochastic resetting process and derive exact expressions for the recovery time distributions and mean recovery times from a given initial backtrack depth for both continuous and discrete-lattice descriptions of the random walk. We show that recovery time statistics do not depend on the discreteness of the DNA lattice when the rate of one-dimensional diffusion is large compared to the rate of cleavage.

  2. A multiplex TaqMan qPCR assay for sensitive and rapid detection of phytoplasmas infecting Rubus species.

    PubMed

    Linck, Holger; Krüger, Erika; Reineke, Annette

    2017-01-01

    Rubus stunt is an economically important disease in the production of raspberries, blackberries, and loganberries. A fast, sensitive, and reliable diagnosis of phytoplasmas, the causal agent of the disease, is of prime importance to stop its spread by vegetative propagation and by insect vectors. Therefore, multiplex qPCR assays using TaqMan probes with different kinds of fluorophores in one reaction were developed, allowing the detection of phytoplasmas in general as well as a more specific detection of phytoplasmas belonging to group 16SrV and host DNA (either plant or insect). This assay now provides a practical tool for the screening of motherplants and monitoring the presence and distribution of phytoplasmas in Rubus plants of different geographic origins, cultivars, and cultivation systems, as well as in putative insect vectors like leafhoppers.

  3. A multiplex TaqMan qPCR assay for sensitive and rapid detection of phytoplasmas infecting Rubus species

    PubMed Central

    Krüger, Erika; Reineke, Annette

    2017-01-01

    Rubus stunt is an economically important disease in the production of raspberries, blackberries, and loganberries. A fast, sensitive, and reliable diagnosis of phytoplasmas, the causal agent of the disease, is of prime importance to stop its spread by vegetative propagation and by insect vectors. Therefore, multiplex qPCR assays using TaqMan probes with different kinds of fluorophores in one reaction were developed, allowing the detection of phytoplasmas in general as well as a more specific detection of phytoplasmas belonging to group 16SrV and host DNA (either plant or insect). This assay now provides a practical tool for the screening of motherplants and monitoring the presence and distribution of phytoplasmas in Rubus plants of different geographic origins, cultivars, and cultivation systems, as well as in putative insect vectors like leafhoppers. PMID:28545043

  4. PCR amplification of up to 35-kb DNA with high fidelity and high yield from lambda bacteriophage templates.

    PubMed Central

    Barnes, W M

    1994-01-01

    A target length limitation to PCR amplification of DNA has been identified and addressed. Concomitantly, the base-pair fidelity, the ability to use PCR products as primers, and the maximum yield of target fragment were increased. These improvements were achieved by the combination of a high level of an exonuclease-free, N-terminal deletion mutant of Taq DNA polymerase, Klentaq1, with a very low level of a thermostable DNA polymerase exhibiting a 3'-exonuclease activity (Pfu, Vent, or Deep Vent). At least 35 kb can be amplified to high yields from 1 ng of lambda DNA template. Images PMID:8134376

  5. Detection of adulterated murine components in meat products by TaqMan© real-time PCR.

    PubMed

    Fang, Xin; Zhang, Chi

    2016-02-01

    Using murine meat to substitute mutton has been identified as a new type of meat fraud in China, yet no detection method for murine species has been reported. Here, three kinds of rodent were used as target species to establish a murine-specific real-time PCR method of detection. The mitochondrial cytochrome b gene (cytb) of each target was sequenced and a TaqMan probe was designed based on the cytb. Simultaneously, an internal positive control (IPC) plasmid along with its respective probe were designed to monitor the PCR reaction. As a result, the duplex real-time PCR system was verified to be specific. The limit of detection (LOD) was lower than 1 pg of DNA per reaction and 0.1% murine contamination in meat mixtures. Standard curves were generated for a quantitative analysis. Thus, this study provided a new tool to control the quality of meat products for official and third-party laboratories. Copyright © 2015. Published by Elsevier Ltd.

  6. Polymerase III transcription factor B activity is reduced in extracts of growth-restricted cells.

    PubMed Central

    Tower, J; Sollner-Webb, B

    1988-01-01

    Extracts of cells that are down-regulated for transcription by RNA polymerase I and RNA polymerase III exhibit a reduced in vitro transcriptional capacity. We have recently demonstrated that the down-regulation of polymerase I transcription in extracts of cycloheximide-treated and stationary-phase cells results from a lack of an activated subform of RNA polymerase I which is essential for rDNA transcription. To examine whether polymerase III transcriptional down-regulation occurs by a similar mechanism, the polymerase III transcription factors were isolated and added singly and in pairs to control cell extracts and to extracts of cells that had reduced polymerase III transcriptional activity due to cycloheximide treatment or growth into stationary phase. These down-regulations result from a specific reduction in TFIIIB; TFIIIC and polymerase III activities remain relatively constant. Thus, although transcription by both polymerase III and polymerase I is substantially decreased in extracts of growth-arrested cells, this regulation is brought about by reduction of different kinds of activities: a component of the polymerase III stable transcription complex in the former case and the activated subform of RNA polymerase I in the latter. Images PMID:3352599

  7. A TaqMan real-time PCR method based on alternative oxidase genes for detection of plant species in animal feed samples.

    PubMed

    Campos, Maria Doroteia; Valadas, Vera; Campos, Catarina; Morello, Laura; Braglia, Luca; Breviario, Diego; Cardoso, Hélia G

    2018-01-01

    Traceability of processed food and feed products has been gaining importance due to the impact that those products can have on human/animal health and to the associated economic and legal concerns, often related to adulterations and frauds as it can be the case for meat and milk. Despite mandatory traceability requirements for the analysis of feed composition, few reliable and accurate methods are presently available to enforce the legislative frame and allow the authentication of animal feeds. In this study, nine sensitive and species-specific real-time PCR TaqMan MGB assays are described for plant species detection in animal feed samples. The method is based on selective real-time qPCR (RT-qPCR) amplification of target genes belonging to the alternative oxidase (AOX) gene family. The plant species selected for detection in feed samples were wheat, maize, barley, soybean, rice and sunflower as common components of feeds, and cotton, flax and peanut as possible undesirable contaminants. The obtained results were compared with end-point PCR methodology. The applicability of the AOX TaqMan assays was evaluated through the screening of commercial feed samples, and by the analysis of plant mixtures with known composition. The RT-qPCR methodology allowed the detection of the most abundant species in feeds but also the identification of contaminant species present in lower amounts, down to 1% w/w. AOX-based methodology provides a suitable molecular marker approach to ascertain plant species composition of animal feed samples, thus supporting feed control and enforcement of the feed sector and animal production.

  8. Integrated microfluidic card with TaqMan probes and high-resolution melt analysis to detect tuberculosis drug resistance mutations across 10 genes.

    PubMed

    Pholwat, Suporn; Liu, Jie; Stroup, Suzanne; Gratz, Jean; Banu, Sayera; Rahman, S M Mazidur; Ferdous, Sara Sabrina; Foongladda, Suporn; Boonlert, Duangjai; Ogarkov, Oleg; Zhdanova, Svetlana; Kibiki, Gibson; Heysell, Scott; Houpt, Eric

    2015-02-24

    Genotypic methods for drug susceptibility testing of Mycobacterium tuberculosis are desirable to speed the diagnosis and proper therapy of tuberculosis (TB). However, the numbers of genes and polymorphisms implicated in resistance have proliferated, challenging diagnostic design. We developed a microfluidic TaqMan array card (TAC) that utilizes both sequence-specific probes and high-resolution melt analysis (HRM), providing two layers of detection of mutations. Twenty-seven primer pairs and 40 probes were designed to interrogate 3,200 base pairs of critical regions of the inhA, katG, rpoB, embB, rpsL, rrs, eis, gyrA, gyrB, and pncA genes. The method was evaluated on 230 clinical M. tuberculosis isolates from around the world, and it yielded 96.1% accuracy (2,431/2,530) in comparison to that of Sanger sequencing and 87% accuracy in comparison to that of the slow culture-based susceptibility testing. This TAC-HRM method integrates assays for 10 genes to yield fast, comprehensive, and accurate drug susceptibility results for the 9 major antibiotics used to treat TB and could be deployed to improve treatment outcomes. Multidrug-resistant tuberculosis threatens global tuberculosis control efforts. Optimal therapy utilizes susceptibility test results to guide individualized treatment regimens; however, the susceptibility testing methods in use are technically difficult and slow. We developed an integrated TaqMan array card method with high-resolution melt analysis that interrogates 10 genes to yield a fast, comprehensive, and accurate drug susceptibility result for the 9 major antituberculosis antibiotics. Copyright © 2015 Pholwat et al.

  9. Bacteriophage phi 6 RNA-dependent RNA polymerase: molecular details of initiating nucleic acid synthesis without primer.

    PubMed

    Laurila, Minni R L; Makeyev, Eugene V; Bamford, Dennis H

    2002-05-10

    Like most RNA polymerases, the polymerase of double-strand RNA bacteriophage phi6 (phi6pol) is capable of primer-independent initiation. Based on the recently solved phi6pol initiation complex structure, a four-amino acid-long loop (amino acids 630-633) has been suggested to stabilize the first two incoming NTPs through stacking interactions with tyrosine, Tyr(630). A similar loop is also present in the hepatitis C virus polymerase, another enzyme capable of de novo initiation. Here, we use a series of phi6pol mutants to address the role of this element. As predicted, mutants at the Tyr(630) position are inefficient in initiation de novo. Unexpectedly, when the loop is disordered by changing Tyr(630)-Lys(631)-Trp(632) to GSG, phi6pol becomes a primer-dependent enzyme, either extending complementary oligonucleotide or, when the template 3' terminus can adopt a hairpin-like conformation, utilizing a "copy-back" initiation mechanism. In contrast to the wild-type phi6pol, the GSG mutant does not require high GTP concentration for its optimal activity. These findings suggest a general model for the initiation of de novo RNA synthesis.

  10. Micro-droplet Digital Polymerase Chain Reaction and Real-Time Quantitative Polymerase Chain Reaction Technologies Provide Highly Sensitive and Accurate Detection of Zika Virus.

    PubMed

    Hui, Yuan; Wu, Zhiming; Qin, Zhiran; Zhu, Li; Liang, Junhe; Li, Xujuan; Fu, Hanmin; Feng, Shiyu; Yu, Jianhai; He, Xiaoen; Lu, Weizhi; Xiao, Weiwei; Wu, Qinghua; Zhang, Bao; Zhao, Wei

    2018-06-01

    The establishment of highly sensitive diagnostic methods is critical in the early diagnosis and control of Zika virus (ZIKV) and in preventing serious neurological complications of ZIKV infection. In this study, we established micro-droplet digital polymerase chain reaction (ddPCR) and real-time quantitative PCR (RT-qPCR) protocols for the detection of ZIKV based on the amplification of the NS5 gene. For the ZIKV standard plasmid, the RT-qPCR results showed that the cycle threshold (Ct) value was linear from 10 1 to 10 8  copy/μL, with a standard curve R 2 of 0.999 and amplification efficiency of 92.203%; however, a concentration as low as 1 copy/μL could not be detected. In comparison with RT-qPCR, the ddPCR method resulted in a linear range of 10 1 -10 4  copy/μL and was able to detect concentrations as low as 1 copy/μL. Thus, for detecting ZIKV from clinical samples, RT-qPCR is a better choice for high-concentration samples (above 10 1  copy/μL), while ddPCR has excellent accuracy and sensitivity for low-concentration samples. These results indicate that the ddPCR method should be of considerable use in the early diagnosis, laboratory study, and monitoring of ZIKV.

  11. Effect of Escherichia coli DNA binding protein on the transcription of single-stranded phage M13 DNA by Escherichia coli RNA polymerase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Niyogi, S.K.; Ratrie, H. III; Datta, A.K.

    E. coli DNA binding protein strongly inhibits the transcription of single-stranded rather than double-stranded phage M13 DNA by E. coli RNA polymerase. This inhibition cannot be significantly overcome by increasing the concentration of RNA polymerase. Nor does the order of addition of binding protein affect its inhibitory property: inhibition is evident whether binding protein is added before or after the formation of the RNA polymerase--DNA complex. Inhibition is also observed if binding protein is added at various times after initiation of RNA synthesis. Maximal inhibition occurs at a binding protein-to-DNA ratio (w/w) of about 8:1. This corresponds to one bindingmore » protein molecule covering about 30 nucleotides, in good agreement with values obtained by physical measurements.« less

  12. Application of TaqMan qPCR for the detection and monitoring of Naegleria species in reservoirs used as a source for drinking water.

    PubMed

    Kao, Po-Min; Hsu, Bing-Mu; Hsu, Tsui-Kang; Chiu, Yi-Chou; Chang, Chung-Liang; Ji, Wen-Tsai; Huang, Shih-Wei; Fan, Cheng-Wei

    2014-10-01

    Naegleria spp. can be found in the natural aquatic environments. Naegleria fowleri can cause fatal infections in the central nervous system in humans and animals, and the most important source of infection is through direct water contact. In this study, PCR of 5.8S ribosomal RNA (rRNA) gene and internal transcribed spacer (ITS) region was performed in order to identify Naegleria isolates and quantify the Naegleria spp. by TaqMan real-time quantitative PCR in reservoir water samples. The occurrence of Naegleria spp. was investigated in 57 water samples from reservoirs with culture and PCR positive in 2 of them (3.5%), respectively. The total detection rate was 7.0% (4/ 57) for Naegleria spp. The identified species included Naegleria spp., Naegleria canariensis, and Naegleria clarki. N. fowleri was not found in Taiwan's reservoirs used for drinking purposes. The concentrations of Naegleria spp. in detected positive reservoir water samples were in the range of 599 and 3.1 × 10(3) cells/L. The presence or absence of Naegleria spp. within the reservoir water samples showed significant difference with the levels of water temperature. The presence of Naegleria spp. in reservoirs considered a potential public health threat if pathogenic species exist in reservoirs.

  13. RNA Polymerase II Elongation Control

    PubMed Central

    Zhou, Qiang; Li, Tiandao; Price, David H.

    2014-01-01

    Regulation of the elongation phase of transcription by RNA Polymerase II (Pol II) is utilized extensively to generate the pattern of mRNAs needed to specify cell types and to respond to environmental changes. After Pol II initiates, negative elongation factors cause it to pause in a promoter proximal position. These polymerases are poised to respond to the positive transcription elongation factor, P-TEFb, and then enter productive elongation only under the appropriate set of signals to generate full length properly processed mRNAs. Recent global analyses of Pol II and elongation factors, mechanisms that regulate P-TEFb involving the 7SK snRNP, factors that control both the negative and positive elongation properties of Pol II and the mRNA processing events that are coupled with elongation are discussed. PMID:22404626

  14. Development of a rapid, sensitive TaqMan real-time RT-PCR assay for the detection of Rose rosette virus using multiple gene targets.

    PubMed

    Babu, Binoy; Jeyaprakash, Ayyamperumal; Jones, Debra; Schubert, Timothy S; Baker, Carlye; Washburn, Brian K; Miller, Steven H; Poduch, Kristina; Knox, Gary W; Ochoa-Corona, Francisco M; Paret, Mathews L

    2016-09-01

    Rose rosette virus (RRV), belonging to the genus Emaravirus, is a highly destructive pathogen that causes rose rosette disease. The disease is a major concern for the rose industry in the U.S. due to the lack of highly sensitive methods for early detection of RRV. This is critical, as early identification of the infected plants and eradication is necessary in minimizing the risks associated with the spread of the disease. A highly reliable, specific and sensitive detection assay is thus required to test and confirm the presence of RRV in suspected plant samples. In this study a TaqMan real-time reverse transcription-polymerase chain reaction (RT-PCR) assay was developed for the detection of RRV from infected roses, utilizing multiple gene targets. Four pairs of primers and probes; two of them (RRV_2-1 and RRV_2-2) based on the consensus sequences of the glycoprotein gene (RNA2) and the other two (RRV_3-2 and RRV_3-5) based on the nucleocapsid gene (RNA3) were designed. The specificity of the primers and probes was evaluated against other representative viruses infecting roses, belonging to the genera Alfamovirus, Cucumovirus, Ilarvirus, Nepovirus, Tobamovirus, and Tospovirus and one Emaravirus (Wheat mosaic virus). Dilution assays using the in vitro transcripts (spiked with total RNA from healthy plants, and non-spiked) showed that all the primers and probes are highly sensitive in consistently detecting RRV with a detection limit of 1 fg. Testing of the infected plants over a period of time (three times in monthly intervals) indicated high reproducibility, with the primer/probe RRV_3-5 showing 100% positive detection, while RRV_2-1, RRV_2-2 and RRV_3-2 showed 90% positive detection. The developed real-time RT-PCR assay is reliable, highly sensitive, and can be easily used in diagnostic laboratories for testing and confirmation of RRV. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Development and evaluation of a Quadruplex Taq Man real-time PCR assay for simultaneous detection of clinical isolates of Enterococcus faecalis, Enterococcus faecium and their vanA and vanB genotypes.

    PubMed

    Naserpour Farivar, Taghi; Najafipour, Reza; Johari, Pouran; Aslanimehr, Masoumeh; Peymani, Amir; Jahani Hashemi, Hoasan; Mirzaui, Baman

    2014-10-01

    We developed and evaluated the utility of a quadruplex Taqman real-time PCR assay that allows simultaneous identification of vancomycin-resistant genotypes and clinically relevant enterococci. The specificity of the assay was tested using reference strains of vancomycin-resistant and susceptible enterococci. In total, 193 clinical isolates were identified and subsequently genotyped using a Quadruplex Taqman real-time PCR assay and melting curve analysis. Representative Quadruplex Taqman real-time PCR amplification curve were obtained for Enterococcus faecium, Enterococcus faecalis, vanA-containing E. faecium, vanB-containing E. faecalis. Phenotypic and genotypic analysis of the isolates gave same results for 82 enterococcal isolates, while in 5 isolates, they were inconsistent. We had three mixed strains, which were detected by the TaqMan real-time PCR assay and could not be identified correctly using phenotypic methods. Vancomycin resistant enterococci (VRE) genotyping and identification of clinically relevant enterococci were rapidly and correctly performed using TaqMan real-time multiplex real-time PCR assay.

  16. 7-Deazapurine containing DNA: efficiency of c7GdTP, c7AdTP and c7IdTP incorporation during PCR-amplification and protection from endodeoxyribonuclease hydrolysis.

    PubMed Central

    Seela, F; Röling, A

    1992-01-01

    The enzymatic synthesis of 7-deazapurine nucleoside containing DNA (501 bp) is performed by PCR-amplification (Taq polymerase) using a pUC18 plasmid DNA as template and the triphosphates of 7-deaza-2'-deoxyguanosine (c7Gd), -adenosine (c7Ad) and -inosine (c7Id). c7GdTP can fully replace dGTP resulting in a completely modified DNA-fragment of defined size and sequence. The other two 7-deazapurine triphosphates (c7AdTP) and (c7IdTP) require the presence of the parent purine 2'-deoxyribonucleotides. In purine/7-deazapurine nucleotide mixtures Taq polymerase prefers purine over 7-deazapurine nucleotides but accepts c7GdTP much better than c7AdTP or c7IdTP. As incorporation of 7-deazapurine nucleotides represents a modification of the major groove of DNA it can be used to probe DNA/protein interaction. Regioselective phosphodiester hydrolysis of the modified DNA-fragments was studied with 28 endodeoxyribonucleases. c7Gd is able to protect the DNA from the phosphodiester hydrolysis in more than 20 cases, only a few enzymes (Mae III, Rsa I, Hind III, Pvu II or Taq I) do still hydrolyze the modified DNA. c7Ad protects DNA less efficiently, as this DNA could only be modified in part. The absence of N-7 as potential binding position or a geometric distortion of the recognition duplex caused by the 7-deazapurine base can account for protection of hydrolysis. Images PMID:1738604

  17. Traceability of plant contribution in olive oil by amplified fragment length polymorphisms.

    PubMed

    Pafundo, Simona; Agrimonti, Caterina; Marmiroli, Nelson

    2005-09-07

    Application of DNA molecular markers to traceability of foods is thought to bring new benefit to consumer's protection. Even in a complex matrix such as olive oil, DNA could be traced with PCR markers such as the amplified fragment length polymorphisms (AFLPs). In this work, fluorescent AFLPs were optimized for the characterization of olive oil DNA, to obtain highly reproducible, high-quality fingerprints, testing different parameters: the concentrations of dNTPs and labeled primer, the kind of Taq DNA polymerase and thermal cycler, and the quantity of DNA employed. It was found that correspondence of fingerprinting by comparing results in oils and in plants was close to 70% and that the DNA extraction from olive oil was the limiting step for the reliability of AFLP profiles, due to the complex matrix analyzed.

  18. Increased yield of PCR products by addition of T4 gene 32 protein to the SMART PCR cDNA synthesis system.

    PubMed

    Villalva, C; Touriol, C; Seurat, P; Trempat, P; Delsol, G; Brousset, P

    2001-07-01

    Under certain conditions, T4 gene 32 protein is known to increase the efficiency of different enzymes, such as Taq DNA polymerase, reverse transcriptase, and telomerase. In this study, we compared the efficiency of the SMART PCR cDNA synthesis kit with and without the T4 gene 32 protein. The use of this cDNA synthesis procedure, in combination with T4 gene 32 protein, increases the yield of RT-PCR products from approximately 90% to 150%. This effect is even observed for long mRNA templates and low concentrations of total RNA (25 ng). Therefore, we suggest the addition of T4 gene 32 protein in the RT-PCR mixture to increase the efficiency of cDNA synthesis, particularly in cases when low amounts of tissue are used.

  19. Cloning and expression of autogenes encoding RNA polymerases of T7-like bacteriophages

    DOEpatents

    Studier, F. William; Dubendorff, John W.

    1998-01-01

    This invention relates to the cloning and expression of autogenes encoding RNA polymerases of T7 and T7-like bacteriophages, in which the RNA polymerase gene is transcribed from a promoter which is recognized by the encoded RNA polymerase. Cloning of T7 autogenes was achieved by reducing the activity of the RNA polymerase sufficiently to permit host cell growth. T7 RNA polymerase activity was controlled by combining two independent methods: lac-repression of the recombinant lac operator-T7 promoter in the autogene and inhibition of the polymerase by T7 lysozyme. Expression systems for producing the RNA polymerases of T7 and other T7-like bacteriophages, and expression systems for producing selected gene products are described, as well as other related materials and methods.

  20. Cloning and expression of autogenes encoding RNA polymerases of T7-like bacteriophages

    DOEpatents

    Studier, F.W.; Dubendorff, J.W.

    1998-10-20

    This invention relates to the cloning and expression of autogenes encoding RNA polymerases of T7 and T7-like bacteriophages, in which the RNA polymerase gene is transcribed from a promoter which is recognized by the encoded RNA polymerase. Cloning of T7 autogenes was achieved by reducing the activity of the RNA polymerase sufficiently to permit host cell growth. T7 RNA polymerase activity was controlled by combining two independent methods: lac-repression of the recombinant lac operator-T7 promoter in the autogene and inhibition of the polymerase by T7 lysozyme. Expression systems for producing the RNA polymerases of T7 and other T7-like bacteriophages, and expression systems for producing selected gene products are described, as well as other related materials and methods. 12 figs.

  1. Cloning and expression of autogenes encoding RNA polymerases of T7-like bacteriophages

    DOEpatents

    Studier, F.W.; Dubendorff, J.W.

    1998-11-03

    This invention relates to the cloning and expression of autogenes encoding RNA polymerases of T7 and T7-like bacteriophages, in which the RNA polymerase gene is transcribed from a promoter which is recognized by the encoded RNA polymerase. Cloning of T7 autogenes was achieved by reducing the activity of the RNA polymerase sufficiently to permit host cell growth. T7 RNA polymerase activity was controlled by combining two independent methods: lac-repression of the recombinant lac operator-T7 promoter in the autogene and inhibition of the polymerase by T7 lysozyme. Expression systems for producing the RNA polymerases of T7 and other T7-like bacteriophages, and expression systems for producing selected gene products are described, as well as other related materials and methods. 12 figs.

  2. Early effects of oestradiol-17β on the chromatin and activity of the deoxyribonucleic acid-dependent ribonucleic acid polymerases (I and II) of the rat uterus

    PubMed Central

    Glasser, S. R.; Chytil, F.; Spelsberg, T. C.

    1972-01-01

    Oestradiol-17β (1.0μg) was injected intravenously into ovariectomized rats. The earliest detectable hormonal response in isolated uterine nuclei was an increase (10–15min) in RNA polymerase II activity (DNA-like RNA synthesis), which reached a peak at 30min and then decreased to control values (by 1–2h) before displaying a second increase over control activity from 2 to 12h. The next response to oestradiol-17β was an increase (30–60min) in polymerase I activity (rRNA synthesis) and template capacity of the chromatin. The concentrations of acidic chromatin proteins did not begin to increase until 1h after injection of oestradiol-17β and histone concentrations showed no significant changes during the 8h period after administration. The early (15min) increase in RNA synthesis in `high-salt conditions' can be completely eliminated by α-amanitin, an inhibitor of the RNA polymerase II. The exact nature of this early increase in endogenous polymerase II activity remains to be determined, e.g. whether it is caused by the increased availability of transcribable DNA of the chromatin or via direct hormonal activation of the enzyme per se. PMID:4656807

  3. Effect of pH on the Misincorporation Rate of DNA Polymerase η.

    PubMed

    Nishimoto, Naomi; Suzuki, Motoshi; Izuta, Shunji

    2016-01-01

    The many known eukaryotic DNA polymerases are classified into four families; A, B, X, and Y. Among them, DNA polymerase η, a Y family polymerase, is a low fidelity enzyme that contributes to translesional synthesis and somatic hypermutation. Although a high mutation frequency is observed in immunoglobulin genes, translesional synthesis occurs with a high accuracy. We determined whether the misincorporation rate of DNA polymerase η varies with ambient conditions. It has been reported that DNA polymerase η is unable to exclude water molecules from the active site. This finding suggests that some ions affect hydrogen bond formation at the active site. We focused on the effect of pH and evaluated the misincorporation rate of deoxyguanosine triphosphate (dGTP) opposite template T by DNA polymerase η at various pH levels with a synthetic template-primer. The misincorporation rate of dGTP by DNA polymerase η drastically increased at pH 8.0-9.0 compared with that at pH 6.5-7.5. Kinetic analysis revealed that the Km value for dGTP on the misincorporation opposite template T was markedly affected by pH. However, this drastic change was not seen with the low fidelity DNA polymerase α.

  4. Structure of T7 RNA polymerase complexed to the transcriptional inhibitor T7 lysozyme.

    PubMed Central

    Jeruzalmi, D; Steitz, T A

    1998-01-01

    The T7 RNA polymerase-T7 lysozyme complex regulates phage gene expression during infection of Escherichia coli. The 2.8 A crystal structure of the complex reveals that lysozyme binds at a site remote from the polymerase active site, suggesting an indirect mechanism of inhibition. Comparison of the T7 RNA polymerase structure with that of the homologous pol I family of DNA polymerases reveals identities in the catalytic site but also differences specific to RNA polymerase function. The structure of T7 RNA polymerase presented here differs significantly from a previously published structure. Sequence similarities between phage RNA polymerases and those from mitochondria and chloroplasts, when interpreted in the context of our revised model of T7 RNA polymerase, suggest a conserved fold. PMID:9670025

  5. Purine inhibitors of protein kinases, G proteins and polymerases

    DOEpatents

    Gray, Nathanael S.; Schultz, Peter; Kim, Sung-Hou; Meijer, Laurent

    2001-07-03

    The present invention relates to purine analogs that inhibit, inter alia, protein kinases, G-proteins and polymerases. In addition, the present invention relates to methods of using such purine analogs to inhibit protein kinases, G-proteins, polymerases and other cellular processes and to treat cellular proliferative diseases.

  6. Real-time PCR and its application to mumps rapid diagnosis.

    PubMed

    Jin, L; Feng, Y; Parry, R; Cui, A; Lu, Y

    2007-11-01

    A real-time polymerase chain reaction assay was initially developed in China to detect mumps genome. The primers and TaqMan-MGB probe were selected from regions of the hemagglutinin gene of mumps virus. The primers and probe for the real-time PCR were evaluated by both laboratories in China and in the UK using three different pieces of equipment, LightCycler (Roche), MJ DNA Engine Option 2 (BIO-RAD) and TaqMan (ABI Prism) on different samples. The reaction was performed with either a one-step (China) or two-step (UK) process. The sensitivity (10 copies) was estimated using a serial dilution of constructed mumps-plasmid DNA and a linear standard curve was obtained between 10 and 10(7) DNA copies/reaction, which can be used to quantify viral loads. The detection limit on cell culture-grown virus was approximately 2 pfu/ml with a two-step assay on TaqMan, which was equivalent to the sensitivity of the nested PCR routinely used in the UK. The specificity was proved by testing a range of respiratory viruses and several genotypes of mumps strains. The concentration of primers and probe is 22 pmol and 6.25 or 7 pmol respectively for a 25 microl reaction. The assay took 3 hr from viral RNA extraction to complete the detection using any of the three pieces of equipment. Three hundred forty-one (35 in China and 306 in the UK) clinical specimens were tested, the results showing that this real-time PCR assay is suitable for rapid and accurate detection of mumps virus RNA in various types of clinical specimens. (c) 2007 Wiley-Liss, Inc.

  7. Role of disulfide bridges in archaeal family-B DNA polymerases.

    PubMed

    Killelea, Tom; Connolly, Bernard A

    2011-06-14

    The family-B DNA polymerases obtained from the order Thermococcales, for example, Pyrococcus furiosus (Pfu-Pol) are commonly used in the polymerase chain reaction (PCR) because of their high thermostability and low error rates. Most of these polymerases contain four cysteines, arranged as two disulfide bridges. With Pfu-Pol C429-C443 forms one of the disulfides (DB1) and C507-C510 (DB2) the other. Although the disulfides are well conserved in the enzymes from the hyperthermophilic Thermococcales, they are less prevalent in euryarchaeal polymerases from other orders, and tend to be only found in other hyperthermophiles. Here, we report on the effects of deleting the disulfide bridges by mutating the relevant cysteines to serines. A variety of techniques, including differential scanning calorimetry and differential scanning fluorimetry, have shown that both disulfides make a contribution to thermostability, with DB1 being more important than DB2. However, even when both disulfides are removed, sufficient thermostability remains for normal (identical to the wild type) performance in PCR and quantitative (real-time) PCR. Therefore, polymerases totally lacking cysteine are fully compatible with most PCR-based applications. This observation opens the way to further engineering of polymerases by introduction of a single cysteine followed by appropriate chemical modification. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Development a of multiplex TaqMan real-time RT-PCR assay for simultaneous detection of Asian prunus viruses, plum bark necrosis stem pitting associated virus, and peach latent mosaic virus

    USDA-ARS?s Scientific Manuscript database

    Asian prunus viruses (APV 1, APV 2 and APV 3) and Plum bark necrosis stem pitting associated virus (PBNSPaV) are two recently described viruses infecting Prunus spp., and Peach latent mosaic viroid (PLMVd) is a viroid that infects the same species. A single-tube multiplex, TaqMan real-time RT-PCR as...

  9. Primate community of the tropical rain forests of Saracá-Taqüera National Forest, Pará, Brazil.

    PubMed

    Oliveira, L C; Loretto, D; Viana, L R; Silva, J S; Fernandes, W G

    2009-11-01

    Brazil is the richest country in the world in terms of primate species and the Amazonian rain forest is one of the richest biomes containing 15 (ca. 90%) of the Neotropical primate genera. Although considered key elements in conservation strategies, there is only anecdotal information on primates for several protected areas within the region. Here we present new data on the community composition of the primates in the Saracá-Taqüera National Forest (429,600 ha), an actively mined, bauxite rich area, in Pará, Brazil. We used information from the literature, technical reports, museum data, and interviews conducted with agents from the Brazilian Institute of the Environment and Natural Renewable Resources (Instituto Brasileiro do Meio Ambiente e dos Recursos Naturais Renováveis - IBAMA) and members of the local 'Quilombo' community. In addition, from July 2003 to June 2007, we carried out 19 field trips ranging from 10 to15 days each, amounting to a total effort of 1,230 hours and 1,420 km of censuses, resulting in 1,034 records of eight primate species (Saguinus martinsi, Saguinus midas, Saimiri sciureus, Cebus apella, Pithecia pithecia, Chiropotes sagulatus, Ateles paniscus, and Alouatta macconelli). Two other species (Cebus olivaceus and Aotus trivirgatus) were recorded only indirectly, through interviews and literature data. In all, Alouatta macconelli was the most frequently recorded species (43% of all records); while Saguinus midas and P. pithecia were the least (ca. 0.4 and 0.6% of all records). Based on our results, we discuss group sizes as well as taxonomic problems concerning the genera Pithecia and Chiropotes, for which we registered individuals displaying phenotypic geographical variation and two different forms, respectively. Despite the deforestation inherent in bauxite mining, the Saracá-Taqüera National Forest still has a remarkable richness of primate species. Our study results place this National Forest amongst the richest reserves, in terms

  10. Complementation between polymerase- and exonuclease-deficient mitochondrial DNA polymerase mutants in genomically engineered flies

    PubMed Central

    Bratic, Ana; Kauppila, Timo E. S.; Macao, Bertil; Grönke, Sebastian; Siibak, Triinu; Stewart, James B.; Baggio, Francesca; Dols, Jacqueline; Partridge, Linda; Falkenberg, Maria; Wredenberg, Anna; Larsson, Nils-Göran

    2015-01-01

    Replication errors are the main cause of mitochondrial DNA (mtDNA) mutations and a compelling approach to decrease mutation levels would therefore be to increase the fidelity of the catalytic subunit (POLγA) of the mtDNA polymerase. Here we genomically engineer the tamas locus, encoding fly POLγA, and introduce alleles expressing exonuclease- (exo−) and polymerase-deficient (pol−) POLγA versions. The exo− mutant leads to accumulation of point mutations and linear deletions of mtDNA, whereas pol− mutants cause mtDNA depletion. The mutant tamas alleles are developmentally lethal but can complement each other in trans resulting in viable flies with clonally expanded mtDNA mutations. Reconstitution of human mtDNA replication in vitro confirms that replication is a highly dynamic process where POLγA goes on and off the template to allow complementation during proofreading and elongation. The created fly models are valuable tools to study germ line transmission of mtDNA and the pathophysiology of POLγA mutation disease. PMID:26554610

  11. No association between the TaqI A1 RFLP of the D2 receptor gene and alcoholism in a Mexican population

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cruz-Fuentes, C.; Carmarena, B.; Eroza, V.

    1994-09-01

    The suggested association of the A1 allele of the D2 dopamine receptor (DRD2) human gene with alcoholism was studied by comparing the DRD2/TaqI genotypes of 36 healthy controls and 38 individuals who met the DSM-III-R diagnostic criteria for alcohol dependence. All subjects were unrelated, with parents and grandparents of Mexican origin. The alcoholics in our sample suffered one of the following conditions: delirium tremens (16.6%), alcohol hallucinosis (56.6%) or uncomplicated alcohol withdrawal (26.4%). Eight-eight percent of the controls carried the A1 allele. The frequency of the DRD2 A1 allele in the Mexican urban sample (pA1 = 0.61) was 2 tomore » 3-fold higher than reported in Caucasian populations from the USA and Europe, but similar to the allele frequencies found in defined Amerindian populations. There were not significant differences in the prevalence or allele frequency between alcoholics (pA1 = 0.64) and controls, regardless if the alcoholics were subtyped accordingly to severity, age of onset or positive family history. Alcoholics had higher scores than controls in the neuroticism (N) and psychoticism (P) subscales on the Eysenck personality test: alcoholics P = 6.2 {+-} 2.9, N = 16.0 {+-} 4.2 vs. controls P = 2.5 {+-} 2.3, N = 5.7 {+-} 5.1; p<0.001 and p<0.001, respectively. However, no relationship between personality traits and genotypes was found. Our results do not support a consistent association between the TaqI A1 RFLP for the DRD2 gene and alcoholism.« less

  12. Development of a TaqMan Array Card for Acute-Febrile-Illness Outbreak Investigation and Surveillance of Emerging Pathogens, Including Ebola Virus.

    PubMed

    Liu, Jie; Ochieng, Caroline; Wiersma, Steve; Ströher, Ute; Towner, Jonathan S; Whitmer, Shannon; Nichol, Stuart T; Moore, Christopher C; Kersh, Gilbert J; Kato, Cecilia; Sexton, Christopher; Petersen, Jeannine; Massung, Robert; Hercik, Christine; Crump, John A; Kibiki, Gibson; Maro, Athanasia; Mujaga, Buliga; Gratz, Jean; Jacob, Shevin T; Banura, Patrick; Scheld, W Michael; Juma, Bonventure; Onyango, Clayton O; Montgomery, Joel M; Houpt, Eric; Fields, Barry

    2016-01-01

    Acute febrile illness (AFI) is associated with substantial morbidity and mortality worldwide, yet an etiologic agent is often not identified. Convalescent-phase serology is impractical, blood culture is slow, and many pathogens are fastidious or impossible to cultivate. We developed a real-time PCR-based TaqMan array card (TAC) that can test six to eight samples within 2.5 h from sample to results and can simultaneously detect 26 AFI-associated organisms, including 15 viruses (chikungunya, Crimean-Congo hemorrhagic fever [CCHF] virus, dengue, Ebola virus, Bundibugyo virus, Sudan virus, hantaviruses [Hantaan and Seoul], hepatitis E, Marburg, Nipah virus, o'nyong-nyong virus, Rift Valley fever virus, West Nile virus, and yellow fever virus), 8 bacteria (Bartonella spp., Brucella spp., Coxiella burnetii, Leptospira spp., Rickettsia spp., Salmonella enterica and Salmonella enterica serovar Typhi, and Yersinia pestis), and 3 protozoa (Leishmania spp., Plasmodium spp., and Trypanosoma brucei). Two extrinsic controls (phocine herpesvirus 1 and bacteriophage MS2) were included to ensure extraction and amplification efficiency. Analytical validation was performed on spiked specimens for linearity, intra-assay precision, interassay precision, limit of detection, and specificity. The performance of the card on clinical specimens was evaluated with 1,050 blood samples by comparison to the individual real-time PCR assays, and the TAC exhibited an overall 88% (278/315; 95% confidence interval [CI], 84% to 92%) sensitivity and a 99% (5,261/5,326, 98% to 99%) specificity. This TaqMan array card can be used in field settings as a rapid screen for outbreak investigation or for the surveillance of pathogens, including Ebola virus. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  13. Cloning and expression of the gene for bacteriophage T7 RNA polymerase

    DOEpatents

    Studier, F.W.; Davanloo, P.; Rosenberg, A.H.; Moffatt, B.A.; Dunn, J.J.

    1997-12-02

    This application describes a means to clone a functional gene for bacteriophage T7 RNA polymerase. Active T7 RNA polymerase is produced from the cloned gene, and a plasmid has been constructed that can produce the active enzyme in large amounts. T7 RNA polymerase transcribes DNA very efficiently and is highly selective for a relatively long promoter sequence. This enzyme is useful for synthesizing large amounts of RNA in vivo or in vitro, and is capable of producing a single RNA selectively from a complex mixture of DNAs. The procedure used to obtain a clone of the R7 RNA polymerase gene can be applied to other T7-like phages to obtain clones that produce RNA polymerases having different promoter specificities, different bacterial hosts, or other desirable properties. T7 RNA polymerase is also used in a system for selective, high-level synthesis of RNAs and proteins in suitable host cells. 10 figs.

  14. Cloning and expression of the gene for bacteriophage T7 RNA polymerase

    DOEpatents

    Studier, F. William; Davanloo, Parichehre; Rosenberg, Alan H.; Moffatt, Barbara A.; Dunn, John J.

    1999-02-09

    This application describes a means to clone a functional gene for bacteriophage T7 RNA polymerase. Active T7 RNA polymerase is produced from the cloned gene, and a plasmid has been constructed that can produce the active enzyme in large amounts. T7 RNA polymerase transcribes DNA very efficiently and is highly selective for a relatively long promoter sequence. This enzyme is useful for synthesizing large amounts of RNA in vivo or in vitro, and is capable of producing a single RNA selectively from a complex mixture of DNAs. The procedure used to obtain a clone of the R7 RNA polymerase gene can be applied to other T7-like phages to obtain clones that produce RNA polymerases having different promoter specificities, different bacterial hosts, or other desirable properties. T7 RNA polymerase is also used in a system for selective, high-level synthesis of RNAs and proteins in suitable host cells.

