Sample records for tar sands oil

  1. Supercritical-Fluid Extraction of Oil From Tar Sands

    NASA Technical Reports Server (NTRS)

    Compton, L. E.

    1982-01-01

    New supercritical solvent mixtures have been laboratory-tested for extraction of oil from tar sands. Mixture is circulated through sand at high pressure and at a temperature above critical point, dissolving organic matter into the compressed gas. Extract is recovered from sand residues. Low-temperature super-critical solvents reduce energy consumption and waste-disposal problems.

  2. Class I cultural resource overview for oil shale and tar sands areas in Colorado, Utah and Wyoming.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    O'Rourke, D.; Kullen, D.; Gierek, L.

    2007-11-01

    In August 2005, the U.S. Congress enacted the Energy Policy Act of 2005, Public Law 109-58. In Section 369 of this Act, also known as the 'Oil Shale, Tar Sands, and Other Strategic Unconventional Fuels Act of 2005', Congress declared that oil shale and tar sands (and other unconventional fuels) are strategically important domestic energy resources that should be developed to reduce the nation's growing dependence on oil from politically and economically unstable foreign sources. The Bureau of Land Management (BLM) is developing a Programmatic Environmental Impact Statement (PEIS) to evaluate alternatives for establishing commercial oil shale and tar sandsmore » leasing programs in Colorado, Wyoming, and Utah. This PEIS evaluates the potential impacts of alternatives identifying BLM-administered lands as available for application for commercial leasing of oil shale resources within the three states and of tar sands resources within Utah. The scope of the analysis of the PEIS also includes an assessment of the potential effects of future commercial leasing. This Class I cultural resources study is in support of the Draft Oil Shale and Tar Sands Resource Management Plan Amendments to Address Land Use Allocations in Colorado, Utah, and Wyoming and Programmatic Environmental Impact Statement and is an attempt to synthesize archaeological data covering the most geologically prospective lands for oil shale and tar sands in Colorado, Utah, and Wyoming. This report is based solely on geographic information system (GIS) data held by the Colorado, Utah, and Wyoming State Historic Preservation Offices (SHPOs). The GIS data include the information that the BLM has provided to the SHPOs. The primary purpose of the Class I cultural resources overview is to provide information on the affected environment for the PEIS. Furthermore, this report provides recommendations to support planning decisions and the management of cultural resources that could be impacted by future oil shale

  3. Aviation Turbine Fuels from Tar Sands Bitumen and Heavy Oils. Part 2. Laboratory Sample Production.

    DTIC Science & Technology

    1987-07-01

    tar sand bitumen from West Central Kentucky; and Sunnyside tar sand bitumen from the Uinta Basin , Utah. Each of the feedstocks had unique...fuel and about 50 volume percent heavy gas oil (600-1000°F). The Westken bitumen was overall the heaviest of the four feedstocks evaluated. K factors...was 40 weight percent and about 20 weight percent in the total crude. 3. San Ardo Heavy oil The San Ardo field is located in the Coastal basin of the

  4. Method and apparatus for hydrocarbon recovery from tar sands

    DOEpatents

    Westhoff, J.D.; Harak, A.E.

    1988-05-04

    A method and apparatus for utilizing tar sands having a broad range of bitumen content is disclosed. More particularly, tar sands are pyrolyzed in a cyclone retort with high temperature gases recycled from the cyclone retort to produce oil and hydrocarbon products. The spent tar sands are then burned at 2000/degree/F in a burner to remove residual char and produce a solid waste that is easily disposable. The process and apparatus have the advantages of being able to utilize tar sands having a broad range of bitumen content and the advantage of producing product gases that are free from combustion gases and thereby have a higher heating value. Another important advantage is rapid pyrolysis of the tar sands in the cyclone so as to effectively utilize smaller sized reactor vessels for reducing capitol and operating costs. 1 fig., 1 tab.

  5. Method and apparatus for hydrocarbon recovery from tar sands

    DOEpatents

    Westhoff, James D.; Harak, Arnold E.

    1989-01-01

    A method and apparatus for utilizing tar sands having a broad range of bitumen content is disclosed. More particularly, tar sands are pyrolyzed in a cyclone retort with high temperature gases recycled from the cyclone retort to produce oil and hydrocarbon products. The spent tar sands are then burned at 2000.degree. F. in a burner to remove residual char and produce a solid waste that is easily disposable. The process and apparatus have the advantages of being able to utilize tar sands having a broad range of bitumen content and the advantage of producing product gases that are free from combustion gases and thereby have a higher heating value. Another important advantage is rapid pyrolysis of the tar sands in the cyclone so as to effectively utilize smaller sized reactor vessels for reducing capitol and operating costs.

  6. Aviation Turbine Fuels from Tar Sands Bitumen and Heavy Oils. Part 1. Process Analysis.

    DTIC Science & Technology

    1984-09-01

    Uinta Basin .......................too.... 11 b . Asphalt Ridge ........................ 13 c.* Tar Sand Triangle ..... to .. .. . .. .. . 15 e...Estimated ............**..* 7 3 CHARACTERISTICS OF UTAH’S MAJOR TAR SANDS ....... 12 4 UINTA BASIN DEPOSITS ................... *........ 13 *.5 UINTA ...7 UINTA BASIN , UTAH PROPERTIES -SUNNYSIDE ........ 20 8 UINTA BASIN , UTAH PROPERTIES -P. R. SPRINGS . 22 r9 ESTIMATED CALIFORNIA TAR SAND DISTRIBUTION

  7. The search for a source rock for the giant Tar Sand triangle accumulation, southeastern Utah

    USGS Publications Warehouse

    Huntoon, J.E.; Hansley, P.L.; Naeser, N.D.

    1999-01-01

    A large proportion (about 36%) of the world's oil resource is contained in accumulations of heavy oil or tar. In these large deposits of degraded oil, the oil in place represents only a fraction of what was present at the time of accumulation. In many of these deposits, the source of the oil is unknown, and the oil is thought to have migrated over long distances to the reservoirs. The Tar Sand triangle in southeastern Utah contains the largest tar sand accumulation in the United States, with 6.3 billion bbl of heavy oil estimated to be in place. The deposit is thought to have originally contained 13-16 billion bbl prior to the biodegradation, water washing, and erosion that have taken place since the middle - late Tertiary. The source of the oil is unknown. The tar is primarily contained within the Lower Permian White Rim Sandstone, but extends into permeable parts of overlying and underlying beds. Oil is interpreted to have migrated into the White Rim sometime during the Tertiary when the formation was at a depth of approximately 3500 m. This conclusion is based on integration of fluid inclusion analysis, time-temperature reconstruction, and apatite fission-track modeling for the White Rim Sandstone. Homogenization temperatures cluster around 85-90??C for primary fluid inclusions in authigenic, nonferroan dolomite in the White Rim. The fluid inclusions are associated with fluorescent oil-bearing inclusions, indicating that dolomite precipitation was coeval with oil migration. Burial reconstruction suggests that the White Rim Sandstone reached its maximum burial depth from 60 to 24 Ma, and that maximum burial was followed by unroofing from 24 to 0 Ma. Time-temperature modeling indicates that the formation experienced temperatures of 85-90??C from about 35 to 40 Ma during maximum burial. Maximum formation temperatures of about 105-110??C were reached at about 24 Ma, just prior to unroofing. Thermal modeling is used to examine the history of potential source rocks

  8. Treating tar sands formations with karsted zones

    DOEpatents

    Vinegar, Harold J.; Karanikas, John Michael

    2010-03-09

    Methods for treating a tar sands formation are described herein. The tar sands formation may have one or more karsted zones. Methods may include providing heat from one or more heaters to one or more karsted zones of the tar sands formation to mobilize fluids in the formation. At least some of the mobilized fluids may be produced from the formation.

  9. Method for filtering solvent and tar sand mixtures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kelterborn, J. C.; Stone, R. A.

    1985-09-03

    A method for filtering spent tar sands from a bitumen and organic solvent solution comprises separating the solution into two streams wherein the bulk of the coarser spent tar sand is in a first stream and has an average particle size of about 10 to about 100 mesh and the bulk of the finer spent tar sand is in a second stream; producing a filter cake by filtering the coarser spent tar sand from the first stream; and filtering the finer spent tar sand from the second stream with the filter cake. The method is particularly useful for filtering solutionsmore » of bitumen extracted from bitumen containing diatomite, spent diatomite and organic solvent.« less

  10. Aspects of tar sands development in Nigeria

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adewusi, V.A.

    1992-07-01

    Development of Nigerian massive reserves of crude bitumen and associated heavy oil is imminent in view of the impacts that the huge importation of these materials and their products have on the nation's economy, coupled with the depleting reserves of Nigeria and highlights the appropriate production technology options and their environmental implications. The utilization potentials of these resources are also enumerated, as well as the government's role in achieving accelerated, long-term tar sands development in the country.

  11. Treating tar sands formations with dolomite

    DOEpatents

    Vinegar, Harold J.; Karanikas, John Michael

    2010-06-08

    Methods for treating a tar sands formation are described herein. The tar sands formation may include dolomite and hydrocarbons. Methods may include providing heat at less than the decomposition temperature of dolomite from one or more heaters to at least a portion of the formation. At least some of the hydrocarbon fluids are mobilized in the formation. At least some of the hydrocarbon fluids may be produced from the formation.

  12. The potential use of tar sand bitumen as paving asphalt

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Petersen, J.C.

    1988-01-01

    In this paper several research reports describing the preparation of potential paving asphalts from tar sand bitumen are reviewed and the results of the studies compared. The tar sand asphalts described in the studies were prepared from 1) hot water-recovered bitumen from deposits near San Luis Obispo, California (Edna deposits), and deposits near Vernal and Sunnyside, Utah; and 2) bitumen recovered from the Northwest Asphalt Ridge deposits near Vernal, Utah, by both in situ steamflood and in situ combustion recovery processes. Important properties of the tar sand asphalts compare favorably with those of specification petroleum asphalts. Laboratory data suggest thatmore » some tar sand asphalts may have superior aging characteristics and produce more water-resistant paving mixtures than typical petroleum asphalts.« less

  13. Creating fluid injectivity in tar sands formations

    DOEpatents

    Stegemeier, George Leo; Beer, Gary Lee; Zhang, Etuan

    2012-06-05

    Methods for treating a tar sands formation are described herein. Methods for treating a tar sands may include heating a portion of a hydrocarbon layer in the formation from one or more heaters located in the portion. The heat may be controlled to increase the permeability of at least part of the portion to create an injection zone in the portion with an average permeability sufficient to allow injection of a fluid through the injection zone. A drive fluid and/or an oxidizing fluid may be provided into the injection zone. At least some hydrocarbons including mobilized hydrocarbons are produced from the portion.

  14. Creating fluid injectivity in tar sands formations

    DOEpatents

    Stegemeier, George Leo; Beer, Gary Lee; Zhang, Etuan

    2010-06-08

    Methods for treating a tar sands formation are described herein. Methods for treating a tar sands may include heating a portion of a hydrocarbon layer in the formation from one or more heaters located in the portion. The heat may be controlled to increase the permeability of at least part of the portion to create an injection zone in the portion with an average permeability sufficient to allow injection of a fluid through the injection zone. A drive fluid and/or an oxidizing fluid may be provided into the injection zone. At least some hydrocarbons are produced from the portion.

  15. Coal tar phototherapy for psoriasis reevaluated: erythemogenic versus suberythemogenic ultraviolet with a tar extract in oil and crude coal tar

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lowe, N.J.; Wortzman, M.S.; Breeding, J.

    1983-06-01

    Recent studies have questioned the therapeutic value of coal tar versus ultraviolet (UV) radiation and their relative necessity in phototherapy for psoriasis. In this investigation, different aspects of tar phototherapy have been studied in single-blind bilateral paired comparison studies. The effects of 1% crude coal tar were compared with those of petrolatum in conjunction with erythemogenic and suberythemogenic doses of ultraviolet light (UVB) using a FS72 sunlamp tubed cabinet. Crude coal tar was clinically superior to petrolatum with suberythemogenic ultraviolet. With the erythemogenic UVB, petrolatum was equal in efficacy to crude coal tar. Suberythemogenic UVB was also used adjunctively tomore » compare the effects of a 5% concentration of a tar extract in an oil base to 5% crude coal tar in petrolatum or the oil base without tar. The tar extract in oil plus suberythemogenic UVB produced significantly more rapid improvement than the oil base plus UVB. The direct bilateral comparison of equal concentrations of tar extract in oil base versus crude coal tar in petrolatum in a suberythemogenic UV photo regimen revealed no statistical differences between treatments. In a study comparing tar extract in oil and the oil base without ultraviolet radiation, the tar extract in oil side responded more rapidly.« less

  16. Creating and maintaining a gas cap in tar sands formations

    DOEpatents

    Vinegar, Harold J.; Karanikas, John Michael; Dinkoruk, Deniz Sumnu; Wellington, Scott Lee

    2010-03-16

    Methods for treating a tar sands formation are disclosed herein. Methods for treating a tar sands formation may include providing heat to at least part of a hydrocarbon layer in the formation from one or more heaters located in the formation. Pressure may be allowed to increase in an upper portion of the formation to provide a gas cap in the upper portion. At least some hydrocarbons are produced from a lower portion of the formation.

  17. Study on tar generated from downdraft gasification of oil palm fronds.

    PubMed

    Atnaw, Samson Mekbib; Kueh, Soo Chuan; Sulaiman, Shaharin Anwar

    2014-01-01

    One of the most challenging issues concerning the gasification of oil palm fronds (OPF) is the presence of tar and particulates formed during the process considering its high volatile matter content. In this study, a tar sampling train custom built based on standard tar sampling protocols was used to quantify the gravimetric concentration of tar (g/Nm3) in syngas produced from downdraft gasification of OPF. The amount of char, ash, and solid tar produced from the gasification process was measured in order to account for the mass and carbon conversion efficiency. Elemental analysis of the char and solid tar samples was done using ultimate analysis machine, while the relative concentration of the different compounds in the liquid tar was determined making use of a liquid gas chromatography (GC) unit. Average tar concentration of 4.928 g/Nm3 and 1.923 g/Nm3 was obtained for raw gas and cleaned gas samples, respectively. Tar concentration in the raw gas sample was found to be higher compared to results for other biomass materials, which could be attributed to the higher volatile matter percentage of OPF. Average cleaning efficiency of 61% which is comparable to that of sand bed filter and venturi scrubber cleaning systems reported in the literature was obtained for the cleaning system proposed in the current study.

  18. Study on Tar Generated from Downdraft Gasification of Oil Palm Fronds

    PubMed Central

    Atnaw, Samson Mekbib; Kueh, Soo Chuan; Sulaiman, Shaharin Anwar

    2014-01-01

    One of the most challenging issues concerning the gasification of oil palm fronds (OPF) is the presence of tar and particulates formed during the process considering its high volatile matter content. In this study, a tar sampling train custom built based on standard tar sampling protocols was used to quantify the gravimetric concentration of tar (g/Nm3) in syngas produced from downdraft gasification of OPF. The amount of char, ash, and solid tar produced from the gasification process was measured in order to account for the mass and carbon conversion efficiency. Elemental analysis of the char and solid tar samples was done using ultimate analysis machine, while the relative concentration of the different compounds in the liquid tar was determined making use of a liquid gas chromatography (GC) unit. Average tar concentration of 4.928 g/Nm3 and 1.923 g/Nm3 was obtained for raw gas and cleaned gas samples, respectively. Tar concentration in the raw gas sample was found to be higher compared to results for other biomass materials, which could be attributed to the higher volatile matter percentage of OPF. Average cleaning efficiency of 61% which is comparable to that of sand bed filter and venturi scrubber cleaning systems reported in the literature was obtained for the cleaning system proposed in the current study. PMID:24526899

  19. Characteristics of PAH tar oil contaminated soils-Black particles, resins and implications for treatment strategies.

    PubMed

    Trellu, Clément; Miltner, Anja; Gallo, Rosita; Huguenot, David; van Hullebusch, Eric D; Esposito, Giovanni; Oturan, Mehmet A; Kästner, Matthias

    2017-04-05

    Tar oil contamination is a major environmental concern due to health impacts of polycyclic aromatic hydrocarbons (PAH) and the difficulty of reaching acceptable remediation end-points. Six tar oil-contaminated soils with different industrial histories were compared to investigate contamination characteristics by black particles. Here we provide a simple method tested on 6 soils to visualize and identify large amounts of black particles (BP) as either solid aggregates of resinified and weathered tar oil or various wood/coke/coal-like materials derived from the contamination history. These materials contain 2-10 times higher PAH concentrations than the average soil and were dominantly found in the sand fraction containing 42-86% of the total PAH. The PAH contamination in the different granulometric fractions was directly proportional to the respective total organic carbon content, since the PAH were associated to the carbonaceous particulate materials. Significantly lower (bio)availability of PAH associated to these carbonaceous phases is widely recognized, thus limiting the efficiency of remediation techniques. We provide a conceptual model of the limited mass transfer of PAH from resinated tar oil phases to the water phase and emphasize the options to physically separate BP based on their lower bulk density and slower settling velocity. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. The extraction of bitumen from western oil sands. Annual report, July 1991--July 1992

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oblad, A.G.; Bunger, J.W.; Dahlstrom, D.A.

    1992-08-01

    The University of Utah tar sand research and development program is concerned with research and development on Utah is extensive oil sands deposits. The program has been intended to develop a scientific and technological base required for eventual commercial recovery of the heavy oils from oil sands and processing these oils to produce synthetic crude oil and other products such as asphalt. The overall program is based on mining the oil sand, processing the mined sand to recover the heavy oils and upgrading them to products. Multiple deposits are being investigated since it is believed that a large scale (approximatelymore » 20,000 bbl/day) plant would require the use of resources from more than one deposit. The tasks or projects in the program are organized according to the following classification: Recovery technologies which includes thermal recovery methods, water extraction methods, and solvent extraction methods; upgrading and processing technologies which covers hydrotreating, hydrocracking, and hydropyrolysis; solvent extraction; production of specialty products; and environmental aspects of the production and processing technologies. These tasks are covered in this report.« less

  1. Method of producing drive fluid in situ in tar sands formations

    DOEpatents

    Mudunuri, Ramesh Raju; Jaiswal, Namit; Vinegar, Harold J.; Karanikas, John Michael

    2010-03-23

    Methods of treating a tar sands formation are described herein. Methods for treating a tar sands may include providing heat to at least part of a hydrocarbon layer in the formation from one or more heaters located in the formation. The heat may be allowed to transfer from the heaters to at least a portion of the formation such that a drive fluid is produced in situ in the formation. The drive fluid may move at least some mobilized, visbroken, and/or pyrolyzed hydrocarbons from a first portion of the formation to a second portion of the formation. At least some of the mobilized, visbroken, and/or pyrolyzed hydrocarbons may be produced from the formation.

  2. In situ heat treatment of a tar sands formation after drive process treatment

    DOEpatents

    Vinegar, Harold J.; Stanecki, John

    2010-09-21

    A method for treating a tar sands formation includes providing a drive fluid to a hydrocarbon containing layer of the tar sands formation to mobilize at least some hydrocarbons in the layer. At least some first hydrocarbons from the layer are produced. Heat is provided to the layer from one or more heaters located in the formation. At least some second hydrocarbons are produced from the layer of the formation. The second hydrocarbons include at least some hydrocarbons that are upgraded compared to the first hydrocarbons produced by using the drive fluid.

  3. Controlling and assessing pressure conditions during treatment of tar sands formations

    DOEpatents

    Zhang, Etuan; Beer, Gary Lee

    2015-11-10

    A method for treating a tar sands formation includes providing heat to at least part of a hydrocarbon layer in the tar sands formation from a plurality of heaters located in the formation. Heat is allowed to transfer from the heaters to at least a portion of the formation. A pressure in the portion of the formation is controlled such that the pressure remains below a fracture pressure of the formation overburden while allowing the portion of the formation to heat to a selected average temperature of at least about 280.degree. C. and at most about 300.degree. C. The pressure in the portion of the formation is reduced to a selected pressure after the portion of the formation reaches the selected average temperature.

  4. Heating tar sands formations to visbreaking temperatures

    DOEpatents

    Karanikas, John Michael [Houston, TX; Colmenares, Tulio Rafael [Houston, TX; Zhang, Etuan [Houston, TX; Marino, Marian [Houston, TX; Roes, Augustinus Wilhelmus Maria [Houston, TX; Ryan, Robert Charles [Houston, TX; Beer, Gary Lee [Houston, TX; Dombrowski, Robert James [Houston, TX; Jaiswal, Namit [Houston, TX

    2009-12-22

    Methods for treating a tar sands formation are described herein. Methods may include heating at least a section of a hydrocarbon layer in the formation from a plurality of heaters located in the formation. The heat may be controlled so that at least a majority of the section reaches an average temperature of between 200.degree. C. and 240.degree. C., which results in visbreaking of at least some hydrocarbons in the section. At least some visbroken hydrocarbon fluids may be produced from the formation.

  5. Wet scrubbing of biomass producer gas tars using vegetable oil

    NASA Astrophysics Data System (ADS)

    Bhoi, Prakashbhai Ramabhai

    The overall aims of this research study were to generate novel design data and to develop an equilibrium stage-based thermodynamic model of a vegetable oil based wet scrubbing system for the removal of model tar compounds (benzene, toluene and ethylbenzene) found in biomass producer gas. The specific objectives were to design, fabricate and evaluate a vegetable oil based wet scrubbing system and to optimize the design and operating variables; i.e., packed bed height, vegetable oil type, solvent temperature, and solvent flow rate. The experimental wet packed bed scrubbing system includes a liquid distributor specifically designed to distribute a high viscous vegetable oil uniformly and a mixing section, which was designed to generate a desired concentration of tar compounds in a simulated air stream. A method and calibration protocol of gas chromatography/mass spectroscopy was developed to quantify tar compounds. Experimental data were analyzed statistically using analysis of variance (ANOVA) procedure. Statistical analysis showed that both soybean and canola oils are potential solvents, providing comparable removal efficiency of tar compounds. The experimental height equivalent to a theoretical plate (HETP) was determined as 0.11 m for vegetable oil based scrubbing system. Packed bed height and solvent temperature had highly significant effect (p0.05) effect on the removal of model tar compounds. The packing specific constants, Ch and CP,0, for the Billet and Schultes pressure drop correlation were determined as 2.52 and 2.93, respectively. The equilibrium stage based thermodynamic model predicted the removal efficiency of model tar compounds in the range of 1-6%, 1-4% and 1-2% of experimental data for benzene, toluene and ethylbenzene, respectively, for the solvent temperature of 30° C. The NRTL-PR property model and UNIFAC for estimating binary interaction parameters are recommended for modeling absorption of tar compounds in vegetable oils. Bench scale

  6. Heating tar sands formations while controlling pressure

    DOEpatents

    Stegemeier, George Leo [Houston, TX; Beer, Gary Lee [Houston, TX; Zhang, Etuan [Houston, TX

    2010-01-12

    Methods for treating a tar sands formation are described herein. Methods may include heating at least a section of a hydrocarbon layer in the formation from a plurality of heaters located in the formation. A pressure in the majority of the section may be maintained below a fracture pressure of the formation. The pressure in the majority of the section may be reduced to a selected pressure after the average temperature reaches a temperature that is above 240.degree. C. and is at or below pyrolysis temperatures of hydrocarbons in the section. At least some hydrocarbon fluids may be produced from the formation.

  7. The extraction of bitumen from western oil sands. Final report, July 1989--September 1993

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oblad, A.G.; Bunger, J.W.; Dahlstrom, D.A.

    1994-03-01

    Research and development of surface extraction and upgrading processes of western tar sands are described. Research areas included modified hot water, fluidized bed, and rotary kiln pyrolysis of tar sands for extraction of bitumen. Bitumen upgrading included solvent extraction of bitumen, and catalytic hydrotreating of bitumen. Characterization of Utah tar sand deposits is also included.

  8. Process for removing heavy metal compounds from heavy crude oil

    DOEpatents

    Cha, Chang Y.; Boysen, John E.; Branthaver, Jan F.

    1991-01-01

    A process is provided for removing heavy metal compounds from heavy crude oil by mixing the heavy crude oil with tar sand; preheating the mixture to a temperature of about 650.degree. F.; heating said mixture to up to 800.degree. F.; and separating tar sand from the light oils formed during said heating. The heavy metals removed from the heavy oils can be recovered from the spent sand for other uses.

  9. Bitumen recovery from oil sands using deep eutectic solvent and its aqueous solutions

    NASA Astrophysics Data System (ADS)

    Pulati, Nuerxida

    Oil sands compose a significant proportion of the world's known oil reserves. Oil sands are also known as tar sands and bituminous sands, are complex mixtures of sand, clays, water and bitumen, which is "heavy" and highly viscous oil. The extraction and separation of bitumen from oil sands requires significant amount of energy and large quantities of water and poses several environmental challenges. Bitumen can be successfully separated from oil sands using imidazolium based ionic liquids and nonpolar solvents, however, ionic liquids are expensive and toxic. In this thesis, the ionic liquid alternatives- deep eutectic solvent, were investigated. Oil sands separation can be successfully achieved by using deep eutectic solvents DES (choline chloride and urea) and nonpolar solvent naphtha in different types of oil sands, including Canadian ("water-wet"), Utah ("oil-wet") and low grade Kentucky oil sands. The separation quality depends on oil sands type, including bitumen and fine content, and separation condition, such as solvent ratio, temperature, mixing time and mechanical centrifuge. This separation claims to the DES ability to form ion /charge layering on mineral surface, which results in reduction of adhesion forces between bitumen and minerals and promote their separation. Addition of water to DES can reduce DES viscosity. DES water mixture as a media, oil sands separation can be achieved. However, concentration at about 50 % or higher might be required to obtain a clear separation. And the separation efficiency is oil sands sample dependent. The highest bitumen extraction yield happened at 75% DES-water solution for Utah oil sands samples, and at 50 60% DES-water solutions for Alberta oil sands samples. Force curves were measured using Atomic Force Microscopy new technique, PeakForce Tapping Quantitative Nanomechanical Mapping (PFTQNM). The results demonstrate that, by adding DES, the adhesion force between bitumen and silica and dissipation energy will

  10. Laboratory studies to characterize the efficacy of sand capping a coal tar-contaminated sediment.

    PubMed

    Hyun, Seunghun; Jafvert, Chad T; Lee, Linda S; Rao, P Suresh C

    2006-06-01

    Placement of a microbial active sand cap on a coal tar-contaminated river sediment has been suggested as a cost effective remediation strategy. This approach assumes that the flux of contaminants from the sediment is sufficiently balanced by oxygen and nutrient fluxes into the sand layer such that microbial activity will reduce contaminant concentrations within the new benthic zone and reduce the contaminant flux to the water column. The dynamics of such a system were evaluated using batch and column studies with microbial communities from tar-contaminated sediment under different aeration and nutrient inputs. In a 30-d batch degradation study on aqueous extracts of coal tar sediment, oxygen and nutrient concentrations were found to be key parameters controlling the degradation rates of polycyclic aromatic hydrocarbons (PAHs). For the five PAHs monitored (naphthalene, fluorene, phenanthrene, anthracene, and pyrene), degradation rates were inversely proportional to molecular size. For the column studies, where three columns were packed with a 20-cm sand layer on the top of a 5 cm of sediment layer, flow was established to sand layers with (1) aerated water, (2) N(2) sparged water, or (3) HgCl(2)-sterilized N(2) sparged water. After steady-state conditions, PAH concentrations in effluents were the lowest in the aerated column, except for pyrene, whose concentration was invariant with all effluents. These laboratory scale studies support that if sufficient aeration can be achieved in the field through either active and passive means, the resulting microbially active sand layer can improve the water quality of the benthic zone and reduce the flux of many, but not all, PAHs to the water column.

  11. An NMR (Nuclear Magnetic Resonance) Investigation of the Chemical Association and Molecular Dynamics in Asphalt Ridge Tar Sand Ore and Bitumen

    DOE R&D Accomplishments Database

    Netzel, D. A.; Coover, P. T.

    1987-09-01

    Preliminary studies on tar sand bitumen given in this report have shown that the reassociation of tar sand bitumen to its original molecular configuration after thermal stressing is a first-order process requiring nearly a week to establish equilibrium. Studies were also conducted on the dissolution of tar sand bitumen in solvents of varying polarity. At a high-weight fraction of solute to solvent the apparent molecular weight of the bitumen molecules was greater than that of the original bitumen when dissolved in chloroform-d{sub 1} and benzene-d{sub 6}. This increase in the apparent molecular weight may be due to micellar formation or a weak solute-solvent molecular complex. Upon further dilution with any of the solvents studied, the apparent molecular weight of the tar sand bitumen decreased because of reduced van der Waals forces of interaction and/or hydrogen bonding. To define the exact nature of the interactions, it will be necessary to have viscosity measurements of the solutions.

  12. Environmental consequences of oil production from oil sands

    NASA Astrophysics Data System (ADS)

    Rosa, Lorenzo; Davis, Kyle F.; Rulli, Maria C.; D'Odorico, Paolo

    2017-02-01

    Crude oil from oil sands will constitute a substantial share of future global oil demand. Oil sands deposits account for a third of globally proven oil reserves, underlie large natural forested areas, and have extraction methods requiring large volumes of freshwater. Yet little work has been done to quantify some of the main environmental impacts of oil sands operations. Here we examine forest loss and water use for the world's major oil sands deposits. We calculate actual and potential rates of water use and forest loss both in Canadian deposits, where oil sands extraction is already taking place, and in other major deposits worldwide. We estimated that their exploitation, given projected production trends, could result in 1.31 km3 yr-1 of freshwater demand and 8700 km2 of forest loss. The expected escalation in oil sands extraction thus portends extensive environmental impacts.

  13. Timing and petroleum sources for the Lower Cretaceous Mannville Group oil sands of northern Alberta based on 4-D modeling

    USGS Publications Warehouse

    Higley, D.K.; Lewan, M.D.; Roberts, L.N.R.; Henry, M.

    2009-01-01

    The Lower Cretaceous Mannville Group oil sands of northern Alberta have an estimated 270.3 billion m3 (BCM) (1700 billion bbl) of in-place heavy oil and tar. Our study area includes oil sand accumulations and downdip areas that partially extend into the deformation zone in western Alberta. The oil sands are composed of highly biodegraded oil and tar, collectively referred to as bitumen, whose source remains controversial. This is addressed in our study with a four-dimensional (4-D) petroleum system model. The modeled primary trap for generated and migrated oil is subtle structures. A probable seal for the oil sands was a gradual updip removal of the lighter hydrocarbon fractions as migrated oil was progressively biodegraded. This is hypothetical because the modeling software did not include seals resulting from the biodegradation of oil. Although the 4-D model shows that source rocks ranging from the Devonian-Mississippian Exshaw Formation to the Lower Cretaceous Mannville Group coals and Ostracode-zone-contributed oil to Mannville Group reservoirs, source rocks in the Jurassic Fernie Group (Gordondale Member and Poker Chip A shale) were the initial and major contributors. Kinetics associated with the type IIS kerogen in Fernie Group source rocks resulted in the early generation and expulsion of oil, as early as 85 Ma and prior to the generation from the type II kerogen of deeper and older source rocks. The modeled 50% peak transformation to oil was reached about 75 Ma for the Gordondale Member and Poker Chip A shale near the west margin of the study area, and prior to onset about 65 Ma from other source rocks. This early petroleum generation from the Fernie Group source rocks resulted in large volumes of generated oil, and prior to the Laramide uplift and onset of erosion (???58 Ma), which curtailed oil generation from all source rocks. Oil generation from all source rocks ended by 40 Ma. Although the modeled study area did not include possible western

  14. Heat-resistant agent used for control sand of steam huff and puff heavy oil well

    NASA Astrophysics Data System (ADS)

    Zhang, F. S.; Liu, G. L.; Lu, Y. J.; Xiong, X. C.; Ma, J. H.; Su, H. M.

    2018-01-01

    Heat-resistant agent containing hydroxymethyl group was synthesized from coal tar, which has similar structure with phenolic resin and could improve the heat resistance of phenolic resin sand control agent. The results showed that the heat resistance of the sand control agent was improved by adding 10% to 30% heat-resistant agent, after 280°C high temperature treatment for 7d, the compressive strength of consolidated core was increased to more than 5MPa. The compressive strength of consolidation core was not decreased after immersion in formation water, crude oil, acid or alkaline medium, which showed good resistance to medium immersion. The sand control agent had small core damage and the core permeability damage ratio of sand control agent consolidation was only 18.7%.

  15. Risk Assessment for Children Exposed to Beach Sands Impacted by Oil Spill Chemicals.

    PubMed

    Black, Jennifer C; Welday, Jennifer N; Buckley, Brian; Ferguson, Alesia; Gurian, Patrick L; Mena, Kristina D; Yang, Ill; McCandlish, Elizabeth; Solo-Gabriele, Helena M

    2016-08-27

    Due to changes in the drilling industry, oil spills are impacting large expanses of coastlines, thereby increasing the potential for people to come in contact with oil spill chemicals. The objective of this manuscript was to evaluate the health risk to children who potentially contact beach sands impacted by oil spill chemicals from the Deepwater Horizon disaster. To identify chemicals of concern, the U.S. Environmental Protection Agency's (EPA's) monitoring data collected during and immediately after the spill were evaluated. This dataset was supplemented with measurements from beach sands and tar balls collected five years after the spill. Of interest is that metals in the sediments were observed at similar levels between the two sampling periods; some differences were observed for metals levels in tar balls. Although PAHs were not observed five years later, there is evidence of weathered-oil oxidative by-products. Comparing chemical concentration data to baseline soil risk levels, three metals (As, Ba, and V) and four PAHs (benzo[a]pyrene, benz[a]anthracene, benzo[b]fluoranthene, and dibenz[a,h]anthracene) were found to exceed guideline levels prompting a risk assessment. For acute or sub-chronic exposures, hazard quotients, computed by estimating average expected contact behavior, showed no adverse potential health effects. For cancer, computations using 95% upper confidence limits for contaminant concentrations showed extremely low increased risk in the 10(-6) range for oral and dermal exposure from arsenic in sediments and from dermal exposure from benzo[a]pyrene and benz[a]anthracene in weathered oil. Overall, results suggest that health risks are extremely low, given the limitations of available data. Limitations of this study are associated with the lack of toxicological data for dispersants and oil-spill degradation products. We also recommend studies to collect quantitative information about children's beach play habits, which are necessary to more

  16. Ranking methodology for determining the relative favorability for commercial development of US tar-sand deposits

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aamodt, P.L.; Freiwald, J.G.

    1983-03-01

    As a part of the DOE's program to stimulate petroleum production from unconventional sources, the Los Alamos National Laboratory has developed a methodology to compare and rank tar sand deposits, based on their suitability for commercial development. Major categories influencing favorability were identified and evaluated to determine their individual and collective impacts. To facilitate their evaluation, deposit characteristics, extraction technologies, environmental controls, and institutional constraints were broken down into their elements. The elements were assessed singly and in interactive groups to determine their influence on favorability for commercial development. A numerical value was assigned each element to signify its estimatedmore » importance relative to the other elements. Eight tar sand deposits were evaluated using only one major category, deposit characteristics. This initial, and only partial favorability assessment, was solely a test of the methodology, and it was considered successful. Because only one of the four major categories was used for this initial favorability ranking, and also because the available deposit characteristic data were barely adequate for the test, these first results should be used only as an example of how the methodology is to be applied when more complete data are available. The eight deposits and their relative favorability rankings for commercial development, based only on the deposit characteristics, are Sunnyside, Utah; Asphalt Ridge, Utah; Edna, California; Santa Rosa, New Mexico; Tar Sand Triangle, Utah; PR Spring, Utah; Uvalde, Texas; and circle cliffs, Utah.« less

  17. Use of mineral oil Fleet enema for the removal of a large tar burn: a case report.

    PubMed

    Carta, Tricia; Gawaziuk, Justin; Liu, Song; Logsetty, Sarvesh

    2015-03-01

    Extensive hot tar burns are relatively uncommon. Management of these burns provides a significant clinical challenge especially with respect to tar removal involving a large total body surface area (TBSA), without causing further tissue injury. We report a case of an over 40-year old male construction worker who was removing a malfunctioning cap from broken valve. This resulted in tar spraying over the anterior surface of his body including legs, feet, chest, abdomen, arms, face and oral cavity (80% TBSA covered in tar resulting in a 50% TBSA burn injury). Initially, petrolatum-based, double antibiotic ointment was used to remove the tar, based on our previous experience with small tar burns. However, this was time-consuming and ineffective. The tar was easily removed with mineral oil without irritation. In order to meet the demand for quantity of mineral oil, the pharmacy suggested using mineral oil Fleet enema (C.B. Fleet Company, Inc., Lynchburg, Virginia, USA). The squeezable bottle and catheter tip facilitated administration of oil into the patient's construction boots and under clothing that was adhered to the patient's skin. Tar removal requires an effective, non-toxic and non-irritating agent. Mineral oil is such an agent. For patients that may present with a large surface area tar burn, using mineral oil Fleet enema is a viable option that facilitates application into difficult areas. Grant Support: The Firefighters' Burn Fund (Manitoba) supported this project. Copyright © 2014 Elsevier Ltd and ISBI. All rights reserved.

  18. Production from multiple zones of a tar sands formation

    DOEpatents

    Karanikas, John Michael; Vinegar, Harold J

    2013-02-26

    A method for treating a tar sands formation includes providing heat to at least part of a hydrocarbon layer in the formation from a plurality of heaters located in the formation. The heat is allowed to transfer from the heaters to at least a portion of the formation. Fluids are produced from the formation through at least one production well that is located in at least two zones in the formation. The first zone has an initial permeability of at least 1 darcy. The second zone has an initial of at most 0.1 darcy. The two zones are separated by a substantially impermeable barrier.

  19. Risk Assessment for Children Exposed to Beach Sands Impacted by Oil Spill Chemicals

    PubMed Central

    Black, Jennifer C.; Welday, Jennifer N.; Buckley, Brian; Ferguson, Alesia; Gurian, Patrick L.; Mena, Kristina D.; Yang, Ill; McCandlish, Elizabeth; Solo-Gabriele, Helena M.

    2016-01-01

    Due to changes in the drilling industry, oil spills are impacting large expanses of coastlines, thereby increasing the potential for people to come in contact with oil spill chemicals. The objective of this manuscript was to evaluate the health risk to children who potentially contact beach sands impacted by oil spill chemicals from the Deepwater Horizon disaster. To identify chemicals of concern, the U.S. Environmental Protection Agency’s (EPA’s) monitoring data collected during and immediately after the spill were evaluated. This dataset was supplemented with measurements from beach sands and tar balls collected five years after the spill. Of interest is that metals in the sediments were observed at similar levels between the two sampling periods; some differences were observed for metals levels in tar balls. Although PAHs were not observed five years later, there is evidence of weathered-oil oxidative by-products. Comparing chemical concentration data to baseline soil risk levels, three metals (As, Ba, and V) and four PAHs (benzo[a]pyrene, benz[a]anthracene, benzo[b]fluoranthene, and dibenz[a,h]anthracene) were found to exceed guideline levels prompting a risk assessment. For acute or sub-chronic exposures, hazard quotients, computed by estimating average expected contact behavior, showed no adverse potential health effects. For cancer, computations using 95% upper confidence limits for contaminant concentrations showed extremely low increased risk in the 10−6 range for oral and dermal exposure from arsenic in sediments and from dermal exposure from benzo[a]pyrene and benz[a]anthracene in weathered oil. Overall, results suggest that health risks are extremely low, given the limitations of available data. Limitations of this study are associated with the lack of toxicological data for dispersants and oil-spill degradation products. We also recommend studies to collect quantitative information about children’s beach play habits, which are necessary to more

  20. Tar sand extraction by steam stimulation and steam drive: measurement of physical properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Linberg, W.R.

    The measurement of the following thermophysical properties of Utah tar sands is in progress: thermal conductivity, specific heat relative permeability, and viscosity (of the recovered bitumen). During the report period (October 1, 1978 to November 1, 1979), experimental procedures have been developed and a basic data set has been measured. Additionally, standard core analysis has been performed for four drill sites in the Asphalt Ridge, Utah area.

  1. Silica removal from steamflood-produced water: South Texas tar sands pilot

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thomas, S.A.; Yost, M.E.; Cathey, S.R.

    1987-05-01

    Steamflood-produced waters commonly contain suspended solids, oil, hardness-causing minerals, sulfide, and silica. Removal of these contaminants would make many of these waters suitable for recycling as steamer feedwater. Reuse of steamflood-produced waters increases steamer feedwater supplies and reduces water disposal requirements. This paper describes a field pilot study of silica removal from steamflood-produced water in the south Texas tar sands region. A hot-lime precipitation process was used to reduce dissolved silica (SiO/sub 2/) concentrations from 400 to less than 50 mg/L SiO/sub 2/ in Mary R. Saner Ranch produced water. Most water systems using hot-lime precipitation for silica removal requiremore » the addition of magnesium salt, as well as lime, to enhance silica removal. In this field study, however, addition of magnesium salt did not improve silica removal efficiency. Hydrated lime, CA(OH)/sub 2/, alone was sufficient to attain desired silica residual, 50 mg/L SiO/sub 2/. The dissolved silica adsorbed onto the CaCO/sub 3/ crystals formed by lime reacting with the alkalinity present in the produced water. Required lime dosage was approximately 900 mg/L Ca(OH)/sub 2/.« less

  2. Aviation Turbine Fuels from Tar Sands Bitumen and Heavy Oils. Part 3. Laboratory Sample Production.

    DTIC Science & Technology

    1987-12-01

    FILD7 ar Sands, Heavy Ois Jet Fue - - - etF IE L D G R O U P S U B -G R O U P , u e -. IT - 3 seC m ) A s h l GROUP SB-RP Fue-i-T-33-A Reduced Crude...connec- tion with processes for heavy oil cracking and related catalysts. * program which allowed processing of bitumen stocks . The overall process flow

  3. Potential impacts to perennial springs from tar sand mining, processing, and disposal on the Tavaputs Plateau, Utah, USA.

    PubMed

    Johnson, William P; Frederick, Logan E; Millington, Mallory R; Vala, David; Reese, Barbara K; Freedman, Dina R; Stenten, Christina J; Trauscht, Jacob S; Tingey, Christopher E; Kip Solomon, D; Fernandez, Diego P; Bowen, Gabriel J

    2015-11-01

    Similar to fracking, the development of tar sand mining in the U.S. has moved faster than understanding of potential water quality impacts. Potential water quality impacts of tar sand mining, processing, and disposal to springs in canyons incised approximately 200 m into the Tavaputs Plateau, at the Uinta Basin southern rim, Utah, USA, were evaluated by hydrogeochemical sampling to determine potential sources of recharge, and chemical thermodynamic estimations to determine potential changes in transfer of bitumen compounds to water. Because the ridgetops in an area of the Tavaputs Plateau named PR Spring are starting to be developed for their tar sand resource, there is concern for potential hydrologic connection between these ridgetops and perennial springs in adjacent canyons on which depend ranching families, livestock, wildlife and recreationalists. Samples were collected from perennial springs to examine possible progression with elevation of parameters such as temperature, specific conductance, pH, dissolved oxygen, isotopic tracers of phase change, water-rock interaction, and age since recharge. The groundwater age dates indicate that the springs are recharged locally. The progression of hydrogeochemical parameters with elevation, in combination with the relatively short groundwater residence times, indicate that the recharge zone for these springs includes the surrounding ridges, and thereby suggests a hydrologic connection between the mining, processing, disposal area and the springs. Estimations based on chemical thermodynamic approaches indicate that bitumen compounds will have greatly enhanced solubility in water that comes into contact with the residual bitumen-solvent mixture in disposed tailings relative to water that currently comes into contact with natural tar. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Systems and methods for producing hydrocarbons from tar sands formations

    DOEpatents

    Li, Ruijian [Katy, TX; Karanikas, John Michael [Houston, TX

    2009-07-21

    A system for treating a tar sands formation is disclosed. A plurality of heaters are located in the formation. The heaters include at least partially horizontal heating sections at least partially in a hydrocarbon layer of the formation. The heating sections are at least partially arranged in a pattern in the hydrocarbon layer. The heaters are configured to provide heat to the hydrocarbon layer. The provided heat creates a plurality of drainage paths for mobilized fluids. At least two of the drainage paths converge. A production well is located to collect and produce mobilized fluids from at least one of the converged drainage paths in the hydrocarbon layer.

  5. Tar Creek study, Sargent oil field, Santa Clara County, California

    USGS Publications Warehouse

    Wagner, David L.; Fedasko, Bill; Carnahan, J.R.; Brunetti, Ross; Magoon, Leslie B.; Lillis, Paul G.; Lorenson, T.D.; Stanley, Richard G.

    2002-01-01

    Field work in the Tar Creek area of Sargent oil field was performed June 26 to 28, 2000. The Santa Clara County study area is located in Sections, 30, 31, and 32, Township 11 South, Range 4 East, M.D.B&M; and in Sections 25 and 36, Township 11 South, Range 3 East, M.D.B.&M., north and south of Tar Creek, west of Highway 101. The work was a cooperative effort of the California Department of Conservation's Division of Oil, Gas, and Geothermal Resources (DOGGR), California Geological Survey (CGS), and the United States Geological Survey (USGS). The purpose of the project was to map the stratigraphy and geologic structure (David Wagner, CGS); sample oil for age dating (Les Magoon, USGS); and search for undocumented wells plus conduct a GPS survey of the area (Bill Fedasko, J.P. Carnahan, and Ross Brunetti, DOGGR)

  6. In situ heat treatment from multiple layers of a tar sands formation

    DOEpatents

    Vinegar, Harold J.

    2010-11-30

    A method for treating a tar sands formation is disclosed. The method includes providing a drive fluid to a first hydrocarbon containing layer of the formation to mobilize at least some hydrocarbons in the first layer. At least some of the mobilized hydrocarbons are allowed to flow into a second hydrocarbon containing layer of the formation. Heat is provided to the second layer from one or more heaters located in the second layer. At least some hydrocarbons are produced from the second layer of the formation.

  7. Hydrocarbon accumulation in Pennsylvanian-age Ten Sleep Sandstone: the Trapper Creek tar sand deposit, Big Horn basin, Wyoming

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barrell, S.S.

    1983-03-01

    Preliminary investigations indicate a potential tar sand accumulation in the Trapper Creek deposit of more than 2.13 million tons of mineralized material with a yield of 0.92 bbl per ton of 5.2/sup 0/ API oil for an approximate resource of 1.96 million bbl of recoverable petroleum. Remote sensing data suggest that the accumulation is in part controlled by two major and four minor lineaments which traverse the area. Stratigraphic and lithologic criteria can be used to infer a Minnelusa-type mode of occurrence. Ancillary stream sediment and outcrop geochemistry data yield locally anomalous but uneconomic concentrations of Mg, Ca, Ti, Mn,more » Ag, Cu, Mo, V, K, and Si, which may have significance in the identification of similar hydrocarbon accumulations along the west flank of the Bighorn Mountains.« less

  8. Method of condensing vaporized water in situ to treat tar sands formations

    DOEpatents

    Hsu, Chia-Fu

    2010-03-16

    Methods for treating a tar sands formation are described herein. Methods may include heating at least a section of a hydrocarbon layer in the formation from a plurality of heaters located in the formation. Heat may be allowed to transfer from the heaters to at least a first portion of the formation. Conditions may be controlled in the formation so that water vaporized by the heaters in the first portion is selectively condensed in a second portion of the formation. At least some of the fluids may be produced from the formation.

  9. Clean and Secure Energy from Domestic Oil Shale and Oil Sands Resources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Spinti, Jennifer; Birgenheier, Lauren; Deo, Milind

    This report summarizes the significant findings from the Clean and Secure Energy from Domestic Oil Shale and Oil Sands Resources program sponsored by the Department of Energy through the National Energy Technology Laboratory. There were four principle areas of research; Environmental, legal, and policy issues related to development of oil shale and oil sands resources; Economic and environmental assessment of domestic unconventional fuels industry; Basin-scale assessment of conventional and unconventional fuel development impacts; and Liquid fuel production by in situ thermal processing of oil shale Multiple research projects were conducted in each area and the results have been communicated viamore » sponsored conferences, conference presentations, invited talks, interviews with the media, numerous topical reports, journal publications, and a book that summarizes much of the oil shale research relating to Utah’s Uinta Basin. In addition, a repository of materials related to oil shale and oil sands has been created within the University of Utah’s Institutional Repository, including the materials generated during this research program. Below is a listing of all topical and progress reports generated by this project and submitted to the Office of Science and Technical Information (OSTI). A listing of all peer-reviewed publications generated as a result of this project is included at the end of this report; Geomechanical and Fluid Transport Properties 1 (December, 2015); Validation Results for Core-Scale Oil Shale Pyrolysis (February, 2015); and Rates and Mechanisms of Oil Shale Pyrolysis: A Chemical Structure Approach (November, 2014); Policy Issues Associated With Using Simulation to Assess Environmental Impacts (November, 2014); Policy Analysis of the Canadian Oil Sands Experience (September, 2013); V-UQ of Generation 1 Simulator with AMSO Experimental Data (August, 2013); Lands with Wilderness Characteristics, Resource Management Plan Constraints, and Land

  10. 16 CFR 802.3 - Acquisitions of carbon-based mineral reserves.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... gas, shale or tar sands, or rights to reserves of oil, natural gas, shale or tar sands together with... gas, shale or tar sands, or rights to reserves of oil, natural gas, shale or tar sands and associated... pipeline and pipeline system or processing facility which transports or processes oil and gas after it...

  11. 16 CFR 802.3 - Acquisitions of carbon-based mineral reserves.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... gas, shale or tar sands, or rights to reserves of oil, natural gas, shale or tar sands together with... gas, shale or tar sands, or rights to reserves of oil, natural gas, shale or tar sands and associated... pipeline and pipeline system or processing facility which transports or processes oil and gas after it...

  12. 16 CFR 802.3 - Acquisitions of carbon-based mineral reserves.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... gas, shale or tar sands, or rights to reserves of oil, natural gas, shale or tar sands together with... gas, shale or tar sands, or rights to reserves of oil, natural gas, shale or tar sands and associated... pipeline and pipeline system or processing facility which transports or processes oil and gas after it...

  13. 16 CFR 802.3 - Acquisitions of carbon-based mineral reserves.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... gas, shale or tar sands, or rights to reserves of oil, natural gas, shale or tar sands together with... gas, shale or tar sands, or rights to reserves of oil, natural gas, shale or tar sands and associated... pipeline and pipeline system or processing facility which transports or processes oil and gas after it...