  15. Cloning and expression of the gene for bacteriophage T7 RNA polymerase

    DOEpatents

    Studier, F. William; Davanloo, Parichehre; Rosenberg, Alan H.; Moffatt, Barbara A.; Dunn, John J.

    1997-12-02

    This application describes a means to clone a functional gene for bacteriophage T7 RNA polymerase. Active T7 RNA polymerase is produced from the cloned gene, and a plasmid has been constructed that can produce the active enzyme in large amounts. T7 RNA polymerase transcribes DNA very efficiently and is highly selective for a relatively long promoter sequence. This enzyme is useful for synthesizing large amounts of RNA in vivo or in vitro, and is capable of producing a single RNA selectively from a complex mixture of DNAs. The procedure used to obtain a clone of the R7 RNA polymerase gene can be applied to other T7-like phages to obtain clones that produce RNA polymerases having different promoter specificities, different bacterial hosts, or other desirable properties. T7 RNA polymerase is also used in a system for selective, high-level synthesis of RNAs and proteins in suitable host cells.

  16. Cloning and expression of the gene for bacteriophage T7 RNA polymerase

    DOEpatents

    Studier, F. William; Davanloo, Parichehre; Rosenberg, Alan H.; Moffatt, Barbara A.; Dunn, John J.

    1990-01-01

    This application describes a means to clone a functional gene for bacteriophage T7 RNA polymerase. Active T7 RNA polymerase is produced from the cloned gene, and a plasmid has been constructed that can produce the active enzyme in large amounts. T7 RNA polymerase transcribes DNA very efficiently and is highly selective for a relatively long promoter sequence. This enzyme is useful for synthesizing large amounts of RNA in vivo or in vitro, and is capable of producing a single RNA selectively from a complex mixture of DNAs. The procedure used to obtain a clone of the T7 RNA polymerase gene can be applied to other T7-like phages to obtain clones that produce RNA polymerases having different promoter specificities, different bacterial hosts, or other desirable properties. T7 RNA polymerase is also used in a system for selective, high-level synthesis of RNAs and proteins in suitable host cells.

  17. Cloning and expression of the gene for bacteriophage T7 RNA polymerase

    DOEpatents

    Studier, F.W.; Davanloo, P.; Rosenberg, A.H.; Moffatt, B.A.; Dunn, J.J.

    1999-02-09

    This application describes a means to clone a functional gene for bacteriophage T7 RNA polymerase. Active T7 RNA polymerase is produced from the cloned gene, and a plasmid has been constructed that can produce the active enzyme in large amounts. T7 RNA polymerase transcribes DNA very efficiently and is highly selective for a relatively long promoter sequence. This enzyme is useful for synthesizing large amounts of RNA in vivo or in vitro, and is capable of producing a single RNA selectively from a complex mixture of DNAs. The procedure used to obtain a clone of the R7 RNA polymerase gene can be applied to other T7-like phages to obtain clones that produce RNA polymerases having different promoter specificities, different bacterial hosts, or other desirable properties. T7 RNA polymerase is also used in a system for selective, high-level synthesis of RNAs and proteins in suitable host cells. 10 figs.

  18. Human DNA polymerase θ grasps the primer terminus to mediate DNA repair

    DOE PAGES

    Zahn, Karl E.; Averill, April M.; Aller, Pierre; ...

    2015-03-16

    DNA polymerase θ protects against genomic instability via an alternative end-joining repair pathway for DNA double-strand breaks. Polymerase θ is overexpressed in breast, lung and oral cancers, and reduction of its activity in mammalian cells increases sensitivity to double-strand break–inducing agents, including ionizing radiation. Reported in this paper are crystal structures of the C-terminal polymerase domain from human polymerase θ, illustrating two potential modes of dimerization. One structure depicts insertion of ddATP opposite an abasic-site analog during translesion DNA synthesis. The second structure describes a cognate ddGTP complex. Polymerase θ uses a specialized thumb subdomain to establish unique upstream contactsmore » to the primer DNA strand, including an interaction with the 3'-terminal phosphate from one of five distinctive insertion loops. Finally, these observations demonstrate how polymerase θ grasps the primer to bypass DNA lesions or extend poorly annealed DNA termini to mediate end-joining.« less

  19. Biotechnical use of polymerase chain reaction for microbiological analysis of biological samples.

    PubMed

    Lantz, P G; Abu al-Soud, W; Knutsson, R; Hahn-Hägerdal, B; Rådström, P

    2000-01-01

    Since its introduction in the mid-80s, polymerase chain reaction (PCR) technology has been recognised as a rapid, sensitive and specific molecular diagnostic tool for the analysis of micro-organisms in clinical, environmental and food samples. Although this technique can be extremely effective with pure solutions of nucleic acids, it's sensitivity may be reduced dramatically when applied directly to biological samples. This review describes PCR technology as a microbial detection method, PCR inhibitors in biological samples and various sample preparation techniques that can be used to facilitate PCR detection, by either separating the micro-organisms from PCR inhibitors and/or by concentrating the micro-organisms to detectable concentrations. Parts of this review are updated and based on a doctoral thesis by Lantz [1] and on a review discussing methods to overcome PCR inhibition in foods [2].

  20. Influence of DNA Lesions on Polymerase-Mediated DNA Replication at Single-Molecule Resolution.

    PubMed

    Gahlon, Hailey L; Romano, Louis J; Rueda, David

    2017-11-20

    Faithful replication of DNA is a critical aspect in maintaining genome integrity. DNA polymerases are responsible for replicating DNA, and high-fidelity polymerases do this rapidly and at low error rates. Upon exposure to exogenous or endogenous substances, DNA can become damaged and this can alter the speed and fidelity of a DNA polymerase. In this instance, DNA polymerases are confronted with an obstacle that can result in genomic instability during replication, for example, by nucleotide misinsertion or replication fork collapse. It is important to know how DNA polymerases respond to damaged DNA substrates to understand the mechanism of mutagenesis and chemical carcinogenesis. Single-molecule techniques have helped to improve our current understanding of DNA polymerase-mediated DNA replication, as they enable the dissection of mechanistic details that can otherwise be lost in ensemble-averaged experiments. These techniques have also been used to gain a deeper understanding of how single DNA polymerases behave at the site of the damage in a DNA substrate. In this review, we evaluate single-molecule studies that have examined the interaction between DNA polymerases and damaged sites on a DNA template.

  1. Isolation and characterization of high affinity aptamers against DNA polymerase iota.

    PubMed

    Lakhin, Andrei V; Kazakov, Andrei A; Makarova, Alena V; Pavlov, Yuri I; Efremova, Anna S; Shram, Stanislav I; Tarantul, Viacheslav Z; Gening, Leonid V

    2012-02-01

    Human DNA-polymerase iota (Pol ι) is an extremely error-prone enzyme and the fidelity depends on the sequence context of the template. Using the in vitro systematic evolution of ligands by exponential enrichment (SELEX) procedure, we obtained an oligoribonucleotide with a high affinity to human Pol ι, named aptamer IKL5. We determined its dissociation constant with homogenous preparation of Pol ι and predicted its putative secondary structure. The aptamer IKL5 specifically inhibits DNA-polymerase activity of the purified enzyme Pol ι, but did not inhibit the DNA-polymerase activities of human DNA polymerases beta and kappa. IKL5 suppressed the error-prone DNA-polymerase activity of Pol ι also in cellular extracts of the tumor cell line SKOV-3. The aptamer IKL5 is useful for studies of the biological role of Pol ι and as a potential drug to suppress the increase of the activity of this enzyme in malignant cells.

  2. Recent Insight into the Kinetic Mechanisms and Conformational Dynamics of Y-Family DNA Polymerases

    PubMed Central

    2015-01-01

    The kinetic mechanisms by which DNA polymerases catalyze DNA replication and repair have long been areas of active research. Recently discovered Y-family DNA polymerases catalyze the bypass of damaged DNA bases that would otherwise block replicative DNA polymerases and stall replication forks. Unlike DNA polymerases from the five other families, the Y-family DNA polymerases have flexible, solvent-accessible active sites that are able to tolerate various types of damaged template bases and allow for efficient lesion bypass. Their promiscuous active sites, however, also lead to fidelities that are much lower than those observed for other DNA polymerases and give rise to interesting mechanistic properties. Additionally, the Y-family DNA polymerases have several other unique structural features and undergo a set of conformational changes during substrate binding and catalysis different from those observed for replicative DNA polymerases. In recent years, pre-steady-state kinetic methods have been extensively employed to reveal a wealth of information about the catalytic properties of these fascinating noncanonical DNA polymerases. Here, we review many of the recent findings on the kinetic mechanisms of DNA polymerization with undamaged and damaged DNA substrates by the Y-family DNA polymerases, and the conformational dynamics employed by these error-prone enzymes during catalysis. PMID:24716482

  3. Genetic polymorphisms of cytochrome p4502E1 and susceptibility to alcoholic liver disease and hepatocellular carcinoma in a white population: a study and literature review, including meta-analysis

    PubMed Central

    Wong, N A C S; Rae, F; Simpson, K J; Murray, G D; Harrison, D J

    2000-01-01

    Aims—To investigate the associations between the Rsa I, Dra I, and Taq I genetic polymorphisms of cytochrome p4502E1 and susceptibility to alcoholic liver disease or to hepatocellular carcinoma. Methods—DNA samples isolated from 61 patients with alcoholic liver disease, 46 patients with hepatocellular carcinoma, and 375 healthy controls were subjected to polymerase chain reaction amplification followed by digestion with the endonucleases Rsa I, Dra I, or Taq I. Meta-analysis was performed using data from previous studies of Rsa I polymorphism and the risk of alcoholic liver disease. Results—No association was found between any of the three polymorphisms and susceptibility to hepatocellular carcinoma. The distributions of Rsa I and Dra I alleles among the patients with alcoholic liver disease were not significantly different from those among the control group. Meta-analysis of this data and previous data concerning Rsa I polymorphism and alcoholic liver disease risk failed to demonstrate any significant association between the two. However, the alcoholic liver disease group in this study showed a significantly lower frequency of the less common Taq I allele compared with the healthy control group (odds ratio, 0.33; 95% confidence interval, 0.12 to 0.78). Conclusions—Possession of the less common Taq I cytochrome p4502E1 allele is associated with reduced susceptibility to alcoholic liver disease. There is no existing evidence that the Taq I polymorphism is directly associated with altered alcohol metabolism, but it might be in linkage disequilibrium with as yet unidentified protective factors. PMID:10889908

  4. A novel duplex real-time reverse transcriptase-polymerase chain reaction assay for the detection of hepatitis C viral RNA with armored RNA as internal control

    PubMed Central

    2010-01-01

    Background The hepatitis C virus (HCV) genome is extremely heterogeneous. Several HCV infections can not be detected using currently available commercial assays, probably because of mismatches between the template and primers/probes. By aligning the HCV sequences, we developed a duplex real-time reverse transcriptase-polymerase chain reaction (RT-PCR) assay using 2 sets of primers/probes and a specific armored RNA as internal control. The 2 detection probes were labelled with the same fluorophore, namely, 6-carboxyfluorescein (FAM), at the 5' end; these probes could mutually combine, improving the power of the test. Results The limit of detection of the duplex primer/probe assay was 38.99 IU/ml. The sensitivity of the assay improved significantly, while the specificity was not affected. All HCV genotypes in the HCV RNA Genotype Panel for Nucleic Acid Amplification Techniques could be detected. In the testing of 109 serum samples, the performance of the duplex real-time RT-PCR assay was identical to that of the COBAS AmpliPrep (CAP)/COBAS TaqMan (CTM) assay and superior to 2 commercial HCV assay kits. Conclusions The duplex real-time RT-PCR assay is an efficient and effective viral assay. It is comparable with the CAP/CTM assay with regard to the power of the test and is appropriate for blood-donor screening and laboratory diagnosis of HCV infection. PMID:20529244

  5. Purine inhibitors of protein kinases, G proteins and polymerases

    DOEpatents

    Gray, Nathanael S.; Schultz, Peter; Kim, Sung-Hou; Meijer, Laurent

    2004-10-12

    The present invention relates to 2-N-substituted 6-(4-methoxybenzylamino)-9-isopropylpurines that inhibit, inter alia, protein kinases, G-proteins and polymerases. In addition, the present invention relates to methods of using such 2-N-substituted 6-(4-methoxybenzylamino)-9-isopropylpurines to inhibit protein kinases, G-proteins, polymerases and other cellular processes and to treat cellular proliferative diseases.

  6. Oxidant injury of cells. DNA strand-breaks activate polyadenosine diphosphate-ribose polymerase and lead to depletion of nicotinamide adenine dinucleotide.

    PubMed Central

    Schraufstatter, I U; Hinshaw, D B; Hyslop, P A; Spragg, R G; Cochrane, C G

    1986-01-01

    To determine the biochemical basis of the oxidant-induced injury of cells, we have studied early changes after exposure of P388D1 murine macrophages to hydrogen peroxide. Total intracellular NAD+ levels in P388D1 cells decreased with H2O2 concentrations of 40 microM or higher. Doses of H2O2 between 0.1 and 2.5 mM led to an 80% depletion of NAD within 20 min. With doses of H2O2 of 250 microM or lower, the fall in NAD and, as shown previously, ATP, was reversible. Higher doses of H2O2 that cause ultimate lysis of the cells, induced an irreversible depletion of NAD and ATP. Poly-ADP-ribose polymerase, a nuclear enzyme associated with DNA damage and repair, which catalyzes conversion of NAD to nicotinamide and protein-bound poly-ADP-ribose, was activated by exposure of the cells to concentrations of 40 microM H2O2 or higher. Activation of poly-ADP-ribose polymerase was also observed in peripheral lymphocytes incubated in the presence of phorbol myristate acetate-stimulated polymorphonuclear neutrophils. Examination of the possibility that DNA alteration was involved was performed by measurement of thymidine incorporation and determination of DNA single-strand breaks (SSB) in cells exposed to H2O2. H2O2 at 40 microM or higher inhibited DNA synthesis, and induced SSB within less than 30 s. These results suggest that DNA damage induced within seconds after addition of oxidant may lead to stimulation of poly-ADP-ribose polymerase, and a consequent fall in NAD. Excessive stimulation of poly-ADP-ribose polymerase leads to a fall in NAD sufficient to interfere with ATP synthesis. PMID:2937805

  7. High-throughput Screening Identification of Poliovirus RNA-dependent RNA Polymerase Inhibitors

    PubMed Central

    Campagnola, Grace; Gong, Peng; Peersen, Olve B.

    2011-01-01

    Viral RNA-dependent RNA polymerase (RdRP) enzymes are essential for the replication of positive-strand RNA viruses and established targets for the development of selective antiviral therapeutics. In this work we have carried out a high-throughput screen of 154,267 compounds to identify poliovirus polymerase inhibitors using a fluorescence based RNA elongation assay. Screening and subsequent validation experiments using kinetic methods and RNA product analysis resulted in the identification of seven inhibitors that affect the RNA binding, initiation, or elongation activity of the polymerase. X-ray crystallography data show clear density for five of the compounds in the active site of the poliovirus polymerase elongation complex. The inhibitors occupy the NTP binding site by stacking on the priming nucleotide and interacting with the templating base, yet competition studies show fairly weak IC50 values in the low μM range. A comparison with nucleotide bound structures suggests that weak binding is likely due to the lack of a triphosphate group on the inhibitors. Consequently, the inhibitors are primarily effective at blocking polymerase initiation and do not effectively compete with NTP binding during processive elongation. These findings are discussed in the context of the polymerase elongation complex structure and allosteric control of the viral RdRP catalytic cycle. PMID:21722674

  8. Cloning and expression of the gene for bacteriophage T7 RNA polymerase

    DOEpatents

    Studier, F.W.; Davanloo, P.; Rosenberg, A.H.

    1984-03-30

    This application describes a means to clone a functional gene for bacteriophage T7 RNA polymerase. Active T7 RNA polymerase is produced from the cloned gene, and a plasmid has been constructed that can produce the active enzyme in large amounts. T7 RNA polymerase transcribes DNA very efficiently and is highly selective for a relatively long promoter sequence. This enzyme is useful for synthesizing large amounts of RNA in vivo or in vitro, and is capable of producing a single RNA selectively from a complex mixture of DNAs. The procedure used to obtain a clone of the T7 RNA polymerase gene can be applied to other T7-like phages to obtain clones that produce RNA polymerases having different promoter specificities, different bacterial hosts, or other desirable properties.

  9. Association between FokI, ApaI and TaqI RFLP polymorphisms in VDR gene and Hashimoto's thyroiditis: preliminary data from female patients in Serbia.

    PubMed

    Djurovic, J; Stojkovic, O; Ozdemir, O; Silan, F; Akurut, C; Todorovic, J; Savic, K; Stamenkovic, G

    2015-06-01

    Hashimoto's thyroiditis (HT) is the most prevalent autoimmune thyroid disorder caused by an interaction between genes and environmental triggers. Intrathyroid lymphocytic infiltration may lead to progressive destruction of thyroid tissue and consequently to hypothyroidism. Many studies in different populations have shown association between vitamin D receptor (VDR) gene polymorphisms and various autoimmune diseases, including HT. The study included 44 female patients (mean age ± standard deviation 38 ± 5.4) with Hashimoto's thyroiditis and 32 healthy age-matched, sex-matched and geographically matched controls without personal history of autoimmune and endocrine diseases. Genomic DNA was isolated from peripheral blood-EDTA, and the target VDR gene was genotyped by PCR-RFLP technique after VDR-FokI (rs2228570), VDR-ApaI (rs7975232) and VDR-TaqI (rs731236) restriction enzymes digestion. We used spss 20.0 integrated software for data analysis and found a significant difference in the genotype distribution of VDR-FokI polymorphism between patients with HT and controls (P = 0.009). For ApaI and TaqI, we observed a higher frequency of variant allele in patients with HT, which was not significantly different compared to control women (P > 0.05). The current first and preliminary results identified the association between VDR-FokI gene polymorphism and Hashimoto's thyroiditis in Serbian population. Results need to be supported by further investigations that define haplotype patterns for VDR gene polymorphisms in a larger group of HT patients of both sexes. © 2015 John Wiley & Sons Ltd.

  10. Creatine kinase MM TaqI and methylenetetrahydrofolate reductase C677T and A1298C gene polymorphisms influence exercise-induced C-reactive protein levels.

    PubMed

    Miranda-Vilela, Ana Luisa; Akimoto, Arthur K; Lordelo, Graciana S; Pereira, Luiz C S; Grisolia, Cesar K; Klautau-Guimarães, Maria de Nazaré

    2012-01-01

    Physical training induces beneficial adaptations, but exhausting exercise increases reactive oxygen species, which can cause muscular injuries with consequent inflammatory processes, implying jeopardized performance and possibly overtraining. Acute strenuous exercise almost certainly exceeds the benefits of physical activity; it can compromise performance and may contribute to increased future risk of cardiovascular disease (CVD) in athletes. Polymorphisms in the muscle-type creatine kinase (CK-MM) gene may influence performance and adaptation to training, while many potentially significant genetic variants are reported as risk factors for CVD. Therefore, we investigated the influence of polymorphisms in CK-MM TaqI and NcoI, methylenetetrahydrofolate reductase (MTHFR C677T and A1298C) and C-reactive protein (CRP G1059C) genes on exercise-induced damage and inflammation markers. Blood samples were taken immediately after a race (of at least 4 km) that took place outdoors on flat tracks, and were submitted to genotyping and biochemical evaluation of aspartate aminotransferase (AST), CK, CRP and high-sensitivity CRP (hs-CRP). CK-MM TaqI polymorphism significantly influenced results of AST, CK and hs-CRP, and an association between MTHFR C677T and A1298C with CRP level was found, although these levels did not exceed reference values. Results indicate that these polymorphisms can indirectly influence performance, contribute to higher susceptibility to exercise-induced inflammation or protection against it, and perhaps affect future risks of CVD in athletes.

  11. Creatine kinase MM TaqI and methylenetetrahydrofolate reductase C677T and A1298C gene polymorphisms influence exercise-induced C-reactive protein levels.

    PubMed

    Miranda-Vilela, Ana Luisa; Akimoto, Arthur K; Lordelo, Graciana S; Pereira, Luiz C S; Grisolia, Cesar K; Klautau-Guimarães, Maria de Nazaré

    2012-03-01

    Physical training induces beneficial adaptations, but exhausting exercise increases reactive oxygen species, which can cause muscular injuries with consequent inflammatory processes, implying jeopardized performance and possibly overtraining. Acute strenuous exercise almost certainly exceeds the benefits of physical activity; it can compromise performance and may contribute to increased future risk of cardiovascular disease (CVD) in athletes. Polymorphisms in the muscle-type creatine kinase (CK-MM) gene may influence performance and adaptation to training, while many potentially significant genetic variants are reported as risk factors for CVD. Therefore, we investigated the influence of polymorphisms in CK-MM TaqI and NcoI, methylenetetrahydrofolate reductase (MTHFR C677T and A1298C) and C-reactive protein (CRP G1059C) genes on exercise-induced damage and inflammation markers. Blood samples were taken immediately after a race (of at least 4 km) that took place outdoors on flat tracks, and were submitted to genotyping and biochemical evaluation of aspartate aminotransferase (AST), CK, CRP and high-sensitivity CRP (hs-CRP). CK-MM TaqI polymorphism significantly influenced results of AST, CK and hs-CRP, and an association between MTHFR C677T and A1298C with CRP level was found, although these levels did not exceed reference values. The results indicate that these polymorphisms can indirectly influence performance, contribute to higher susceptibility to exercise-induced inflammation or protection against it, and perhaps affect future risks of CVD in athletes.

  12. Identification of a small molecule that inhibits herpes simplex virus DNA Polymerase subunit interactions and viral replication.

    PubMed

    Pilger, Beatrice D; Cui, Can; Coen, Donald M

    2004-05-01

    The interaction between the catalytic subunit Pol and the processivity subunit UL42 of herpes simplex virus DNA polymerase has been characterized structurally and mutationally and is a potential target for novel antiviral drugs. We developed and validated an assay for small molecules that could disrupt the interaction of UL42 and a Pol-derived peptide and used it to screen approximately 16,000 compounds. Of 37 "hits" identified, four inhibited UL42-stimulated long-chain DNA synthesis by Pol in vitro, of which two exhibited little inhibition of polymerase activity by Pol alone. One of these specifically inhibited the physical interaction of Pol and UL42 and also inhibited viral replication at concentrations below those that caused cytotoxic effects. Thus, a small molecule can inhibit this protein-protein interaction, which provides a starting point for the discovery of new antiviral drugs.

  13. Polymerase chain reaction system using magnetic beads for analyzing a sample that includes nucleic acid

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nasarabadi, Shanavaz

    2011-01-11

    A polymerase chain reaction system for analyzing a sample containing nucleic acid includes providing magnetic beads; providing a flow channel having a polymerase chain reaction chamber, a pre polymerase chain reaction magnet position adjacent the polymerase chain reaction chamber, and a post pre polymerase magnet position adjacent the polymerase chain reaction chamber. The nucleic acid is bound to the magnetic beads. The magnetic beads with the nucleic acid flow to the pre polymerase chain reaction magnet position in the flow channel. The magnetic beads and the nucleic acid are washed with ethanol. The nucleic acid in the polymerase chain reactionmore » chamber is amplified. The magnetic beads and the nucleic acid are separated into a waste stream containing the magnetic beads and a post polymerase chain reaction mix containing the nucleic acid. The reaction mix containing the nucleic acid flows to an analysis unit in the channel for analysis.« less

  14. Refolding Active Human DNA Polymerase ν from Inclusion Bodies

    PubMed Central

    Arana, Mercedes E.; Powell, Gary K.; Edwards, Lori L.; Kunkel, Thomas A.; Petrovich, Robert M.

    2017-01-01

    Human DNA polymerase ν (Pol ν) is a conserved family A DNA polymerase of uncertain biological function. Physical and biochemical characterization aimed at understanding Pol ν function is hindered by the fact that, when over-expressed in E. coli, Pol ν is largely insoluble, and the small amount of soluble protein is difficult to purify. Here we describe the use of high hydrostatic pressure to refold Pol ν from inclusion bodies, in soluble and active form. The refolded Pol ν has properties comparable to those of the small amount of Pol ν that was purified from the soluble fraction. The approach described here may be applicable to other DNA polymerases that are expressed as insoluble inclusion bodies in E. coli. PMID:19853037

  15. A nucleotide binding rectification Brownian ratchet model for translocation of Y-family DNA polymerases

    PubMed Central

    2011-01-01

    Y-family DNA polymerases are characterized by low-fidelity synthesis on undamaged DNA and ability to catalyze translesion synthesis over the damaged DNA. Their translocation along the DNA template is an important event during processive DNA synthesis. In this work we present a Brownian ratchet model for this translocation, where the directed translocation is rectified by the nucleotide binding to the polymerase. Using the model, different features of the available structures for Dpo4, Dbh and polymerase ι in binary and ternary forms can be easily explained. Other dynamic properties of the Y-family polymerases such as the fast translocation event upon dNTP binding for Dpo4 and the considerable variations of the processivity among the polymerases can also be well explained by using the model. In addition, some predicted results of the DNA synthesis rate versus the external force acting on Dpo4 and Dbh polymerases are presented. Moreover, we compare the effect of the external force on the DNA synthesis rate of the Y-family polymerase with that of the replicative DNA polymerase. PMID:21699732

  16. New design, development, and optimization of an in-house quantitative TaqMan Real-time PCR assay for HIV-1 viral load measurement.

    PubMed

    Noorbazargan, Hassan; Nadji, Seyed Alireza; Samiee, Siamak Mirab; Paryan, Mahdi; Mohammadi-Yeganeh, Samira

    2018-04-01

    Background Viral load measurement is commonly applicable to monitor HIV infection in patients to determine the number of HIV-RNA in serum samples of individuals. The aim of the present study was to set up a highly specific, sensitive, and reproducible home-brewed Real-time PCR assay based on TaqMan chemistry to quantify HIV-1 RNA genome. Methods In this study, three sets of primer pairs and a TaqMan probe were designed for HIV subtypes conserved sequences. An internal control was included in this assay to evaluate the presence of inhibition. Standard curve and threshold cycle values were determined using in vitro transcribed RNA from int region of HIV-1. A serial dilution of RNA standards was generated by in vitro transcription, from 10 to 10 9 copies/ml to find the sensitivity and the limit of detection (LOD) of the assay and to evaluate its performance in a quantitative RT-PCR assay. Results The assay has a low LOD equivalent to 33.13 copies/ml of HIV-1 RNA and a linear range of detection from 10 to 10 9 copies/ml. The coefficient of variation (CV) for Inter and Intra-assay precision of this in-house HIV Real-time RT-PCR ranged from 0.28 to 2.49% and 0.72 to 4.47%, respectively. The analytical and clinical specificity was 100%. Conclusions The results indicate that the developed method has a suitable specificity and sensitivity and is highly reproducible and cost-benefit. Therefore, it will be useful to monitor HIV infection in plasma samples of individuals.

  17. Characterization of a Y-Family DNA Polymerase eta from the Eukaryotic Thermophile Alvinella pompejana

    DOE PAGES

    Kashiwagi, Sayo; Kuraoka, Isao; Fujiwara, Yoshie; ...

    2010-01-01

    Humore » man DNA polymerase η (HsPol η ) plays an important role in translesion synthesis (TLS), which allows for replication past DNA damage such as UV-induced cis-syn cyclobutane pyrimidine dimers (CPDs). Here, we characterized ApPol η from the thermophilic worm Alvinella pompejana , which inhabits deep-sea hydrothermal vent chimneys. ApPol η shares sequence homology with HsPol η and contains domains for binding ubiquitin and proliferating cell nuclear antigen. Sun-induced UV does not penetrate Alvinella's environment; however, this novel DNA polymerase catalyzed efficient and accurate TLS past CPD, as well as 7,8-dihydro-8-oxoguanine and isomers of thymine glycol induced by reactive oxygen species. In addition, we found that ApPol η is more thermostable than HsPol η , as expected from its habitat temperature. Moreover, the activity of this enzyme was retained in the presence of a higher concentration of organic solvents. Therefore, ApPol η provides a robust, human-like Pol η that is more active after exposure to high temperatures and organic solvents.« less

  18. Characterization of a Y-Family DNA Polymerase eta from the Eukaryotic Thermophile Alvinella pompejana

    PubMed Central

    Kashiwagi, Sayo; Kuraoka, Isao; Fujiwara, Yoshie; Hitomi, Kenichi; Cheng, Quen J.; Fuss, Jill O.; Shin, David S.; Masutani, Chikahide; Tainer, John A.; Hanaoka, Fumio; Iwai, Shigenori

    2010-01-01

    Human DNA polymerase η (HsPolη) plays an important role in translesion synthesis (TLS), which allows for replication past DNA damage such as UV-induced cis-syn cyclobutane pyrimidine dimers (CPDs). Here, we characterized ApPolη from the thermophilic worm Alvinella pompejana, which inhabits deep-sea hydrothermal vent chimneys. ApPolη shares sequence homology with HsPolη and contains domains for binding ubiquitin and proliferating cell nuclear antigen. Sun-induced UV does not penetrate Alvinella's environment; however, this novel DNA polymerase catalyzed efficient and accurate TLS past CPD, as well as 7,8-dihydro-8-oxoguanine and isomers of thymine glycol induced by reactive oxygen species. In addition, we found that ApPolη is more thermostable than HsPolη, as expected from its habitat temperature. Moreover, the activity of this enzyme was retained in the presence of a higher concentration of organic solvents. Therefore, ApPolη provides a robust, human-like Polη that is more active after exposure to high temperatures and organic solvents. PMID:20936172

  19. Base modifications affecting RNA polymerase and reverse transcriptase fidelity.

    PubMed

    Potapov, Vladimir; Fu, Xiaoqing; Dai, Nan; Corrêa, Ivan R; Tanner, Nathan A; Ong, Jennifer L

    2018-06-20

    Ribonucleic acid (RNA) is capable of hosting a variety of chemically diverse modifications, in both naturally-occurring post-transcriptional modifications and artificial chemical modifications used to expand the functionality of RNA. However, few studies have addressed how base modifications affect RNA polymerase and reverse transcriptase activity and fidelity. Here, we describe the fidelity of RNA synthesis and reverse transcription of modified ribonucleotides using an assay based on Pacific Biosciences Single Molecule Real-Time sequencing. Several modified bases, including methylated (m6A, m5C and m5U), hydroxymethylated (hm5U) and isomeric bases (pseudouridine), were examined. By comparing each modified base to the equivalent unmodified RNA base, we can determine how the modification affected cumulative RNA polymerase and reverse transcriptase fidelity. 5-hydroxymethyluridine and N6-methyladenosine both increased the combined error rate of T7 RNA polymerase and reverse transcriptases, while pseudouridine specifically increased the error rate of RNA synthesis by T7 RNA polymerase. In addition, we examined the frequency, mutational spectrum and sequence context of reverse transcription errors on DNA templates from an analysis of second strand DNA synthesis.

  20. Palm Mutants in DNA Polymerases α and η Alter DNA Replication Fidelity and Translesion Activity

    PubMed Central

    Niimi, Atsuko; Limsirichaikul, Siripan; Yoshida, Shonen; Iwai, Shigenori; Masutani, Chikahide; Hanaoka, Fumio; Kool, Eric T.; Nishiyama, Yukihiro; Suzuki, Motoshi

    2004-01-01

    We isolated active mutants in Saccharomyces cerevisiae DNA polymerase α that were associated with a defect in error discrimination. Among them, L868F DNA polymerase α has a spontaneous error frequency of 3 in 100 nucleotides and 570-fold lower replication fidelity than wild-type (WT) polymerase α. In vivo, mutant DNA polymerases confer a mutator phenotype and are synergistic with msh2 or msh6, suggesting that DNA polymerase α-dependent replication errors are recognized and repaired by mismatch repair. In vitro, L868F DNA polymerase α catalyzes efficient bypass of a cis-syn cyclobutane pyrimidine dimer, extending the 3′ T 26,000-fold more efficiently than the WT. Phe34 is equivalent to residue Leu868 in translesion DNA polymerase η, and the F34L mutant of S. cerevisiae DNA polymerase η has reduced translesion DNA synthesis activity in vitro. These data suggest that high-fidelity DNA synthesis by DNA polymerase α is required for genomic stability in yeast. The data also suggest that the phenylalanine and leucine residues in translesion and replicative DNA polymerases, respectively, might have played a role in the functional evolution of these enzyme classes. PMID:15024063

  1. The POLD3 subunit of DNA polymerase δ can promote translesion synthesis independently of DNA polymerase ζ

    PubMed Central

    Hirota, Kouji; Yoshikiyo, Kazunori; Guilbaud, Guillaume; Tsurimoto, Toshiki; Murai, Junko; Tsuda, Masataka; Phillips, Lara G.; Narita, Takeo; Nishihara, Kana; Kobayashi, Kaori; Yamada, Kouich; Nakamura, Jun; Pommier, Yves; Lehmann, Alan; Sale, Julian E.; Takeda, Shunichi

    2015-01-01

    The replicative DNA polymerase Polδ consists of a catalytic subunit POLD1/p125 and three regulatory subunits POLD2/p50, POLD3/p66 and POLD4/p12. The ortholog of POLD3 in Saccharomyces cerevisiae, Pol32, is required for a significant proportion of spontaneous and UV-induced mutagenesis through its additional role in translesion synthesis (TLS) as a subunit of DNA polymerase ζ. Remarkably, chicken DT40 B lymphocytes deficient in POLD3 are viable and able to replicate undamaged genomic DNA with normal kinetics. Like its counterpart in yeast, POLD3 is required for fully effective TLS, its loss resulting in hypersensitivity to a variety of DNA damaging agents, a diminished ability to maintain replication fork progression after UV irradiation and a significant decrease in abasic site-induced mutagenesis in the immunoglobulin loci. However, these defects appear to be largely independent of Polζ, suggesting that POLD3 makes a significant contribution to TLS independently of Polζ in DT40 cells. Indeed, combining polη, polζ and pold3 mutations results in synthetic lethality. Additionally, we show in vitro that POLD3 promotes extension beyond an abasic by the Polδ holoenzyme suggesting that while POLD3 is not required for normal replication, it may help Polδ to complete abasic site bypass independently of canonical TLS polymerases. PMID:25628356

  2. Selective affinity chromatography of DNA polymerases with associated 3' to 5' exonuclease activities.

    PubMed

    Lee, M Y; Whyte, W A

    1984-05-01

    The use of 5'-AMP as a ligand for the affinity chromatography of DNA polymerases with intrinsic 3' to 5' exonuclease activities was investigated. The basis for this is that 5'-AMP would be expected to act as a ligand for the associated 3' to 5' exonuclease. The requirements for binding of Escherichia coli DNA polymerase I, T4 DNA polymerase, and calf thymus DNA polymerase delta, all of which have associated 3' to 5' exonuclease activities, to several commercially available 5'-AMP supports with different linkages of 5'-AMP to either agarose or cellulose were examined. The DNA polymerases which possessed 3' to 5' exonuclease activities were bound to agarose types in which the 5'-phosphoryl group and the 3'-hydroxyl group of the AMP were unsubstituted. Bound enzyme could be eluted by either an increase in ionic strength or competitive binding of nucleoside 5'-monophosphates. Magnesium was found to reinforce the binding of the enzyme to these affinity supports. DNA polymerase alpha, which does not have an associated 3' to 5' exonuclease activity, did not bind to any of these columns. These differences can be used to advantage for the purification of DNA polymerases that have associated 3' to 5' exonuclease activities, as well as a means for establishing the association of 3' to 5' exonuclease activities with DNA polymerases.

  3. A Polymerase With Potential: The Fe-S Cluster in Human DNA Primase.

    PubMed

    Holt, Marilyn E; Salay, Lauren E; Chazin, Walter J

    2017-01-01

    Replication of DNA in eukaryotes is primarily executed by the combined action of processive DNA polymerases δ and ɛ. These enzymes cannot initiate synthesis of new DNA without the presence of a primer on the template ssDNA. The primers on both the leading and lagging strands are generated by DNA polymerase α-primase (pol-prim). DNA primase is a DNA-dependent RNA polymerase that synthesizes the first ~10 nucleotides and then transfers the substrate to polymerase α to complete primer synthesis. The mechanisms governing the coordination and handoff between primase and polymerase α are largely unknown. Isolated DNA primase contains a [4Fe-4S] 2+ cluster that has been shown to serve as a redox switch modulating DNA binding affinity. This discovery suggests a mechanism for modulating the priming activity of primase and handoff to polymerase α. In this chapter, we briefly discuss the current state of knowledge of primase structure and function, including the role of its iron-sulfur cluster. This is followed by providing the methods for expressing, purifying, and biophysically/structurally characterizing primase and its iron-sulfur cluster-containing domain, p58C. © 2017 Elsevier Inc. All rights reserved.

  4. Structure of human DNA polymerase iota and the mechanism of DNA synthesis.

    PubMed

    Makarova, A V; Kulbachinskiy, A V

    2012-06-01

    Cellular DNA polymerases belong to several families and carry out different functions. Highly accurate replicative DNA polymerases play the major role in cell genome replication. A number of new specialized DNA polymerases were discovered at the turn of XX-XXI centuries and have been intensively studied during the last decade. Due to the special structure of the active site, these enzymes efficiently perform synthesis on damaged DNA but are characterized by low fidelity. Human DNA polymerase iota (Pol ι) belongs to the Y-family of specialized DNA polymerases and is one of the most error-prone enzymes involved in DNA synthesis. In contrast to other DNA polymerases, Pol ι is able to use noncanonical Hoogsteen interactions for nucleotide base pairing. This allows it to incorporate nucleotides opposite various lesions in the DNA template that impair Watson-Crick interactions. Based on the data of X-ray structural analysis of Pol ι in complexes with various DNA templates and dNTP substrates, we consider the structural peculiarities of the Pol ι active site and discuss possible mechanisms that ensure the unique behavior of the enzyme on damaged and undamaged DNA.

  5. Fission yeast Alp14 is a dose-dependent plus end–tracking microtubule polymerase

    PubMed Central

    Al-Bassam, Jawdat; Kim, Hwajin; Flor-Parra, Ignacio; Lal, Neeraj; Velji, Hamida; Chang, Fred

    2012-01-01

    XMAP215/Dis1 proteins are conserved tubulin-binding TOG-domain proteins that regulate microtubule (MT) plus-end dynamics. Here we show that Alp14, a XMAP215 orthologue in fission yeast, Schizosaccharomyces pombe, has properties of a MT polymerase. In vivo, Alp14 localizes to growing MT plus ends in a manner independent of Mal3 (EB1). alp14-null mutants display short interphase MTs with twofold slower assembly rate and frequent pauses. Alp14 is a homodimer that binds a single tubulin dimer. In vitro, purified Alp14 molecules track growing MT plus ends and accelerate MT assembly threefold. TOG-domain mutants demonstrate that tubulin binding is critical for function and plus end localization. Overexpression of Alp14 or only its TOG domains causes complete MT loss in vivo, and high Alp14 concentration inhibits MT assembly in vitro. These inhibitory effects may arise from Alp14 sequestration of tubulin and effects on the MT. Our studies suggest that Alp14 regulates the polymerization state of tubulin by cycling between a tubulin dimer–bound cytoplasmic state and a MT polymerase state that promotes rapid MT assembly. PMID:22696680

  6. Inhibition of RNA-Dependent DNA Polymerase of Avian Myeloblastosis Virus by Pyran Copolymer

    PubMed Central

    Papas, Takis S.; Pry, Thomas W.; Chirigos, Michael A.

    1974-01-01

    Pyran copolymer, a known immunostimulator, was found to be a potent inhibitor of purified DNA polymerase (deoxynucleosidetriphosphate: DNA deoxynucleotidyltransferase; EC 2.7.7.7) isolated from avian myeloblastosis virus. Unlike other inhibitors, pyran showed unique features of inhibition. It interacts with the polymerase at a region other than the template site. The inhibitory effect was overcome only by excess enzyme and not affected by excess template. The degree of inhibition was not template specific for the templates tested: 70S RNA from avian myeloblastosis virus, synthetic hybrid poly(rA)·oligo(dT)10, synthetic copolymer poly(dA-dT), and activated calf-thymus DNA. The observed rate of inhibition by pyran was shown to vary with the different polymerases tested. Inhibition was shown with all oncornaviral polymerases and, to a lesser extent, with mammalian polymerases. However, two of the three bacterial polymerases, by contrast, showed a marked activation. PMID:4131275

  7. Chloroplast Transcription at Different Light Intensities. Glutathione-Mediated Phosphorylation of the Major RNA Polymerase Involved in Redox-Regulated Organellar Gene Expression1

    PubMed Central

    Baena-González, Elena; Baginsky, Sacha; Mulo, Paula; Summer, Holger; Aro, Eva-Mari; Link, Gerhard

    2001-01-01

    Previous studies using purified RNA polymerase from mustard (Sinapis alba) chloroplasts showed control of transcription by an associated protein kinase. This kinase was found to respond to reversible thiol/disulfide formation mediated by glutathione (GSH), although at concentrations exceeding those thought to exist in vivo. In the present study, several lines of evidence are presented to substantiate the functioning of this regulation mechanism, also in vivo: (a) Studies on the polymerase-associated transcription kinase revealed that at appropriate ATP levels, GSH concentrations similar to those in vivo are sufficient to modulate the kinase activity; (b) GSH measurements from isolated mustard chloroplasts showed considerable differences in response to light intensity; (c) this was reflected by run-on transcription rates in isolated chloroplasts that were generally higher if organelles were prepared from seedlings incubated under high-light as compared with growth-light conditions; (d) the notion of a general transcriptional switch was strengthened by in vitro experiments showing that the kinase not only affects the transcription of a photosynthetic gene (psbA) but also that of a non-photosynthetic gene (trnQ); and (e) the polymerase-kinase complex revealed specific differences in the phosphorylation state of polypeptides depending on the light intensity to which the seedlings had been exposed prior to chloroplast isolation. Taken together, these data are consistent with GSH and phosphorylation-dependent regulation of chloroplast transcription in vivo. PMID:11706185

  8. Use of Base Modifications in Primers and Amplicons to Improve Nucleic Acids Detection in the Real-Time Snake Polymerase Chain Reaction

    PubMed Central

    2011-01-01

    Abstract The addition of relatively short flap sequence at the 5′-end of one of the polymerase chain reaction (PCR) primers considerably improves performance of real-time assays based on 5′-nuclease activity. This new technology, called Snake, was shown to supersede the conventional methods like TaqMan, Molecular Beacons, and Scorpions in the signal productivity and discrimination of target polymorphic variations as small as single nucleotides. The present article describes a number of reaction conditions and methods that allow further improvement of the assay performance. One of the identified approaches is the use of duplex-destabilizing modifications such as deoxyinosine and deoxyuridine in the design of the Snake primers. This approach was shown to solve the most serious problem associated with the antisense amplicon folding and cleavage. As a result, the method permits the use of relatively long—in this study—14-mer flap sequences. Investigation also revealed that only the 5′-segment of the flap requires the deoxyinosine/deoxyuridine destabilization, whereas the 3′-segment is preferably left unmodified or even stabilized using 2-amino deoxyadenosine d(2-amA) and 5-propynyl deoxyuridine d(5-PrU) modifications. The base-modification technique is especially effective when applied in combination with asymmetric three-step PCR. The most valuable discovery of the present study is the effective application of modified deoxynucleoside 5′-triphosphates d(2-amA)TP and d(5-PrU)TP in Snake PCR. This method made possible the use of very short 6-8-mer 5′-flap sequences in Snake primers. PMID:21050073

  9. Antiviral Nucleotide Incorporation by Recombinant Human Mitochondrial RNA Polymerase Is Predictive of Increased In Vivo Mitochondrial Toxicity Risk

    PubMed Central

    Lin, Xiaodong; Yokokawa, Fumiaki; Sweeney, Zachary; Saunders, Oliver; Xie, Lili; Lim, Siew Pheng; Uteng, Marianne; Uehara, Kyoko; Warne, Robert; Gang, Wang; Jones, Christopher; Yendluri, Satya; Gu, Helen; Mansfield, Keith; Boisclair, Julie; Heimbach, Tycho; Catoire, Alexandre; Bracken, Kathryn; Weaver, Margaret; Moser, Heinz; Zhong, Weidong

    2016-01-01

    Nucleoside or nucleotide inhibitors are a highly successful class of antivirals due to selectivity, potency, broad coverage, and high barrier to resistance. Nucleosides are the backbone of combination treatments for HIV, hepatitis B virus, and, since the FDA approval of sofosbuvir in 2013, also for hepatitis C virus (HCV). However, many promising nucleotide inhibitors have advanced to clinical trials only to be terminated due to unexpected toxicity. Here we describe the in vitro pharmacology of compound 1, a monophosphate prodrug of a 2′-ethynyluridine developed for the treatment of HCV. Compound 1 inhibits multiple HCV genotypes in vitro (50% effective concentration [EC50], 0.05 to 0.1 μM) with a selectivity index of >300 (50% cytotoxic concentration [CC50], 30 μM in MT-4 cells). The active triphosphate metabolite of compound 1, compound 2, does not inhibit human α, β, or γ DNA polymerases but was a substrate for incorporation by the human mitochondrial RNA polymerase (POLRMT). In dog, the oral administration of compound 1 resulted in elevated serum liver enzymes and microscopic changes in the liver. Transmission electron microscopy showed significant mitochondrial swelling and lipid accumulation in hepatocytes. Gene expression analysis revealed dose-proportional gene signature changes linked to loss of hepatic function and increased mitochondrial dysfunction. The potential of in vivo toxicity through mitochondrial polymerase incorporation by nucleoside analogs has been previously shown. This study shows that even moderate levels of nucleotide analog incorporation by POLRMT increase the risk of in vivo mitochondrial dysfunction. Based on these results, further development of compound 1 as an anti-HCV compound was terminated. PMID:27645237

  10. Inhibiting poly(ADP-ribose) polymerase: a potential therapy against oligodendrocyte death

    PubMed Central

    Veto, Sara; Acs, Peter; Bauer, Jan; Lassmann, Hans; Berente, Zoltan; Setalo, Gyorgy; Borgulya, Gabor; Sumegi, Balazs; Komoly, Samuel; Gallyas, Ferenc; Illes, Zsolt

    2010-01-01

    Oligodendrocyte loss and demyelination are major pathological hallmarks of multiple sclerosis. In pattern III lesions, inflammation is minor in the early stages, and oligodendrocyte apoptosis prevails, which appears to be mediated at least in part through mitochondrial injury. Here, we demonstrate poly(ADP-ribose) polymerase activation and apoptosis inducing factor nuclear translocation within apoptotic oligodendrocytes in such multiple sclerosis lesions. The same morphological and molecular pathology was observed in an experimental model of primary demyelination, induced by the mitochondrial toxin cuprizone. Inhibition of poly(ADP-ribose) polymerase in this model attenuated oligodendrocyte depletion and decreased demyelination. Poly(ADP-ribose) polymerase inhibition suppressed c-Jun N-terminal kinase and p38 mitogen-activated protein kinase phosphorylation, increased the activation of the cytoprotective phosphatidylinositol-3 kinase-Akt pathway and prevented caspase-independent apoptosis inducing factor-mediated apoptosis. Our data indicate that poly(ADP-ribose) polymerase activation plays a crucial role in the pathogenesis of pattern III multiple sclerosis lesions. Since poly(ADP-ribose) polymerase inhibition was also effective in the inflammatory model of multiple sclerosis, it may target all subtypes of multiple sclerosis, either by preventing oligodendrocyte death or attenuating inflammation. PMID:20157013

  11. Quantitative detection method of Enterocytozoon hepatopenaei using TaqMan probe real-time PCR.

    PubMed

    Liu, Ya-Mei; Qiu, Liang; Sheng, An-Zhi; Wan, Xiao-Yuan; Cheng, Dong-Yuan; Huang, Jie

    2018-01-01

    A TaqMan probe and a pair of specific primers were selected from the small subunit ribosomal DNA (SSU rDNA) sequence of Enterocytozoon hepatopenaei (EHP); this real-time PCR assay was developed and optimized. It showed a good linearity in detecting standards of EHP SSU rDNA fragments from 4 × 10 2 to 4 × 10 8 copies/reaction using the established method. The detection limit of the qPCR method was as low as 4 × 10 1 copies per reaction, which was higher than the conventional PCR and SYBR Green I-based EHP qPCR reported. Using the qPCR assay, EHP was detected in four batches of slow-growing Penaeus vannamei specimens collected from Tianjin and Zhejiang Province in China was detected using qPCR. The results showed that all the hepatopancreas from the slow-growing P. vannamei specimens were detected as EHP-positive. EHP copies of hepatopancreas in some batches had a negative correlation with the body mass index (BMI) of shrimps; however, not all batches of specimens had this negative correlation between EHP copies of hepatopancreas and BMI. This qPCR technique is sensitive, specific and easy to perform (96 tests in <3 h), which provides technical support for the detection and prevention of EHP. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Continuous in vitro evolution of bacteriophage RNA polymerase promoters

    NASA Technical Reports Server (NTRS)

    Breaker, R. R.; Banerji, A.; Joyce, G. F.

    1994-01-01

    Rapid in vitro evolution of bacteriophage T7, T3, and SP6 RNA polymerase promoters was achieved by a method that allows continuous enrichment of DNAs that contain functional promoter elements. This method exploits the ability of a special class of nucleic acid molecules to replicate continuously in the presence of both a reverse transcriptase and a DNA-dependent RNA polymerase. Replication involves the synthesis of both RNA and cDNA intermediates. The cDNA strand contains an embedded promoter sequence, which becomes converted to a functional double-stranded promoter element, leading to the production of RNA transcripts. Synthetic cDNAs, including those that contain randomized promoter sequences, can be used to initiate the amplification cycle. However, only those cDNAs that contain functional promoter sequences are able to produce RNA transcripts. Furthermore, each RNA transcript encodes the RNA polymerase promoter sequence that was responsible for initiation of its own transcription. Thus, the population of amplifying molecules quickly becomes enriched for those templates that encode functional promoters. Optimal promoter sequences for phage T7, T3, and SP6 RNA polymerase were identified after a 2-h amplification reaction, initiated in each case with a pool of synthetic cDNAs encoding greater than 10(10) promoter sequence variants.

  13. Comparison of Polymerase Subunits from Double-Stranded RNA Bacteriophages

    PubMed Central

    Yang, Hongyan; Makeyev, Eugene V.; Bamford, Dennis H.

    2001-01-01

    The family Cystoviridae comprises several bacteriophages with double-stranded RNA (dsRNA) genomes. We have previously purified the catalytic polymerase subunit (Pol) of one of the Cystoviridae members, bacteriophage φ6, and shown that the protein can catalyze RNA synthesis in vitro. In this reaction, both bacteriophage-specific and heterologous RNAs can serve as templates, but those containing 3′ termini from the φ6 minus strands are favored. This provides a molecular basis for the observation that only plus strands, not minus strands, are transcribed from φ6 dsRNA segments in vivo. To test whether such a regulatory mechanism is also found in other dsRNA viruses, we purified recombinant Pol subunits from the φ6-related bacteriophages φ8 and φ13 and assayed their polymerase activities in vitro. The enzymes catalyze template-dependent RNA synthesis using both single-stranded-RNA (ssRNA) and dsRNA templates. However, they differ from each other as well as from φ6 Pol in certain biochemical properties. Notably, each polymerase demonstrates a distinct preference for ssRNAs bearing short 3′-terminal sequences from the virus-specific minus strands. This suggests that, in addition to other factors, RNA transcription in Cystoviridae is controlled by the template specificity of the polymerase subunit. PMID:11602748

  14. Rapid and Reliable Genotyping of HLA-B*57:01 in Four Chinese Populations Using a Single-Tube Duplex Real-Time Polymerase Chain Reaction Assay.

    PubMed

    Han, Min; Kang, Xing; Liu, Zhengbin; Zhang, Tingting; Li, Yanwei; Chen, Chao; Wang, Huijuan

    2017-07-01

    HLA-B*57:01 is strongly associated with severe adverse drug reaction induced by the anti-HIV drug abacavir (ABC) and antibiotic flucloxacillin. This study was dedicated to establishing a new method for HLA-B*57:01 genotyping and investigating the HLA-B*57:01 distribution pattern in four Chinese populations. A single-tube duplex real-time polymerase chain reaction (PCR) system was established by combining the amplification refractory mutation system and TaqMan probe. The reliability of this assay was validated by comparing the genotyping results with those by sequence-based typing. With this assay, the distribution of HLA-B*57:01 in 354 blood samples from four ethnic groups, namely, Han, Tibetan, Uighur, and Buyei, was determined. A 100% concordance was observed between the results of real-time PCR and sequence-based typing in 50 Uighur samples. As low as 0.016 ng DNA that carried HLA-B*57:01 could be detected with this assay. HLA-B*57:01 carriers identified in 100 Northern Han Chinese, 104 Buyeis, 100 Tibetans, and 50 Uighurs were 0, 1 (0.96%), 3 (3%), and 6 (12%), respectively. The carrier rate of HLA-B*57:01 in Uighur was significantly higher than those in Northern Han (p = .001) and Buyei (p = .005). The newly established real-time PCR assay provides a rapid and reliable tool for HLA-B*57:01 allele screening before the prescription of ABC and flucloxacillin in clinical practice.

  15. Association of VDR gene polymorphisms with risk of relapsing-remitting multiple sclerosis in an Iranian Kurdish population.

    PubMed

    Abdollahzadeh, Rasoul; Moradi Pordanjani, Parisa; Rahmani, Farideh; Mashayekhi, Fatemeh; Azarnezhad, Asaad; Mansoori, Yaser

    2018-06-01

    The purpose of this study was to evaluate the association of VDR Apa-I, Bsm-I, Fok-I, Taq-I single nucleotide polymorphisms (SNPs) with multiple sclerosis (MS) risk in an Iranian Kurdish population. A population including of 118 patients and 124 healthy matched controls were recruited to the study. Genotyping of the SNPs was accomplished using polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP). The frequency of allele T of Fok-I (P = 0.003) and allele C of Taq-I (P = 0.0003) was significantly different between case and control subjects and showed significant association with risk of MS (OR = 1.84, 95% CI = 1.23-2.76; OR = 1.98, 95% CI = 1.36-2.87, respectively). CT genotype (OR = 1.7, 95% CI = 1.05-2.99) of Fok-I and CC genotype (OR = 2.18, 95% CI = 1.05-4.52) of Taq-I showed a predisposing effect. Combined TT+TC vs. CC for Fok-I (OR = 2.15, 95% = CI 1.29-3.60) and combined CC+TC vs. TT for Taq-I (OR = 2.58, 95% CI 1.51-4.40) were susceptibility genotypes for MS. Apa-I and Bsm-I were not significantly associated with risk of MS (OR < 1, P > 0.05) and any genotypes in any genetic models were not significantly different between cases and controls (P > 0.05). As a result, Fok-I and Taq-I showed significant association with risk of MS, while Apa-I and Bsm-I were not observed to be related to the risk of the disease in this population.

  16. Development of TaqMan probes targeting the four major celiac disease epitopes found in α-gliadin sequences of spelt (Triticum aestivum ssp. spelta) and bread wheat (Triticum aestivum ssp. aestivum).

    PubMed

    Dubois, Benjamin; Bertin, Pierre; Muhovski, Yordan; Escarnot, Emmanuelle; Mingeot, Dominique

    2017-01-01

    Celiac disease (CD) is caused by specific sequences of gluten proteins found in cereals such as bread wheat ( Triticum aestivum ssp. aestivum ) and spelt ( T. aestivum ssp. spelta ). Among them, the α-gliadins display the highest immunogenicity, with four T-cell stimulatory epitopes. The toxicity of each epitope sequence can be reduced or even suppressed according to the allelic form of each sequence. One way to address the CD problem would be to make use of this allelic variability in breeding programs to develop safe varieties, but tools to track the presence of toxic epitopes are required. The objective of this study was to develop a tool to accurately detect and quantify the immunogenic content of expressed α-gliadins of spelt and bread wheat. Four TaqMan probes that only hybridize to the canonical-i.e. toxic-form of each of the four epitopes were developed and their specificity was demonstrated. Six TaqMan probes targeting stable reference genes were also developed and constitute a tool to normalize qPCR data. The probes were used to measure the epitope expression levels of 11 contrasted spelt accessions and three ancestral diploid accessions of bread wheat and spelt. A high expression variability was highlighted among epitopes and among accessions, especially in Asian spelts, which showed lower epitope expression levels than the other spelts. Some discrepancies were identified between the canonical epitope expression level and the global amount of expressed α-gliadins, which makes the designed TaqMan probes a useful tool to quantify the immunogenic potential independently of the global amount of expressed α-gliadins. The results obtained in this study provide useful tools to study the immunogenic potential of expressed α-gliadin sequences from Triticeae accessions such as spelt and bread wheat. The application of the designed probes to contrasted spelt accessions revealed a high variability and interesting low canonical epitope expression levels in the

  17. DNA polymerase catalysis in the absence of Watson-Crick hydrogen bonds

    PubMed Central

    Potapova, Olga; Chan, Chikio; DeLucia, Angela M.; Helquist, Sandra A.; Kool, Eric T.; Grindley, Nigel D. F.; Joyce, Catherine M.

    2008-01-01

    We report the first pre-steady-state kinetic studies of DNA replication in the absence of hydrogen bonds. We have used nonpolar nucleotide analogues that mimic the shape of a Watson-Crick base pair in order to investigate the kinetic consequences of a lack of hydrogen bonds in the polymerase reaction catalyzed by the Klenow fragment of DNA Polymerase I from Escherichia coli. With a thymine isostere lacking hydrogen bonding ability in the nascent pair, the efficiency (kpol/Kd) of the polymerase reaction is decreased by 30-fold, affecting ground state (Kd) and transition state (kpol) approximately equally. When both thymine and adenine analogues in the nascent pair lack hydrogen bonding ability, the efficiency of the polymerase reaction is decreased by about 1000-fold, with most the decrease attributable to the transition state. Reactions using nonpolar analogues at the primer terminal base pair demonstrated the requirement for a hydrogen bond between the polymerase and the minor groove of the primer-terminal base. The R668A mutation of Klenow fragment abolished this requirement, identifying R668 as the probable hydrogen bond donor. Detailed examination of the kinetic data suggested that Klenow fragment has an extremely low tolerance of even minor deviations of the analogue base pairs from ideal Watson-Crick geometry. Consistent with this idea, some analogue pairings were better tolerated by Klenow fragment mutants having more spacious active sites. By contrast, the Y-family polymerase Dbh was much less sensitive to changes in base pair dimensions, and more dependent on hydrogen bonding between base-paired partners. PMID:16411765

  18. Binding of the cyclic AMP receptor protein of Escherichia coli to RNA polymerase.

    PubMed

    Pinkney, M; Hoggett, J G

    1988-03-15

    Fluorescence polarization studies were used to study the interaction of a fluorescein-labelled conjugate of the Escherichia coli cyclic AMP receptor protein (F-CRP) and RNA polymerase. Under conditions of physiological ionic strength, F-CRP binds to RNA polymerase holoenzyme in a cyclic AMP-dependent manner; the dissociation constant was about 3 microM in the presence of cyclic AMP and about 100 microM in its absence. Binding to core RNA polymerase under the same conditions was weak (Kdiss. approx. 80-100 microM) and independent of cyclic AMP. Competition experiments established that native CRP and F-CRP compete for the same binding site on RNA polymerase holoenzyme and that the native protein binds about 3 times more strongly than does F-CRP. Analytical ultracentrifuge studies showed that CRP binds predominantly to the monomeric rather than the dimeric form of RNA polymerase.

  19. Techniques used to study the DNA polymerase reaction pathway

    PubMed Central

    Joyce, Catherine M.

    2009-01-01

    Summary A minimal reaction pathway for DNA polymerases was established over 20 years ago using chemical quench methods. Since that time there has been considerable interest in noncovalent steps in the reaction pathway, conformational changes involving the polymerase or its DNA substrate that may play a role in substrate specificity. Fluorescence-based assays have been devised in order to study these conformational transitions and the results obtained have added new detail to the reaction pathway. PMID:19665596

  20. A Structural Overview of RNA-Dependent RNA Polymerases from the Flaviviridae Family

    PubMed Central

    Wu, Jiqin; Liu, Weichi; Gong, Peng

    2015-01-01

    RNA-dependent RNA polymerases (RdRPs) from the Flaviviridae family are representatives of viral polymerases that carry out RNA synthesis through a de novo initiation mechanism. They share a ≈ 600-residue polymerase core that displays a canonical viral RdRP architecture resembling an encircled right hand with palm, fingers, and thumb domains surrounding the active site. Polymerase catalytic motifs A–E in the palm and motifs F/G in the fingers are shared by all viral RdRPs with sequence and/or structural conservations regardless of the mechanism of initiation. Different from RdRPs carrying out primer-dependent initiation, Flaviviridae and other de novo RdRPs utilize a priming element often integrated in the thumb domain to facilitate primer-independent initiation. Upon the transition to the elongation phase, this priming element needs to undergo currently unresolved conformational rearrangements to accommodate the growth of the template-product RNA duplex. In the genera of Flavivirus and Pestivirus, the polymerase module in the C-terminal part of the RdRP protein may be regulated in cis by the N-terminal region of the same polypeptide. Either being a methyltransferase in Flavivirus or a functionally unclarified module in Pestivirus, this region could play auxiliary roles for the canonical folding and/or the catalysis of the polymerase, through defined intra-molecular interactions. PMID:26062131

  1. [Method validation according to ISO 15189 and SH GTA 04: application for the detection of KRAS mutations using PCR TaqMan assay].

    PubMed

    Harlé, Alexandre; Dubois, Cindy; Rouyer, Marie; Merlin, Jean-Louis

    2013-01-01

    Since January 16(th) 2010, the French legislation requires that the medical laboratories must be accredited according to ISO 15189 standards. Thus, all medical laboratories in France must be accredited for at least part of their biological tests before the end of October 2013. Molecular biology tests are also concerned by the accreditation. Validation of molecular biology methods is made difficult, for reasons related to the methods, but also by the type of analytes that are basically rare. This article describes the validation of the qualitative detection of KRAS mutations in metastatic colorectal cancer using TaqMan PCR according to ISO 15189 and to the technical guide for accreditation in Human Health, SH-GTA-04, edited by the COFRAC.

  2. D2 dopamine receptor (DRD2) gene Taq1A polymorphism and the eating-related psychological traits in eating disorders (anorexia nervosa and bulimia) and obesity.

    PubMed

    Nisoli, E; Brunani, A; Borgomainerio, E; Tonello, C; Dioni, L; Briscini, L; Redaelli, G; Molinari, E; Cavagnini, F; Carruba, M O

    2007-06-01

    Food is considered a reinforcing agent, like a variety of substances such as alcohol and other drugs of abuse that produce pleasure. Psychopathological traits related to food intake are demonstrated in eating disorders as in obesity with different genetic aspects for these diseases. Recently, the prevalence of TaqA1 allele has been associated to alcohol, drug abuse and carbohydrate preference. For this reason, the aim of this study was to evaluate if the presence of A1 allele, in eating disorders and obesity, is associated with some particular psycho-pathological characteristics. We studied the presence of TaqA1 in Italian subjects affected by obesity (n=71), anorexia (n=28), bulimia (n=20) and in control group (n=54). The Eating Disorders Inventory (EDI test) was used to evaluate the psychological profiles. Patients without alcohol and drugs abuse were selected (>125 ml/day). The A1+ allele, both in A1/A1 and A1/A2 genotypes, was not differently distributed among disease groups; on the contrary two EDI subscales (Drive for thinness and Ineffectiveness) resulted associated with A1+ allele without effect of the eating disease or obesity. These results confirm that the presence of A1+ allele is not simply related to body weight but the A1+ allele might be a marker of a genetic psychological condition in people with high risk to develop pathological eating behaviour.

  3. Structure of a preternary complex involving a prokaryotic NHEJ DNA polymerase.

    PubMed

    Brissett, Nigel C; Martin, Maria J; Pitcher, Robert S; Bianchi, Julie; Juarez, Raquel; Green, Andrew J; Fox, Gavin C; Blanco, Luis; Doherty, Aidan J

    2011-01-21

    In many prokaryotes, a specific DNA primase/polymerase (PolDom) is required for nonhomologous end joining (NHEJ) repair of DNA double-strand breaks (DSBs). Here, we report the crystal structure of a catalytically active conformation of Mycobacterium tuberculosis PolDom, consisting of a polymerase bound to a DNA end with a 3' overhang, two metal ions, and an incoming nucleotide but, significantly, lacking a primer strand. This structure represents a polymerase:DNA complex in a preternary intermediate state. This polymerase complex occurs in solution, stabilizing the enzyme on DNA ends and promoting nucleotide extension of short incoming termini. We also demonstrate that the invariant Arg(220), contained in a conserved loop (loop 2), plays an essential role in catalysis by regulating binding of a second metal ion in the active site. We propose that this NHEJ intermediate facilitates extension reactions involving critically short or noncomplementary DNA ends, thus promoting break repair and minimizing sequence loss during DSB repair. Copyright © 2011 Elsevier Inc. All rights reserved.

  4. Escherichia coli DnaE Polymerase Couples Pyrophosphatase Activity to DNA Replication

    PubMed Central

    Lapenta, Fabio; Montón Silva, Alejandro; Brandimarti, Renato; Lanzi, Massimiliano; Gratani, Fabio Lino; Vellosillo Gonzalez, Perceval; Perticarari, Sofia; Hochkoeppler, Alejandro

    2016-01-01

    DNA Polymerases generate pyrophosphate every time they catalyze a step of DNA elongation. This elongation reaction is generally believed as thermodynamically favoured by the hydrolysis of pyrophosphate, catalyzed by inorganic pyrophosphatases. However, the specific action of inorganic pyrophosphatases coupled to DNA replication in vivo was never demonstrated. Here we show that the Polymerase-Histidinol-Phosphatase (PHP) domain of Escherichia coli DNA Polymerase III α subunit features pyrophosphatase activity. We also show that this activity is inhibited by fluoride, as commonly observed for inorganic pyrophosphatases, and we identified 3 amino acids of the PHP active site. Remarkably, E. coli cells expressing variants of these catalytic residues of α subunit feature aberrant phenotypes, poor viability, and are subject to high mutation frequencies. Our findings indicate that DNA Polymerases can couple DNA elongation and pyrophosphate hydrolysis, providing a mechanism for the control of DNA extension rate, and suggest a promising target for novel antibiotics. PMID:27050298

  5. Activation mechanism of a noncanonical RNA-dependent RNA polymerase.

    PubMed

    Garriga, Damià; Navarro, Aitor; Querol-Audí, Jordi; Abaitua, Fernando; Rodríguez, José F; Verdaguer, Núria

    2007-12-18

    Two lineages of viral RNA-dependent RNA polymerases (RDRPs) differing in the organization (canonical vs. noncanonical) of the palm subdomain have been identified. Phylogenetic analyses indicate that both lineages diverged at a very early stage of the evolution of the enzyme [Gorbalenya AE, Pringle FM, Zeddam JL, Luke BT, Cameron CE, Kalmakoff J, Hanzlik TN, Gordon KH, Ward VK (2002) J Mol Biol 324:47-62]. Here, we report the x-ray structure of a noncanonical birnaviral RDRP, named VP1, in its free form, bound to Mg(2+) ions, and bound to a peptide representing the polymerase-binding motif of the regulatory viral protein VP3. The structure of VP1 reveals that the noncanonical connectivity of the palm subdomain maintains the geometry of the catalytic residues found in canonical polymerases but results in a partial blocking of the active site cavity. The VP1-VP3 peptide complex shows a mode of polymerase activation in which VP3 binding promotes a conformational change that removes the steric blockade of the VP1 active site, facilitating the accommodation of the template and incoming nucleotides for catalysis. The striking structural similarities between birnavirus (dsRNA) and the positive-stranded RNA picornavirus and calicivirus RDRPs provide evidence supporting the existence of functional and evolutionary relationships between these two virus groups.

  6. [Quantitative PCR in the diagnosis of Leishmania].

    PubMed

    Mortarino, M; Franceschi, A; Mancianti, F; Bazzocchi, C; Genchi, C; Bandi, C

    2004-06-01

    Polymerase chain reaction (PCR) is a sensitive and rapid method for the diagnosis of canine Leishmania infection and can be performed on a variety of biological samples, including peripheral blood, lymph node, bone marrow and skin. Standard PCR requires electrophoretic analysis of the amplification products and is usually not suitable for quantification of the template DNA (unless competitor-based or other methods are developed), being of reduced usefulness when accurate monitoring of target DNA is required. Quantitative real-time PCR allows the continuous monitoring of the accumulation of PCR products during the amplification reaction. This allows the identification of the cycle of near-logarithmic PCR product generation (threshold cycle) and, by inference, the relative quantification of the template DNA present at the start of the reaction. Since the amplification product are monitored in "real-time" as they form cycle-by-cycle, no post-amplification handling is required. The absolute quantification is performed according either to an internal standard co-amplified with the sample DNA, or to an external standard curve obtained by parallel amplification of serial known concentrations of a reference DNA sequence. From the quantification of the template DNA, an estimation of the relative load of parasites in the different samples can be obtained. The advantages compared to standard and semi-quantitative PCR techniques are reduction of the assay's time and contamination risks, and improved sensitivity. As for standard PCR, the minimal components of the quantitative PCR reaction mixture are the DNA target of the amplification, an oligonucleotide primer pair flanking the target sequence, a suitable DNA polymerase, deoxynucleotides, buffer and salts. Different technologies have been set up for the monitoring of amplification products, generally based on the use of fluorescent probes. For instance, SYBR Green technology is a non-specific detection system based on a

  7. Detection of minute virus of mice using real time quantitative PCR in assessment of virus clearance during the purification of Mammalian cell substrate derived biotherapeutics.

    PubMed

    Zhan, Dejin; Roy, Margaret R; Valera, Christine; Cardenas, Jesse; Vennari, Joann C; Chen, Janice W; Liu, Shengjiang

    2002-12-01

    A real time quantitative PCR assay has been developed for detecting minute virus of mice (MVM). This assay directly quantifies PCR product by monitoring the increase of fluorescence intensity emitted during enzymatic hydrolysis of an oligonucleotide probe labelled covalently with fluorescent reporting and quenching dyes via Taq polymerase 5'-->3' exonuclease activity. The quantity of MVM DNA molecules in the samples was determined using a known amount of MVM standard control DNA fragment cloned into a plasmid (pCR-MVM). We have demonstrated that MVM TaqMan PCR assay is approximately 1000-fold more sensitive than the microplate infectivity assay with the lowest detection limit of approximately one particle per reaction. The reliable detection range is within 100 to 10(9) molecules per reaction with high reproducibility. The intra assay variation is <2.5%, and the inter assays variation is <6.5% when samples contain >100 particles/assay. When we applied the TaqMan PCR to MVM clearance studies done by column chromatography or normal flow viral filtration, we found that the virus removal factors were similar to that of virus infectivity assay. It takes about a day to complete entire assay processes, thus, the TaqMan PCR assay is at least 10-fold faster than the infectivity assay. Therefore, we concluded that this fast, specific, sensitive, and robust assay could replace the infectivity assay for virus clearance evaluation. Copyright 2002 The International Association for Biologicals. Published by Elsevier Science Ltd. All rights reserved.

  8. The replisome uses mRNA as a primer after colliding with RNA polymerase.

    PubMed

    Pomerantz, Richard T; O'Donnell, Mike

    2008-12-11

    Replication forks are impeded by DNA damage and protein-nucleic acid complexes such as transcribing RNA polymerase. For example, head-on collision of the replisome with RNA polymerase results in replication fork arrest. However, co-directional collision of the replisome with RNA polymerase has little or no effect on fork progression. Here we examine co-directional collisions between a replisome and RNA polymerase in vitro. We show that the Escherichia coli replisome uses the RNA transcript as a primer to continue leading-strand synthesis after the collision with RNA polymerase that is displaced from the DNA. This action results in a discontinuity in the leading strand, yet the replisome remains intact and bound to DNA during the entire process. These findings underscore the notable plasticity by which the replisome operates to circumvent obstacles in its path and may explain why the leading strand is synthesized discontinuously in vivo.

  9. Binding of the cyclic AMP receptor protein of Escherichia coli to RNA polymerase.

    PubMed Central

    Pinkney, M; Hoggett, J G

    1988-01-01

    Fluorescence polarization studies were used to study the interaction of a fluorescein-labelled conjugate of the Escherichia coli cyclic AMP receptor protein (F-CRP) and RNA polymerase. Under conditions of physiological ionic strength, F-CRP binds to RNA polymerase holoenzyme in a cyclic AMP-dependent manner; the dissociation constant was about 3 microM in the presence of cyclic AMP and about 100 microM in its absence. Binding to core RNA polymerase under the same conditions was weak (Kdiss. approx. 80-100 microM) and independent of cyclic AMP. Competition experiments established that native CRP and F-CRP compete for the same binding site on RNA polymerase holoenzyme and that the native protein binds about 3 times more strongly than does F-CRP. Analytical ultracentrifuge studies showed that CRP binds predominantly to the monomeric rather than the dimeric form of RNA polymerase. PMID:2839152

  10. Intracellular concentrations of 65 species of transcription factors with known regulatory functions in Escherichia coli.

    PubMed

    Ishihama, Akira; Kori, Ayako; Koshio, Etsuko; Yamada, Kayoko; Maeda, Hiroto; Shimada, Tomohiro; Makinoshima, Hideki; Iwata, Akira; Fujita, Nobuyuki

    2014-08-01

    The expression pattern of the Escherichia coli genome is controlled in part by regulating the utilization of a limited number of RNA polymerases among a total of its approximately 4,600 genes. The distribution pattern of RNA polymerase changes from modulation of two types of protein-protein interactions: the interaction of core RNA polymerase with seven species of the sigma subunit for differential promoter recognition and the interaction of RNA polymerase holoenzyme with about 300 different species of transcription factors (TFs) with regulatory functions. We have been involved in the systematic search for the target promoters recognized by each sigma factor and each TF using the newly developed Genomic SELEX system. In parallel, we developed the promoter-specific (PS)-TF screening system for identification of the whole set of TFs involved in regulation of each promoter. Understanding the regulation of genome transcription also requires knowing the intracellular concentrations of the sigma subunits and TFs under various growth conditions. This report describes the intracellular levels of 65 species of TF with known function in E. coli K-12 W3110 at various phases of cell growth and at various temperatures. The list of intracellular concentrations of the sigma factors and TFs provides a community resource for understanding the transcription regulation of E. coli under various stressful conditions in nature. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  11. Kinetics and thermodynamics of DNA polymerases with exonuclease proofreading

    NASA Astrophysics Data System (ADS)

    Gaspard, Pierre

    2016-04-01

    Kinetic theory and thermodynamics are applied to DNA polymerases with exonuclease activity, taking into account the dependence of the rates on the previously incorporated nucleotide. The replication fidelity is shown to increase significantly thanks to this dependence at the basis of the mechanism of exonuclease proofreading. In particular, this dependence can provide up to a 100-fold lowering of the error probability under physiological conditions. Theory is compared with numerical simulations for the DNA polymerases of T7 viruses and human mitochondria.

  12. Structural and Kinetic Analysis of Nucleoside Triphosphate Incorporation Opposite an Abasic Site by Human Translesion DNA Polymerase η

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Patra, Amritaj; Zhang, Qianqian; Lei, Li

    2015-02-09

    The most prevalent lesion in DNA is an abasic site resulting from glycolytic cleavage of a base. In a number of cellular studies, abasic sites preferentially code for dATP insertion (the “A rule”). In some cases frameshifts are also common. X-ray structures with abasic sites in oligonucleotides have been reported for several microbial and human DNA polymerases (pols), e.g. Dpo4, RB69, KlenTaq, yeast pol ι, human (h) pol ι, and human pol β. We reported previously that hpol η is a major pol involved in abasic site bypass (Choi, J.-Y., Lim, S., Kim, E. J., Jo, A., and Guengerich, F.more » P. (2010 J. Mol. Biol. 404, 34–44). hpol η inserted all four dNTPs in steady-state and pre-steady-state assays, preferentially inserting A and G. In LC-MS analysis of primer-template pairs, A and G were inserted but little C or T was inserted. Frameshifts were observed when an appropriate pyrimidine was positioned 5' to the abasic site in the template. In x-ray structures of hpol η with a non-hydrolyzable analog of dATP or dGTP opposite an abasic site, H-bonding was observed between the phosphate 5' to the abasic site and water H-bonded to N1 and N6 of A and N1 and O6 of G nucleoside triphosphate analogs, offering an explanation for what appears to be a “purine rule.” A structure was also obtained for an A inserted and bonded in the primer opposite the abasic site, but it did not pair with a 5' T in the template. Finally, we conclude that hpol η, a major copying enzyme with abasic sites, follows a purine rule, which can also lead to frameshifts. The phenomenon can be explained with H-bonds.« less

  13. Fixing the model for transcription: the DNA moves, not the polymerase.

    PubMed

    Papantonis, Argyris; Cook, Peter R

    2011-01-01

    The traditional model for transcription sees active polymerases tracking along their templates. An alternative (controversial) model has active enzymes immobilized in "factories." Recent evidence supports the idea that the DNA moves, not the polymerase, and points to alternative explanations of how regulatory motifs like enhancers and silencers work.

  14. Molecular Dynamics Study of the Opening Mechanism for DNA Polymerase I

    PubMed Central

    Miller, Bill R.; Parish, Carol A.; Wu, Eugene Y.