  14. 16 CFR 802.3 - Acquisitions of carbon-based mineral reserves.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... gas, shale or tar sands, or rights to reserves of oil, natural gas, shale or tar sands together with... gas, shale or tar sands, or rights to reserves of oil, natural gas, shale or tar sands and associated... pipeline and pipeline system or processing facility which transports or processes oil and gas after it...

  15. Silica removal from steamflood produced water: South Texas Tar Sands Pilot

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thomas, S.A.; Cathey, S.R.; Yost, M.E.

    1984-09-01

    Steamflood produced waters commonly contain suspended solids, oil, hardness, sulfide, and silica. Removal of these contaminants would make many of these waters suitable candidates for recycling as steam feedwater. Reuse of steamflood produced waters will increase steamer feedwater supplies, as well as reduce water disposal requirements. This paper describes a field pilot study of silica removal from steamflood produced water in the South Texas Tar Sands region. A hot-lime precipitation process was used to reduce dissolved silica concentrations from 400 mg/l to less than 50 mg/l SiO/sub 2/ in Mary R. Saner Ranch produced water. Most water systems using hot-limemore » precipitation for silica removal call for the addition of magnesium salts, as well as lime, to enhance silica removal. In this field study, however, magnesium salt addition did not improve silica removal efficiency. Hydrated lime ((Ca(OH)/sub 2/), alone, was sufficient to attain the desired silica residual, 50 mg/l SiO/sub 2/. The dissolved silica adsorbed onto the CaCO/sub 3/ crystals formed by lime reacting with the alkalinity present in the produced water. Required lime dosage was approximately 900 mg/lCa(OH)/sub 2/. Residual silica concentrations were found to be strongly related to both precipitator pH and calcium ion concentration. Therefore, on-line pH and hardness monitoring may be used to estimate and control residual silica concentration. A 50,000-BPD (7,900 m/sup 3//d) produced water treating plant has been designed using results from this pilot study.« less

  16. Polycyclic aromatic hydrocarbon (PAHs) and hopanes in stranded tar-balls on the coasts of Peninsular Malaysia: applications of biomarkers for identifying sources of oil pollution.

    PubMed

    Zakaria, M P; Okuda, T; Takada, H

    2001-12-01

    Malaysian coasts are subjected to various threats of petroleum pollution including routine and accidental oil spill from tankers, spillage of crude oils from inland and off-shore oil fields, and run-off from land-based human activities. Due to its strategic location, the Straits of Malacca serves as a major shipping lane. This paper expands the utility of biomarker compounds, hopanes, in identifying the source of tar-balls stranded on Malaysian coasts. 20 tar-ball samples collected from the east and west coast were analyzed for hopanes and polycyclic aromatic hydrocarbons (PAHs). Four of the 13 tar-ball samples collected from the west coast of Peninsular Malaysia were identified as the Middle East crude oil (MECO) based on their biomarker signatures, suggesting tanker-derived sources significantly contributing the petroleum pollution in the Straits of Malacca. The tar-balls found on the east coast seem to originate from the offshore oil platforms in the South China Sea. The presence of South East Asian crude oil (SEACO) tar-balls on the west coast carry several plausible explanations. Some of the tar-balls could have been transported via sea currents from the east coast. The tankers carrying SEACO to other countries could have accidentally spilt the oil as well. Furthermore, discharge of tank washings and ballast water from the tankers were suggested based on the abundance in higher molecular weight n-alkanes and the absence of unresolved complex mixture (UCM) in the tar-ball samples. The other possibilities are that the tar-balls may have been originated from the Sumatran oil fields and spillage of domestic oil from oil refineries in Port Dickson and Malacca. The results of PAHs analysis suggest that all the tar-ball samples have undergone various extent of weathering through evaporation, dissolution and photooxidation.

  17. Microbial metabolism alters pore water chemistry and increases consolidation of oil sands tailings.

    PubMed

    Arkell, Nicholas; Kuznetsov, Petr; Kuznetsova, Alsu; Foght, Julia M; Siddique, Tariq

    2015-01-01

    Tailings produced during bitumen extraction from surface-mined oil sands ores (tar sands) comprise an aqueous suspension of clay particles that remain dispersed for decades in tailings ponds. Slow consolidation of the clays hinders water recovery for reuse and retards volume reduction, thereby increasing the environmental footprint of tailings ponds. We investigated mechanisms of tailings consolidation and revealed that indigenous anaerobic microorganisms altered porewater chemistry by producing CO and CH during metabolism of acetate added as a labile carbon amendment. Entrapped biogenic CO decreased tailings pH, thereby increasing calcium (Ca) and magnesium (Mg) cations and bicarbonate (HCO) concentrations in the porewater through dissolution of carbonate minerals. Soluble ions increased the porewater ionic strength, which, with higher exchangeable Ca and Mg, decreased the diffuse double layer of clays and increased consolidation of tailings compared with unamended tailings in which little microbial activity was observed. These results are relevant to effective tailings pond management strategies. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  18. Rare Earth Elements in Alberta Oil Sand Process Streams

    DOE PAGES

    Roth, Elliot; Bank, Tracy; Howard, Bret; ...

    2017-04-05

    The concentrations of rare earth elements in Alberta, Canada oil sands and six oil sand waste streams were determined using inductively coupled plasma mass spectrometry (ICP–MS). The results indicate that the rare earth elements (REEs) are largely concentrated in the tailings solvent recovery unit (TSRU) sample compared to the oil sand itself. The concentration of lanthanide elements is ~1100 mg/kg (1100 ppm or 0.11 weight %), which represents a >20× increase in the concentration compared to the oil sand itself and a >7× increase compared to the North American Shale Composite (NASC). The process water, which is used to extractmore » the oil from oil sands, and the water fraction associated with the different waste streams had very low concentrations of REEs that were near or below the detection limits of the instrument, with the highest total concentration of REEs in the water fraction being less than 10 μg/L (ppb). Size and density separations were completed, and the REEs and other potentially interesting and valuable metals, such as Ti and Zr, were concentrated in different fractions. These results give insights into the possibility of recovering REEs from waste streams generated from oil sand processing.« less

  19. Rare Earth Elements in Alberta Oil Sand Process Streams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roth, Elliot; Bank, Tracy; Howard, Bret

    The concentrations of rare earth elements in Alberta, Canada oil sands and six oil sand waste streams were determined using inductively coupled plasma mass spectrometry (ICP–MS). The results indicate that the rare earth elements (REEs) are largely concentrated in the tailings solvent recovery unit (TSRU) sample compared to the oil sand itself. The concentration of lanthanide elements is ~1100 mg/kg (1100 ppm or 0.11 weight %), which represents a >20× increase in the concentration compared to the oil sand itself and a >7× increase compared to the North American Shale Composite (NASC). The process water, which is used to extractmore » the oil from oil sands, and the water fraction associated with the different waste streams had very low concentrations of REEs that were near or below the detection limits of the instrument, with the highest total concentration of REEs in the water fraction being less than 10 μg/L (ppb). Size and density separations were completed, and the REEs and other potentially interesting and valuable metals, such as Ti and Zr, were concentrated in different fractions. These results give insights into the possibility of recovering REEs from waste streams generated from oil sand processing.« less

  20. Comprehensive GC²/MS for the monitoring of aromatic tar oil constituents during biodegradation in a historically contaminated soil.

    PubMed

    Vasilieva, Viktoriya; Scherr, Kerstin E; Edelmann, Eva; Hasinger, Marion; Loibner, Andreas P

    2012-02-20

    The constituents of tar oil comprise a wide range of physico-chemically heterogeneous pollutants of environmental concern. Besides the sixteen polycyclic aromatic hydrocarbons defined as priority pollutants by the US-EPA (EPA-PAHs), a wide range of substituted (NSO-PAC) and alkylated (alkyl-PAC) aromatic tar oil compounds are gaining increased attention for their toxic, carcinogenic, mutagenic and/or teratogenic properties. Investigations on tar oil biodegradation in soil are in part hampered by the absence of an efficient analytical tool for the simultaneous analysis of this wide range of compounds with dissimilar analytical properties. Therefore, the present study sets out to explore the applicability of comprehensive two-dimensional gas chromatography (GC²/MS) for the simultaneous measurement of compounds with differing polarity or that are co-eluting in one-dimensional systems. Aerobic tar oil biodegradation in a historically contaminated soil was analyzed over 56 days in lab-scale bioslurry tests. Forty-three aromatic compounds were identified with GC²/MS in one single analysis. The number of alkyl chains on a molecule was found to prime over alkyl chain length in hampering compound biodegradation. In most cases, substitution of carbon with nitrogen and oxygen was related to increased compound degradation in comparison to unalkylated and sulphur- or unsubstituted PAH with a similar ring number.The obtained results indicate that GC²/MS can be employed for the rapid assessment of a large variety of structurally heterogeneous environmental contaminants. Its application can contribute to facilitate site assessment, development and control of microbial cleanup technologies for tar oil contaminated sites. Copyright © 2011 Elsevier B.V. All rights reserved.

  1. 15 CFR 754.2 - Crude oil.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... condensate and liquid hydrocarbons produced from tar sands, gilsonite, and oil shale. Drip gases are also... importation into the United States of an equal or greater quantity and an equal or better quality of crude oil or of a quantity and quality of petroleum products listed in Supplement No. 1 to this part that is...

  2. INCREASING HEAVY OIL RESERVES IN THE WILMINGTON OIL FIELD THROUGH ADVANCED RESERVOIR CHARACTERIZATION AND THERMAL PRODUCTION TECHNOLOGIES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scott Hara

    2001-06-27

    The objective of this project is to increase the recoverable heavy oil reserves within sections of the Wilmington Oil Field, near Long Beach, California through the testing and application of advanced reservoir characterization and thermal production technologies. The successful application of these technologies will result in expanding their implementation throughout the Wilmington Field and, through technology transfer, to other slope and basin clastic (SBC) reservoirs. The existing steamflood in the Tar zone of Fault Block II-A (Tar II-A) has been relatively inefficient because of several producibility problems which are common in SBC reservoirs: inadequate characterization of the heterogeneous turbidite sands,more » high permeability thief zones, low gravity oil and non-uniform distribution of the remaining oil. This has resulted in poor sweep efficiency, high steam-oil ratios, and early steam breakthrough. Operational problems related to steam breakthrough, high reservoir pressure, and unconsolidated sands have caused premature well and downhole equipment failures. In aggregate, these reservoir and operational constraints have resulted in increased operating costs and decreased recoverable reserves. A suite of advanced reservoir characterization and thermal production technologies are being applied during the project to improve oil recovery and reduce operating costs.« less

  3. Microbial processes in the Athabasca Oil Sands and their potential applications in microbial enhanced oil recovery.

    PubMed

    Harner, N K; Richardson, T L; Thompson, K A; Best, R J; Best, A S; Trevors, J T

    2011-11-01

    The Athabasca Oil Sands are located within the Western Canadian Sedimentary Basin, which covers over 140,200 km(2) of land in Alberta, Canada. The oil sands provide a unique environment for bacteria as a result of the stressors of low water availability and high hydrocarbon concentrations. Understanding the mechanisms bacteria use to tolerate these stresses may aid in our understanding of how hydrocarbon degradation has occurred over geological time, and how these processes and related tolerance mechanisms may be used in biotechnology applications such as microbial enhanced oil recovery (MEOR). The majority of research has focused on microbiology processes in oil reservoirs and oilfields; as such there is a paucity of information specific to oil sands. By studying microbial processes in oil sands there is the potential to use microbes in MEOR applications. This article reviews the microbiology of the Athabasca Oil Sands and the mechanisms bacteria use to tolerate low water and high hydrocarbon availability in oil reservoirs and oilfields, and potential applications in MEOR.

  4. North American Oil Sands: History of Development, Prospects for the Future

    DTIC Science & Technology

    2008-01-17

    SAGD operations. Canada’s Oil Sands, May 2004. 43 Canada’s Oil Sands, June 2006 p. 4. 44 Canada’s Oil Sands, Opportunities and Challenges to 2015, An...Energy Market Assessment, May 2004, National Energy Board, Canada, p. 108. But a relatively new technology — steam-assisted gravity drainage ( SAGD ...has demonstrated that its operations can recover as much as 70% of the bitumen in- place. Using SAGD , steam is added to the oil sands using a

  5. 77 FR 5833 - Notice of Availability of the Draft Programmatic Environmental Impact Statement for Allocation of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-06

    ... of the Draft Programmatic Environmental Impact Statement for Allocation of Oil Shale and Tar Sands... of Oil Shale and Tar Sands Resources on Lands Administered by the BLM in Colorado, Utah, and Wyoming... preferred method of commenting. Mail: Addressed to: Oil Shale and Tar Sands Resources Draft Programmatic EIS...

  6. The extraction of bitumen from western oil sands: Volume 2. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oblad, A.G.; Dahlstrom, D.A.; Deo, M.D.

    1997-11-26

    The program is composed of 20 projects, of which 17 are laboratory bench or laboratory pilot scale processes or computer process simulations that are performed in existing facilities on the University of Utah campus in north-east Salt Lake City. These tasks are: (1) coupled fluidized-bed bitumen recovery and coked sand combustion; (2) water-based recovery of bitumen; (3) oil sand pyrolysis in a continuous rotary kiln reactor; (4) oil sand pyrolysis in a large diameter fluidized bed reactor; (5) oil sand pyrolysis in a small diameter fluidized bed reactor; (6) combustion of spent sand in a transport reactor; (7) recovery andmore » upgrading of oil sand bitumen using solvent extraction methods; (8) fixed-bed hydrotreating of Uinta Basin bitumens and bitumen-derived hydrocarbon liquids; (9) ebullieted bed hydrotreating of bitumen and bitumen derived liquids; (10) bitumen upgrading by hydropyrolysis; (11) evaluation of Utah`s major oil sand deposits for the production of asphalt, high-energy jet fuels and other specialty products; (12) characterization of the bitumens and reservoir rocks from the Uinta Basin oil sand deposits; (13) bitumen upgrading pilot plant recommendations; (14) liquid-solid separation and fine tailings thickening; (15) in-situ production of heavy oil from Uinta Basin oil sand deposits; (16) oil sand research and development group analytical facility; and (17) process economics. This volume contains reports on nine of these projects, references, and a bibliography. 351 refs., 192 figs., 65 tabs.« less

  7. Evaluating the oil sands reclamation process: Assessing policy capacity and stakeholder access for government and non-governmental organizations operating in Alberta's oil sands

    NASA Astrophysics Data System (ADS)

    Patterson, Tyler

    By employing interpretive policy analysis this thesis aims to assess, measure, and explain policy capacity for government and non-government organizations involved in reclaiming Alberta's oil sands. Using this type of analysis to assess policy capacity is a novel approach for understanding reclamation policy; and therefore, this research will provide a unique contribution to the literature surrounding reclamation policy. The oil sands region in northeast Alberta, Canada is an area of interest for a few reasons; primarily because of the vast reserves of bitumen and the environmental cost associated with developing this resource. An increase in global oil demand has established incentive for industry to seek out and develop new reserves. Alberta's oil sands are one of the largest remaining reserves in the world, and there is significant interest in increasing production in this region. Furthermore, tensions in several oil exporting nations in the Middle East remain unresolved, and this has garnered additional support for a supply side solution to North American oil demands. This solution relies upon the development of reserves in both the United States and Canada. These compounding factors have contributed to the increased development in the oil sands of northeastern Alberta. Essentially, a rapid expansion of oil sands operations is ongoing, and is the source of significant disturbance across the region. This disturbance, and the promises of reclamation, is a source of contentious debates amongst stakeholders and continues to be highly visible in the media. If oil sands operations are to retain their social license to operate, it is critical that reclamation efforts be effective. One concern non-governmental organizations (NGOs) expressed criticizes the current monitoring and enforcement of regulatory programs in the oil sands. Alberta's NGOs have suggested the data made available to them originates from industrial sources, and is generally unchecked by government

  8. Moving hydrocarbons through portions of tar sands formations with a fluid

    DOEpatents

    Stegemeier, George Leo; Mudunuri, Ramesh Raju; Vinegar, Harold J.; Karanikas, John Michael; Jaiswal, Namit; Mo, Weijian

    2010-05-18

    A method for treating a tar sands formation is disclosed. The method includes heating a first portion of a hydrocarbon layer in the formation from one or more heaters located in the first portion. The heat is controlled to increase a fluid injectivity of the first portion. A drive fluid and/or an oxidizing fluid is injected and/or created in the first portion to cause at least some hydrocarbons to move from a second portion of the hydrocarbon layer to a third portion of the hydrocarbon layer. The second portion is between the first portion and the third portion. The first, second, and third portions are horizontally displaced from each other. The third portion is heated from one or more heaters located in the third portion. Hydrocarbons are produced from the third portion of the formation. The hydrocarbons include at least some hydrocarbons from the second portion of the formation.

  9. Simultaneous recovery and desulfurization of bitumen from oil sand using ultrasound irradiation

    NASA Astrophysics Data System (ADS)

    Okawa, Hirokazu; Kamal, Wan Mohamad Ikhwan bin Wan; Akazawa, Nobuyuki; Kato, Takahiro; Sugawara, Katsuyasu

    2018-07-01

    Oil sand contains bitumen, which includes a high percentage of sulfur. Before using bitumen as a fuel, it must be recovered from oil sand and desulfurized. Currently, bitumen is recovered from oil sand using hot water (<100 °C), and sulfur is removed via hydrodesulfurization (>300 °C). Both of these processes consume significant amounts of energy. In this study, we demonstrate the simultaneous recovery and desulfurization of bitumen from oil sand using oxidative desulfurization with ultrasonic irradiation and tetrahydrofuran at 20 °C. We successfully recovered 88% of the bitumen from oil sand and removed 42% of the sulfur from the bitumen.

  10. Supercritical solvent extraction of oil sand bitumen

    NASA Astrophysics Data System (ADS)

    Imanbayev, Ye. I.; Ongarbayev, Ye. K.; Tileuberdi, Ye.; Mansurov, Z. A.; Golovko, A. K.; Rudyk, S.

    2017-08-01

    The supercritical solvent extraction of bitumen from oil sand studied with organic solvents. The experiments were performed in autoclave reactor at temperature above 255 °C and pressure 29 atm with stirring for 6 h. The reaction resulted in the formation of coke products with mineral part of oil sands. The remaining products separated into SARA fractions. The properties of the obtained products were studied. The supercritical solvent extraction significantly upgraded extracted natural bitumen.

  11. 76 FR 21003 - Notice of Intent To Prepare a Programmatic Environmental Impact Statement (EIS) and Possible Land...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-14

    ... Allocation of Oil Shale and Tar Sands Resources on Lands Administered by the Bureau of Land Management in... to prepare a Programmatic EIS for Allocation of Oil Shale and Tar Sands Resources on Lands... following methods: Web site: http://blm.gov/st5c . Mail: BLM Oil Shale and Tar Sands Resources Leasing...

  12. Exploration for heavy crude oil and natural bitumen

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1989-01-01

    Heavy oil and tar sand reserves are enormous, and this 700-page volume breaks the topic down into six emphasis areas of: regional resources worldwide; characterization, maturation, and degradation; geological environments and migration; exploration methods; exploration histories; and recovery. An appendix presents a guidebook to Santa Maria, Cuyama, Taft-McKettrick, and Edna oil districts, Coast Ranges, California.

  13. Juniper tar (cade oil) poisoning in new born after a cutaneous application

    PubMed Central

    Achour, Sanae; Abourazzak, Sana; Mokhtari, Abdelrhani; Soulaymani, Abdelmjid; Soulaymani, Rachida; Hida, Moustapha

    2011-01-01

    Juniper tar (cade oil) is distilled from the branches and wood of Juniperus oxycedrus. It contains etheric oils, triterpene and phenols, used for many purposes in folk medicine. The authors report a case of a previously healthy new born treated with a topical application of Juniperus oxycedrus for atopic dermatosis The poisoning caused convulsions, collapsus, acute pulmonary oedema, renal failure and hepatotoxicity. The newborn survived after supportive and symptomatic treatment, and discharged in a good condition on the eleventh day of hospitalisation in intensive care unit. PMID:22675090

  14. Incipient Motion of Sand and Oil Agglomerates

    NASA Astrophysics Data System (ADS)

    Nelson, T. R.; Dalyander, S.; Jenkins, R. L., III; Penko, A.; Long, J.; Frank, D. P.; Braithwaite, E. F., III; Calantoni, J.

    2016-12-01

    Weathered oil mixed with sediment in the surf zone in the northern Gulf of Mexico after the 2010 Deepwater Horizon oil spill, forming large mats of sand and oil. Wave action fragmented the mats into sand and oil agglomerates (SOAs) with diameters of about 1 to 10 cm. These SOAs were transported by waves and currents along the Gulf Coast, and have been observed on beaches for years following the spill. SOAs are composed of 70%-95% sand by mass, with an approximate density of 2107 kg/m³. To measure the incipient motion of SOAs, experiments using artificial SOAs were conducted in the Small-Oscillatory Flow Tunnel at the U.S. Naval Research Laboratory under a range of hydrodynamic forcing. Spherical and ellipsoidal SOAs ranging in size from 0.5 to 10 cm were deployed on a fixed flat bed, a fixed rippled bed, and a movable sand bed. In the case of the movable sand bed, SOAs were placed both proud and partially buried. Motion was tracked with high-definition video and with inertial measurement units embedded in some of the SOAs. Shear stress and horizontal pressure gradients, estimated from velocity measurements made with a Nortek Vectrino Profiler, were compared with observed mobility to assess formulations for incipient motion. For SOAs smaller than 1 cm in diameter, incipient motion of spherical and ellipsoidal SOAs was consistent with predicted critical stress values. The measured shear stress at incipient motion of larger, spherical SOAs was lower than predicted, indicating an increased dependence on the horizontal pressure gradient. In contrast, the measured shear stress required to move ellipsoidal SOAs was higher than predicted, even compared to values modified for larger particles in mixed-grain riverine environments. The laboratory observations will be used to improve the prediction of incipient motion, transport, and seafloor interaction of SOAs.

  15. EPA's New Oil and Dispersant Testing Program

    EPA Science Inventory

    The U.S. EPA has initiated a new component of its oil spills research program to develop baseline data on the ecotoxicity of selected petroleum products and toxicity and efficacy of dispersant agents. Two diluted bitumens (dilbits) from the Alberta Tar Sands are currently being t...

  16. Assessment of tar pollution on the United Arab emirates beaches

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abu-Hilal, A.H.; Khordagui, H.K.

    1993-01-01

    In light of the inadequate information concerning stranded tar on the southwest beaches of the Arabian Gulf and the Gulf of Oman, particularly following the massive oil releases during the Gulf War, the present investigation was designed to provide reference-integrated information on the nature, location, and levels of stranded tar balls on the beaches of the United Arab Emirates (UAE). The recorded levels appeared to be higher than expected or previously reported. The tar distribution pattern, in addition to the degree of weathering, indicates that the massive oil release during the Gulf War did not reach the UAE shorelines. Themore » highest reported levels of stranded tar ever recorded in the Arabian Gulf at Jabal Dhannah apparently originated from oil spills and tankers' ballast water at the main oil terminal at the Al-Ruwaiss oil refinery some 10 km to the east. The surprising, relatively high levels of stranded tar on the beaches of the Gulf of Oman were solely attributed to the heavy navigation traffic close to the shorelines. 19 refs., 2 figs., 3 tabs.« less

  17. Oil and the Future of Marine Corps Aviation

    DTIC Science & Technology

    2007-01-01

    World Oil Consumption by Sector 2003-2030 21 2 World Oil Consumption by Region and Country Group 2003-2030 21 3 Hubbert’s Original 1956...is increasing. This theory will be examined in more detail below. Unconventional fuels created from coal , tar sands, and oil shale are a potential...produce liquid hydrocarbon fuel from coal . The so called Fischer-Tropsch (FT) process supplied a substantial amount of Germany’s fuels during World War II

  18. Generation and migration of Bitumen and oil from the oil shale interval of the Eocene Green River formation, Uinta Basin, Utah

    USGS Publications Warehouse

    Johnson, Ronald C.; Birdwell, Justin E.; Mercier, Tracey J.

    2016-01-01

    The results from the recent U.S. Geological Survey assessment of in-place oil shale resources of the Eocene Green River Formation, based primarily on the Fischer assay method, are applied herein to define areas where the oil shale interval is depleted of some of its petroleum-generating potential along the deep structural trough of the basin and to make: (1) a general estimates of the amount of this depletion, and (2) estimate the total volume of petroleum generated. Oil yields (gallons of oil per ton of rock, GPT) and in-place oil (barrels of oil per acre, BPA) decrease toward the structural trough of the basin, which represents an offshore lacustrine area that is believed to have originally contained greater petroleum-generating potential than is currently indicated by measured Fischer assay oil yields. Although this interval is considered to be largely immature for oil generation based on vitrinite reflectance measurements, the oil shale interval is a likely source for the gilsonite deposits and much of the tar sands in the basin. Early expulsion of petroleum may have occurred due to the very high organic carbon content and oil-prone nature of the Type I kerogen present in Green River oil shale. In order to examine the possible sources and migration pathways for the tar sands and gilsonite deposits, we have created paleogeographic reconstructions of several oil shale zones in the basin as part of this study.

  19. Land and water impacts of oil sands production in Alberta.

    PubMed

    Jordaan, Sarah M

    2012-04-03

    Expansion of oil sands development results not only in the release of greenhouse gas emissions, but also impacts land and water resources. Though less discussed internationally due to to their inherently local nature, land and water impacts can be severe. Research in key areas is needed to manage oil sands operations effectively; including improved monitoring of ground and surface water quality. The resulting information gap means that such impacts are not well understood. Improved analyses of oil sands products are required that compare land and water use with other transportation fuel pathways and use a regional perspective so local effects can be considered and mitigated.

  20. Overview of the technology and status of oil sands development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Detamore, R.J.

    1981-01-01

    In conjunction with the increasing emphasis upon alternate energy sources, interest in the oil sands resource is discussed. This paper reviews the primary established oil sands recovery techniques including surface mining, surface retorting, in situ thermal and nonthermal in situ, and presents an overview of their application in specific projects.

  1. Modeling the impact of bubbling bed hydrodynamics on tar yield and its fluctuations during biomass fast pyrolysis

    DOE PAGES

    Xiong, Qingang; Ramirez, Emilio; Pannala, Sreekanth; ...

    2015-10-09

    The impact of bubbling bed hydrodynamics on temporal variations in the exit tar yield for biomass fast pyrolysis was investigated using computational simulations of an experimental laboratory-scale reactor. A multi-fluid computational fluid dynamics model was employed to simulate the differential conservation equations in the reactor, and this was combined with a multi-component, multi-step pyrolysis kinetics scheme for biomass to account for chemical reactions. The predicted mean tar yields at the reactor exit appear to match corresponding experimental observations. Parametric studies predicted that increasing the fluidization velocity should improve the mean tar yield but increase its temporal variations. Increases in themore » mean tar yield coincide with reducing the diameter of sand particles or increasing the initial sand bed height. However, trends in tar yield variability are more complex than the trends in mean yield. The standard deviation in tar yield reaches a maximum with changes in sand particle size. As a result, the standard deviation in tar yield increases with the increases in initial bed height in freely bubbling state, while reaches a maximum in slugging state.« less

  2. [Research on Oil Sands Spectral Characteristics and Oil Content by Remote Sensing Estimation].

    PubMed

    You, Jin-feng; Xing, Li-xin; Pan, Jun; Shan, Xuan-long; Liang, Li-heng; Fan, Rui-xue

    2015-04-01

    Visible and near infrared spectroscopy is a proven technology to be widely used in identification and exploration of hydrocarbon energy sources with high spectral resolution for detail diagnostic absorption characteristics of hydrocarbon groups. The most prominent regions for hydrocarbon absorption bands are 1,740-1,780, 2,300-2,340 and 2,340-2,360 nm by the reflectance of oil sands samples. These spectral ranges are dominated by various C-H overlapping overtones and combination bands. Meanwhile, there is relatively weak even or no absorption characteristics in the region from 1,700 to 1,730 nm in the spectra of oil sands samples with low bitumen content. With the increase in oil content, in the spectral range of 1,700-1,730 nm the obvious hydrocarbon absorption begins to appear. The bitumen content is the critical parameter for oil sands reserves estimation. The absorption depth was used to depict the response intensity of the absorption bands controlled by first-order overtones and combinations of the various C-H stretching and bending fundamentals. According to the Pearson and partial correlation relationships of oil content and absorption depth dominated by hydrocarbon groups in 1,740-1,780, 2,300-2,340 and 2,340-2,360 nm wavelength range, the scheme of association mode was established between the intensity of spectral response and bitumen content, and then unary linear regression(ULR) and partial least squares regression (PLSR) methods were employed to model the equation between absorption depth attributed to various C-H bond and bitumen content. There were two calibration equations in which ULR method was employed to model the relationship between absorption depth near 2,350 nm region and bitumen content and PLSR method was developed to model the relationship between absorption depth of 1,758, 2,310, 2,350 nm regions and oil content. It turned out that the calibration models had good predictive ability and high robustness and they could provide the scientific

  3. Field observations of artificial sand and oil agglomerates

    USGS Publications Warehouse

    Dalyander, Patricia (Soupy); Long, Joseph W.; Plant, Nathaniel G.; McLaughlin, Molly R.; Mickey, Rangley C.

    2015-01-01

    Oil that comes into the surf zone following spills, such as occurred during the 2010 Deepwater Horizon (DWH) blowout, can mix with local sediment to form heavier-than-water sand and oil agglomerates (SOAs), at times in the form of mats a few centimeters thick and tens of meters long. Smaller agglomerates that form in situ or pieces that break off of larger mats, sometimes referred to as surface residual balls (SRBs), range in size from sand-sized grains to patty-shaped pieces several centimeters (cm) in diameter. These mobile SOAs can cause beach oiling for extended periods following the spill, on the scale of years as in the case of DWH. Limited research, including a prior effort by the U.S. Geological Survey (USGS) investigating SOA mobility, alongshore transport, and seafloor interaction using numerical model output, focused on the physical dynamics of SOAs. To address this data gap, we constructed artificial sand and oil agglomerates (aSOAs) with sand and paraffin wax to mimic the size and density of genuine SOAs. These aSOAs were deployed in the nearshore off the coast of St. Petersburg, Florida, during a field experiment to investigate their movement and seafloor interaction. This report presents the methodology for constructing aSOAs and describes the field experiment. Data acquired during the field campaign, including videos and images of aSOA movement in the nearshore (1.5-meter and 0.5-meter water depth) and in the swash zone, are also presented in this report.

  4. Laboratory observations of artificial sand and oil agglomerates

    USGS Publications Warehouse

    Jenkins, Robert L.; Dalyander, P. Soupy; Penko, Allison; Long, Joseph W.

    2018-04-27

    Sand and oil agglomerates (SOAs) form when weathered oil reaches the surf zone and combines with suspended sediments. The presence of large SOAs in the form of thick mats (up to 10 centimeters [cm] in height and up to 10 square meters [m2] in area) and smaller SOAs, sometimes referred to as surface residual balls (SRBs), may lead to the re-oiling of beaches previously affected by an oil spill. A limited number of numerical modeling and field studies exist on the transport and dynamics of centimeter-scale SOAs and their interaction with the sea floor. Numerical models used to study SOAs have relied on shear-stress formulations to predict incipient motion. However, uncertainty exists as to the accuracy of applying these formulations, originally developed for sand grains in a uniformly sorted sediment bed, to larger, nonspherical SOAs. In the current effort, artificial sand and oil agglomerates (aSOAs) created with the size, density, and shape characteristics of SOAs were studied in a small-oscillatory flow tunnel. These experiments expanded the available data on SOA motion and interaction with the sea floor and were used to examine the applicability of shear-stress formulations to predict SOA mobility. Data collected during these two sets of experiments, including photographs, video, and flow velocity, are presented in this report, along with an analysis of shear-stress-based formulations for incipient motion. The results showed that shear-stress thresholds for typical quartz sand predicted the incipient motion of aSOAs with 0.5–1.0-cm diameters, but were inaccurate for aSOAs with larger diameters (>2.5 cm). This finding implies that modified parameterizations of incipient motion may be necessary under certain combinations of aSOA characteristics and environmental conditions.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Murphey, P. C.; Daitch, D.; Environmental Science Division

    In August 2005, the U.S. Congress enacted the Energy Policy Act of 2005, Public Law 109-58. In Section 369 of this Act, also known as the ''Oil Shale, Tar Sands, and Other Strategic Unconventional Fuels Act of 2005,'' Congress declared that oil shale and tar sands (and other unconventional fuels) are strategically important domestic energy resources that should be developed to reduce the nation's growing dependence on oil from politically and economically unstable foreign sources. In addition, Congress declared that both research- and commercial-scale development of oil shale and tar sands should (1) be conducted in an environmentally sound mannermore » using management practices that will minimize potential impacts, (2) occur with an emphasis on sustainability, and (3) benefit the United States while taking into account concerns of the affected states and communities. To support this declaration of policy, Congress directed the Secretary of the Interior to undertake a series of steps, several of which are directly related to the development of a commercial leasing program for oil shale and tar sands. One of these steps was the completion of a programmatic environmental impact statement (PEIS) to analyze the impacts of a commercial leasing program for oil shale and tar sands resources on public lands, with an emphasis on the most geologically prospective lands in Colorado, Utah, and Wyoming. For oil shale, the scope of the PEIS analysis includes public lands within the Green River, Washakie, Uinta, and Piceance Creek Basins. For tar sands, the scope includes Special Tar Sand Areas (STSAs) located in Utah. This paleontological resources overview report was prepared in support of the Oil Shale and Tar Sands Resource Management Plan Amendments to Address Land Use Allocations in Colorado, Utah, and Wyoming and PEIS, and it is intended to be used by Bureau of Land Management (BLM) regional paleontologists and field office staff to support future projectspecific

  6. Identification of sources of tar balls deposited along the Southwest Caspian Coast, Iran using fingerprinting techniques.

    PubMed

    Shirneshan, Golshan; Bakhtiari, Alireza Riyahi; Memariani, Mahmoud

    2016-10-15

    In 2012, a significant number of tar balls occurred along the Southwest coasts of the Caspian Sea (Iran). Several oil fields of Turkmenistan, Azerbaijan and Iran might be sources of oil spills and lead to the formation of these tar balls. For source identification, 6 tar ball samples were collected from the Southwest beaches of the Caspian Sea and subjected to fingerprint analysis based on the distribution of the source-specific biomarkers of pentacyclic tri-terpanes and steranes. Comparing the diagenic ratios revealed that the tar balls were chemically similar and originated from the same source. Results of double ratio plots (e.g., C29/C30 versus ∑C31-C35/C30 and C28 αββ/(C27 αββ+C29 αββ) versus C29 αββ/(C27 αββ+C28 αββ)) in the tar balls and oils from Iran, Turkmenistan and Azerbaijan indicated that the tar balls might be the result of spills from Turkmenistan oil. Moreover, principle component analysis (PCA) using biomarker ratios on the tar balls and 20 crude oil samples from different wells of Azerbaijan, Iran and Turkmenistan oils showed that the tar balls collected at the Southwest beaches are highly similar to the Turkmenistan oil but one of the Azerbaijan oils (from Bahar field oils) was found to be also slightly close to the tar balls. The weathering characterizations based on the presence of UCM (unresolved complex mixture) and low/high molecular weight ratios (L/H) of alkanes and PAHs indicated the tar ball samples have been significantly influenced by natural weathering processes such as evaporation, photo-degradation and biodegradation. This is the first study of its kind in Iran to use fingerprinting for source identification of tar balls. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. 77 FR 67663 - Notice of Availability of the Proposed Land Use Plan Amendments for Allocation of Oil Shale and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-13

    ... quality, climate change, water quality and quantity, socio- economic concerns, wildlife concerns, and...] Notice of Availability of the Proposed Land Use Plan Amendments for Allocation of Oil Shale and Tar Sands... (BLM) has prepared the Proposed Resource Management Plan (RMP) Amendments for Allocation of Oil Shale...

  8. The Other Major 2010 Oil Spill: Oil weathering after the Kalamazoo River Dilbit Spill

    NASA Astrophysics Data System (ADS)

    Swarthout, B.; Reddy, C. M.; Nelson, R. K.; Hamilton, S. K.; Aeppli, C.; Valentine, D. L.; Fundaun, S. E.; Oliveira, A. H.

    2016-02-01

    Diluted bitumen (dilbit) from the oil sands (tar sands) of western Canada is increasingly being transported to US markets. North America's largest inland oil spill and the first major oil sands spill in a freshwater environment occurred in 2010, when at least 843,000 gallons leaked from a pipeline into the Kalamazoo River of southwest Michigan. Cleanup of this oil was unusually difficult and protracted, lasting through 2014 and costing over a billion dollars, largely because a substantial fraction of the oil became submersed and deposited in slack water areas over 60 km of river channel, reservoirs, and floodplain backwaters. To investigate the fate of the spilled dilbit from the 2010 Kalamazoo River release, black rings, presumably oil residues, on the bark of dead trees were collected in 2015. These residues were deposited on the trees during high flood levels that have not been observed since the spill and represent an opportunity to constrain weathering processes excluding dissolution. This material contained a major non-GC amenable fraction of 90-95%, presumably oxygenated hydrocarbons. The GC amenable portion was consistent with laboratory weathered dilbit. We used a variety of analytical tools to characterize the dilbit residues, as well as to identify dilbit weathering processes that occurred since the spill.

  9. Overview of Aquatic Toxicity Testing under the U.S. EPA Oil Research Program

    EPA Science Inventory

    The U.S. EPA Office of Research and Development is developing baseline data on the ecotoxicity of selected petroleum products, chemical dispersants, and other spill mitigating substances as part of its Oil Research Program. Two diluted bitumens (dilbits) from the Alberta Tar Sand...

  10. Using infrastructure optimization to reduce greenhouse gas emissions from oil sands extraction and processing.

    PubMed

    Middleton, Richard S; Brandt, Adam R

    2013-02-05

    The Alberta oil sands are a significant source of oil production and greenhouse gas emissions, and their importance will grow as the region is poised for decades of growth. We present an integrated framework that simultaneously considers economic and engineering decisions for the capture, transport, and storage of oil sands CO(2) emissions. The model optimizes CO(2) management infrastructure at a variety of carbon prices for the oil sands industry. Our study reveals several key findings. We find that the oil sands industry lends itself well to development of CO(2) trunk lines due to geographic coincidence of sources and sinks. This reduces the relative importance of transport costs compared to nonintegrated transport systems. Also, the amount of managed oil sands CO(2) emissions, and therefore the CCS infrastructure, is very sensitive to the carbon price; significant capture and storage occurs only above 110$/tonne CO(2) in our simulations. Deployment of infrastructure is also sensitive to CO(2) capture decisions and technology, particularly the fraction of capturable CO(2) from oil sands upgrading and steam generation facilities. The framework will help stakeholders and policy makers understand how CCS infrastructure, including an extensive pipeline system, can be safely and cost-effectively deployed.

  11. Varying properties of in situ heat treatment of a tar sands formation based on assessed viscosities

    DOEpatents

    Karanikas, John Michael; Vinegar, Harold J

    2014-03-04

    A method for treating a tar sands formation includes providing heat to at least part of a hydrocarbon layer in the formation from a plurality of heaters located in the formation. The heat is allowed to transfer from the heaters to at least a portion of the formation. A viscosity of one or more zones of the hydrocarbon layer is assessed. The heating rates in the zones are varied based on the assessed viscosities. The heating rate in a first zone of the formation is greater than the heating rate in a second zone of the formation if the viscosity in the first zone is greater than the viscosity in the second zone. Fluids are produced from the formation through the production wells.

  12. InSAR Monitoring of Surface Deformation in Alberta's Oil Sands

    NASA Astrophysics Data System (ADS)

    Pearse, J.; Singhroy, V.; Li, J.; Samsonov, S. V.; Shipman, T.; Froese, C. R.

    2013-05-01

    Alberta's oil sands are among the world's largest deposits of crude oil, and more than 80% of it is too deep to mine, so unconventional in-situ methods are used for extraction. Most in situ extraction techniques, such as Steam-Assisted Gravity Drainage (SAGD), use steam injection to reduce the viscosity of the bitumen, allowing it to flow into wells to be pumped to the surface. As part of the oil sands safety and environmental monitoring program, the energy regulator uses satellite radar to monitor surface deformation associated with in-situ oil extraction. The dense vegetation and sparse infrastructure in the boreal forest of northern Alberta make InSAR monitoring a challenge; however, we have found that surface heave associated with steam injection can be detected using traditional differential InSAR. Infrastructure and installed corner reflectors also allow us to use persistent scatterer methods to obtain time histories of deformation at individual sites. We have collected and processed several tracks of RADARSAT-2 data over a broad area of the oil sands, and have detected surface deformation signals of approximately 2-3 cm per year, with time series that correlate strongly with monthly SAGD steam injection volumes.

  13. Groundwater Discharges to Rivers in the Western Canadian Oil Sands Region

    NASA Astrophysics Data System (ADS)

    Ellis, J.; Jasechko, S.

    2016-12-01

    Groundwater discharges into rivers impacts the movement and fate of nutrients and contaminants in the environment. Understanding groundwater-surface water interactions is especially important in the western Canadian oil sands, where groundwater contamination risks are elevated and baseline water chemistry data is lacking, leading to substantial uncertainties about anthropogenic influences on local river quality. High salinity groundwater springs sourced from deep aquifers, comprised of Pleistocene-aged glacial meltwater, are known to discharge into many rivers in the oil sands. Understanding connections between deep aquifers and surficial waterways is important in order to determine natural inputs into these rivers and to assess the potential for injected wastewater or oil extraction fluids to enter surface waters. While these springs have been identified, their spatial distribution along rivers has not been fully characterized. Here we present river chemistry data collected along a number of major river corridors in the Canadian oil sands region. We show that saline groundwater springs vary spatially along the course of these rivers and tend to be concentrated where the rivers incise Devonian- or Cretaceous-aged aquifers along an evaporite dissolution front. Our results suggest that water sourced from Devonian aquifers may travel through bitumen-bearing Cretaceous units and discharge into local rivers, implying a strong groundwater-surface water connection in specialized locations. These findings indicate that oil sands process-affected waters that are injected at depth have the potential to move through these aquifers and reach the rivers at the surface at some time in the future. Groundwater-surface water interactions remain key to understanding the risks oil sands activities pose to aquatic ecosystems and downstream communities.

  14. Class III Mid-Term Project, "Increasing Heavy Oil Reserves in the Wilmington Oil Field Through Advanced Reservoir Characterization and Thermal Production Technologies"

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scott Hara

    2007-03-31

    The overall objective of this project was to increase heavy oil reserves in slope and basin clastic (SBC) reservoirs through the application of advanced reservoir characterization and thermal production technologies. The project involved improving thermal recovery techniques in the Tar Zone of Fault Blocks II-A and V (Tar II-A and Tar V) of the Wilmington Field in Los Angeles County, near Long Beach, California. A primary objective has been to transfer technology that can be applied in other heavy oil formations of the Wilmington Field and other SBC reservoirs, including those under waterflood. The first budget period addressed several producibilitymore » problems in the Tar II-A and Tar V thermal recovery operations that are common in SBC reservoirs. A few of the advanced technologies developed include a three-dimensional (3-D) deterministic geologic model, a 3-D deterministic thermal reservoir simulation model to aid in reservoir management and subsequent post-steamflood development work, and a detailed study on the geochemical interactions between the steam and the formation rocks and fluids. State of the art operational work included drilling and performing a pilot steam injection and production project via four new horizontal wells (2 producers and 2 injectors), implementing a hot water alternating steam (WAS) drive pilot in the existing steamflood area to improve thermal efficiency, installing a 2400-foot insulated, subsurface harbor channel crossing to supply steam to an island location, testing a novel alkaline steam completion technique to control well sanding problems, and starting on an advanced reservoir management system through computer-aided access to production and geologic data to integrate reservoir characterization, engineering, monitoring, and evaluation. The second budget period phase (BP2) continued to implement state-of-the-art operational work to optimize thermal recovery processes, improve well drilling and completion practices, and

  15. Oil spills and their impacts on sand beach invertebrate communities: A literature review.

    PubMed

    Bejarano, Adriana C; Michel, Jacqueline

    2016-11-01

    Sand beaches are highly dynamic habitats that can experience considerable impacts from oil spills. This review provides a synthesis of the scientific literature on major oil spills and their impacts on sand beaches, with emphasis on studies documenting effects and recoveries of intertidal invertebrate communities. One of the key observations arising from this review is that more attention has generally been given to studying the impacts of oil spills on invertebrates (mostly macrobenthos), and not to documenting their biological recovery. Biological recovery of sand beach invertebrates is highly dynamic, depending on several factors including site-specific physical properties and processes (e.g., sand grain size, beach exposure), the degree of oiling, depth of oil burial, and biological factors (e.g., species-specific life-history traits). Recovery of affected communities ranges from several weeks to several years, with longer recoveries generally associated with physical factors that facilitate oil persistence, or when cleanup activities are absent on heavily oiled beaches. There are considerable challenges in quantifying impacts from spills on sand beach invertebrates because of insufficient baseline information (e.g., distribution, abundance and composition), knowledge gaps in their natural variability (spatial and temporal), and inadequate sampling and replication during and after oil spills. Thus, environment assessments of impacts and recovery require a rigorous experimental design that controls for confounding sources of variability. General recommendations on sampling strategies and toxicity testing, and a preliminary framework for incorporating species-specific life history traits into future assessments are also provided. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Natural attenuation of aged tar-oil in soils: A case study from a former gas production site

    NASA Astrophysics Data System (ADS)

    Ivanov, Pavel; Eickhorst, Thilo; Wehrer, Markus; Georgiadis, Anna; Rennert, Thilo; Eusterhues, Karin; Totsche, Kai Uwe

    2017-04-01

    Contamination of soils with tar oil occurred on many industrial sites in Europe. The main source of such contamination has been former manufactured gas plants (MGP). As many of them were destroyed during the World War II or abandoned in the second half of the XXth century, the contamination is depleted in volatile and degradable hydrocarbons (HC) but enriched in the heavy oil fractions due to aging processes. We studied a small tar-oil spill in a former MGP reservoir basin. The tar-oil had a total petroleum hydrocarbon (TPH) content of 245 mg/g. At the margin of the spill, vegetation has started to overgrow and intensively root the tar-oil layer. This zone comprised the uppermost 5-7 cm of our profile and contained 28 mg/g of TPH (A-layer)- The layer below the root zone (7-15 cm) was the most contaminated, with 90 mg/g TPH (B-layer). The layer underneath (15-22 cm) had smaller concentrations of 16 mg/g TPH (C-layer). Further down in the profile (D-layer) we found only slightly higher TPH content than in the control samples (1,4 mg/g vs 0,6 mg/g). The polycyclic aromatic hydrocarbons analysis showed the same distribution throughout all layers with highest contents of the PAHs with 4-6 condensed aromatic rings. Direct cell count and extraction of microbial biomass showed that the highly contaminated soil layers A and B had 2-3 times more bacteria than the control soils. CARD-FISH analysis revealed that in samples from layers A and B Archaea were more abundant (12% opposing to 6-7% in control soil). Analysis of bacteria (tested for Alpha-, Beta-, Gamma- and Epsilonproteobacteria and Actinobacteria) showed the dominance of Alphaproteobacteria in the layer A and C both beneath and above the most contaminated layer B. The primers covered the whole microbial consortia in these two layers, leaving almost no unidentified cells. In the most contaminated layer B Alphaproteobacteria amounted only to 20% of the microbial consortium, and almost 40% of the cells remained

  17. Turbine Fuels from Tar Sands Bitumen and Heavy Oil. Phase I. Preliminary Process Analysis.

    DTIC Science & Technology

    1985-04-09

    OIL RESERVOIRS OF THE UNITED STATES Resource: Oil -in-Place State Field Name (County) (Million Bbls.) Arkansas Smackover Old (Union) 1,6U0 California...Flow Schematic for Gas Oil Feed Hydrotreater 94 14 Summary of Case Studies for Processing Bitumen from New Mexico 95 15 Summary of Case Studies for...Naphtha Hydrotreating Process Estimates 112 14 Gas Oil Hydrocracking Process Estimates 113 l! Gas Oil Hydrotreating Process Estimate 114 16 Fluid

  18. Bioreactors for oil sands process-affected water (OSPW) treatment: A critical review.

    PubMed

    Xue, Jinkai; Huang, Chunkai; Zhang, Yanyan; Liu, Yang; Gamal El-Din, Mohamed

    2018-06-15

    Canada has the world's largest oil sands reservoirs. Surface mining and subsequent caustic hot water extraction of bitumen lead to an enormous quantity of tailings (volumetric ratio bitumen:water=9:1). Due to the zero-discharge approach and the persistency of the complex matrix, oil producers are storing oil sands tailings in vast ponds in Northern Alberta. Oil sands tailings are comprised of sand, clay and process-affected water (OSPW). OSPW contains an extremely complex matrix of organic contaminants (e.g., naphthenic acids (NAs), residual bitumen, and polycyclic aromatic hydrocarbons (PAHs)), which has proven to be toxic to a variety of aquatic species. Biodegradation, among a variety of examined methods, is believed to be one of the most cost effective and practical to treat OSPW. A number of studies have been published on the removal of oil sands related contaminants using biodegradation-based practices. This review focuses on the treatment of OSPW using various bioreactors, comparing bioreactor configurations, operating conditions, performance evaluation and microbial community dynamics. Effort is made to identify the governing biotic and abiotic factors in engineered biological systems receiving OSPW. Generally, biofilms and elevated suspended biomass are beneficial to the resilience and degradation performance of a bioreactor. The review therefore suggests that a hybridization of biofilms and membrane technology (to ensure higher suspended microbial biomass) is a more promising option to remove OSPW organic constituents. Copyright © 2018 Elsevier B.V. All rights reserved.

  19. Experimental Investigation on Dilation Mechanisms of Land-Facies Karamay Oil Sand Reservoirs under Water Injection

    NASA Astrophysics Data System (ADS)

    Lin, Botao; Jin, Yan; Pang, Huiwen; Cerato, Amy B.

    2016-04-01

    The success of steam-assisted gravity drainage (SAGD) is strongly dependent on the formation of a homogeneous and highly permeable zone in the land-facies Karamay oil sand reservoirs. To accomplish this, hydraulic fracturing is applied through controlled water injection to a pair of horizontal wells to create a dilation zone between the dual wells. The mechanical response of the reservoirs during this injection process, however, has remained unclear for the land-facies oil sand that has a loosely packed structure. This research conducted triaxial, permeability and scanning electron microscopy (SEM) tests on the field-collected oil sand samples. The tests evaluated the influences of the field temperature, confining stress and injection pressure on the dilation mechanisms as shear dilation and tensile parting during injection. To account for petrophysical heterogeneity, five reservoir rocks including regular oil sand, mud-rich oil sand, bitumen-rich oil sand, mudstone and sandstone were investigated. It was found that the permeability evolution in the oil sand samples subjected to shear dilation closely followed the porosity and microcrack evolutions in the shear bands. In contrast, the mudstone and sandstone samples developed distinct shear planes, which formed preferred permeation paths. Tensile parting expanded the pore space and increased the permeability of all the samples in various degrees. Based on this analysis, it is concluded that the range of injection propagation in the pay zone determines the overall quality of hydraulic fracturing, while the injection pressure must be carefully controlled. A region in a reservoir has little dilation upon injection if it remains unsaturated. Moreover, a cooling of the injected water can strengthen the dilation potential of a reservoir. Finally, it is suggested that the numerical modeling of water injection in the Karamay oil sand reservoirs must take into account the volumetric plastic strain in hydrostatic loading.