    2014-01-01

    During DNA replication, DNA polymerases follow an induced fit mechanism in order to rapidly distinguish between correct and incorrect dNTP substrates. The dynamics of this process are crucial to the overall effectiveness of catalysis. Although X-ray crystal structures of DNA polymerase I with substrate dNTPs have revealed key structural states along the catalytic pathway, solution fluorescence studies indicate that those key states are populated in the absence of substrate. Herein, we report the first atomistic simulations showing the conformational changes between the closed, open, and ajar conformations of DNA polymerase I in the binary (enzyme∶DNA) state to better understand its dynamics. We have applied long time-scale, unbiased molecular dynamics to investigate the opening process of the fingers domain in the absence of substrate for B. stearothermophilis DNA polymerase in silico. These simulations are biologically and/or physiologically relevant as they shed light on the transitions between states in this important enzyme. All closed and ajar simulations successfully transitioned into the fully open conformation, which is known to be the dominant binary enzyme-DNA conformation from solution and crystallographic studies. Furthermore, we have detailed the key stages in the opening process starting from the open and ajar crystal structures, including the observation of a previously unknown key intermediate structure. Four backbone dihedrals were identified as important during the opening process, and their movements provide insight into the recognition of dNTP substrate molecules by the polymerase binary state. In addition to revealing the opening mechanism, this study also demonstrates our ability to study biological events of DNA polymerase using current computational methods without biasing the dynamics. PMID:25474643

  15. U6 small nuclear RNA is transcribed by RNA polymerase III.

    PubMed Central

    Kunkel, G R; Maser, R L; Calvet, J P; Pederson, T

    1986-01-01

    A DNA fragment homologous to U6 small nuclear RNA was isolated from a human genomic library and sequenced. The immediate 5'-flanking region of the U6 DNA clone had significant homology with a potential mouse U6 gene, including a "TATA box" at a position 26-29 nucleotides upstream from the transcription start site. Although this sequence element is characteristic of RNA polymerase II promoters, the U6 gene also contained a polymerase III "box A" intragenic control region and a typical run of five thymines at the 3' terminus (noncoding strand). The human U6 DNA clone was accurately transcribed in a HeLa cell S100 extract lacking polymerase II activity. U6 RNA transcription in the S100 extract was resistant to alpha-amanitin at 1 microgram/ml but was completely inhibited at 200 micrograms/ml. A comparison of fingerprints of the in vitro transcript and of U6 RNA synthesized in vivo revealed sequence congruence. U6 RNA synthesis in isolated HeLa cell nuclei also displayed low sensitivity to alpha-amanitin, in contrast to U1 and U2 RNA transcription, which was inhibited greater than 90% at 1 microgram/ml. In addition, U6 RNA synthesized in isolated nuclei was efficiently immunoprecipitated by an antibody against the La antigen, a protein known to bind most other RNA polymerase III transcripts. These results establish that, in contrast to the polymerase II-directed transcription of mammalian genes for U1-U5 small nuclear RNAs, human U6 RNA is transcribed by RNA polymerase III. Images PMID:3464970

  16. Bypass of a psoralen DNA interstrand cross-link by DNA polymerases beta, iota, and kappa in vitro

    PubMed Central

    Smith, Leigh A.; Makarova, Alena V.; Samson, Laura; Thiesen, Katherine E.; Dhar, Alok; Bessho, Tadayoshi

    2012-01-01

    Repair of DNA inter-strand cross-links in mammalian cells involves several biochemically distinctive processes, including the release of one of the cross-linked strands and translesion DNA synthesis (TLS). In this report, we investigated in vitro TLS activity of psoralen DNA inter-strand cross-link by three DNA repair polymerases, DNA polymerase beta, kappa and iota. DNA polymerase beta is capable of bypassing a psoralen cross-link with a low efficiency. Cell extracts prepared from DNA polymerase beta knockout mouse embryonic fibroblast showed a reduced bypass activity of the psoralen cross-link and purified DNA polymerase beta restored the bypass activity. In addition, DNA polymerase iota mis-incorporated thymine across the psoralen cross-link and DNA polymerase kappa extended these mis-paired primer ends, suggesting that DNA polymerase iota may serve as an inserter and DNA polymerase kappa may play a role as an extender in the repair of psoralen DNA inter-strand cross-links. The results demonstrated here indicate that multiple DNA polymerases could participate in TLS steps in mammalian DNA inter-strand cross-link repair. PMID:23106263

  17. Backtracking dynamics of RNA polymerase: pausing and error correction.

    PubMed

    Sahoo, Mamata; Klumpp, Stefan

    2013-09-18

    Transcription by RNA polymerases is frequently interrupted by pauses. One mechanism of such pauses is backtracking, where the RNA polymerase translocates backward with respect to both the DNA template and the RNA transcript, without shortening the transcript. Backtracked RNA polymerases move in a diffusive fashion and can return to active transcription either by diffusive return to the position where backtracking was initiated or by cleaving the transcript. The latter process also provides a mechanism for proofreading. Here we present some exact results for a kinetic model of backtracking and analyse its impact on the speed and the accuracy of transcription. We show that proofreading through backtracking is different from the classical (Hopfield-Ninio) scheme of kinetic proofreading. Our analysis also suggests that, in addition to contributing to the accuracy of transcription, backtracking may have a second effect: it attenuates the slow down of transcription that arises as a side effect of discriminating between correct and incorrect nucleotides based on the stepping rates.

  18. Backtracking dynamics of RNA polymerase: pausing and error correction

    NASA Astrophysics Data System (ADS)

    Sahoo, Mamata; Klumpp, Stefan

    2013-09-01

    Transcription by RNA polymerases is frequently interrupted by pauses. One mechanism of such pauses is backtracking, where the RNA polymerase translocates backward with respect to both the DNA template and the RNA transcript, without shortening the transcript. Backtracked RNA polymerases move in a diffusive fashion and can return to active transcription either by diffusive return to the position where backtracking was initiated or by cleaving the transcript. The latter process also provides a mechanism for proofreading. Here we present some exact results for a kinetic model of backtracking and analyse its impact on the speed and the accuracy of transcription. We show that proofreading through backtracking is different from the classical (Hopfield-Ninio) scheme of kinetic proofreading. Our analysis also suggests that, in addition to contributing to the accuracy of transcription, backtracking may have a second effect: it attenuates the slow down of transcription that arises as a side effect of discriminating between correct and incorrect nucleotides based on the stepping rates.

  19. Species difference in ANP32A underlies influenza A virus polymerase host restriction

    PubMed Central

    Long, Jason S.; Giotis, Efstathios S.; Moncorgé, Olivier; Frise, Rebecca; Mistry, Bhakti; James, Joe; Morisson, Mireille; Iqbal, Munir; Vignal, Alain; Skinner, Michael A.; Barclay, Wendy S.

    2015-01-01

    Influenza pandemics occur unpredictably when zoonotic influenza viruses with novel antigenicity acquire the ability to transmit amongst humans 1. Incompatibilities between avian virus components and the human host limit host range breaches. Barriers include receptor preference, virion stability and poor activity of the avian virus RNA-dependent RNA polymerase in human cells 2. Mutants of the heterotrimeric viral polymerase components, particularly PB2 protein, are selected during mammalian adaptation, but their mode of action is unknown 3–6. We show that a species-specific difference in host protein ANP32A accounts for the suboptimal function of avian virus polymerase in mammalian cells. Avian ANP32A possesses an additional 33 amino acids between the LRR and LCAR domains. In mammalian cells, avian ANP32A rescued the suboptimal function of avian virus polymerase to levels similar to mammalian adapted polymerase. Deletion of the avian-specific sequence from chicken ANP32A abrogated this activity whereas its insertion into human ANP32A, or closely related ANP32B, supported avian virus polymerase function. Substitutions, such as PB2 E627K, rapidly selected upon infection of humans with avian H5N1 or H7N9 influenza viruses, adapt the viral polymerase for the shorter mammalian ANP32A. Thus ANP32A represents an essential host partner co-opted to support influenza virus replication and is a candidate host target for novel antivirals. PMID:26738596

  20. Comprehensive analysis of DNA polymerase III α subunits and their homologs in bacterial genomes

    PubMed Central

    Timinskas, Kęstutis; Balvočiūtė, Monika; Timinskas, Albertas; Venclovas, Česlovas

    2014-01-01

    The analysis of ∼2000 bacterial genomes revealed that they all, without a single exception, encode one or more DNA polymerase III α-subunit (PolIIIα) homologs. Classified into C-family of DNA polymerases they come in two major forms, PolC and DnaE, related by ancient duplication. While PolC represents an evolutionary compact group, DnaE can be further subdivided into at least three groups (DnaE1-3). We performed an extensive analysis of various sequence, structure and surface properties of all four polymerase groups. Our analysis suggests a specific evolutionary pathway leading to PolC and DnaE from the last common ancestor and reveals important differences between extant polymerase groups. Among them, DnaE1 and PolC show the highest conservation of the analyzed properties. DnaE3 polymerases apparently represent an ‘impaired’ version of DnaE1. Nonessential DnaE2 polymerases, typical for oxygen-using bacteria with large GC-rich genomes, have a number of features in common with DnaE3 polymerases. The analysis of polymerase distribution in genomes revealed three major combinations: DnaE1 either alone or accompanied by one or more DnaE2s, PolC + DnaE3 and PolC + DnaE1. The first two combinations are present in Escherichia coli and Bacillus subtilis, respectively. The third one (PolC + DnaE1), found in Clostridia, represents a novel, so far experimentally uncharacterized, set. PMID:24106089

  1. Sulfolobus chromatin proteins modulate strand displacement by DNA polymerase B1

    PubMed Central

    Sun, Fei; Huang, Li

    2013-01-01

    Strand displacement by a DNA polymerase serves a key role in Okazaki fragment maturation, which involves displacement of the RNA primer of the preexisting Okazaki fragment into a flap structure, and subsequent flap removal and fragment ligation. We investigated the role of Sulfolobus chromatin proteins Sso7d and Cren7 in strand displacement by DNA polymerase B1 (PolB1) from the hyperthermophilic archaeon Sulfolobus solfataricus. PolB1 showed a robust strand displacement activity and was capable of synthesizing thousands of nucleotides on a DNA-primed 72-nt single-stranded circular DNA template. This activity was inhibited by both Sso7d and Cren7, which limited the flap length to 3–4 nt at saturating concentrations. However, neither protein inhibited RNA displacement on an RNA-primed single-stranded DNA minicircle by PolB1. Strand displacement remained sensitive to modulation by the chromatin proteins when PolB1 was in association with proliferating cell nuclear antigen. Inhibition of DNA instead of RNA strand displacement by the chromatin proteins is consistent with the finding that double-stranded DNA was more efficiently bound and stabilized than an RNA:DNA duplex by these proteins. Our results suggest that Sulfolobus chromatin proteins modulate strand displacement by PolB1, permitting efficient removal of the RNA primer while inhibiting excessive displacement of the newly synthesized DNA strand during Okazaki fragment maturation. PMID:23821667

  2. Replicative DNA polymerase mutations in cancer☆

    PubMed Central

    Heitzer, Ellen; Tomlinson, Ian

    2014-01-01

    Three DNA polymerases — Pol α, Pol δ and Pol ɛ — are essential for DNA replication. After initiation of DNA synthesis by Pol α, Pol δ or Pol ɛ take over on the lagging and leading strand respectively. Pol δ and Pol ɛ perform the bulk of replication with very high fidelity, which is ensured by Watson–Crick base pairing and 3′exonuclease (proofreading) activity. Yeast models have shown that mutations in the exonuclease domain of Pol δ and Pol ɛ homologues can cause a mutator phenotype. Recently, we identified germline exonuclease domain mutations (EDMs) in human POLD1 and POLE that predispose to ‘polymerase proofreading associated polyposis’ (PPAP), a disease characterised by multiple colorectal adenomas and carcinoma, with high penetrance and dominant inheritance. Moreover, somatic EDMs in POLE have also been found in sporadic colorectal and endometrial cancers. Tumors with EDMs are microsatellite stable and show an ‘ultramutator’ phenotype, with a dramatic increase in base substitutions. PMID:24583393

  3. The uncoupling of catalysis and translocation in the viral RNA-dependent RNA polymerase

    PubMed Central

    Shu, Bo; Gong, Peng

    2017-01-01

    ABSTRACT The nucleotide addition cycle of nucleic acid polymerases includes 2 major events: the pre-chemistry active site closure leading to the addition of one nucleotide to the product chain; the post-chemistry translocation step moving the polymerase active site one position downstream on its template. In viral RNA-dependent RNA polymerases (RdRPs), structural and biochemical evidences suggest that these 2 events are not tightly coupled, unlike the situation observed in A-family polymerases such as the bacteriophage T7 RNA polymerase. Recently, an RdRP translocation intermediate crystal structure of enterovirus 71 shed light on how translocation may be controlled by elements within RdRP catalytic motifs, and a series of poliovirus apo RdRP crystal structures explicitly suggest that a motif B loop may assist the movement of the template strand in late stages of transcription. Implications of RdRP catalysis-translocation uncoupling and the remaining challenges to further elucidate RdRP translocation mechanism are also discussed. PMID:28277928

  4. Both DNA Polymerases δ and ε Contact Active and Stalled Replication Forks Differently

    PubMed Central

    Yu, Chuanhe; Gan, Haiyun

    2017-01-01

    ABSTRACT Three DNA polymerases, polymerases α, δ, and ε (Pol α, Pol δ, and Pol ε), are responsible for eukaryotic genome duplication. When DNA replication stress is encountered, DNA synthesis stalls until the stress is ameliorated. However, it is not known whether there is a difference in the association of each polymerase with active and stalled replication forks. Here, we show that each DNA polymerase has a distinct pattern of association with active and stalled replication forks. Pol α is enriched at extending Okazaki fragments of active and stalled forks. In contrast, although Pol δ contacts the nascent lagging strands of active and stalled forks, it binds to only the matured (and not elongating) Okazaki fragments of stalled forks. Pol ε has greater contact with the nascent single-stranded DNA (ssDNA) of the leading strand on active forks than on stalled forks. We propose that the configuration of DNA polymerases at stalled forks facilitates the resumption of DNA synthesis after stress removal. PMID:28784720

  5. Conformational transitions in DNA polymerase I revealed by single-molecule FRET

    PubMed Central

    Santoso, Yusdi; Joyce, Catherine M.; Potapova, Olga; Le Reste, Ludovic; Hohlbein, Johannes; Torella, Joseph P.; Grindley, Nigel D. F.; Kapanidis, Achillefs N.

    2010-01-01

    The remarkable fidelity of most DNA polymerases depends on a series of early steps in the reaction pathway which allow the selection of the correct nucleotide substrate, while excluding all incorrect ones, before the enzyme is committed to the chemical step of nucleotide incorporation. The conformational transitions that are involved in these early steps are detectable with a variety of fluorescence assays and include the fingers-closing transition that has been characterized in structural studies. Using DNA polymerase I (Klenow fragment) labeled with both donor and acceptor fluorophores, we have employed single-molecule fluorescence resonance energy transfer to study the polymerase conformational transitions that precede nucleotide addition. Our experiments clearly distinguish the open and closed conformations that predominate in Pol-DNA and Pol-DNA-dNTP complexes, respectively. By contrast, the unliganded polymerase shows a broad distribution of FRET values, indicating a high degree of conformational flexibility in the protein in the absence of its substrates; such flexibility was not anticipated on the basis of the available crystallographic structures. Real-time observation of conformational dynamics showed that most of the unliganded polymerase molecules sample the open and closed conformations in the millisecond timescale. Ternary complexes formed in the presence of mismatched dNTPs or complementary ribonucleotides show unique FRET species, which we suggest are relevant to kinetic checkpoints that discriminate against these incorrect substrates. PMID:20080740

  6. Acetyl Coenzyme A Stimulates RNA Polymerase II Transcription and Promoter Binding by Transcription Factor IID in the Absence of Histones

    PubMed Central

    Galasinski, Shelly K.; Lively, Tricia N.; Grebe de Barron, Alexandra; Goodrich, James A.

    2000-01-01

    Protein acetylation has emerged as a means of controlling levels of mRNA synthesis in eukaryotic cells. Here we report that acetyl coenzyme A (acetyl-CoA) stimulates RNA polymerase II transcription in vitro in the absence of histones. The effect of acetyl-CoA on basal and activated transcription was studied in a human RNA polymerase II transcription system reconstituted from recombinant and highly purified transcription factors. Both basal and activated transcription were stimulated by the addition of acetyl-CoA to transcription reaction mixtures. By varying the concentrations of general transcription factors in the reaction mixtures, we found that acetyl-CoA decreased the concentration of TFIID required to observe transcription. Electrophoretic mobility shift assays and DNase I footprinting revealed that acetyl-CoA increased the affinity of the general transcription factor TFIID for promoter DNA in a TBP-associated factor (TAF)-dependent manner. Interestingly, acetyl-CoA also caused a conformational change in the TFIID-TFIIA-promoter complex as assessed by DNase I footprinting. These results show that acetyl-CoA alters the DNA binding activity of TFIID and indicate that this biologically important cofactor functions at multiple levels to control gene expression. PMID:10688640

  7. Acetyl coenzyme A stimulates RNA polymerase II transcription and promoter binding by transcription factor IID in the absence of histones.

    PubMed

    Galasinski, S K; Lively, T N; Grebe De Barron, A; Goodrich, J A

    2000-03-01

    Protein acetylation has emerged as a means of controlling levels of mRNA synthesis in eukaryotic cells. Here we report that acetyl coenzyme A (acetyl-CoA) stimulates RNA polymerase II transcription in vitro in the absence of histones. The effect of acetyl-CoA on basal and activated transcription was studied in a human RNA polymerase II transcription system reconstituted from recombinant and highly purified transcription factors. Both basal and activated transcription were stimulated by the addition of acetyl-CoA to transcription reaction mixtures. By varying the concentrations of general transcription factors in the reaction mixtures, we found that acetyl-CoA decreased the concentration of TFIID required to observe transcription. Electrophoretic mobility shift assays and DNase I footprinting revealed that acetyl-CoA increased the affinity of the general transcription factor TFIID for promoter DNA in a TBP-associated factor (TAF)-dependent manner. Interestingly, acetyl-CoA also caused a conformational change in the TFIID-TFIIA-promoter complex as assessed by DNase I footprinting. These results show that acetyl-CoA alters the DNA binding activity of TFIID and indicate that this biologically important cofactor functions at multiple levels to control gene expression.

  8. Role of the C-terminal residue of the DNA polymerase of bacteriophage T7.

    PubMed

    Kumar, J K; Tabor, S; Richardson, C C

    2001-09-14

    The crystal structure of the DNA polymerase encoded by gene 5 of bacteriophage T7, in a complex with its processivity factor, Escherichia coli thioredoxin, a primer-template, and an incoming deoxynucleoside triphosphate reveals a putative hydrogen bond between the C-terminal residue, histidine 704 of gene 5 protein, and an oxygen atom on the penultimate phosphate diester of the primer strand. Elimination of this electrostatic interaction by replacing His(704) with alanine renders the phage nonviable, and no DNA synthesis is observed in vivo. Polymerase activity of the genetically altered enzyme on primed M13 DNA is only 12% of the wild-type enzyme, and its processivity is drastically reduced. Kinetic parameters for binding a primer-template (K(D)(app)), nucleotide binding (K(m)), and k(off) for dissociation of the altered polymerase from a primer-template are not significantly different from that of wild-type T7 DNA polymerase. However, the decrease in polymerase activity is concomitant with increased hydrolytic activity, judging from the turnover of nucleoside triphosphate into the corresponding nucleoside monophosphate (percentage of turnover, 65%) during DNA synthesis. Biochemical data along with structural observations imply that the terminal amino acid residue of T7 DNA polymerase plays a critical role in partitioning DNA between the polymerase and exonuclease sites.

  9. Unlocking the sugar "steric gate" of DNA polymerases.

    PubMed

    Brown, Jessica A; Suo, Zucai

    2011-02-22

    To maintain genomic stability, ribonucleotide incorporation during DNA synthesis is controlled predominantly at the DNA polymerase level. A steric clash between the 2'-hydroxyl of an incoming ribonucleotide and a bulky active site residue, known as the "steric gate", establishes an effective mechanism for most DNA polymerases to selectively insert deoxyribonucleotides. Recent kinetic, structural, and in vivo studies have illuminated novel features about ribonucleotide exclusion and the mechanistic consequences of ribonucleotide misincorporation on downstream events, such as the bypass of a ribonucleotide in a DNA template and the subsequent extension of the DNA lesion bypass product. These important findings are summarized in this review.

  10. ε, a new subunit of RNA polymerase found in gram-positive bacteria.

    PubMed

    Keller, Andrew N; Yang, Xiao; Wiedermannová, Jana; Delumeau, Olivier; Krásný, Libor; Lewis, Peter J

    2014-10-01

    RNA polymerase in bacteria is a multisubunit protein complex that is essential for gene expression. We have identified a new subunit of RNA polymerase present in the high-A+T Firmicutes phylum of Gram-positive bacteria and have named it ε. Previously ε had been identified as a small protein (ω1) that copurified with RNA polymerase. We have solved the structure of ε by X-ray crystallography and show that it is not an ω subunit. Rather, ε bears remarkable similarity to the Gp2 family of phage proteins involved in the inhibition of host cell transcription following infection. Deletion of ε shows no phenotype and has no effect on the transcriptional profile of the cell. Determination of the location of ε within the assembly of RNA polymerase core by single-particle analysis suggests that it binds toward the downstream side of the DNA binding cleft. Due to the structural similarity of ε with Gp2 and the fact they bind similar regions of RNA polymerase, we hypothesize that ε may serve a role in protection from phage infection. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  11. Quantification of Human Polyomaviruses JC Virus and BK Virus by TaqMan Quantitative PCR and Comparison to Other Water Quality Indicators in Water and Fecal Samples▿

    PubMed Central

    McQuaig, Shannon M.; Scott, Troy M.; Lukasik, Jerzy O.; Paul, John H.; Harwood, Valerie J.

    2009-01-01

    In the United States, total maximum daily load standards for bodies of water that do not meet bacterial water quality standards are set by each state. The presence of human polyomaviruses (HPyVs) can be used as an indicator of human-associated sewage pollution in these waters. We have developed and optimized a TaqMan quantitative PCR (QPCR) assay based on the conserved T antigen to both quantify and simultaneously detect two HPyVs; JC virus and BK virus. The QPCR assay was able to consistently quantify ≥10 gene copies per reaction and is linear over 5 orders of magnitude. HPyVs were consistently detected in human waste samples (57 of 64) and environmental waters with known human fecal contamination (5 of 5) and were not amplified in DNA extracted from 127 animal waste samples from 14 species. HPyV concentrations in sewage decreased 81.2 and 84.2% over 28 days incubation at 25 and 35°C, respectively. HPyVs results were compared to Escherichia coli, fecal coliform, and enterococci concentrations and the presence of three other human-associated microbes: Bacteroidetes, Methanobrevibacter smithii, and adenovirus. HPyVs were the most frequently detected of these in human and contaminated environmental samples and were more human specific than the Bacteroidetes (HF183) or M. smithii. HPyVs and M. smithii more closely mimicked the persistence of adenovirus in sewage than the other microbes. The use of this rapid and quantitative assay in water quality research could help regulatory agencies to identify sources of water pollution for improved remediation of contaminated waters and ultimately protect humans from exposure to pathogens. PMID:19346361

  12. Replication of N[superscript 2],3-Ethenoguanine by DNA Polymerases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, Linlin; Christov, Plamen P.; Kozekov, Ivan D.

    2014-10-02

    The unstable DNA adduct N2,3-ethenoguanine, a product of both exposure to the carcinogen vinyl chloride and of oxidative stress, was built into an oligonucleotide, using an isostere strategy to stabilize the glycosidic bond. This modification was then used to examine the cause of mutations by DNA polymerases, in terms of both the biochemistry of the lesion and a structure of the lesion within a polymerase.

  13. Localized cerebral energy failure in DNA polymerase gamma-associated encephalopathy syndromes.

    PubMed

    Tzoulis, Charalampos; Neckelmann, Gesche; Mørk, Sverre J; Engelsen, Bernt E; Viscomi, Carlo; Moen, Gunnar; Ersland, Lars; Zeviani, Massimo; Bindoff, Laurence A

    2010-05-01

    Mutations in the catalytic subunit of the mitochondrial DNA-polymerase gamma cause a wide spectrum of clinical disease ranging from infantile hepato-encephalopathy to juvenile/adult-onset spinocerebellar ataxia and late onset progressive external ophthalmoplegia. Several of these syndromes are associated with an encephalopathy that characteristically shows episodes of rapid neurological deterioration and the development of acute cerebral lesions. The purpose of this study was to investigate the nature, distribution and natural evolution of central nervous system lesions in polymerase gamma associated encephalopathy focusing particularly on lesions identified by magnetic resonance imaging. We compared radiological, electrophysiological and pathological findings where available to study potential mechanisms underlying the episodes of exacerbation and acute cerebral lesions. We studied a total of 112 magnetic resonance tomographies and 11 computed tomographies in 32 patients with polymerase gamma-encephalopathy, including multiple serial examinations performed during both the chronic and acute phases of the disease and, in several cases, magnetic resonance spectroscopy and serial diffusion weighted studies. Data from imaging, electroencephalography and post-mortem examination were compared in order to study the underlying disease process. Our findings show that magnetic resonance imaging in polymerase gamma-related encephalopathies has high sensitivity and can identify patterns that are specific for individual syndromes. One form of chronic polymerase gamma-encephalopathy, that is associated with the c.1399G > A and c.2243G > C mutations, is characterized by progressive cerebral and cerebellar atrophy and focal lesions of the thalamus, deep cerebellar structures and medulla oblongata. Acute encephalopathies, both infantile and later onset, show similar pictures with cortical stroke-like lesions occurring during episodes of exacerbation. These lesions can occur both

  14. Renin Gene Polymorphisms in Bangladeshi Hypertensive Population

    PubMed Central

    Afruza, Rownock; Islam, Laila N; Banerjee, Sajal; Hassan, Md. Mahbub; Suzuki, Fumiaki; Nabi, AHM Nurun

    2014-01-01

    Objective: Linkages of renin gene polymorphisms with hypertension have been implicated in several populations with contrasting results. Present study aims to assess the pattern of renin gene polymorphisms in Bangladeshi hypertensive individuals. Methodology: Introns 1, 9 of renin gene and 4063 bases upstream of promoter sequence of renin gene were amplified from the genomic DNA of the total 124 (hypertensive and normotensive) subjects using respective primers. Polymerase chain reaction-based restriction fragment length polymorphisms were performed using BglI, MboI and TaqI restriction enzymes. Results: Homozygosity was common in renin gene regarding BglI (bb=48.4%, Bb=37.9%, BB=13.7%, χ2 =1.91, P>0.05), TaqI (TT=81.5%, Tt=14.5%, tt=4.0%, χ2 =7.50, P<0.01) and MboI (mm=63.7%, Mm=32.3%, MM=4.0%, χ2=0.00, P>0.05) polymorphisms among total study population. For BglI and TaqI genotype distribution, hypertensive subjects (BglI: χ2 =6.66, P<0.05; TaqI: χ2 = 10.28, P<0.005) significantly deviate from Hardy-Weinberg Equilibrium law compared to normotensive subjects (BglI: χ2=0.51, P>0.05; TaqI: χ2=0.20, P>0.05). On the other hand, with respect to MboI polymorphisms of renin gene, only normotensive subjects deviate from the law (patients: χ2=1.28, P>0.05; vs controls: χ2=6.81, P<0.01). In the context of allelic frequency, common T allele was clearly prevalent (T frequency=0.86, t frequency = 0.14) for TaqI, but rare alleles b and m were more frequent for both BglI (b frequency=0.69, B frequency=0.31) and MboI (m frequency=0.80 M frequency=0.20) polymorphisms, respectively. Conclusion: Thus, we report that Bangladeshi hypertensive subjects did not show any distinct pattern of renin gene polymorphisms compared to their healthy control subjects with regard to their genotypic and allelic frequencies. PMID:25057323

  15. Heat Shock Protein 70 Modulates Influenza A Virus Polymerase Activity*

    PubMed Central

    Manzoor, Rashid; Kuroda, Kazumichi; Yoshida, Reiko; Tsuda, Yoshimi; Fujikura, Daisuke; Miyamoto, Hiroko; Kajihara, Masahiro; Kida, Hiroshi; Takada, Ayato

    2014-01-01

    The role of heat shock protein 70 (Hsp70) in virus replication has been discussed for many viruses. The known suppressive role of Hsp70 in influenza virus replication is based on studies conducted in cells with various Hsp70 expression levels. In this study, we determined the role of Hsp70 in influenza virus replication in HeLa and HEK293T cells, which express Hsp70 constitutively. Co-immunoprecipitation and immunofluorescence studies revealed that Hsp70 interacted with PB2 or PB1 monomers and PB2/PB1 heterodimer but not with the PB1/PA heterodimer or PB2/PB1/PA heterotrimer and translocated into the nucleus with PB2 monomers or PB2/PB1 heterodimers. Knocking down Hsp70 resulted in reduced virus transcription and replication activities. Reporter gene assay, immunofluorescence assay, and Western blot analysis of nuclear and cytoplasmic fractions from infected cells demonstrated that the increase in viral polymerase activity during the heat shock phase was accompanied with an increase in Hsp70 and viral polymerases levels in the nuclei, where influenza virus replication takes place, whereas a reduction in viral polymerase activity was accompanied with an increase in cytoplasmic relocation of Hsp70 along with viral polymerases. Moreover, significantly higher levels of viral genomic RNA (vRNA) were observed during the heat shock phase than during the recovery phase. Overall, for the first time, these findings suggest that Hsp70 may act as a chaperone for influenza virus polymerase, and the modulatory effect of Hsp70 appears to be a sequel of shuttling of Hsp70 between nuclear and cytoplasmic compartments. PMID:24474693

  16. Development of a Rickettsia bellii-Specific TaqMan Assay Targeting the Citrate Synthase Gene.

    PubMed

    Hecht, Joy A; Allerdice, Michelle E J; Krawczak, Felipe S; Labruna, Marcelo B; Paddock, Christopher D; Karpathy, Sandor E

    2016-11-01

    Rickettsia bellii is a rickettsial species of unknown pathogenicity that infects argasid and ixodid ticks throughout the Americas. Many molecular assays used to detect spotted fever group (SFG) Rickettsia species do not detect R. bellii, so that infection with this bacterium may be concealed in tick populations when assays are used that screen specifically for SFG rickettsiae. We describe the development and validation of a R. bellii-specific, quantitative, real-time PCR TaqMan assay that targets a segment of the citrate synthase (gltA) gene. The specificity of this assay was validated against a panel of DNA samples that included 26 species of Rickettsia, Orientia, Ehrlichia, Anaplasma, and Bartonella, five samples of tick and human DNA, and DNA from 20 isolates of R. bellii, including 11 from North America and nine from South America. A R. bellii control plasmid was constructed, and serial dilutions of the plasmid were used to determine the limit of detection of the assay to be one copy per 4 µl of template DNA. This assay can be used to better determine the role of R. bellii in the epidemiology of tick-borne rickettsioses in the Western Hemisphere. Published by Oxford University Press on behalf of Entomological Society of America 2016. This work is written by US Government employees and is in the public domain in the US.

  17. 3D structure of the influenza virus polymerase complex: Localization of subunit domains

    PubMed Central

    Area, Estela; Martín-Benito, Jaime; Gastaminza, Pablo; Torreira, Eva; Valpuesta, José M.; Carrascosa, José L.; Ortín, Juan

    2004-01-01

    The 3D structure of the influenza virus polymerase complex was determined by electron microscopy and image processing of recombinant ribonucleoproteins (RNPs). The RNPs were generated by in vivo amplification using cDNAs of the three polymerase subunits, the nucleoprotein, and a model virus-associated RNA containing 248 nt. The polymerase structure obtained is very compact, with no apparent boundaries among subunits. The position of specific regions of the PB1, PB2, and PA subunits was determined by 3D reconstruction of either RNP–mAb complexes or tagged RNPs. This structural model is available for the polymerase of a negative-stranded RNA virus and provides a general delineation of the complex and its interaction with the template-associated nucleoprotein monomers in the RNP. PMID:14691253

  18. Novel approach to quantitative polymerase chain reaction using real-time detection: application to the detection of gene amplification in breast cancer.

    PubMed

    Bièche, I; Olivi, M; Champème, M H; Vidaud, D; Lidereau, R; Vidaud, M

    1998-11-23

    Gene amplification is a common event in the progression of human cancers, and amplified oncogenes have been shown to have diagnostic, prognostic and therapeutic relevance. A kinetic quantitative polymerase-chain-reaction (PCR) method, based on fluorescent TaqMan methodology and a new instrument (ABI Prism 7700 Sequence Detection System) capable of measuring fluorescence in real-time, was used to quantify gene amplification in tumor DNA. Reactions are characterized by the point during cycling when PCR amplification is still in the exponential phase, rather than the amount of PCR product accumulated after a fixed number of cycles. None of the reaction components is limited during the exponential phase, meaning that values are highly reproducible in reactions starting with the same copy number. This greatly improves the precision of DNA quantification. Moreover, real-time PCR does not require post-PCR sample handling, thereby preventing potential PCR-product carry-over contamination; it possesses a wide dynamic range of quantification and results in much faster and higher sample throughput. The real-time PCR method, was used to develop and validate a simple and rapid assay for the detection and quantification of the 3 most frequently amplified genes (myc, ccndl and erbB2) in breast tumors. Extra copies of myc, ccndl and erbB2 were observed in 10, 23 and 15%, respectively, of 108 breast-tumor DNA; the largest observed numbers of gene copies were 4.6, 18.6 and 15.1, respectively. These results correlated well with those of Southern blotting. The use of this new semi-automated technique will make molecular analysis of human cancers simpler and more reliable, and should find broad applications in clinical and research settings.

  19. Both High-Fidelity Replicative and Low-Fidelity Y-Family Polymerases Are Involved in DNA Rereplication

    PubMed Central

    Sekimoto, Takayuki; Oda, Tsukasa; Kurashima, Kiminori; Hanaoka, Fumio

    2014-01-01

    DNA rereplication is a major form of aberrant replication that causes genomic instabilities, such as gene amplification. However, little is known about which DNA polymerases are involved in the process. Here, we report that low-fidelity Y-family polymerases (Y-Pols), Pol η, Pol ι, Pol κ, and REV1, significantly contribute to DNA synthesis during rereplication, while the replicative polymerases, Pol δ and Pol ε, play an important role in rereplication, as expected. When rereplication was induced by depletion of geminin, these polymerases were recruited to rereplication sites in human cell lines. This finding was supported by RNA interference (RNAi)-mediated knockdown of the polymerases, which suppressed rereplication induced by geminin depletion. Interestingly, epistatic analysis indicated that Y-Pols collaborate in a common pathway, independently of replicative polymerases. We also provide evidence for a catalytic role for Pol η and the involvement of Pol η and Pol κ in cyclin E-induced rereplication. Collectively, our findings indicate that, unlike normal S-phase replication, rereplication induced by geminin depletion and oncogene activation requires significant contributions of both Y-Pols and replicative polymerases. These findings offer important mechanistic insights into cancer genomic instability. PMID:25487575

  20. Influenza Polymerase Can Adopt an Alternative Configuration Involving a Radical Repacking of PB2 Domains.

    PubMed

    Thierry, Eric; Guilligay, Delphine; Kosinski, Jan; Bock, Thomas; Gaudon, Stephanie; Round, Adam; Pflug, Alexander; Hengrung, Narin; El Omari, Kamel; Baudin, Florence; Hart, Darren J; Beck, Martin; Cusack, Stephen

    2016-01-07

    Influenza virus polymerase transcribes or replicates the segmented RNA genome (vRNA) into respectively viral mRNA or full-length copies and initiates RNA synthesis by binding the conserved 3' and 5' vRNA ends (the promoter). In recent structures of promoter-bound polymerase, the cap-binding and endonuclease domains are configured for cap snatching, which generates capped transcription primers. Here, we present a FluB polymerase structure with a bound complementary cRNA 5' end that exhibits a major rearrangement of the subdomains within the C-terminal two-thirds of PB2 (PB2-C). Notably, the PB2 nuclear localization signal (NLS)-containing domain translocates ∼90 Å to bind to the endonuclease domain. FluA PB2-C alone and RNA-free FluC polymerase are similarly arranged. Biophysical and cap-dependent endonuclease assays show that in solution the polymerase explores different conformational distributions depending on which RNA is bound. The inherent flexibility of the polymerase allows it to adopt alternative conformations that are likely important during polymerase maturation into active progeny RNPs. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  1. Probes of eukaryotic DNA-dependent RNA polymerase II-I. Binding of 9-beta-D-arabinofuranosyl-6-mercaptopurine to the elongation subsite.

    PubMed

    Cho, J M; Kimball, A P

    1982-08-15

    9-beta-D-Arabinofuranosyl-6-mercaptopurine (ara-6-MP) was used to affinity-label wheat germ DNA-dependent RNA polymerase II (or B) (nucleosidetriphosphate:RNA nucleotidyltransferase, EC 2.7.7.6). This nucleoside analogue was found to be a competitive inhibitor with respect to [3H]UMP incorporation. Natural substrates protected the enzyme from inactivation by ara-6-MP when the enzyme was preincubated with excess concentrations of substrates, suggesting that the inhibitor binds at the elongation subsite. The inhibitor bound the catalytic center of the enzyme with a stoichiometry of 0.6:1. The sulfhydryl reagent, dithiothreitol, reversed the inhibition by ara-6-MP, suggesting that the 6-thiol group of the inhibitor was interacting closely with an essential cysteine residue in the catalytic center of the enzyme. Chromatographic analysis of the pronase-digestion products of the RNA polymerase II-ara-6-MP complex also showed that ara-6-MP had bound a cysteine residue. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of the denatured [6-35S]ara-6-MP-labeled RNA polymerase II revealed that over 80% of the radioactivity was associated with the IIb subunit of the enzyme.

  2. A quantitative TaqMan PCR assay for the detection of Ureaplasma diversum.

    PubMed

    Marques, Lucas M; Amorim, Aline T; Martins, Hellen Braga; Rezende, Izadora Souza; Barbosa, Maysa Santos; Lobão, Tassia Neves; Campos, Guilherme B; Timenetsky, Jorge

    2013-12-27

    Ureaplasma diversum in veterinary studies is an undesirable microbe, which may cause infection in bulls and may result in seminal vesiculitis, balanopostitis, and alterations in spermatozoids, whereas in cows, it may cause placentitis, fetal alveolitis, abortion, and birth of weak calves. U. diversum is released through organic secretions, especially semen, preputial and vaginal mucus, conjunctival secretion, and milk. The aim of the present study was to develop a TaqMan probe, highly sensitive and specific quantitative PCR (qPCR) assay for the detection and quantification of U. diversum from genital swabs of bovines. Primers and probes specific to U. diversum 16S rRNA gene were designed. The specificity, detection limit, intra- and inter-assay variability of qPCR to detect this ureaplasma was compared with the results of the conventional PCR assay (cPCR). Swabs of vaginal mucus from 169 cows were tested. The qPCR assay detected as few as 10 copies of U. diversum and was 100-fold more sensitive than the cPCR. No cross-reactivity with other Mollicutes or eubacteria was observed. U. diversum was detected in 79 swabs (46.42%) by qPCR, while using cPCR it was detected in 42 (25%) samples. The difference in cPCR and qPCR ureaplasma detection between healthy and sick animals was not statistically significant. But the U. diversum load in samples from animals with genital disorders was higher than in healthy animals. The qPCR assay developed herein is highly sensitive and specific for the detection and quantification of U. diversum in vaginal bovine samples. Copyright © 2013. Published by Elsevier B.V.

  3. Identification of Poly(ADP-Ribose) Polymerase as a Transcriptional Coactivator of the Human T-Cell Leukemia Virus Type 1 Tax Protein

    PubMed Central

    Anderson, Mark G.; Scoggin, Kirsten E. S.; Simbulan-Rosenthal, Cynthia M.; Steadman, Jennifer A.

    2000-01-01

    Human T-cell leukemia virus type 1 (HTLV-1) encodes a transcriptional activator, Tax, whose activity is believed to contribute significantly to cellular transformation. Tax stimulates transcription from the proviral promoter as well as from promoters for a variety of cellular genes. The mechanism through which Tax communicates to the general transcription factors and RNA polymerase II has not been completely determined. We investigated whether Tax could function directly through the general transcription factors and RNA polymerase II or if other intermediary factors or coactivators were required. Our results show that a system consisting of purified recombinant TFIIA, TFIIB, TFIIE, TFIIF, CREB, and Tax, along with highly purified RNA polymerase II, affinity-purified epitope-tagged TFIID, and semipurified TFIIH, supports basal transcription of the HTLV-1 promoter but is not responsive to Tax. Two additional activities were required for Tax to stimulate transcription. We demonstrate that one of these activities is poly(ADP-ribose) polymerase (PARP), a molecule that has been previously identified to be the transcriptional coactivator PC1. PARP functions as a coactivator in our assays at molar concentrations approximately equal to those of the DNA and equal to or less than those of the transcription factors in the assay. We further demonstrate that PARP stimulates Tax-activated transcription in vivo, demonstrating that this biochemical approach has functionally identified a novel target for the retroviral transcriptional activator Tax. PMID:10666246

  4. A bacteriophage T7 RNA polymerase/promoter system for controlled exclusive expression of specific genes.

    PubMed Central

    Tabor, S; Richardson, C C

    1985-01-01

    The RNA polymerase gene of bacteriophage T7 has been cloned into the plasmid pBR322 under the inducible control of the lambda PL promoter. After induction, T7 RNA polymerase constitutes 20% of the soluble protein of Escherichia coli, a 200-fold increase over levels found in T7-infected cells. The overproduced enzyme has been purified to homogeneity. During extraction the enzyme is sensitive to a specific proteolysis, a reaction that can be prevented by a modification of lysis conditions. The specificity of T7 RNA polymerase for its own promoters, combined with the ability to inhibit selectively the host RNA polymerase with rifampicin, permits the exclusive expression of genes under the control of a T7 RNA polymerase promoter. We describe such a coupled system and its use to express high levels of phage T7 gene 5 protein, a subunit of T7 DNA polymerase. Images PMID:3156376

  5. A structural role for the PHP domain in E. coli DNA polymerase III

    PubMed Central

    2013-01-01

    Background In addition to the core catalytic machinery, bacterial replicative DNA polymerases contain a Polymerase and Histidinol Phosphatase (PHP) domain whose function is not entirely understood. The PHP domains of some bacterial replicases are active metal-dependent nucleases that may play a role in proofreading. In E. coli DNA polymerase III, however, the PHP domain has lost several metal-coordinating residues and is likely to be catalytically inactive. Results Genomic searches show that the loss of metal-coordinating residues in polymerase PHP domains is likely to have coevolved with the presence of a separate proofreading exonuclease that works with the polymerase. Although the E. coli Pol III PHP domain has lost metal-coordinating residues, the structure of the domain has been conserved to a remarkable degree when compared to that of metal-binding PHP domains. This is demonstrated by our ability to restore metal binding with only three point mutations, as confirmed by the metal-bound crystal structure of this mutant determined at 2.9 Å resolution. We also show that Pol III, a large multi-domain protein, unfolds cooperatively and that mutations in the degenerate metal-binding site of the PHP domain decrease the overall stability of Pol III and reduce its activity. Conclusions While the presence of a PHP domain in replicative bacterial polymerases is strictly conserved, its ability to coordinate metals and to perform proofreading exonuclease activity is not, suggesting additional non-enzymatic roles for the domain. Our results show that the PHP domain is a major structural element in Pol III and its integrity modulates both the stability and activity of the polymerase. PMID:23672456

  6. A structural role for the PHP domain in E. coli DNA polymerase III.

    PubMed

    Barros, Tiago; Guenther, Joel; Kelch, Brian; Anaya, Jordan; Prabhakar, Arjun; O'Donnell, Mike; Kuriyan, John; Lamers, Meindert H

    2013-05-14

    In addition to the core catalytic machinery, bacterial replicative DNA polymerases contain a Polymerase and Histidinol Phosphatase (PHP) domain whose function is not entirely understood. The PHP domains of some bacterial replicases are active metal-dependent nucleases that may play a role in proofreading. In E. coli DNA polymerase III, however, the PHP domain has lost several metal-coordinating residues and is likely to be catalytically inactive. Genomic searches show that the loss of metal-coordinating residues in polymerase PHP domains is likely to have coevolved with the presence of a separate proofreading exonuclease that works with the polymerase. Although the E. coli Pol III PHP domain has lost metal-coordinating residues, the structure of the domain has been conserved to a remarkable degree when compared to that of metal-binding PHP domains. This is demonstrated by our ability to restore metal binding with only three point mutations, as confirmed by the metal-bound crystal structure of this mutant determined at 2.9 Å resolution. We also show that Pol III, a large multi-domain protein, unfolds cooperatively and that mutations in the degenerate metal-binding site of the PHP domain decrease the overall stability of Pol III and reduce its activity. While the presence of a PHP domain in replicative bacterial polymerases is strictly conserved, its ability to coordinate metals and to perform proofreading exonuclease activity is not, suggesting additional non-enzymatic roles for the domain. Our results show that the PHP domain is a major structural element in Pol III and its integrity modulates both the stability and activity of the polymerase.

  7. Real-Time Reverse-Transcription Quantitative Polymerase Chain Reaction Assay Is a Feasible Method for the Relative Quantification of Heregulin Expression in Non-Small Cell Lung Cancer Tissue.

    PubMed

    Kristof, Jessica; Sakrison, Kellen; Jin, Xiaoping; Nakamaru, Kenji; Schneider, Matthias; Beckman, Robert A; Freeman, Daniel; Spittle, Cindy; Feng, Wenqin

    2017-01-01

    In preclinical studies, heregulin ( HRG ) expression was shown to be the most relevant predictive biomarker for response to patritumab, a fully human anti-epidermal growth factor receptor 3 monoclonal antibody. In support of a phase 2 study of erlotinib ± patritumab in non-small cell lung cancer (NSCLC), a reverse-transcription quantitative polymerase chain reaction (RT-qPCR) assay for relative quantification of HRG expression from formalin-fixed paraffin-embedded (FFPE) NSCLC tissue samples was developed and validated and described herein. Test specimens included matched FFPE normal lung and NSCLC and frozen NSCLC tissue, and HRG -positive and HRG -negative cell lines. Formalin-fixed paraffin-embedded tissue was examined for functional performance. Heregulin distribution was also analyzed across 200 NSCLC commercial samples. Applied Biosystems TaqMan Gene Expression Assays were run on the Bio-Rad CFX96 real-time PCR platform. Heregulin RT-qPCR assay specificity, PCR efficiency, PCR linearity, and reproducibility were demonstrated. The final assay parameters included the Qiagen FFPE RNA Extraction Kit for RNA extraction from FFPE NSCLC tissue, 50 ng of RNA input, and 3 reference (housekeeping) genes ( HMBS, IPO8 , and EIF2B1 ), which had expression levels similar to HRG expression levels and were stable among FFPE NSCLC samples. Using the validated assay, unimodal HRG distribution was confirmed across 185 evaluable FFPE NSCLC commercial samples. Feasibility of an RT-qPCR assay for the quantification of HRG expression in FFPE NSCLC specimens was demonstrated.

  8. Modulating the DNA polymerase β reaction equilibrium to dissect the reverse reaction

    PubMed Central

    Shock, David D.; Freudenthal, Bret D.; Beard, William A.; Wilson, Samuel H.

    2017-01-01

    DNA polymerases catalyze efficient and high fidelity DNA synthesis. While this reaction favors nucleotide incorporation, polymerases also catalyze a reverse reaction, pyrophosphorolysis, removing the DNA primer terminus and generating deoxynucleoside triphosphates. Since pyrophosphorolysis can influence polymerase fidelity and sensitivity to chain-terminating nucleosides, we analyzed pyrophosphorolysis with human DNA polymerase β and found the reaction to be inefficient. The lack of a thio-elemental effect indicated that it was limited by a non-chemical step. Utilizing a pyrophosphate analog, where the bridging oxygen is replaced with an imido-group (PNP), increased the rate of the reverse reaction and displayed a large thio-elemental effect indicating that chemistry was now rate determining. Time-lapse crystallography with PNP captured structures consistent with a chemical equilibrium that favored the reverse reaction. These results highlight the importance of the bridging atom between the β- and γ-phosphates of the incoming nucleotide in reaction chemistry, enzyme conformational changes, and overall reaction equilibrium. PMID:28759020

  9. A plasmid-based lacZα gene assay for DNA polymerase fidelity measurement

    PubMed Central

    Keith, Brian J.; Jozwiakowski, Stanislaw K.; Connolly, Bernard A.

    2013-01-01

    A significantly improved DNA polymerase fidelity assay, based on a gapped plasmid containing the lacZα reporter gene in a single-stranded region, is described. Nicking at two sites flanking lacZα, and removing the excised strand by thermocycling in the presence of complementary competitor DNA, is used to generate the gap. Simple methods are presented for preparing the single-stranded competitor. The gapped plasmid can be purified, in high amounts and in a very pure state, using benzoylated–naphthoylated DEAE–cellulose, resulting in a low background mutation frequency (∼1 × 10−4). Two key parameters, the number of detectable sites and the expression frequency, necessary for measuring polymerase error rates have been determined. DNA polymerase fidelity is measured by gap filling in vitro, followed by transformation into Escherichia coli and scoring of blue/white colonies and converting the ratio to error rate. Several DNA polymerases have been used to fully validate this straightforward and highly sensitive system. PMID:23098700

  10. Archaeal RNA polymerase and transcription regulation

    PubMed Central

    Jun, Sung-Hoon; Reichlen, Matthew J.; Tajiri, Momoko; Murakami, Katsuhiko S.

    2010-01-01

    To elucidate the mechanism of transcription by cellular RNA polymerases (RNAPs), high resolution X-ray crystal structures together with structure-guided biochemical, biophysical and genetics studies are essential. The recently-solved X-ray crystal structures of archaeal RNA polymerase (RNAP) allow a structural comparison of the transcription machinery among all three domains of life. The archaea were once thought of closely related to bacteria, but they are now considered to be more closely related to the eukaryote at the molecular level than bacteria. According to these structures, the archaeal transcription apparatus, which includes RNAP and general transcription factors, is similar to the eukaryotic transcription machinery. Yet, the transcription regulators, activators and repressors, encoded by archaeal genomes are closely related to bacterial factors. Therefore, archaeal transcription appears to possess an intriguing hybrid of eukaryotic-type transcription apparatus and bacterial-like regulatory mechanisms. Elucidating the transcription mechanism in archaea, which possesses a combination of bacterial and eukaryotic transcription mechanisms that are commonly regarded as separate and mutually exclusive, can provide data that will bring basic transcription mechanisms across all three domains of life. PMID:21250781

  11. Structural insight into recruitment of translesion DNA polymerase Dpo4 to sliding clamp PCNA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xing, G.; Kirouac, K.; Shin, Y.J.

    2009-09-16

    DNA polymerases are co-ordinated by sliding clamps (PCNA/{beta}-clamp) in translesion synthesis. It is unclear how these enzymes assemble on PCNA with geometric and functional compatibility. We report the crystal structure of a full-length Y-family polymerase, Dpo4, in complex with heterodimeric PCNA1-PCNA2 at 2.05 {angstrom} resolution. Dpo4 exhibits an extended conformation that differs from the Dpo4 structures in apo- or DNA-bound form. Two hinges have been identified in Dpo4, which render the multidomain polymerase flexible conformations and orientations relative to PCNA. Dpo4 binds specifically to PCNA1 on the conserved ligand binding site. The C-terminal peptide of Dpo4 becomes structured with amore » 3{sub 10} helix and dominates the specific binding. The Y-family polymerase also contacts PCNA1 with its finger, thumb and little finger domains, which are conformation-dependent protein-protein interactions that diversify the binding mode of Dpo4 on PCNA. The structure reveals a molecular model in which substrate/partner binding-coupled multiple conformations of a Y-family polymerase facilitate its recruitment and co-ordination on the sliding clamp. The conformational flexibility would turn the error-prone Y-family polymerase off when more efficient high-fidelity DNA polymerases work on undamaged DNA and turn it onto DNA templates to perform translesion synthesis when replication forks are stalled by DNA lesions.« less

  12. T7 RNA Polymerase Functions In Vitro without Clustering

    PubMed Central

    Finan, Kieran; Torella, Joseph P.; Kapanidis, Achillefs N.; Cook, Peter R.

    2012-01-01

    Many nucleic acid polymerases function in clusters known as factories. We investigate whether the RNA polymerase (RNAP) of phage T7 also clusters when active. Using ‘pulldowns’ and fluorescence correlation spectroscopy we find that elongation complexes do not interact in vitro with a Kd<1 µM. Chromosome conformation capture also reveals that genes located 100 kb apart on the E. coli chromosome do not associate more frequently when transcribed by T7 RNAP. We conclude that if clustering does occur in vivo, it must be driven by weak interactions, or mediated by a phage-encoded protein. PMID:22768341

  13. Comparison of Simplexa HSV 1 & 2 PCR with culture, immunofluorescence, and laboratory-developed TaqMan PCR for detection of herpes simplex virus in swab specimens.

    PubMed

    Gitman, Melissa R; Ferguson, David; Landry, Marie L

    2013-11-01

    The Simplexa HSV 1 & 2 direct PCR assay was compared with conventional cell culture, cytospin-enhanced direct fluorescent antibody (DFA), and a laboratory-developed real-time TaqMan PCR (LDT HSV PCR) using extracted nucleic acid for the detection of herpes simplex virus (HSV) in dermal, genital, mouth, ocular, and other swab samples. One hundred seventy-one swabs were tested prospectively, and 58 were positive for HSV (34 HSV-1 and 24 HSV-2). Cytospin-DFA detected 50 (86.2%), conventional cell culture 51 (87.9%), Simplexa direct 55 (94.8%), and LDT HSV PCR 57 (98.3%) of 58 true positives. Simplexa direct detected more positives than DFA and culture, but the differences were not significant (P = 0.0736 and P = 0.3711, respectively, by the McNemar test). Samples that were positive by all methods (n = 48) were strong positives (LDT cycle threshold [CT] value, 14.4 to 26.1). One strongly positive sample was falsely negative by LDT HSV PCR due to a failure of TaqMan probe binding. Three samples falsely negative by Simplexa direct had high CT values by LDT HSV PCR (LDT CT, 35.8 to 38.2). Omission of the DNA extraction step by Simplexa direct led to a drop in sensitivity compared to the sensitivity of LDT HSV PCR using extracted samples (94.8% versus 98.3%, respectively), but the difference was not significant (P = 0.6171). Simplexa HSV 1 & 2 direct PCR was the most expensive but required the least training of the assays used, had the lowest hands-on time and fastest assay time (75 min, versus 3 h by LDT HSV PCR), and provided the HSV type.

  14. [A study on mutations of the overlapping hepatitis B virus surface and polymerase gene in patients with HBV reinfection after liver transplantations].

    PubMed

    Song, Hong-li; Shen, Zhong-yang; Wang, Jian; Zheng, Wei-ping; Wang, Zheng-lu

    2008-04-01

    To investigate the influence of combined hepatitis B immune globulin (HBIG) and lamivudine (LMV) treatment on hepatitis B virus (HBV) surface antigen and polymerase overlapping gene mutations in HBV reinfected liver transplant recipients. From June 2002 to December 2003, 320 patients who underwent liver transplantations due to HBV-related end-stage liver diseases were followed-up for 1.5 to 3 years postoperatively. Fourteen patients developed HBV reinfection. They had LMV before their liver transplantations and had LMV and HBIG after the transplantations to prevent HBV infections. Their serum levels of HBV DNA were measured by polymerase chain reaction. Gene sequencing method was used to analyze HBV genotype and mutations of the S gene. Micro-particle enzyme immunoassay was used to measure the serum concentration of HBIG. (1) There was no obvious difference in the number of amino acid mutation sites in S and P regions before and after the transplantations. (2) The HBV genotypes were B-type (n=2) and C-type (n=12) in the reinfected group before the transplantations, and genotypes after the transplantations remained the same. (3) HBIG concentrations were 0 U/L in 7 patients, less than 100 U/L in 5 patients, and more than 100 U/L in 2 patients. Mutations were detected as I126S, T131N, S143T and G145R in 'a' determinant and L110F, I113S, T160K in up- or down-stream of 'a' determinant. (4) Mutations in S gene caused missense mutation in the surface antigen region. These mutations also caused corresponding missense mutations in the polymerase region. The missense mutation in the polymerase region involved lamivudine mutation sites and other mutation sites. Immunosuppressant therapy has no obvious influence on the numbers of mutations, but it can influence the sites of the mutations. Besides 'a' determinant mutations, there exist mutations in up- or down-streams of 'a' determinant and they may cause HBV reinfection.

  15. The Cobas AmpliPrep/Cobas TaqMan HCV test, version 2.0, real-time PCR assay accurately quantifies hepatitis C virus genotype 4 RNA.

    PubMed

    Chevaliez, Stéphane; Bouvier-Alias, Magali; Rodriguez, Christophe; Soulier, Alexandre; Poveda, Jean-Dominique; Pawlotsky, Jean-Michel

    2013-04-01

    Accurate hepatitis C virus (HCV) RNA quantification is mandatory for the management of chronic hepatitis C therapy. The first-generation Cobas AmpliPrep/Cobas TaqMan HCV test (CAP/CTM HCV) underestimated HCV RNA levels by >1-log10 international units/ml in a number of patients infected with HCV genotype 4 and occasionally failed to detect it. The aim of this study was to evaluate the ability of the Cobas AmpliPrep/Cobas TaqMan HCV test, version 2.0 (CAP/CTM HCV v2.0), to accurately quantify HCV RNA in a large series of patients infected with different subtypes of HCV genotype 4. Group A comprised 122 patients with chronic HCV genotype 4 infection, and group B comprised 4 patients with HCV genotype 4 in whom HCV RNA was undetectable using the CAP/CTM HCV. Each specimen was tested with the third-generation branched DNA (bDNA) assay, CAP/CTM HCV, and CAP/CTM HCV v2.0. The HCV RNA level was lower in CAP/CTM HCV than in bDNA in 76.2% of cases, regardless of the HCV genotype 4 subtype. In contrast, the correlation between bDNA and CAP/CTM HCV v2.0 values was excellent. CAP/CTM HCV v2.0 accurately quantified HCV RNA levels in the presence of an A-to-T substitution at position 165 alone or combined with a G-to-A substitution at position 145 of the 5' untranslated region of HCV genome. In conclusion, CAP/CTM HCV v2.0 accurately quantifies HCV RNA in genotype 4 clinical specimens, regardless of the subtype, and can be confidently used in clinical trials and clinical practice with this genotype.

  16. Mechanistic Investigation of the Bypass of a Bulky Aromatic DNA Adduct Catalyzed by a Y-family DNA Polymerase

    PubMed Central

    Gadkari, Varun V.; Tokarsky, E. John; Malik, Chanchal K.; Basu, Ashis K.; Suo, Zucai

    2014-01-01

    3-Nitrobenzanthrone (3-NBA), a nitropolyaromatic hydrocarbon (NitroPAH) pollutant in diesel exhaust, is a potent mutagen and carcinogen. After metabolic activation, the primary metabolites of 3-NBA react with DNA to form dG and dA adducts. One of the three major adducts identified is N-(2’-deoxyguanosin-8-yl)-3-aminobenzanthrone (dGC8-N-ABA). This bulky adduct likely stalls replicative DNA polymerases but can be traversed by lesion bypass polymerases in vivo. Here, we employed running start assays to show that a site-specifically placed dGC8-N-ABA is bypassed in vitro by Sulfolobus solfataricus DNA polymerase IV (Dpo4), a model Y-family DNA polymerase. However, the nucleotide incorporation rate of Dpo4 was significantly reduced opposite both the lesion and the template position immediately downstream from the lesion site, leading to two strong pause sites. To investigate the kinetic effect of dGC8-N-ABA on polymerization, we utilized pre-steady-state kinetic methods to determine the kinetic parameters for individual nucleotide incorporations upstream, opposite, and downstream from the dGC8-N-ABA lesion. Relative to the replication of the corresponding undamaged DNA template, both nucleotide incorporation efficiency and fidelity of Dpo4 were considerably decreased during dGC8-N-ABA lesion bypass and the subsequent extension step. The lower nucleotide incorporation efficiency caused by the lesion is a result of a significantly reduced dNTP incorporation rate constant and modestly weaker dNTP binding affinity. At both pause sites, nucleotide incorporation followed biphasic kinetics with a fast and a slow phase and their rates varied with nucleotide concentration. In contrast, only the fast phase was observed with undamaged DNA. A kinetic mechanism was proposed for the bypass of dGC8-N-ABA bypass catalyzed by Dpo4. PMID:25048879

  17. HIV-1 and HCV viral load cost models for bDNA: 440 Molecular System versus real-time PCR AmpliPrep/TaqMan test.

    PubMed

    Elbeik, Tarek; Dalessandro, Ralph; Loftus, Richard A; Beringer, Scott

    2007-11-01

    Comparative cost models were developed to assess cost-per-reportable result and annual costs for HIV-1 and HCV bDNA and AmpliPrep/TaqMan Test (PCR). Model cost components included kit, disposables, platform and related equipment, equipment service plan, equipment maintenance, equipment footprint, waste and labor. Model assessment was most cost-effective when run by bDNA with 36 or more clinical samples and PCR with 30 or fewer clinical samples. Lower costs are attained with maximum samples (84-168) run daily. Highest cost contributors include kit, platform and PCR proprietary disposables. Understanding component costs and the most economic use of HIV-1 and HCV viral load will aid in attaining lowest costs through selection of the appropriate assay and effective negotiations.

  18. Allosteric inhibitors of Coxsackie virus A24 RNA polymerase.

    PubMed

    Schein, Catherine H; Rowold, Diane; Choi, Kyung H

    2016-02-15

    Coxsackie virus A24 (CVA24), a causative agent of acute hemorrhagic conjunctivitis, is a prototype of enterovirus (EV) species C. The RNA polymerase (3D(pol)) of CVA24 can uridylylate the viral peptide linked to the genome (VPg) from distantly related EV and is thus, a good model for studying this reaction. Once UMP is bound, VPgpU primes RNA elongation. Structural and mutation data have identified a conserved binding surface for VPg on the RNA polymerase (3D(pol)), located about 20Å from the active site. Here, computational docking of over 60,000 small compounds was used to select those with the lowest (best) specific binding energies (BE) for this allosteric site. Compounds with varying structures and low BE were assayed for their effect on formation of VPgU by CVA24-3D(pol). Two compounds with the lowest specific BE for the site inhibited both uridylylation and formation of VPgpolyU at 10-20μM. These small molecules can be used to probe the role of this allosteric site in polymerase function, and may be the basis for novel antiviral compounds. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. High sensitive RNA detection by one-step RT-PCR using the genetically engineered variant of DNA polymerase with reverse transcriptase activity from hyperthermophilies.

    PubMed

    Okano, Hiroyuki; Baba, Misato; Kawato, Katsuhiro; Hidese, Ryota; Yanagihara, Itaru; Kojima, Kenji; Takita, Teisuke; Fujiwara, Shinsuke; Yasukawa, Kiyoshi

    2018-03-01

    One-step RT-PCR has not been widely used even though some thermostable DNA polymerases with reverse transcriptase (RT) activity were developed from bacterial and archaeal polymerases, which is owing to low cDNA synthesis activity from RNA. In the present study, we developed highly-sensitive one-step RT-PCR using the single variant of family A DNA polymerase with RT activity, K4pol L329A (L329A), from the hyperthermophilic bacterium Thermotoga petrophila K4 or the 16-tuple variant of family B DNA polymerase with RT activity, RTX, from the hyperthermophilic archaeon Thermococcus kodakarensis. Optimization of reaction condition revealed that the activities for cDNA synthesis and PCR of K4pol L329A and RTX were highly affected by the concentrations of MgCl 2 and Mn(OCOCH 3 ) 2 as well as those of K4pol L329A or RTX. Under the optimized condition, 300 copies/μl of target RNA in 10 μl reaction volumes were successfully detected by the one-step RT-PCR with K4pol L329A or RTX, which was almost equally sensitive enough compared with the current RT-PCR condition using retroviral RT and thermostable DNA polymerase. Considering that K4pol L329A and RTX are stable even at 90-100°C, our results suggest that the one-step RT-PCR with K4pol L329A or RTX is more advantageous than the current one. Copyright © 2017 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  20. AFM study of Escherichia coli RNA polymerase σ⁷⁰ subunit aggregation.

    PubMed

    Dubrovin, Evgeniy V; Koroleva, Olga N; Khodak, Yulia A; Kuzmina, Natalia V; Yaminsky, Igor V; Drutsa, Valeriy L

    2012-01-01

    The self-assembly of Escherichia coli RNA polymerase σ⁷⁰ subunit was investigated using several experimental approaches. A novel rodlike shape was reported for σ⁷⁰ subunit aggregates. Atomic force microscopy reveals that these aggregates, or σ⁷⁰ polymers, have a straight rodlike shape 5.4 nm in diameter and up to 300 nm in length. Atomic force microscopy data, Congo red binding assay, and sodium dodecyl sulfate gel electrophoresis confirm the amyloid nature of observed aggregates. The process of formation of rodlike structures proceeds spontaneously under nearly physiological conditions. E. coli RNA polymerase σ⁷⁰ subunit may be an interesting object for investigation of amyloidosis as well as for biotechnological applications that exploit self-assembled bionanostructures. Polymerization of σ⁷⁰ subunit may be a competitive process with its three-dimensional crystallization and association with core RNA polymerase. In this basic science study, the self-assembly of Escherichia coli RNA polymerase σ⁷⁰( subunit was investigated using atomic force microscopy and other complementary approaches. 2012 Elsevier Inc. All rights reserved.

  1. Uracil recognition by replicative DNA polymerases is limited to the archaea, not occurring with bacteria and eukarya.

    PubMed

    Wardle, Josephine; Burgers, Peter M J; Cann, Isaac K O; Darley, Kate; Heslop, Pauline; Johansson, Erik; Lin, Li-Jung; McGlynn, Peter; Sanvoisin, Jonathan; Stith, Carrie M; Connolly, Bernard A

    2008-02-01

    Family B DNA polymerases from archaea such as Pyrococcus furiosus, which live at temperatures approximately 100 degrees C, specifically recognize uracil in DNA templates and stall replication in response to this base. Here it is demonstrated that interaction with uracil is not restricted to hyperthermophilic archaea and that the polymerase from mesophilic Methanosarcina acetivorans shows identical behaviour. The family B DNA polymerases replicate the genomes of archaea, one of the three fundamental domains of life. This publication further shows that the DNA replicating polymerases from the other two domains, bacteria (polymerase III) and eukaryotes (polymerases delta and epsilon for nuclear DNA and polymerase gamma for mitochondrial) are also unable to recognize uracil. Uracil occurs in DNA as a result of deamination of cytosine, either in G:C base-pairs or, more rapidly, in single stranded regions produced, for example, during replication. The resulting G:U mis-pairs/single stranded uracils are promutagenic and, unless repaired, give rise to G:C to A:T transitions in 50% of the progeny. The confinement of uracil recognition to polymerases of the archaeal domain is discussed in terms of the DNA repair pathways necessary for the elimination of uracil.

  2. Enhancing the efficiency of polymerase chain reaction using graphene nanoflakes.

    PubMed

    Abdul Khaliq, R; Kafafy, Raed; Salleh, Hamzah Mohd; Faris, Waleed Fekry

    2012-11-16

    The effect of the recently developed graphene nanoflakes (GNFs) on the polymerase chain reaction (PCR) has been investigated in this paper. The rationale behind the use of GNFs is their unique physical and thermal properties. Experiments show that GNFs can enhance the thermal conductivity of base fluids and results also revealed that GNFs are a potential enhancer of PCR efficiency; moreover, the PCR enhancements are strongly dependent on GNF concentration. It was found that GNFs yield DNA product equivalent to positive control with up to 65% reduction in the PCR cycles. It was also observed that the PCR yield is dependent on the GNF size, wherein the surface area increases and augments thermal conductivity. Computational fluid dynamics (CFD) simulations were performed to analyze the heat transfer through the PCR tube model in the presence and absence of GNFs. The results suggest that the superior thermal conductivity effect of GNFs may be the main cause of the PCR enhancement.

  3. Hybrid Methods Reveal Multiple Flexibly Linked DNA Polymerases within the Bacteriophage T7 Replisome

    DOE PAGES

    Wallen, Jamie R.; Zhang, Hao; Weis, Caroline; ...

    2017-01-03

    The physical organization of DNA enzymes at a replication fork enables efficient copying of two antiparallel DNA strands, yet dynamic protein interactions within the replication complex complicate replisome structural studies. We employed a combination of crystallographic, native mass spectrometry and small-angle X-ray scattering experiments to capture alternative structures of a model replication system encoded by bacteriophage T7. then, the two molecules of DNA polymerase bind the ring-shaped primase-helicase in a conserved orientation and provide structural insight into how the acidic C-terminal tail of the primase-helicase contacts the DNA polymerase to facilitate loading of the polymerase onto DNA. A third DNA polymerasemore » binds the ring in an offset manner that may enable polymerase exchange during replication. Alternative polymerase binding modes are also detected by small-angle X-ray scattering with DNA substrates present. The collective results unveil complex motions within T7 replisome higher-order structures that are underpinned by multivalent protein-protein interactions with functional implications.« less

  4. Hybrid Methods Reveal Multiple Flexibly Linked DNA Polymerases within the Bacteriophage T7 Replisome

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wallen, Jamie R.; Zhang, Hao; Weis, Caroline

    The physical organization of DNA enzymes at a replication fork enables efficient copying of two antiparallel DNA strands, yet dynamic protein interactions within the replication complex complicate replisome structural studies. We employed a combination of crystallographic, native mass spectrometry and small-angle X-ray scattering experiments to capture alternative structures of a model replication system encoded by bacteriophage T7. then, the two molecules of DNA polymerase bind the ring-shaped primase-helicase in a conserved orientation and provide structural insight into how the acidic C-terminal tail of the primase-helicase contacts the DNA polymerase to facilitate loading of the polymerase onto DNA. A third DNA polymerasemore » binds the ring in an offset manner that may enable polymerase exchange during replication. Alternative polymerase binding modes are also detected by small-angle X-ray scattering with DNA substrates present. The collective results unveil complex motions within T7 replisome higher-order structures that are underpinned by multivalent protein-protein interactions with functional implications.« less

  5. Ubiquitin mediates the physical and functional interaction between human DNA polymerases η and ι

    PubMed Central

    McIntyre, Justyna; Vidal, Antonio E.; McLenigan, Mary P.; Bomar, Martha G.; Curti, Elena; McDonald, John P.; Plosky, Brian S.; Ohashi, Eiji; Woodgate, Roger

    2013-01-01

    Human DNA polymerases η and ι are best characterized for their ability to facilitate translesion DNA synthesis (TLS). Both polymerases (pols) co-localize in ‘replication factories’ in vivo after cells are exposed to ultraviolet light and this co-localization is mediated through a physical interaction between the two TLS pols. We have mapped the polη-ι interacting region to their respective ubiquitin-binding domains (UBZ in polη and UBM1 and UBM2 in polι), and demonstrate that ubiquitination of either TLS polymerase is a prerequisite for their physical and functional interaction. Importantly, while monoubiquitination of polη precludes its ability to interact with proliferating cell nuclear antigen (PCNA), it enhances its interaction with polι. Furthermore, a polι-ubiquitin chimera interacts avidly with both polη and PCNA. Thus, the ubiquitination status of polη, or polι plays a key regulatory function in controlling the protein partners with which each polymerase interacts, and in doing so, determines the efficiency of targeting the respective polymerase to stalled replication forks where they facilitate TLS. PMID:23248005

  6. Single molecule imaging of RNA polymerase II using atomic force microscopy

    NASA Astrophysics Data System (ADS)

    Rhodin, Thor; Fu, Jianhua; Umemura, Kazuo; Gad, Mohammed; Jarvis, Suzi; Ishikawa, Mitsuru

    2003-03-01

    An atomic force microscopy (AFM) study of the shape, orientation and surface topology of RNA polymerase II supported on silanized freshly cleaved mica was made. The overall aim is to define the molecular topology of RNA polymerase II in appropriate fluids to help clarify the relationship of conformational features to biofunctionality. A Nanoscope III atomic force microscope was used in the tapping mode with oxide-sharpened (8-10 nm) Si 3N 4 probes in aqueous zinc chloride buffer. The main structural features observed by AFM were compared to those derived from electron-density plots based on X-ray crystallographic studies. The conformational features included a bilobal silhouette with an inverted umbrella-shaped crater connected to a reaction site. These studies provide a starting point for constructing a 3D-AFM profiling analysis of proteins such as RNA polymerase complexes.

  7. Recombinase Polymerase Amplification-Based Assay to Diagnose Giardia in Stool Samples

    PubMed Central

    Crannell, Zachary Austin; Cabada, Miguel Mauricio; Castellanos-Gonzalez, Alejandro; Irani, Ayesha; White, Arthur Clinton; Richards-Kortum, Rebecca

    2015-01-01

    Giardia duodenalis is one of the most commonly identified parasites in stool samples. Although relatively easy to treat, giardiasis can be difficult to detect as it presents similar to other diarrheal diseases. Here, we present a recombinase polymerase amplification-based Giardia (RPAG) assay to detect the presence of Giardia in stool samples. The RPAG assay was characterized on the bench top using stool samples spiked with Giardia cysts where it showed a limit-of-detection nearly as low as the gold standard polymerase chain reaction assay. The RPAG assay was then tested in the highlands of Peru on 104 stool samples collected from the surrounding communities where it showed 73% sensitivity and 95% specificity against a polymerase chain reaction and microscopy composite gold standard. Further improvements in clinical sensitivity will be needed for the RPAG assay to have clinical relevance. PMID:25510713

  8. Detection of Entamoeba histolytica by Recombinase Polymerase Amplification

    PubMed Central

    Nair, Gayatri; Rebolledo, Mauricio; White, A. Clinton; Crannell, Zachary; Richards-Kortum, R. Rebecca; Pinilla, A. Elizabeth; Ramírez, Juan David; López, M. Consuelo; Castellanos-Gonzalez, Alejandro

    2015-01-01

    Amebiasis is an important cause of diarrheal disease worldwide and has been associated with childhood malnutrition. Traditional microscopy approaches are neither sensitive nor specific for Entamoeba histolytica. Antigen assays are more specific, but many cases are missed unless tested by molecular methods. Although polymerase chain reaction (PCR) is effective, the need for sophisticated, expensive equipment, infrastructure, and trained personnel limits its usefulness, especially in the resource-limited, endemic areas. Here, we report development of a recombinase polymerase amplification (RPA) method to detect E. histolytica specifically. Using visual detection by lateral flow (LF), the test was highly sensitive and specific and could be performed without additional equipment. The availability of this inexpensive, sensitive, and field-applicable diagnostic test could facilitate rapid diagnosis and treatment of amebiasis in endemic regions. PMID:26123960

  9. Heterogeneous asymmetric recombinase polymerase amplification (haRPA) for rapid hygiene control of large-volume water samples.

    PubMed

    Elsäßer, Dennis; Ho, Johannes; Niessner, Reinhard; Tiehm, Andreas; Seidel, Michael

    2018-04-01

    Hygiene of drinking water is periodically controlled by cultivation and enumeration of indicator bacteria. Rapid and comprehensive measurements of emerging pathogens are of increasing interest to improve drinking water safety. In this study, the feasibility to detect bacteriophage PhiX174 as a potential indicator for virus contamination in large volumes of water is demonstrated. Three consecutive concentration methods (continuous ultrafiltration, monolithic adsorption filtration, and centrifugal ultrafiltration) were combined to concentrate phages stepwise from 1250 L drinking water into 1 mL. Heterogeneous asymmetric recombinase polymerase amplification (haRPA) is applied as rapid detection method. Field measurements were conducted to test the developed system for hygiene online monitoring under realistic conditions. We could show that this system allows the detection of artificial contaminations of bacteriophage PhiX174 in drinking water pipelines. Copyright © 2018 Elsevier Inc. All rights reserved.

  10. 9 CFR 147.30 - Laboratory procedure recommended for the polymerase chain reaction (PCR) test for Mycoplasma...

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... the polymerase chain reaction (PCR) test for Mycoplasma gallisepticum and M. synoviae. 147.30 Section... Examination Procedures § 147.30 Laboratory procedure recommended for the polymerase chain reaction (PCR) test... should consist of the following sequences: ER12JA07.005 (c) Polymerase chain reaction. (1) Treat each...

  11. 9 CFR 147.30 - Laboratory procedure recommended for the polymerase chain reaction (PCR) test for Mycoplasma...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... the polymerase chain reaction (PCR) test for Mycoplasma gallisepticum and M. synoviae. 147.30 Section... Examination Procedures § 147.30 Laboratory procedure recommended for the polymerase chain reaction (PCR) test... should consist of the following sequences: ER12JA07.005 (c) Polymerase chain reaction. (1) Treat each...

  12. Deep-sea vent phage DNA polymerase specifically initiates DNA synthesis in the absence of primers.

    PubMed

    Zhu, Bin; Wang, Longfei; Mitsunobu, Hitoshi; Lu, Xueling; Hernandez, Alfredo J; Yoshida-Takashima, Yukari; Nunoura, Takuro; Tabor, Stanley; Richardson, Charles C

    2017-03-21

    A DNA polymerase is encoded by the deep-sea vent phage NrS-1. NrS-1 has a unique genome organization containing genes that are predicted to encode a helicase and a single-stranded DNA (ssDNA)-binding protein. The gene for an unknown protein shares weak homology with the bifunctional primase-polymerases (prim-pols) from archaeal plasmids but is missing the zinc-binding domain typically found in primases. We show that this gene product has efficient DNA polymerase activity and is processive in DNA synthesis in the presence of the NrS-1 helicase and ssDNA-binding protein. Remarkably, this NrS-1 DNA polymerase initiates DNA synthesis from a specific template DNA sequence in the absence of any primer. The de novo DNA polymerase activity resides in the N-terminal domain of the protein, whereas the C-terminal domain enhances DNA binding.

  13. Nuclear DNA polymerase beta from Leishmania infantum. Cloning, molecular analysis and developmental regulation

    PubMed Central

    Taladriz, Soraya; Hanke, Tobias; Ramiro, María J.; García-Díaz, Miguel; Lacoba, Mario García de; Blanco, Luis; Larraga, Vicente

    2001-01-01

    We have identified a novel polymerase beta (Pol β)-like enzyme from Leishmania infantum, a parasite protozoon causing disease in humans. This protein, named Li Pol β, shows a nuclear localization that contrasts with the mitochondrial localization of Pol β from Crithidia fasciculata, a closely related parasite, the only polymerase β described so far in Trypanosomatidae. Li Pol β, that belongs to the DNA polymerase X family, displays an evolutionarily conserved Pol β-type DNA polymerase core, in which most of the key residues involved in DNA binding, nucleotide binding, dRPase and polymerization catalysis are conserved. In agreement with this, Li Pol β, overproduced in Escherichia coli, displayed intrinsic DNA polymerase activity. Cell synchronization experiments showed a correlation between both Li Pol β mRNA and protein levels along the parasite cell cycle. Analysis of these parameters at the different growth phases of the parasite, from the proliferative (non-infective) logarithmic phase to the non-dividing (highly infectious) stationary phase, showed high levels of Li Pol β at the infective phase of the parasite. The data suggest a role of Li Pol β in base excision repair in L.infantum, a parasite usually affected by oxygen stress environments into the macrophage host cells. PMID:11557814

  14. Primer-independent RNA sequencing with bacteriophage phi6 RNA polymerase and chain terminators.

    PubMed

    Makeyev, E V; Bamford, D H

    2001-05-01

    Here we propose a new general method for directly determining RNA sequence based on the use of the RNA-dependent RNA polymerase from bacteriophage phi6 and the chain terminators (RdRP sequencing). The following properties of the polymerase render it appropriate for this application: (1) the phi6 polymerase can replicate a number of single-stranded RNA templates in vitro. (2) In contrast to the primer-dependent DNA polymerases utilized in the sequencing procedure by Sanger et al. (Proc Natl Acad Sci USA, 1977, 74:5463-5467), it initiates nascent strand synthesis without a primer, starting the polymerization on the very 3'-terminus of the template. (3) The polymerase can incorporate chain-terminating nucleotide analogs into the nascent RNA chain to produce a set of base-specific termination products. Consequently, 3' proximal or even complete sequence of many target RNA molecules can be rapidly deduced without prior sequence information. The new technique proved useful for sequencing several synthetic ssRNA templates. Furthermore, using genomic segments of the bluetongue virus we show that RdRP sequencing can also be applied to naturally occurring dsRNA templates. This suggests possible uses of the method in the RNA virus research and diagnostics.