  20. Are PAHS the Right Metric for Assessing Toxicity Related to Oils, Tars, Creosote and Similar Contaminants in Sediments?

    EPA Science Inventory

    Oils, tars, and other non-aqueous phase hydrocarbon liquids (NAPLs) are common sources of contamination in aquatic sediments, and the toxicity of such contamination has generally been attributed to component chemicals, particularly PAHs. While there is no doubt PAHs can be toxic ...

  1. Alberta's economic development of the Athabasca oil sands

    NASA Astrophysics Data System (ADS)

    Steinmann, Michael

    This dissertation examines the 61-year evolution of public policies pertaining to development of Alberta's non-conventional source of crude oil. The Athabasca oil sands contain an estimated 1.5 trillion barrels and provide for a safe continental supply. The Provincial Government first sponsored this undertaking in 1943. The period from then to 1971 was one of a transition from a wheat economy to a natural-resource economic base. A stable government emerged and was able to negotiate viable development policies. A second period, 1971 to 1986, was marked by unstable world conditions that afforded the Alberta government the ability to set terms of development with multi-national oil firms. A 50% profit-sharing plan was implemented, and basic 1973 terms lasted until 1996. However, 1986 was a critical year because the Organization of Petroleum Exporting Countries (OPEC) reduced prices, causing the Alberta economy to lapse into recession. During a third period, 1986 to 1996, the Alberta Government was unable to adapt quickly to world conditions. A new leadership structure in 1996 made major changes to create ongoing fiscal and development policies. That history provides answers to two primary research questions: How do public policies affect the behaviors of the modern corporation and visa versa? What are the implications for development theory? Two sources of information were used for this study. First, it was possible to review the Premier's files located in the Provincial Archives. Materials from various government libraries were also examined. Some 7,000 documents were used to show the evolution of government policymaking. Second, interviews with leaders of oil companies and federal research facilities were important. Findings support the thesis that, to facilitate oil sands development, government and the private sector have closely collaborated. In particular, revenue policies have allowed for effective R&D organization. Relying on intensive technological

  2. Oil turmoil

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1979-07-01

    A review of US oil production, refining, and retailing reveals the severity of the energy problem and illustrates the confusion over what can be accomplished by decontrolling oil prices. Conflicting statements from members of Congress, the President, and the oil industry have further confused the public. The shortages can be traced to a decline in domestic production incentives and foreign production, a slowdown in refinery expansion because of environmental constraints, competition between home heating oil and gasoline for priority, the failure of states to enforce speed limits, and a national preoccupation with oil profits. Senator Kennedy, for example, advocates continuedmore » price controls with a world-wide drilling program funded by the World Bank, while decontrol advocates feel price controls will only artifically restrain US production. The economic effects of decontrol on inflation are unclear, but conservation efforts, the development of alternative energy sources, and oil development from shale and tar sands are predicted to increase as political rhetoric declines.« less

  3. Microbial communities involved in methane production from hydrocarbons in oil sands tailings.

    PubMed

    Siddique, Tariq; Penner, Tara; Klassen, Jonathan; Nesbø, Camilla; Foght, Julia M

    2012-09-04

    Microbial metabolism of residual hydrocarbons, primarily short-chain n-alkanes and certain monoaromatic hydrocarbons, in oil sands tailings ponds produces large volumes of CH(4) in situ. We characterized the microbial communities involved in methanogenic biodegradation of whole naphtha (a bitumen extraction solvent) and its short-chain n-alkane (C(6)-C(10)) and BTEX (benzene, toluene, ethylbenzene, and xylenes) components using primary enrichment cultures derived from oil sands tailings. Clone libraries of bacterial 16S rRNA genes amplified from these enrichments showed increased proportions of two orders of Bacteria: Clostridiales and Syntrophobacterales, with Desulfotomaculum and Syntrophus/Smithella as the closest named relatives, respectively. In parallel archaeal clone libraries, sequences affiliated with cultivated acetoclastic methanogens (Methanosaetaceae) were enriched in cultures amended with n-alkanes, whereas hydrogenotrophic methanogens (Methanomicrobiales) were enriched with BTEX. Naphtha-amended cultures harbored a blend of these two archaeal communities. The results imply syntrophic oxidation of hydrocarbons in oil sands tailings, with the activities of different carbon flow pathways to CH(4) being influenced by the primary hydrocarbon substrate. These results have implications for predicting greenhouse gas emissions from oil sands tailings repositories.

  4. Solvent extraction of oil-sand components for determination of trace elements by neutron activation analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jacobs, F.S.; Filby, R.H.

    Instrumental neutron activation analysis was used to measure the concentrations of 30 elements in Athabasca oil sands and oil-sand components. The oil sands were separated into solid residue, bitumen, and fines by Soxhlet extraction with toluene-bitumen extract. The mineral content of the extracted bitumen was dependent on the treatment of the oil sand prior to extraction. The geochemically important and organically associated trace element contents of the bitumen (and asphaltenes) were determined by subtracting the mineral contributions from the total measured concentrations. The method allows analysis of the bitumen without the necessity of ultracentrifugation or membrane filtration, which might removemore » geochemically important components of the bitumen. The method permits classification of trace elements into organic and inorganic combinations.« less

  5. Oil sands development contributes polycyclic aromatic compounds to the Athabasca River and its tributaries

    PubMed Central

    Kelly, Erin N.; Short, Jeffrey W.; Schindler, David W.; Hodson, Peter V.; Ma, Mingsheng; Kwan, Alvin K.; Fortin, Barbra L.

    2009-01-01

    For over a decade, the contribution of oil sands mining and processing to the pollution of the Athabasca River has been controversial. We show that the oil sands development is a greater source of contamination than previously realized. In 2008, within 50 km of oil sands upgrading facilities, the loading to the snowpack of airborne particulates was 11,400 T over 4 months and included 391 kg of polycyclic aromatic compounds (PAC), equivalent to 600 T of bitumen, while 168 kg of dissolved PAC was also deposited. Dissolved PAC concentrations in tributaries to the Athabasca increased from 0.009 μg/L upstream of oil sands development to 0.023 μg/L in winter and to 0.202 μg/L in summer downstream. In the Athabasca, dissolved PAC concentrations were mostly <0.025 μg/L in winter and 0.030 μg/L in summer, except near oil sands upgrading facilities and tailings ponds in winter (0.031–0.083 μg/L) and downstream of new development in summer (0.063–0.135 μg/L). In the Athabasca and its tributaries, development within the past 2 years was related to elevated dissolved PAC concentrations that were likely toxic to fish embryos. In melted snow, dissolved PAC concentrations were up to 4.8 μg/L, thus, spring snowmelt and washout during rain events are important unknowns. These results indicate that major changes are needed to the way that environmental impacts of oil sands development are monitored and managed. PMID:19995964

  6. Ubiquitous tar balls with a California-source signature on the shorelines of Prince William Sound, Alaska

    USGS Publications Warehouse

    Kvenvolden, K.A.; Hostettler, F.D.; Carlson, P.R.; Rapp, J.B.; Threlkeld, C.N.; Warden, A.

    1995-01-01

    Although the shorelines of Prince William Sound still bear traces of the 1989 Exxon Valdez oil spill, most of the flattened tar balls that can be found today on these shorelines are not residues of Exxon Valdez oil. Instead, the carbon-isotopic and hydrocarbon-biomarker signatures of 61 tar ball samples, collected from shorelines throughout the northern and western parts of the sound, are all remarkably similar and have characteristics consistent with those of oil products that originated from the Monterey Formation source rocks of California. The carbon-isotopic compositions of the tar balls are all closely grouped (??13CPDB = -23.7 ?? 0.2???), within the range found in crude oils from those rocks, but are distinct from isotopic compositions of 28 samples of residues from the Exxon Valdez oil spill (??13CPDB = -29.4 ?? 0.1???). Likewise, values for selected biomarker ratios in the tar balls are all similar but distinct from values of residues from the 1989 oil spill. Carbon-isotopic and biomarker signatures generally relate the tar balls to oil products used in Alaska before ???1970 for construction and pavements. How these tar balls with such similar geochemical characteristics became so widely dispersed throughout the northern and western parts of the sound is not known with certainty, but the great 1964 Alaska earthquake was undoubtedly an important trigger, causing spills from ruptured storage facilities of California-sourced asphalt and fuel oil into Prince William Sound.

  7. Aquatic toxicity of petroleum products and dispersant agents determined under the U.S. EPA Oil Spill Research Program

    EPA Science Inventory

    The U.S. EPA Office of Research and Development has developed baseline data on the ecotoxicity of selected petroleum products and several chemical dispersants as part of its oil spills research program. Two diluted bitumens (dilbits) from the Alberta Tar Sands were tested for acu...

  8. Chemistry and origin of Miocene and Eocene oils and tars in the onshore and offshore Santa Cruz Basins, California

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kornacki, A.S.; McNeil, R.I.

    1996-01-01

    The Santa Cruz (La Honda) Basin is a small [open quote]slice[close quote] of the San Joaquin Basin that has been displaced c. 300 km to the northwest by the San Andreas Fault. The poorly-explored offshore area that now lies within the Monterey Bay NMS includes portions of the Outer Santa Cruz and Bodega basins. A modest amount (c. 1.3 MM bbl) of variable-quality oil has been produced from Eocene and Pliocene pay zones in the La Honda Field. Much smaller amounts of light oil ([ge]40[degrees] API) have been produced from three other fields (Oil Creek; Moody Gulch; Half Moon Bay).more » Large tar deposits also outcrop near the city of Santa Cruz. Proven source rocks in this basin include the Eocene Twobar Shale and three Miocene units: the Lambert Shale, Monterey Formation, and the Santa Cruz Mudstone. A high-gravity oil sample from the Oil Creek Field contains isotopically-light carbon ([delta][sup 13]C = - 28.2 per mil) and has a relatively high pristane/phytane ratio. This oil was generated at high temperature (c. 140[degrees]C) by pre-Miocene source rocks (probably the Twobar Shale). The presence of isotopically-heavy carbon in all other oil and tar samples demonstrates they were generated by Miocene source rocks. But the C[sub 7] oil-generation temperatures, sulfur content, vanadium/nickel ratios, and biomarker chemistry of these Miocene oils are significantly different than in Monterey oils from the prolific Santa Maria Basin (SMB). The sulfur content (8.0 wt%) and V-Ni chemistry of tarry petroleum recovered in the P-036-1 well (Outer Santa Cruz Basin) resembles the chemistry of very heavy (<15[degrees]API) oils generated by phosphatic Monterey shales in the SMB.« less

  9. Satellite Monitoring Over the Canadian Oil Sands: Highlights from Aura OMI and TES

    NASA Technical Reports Server (NTRS)

    Shephard, Mark W.; McLinden, Chris; Fioletov, Vitali; Cady-Pereira, Karen E.; Krotkov, Nick A.; Boersma, Folkert; Li, Can; Luo, Ming; Bhartia, P. K.; Joiner, Joanna

    2014-01-01

    Satellite remote sensing provides a unique perspective for air quality monitoring in and around the Canadian Oil Sands as a result of its spatial and temporal coverage. Presented are Aura satellite observations of key pollutants including nitrogen dioxide (NO2), sulfur dioxide (SO2), carbon monoxide (CO), ammonia (NH3), methanol (CH3OH), and formic acid (HCOOH) over the Canadian Oil Sands. Some of the highlights include: (i) the evolution of NO2 and SO2 from the Ozone Monitoring Instrument (OMI), including comparisons with other nearby sources, (ii) two years of ammonia, carbon monoxide, methanol, and formic acid observations from 240 km North-South Tropospheric Emission Spectrometer (TES) transects through the oils sands, and (iii) preliminary insights into emissions derived from these observations.

  10. Do peat amendments to oil sands wet sediments affect Carex aquatilis biomass for reclamation success?

    PubMed

    Roy, Marie-Claude; Mollard, Federico P O; Foote, A Lee

    2014-06-15

    The oil sands industries of Alberta (Canada) have reclamation objectives to return the mined landscape to equivalent pre-disturbance land capability. Industrial operators are charged with reclaiming a vast landscape of newly exposed sediments on saline-sodic marine-shales sediments. Incorporated in these sediments are by-products resulting from bitumen extraction (consolidated tailings (CT), tailings-sand (TS), and oil sands processed water (OSPW)). A sedge community dominated by Carex aquatilis was identified as a desirable and representative late-succession community for wet-meadow zones of oil sands-created marshes. However, the physical and chemical conditions, including high salinity and low nutrient content of CT and TS sediments suppress plant growth and performance. We experimentally tested the response of C. aquatilis to amendments with peat-mineral-mix (PM) on oil sand sediments (CT and TS). In a two factorial design experiment, we also tested the effects of OSPW on C. aquatilis. We assessed survival, below- and aboveground biomass, and physiology (chlorophyll a fluorescence). We demonstrated that PM amendments to oil sands sediments significantly increased C. aquatilis survival as well as below and aboveground biomass. The use of OSPW significantly reduced C. aquatilis belowground biomass and affected its physiological performance. Due to its tolerance and performance, we verified that C. aquatilis was a good candidate for use in reclaiming the wet-meadow zones of oil sands-created marshes. Ultimately, amending CT and TS with PM expedited the reclamation of the wetland to a C. aquatilis-community which was similar in gross structure to undisturbed wetlands of the region. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Fluorescence emission spectral measurements for the detection of oil on shore

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Balick, L.K.; Di Benedetto, J.A.; Lutz, S.S.

    1997-06-01

    The US DOE Special Technologies Laboratory is developing an airborne Laser-Induced Fluorescence Imaging (LIFI) system to support environmental management of government Utilities. This system, or a system to be derived from it, is being evaluated for its potential to detect spilled oils on shore, in wetlands, and on ice. To more fully understand the detectivity of oil spills, emphasis has been placed on the spectral contrast between the oil signatures and signatures associated with the natural backgrounds (sand, vegetation, etc.). To support this evaluation, two series of controlled measurements have been performed to provide rigorous characterization of the excitation-emission propertiesmore » of some oils and background materials, and to look at the effects of weathering of oil on terrestrial background materials. Oil targets included a heavy crude oil, diesel, kerosene, and aviation fuel and backgrounds included beach sand, straw, mud, tar and kelp. Fluorescence of oil on background materials decreases rapidly over the first few days of exposure to the environment and is more rapid than for neat oil samples.« less

  12. Fluorescence emission spectral measurements for the detection of oil on shore

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Balick, L.K.; Di Benedetto, J.A.; Lutz, S.S.

    1996-12-31

    The U.S. DOE Special Technologies Laboratory is developing an airborne Laser-Induced Fluorescence Imaging (LIFI) system to support environmental management of government facilities. This system, or a system to be derived from it, is being evaluated for its potential to detect spilled oils oN shore, in wetlands, and on ice. To more fully understand the detectivity of oil spills, emphasis has been placed on the spectral contrast between the oil signatures and signatures associated with the natural backgrounds (sand, vegetation, etc.). To support this evaluation, two series of controlled measurements have been performed to provide rigorous characterization of the excitation-emission propertiesmore » of some oils and background materials, and to look at the effects of weathering of oil on terrestrial background materials. Oil targets included a heavy crude oil, diesel, kerosene, and aviation fuel and backgrounds included beach sand, straw, mud, tar and kelp. Fluorescence of oil on background materials decreases rapidly over the first few days of exposure to the environment and is more rapid than for neat oil samples.« less

  13. Enhanced Gravitational Drainage of Crude Oil Through Alabama Beach Sand Caused by the Dispersant Corexit 9500A

    NASA Astrophysics Data System (ADS)

    Steffy, D. A.; Nichols, A.; Hobbs, K.

    2017-12-01

    Oil spill material released by the 2010 Deepwater Horizon accident contaminated a majority of the 60 miles of Alabama coastline. In response to the oil spill, BP sprayed a dispersant, Corexit 9500A, as an initial remediation effort. An unforeseen impact of the saltwater-dispersant mixture includes the mobilization of oil-spilled material into the underlying beach sand. This study investigated the effect of the dispersant to promote gravitational drainage by measuring the physical characteristics of the sand, saltwater, crude oil, and the dispersant solution. The saltwater-dispersant mixture promoted the downward movement of oil mass 20 times greater extent than just saltwater. These tests are meant to simulate spill material on the beach being exposed to a low-energy, 1-meter mixed tide occurring along the Alabama coastline. A separate test simulated oilwet sand exposed to saltwater and a saltwater-dispersant mixture. The oil-wet sand impeded the vertical movement of saltwater, but allowed a saltwater-dispersant solution to mobilize the oil to migrate downward. The mobilization of oil in this three phase system of saltwater, oil, and air is controlled by: the pressure-saturation profile of the sand; interfacial tension with saltwater; and its surface tension with air.

  14. Forensic source differentiation of petrogenic, pyrogenic, and biogenic hydrocarbons in Canadian oil sands environmental samples.

    PubMed

    Wang, Zhendi; Yang, C; Parrott, J L; Frank, R A; Yang, Z; Brown, C E; Hollebone, B P; Landriault, M; Fieldhouse, B; Liu, Y; Zhang, G; Hewitt, L M

    2014-04-30

    To facilitate monitoring efforts, a forensic chemical fingerprinting methodology has been applied to characterize and differentiate pyrogenic (combustion derived) and biogenic (organism derived) hydrocarbons from petrogenic (petroleum derived) hydrocarbons in environmental samples from the Canadian oil sands region. Between 2009 and 2012, hundreds of oil sands environmental samples including water (snowmelt water, river water, and tailings pond water) and sediments (from river beds and tailings ponds) have been analyzed. These samples were taken from sites where assessments of wild fish health, invertebrate communities, toxicology and detailed chemistry are being conducted as part of the Canada-Alberta Joint Oil Sands Monitoring Plan (JOSMP). This study describes the distribution patterns and potential sources of PAHs from these integrated JOSMP study sites, and findings will be linked to responses in laboratory bioassays and in wild organisms collected from these same sites. It was determined that hydrocarbons in Athabasca River sediments and waters were most likely from four sources: (1) petrogenic heavy oil sands bitumen; (2) biogenic compounds; (3) petrogenic hydrocarbons of other lighter fuel oils; and (4) pyrogenic PAHs. PAHs and biomarkers detected in snowmelt water samples collected near mining operations imply that these materials are derived from oil sands particulates (from open pit mines, stacks and coke piles). Crown Copyright © 2014. Published by Elsevier B.V. All rights reserved.

  15. The immunological effects of oil sands surface waters and naphthenic acids on rainbow trout (Oncorhynchus mykiss).

    PubMed

    Leclair, Liane A; MacDonald, Gillian Z; Phalen, Laura J; Köllner, Bernd; Hogan, Natacha S; van den Heuvel, Michael R

    2013-10-15

    There is concern surrounding the immunotoxic potential of naphthenic acids (NAs), a major organic constituent in waters influenced by oil sands contamination. To assess the immunological response to NAs, rainbow trout (Oncorhynchus mykiss) waterborne exposures were conducted with oil sands-influenced waters, NAs extracted and purified from oil sands tailings waters, and benzo[a]pyrene (BaP) as a positive control. After a 7d exposure, blood, spleen, head kidney, and gill samples were removed from a subset of fish in order to evaluate the distribution of thrombocytes, B-lymphocytes, myeloid cells, and T-lymphocytes using fluorescent antibodies specific for those cell types coupled with flow cytometry. The remaining trout in each experimental tank were injected with inactivated Aeromonas salmonicida and held in laboratory water for 21 d and subjected to similar lymphatic cell evaluation in addition to evaluation of antibody production. Fluorescent metabolites in bile as well as liver CYP1A induction were also determined after the 7 and 21 d exposure. Oil sands waters and extracted NAs exposures resulted in an increase in bile fluorescence at phenanthrene wavelengths, though liver CYP1A was not induced in those treatments as it was with the BaP positive control. Trout in the oil sands-influenced water exposure showed a decrease in B- and T-lymphocytes in blood as well as B-lymphocytes and myeloid cells in spleen and an increase in B-lymphocytes in head kidney. The extracted NAs exposure showed a decrease in thrombocytes in spleen at 8 mg/L and an increase in T-lymphocytes at 1mg/L in head kidney after 7d. There was a significant decrease in antibody production against A. salmonicida in both oil sands-influenced water exposures. Because oil sands-influenced waters affected multiple immune parameters, while extracted NAs impacts were limited, the NAs tested here are likely not the cause of immunotoxicity found in the oil sands-influenced water. Copyright © 2013 Elsevier

  16. Advanced characterisation of organic matter in oil sands and tailings sands used for land reclamation by Fourier transform-ion cyclotron resonance-mass spectrometry (FT-ICR-MS)

    NASA Astrophysics Data System (ADS)

    Noah, M.; Vieth-Hillebrand, A.; Wilkes, H.

    2012-04-01

    The Athabasca region of northern Alberta, Canada, is home to deposits of oil sands containing vast amounts (~ 173 billion barrels) of heavily biodegraded petroleum. Oil sands are recovered by surface mining or by in situ steam injection. The extraction of bitumen from oil sands by caustic hot water processing results in large volumes of fluid tailings, which are stored in on-site settling basins. There the tailings undergo a compaction and dewatering process, producing a slowly densifying suspension. The released water is recycled for extraction. The fine tailings will be reclaimed as either dry or wet landscapes. [1] To produce 1 barrel of crude oil, 2 tons of oil sand and 2 - 3 tons of water (including recycled water) are required. [2] Open pit mining and the extraction of the bitumen from the oil sands create large and intense disturbances of different landscapes. The area currently disturbed by mining operations covers about 530 km2 and the area of tailing ponds surpasses 130 km2. An issue of increasing importance is the land remediation and reclamation of oil sand areas in Canada and the reconstruction of these disturbed landscapes back to working ecosystems similar to those existing prior to mining operations. An important issue in this context is the identification of oil sand-derived organic compounds in the tailings, their environmental behaviour and the resulting chances and limitations with respect to land reclamation. Furthermore the biodegradation processes that occur in the tailings and that could lead to a decrease in hazardous organic compounds are important challenges, which need to be investigated. This presentation will give a detailed overview of our compositional and quantitative characterisation of the organic matter in oil sand, unprocessed and processed mature fine tailings samples as well as in tailings sands used as part of land reclamation. The analytical characterisation is based on the extraction of the soluble organic matter, its

  17. Influence of Oil Saturation Upon Spectral Induced Polarization of Oil Bearing Sands

    EPA Science Inventory

    The presence of oil in an unconsolidated granular porous material such as sand changes both the resistivity of the material and the value of the phase shift between the low-frequency current and the voltage. The resistivity and the phase angle can be written as a complex-valued r...

  18. Metal bioaccumulation and biomarkers of effects in caged mussels exposed in the Athabasca oil sands area.

    PubMed

    Pilote, M; André, C; Turcotte, P; Gagné, F; Gagnon, C

    2018-01-01

    The Athabasca oil sands deposit is the world's largest known reservoir of crude bitumen and the third-largest proven crude oil reserve. Mining activity is known to release contaminants, including metals, and to potentially impact the aquatic environment. The purpose of this study was to determine the impacts of oil sands mining on water quality and metal bioaccumulation in mussels from the Fort McMurray area in northern Alberta, Canada. The study presents two consecutive years of contrasting mussel exposure conditions (low and high flows). Native freshwater mussels (Pyganodon grandis) were placed in cages and exposed in situ in the Athabasca River for four weeks. Metals and inorganic elements were then analyzed in water and in mussel gills and digestive glands to evaluate bioaccumulation, estimate the bioconcentration factor (BCF), and determine the effects of exposure by measuring stress biomarkers. This study shows a potential environmental risk to aquatic life from metal exposure associated with oil sands development along with the release of wastewater from a municipal treatment plant nearby. Increased bioaccumulation of Be, V, Ni and Pb was observed in mussel digestive glands in the Steepbank River, which flows directly through the oil sands mining area. Increased bioaccumulation of Al, V, Cr, Co, Ni, Mo and Ni was also observed in mussel gills from the Steepbank River. These metals are naturally present in oil sands and generally concentrate and increase with the extraction process. The results also showed different pathways of exposure (particulate or dissolved forms) for V and Ni resulting from different river water flows, distribution coefficient (K d ) and BCF. Increasing metal exposure downstream of the oil sands mining area had an impact on metallothionein and lipid peroxidation in mussels, posing a potential environmental risk to aquatic life. These results confirm the bioavailability of some metals in mussel tissues associated with detoxification of

  19. Technology for the production of Zero Q.I pitch from coal tar

    NASA Astrophysics Data System (ADS)

    Karthik, K.; Kumar, K. Rajesh; Rao, C. V. Nageswara; Kumar, B. Vinod; Murty, J. V. S.

    2013-06-01

    Zero Quinoline Insolubles (Q.I) pitch is a special type of pitch obtained from pre-treatment of coal tar, which is converted into pitch. This is used for impregnation of electrodes for improving the strength, electrical properties and also used as a pre-cursor for Mesophase pitch for producing Mesophase pitch based carbon fibers, carbon foam, and Meso carbon micro beads. This paper discusses the technology of Q.I separation from Coal Tar by using decantation of Coal Tar mixed with Heavy Creosote Oil (HC Oil) at different temperatures. By this method we were able to produce the Zero Q.I pitch with a Q.I value of 0.1%.

  20. Removal of oil and oil sheen from produced water by pressure-assisted ozonation and sand filtration.

    PubMed

    Cha, Zhixiong; Lin, Cheng-Fang; Cheng, Chia-Jung; Andy Hong, P K

    2010-01-01

    Ever increasing energy demand worldwide necessitates energy supply, inevitably leading to an increasing volume of process waters containing hydrocarbon contaminants. Among them, dispersed and dissolved oils in produced water need to be removed adequately in order to reuse or avoid surface sheen from coastal discharge. We have recently developed a new ozonation technique coupled with sand filtration to quickly remove oil from process water and prevent oil sheen. The technique incorporates rapid, successive cycles of compression and decompression during ozonation. Gas bubbles expanding from small to large sizes occur that provide ample reactive zones at the gas-liquid interface, resulting in heightened chemical conversions-notably the conversion of hydrophobic hydrocarbon molecules into hydrophilic ones. This study examined the removal of hydrocarbons and sheen according to treatment parameters and configurations, as assessed by changes in turbidity, COD, BOD, and sheen presence following treatment. When a synthetic produced water containing 120ppm of oil (about 100ppm of dispersed and 20ppm of soluble oil at a total COD of 320mgL(-1)) was subjected to 10 pressure cycles (reaching 1.0MPa; 20s each) of ozonation and sand filtration at 6cmmin(-1) and then repeated by 20 cycles of ozonation and sand filtration, it resulted in removal of oil to 20ppm as water-soluble organic acids, decrease of turbidity from 200 to 2NTU, and complete sequestration of surface sheen. The new technique offers a treatment alternative for produced water and likely other tailings waters, promoting safe discharge to the environment and beneficial uses of the water. 2009 Elsevier Ltd. All rights reserved.

  1. Catalytic decomposition of tar derived from wood waste pyrolysis using Indonesian low grade iron ore as catalyst

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wicakso, Doni Rahmat; Chemical Engineering Department, Faculty of Engineering, Gadjah Mada University, Jalan Grafika No. 2 Bulaksumur, Yogyakarta, 55281; Sutijan

    Low grade iron ore can be used as an alternative catalyst for bio-tar decomposition. Compared to other catalysts, such as Ni, Rd, Ru, Pd and Pt, iron ore is cheaper. The objective of this research was to investigate the effect of using low grade iron ore as catalyst for tar catalytic decomposition in fixed bed reactor. Tar used in this experiment was pyrolysis product of wood waste while the catalyst was Indonesian low grade iron ore. The variables studied were temperatures between 500 – 600 °C and catalyst weight between 0 – 40 gram. The first step, tar was evaporatedmore » at 450 °C to produce tar vapor. Then, tar vapor was flowed to fixed bed reactor filled low grade iron ore. Gas and tar vapor from reactor was cooled, then the liquid and uncondensable gas were analyzed by GC/MS. The catalyst, after experiment, was weighed to calculate total carbon deposited into catalyst pores. The results showed that the tar components that were heavy and light hydrocarbon were decomposed and cracked within the iron ore pores to from gases, light hydrocarbon (bio-oil) and carbon, thus decreasing content tar in bio-oil and increasing the total gas product. In conclusion, the more low grade iron ore used as catalyst, the tar content in the liquid decrease, the H{sup 2} productivity increased and calorimetric value of bio-oil increased.« less

  2. Oil sands mining and reclamation cause massive loss of peatland and stored carbon

    PubMed Central

    Rooney, Rebecca C.; Bayley, Suzanne E.; Schindler, David W.

    2012-01-01

    We quantified the wholesale transformation of the boreal landscape by open-pit oil sands mining in Alberta, Canada to evaluate its effect on carbon storage and sequestration. Contrary to claims made in the media, peatland destroyed by open-pit mining will not be restored. Current plans dictate its replacement with upland forest and tailings storage lakes, amounting to the destruction of over 29,500 ha of peatland habitat. Landscape changes caused by currently approved mines will release between 11.4 and 47.3 million metric tons of stored carbon and will reduce carbon sequestration potential by 5,734–7,241 metric tons C/y. These losses have not previously been quantified, and should be included with the already high estimates of carbon emissions from oil sands mining and bitumen upgrading. A fair evaluation of the costs and benefits of oil sands mining requires a rigorous assessment of impacts on natural capital and ecosystem services. PMID:22411786

  3. Salting-out effects on the characterization of naphthenic acids from Athabasca oil sands using electrospray ionization.

    PubMed

    Headley, John V; Barrow, Mark P; Peru, Kerry M; Derrick, Peter J

    2011-01-01

    There is growing interest in the mass spectrometric characterization of oil sands acids present in natural waters and contaminated soils. This interest stems from efforts to isolate the principal toxic components of oil sands acid extractable organics in aquatic environment. Salting-out effects are demonstrated for nanospray ionization mass spectra of Athabasca oil sands acid extractable organics (naphthenic acids), using Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometry. The differences in spectra obtained for the sodium naphthenates in dichloromethane/acetonitrile cosolvents compared to spectra obtained in the absence of saturated sodium chloride salts, are used here as a surrogate to indicate the more bioavailable or toxic components in natural waters. Whereas, monocarboxylic compounds (C(n)H(2n+Z)O(2)) were prevalent in the Z =-4, -6, and -12 (2, 3 and 6-ring naphthenic acids respectively) family in the carbon number range of 13 to 19 in the dichloromethane/acetonitrile cosolvent systems, salting-out effects resulted in a general enhancement of Z =-4 species, relative to others. Likewise, the shift in relative intensities of species containing O(1), O(3), O(4), O(2)S and O(3)S was dramatic for systems with and without saturated salts present. The O(4) and O(3)S species for example, were prevalent in the dichloromethane/acetonitrile cosolvent but were non-detected in the presence of saturated salts. Interactions of oil sands acids with salts are expected to occur in oil sands processed waters and natural saline waters. As evident by the distribution of species observed, salting-out effects will play a major role in limiting the bioavailability of oil sands acids in aquatic systems.

  4. Coal Tar and Coal-Tar Pitch

    Cancer.gov

    Learn about coal-tar products, which can raise your risk of skin cancer, lung cancer, and other types of cancer. Examples of coal-tar products include creosote, coal-tar pitch, and certain preparations used to treat skin conditions such as eczema, psoriasis, and dandruff.

  5. Phytoremediation of Alberta oil sand tailings using native plants and fungal endophytes

    NASA Astrophysics Data System (ADS)

    Repas, T.; Germida, J.; Kaminskyj, S.

    2012-04-01

    Fungal endophytes colonize host plants without causing disease. Some endophytes confer plant tolerance to harsh environments. One such endophyte, Trichoderma harzianum strain TSTh20-1, was isolated from a plant growing on Athabasca oil sand tailings. Tailing sands are a high volume waste product from oil sand extraction that the industry is required to remediate. Tailing sands are low in organic carbon and mineral nutrients, and are hydrophobic due to residual polyaromatic hydrocarbons. Typically, tailing sands are remediated by planting young trees in large quantities of mulch plus mineral fertilizer, which is costly and labour intensive. In greenhouse trials, TSTh20-1 supports growth of tomato seedlings on tailing sands without fertilizer. The potential use of TSTh20-1 in combination with native grasses and forbs to remediate under field conditions is being assessed. Twenty-three commercially available plant species are being screened for seed germination and growth on tailing sands in the presence of TSTh20-1. The best candidates from this group will be used in greenhouse and small scale field trials. Potential mechanisms that contribute to endophyte-induced plant growth promotion, such as plant hormone production, stress tolerance, mineral solubilization, and uptake are also being assessed. As well, TSTh20-1 appears to be remarkably frugal in its nutrient requirements and the possibility that this attribute is characteristic of other plant-fungal endophytes from harsh environments is under study.

  6. Life cycle Greenhouse gas emissions of current Oil Sands Technologies: surface mining and in situ applications.

    PubMed

    Bergerson, Joule A; Kofoworola, Oyeshola; Charpentier, Alex D; Sleep, Sylvia; Maclean, Heather L

    2012-07-17

    Life cycle greenhouse gas (GHG) emissions associated with two major recovery and extraction processes currently utilized in Alberta's oil sands, surface mining and in situ, are quantified. Process modules are developed and integrated into a life cycle model-GHOST (GreenHouse gas emissions of current Oil Sands Technologies) developed in prior work. Recovery and extraction of bitumen through surface mining and in situ processes result in 3-9 and 9-16 g CO(2)eq/MJ bitumen, respectively; upgrading emissions are an additional 6-17 g CO(2)eq/MJ synthetic crude oil (SCO) (all results are on a HHV basis). Although a high degree of variability exists in well-to-wheel emissions due to differences in technologies employed, operating conditions, and product characteristics, the surface mining dilbit and the in situ SCO pathways have the lowest and highest emissions, 88 and 120 g CO(2)eq/MJ reformulated gasoline. Through the use of improved data obtained from operating oil sands projects, we present ranges of emissions that overlap with emissions in literature for conventional crude oil. An increased focus is recommended in policy discussions on understanding interproject variability of emissions of both oil sands and conventional crudes, as this has not been adequately represented in previous studies.

  7. Self assembly, mobilization, and flotation of crude oil contaminated sand particles as granular shells on gas bubbles in water.

    PubMed

    Tansel, Berrin; Boglaienko, Daria

    2017-01-01

    Contaminant fate and transport studies and models include transport mechanisms for colloidal particles and dissolved ions which can be easily moved with water currents. However, mobilization of much larger contaminated granular particles (i.e., sand) in sediments have not been considered as a possible mechanism due to the relatively larger size of sand particles and their high bulk density. We conducted experiments to demonstrate that oil contaminated granular particles (which exhibit hydrophobic characteristics) can attach on gas bubbles to form granular shells and transfer from the sediment phase to the water column. The interactions and conditions necessary for the oil contaminated granular particles to self assemble as tightly packed granular shells on the gas bubbles which transfer from sediment phase to the water column were evaluated both experimentally and theoretically for South Louisiana crude oil and quartz sand particles. Analyses showed that buoyancy forces can be adequate to move the granular shell forming around the air bubbles if the bubble radius is above 0.001mm for the sand particles with 0.28mm diameter. Relatively high magnitude of the Hamaker constant for the oil film between sand and air (5.81×10 -20 J for air-oil-sand) indicates that air bubbles have high affinity to attach on the oil film that is on the sand particles in comparison to attaching to the sand particles without the oil film in water (1.60×10 -20 J for air-water-sand). The mobilization mechanism of the contaminated granular particles with gas bubbles can occur in natural environments resulting in transfer of granular particles from sediments to the water column. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Oil Sands Characteristics and Time-Lapse and P-SV Seismic Steam Monitoring, Athabasca, Canada

    NASA Astrophysics Data System (ADS)

    Takahashi, A.; Nakayama, T.; Kashihara, K.; Skinner, L.; Kato, A.

    2008-12-01

    A vast amount of oil sands exists in the Athabasca area, Alberta, Canada. These oil sands consist of bitumen (extra-heavy oil) and unconsolidated sand distributed from surface to a depth of 750 meters. Including conventional crude oil, the total number of proved remaining oil reserves in Canada ranks second place in the world after Saudi Arabia. For the production of bitumen from the reservoir 200 to 500 meters in depth, the Steam Assisted Gravity Drainage (SAGD) method (Steam Injection EOR) has been adopted as bitumen is not movable at original temperatures. It is essential to understand the detailed reservoir distribution and steam chamber development extent for optimizing the field development. Oil sands reservoir characterization is conducted using 3D seismic data acquired in February 2002. Conducting acoustic impedance inversion to improve resolution and subsequent multi-attribute analysis integrating seismic data with well data facilitates an understanding of the detailed reservoir distribution. These analyses enable the basement shale to be imaged, and enables identification to a certain degree of thin shale within the reservoir. Top and bottom depths of the reservoir are estimated in the range of 2.0 meters near the existing wells even in such a complex channel sands environment characterized by abrupt lateral sedimentary facies changes. In March 2006, monitoring 3D seismic data was acquired to delineate steam-affected areas. The 2002 baseline data is used as a reference data and the 2006 monitoring data is calibrated to the 2002 seismic data. Apparent differences in the two 3D seismic data sets with the exception of production related response changes are removed during the calibration process. P-wave and S-wave velocities of oil sands core samples are also measured with various pressures and temperatures, and the laboratory measurement results are then combined to construct a rock physics model used to predict velocity changes induced by steam

  9. Identification of sources of tar balls deposited along the Goa coast, India, using fingerprinting techniques.

    PubMed

    Suneel, V; Vethamony, P; Zakaria, M P; Naik, B G; Prasad, K V S R

    2013-05-15

    Deposition of tar balls along the coast of Goa, India is a common phenomenon during the southwest monsoon. Representative tar ball samples collected from various beaches of Goa and one Bombay High (BH) crude oil sample were subjected to fingerprint analysis based on diagnostic ratios of n-alkane, biomarkers of pentacyclic tri-terpanes and compound specific stable carbon isotope (δ¹³C) analysis to confirm the source. The results were compared with the published data of Middle East Crude Oil (MECO) and South East Asian Crude Oil (SEACO). The results revealed that the tar balls were from tanker-wash derived spills. The study also confirmed that the source is not the BH, but SEACO. The present study suggests that the biomarkers of alkanes and hopanes coupled with stable carbon isotope analysis act as a powerful tool for tracing the source of tar balls, particularly when the source specific biomarkers fail to distinguish the source. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. Cell abundance and microbial community composition along a complete oil sand mining and reclamation process

    NASA Astrophysics Data System (ADS)

    Lappé, M.; Schneider, B.; Kallmeyer, J.

    2012-12-01

    Hydrocarbons constitute an important energy source for microbes but can also be of environmental concern. Microbial activity causes hydrocarbon degradation and thereby loss of economical value, but also helps to remove hydrocarbons from the environment. The present study characterizes the abundance of microbes along the oil sand mining process in Alberta, Canada, as a first approach to assess the impact of mining and oil extraction on the microbial population. After mining the oil is extracted from the sediment by a hot-water extraction (50-60°C), resulting in three major fractions: crude oil, tailings sand and fine tailings. The tailings sand is used as substratum for newly developing soils on the reclamation areas. The very liquid fine tailings still have a TOC content of about 4.3% and are pumped into tailings ponds, where they need up to three decades to settle and solidify. After deposition, these mature fine tailings (MFTs) are enriched in organics (TOC content between 9.6 and 16.8%) and dredged out of the ponds and put on dumps for several years for dewatering. Finally they are brought out onto the reclamation sites and deposited below the sand layer. Cells were extracted from oily sediments according to the protocol of Lappé and Kallmeyer (2011), stained with SYBR Green I and counted by fluorescence microscopy. Cell abundance in the unprocessed oil sand is around 1.6 x 107 cells cm-3. After processing the fresh fine tailings still contain around 1.6 x 107 cells cm-3. Cell counts in the processed MFTs are 5.8 x 107 cells cm-3, whereas in the sand used as substratum for newly developing soils, they are twice as high (1.4 x 108). In root-bearing horizons, cell counts reach 1.1 x 109 cell cm-3. Cell numbers calculated from cultivation experiments are in the same range. Higher cell counts in the tailings sand are probably due to a higher nitrogen supply through the addition of a 35 cm top layer of a peat-mineral mix. In the sand nitrate concentrations are high

  11. Mycorrhizal inoculum potentials of pure reclamation materials and revegetated tailing sands from the Canadian oil sand industry.

    PubMed

    Bois, G; Piché, Y; Fung, M Y P; Khasa, D P

    2005-05-01

    Recent improvements in the management of oil sand tailings used by the Canadian oil sand industry have resulted in the production of composite tailing sands (CT): a new challenging material for reclamation work. Jack pine (Pinus banksiana Lamb.), hybrid poplar (Populus deltoides Bartr. ex Marsh. xPopulus nigra L.) and red clover (Trifolium pratense L.) plants were used in an 8-week greenhouse bioassay to evaluate the mycorrhizal inoculum potential of CT. This inoculum potential was compared with that of three other reclamation materials [common tailing sands (TS), deep overburden (OB) and muskeg peat (MK)], and with three sites reclaimed in 1982 (R82), 1988 (R88) and 1999 (R99). CT was devoid of active mycorrhizal propagules while all other materials showed some level of inoculum potential. Arbuscular mycorrhizal fungi were observed on roots of clover or poplar grown in TS, OB, and all substrates containing peat (MK, R82, R88 and R99). Pine roots were also colonized by vesicle-forming hyphae of an unidentified fine endophyte and by dark septate fungi. Ectomycorrhizas (ECM) were observed on pine and poplar grown in OB, MK, and in soils from the two older reclaimed sites (R82 and R88). Using morpho- and molecular typing, six ECM fungi were identified to the genus or species level: Laccaria sp., Thelephora americana, Wilcoxina sp. (E-strain), Tuber sp. (I-type), a Sebacinoid, and a Pezizales species. Laccaria sp. and Wilcoxina sp. were the most frequently observed ECM species.

  12. Plant growth and arbuscular mycorrhizae development in oil sands processing by-products.

    PubMed

    Boldt-Burisch, Katja; Naeth, M Anne; Schneider, Uwe; Schneider, Beate; Hüttl, Reinhard F

    2018-04-15

    Soil pollutants such as hydrocarbons can induce toxic effects in plants and associated arbuscular mycorrhizal fungi (AMF). This study was conducted to evaluate if the legume Lotus corniculatus and the grass Elymus trachycaulus and arbuscular mycorrhizal fungi could grow in two oil sands processing by-products after bitumen extraction from the oil sands in northern Alberta, Canada. Substrate treatments were coarse tailings sand (CTS), a mix of dry mature fine tailings (MFT) with CTS (1:1) and Pleistocene sandy soil (hydrocarbon free); microbial treatments were without AMF, with AMF and AMF plus soil bacteria isolated from oil sands reclamation sites. Plant biomass, root morphology, leaf water content, shoot tissue phosphorus content and mycorrhizal colonization were evaluated. Both plant species had reduced growth in CTS and tailings mix relative to sandy soil. AMF frequency and intensity in roots of E. trachycaulus was not influenced by soil hydrocarbons; however, it decreased significantly over time in roots of L. corniculatus without bacteria in CTS. Mycorrhizal inoculation alone did not significantly improve plant growth in CTS and tailings mix; however, inoculation with mycorrhizae plus bacteria led to a significantly positive response of both plant species in CTS. Thus, combined inoculation with selected mycorrhizae and bacteria led to synergistic effects. Such combinations may be used in future to improve plant growth in reclamation of CTS and tailings mix. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Application of forward osmosis membrane technology for oil sands process-affected water desalination.

    PubMed

    Jiang, Yaxin; Liang, Jiaming; Liu, Yang

    2016-01-01

    The extraction process used to obtain bitumen from the oil sands produces large volumes of oil sands process-affected water (OSPW). As a newly emerging desalination technology, forward osmosis (FO) has shown great promise in saving electrical power requirements, increasing water recovery, and minimizing brine discharge. With the support of this funding, a FO system was constructed using a cellulose triacetate FO membrane to test the feasibility of OSPW desalination and contaminant removal. The FO systems were optimized using different types and concentrations of draw solution. The FO system using 4 M NH4HCO3 as a draw solution achieved 85% water recovery from OSPW, and 80 to 100% contaminant rejection for most metals and ions. A water backwash cleaning method was applied to clean the fouled membrane, and the cleaned membrane achieved 77% water recovery, a performance comparable to that of new FO membranes. This suggests that the membrane fouling was reversible. The FO system developed in this project provides a novel and energy efficient strategy to remediate the tailings waters generated by oil sands bitumen extraction and processing.

  14. Acid Tar Lagoons: Management and Recovery

    NASA Astrophysics Data System (ADS)

    Bohers, Anna; Hroncová, Emília; Ladomerský, Juraj

    2017-04-01

    This contribution presents the issue with possibility of definitive removal of dangerous environmental burden in Slovakia - serious historical problem of two acid tar lagoons. In relation to their removal, no technology has been found so far - technologically and economically suitable, what caused problems with its management. Locality Predajná is well known in Slovakia by its character of contrasts: it is situated in the picturesque landscape of National Park buffer zone of Nízke Tatry, on the other site it is contaminated by 229 211m3 of acid tar with its characteristics of toxicity, carcinogenicity, teratogenicity, mutagenicity and toxicity especially for animals and plants. Acid tar in two landfills with depth of 1m in case of the first lagoon and 9,5m in case of the second lagoon is a waste product derived from operation of Petrochema Dubová - refinery and petrochemical plant whose activity was to process the crude oil through processes of sulfonation and adsorption technology for producing lubricating and special oils, synthetic detergents and special white oils for cosmetic and medical purposes. A part of acid tar was incinerated in two incineration plats. Concentration of SO2 in combustion gases was too high and it was not possible to decrease it under the value of 2000 mg.mn-3 [LADOMERSKÝ, J. - SAMEŠOVÁ, D.: Reduction in sulfur dioxide emissions waste gases of incineration plant. Acta facultatis ecologiae. 1999, p. 217-223]. That is why it was necessary to put them out of operation. Later, because of public opposition it was not possible to build a new incineration plat corresponding to the state of the art. Even though actual Slovak and European legislative for protection of environment against such impacts, neither of tried methods - bio or non-biologic treatment methods - was proved as suitable for processing or for recovery in the reason of different factors admission: i.e. strong aggressivity, difficulty with handling because of its sludgy and

  15. Characterization of alkanes, hopanes, and polycyclic aromatic hydrocarbons (PAHs) in tar-balls collected from the East Coast of Peninsular Malaysia.

    PubMed

    Chandru, Kuhan; Zakaria, Mohamad Pauzi; Anita, Sofia; Shahbazi, Azadeh; Sakari, Mahyar; Bahry, Pourya Shahpoury; Mohamed, Che Abd Rahim

    2008-05-01

    The East Coast of Peninsular Malaysia faces the South China Sea and is vulnerable to oil pollution because of intense petroleum production activities in the area. The South China Sea is also a favored route for supertankers carrying crude oil to the Far East. Consequently, oil spills can occur, causing pollution and contamination in the surrounding areas. Residual oil spills stranded on coastal beaches usually end up as tar-balls. Elucidating the sources of tar-balls using a molecular marker approach is essential in assessing environmental impacts and perhaps settling legal liabilities for affected parties. This study utilizes a multimodal molecular marker approach through the use of diagnostic ratios of alkanes, hopanes, and polycyclic aromatic hydrocarbons (PAHs) to determine the source, distribution and weathering of tar-balls. Hopane ratios (e.g., C29/C30, and summation C31-C35/C30 ratios) were used to identify the sources of tar-balls. The weathering effects were distinguished by using alkanes, namely the unresolved complex mixture (UCM) and low molecular weight/high molecular weight (L/H) ratios. Similarly, PAHs were also used for the determination of weathering processes undergone by the tar-balls. This multimodal molecular marker gave a very strong indication of the sources of tar-balls in this study. For example, 16 out of 17 samples originated from South East Asian Crude Oil (SEACO) with one sample from Merang, Terengganu originating from North Sea Oil (Troll). The TRME-2 sample may have come from a supertanker's ballast water discharge. The second possibility is that the tar-ball may have been transported via oceanographic currents. All 'weathered' sample characterizations were based on the presence of UCM and other ratios. The multimodal molecular marker approach applied in this study has enabled us to partially understand the transport behavior of tar-balls in the marine environment and has revealed insights into the weathering process of tar-balls.