  15. SUMO Modification Stabilizes Enterovirus 71 Polymerase 3D To Facilitate Viral Replication

    PubMed Central

    Liu, Yan; Shu, Bo; Meng, Jin; Zhang, Yuan; Zheng, Caishang; Ke, Xianliang; Gong, Peng; Hu, Qinxue; Wang, Hanzhong

    2016-01-01

    ABSTRACT Accumulating evidence suggests that viruses hijack cellular proteins to circumvent the host immune system. Ubiquitination and SUMOylation are extensively studied posttranslational modifications (PTMs) that play critical roles in diverse biological processes. Cross talk between ubiquitination and SUMOylation of both host and viral proteins has been reported to result in distinct functional consequences. Enterovirus 71 (EV71), an RNA virus belonging to the family Picornaviridae, is a common cause of hand, foot, and mouth disease. Little is known concerning how host PTM systems interact with enteroviruses. Here, we demonstrate that the 3D protein, an RNA-dependent RNA polymerase (RdRp) of EV71, is modified by small ubiquitin-like modifier 1 (SUMO-1) both during infection and in vitro. Residues K159 and L150/D151/L152 were responsible for 3D SUMOylation as determined by bioinformatics prediction combined with site-directed mutagenesis. Also, primer-dependent polymerase assays indicated that mutation of SUMOylation sites impaired 3D polymerase activity and virus replication. Moreover, 3D is ubiquitinated in a SUMO-dependent manner, and SUMOylation is crucial for 3D stability, which may be due to the interplay between the two PTMs. Importantly, increasing the level of SUMO-1 in EV71-infected cells augmented the SUMOylation and ubiquitination levels of 3D, leading to enhanced replication of EV71. These results together suggested that SUMO and ubiquitin cooperatively regulated EV71 infection, either by SUMO-ubiquitin hybrid chains or by ubiquitin conjugating to the exposed lysine residue through SUMOylation. Our study provides new insight into how a virus utilizes cellular pathways to facilitate its replication. IMPORTANCE Infection with enterovirus 71 (EV71) often causes neurological diseases in children, and EV71 is responsible for the majority of fatalities. Based on a better understanding of interplay between virus and host cell, antiviral drugs against

  16. The Vitamin D Receptor (VDR) Gene Polymorphisms in Turkish Brain Cancer Patients

    PubMed Central

    Toptaş, Bahar; Kafadar, Ali Metin; Cacina, Canan; Turan, Saime; Yurdum, Leman Melis; Yiğitbaşı, Nihal; Gökçe, Muhammed Oğuz; Zeybek, Ümit; Yaylım, Ilhan

    2013-01-01

    Objective. It has been stated that brain cancers are an increasingly serious issue in many parts of the world. The aim of our study was to determine a possible relationship between Vitamin D receptor (VDR) gene polymorphisms and the risk of glioma and meningioma. Methods. We investigated the VDR Taq-I and VDR Fok-I gene polymorphisms in 100 brain cancer patients (including 44 meningioma cases and 56 glioma cases) and 122 age-matched healthy control subjects. This study was performed by polymerase chain reaction-based restriction fragment length polymorphism (RF LP). Results. VDR Fok-I ff genotype was significantly increased in meningioma patients (15.9%) compared with controls (2.5%), and carriers of Fok-I ff genotype had a 6.47-fold increased risk for meningioma cases. There was no significant difference between patients and controls for VDR Taq-I genotypes and alleles. Conclusions. We suggest that VDR Fok-I genotypes might affect the development of meningioma. PMID:23691496

  17. Biochemical analysis of active site mutations of human polymerase η.

    PubMed

    Suarez, Samuel C; Beardslee, Renee A; Toffton, Shannon M; McCulloch, Scott D

    2013-01-01

    DNA polymerase η (pol η) plays a critical role in suppressing mutations caused by the bypass of cis-syn cyclobutane pyrimidine dimers (CPD) that escape repair. There is evidence this is also the case for the oxidative lesion 7,8-dihydro-8-oxo-guanine (8-oxoG). Both of these lesions cause moderate to severe blockage of synthesis when encountered by replicative polymerases, while pol η displays little no to pausing during translesion synthesis. However, since lesion bypass does not remove damaged DNA from the genome and can possibly be accompanied by errors in synthesis during bypass, the process is often called 'damage tolerance' to delineate it from classical DNA repair pathways. The fidelity of lesion bypass is therefore of importance when determining how pol η suppresses mutations after DNA damage. As pol η has been implicated in numerous in vivo pathways other than lesion bypass, we wanted to better understand the molecular mechanisms involved in the relatively low-fidelity synthesis displayed by pol η. To that end, we have created a set of mutant pol η proteins each containing a single amino acid substitution in the active site and closely surrounding regions. We determined overall DNA synthesis ability as well as the efficiency and fidelity of bypass of thymine-thymine CPD (T-T CPD) and 8-oxoG containing DNA templates. Our results show that several amino acids are critical for normal polymerase function, with changes in overall activity and fidelity being observed. Of the mutants that retain polymerase activity, we demonstrate that amino acids Q38, Y52, and R61 play key roles in determining polymerase fidelity, with substation of alanine causing both increases and decreases in fidelity. Remarkably, the Q38A mutant displays increased fidelity during synthesis opposite 8-oxoG but decreased fidelity during synthesis opposite a T-T CPD. Copyright © 2013 Elsevier B.V. All rights reserved.

  18. Enzymatic synthesis of random sequences of RNA and RNA analogues by DNA polymerase theta mutants for the generation of aptamer libraries.

    PubMed

    Randrianjatovo-Gbalou, Irina; Rosario, Sandrine; Sismeiro, Odile; Varet, Hugo; Legendre, Rachel; Coppée, Jean-Yves; Huteau, Valérie; Pochet, Sylvie; Delarue, Marc

    2018-05-21

    Nucleic acid aptamers, especially RNA, exhibit valuable advantages compared to protein therapeutics in terms of size, affinity and specificity. However, the synthesis of libraries of large random RNAs is still difficult and expensive. The engineering of polymerases able to directly generate these libraries has the potential to replace the chemical synthesis approach. Here, we start with a DNA polymerase that already displays a significant template-free nucleotidyltransferase activity, human DNA polymerase theta, and we mutate it based on the knowledge of its three-dimensional structure as well as previous mutational studies on members of the same polA family. One mutant exhibited a high tolerance towards ribonucleotides (NTPs) and displayed an efficient ribonucleotidyltransferase activity that resulted in the assembly of long RNA polymers. HPLC analysis and RNA sequencing of the products were used to quantify the incorporation of the four NTPs as a function of initial NTP concentrations and established the randomness of each generated nucleic acid sequence. The same mutant revealed a propensity to accept other modified nucleotides and to extend them in long fragments. Hence, this mutant can deliver random natural and modified RNA polymers libraries ready to use for SELEX, with custom lengths and balanced or unbalanced ratios.

  19. Market analysis of food products for detection of allergenic walnut (Juglans regia) and pecan (Carya illinoinensis) by real-time PCR.

    PubMed

    López-Calleja, Inés María; de la Cruz, Silvia; González, Isabel; García, Teresa; Martín, Rosario

    2015-06-15

    Two real-time polymerase chain reaction (PCR)-based assays for detection of walnut (Juglans regia) and pecan (Carya illinoinensis) traces in a wide range of processed foods are described here. The method consists on a real-time PCR assay targeting the ITS1 region, using a nuclease (TaqMan) probe labeled with FAM and BBQ. The method was positive for walnut and pecan respectively, and negative for all other heterologous plants and animals tested. Using a series of model samples with defined raw walnut in wheat flour and heat-treated walnut in wheat flour with a range of concentrations of 0.1-100,000 mg kg(-1), a practical detection limit of 0.1 mg kg(-1) of walnut content was estimated. Identical binary mixtures were done for pecan, reaching the same limit of detection of 0.1 mg kg(-1). The assay was successfully trialed on a total of 232 commercial foodstuffs. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. A novel variant of DNA polymerase ζ, Rev3ΔC, highlights differential regulation of Pol32 as a subunit of polymerase δ versus ζ in Saccharomyces cerevisiae

    PubMed Central

    Siebler, Hollie M.; Lada, Artem G.; Baranovskiy, Andrey G.; Tahirov, Tahir H.; Pavlov, Youri I.

    2014-01-01

    Unrepaired DNA lesions often stall replicative DNA polymerases and are bypassed by translesion synthesis (TLS) to prevent replication fork collapse. Mechanisms of TLS are lesion- and species-specific, with a prominent role of specialized DNA polymerases with relaxed active sites. After nucleotide(s) are incorporated across from the altered base(s), the aberrant primer termini are typically extended by DNA polymerase ζ (pol ζ). As a result, pol ζ is responsible for most DNA damage-induced mutations. The mechanisms of sequential DNA polymerase switches in vivo remain unclear. The major replicative DNA polymerase δ (pol δ) shares two accessory subunits, called Pol31/Pol32 in yeast, with pol ζ. Inclusion of Pol31/Pol32 in the pol δ/pol ζ holoenzymes requires a [4Fe–4S] cluster in C-termini of the catalytic subunits. Disruption of this cluster in Pol ζ or deletion of POL32 attenuates induced mutagenesis. Here we describe a novel mutation affecting the catalytic subunit of pol ζ, rev3ΔC, which provides insight into the regulation of pol switches. Strains with Rev3ΔC, lacking the entire C-terminal domain and therefore the platform for Pol31/Pol32 binding, are partially proficient in Pol32-dependent UV-induced mutagenesis. This suggests an additional role of Pol32 in TLS, beyond being a pol ζ subunit, related to pol δ. In search for members of this regulatory pathway, we examined the effects of Maintenance of Genome Stability 1 (Mgs1) protein on mutagenesis in the absence of Rev3–Pol31/Pol32 interaction. Mgs1 may compete with Pol32 for binding to PCNA. Mgs1 overproduction suppresses induced mutagenesis, but had no effect on UV-mutagenesis in the rev3ΔC strain, suggesting that Mgs1 exerts its inhibitory effect by acting specifically on Pol32 bound to pol ζ. The evidence for differential regulation of Pol32 in pol δ and pol ζ emphasizes the complexity of polymerase switches. PMID:24819597

  1. Circulating polymerase chain reaction chips utilizing multiple-membrane activation

    NASA Astrophysics Data System (ADS)

    Wang, Chih-Hao; Chen, Yi-Yu; Liao, Chia-Sheng; Hsieh, Tsung-Min; Luo, Ching-Hsing; Wu, Jiunn-Jong; Lee, Huei-Huang; Lee, Gwo-Bin

    2007-02-01

    This paper reports a new micromachined, circulating, polymerase chain reaction (PCR) chip for nucleic acid amplification. The PCR chip is comprised of a microthermal control module and a polydimethylsiloxane (PDMS)-based microfluidic control module. The microthermal control modules are formed with three individual heating and temperature-sensing sections, each modulating a specific set temperature for denaturation, annealing and extension processes, respectively. Micro-pneumatic valves and multiple-membrane activations are used to form the microfluidic control module to transport sample fluids through three reaction regions. Compared with other PCR chips, the new chip is more compact in size, requires less time for heating and cooling processes, and has the capability to randomly adjust time ratios and cycle numbers depending on the PCR process. Experimental results showed that detection genes for two pathogens, Streptococcus pyogenes (S. pyogenes, 777 bps) and Streptococcus pneumoniae (S. pneumoniae, 273 bps), can be successfully amplified using the new circulating PCR chip. The minimum number of thermal cycles to amplify the DNA-based S. pyogenes for slab gel electrophoresis is 20 cycles with an initial concentration of 42.5 pg µl-1. Experimental data also revealed that a high reproducibility up to 98% could be achieved if the initial template concentration of the S. pyogenes was higher than 4 pg µl-1. The preliminary results of the current paper were presented at the 19th IEEE International Conference on Micro Electro Mechanical Systems (IEEE MEMS 2006), Istanbul, Turkey, 22-26 January, 2006.

  2. Inhibition of poly(ADP-ribose)polymerase-1 and DNA repair by uranium

    PubMed Central

    Cooper, Karen L.; Dashner, Erica J.; Tsosie, Ranalda; Cho, Young Mi; Lewis, Johnnye

    2015-01-01

    Uranium has radiological and non-radiological effects within biological systems and there is increasing evidence for genotoxic and carcinogenic properties attributable to uranium through its heavy metal properties. In this study, we report that low concentrations of uranium (as uranyl acetate; <10 μM) is not cytotoxic to human embryonic kidney cells or normal human keratinocytes; however, uranium exacerbates DNA damage and cytotoxicity induced by hydrogen peroxide, suggesting that uranium may inhibit DNA repair processes. Concentrations of uranyl acetate in the low micromolar range inhibited the zinc finger DNA repair protein poly(ADP-ribose) polymerase (PARP)-1 and caused zinc loss from PARP-1 protein. Uranyl acetate exposure also led to zinc loss from the zinc finger DNA repair proteins Xeroderma Pigmentosum, Complementation Group A (XPA) and aprataxin (APTX). In keeping with the observed inhibition of zinc finger function of DNA repair proteins, exposure to uranyl acetate enhanced retention of induced DNA damage. Co-incubation of uranyl acetate with zinc largely overcame the impact of uranium on PARP-1 activity and DNA damage. These findings present evidence that low concentrations of uranium can inhibit DNA repair through disruption of zinc finger domains of specific target DNA repair proteins. This may provide a mechanistic basis to account for the published observations that uranium exposure is associated with DNA repair deficiency in exposed human populations. PMID:26627003

  3. Inhibition of poly(ADP-ribose)polymerase-1 and DNA repair by uranium.

    PubMed

    Cooper, Karen L; Dashner, Erica J; Tsosie, Ranalda; Cho, Young Mi; Lewis, Johnnye; Hudson, Laurie G

    2016-01-15

    Uranium has radiological and non-radiological effects within biological systems and there is increasing evidence for genotoxic and carcinogenic properties attributable to uranium through its heavy metal properties. In this study, we report that low concentrations of uranium (as uranyl acetate; <10 μM) is not cytotoxic to human embryonic kidney cells or normal human keratinocytes; however, uranium exacerbates DNA damage and cytotoxicity induced by hydrogen peroxide, suggesting that uranium may inhibit DNA repair processes. Concentrations of uranyl acetate in the low micromolar range inhibited the zinc finger DNA repair protein poly(ADP-ribose) polymerase (PARP)-1 and caused zinc loss from PARP-1 protein. Uranyl acetate exposure also led to zinc loss from the zinc finger DNA repair proteins Xeroderma Pigmentosum, Complementation Group A (XPA) and aprataxin (APTX). In keeping with the observed inhibition of zinc finger function of DNA repair proteins, exposure to uranyl acetate enhanced retention of induced DNA damage. Co-incubation of uranyl acetate with zinc largely overcame the impact of uranium on PARP-1 activity and DNA damage. These findings present evidence that low concentrations of uranium can inhibit DNA repair through disruption of zinc finger domains of specific target DNA repair proteins. This may provide a mechanistic basis to account for the published observations that uranium exposure is associated with DNA repair deficiency in exposed human populations. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. Comparison of Simplexa HSV 1 & 2 PCR with Culture, Immunofluorescence, and Laboratory-Developed TaqMan PCR for Detection of Herpes Simplex Virus in Swab Specimens

    PubMed Central

    Gitman, Melissa R.; Ferguson, David

    2013-01-01

    The Simplexa HSV 1 & 2 direct PCR assay was compared with conventional cell culture, cytospin-enhanced direct fluorescent antibody (DFA), and a laboratory-developed real-time TaqMan PCR (LDT HSV PCR) using extracted nucleic acid for the detection of herpes simplex virus (HSV) in dermal, genital, mouth, ocular, and other swab samples. One hundred seventy-one swabs were tested prospectively, and 58 were positive for HSV (34 HSV-1 and 24 HSV-2). Cytospin-DFA detected 50 (86.2%), conventional cell culture 51 (87.9%), Simplexa direct 55 (94.8%), and LDT HSV PCR 57 (98.3%) of 58 true positives. Simplexa direct detected more positives than DFA and culture, but the differences were not significant (P = 0.0736 and P = 0.3711, respectively, by the McNemar test). Samples that were positive by all methods (n = 48) were strong positives (LDT cycle threshold [CT] value, 14.4 to 26.1). One strongly positive sample was falsely negative by LDT HSV PCR due to a failure of TaqMan probe binding. Three samples falsely negative by Simplexa direct had high CT values by LDT HSV PCR (LDT CT, 35.8 to 38.2). Omission of the DNA extraction step by Simplexa direct led to a drop in sensitivity compared to the sensitivity of LDT HSV PCR using extracted samples (94.8% versus 98.3%, respectively), but the difference was not significant (P = 0.6171). Simplexa HSV 1 & 2 direct PCR was the most expensive but required the least training of the assays used, had the lowest hands-on time and fastest assay time (75 min, versus 3 h by LDT HSV PCR), and provided the HSV type. PMID:24006008

  5. Real-time polymerase chain reaction detection of cauliflower mosaic virus to complement the 35S screening assay for genetically modified organisms.

    PubMed

    Cankar, Katarina; Ravnikar, Maja; Zel, Jana; Gruden, Kristina; Toplak, Natasa

    2005-01-01

    Labeling of genetically modified organisms (GMOs) is now in place in many countries, including the European Union, in order to guarantee the consumer's choice between GM and non-GM products. Screening of samples is performed by polymerase chain reaction (PCR) amplification of regulatory sequences frequently introduced into genetically modified plants. Primers for the 35S promoter from Cauliflower mosaic virus (CaMV) are those most frequently used. In virus-infected plants or in samples contaminated with plant material carrying the virus, false-positive results can consequently occur. A system for real-time PCR using a TaqMan minor groove binder probe was designed that allows recognition of virus coat protein in the sample, thus allowing differentiation between transgenic and virus-infected samples. We measured the efficiency of PCR amplification, limits of detection and quantification, range of linearity, and repeatability of the assay in order to assess the applicability of the assay for routine analysis. The specificity of the detection system was tested on various virus isolates and plant species. All 8 CaMV isolates were successfully amplified using the designed system. No cross-reactivity was detected with DNA from 3 isolates of the closely related Carnation etched ring virus. Primers do not amplify plant DNA from available genetically modified maize and soybean lines or from different species of Brassicaceae or Solanaceae that are natural hosts for CaMV. We evaluated the assay for different food matrixes by spiking CaMV DNA into DNA from food samples and have successfully amplified CaMV from all samples. The assay was tested on rapeseed samples from routine GMO testing that were positive in the 35S screening assay, and the presence of the virus was confirmed.

  6. Transcription elongation. Heterogeneous tracking of RNA polymerase and its biological implications.

    PubMed

    Imashimizu, Masahiko; Shimamoto, Nobuo; Oshima, Taku; Kashlev, Mikhail

    2014-01-01

    Regulation of transcription elongation via pausing of RNA polymerase has multiple physiological roles. The pausing mechanism depends on the sequence heterogeneity of the DNA being transcribed, as well as on certain interactions of polymerase with specific DNA sequences. In order to describe the mechanism of regulation, we introduce the concept of heterogeneity into the previously proposed alternative models of elongation, power stroke and Brownian ratchet. We also discuss molecular origins and physiological significances of the heterogeneity.

  7. The mechanism of nucleosome traversal by RNA polymerase II

    PubMed Central

    2011-01-01

    RNA polymerase II traverses nucleosomes rapidly and efficiently in the cell but it has not been possible to duplicate this process in the test tube. A single nucleosome has generally been found to provide a strong barrier to transcript elongation in vitro. Recent studies have shown that effective transcript elongation can occur on nucleosomal templates in vitro, but this depends on both facilitated uncoiling of DNA from the octamer surface and the presence of transcription factors that maintain polymerase in the transcriptionally competent state. These findings indicate that the efficiency and rate of transcription through chromatin could be regulated through controlled DNA uncoiling. These studies also demonstrate that nucleosome traversal need not result in nucleosome displacement. PMID:21519186

  8. A movie of the RNA polymerase nucleotide addition cycle.

    PubMed

    Brueckner, Florian; Ortiz, Julio; Cramer, Patrick

    2009-06-01

    During gene transcription, RNA polymerase (Pol) passes through repetitive cycles of adding a nucleotide to the growing mRNA chain. Here we obtained a movie of the nucleotide addition cycle by combining structural information on different functional states of the Pol II elongation complex (EC). The movie illustrates the two-step loading of the nucleoside triphosphate (NTP) substrate, closure of the active site for catalytic nucleotide incorporation, and the presumed two-step translocation of DNA and RNA, which is accompanied by coordinated conformational changes in the polymerase bridge helix and trigger loop. The movie facilitates teaching and a mechanistic analysis of transcription and can be downloaded from http://www.lmb.uni-muenchen.de/cramer/pr-materials.

  9. A Mechanistic Model for Cooperative Behavior of Co-transcribing RNA Polymerases

    PubMed Central

    Heberling, Tamra; Davis, Lisa; Gedeon, Jakub; Morgan, Charles; Gedeon, Tomáš

    2016-01-01

    In fast-transcribing prokaryotic genes, such as an rrn gene in Escherichia coli, many RNA polymerases (RNAPs) transcribe the DNA simultaneously. Active elongation of RNAPs is often interrupted by pauses, which has been observed to cause RNAP traffic jams; yet some studies indicate that elongation seems to be faster in the presence of multiple RNAPs than elongation by a single RNAP. We propose that an interaction between RNAPs via the torque produced by RNAP motion on helically twisted DNA can explain this apparent paradox. We have incorporated the torque mechanism into a stochastic model and simulated transcription both with and without torque. Simulation results illustrate that the torque causes shorter pause durations and fewer collisions between polymerases. Our results suggest that the torsional interaction of RNAPs is an important mechanism in maintaining fast transcription times, and that transcription should be viewed as a cooperative group effort by multiple polymerases. PMID:27517607

  10. Recombinase polymerase amplification-based assay to diagnose Giardia in stool samples.

    PubMed

    Crannell, Zachary Austin; Cabada, Miguel Mauricio; Castellanos-Gonzalez, Alejandro; Irani, Ayesha; White, Arthur Clinton; Richards-Kortum, Rebecca

    2015-03-01

    Giardia duodenalis is one of the most commonly identified parasites in stool samples. Although relatively easy to treat, giardiasis can be difficult to detect as it presents similar to other diarrheal diseases. Here, we present a recombinase polymerase amplification-based Giardia (RPAG) assay to detect the presence of Giardia in stool samples. The RPAG assay was characterized on the bench top using stool samples spiked with Giardia cysts where it showed a limit-of-detection nearly as low as the gold standard polymerase chain reaction assay. The RPAG assay was then tested in the highlands of Peru on 104 stool samples collected from the surrounding communities where it showed 73% sensitivity and 95% specificity against a polymerase chain reaction and microscopy composite gold standard. Further improvements in clinical sensitivity will be needed for the RPAG assay to have clinical relevance. © The American Society of Tropical Medicine and Hygiene.

  11. DNA synthesis involving a complexes form of DNA polymerase I in extracts of Escherichia coli.

    PubMed Central

    Hendler, R W; Pereira, M; Scharff, R

    1975-01-01

    DNA polymerase I (EC 2.7.7.7; deoxynucleosidetriphosphate:DNA deoxynucleotidyltransferase) has been recovered as a complex of about 390,000 molecular weight. The complex displays an ATP-stimulated DNA-synthesizing activity that prefers native to heat-denatured DNA. Genetic evidence indicates that the recBC enzyme is associated with the polymerase in the complex. Preliminary evidence for complexes involving DNA polymerases II and III is also presented. PMID:1094453

  12. Co-operation between Polymerases and Nucleotide Synthetases in the RNA World.

    PubMed

    Kim, Ye Eun; Higgs, Paul G

    2016-11-01

    It is believed that life passed through an RNA World stage in which replication was sustained by catalytic RNAs (ribozymes). The two most obvious types of ribozymes are a polymerase, which uses a neighbouring strand as a template to make a complementary sequence to the template, and a nucleotide synthetase, which synthesizes monomers for use by the polymerase. When a chemical source of monomers is available, the polymerase can survive on its own. When the chemical supply of monomers is too low, nucleotide production by the synthetase is essential and the two ribozymes can only survive when they are together. Here we consider a computational model to investigate conditions under which coexistence and cooperation of these two types of ribozymes is possible. The model considers six types of strands: the two functional sequences, the complementary strands to these sequences (which are required as templates), and non-functional mutants of the two sequences (which act as parasites). Strands are distributed on a two-dimensional lattice. Polymerases replicate strands on neighbouring sites and synthetases produce monomers that diffuse in the local neighbourhood. We show that coexistence of unlinked polymerases and synthetases is possible in this spatial model under conditions in which neither sequence could survive alone; hence, there is a selective force for increasing complexity. Coexistence is dependent on the relative lengths of the two functional strands, the strand diffusion rate, the monomer diffusion rate, and the rate of deleterious mutations. The sensitivity of this two-ribozyme system suggests that evolution of a system of many types of ribozymes would be difficult in a purely spatial model with unlinked genes. We therefore speculate that linkage of genes onto mini-chromosomes and encapsulation of strands in protocells would have been important fairly early in the history of life as a means of enabling more complex systems to evolve.

  13. Poliovirus RNA polymerase: in vitro enzymatic activities, fidelity of replication, and characterization of a temperature-sensitive RNA-negative mutant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stokes, M.A.M.

    1985-01-01

    The in vitro activities of the purified poliovirus RNA polymerase were investigated in this study. The polymerase was shown to be a strict RNA dependent RNA polymerase. It only copied RNA templates but used either a DNA or RNA primer to initiate RNA synthesis. Partially purified polymerase has some DNA polymerase activities. Additional purification of the enzyme and studies with a mutant poliovirus RNA polymerase indicated that the DNA polymerase activities were due to a cellular polymerase. The fidelity of RNA replication in vitro by the purified poliovirus RNA polymerase was studied by measuring the rate of misincorporation of noncomplementarymore » ribonucleotide monophosphates on synthetic homopolymeric RNA templates. The results showed that the ratio of noncomplementary to complementary ribonucleotides incorporated was 1-5 x 10/sup -3/. The viral polymerase of a poliovirus temperature sensitive RNA-negative mutant, Ts 10, was isolated. This study confirmed that the mutant was viable 33/sup 0/, but was RNA negative at 39/sup 0/. Characterization of the Ts 10 polymerase showed it was significantly more sensitive to heat inactivation than was the old-type polymerase. Highly purified poliovirions were found to contain several noncapsid proteins. At least two of these proteins were labeled by (/sup 35/S)methionine infected cells and appeared to be virally encoded proteins. One of these proteins was immunoprecipitated by anti-3B/sup vpg/ antiserum. This protein had the approximate Mr = 50,000 and appeared to be one of the previously identified 3B/sup vpg/ precursor proteins.« less

  14. Evolution of thermophilic DNA polymerases for the recognition and amplification of C2ʹ-modified DNA

    NASA Astrophysics Data System (ADS)

    Chen, Tingjian; Hongdilokkul, Narupat; Liu, Zhixia; Adhikary, Ramkrishna; Tsuen, Shujian S.; Romesberg, Floyd E.

    2016-06-01

    The PCR amplification of oligonucleotides enables the evolution of sequences called aptamers that bind specific targets with antibody-like affinity. However, in many applications the use of these aptamers is limited by nuclease-mediated degradation. In contrast, oligonucleotides that are modified at their sugar C2ʹ positions with methoxy or fluorine substituents are stable to nucleases, but they cannot be synthesized by natural polymerases. Here we report the development of a polymerase-evolution system and its use to evolve thermostable polymerases that efficiently interconvert C2ʹ-OMe-modified oligonucleotides and their DNA counterparts via ‘transcription’ and ‘reverse transcription’ or, more importantly, that PCR-amplify partially C2ʹ-OMe- or C2ʹ-F-modified oligonucleotides. A mechanistic analysis demonstrates that the ability to amplify the modified oligonucleotides evolved by optimizing interdomain interactions that stabilize the catalytically competent closed conformation of the polymerase. The evolved polymerases should find practical applications and the developed evolution system should be a powerful tool for tailoring polymerases to have other types of novel function.

  15. DNA Polymerases λ and β: The Double-Edged Swords of DNA Repair.

    PubMed

    Mentegari, Elisa; Kissova, Miroslava; Bavagnoli, Laura; Maga, Giovanni; Crespan, Emmanuele

    2016-08-31

    DNA is constantly exposed to both endogenous and exogenous damages. More than 10,000 DNA modifications are induced every day in each cell's genome. Maintenance of the integrity of the genome is accomplished by several DNA repair systems. The core enzymes for these pathways are the DNA polymerases. Out of 17 DNA polymerases present in a mammalian cell, at least 13 are specifically devoted to DNA repair and are often acting in different pathways. DNA polymerases β and λ are involved in base excision repair of modified DNA bases and translesion synthesis past DNA lesions. Polymerase λ also participates in non-homologous end joining of DNA double-strand breaks. However, recent data have revealed that, depending on their relative levels, the cell cycle phase, the ratio between deoxy- and ribo-nucleotide pools and the interaction with particular auxiliary proteins, the repair reactions carried out by these enzymes can be an important source of genetic instability, owing to repair mistakes. This review summarizes the most recent results on the ambivalent properties of these enzymes in limiting or promoting genetic instability in mammalian cells, as well as their potential use as targets for anticancer chemotherapy.

  16. RNA-dependent RNA polymerases of dsRNA bacteriophages.

    PubMed

    Makeyev, Eugene V; Grimes, Jonathan M

    2004-04-01

    Genome replication and transcription of riboviruses are catalyzed by an RNA-dependent RNA polymerase (RdRP). RdRPs are normally associated with other virus- or/and host-encoded proteins that modulate RNA polymerization activity and template specificity. The polymerase complex of double-stranded dsRNA viruses is a large icosahedral particle (inner core) containing RdRP as a minor constituent. In phi6 and other dsRNA bacteriophages from the Cystoviridae family, the inner core is composed of four virus-specific proteins. Of these, protein P2, or Pol subunit, has been tentatively identified as RdRP by sequence comparisons, but the role of this protein in viral RNA synthesis has not been studied until recently. Here, we overview the work on the Pol subunits of phi6 and related viruses from the standpoints of function, structure and evolution.

  17. Detection of Entamoeba histolytica by Recombinase Polymerase Amplification.

    PubMed

    Nair, Gayatri; Rebolledo, Mauricio; White, A Clinton; Crannell, Zachary; Richards-Kortum, R Rebecca; Pinilla, A Elizabeth; Ramírez, Juan David; López, M Consuelo; Castellanos-Gonzalez, Alejandro

    2015-09-01

    Amebiasis is an important cause of diarrheal disease worldwide and has been associated with childhood malnutrition. Traditional microscopy approaches are neither sensitive nor specific for Entamoeba histolytica. Antigen assays are more specific, but many cases are missed unless tested by molecular methods. Although polymerase chain reaction (PCR) is effective, the need for sophisticated, expensive equipment, infrastructure, and trained personnel limits its usefulness, especially in the resource-limited, endemic areas. Here, we report development of a recombinase polymerase amplification (RPA) method to detect E. histolytica specifically. Using visual detection by lateral flow (LF), the test was highly sensitive and specific and could be performed without additional equipment. The availability of this inexpensive, sensitive, and field-applicable diagnostic test could facilitate rapid diagnosis and treatment of amebiasis in endemic regions. © The American Society of Tropical Medicine and Hygiene.

  18. How a low-fidelity DNA polymerase chooses non-Watson-Crick from Watson-Crick incorporation.

    PubMed

    Wu, Wen-Jin; Su, Mei-I; Wu, Jian-Li; Kumar, Sandeep; Lim, Liang-Hin; Wang, Chun-Wei Eric; Nelissen, Frank H T; Chen, Ming-Chuan Chad; Doreleijers, Jurgen F; Wijmenga, Sybren S; Tsai, Ming-Daw

    2014-04-02

    A dogma for DNA polymerase catalysis is that the enzyme binds DNA first, followed by MgdNTP. This mechanism contributes to the selection of correct dNTP by Watson-Crick base pairing, but it cannot explain how low-fidelity DNA polymerases overcome Watson-Crick base pairing to catalyze non-Watson-Crick dNTP incorporation. DNA polymerase X from the deadly African swine fever virus (Pol X) is a half-sized repair polymerase that catalyzes efficient dG:dGTP incorporation in addition to correct repair. Here we report the use of solution structures of Pol X in the free, binary (Pol X:MgdGTP), and ternary (Pol X:DNA:MgdGTP with dG:dGTP non-Watson-Crick pairing) forms, along with functional analyses, to show that Pol X uses multiple unprecedented strategies to achieve the mutagenic dG:dGTP incorporation. Unlike high fidelity polymerases, Pol X can prebind purine MgdNTP tightly and undergo a specific conformational change in the absence of DNA. The prebound MgdGTP assumes an unusual syn conformation stabilized by partial ring stacking with His115. Upon binding of a gapped DNA, also with a unique mechanism involving primarily helix αE, the prebound syn-dGTP forms a Hoogsteen base pair with the template anti-dG. Interestingly, while Pol X prebinds MgdCTP weakly, the correct dG:dCTP ternary complex is readily formed in the presence of DNA. H115A mutation disrupted MgdGTP binding and dG:dGTP ternary complex formation but not dG:dCTP ternary complex formation. The results demonstrate the first solution structural view of DNA polymerase catalysis, a unique DNA binding mode, and a novel mechanism for non-Watson-Crick incorporation by a low-fidelity DNA polymerase.

  19. Adaptive Mutations in Influenza A/California/07/2009 Enhance Polymerase Activity and Infectious Virion Production.

    PubMed

    Slaine, Patrick D; MacRae, Cara; Kleer, Mariel; Lamoureux, Emily; McAlpine, Sarah; Warhuus, Michelle; Comeau, André M; McCormick, Craig; Hatchette, Todd; Khaperskyy, Denys A

    2018-05-18

    Mice are not natural hosts for influenza A viruses (IAVs), but they are useful models for studying antiviral immune responses and pathogenesis. Serial passage of IAV in mice invariably causes the emergence of adaptive mutations and increased virulence. Here, we report the adaptation of IAV reference strain A/California/07/2009(H1N1) (also known as CA/07) in outbred Swiss Webster mice. Serial passage led to increased virulence and lung titers, and dissemination of the virus to brains. We adapted a deep-sequencing protocol to identify and enumerate adaptive mutations across all genome segments. Among mutations that emerged during mouse-adaptation, we focused on amino acid substitutions in polymerase subunits: polymerase basic-1 (PB1) T156A and F740L and polymerase acidic (PA) E349G. These mutations were evaluated singly and in combination in minigenome replicon assays, which revealed that PA E349G increased polymerase activity. By selectively engineering three PB1 and PA mutations into the parental CA/07 strain, we demonstrated that these mutations in polymerase subunits decreased the production of defective viral genome segments with internal deletions and dramatically increased the release of infectious virions from mouse cells. Together, these findings increase our understanding of the contribution of polymerase subunits to successful host adaptation.

  20. The yeast Saccharomyces cerevisiae DNA polymerase IV: possible involvement in double strand break DNA repair.

    PubMed

    Leem, S H; Ropp, P A; Sugino, A

    1994-08-11

    We identified and purified a new DNA polymerase (DNA polymerase IV), which is similar to mammalian DNA polymerase beta, from Saccharomyces cerevisiae and suggested that it is encoded by YCR14C (POLX) on chromosome III. Here, we provided a direct evidence that the purified DNA polymerase IV is indeed encoded by POLX. Strains harboring a pol4 deletion mutation exhibit neither mitotic growth defect nor a meiosis defect, suggesting that DNA polymerase IV participates in nonessential functions in DNA metabolism. The deletion strains did not exhibit UV-sensitivity. However, they did show weak sensitivity to MMS-treatment and exhibited a hyper-recombination phenotype when intragenic recombination was measured during meiosis. Furthermore, MAT alpha pol4 delta segregants had a higher frequency of illegitimate mating with a MAT alpha tester strain than that of wild-type cells. These results suggest that DNA polymerase IV participates in a double-strand break repair pathway. A 3.2kb of the POL4 transcript was weakly expressed in mitotically growing cells. During meiosis, a 2.2 kb POL4 transcript was greatly induced, while the 3.2 kb transcript stayed at constant levels. This induction was delayed in a swi4 delta strain during meiosis, while no effect was observed in a swi6 delta strain.

  1. Structural basis for the D-stereoselectivity of human DNA polymerase β

    PubMed Central

    Vyas, Rajan; Reed, Andrew J.; Raper, Austin T.; Zahurancik, Walter J.; Wallenmeyer, Petra C.

    2017-01-01

    Abstract Nucleoside reverse transcriptase inhibitors (NRTIs) with L-stereochemistry have long been an effective treatment for viral infections because of the strong D-stereoselectivity exhibited by human DNA polymerases relative to viral reverse transcriptases. The D-stereoselectivity of DNA polymerases has only recently been explored structurally and all three DNA polymerases studied to date have demonstrated unique stereochemical selection mechanisms. Here, we have solved structures of human DNA polymerase β (hPolβ), in complex with single-nucleotide gapped DNA and L-nucleotides and performed pre-steady-state kinetic analysis to determine the D-stereoselectivity mechanism of hPolβ. Beyond a similar 180° rotation of the L-nucleotide ribose ring seen in other studies, the pre-catalytic ternary crystal structures of hPolβ, DNA and L-dCTP or the triphosphate forms of antiviral drugs lamivudine ((-)3TC-TP) and emtricitabine ((-)FTC-TP) provide little structural evidence to suggest that hPolβ follows the previously characterized mechanisms of D-stereoselectivity. Instead, hPolβ discriminates against L-stereochemistry through accumulation of several active site rearrangements that lead to a decreased nucleotide binding affinity and incorporation rate. The two NRTIs escape some of the active site selection through the base and sugar modifications but are selected against through the inability of hPolβ to complete thumb domain closure. PMID:28402499

  2. Determining Annealing Temperatures for Polymerase Chain Reaction

    ERIC Educational Resources Information Center

    Porta, Angela R.; Enners, Edward

    2012-01-01

    The polymerase chain reaction (PCR) is a common technique used in high school and undergraduate science teaching. Students often do not fully comprehend the underlying principles of the technique and how optimization of the protocol affects the outcome and analysis. In this molecular biology laboratory, students learn the steps of PCR with an…

  3. Performance of three commercial viral load assays, Versant human immunodeficiency virus type 1 (HIV-1) RNA bDNA v3.0, Cobas AmpliPrep/Cobas TaqMan HIV-1, and NucliSens HIV-1 EasyQ v1.2, testing HIV-1 non-B subtypes and recombinant variants.

    PubMed

    Holguín, Africa; López, Marisa; Molinero, Mar; Soriano, Vincent

    2008-09-01

    Monitoring antiretroviral therapy requires that human immunodeficiency virus type 1 (HIV-1) viremia assays are applicable to all distinct variants. This study evaluates the performance of three commercial viral load assays-Versant HIV-1 RNA bDNA v3.0, Cobas AmpliPrep/Cobas TaqMan HIV-1, and NucliSens HIV-1 EasyQ v1.2-in testing 83 plasma specimens from patients carrying HIV-1 non-B subtypes and recombinants previously defined by phylogenetic analysis of the pol gene. All 28 specimens from patients under treatment presented viremia values below the detection limit with the three methods. In the remaining 55 specimens from naive individuals viremia could not be detected in 32.7, 20, and 14.6% using the NucliSens, Versant, or TaqMan tests, respectively, suggesting potential viral load underestimation of some samples by all techniques. Only 32 (58.2%) samples from naive subjects were quantified by the three methods; the NucliSens test provided the highest HIV RNA values (mean, 4.87 log copies/ml), and the Versant test provided the lowest (mean, 4.16 log copies/ml). Viremia differences of greater than 1 log were seen in 8 (14.5%) of 55 specimens, occurring in 10.9, 7.3, and 5.4%, respectively, of the specimens in comparisons of Versant versus NucliSens, Versant versus TaqMan, and TaqMan versus NucliSens. Differences greater than 0.5 log, considered significant for clinicians, occurred in 45.5, 27.3, and 29% when the same assays were compared. Some HIV-1 strains, such as subtype G and CRF02_AG, showed more discrepancies in distinct quantification methods than others. In summary, an adequate design of primers and probes is needed for optimal quantitation of plasma HIV-RNA in non-B subtypes. Our data emphasize the need to use the same method for monitoring patients on therapy and also the convenience of HIV-1 subtyping.

  4. A Transient Kinetic Approach to Investigate Nucleoside Inhibitors of Mitochondrial DNA polymerase γ

    PubMed Central

    Anderson, Karen S.

    2010-01-01

    Nucleoside analogs play an essential role in treating human immunodeficiency virus (HIV) infection since the beginning of the AIDS epidemic and work by inhibition of HIV-1 reverse transcriptase (RT), a viral polymerase essential for DNA replication. Today, over 90% of all regimens for HIV treatment contain at least one nucleoside. Long-term use of nucleoside analogs has been associated with adverse effects including mitochondrial toxicity due to inhibition of the mitochondrial polymerase, DNA polymerase gamma (mtDNA pol ©). In this review, we describe our efforts to delineate the molecular mechanism of nucleoside inhibition of HIV-1 RT and mtDNA pol © based upon a transient kinetic approach using rapid chemical quench methodology. Using transient kinetic methods, the maximum rate of polymerization (kpol), the dissociation constant for the ground state binding (Kd), and the incorporation efficiency (kpol/Kd) can be determined for the nucleoside analogs and their natural substrates. This analysis allowed us to develop an understanding of the structure activity relationships that allow correlation between the structural and stereochemical features of the nucleoside analog drugs with their mechanistic behavior toward the viral polymerase, RT, and the host cell polymerase, mtDNA pol γ. An in-depth understanding of the mechanisms of inhibition of these enzymes is imperative in overcoming problems associated with toxicity. PMID:20573564

  5. Contributions of in vitro transcription to the understanding of human RNA polymerase III transcription

    PubMed Central

    Dumay-Odelot, Hélène; Durrieu-Gaillard, Stéphanie; El Ayoubi, Leyla; Parrot, Camila; Teichmann, Martin

    2014-01-01

    Human RNA polymerase III transcribes small untranslated RNAs that contribute to the regulation of essential cellular processes, including transcription, RNA processing and translation. Analysis of this transcription system by in vitro transcription techniques has largely contributed to the discovery of its transcription factors and to the understanding of the regulation of human RNA polymerase III transcription. Here we review some of the key steps that led to the identification of transcription factors and to the definition of minimal promoter sequences for human RNA polymerase III transcription. PMID:25764111

  6. PCR Amplicon Prediction from Multiplex Degenerate Primer and Probe Sets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gardner, S. N.

    2013-08-08

    Assessing primer specificity and predicting both desired and off-target amplification products is an essential step for robust PCR assay design. Code is described to predict potential polymerase chain reaction (PCR) amplicons in a large sequence database such as NCBI nt from either singleplex or a large multiplexed set of primers, allowing degenerate primer and probe bases, with target mismatch annotates amplicons with gene information automatically downloaded from NCBI, and optionally it can predict whether there are also TaqMan/Luminex probe matches within predicted amplicons.

  7. Intergenic Transcriptional Interference Is Blocked by RNA Polymerase III Transcription Factor TFIIIB in Saccharomyces cerevisiae

    PubMed Central

    Korde, Asawari; Rosselot, Jessica M.; Donze, David

    2014-01-01

    The major function of eukaryotic RNA polymerase III is to transcribe transfer RNA, 5S ribosomal RNA, and other small non-protein-coding RNA molecules. Assembly of the RNA polymerase III complex on chromosomal DNA requires the sequential binding of transcription factor complexes TFIIIC and TFIIIB. Recent evidence has suggested that in addition to producing RNA transcripts, chromatin-assembled RNA polymerase III complexes may mediate additional nuclear functions that include chromatin boundary, nucleosome phasing, and general genome organization activities. This study provides evidence of another such “extratranscriptional” activity of assembled RNA polymerase III complexes, which is the ability to block progression of intergenic RNA polymerase II transcription. We demonstrate that the RNA polymerase III complex bound to the tRNA gene upstream of the Saccharomyces cerevisiae ATG31 gene protects the ATG31 promoter against readthrough transcriptional interference from the upstream noncoding intergenic SUT467 transcription unit. This protection is predominately mediated by binding of the TFIIIB complex. When TFIIIB binding to this tRNA gene is weakened, an extended SUT467–ATG31 readthrough transcript is produced, resulting in compromised ATG31 translation. Since the ATG31 gene product is required for autophagy, strains expressing the readthrough transcript exhibit defective autophagy induction and reduced fitness under autophagy-inducing nitrogen starvation conditions. Given the recent discovery of widespread pervasive transcription in all forms of life, protection of neighboring genes from intergenic transcriptional interference may be a key extratranscriptional function of assembled RNA polymerase III complexes and possibly other DNA binding proteins. PMID:24336746

  8. Multifunctionality of a Picornavirus Polymerase Domain: Nuclear Localization Signal and Nucleotide Recognition

    PubMed Central

    Ferrer-Orta, Cristina; de la Higuera, Ignacio; Caridi, Flavia; Sánchez-Aparicio, María Teresa; Moreno, Elena; Perales, Celia; Singh, Kamalendra; Sarafianos, Stefan G.; Sobrino, Francisco; Domingo, Esteban

    2015-01-01

    ABSTRACT The N-terminal region of the foot-and-mouth disease virus (FMDV) 3D polymerase contains the sequence MRKTKLAPT (residues 16 to 24) that acts as a nuclear localization signal. A previous study showed that substitutions K18E and K20E diminished the transport to the nucleus of 3D and 3CD and severely impaired virus infectivity. These residues have also been implicated in template binding, as seen in the crystal structures of different 3D-RNA elongation complexes. Here, we report the biochemical and structural characterization of different mutant polymerases harboring substitutions at residues 18 and 20, in particular, K18E, K18A, K20E, K20A, and the double mutant K18A K20A (KAKA). All mutant enzymes exhibit low RNA binding activity, low processivity, and alterations in nucleotide recognition, including increased incorporation of ribavirin monophosphate (RMP) relative to the incorporation of cognate nucleotides compared with the wild-type enzyme. The structural analysis shows an unprecedented flexibility of the 3D mutant polymerases, including both global rearrangements of the closed-hand architecture and local conformational changes at loop β9-α11 (within the polymerase motif B) and at the template-binding channel. Specifically, in 3D bound to RNA, both K18E and K20E induced the opening of new pockets in the template channel where the downstream templating nucleotide at position +2 binds. The comparisons of free and RNA-bound enzymes suggest that the structural rearrangements may occur in a concerted mode to regulate RNA replication, processivity, and fidelity. Thus, the N-terminal region of FMDV 3D that acts as a nuclear localization signal (NLS) and in template binding is also involved in nucleotide recognition and can affect the incorporation of nucleotide analogues. IMPORTANCE The study documents multifunctionality of a nuclear localization signal (NLS) located at the N-terminal region of the foot-and-mouth disease viral polymerase (3D). Amino acid

  9. Genetic and codon usage bias analyses of polymerase genes of equine influenza virus and its relation to evolution.

    PubMed

    Bera, Bidhan Ch; Virmani, Nitin; Kumar, Naveen; Anand, Taruna; Pavulraj, S; Rash, Adam; Elton, Debra; Rash, Nicola; Bhatia, Sandeep; Sood, Richa; Singh, Raj Kumar; Tripathi, Bhupendra Nath

    2017-08-23

    Equine influenza is a major health problem of equines worldwide. The polymerase genes of influenza virus have key roles in virus replication, transcription, transmission between hosts and pathogenesis. Hence, the comprehensive genetic and codon usage bias of polymerase genes of equine influenza virus (EIV) were analyzed to elucidate the genetic and evolutionary relationships in a novel perspective. The group - specific consensus amino acid substitutions were identified in all polymerase genes of EIVs that led to divergence of EIVs into various clades. The consistent amino acid changes were also detected in the Florida clade 2 EIVs circulating in Europe and Asia since 2007. To study the codon usage patterns, a total of 281,324 codons of polymerase genes of EIV H3N8 isolates from 1963 to 2015 were systemically analyzed. The polymerase genes of EIVs exhibit a weak codon usage bias. The ENc-GC3s and Neutrality plots indicated that natural selection is the major influencing factor of codon usage bias, and that the impact of mutation pressure is comparatively minor. The methods for estimating host imposed translation pressure suggested that the polymerase acidic (PA) gene seems to be under less translational pressure compared to polymerase basic 1 (PB1) and polymerase basic 2 (PB2) genes. The multivariate statistical analysis of polymerase genes divided EIVs into four evolutionary diverged clusters - Pre-divergent, Eurasian, Florida sub-lineage 1 and 2. Various lineage specific amino acid substitutions observed in all polymerase genes of EIVs and especially, clade 2 EIVs underwent major variations which led to the emergence of a phylogenetically distinct group of EIVs originating from Richmond/1/07. The codon usage bias was low in all the polymerase genes of EIVs that was influenced by the multiple factors such as the nucleotide compositions, mutation pressure, aromaticity and hydropathicity. However, natural selection was the major influencing factor in defining the

  10. Posttranslational Regulation of Human DNA Polymerase ι.

    PubMed

    McIntyre, Justyna; McLenigan, Mary P; Frank, Ekaterina G; Dai, Xiaoxia; Yang, Wei; Wang, Yinsheng; Woodgate, Roger

    2015-11-06

    Human DNA polymerases (pols) η and ι are Y-family DNA polymerase paralogs that facilitate translesion synthesis past damaged DNA. Both polη and polι can be monoubiquitinated in vivo. Polη has been shown to be ubiquitinated at one primary site. When this site is unavailable, three nearby lysines may become ubiquitinated. In contrast, mass spectrometry analysis of monoubiquitinated polι revealed that it is ubiquitinated at over 27 unique sites. Many of these sites are localized in different functional domains of the protein, including the catalytic polymerase domain, the proliferating cell nuclear antigen-interacting region, the Rev1-interacting region, and its ubiquitin binding motifs UBM1 and UBM2. Polι monoubiquitination remains unchanged after cells are exposed to DNA-damaging agents such as UV light (generating UV photoproducts), ethyl methanesulfonate (generating alkylation damage), mitomycin C (generating interstrand cross-links), or potassium bromate (generating direct oxidative DNA damage). However, when exposed to naphthoquinones, such as menadione and plumbagin, which cause indirect oxidative damage through mitochondrial dysfunction, polι becomes transiently polyubiquitinated via Lys(11)- and Lys(48)-linked chains of ubiquitin and subsequently targeted for degradation. Polyubiquitination does not occur as a direct result of the perturbation of the redox cycle as no polyubiquitination was observed after treatment with rotenone or antimycin A, which both inhibit mitochondrial electron transport. Interestingly, polyubiquitination was observed after the inhibition of the lysine acetyltransferase KATB3/p300. We hypothesize that the formation of polyubiquitination chains attached to polι occurs via the interplay between lysine acetylation and ubiquitination of ubiquitin itself at Lys(11) and Lys(48) rather than oxidative damage per se. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  11. Studies of the Interaction of Influenza Virus RNA Polymerase PAN with Endonuclease Inhibitors.

    PubMed

    Dong, Li-Hua; Cao, Xiao-Rong

    2018-06-01

    Influenza virus is a major causative agent of respiratory viral infections, and RNA polymerase catalyzes its replication and transcription activities in infected cell nuclei. Since it is highly conserved in all virus strains, RNA polymerase becomes a key target of anti-influenza virus agents. Although experimental studies have revealed the good inhibitory activity of endonuclease inhibitors to RNA polymerase, the mechanism is still unclear. In this study, the docking and molecular dynamics simulations have been performed to explore the interaction of three kinds of endonuclease inhibitors with the subunit (PA N ) of RNA polymerase. Our calculations indicate that all these endonuclease inhibitors can bind to the binding pocket of PA N , in which the electronegative oxygen atoms of the inhibitors form a chelated structure with the two Mn 2+ cations of the active center. The most important interaction between these inhibitors and PA N is electrostatic interaction. The electron density of the chelate oxygen atoms determines the magnitude of the electrostatic energy, and the chelated structure and orientation of inhibitors depend largely on the distance between the chelate oxygen atoms.

  12. Pre-Steady-State Kinetic Analysis of Truncated and Full-Length Saccharomyces cerevisiae DNA Polymerase Eta

    PubMed Central

    Brown, Jessica A.; Zhang, Likui; Sherrer, Shanen M.; Taylor, John-Stephen; Burgers, Peter M. J.; Suo, Zucai

    2010-01-01

    Understanding polymerase fidelity is an important objective towards ascertaining the overall stability of an organism's genome. Saccharomyces cerevisiae DNA polymerase η (yPolη), a Y-family DNA polymerase, is known to efficiently bypass DNA lesions (e.g., pyrimidine dimers) in vivo. Using pre-steady-state kinetic methods, we examined both full-length and a truncated version of yPolη which contains only the polymerase domain. In the absence of yPolη's C-terminal residues 514–632, the DNA binding affinity was weakened by 2-fold and the base substitution fidelity dropped by 3-fold. Thus, the C-terminus of yPolη may interact with DNA and slightly alter the conformation of the polymerase domain during catalysis. In general, yPolη discriminated between a correct and incorrect nucleotide more during the incorporation step (50-fold on average) than the ground-state binding step (18-fold on average). Blunt-end additions of dATP or pyrene nucleotide 5′-triphosphate revealed the importance of base stacking during the binding of incorrect incoming nucleotides. PMID:20798853

  13. Poliovirus Polymerase Leu420 Facilitates RNA Recombination and Ribavirin Resistance

    PubMed Central

    Kempf, Brian J.; Peersen, Olve B.

    2016-01-01

    ABSTRACT RNA recombination is important in the formation of picornavirus species groups and the ongoing evolution of viruses within species groups. In this study, we examined the structure and function of poliovirus polymerase, 3Dpol, as it relates to RNA recombination. Recombination occurs when nascent RNA products exchange one viral RNA template for another during RNA replication. Because recombination is a natural aspect of picornavirus replication, we hypothesized that some features of 3Dpol may exist, in part, to facilitate RNA recombination. Furthermore, we reasoned that alanine substitution mutations that disrupt 3Dpol-RNA interactions within the polymerase elongation complex might increase and/or decrease the magnitudes of recombination. We found that an L420A mutation in 3Dpol decreased the frequency of RNA recombination, whereas alanine substitutions at other sites in 3Dpol increased the frequency of recombination. The 3Dpol Leu420 side chain interacts with a ribose in the nascent RNA product 3 nucleotides from the active site of the polymerase. Notably, the L420A mutation that reduced recombination also rendered the virus more susceptible to inhibition by ribavirin, coincident with the accumulation of ribavirin-induced G→A and C→U mutations in viral RNA. We conclude that 3Dpol Leu420 is critically important for RNA recombination and that RNA recombination contributes to ribavirin resistance. IMPORTANCE Recombination contributes to the formation of picornavirus species groups and the emergence of circulating vaccine-derived polioviruses (cVDPVs). The recombinant viruses that arise in nature are occasionally more fit than either parental strain, especially when the two partners in recombination are closely related, i.e., members of characteristic species groups, such as enterovirus species groups A to H or rhinovirus species groups A to C. Our study shows that RNA recombination requires conserved features of the viral polymerase. Furthermore, a

  14. Adaptive Mutations in Influenza A/California/07/2009 Enhance Polymerase Activity and Infectious Virion Production

    PubMed Central

    Slaine, Patrick D.; MacRae, Cara; Kleer, Mariel; Lamoureux, Emily; McAlpine, Sarah; Warhuus, Michelle; Comeau, André M.; Hatchette, Todd

    2018-01-01

    Mice are not natural hosts for influenza A viruses (IAVs), but they are useful models for studying antiviral immune responses and pathogenesis. Serial passage of IAV in mice invariably causes the emergence of adaptive mutations and increased virulence. Here, we report the adaptation of IAV reference strain A/California/07/2009(H1N1) (also known as CA/07) in outbred Swiss Webster mice. Serial passage led to increased virulence and lung titers, and dissemination of the virus to brains. We adapted a deep-sequencing protocol to identify and enumerate adaptive mutations across all genome segments. Among mutations that emerged during mouse-adaptation, we focused on amino acid substitutions in polymerase subunits: polymerase basic-1 (PB1) T156A and F740L and polymerase acidic (PA) E349G. These mutations were evaluated singly and in combination in minigenome replicon assays, which revealed that PA E349G increased polymerase activity. By selectively engineering three PB1 and PA mutations into the parental CA/07 strain, we demonstrated that these mutations in polymerase subunits decreased the production of defective viral genome segments with internal deletions and dramatically increased the release of infectious virions from mouse cells. Together, these findings increase our understanding of the contribution of polymerase subunits to successful host adaptation. PMID:29783694

  15. Molecular diagnosis of lyssaviruses and sequence comparison of Australian bat lyssavirus samples.

    PubMed

    Foord, A J; Heine, H G; Pritchard, L I; Lunt, R A; Newberry, K M; Rootes, C L; Boyle, D B

    2006-07-01

    To evaluate and implement molecular diagnostic tests for the detection of lyssaviruses in Australia. A published hemi-nested reverse transcriptase polymerase chain reaction (RT-PCR) for the detection of all lyssavirus genotypes was modified to a fully nested RT-PCR format and compared with the original assay. TaqMan assays for the detection of Australian bat lyssavirus (ABLV) were compared with both the nested and hemi-nested RT-PCR assays. The sequences of RT-PCR products were determined to assess sequence variations of the target region (nucleocapsid gene) in samples of ABLV originating from different regions. The nested RT-PCR assay was highly analytically specific, and at least as analytically sensitive as the hemi-nested assay. The TaqMan assays were highly analytically specific and more analytically sensitive than either RT-PCR assay, with a detection level of approximately 10 genome equivalents per microl. Sequence of the first 544 nucleotides of the nucleocapsid protein coding sequence was obtained from all samples of ABLV received at Australian Animal Health Laboratory during the study period. The nested RT-PCR provided a means for molecular diagnosis of all tested genotypes of lyssavirus including classical rabies virus and Australian bat lyssavirus. The published TaqMan assay proved to be superior to the RT-PCR assays for the detection of ABLV in terms of analytical sensitivity. The TaqMan assay would also be faster and cross contamination is less likely. Nucleotide sequence analyses of samples of ABLV from a wide geographical range in Australia demonstrated the conserved nature of this region of the genome and therefore the suitability of this region for molecular diagnosis.

  16. Nickel(II) affects poly(ADP-ribose) polymerase-mediated DNA repair in normal and cancer cells.

    PubMed

    Wozniak, Katarzyna; Czechowska, Agnieszka; Blasiak, Janusz

    2006-01-01

    Nickel(II) can be genotoxic, but the mechanism of its genotoxicity is not fully understood and the process of DNA repair may be considered as its potential target. We studied the effect of nickel chloride on the poly(ADP-ribose) polymerase (PARP)-mediated repair of DNA damaged by gamma-radiation and idarubicin with the alkaline comet assay in normal and cancer cells. Our results indicate that nickel chloride at very low, non-cytotoxic concentration of 1 microM can affect PARP-mediated DNA repair of lesions evoked by idarubicin and gamma-radiation. We also suggest that in the quiescent lymphocytes treated with gamma-radiation, nickel(II) could interfere with DNA repair process independent of PARP.

  17. Mechanistic investigation of the bypass of a bulky aromatic DNA adduct catalyzed by a Y-family DNA polymerase.

    PubMed

    Gadkari, Varun V; Tokarsky, E John; Malik, Chanchal K; Basu, Ashis K; Suo, Zucai

    2014-09-01

    3-Nitrobenzanthrone (3-NBA), a nitropolyaromatic hydrocarbon (NitroPAH) pollutant in diesel exhaust, is a potent mutagen and carcinogen. After metabolic activation, the primary metabolites of 3-NBA react with DNA to form dG and dA adducts. One of the three major adducts identified is N-(2'-deoxyguanosin-8-yl)-3-aminobenzanthrone (dG(C8-N-ABA)). This bulky adduct likely stalls replicative DNA polymerases but can be traversed by lesion bypass polymerases in vivo. Here, we employed running start assays to show that a site-specifically placed dG(C8-N-ABA) is bypassed in vitro by Sulfolobus solfataricus DNA polymerase IV (Dpo4), a model Y-family DNA polymerase. However, the nucleotide incorporation rate of Dpo4 was significantly reduced opposite both the lesion and the template position immediately downstream from the lesion site, leading to two strong pause sites. To investigate the kinetic effect of dG(C8-N-ABA) on polymerization, we utilized pre-steady-state kinetic methods to determine the kinetic parameters for individual nucleotide incorporations upstream, opposite, and downstream from the dG(C8-N-ABA) lesion. Relative to the replication of the corresponding undamaged DNA template, both nucleotide incorporation efficiency and fidelity of Dpo4 were considerably decreased during dG(C8-N-ABA) lesion bypass and the subsequent extension step. The lower nucleotide incorporation efficiency caused by the lesion is a result of a significantly reduced dNTP incorporation rate constant and modestly weaker dNTP binding affinity. At both pause sites, nucleotide incorporation followed biphasic kinetics with a fast and a slow phase and their rates varied with nucleotide concentration. In contrast, only the fast phase was observed with undamaged DNA. A kinetic mechanism was proposed for the bypass of dG(C8-N-ABA) bypass catalyzed by Dpo4. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Association of Taq I, Fok I and Apa I polymorphisms in Vitamin D Receptor (VDR) gene with leprosy.

    PubMed

    Neela, Venkata Sanjeev Kumar; Suryadevara, Naveen Chandra; Shinde, Vidya Gouri; Pydi, Satya Sudheer; Jain, Suman; Jonnalagada, Subbanna; Singh, Surya Satyanarayana; Valluri, Vijaya Lakshmi; Anandaraj, M P J S

    2015-06-01

    Vitamin D Receptor (VDR) is a transacting transcription factor which mediates immunomodulatory function and plays a key role in innate and adaptive immune responses through its ligand and polymorphisms in VDR gene may affect its regulatory function. To investigate the association of three VDR gene polymorphisms (TaqI rs731236, FokI rs2228570 and ApaI rs7975232) with leprosy. The study group includes 404 participants of which 222 were leprosy patients (paucibacillary=87, multibacillary=135) and 182 healthy controls. Genotyping was done using PCR-RFLP technique. Statistical analysis was performed using SNP Stats and PLINK software. The VDR FokI (rs2228570) ff genotype, ApaI (rs7975232) AA, Aa genotype and haplotype T-f-a, T-F-A were positively associated with leprosy when compared to healthy controls. The two variants at Fok and Apa positions in VDR gene are significantly associated with leprosy. Genotypes at FokI (ff), ApaI (aa) and haplotype (T-F-a, T-f-a) may contribute to the risk of developing leprosy by altering VDR phenotype/levels subsequently modulation of immune response. Copyright © 2015 American Society for Histocompatibility and Immunogenetics. Published by Elsevier Inc. All rights reserved.

  19. Transient expression and activity of human DNA polymerase iota in loach embryos.

    PubMed

    Makarova, Irina V; Kazakov, Andrey A; Makarova, Alena V; Khaidarova, Nella V; Kozikova, Larisa V; Nenasheva, Valentina V; Gening, Leonid V; Tarantul, Vyacheslav Z; Andreeva, Ludmila E

    2012-02-01

    Human DNA polymerase iota (Pol ι) is a Y-family DNA polymerase with unusual biochemical properties and not fully understood functions. Pol ι preferentially incorporates dGTP opposite template thymine. This property can be used to monitor Pol ι activity in the presence of other DNA polymerases, e.g. in cell extracts of tissues and tumors. We have now confirmed the specificity and sensitivity of the method of Pol ι activity detection in cell extracts using an animal model of loach Misgurnus fossilis embryos transiently expressing human Pol ι. The overexpression of Pol ι was shown to be accompanied by an increase in abnormalities in development and the frequency of pycnotic nuclei in fish embryos. Further analysis of fish embryos with constitutive or regulated Pol ι expression may provide insights into Pol ι functions in vertebrate animals.

  20. Regulating RNA polymerase pausing and transcription elongation in embryonic stem cells

    PubMed Central

    Min, Irene M.; Waterfall, Joshua J.; Core, Leighton J.; Munroe, Robert J.; Schimenti, John; Lis, John T.

    2011-01-01

    Transitions between pluripotent stem cells and differentiated cells are executed by key transcription regulators. Comparative measurements of RNA polymerase distribution over the genome's primary transcription units in different cell states can identify the genes and steps in the transcription cycle that are regulated during such transitions. To identify the complete transcriptional profiles of RNA polymerases with high sensitivity and resolution, as well as the critical regulated steps upon which regulatory factors act, we used genome-wide nuclear run-on (GRO-seq) to map the density and orientation of transcriptionally engaged RNA polymerases in mouse embryonic stem cells (ESCs) and mouse embryonic fibroblasts (MEFs). In both cell types, progression of a promoter-proximal, paused RNA polymerase II (Pol II) into productive elongation is a rate-limiting step in transcription of ∼40% of mRNA-encoding genes. Importantly, quantitative comparisons between cell types reveal that transcription is controlled frequently at paused Pol II's entry into elongation. Furthermore, “bivalent” ESC genes (exhibiting both active and repressive histone modifications) bound by Polycomb group complexes PRC1 (Polycomb-repressive complex 1) and PRC2 show dramatically reduced levels of paused Pol II at promoters relative to an average gene. In contrast, bivalent promoters bound by only PRC2 allow Pol II pausing, but it is confined to extremely 5′ proximal regions. Altogether, these findings identify rate-limiting targets for transcription regulation during cell differentiation. PMID:21460038

  1. Molecular Analysis of Spinal Muscular Atrophy: A genotyping protocol based on TaqMan(®) real-time PCR.

    PubMed

    de Souza Godinho, Fernanda Marques; Bock, Hugo; Gheno, Tailise Conte; Saraiva-Pereira, Maria Luiza

    2012-12-01

    Spinal muscular atrophy (SMA) is an autosomal recessive inherited disorder caused by alterations in the survival motor neuron I (SMN1) gene. SMA patients are classified as type I-IV based on severity of symptoms and age of onset. About 95% of SMA cases are caused by the homozygous absence of SMN1 due to gene deletion or conversion into SMN2. PCR-based methods have been widely used in genetic testing for SMA. In this work, we introduce a new approach based on TaqMan(®)real-time PCR for research and diagnostic settings. DNA samples from 100 individuals with clinical signs and symptoms suggestive of SMA were analyzed. Mutant DNA samples as well as controls were confirmed by DNA sequencing. We detected 58 SMA cases (58.0%) by showing deletion of SMN1 exon 7. Considering clinical information available from 56 of them, the patient distribution was 26 (46.4%) SMA type I, 16 (28.6%) SMA type II and 14 (25.0%) SMA type III. Results generated by the new method was confirmed by PCR-RFLP and by DNA sequencing when required. In conclusion, a protocol based on real-time PCR was shown to be effective and specific for molecular analysis of SMA patients.

  2. Detection of Bordetella avium by TaqMan real-time PCR in tracheal swabs from wildlife birds.

    PubMed

    Stenzel, T; Pestka, D; Tykałowski, B; Śmiałek, M; Koncicki, A; Bancerz-Kisiel, A

    2017-03-28

    Bordetella avium, the causing agent of bordetellosis, a highly contagious infection of the respiratory tract in young poultry, causes significant losses in poultry farming throughout the world. Wildlife birds can be a reservoir of various pathogens that infect farm animals. For this reason the studies were conducted to estimate the prevalence of Bordetella avium in wildlife birds in Poland. Tracheal swab samples were collected from 650 birds representing 27 species. The bacterial DNA was isolated directly from the swabs and screened for Bordetella avium by TaqMan real-time PCR. The assay specificity was evaluated by testing DNA isolated from 8 other bacteria that can be present in avian respiratory tract, and there was no amplification from non-Bordetella avium agents. Test sensitivity was determined by preparing standard tenfold serial dilutions of DNA isolated from positive control. The assay revealed to be sensitive, with detection limit of approximately 4.07x10^2 copies of Bordetella avium DNA. The genetic material of Bordetella avium was found in 54.54% of common pheasants, in 9.09% of Eurasian coots, in 3.22% of black-headed gulls and in 2.77% of mallard ducks. The results of this study point to low prevalence of Bordetella avium infections in wildlife birds. The results also show that described molecular assay proved to be suitable for the rapid diagnosis of bordetellosis in the routine diagnostic laboratory.

  3. Structure of a Complete Mediator-RNA Polymerase II Pre-Initiation Complex.

    PubMed

    Robinson, Philip J; Trnka, Michael J; Bushnell, David A; Davis, Ralph E; Mattei, Pierre-Jean; Burlingame, Alma L; Kornberg, Roger D

    2016-09-08

    A complete, 52-protein, 2.5 million dalton, Mediator-RNA polymerase II pre-initiation complex (Med-PIC) was assembled and analyzed by cryo-electron microscopy and by chemical cross-linking and mass spectrometry. The resulting complete Med-PIC structure reveals two components of functional significance, absent from previous structures, a protein kinase complex and the Mediator-activator interaction region. It thereby shows how the kinase and its target, the C-terminal domain of the polymerase, control Med-PIC interaction and transcription. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Molecular events during translocation and proofreading extracted from 200 static structures of DNA polymerase.

    PubMed

    Ren, Zhong

    2016-09-06

    DNA polymerases in family B are workhorses of DNA replication that carry out the bulk of the job at a high speed with high accuracy. A polymerase in this family relies on a built-in exonuclease for proofreading. It has not been observed at the atomic resolution how the polymerase advances one nucleotide space on the DNA template strand after a correct nucleotide is incorporated, that is, a process known as translocation. It is even more puzzling how translocation is avoided after the primer strand is excised by the exonuclease and returned back to the polymerase active site once an error occurs. The structural events along the bifurcate pathways of translocation and proofreading have been unwittingly captured by hundreds of structures in Protein Data Bank. This study analyzes all available structures of a representative member in family B and reveals the orchestrated event sequence during translocation and proofreading. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  5. Expectoration of Flaviviruses during sugar feeding by mosquitoes (Diptera: Culicidae).

    PubMed

    van den Hurk, Andrew F; Johnson, Petrina H; Hall-Mendelin, Sonja; Northill, Judy A; Simmons, Russell J; Jansen, Cassie C; Frances, Stephen P; Smith, Greg A; Ritchie, Scott A

    2007-09-01

    Biological transmission of arboviruses to a vertebrate host occurs when virions are expelled along with saliva during blood feeding by a hematophagous arthropod. We undertook experiments to determine whether mosquitoes expectorate flaviviruses in their saliva while sugar feeding. Batches of Culex annulirostris Skuse and Culex gelidus Theobald (Diptera: Culicidae) were orally infected with Japanese encephalitis (family Flaviviridae, genus Flavivirus, JEV), Kunjin (family Flaviviridae, genus Flavivirus, KUNV; a subtype of West Nile virus), and Murray Valley encephalitis (family Flaviviridae, genus Flavivirus, MVEV) viruses. After a 7-d extrinsic incubation, these mosquitoes were offered sucrose meals via cotton pledgets, which were removed daily and processed for viral RNA by using real-time TaqMan reverse transcriptase-polymerase chain reaction (RT-PCR) assays. JEV, MVEV, and KUNV RNA was detected in all pledgets removed from batches of Cx. gelidus on days 7-14 postexposure. In contrast, detection rates were variable for Cx. annulirostris, with KUNV detected in 0.3 M sucrose pledgets on all days postexposure, and JEV and MVEV detected on 57 and 50% of days postexposure, respectively. Higher concentrations of sucrose in the pledget did not increase virus detection rates. When individual JEV-infected Cx. gelidus were exposed to the sucrose pledget, 73% of mosquitoes expectorated virus with titers that were detectable by TaqMan RT-PCR. These results clearly show that flaviviruses are expectorated by infected mosquitoes during the process of sugar feeding on artificial pledgets. Potential applications of the method for arboviral bioassays and field surveillance are discussed.

  6. Effect of single DNA lesions on in vitro replication with DNA polymerase III holoenzyme. Comparison with other polymerases.

    PubMed

    Belguise-Valladier, P; Maki, H; Sekiguchi, M; Fuchs, R P

    1994-02-11

    In the present work, we have studied in vitro replication of N-2-acetylaminofluorene (AAF) or cis-diamminedichloroplatinum II (cis-DDP) single modified DNA templates. We used the holoenzyme (pol III HE) or the alpha subunit of DNA polymerase III, which is involved in SOS mutagenesis, and other DNA polymerases in order to compare enzymes having different biological roles and properties. Single-stranded oligonucleotides (63-mer) bearing a single AAF adduct at one of the different guanine residues of the NarI sequence (-G1G2CG3CC-) have been used in primer extension assays. Site-specifically platinated 5'd(ApG) or 5'd(GpG) oligonucleotides were constructed and similarly used in primer extension assays. In all cases, irrespective of both the chemical nature of the lesion (i.e. AAF or cis-DDP) and its local sequence context (i.e. the 3 different sites for AAF adducts within the NarI site) replication by pol III HE and pol I Klenow fragment (pol I Kf) stops one base prior to the adduct site. Removal of the 3'-->5' proofreading activity alone was not sufficient to trigger bypass of DNA lesions. Indeed, when proofreading activity of pol I is inactivated by a point mutation (pol I Kf (exo-)), the major replication product corresponds to the position opposite the adduct site showing that incorporation across from the AAF adduct is possible. These results suggest that a polymerase with proofreading activity is actually found to stop one nucleotide before the adduct not because it is unable to insert a nucleotide opposite the adduct but most likely because elongation past the adduct is strongly impaired, giving thus an increased time frame for the proofreading exonuclease to remove the base inserted across from the adduct. These results are discussed in terms of their implications for error-free and error-prone bypass in vivo.

  7. [The validation of kit of reagents for quantitative detection of DNA of human cytomegalovirus in biological material using polymerase chain reaction technique in real time operation mode].

    PubMed

    Sil'veĭstrova, O Iu; Domonova, É A; Shipulina, O Iu

    2014-04-01

    The validation of kit of reagents destined to detection and quantitative evaluation of DNA of human cytomegalovirus in biological material using polymerase chain reaction technique in real time operation mode was implemented. The comparison was made against international WHO standard--The first WHO international standard for human cytomegalovirus to implement measures the kit of reagents "AmpliSens CMV-screen/monitor-FL" and standard sample of enterprise DNA HCMV (The central research institute of epidemiology of Rospotrebnadzor) was applied. The fivefold dilution of international WHO standard and standard sample of enterprise were carried out in concentrations of DNA HCMV from 106 to 102. The arrangement of polymerase chain reaction and analysis of results were implemented using programed amplifier with system of detection of fluorescent signal in real-time mode "Rotor-Gene Q" ("Qiagen", Germany). In the total of three series of experiments, all stages of polymerase chain reaction study included, the coefficient of translation of quantitative evaluation of DNA HCMV from copy/ml to ME/ml equal to 0.6 was introduced for this kit of reagents.

  8. Multifunctionality of a picornavirus polymerase domain: nuclear localization signal and nucleotide recognition.

    PubMed

    Ferrer-Orta, Cristina; de la Higuera, Ignacio; Caridi, Flavia; Sánchez-Aparicio, María Teresa; Moreno, Elena; Perales, Celia; Singh, Kamalendra; Sarafianos, Stefan G; Sobrino, Francisco; Domingo, Esteban; Verdaguer, Nuria

    2015-07-01

    The N-terminal region of the foot-and-mouth disease virus (FMDV) 3D polymerase contains the sequence MRKTKLAPT (residues 16 to 24) that acts as a nuclear localization signal. A previous study showed that substitutions K18E and K20E diminished the transport to the nucleus of 3D and 3CD and severely impaired virus infectivity. These residues have also been implicated in template binding, as seen in the crystal structures of different 3D-RNA elongation complexes. Here, we report the biochemical and structural characterization of different mutant polymerases harboring substitutions at residues 18 and 20, in particular, K18E, K18A, K20E, K20A, and the double mutant K18A K20A (KAKA). All mutant enzymes exhibit low RNA binding activity, low processivity, and alterations in nucleotide recognition, including increased incorporation of ribavirin monophosphate (RMP) relative to the incorporation of cognate nucleotides compared with the wild-type enzyme. The structural analysis shows an unprecedented flexibility of the 3D mutant polymerases, including both global rearrangements of the closed-hand architecture and local conformational changes at loop β9-α11 (within the polymerase motif B) and at the template-binding channel. Specifically, in 3D bound to RNA, both K18E and K20E induced the opening of new pockets in the template channel where the downstream templating nucleotide at position +2 binds. The comparisons of free and RNA-bound enzymes suggest that the structural rearrangements may occur in a concerted mode to regulate RNA replication, processivity, and fidelity. Thus, the N-terminal region of FMDV 3D that acts as a nuclear localization signal (NLS) and in template binding is also involved in nucleotide recognition and can affect the incorporation of nucleotide analogues. The study documents multifunctionality of a nuclear localization signal (NLS) located at the N-terminal region of the foot-and-mouth disease viral polymerase (3D). Amino acid substitutions at this

  9. Real-time quantitative PCR for retrovirus-like particle quantification in CHO cell culture.

    PubMed

    de Wit, C; Fautz, C; Xu, Y

    2000-09-01

    Chinese hamster ovary (CHO) cells have been widely used to manufacture recombinant proteins intended for human therapeutic uses. Retrovirus-like particles, which are apparently defective and non-infectious, have been detected in all CHO cells by electron microscopy (EM). To assure viral safety of CHO cell-derived biologicals, quantification of retrovirus-like particles in production cell culture and demonstration of sufficient elimination of such retrovirus-like particles by the down-stream purification process are required for product market registration worldwide. EM, with a detection limit of 1x10(6) particles/ml, is the standard retrovirus-like particle quantification method. The whole process, which requires a large amount of sample (3-6 litres), is labour intensive, time consuming, expensive, and subject to significant assay variability. In this paper, a novel real-time quantitative PCR assay (TaqMan assay) has been developed for the quantification of retrovirus-like particles. Each retrovirus particle contains two copies of the viral genomic particle RNA (pRNA) molecule. Therefore, quantification of retrovirus particles can be achieved by quantifying the pRNA copy number, i.e. every two copies of retroviral pRNA is equivalent to one retrovirus-like particle. The TaqMan assay takes advantage of the 5'-->3' exonuclease activity of Taq DNA polymerase and utilizes the PRISM 7700 Sequence Detection System of PE Applied Biosystems (Foster City, CA, U.S.A.) for automated pRNA quantification through a dual-labelled fluorogenic probe. The TaqMan quantification technique is highly comparable to the EM analysis. In addition, it offers significant advantages over the EM analysis, such as a higher sensitivity of less than 600 particles/ml, greater accuracy and reliability, higher sample throughput, more flexibility and lower cost. Therefore, the TaqMan assay should be used as a substitute for EM analysis for retrovirus-like particle quantification in CHO cell

  10. Compartmentalized self-replication (CSR) selection of Thermococcus litoralis Sh1B DNA polymerase for diminished uracil binding.

    PubMed

    Tubeleviciute, Agne; Skirgaila, Remigijus

    2010-08-01

    The thermostable archaeal DNA polymerase Sh1B from Thermococcus litoralis has a typical uracil-binding pocket, which in nature plays an essential role in preventing the accumulation of mutations caused by cytosine deamination to uracil and subsequent G-C base pair transition to A-T during the genomic DNA replication. The uracil-binding pocket recognizes and binds uracil base in a template strand trapping the polymerase. Since DNA replication stops, the repair systems have a chance to correct the promutagenic event. Archaeal family B DNA polymerases are employed in various PCR applications. Contrary to nature, in PCR the uracil-binding property of archaeal polymerases is disadvantageous and results in decreased DNA amplification yields and lowered sensitivity. Furthermore, in diagnostics qPCR, RT-qPCR and end-point PCR are performed using dNTP mixtures, where dTTP is partially or fully replaced by dUTP. Uracil-DNA glycosylase treatment and subsequent heating of the samples is used to degrade the DNA containing uracil and prevent carryover contamination, which is the main concern in diagnostic laboratories. A thermostable archaeal DNA polymerase with the abolished uracil binding would be a highly desirable and commercially interesting product. An attempt to disable uracil binding in DNA polymerase Sh1B from T. litoralis by generating site-specific mutants did not yield satisfactory results. However, a combination of random mutagenesis of the whole polymerase gene and compartmentalized self-replication was successfully used to select variants of thermostable Sh1B polymerase capable of performing PCR with dUTP instead of dTTP.

  11. Structure and mechanism of human DNA polymerase [eta

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Biertümpfel, Christian; Zhao, Ye; Kondo, Yuji

    2010-11-03

    The variant form of the human syndrome xeroderma pigmentosum (XPV) is caused by a deficiency in DNA polymerase {eta} (Pol{eta}), a DNA polymerase that enables replication through ultraviolet-induced pyrimidine dimers. Here we report high-resolution crystal structures of human Pol{eta} at four consecutive steps during DNA synthesis through cis-syn cyclobutane thymine dimers. Pol{eta} acts like a 'molecular splint' to stabilize damaged DNA in a normal B-form conformation. An enlarged active site accommodates the thymine dimer with excellent stereochemistry for two-metal ion catalysis. Two residues conserved among Pol{eta} orthologues form specific hydrogen bonds with the lesion and the incoming nucleotide to assistmore » translesion synthesis. On the basis of the structures, eight Pol{eta} missense mutations causing XPV can be rationalized as undermining the molecular splint or perturbing the active-site alignment. The structures also provide an insight into the role of Pol{eta} in replicating through D loop and DNA fragile sites.« less

  12. Plant-specific multisubunit RNA polymerase in gene silencing.

    PubMed

    Lahmy, Sylvie; Bies-Etheve, Natacha; Lagrange, Thierry

    2010-01-01

    In recent years, a major breakthrough in the study of epigenetic silencing in eukaryotes came with the discovery that the RNA-interference pathway (RNAi) is generally implicated in heterochromatin assembly and gene silencing. An important and paradoxical feature of the RNAi-mediated heterochromatin pathways is their requirement for some form of transcription. In fission yeast, Schizosaccharomyces pombe, centromeric siRNAs have been shown to derive from chromatin-bound nascent transcripts produced by RNA polymerase II (PolII) at the site of heterochromatin formation. Likewise, chromatin-bound nascent transcripts generated by a PolII-related DNA-dependent RNA polymerase, known as PolIVb/PolV, have recently been implicated in RNA-directed DNA methylation (RdDM), the prominent RNAi-mediated chromatin pathway in plants. In this review we discuss recent work on the plant-specific PolII variant enzymes and discuss the mechanistic convergences that have been observed in the role of these enzymes in their respective siRNA-mediated heterochromatin formation pathways.