  16. INCREASING HEAVY OIL RESERVES IN THE WILMINGTON OIL FIELD THROUGH ADVANCED RESERVOIR CHARACTERIZATION AND THERMAL PRODUCTION TECHNOLOGIES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Unknown

    2001-08-08

    The objective of this project is to increase the recoverable heavy oil reserves within sections of the Wilmington Oil Field, near Long Beach, California, through the testing and application of advanced reservoir characterization and thermal production technologies. The hope is that successful application of these technologies will result in their implementation throughout the Wilmington Field and, through technology transfer, will be extended to increase the recoverable oil reserves in other slope and basin clastic (SBC) reservoirs. The existing steamflood in the Tar zone of Fault Block II-A (Tar II-A) has been relatively inefficient because of several producibility problems which aremore » common in SBC reservoirs: inadequate characterization of the heterogeneous turbidite sands, high permeability thief zones, low gravity oil and non-uniform distribution of the remaining oil. This has resulted in poor sweep efficiency, high steam-oil ratios, and early steam breakthrough. Operational problems related to steam breakthrough, high reservoir pressure, and unconsolidated sands have caused premature well and downhole equipment failures. In aggregate, these reservoir and operational constraints have resulted in increased operating costs and decreased recoverable reserves. A suite of advanced reservoir characterization and thermal production technologies are being applied during the project to improve oil recovery and reduce operating costs, including: (1) Development of three-dimensional (3-D) deterministic and stochastic reservoir simulation models--thermal or otherwise--to aid in reservoir management of the steamflood and post-steamflood phases and subsequent development work. (2) Development of computerized 3-D visualizations of the geologic and reservoir simulation models to aid reservoir surveillance and operations. (3) Perform detailed studies of the geochemical interactions between the steam and the formation rock and fluids. (4) Testing and proposed application

  17. Assessing the effects of oil sands related ozone precursor emissions on ambient ozone levels in the Alberta oil sands region, Canada

    NASA Astrophysics Data System (ADS)

    Cho, Sunny; Vijayaraghavan, Krish; Spink, David; Cosic, Biljana; Davies, Mervyn; Jung, Jaegun

    2017-11-01

    A study was undertaken to determine whether, and the extent to which, increased ground-level ozone (O3) precursor emissions from oil sands development have impacted ambient air quality in the north-eastern Alberta, Canada, over the period 1998 to 2012. Temporal trends in emissions of O3 precursors (NOx and VOC) and ambient air concentrations of O3 precursors, and O3 were examined using the Theil-Sen statistical analysis method. Statistically significant correlations between NOx emissions and ambient NOx concentrations were found mainly near surface (open-pit) mining areas where mine fleets are a large source of NOx emissions. No statistically significant trends in the 4th highest daily maximum 8-hr average O3 at any of the continuous and passive ambient air monitoring stations were found. A significant long-term decrease in monthly averaged O3 is observed at some ambient monitoring sites in summer. A visual examination of long-term variations in annual NOx and VOC emissions and annual 4th highest daily maximum 8-hr O3 concentrations does not reveal any indication of a correlation between O3 concentrations and O3 precursor emissions or ambient levels in the study area. Despite a significant increase in oil sands NOx emissions (8%/yr), there is no statistically significant increase in long-term O3 concentrations at any of monitoring stations considered. This suggests that there is surplus NOx available in the environment which results in a titration of ambient O3 in the areas that have ambient monitoring. The limited ambient O3 monitoring data distant from NOx emission sources makes it impossible to assess the impact of these increased O3 precursor levels on O3 levels on a regional scale. As a precautionary measure, the increasing oil sands development O3 precursor emissions would require that priority be given to the management of these emissions to prevent possible future O3 ambient air quality issues.

  18. Characterization and determination of naphthenic acids species in oil sands process-affected water and groundwater from oil sands development area of Alberta, Canada.

    PubMed

    Huang, Rongfu; Chen, Yuan; Meshref, Mohamed N A; Chelme-Ayala, Pamela; Dong, Shimiao; Ibrahim, Mohamed D; Wang, Chengjin; Klamerth, Nikolaus; Hughes, Sarah A; Headley, John V; Peru, Kerry M; Brown, Christine; Mahaffey, Ashley; Gamal El-Din, Mohamed

    2018-01-01

    This work reports the monitoring and assessment of naphthenic acids (NAs) in oil sands process-affected water (OSPW), Pleistocene channel aquifer groundwater (PLCA), and oil sands basal aquifer groundwater (OSBA) from an active oil sands development in Alberta, Canada, using ultra performance liquid chromatography time-of-flight mass spectrometry (UPLC-TOF-MS) analysis with internal standard (ISTD) and external standard (ESTD) calibration methods and Fourier transform ion cyclotron resonance mass spectrometry (FTICR-MS) for compositional analysis. PLCA was collected at 45-51 m depth and OSBA was collected at 67-144 m depth. Results of O x -NA concentrations follow an order as OSPW > OSBA > PLCA, indicating that occurrences of NAs in OSBA were likely related to natural bitumen deposits instead of OSPW. Liquid-liquid extraction (LLE) was applied to avoid the matrix effect for the ESTD method. Reduced LLE efficiency accounted for the divergence of the ISTD and ESTD calibrated results for oxidized NAs. Principle component analysis results of O 2 and O 4 species could be employed for differentiation of water types, while classical NAs with C13-15 and Z (-4)-(-6) and aromatic O 2 -NAs with C16-18 and Z (-14)-(-16) could be measured as marker compounds to characterize water sources and potential temporal variations of samples, respectively. FTICR-MS results revealed that compositions of NA species varied greatly among OSPW, PLCA, and OSBA, because of NA transfer and transformation processes. This work contributed to the understanding of the concentration and composition of NAs in various types of water, and provided a useful combination of analytical and statistical tools for monitoring studies, in support of future safe discharge of treated OSPW. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Properties of palm oil fuel ash cement sand brick containing pulverized cockle shell as partial sand replacement

    NASA Astrophysics Data System (ADS)

    Mat Aris, S.; Muthusamy, K.; Uzer, A.; Ahmad, S. Wan

    2018-04-01

    Environmental pollution caused by the disposal of solid wastes generated from both palm oil industry and cockle shell trade has motivated researches to explore the potential of these wastes. Integrating these wastes in production of construction material is one of the ways to reduce amount of waste thrown at dumping area. Thus, the present investigation investigates the performance of palm oil fuel ash (POFA) cement sand brick containing pulverized cockle shell as partial fine aggregate replacement. All mixes used contain 20% of POFA as partial cement replacement. Total of six mixes were prepared by adding a range of pulverized cockle shell that is 0%, 10%, 20%, 30%, 40% and 50% as partial sand replacement. The mixes were prepared in form of brick. All the water cured samples were tested for compressive strength and flexural strength until 28 days. Findings show that brick produced using 20% pulverized cockle shell exhibit the highest compressive strength and flexural strength also the lowest water absorption value.

  20. Oil and gas fields in East Coast and Arctic basins of Canada

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meneley, R.A.

    1984-09-01

    The East Coast and Arctic basins of Canada have been under serious hydrocarbon exploration for over 20 years. Although the density of drilling is low, extensive seismic control has outlined a high proportion of the structures in these basins and the stratigraphic framework of the basins is known. From west to east, the basins include the Beaufort basin, the Sverdrup basin of the high Arctic and the adjacent Parry Island foldbelt, the rift basins of Baffin Bay, and the continental-margin basins offshore Labrador, the Grand Banks and the Scotian Shelf. Each of these basins contains oil and gas fields thatmore » typify, to some degree, the pools that may be anticipated in undrilled structures. Surprises, both good and bad, await the explorer. The physical environment of these Canadian basins ranges from severe to almost impossible. As exploration has proceeded, great strides have been made in coping with the physical environment; however, the costs are becoming increasingly onerous, and the appreciation is growing regarding the cost, risk and time that will be involved in developing production from those resources. Even from a national sense of supply security, the vast reserves of oil in the tar sands and in-situ recovery deposits of heavy oil in western Canada will provide a competitive ceiling that will limit future development of frontier basins to those where production costs are not significantly higher than those of the tar sands.« less

  1. The effect of oil sands tailings pond sediments on embryo-larval walleye (Sander vitreus).

    PubMed

    Raine, J C; Turcotte, D; Tumber, V; Peru, K M; Wang, Z; Yang, C; Headley, J V; Parrott, J L

    2017-10-01

    Walleye (Sander vitreus) are a commercially important North American fish species that inhabit the Athabasca River. This river flows through the Athabasca oil sands where natural sources of bitumen erode from the McMurray formation. Little information is available on responses of walleye embryos to oil sands tailings pond sediments in a laboratory setting. The current study describes the design and implementation of a daily-renewal bioassay to assess the potential effects of tailings pond sediments from the Athabasca oil sands area on walleye development. Developing walleye embryos were exposed to increasing concentrations of two tailings pond sediments (collected in the Athabasca oil sands area) until the completion of yolk absorption in control fish. Sediments from the tailings pond represent a mixture of polycyclic aromatic hydrocarbons (PAHs) and alkylated PAHs. During the 31 day exposure, the walleye were examined for mortalities, weight, length and developmental abnormalities to provide an initial evaluation of the effects of the oil sands tailings pond sediments. Walleye embryo survival differed between the tailings pond sediments, and survival decreased with increasing sediment concentration. Alkylated PAH content differed between the two tailings pond sediments and lower embryo survival corresponded to higher total and alkylated PAH content. Tailings pond sediment-exposed walleye exhibited a delay in development, as well as increased percentages of larvae with heart and yolk sac edema, and cranial and spinal malformations. These abnormalities in development are often associated with PAH and alkylated PAH exposure. This study provides an exposure design that can be used to assess sediment toxicity to early developmental stages of a fish species not commonly tested in the lab, and lays the groundwork for future studies with this and other difficult-to-culture species. These results offer information on the potential effects of tailings pond sediments

  2. Airborne Lidar Measurements of Pollution above the Oil Sands Region in Northern Alberta

    NASA Astrophysics Data System (ADS)

    Aggarwal, Monika; Whiteway, James; Seabrook, Jeffrey; Gray, Lawrence; Strawbridge, Kevin B.

    2016-06-01

    Lidar measurements of ozone and aerosol were conducted from a Twin Otter aircraft above the oil sands region of northern Alberta. For the majority of the flights, significant amounts of aerosol were observed within the boundary layer, up to an altitude of 2.0 km above sea level (ASL), while the ozone concentration remained at background levels (30-45 ppb) downwind of the industry. On August 24th the lidar measured a separated layer of aerosol above the boundary layer, at a height of 2.0 km ASL, in which the ozone mixing ratio increased to 70 ppb. Backward trajectory calculations revealed that the air containing this separated aerosol layer had passed over an area of forest fires. Directly below the layer of forest fire smoke, pollution from the oil sands industry was observed. Measurements of the backscatter linear depolarization ratio were obtained with a ground based lidar operated by Environment Canada within the oil sands region. The depolarization measurements aided in discriminating between the separate sources of pollution from industry and forest fires. The depolarization ratio was 5-6% in forest fire smoke and 7-10% in the industrial pollution.

  3. A case study on effects of oil spills and tar-ball pollution on beaches of Goa (India).

    PubMed

    Rekadwad, Bhagwan N; Khobragade, Chandrahasya N

    2015-11-15

    This paper reports the impact of oil spills and tar-ball pollution on the coastal ecosystem of Goa. The factors responsible for degrading the marine ecosystem of the Goan coastline are analyzed. Uncontrolled activities were found to degrade the marine and coastal biodiversity, in turn polluting all beaches. This had a direct impact on the Goan economy through a decline in tourism. The government must adopt the necessary control measures to restore Goan beaches and the surrounding coastal areas. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Characterization of Volatile Organic Compound (VOC) Emissions at Sites of Oil Sands Extraction and Upgrading in northern Alberta

    NASA Astrophysics Data System (ADS)

    Marrero, J.; Simpson, I. J.; Meinardi, S.; Blake, D. R.

    2011-12-01

    The crude oil reserves in Canada's oil sands are second only to Saudi Arabia, holding roughly 173 billion barrels of oil in the form of bitumen, an unconventional crude oil which does not flow and cannot be pumped without heating or dilution. Oil sands deposits are ultimately used to make the same petroleum products as conventional forms of crude oil, though more processing is required. Hydrocarbons are the basis of oil, coal and natural gas and are an important class of gases emitted into the atmosphere during oil production, particularly because of their effects on air quality and human health. However, they have only recently begun to be independently assessed in the oil sands regions. As part of the 2008 ARCTAS airborne mission, whole air samples were collected in the boundary layer above the surface mining operations of northern Alberta. Gas chromatography analysis revealed enhanced concentrations of 53 VOCs (C2 to C10) over the mining region. When compared to local background levels, the measured concentrations were enhanced up to 1.1-400 times for these compounds. To more fully characterize emissions, ground-based studies were conducted in summer 2010 and winter 2011 in the oil sands mining and upgrading areas. The data from the 200 ground-based samples revealed enhancements in the concentration of 65 VOCs. These compounds were elevated up to 1.1-3000 times above background concentrations and include C2-C8 alkanes, C1-C5 alkyl nitrates, C2-C4 alkenes and potentially toxic aromatic compounds such as benzene, toluene, and xylenes.

  5. Oil sands development and its impact on atmospheric wet deposition of air pollutants to the Athabasca Oil Sands Region, Alberta, Canada.

    PubMed

    Lynam, Mary M; Dvonch, J Timothy; Barres, James A; Morishita, Masako; Legge, Allan; Percy, Kevin

    2015-11-01

    Characterization of air pollutant deposition resulting from Athabasca oil sands development is necessary to assess risk to humans and the environment. To investigate this we collected event-based wet deposition during a pilot study in 2010-2012 at the AMS 6 site 30 km from the nearest upgrading facility in Fort McMurray, AB, Canada. Sulfate, nitrate and ammonium deposition was (kg/ha) 1.96, 1.60 and 1.03, respectively. Trace element pollutant deposition ranged from 2 × 10(-5) - 0.79 and exhibited the trend Hg < Se < As < Cd < Pb < Cu < Zn < S. Crustal element deposition ranged from 1.4 × 10(-4) - 0.46 and had the trend: La < Ce < Sr < Mn < Al < Fe < Mg. S, Se and Hg demonstrated highest median enrichment factors (130-2020) suggesting emissions from oil sands development, urban activities and forest fires were deposited. High deposition of the elements Sr, Mn, Fe and Mg which are tracers for soil and crustal dust implies land-clearing, mining and hauling emissions greatly impacted surrounding human settlements and ecosystems. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Heavy oil reservoirs recoverable by thermal technology

    NASA Astrophysics Data System (ADS)

    Kujawa, P.

    1981-02-01

    Data are presented on reservoirs that contain heavy oil in the 8 to 25(0) API gravity range, contain at least ten million barrels of oil currently in place, and are noncarbonate in lithology. The reservoirs within these constraints were analyzed in light of applicable recovery technology, either steam drive or in situ combustion, and then ranked hierarchically as candidate reservoirs. An extensive basis for heavy oil development is provided, however, it is recommended that data on carbonate reservoirs, and tar sands be compiled. It was discovered that operators, and industrial and government analysts will lump heavy oil reservoirs as poor producers, however, it was found that upon detailed analysis, a large number, so categorized, were producing very well. A big problem in producing heavy oil is that of regulation; specifically, it was found that the regulatory constraints are so fluid and changing that one cannot settle on a favorable recovery and production plan with enough confidence in the regulatory requirements to commit capital to the project.

  7. Bioprocessing-Based Approach for Bitumen/Water/Fines Separation and Hydrocarbon Recovery from Oil Sands Tailings

    DOE PAGES

    Brigmon, Robin L.; Berry, Christopher J.; Wade, Arielle; ...

    2016-05-04

    Oil sands are a major source of oil, but their industrial processing generates tailings ponds that are an environmental hazard. The main concerns are mature fine tailings (MFT) composed of residual hydrocarbons, water, and fine clay. Tailings ponds include toxic contaminants such as heavy metals, and toxic organics including naphthenics. Naphthenic acids and polyaromatic hydrocarbons (PAHs) degrade very slowly and pose a long-term threat to surface and groundwater, as they can be transported in the MFT. Research into improved technologies that would enable densification and settling of the suspended particles is ongoing. In batch tests, BioTiger™, a microbial consortium thatmore » can metabolize PAHs, demonstrated improved oil sands tailings settling from a Canadian tailings pond. Results also showed, depending on the timing of the measurements, lower suspended solids and turbidity. Elevated total organic carbon was observed in the first 48 hours in the BioTiger™-treated columns and then decreased in overlying water. Oil sands tailings mixed with BioTiger™ showed a two-fold reduction in suspended solids within 24 hours as compared to abiotic controls. The tailings treated with BioTiger™ increased in microbial densities three orders of magnitude from 8.5 × 105 CFU/mL to 1.2 × 108 CFU/mL without any other carbon or energy source added, indicating metabolism of hydrocarbons and other available nutrients. Results demonstrated that bioaugmentation of BioTiger™ increased separation of organic carbon from particles in oil sands and enhanced settling with tailings with improved water quality.« less

  8. Applying the Analytic Hierarchy Process to Oil Sands Environmental Compliance Risk Management

    NASA Astrophysics Data System (ADS)

    Roux, Izak Johannes, III

    Oil companies in Alberta, Canada, invested $32 billion on new oil sands projects in 2013. Despite the size of this investment, there is a demonstrable deficiency in the uniformity and understanding of environmental legislation requirements that manifest into increased project compliance risks. This descriptive study developed 2 prioritized lists of environmental regulatory compliance risks and mitigation strategies and used multi-criteria decision theory for its theoretical framework. Information from compiled lists of environmental compliance risks and mitigation strategies was used to generate a specialized pairwise survey, which was piloted by 5 subject matter experts (SMEs). The survey was validated by a sample of 16 SMEs, after which the Analytic Hierarchy Process (AHP) was used to rank a total of 33 compliance risks and 12 mitigation strategy criteria. A key finding was that the AHP is a suitable tool for ranking of compliance risks and mitigation strategies. Several working hypotheses were also tested regarding how SMEs prioritized 1 compliance risk or mitigation strategy compared to another. The AHP showed that regulatory compliance, company reputation, environmental compliance, and economics ranked the highest and that a multi criteria mitigation strategy for environmental compliance ranked the highest. The study results will inform Alberta oil sands industry leaders about the ranking and utility of specific compliance risks and mitigations strategies, enabling them to focus on actions that will generate legislative and public trust. Oil sands leaders implementing a risk management program using the risks and mitigation strategies identified in this study will contribute to environmental conservation, economic growth, and positive social change.

  9. Oil-source correlations between the Mississippian Heath Shales and the reservoired oils in the Pennsylvanian Tyler Sands, Montana

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cole, G.A.; Drozd, R.J.; Daniel, J.A.

    The Mississippi Heath Formation exposed in Fergus County, central Montana, is comprised predominantly of nearshore, marine, black, calcareous shales and carbonates with minor anhydrite and coal beds. The black shales and limestones have been considered as sources for shale oil via Fischer Assay and pyrolysis analysis. These shales are potential source units for the oils reservoired in the overlying Pennsylvanian Tyler Formation sands located 50 mi (80 km) to the east of the Fergus County Heath sediment studied. Heath Formation rocks from core holes were selectively sampled in 2-ft increments and analyzed for their source rock characteristics. Analyses include percentmore » total organic carbon (%TOC), Rock-Eval pyrolysis, pyrolysis-gas chromatography, and characterization of the total soluble extracts using carbon isotopes and gas chromatography-mass Spectrometry. Results indicated that the Heath was an excellent potential source unit that contained oil-prone, organic-rich (maximum of 17.6% TOC), calcareous, black shale intervals. The Heath and Tyler formations also contained intervals dominated by gas-prone, organic-rich shales of terrestrial origin. Three oils from the Tyler Formation sands in Musselshell and Rosebud counties were characterized by similar methods as the extracts. The oils were normally mature, moderate API gravity, moderate sulfur, low asphaltene crudes. Oil to source correlations between the Heath shale extracts and the oils indicated the Heath was an excellent candidate source rock for the Tyler reservoired oils. Conclusions were based on excellent matches between the carbon isotopes of the oils and the kerogen-kerogen pyrolyzates, and from the biomarkers.« less

  10. Investigation the Effect of the Dispersant Corexit 9500A on the Movement of an Oil-In-Water Emulsion Through an Alabama Beach Sand

    NASA Astrophysics Data System (ADS)

    Steffy, D. A.; Nichols, A.

    2016-02-01

    A majority of Alabama's 60 miles of beaches were exposed to the crude oil released from the massive 2010 Deepwater Horizon Oil Spill. To help remediate the spill BP sprayed the dispersant, COREXIT 9500A, over the floating oil in the Gulf and at the subsurface damaged Macondo wellhead. This dispersant could have inadvertently promoted an oil-in-water emulsion to infiltrate deeper into the exposed beaches which are composed of Holocene age, fine-to-medium quartz sand. A series of short-column tests of packed sand in glass columns simulated the arrival of an oil-in-water emulsion at a beach. An emulsion formed by weathered oil penetrated deeper into the sand as compared to oil that has experience little weathering. The penetrations of these emulsions were enhanced when a 2% COREXIT 9500A in saltwater solution was allowed to flush through the sand column. Unfortunately, by adding a dispersant it probably promoted some oil-in-water components to be distributed deeper into coastal sand of Alabama.

  11. Co-occurrence of methanogenesis and N2 fixation in oil sands tailings.

    PubMed

    Collins, C E Victoria; Foght, Julia M; Siddique, Tariq

    2016-09-15

    Oil sands tailings ponds in northern Alberta, Canada have been producing biogenic gases via microbial metabolism of hydrocarbons for decades. Persistent methanogenic activity in tailings ponds without any known replenishment of nutrients such as fixed nitrogen (N) persuaded us to investigate whether N2 fixation or polyacrylamide (PAM; used as a tailings flocculant) could serve as N sources. Cultures comprising mature fine tailings (MFT) plus methanogenic medium supplemented with or deficient in fixed N were incubated under an N2 headspace. Some cultures were further amended with citrate, which is used in oil sands processing, as a relevant carbon source, and/or with PAM. After an initial delay, N-deficient cultures with or without PAM produced methane (CH4) at the same rate as N-containing cultures, indicating a mechanism of overcoming apparent N-deficiency. Acetylene reduction and (15)N2 incorporation in all N-deficient cultures (with or without PAM) suggested active N2 fixation concurrently with methanogenesis but inability to use PAM as a N source. 16S rRNA gene pyrosequencing revealed little difference between archaeal populations regardless of N content. However, bacterial sequences in N-deficient cultures showed enrichment of Hyphomicrobiaceae and Clostridium members that might contain N2-fixing species. The results are important in understanding long-term production of biogenic greenhouse gases in oil sands tailings. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Methanogenic biodegradation of paraffinic solvent hydrocarbons in two different oil sands tailings.

    PubMed

    Mohamad Shahimin, Mohd Faidz; Siddique, Tariq

    2017-04-01

    Microbial communities drive many biogeochemical processes in oil sands tailings and cause greenhouse gas emissions from tailings ponds. Paraffinic solvent (primarily C 5 -C 6 ; n- and iso-alkanes) is used by some oil sands companies to aid bitumen extraction from oil sands ores. Residues of unrecovered solvent escape to tailings ponds during tailings deposition and sustain microbial metabolism. To investigate biodegradation of hydrocarbons in paraffinic solvent, mature fine tailings (MFT) collected from Albian and CNRL ponds were amended with paraffinic solvent at ~0.1wt% (final concentration: ~1000mgL -1 ) and incubated under methanogenic conditions for ~1600d. Albian and CNRL MFTs exhibited ~400 and ~800d lag phases, respectively after which n-alkanes (n-pentane and n-hexane) in the solvent were preferentially metabolized to methane over iso-alkanes in both MFTs. Among iso-alkanes, only 2-methylpentane was completely biodegraded whereas 2-methylbutane and 3-methylpentane were partially biodegraded probably through cometabolism. 16S rRNA gene pyrosequencing showed dominance of Anaerolineaceae and Methanosaetaceae in Albian MFT and Peptococcaceae and co-domination of "Candidatus Methanoregula" and Methanosaetaceae in CNRL MFT bacterial and archaeal communities, respectively, during active biodegradation of paraffinic solvent. The results are important for developing future strategies for tailings reclamation and management of greenhouse gas emissions. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Microbially-accelerated consolidation of oil sands tailings. Pathway I: changes in porewater chemistry

    PubMed Central

    Siddique, Tariq; Kuznetsov, Petr; Kuznetsova, Alsu; Arkell, Nicholas; Young, Rozlyn; Li, Carmen; Guigard, Selma; Underwood, Eleisha; Foght, Julia M.

    2014-01-01

    Dispersed clay particles in mine tailings and soft sediments remain suspended for decades, hindering consolidation and challenging effective management of these aqueous slurries. Current geotechnical engineering models of self-weight consolidation of tailings do not consider microbial contribution to sediment behavior, however, here we show that microorganisms indigenous to oil sands tailings change the porewater chemistry and accelerate consolidation of oil sands tailings. A companion paper describes the role of microbes in alteration of clay chemistry in tailings. Microbial metabolism in mature fine tailings (MFT) amended with an organic substrate (hydrolyzed canola meal) produced methane (CH4) and carbon dioxide (CO2). Dissolution of biogenic CO2 lowered the pH of amended MFT to pH 6.4 vs. unamended MFT (pH 7.7). About 12% more porewater was recovered from amended than unamended MFT during 2 months of active microbial metabolism, concomitant with consolidation of tailings. The lower pH in amended MFT dissolved carbonate minerals, thereby releasing divalent cations including calcium (Ca2+) and magnesium (Mg2+) and increasing bicarbonate (HCO−3) in porewater. The higher concentrations increased the ionic strength of the porewater, in turn reducing the thickness of the diffuse double layer (DDL) of clay particles by reducing the surface charge potential (repulsive forces) of the clay particles. The combination of these processes accelerated consolidation of oil sands tailings. In addition, ebullition of biogenic gases created transient physical channels for release of porewater. In contrast, saturating the MFT with non-biogenic CO2 had little effect on consolidation. These results have significant implications for management and reclamation of oil sands tailings ponds and broad importance in anaerobic environments such as contaminated harbors and estuaries containing soft sediments rich in clays and organics. PMID:24711805

  14. Microbially-accelerated consolidation of oil sands tailings. Pathway I: changes in porewater chemistry.

    PubMed

    Siddique, Tariq; Kuznetsov, Petr; Kuznetsova, Alsu; Arkell, Nicholas; Young, Rozlyn; Li, Carmen; Guigard, Selma; Underwood, Eleisha; Foght, Julia M

    2014-01-01

    Dispersed clay particles in mine tailings and soft sediments remain suspended for decades, hindering consolidation and challenging effective management of these aqueous slurries. Current geotechnical engineering models of self-weight consolidation of tailings do not consider microbial contribution to sediment behavior, however, here we show that microorganisms indigenous to oil sands tailings change the porewater chemistry and accelerate consolidation of oil sands tailings. A companion paper describes the role of microbes in alteration of clay chemistry in tailings. Microbial metabolism in mature fine tailings (MFT) amended with an organic substrate (hydrolyzed canola meal) produced methane (CH4) and carbon dioxide (CO2). Dissolution of biogenic CO2 lowered the pH of amended MFT to pH 6.4 vs. unamended MFT (pH 7.7). About 12% more porewater was recovered from amended than unamended MFT during 2 months of active microbial metabolism, concomitant with consolidation of tailings. The lower pH in amended MFT dissolved carbonate minerals, thereby releasing divalent cations including calcium (Ca(2+)) and magnesium (Mg(2+)) and increasing bicarbonate (HCO(-) 3) in porewater. The higher concentrations increased the ionic strength of the porewater, in turn reducing the thickness of the diffuse double layer (DDL) of clay particles by reducing the surface charge potential (repulsive forces) of the clay particles. The combination of these processes accelerated consolidation of oil sands tailings. In addition, ebullition of biogenic gases created transient physical channels for release of porewater. In contrast, saturating the MFT with non-biogenic CO2 had little effect on consolidation. These results have significant implications for management and reclamation of oil sands tailings ponds and broad importance in anaerobic environments such as contaminated harbors and estuaries containing soft sediments rich in clays and organics.

  15. Impacts of Oil Shale Development on Education in the Uintah Basin. A Report on a Community Based Approach to Education Planning in Communities Facing Rapid Growth.

    ERIC Educational Resources Information Center

    Lindberg, Denise P.

    Three counties in eastern Utah's Uintah Basin face the likelihood of rapid growth because of planned oil shale and tar sands development in the area. This seven-part report describes a federally-funded, community-based project to plan for expected impacts of the energy developments on Uintah Basin education. After an introductory overview, the…

  16. Nearshore dynamics of artificial sand and oil agglomerates

    USGS Publications Warehouse

    Dalyander, P. Soupy; Plant, Nathaniel G.; Long, Joseph W.; McLaughlin, Molly R.

    2015-01-01

    Weathered oil can mix with sediment to form heavier-than-water sand and oil agglomerates (SOAs) that can cause beach re-oiling for years after a spill. Few studies have focused on the physical dynamics of SOAs. In this study, artificial SOAs (aSOAs) were created and deployed in the nearshore, and shear stress-based mobility formulations were assessed to predict SOA response. Prediction sensitivity to uncertainty in hydrodynamic conditions and shear stress parameterizations were explored. Critical stress estimates accounting for large particle exposure in a mixed bed gave the best predictions of mobility under shoaling and breaking waves. In the surf zone, the 10-cm aSOA was immobile and began to bury in the seafloor while smaller size classes dispersed alongshore. aSOAs up to 5 cm in diameter were frequently mobilized in the swash zone. The uncertainty in predicting aSOA dynamics reflects a broader uncertainty in applying mobility and transport formulations to cm-sized particles.

  17. Sulfur Biogeochemistry of an Oil Sands Composite Tailings Deposit

    PubMed Central

    Warren, Lesley A.; Kendra, Kathryn E.; Brady, Allyson L.; Slater, Greg F.

    2016-01-01

    Composite tailings (CT), an engineered, alkaline, saline mixture of oil sands tailings (FFT), processed sand and gypsum (CaSO4; 1 kg CaSO4 per m3 FFT) are used as a dry reclamation strategy in the Alberta Oil Sands Region (AOSR). It is estimated that 9.6 × 108 m3 of CT are either in, or awaiting emplacement in surface pits within the AOSR, highlighting their potential global importance in sulfur cycling. Here, in the first CT sulfur biogeochemistry investigation, integrated geochemical, pyrosequencing and lipid analyses identified high aqueous concentrations of ∑H2S (>300 μM) and highly altered sulfur compounds composition; low cell biomass (3.3 × 106– 6.0 × 106 cells g−1) and modest bacterial diversity (H' range between 1.4 and 1.9) across 5 depths spanning 34 m of an in situ CT deposit. Pyrosequence results identified a total of 29,719 bacterial 16S rRNA gene sequences, representing 131 OTUs spanning19 phyla including 7 candidate divisions, not reported in oil sands tailings pond studies to date. Legacy FFT common phyla, notably, gamma and beta Proteobacteria, Firmicutes, Actinobacteria, and Chloroflexi were represented. However, overall CT microbial diversity and PLFA values were low relative to other contexts. The identified known sulfate/sulfur reducing bacteria constituted at most 2% of the abundance; however, over 90% of the 131 OTUs identified are capable of sulfur metabolism. While PCR biases caution against overinterpretation of pyrosequence surveys, bacterial sequence results identified here, align with phospholipid fatty acid (PLFA) and geochemical results. The highest bacterial diversities were associated with the depth of highest porewater [∑H2S] (22–24 m) and joint porewater co-occurrence of Fe2+ and ∑H2S (6–8 m). Three distinct bacterial community structure depths corresponded to CT porewater regions of (1) shallow evident Fe(II) (<6 m), (2) co-occurring Fe(II) and ∑H2S (6–8 m) and (3) extensive ∑H2S (6–34 m) (Uni

  18. Saturation dependence of the quadrature conductivity of oil-bearing sands

    NASA Astrophysics Data System (ADS)

    Schmutz, M.; Blondel, A.; Revil, A.

    2012-02-01

    We have investigated the complex conductivity of oil-bearing sands with six distinct oil types including sunflower oil, silicone oil, gum rosin, paraffin, engine oil, and an industrial oil of complex composition. In all these experiments, the oil was the non-wetting phase. The in-phase (real) conductivity follows a power law relationship with the saturation (also known as the second Archie's law) but with a saturation exponent n raging from 1.1 to 3.1. In most experiments, the quadrature conductivity follows also a power law relationship with the water saturation but with a power law exponent p can be either positive or negative. For some samples, the quadrature conductivity first increases with saturation and then decreases indicating that two processes compete in controlling the quadrature conductivity. One is related to the insulating nature of the oil phase and a second could be associated with the surface area of the oil / water interface. The quadrature conductivity seems to be influenced not only by the value of the saturation exponent n (according to the Vinegar and Waxman model, p = n - 1), but also by the surface area between the oil phase and the water phase especially for very water-repellent oil having a fractal oil-water interface.

  19. Vanadium Geochemistry of Oil Sands Fluid Petroleum Coke.

    PubMed

    Nesbitt, Jake A; Lindsay, Matthew B J

    2017-03-07

    Vanadium has previously been linked to elevated toxicity of leachates derived from oil sands petroleum coke. However, geochemical controls on V mobility within coke deposits remain poorly constrained. Detailed examinations of porewater and solid-phase V geochemistry were therefore performed on oil sands fluid petroleum coke deposits in Alberta, Canada. Sample collection focused on both active and reclaimed deposits, which contained more than 3 × 10 7 m 3 of fluid petroleum coke. Dissolved V concentrations were highest (up to 3.0 mg L -1 ) immediately below the water table but decreased rapidly with increasing depth. This trend corresponded to a transition from mildly acidic (pH 6-7) and oxic conditions to mildly alkaline (pH 7-8.5) and anoxic conditions. Scanning electron microscopy (SEM), electron microprobe analysis (EMPA), and micro-X-ray fluorescence (μXRF) mapping revealed coke particles exhibited an internal structure characterized by successive concentric layers. The outer margins of these layers were characterized by elevated V, Fe, Si, and Al concentrations, indicating the presence of inorganic phases. Micro-X-ray absorption near-edge structure (μXANES) spectroscopy revealed that V speciation was dominated by V(IV) porphyrins except at outer margins of layers, where octahedrally coordinated V(III) was a major component. Minor to trace V(V) was also detected within fluid petroleum coke particles.

  20. A risk-based approach for identifying constituents of concern in oil sands process-affected water from the Athabasca Oil Sands region.

    PubMed

    McQueen, Andrew D; Kinley, Ciera M; Hendrikse, Maas; Gaspari, Daniel P; Calomeni, Alyssa J; Iwinski, Kyla J; Castle, James W; Haakensen, Monique C; Peru, Kerry M; Headley, John V; Rodgers, John H

    2017-04-01

    Mining leases in the Athabasca Oil Sands (AOS) region produce large volumes of oil sands process-affected water (OSPW) containing constituents that limit beneficial uses and discharge into receiving systems. The aim of this research is to identify constituents of concern (COCs) in OSPW sourced from an active settling basin with the goal of providing a sound rational for developing mitigation strategies for using constructed treatment wetlands for COCs contained in OSPW. COCs were identified through several lines of evidence: 1) chemical and physical characterization of OSPW and comparisons with numeric water quality guidelines and toxicity endpoints, 2) measuring toxicity of OSPW using a taxonomic range of sentinel organisms (i.e. fish, aquatic invertebrates, and a macrophyte), 3) conducting process-based manipulations (PBMs) of OSPW to alter toxicity and inform treatment processes, and 4) discerning potential treatment pathways to mitigate ecological risks of OSPW based on identification of COCs, toxicological analyses, and PBM results. COCs identified in OSPW included organics (naphthenic acids [NAs], oil and grease [O/G]), metals/metalloids, and suspended solids. In terms of species sensitivities to undiluted OSPW, fish ≥ aquatic invertebrates > macrophytes. Bench-scale manipulations of the organic fractions of OSPW via PBMs (i.e. H 2 O 2 +UV 254 and granular activated charcoal treatments) eliminated toxicity to Ceriodaphnia dubia (7-8 d), in terms of mortality and reproduction. Results from this study provide critical information to inform mitigation strategies using passive or semi-passive treatment processes (e.g., constructed treatment wetlands) to mitigate ecological risks of OSPW to aquatic organisms. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Legacy of a half century of Athabasca oil sands development recorded by lake ecosystems

    PubMed Central

    Kurek, Joshua; Kirk, Jane L.; Muir, Derek C. G.; Wang, Xiaowa; Evans, Marlene S.; Smol, John P.

    2013-01-01

    The absence of well-executed environmental monitoring in the Athabasca oil sands (Alberta, Canada) has necessitated the use of indirect approaches to determine background conditions of freshwater ecosystems before development of one of the Earth’s largest energy deposits. Here, we use highly resolved lake sediment records to provide ecological context to ∼50 y of oil sands development and other environmental changes affecting lake ecosystems in the region. We show that polycyclic aromatic hydrocarbons (PAHs) within lake sediments, particularly C1-C4–alkylated PAHs, increased significantly after development of the bitumen resource began, followed by significant increases in dibenzothiophenes. Total PAH fluxes in the modern sediments of our six study lakes, including one site ∼90 km northwest of the major development area, are now ∼2.5–23 times greater than ∼1960 levels. PAH ratios indicate temporal shifts from primarily wood combustion to petrogenic sources that coincide with greater oil sands development. Canadian interim sediment quality guidelines for PAHs have been exceeded since the mid-1980s at the most impacted site. A paleoecological assessment of Daphnia shows that this sentinel zooplankter has not yet been negatively impacted by decades of high atmospheric PAH deposition. Rather, coincident with increases in PAHs, climate-induced shifts in aquatic primary production related to warmer and drier conditions are the primary environmental drivers producing marked daphniid shifts after ∼1960 to 1970. Because of the striking increase in PAHs, elevated primary production, and zooplankton changes, these oil sands lake ecosystems have entered new ecological states completely distinct from those of previous centuries. PMID:23297215

  2. River of Sand

    NASA Image and Video Library

    2016-09-21

    A dominant driver of surface processes on Mars today is aeolian (wind) activity. In many cases, sediment from this activity is trapped in low-lying areas, such as craters. Aeolian features in the form of dunes and ripples can occur in many places on Mars depending upon regional wind regimes. The Cerberus Fossae are a series of discontinuous fissures along dusty plains in the southeastern region of Elysium Planitia. This rift zone is thought to be the result of combined volcano-tectonic processes. Dark sediment has accumulated in areas along the floor of these fissures as well as inactive ripple-like aeolian bedforms known as "transverse aeolian ridges" (TAR). Viewed through HiRISE infrared color, the basaltic sand lining the fissures' floor stands out as deep blue against the light-toned dust covering the region. This, along with the linearity of the fissures and the wave-like appearance of the TAR, give the viewer an impression of a river cutting through the Martian plains. However, this river of sand does not appear to be flowing. Analyses of annual monitoring images of this region have not detected aeolian activity in the form of ripple migration thus far. http://photojournal.jpl.nasa.gov/catalog/PIA21063

  3. Secondary ferroan dolomite rhombs in oil reservoirs, Chadra Sands, Gialo field, Libya

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Al-Shaieb, Z.; Shelton, J.W.

    1978-03-01

    Oil-productive, Oligocene Chadra sands in Gialo field, Libya, at depths of 600 to 750 m contain small dolomite rhombs. The rhombs are present as single crystals on detrital grains and as nonmosaic aggregates in pore space. The dolomite is calcium-rich and contains up to 10% iron but not measurable sodium or strontium. Total dissolved solids of produced interstitial water from the Chadra sand range from about 4,500 to 10,000 ppM. Introduction of fresh (meteoric) water into the Chadra sands, which were deposited in shallow-marine (shelf) environment, was responsible for formation of the dolomite rhombs. Iron in the dolomite rhombs wasmore » derived from alteration of galuconite.« less

  4. Naphthenic acids in athabasca oil sands tailings waters are less biodegradable than commercial naphthenic acids.

    PubMed

    Scott, Angela C; MacKinnon, Michael D; Fedorak, Phillip M

    2005-11-01

    Naphthenic acids (NAs) are natural constituents in many petroleum sources, including bitumen in the oil sands of Northern Alberta, Canada. Bitumen extraction processes produce tailings waters that cannot be discharged to the environment because NAs are acutely toxic to aquatic species. However, aerobic biodegradation reduces the toxic character of NAs. In this study, four commercial NAs and the NAs in two oil sands tailings waters were characterized by gas chromatography-mass spectrometry. These NAs were also incubated with microorganisms in the tailings waters under aerobic, laboratory conditions. The NAs in the commercial preparations had lower molecular masses than the NAs in the tailings waters. The commercial NAs were biodegraded within 14 days, but only about 25% of the NAs native to the tailings waters were removed after 40-49 days. These results show that low molecular mass NAs (C < or =17) are more readily biodegraded than high molecular mass NAs (C > or =18). Moreover, the results indicate that biodegradation studies using commercial NAs alone will not accurately reflect the potential biodegradability of NAs in the oil sands tailings waters.

  5. Advances in mass spectrometric characterization of naphthenic acids fraction compounds in oil sands environmental samples and crude oil--A review.

    PubMed

    Headley, John V; Peru, Kerry M; Barrow, Mark P

    2016-01-01

    There has been a recent surge in the development of mass spectrometric methods for detailed characterization of naphthenic acid fraction compounds (all C(c)H(h)N(n)O(o)S(s), species, including heteroatomic and aromatic components in the acid-extractable fraction) in environmental samples. This surge is driven by the increased activity in oil sands environmental monitoring programs in Canada, the exponential increase in research studies on the isolation and toxicity identification of components in oil sands process water (OSPW), and the analytical requirements for development of technologies for treatment of OSPW. There has been additional impetus due to the parallel studies to control corrosion from naphthenic acids during the mining and refining of heavy bitumen and crude oils. As a result, a range of new mass spectrometry tools have been introduced since our last major review of this topic in 2009. Of particular significance are the developments of combined mass spectrometric methods that incorporate technologies such as gas chromatography, liquid chromatography, and ion mobility. There has been additional progress with respect to improved visualization methods for petroleomics and oil sands environmental forensics. For comprehensive coverage and more reliable characterization of samples, an approach based on multiple-methods that employ two or more ionization modes is recommended. On-line or off-line fractionation of isolated extracts, with or without derivatization, might also be used prior to mass spectrometric analyses. Individual ionization methods have their associated strengths and weaknesses, including biases, and thus dependence upon a single ionization method is potentially misleading. There is also a growing trend to not rely solely on low-resolution mass spectrometric methods (<20,000 resolving power at m/z 200) for characterization of complex samples. Future research is anticipated to focus upon (i) structural elucidation of components to determine

  6. Assessing mobility and redistribution patterns of sand and oil agglomerates in the surf zone

    USGS Publications Warehouse

    Dalyander, P. Soupy; Long, Joesph W.; Plant, Nathaniel G.; Thompson, David M.

    2014-01-01

    Heavier-than-water sand and oil agglomerates that formed in the surf zone following the Deepwater Horizon oil spill continued to cause beach re-oiling 3 years after initial stranding. To understand this phenomena and inform operational response now and for future spills, a numerical method to assess the mobility and alongshore movement of these “surface residual balls” (SRBs) was developed and applied to the Alabama and western Florida coasts. Alongshore flow and SRB mobility and potential flux were used to identify likely patterns of transport and deposition. Results indicate that under typical calm conditions, cm-size SRBs are unlikely to move alongshore, whereas mobility and transport is likely during storms. The greater mobility of sand compared to SRBs makes burial and exhumation of SRBs likely, and inlets were identified as probable SRB traps. Analysis of field data supports these model results.

  7. Bringing Context to the Oil Sands Debate: understanding the role of nature versus man

    NASA Astrophysics Data System (ADS)

    Fennell, J.; Gibson, J. J.; Birks, S. J.; YI, Y.; Jasechko, S.; Moncur, M. C.

    2013-12-01

    The Canadian oil sands represent an important resource to the national economy, and a strategic supply-line to the United States of America. These hydrocarbon deposits reside beneath a vast area in northern Alberta, and have been exposed to the environment for millennia as a result of erosion by the Athabasca River and its tributaries. Further complexity to the geochemical setting occurs due to the existence of faulted pathways extending from deeper, highly saline, Devonian intervals to surface. Situated within this natural setting are large waste management structures used to contain mine tailings and oil sands produced water. Many of these structures are situated in close proximity to aquatic receptors and have the potential to affect local water quality due to seepage losses. As such, these structures are coming under increasing scrutiny as a potential source of environmental impact. Discharge of oil sands contaminants to the rivers, and the accumulation of these materials in the Peace-Athabasca Delta, has been cited as a factor leading to adverse health effects at downstream communities. However, the role that natural discharge of contaminants plays has never been fully acknowledged. To address this critical gap, a reconnaissance of the Athabasca River was conducted. Areas of elevated terrain conductivity (detected by EM31 survey) were identified both in background locations and areas suspected of industrial releases. Water samples were collected from various sites and from multiple depth intervals (up to 3 m) within the hyporheic zone of the river sediments. This was achieved using drive-point wells. Each sample was then analyzed for a comprehensive suite of parameters including: i) major ions; ii) dissolved trace elements; iii) dissolved organics; and iv) selected stable and radiogenic isotopes. Results of the investigation identified large areas (in excess of 10km) of groundwater discharge to the Athabasca River well outside the influence of oil sands

  8. 43 CFR 3140.0-5 - Definitions.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... for the removal of gas and nongaseous hydrocarbon substances other than coal, oil shale or gilsonite... Existing Oil and Gas Leases and Valid Claims Based on Mineral Locations § 3140.0-5 Definitions. As used in... Sand Areas, as containing substantial deposits of tar sand. (d) Owner of an oil and gas lease means all...

  9. 43 CFR 3140.0-5 - Definitions.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... for the removal of gas and nongaseous hydrocarbon substances other than coal, oil shale or gilsonite... Existing Oil and Gas Leases and Valid Claims Based on Mineral Locations § 3140.0-5 Definitions. As used in... Sand Areas, as containing substantial deposits of tar sand. (d) Owner of an oil and gas lease means all...

  10. 43 CFR 3140.0-5 - Definitions.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... for the removal of gas and nongaseous hydrocarbon substances other than coal, oil shale or gilsonite... Existing Oil and Gas Leases and Valid Claims Based on Mineral Locations § 3140.0-5 Definitions. As used in... Sand Areas, as containing substantial deposits of tar sand. (d) Owner of an oil and gas lease means all...

  11. 43 CFR 3140.0-5 - Definitions.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... for the removal of gas and nongaseous hydrocarbon substances other than coal, oil shale or gilsonite... Existing Oil and Gas Leases and Valid Claims Based on Mineral Locations § 3140.0-5 Definitions. As used in... Sand Areas, as containing substantial deposits of tar sand. (d) Owner of an oil and gas lease means all...

  12. The microbiology of oil sands tailings: past, present, future.

    PubMed

    Foght, Julia M; Gieg, Lisa M; Siddique, Tariq

    2017-05-01

    Surface mining of enormous oil sands deposits in northeastern Alberta, Canada since 1967 has contributed greatly to Canada's economy but has also received negative international attention due largely to environmental concerns and challenges. Not only have microbes profoundly affected the composition and behavior of this petroleum resource over geological time, they currently influence the management of semi-solid tailings in oil sands tailings ponds (OSTPs) and tailings reclamation. Historically, microbial impacts on OSTPs were generally discounted, but next-generation sequencing and biogeochemical studies have revealed unexpectedly diverse indigenous communities and expanded our fundamental understanding of anaerobic microbial functions. OSTPs that experienced different processing and management histories have developed distinct microbial communities that influence the behavior and reclamation of the tailings stored therein. In particular, the interactions of Deltaproteobacteria and Firmicutes with methanogenic archaea impact greenhouse gas emissions, sulfur cycling, pore water toxicity, sediment biogeochemistry and densification, water usage and the trajectory of long-term mine waste reclamation. This review summarizes historical data; synthesizes current understanding of microbial diversity and activities in situ and in vitro; predicts microbial effects on tailings remediation and reclamation; and highlights knowledge gaps for future research. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  13. Emissions from cold heavy oil production with sands (CHOPS) facilities in Alberta, Canada

    NASA Astrophysics Data System (ADS)

    Roscioli, J. R.; Herndon, S. C.; Yacovitch, T. I.; Knighton, W. B.; Zavala-Araiza, D.; Johnson, M. R.; Tyner, D. R.

    2017-12-01

    Cold heavy oil production with sands (CHOPS) is generally characterized as a pump driven oil extraction method producing a mixture of sand, water, and heavy oil to heated liquid storage tanks. In addition to fluids, CHOPS sites also produce solution gas, primarily composed of methane, through the well annulus. Depending on formation and well production characteristics, large volumes of this solution gas are frequently vented to the atmosphere without flaring or conservation. To better understand these emission we present measurements of methane, ethane, propane and aromatic emission rates from CHOPS sites using dual tracer flux ratio methodology. The use of two tracers allowed on-site emission sources to be accurately identified and in one instance indicated that the annular vent was responsible for >75% of emissions at the facility. Overall, a measurement survey of five CHOPS sites finds that the methane emissions are in general significantly under-reported by operators. This under-reporting may arise from uncertainties associated with measured gas-to-oil ratios upon which the reported vent volume is based. Finally, measurements of ethane, propane and aromatics from these facilities indicates surprisingly low non-methane hydrocarbon content.

  14. Biodegradation of MC252 oil in oil:sand aggregates in a coastal headland beach environment

    PubMed Central

    Elango, Vijaikrishnah; Urbano, Marilany; Lemelle, Kendall R.; Pardue, John H.

    2014-01-01

    Unique oil:sand aggregates, termed surface residue balls (SRBs), were formed on coastal headland beaches along the northern Gulf of Mexico as emulsified MC252 crude oil mixed with sand following the Deepwater Horizon spill event. The objective of this study is to assess the biodegradation potential of crude oil components in these aggregates using multiple lines of evidence on a heavily-impacted coastal headland beach in Louisiana, USA. SRBs were sampled over a 19-month period on the supratidal beach environment with reasonable control over and knowledge of the residence time of the aggregates on the beach surface. Polycyclic aromatic hydrocarbons (PAHs) and alkane concentration ratios were measured including PAH/C30-hopane, C2/C3 phenanthrenes, C2/C3 dibenzothiophenes and alkane/C30-hopane and demonstrated that biodegradation was occurring in SRBs in the supratidal. These biodegradation reactions occurred over time frames relevant to the coastal processes moving SRBs off the beach. In contrast, submerged oil mat samples from the intertidal did not demonstrate chemical changes consistent with biodegradation. Review and analysis of additional biogeochemical parameters suggested the existence of a moisture and nutrient-limited biodegradation regime on the supratidal beach environment. At this location, SRBs possess moisture contents <2% and molar C:N ratios from 131–323, well outside of optimal values for biodegradation in the literature. Despite these limitations, biodegradation of PAHs and alkanes proceeded at relevant rates (2–8 year−1) due in part to the presence of degrading populations, i.e., Mycobacterium sp., adapted to these conditions. For submerged oil mat samples in the intertidal, an oxygen and salinity-impacted regime is proposed that severely limits biodegradation of alkanes and PAHs in this environment. These results support the hypothesis that SRBs deposited at different locations on the beach have different biogeochemical characteristics (e

  15. Biodegradation of MC252 oil in oil:sand aggregates in a coastal headland beach environment.

    PubMed

    Elango, Vijaikrishnah; Urbano, Marilany; Lemelle, Kendall R; Pardue, John H

    2014-01-01

    Unique oil:sand aggregates, termed surface residue balls (SRBs), were formed on coastal headland beaches along the northern Gulf of Mexico as emulsified MC252 crude oil mixed with sand following the Deepwater Horizon spill event. The objective of this study is to assess the biodegradation potential of crude oil components in these aggregates using multiple lines of evidence on a heavily-impacted coastal headland beach in Louisiana, USA. SRBs were sampled over a 19-month period on the supratidal beach environment with reasonable control over and knowledge of the residence time of the aggregates on the beach surface. Polycyclic aromatic hydrocarbons (PAHs) and alkane concentration ratios were measured including PAH/C30-hopane, C2/C3 phenanthrenes, C2/C3 dibenzothiophenes and alkane/C30-hopane and demonstrated that biodegradation was occurring in SRBs in the supratidal. These biodegradation reactions occurred over time frames relevant to the coastal processes moving SRBs off the beach. In contrast, submerged oil mat samples from the intertidal did not demonstrate chemical changes consistent with biodegradation. Review and analysis of additional biogeochemical parameters suggested the existence of a moisture and nutrient-limited biodegradation regime on the supratidal beach environment. At this location, SRBs possess moisture contents <2% and molar C:N ratios from 131-323, well outside of optimal values for biodegradation in the literature. Despite these limitations, biodegradation of PAHs and alkanes proceeded at relevant rates (2-8 year(-1)) due in part to the presence of degrading populations, i.e., Mycobacterium sp., adapted to these conditions. For submerged oil mat samples in the intertidal, an oxygen and salinity-impacted regime is proposed that severely limits biodegradation of alkanes and PAHs in this environment. These results support the hypothesis that SRBs deposited at different locations on the beach have different biogeochemical characteristics (e

  16. Next-Generation Sequencing Assessment of Eukaryotic Diversity in Oil Sands Tailings Ponds Sediments and Surface Water.

    PubMed

    Aguilar, Maria; Richardson, Elisabeth; Tan, BoonFei; Walker, Giselle; Dunfield, Peter F; Bass, David; Nesbø, Camilla; Foght, Julia; Dacks, Joel B

    2016-11-01

    Tailings ponds in the Athabasca oil sands (Canada) contain fluid wastes, generated by the extraction of bitumen from oil sands ores. Although the autochthonous prokaryotic communities have been relatively well characterized, almost nothing is known about microbial eukaryotes living in the anoxic soft sediments of tailings ponds or in the thin oxic layer of water that covers them. We carried out the first next-generation sequencing study of microbial eukaryotic diversity in oil sands tailings ponds. In metagenomes prepared from tailings sediment and surface water, we detected very low numbers of sequences encoding eukaryotic small subunit ribosomal RNA representing seven major taxonomic groups of protists. We also produced and analysed three amplicon-based 18S rRNA libraries prepared from sediment samples. These revealed a more diverse set of taxa, 169 different OTUs encompassing up to eleven higher order groups of eukaryotes, according to detailed classification using homology searching and phylogenetic methods. The 10 most abundant OTUs accounted for > 90% of the total of reads, vs. large numbers of rare OTUs (< 1% abundance). Despite the anoxic and hydrocarbon-enriched nature of the environment, the tailings ponds harbour complex communities of microbial eukaryotes indicating that these organisms should be taken into account when studying the microbiology of the oil sands. © 2016 The Author(s) Journal of Eukaryotic Microbiology © 2016 International Society of Protistologists.

  17. Effects of Microwave Radiation on Oil Recovery

    NASA Astrophysics Data System (ADS)

    Esmaeili, Abdollah

    2011-12-01

    A variety of oil recovery methods have been developed and applied to mature and depleted reservoirs in order to improve the efficiency. Microwave radiation oil recovery method is a relatively new method and has been of great interest in the recent years. Crude oil is typically co-mingled with suspended solids and water. To increase oil recovery, it is necessary to remove these components. The separation of oil from water and solids using gravitational settling methods is typically incomplete. Oil-in-water and oil-water-solid emulsions can be demulsified and separated into their individual layers by microwave radiation. The data also show that microwave separation is faster than gravity separation and can be faster than conventional heating at many conditions. After separation of emulsion into water and oil layers, water can be discharged and oil is collected. High-frequency microwave recycling process can recover oil and gases from oil shale, residual oil, drill cuttings, tar sands oil, contaminated dredge/sediments, tires and plastics with significantly greater yields and lower costs than are available utilizing existing known technologies. This process is environmentally friendly, fuel-generating recycler to reduce waste, cut emissions, and save energy. This paper presents a critical review of Microwave radiation method for oil recovery.

  18. Tar balls from Deep Water Horizon oil spill: environmentally persistent free radicals (EPFR) formation during crude weathering.

    PubMed

    Kiruri, Lucy W; Dellinger, Barry; Lomnicki, Slawo

    2013-05-07

    Tar balls collected from the Gulf of Mexico shores of Louisiana and Florida after the BP oil spill have shown the presence of electron paramagnetic resonance (EPR) spectra characteristic of organic free radicals as well as transition metal ions, predominantly iron(III) and manganese(II). Two types of organic radicals were distinguished: an asphaltene radical species typically found in crude oil (g = 2.0035) and a new type of radical resulting from the environmental transformations of crude (g = 2.0041-47). Pure asphaltene radicals are resonance stabilized over a polyaromatic structure and are stable in air and unreactive. The new radicals were identified as products of partial oxidation of crude components and result from the interaction of the oxidized aromatics with metal ion centers. These radicals are similar to semiquinone-type, environmentally persistent free radicals (EPFRs) previously observed in combustion-generated particulate and contaminated soils.

  19. Tar Balls from Deep Water Horizon Oil Spill: Environmentally Persistent Free Radicals (EPFR) Formation During Crude Weathering

    PubMed Central

    Kiruri, Lucy W.; Dellinger, Barry; Lomnicki, Slawo

    2014-01-01

    Tar balls collected from the Gulf of Mexico shores of Louisiana and Florida after the BP oil spill have shown the presence of electron paramagnetic resonance (EPR) spectra characteristic of organic free radicals as well as transition metal ions, predominantly iron(III) and manganese(II). Two types of organic radicals were distinguished: an asphaltene radical species typically found in crude oil (g = 2.0035) and a new type of radical resulting from the environmental transformations of crude (g = 2.0041−47). Pure asphaltene radicals are resonance stabilized over a polyaromatic structure and are stable in air and unreactive. The new radicals were identified as products of partial oxidation of crude components and result from the interaction of the oxidized aromatics with metal ion centers. These radicals are similar to semiquinone-type, environmentally persistent free radicals (EPFRs) previously observed in combustion-generated particulate and contaminated soils. PMID:23510127

  20. Metal removal from oil sands tailings pond water by indigenous micro-alga.

    PubMed

    Mahdavi, Hamed; Ulrich, Ania C; Liu, Yang

    2012-09-01

    This paper reports the removal of ten target metals of environmental concern ((53)Cr, Mn, Co, (60)Ni, (65)Cu, (66)Zn, As, (88)Sr, (95)Mo, and Ba) from oil sands tailings pond water. The organism responsible for removal was found to be an indigenous green micro-alga identified as Parachlorella kessleri by sequencing of the 23S rRNA gene. P. kessleri grew in tailings pond water samples taken from two oil sands operators (Syncrude Canada Ltd. and Albian Sands Energy Inc.), and enriched with low (0.24 mM NO(3)(-) and 0.016 mM PO(4)(-3)) and high (1.98 mM NO(3)(-) and 0.20mM PO(4)(-3)) concentrations of nutrient supplements (the most realistic scenario). The removal of (60)Ni, (65)Cu, As, (88)Sr, (95)Mo, and Ba from Syncrude tailings pond water was significantly enhanced by high concentrations of nitrogen and phosphorus, whereas the high nutrient concentrations adversely affected the removal of Co, (60)Ni, As, (88)Sr, and Mo in samples of Albian tailings pond water. Based on ANOVA two-factor analysis, higher nutrient concentration does not always result in higher metal removal, and TPW source must also be considered. Copyright © 2012. Published by Elsevier Ltd.

  1. Impacts of oil sands process water on fen plants: implications for plant selection in required reclamation projects.

    PubMed

    Pouliot, Rémy; Rochefort, Line; Graf, Martha D

    2012-08-01

    Fen plant growth in peat contaminated with groundwater discharges of oil sands process water (OSPW) was assessed in a greenhouse over two growing seasons. Three treatments (non-diluted OSPW, diluted OSPW and rainwater) were tested on five vascular plants and four mosses. All vascular plants tested can grow in salinity and naphthenic acids levels currently produced by oil sands activity in northwestern Canada. No stress sign was observed after both seasons. Because of plant characteristics, Carex species (C. atherodes and C. utriculata) and Triglochin maritima would be more useful for rapidly restoring vegetation and creating a new peat-accumulating system. Groundwater discharge of OSPW proved detrimental to mosses under dry conditions and ensuring adequate water levels would be crucial in fen creation following oil sands exploitation. Campylium stellatum would be the best choice to grow in contaminated areas and Bryum pseudotriquetrum might be interesting as it has spontaneously regenerated in all treatments. Copyright © 2012 Elsevier Ltd. All rights reserved.

  2. Hydrocarbon-Degrading Bacteria and the Bacterial Community Response in Gulf of Mexico Beach Sands Impacted by the Deepwater Horizon Oil Spill▿†‡

    PubMed Central

    Kostka, Joel E.; Prakash, Om; Overholt, Will A.; Green, Stefan J.; Freyer, Gina; Canion, Andy; Delgardio, Jonathan; Norton, Nikita; Hazen, Terry C.; Huettel, Markus

    2011-01-01

    A significant portion of oil from the recent Deepwater Horizon (DH) oil spill in the Gulf of Mexico was transported to the shoreline, where it may have severe ecological and economic consequences. The objectives of this study were (i) to identify and characterize predominant oil-degrading taxa that may be used as model hydrocarbon degraders or as microbial indicators of contamination and (ii) to characterize the in situ response of indigenous bacterial communities to oil contamination in beach ecosystems. This study was conducted at municipal Pensacola Beach, FL, where chemical analysis revealed weathered oil petroleum hydrocarbon (C8 to C40) concentrations ranging from 3.1 to 4,500 mg kg−1 in beach sands. A total of 24 bacterial strains from 14 genera were isolated from oiled beach sands and confirmed as oil-degrading microorganisms. Isolated bacterial strains were primarily Gammaproteobacteria, including representatives of genera with known oil degraders (Alcanivorax, Marinobacter, Pseudomonas, and Acinetobacter). Sequence libraries generated from oiled sands revealed phylotypes that showed high sequence identity (up to 99%) to rRNA gene sequences from the oil-degrading bacterial isolates. The abundance of bacterial SSU rRNA gene sequences was ∼10-fold higher in oiled (0.44 × 107 to 10.2 × 107 copies g−1) versus clean (0.024 × 107 to 1.4 × 107 copies g−1) sand. Community analysis revealed a distinct response to oil contamination, and SSU rRNA gene abundance derived from the genus Alcanivorax showed the largest increase in relative abundance in contaminated samples. We conclude that oil contamination from the DH spill had a profound impact on the abundance and community composition of indigenous bacteria in Gulf beach sands, and our evidence points to members of the Gammaproteobacteria (Alcanivorax, Marinobacter) and Alphaproteobacteria (Rhodobacteraceae) as key players in oil degradation there. PMID:21948834

  3. Profiling oil sands mixtures from industrial developments and natural groundwaters for source identification.

    PubMed

    Frank, Richard A; Roy, James W; Bickerton, Greg; Rowland, Steve J; Headley, John V; Scarlett, Alan G; West, Charles E; Peru, Kerry M; Parrott, Joanne L; Conly, F Malcolm; Hewitt, L Mark

    2014-01-01

    The objective of this study was to identify chemical components that could distinguish chemical mixtures in oil sands process-affected water (OSPW) that had potentially migrated to groundwater in the oil sands development area of northern Alberta, Canada. In the first part of the study, OSPW samples from two different tailings ponds and a broad range of natural groundwater samples were assessed with historically employed techniques as Level-1 analyses, including geochemistry, total concentrations of naphthenic acids (NAs) and synchronous fluorescence spectroscopy (SFS). While these analyses did not allow for reliable source differentiation, they did identify samples containing significant concentrations of oil sands acid-extractable organics (AEOs). In applying Level-2 profiling analyses using electrospray ionization high resolution mass spectrometry (ESI-HRMS) and comprehensive multidimensional gas chromatography time-of-flight mass spectrometry (GC × GC-TOF/MS) to samples containing appreciable AEO concentrations, differentiation of natural from OSPW sources was apparent through measurements of O2:O4 ion class ratios (ESI-HRMS) and diagnostic ions for two families of suspected monoaromatic acids (GC × GC-TOF/MS). The resemblance between the AEO profiles from OSPW and from 6 groundwater samples adjacent to two tailings ponds implies a common source, supporting the use of these complimentary analyses for source identification. These samples included two of upward flowing groundwater collected <1 m beneath the Athabasca River, suggesting OSPW-affected groundwater is reaching the river system.

  4. Massive dominance of Epsilonproteobacteria in formation waters from a Canadian oil sands reservoir containing severely biodegraded oil

    PubMed Central

    Hubert, Casey R J; Oldenburg, Thomas B P; Fustic, Milovan; Gray, Neil D; Larter, Stephen R; Penn, Kevin; Rowan, Arlene K; Seshadri, Rekha; Sherry, Angela; Swainsbury, Richard; Voordouw, Gerrit; Voordouw, Johanna K; Head, Ian M

    2012-01-01

    Summary The subsurface microbiology of an Athabasca oil sands reservoir in western Canada containing severely biodegraded oil was investigated by combining 16S rRNA gene- and polar lipid-based analyses of reservoir formation water with geochemical analyses of the crude oil and formation water. Biomass was filtered from formation water, DNA was extracted using two different methods, and 16S rRNA gene fragments were amplified with several different primer pairs prior to cloning and sequencing or community fingerprinting by denaturing gradient gel electrophoresis (DGGE). Similar results were obtained irrespective of the DNA extraction method or primers used. Archaeal libraries were dominated by Methanomicrobiales (410 of 414 total sequences formed a dominant phylotype affiliated with a Methanoregula sp.), consistent with the proposed dominant role of CO2-reducing methanogens in crude oil biodegradation. In two bacterial 16S rRNA clone libraries generated with different primer pairs, > 99% and 100% of the sequences were affiliated with Epsilonproteobacteria (n = 382 and 72 total clones respectively). This massive dominance of Epsilonproteobacteria sequences was again obtained in a third library (99% of sequences; n = 96 clones) using a third universal bacterial primer pair (inosine-341f and 1492r). Sequencing of bands from DGGE profiles and intact polar lipid analyses were in accordance with the bacterial clone library results. Epsilonproteobacterial OTUs were affiliated with Sulfuricurvum, Arcobacter and Sulfurospirillum spp. detected in other oil field habitats. The dominant organism revealed by the bacterial libraries (87% of all sequences) is a close relative of Sulfuricurvum kujiense – an organism capable of oxidizing reduced sulfur compounds in crude oil. Geochemical analysis of organic extracts from bitumen at different reservoir depths down to the oil water transition zone of these oil sands indicated active biodegradation of dibenzothiophenes, and stable

  5. Understanding the primary emissions and secondary formation of gaseous organic acids in the oil sands region of Alberta, Canada

    NASA Astrophysics Data System (ADS)

    Liggio, John; Moussa, Samar G.; Wentzell, Jeremy; Darlington, Andrea; Liu, Peter; Leithead, Amy; Hayden, Katherine; O'Brien, Jason; Mittermeier, Richard L.; Staebler, Ralf; Wolde, Mengistu; Li, Shao-Meng

    2017-07-01

    Organic acids are known to be emitted from combustion processes and are key photochemical products of biogenic and anthropogenic precursors. Despite their multiple environmental impacts, such as on acid deposition and human-ecosystem health, little is known regarding their emission magnitudes or detailed chemical formation mechanisms. In the current work, airborne measurements of 18 gas-phase low-molecular-weight organic acids were made in the summer of 2013 over the oil sands region of Alberta, Canada, an area of intense unconventional oil extraction. The data from these measurements were used in conjunction with emission retrieval algorithms to derive the total and speciated primary organic acid emission rates, as well as secondary formation rates downwind of oil sands operations. The results of the analysis indicate that approximately 12 t day-1 of low-molecular-weight organic acids, dominated by C1-C5 acids, were emitted directly from off-road diesel vehicles within open pit mines. Although there are no specific reporting requirements for primary organic acids, the measured emissions were similar in magnitude to primary oxygenated hydrocarbon emissions, for which there are reporting thresholds, measured previously ( ≈ 20 t day-1). Conversely, photochemical production of gaseous organic acids significantly exceeded the primary sources, with formation rates of up to ≈ 184 t day-1 downwind of the oil sands facilities. The formation and evolution of organic acids from a Lagrangian flight were modelled with a box model, incorporating a detailed hydrocarbon reaction mechanism extracted from the Master Chemical Mechanism (v3.3). Despite evidence of significant secondary organic acid formation, the explicit chemical box model largely underestimated their formation in the oil sands plumes, accounting for 39, 46, 26, and 23 % of the measured formic, acetic, acrylic, and propionic acids respectively and with little contributions from biogenic VOC precursors. The model

  6. Airborne Petcoke Dust is a Major Source of Polycyclic Aromatic Hydrocarbons in the Athabasca Oil Sands Region.

    PubMed

    Zhang, Yifeng; Shotyk, William; Zaccone, Claudio; Noernberg, Tommy; Pelletier, Rick; Bicalho, Beatriz; Froese, Duane G; Davies, Lauren; Martin, Jonathan W

    2016-02-16

    Oil sands mining has been linked to increasing atmospheric deposition of polycyclic aromatic hydrocarbons (PAHs) in the Athabasca oil sands region (AOSR), but known sources cannot explain the quantity of PAHs in environmental samples. PAHs were measured in living Sphagnum moss (24 sites, n = 68), in sectioned peat cores (4 sites, n = 161), and snow (7 sites, n = 19) from ombrotrophic bogs in the AOSR. Prospective source samples were also analyzed, including petroleum coke (petcoke, from both delayed and fluid coking), fine tailings, oil sands ore, and naturally exposed bitumen. Average PAH concentrations in near-field moss (199 ng/g, n = 11) were significantly higher (p = 0.035) than in far-field moss (118 ng/g, n = 13), and increasing temporal trends were detected in three peat cores collected closest to industrial activity. A chemical mass-balance model estimated that delayed petcoke was the major source of PAHs to living moss, and among three peat core the contribution to PAHs from delayed petcoke increased over time, accounting for 45-95% of PAHs in contemporary layers. Petcoke was also estimated to be a major source of vanadium, nickel, and molybdenum. Scanning electron microscopy with energy-dispersive X-ray spectroscopy confirmed large petcoke particles (>10 μm) in snow at near-field sites. Petcoke dust has not previously been considered in environmental impact assessments of oil sands upgrading, and improved dust control from growing stockpiles may mitigate future risks.

  7. Population impacts in white sucker (Catostomus commersonii) exposed to oil sands-derived contaminants in the Athabasca River.

    PubMed

    Arens, Collin J; Arens, Jennifer C; Hogan, Natacha S; Kavanagh, Richard J; Berrue, Fabrice; Van Der Kraak, Glen J; van den Heuvel, Michael R

    2017-08-01

    Biological and chemical endpoints were measured in white sucker collected downstream of Athabasca oil sands developments (AB, Canada) and compared with those at Calling Lake (AB, Canada), a reference location upstream of the Athabasca oil sands deposit. Naphthenic acid concentrations were also measured at 14 sites in the Athabasca River watershed. Concentrations of naphthenic acids were elevated in tributaries adjacent to oil sands mining developments. Tributary naphthenic acid profiles were more similar to aged oil sands process water than samples from the Athabasca River, suggesting an influence of tailings in the tributaries. White sucker showed higher energy storage in the Athabasca River as indicated by significantly higher condition and liver size. White sucker were not investing that energy into reproductive effort as measured by gonad size and fecundity, which were significantly reduced relative to the reference location. White sucker showed increased exposure to polycyclic aromatic hydrocarbons as indicated by hepatic cytochrome P4501A (CYP1A) activity and fluorescent bile metabolites, as well as higher concentrations of naphthenic acids in bile. Cadmium, copper, nickel, and selenium were also elevated in white sucker liver tissue compared with the reference location. Based on the exposure profile and response pattern observed, effects on energy storage and utilization in white sucker from the Athabasca River most likely resulted from exposure to polycyclic aromatic hydrocarbons derived from petrogenic and pyrolytic sources. Environ Toxicol Chem 2017;36:2058-2067. © 2017 SETAC. © 2017 SETAC.

  8. Enhanced ex situ bioremediation of crude oil contaminated beach sand by supplementation with nutrients and rhamnolipids.

    PubMed

    Nikolopoulou, M; Pasadakis, N; Norf, H; Kalogerakis, N

    2013-12-15

    Mediterranean coastal regions are particularly exposed to oil pollution due to extensive industrialization, urbanization and transport of crude and refined oil to and from refineries. Bioremediation of contaminated beach sand through landfarming is both simple and cost-effective to implement compared to other treatment technologies. The purpose of the present study was to investigate the effect of alternative nutrients on biodegradation of crude oil contaminated beach sand in an effort to reduce the time required for bioremediation employing only indigenous hydrocarbon degraders. A natural sandy soil was collected from Agios Onoufrios beach (Chania, Greece) and was contaminated with weathered crude oil. The indigenous microbial population in the contaminated sand was tested alone (control treatment) or in combination with inorganic nutrients (KNO3 and K2HPO4) to investigate their effects on oil biodegradation rates. In addition, the ability of biosurfactants (rhamnolipids), in the presence of organic nutrients (uric acid and lecithin), to further stimulate biodegradation was investigated in laboratory microcosms over a 45-day period. Biodegradation was tracked by GC/MS analysis of aliphatic and polycyclic aromatic hydrocarbons components and the measured concentrations were corrected for abiotic removal by hopane normalizations. It was found that the saturated fraction of the residual oil is degraded more extensively than the aromatic fraction and the bacterial growth after an incubation period of approximately 3 weeks was much greater from the bacterial growth in the control. The results show that the treatments with inorganic or organic nutrients are equally effective over almost 30 days where C12-C35n-alkanes were degraded more than 97% and polyaromatic hydrocarbons with two or three rings were degraded more than 95% within 45 days. The results clearly show that the addition of nutrients to contaminated beach sand significantly enhanced the activity of

  9. Benzene and Naphthalene Degrading Bacterial Communities in an Oil Sands Tailings Pond

    PubMed Central

    Rochman, Fauziah F.; Sheremet, Andriy; Tamas, Ivica; Saidi-Mehrabad, Alireza; Kim, Joong-Jae; Dong, Xiaoli; Sensen, Christoph W.; Gieg, Lisa M.; Dunfield, Peter F.

    2017-01-01

    Oil sands process-affected water (OSPW), produced by surface-mining of oil sands in Canada, is alkaline and contains high concentrations of salts, metals, naphthenic acids, and polycyclic aromatic compounds (PAHs). Residual hydrocarbon biodegradation occurs naturally, but little is known about the hydrocarbon-degrading microbial communities present in OSPW. In this study, aerobic oxidation of benzene and naphthalene in the surface layer of an oil sands tailings pond were measured. The potential oxidation rates were 4.3 μmol L−1 OSPW d−1 for benzene and 21.4 μmol L−1 OSPW d−1 for naphthalene. To identify benzene and naphthalene-degrading microbial communities, metagenomics was combined with stable isotope probing (SIP), high-throughput sequencing of 16S rRNA gene amplicons, and isolation of microbial strains. SIP using 13C-benzene and 13C-naphthalene detected strains of the genera Methyloversatilis and Zavarzinia as the main benzene degraders, while strains belonging to the family Chromatiaceae and the genus Thauera were the main naphthalene degraders. Metagenomic analysis revealed a diversity of genes encoding oxygenases active against aromatic compounds. Although these genes apparently belonged to many phylogenetically diverse taxa, only a few of these taxa were predominant in the SIP experiments. This suggested that many members of the community are adapted to consuming other aromatic compounds, or are active only under specific conditions. 16S rRNA gene sequence datasets have been submitted to the Sequence Read Archive (SRA) under accession number SRP109130. The Gold Study and Project submission ID number in Joint Genome Institute IMG/M for the metagenome is Gs0047444 and Gp0055765. PMID:29033909

  10. Do Massive Oil Sands Developments in a Northern Watershed Lead to an Impending Crisis?

    NASA Astrophysics Data System (ADS)

    Kienzle, S. W.; Byrne, J.; Schindler, D.; Komers, P.

    2005-12-01

    Oil sands developments in northern Alberta are land disruptions of massive proportions, with potentially major impacts on watersheds. Alberta has one of the largest known oil reserves in the world, and developments have about 25,000 sqkm of lease areas, and have approvals for plants to develop over half a million ha (or 54 townships). This is 91% the size of Lake Erie covered mainly with tailings dams, open-pit mines and associated massive removal of forests, wetlands, and soils. With rising oil prices and declining conventional reserves, the current production of about 900,000 barrels per day will dramatically increase. There is considerable confusion over how much water is needed to extract and refine the oil. Best estimated by oil companies are 6 to 10 barrels of water for each barrel of oil. Shell Oil is aiming to bring the water to oil ratio down to 3, however, this is not yet achieved. Trend analysis of the Athabasca streamflow shows that the streamflow is declining, particularly the low flow during winter. In order to sustain a minimum flow that ensures a relatively healthy aquatic environment, the only option the oil sands companies have to ensure uninterrupted production during winter is to build large water reservoirs, which would be filled during the high flow period in spring or summer. A disturbing fact is that this need for reservoirs was never considered until a science panel initiated by the Mikesew Cree First Nation participated in two hearings in the fall of 2003, when two major oil companies applied for licenses of a massive scale each. In the Environmental Impact Assessments (EIAs), water was to be extracted throughout the year, consequently threatening in-stream flow needs at some point in the future. Less than 1% has been reclaimed so far, with questionable success, as the new landscape will be a relatively sterile landscape with minimal biological diversity. Reclamation liabilities need to be included in mining leases. The release of

  11. Laboratory simulation studies of steady-state and potential catalytic effects in the ROPE{trademark} process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guffey, F.D.; Holper, P.A.

    The Western Research Institute is currently developing a process for the recovery of distillable liquid products from alternate fossil fuel sources such as tar sand and oil shale. The processing concept is based on recycling a fraction of the produced oil back into the reactor with the raw resource. This concept is termed the recycle oil pyrolysis and extraction (ROPE{sup TM}) process. The conversion of the alternate resource to a liquid fuel is performed in two stages. The first recovery stage is performed at moderate temperatures (325--420{degrees}C [617--788{degrees}F]) in the presence of product oil recycle. The second stage is performedmore » at higher temperatures (450--540{degrees}C [842--1004{degrees}F]) in the absence of product oil. The experiments reported here were performed Asphalt Ridge tar sand in the all-glass laboratory simulation reactor to simulate (1) the recycling of SAE 50 weight oil in the recycle oil pyrolysis zone and (2) to evaluate the potential catalytic effects of the sand matrix.« less

  12. Laboratory simulation studies of steady-state and potential catalytic effects in the ROPE trademark process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guffey, F.D.; Holper, P.A.

    The Western Research Institute is currently developing a process for the recovery of distillable liquid products from alternate fossil fuel sources such as tar sand and oil shale. The processing concept is based on recycling a fraction of the produced oil back into the reactor with the raw resource. This concept is termed the recycle oil pyrolysis and extraction (ROPE{sup TM}) process. The conversion of the alternate resource to a liquid fuel is performed in two stages. The first recovery stage is performed at moderate temperatures (325--420{degrees}C (617--788{degrees}F)) in the presence of product oil recycle. The second stage is performedmore » at higher temperatures (450--540{degrees}C (842--1004{degrees}F)) in the absence of product oil. The experiments reported here were performed Asphalt Ridge tar sand in the all-glass laboratory simulation reactor to simulate (1) the recycling of SAE 50 weight oil in the recycle oil pyrolysis zone and (2) to evaluate the potential catalytic effects of the sand matrix.« less

  13. Responsible management of peatlands in Canada, from peat industry to oil sands

    NASA Astrophysics Data System (ADS)

    Rochefort, Line

    2013-04-01

    Canada harbors one third of the peat resources of the world. Peat is an accumulated organic matter composed of dead and partly decomposed plant material, forming huge deposit through time in wetlands like peatlands and boreal coniferous swamps. Peat is a valuable resource as a growing media and soil amendments, an eco-friendly absorbent, also used as biofilters, for body care and for wastewater treatment. Peatlands also offer valuable ecological services : for example, they are the most efficient terrestrial ecosystem to store carbon on a long-term basis. Their ability to "cool off" the planet warrants a good look at their management. The horticultural peat industry of Canada has invested 22 years in R&D in habitat restoration and is now a strong leader in managing industrial peatlands in a sustainable way. The oil sand industry, which is strongly impacting the wetland landscapes of northern Canada, does realize that it has to reduce its ecological footprint, which is heavily criticized around the world. Decommissioned open mines near Fort McMurray have already begun recreating peatland ecosystems, and some restoration attempts of former oil pads are underway in the Peace River region. But the restoration of the largely disturbed wetland landscape of the oil sands is commanding innovative solutions.

  14. Comparison of methods for determination of total oil sands-derived naphthenic acids in water samples.

    PubMed

    Hughes, Sarah A; Huang, Rongfu; Mahaffey, Ashley; Chelme-Ayala, Pamela; Klamerth, Nikolaus; Meshref, Mohamed N A; Ibrahim, Mohamed D; Brown, Christine; Peru, Kerry M; Headley, John V; Gamal El-Din, Mohamed

    2017-11-01

    There are several established methods for the determination of naphthenic acids (NAs) in waters associated with oil sands mining operations. Due to their highly complex nature, measured concentration and composition of NAs vary depending on the method used. This study compared different common sample preparation techniques, analytical instrument methods, and analytical standards to measure NAs in groundwater and process water samples collected from an active oil sands operation. In general, the high- and ultrahigh-resolution methods, namely high performance liquid chromatography time-of-flight mass spectrometry (UPLC-TOF-MS) and Orbitrap mass spectrometry (Orbitrap-MS), were within an order of magnitude of the Fourier transform infrared spectroscopy (FTIR) methods. The gas chromatography mass spectrometry (GC-MS) methods consistently had the highest NA concentrations and greatest standard error. Total NAs concentration was not statistically different between sample preparation of solid phase extraction and liquid-liquid extraction. Calibration standards influenced quantitation results. This work provided a comprehensive understanding of the inherent differences in the various techniques available to measure NAs and hence the potential differences in measured amounts of NAs in samples. Results from this study will contribute to the analytical method standardization for NA analysis in oil sands related water samples. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Identifying the source of tar balls deposited along the beaches of Goa in 2013 and comparing with historical data collected along the West Coast of India.

    PubMed

    Suneel, V; Vethamony, P; Naik, B G; Krishna, M S; Jadhav, Lakshmikant

    2015-09-15

    Deposition of oil residues, also known as tar balls, is a seasonal phenomenon, and it occurs only in the southwest monsoon season along the west coast of India. This has become a serious environmental issue, as Goa is a global tourist destination. The present work aims at identifying the source oil of the tar balls that consistently depositing along the Goa coast using multi-marker fingerprint technique. In this context, the tar ball samples collected in May 2013 from 9 beaches of Goa coast and crude oils from different oil fields and grounded ship were subject to multi-marker analyses such as n-alkanes, pentacyclic terpanes, regular steranes, compound specific isotope analysis (CSIA) and principle component analysis (PCA). The n-alkane weathering index shows that samples have been weathered to various degrees, and the status of weathering is moderate. Since the international tanker route passes closer to the west coast of India (WCI), it is generally presumed that tanker wash is the source of the tar balls. We found that 2010/2011 tar balls are as tanker wash, but the present study demonstrates that the Bombay High (BH) oil fields can also contribute to oil contamination (tar balls) along ≈ 650 km stretch of the WCI, running from Gujarat in the north to Goa in the south. The simulated trajectories show that all the particles released in April traveled in the southeast direction, and by May, they reached the Goa coast with the influence of circulation of Indian monsoon system. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Levels of polycyclic aromatic hydrocarbons and dibenzothiophenes in wetland sediments and aquatic insects in the oil sands area of northeastern Alberta, Canada.

    PubMed

    Wayland, Mark; Headley, John V; Peru, Kerry M; Crosley, Robert; Brownlee, Brian G

    2008-01-01

    An immense volume of tailings and tailings water is accumulating in tailings ponds located on mine leases in the oil sands area of Alberta, Canada. Oil sands mining companies have proposed to use tailings- and tailings water-amended lakes and wetlands as part of their mine remediation plans. Polycyclic aromatic hydrocarbons (PAHs) are substances of concern in oil sands tailings and tailings water. In this study, we determined concentrations of PAHs in sediments, insect larvae and adult insects collected in or adjacent to three groups of wetlands: experimental wetlands to which tailings or tailings water had been purposely added, oil sands wetlands that were located on the mine leases but which had not been experimentally manipulated and reference wetlands located near the mine leases. Alkylated PAHs dominated the PAH profile in all types of samples in the three categories of wetlands. Median and maximum PAH concentrations, especially alkylated PAH concentrations, tended to be higher in sediments and insect larvae in experimental wetlands than in the other types of wetlands. Such was not the case for adult insects, which contained higher than expected levels of PAHs in the three types of ponds. Overlap in PAH concentrations in larvae among pond types suggests that any increase in PAH levels resulting from the addition of tailings and tailings water to wetlands would be modest. Biota-sediment accumulation factors were higher for alkylated PAHs than for their parent counterparts and were lower in experimental wetlands than in oil sands and reference wetlands. Research is needed to examine factors that affect the bioavailability of PAHs in oil sands tailings- or tailings water-amended wetlands.

  17. Approach to Assessing the Effects of Aerial Deposition on Water Quality in the Alberta Oil Sands Region.

    PubMed

    Dayyani, Shadi; Daly, Gillian; Vandenberg, Jerry

    2016-02-01

    Snow cover forms a porous medium that acts as a receptor for aerially deposited polycyclic aromatic hydrocarbons (PAHs) and metals. The snowpack, acting as a temporary storage reservoir, releases contaminants accumulating over the winter during a relatively short melt period. This process could result in elevated concentrations of contaminants in melt water. Recent studies in the Alberta oil sands region have documented increases in snowpack and lake sediment concentrations; however, no studies have addressed the fate and transport of contaminants during the snowmelt period. This study describes modelling approaches that were developed to assess potential effects of aerially deposited PAHs and metals to snowpack and snowmelt water concentrations. The contribution of snowmelt to freshwater PAH concentrations is assessed using a dynamic, multi-compartmental fate model, and the contribution to metal concentrations is estimated using a mass-balance approach. The modelling approaches described herein were applied to two watersheds in the Alberta oil sands region for two planned oil sands developments. Accumulation of PAHs in a lake within the deposition zone was also modelled for comparison to observed concentrations.

  18. Tree swallows (Tachycineta bicolor) nesting on wetlands impacted by oil sands mining are highly parasitized by the bird blow fly Protocalliphora spp.

    PubMed

    Gentes, Marie-Line; Whitworth, Terry L; Waldner, Cheryl; Fenton, Heather; Smits, Judit E

    2007-04-01

    Oil sands mining is steadily expanding in Alberta, Canada. Major companies are planning reclamation strategies for mine tailings, in which wetlands will be used for the bioremediation of water and sediments contaminated with polycyclic aromatic hydrocarbons and naphthenic acids during the extraction process. A series of experimental wetlands were built on companies' leases to assess the feasibility of this approach, and tree swallows (Tachycineta bicolor) were designated as upper trophic biological sentinels. From May to July 2004, prevalence and intensity of infestation with bird blow flies Protocalliphora spp. (Diptera: Calliphoridae) were measured in nests on oil sands reclaimed wetlands and compared with those on a reference site. Nestling growth and survival also were monitored. Prevalence of infestation was surprisingly high for a small cavity nester; 100% of the 38 nests examined were infested. Nests on wetlands containing oil sands waste materials harbored on average from 60% to 72% more blow fly larvae than those on the reference site. Nestlings on reclaimed sites suffered mean parasitic burdens about twice that of those on the reference site; and for comparable parasitic load, they exhibited greater pathologic effects (e.g., decreased body mass) than control nestlings. The heavy blow fly infestation on oil sands-impacted wetlands suggests that oil sands mining disturbs several components of the local ecosystem, including habitat characteristics, blow fly predators, and host resistance to parasites.

  19. Availability of polycyclic aromatic hydrocarbons from lampblack-impacted soils at former oil-gas plant sites in California, USA.

    PubMed

    Hong, Lei; Luthy, Richard G

    2007-03-01

    Lampblack-impacted soils at former oil-gas plant sites in California, USA, were characterized to assess the sorption of polycyclic aromatic hydrocarbons (PAHs) and the concentration-dependent effects of a residual oil tar phase on sorption mechanism and availability of PAHs. Nuclear magnetic resonance spectroscopy demonstrated similar aromaticity for both lampblack carbon and the oil tar phase, with pronounced resonance signals in the range of 100 to 150 ppm. Scanning-electron microscopic images revealed a physically distinct oil tar phase, especially at high concentrations in lampblack, which resulted in an organic-like film structure when lampblack particles became saturated with the oil tar. Sorption experiments were conducted on a series of laboratory-prepared lampblack samples to systematically evaluate influences of an oil tar phase on PAH sorption to lampblack. Results indicate that the sorption of PAHs to lampblack exhibits a competition among sorption phases at low oil tar contents when micro- and mesopores are accessible. When the oil tar content increases to more than 5 to 10% by weight, this tar phase fills small pores, reduces surface area, and dominates PAH sorption on lampblack surface. A new PAH partitioning model, Kd = KLB-C(1 - ftar)alpha + ftarKtar (alpha = empirical exponent), incorporates these effects in which the control of PAH partitioning transits from being dominated by sorption in lampblack (KLB-C) to absorption in oil tar (Ktar), depending on the fraction of tar (ftar). This study illustrates the importance of understanding interactions among PAHs, oil tar, and lampblack for explaining the differences in availability of PAHs among site soils and, consequently, for refining site-specific risk assessment and establishing soil cleanup levels.

  20. Final report on the safety assessment of Juniperus communis Extract, Juniperus oxycedrus Extract, Juniperus oxycedrus Tar, Juniperus phoenicea extract, and Juniperus virginiana Extract.

    PubMed

    2001-01-01

    The common juniper is a tree that grows in Europe, Asia, and North America. The ripe fruit of Juniperus communis and Juniperus oxycedrus is alcohol extracted to produce Juniperus Communis Extract and Juniperus Oxycedrus Extract, respectively. Juniperus Oxycedrus Tar is the volatile oil from the wood of J. oxycedrus. Juniperus Phoenicea Extract comes from the gum of Juniperus phoenicea, and Juniperus Virginiana Extract is extracted from the wood of Juniperus virginiana. Although Juniperus Oxycedrus Tar is produced as a by-product of distillation, no information was available on the manufacturing process for any of the Extracts. Oils derived from these varieties of juniper are used solely as fragrance ingredients; they are commonly produced using steam distillation of the source material, but it is not known if that procedure is used to produce extracts. One report does state that the chemical composition of Juniper Communis Oil and Juniperus Communis Extract is similar, each containing a wide variety of terpenoids and aromatic compounds, with the occasional aliphatic alcohols and aldehydes, and, more rarely, alkanes. The principle component of Juniperus Oxycedrus Tar is cadinene, a sesquiterpene, but cresol and guaiacol are also found. No data were available, however, indicating the extent to which there would be variations in composition that may occur as a result of extraction differences or any other factor such as plant growth conditions. Information on the composition of the other ingredients was not available. All of the Extracts function as biological additives in cosmetic formulations, and Juniperus Oxycedrus Tar is used as a hair-conditioning agent and a fragrance component. Most of the available safety test data are from studies using oils derived from the various varieties of juniper. Because of the expected similarity in composition to the extract, these data were considered. Acute studies using animals show little toxicity of the oil or tar. The oils

  1. Airborne LIDAR Measurements of Aerosol and Ozone Above the Alberta Oil Sands Region

    NASA Astrophysics Data System (ADS)

    Aggarwal, M.; Whiteway, J. A.; Seabrook, J.; Gray, L. H.

    2014-12-01

    Lidar measurements of ozone and aerosol were conducted from a Twin Otter aircraft above the oil sands region of northern Alberta. The field campaign was carried out with a total of five flights out of Fort McMurray, Alberta during the period between August 22 and August 26, 2013. Significant amounts of aerosol were observed within the boundary layer, up to a height of 1.6 km, but the ozone concentration remained at or below background levels. On August 24th the lidar observed a separated layer of aerosol above the boundary layer, at a height of 1.8 km, in which the ozone mixing ratio increased to 70 ppbv. Backward trajectory calculations revealed that the air containing this separated aerosol layer had passed over an area of forest fires. Directly below the layer of forest fire smoke, in the pollution from the oil sands industry, the measured ozone mixing ratio was lower than the background levels (≤35 ppbv).

  2. Policy Analysis of Water Availability and Use Issues for Domestic Oil Shale and Oil Sands Development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ruple, John; Keiter, Robert

    2010-03-01

    Oil shale and oil sands resources located within the intermountain west represent a vast, and as of yet, commercially untapped source of energy. Development will require water, and demand for scarce water resources stands at the front of a long list of barriers to commercialization. Water requirements and the consequences of commercial development will depend on the number, size, and location of facilities, as well as the technologies employed to develop these unconventional fuels. While the details remain unclear, the implication is not – unconventional fuel development will increase demand for water in an arid region where demand for watermore » often exceeds supply. Water demands in excess of supplies have long been the norm in the west, and for more than a century water has been apportioned on a first-come, first-served basis. Unconventional fuel developers who have not already secured water rights stand at the back of a long line and will need to obtain water from willing water purveyors. However, uncertainty regarding the nature and extent of some senior water claims combine with indeterminate interstate river management to cast a cloud over water resource allocation and management. Quantitative and qualitative water requirements associated with Endangered Species protection also stand as barriers to significant water development, and complex water quality regulations will apply to unconventional fuel development. Legal and political decisions can give shape to an indeterminate landscape. Settlement of Northern Ute reserved rights claims would help clarify the worth of existing water rights and viability of alternative sources of supply. Interstate apportionment of the White River would go a long way towards resolving water availability in downstream Utah. And energy policy clarification will help determine the role oil shale and oil sands will play in our nation’s future.« less

  3. Opportunistic disease in yellow perch in response to decadal changes in the chemistry of oil sands-affected waters.

    PubMed

    Hogan, Natacha S; Thorpe, Karen L; van den Heuvel, Michael R

    2018-03-01

    Oil sands-affected water from mining must eventually be incorporated into the reclaimed landscape or treated and released. However, this material contains petrogenic organic compounds, such as naphthenic acids and traces of polycyclic aromatic hydrocarbons. This has raised concerns for impacts of oil sands process-affected waters on the heath of wildlife and humans downstream of receiving environments. The objective of this study was to evaluate the temporal association of disease states in fish with water chemistry of oil sands-affected waters over more than a decade and determine the pathogens associated with disease pathologies. Yellow perch (Perca flavescens) captured from nearby lakes were stocked into two experimental ponds during 1995-1997 and 2008-2010. South Bison Pond is a drainage basin that has received unextracted oil sands-contaminated material. Demonstration Pond is a constructed pond containing mature fine tailings capped with fresh water. Two disease pathologies, fin erosion for which a suspected bacterial pathogen (Acinetobacter Iwoffi) is identified, and lymphocystis (confirmed using a real-time PCR) were associated with oil sands-affected water exposure. From 1995 to 1997 pathologies were most prevalent in the South Bison Pond; however, from 2008 to 2009, disease was more frequently observed in the Demonstration Pond. CYP1A activity was 3-16 fold higher in fish from experimental ponds as compared to reference populations and this pattern was consistent across all sampling years. Bile fluorescence displayed a gradient of exposure with experimental ponds being elevated over local perch populations. Naphthenic acids decreased in the Bison Pond from approximately 12 mg/L to <4 mg/L while naphthenic acids increased in the Demonstration Pond from 6 mg/L to 12 mg/L due to tailings densification. Temporal changes in naphthenic acid levels, CYP1A activity and bile fluorescent metabolites correlate positively with incidence of disease pathologies

  4. 40 CFR 60.101 - Definitions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... crude oil removed from the earth and the oils derived from tar sands, shale, and coal. (c) Process gas..., or react with a contact material suspended in a fluidized bed to improve feedstock quality for...

  5. Reservoir characteristics of two minter oil sands based on continuous core, E-logs, and geochemical data: Bee Brake field, East-Central Louisiana

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Echols, J.B.; Goddard, D.A.; Bouma, A.

    The Bee Brake field area, located in township 4N/6E and 4N/7E in Concordia Parish, has been one of the more prolific oil-producing areas in east-central Louisiana. Production decline in various fields, however, has sparked interest in the economic feasibility of locating and producing the remaining bypassed oil in the lower Wilcox. For this purpose, the Angelina BBF No. 1 well was drilled, and a 500-ft conventional core and a complete suite of state-of-the-are wireline logs were recovered. Production tests were run on the Minter interval of interest. The 16-ft Minter interval (6742-6758 ft depth), bounded at its top and basemore » by lignite seams, consists of an upper 4-ft oil sand (Bee Brake) and a lower 3-ft oil sand (Angelina). The oil sands are separated by approximately 5 ft of thinly laminated silty shale and 4 ft of very fine-grained silty sandstone. Detailed sedimentologic and petrographic descriptions of the Minter interval provide accurate facies determinations of this lower delta-plain sequence. Petrophysical evaluation, combining core plug and modern electric-log data show differences between reservoir quality of the Bee Brake and Angelina sands. This data will also be useful for correlating and interpolating old electric logs. Organic geochemistry of the oil, lignites, and shales provides insight as to the source of the Minter oils and the sourcing potential of the lignites.« less

  6. Tar removal during the fluidized bed gasification of plastic waste.

    PubMed

    Arena, Umberto; Zaccariello, Lucio; Mastellone, Maria Laura

    2009-02-01

    A recycled polyethylene was fed in a pilot plant bubbling fluidized bed gasifier, having an internal diameter of 0.381 m and a maximum feeding capacity of 90 kg/h. The experimental runs were carried out under various operating conditions: the bed temperature was kept at about 850 degrees C, the equivalence ratio varied between 0.2 and 0.35, the amount of bed material was between 131 and 215 kg, the fluidizing velocity was between 0.5 and 0.7 m/s, quartz sand and olivine were used as bed material, and air and steam were used as fluidizing reactants. The results confirm that the tar removal treatments applied inside the gasifier (primary methods) can eliminate or strongly reduce the need for a further downstream cleanup of the syngas. In particular, the utilization of a natural olivine as an in situ tar reduction agent remarkably improves the quality of the product gas, in terms of both high hydrogen volumetric fraction and larger syngas yield.

  7. Variability and uncertainty in life cycle assessment models for greenhouse gas emissions from Canadian oil sands production.

    PubMed

    Brandt, Adam R

    2012-01-17

    Because of interest in greenhouse gas (GHG) emissions from transportation fuels production, a number of recent life cycle assessment (LCA) studies have calculated GHG emissions from oil sands extraction, upgrading, and refining pathways. The results from these studies vary considerably. This paper reviews factors affecting energy consumption and GHG emissions from oil sands extraction. It then uses publicly available data to analyze the assumptions made in the LCA models to better understand the causes of variability in emissions estimates. It is found that the variation in oil sands GHG estimates is due to a variety of causes. In approximate order of importance, these are scope of modeling and choice of projects analyzed (e.g., specific projects vs industry averages); differences in assumed energy intensities of extraction and upgrading; differences in the fuel mix assumptions; treatment of secondary noncombustion emissions sources, such as venting, flaring, and fugitive emissions; and treatment of ecological emissions sources, such as land-use change-associated emissions. The GHGenius model is recommended as the LCA model that is most congruent with reported industry average data. GHGenius also has the most comprehensive system boundaries. Last, remaining uncertainties and future research needs are discussed.

  8. Twelve-year trends in ambient concentrations of volatile organic compounds in a community of the Alberta Oil Sands Region, Canada.

    PubMed

    Bari, Md Aynul; Kindzierski, Warren B; Spink, David

    2016-05-01

    Environmental exposure to volatile organic compounds (VOCs) in ambient air is one of a number of concerns that the First Nation Community of Fort McKay, Alberta has related to development of Canada's oil sands. An in-depth investigation of trends in ambient air VOC levels in Fort McKay was undertaken to better understand the role and possible significance of emissions from Alberta's oil sands development. A non-parametric trend detection method was used to investigate trends in emissions and ambient VOC concentrations over a 12-year (2001-2012) period. Relationships between ambient VOC concentrations and production indicators of oil sands operations around Fort McKay were also examined. A weak upward trend (significant at 90% confidence level) was found for ambient concentrations of total VOCs based on sixteen detected species with an annual increase of 0.64μg/m(3) (7.2%) per year (7.7μg/m(3) increase per decade). Indicators of production (i.e., annual bitumen production and mined oil sands quantities) were correlated with ambient total VOC concentrations. Only one of 29 VOC species evaluated (1-butene) showed a statistically significant upward trend (p=0.05). Observed geometric (arithmetic) mean and maximum ambient concentrations of selected VOCs of public health concern for most recent three years of the study period (2010-2012) were below chronic and acute health risk screening criteria of the U.S. Agency for Toxic Substances and Disease Registry and U.S. Environmental Protection Agency. Thirty-two VOCs are recommended for tracking in future air quality investigations in the community to better understand whether changes are occurring over time in relation to oil sands development activities and to inform policy makers about whether or not these changes warrant additional attention. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Investigation of Reversing Sand Dunes at the Bruneau Dunes, Idaho, as Analogs for Features on Mars

    NASA Astrophysics Data System (ADS)

    Zimbelman, J. R.; Scheidt, S. P.

    2012-12-01

    The Bruneau Dunes in south-central Idaho include several large reversing sand dunes located within a cut-off meander of the Snake River. These dunes include the largest single-structured sand dune present in North America. Wind records from the Remote Automated Weather Station (RAWS) installation at the Mountain Home Air Force Base, which is ~21 km NW of the Bruneau Dunes, have proved to be very helpful in assessing the regional wind patterns at this section of the western Snake River Plains province; a bimodal wind regime is present, with seasonal changes of strong (sand-moving) winds blowing from either the northwest or the southeast. During April of 2011, we obtained ten precision topographic surveys across the southernmost reversing dune using a Differential Global Positioning System (DGPS). The DGPS data document the shape of the dune going from a low, broad sand ridge at the southern distal end of the dune to the symmetrically shaped 112-m-high central portion of the dune, where both flanks of the dune consist of active slopes near the angle of repose. These data will be useful in evaluating the reversing dune hypothesis proposed for enigmatic features on Mars called Transverse Aeolian Ridges (TARs), which could have formed either as large mega-ripples or small sand dunes. The symmetric profiles across TARs with heights greater than 1 m are more consistent with measured profiles of reversing sand dunes than with measured profiles of mega-ripples (whose surfaces are coated by large particles ranging from coarse sand to gravel, moved by saltation-induced creep). Using DGPS to monitor changes in the three-dimensional location of the crests of the reversing dunes at the Bruneau Dunes should provide a means for estimating the likely timescale for changes of TAR crests if the Martian features are indeed formed in the same manner as reversing sand dunes on Earth.