  13. Defining the Status of RNA Polymerase at Promoters

    PubMed Central

    Core, Leighton J.; Waterfall, Joshua J.; Gilchrist, Daniel A.; Fargo, David C.; Kwak, Hojoong; Adelman, Karen; Lis, John T.

    2012-01-01

    Summary Recent genome-wide studies in metazoans have shown that RNA Polymerase II (Pol II) accumulates to high densities on many promoters at a rate-limited step in transcription. However, the status of this Pol II remains an area of debate. Here, we compare quantitative outputs of GRO-seq and ChIP-seq assays and demonstrate the majority of the Pol II on Drosophila promoters is transcriptionally-engaged - very little exists in a preinitiation or arrested complex. These promoter-proximal polymerases are inhibited from further elongation by detergent sensitive factors, and knockdown of negative elongation factor, NELF, reduces their levels. These results not only solidify that pausing occurs at most promoters, but demonstrate that it is the major rate-limiting step in early transcription at these promoters. Finally, the divergent elongation complexes seen at mammalian promoters are far less prevalent in Drosophila, and this specificity in orientation correlates with directional core promoter elements, which are abundant in Drosophila. PMID:23062713

  14. Light-dependent, plastome-wide association of the plastid-encoded RNA polymerase with chloroplast DNA.

    PubMed

    Finster, Sabrina; Eggert, Erik; Zoschke, Reimo; Weihe, Andreas; Schmitz-Linneweber, Christian

    2013-12-01

    Plastid genes are transcribed by two types of RNA polymerases: a plastid-encoded eubacterial-type RNA polymerase (PEP) and nuclear-encoded phage-type RNA polymerases (NEPs). To investigate the spatio-temporal expression of PEP, we tagged its α-subunit with a hemagglutinin epitope (HA). Transplastomic tobacco plants were generated and analyzed for the distribution of the tagged polymerase in plastid sub-fractions, and associated genes were identified under various light conditions. RpoA:HA was detected as early as the 3rd day after imbibition, and was constitutively expressed in green tissue over 60 days of plant development. We found that the tagged polymerase subunit preferentially associated with the plastid membranes, and was less abundant in the soluble stroma fraction. Attachment of RpoA:HA to the membrane fraction during early seedling development was independent of DNA, but at later stages of development, DNA appears to facilitate attachment of the polymerase to membranes. To survey PEP-dependent transcription units, we probed for nucleic acids enriched in RpoA:HA precipitates using a tobacco chloroplast whole-genome tiling array. The most strongly co-enriched DNA fragments represent photosynthesis genes (e.g. psbA, psbC, psbD and rbcL), whose expression is known to be driven by PEP promoters, while NEP-dependent genes were less abundant in RpoA:HA precipitates. Additionally, we demonstrate that the association of PEP with photosynthesis-related genes was reduced during the dark period, indicating that plastome-wide PEP-DNA association is a light-dependent process. © 2013 The Authors The Plant Journal © 2013 John Wiley & Sons Ltd.

  15. Molecular propulsion: chemical sensing and chemotaxis of DNA driven by RNA polymerase.

    PubMed

    Yu, Hua; Jo, Kyubong; Kounovsky, Kristy L; de Pablo, Juan J; Schwartz, David C

    2009-04-29

    Living cells sense extracellular signals and direct their movements in response to stimuli in environment. Such autonomous movement allows these machines to sample chemical change over a distance, leading to chemotaxis. Synthetic catalytic rods have been reported to chemotax toward hydrogen peroxide fuel. Nevertheless individualized autonomous control of movement of a population of biomolecules under physiological conditions has not been demonstrated. Here we show the first experimental evidence that a molecular complex consisting of a DNA template and associating RNA polymerases (RNAPs) displays chemokinetic motion driven by transcription substrates nucleoside triphosphates (NTPs). Furthermore this molecular complex exhibits a biased migration into a concentration gradient of NTPs, resembling chemotaxis. We describe this behavior as "Molecular Propulsion", in which RNAP transcriptional actions deform DNA template conformation engendering measurable enhancement of motility. Our results provide new opportunities for designing and directing nanomachines by imposing external triggers within an experimental system.

  16. Eukaryotic RNA polymerase subunit RPB8 is a new relative of the OB family.

    PubMed

    Krapp, S; Kelly, G; Reischl, J; Weinzierl, R O; Matthews, S

    1998-02-01

    RNA polymerase II subunit RPB8 is an essential subunit that is highly conserved throughout eukaryotic evolution and is present in all three types of nuclear RNA polymerases. We report the first high resolution structural insight into eukaryotic RNA polymerase architecture with the solution structure of RPB8 from Saccharomyces cerevisiae. It consists of an eight stranded, antiparallel beta-barrel, four short helical regions and a large, unstructured omega-loop. The strands are connected in classic Greek-key fashion. The overall topology is unusual and contains a striking C2 rotational symmetry. Furthermore, it is most likely a novel associate of the oligonucleotide/oligosaccharide (OB) binding protein class.

  17. RNA polymerase activity is associated with viral particles isolated from Leishmania braziliensis subsp. guyanensis.

    PubMed Central

    Widmer, G; Keenan, M C; Patterson, J L

    1990-01-01

    Viral particles purified from species of the protozoan parasite Leishmania braziliensis subsp. guyanensis by centrifugation in CsCl gradients were examined for the presence of viral polymerase. We demonstrated that RNA-dependent RNA polymerase is associated with viral particles. Viral transcription was studied in vitro with pulse-chase experiments and by assaying the RNase sensitivity of the viral transcripts. Viral polymerase synthesized full-length transcripts within 1 h. Double-strained, genome-length, and single-stranded RNAs were produced in this system. The nature of the RNA extracted from virions was also tested by RNase protection assays; both single-stranded and double-stranded RNAs were found. Images PMID:2370680

  18. Construction of a genomic DNA library with a TA vector and its application in cloning of the phytoene synthase gene from the cyanobacterium Spirulina platensis M-135

    NASA Astrophysics Data System (ADS)

    Yoshikazu, Kawata; Shin-Ichi, Yano; Hiroyuki, Kojima

    1998-03-01

    An efficient and simple method for constructing a genomic DNA library using a TA cloning vector is presented. It is based on the sonicative cleavage of genomic DNA and modification of fragment ends with Taq DNA polymerase, followed by ligation using a TA vector. This method was applied for cloning of the phytoene synthase gene crt B from Spirulina platensis. This method is useful when genomic DNA cannot be efficiently digested with restriction enzymes, a problem often encountered during the construction of a genomic DNA library of cyanobacteria.

  19. Basic quantitative polymerase chain reaction using real-time fluorescence measurements.

    PubMed

    Ares, Manuel

    2014-10-01

    This protocol uses quantitative polymerase chain reaction (qPCR) to measure the number of DNA molecules containing a specific contiguous sequence in a sample of interest (e.g., genomic DNA or cDNA generated by reverse transcription). The sample is subjected to fluorescence-based PCR amplification and, theoretically, during each cycle, two new duplex DNA molecules are produced for each duplex DNA molecule present in the sample. The progress of the reaction during PCR is evaluated by measuring the fluorescence of dsDNA-dye complexes in real time. In the early cycles, DNA duplication is not detected because inadequate amounts of DNA are made. At a certain threshold cycle, DNA-dye complexes double each cycle for 8-10 cycles, until the DNA concentration becomes so high and the primer concentration so low that the reassociation of the product strands blocks efficient synthesis of new DNA and the reaction plateaus. There are two types of measurements: (1) the relative change of the target sequence compared to a reference sequence and (2) the determination of molecule number in the starting sample. The first requires a reference sequence, and the second requires a sample of the target sequence with known numbers of the molecules of sequence to generate a standard curve. By identifying the threshold cycle at which a sample first begins to accumulate DNA-dye complexes exponentially, an estimation of the numbers of starting molecules in the sample can be extrapolated. © 2014 Cold Spring Harbor Laboratory Press.

  20. Purification and properties of poliovirus RNA polymerase expressed in Escherichia coli

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Plotch, S.J.; Palant, O.; Gluzman, Y.

    1989-01-01

    A cDNA clone encoding the RNA polymerase of poliovirus has been expressed in Escherichia coli under the transcriptional control of a T7 bacteriophage promoter. This poliovirus enzyme was designed to contain only a single additional amino acid, the N-terminal methionine. The recombinant enzyme has been purified to near homogeneity, and polyclonal antibodies have been prepared against it. The enzyme exhibits poly(A)-dependent oligo(U)-primed ply(U) polymerase activity as well as RNA polymerase activity. In the presence of an oligo(U) primer, the enzyme catalyzes the synthesis of a full-length copy of either poliovirus or globin RNA templates. In the absence of added primer,more » RNA products up to twice the length of the template are synthesized. When incubated in the presence of a single nucleoside triphosphate, (..cap alpha..-/sup 32/P)UTP, the enzyme catalyzes the incorporation of radioactive label into template RNA. These results are discussed in light of previously proposed models of poliovirus RNA synthesis in vitro.« less

  1. Cooperation between Catalytic and DNA-binding Domains Enhances Thermostability and Supports DNA Synthesis at Higher Temperatures by Thermostable DNA Polymerases

    PubMed Central

    Pavlov, Andrey R.; Pavlova, Nadejda V.; Kozyavkin, Sergei A.; Slesarev, Alexei I.

    2012-01-01

    We have previously introduced a general kinetic approach for comparative study of processivity, thermostability, and resistance to inhibitors of DNA polymerases (Pavlov et. al., (2002) Proc. Natl. Acad. Sci. USA 99, 13510–13515). The proposed method was successfully applied to characterize hybrid DNA polymerases created by fusing catalytic DNA polymerase domains with various non-specific DNA binding domains. Here we use the developed kinetic analysis to assess basic parameters of DNA elongation by DNA polymerases and to further study the interdomain interactions in both previously constructed and new chimeric DNA polymerases. We show that connecting Helix-hairpin-Helix (HhH) domains to catalytic polymerase domains can increase thermostability, not only of DNA polymerases from extremely thermophilic species, but also of the enzyme from a faculatative thermophilic bacterium Bacillus stearothermophilus. We also demonstrate that addition of TopoV HhH domains extends efficient DNA synthesis by chimerical polymerases up to 105°C by maintaining processivity of DNA synthesis at high temperatures. We also found that reversible high-temperature structural transitions in DNA polymerases decrease the rates of binding of these enzymes to the templates. Furthermore, activation energies and pre-exponential factors of the Arrhenius equation suggest that the mechanism of electrostatic enhancement of diffusion-controlled association plays a minor role in binding templates to DNA polymerases. PMID:22320201

  2. Mass spectrometry of Escherichia coli RNA polymerase: interactions of the core enzyme with sigma70 and Rsd protein.

    PubMed

    Ilag, Leopold L; Westblade, Lars F; Deshayes, Caroline; Kolb, Annie; Busby, Stephen J W; Robinson, Carol V

    2004-02-01

    The E. coli RNA polymerase core enzyme is a multisubunit complex of 388,981 Da. To initiate transcription at promoters, the core enzyme associates with a sigma subunit to form holo RNA polymerase. Here we have used nanoflow electrospray mass spectrometry, coupled with tandem mass spectrometry, to probe the interaction of the RNA polymerase core enzyme with the most abundant sigma factor, sigma70. The results show remarkably well-resolved spectra for both the core and holo RNA polymerases. The regulator of sigma70, Rsd protein, has previously been identified as a protein that binds to free sigma70. We show that Rsd also interacts with core enzyme. In addition, by adding increasing amounts of Rsd, we show that sigma70 is displaced from holo RNA polymerase, resulting in complexes of Rsd with core and sigma70. The results argue for a model in which Rsd not only sequesters sigma70, but is also an effector of core RNA polymerase.

  3. New insights into the promoterless transcription of DNA coligo templates by RNA polymerase III.

    PubMed

    Lama, Lodoe; Seidl, Christine I; Ryan, Kevin

    2014-01-01

    Chemically synthesized DNA can carry small RNA sequence information but converting that information into small RNA is generally thought to require large double-stranded promoters in the context of plasmids, viruses and genes. We previously found evidence that circularized oligodeoxynucleotides (coligos) containing certain sequences and secondary structures can template the synthesis of small RNA by RNA polymerase III in vitro and in human cells. By using immunoprecipitated RNA polymerase III we now report corroborating evidence that this enzyme is the sole polymerase responsible for coligo transcription. The immobilized polymerase enabled experiments showing that coligo transcripts can be formed through transcription termination without subsequent 3' end trimming. To better define the determinants of productive transcription, a structure-activity relationship study was performed using over 20 new coligos. The results show that unpaired nucleotides in the coligo stem facilitate circumtranscription, but also that internal loops and bulges should be kept small to avoid secondary transcription initiation sites. A polymerase termination sequence embedded in the double-stranded region of a hairpin-encoding coligo stem can antagonize transcription. Using lessons learned from new and old coligos, we demonstrate how to convert poorly transcribed coligos into productive templates. Our findings support the possibility that coligos may prove useful as chemically synthesized vectors for the ectopic expression of small RNA in human cells.

  4. New insights into the promoterless transcription of DNA coligo templates by RNA polymerase III

    PubMed Central

    Lama, Lodoe; Seidl, Christine I; Ryan, Kevin

    2014-01-01

    Chemically synthesized DNA can carry small RNA sequence information but converting that information into small RNA is generally thought to require large double-stranded promoters in the context of plasmids, viruses and genes. We previously found evidence that circularized oligodeoxynucleotides (coligos) containing certain sequences and secondary structures can template the synthesis of small RNA by RNA polymerase III in vitro and in human cells. By using immunoprecipitated RNA polymerase III we now report corroborating evidence that this enzyme is the sole polymerase responsible for coligo transcription. The immobilized polymerase enabled experiments showing that coligo transcripts can be formed through transcription termination without subsequent 3′ end trimming. To better define the determinants of productive transcription, a structure-activity relationship study was performed using over 20 new coligos. The results show that unpaired nucleotides in the coligo stem facilitate circumtranscription, but also that internal loops and bulges should be kept small to avoid secondary transcription initiation sites. A polymerase termination sequence embedded in the double-stranded region of a hairpin-encoding coligo stem can antagonize transcription. Using lessons learned from new and old coligos, we demonstrate how to convert poorly transcribed coligos into productive templates. Our findings support the possibility that coligos may prove useful as chemically synthesized vectors for the ectopic expression of small RNA in human cells. PMID:25764216

  5. Biochemical and genetic analysis of the role of the viral polymerase in enterovirus recombination.

    PubMed

    Woodman, Andrew; Arnold, Jamie J; Cameron, Craig E; Evans, David J

    2016-08-19

    Genetic recombination in single-strand, positive-sense RNA viruses is a poorly understand mechanism responsible for generating extensive genetic change and novel phenotypes. By moving a critical cis-acting replication element (CRE) from the polyprotein coding region to the 3' non-coding region we have further developed a cell-based assay (the 3'CRE-REP assay) to yield recombinants throughout the non-structural coding region of poliovirus from dually transfected cells. We have additionally developed a defined biochemical assay in which the only protein present is the poliovirus RNA dependent RNA polymerase (RdRp), which recapitulates the strand transfer events of the recombination process. We have used both assays to investigate the role of the polymerase fidelity and nucleotide turnover rates in recombination. Our results, of both poliovirus intertypic and intratypic recombination in the CRE-REP assay and using a range of polymerase variants in the biochemical assay, demonstrate that RdRp fidelity is a fundamental determinant of recombination frequency. High fidelity polymerases exhibit reduced recombination and low fidelity polymerases exhibit increased recombination in both assays. These studies provide the basis for the analysis of poliovirus recombination throughout the non-structural region of the virus genome and provide a defined biochemical assay to further dissect this important evolutionary process. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  6. Detection of Diarrhea Etiology Among U.S. Military Personnel During Exercise Balikatan 2014, Philippines, Using TaqMan Array Cards.

    PubMed

    Lertsethtakarn, Paphavee; Nakjarung, Kaewkanya; Silapong, Sasikorn; Neesanant, Pimmnapar; Sakpaisal, Pimmada; Bodhidatta, Ladaporn; Liu, Jie; Houpt, Eric; Velasco, John Mark; Macareo, Louis R; Swierczewski, Brett E; Mason, Carl J

    2016-11-01

    Military personnel are vulnerable to diarrhea. Diarrheal disease is common when deployed for operations or exercise in developing countries. Although diarrheal disease is transient, cumulative time lost and medical asset can have a significant impact on military operations. Currently, diagnostics of diarrheal etiology typically relies on a mixture of conventional bacteriology, enzyme-linked immunosorbent assay, and polymerase chain reaction (PCR)-based methods including real-time PCR. These methods, however, can be time and labor intensive, although the identification of diarrheal etiology needs to be informative and rapid for treatment and prevention. Real-time PCR has been increasingly used to identify pathogens. Real-time PCR panels of common diarrheal pathogens have been developed, but several diarrheal pathogens are not included in the panel. An expanded and customizable panel to detect diarrhea etiology has been developed employing TaqMan Array Card (TAC) technology. TAC performs 384 real-time PCR reactions simultaneously. As currently configured for diarrheal disease by the University of Virginia, a maximum of 8 samples can be tested simultaneously with approximately 48 target pathogens per sample including bacteria, fungi, helminths, protozoan parasites, and viruses. TAC diarrheal disease panels have been successfully applied to detect pathogens in acute diarrheal stool samples from young children in several international multicenter diarrhea studies. In this study, TAC was applied to stool samples collected under an approved human use protocol from military personnel with acute diarrhea participating in the annual joint military exercise, Balikatan, between the Republic of the Philippines and the United States in 2014. Several established pathogen-specific real-time PCR detection assays were also performed in parallel for comparative purposes. TAC was applied to 7 stool samples. Campylobacter spp. was the most common diarrheal disease pathogen detected

  7. Development of a Quantitative TaqMan{trademark}-PCR Assay and Feasibility of Atmosphoric Collection for Coccidioides Immits for Ecological Studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Daniels, J I; Wilson, W J; DeSantis, T Z

    2002-02-01

    also is identified as a select (biological) agent in the federal Anti-Terrorist and Effective Death Penalty Act. Successful demonstration of these tools in this study will place this multidisciplinary team in a credible position to proceed with additional research designed to determine the climatic signals and ecological triggers that would be associated with the presence of this microorganism environmentally and that would correlate with subsequent outbreaks of Valley Fever clinically. Results from such future research would then provide the information needed for environmental intervention of the disease occurrence, well before clinical cases appear. The technology and modeling developed for such a study also could be used for determining the ecology of other environmentally linked, medically important infectious diseases that occur naturally or that might be introduced deliberately into environmental media indoors or outside. The following approach was taken to achieve the technological objectives of this study. First, the protocols for the TaqMan{trademark}-PCR assay were enhanced to achieve the superior specificity and sensitivity required for quantifying, from a DNA signature, those C. immitis spores that are present in calibration samples (consisting of known quantities of pure culture inoculated onto air-filter concentrate, and then removed, and the DNA extracted) and those that are present within the calibration range on air filters obtained from the field and handled similarly. Second, the feasibility of using advanced nuclepore air-filter media to collect the spores from ambient air in C immitis endemic areas in the Central Valley of California was evaluated. These membranes permit the physics of high-volume air sampling to be used to filter larger amounts of air than previously possible for detecting airborne microorganisms. Thus, the higher volume of air flow improves the likelihood of capturing on the filter any C. immitis spores resuspended from nearby

  8. Design and Development of a Quantitative TaqMan Real-Time PCR Assay for Evaluation of HIV-1 (group M) Viral Load in Plasma Using Armored RNA Standard.

    PubMed

    Gholami, Mohammad; Baesi, Kazem; Rouzbahani, Negin H; Mohraz, Minoo

    2018-06-01

    Human immunodeficiency virus-1 (HIV-1) is a viral infectious agent that gradually extinguishes the immune system, resulting in the acquired immune deficiency syndrome (AIDS). The aim of this study was to develop a TaqMan based detection assay to evaluate HIV-1 plasma viral load and to construct a stable internal positive control (IPC) and external positive control (EPC) RNA based on Armored RNA (AR) technology. The MS2 maturase, coat protein gene and HIV-1 pol gene were cloned in pET-32a plasmid. The recently fabricated recombinant plasmid was transformed into Escherichia coli strain BL2 (DE3) and protein expression and Armored RNA was fabricated in presence of isopropyl-L-thio-D-galactopyranoside (IPTG). The Armored RNA was precipitated and purified by polyethylene glycol (PEG) and sephacryl S-200 chromatography. The stability of Armored RNA was evaluated by treatment with DNase I and RNase A and confirmed by transmission electron microscopy (TEM) and gel agarose electrophoresis. The specificity, sensitivity, inter- and intra-day precision, and the dynamic range of the assay were experimentally determined. The AR was stable in presence of ribonuclease, and the assay had a dynamic detection range from 101 to 105 copies of AR. The coefficient of variation (CV) was 4.8% for intra-assay and 5.8% for inter-assay precision. Clinical specificity and sensitivity of the assay were assessed at 100% and 96.66%, respectively. The linear regression analysis confirmed a high correlation between the in-house and the commercial assay, Real Star HIV-1-qRTPCR, respectively (R2 = 0.888). The AR standard is non-infectious and highly resistant in the presence of ribonuclease. The TaqMan assay developed is able to quantify HIV viral load based on a novel conserved region of HIV-1 pol gene which has minimal sequence inconsistency.

  9. Regulation and Modulation of Human DNA Polymerase δ Activity and Function

    PubMed Central

    Wang, Xiaoxiao; Zhang, Sufang; Zhang, Zhongtao; Lee, Ernest Y. C.

    2017-01-01

    This review focuses on the regulation and modulation of human DNA polymerase δ (Pol δ). The emphasis is on the mechanisms that regulate the activity and properties of Pol δ in DNA repair and replication. The areas covered are the degradation of the p12 subunit of Pol δ, which converts it from a heterotetramer (Pol δ4) to a heterotrimer (Pol δ3), in response to DNA damage and also during the cell cycle. The biochemical mechanisms that lead to degradation of p12 are reviewed, as well as the properties of Pol δ4 and Pol δ3 that provide insights into their functions in DNA replication and repair. The second focus of the review involves the functions of two Pol δ binding proteins, polymerase delta interaction protein 46 (PDIP46) and polymerase delta interaction protein 38 (PDIP38), both of which are multi-functional proteins. PDIP46 is a novel activator of Pol δ4, and the impact of this function is discussed in relation to its potential roles in DNA replication. Several new models for the roles of Pol δ3 and Pol δ4 in leading and lagging strand DNA synthesis that integrate a role for PDIP46 are presented. PDIP38 has multiple cellular localizations including the mitochondria, the spliceosomes and the nucleus. It has been implicated in a number of cellular functions, including the regulation of specialized DNA polymerases, mitosis, the DNA damage response, mouse double minute 2 homolog (Mdm2) alternative splicing and the regulation of the NADPH oxidase 4 (Nox4). PMID:28737709

  10. Quality control mechanisms exclude incorrect polymerases from the eukaryotic replication fork

    PubMed Central

    Schauer, Grant D.; O’Donnell, Michael E.

    2017-01-01

    The eukaryotic genome is primarily replicated by two DNA polymerases, Pol ε and Pol δ, that function on the leading and lagging strands, respectively. Previous studies have established recruitment mechanisms whereby Cdc45-Mcm2-7-GINS (CMG) helicase binds Pol ε and tethers it to the leading strand, and PCNA (proliferating cell nuclear antigen) binds tightly to Pol δ and recruits it to the lagging strand. The current report identifies quality control mechanisms that exclude the improper polymerase from a particular strand. We find that the replication factor C (RFC) clamp loader specifically inhibits Pol ε on the lagging strand, and CMG protects Pol ε against RFC inhibition on the leading strand. Previous studies show that Pol δ is slow and distributive with CMG on the leading strand. However, Saccharomyces cerevisiae Pol δ–PCNA is a rapid and processive enzyme, suggesting that CMG may bind and alter Pol δ activity or position it on the lagging strand. Measurements of polymerase binding to CMG demonstrate Pol ε binds CMG with a Kd value of 12 nM, but Pol δ binding CMG is undetectable. Pol δ, like bacterial replicases, undergoes collision release upon completing replication, and we propose Pol δ–PCNA collides with the slower CMG, and in the absence of a stabilizing Pol δ–CMG interaction, the collision release process is triggered, ejecting Pol δ on the leading strand. Hence, by eviction of incorrect polymerases at the fork, the clamp machinery directs quality control on the lagging strand and CMG enforces quality control on the leading strand. PMID:28069954

  11. Preclinical Characterization of PC786, an Inhaled Small-Molecule Respiratory Syncytial Virus L Protein Polymerase Inhibitor

    PubMed Central

    Coates, Matthew; Brookes, Daniel; Kim, Young-In; Allen, Heather; Fordyce, Euan A. F.; Meals, Elizabeth A.; Colley, Thomas; Ciana, Claire-Lise; Parra, Guillaume F.; Sherbukhin, Vladimir; Stockwell, Jennifer A.; Thomas, Jennifer C.; Hunt, S. Fraser; Anderson-Dring, Lauren; Onions, Stuart T.; Cass, Lindsey; Murray, Peter J.; Strong, Pete; DeVincenzo, John P.; Rapeport, Garth

    2017-01-01

    ABSTRACT Although respiratory syncytial virus (RSV) is the most common cause of lower respiratory tract infection in infants and young children, attempts to develop an effective therapy have so far proved unsuccessful. Here we report the preclinical profiles of PC786, a potent nonnucleoside RSV L protein polymerase inhibitor, designed for inhalation treatment of RSV infection. PC786 demonstrated a potent and selective antiviral activity against laboratory-adapted or clinical isolates of RSV-A (50% inhibitory concentration [IC50], <0.09 to 0.71 nM) and RSV-B (IC50, 1.3 to 50.6 nM), which were determined by inhibition of cytopathic effects in HEp-2 cells without causing detectable cytotoxicity. The underlying inhibition of virus replication was confirmed by PCR analysis. The effects of PC786 were largely unaffected by the multiplicity of infection (MOI) and were retained in the face of established RSV replication in a time-of-addition study. Persistent anti-RSV effects of PC786 were also demonstrated in human bronchial epithelial cells. In vivo intranasal once daily dosing with PC786 was able to reduce the virus load to undetectable levels in lung homogenates from RSV-infected mice and cotton rats. Treatment with escalating concentrations identified a dominant mutation in the L protein (Y1631H) in vitro. In addition, PC786 potently inhibited RSV RNA-dependent RNA polymerase (RdRp) activity in a cell-free enzyme assay and minigenome assay in HEp-2 cells (IC50, 2.1 and 0.5 nM, respectively). Thus, PC786 was shown to be a potent anti-RSV agent via inhibition of RdRp activity, making topical treatment with this compound a novel potential therapy for the treatment of human RSV infections. PMID:28652242

  12. Nascent Transcription Affected by RNA Polymerase IV in Zea mays

    PubMed Central

    Erhard, Karl F.; Talbot, Joy-El R. B.; Deans, Natalie C.; McClish, Allison E.; Hollick, Jay B.

    2015-01-01

    All eukaryotes use three DNA-dependent RNA polymerases (RNAPs) to create cellular RNAs from DNA templates. Plants have additional RNAPs related to Pol II, but their evolutionary role(s) remain largely unknown. Zea mays (maize) RNA polymerase D1 (RPD1), the largest subunit of RNA polymerase IV (Pol IV), is required for normal plant development, paramutation, transcriptional repression of certain transposable elements (TEs), and transcriptional regulation of specific alleles. Here, we define the nascent transcriptomes of rpd1 mutant and wild-type (WT) seedlings using global run-on sequencing (GRO-seq) to identify the broader targets of RPD1-based regulation. Comparisons of WT and rpd1 mutant GRO-seq profiles indicate that Pol IV globally affects transcription at both transcriptional start sites and immediately downstream of polyadenylation addition sites. We found no evidence of divergent transcription from gene promoters as seen in mammalian GRO-seq profiles. Statistical comparisons identify genes and TEs whose transcription is affected by RPD1. Most examples of significant increases in genic antisense transcription appear to be initiated by 3ʹ-proximal long terminal repeat retrotransposons. These results indicate that maize Pol IV specifies Pol II-based transcriptional regulation for specific regions of the maize genome including genes having developmental significance. PMID:25653306

  13. Comparison of histopathology and real-time polymerase chain reaction (RT-PCR) for detection of Mycobacterium tuberculosis in fistula-in-ano.

    PubMed

    Garg, Pankaj

    2017-07-01

    Histopathology is commonly used to diagnose tuberculosis in fistula-in-ano. The aim was to compare the sensitivity of polymerase chain reaction and histopathology in detecting tuberculosis in fistula-in-ano. The histopathology and polymerase chain-reaction of tissue (fistula tract) was done in all the consecutive operated cases. When pus sample was also available, polymerase chain reaction-pus was also done RESULTS: Three hundred forty seven samples (179 patients) were tested over 2 years (median 6.5 months). The mean age was 38.8 ± 10.7 years, and male/female was 170/9. Histopathology and polymerase chain reaction of tissue (fistula tract) was done in 152 and 165 patients, respectively. Polymerase chain reaction (pus) could be done in 30 patients. Overall, tuberculosis was detected in 20/179 (11.2%) patients. Of these, tuberculosis was detected by histopathology (tissue) in 1/152 (0.7%) and by polymerase chain reaction (tissue) in 14/165 (8.5%) patients. In pus, polymerase chain reaction detected tuberculosis in 6/30 (20%) patients. Both polymerase chain reaction of tissue and pus were positive in one patient. Polymerase chain reaction (tissue) and polymerase chain reaction (pus) were significantly more sensitive than histopathology (tissue) for detecting tuberculosis [histopathology 1/152 vs. polymerase chain reaction (tissue) 14/165, p = 0.0009] [histopathology 1/152 vs. polymerase chain reaction (pus) 6/30, p < 0.0001]. In 20 patients detected to have tuberculosis, four drug anti-tubercular therapy was recommended for 6 months. The therapy was completed in 13 patients and 12/13 (92.3%) were cured. The therapy is continuing in 3/20 patients. Four patients did not take the therapy. None of them was cured. Polymerase chain reaction was significantly more sensitive than histopathology in detecting tuberculosis in fistula-in-ano. Histopathology might be missing out tuberculosis in many patients leading to recurrence of the fistula.

  14. Competitive fitness during feast and famine: how SOS DNA polymerases influence physiology and evolution in Escherichia coli.

    PubMed

    Corzett, Christopher H; Goodman, Myron F; Finkel, Steven E

    2013-06-01

    Escherichia coli DNA polymerases (Pol) II, IV, and V serve dual roles by facilitating efficient translesion DNA synthesis while simultaneously introducing genetic variation that can promote adaptive evolution. Here we show that these alternative polymerases are induced as cells transition from exponential to long-term stationary-phase growth in the absence of induction of the SOS regulon by external agents that damage DNA. By monitoring the relative fitness of isogenic mutant strains expressing only one alternative polymerase over time, spanning hours to weeks, we establish distinct growth phase-dependent hierarchies of polymerase mutant strain competitiveness. Pol II confers a significant physiological advantage by facilitating efficient replication and creating genetic diversity during periods of rapid growth. Pol IV and Pol V make the largest contributions to evolutionary fitness during long-term stationary phase. Consistent with their roles providing both a physiological and an adaptive advantage during stationary phase, the expression patterns of all three SOS polymerases change during the transition from log phase to long-term stationary phase. Compared to the alternative polymerases, Pol III transcription dominates during mid-exponential phase; however, its abundance decreases to <20% during long-term stationary phase. Pol IV transcription dominates as cells transition out of exponential phase into stationary phase and a burst of Pol V transcription is observed as cells transition from death phase to long-term stationary phase. These changes in alternative DNA polymerase transcription occur in the absence of SOS induction by exogenous agents and indicate that cell populations require appropriate expression of all three alternative DNA polymerases during exponential, stationary, and long-term stationary phases to attain optimal fitness and undergo adaptive evolution.

  15. Evaluation of a TaqMan Array Card for Detection of Central Nervous System Infections.

    PubMed

    Onyango, Clayton O; Loparev, Vladimir; Lidechi, Shirley; Bhullar, Vinod; Schmid, D Scott; Radford, Kay; Lo, Michael K; Rota, Paul; Johnson, Barbara W; Munoz, Jorge; Oneko, Martina; Burton, Deron; Black, Carolyn M; Neatherlin, John; Montgomery, Joel M; Fields, Barry

    2017-07-01

    Infections of the central nervous system (CNS) are often acute, with significant morbidity and mortality. Routine diagnosis of such infections is limited in developing countries and requires modern equipment in advanced laboratories that may be unavailable to a number of patients in sub-Saharan Africa. We developed a TaqMan array card (TAC) that detects multiple pathogens simultaneously from cerebrospinal fluid. The 21-pathogen CNS multiple-pathogen TAC (CNS-TAC) assay includes two parasites ( Balamuthia mandrillaris and Acanthamoeba ), six bacterial pathogens ( Streptococcus pneumonia e, Haemophilus influenzae , Neisseria meningitidis , Mycoplasma pneumoniae , Mycobacterium tuberculosis , and Bartonella ), and 13 viruses (parechovirus, dengue virus, Nipah virus, varicella-zoster virus, mumps virus, measles virus, lyssavirus, herpes simplex viruses 1 and 2, Epstein-Barr virus, enterovirus, cytomegalovirus, and chikungunya virus). The card also includes human RNase P as a nucleic acid extraction control and an internal manufacturer control, GAPDH (glyceraldehyde-3-phosphate dehydrogenase). This CNS-TAC assay can test up to eight samples for all 21 agents within 2.5 h following nucleic acid extraction. The assay was validated for linearity, limit of detection, sensitivity, and specificity by using either live viruses (dengue, mumps, and measles viruses) or nucleic acid material (Nipah and chikungunya viruses). Of 120 samples tested by individual real-time PCR, 35 were positive for eight different targets, whereas the CNS-TAC assay detected 37 positive samples across nine different targets. The CNS-TAC assays showed 85.6% sensitivity and 96.7% specificity. Therefore, the CNS-TAC assay may be useful for outbreak investigation and surveillance of suspected neurological disease. Copyright © 2017 American Society for Microbiology.

  16. A two-way street: regulatory interplay between RNA polymerase and nascent RNA structure

    PubMed Central

    Zhang, Jinwei; Landick, Robert

    2016-01-01

    The vectorial (5′-to-3′ at varying velocity) synthesis of RNA by cellular RNA polymerases creates a rugged kinetic landscape, demarcated by frequent, sometimes long-lived pauses. In addition to myriad gene-regulatory roles, these pauses temporally and spatially program the co-transcriptional, hierarchical folding of biologically active RNAs. Conversely, these RNA structures, which form inside or near the RNA exit channel, interact with the polymerase and adjacent protein factors to influence RNA synthesis by modulating pausing, termination, antitermination, and slippage. Here we review the evolutionary origin, mechanistic underpinnings, and regulatory consequences of this interplay between RNA polymerase and nascent RNA structure. We categorize and attempt to rationalize the extensive linkage between the transcriptional machinery and its product, and provide a framework for future studies. PMID:26822487

  17. DNA Polymerase III Star Requires ATP to Start Synthesis on a Primed DNA†

    PubMed Central

    Wickner, William; Kornberg, Arthur

    1973-01-01

    DNA polymerase III star replicates a ϕX174 single-stranded, circular DNA primed with a fragment of RNA. This reaction proceeds in two stages. In stage I, a complex is formed requiring DNA polymerase III star, ATP, spermidine, copolymerase III*, and RNA-primed ϕX174 single-stranded, circular DNA. The complex, isolated by gel filtration, contains ADP and inorganic phosphate (the products of a specific ATP cleavage) as well as spermidine, polymerase III star, and copolymerase III star. In stage II, the chain grows upon addition of deoxynucleoside triphosphates; ADP and inorganic phosphate are discharged and chain elongation is resistant to antibody to copolymerase III star. Thus ATP and copolymerase III star are required to initiate chain growth but not to sustain it. Images PMID:4519657

  18. Vanadium accelerates polymerase chain reaction and expands the applicability of forensic DNA testing.

    PubMed

    Kaminiwa, Junko; Honda, Katsuya; Sugano, Yukiko; Yano, Shizue; Nishi, Takeki; Sekine, Yuko

    2013-05-01

    Polymerase chain reaction (PCR) has been rapidly established as one of the most widely used techniques in molecular biology. Because most DNA analysis is PCR-based, the analysis of unamplifiable DNA of poor quality or low quantity is nearly impossible. However, we observed that if an appropriate concentration of vanadium chloride is added to the standard reaction mixture, the enzymatic amplification of DNA could be enhanced. Using multiplex PCR with the addition of vanadium, DNA typing was possible from even trace amounts of DNA that we were unable to amplify using normal reaction conditions. This method might be an effective tool for not only criminal investigations and ancient DNA analysis, but also for nearly all fields using DNA technology. Copyright © 2012 Elsevier Ltd and Faculty of Forensic and Legal Medicine. All rights reserved.

  19. The structure of a protein primer-polymerase complex in the initiation of genome replication.

    PubMed

    Ferrer-Orta, Cristina; Arias, Armando; Agudo, Rubén; Pérez-Luque, Rosa; Escarmís, Cristina; Domingo, Esteban; Verdaguer, Nuria

    2006-02-22

    Picornavirus RNA replication is initiated by the covalent attachment of a UMP molecule to the hydroxyl group of a tyrosine in the terminal protein VPg. This reaction is carried out by the viral RNA-dependent RNA polymerase (3D). Here, we report the X-ray structure of two complexes between foot-and-mouth disease virus 3D, VPg1, the substrate UTP and divalent cations, in the absence and in the presence of an oligoadenylate of 10 residues. In both complexes, VPg fits the RNA binding cleft of the polymerase and projects the key residue Tyr3 into the active site of 3D. This is achieved by multiple interactions with residues of motif F and helix alpha8 of the fingers domain and helix alpha13 of the thumb domain of the polymerase. The complex obtained in the presence of the oligoadenylate showed the product of the VPg uridylylation (VPg-UMP). Two metal ions and the catalytic aspartic acids of the polymerase active site, together with the basic residues of motif F, have been identified as participating in the priming reaction.

  20. Fructose bisphosphate aldolase is involved in the control of RNA polymerase III-directed transcription.

    PubMed

    Cieśla, Małgorzata; Mierzejewska, Jolanta; Adamczyk, Małgorzata; Farrants, Ann-Kristin Östlund; Boguta, Magdalena

    2014-06-01

    Yeast Fba1 (fructose 1,6-bisphosphate aldolase) is a glycolytic enzyme essential for viability. The overproduction of Fba1 enables overcoming of a severe growth defect caused by a missense mutation rpc128-1007 in a gene encoding the C128 protein, the second largest subunit of the RNA polymerase III complex. The suppression of the growth phenotype by Fba1 is accompanied by enhanced de novo tRNA transcription in rpc128-1007 cells. We inactivated residues critical for the catalytic activity of Fba1. Overproduction of inactive aldolase still suppressed the rpc128-1007 phenotype, indicating that the function of this glycolytic enzyme in RNA polymerase III transcription is independent of its catalytic activity. Yeast Fba1 was determined to interact with the RNA polymerase III complex by coimmunoprecipitation. Additionally, a role of aldolase in control of tRNA transcription was confirmed by ChIP experiments. The results indicate a novel direct relationship between RNA polymerase III transcription and aldolase. Copyright © 2014 Elsevier B.V. All rights reserved.