  10. Chemistry and origin of Miocene and Eocene oils and tars in the onshore and offshore Santa Cruz Basins, California

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kornacki, A.S.; McNeil, R.I.

    1996-12-31

    The Santa Cruz (La Honda) Basin is a small {open_quote}slice{close_quote} of the San Joaquin Basin that has been displaced c. 300 km to the northwest by the San Andreas Fault. The poorly-explored offshore area that now lies within the Monterey Bay NMS includes portions of the Outer Santa Cruz and Bodega basins. A modest amount (c. 1.3 MM bbl) of variable-quality oil has been produced from Eocene and Pliocene pay zones in the La Honda Field. Much smaller amounts of light oil ({ge}40{degrees} API) have been produced from three other fields (Oil Creek; Moody Gulch; Half Moon Bay). Large tarmore » deposits also outcrop near the city of Santa Cruz. Proven source rocks in this basin include the Eocene Twobar Shale and three Miocene units: the Lambert Shale, Monterey Formation, and the Santa Cruz Mudstone. A high-gravity oil sample from the Oil Creek Field contains isotopically-light carbon ({delta}{sup 13}C = - 28.2 per mil) and has a relatively high pristane/phytane ratio. This oil was generated at high temperature (c. 140{degrees}C) by pre-Miocene source rocks (probably the Twobar Shale). The presence of isotopically-heavy carbon in all other oil and tar samples demonstrates they were generated by Miocene source rocks. But the C{sub 7} oil-generation temperatures, sulfur content, vanadium/nickel ratios, and biomarker chemistry of these Miocene oils are significantly different than in Monterey oils from the prolific Santa Maria Basin (SMB). The sulfur content (8.0 wt%) and V-Ni chemistry of tarry petroleum recovered in the P-036-1 well (Outer Santa Cruz Basin) resembles the chemistry of very heavy (<15{degrees}API) oils generated by phosphatic Monterey shales in the SMB.« less

  11. Post Retort, Pre Hydro-treat Upgrading of Shale Oil

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gordon, John

    Various oil feedstocks, including oil from oil shale, bitumen from tar sands, heavy oil, and refin- ery streams were reacted with the alkali metals lithium or sodium in the presence of hydrogen or methane at elevated temperature and pressure in a reactor. The products were liquids with sub- stantially reduced metals, sulfur and nitrogen content. The API gravity typically increased. Sodi- um was found to be more effective than lithium in effectiveness. The solids formed when sodium was utilized contained sodium sulfide which could be regenerated electrochemically back to so- dium and a sulfur product using a "Nasicon", sodium ionmore » conducting membrane. In addition, the process was found to be effective reducing total acid number (TAN) to zero, dramatically reduc- ing the asphaltene content and vacuum residual fraction in the product liquid. The process has promise as a means of eliminating sulfur oxide and carbon monoxide emissions. The process al- so opens the possibility of eliminating the coking process from upgrading schemes and upgrad- ing without using hydrogen.« less

  12. Microbial Diversity in Natural Asphalts of the Rancho La Brea Tar Pits▿

    PubMed Central

    Kim, Jong-Shik; Crowley, David E.

    2007-01-01

    Bacteria commonly inhabit subsurface oil reservoirs, but almost nothing is known yet about microorganisms that live in naturally occurring terrestrial oil seeps and natural asphalts that are comprised of highly recalcitrant petroleum hydrocarbons. Here we report the first survey of microbial diversity in ca. 28,000-year-old samples of natural asphalts from the Rancho La Brea Tar Pits in Los Angeles, CA. Microbiological studies included analyses of 16S rRNA gene sequences and DNA encoding aromatic ring-hydroxylating dioxygenases from two tar pits differing in chemical composition. Our results revealed a wide range of phylogenetic groups within the Archaea and Bacteria domains, in which individual taxonomic clusters were comprised of sets of closely related species within novel genera and families. Fluorescent staining of asphalt-soil particles using phylogenetic probes for Archaea, Bacteria, and Pseudomonas showed coexistence of mixed microbial communities at high cell densities. Genes encoding dioxygenases included three novel clusters of enzymes. The discovery of life in the tar pits provides an avenue for further studies of the evolution of enzymes and catabolic pathways for bacteria that have been exposed to complex hydrocarbons for millennia. These bacteria also should have application for industrial microbiology and bioremediation. PMID:17416692

  13. Solar photocatalytic degradation of naphthenic acids in oil sands process-affected water.

    PubMed

    Leshuk, Tim; Wong, Timothy; Linley, Stuart; Peru, Kerry M; Headley, John V; Gu, Frank

    2016-02-01

    Bitumen mining in the Canadian oil sands creates large volumes of oil sands process-affected water (OSPW), the toxicity of which is due in part to naphthenic acids (NAs) and other acid extractable organics (AEO). The objective of this work was to evaluate the potential of solar photocatalysis over TiO2 to remove AEO from OSPW. One day of photocatalytic treatment under natural sunlight (25 MJ/m(2) over ∼14 h daylight) eradicated AEO from raw OSPW, and acute toxicity of the OSPW toward Vibrio fischeri was eliminated. Nearly complete mineralization of organic carbon was achieved within 1-7 day equivalents of sunlight exposure, and degradation was shown to proceed through a superoxide-mediated oxidation pathway. High resolution mass spectrometry (HRMS) analysis of oxidized intermediate compounds indicated preferential degradation of the heavier and more cyclic NAs (higher number of double bond equivalents), which are the most environmentally persistent fractions. The photocatalyst was shown to be recyclable for multiple uses, and thus solar photocatalysis may be a promising "green" advanced oxidation process (AOP) for OSPW treatment. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Partitioning and bioaccumulation of metals from oil sands process affected water in indigenous Parachlorella kessleri.

    PubMed

    Mahdavi, Hamed; Liu, Yang; Ulrich, Ania C

    2013-02-01

    This paper studies the partitioning and bioaccumulation of ten target metals ((53)Cr, Mn, Co, (60)Ni, (65)Cu, (66)Zn, As, (88)Sr, (95)Mo and Ba) from oil sands tailings pond water (TPW) by indigenous Parachlorella kessleri. To determine the role of extracellular and intracellular bioaccumulation in metal removal by P. kessleri, TPW samples taken from two oil sands operators (Syncrude Canada Ltd. and Albian Sands Energy Inc.) were enriched with nutrient supplements. Results indicate that intracellular bioaccumulation played the main role in metal removal from TPW; whereas extracellular bioaccumulation was only observed to some extent for Mn, Co, (60)Ni, (65)Cu, (88)Sr, (95)Mo and Ba. The FTIR scan and titration of functional groups on the cell surface indicated low metal binding capacity by indigenous P. kessleri. However, it is believed that the dissolved cations and organic ligand content in TPW (such as naphthenic acids) may interfere with metal binding on the cell surface and lower extracellular bioaccumulation. In addition, the total bioaccumulation and bioconcentration factor (BCF) varied during the cultivation period in different growth regimes. Copyright © 2012 Elsevier Ltd. All rights reserved.

  15. Detoxification, endocrine, and immune responses of tree swallow nestlings naturally exposed to air contaminants from the Alberta oil sands.

    PubMed

    Cruz-Martinez, Luis; Fernie, Kim J; Soos, Catherine; Harner, Tom; Getachew, Fitsum; Smits, Judit E G

    2015-01-01

    Changes in environmental and wildlife health from contaminants in tailings water on the Canadian oil sands have been well-studied; however, effects of air contaminants on wildlife health have not. A field study was conducted to assess biological costs of natural exposure to oil sands-related air emissions on birds. Nest boxes for tree swallows (Tachycineta bicolor) were erected at two sites; within 5 km of active oil sands mining and extraction, and ≥ 60 km south, at one reference site. Passive air monitors were deployed at the nest boxes to measure nitrogen dioxide, sulfur dioxide, ozone, volatile organic compounds, and polycyclic aromatic hydrocarbons (PAHs). Nestlings were examined at day 9 post hatching to assess T cell function and morphometry. At day 14 post hatching, a subset of nestlings was euthanized to measure detoxification enzymes, endocrine changes, and histological alterations of immune organs. Except for ozone, all air contaminants were higher at the two oil sands sites than the reference site (up to 5-fold). Adult birds had similar reproductive performance among sites (p>0.05). Nestlings from industrial sites showed higher hepatic ethoxyresorufin O-dealkylase (EROD) induction (p<0.0001) with lower relative hepatic mass (p=0.0001), a smaller T cell response to the phytohemagglutinin skin test (p=0.007), and smaller bursae of Fabricius (p<0.02); a low sample size for one site indicating lower body condition scores (p=0.01) at day 14 warrants cautious interpretation. There were no differences among nestlings for feather corticosterone (p>0.6), and no histological alterations in the spleen or bursa of Fabricius (p>0.05). This is the first report examining toxicological responses in wild birds exposed to air contaminants from industrial activity in the oil sands. It is also the first time that small, individual air contaminant monitors have been used to determine local contaminant levels in ambient air around nest boxes of wild birds. Copyright

  16. Variation in toxicity response of Ceriodaphnia dubia to Athabasca oil sands coke leachates.

    PubMed

    Puttaswamy, Naveen; Turcotte, Dominique; Liber, Karsten

    2010-07-01

    Coke from the Athabasca (Alberta, Canada) oil sands operations may someday be integrated into reclamation landscapes. It is hypothesized that the metals associated with the solid coke may leach into the surrounding environment. Therefore, the main objectives of this study were to characterize the toxicity and chemistry of coke leachates collected from two field lysimeters (i.e. shallow lysimeter and deep lysimeter) over a period of 20months, as well as from other oil sands coke storage sites. In addition, a batch renewal leaching of coke was conducted to examine the rate of metals release. Chronic toxicity of key metals (e.g. Al, Mn, Ni and V) found in lysimeter coke leachate was evaluated separately. Toxicity test results revealed that whole coke leachates (100% v/v) were acutely toxic to Ceriodaphnia dubia; the 7-day LC50 values were always <25% v/v coke leachate. The deep lysimeter leachate was generally more toxic than the shallow lysimeter leachate, likely because of significantly higher concentrations of vanadium (V) found in the deep lysimeter leachate at all sampling times. Vanadium concentrations were higher than all other metals found in the leachate from both lysimeters, and in the batch renewal leaching study. Furthermore, V found in leachates collected from other oil sands field sites showed a concentration-response relationship with C. dubia survival. Mass balance calculations indicated that 94-98% of potentially leachable V fraction was still present in the coke from two field lysimeters. Evidence gathered from these assessments, including toxic unit (TU) calculations for the elements of concern, suggests that V was the likely cause of toxicity of the deep lysimeter leachate, whereas in the shallow lysimeter leachate both Ni and V could be responsible for the observed toxicity. 2010 Elsevier Ltd. All rights reserved.

  17. Characterization of naphthenic acids in oil sands wastewaters by gas chromatography-mass spectrometry.

    PubMed

    Holowenko, Fervone M; MacKinnon, Michael D; Fedorak, Phillip M

    2002-06-01

    The water produced during the extraction of bitumen from oil sands is toxic to aquatic organisms due largely to a group of naturally occurring organic acids, naphthenic acids (NAs), that are solubilized from the bitumen during processing. NAs are a complex mixture of alkyl-substituted acyclic and cycloaliphatic carboxylic acids, with the general chemical formula CnH(2n + Z)O2, where n is the carbon number and Z specifies a homologous family. Gas chromatography-electron impact mass spectrometry was used to characterize NAs in nine water samples derived from oil sands extraction processes. For each sample, the analysis provided the relative abundances for up to 156 base peaks, with each representing at least one NA structure. Plotting the relative abundances of NAs as three-dimensional bar graphs showed differences among samples. The relative abundance of NAs with carbon numbers < or = 21 to those in the "C22 + cluster" (sum of all NAs with carbon numbers > or = 22 in Z families 0 to -12) proved useful for comparing the water samples that had a range of toxicities. A decrease in toxicity of process-affected waters accompanied an increase in the proportion of NAs in the "C22 + cluster", likely caused by biodegradation of NAs with carbon numbers of < or = 21. In addition, an increase in the proportion of NAs in the "C22 + cluster" accompanied a decrease in the total NAs in the process-affected waters, again suggesting the selective removal of NAs with carbon numbers of < or = 21. This is the first investigation in which changes in the fingerprint of the NA fraction of process-affected waters from the oil sands operations has corresponded with measured toxicity in these waters.

  18. Sea sand disruption method (SSDM) as a valuable tool for isolating essential oil components from conifers.

    PubMed

    Dawidowicz, Andrzej L; Czapczyńska, Natalia B

    2011-11-01

    Essential oils are one of nature's most precious gifts with surprisingly potent and outstanding properties. Coniferous oils, for instance, are nowadays being used extensively to treat or prevent many types of infections, modify immune responses, soothe inflammations, stabilize moods, and to help ease all forms of non-acute pain. Given the broad spectrum of usage of coniferous essential oils, a fast, safe, simple, and efficient sample-preparation method is needed in the estimation procedure of essential oil components in fresh plant material. Generally, the time- and energy-consuming steam distillation (SD) is applied for this purpose. This paper will compare SD, pressurized liquid extraction (PLE), matrix solid-phase dispersion (MSPD), and the sea sand disruption method (SSDM) as isolation techniques to obtain aroma components from Scots pine (Pinus sylvestris), spruce (Picea abies), and Douglas fir (Pseudotsuga menziesii). According to the obtained data, SSDM is the most efficient sample preparation method in determining the essential oil composition of conifers. Moreover, SSDM requires small organic solvent amounts and a short extraction time, which makes it an advantageous alternative procedure for the routine analysis of coniferous oils. The superiority of SSDM over MSPD efficiency is ascertained, as there are no chemical interactions between the plant cell components and the sand. This fact confirms the reliability and efficacy of SSDM for the analysis of volatile oil components. Copyright © 2011 Verlag Helvetica Chimica Acta AG, Zürich.

  19. Low-tar and high-tar cigarettes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Holt, P.G.; Chalmer, J.E.; Roberts, L.M.

    Mice were exposed for 7 to 8 minutes on weekdays to fresh smoke from high-tar (HT) or low-tar (LT) cigarettes for varying periods of up to 36 weeks. Mice exposed to HT cigarettes exhibited more marked alterations in humoral immune responsiveness, hematological profiles, and pulmonary pathologic findings than those exposed to LT cigarettes. However, cell-mediated immune responsiveness to both bacterial and tumor-specific antigens was depressed similarly in animals exposed to HT or LT cigarettes. Furthermore, the growth rates of subcutaneously established tumors were enhanced similarly in the two groups, with respect to those in control animals.

  20. Oil sands process-affected water impairs feeding by Daphnia magna.

    PubMed

    Lari, Ebrahim; Steinkey, Dylan; Morandi, Garrett; Rasmussen, Joseph B; Giesy, John P; Pyle, Greg G

    2017-05-01

    Growth in extraction of bitumen from oil sands has raised concerns about influences of this industry on surrounding environments. Water clearance rate (a surrogate of feeding rate by Daphnia magna) in water containing D. magna exposed to oil sands process-affected water (OSPW) and its principal components, dissolved component (DC) and suspended particulate matter (SPM), was reduced to 72, 29, and 59% of controls, respectively. This study also examined several possible mechanisms for the observed changes algal cell density (i.e., feeding rate). There was no change in the digestive enzymes trypsin or amylase when D. magna were exposed to DC or SPM; however, exposure to total OSPW reduced trypsin activity. Mandible rolling or post-abdominal rejections, which are indicators of feeding and palatability of food, were not affected by any exposures to OSPW. Beating of thoracic limbs, which provides water flow toward the feeding groove, was reduced by exposure to SPM or total OSPW. Peristaltic activity was reduced by exposure to DC, which then might result in reduced digestion time in D. magna exposed to DC, SPM or whole OSPW. All treatments caused an increase in numbers of intact algae cells in the hindgut and excreted material. These results suggest that both DC and SPM affect feeding of D. magna by impairing actions of the digestive system, but most probably not by reducing rates of ingestion. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Differential Effects of High Atmospheric N and S Deposition on Bog Plant/Lichen Tissue and Porewater Chemistry across the Athabasca Oil Sands Region.

    PubMed

    Wieder, R Kelman; Vile, Melanie A; Scott, Kimberli D; Albright, Cara M; McMillen, Kelly J; Vitt, Dale H; Fenn, Mark E

    2016-12-06

    Oil extraction and development activities in the Athabasca Oil Sands Region of northern Alberta, Canada, release NO x , SO x , and NH y to the atmosphere, ultimately resulting in increasing N and S inputs to surrounding ecosystems through atmospheric deposition. Peatlands are a major feature of the northern Alberta landscape, with bogs covering 6-10% of the land area, and fens covering 21-53%. Bulk deposition of NH 4 + -N, NO 3 - -N, dissolved inorganic N (DIN), and SO 4 2- -S, was quantified using ion-exchange resin collectors deployed at 23 locations, over 1-6 years. The results reveal maximum N and S deposition of 9.3 and 12.0 kg ha -1 yr -1 , respectively, near the oil sands industrial center (the midpoint between the Syncrude and Suncor upgrader stacks), decreasing with distance to a background deposition of 0.9 and 1.1 kg ha -1 yr -1 , respectively. To assess potential influences of high N and S deposition on bogs, we quantified N and S concentrations in tissues of two Sphagnum species, two lichen species, and four vascular plant species, as well as surface porewater concentrations of H + , NH 4 + -N, NO 3 - -N, SO 4 2- -S and dissolved organic N in 19 ombrotrophic bogs, distributed across a 3255 km 2 sampling area surrounding the oil sands industrial center. The two lichen species (Evernia mesomorpha and Cladonia mitis), two vascular plant species (Rhododendron groenlandicum and Picea mariana), and to a lesser extent one moss (Sphagnum fuscum), showed patterns of tissue N and S concentrations that were (1) highest near the oil sands industrial center and (2) positively correlated with bulk deposition of N or S. Concentrations of porewater H + and SO 4 2- -S, but not of NH 4 + -N, NO 3 - -N, DIN, or dissolved inorganic N, also were higher near the oil sands industrial center than at more distant locations. The oil sands region of northern Alberta is remote, with few roads, posing challenges to the monitoring of oil sands-related N and S deposition

  2. Key performance indicators for electric mining shovels and oil sands diggability

    NASA Astrophysics Data System (ADS)

    Patnayak, Sibabrata

    A shovel performance monitoring study was undertaken in two oil sands mines operated by Syncrude Canada Ltd. using performance data obtained from P&H 4100 TS and BOSS electric mining shovels. One year of shovel performance data along with geological, geotechnical, and climatic data were analyzed. The approach adopted was to use current and voltage data collected from hoist and crowd motors and to calculate the energy and/or power associated with digging. Analysis of performance data along with digital video records of operating shovels indicated that hoist and crowd motor voltages and currents can be used to identify the beginning and the end of individual dig cycles. A dig cycle identification algorithm was developed. Performance indicators such as dig cycle time, hoist motor energy and power, and crowd motor energy and power were determined. The shovel performance indicators provide important insight into how geology, equipment and operators affect the digging efficiency. The hoist motor power is a useful key performance indicator for assessing diggability. Hoist motor energy consumption per tonne of material excavated and the number of dig cycles required for loading a truck can be useful key performance indicators for assessing operator performance and productivity. Analysis of performance data along with operators team schedules showed that the performance of a shovel can be significantly influenced by the operator's digging technique while digging uniform material. Up to 25% variability in hoist motor power consumption and 50% variability in productivity was noted between different operators. Shovel type and dipper teeth configuration can also influence the power draw on electrical motors during digging. There is no common agreement existing on the influence of bitumen content on oil sands diggability. By comparing the hoist motor power consumption, it was found that the rich ore was more difficult to dig than the lean ore. Similarly, estuarine ore was more

  3. Chemical fingerprinting of naphthenic acids and oil sands process waters-A review of analytical methods for environmental samples.

    PubMed

    Headley, J V; Peru, K M; Mohamed, M H; Frank, R A; Martin, J W; Hazewinkel, R R O; Humphries, D; Gurprasad, N P; Hewitt, L M; Muir, D C G; Lindeman, D; Strub, R; Young, R F; Grewer, D M; Whittal, R M; Fedorak, P M; Birkholz, D A; Hindle, R; Reisdorph, R; Wang, X; Kasperski, K L; Hamilton, C; Woudneh, M; Wang, G; Loescher, B; Farwell, A; Dixon, D G; Ross, M; Pereira, A Dos Santos; King, E; Barrow, M P; Fahlman, B; Bailey, J; McMartin, D W; Borchers, C H; Ryan, C H; Toor, N S; Gillis, H M; Zuin, L; Bickerton, G; Mcmaster, M; Sverko, E; Shang, D; Wilson, L D; Wrona, F J

    2013-01-01

    This article provides a review of the routine methods currently utilized for total naphthenic acid analyses. There is a growing need to develop chemical methods that can selectively distinguish compounds found within industrially derived oil sands process affected waters (OSPW) from those derived from the natural weathering of oil sands deposits. Attention is thus given to the characterization of other OSPW components such as oil sands polar organic compounds, PAHs, and heavy metals along with characterization of chemical additives such as polyacrylamide polymers and trace levels of boron species. Environmental samples discussed cover the following matrices: OSPW containments, on-lease interceptor well systems, on- and off-lease groundwater, and river and lake surface waters. There are diverse ranges of methods available for analyses of total naphthenic acids. However, there is a need for inter-laboratory studies to compare their accuracy and precision for routine analyses. Recent advances in high- and medium-resolution mass spectrometry, concomitant with comprehensive mass spectrometry techniques following multi-dimensional chromatography or ion-mobility separations, have allowed for the speciation of monocarboxylic naphthenic acids along with a wide range of other species including humics. The distributions of oil sands polar organic compounds, particularly the sulphur containing species (i.e., OxS and OxS2) may allow for distinguishing sources of OSPW. The ratios of oxygen- (i.e., Ox) and nitrogen-containing species (i.e., NOx, and N2Ox) are useful for differentiating organic components derived from OSPW from natural components found within receiving waters. Synchronous fluorescence spectroscopy also provides a powerful screening technique capable of quickly detecting the presence of aromatic organic acids contained within oil sands naphthenic acid mixtures. Synchronous fluorescence spectroscopy provides diagnostic profiles for OSPW and potentially impacted

  4. Modified biopolymers as sorbents for the removal of naphthenic acids from oil sands process affected water (OSPW).

    PubMed

    Arshad, Muhammad; Khosa, M A; Siddique, Tariq; Ullah, Aman

    2016-11-01

    Oil sands operations consume large volumes of water in bitumen extraction process and produce tailings that express pore water to the surface of tailings ponds known as oil sands process-affected water (OSPW). The OSPW is toxic and cannot be released into the environment without treatment. In addition to metals, dissolved solids, dissolved gases, hydrocarbons and polyaromatic compounds etc., OSPW also contains a complex mixture of dissolved organic acids, referred to as naphthenic acids (NAs). The NAs are highly toxic and react with metals to develop highly corrosive functionalities which cause corrosion in the oil sands processing and refining processes. We have chemically modified keratin biopolymer using polyhedral oligomeric silsesquioxanes (POSS) nanocages and goethite dopant to unfold keratinous structure for improving functionality. The untreated neat keratin and two modified sorbents were characterized to investigate structural, morphological, dimensional and thermal properties. These sorbents were then tested for the removal of NAs from OSPW. The NAs were selectively extracted and quantified before and after sorption process. The biosorption capacity (Q), rejection percentage (R%) and isotherm models were studied to investigate NAs removal efficiency of POSS modified keratin biopolymer (PMKB) and goethite modified keratin biopolymer (GMKB) from aliquots of OSPW. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Phytotoxicity and naphthenic acid dissipation from oil sands fine tailings treatments planted with the emergent macrophyte Phragmites australis.

    PubMed

    Armstrong, Sarah A; Headley, John V; Peru, Kerry M; Mikula, Randy J; Germida, James J

    2010-01-01

    During reclamation the water associated with the runoff or groundwater flushing from dry stackable tailings technologies may become available to the reclaimed environment within an oil sands lease. Here we evaluate the performance of the emergent macrophyte, common reed (Phragmites australis), grown in chemically amended mature fine tailings (MFT) and simulated runoff/seepage water from different MFT drying treatments. The present study also investigated the phytotoxicity of the concentration of oil sands naphthenic acids (NAs) in different MFT drying chemical treatments, in both planted and unplanted systems. We demonstrate that although growth was reduced, the emergent macrophyte common reed was capable of growing in diluted unamended MFT runoff, as well as in diluted runoff from MFT amended with either 0.25% lime and gypsum or 0.5% gypsum. Common reed can thus assist in the dewatering process of oil sands MFT. However, simulated runoff or seepage waters from chemically amended and dried MFT were phytotoxic, due to combined levels of salts, naphthenic acids and pH. Phytoremediation of runoff water/ground water seepage from dry-land applied MFT will thus require pre-treatment in order to make conditions more favorable for plant growth.

  6. Influence of the presence of PAHs and coal tar on naphthalene sorption in soils

    NASA Astrophysics Data System (ADS)

    Bayard, Rémy; Barna, Ligia; Mahjoub, Borhane; Gourdon, Rémy

    2000-11-01

    concentrations (about 120 mg/kg) in the soil. In contrast, experiments carried out with coal tar particles revealed a significant effect. Naphthalene sorption appeared to be proportional to the amount of coal tar added to the sand or soil, and a much higher affinity of naphthalene for XOM ( Koc above 2000 cm 3/g) than SOM ( Koc around 300 cm 3/g) was observed. Naphthalene transport in the columns of sand or soil spiked with coal tar particles was simulated very satisfactorily with a dual double-domain model. Around 90% of naphthalene retention by coal tar was found to occur within the organic phase, suggesting a phase partition process which may be explained by the amorphous nature of the XOM and its extreme affinity for naphthalene. For SOM, however, which is present as porous microaggregates of clay and humic substances, with less affinity for naphthalene, only 1/3 of naphthalene retention was found to occur within the organic phase, underlining the significant role of surface adsorption in the short term behavior of naphthalene in soil. For longer contact times, the model simulations proposed in the present study should be coupled to slow sorption, aging and biodegradation models to describe long-term behavior of naphthalene in soil-tar-water systems.

  7. Utilization of fly ash as partial sand replacement in oil palm shell lightweight aggregate concrete

    NASA Astrophysics Data System (ADS)

    Nazrin Akmal, A. Z. Muhammad; Muthusamy, K.; Mat Yahaya, F.; Hanafi, H. Mohd; Nur Azzimah, Z.

    2017-11-01

    Realization on the increasing demand for river sand supply in construction sector has inspired the current research to find alternative material to reduce the use of natural sand in oil palm shell lightweight aggregate concrete (OPS LWAC) production. The existence of fly ash, a by-product generated from coal power plant, which pose negative impact to the environment when it is disposed as waste, were used in this research. The effect of fly ash content as partial sand replacement towards workability and compressive strength of OPS lightweight aggregate concrete were investigated. Four concrete mixes containing various percentage of fly ash that are 0%, 10%, 20% and 30% by weight of sand were used in the experimental work. All mixes were cast in form of cubes before subjected to water curing until the testing age. Compressive strength test were conducted at 1, 3, 7 and 28 days. The finding shows that the workability of the OPS LWAC decreases when more fly ash are used as sand replacement. It was found that adding of 10% fly ash as sand replacement content resulted in better compressive strength of OPS LWAC, which is higher than the control mix.

  8. Trace metal mobilization from oil sands froth treatment thickened tailings exhibiting acid rock drainage.

    PubMed

    Kuznetsova, Alsu; Kuznetsov, Petr; Foght, Julia M; Siddique, Tariq

    2016-11-15

    Froth treatment thickened tailings (TT) are a waste product of bitumen extraction from surface-mined oil sands ores. When incubated in a laboratory under simulated moist oxic environmental conditions for ~450d, two different types of TT (TT1 and TT2) exhibited the potential to generate acid rock drainage (ARD) by producing acid leachate after 250 and 50d, respectively. We report here the release of toxic metals from TT via ARD, which could pose an environmental threat if oil sands TT deposits are not properly managed. Trace metal concentrations in leachate samples collected periodically revealed that Mn and Sr were released immediately even before the onset of ARD. Spikes in Co and Ni concentrations were observed both pre-ARD and during active ARD, particularly in TT1. For most elements measured (Fe, Cr, V, As, Cu, Pb, Zn, Cd, and Se), leaching was associated with ARD production. Though equivalent acidification (pH2) was achieved in leachate from both TT types, greater metal release was observed from TT2 where concentrations reached 10,000ppb for Ni, 5000ppb for Co, 3000ppb for As, 2000ppb for V, and 1000ppb for Cr. Generally, metal concentrations decreased in leachate with time during ARD and became negligible by the end of incubation (~450d) despite appreciable metals remaining in the leached TT. These results suggest that using TT for land reclamation purposes or surface deposition for volume reduction may unfavorably impact the environment, and warrants application of appropriate strategies for management of pyrite-enriched oil sands tailings streams. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Topical tar: Back to the future

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Paghdal, K.V.; Schwartz, R.A.

    2009-08-15

    The use of medicinal tar for dermatologic disorders dates back to the ancient times. Although coal tar is utilized more frequently in modern dermatology, wood tars have also been widely employed. Tar is used mainly in the treatment of chronic stable plaque psoriasis, scalp psoriasis, atopic dermatitis, and seborrheic dermatitis, either alone or in combination therapy with other medications, phototherapy, or both. Many modifications have been made to tar preparations to increase their acceptability, as some dislike its odor, messy application, and staining of clothing. One should consider a tried and true treatment with tar that has led to clearingmore » of lesions and prolonged remission times. Occupational studies have demonstrated the carcinogenicity of tar; however, epidemiologic studies do not confirm similar outcomes when used topically. This article will review the pharmacology, formulations, efficacy, and adverse effects of crude coal tar and other tars in the treatment of selected dermatologic conditions.« less

  10. G-CLEAN OSC-1809

    EPA Pesticide Factsheets

    Technical product bulletin: aka OIL SPILL CLEANUP, this surface washing agent may be applied liberally to heavily weathered oil on rocks or beaches/sand, vegetation, or at full strength on tar balls. Best results if allowed to soak, agitated, or reapplied.

  11. Differences in phytotoxicity and dissipation between ionized and nonionized oil sands naphthenic acids in wetland plants.

    PubMed

    Armstrong, Sarah A; Headley, John V; Peru, Kerry M; Germida, James J

    2009-10-01

    Naphthenic acids (NAs) are composed of alkyl-substituted acyclic and cycloaliphatic carboxylic acids and, because they are acutely toxic to fish, are of toxicological concern. During the caustic hot-water extraction of oil from the bitumen in oil sands deposits, NAs become concentrated in the resulting tailings pond water. The present study investigated if dissipation of NAs occurs in the presence of hydroponically grown emergent macrophytes (Typha latifolia, Phragmites australis, and Scirpus acutus) to determine the potential for phytoremediation of these compounds. Plants were grown with oil sands NAs (pKa approximately 5-6) in medium at pH 7.8 (predominantly ionized NAs) and pH 5.0 (predominantly nonionized NAs) to determine if, by altering their chemical form, NAs may be more accessible to plants and, thus, undergo increased dissipation. Whereas the oil sands NA mixture in its nonionized form was more toxic to wetland plants than its ionized form, neither form appeared to be sequestered by wetland plants. The present study demonstrated that plants may selectively enhance the dissipation of individual nonionized NA compounds, which contributes to toxicity reduction but does not translate into detectable total NA dissipation within experimental error and natural variation. Plants were able to reduce the toxicity of a NA system over 30 d, increasing the median lethal concentration (LC50; % of hydroponic solution) of the medium for Daphnia magna by 23.3% +/- 8.1% (mean +/- standard error; nonionized NAs) and 37.0% +/- 2.7% (ionized NAs) as determined by acute toxicity bioassays. This reduction in toxicity was 7.3% +/- 2.6% (nonionized NAs) and 45.0% +/- 6.8% (ionized NAs) greater than that in unplanted systems.

  12. Phytotoxicity and Plant Productivity Analysis of Tar-Enriched Biochars

    NASA Astrophysics Data System (ADS)

    Keller, M. L.; Masiello, C. A.; Dugan, B.; Rudgers, J. A.; Capareda, S. C.

    2008-12-01

    Biochar is one of the three by-products obtained by the pyrolysis of organic material, the other two being syngas and bio-oil. The pyrolysis of biomass has generated a great amount of interest in recent years as all three by-products can be put toward beneficial uses. As part of a larger project designed to evaluate the hydrologic impact of biochar soil amendment, we generated a biochar through fast pyrolysis (less than 2 minutes) of sorghum stock at 600°C. In the initial biochar production run, the char bin was not purged with nitrogen. This inadvertent change in pyrolysis conditions produced a fast-pyrolysis biochar enriched with tars. We chose not to discard this batch, however, and instead used it to test the impact of tar-enriched biochars on plants. A suite of phytotoxicity tests were run to assess the effects of tar-rich biochar on plant germination and plant productivity. We designed the experiment to test for negative effects, using an organic carbon and nutrient-rich, greenhouse- optimized potting medium instead of soil. We used Black Seeded Simpson lettuce (Lactuca sativa) as the test organism. We found that even when tars are present within biochar, biochar amendment up to 10% by weight caused increased lettuce germination rates and increased biomass productivity. In this presentation, we will report the statistical significance of our germination and biomass data, as well as present preliminary data on how biochar amendment affects soil hydrologic properties.

  13. Aerobic microbial taxa dominate deep subsurface cores from the Alberta oil sands.

    PubMed

    Ridley, Christina M; Voordouw, Gerrit

    2018-06-01

    Little is known about the microbial ecology of the subsurface oil sands in Northern Alberta, Canada. Biodegradation of low molecular weight hydrocarbons by indigenous microbes has enriched high molecular weight hydrocarbons, resulting in highly viscous bitumen. This extreme subsurface environment is further characterized by low nutrient availability and limited access to water, thus resulting in low microbial biomass. Improved DNA isolation protocols and increasingly sensitive sequencing methods have allowed an in-depth investigation of the microbial ecology of this unique subsurface environmental niche. Community analysis was performed on core samples (n = 62) that were retrieved from two adjacent sites located in the Athabasca Oil Sands at depths from 220 to 320 m below the surface. Microbial communities were dominated by aerobic taxa, including Pseudomonas and Acinetobacter. Only one core sample microbial community was dominated by anaerobic taxa, including the methanogen Methanoculleus, as well as Desulfomicrobium and Thauera. Although the temperature of the bitumen-containing subsurface is low (8°C), two core samples had high fractions of the potentially thermophilic taxon, Thermus. Predominance of aerobic taxa in the subsurface suggests the potential for in situ aerobic hydrocarbon degradation; however, more studies are required to determine the functional role of these taxa within this unique environment.

  14. Evaluation of microbial biofilm communities from an Alberta oil sands tailings pond.

    PubMed

    Golby, Susanne; Ceri, Howard; Gieg, Lisa M; Chatterjee, Indranil; Marques, Lyriam L R; Turner, Raymond J

    2012-01-01

    Bitumen extraction from the oil sands of Alberta has resulted in millions of cubic meters of waste stored on-site in tailings ponds. Unique microbial ecology is expected in these ponds, which may be key to their bioremediation potential. We considered that direct culturing of microbes from a tailings sample as biofilms could lead to the recovery of microbial communities that provide good representation of the ecology of the tailings. Culturing of mixed species biofilms in vitro using the Calgary Biofilm Device (CBD) under aerobic, microaerobic, and anaerobic growth conditions was successful both with and without the addition of various growth nutrients. Denaturant gradient gel electrophoresis and 16S rRNA gene pyrotag sequencing revealed that unique mixed biofilm communities were recovered under each incubation condition, with the dominant species belonging to Pseudomonas, Thauera, Hydrogenophaga, Rhodoferax, and Acidovorax. This work used an approach that allowed organisms to grow as a biofilm directly from a sample collected of their environment, and the biofilms cultivated in vitro were representative of the endogenous environmental community. For the first time, representative environmental mixed species biofilms have been isolated and grown under laboratory conditions from an oil sands tailings pond environment and a description of their composition is provided.

  15. Potential methane production and oxidation in soil reclamation covers of an oil sands mining site in Alberta, Canada

    NASA Astrophysics Data System (ADS)

    Pum, Lisa; Reichenauer, Thomas; Germida, Jim

    2015-04-01

    Anthropogenic activities create a number of significant greenhouse gases and thus potentially contribute to global warming. Methane production is significant in some agricultural production systems and from wetlands. In soil, methane can be oxidised by methanotrophic bacteria. However, little is known about methane production and oxidation in oil sand reclamation covers. The purpose of this study was to investigate methane production and oxidation potential of tailing sands and six different reclamation layers of oil sands mining sites in Alberta, Canada. Methane production and oxidation potential were investigated in laboratory scale microcosms through continuous headspace analysis using gas chromatography. Samples from a reclamation layer were collected at the Canadian Natural Resources Limited (CNRL) reclamation site at depths of 0-10 cm, 10-20 cm and 20-40 cm in October 2014. In addition, tailing sands provided by Suncor Energy Inc. and soil from a CNRL wetland were studied for methane production. Samples were dried, crushed and sieved to 4 mm, packed into serum bottle microcosms and monitored for eight weeks. Methane production potential was assessed by providing an anoxic environment and by adjusting the samples to a moisture holding capacity of 100 %. Methane oxidation potential was examined by an initial application of 2 vol % methane to the microcosms and by adjusting the samples to a moisture holding capacity of 50 %. Microcosm headspace gas was analysed for methane, carbon dioxide, nitrous oxide and oxygen. All experiments were carried out in triplicates, including controls. SF6 and Helium were used as internal standards to detect potential leaks. Our results show differences for methane production potential between the soil depths, tailing sands and wetlands. Moreover, there were differences in the methane oxidation potential of substrate from the three depths investigated and between the reclamation layers. In conclusion, the present study shows that

  16. History of energy sources and their utilization in Nigeria

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ogunsola, O.I.

    1990-01-01

    Nigeria, a major oil producer, is rich in other energy sources. These include wood, coal, gas, tar sands, and hydro power. Although oil has been the most popular, some other energy sources have a longer history. This article discusses the historical trends in the production and utilization of Nigerian energy sources. Wood has the longest history. However,its utilization was limited to domestic cooking. Imported coal was first used in 1896, but it was not discovered in Nigeria until 1909 and was first produced in 1916. Although oil exploration started in 1901, it was first discovered in commercial quantity in 1956more » and produced in 1958. Oil thereafter took over the energy scene from coal until 1969, when hydro energy was first produced. Energy consumption has been mainly from hydro. Tar sands account for about 55% of total proven non-renewable reserves.« less

  17. 30 CFR 259.002 - Definitions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... these) oil and gas, coal, oil shale, tar sands, and goethermal resources on lands or interests in lands under Federal jurisdiction. Gas means natural gas as defined by the Federal Energy Regulatory Commission... empowered to supervise and direct all oil and gas operations and to perform other duties prescribed in 30...

  18. Post-Secondary Learning Priorities of Workers in an Oil Sands Camp in Northern Alberta

    ERIC Educational Resources Information Center

    Fahy, Patrick J.; Steel, Nancy

    2008-01-01

    This paper reports results to date of a three-year project by Athabasca University, intended to determine the education and training needs and interests of employees in a work camp in northern Alberta's oil sands. (Future reports will address results of efforts to provide programming suiting the needs identified, and the uptake, satisfaction,…

  19. Method for Extraction and Multielement Analysis of Hypogymnia Physodes Samples from the Athabasca Oil Sands Region

    EPA Science Inventory

    A microwave-assisted digestion technique followed by ICPMS (inductively coupled plasma-mass spectrometry) analysis was used to measure concentrations of 43 elements in Hypogymnia physodes samples collected in the Athabasca Oil Sands Region (AOSR) of northern Alberta, Canad...

  20. Oil permeability variations on lagoon sand beaches in the Patos-Guaíba system in Rio Grande do Sul, Brazil.

    PubMed

    Oliveira, Elaine Baroni; Nicolodi, João Luiz

    2017-02-15

    Permeability is the ability of a sediment deposit to allow fluids to pass through it. It depends on the local types of sediments. When the fluid is oil, high permeability implies greater interaction with the site and more extensive damage, which makes recovery most difficult. Knowledge of permeability oscillations is necessary to understand oil behavior and improve cleanup techniques. The goal is to determine oil permeability variations on lagoon sand beaches. Oil permeability tests were performed at the beach face, using a Modified Phillip Dunne Permeameter and parameters were sampled. Permeability of lagoon beaches is driven by grain diameter and roundness, soil compaction, and depth of the water table. Factors that enhance permeability include: sand sorting, vertical distribution of sediments and gravel percentage. High permeability on lagoon beaches is related to polymodal distribution, to the sediment package, and to the system's low mobility. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Concentrations of the Genotoxic Metals, Chromium and Nickel, in Whales, Tar Balls, Oil Slicks, and Released Oil from the Gulf of Mexico in the Immediate Aftermath of the Deepwater Horizon Oil Crisis: Is Genotoxic Metal Exposure Part of the Deepwater Horizon Legacy?

    PubMed Central

    2015-01-01

    Concern regarding the Deepwater Horizon oil crisis has largely focused on oil and dispersants while the threat of genotoxic metals in the oil has gone largely overlooked. Genotoxic metals, such as chromium and nickel, damage DNA and bioaccumulate in organisms, resulting in persistent exposures. We found chromium and nickel concentrations ranged from 0.24 to 8.46 ppm in crude oil from the riser, oil from slicks on surface waters and tar balls from Gulf of Mexico beaches. We found nickel concentrations ranged from 1.7 to 94.6 ppm wet weight with a mean of 15.9 ± 3.5 ppm and chromium concentrations ranged from 2.0 to 73.6 ppm wet weight with a mean of 12.8 ± 2.6 ppm in tissue collected from Gulf of Mexico whales in the wake of the crisis. Mean tissue concentrations were significantly higher than those found in whales collected around the world prior to the spill. Given the capacity of these metals to damage DNA, their presence in the oil, and their elevated concentrations in whales, we suggest that metal exposure is an important understudied concern for the Deepwater Horizon oil disaster. PMID:24552566

  2. Concentrations of the genotoxic metals, chromium and nickel, in whales, tar balls, oil slicks, and released oil from the gulf of Mexico in the immediate aftermath of the deepwater horizon oil crisis: is genotoxic metal exposure part of the deepwater horizon legacy?

    PubMed

    Wise, John Pierce; Wise, James T F; Wise, Catherine F; Wise, Sandra S; Gianios, Christy; Xie, Hong; Thompson, W Douglas; Perkins, Christopher; Falank, Carolyne; Wise, John Pierce

    2014-01-01

    Concern regarding the Deepwater Horizon oil crisis has largely focused on oil and dispersants while the threat of genotoxic metals in the oil has gone largely overlooked. Genotoxic metals, such as chromium and nickel, damage DNA and bioaccumulate in organisms, resulting in persistent exposures. We found chromium and nickel concentrations ranged from 0.24 to 8.46 ppm in crude oil from the riser, oil from slicks on surface waters and tar balls from Gulf of Mexico beaches. We found nickel concentrations ranged from 1.7 to 94.6 ppm wet weight with a mean of 15.9 ± 3.5 ppm and chromium concentrations ranged from 2.0 to 73.6 ppm wet weight with a mean of 12.8 ± 2.6 ppm in tissue collected from Gulf of Mexico whales in the wake of the crisis. Mean tissue concentrations were significantly higher than those found in whales collected around the world prior to the spill. Given the capacity of these metals to damage DNA, their presence in the oil, and their elevated concentrations in whales, we suggest that metal exposure is an important understudied concern for the Deepwater Horizon oil disaster.

  3. Method for creating high carbon content products from biomass oil

    DOEpatents

    Parker, Reginald; Seames, Wayne

    2012-12-18

    In a method for producing high carbon content products from biomass, a biomass oil is added to a cracking reactor vessel. The biomass oil is heated to a temperature ranging from about 100.degree. C. to about 800.degree. C. at a pressure ranging from about vacuum conditions to about 20,700 kPa for a time sufficient to crack the biomass oil. Tar is separated from the cracked biomass oil. The tar is heated to a temperature ranging from about 200.degree. C. to about 1500.degree. C. at a pressure ranging from about vacuum conditions to about 20,700 kPa for a time sufficient to reduce the tar to a high carbon content product containing at least about 50% carbon by weight.

  4. Developing technologies for synthetic fuels

    NASA Astrophysics Data System (ADS)

    Sprow, F. B.

    1981-05-01

    After consideration of a likely timetable for the development of a synthetic fuels industry and its necessary supporting technology, the large variety of such fuels and their potential roles is assessed along with their commercialization outlook. Among the fuel production methods considered are: (1) above-ground retorting of oil shale; (2) in-situ shale retorting; (3) open pit mining of tar sands; (4) in-situ steam stimulation of tar sands; (5) coal gasification; (6) methanol synthesis from carbon monoxide and hydrogen; and (7) direct coal liquefaction by the hydrogenation of coal. It is shown that while the U.S. has very limited resource bases for tar sands and heavy crudes, the abundance of shale in the western states and the abundance and greater geographical dispersion of coal will make these the two most important resources of a future synthetic fuels industry.

  5. Characterization of methane emissions from five cold heavy oil production with sands (CHOPS) facilities.

    PubMed

    Roscioli, Joseph R; Herndon, Scott C; Yacovitch, Tara I; Knighton, W Berk; Zavala-Araiza, Daniel; Johnson, Matthew R; Tyner, David R

    2018-03-07

    Cold heavy oil production with sands (CHOPS) is a common oil extraction method in the Canadian provinces of Alberta and Saskatchewan that can result in significant methane emissions due to annular venting. Little is known about the magnitude of these emissions, nor their contributions to the regional methane budget. Here the authors present the results of field measurements of methane emissions from CHOPS wells and compare them with self-reported venting rates. The tracer ratio method was used not only to analyze total site emissions but at one site it was also used to locate primary emission sources and quantify their contributions to the facility-wide emission rate, revealing the annular vent to be a dominant source. Emissions measured from five different CHOPS sites in Alberta showed large discrepancies between the measured and reported rates, with emissions being mainly underreported. These methane emission rates are placed in the context of current reporting procedures and the role that gas-oil ratio (GOR) measurements play in vented volume estimates. In addition to methane, emissions of higher hydrocarbons were also measured; a chemical "fingerprint" associated with CHOPS wells in this region reveals very low emission ratios of ethane, propane, and aromatics versus methane. The results of this study may inform future studies of CHOPS sites and aid in developing policy to mitigate regional methane emissions. Methane measurements from cold heavy oil production with sand (CHOPS) sites identify annular venting to be a potentially major source of emissions at these facilities. The measured emission rates are generally larger than reported by operators, with uncertainty in the gas-oil ratio (GOR) possibly playing a large role in this discrepancy. These results have potential policy implications for reducing methane emissions in Alberta in order to achieve the Canadian government's goal of reducing methane emissions by 40-45% below 2012 levels within 8 yr.

  6. Atmospheric dry deposition of sulfur and nitrogen in the Athabasca Oil Sands Region, Alberta, Canada

    Treesearch

    Yu-Mei Hsu; Andrzej Bytnerowicz; Mark E. Fenn; Kevin E. Percy

    2016-01-01

    Due to the potential ecological effects on terrestrial and aquatic ecosystems from atmospheric deposition in the Athabasca Oil Sands Region (AOSR), Alberta, Canada, this study was implemented to estimate atmospheric nitrogen (N) and sulfur (S) inputs. Passive samplers were used to measure ambient concentrations of ammonia (NH3), nitrogen dioxide...

  7. Deepwater Horizon Oil-Protection Sand Berm and its Morphologic Interactions with a Natural Barrier Island: an Overview

    NASA Astrophysics Data System (ADS)

    Sallenger, A. H.; Plant, N. G.; Flocks, J.; Long, J. W.; Miselis, J. L.; Sherwood, C. R.; Hansen, M.; Nayegandhi, A.; Wright, W.

    2011-12-01

    After the Deepwater Horizon explosion and oil spill, Louisiana received permission to build a sand berm parallel to and offshore of the ~30-km-long Chandeleur Islands to capture floating oil and keep it from reaching mainland marshes. The berm was built with dredged sand to a height of approximately 2 m above mean sea level and within 100 m of the Gulf-side of the natural barrier island. Here, we update the status of the sand berm and how its morphology has evolved since construction began in June 2010. This is part of a study of morphologic change involving time series of airborne lidar topographic and bathymetric surveys, boat acoustic bathymetric surveys, satellite imagery, and modeling of sediment transport. Waves and sea level are being monitored with models and in-situ sensors. We will examine, as of our latest surveys, whether the introduction of new sand from the berm has significantly changed peak elevations, Dhigh, along the natural islands and hence changed island vulnerability to being overtopped by storm-driven water levels, such as still-water level (η, due to tides, surge, and wave setup) and runup (R, due to swash). Vulnerabilities to overwash, where R > Dhigh, and inundation, where η > Dhigh, will be identified. We will investigate the impacts on the berm and island of extra-tropical storms through June 2011 and tropical storms through the hurricane season of summer and early fall 2011. For example, during a storm in early January 2011, significant wave heights of 4.9 m generated runup on the berm where R > Dhigh. Four breaches were cut through the berm, the largest 590 m wide. This study provides a unique opportunity to investigate the wave and current transport of a large quantity of introduced sand and determine whether and how the sand nourishes a severely eroding barrier island.

  8. Characterization and distribution of metal and nonmetal elements in the Alberta oil sands region of Canada.

    PubMed

    Huang, Rongfu; McPhedran, Kerry N; Yang, Lingling; El-Din, Mohamed Gamal

    2016-03-01

    This review covers the characterization and distribution of metals and nonmetals in the Alberta oil sands region (AOSR) of Canada. The development of the oil sands industry has resulted in the release of organic, metal and nonmetal contaminants via air and water to the AOSR. For air, studies have found that atmospheric deposition of metals in the AOSR decreased exponentially with distance from the industrial emission sources. For water, toxic metal concentrations often exceeded safe levels leading to the potential for negative impacts to the receiving aquatic environments. Interestingly, although atmospheric deposition, surface waters, fish tissues, and aquatic bird eggs exhibited increasing level of metals in the AOSR, reported results from river sediments showed no increases over time. This could be attributed to physical and/or chemical dynamics of the river system to transport metals to downstream. The monitoring of the airborne emissions of relevant nonmetals (nitrogen and sulphur species) was also considered over the AOSR. These species were found to be increasing along with the oil sands developments with the resultant depositions contributing to nitrogen and sulphur accumulations resulting in ecosystem acidification and eutrophication impacts. In addition to direct monitoring of metals/nonmetals, tracing of air emissions using isotopes was also discussed. Further investigation and characterization of metals/nonmetals emissions in the AOSR are needed to determine their impacts to the ecosystem and to assess the need for further treatment measures to limit their continued output into the receiving environments. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Pit and backfill: Getty's plan for a diatomite zone in an oil patch. [Dravo Process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1981-06-01

    Getty Oil Co. is investigating the recovery of oil from a diatomite deposit in California's McKittrick oil field, using a pair of newly built pilot plants - one a Dravo solvent extraction train and the other a Lurgi-Ruhrgas retort-condenser system. Both are sized to process approximately 240 short tons/day of mined feed, and each will be separately campaigned for a year during the evaluation program. The diatomite project has a number of advantages as a mine and materials-handling project compared to oil shale and tar sands. The deposit is soft, and in-transit handling will probably perform much of the necessarymore » crushing for the plant. The material is light, approximately 100 lb/cu ft in place and 90 lb/cu ft broken. The near-surface location contrasts to the more deeply buried oil shale deposits in other areas of the nation. At the same time, the traction surface and structural bearing strength for heavy earth movers should be somewhat better in diatomite.« less

  10. Detection of naphthenic acids in fish exposed to commercial naphthenic acids and oil sands process-affected water.

    PubMed

    Young, R F; Orr, E A; Goss, G G; Fedorak, P M

    2007-06-01

    Naphthenic acids are a complex mixture of carboxylic acids that occur naturally in petroleum. During the extraction of bitumen from the oil sands in northeastern Alberta, Canada, naphthenic acids are released into the aqueous phase and these acids become the most toxic components in the process-affected water. Although previous studies have exposed fish to naphthenic acids or oil sands process-affected waters, there has been no analytical method to specifically detect naphthenic acids in fish. Here, we describe a qualitative method to specifically detect these acids. In 96-h static renewal tests, rainbow trout (Oncorhynchus mykiss) fingerlings were exposed to three different treatments: (1) fed pellets that contained commercial naphthenic acids (1.5mg g(-1) of food), (2) kept in tap water that contained commercial naphthenic acids (3mg l(-1)) and (3) kept in an oil sands process-affected water that contained 15mg naphthenic acids l(-1). Five-gram samples of fish were homogenized and extracted, then the mixture of free fatty acids and naphthenic acids was isolated from the extract using strong anion exchange chromatography. The mixture was derivatized and analyzed by gas chromatography-mass spectrometry. Reconstructed ion chromatograms (m/z=267) selectively detected naphthenic acids. These acids were present in each fish that was exposed to naphthenic acids, but absent in fish that were not exposed to naphthenic acids. The minimum detectable concentration was about 1microg naphthenic acids g(-1) of fish.

  11. Microbial turnover and incorporation of organic compounds in oil sand mining reclamation sites

    NASA Astrophysics Data System (ADS)

    Lappé, M.; Kallmeyer, J.

    2013-12-01

    Microorganisms play an important role in the development of new soils and in the reclamation of disturbed landscapes. Especially in hydrocarbon-contaminated soils their ability to degrade organic matter and pollutants makes them essential to re-establish full ecosystem functionality. Microbes are also involved in the mobilization of nutrients for plant growth and in the production of greenhouse gases. Reclamation sites from oil sand mining activities in Alberta, Canada, contain residual bitumen as well as other hydrocarbons. So, these areas provide a great opportunity to study microbial degradation of residual contaminants from oil sand. To get an impression of degradation rates as well as metabolic pathways, incubation experiments were performed in the lab. We measured microbial turnover (catabolic metabolism) and incorporation (anabolic metabolism) rates of different common organic compounds in samples from differently treated reclamation sites - with plant cover and without plant cover. About 10 g of sample material was suspended in 10 mL of a solution that mimics the in-situ concentration of dissolved ions. Radioactively labelled 14C-acetate was added as a common substrate, whereas 14C-naphthenic acid was chosen to investigate the microbial community's capability to utilize a typical hydrocarbon pollutant in oil sand tailings as a nutrient source. To test for the influence of fertilizers on microbial activity, phosphate, nitrate and potassium were added to some samples in different combinations. Incubations were run over two different time periods (7 and 14 days). At the end of each incubation experiment, the amount of produced 14CO2, 14C incorporated into the cells and the remaining unreacted 14C in the slurry were measured. First results show that most of the added 14C-acetate is used for respiration as it is mostly released as 14CO2. In upper soil layers only about 3% of 14C is incorporated into cells, whereas in deeper horizons with lower cell abundances

  12. Development and Application of a Life Cycle-Based Model to Evaluate Greenhouse Gas Emissions of Oil Sands Upgrading Technologies.

    PubMed

    Pacheco, Diana M; Bergerson, Joule A; Alvarez-Majmutov, Anton; Chen, Jinwen; MacLean, Heather L

    2016-12-20

    A life cycle-based model, OSTUM (Oil Sands Technologies for Upgrading Model), which evaluates the energy intensity and greenhouse gas (GHG) emissions of current oil sands upgrading technologies, is developed. Upgrading converts oil sands bitumen into high quality synthetic crude oil (SCO), a refinery feedstock. OSTUM's novel attributes include the following: the breadth of technologies and upgrading operations options that can be analyzed, energy intensity and GHG emissions being estimated at the process unit level, it not being dependent on a proprietary process simulator, and use of publicly available data. OSTUM is applied to a hypothetical, but realistic, upgrading operation based on delayed coking, the most common upgrading technology, resulting in emissions of 328 kg CO 2 e/m 3 SCO. The primary contributor to upgrading emissions (45%) is the use of natural gas for hydrogen production through steam methane reforming, followed by the use of natural gas as fuel in the rest of the process units' heaters (39%). OSTUM's results are in agreement with those of a process simulation model developed by CanmetENERGY, other literature, and confidential data of a commercial upgrading operation. For the application of the model, emissions are found to be most sensitive to the amount of natural gas utilized as feedstock by the steam methane reformer. OSTUM is capable of evaluating the impact of different technologies, feedstock qualities, operating conditions, and fuel mixes on upgrading emissions, and its life cycle perspective allows easy incorporation of results into well-to-wheel analyses.

  13. 43 CFR 3141.0-5 - Definitions.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... lease means a lease issued in a Special Tar Sand Area for the removal of any gas and nongaseous hydrocarbon substance other than coal, oil shale or gilsonite. (b) For purposes of this subpart, “oil and gas... coal, oil shale or gilsonite) that either: (1) Contains a hydrocarbonaceous material with a gas-free...

  14. 30 CFR 559.002 - Definitions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... explore for, or develop, or produce (or to do any or all of these) oil and gas, coal, oil shale, tar sands, and geothermal resources on lands or interests in lands under Federal jurisdiction. Gas means natural... direct all oil and gas operations and to perform other duties prescribed in this chapter. Director means...

  15. 43 CFR 3141.0-5 - Definitions.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... lease means a lease issued in a Special Tar Sand Area for the removal of any gas and nongaseous hydrocarbon substance other than coal, oil shale or gilsonite. (b) For purposes of this subpart, “oil and gas... coal, oil shale or gilsonite) that either: (1) Contains a hydrocarbonaceous material with a gas-free...

  16. 43 CFR 3141.0-5 - Definitions.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... lease means a lease issued in a Special Tar Sand Area for the removal of any gas and nongaseous hydrocarbon substance other than coal, oil shale or gilsonite. (b) For purposes of this subpart, “oil and gas... coal, oil shale or gilsonite) that either: (1) Contains a hydrocarbonaceous material with a gas-free...

  17. 30 CFR 559.002 - Definitions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... explore for, or develop, or produce (or to do any or all of these) oil and gas, coal, oil shale, tar sands, and geothermal resources on lands or interests in lands under Federal jurisdiction. Gas means natural... direct all oil and gas operations and to perform other duties prescribed in this chapter. Director means...

  18. 30 CFR 259.002 - Definitions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ..., or develop, or produce (or to do any or all of these) oil and gas, coal, oil shale, tar sands, and goethermal resources on lands or interests in lands under Federal jurisdiction. Gas means natural gas as... appropriate Regional Manager of the MMS authorized and empowered to supervise and direct all oil and gas...

  19. 43 CFR 3141.0-5 - Definitions.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... lease means a lease issued in a Special Tar Sand Area for the removal of any gas and nongaseous hydrocarbon substance other than coal, oil shale or gilsonite. (b) For purposes of this subpart, “oil and gas... coal, oil shale or gilsonite) that either: (1) Contains a hydrocarbonaceous material with a gas-free...

  20. 30 CFR 559.002 - Definitions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... explore for, or develop, or produce (or to do any or all of these) oil and gas, coal, oil shale, tar sands, and geothermal resources on lands or interests in lands under Federal jurisdiction. Gas means natural... direct all oil and gas operations and to perform other duties prescribed in this chapter. Director means...

  1. Characterization of trace gases measured over Alberta oil sands mining operations: 76 speciated C2-C10 volatile organic compounds (VOCs), CO2, CH4, CO, NO, NO2, NOy, O3 and SO2

    NASA Astrophysics Data System (ADS)

    Simpson, I. J.; Blake, N. J.; Barletta, B.; Diskin, G. S.; Fuelberg, H. E.; Gorham, K.; Huey, L. G.; Meinardi, S.; Rowland, F. S.; Vay, S. A.; Weinheimer, A. J.; Yang, M.; Blake, D. R.

    2010-12-01

    Oil sands comprise 30% of the world's oil reserves and the crude oil reserves in Canada's oil sands deposits are second only to Saudi Arabia. The extraction and processing of oil sands is much more challenging than for light sweet crude oils because of the high viscosity of the bitumen contained within the oil sands and because the bitumen is mixed with sand and contains chemical impurities such as sulphur. Despite these challenges, the importance of oil sands is increasing in the energy market. To our best knowledge this is the first peer-reviewed study to characterize volatile organic compounds (VOCs) emitted from Alberta's oil sands mining sites. We present high-precision gas chromatography measurements of 76 speciated C2-C10 VOCs (alkanes, alkenes, alkynes, cycloalkanes, aromatics, monoterpenes, oxygenated hydrocarbons, halocarbons and sulphur compounds) in 17 boundary layer air samples collected over surface mining operations in northeast Alberta on 10 July 2008, using the NASA DC-8 airborne laboratory as a research platform. In addition to the VOCs, we present simultaneous measurements of CO2, CH4, CO, NO, NO2, NOy, O3 and SO2, which were measured in situ aboard the DC-8. Carbon dioxide, CH4, CO, NO, NO2, NOy, SO2 and 53 VOCs (e.g., non-methane hydrocarbons, halocarbons, sulphur species) showed clear statistical enhancements (1.1-397×) over the oil sands compared to local background values and, with the exception of CO, were greater over the oil sands than at any other time during the flight. Twenty halocarbons (e.g., CFCs, HFCs, halons, brominated species) either were not enhanced or were minimally enhanced (<10%) over the oil sands. Ozone levels remained low because of titration by NO, and three VOCs (propyne, furan, MTBE) remained below their 3 pptv detection limit throughout the flight. Based on their correlations with one another, the compounds emitted by the oil sands industry fell into two groups: (1) evaporative emissions from the oil sands and its

  2. Characterization of trace gases measured over Alberta oil sands mining operations: 76 speciated C2-C10 volatile organic compounds (VOCs), CO2, CH4, CO, NO, NO2, NOy, O3 and SO2

    NASA Astrophysics Data System (ADS)

    Simpson, I. J.; Blake, N. J.; Barletta, B.; Diskin, G. S.; Fuelberg, H. E.; Gorham, K.; Huey, L. G.; Meinardi, S.; Rowland, F. S.; Vay, S. A.; Weinheimer, A. J.; Yang, M.; Blake, D. R.

    2010-08-01

    Oil sands comprise 30% of the world's oil reserves and the crude oil reserves in Canada's oil sands deposits are second only to Saudi Arabia. The extraction and processing of oil sands is much more challenging than for light sweet crude oils because of the high viscosity of the bitumen contained within the oil sands and because the bitumen is mixed with sand and contains chemical impurities such as sulphur. Despite these challenges, the importance of oil sands is increasing in the energy market. To our best knowledge this is the first peer-reviewed study to characterize volatile organic compounds (VOCs) emitted from Alberta's oil sands mining sites. We present high-precision gas chromatography measurements of 76 speciated C2-C10 VOCs (alkanes, alkenes, alkynes, cycloalkanes, aromatics, monoterpenes, oxygenates, halocarbons, and sulphur compounds) in 17 boundary layer air samples collected over surface mining operations in northeast Alberta on 10 July 2008, using the NASA DC-8 airborne laboratory as a research platform. In addition to the VOCs, we present simultaneous measurements of CO2, CH4, CO, NO, NO2, NOy, O3 and SO2, which were measured in situ aboard the DC-8. Methane, CO, CO2, NO, NO2, NOy, SO2 and 53 VOCs (e.g., halocarbons, sulphur species, NMHCs) showed clear statistical enhancements (up to 1.1-397×) over the oil sands compared to local background values and, with the exception of CO, were higher over the oil sands than at any other time during the flight. Twenty halocarbons (e.g., CFCs, HFCs, halons, brominated species) either were not enhanced or were minimally enhanced (< 10%) over the oil sands. Ozone levels remained low because of titration by NO, and three VOCs (propyne, furan, MTBE) remained below their 3 pptv detection limit throughout the flight. Based on their mutual correlations, the compounds emitted by the oil sands industry fell into two groups: (1) evaporative emissions from the oil sands and its products and/or from the diluent used to

  3. A Decade of Change in NO2 and SO2 over the Canadian Oil Sands As Seen from Space

    NASA Technical Reports Server (NTRS)

    Mclinden, Chris A.; Fioletov, Vitali; Krotkov, Nickolay A.; Li, Can; Boersma, K. Folkert; Adams, Cristen

    2015-01-01

    A decade (20052014) of observations from the Ozone Monitoring Instrument (OMI) were used to examine trends in nitrogen dioxide(NO2) and sulfur dioxide (SO2) over a large region of western Canada and the northern United States, with a focus on the Canadian oil sands. In the oil sands, primarily over an area of intensive surface mining, NO2 tropospheric vertical column densities (VCDs) are seen to be increasing by as much as 10year, with the location of the largest trends in a newly developing NO2 lobe well removed from surface monitoring stations. SO2 VCDs in the oil sands have remained approximately constant. The only other significant increase in the region was seen in NO2 over Bakken gas fields in North Dakota which showed increases of up to5yr. By contrast, other locations in the region show substantial declines in both pollutants, providing strong evidence to the efficacy of environmental pollution control measures implemented by both nations. The OMI-derived trends were found to be consistent with those from the Canadian surface monitoring network, although in the case of SO2, it was necessary to apply a correction in order to remove the residual signal from volcanic eruptions present in the OMI data.

  4. Driving it home: choosing the right path for fueling North America's transportation future

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ann Bordetsky; Susan Casey-Lefkowitz; Deron Lovaas

    2007-06-15

    North America faces an energy crossroads. With the world fast approaching the end of cheap, plentiful conventional oil, we must choose between developing ever-dirtier sources of fossil fuels -- at great cost to our health and environment -- or setting a course for a more sustainable energy future of clean, renewable fuels. This report explores the full scale of the damage done by attempts to extract oil from liquid coal, oil shale, and tar sands; examines the risks for investors of gambling on these dirty fuel sources; and lays out solutions for guiding us toward a cleaner fuel future. Tablemore » of contents: Executive Summary; Chapter 1: Transportation Fuel at a Crossroads; Chapter 2: Canadian Tar Sands: Scraping the Bottom of the Barrel in Endangered Forests; Chapter 3: Oil Shale Extraction: Drilling Through the American West; Chapter 4: Liquid Coal: A 'Clean Fuel' Mirage; Chapter 5: The Investment Landscape: Dirty Fuels Are Risky Business; Chapter 6: The Clean Path for Transportation and Conclusion.« less

  5. Enriching acid rock drainage related microbial communities from surface-deposited oil sands tailings.

    PubMed

    Dean, Courtney; Xiao, Yeyuan; Roberts, Deborah J

    2016-10-01

    Little is known about the microbial communities native to surface-deposited pyritic oil sands tailings, an environment where acid rock drainage (ARD) could occur. The goal of this study was to enrich sulfur-oxidizing organisms from these tailings and determine whether different populations exist at pH levels 7, 4.5, and 2.5. Using growth-based methods provides model organisms for use in the future to predict potential activities and limitations of these organisms and to develop possible control methods. Thiosulfate-fed enrichment cultures were monitored for approximately 1 year. The results showed that the enrichments at pH 4.5 and 7 were established quicker than at pH 2.5. Different microbial community structures were found among the 3 pH environments. The sulfur-oxidizing microorganisms identified were most closely related to Halothiobacillus neapolitanus, Achromobacter spp., and Curtobacterium spp. While microorganisms related to Chitinophagaceae and Acidocella spp. were identified as the only possible iron-oxidizing and -reducing microbes. These results contribute to the general knowledge of the relatively understudied microbial communities that exist in pyritic oil sands tailings and indicate these communities may have a potential role in ARD generation, which may have implications for future tailings management.

  6. A two-step flocculation process on oil sands tailings treatment using oppositely charged polymer flocculants.

    PubMed

    Lu, Qiuyi; Yan, Bin; Xie, Lei; Huang, Jun; Liu, Yang; Zeng, Hongbo

    2016-09-15

    Water management and treatment of mineral tailings and oil sands tailings are becoming critical challenges for the sustainable development of natural resources. Polymeric flocculants have been widely employed to facilitate the flocculation and settling of suspended fine solid particles in tailings, resulting in the separation of released water and solid sediments. In this study, a new flocculation process was developed for the treatment of oil sands tailings by using two oppositely charged polymers, i.e. an anionic polyacrylamide and a natural cationic biopolymer, chitosan. The new process was able to not only improve the clarity of supernatant after settling but also achieve a high settling efficiency. Treatment of the oil sands tailings using pure anionic polyacrylamide showed relatively high initial settling rate (ISR) of ~10.3m/h but with poor supernatant clarity (>1000NTU); while the treatment using pure cationic polymer resulted in clear supernatant (turbidity as low as 22NTU) but relatively low ISR of >2m/h. In the new flocculation process, the addition of anionic polyacrylamide to the tailings was followed by a cationic polymer, which showed both a high ISR (~7.7m/h) and a low turbidity (71NTU) of the supernatant. The flocculation mechanism was further investigated via the measurements of floc size, zeta potential and surface forces. The new flocculation process was revealed to include two steps: (1) bridging of fine solids by anionic polyacrylamide, and (2) further aggregation and flocculation mediated by charge neutralisation of the cationic polymer, which significantly eliminated the fine solids in the supernatants as well as increases floc size. Our results provide insights into the basic understanding of the interactions between polymer flocculants and solid particles in tailings treatment, as well as the development of novel tailings treatment technologies. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. 40 CFR 60.101a - Definitions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... suspended in a fluidized bed to improve feedstock quality for additional processing and the catalyst or... the oils derived from tar sands, shale, and coal. Petroleum refinery means any facility engaged in...

  8. Distribution of naphthenic acids in tissues of laboratory-exposed fish and in wild fishes from near the Athabasca oil sands in Alberta, Canada.

    PubMed

    Young, Rozlyn F; Michel, Lorelei Martínez; Fedorak, Phillip M

    2011-05-01

    Naphthenic acids, which have a variety of commercial applications, occur naturally in conventional crude oil and in highly biodegraded petroleum such as that found in the Athabasca oil sands in Alberta, Canada. Oil sands extraction is done using a caustic aqueous extraction process. The alkaline pH releases the naphthenic acids from the oil sands and dissolves them into water as their soluble naphthenate forms, which are anionic surfactants. These aqueous extracts contain concentrations of naphthenates that are acutely lethal to fishes and other aquatic organisms. Previous research has shown that naphthenic acids can be taken up by fish, but the distribution of these acids in various tissues of the fish has not been determined. In this study, rainbow trout (Oncorhynchus mykiss) were exposed to commercial (Merichem) naphthenic acids in the laboratory. After a 10-d exposure to approximately 3mg naphthenic acids/L, the fish were dissected and samples of gills, heart, liver, kidney, muscle, and eggs were extracted and analyzed for free (unconjugated) naphthenic acids by a gas chromatography-mass spectrometry method. Each of the tissues contained naphthenic acids and non-parametric statistical analyses showed that gills and livers contained higher concentrations than the muscles and that the livers had higher concentrations than the hearts. Four different species of fish (two fish of each species) were collected from the Athabasca River near two oil sands mining and extraction operations. No free naphthenic acids were detected in the muscle or liver of these fish. Copyright © 2010 Elsevier Inc. All rights reserved.

  9. Natural radioactivity of the tar-sand deposits of Ondo State, Southwestern Nigeria

    NASA Astrophysics Data System (ADS)

    Fasasi, M. K.; Oyawale, A. A.; Mokobia, C. E.; Tchokossa, P.; Ajayi, T. R.; Balogun, F. A.

    2003-06-01

    A combination of gamma spectrometry and energy dispersive X-ray fluorescence was used to determine the presence and level of radioactivity of radionuclides in bituminous sand and overburden obtained from bituminous sand deposits in Ondo State Nigeria for the purpose of providing baseline data and assessing its impact on the environment. The radionuclides identified with reliable regularity belong to the decay series of naturally occurring radionuclides headed by 238U and 232Th. The non-decay series of naturally occurring 40K was found to be below the limit of detection. The average specific activity concentration values obtained for 214 Bi, 208Tl, and 226Ra in the overburden are 165.64±2.91, 150.25±2.91 and 60.97±2.27 Bq kg -1, respectively. The measured activity in the bituminous sand layer is so low that it can be said to be non-radioactive. The result of the EDXRF supports the presence of radioelements in the overburden, which are likely to be embedded in accessory minerals like zircon and tourmaline. Thus, surface exploration technique using soil-gas radon measurement will not yield the desired result. Furthermore, the level of radioelements and associated decay daughter 222Rn is not expected to cause any health hazard.

  10. Estimating the in situ biodegradation of naphthenic acids in oil sands process waters by HPLC/HRMS.

    PubMed

    Han, Xiumei; MacKinnon, Michael D; Martin, Jonathan W

    2009-06-01

    The oil sands industry in Northern Alberta produces large volumes of oil sands process water (OSPW) containing high concentrations of persistent naphthenic acids (NAs; C(n)H(2n+Z)O(2)). Due to the growing volumes of OSPW that need to be reclaimed, it is important to understand the fate of NAs in aquatic systems. A recent laboratory study revealed several potential markers of microbial biodegradation for NAs; thus here we examined for these signatures in field-aged OSPW on the site of Syncrude Canada Ltd. (Fort McMurray, AB). NA concentrations were lower in older OSPW; however parent NA signatures were remarkably similar among all OSPW samples examined, with no discernible enrichment of the highly cyclic fraction as was observed in the laboratory. Comparison of NA signatures in fresh oil sands ore extracts to OSPW in active settling basins, however, suggested that the least cyclic fraction (i.e. Z=0 and Z=-2 homologues) may undergo relatively rapid biodegradation in active settling basins. Further evidence for biodegradation of NAs came from a significantly higher proportion of oxidized NAs (i.e. C(n)H(2n+Z)O(3)+C(n)H(2n+Z)O(4)) in the oldest OSPW from experimental reclamation ponds. Taken together, there is indirect evidence for rapid biodegradation of relatively labile Z=0 and Z=-2 NAs in active settling basins, but the remaining steady-state fraction of NAs in OSPW appear to be very recalcitrant, with half-lives on the order of 12.8-13.6 years. Alternative fate mechanisms to explain the slow disappearance of parent NAs from OSPW are discussed, including adsorption and atmospheric partitioning.

  11. Sources of particulate matter components in the Athabasca oil sands region: investigation through a comparison of trace element measurement methodologies

    NASA Astrophysics Data System (ADS)

    Phillips-Smith, Catherine; Jeong, Cheol-Heon; Healy, Robert M.; Dabek-Zlotorzynska, Ewa; Celo, Valbona; Brook, Jeffrey R.; Evans, Greg

    2017-08-01

    The province of Alberta, Canada, is home to three oil sands regions which, combined, contain the third largest deposit of oil in the world. Of these, the Athabasca oil sands region is the largest. As part of Environment and Climate Change Canada's program in support of the Joint Canada-Alberta Implementation Plan for Oil Sands Monitoring program, concentrations of trace elements in PM2. 5 (particulate matter smaller than 2.5 µm in diameter) were measured through two campaigns that involved different methodologies: a long-term filter campaign and a short-term intensive campaign. In the long-term campaign, 24 h filter samples were collected once every 6 days over a 2-year period (December 2010-November 2012) at three air monitoring stations in the regional municipality of Wood Buffalo. For the intensive campaign (August 2013), hourly measurements were made with an online instrument at one air monitoring station; daily filter samples were also collected. The hourly and 24 h filter data were analyzed individually using positive matrix factorization. Seven emission sources of PM2. 5 trace elements were thereby identified: two types of upgrader emissions, soil, haul road dust, biomass burning, and two sources of mixed origin. The upgrader emissions, soil, and haul road dust sources were identified through both the methodologies and both methodologies identified a mixed source, but these exhibited more differences than similarities. The second upgrader emissions and biomass burning sources were only resolved by the hourly and filter methodologies, respectively. The similarity of the receptor modeling results from the two methodologies provided reassurance as to the identity of the sources. Overall, much of the PM2. 5-related trace elements were found to be anthropogenic, or at least to be aerosolized through anthropogenic activities. These emissions may in part explain the previously reported higher levels of trace elements in snow, water, and biota samples collected

  12. Evaluating the Metal Tolerance Capacity of Microbial Communities Isolated from Alberta Oil Sands Process Water

    PubMed Central

    Frankel, Mathew L.; Demeter, Marc A.; Lemire, Joe A.; Turner, Raymond J.

    2016-01-01

    Anthropogenic activities have resulted in the intensified use of water resources. For example, open pit bitumen extraction by Canada’s oil sands operations uses an estimated volume of three barrels of water for every barrel of oil produced. The waste tailings–oil sands process water (OSPW)–are stored in holding ponds, and present an environmental concern as they are comprised of residual hydrocarbons and metals. Following the hypothesis that endogenous OSPW microbial communities have an enhanced tolerance to heavy metals, we tested the capacity of planktonic and biofilm populations from OSPW to withstand metal ion challenges, using Cupriavidus metallidurans, a known metal-resistant organism, for comparison. The toxicity of the metals toward biofilm and planktonic bacterial populations was determined by measuring the minimum biofilm inhibitory concentrations (MBICs) and planktonic minimum inhibitory concentrations (MICs) using the MBEC ™ assay. We observed that the OSPW community and C. metallidurans had similar tolerances to 22 different metals. While thiophillic elements (Te, Ag, Cd, Ni) were found to be most toxic, the OSPW consortia demonstrated higher tolerance to metals reported in tailings ponds (Al, Fe, Mo, Pb). Metal toxicity correlated with a number of physicochemical characteristics of the metals. Parameters reflecting metal-ligand affinities showed fewer and weaker correlations for the community compared to C. metallidurans, suggesting that the OSPW consortia may have developed tolerance mechanisms toward metals present in their environment. PMID:26849649

  13. Bioprocess for treating coproduced oily sands

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Munnecke, D.M.; Ireland, J.

    1996-12-31

    The production of oil from certain oil fields creates significant amounts of oily sand which in many regulatory jurisdictions is regulated as a hazardous material, thus disposal costs can be significant. Environmental BioTechnologies, Inc. (San Carlos, CA) has developed a physical/biological treatment process that is able to economically treat these coproduced sands and produce a product that contains less than 2,000 ppm total petroleum hydrocarbons.

  14. Fine root dynamics in lodgepole pine and white spruce stands along productivity gradients in reclaimed oil sands sites.

    PubMed

    Jamro, Ghulam Murtaza; Chang, Scott X; Naeth, M Anne; Duan, Min; House, Jason

    2015-10-01

    Open-pit mining activities in the oil sands region of Alberta, Canada, create disturbed lands that, by law, must be reclaimed to a land capability equivalent to that existed before the disturbance. Re-establishment of forest cover will be affected by the production and turnover rate of fine roots. However, the relationship between fine root dynamics and tree growth has not been studied in reclaimed oil sands sites. Fine root properties (root length density, mean surface area, total root biomass, and rates of root production, turnover, and decomposition) were assessed from May to October 2011 and 2012 using sequential coring and ingrowth core methods in lodgepole pine (Pinus contorta Dougl.) and white spruce (Picea glauca (Moench.) Voss) stands. The pine and spruce stands were planted on peat mineral soil mix placed over tailings sand and overburden substrates, respectively, in reclaimed oil sands sites in Alberta. We selected stands that form a productivity gradient (low, medium, and high productivities) of each tree species based on differences in tree height and diameter at breast height (DBH) increments. In lodgepole pine stands, fine root length density and fine root production, and turnover rates were in the order of high > medium > low productivity sites and were positively correlated with tree height and DBH and negatively correlated with soil salinity (P < 0.05). In white spruce stands, fine root surface area was the only parameter that increased along the productivity gradient and was negatively correlated with soil compaction. In conclusion, fine root dynamics along the stand productivity gradients were closely linked to stand productivity and were affected by limiting soil properties related to the specific substrate used for reconstructing the reclaimed soil. Understanding the impact of soil properties on fine root dynamics and overall stand productivity will help improve land reclamation outcomes.

  15. Elucidating carbon sources driving microbial metabolism during oil sands reclamation.

    PubMed

    Bradford, Lauren M; Ziolkowski, Lori A; Goad, Corey; Warren, Lesley A; Slater, Gregory F

    2017-03-01

    Microbial communities play key roles in remediation and reclamation of contaminated environments via biogeochemical cycling of organic and inorganic components. Understanding the trends in in situ microbial community abundance, metabolism and carbon sources is therefore a crucial component of effective site management. The focus of this study was to use radiocarbon analysis to elucidate the carbon sources driving microbial metabolism within the first pilot wetland reclamation project in the Alberta oil sands region where the observation of H 2 S had indicated the occurrence of microbial sulphate reduction. The reclamation project involved construction of a three compartment system consisting of a freshwater wetland on top of a sand cap overlying a composite tailings (CT) deposit. Radiocarbon analysis demonstrated that both dissolved and sediment associated organic carbon associated with the deepest compartments (the CT and sand cap) was primarily fossil (Δ 14 C = -769 to -955‰) while organic carbon in the overlying peat was hundreds to thousands of years old (Δ 14 C = -250 to -350‰). Radiocarbon contents of sediment associated microbial phospholipid fatty acids (PLFA) were consistent with the sediment bulk organic carbon pools (Peat: Δ 14 C PLFA  = -257‰; Sand cap Δ 14 C PLFA  = -805‰) indicating that these microbes were using sediment associated carbon. In contrast, microbial PLFA grown on biofilm units installed in wells within the deepest compartments contained much more modern carbon that the associated bulk carbon pools. This implied that the transfer of relatively more modern carbon was stimulating the microbial community at depth within the system. Correlation between cellular abundance estimates based on PLFA concentrations and the Δ 14 C PLFA indicated that the utilization of this more modern carbon was stimulating the microbial community at depth. These results highlight the importance of understanding the occurrence and potential

  16. Microbially-accelerated consolidation of oil sands tailings. Pathway II: solid phase biogeochemistry.

    PubMed

    Siddique, Tariq; Kuznetsov, Petr; Kuznetsova, Alsu; Li, Carmen; Young, Rozlyn; Arocena, Joselito M; Foght, Julia M

    2014-01-01

    Consolidation of clay particles in aqueous tailings suspensions is a major obstacle to effective management of oil sands tailings ponds in northern Alberta, Canada. We have observed that microorganisms indigenous to the tailings ponds accelerate consolidation of mature fine tailings (MFT) during active metabolism by using two biogeochemical pathways. In Pathway I, microbes alter porewater chemistry to indirectly increase consolidation of MFT. Here, we describe Pathway II comprising significant, direct and complementary biogeochemical reactions with MFT mineral surfaces. An anaerobic microbial community comprising Bacteria (predominantly Clostridiales, Synergistaceae, and Desulfobulbaceae) and Archaea (Methanolinea/Methanoregula and Methanosaeta) transformed Fe(III) minerals in MFT to amorphous Fe(II) minerals during methanogenic metabolism of an added organic substrate. Synchrotron analyses suggested that ferrihydrite (5Fe2O3. 9H2O) and goethite (α-FeOOH) were the dominant Fe(III) minerals in MFT. The formation of amorphous iron sulfide (FeS) and possibly green rust entrapped and masked electronegative clay surfaces in amended MFT. Both Pathways I and II reduced the surface charge potential (repulsive forces) of the clay particles in MFT, which aided aggregation of clays and formation of networks of pores, as visualized using cryo-scanning electron microscopy (SEM). These reactions facilitated the egress of porewater from MFT and increased consolidation of tailings solids. These results have large-scale implications for management and reclamation of oil sands tailings ponds, a burgeoning environmental issue for the public and government regulators.

  17. Microbially-accelerated consolidation of oil sands tailings. Pathway II: solid phase biogeochemistry

    PubMed Central

    Siddique, Tariq; Kuznetsov, Petr; Kuznetsova, Alsu; Li, Carmen; Young, Rozlyn; Arocena, Joselito M.; Foght, Julia M.

    2014-01-01

    Consolidation of clay particles in aqueous tailings suspensions is a major obstacle to effective management of oil sands tailings ponds in northern Alberta, Canada. We have observed that microorganisms indigenous to the tailings ponds accelerate consolidation of mature fine tailings (MFT) during active metabolism by using two biogeochemical pathways. In Pathway I, microbes alter porewater chemistry to indirectly increase consolidation of MFT. Here, we describe Pathway II comprising significant, direct and complementary biogeochemical reactions with MFT mineral surfaces. An anaerobic microbial community comprising Bacteria (predominantly Clostridiales, Synergistaceae, and Desulfobulbaceae) and Archaea (Methanolinea/Methanoregula and Methanosaeta) transformed FeIII minerals in MFT to amorphous FeII minerals during methanogenic metabolism of an added organic substrate. Synchrotron analyses suggested that ferrihydrite (5Fe2O3. 9H2O) and goethite (α-FeOOH) were the dominant FeIII minerals in MFT. The formation of amorphous iron sulfide (FeS) and possibly green rust entrapped and masked electronegative clay surfaces in amended MFT. Both Pathways I and II reduced the surface charge potential (repulsive forces) of the clay particles in MFT, which aided aggregation of clays and formation of networks of pores, as visualized using cryo-scanning electron microscopy (SEM). These reactions facilitated the egress of porewater from MFT and increased consolidation of tailings solids. These results have large-scale implications for management and reclamation of oil sands tailings ponds, a burgeoning environmental issue for the public and government regulators. PMID:24711806

  18. Next-Generation Sequencing of Microbial Communities in the Athabasca River and Its Tributaries in Relation to Oil Sands Mining Activities

    PubMed Central

    Yergeau, Etienne; Lawrence, John R.; Sanschagrin, Sylvie; Waiser, Marley J.; Korber, Darren R.

    2012-01-01

    The Athabasca oil sands deposit is the largest reservoir of crude bitumen in the world. Recently, the soaring demand for oil and the availability of modern bitumen extraction technology have heightened exploitation of this reservoir and the potential unintended consequences of pollution in the Athabasca River. The main objective of the present study was to evaluate the potential impacts of oil sands mining on neighboring aquatic microbial community structure. Microbial communities were sampled from sediments in the Athabasca River and its tributaries as well as in oil sands tailings ponds. Bacterial and archaeal 16S rRNA genes were amplified and sequenced using next-generation sequencing technology (454 and Ion Torrent). Sediments were also analyzed for a variety of chemical and physical characteristics. Microbial communities in the fine tailings of the tailings ponds were strikingly distinct from those in the Athabasca River and tributary sediments. Microbial communities in sediments taken close to tailings ponds were more similar to those in the fine tailings of the tailings ponds than to the ones from sediments further away. Additionally, bacterial diversity was significantly lower in tailings pond sediments. Several taxonomic groups of Bacteria and Archaea showed significant correlations with the concentrations of different contaminants, highlighting their potential as bioindicators. We also extensively validated Ion Torrent sequencing in the context of environmental studies by comparing Ion Torrent and 454 data sets and by analyzing control samples. PMID:22923391

  19. Process for hydrogenation of hydrocarbon tars

    DOEpatents

    Dolbear, Geoffrey E.

    1978-07-18

    Hydrocarbon tars of high asphaltene content such as tars obtained from pyrolysis of coal are dissolved in a solvent formed from the hydrogenation of the coal tars, and the resultant mixture hydrogenated in the presence of a catalyst at a pressure from about 1500 to 5000 psig at a temperature from about 500.degree. F to about the critical temperature of the solvent to form a light hydrocarbon as a solvent for the tars. Hydrogen content is at least three times the amount of hydrogen consumed.

  20. Effects-Directed Analysis of Dissolved Organic Compounds in Oil Sands Process-Affected Water.

    PubMed

    Morandi, Garrett D; Wiseman, Steve B; Pereira, Alberto; Mankidy, Rishikesh; Gault, Ian G M; Martin, Jonathan W; Giesy, John P

    2015-10-20

    Acute toxicity of oil sands process-affected water (OSPW) is caused by its complex mixture of bitumen-derived organics, but the specific chemical classes that are most toxic have not been demonstrated. Here, effects-directed analysis was used to determine the most acutely toxic chemical classes in OSPW collected from the world's first oil sands end-pit lake. Three sequential rounds of fractionation, chemical analysis (ultrahigh resolution mass spectrometry), and acute toxicity testing (96 h fathead minnow embryo lethality and 15 min Microtox bioassay) were conducted. Following primary fractionation, toxicity was primarily attributable to the neutral extractable fraction (F1-NE), containing 27% of original organics mass. In secondary fractionation, F1-NE was subfractionated by alkaline water washing, and toxicity was primarily isolated to the ionizable fraction (F2-NE2), containing 18.5% of the original organic mass. In the final round, chromatographic subfractionation of F2-NE2 resulted in two toxic fractions, with the most potent (F3-NE2a, 11% of original organic mass) containing predominantly naphthenic acids (O2(-)). The less-toxic fraction (F3-NE2b, 8% of original organic mass) contained predominantly nonacid species (O(+), O2(+), SO(+), NO(+)). Evidence supports naphthenic acids as among the most acutely toxic chemical classes in OSPW, but nonacidic species also contribute to acute toxicity of OSPW.

  1. Method for treatment of tar-bearing fuel gas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Frauen, L.L.; Kasper, S.

    1986-01-07

    A process is described of producing a fuel gas which contains condensable tar vapor when it leaves a gasifier, the improvement wherein the tar-bearing gases are treated to remove tar therefrom. The process consists of: (a) continuously conducting hot fuel gas from a gasifier to and discharging it into a spray chamber where the hot tar-bearing gas is contacted with a fine spray of water thereby cooling the tar vapor and evaporating the water to produce a fog-like dispersion of tar in an atmosphere of fuel gas with the temperature in the spray chamber maintained above the dew point ofmore » water; (b) continuously transferring the fuel gas and the dispersion of tar and water to an electrostatic precipitator and precipitating therein at least most of the condensed tar as a liquid; (c) removing the liquid tar so precipitated and conducting at least most of it to a tar burner; (d) burning the tar with no more than the stoichiometric supply of oxygen provided by air to produce oxygen-free and tar-free hot combustion gases; (e) conducting the hot combustion gases directly into a mixer into which the fuel gas and water vapor flows from the precipitator, thereby adding to the fuel gas the sensible heat of the combustion gases; and (f) conducting the mixture so produced to a place of use as a hot fuel gas mixture.« less

  2. A numerical/empirical technique for history matching and predicting cyclic steam performance in Canadian oil sands reservoirs

    NASA Astrophysics Data System (ADS)

    Leshchyshyn, Theodore Henry

    The oil sands of Alberta contain some one trillion barrels of bitumen-in-place, most contained in the McMurray, Wabiskaw, Clearwater, and Grand Rapids formations. Depth of burial is 0--550 m, 10% of which is surface mineable, the rest recoverable by in-situ technology-driven enhanced oil recovery schemes. To date, significant commercial recovery has been attributed to Cyclic Steam Stimulation (CSS) using vertical wellbores. Other techniques, such as Steam Assisted Gravity Drainage (SAGD) are proving superior to other recovery methods for increasing early oil production but at initial higher development and/or operating costs. Successful optimization of bitumen production rates from the entire reservoir is ultimately decided by the operator's understanding of the reservoir in its original state and/or the positive and negative changes which occur in oil sands and heavy oil deposits upon heat stimulation. Reservoir description is the single most important factor in attaining satisfactory history matches and forecasts for optimized production of the commercially-operated processes. Reservoir characterization which lacks understanding can destroy a project. For example, incorrect assumptions in the geological model for the Wolf Lake Project in northeast Alberta resulted in only about one-half of the predicted recovery by the original field process. It will be shown here why the presence of thin calcite streaks within oil sands can determine the success or failure of a commercial cyclic steam project. A vast amount of field data, mostly from the Primrose Heavy Oil Project (PHOP) near Cold Lake, Alberta, enabled the development a simple set of correlation curves for predicting bitumen production using CSS. A previously calibtrated thermal numerical simulation model was used in its simplist form, that is, a single layer, radial grid blocks, "fingering" or " dilation" adjusted permeability curves, and no simulated fracture, to generate the first cycle production

  3. Petroleum coke adsorption as a water management option for oil sands process-affected water.

    PubMed

    Zubot, Warren; MacKinnon, Michael D; Chelme-Ayala, Pamela; Smith, Daniel W; Gamal El-Din, Mohamed

    2012-06-15

    Water is integral to both operational and environmental aspects of the oil sands industry. A water treatment option based on the use of petroleum coke (PC), a by-product of bitumen upgrading, was examined as an opportunity to reduce site oil sands process-affected water (OSPW) inventories and net raw water demand. Changes in OSPW quality when treated with PC included increments in pH levels and concentrations of vanadium, molybdenum, and sulphate. Constituents that decreased in concentration after PC adsorption included total acid-extractable organics (TAO), bicarbonate, calcium, barium, magnesium, and strontium. Changes in naphthenic acids (NAs) speciation were observed after PC adsorption. A battery of bioassays was used to measure the OSPW toxicity. The results indicated that untreated OSPW was toxic towards Vibrio fischeri and rainbow trout. However, OSPW treated with PC at appropriate dosages was not acutely toxic towards these test organisms. Removal of TAO was found to be an adsorption process, fitting the Langmuir and Langmuir-Freundlich isotherm models. For TAO concentrations of 60 mg/L, adsorption capacities ranged between 0.1 and 0.46 mg/g. This study demonstrates that freshly produced PC from fluid cokers provides an effective treatment of OSPW in terms of key constituents' removal and toxicity reduction. Copyright © 2012 Elsevier B.V. All rights reserved.

  4. Characterization of naphthenic acids from athabasca oil sands using electrospray ionization: the significant influence of solvents.

    PubMed

    Headley, John V; Peru, Kerry M; Barrow, Mark P; Derrick, Peter J

    2007-08-15

    There is a need to develop routine and rugged methods for the characterization of oil sands naphthenic acids present in natural waters and contaminated soils. Mass spectra of naphthenic acids, obtained using a variant of electrospray ionization coupled with a Fourier transform ion cyclotron resonance mass spectrometer, are shown here to vary greatly, reflecting their dependence on solubilities of the acids in organic solvents. The solubilities of components in, for example, 1-octanol (similar solvent to fatty tissue) compared to polar solvents such as methanol or acetonitrile are used here as a surrogate to indicate the more bioavailable or toxic components of naphthenic acids in natural waters. Monocarboxylic compounds (CnH2n+zO2) in the z=-4, -6, and -12 (2-, 3-, and 6-ring naphthenic acids, respectively) family in the carbon number range of 13-19 were prevalent in all solvent systems. The surrogate method is intended to serve as a guide in the isolation of principle toxic components, which in turn supports efforts to remediate oil sands contaminated soils and groundwater.

  5. The Energy Films Index. An Educator's Guide to Current Energy Films.

    ERIC Educational Resources Information Center

    Scherner, Sharon; And Others

    This guide cites and describes 241 films on energy. The categories are: general films on energy, conservation of energy, history of energy development, coal, electricity, food and energy, geothermal, natural gas, nuclear energy, oil/petroleum, oil shale, solar energy, tar sands, tidal energy, wind, impacts of energy, and future of energy. For each…

  6. 77 FR 67362 - Environmental Impacts Statements; Notice of Availability

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-09

    .... 20120358, Draft Supplement, BOEM, 00, Gulf of Mexico Outer Continental Shelf (OCS) Oil and Gas Lease Sales...: Aaron O. Allen 805-585-2148. EIS No. 20120360, Final EIS, BLM, 00, PROGRAMMATIC--Allocation of Oil Shale and Tar Sands Resources on Lands Administered, Propose to Amend 10 Land Use Plans in Colorado, Utah...

  7. Spatial and temporal distribution of ambient nitric acid and ammonia in the Athabasca Oil Sands Region, Alberta

    Treesearch

    A. Bytnerowicz; W. Fraczek; S. Schilling; D. Alexander

    2010-01-01

    Monthly average ambient concentrations of gaseous nitric acid (HNO3) and ammonia (NH3) were monitored at the Athabasca Oils Sands Region (AOSR), Alberta, Canada, between May 2005 and September 2008. Generally, concentrations of both pollutants were elevated and highly variable in space and time. The highest atmospheric...

  8. Analysis of heavy oils: Method development and application to Cerro Negro heavy petroleum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    1989-12-01

    On March 6, 1980, the US Department of Energy (DOE) and the Ministry of Energy and Mines of Venezuela (MEMV) entered into a joint agreement which included analysis of heavy crude oils from the Venezuelan Orinoco oil belt. The purpose of this report is to present compositional data and describe new analytical methods obtained from work on the Cerro Negro Orinoco belt crude oil since 1980. Most of the chapters focus on the methods rather than the resulting data on Cerro Negro oil, and results from other oils obtained during the verification of the method are included. In addition, publishedmore » work on analysis of heavy oils, tar sand bitumens, and like materials is reviewed, and the overall state of the art in analytical methodology for heavy fossil liquids is assessed. The various phases of the work included: distillation and determination of routine'' physical/chemical properties (Chapter 1); preliminary separation of >200{degrees} C distillates and the residue into acid, base, neutral, saturated hydrocarbon and neutral-aromatic concentrates (Chapter 2); further separation of acid, base, and neutral concentrates into subtypes (Chapters 3--5); and determination of the distribution of metal-containing compounds in all fractions (Chapter 6).« less

  9. Total and methyl mercury concentrations in sediment and water of a constructed wetland in the Athabasca Oil Sands Region.

    PubMed

    Oswald, Claire J; Carey, Sean K

    2016-06-01

    In the Athabasca Oil Sands Region in northeastern Alberta, Canada, oil sands operators are testing the feasibility of peatland construction on the post-mining landscape. In 2009, Syncrude Canada Ltd. began construction of the 52 ha Sandhill Fen pilot watershed, including a 15 ha, hydrologically managed fen peatland built on sand-capped soft oil sands tailings. An integral component of fen reclamation is post-construction monitoring of water quality, including salinity, fluvial carbon, and priority pollutant elements. In this study, the effects of fen reclamation and elevated sulfate levels on mercury (Hg) fate and transport in the constructed system were assessed. Total mercury (THg) and methylmercury (MeHg) concentrations in the fen sediment were lower than in two nearby natural fens, which may be due to the higher mineral content of the Sandhill Fen peat mix and/or a loss of Hg through evasion during the peat harvesting, stockpiling and placement processes. Porewater MeHg concentrations in the Sandhill Fen typically did not exceed 1.0 ng L(-1). The low MeHg concentrations may be a result of elevated porewater sulfate concentrations (mean 346 mg L(-1)) and an increase in sulphide concentrations with depth in the peat, which are known to suppress MeHg production. Total Hg and MeHg concentrations increased during a controlled mid-summer flooding event where the water table rose above the ground surface in most of the fen. The Hg dynamics during this event showed that hydrologic fluctuations in this system exacerbate the release of THg and MeHg downstream. In addition, the elevated SO4(2-) concentrations in the peat porewaters may become a problem with respect to downstream MeHg production once the fen is hydrologically connected to a larger wetland network that is currently being constructed. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Evaluating microbial carbon sources in Athabasca oil sands tailings ponds using natural abundance stable and radiocarbon isotopes

    NASA Astrophysics Data System (ADS)

    Ahad, J. M.; Pakdel, H.

    2013-12-01

    Natural abundance stable (δ13C) and radiocarbon (Δ14C) isotopes of phospholipid fatty acids (PLFAs) were used to evaluate the carbon sources utilized by the active microbial populations in surface sediments from Athabasca oil sands tailings ponds. The absence of algal-specific PLFAs at three of the four sites investigated, in conjunction with δ13C signatures for PLFAs that were generally within ~3‰ of that reported for oil sands bitumen (~ -30‰), indicated that the microbial communities growing on petroleum constituents were dominated by aerobic heterotrophs. The Δ14C values of PLFAs ranged from -906 to -586‰ and pointed to a significant uptake of fossil carbon (up to ~90% of microbial carbon derived from petroleum), particularly in PLFAs (e.g., cy17:0 and cy19:0) often associated with petroleum hydrocarbon degrading bacteria. The comparatively higher levels of 14C in other, less specific PLFAs (e.g., 16:0) indicated the preferential uptake of younger organic matter by the general microbial population (~50-80% of microbial carbon derived from petroleum). Since the main carbon pools in tailings sediment were essentially 'radiocarbon dead' (i.e., no detectable 14C), the principal source for this modern carbon is considered to be the Athabasca River, which provides the bulk of the water used in the bitumen extraction process. The preferential uptake of the minor amount of young and presumably more biodegradable material present in systems otherwise dominated by recalcitrant petroleum constituents has important implications for remediation strategies. On the one hand, it implies that mining-related organic contaminants could persist in the environment long after tailings pond reclamation has begun. Alternatively, it may be that the young, labile organic matter provided by the Athabasca River plays an important role in stimulating or supporting the microbial utilization of petroleum carbon in oil sands tailings ponds via co-metabolism or priming processes

  11. Microbial community successional patterns in beach sands impacted by the Deepwater Horizon oil spill

    PubMed Central

    Rodriguez-R, Luis M; Overholt, Will A; Hagan, Christopher; Huettel, Markus; Kostka, Joel E; Konstantinidis, Konstantinos T

    2015-01-01

    Although petroleum hydrocarbons discharged from the Deepwater Horizon (DWH) blowout were shown to have a pronounced impact on indigenous microbial communities in the Gulf of Mexico, effects on nearshore or coastal ecosystems remain understudied. This study investigated the successional patterns of functional and taxonomic diversity for over 1 year after the DWH oil was deposited on Pensacola Beach sands (FL, USA), using metagenomic and 16S rRNA gene amplicon techniques. Gamma- and Alphaproteobacteria were enriched in oiled sediments, in corroboration of previous studies. In contrast to previous studies, we observed an increase in the functional diversity of the community in response to oil contamination and a functional transition from generalist populations within 4 months after oil came ashore to specialists a year later, when oil was undetectable. At the latter time point, a typical beach community had reestablished that showed little to no evidence of oil hydrocarbon degradation potential, was enriched in archaeal taxa known to be sensitive to xenobiotics, but differed significantly from the community before the oil spill. Further, a clear succession pattern was observed, where early responders to oil contamination, likely degrading aliphatic hydrocarbons, were replaced after 3 months by populations capable of aromatic hydrocarbon decomposition. Collectively, our results advance the understanding of how natural benthic microbial communities respond to crude oil perturbation, supporting the specialization-disturbance hypothesis; that is, the expectation that disturbance favors generalists, while providing (microbial) indicator species and genes for the chemical evolution of oil hydrocarbons during degradation and weathering. PMID:25689026

  12. Chemical mass transport between fluid fine tailings and the overlying water cover of an oil sands end pit lake

    NASA Astrophysics Data System (ADS)

    Dompierre, Kathryn A.; Barbour, S. Lee; North, Rebecca L.; Carey, Sean K.; Lindsay, Matthew B. J.

    2017-06-01

    Fluid fine tailings (FFT) are a principal by-product of the bitumen extraction process at oil sands mines. Base Mine Lake (BML)—the first full-scale demonstration oil sands end pit lake (EPL)—contains approximately 1.9 × 108 m3 of FFT stored under a water cover within a decommissioned mine pit. Chemical mass transfer from the FFT to the water cover can occur via two key processes: (1) advection-dispersion driven by tailings settlement; and (2) FFT disturbance due to fluid movement in the water cover. Dissolved chloride (Cl) was used to evaluate the water cover mass balance and to track mass transport within the underlying FFT based on field sampling and numerical modeling. Results indicated that FFT was the dominant Cl source to the water cover and that the FFT is exhibiting a transient advection-dispersion mass transport regime with intermittent disturbance near the FFT-water interface. The advective pore water flux was estimated by the mass balance to be 0.002 m3 m-2 d-1, which represents 0.73 m of FFT settlement per year. However, the FFT pore water Cl concentrations and corresponding mass transport simulations indicated that advection rates and disturbance depths vary between sample locations. The disturbance depth was estimated to vary with location between 0.75 and 0.95 m. This investigation provides valuable insight for assessing the geochemical evolution of the water cover and performance of EPLs as an oil sands reclamation strategy.

  13. Solid fossil-fuel recovery by electrical induction heating in situ - A proposal

    NASA Astrophysics Data System (ADS)

    Fisher, S.

    1980-04-01

    A technique, termed electrical induction heating, is proposed for in situ processes of energy production from solid fossil fuels, such as bitumen production from underground distillation of oil sand; oil by underground distillation of oil shale; petroleum from heavy oil by underground mobilization of heavy oil, from either residues of conventional liquid petroleum deposits or new deposits of viscous oil; methane and coal tar from lignite and coal deposits by underground distillation of coal; and generation of electricity by surface combustion of low calorific-value gas from underground coke gasification by combustion of the organic residue left from the underground distillation of coal by induction heating. A method of surface distillation of mined coking coal by induction heating to produce coke, methane, and coal tar is also proposed.

  14. Fate of SO2 and Particulate SO4 Based on Airborne Measurements in the Oil Sands Region of Alberta, Canada

    NASA Astrophysics Data System (ADS)

    Hayden, K. L.; Li, S. M.; McLaren, R.; Liu, P.; O'brien, J.; Gordon, M.; Darlington, A.; Liggio, J.; Mittermeier, R. L.; Staebler, R. M.; Makar, P.; Stroud, C.; Akingunola, A.; Leithead, A.; Moussa, S.

    2016-12-01

    An intensive airborne measurement campaign was undertaken in August to September 2013 to support the objectives of the Joint Oil Sands Monitoring (JOSM) program. The overarching objectives of the study were to characterize air pollutants being emitted, to determine the extent of atmospheric transport and chemical transformation, to support air quality model prediction capabilities, and to compare measurements with satellite column retrievals. Sulphur dioxide (SO2) and particulate sulphate (p-SO4) were among the pollutants studied. SO2 is emitted from elevated stacks within the oil sands facilities and undergoes atmospheric transformation into p-SO4. Deposition of these species from the atmosphere to the surface can lead to impacts on ecosystems downwind of the facilities. The processes of emission, transformation, transport, and deposition of SO2 and p-SO4 were investigated in detail using data collected during aircraft flights that were designed to study pollution transformation. The aircraft was flown at increasing distances downwind of the oil sands facilities, sampling the same plume at different times as it was transported away from the sources. Flight tracks were perpendicular to the wind direction at multiple altitudes to create virtual flight screens that encompassed the entire plume. Fluxes across each of the virtual screens were determined using the wind speed vector normal to the screen and the pollutant concentrations; the flux integration across the two-dimensional plume transect on the screen yielded the pollutant transfer rates at that particular screen location. Transformation of SO2 to p-SO4 between screens was determined based on OH radical levels estimated using concurrently measured concentrations of a suite of hydrocarbons. Based on mass balance between screens using the transfer rates, SO2 oxidation rates and p-SO4 formation rates, the deposition rates of both species are estimated along the plume transport path downwind of the oil sands

  15. The Contribution of Oil Sands Industry Related Atmospheric THg and MeHg Deposition to Rivers of the Athabasca Oil Sands Region of Canada

    NASA Astrophysics Data System (ADS)

    Wasiuta, V. L.; Cooke, C. A.; Kirk, J.; Chambers, P. A.; Alexander, A. C.; Rooney, R. C.

    2017-12-01

    Rapid development of Oil Sands deposits in northern Alberta (Canada) raises concerns about human health and environmental impacts. We present results from a three-year study of winter-time atmospheric deposition of total mercury (THg) and methylmercury (MeHg) in six tributary watersheds of the Athabasca River. Seasonal snowpack THg and MeHg concentrations were obtained from spring-time sampling throughout the oil sands region. Winter-time Hg loads were then modeled at watershed and sub-basin scales using ArcGIS geostatistical kriging. To determine the potential impacts of snowmelt on aquatic ecosystems, six rivers were sampled at high frequency over 2012 to 2014 ice-free seasons. Hydrologic year (HY) and first discharge peak loads were then calculated from linear extrapolation of measured concentrations and mean daily discharge. Results showed high THg and MeHg loads from atmospheric deposition around regional upgrading facilities with loads diminishing outwards. This reflects the large proportion of particle bound Hg with a short atmospheric residence time, and deposition close to emission sources. Snowpacks within the six watersheds contained substantial proportions of tributary river THg and MeHg loads. For example, HY2014 snowpacks contained 24 to 46 % of river MeHg loads. All rivers showed a large proportion of HY loads discharged, within a few weeks, in the spring first discharge peak. HY2014 snowpack MeHg loads were greater than river loads in the first discharge peak for all watersheds except the High Hills. This first discharge peak is important as it occurs during critical growth periods for aquatic life. Large differences in tributary river THg and MeHg loads suggest factors other than atmospheric deposition and watershed scale contributed to the load. Considerably higher THg and MeHg snowpack loads in the Muskeg Watershed relative to river export suggest substantial losses to catchment soils or wetlands during snowmelt. Evaluation of factors that could

  16. 40 CFR 60.101 - Definitions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... crude oil removed from the earth and the oils derived from tar sands, shale, and coal. (c) Process gas means any gas generated by a petroleum refinery process unit, except fuel gas and process upset gas as defined in this section. (d) Fuel gas means any gas which is generated at a petroleum refinery and which...

  17. 40 CFR 60.101 - Definitions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... crude oil removed from the earth and the oils derived from tar sands, shale, and coal. (c) Process gas means any gas generated by a petroleum refinery process unit, except fuel gas and process upset gas as defined in this section. (d) Fuel gas means any gas which is generated at a petroleum refinery and which...

  18. 40 CFR 60.101 - Definitions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... crude oil removed from the earth and the oils derived from tar sands, shale, and coal. (c) Process gas means any gas generated by a petroleum refinery process unit, except fuel gas and process upset gas as defined in this section. (d) Fuel gas means any gas which is generated at a petroleum refinery and which...

  19. 40 CFR 60.101 - Definitions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... crude oil removed from the earth and the oils derived from tar sands, shale, and coal. (c) Process gas means any gas generated by a petroleum refinery process unit, except fuel gas and process upset gas as defined in this section. (d) Fuel gas means any gas which is generated at a petroleum refinery and which...

  20. 43 CFR 3140.1-2 - Notice of intent to convert.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Conversion of Existing Oil and Gas Leases and Valid Claims Based on Mineral Locations § 3140.1-2 Notice of intent to convert. (a) Owners of oil and gas leases in Special Tar Sand Areas which are scheduled to... with the State Director, Utah State Office, Bureau of Land Management, 136 E. South Temple, Salt Lake...

  1. 43 CFR 3140.1-2 - Notice of intent to convert.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... Conversion of Existing Oil and Gas Leases and Valid Claims Based on Mineral Locations § 3140.1-2 Notice of intent to convert. (a) Owners of oil and gas leases in Special Tar Sand Areas which are scheduled to... with the State Director, Utah State Office, Bureau of Land Management, 136 E. South Temple, Salt Lake...

  2. 43 CFR 3140.1-2 - Notice of intent to convert.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... Conversion of Existing Oil and Gas Leases and Valid Claims Based on Mineral Locations § 3140.1-2 Notice of intent to convert. (a) Owners of oil and gas leases in Special Tar Sand Areas which are scheduled to... with the State Director, Utah State Office, Bureau of Land Management, 136 E. South Temple, Salt Lake...

  3. 43 CFR 3140.1-2 - Notice of intent to convert.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... Conversion of Existing Oil and Gas Leases and Valid Claims Based on Mineral Locations § 3140.1-2 Notice of intent to convert. (a) Owners of oil and gas leases in Special Tar Sand Areas which are scheduled to... with the State Director, Utah State Office, Bureau of Land Management, 136 E. South Temple, Salt Lake...

  4. Plant Community and Nitrogen Deposition as Drivers of Alpha and Beta Diversities of Prokaryotes in Reconstructed Oil Sand Soils and Natural Boreal Forest Soils

    PubMed Central

    Prescott, Cindy E.; Renaut, Sébastien; Terrat, Yves; Grayston, Sue J.

    2017-01-01

    ABSTRACT The Athabasca oil sand deposit is one of the largest single oil deposits in the world. Following surface mining, companies are required to restore soil-like profiles that can support the previous land capabilities. The objective of this study was to assess whether the soil prokaryotic alpha diversity (α-diversity) and β-diversity in oil sand soils reconstructed 20 to 30 years previously and planted to one of three vegetation types (coniferous or deciduous trees and grassland) were similar to those found in natural boreal forest soils subject to wildfire disturbance. Prokaryotic α-diversity and β-diversity were assessed using massively parallel sequencing of 16S rRNA genes. The β-diversity, but not the α-diversity, differed between reconstructed and natural soils. Bacteria associated with an oligotrophic lifestyle were more abundant in natural forest soils, whereas bacteria associated with a copiotrophic lifestyle were more abundant in reconstructed soils. Ammonia-oxidizing archaea were most abundant in reconstructed soils planted with grasses. Plant species were the main factor influencing α-diversity in natural and in reconstructed soils. Nitrogen deposition, pH, and plant species were the main factors influencing the β-diversity of the prokaryotic communities in natural and reconstructed soils. The results highlight the importance of nitrogen deposition and aboveground-belowground relationships in shaping soil microbial communities in natural and reconstructed soils. IMPORTANCE Covering over 800 km2, land disturbed by the exploitation of the oil sands in Canada has to be restored. Here, we take advantage of the proximity between these reconstructed ecosystems and the boreal forest surrounding the oil sand mining area to study soil microbial community structure and processes in both natural and nonnatural environments. By identifying key characteristics shaping the structure of soil microbial communities, this study improved our understanding of

  5. Dispersants as Used in Response to the MC252-Spill Lead to Higher Mobility of Polycyclic Aromatic Hydrocarbons in Oil-Contaminated Gulf of Mexico Sand

    PubMed Central

    Zuijdgeest, Alissa; Huettel, Markus

    2012-01-01

    After the explosion of the Deepwater Horizon oil rig, large volumes of crude oil were washed onto and embedded in the sandy beaches and sublittoral sands of the Northern Gulf of Mexico. Some of this oil was mechanically or chemically dispersed before reaching the shore. With a set of laboratory-column experiments we show that the addition of chemical dispersants (Corexit 9500A) increases the mobility of polycyclic aromatic hydrocarbons (PAHs) in saturated permeable sediments by up to two orders of magnitude. Distribution and concentrations of PAHs, measured in the solid phase and effluent water of the columns using GC/MS, revealed that the mobility of the PAHs depended on their hydrophobicity and was species specific also in the presence of dispersant. Deepest penetration was observed for acenaphthylene and phenanthrene. Flushing of the columns with seawater after percolation of the oiled water resulted in enhanced movement by remobilization of retained PAHs. An in-situ benthic chamber experiment demonstrated that aromatic hydrocarbons are transported into permeable sublittoral sediment, emphasizing the relevance of our laboratory column experiments in natural settings. We conclude that the addition of dispersants permits crude oil components to penetrate faster and deeper into permeable saturated sands, where anaerobic conditions may slow degradation of these compounds, thus extending the persistence of potentially harmful PAHs in the marine environment. Application of dispersants in nearshore oil spills should take into account enhanced penetration depths into saturated sands as this may entail potential threats to the groundwater. PMID:23209777

  6. SOC-10

    EPA Pesticide Factsheets

    Technical product bulletin: this water based surface washing agent used in oil spill cleanups may be sprayed onto soil, sand, or rocks. Suitable for slicks, sheens, and emulsions in fresh, river, brackish, or salt water. Not suitable for tar masses.

  7. 40 CFR 721.10532 - Tar, brown coal.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Tar, brown coal. 721.10532 Section 721... Tar, brown coal. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as tar, brown coal (PMN P-12-167, CAS No. 101316-83-0) is subject to...

  8. 40 CFR 721.10532 - Tar, brown coal.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Tar, brown coal. 721.10532 Section 721... Tar, brown coal. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as tar, brown coal (PMN P-12-167, CAS No. 101316-83-0) is subject to...

  9. Top-down Estimates of Greenhouse Gas Intensities and Emissions for Individual Oil Sands Facilities in Alberta Canada

    NASA Astrophysics Data System (ADS)

    Liggio, J.; Li, S. M.; Staebler, R. M.; Hayden, K. L.; Mittermeier, R. L.; McLaren, R.; Baray, S.; Darlington, A.; Worthy, D.; O'Brien, J.

    2017-12-01

    The oil sands (OS) region of Alberta contributes approximately 10% to Canada's overall anthropogenic greenhouse gas (GHG) emissions. Such emissions have traditionally been estimated through "bottom-up" methods which seek to account for all individual sources of GHGs within a given facility. However, it is recognized that bottom-up approaches for complex industrial facilities can be subject to uncertainties associated with incomplete or inaccurate emission factor and/or activity data. In order to quantify air pollutant emissions from oil sands activities an aircraft-based measurement campaign was performed in the summer of 2013. The aircraft measurements could also be used to quantify GHG emissions for comparison to the bottom up emissions estimates. Utilizing specific flight patterns, together with an emissions estimation algorithm and measurements of CO2 and methane, a "top-down" estimate of GHG intensities for several large surface mining operations was obtained. The results demonstrate that there is a wide variation in emissions intensities (≈80 - 220 kg CO2/barrel oil) across OS facilities, which in some cases agree with calculated intensities, and in other cases are larger than that estimated using industry reported GHG emission and oil production data. When translated to annual GHG emissions, the "top-down" approach results in a CO2 emission of approximately 41 Mega Tonnes (MT) CO2/year for the 4 OS facilities investigated, in contrast to the ≈26 MT CO2/year reported by industry. The results presented here highlight the importance of using "top-down" approaches as a complimentary method in evaluating GHG emissions from large industrial sources.

  10. Enhanced characterization of oil sands acid-extractable organics fractions using electrospray ionization-high-resolution mass spectrometry and synchronous fluorescence spectroscopy.

    PubMed

    Bauer, Anthony E; Frank, Richard A; Headley, John V; Peru, Kerry M; Hewitt, L Mark; Dixon, D George

    2015-05-01

    The open pit oil sands mining operations north of Fort McMurray, Alberta, Canada, are accumulating tailings waste at a rate approximately equal to 4.9 million m(3) /d. Naphthenic acids are among the most toxic components within tailings to aquatic life, but structural components have largely remained unidentified. In the present study, electrospray ionization high-resolution mass spectrometry (ESI-HRMS) and synchronous fluorescence spectroscopy (SFS) were used to characterize fractions derived from the distillation of an acid-extractable organics (AEO) mixture isolated from oil sands process-affected water (OSPW). Mean molecular weights of each fraction, and their relative proportions to the whole AEO extract, were as follows: fraction 1: 237 Da, 8.3%; fraction 2: 240 Da, 23.8%; fraction 3: 257 Da, 26.7%; fraction 4: 308 Da, 18.9%; fraction 5: 355 Da, 10.0%. With increasing mean molecular weight of the AEO fractions, a concurrent increase occurred in the relative abundance of nitrogen-, sulfur-, and oxygen-containing ions, double-bond equivalents, and degree of aromaticity. Structures present in the higher-molecular-weight fractions (fraction 4 and fraction 5) suggested the presence of heteroatoms, dicarboxyl and dihydroxy groups, and organic acid compounds with the potential to function as estrogens. Because organic acid compositions become dominated by more recalcitrant, higher-molecular-weight acids during natural degradation, these findings are important in the context of oil sands tailings pond water remediation. © 2015 SETAC.

  11. Toxicity of oil sands acid-extractable organic fractions to freshwater fish: Pimephales promelas (fathead minnow) and Oryzias latipes (Japanese medaka).

    PubMed

    Bauer, Anthony E; Frank, Richard A; Headley, John V; Peru, Kerry M; Farwell, Andrea J; Dixon, D George

    2017-03-01

    The Alberta oil sands are one of the largest global petroleum deposits and, due to non-release practices for oil sands process-affected waters, produced tailings are stored in large ponds. The acid extractable organic (AEO) compounds in oil sands process-affected water are of greatest concern due to their persistence and toxicity to a variety of aquatic biota. The present study evaluated the toxicity of the five AEO fractions to two fish species: Oryzias latipes (Japanese medaka) and Pimephales promelas (fathead minnow). The fractions (F1-F5) were comprised of AEO with increasing mean molecular weight and subsequent increases in cyclicity, aromaticity, degree of oxygenation, and heteroatom content. The lowest molecular weight fraction, F1, displayed the lowest acute toxicity to both fish species. For fathead minnow, F5 displayed the greatest toxic potency, while F2 to F4 displayed intermediate toxicities. For Japanese medaka, F2 and F3 displayed the greatest acute toxicities and F1, F4 and F5 were significantly less potent. Overall, fathead minnow were more acutely sensitive to AEO than Japanese medaka. The present study indicates that AEO toxicity may not be solely driven by a narcotic mode of action, but chemical composition such as aromaticity and heteroatom content and their relation to toxicity suggest other drivers indicative of additional modes of toxic action. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Tracing industrial sulfur emissions in atmospheric sulfate deposition in the Athabasca Oil Sands Region, Alberta, Canada

    Treesearch

    Bernadette C. Proemse; Bernhard Mayer; Mark E. Fenn

    2012-01-01

    Anthropogenic S emissions in the Athabasca oil sands region (AOSR) in Alberta, Canada, affect SO4 deposition in close vicinity of industrial emitters. Between May 2008 and May 2009, SO4-S deposition was monitored using open field bulk collectors at 15 sites and throughfall collectors at 14 sites at distances between 3 and 113 km from one of the major emission stacks in...

  13. Vegetation community composition in wetlands created following oil sand mining in Alberta, Canada.

    PubMed

    Roy, Marie-Claude; Foote, Lee; Ciborowski, Jan J H

    2016-05-01

    Reclaiming wetlands following open pit mining for industrial oil sand extraction is challenging due to the physical and chemical conditions of the post-mined landscape. The aim of our study was to examine and compare the influence of oil sands process water (OSPW) and material (fine fluid tails or FFT) on the plant community composition of created wetlands. Compared to created-unamended and natural wetlands, the created wetlands amended with OSPW and/or FFT (created-tailings wetlands) had significantly higher water salinity, conductivity, dissolved oxygen concentration and lower oxidative-reductive potential. Water chemistry parameters of created-unamended did not differ significantly from those of natural wetlands. The sediment of created wetlands had significantly less moisture, total nitrogen, and organic content than the natural wetlands. The application of OSPW/FFT in created wetlands will likely lead to initial vegetation composition atypical of natural regional wetlands. For the objective of reclaiming vegetation composition to the status of natural regional wetlands, unamended wetlands were the best reclamation option, based on the physical and chemical parameters measured. Despite being the favored reclamation option, created-unamended wetlands' physical and chemical characteristics remain atypical of natural wetlands. Most significantly, the basin morphometry of created wetlands was significantly different from that of naturally-formed wetlands in the region, and this appears to partly explain difference in vegetation composition. We also demonstrate that species richness alone is not a useful measure in wetland monitoring. Instead, plant community composition is a better indicator of wetland conditions. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Culturing oil sands microbes as mixed species communities enhances ex situ model naphthenic acid degradation

    PubMed Central

    Demeter, Marc A.; Lemire, Joseph A.; Yue, Gordon; Ceri, Howard; Turner, Raymond J.

    2015-01-01

    Oil sands surface mining for bitumen results in the formation of oil sands process water (OSPW), containing acutely toxic naphthenic acids (NAs). Potential exists for OSPW toxicity to be mitigated by aerobic degradation of the NAs by microorganisms indigenous to the oil sands tailings ponds, the success of which is dependent on the methods used to exploit the metabolisms of the environmental microbial community. Having hypothesized that the xenobiotic tolerant biofilm mode-of-life may represent a feasible way to harness environmental microbes for ex situ treatment of OSPW NAs, we aerobically grew OSPW microbes as single and mixed species biofilm and planktonic cultures under various conditions for the purpose of assaying their ability to tolerate and degrade NAs. The NAs evaluated were a diverse mixture of eight commercially available model compounds. Confocal microscopy confirmed the ability of mixed and single species OSPW cultures to grow as biofilms in the presence of the NAs evaluated. qPCR enumeration demonstrated that the addition of supplemental nutrients at concentrations of 1 g L-1 resulted in a more numerous population than 0.001 g L-1 supplementation by approximately 1 order of magnitude. GC-FID analysis revealed that mixed species cultures (regardless of the mode of growth) are the most effective at degrading the NAs tested. All constituent NAs evaluated were degraded below detectable limits with the exception of 1-adamantane carboxylic acid (ACA); subsequent experimentation with ACA as the sole NA also failed to exhibit degradation of this compound. Single species cultures degraded select few NA compounds. The degradation trends highlighted many structure-persistence relationships among the eight NAs tested, demonstrating the effect of side chain configuration and alkyl branching on compound recalcitrance. Of all the isolates, the Rhodococcus spp. degraded the greatest number of NA compounds, although still less than the mixed species cultures

  15. Tar Management and Recycling in Biomass Gasification and Syngas Purification

    NASA Astrophysics Data System (ADS)

    McCaffrey, Zach

    Removal of tars is critical to the design and operation of biomass gasification systems as most syngas utilization processing equipment (e.g. internal combustion engines, gas turbines, fuel cells, and liquid fuel synthesis reactors) have a low tolerance for tar. Capturing and disposal of tar is expensive due to equipment costs, high hazardous waste disposal costs where direct uses cannot be found, and system energy losses incurred. Water scrubbing is an existing technique commonly used in gasification plants to remove contaminants and tar; however using water as the absorbent is non-ideal as tar compounds have low or no water solubility. Hydrophobic solvents can improve scrubber performance and this study evaluated tar solubility in selected solvents using slip-streams of untreated syngas from a laboratory fluidized bed reactor operated on almond composite feedstock using both air and steam gasification. Tar solubility was compared with Hansen's solubility theory to examine the extent to which the tar removal can be predicted. As collection of tar without utilization leads to a hazardous waste problem, the study investigated the effects of recycling tars back into the gasifier for destruction. Prior to experiments conducted on tar capture and recycle, characterizations of the air and steam gasification of the almond composite mix were made. This work aims to provide a better understanding of tar collection and solvent selection for wet scrubbers, and to provide information for designing improved tar management systems for biomass gasification.

  16. Oil Sands Operations in Alberta, Canada: A large source of secondary organic aerosol

    NASA Astrophysics Data System (ADS)

    Liggio, J.; Li, S. M.; Hayden, K.; Taha, Y. M.; Stroud, C.; Darlington, A. L.; Drollette, B.; Gordon, M.; Lee, P.; Liu, P.; Leithead, A.; Moussa, S.; Wang, D.; O'Brien, J.; Mittermeier, R. L.; Brook, J.; Lu, G.; Staebler, R. M.; Han, Y.; Tokarek, T. W.; Osthoff, H. D.; Makar, P.; Zhang, J.; Plata, D.; Gentner, D. R.

    2015-12-01

    Little is known of the reaction products of emissions to the atmosphere from extraction of oil from unconventional sources in the oil sands (OS) region of Alberta, Canada. This study examines these reaction products, and in particular, the extent to which they form secondary organic aerosol (SOA), which can significantly contribute to regional particulate matter formation. An aircraft measurement campaign was conducted over the Athabasca oil sands region between August 13 and September 7, 2013. A broad suite of measurements were made during 22 flights, including organic aerosol mass and composition with a High Resolution Time of Flight Aerosol Mass Spectrometer (HR-ToF-AMS) and organic aerosol gas-phase precursors by Proton Transfer Reaction (PTR) and off-line gas chromatography mass spectrometry. Large concentrations of organic aerosol were measured downwind of the OS region, which we show to be entirely secondary in nature. Laboratory experiments demonstrated that bitumen (the mined product) contains semi-volatile vapours in the C12-C18 range that will be emitted at ambient temperatures. When oxidized, these vapours form SOA with highly similar HR-ToF-AMS spectra to the SOA measured in the flights. Box modelling of the OS plume evolution indicated that the measured levels of traditional volatile organic compounds (VOCs) are not capable of accounting for the amount of SOA formed in OS plumes. This discrepancy is only reconciled in the model by including bitumen vapours along with their oxidation and condensation into the model. The concentration of bitumen vapours required to produce SOA matching observations is similar to that of traditional VOC precursors of SOA. It was further estimated that the cumulative SOA mass formation approximately 100 km downwind of the OS during these flights, and under these meteorological conditions was up to 82 tonnes/day. The combination of airborne measurements, laboratory experiments and box modelling indicated that semi

  17. Wood species affect the degradation of crude oil in beach sand.

    PubMed

    Jandl, Gerald; Rodríguez Arranz, Alberto; Baum, Christel; Leinweber, Peter

    2015-01-01

    The addition of wood chips as a co-substrate can promote the degradation of oil in soil. Therefore, in the present study, the tree species-specific impact of wood chips of Scots pine (Pinus sylvestris L.), Norway spruce (Picea abies L.) and Western balsam poplar (Populus trichocarpa L.) on the degradation of crude oil was tested in beach sand in a 4-week incubation experiment. The CO2-C release increased in the order of control without wood chips < +spruce < +pine < +poplar. Initial and final hydrocarbon concentrations (C10 to C40), as indicators for the oil degradation, were determined with gas chromatography-flame ionization detection (GC-FID). The degradation increased for the light fraction (C10 to C22), the heavy fraction (C23 to C40) as well as the whole range (C10 to C40) in the order of control without wood chips (f(degrad.) = 23% vs. 0% vs. 12%) < +poplar (f(degrad.) = 49% vs. 19% vs. 36%) < +spruce (f(degrad.) = 55% vs. 34% vs. 46%) < +pine (f(degrad.) = 60% vs. 44% vs. 53%), whereas the heavy fraction was less degraded in comparison to the light fraction. It can be concluded, that the tree species-specific wood quality is a significant control of the impact on the degradation of hydrocarbons, and pine wood chips might be promising, possibly caused by their lower decomposability and lower substrate replacement than the other wood species.

  18. Toxicity, tunneling and feeding behavior of the termite, Coptotermes vastator, in sand treated with oil of the physic nut, Jatropha curcas.

    PubMed

    Acda, Menandro N

    2009-01-01

    Oil of the physic nut, Jatropha curcas L. (Malpighiales: Euphorbiaceae), was evaluated in the laboratory for its barrier and repellent activity against the Philippine milk termite Coptotermes vastator Light (Isoptera: Rhinotermitidae). The study showed that J. curcas oil had anti-feeding effect, induced reduction in tunneling activity and increased mortality in C. vastator. Behavior of termites exposed to sand treated with J. curcas oil indicated that it is toxic or repellent to C. vastator. Toxicity and repellent thresholds, were higher than those reported for other naturally occurring compounds tested against the Formosan subterranean termite.

  19. Identifying the causes of oil sands coke leachate toxicity to aquatic invertebrates.

    PubMed

    Puttaswamy, Naveen; Liber, Karsten

    2011-11-01

    A previous study found that coke leachates (CL) collected from oil sands field sites were acutely toxic to Ceriodaphnia dubia; however, the cause of toxicity was not known. Therefore, the purpose of this study was to generate CL in the laboratory to evaluate the toxicity response of C. dubia and perform chronic toxicity identification evaluation (TIE) tests to identify the causes of CL toxicity. Coke was subjected to a 15-d batch leaching process at pH 5.5 and 9.5. Leachates were filtered on day 15 and used for chemical and toxicological characterization. The 7-d median lethal concentration (LC50) was 6.3 and 28.7% (v/v) for pH 5.5 and 9.5 CLs, respectively. Trace element characterization of the CLs showed Ni and V levels to be well above their respective 7-d LC50s for C. dubia. Addition of ethylenediaminetetraacetic acid significantly (p ≤ 0.05) improved survival and reproduction in pH 5.5 CL, but not in pH 9.5 CL. Cationic and anionic resins removed toxicity of pH 5.5 CL only. Conversely, the toxicity of pH 9.5 CL was completely removed with an anion resin alone, suggesting that the pH 9.5 CL contained metals that formed oxyanions. Toxicity reappeared when Ni and V were added back to anion resin-treated CLs. The TIE results combined with the trace element chemistry suggest that both Ni and V are the cause of toxicity in pH 5.5 CL, whereas V appears to be the primary cause of toxicity in pH 9.5 CL. Environmental monitoring and risk assessments should therefore focus on the fate and toxicity of metals, especially Ni and V, in coke-amended oil sands reclamation landscapes. Copyright © 2011 SETAC.

  20. Differential effects of high atmospheric N and S deposition on bog plant/lichen tissue and porewater chemistry across the Athabasca Oil Sands Region

    Treesearch

    R. Kelman Wieder; Melanie A. Vile; Kimberli D. Scott; Cara M. Albright; Kelly J. McMillen; Dale H. Vitt; Mark E. Fenn

    2016-01-01

    Oil extraction and development activities in the Athabasca Oil Sands Region of northern Alberta, Canada, release NOx, SOx, and NHy to the atmosphere, ultimately resulting in increasing N and S inputs to surrounding ecosystems through atmospheric deposition. Peatlands are a major feature of the northern Alberta landscape, with bogs covering 6-10% of the land area, and...

  1. Polycyclic aromatic hydrocarbons in caribou, moose, and wolf scat samples from three areas of the Alberta oil sands.

    PubMed

    Lundin, Jessica I; Riffell, Jeffrey A; Wasser, Samuel K

    2015-11-01

    Impacts of toxic substances from oil production in the Alberta oil sands (AOS), such as polycyclic aromatic hydrocarbons (PAHs), have been widely debated. Studies have been largely restricted to exposures from surface mining in aquatic species. We measured PAHs in Woodland caribou (Rangifer tarandus caribou), moose (Alces americanus), and Grey wolf (Canis lupus) across three areas that varied in magnitude of in situ oil production. Our results suggest a distinction of PAH level and source profile (petro/pyrogenic) between study areas and species. Caribou samples indicated pyrogenic sourced PAHs in the study area previously devastated by forest fire. Moose and wolf samples from the high oil production area demonstrated PAH ratios indicative of a petrogenic source and increased PAHs, respectively. These findings emphasize the importance of broadening monitoring and research programs in the AOS. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Final safety assessment of Coal Tar as used in cosmetics.

    PubMed

    2008-01-01

    Coal Tar is a semisolid by-product obtained in the destructive distillation of bituminous coal, which functions in cosmetic products as a cosmetic biocide and denaturant--antidandruff agent is also listed as a function, but this is considered an over-the-counter (OTC) drug use. Coal Tar is a nearly black, viscous liquid, heavier than water, with a naphthalene-like odor and a sharp burning taste, produced in cooking ovens as a by-product in the manufacture of coke. Crude Coal Tar is composed of 48% hydrocarbons, 42% carbon, and 10% water. In 2002, Coal Tar was reported to the Food and Drug Administration (FDA) to be used in four formulations, all of which appear to be OTC drug products. Coal Tar is monographed by the FDA as Category I (safe and effective) OTC drug ingredient for use in the treatment of dandruff, seborrhoea, and psoriasis. Coal Tar is absorbed through the skin of animals and humans and is systemically distributed. In short-term studies, mice fed a diet containing Coal Tar found it unpalatable, but no adverse effects were reported other than weight loss; rats injected with Coal Tar experienced malaise in one study and decreased water intake and increased liver weights in another; rabbits injected with Coal Tar residue experienced eating avoidance, respiratory difficulty, sneezing, and weight loss. In a subchronic neurotoxicity study using mice, a mixture of phenols, cresols, and xylenols at concentrations approximately equal to those expected in Coal Tar extracts produced regionally selective effects, with a rank order of corpus striatum > cerebellum > cerebral cortex. Coal Tar applied to the backs of guinea pigs increases epidermal thickness. Painting female rabbits with tar decreases the absolute and relative weights of the ovaries and decreased the number of interstitial cells in the ovary. Four therapeutic Coal Tar preparations used in the treatment of psoriasis were mutagenic in the Ames assay. Urine and blood from patients treated with Coal Tar

  3. Smokers' knowledge and understanding of advertised tar numbers: health policy implications.

    PubMed

    Cohen, J B

    1996-01-01

    This article examines health policy implications of providing smokers with numerical tar yield information in cigarette advertising. Results of a national probability telephone survey regarding smokers' knowledge and understanding of numerical tar yields and deliveries are reported. Few smokers knew the tar level of their own cigarettes (the exception being smokers of 1- to 5-mg tar cigarettes), and a majority could not correctly judge the relative tar levels of cigarettes. Smokers were unsure whether switching to lower-tar cigarettes would reduce their personal health risks. Many smokers relied on absolute numbers in making trade-offs between number of cigarettes smoked and their tar levels, thus confusion machine-rated tar-yields with actual amounts ingested. The wisdom of the present method of providing tar and nicotine numbers in ads and recommendations for modifying the test protocol are now under discussion. This research indicates that these tar numbers and their implications are poorly understood. The paper recommends revisions in tar ratings to make them more useful and a required statement on cigarette packages to more explicitly relate tar levels to major health risks.

  4. Elucidating mechanisms of toxic action of dissolved organic chemicals in oil sands process-affected water (OSPW).

    PubMed

    Morandi, Garrett D; Wiseman, Steve B; Guan, Miao; Zhang, Xiaowei W; Martin, Jonathan W; Giesy, John P

    2017-11-01

    Oil sands process-affected water (OSPW) is generated during extraction of bitumen in the surface-mining oil sands industry in Alberta, Canada, and is acutely and chronically toxic to aquatic organisms. It is known that dissolved organic compounds in OSPW are responsible for most toxic effects, but knowledge of the specific mechanism(s) of toxicity, is limited. Using bioassay-based effects-directed analysis, the dissolved organic fraction of OSPW has previously been fractionated, ultimately producing refined samples of dissolved organic chemicals in OSPW, each with distinct chemical profiles. Using the Escherichia coli K-12 strain MG1655 gene reporter live cell array, the present study investigated relationships between toxic potencies of each fraction, expression of genes and characterization of chemicals in each of five acutely toxic and one non-toxic extract of OSPW derived by use of effects-directed analysis. Effects on expressions of genes related to response to oxidative stress, protein stress and DNA damage were indicative of exposure to acutely toxic extracts of OSPW. Additionally, six genes were uniquely responsive to acutely toxic extracts of OSPW. Evidence presented supports a role for sulphur- and nitrogen-containing chemical classes in the toxicity of extracts of OSPW. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Dirty Oil and Shovel-Ready Jobs

    ERIC Educational Resources Information Center

    Mac Phail, Abby

    2012-01-01

    In this article, the author describes a role-playing activity on tar sands and the proposed TransCanada Keystone XL pipeline. In this activity, students take on the characters of six key stakeholders invited to an imaginary public hearing to discuss whether or not the State Department and President Obama should approve the Keystone XL pipeline.…

  6. Kuwait City and Fire Scars in the Oil Fields

    NASA Image and Video Library

    1992-08-08

    This view of the northern Persian Gulf shows Kuwait City and the Tigris and Euphrates River Deltas (29.5N, 48.5E). The oil laden sands and oil lakes of the Kuwait Oil Fields to the north and south of the city are clearly visible as dark patches surrounded by oil free desert sands. Comparison with earlier photos indicate that the oil laden sands are slowly being covered with clean sand carried by strong NW winds called Shmals.

  7. Long-term reliability of the Athabasca River (Alberta, Canada) as the water source for oil sands mining

    PubMed Central

    Sauchyn, David J.; St-Jacques, Jeannine-Marie; Luckman, Brian H.

    2015-01-01

    Exploitation of the Alberta oil sands, the world’s third-largest crude oil reserve, requires fresh water from the Athabasca River, an allocation of 4.4% of the mean annual flow. This allocation takes into account seasonal fluctuations but not long-term climatic variability and change. This paper examines the decadal-scale variability in river discharge in the Athabasca River Basin (ARB) with (i) a generalized least-squares (GLS) regression analysis of the trend and variability in gauged flow and (ii) a 900-y tree-ring reconstruction of the water-year flow of the Athabasca River at Athabasca, Alberta. The GLS analysis removes confounding transient trends related to the Pacific Decadal Oscillation (PDO) and Pacific North American mode (PNA). It shows long-term declining flows throughout the ARB. The tree-ring record reveals a larger range of flows and severity of hydrologic deficits than those captured by the instrumental records that are the basis for surface water allocation. It includes periods of sustained low flow of multiple decades in duration, suggesting the influence of the PDO and PNA teleconnections. These results together demonstrate that low-frequency variability must be considered in ARB water allocation, which has not been the case. We show that the current and projected surface water allocations from the Athabasca River for the exploitation of the Alberta oil sands are based on an untenable assumption of the representativeness of the short instrumental record. PMID:26392554

  8. The importance of atmospheric base cation deposition for preventing soil acidification in the Athabasca Oil Sands Region of Canada

    Treesearch

    Shaun A. Watmough; Colin J. Whitfield; Mark E. Fenn

    2014-01-01

    Industrial activities in the oil sands region of Alberta, Canada have resulted in greatly elevated emissions of SO2 and N (NOx and NH3) and there are concerns over possible widespread ecosystem acidification. Acid sensitive soils in the region are common and have very low base cation weathering rates...

  9. The temporal relationship between advertising and sales of low-tar cigarettes.

    PubMed

    Reed, Mark B; Anderson, Christy M; Burns, David M

    2006-12-01

    To determine whether a temporal relationship exists between the advertising and sales of low-tar cigarettes. It was hypothesised that increases in the advertising of low-tar cigarettes would precede increases in sales for these cigarettes. The themes of cigarette advertisements were reviewed and coded for 20 low-tar cigarette brands advertised in 13 widely read magazines in the US between 1960 and 1996. These 20 brands represented most of the low-tar cigarette advertisements and cigarette sales from 1967 to 1996. Cigarette sales data were obtained from the 1994 Maxwell report that summarises all cigarette sales from 1925 to 1990. If the advertisement referred to the low-tar attributes of the cigarette advertised, the advertisement was coded as having a low-tar theme and was included in the analysis. Five different graphical presentations of the relationship between the advertising and sales of the 20 low-tar cigarette brands showed a temporal relationship between low-tar advertising and sales for these brands. This relationship was observed for brands that introduced a low-tar alternative into an existing brand family (eg, Marlboro Light) and for new exclusively low-tar brands (eg, Carlton). Despite large increases in the advertising for the exclusively low-tar brands, sales of these brands remained low relative to sales of the low-tar alternative brands. Increases in print advertising of 20 of the most popular low-tar cigarette brands were followed by increases in sales for these cigarettes. Despite increases in the advertising of exclusively low-tar brands in the mid-1970s and early 1980s, the sales of these brands never matched the sales of the low-tar alternative brands. This suggests that it may have been easier to get smokers to switch to low-tar brands within a brand family compared with entirely new low-tar brands. Over the past 30 years, the marketing of low-tar cigarettes as a healthier alternative to higher-tar cigarettes has resulted in these brands

  10. Plant Community and Nitrogen Deposition as Drivers of Alpha and Beta Diversities of Prokaryotes in Reconstructed Oil Sand Soils and Natural Boreal Forest Soils.

    PubMed

    Masse, Jacynthe; Prescott, Cindy E; Renaut, Sébastien; Terrat, Yves; Grayston, Sue J

    2017-05-01

    The Athabasca oil sand deposit is one of the largest single oil deposits in the world. Following surface mining, companies are required to restore soil-like profiles that can support the previous land capabilities. The objective of this study was to assess whether the soil prokaryotic alpha diversity (α-diversity) and β-diversity in oil sand soils reconstructed 20 to 30 years previously and planted to one of three vegetation types (coniferous or deciduous trees and grassland) were similar to those found in natural boreal forest soils subject to wildfire disturbance. Prokaryotic α-diversity and β-diversity were assessed using massively parallel sequencing of 16S rRNA genes. The β-diversity, but not the α-diversity, differed between reconstructed and natural soils. Bacteria associated with an oligotrophic lifestyle were more abundant in natural forest soils, whereas bacteria associated with a copiotrophic lifestyle were more abundant in reconstructed soils. Ammonia-oxidizing archaea were most abundant in reconstructed soils planted with grasses. Plant species were the main factor influencing α-diversity in natural and in reconstructed soils. Nitrogen deposition, pH, and plant species were the main factors influencing the β-diversity of the prokaryotic communities in natural and reconstructed soils. The results highlight the importance of nitrogen deposition and aboveground-belowground relationships in shaping soil microbial communities in natural and reconstructed soils. IMPORTANCE Covering over 800 km 2 , land disturbed by the exploitation of the oil sands in Canada has to be restored. Here, we take advantage of the proximity between these reconstructed ecosystems and the boreal forest surrounding the oil sand mining area to study soil microbial community structure and processes in both natural and nonnatural environments. By identifying key characteristics shaping the structure of soil microbial communities, this study improved our understanding of how

  11. 7 CFR 3201.76 - Asphalt and tar removers.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 15 2014-01-01 2014-01-01 false Asphalt and tar removers. 3201.76 Section 3201.76... Designated Items § 3201.76 Asphalt and tar removers. (a) Definition. Cleaning agents designed to remove asphalt or tar from equipment, roads, or other surfaces. (b) Minimum biobased content. The Federal...

  12. 7 CFR 3201.76 - Asphalt and tar removers.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 15 2013-01-01 2013-01-01 false Asphalt and tar removers. 3201.76 Section 3201.76... Designated Items § 3201.76 Asphalt and tar removers. (a) Definition. Cleaning agents designed to remove asphalt or tar from equipment, roads, or other surfaces. (b) Minimum biobased content. The Federal...

  13. Recent Warming, Rather than Industrial Emissions of Bioavailable Nutrients, Is the Dominant Driver of Lake Primary Production Shifts across the Athabasca Oil Sands Region

    PubMed Central

    Summers, Jamie C.; Kurek, Joshua; Kirk, Jane L.; Muir, Derek C. G.; Wang, Xiaowa; Wiklund, Johan A.; Cooke, Colin A.; Evans, Marlene S.; Smol, John P.

    2016-01-01

    Freshwaters in the Athabasca Oil Sands Region (AOSR) are vulnerable to the atmospheric emissions and land disturbances caused by the local oil sands industry; however, they are also affected by climate change. Recent observations of increases in aquatic primary production near the main development area have prompted questions about the principal drivers of these limnological changes. Is the enhanced primary production due to deposition of nutrients (nitrogen and phosphorus) from local industry or from recent climatic changes? Here, we use downcore, spectrally-inferred chlorophyll-a (VRS-chla) profiles (including diagenetic products) from 23 limnologically-diverse lakes with undisturbed catchments to characterize the pattern of primary production increases in the AOSR. Our aim is to better understand the relative roles of the local oil sands industry versus climate change in driving aquatic primary production trends. Nutrient deposition maps, generated using geostatistical interpolations of spring-time snowpack measurements from a grid pattern across the AOSR, demonstrate patterns of elevated total phosphorus, total nitrogen, and bioavailable nitrogen deposition around the main area of industrial activity. However, this pattern is not observed for bioavailable phosphorus. Our paleolimnological findings demonstrate consistently greater VRS-chla concentrations compared to pre-oil sands development levels, regardless of morphological and limnological characteristics, landscape position, bioavailable nutrient deposition, and dibenzothiophene (DBT)-inferred industrial impacts. Furthermore, breakpoint analyses on VRS-chla concentrations across a gradient of DBT-inferred industrial impact show limited evidence of a contemporaneous change among lakes. Despite the contribution of bioavailable nitrogen to the landscape from industrial activities, we find no consistency in the spatial pattern and timing of VRS-chla shifts with an industrial fertilizing signal. Instead

  14. Smokers' knowledge and understanding of advertised tar numbers: health policy implications.

    PubMed Central

    Cohen, J B

    1996-01-01

    OBJECTIVES. This article examines health policy implications of providing smokers with numerical tar yield information in cigarette advertising. METHODS. Results of a national probability telephone survey regarding smokers' knowledge and understanding of numerical tar yields and deliveries are reported. RESULTS. Few smokers knew the tar level of their own cigarettes (the exception being smokers of 1- to 5-mg tar cigarettes), and a majority could not correctly judge the relative tar levels of cigarettes. Smokers were unsure whether switching to lower-tar cigarettes would reduce their personal health risks. Many smokers relied on absolute numbers in making trade-offs between number of cigarettes smoked and their tar levels, thus confusion machine-rated tar-yields with actual amounts ingested. CONCLUSIONS. The wisdom of the present method of providing tar and nicotine numbers in ads and recommendations for modifying the test protocol are now under discussion. This research indicates that these tar numbers and their implications are poorly understood. The paper recommends revisions in tar ratings to make them more useful and a required statement on cigarette packages to more explicitly relate tar levels to major health risks. PMID:8561236

  15. The Australian tar derby: the origins and fate of a low tar harm reduction programme

    PubMed Central

    King, W; Carter, S; Borland, R; Chapman, S; Gray, N

    2003-01-01

    Objective: To document the development of the low tar harm reduction programme in Australia, including tobacco industry responses. Data sources: Tobacco industry documents, retail tobacco journals, newspapers, medical journals, and Anti-Cancer Council of Victoria (ACCV) newsletters and archival records. Study selection: Documents on the strategies and knowledge bases of the ACCV, other Australian health authorities, and the tobacco industry. Results: The ACCV built a durable system for measuring and publicising the tar and nicotine yields of Australian cigarettes and influencing their development. The tobacco industry initially sought to block the development of this system but later appeared to cooperate with it, as is evidenced by the current market dominance of low tar brands. However, behind the scenes, the industry used its substantial knowledge advantage regarding compensatory smoking and its ability to re-engineer cigarettes to gain effective control of the system and subvert the ACCV's objectives. Conclusions: Replacement of the low tar programme with new means of minimising the harms from cigarette smoking should be a policy priority for the Australian government. This will require regulation, rather than further voluntary agreements, and stringent monitoring of successor programmes will be necessary. PMID:14645950

  16. The temporal relationship between advertising and sales of low‐tar cigarettes

    PubMed Central

    Reed, Mark B; Anderson, Christy M; Burns, David M

    2006-01-01

    Objective and hypothesis To determine whether a temporal relationship exists between the advertising and sales of low‐tar cigarettes. It was hypothesised that increases in the advertising of low‐tar cigarettes would precede increases in sales for these cigarettes. Methods The themes of cigarette advertisements were reviewed and coded for 20 low‐tar cigarette brands advertised in 13 widely read magazines in the US between 1960 and 1996. These 20 brands represented most of the low‐tar cigarette advertisements and cigarette sales from 1967 to 1996. Cigarette sales data were obtained from the 1994 Maxwell report that summarises all cigarette sales from 1925 to 1990. If the advertisement referred to the low‐tar attributes of the cigarette advertised, the advertisement was coded as having a low‐tar theme and was included in the analysis. Results Five different graphical presentations of the relationship between the advertising and sales of the 20 low‐tar cigarette brands showed a temporal relationship between low‐tar advertising and sales for these brands. This relationship was observed for brands that introduced a low‐tar alternative into an existing brand family (eg, Marlboro Light) and for new exclusively low‐tar brands (eg, Carlton). Despite large increases in the advertising for the exclusively low‐tar brands, sales of these brands remained low relative to sales of the low‐tar alternative brands. Conclusions Increases in print advertising of 20 of the most popular low‐tar cigarette brands were followed by increases in sales for these cigarettes. Despite increases in the advertising of exclusively low‐tar brands in the mid‐1970s and early 1980s, the sales of these brands never matched the sales of the low‐tar alternative brands. This suggests that it may have been easier to get smokers to switch to low‐tar brands within a brand family compared with entirely new low‐tar brands. Over the past 30 years, the marketing of low‐tar

  17. Toxicity, Tunneling and Feeding Behavior of the Termite, Coptotermes vastator, in Sand Treated with Oil of the Physic Nut, Jatropha curcas

    PubMed Central

    Acda, Menandro N.

    2009-01-01

    Oil of the physic nut, Jatropha curcas L. (Malpighiales: Euphorbiaceae), was evaluated in the laboratory for its barrier and repellent activity against the Philippine milk termite Coptotermes vastator Light (Isoptera: Rhinotermitidae). The study showed that J. curcas oil had anti-feeding effect, induced reduction in tunneling activity and increased mortality in C. vastator. Behavior of termites exposed to sand treated with J. curcas oil indicated that it is toxic or repellent to C. vastator. Toxicity and repellent thresholds, were higher than those reported for other naturally occurring compounds tested against the Formosan subterranean termite. PMID:20053119

  18. Aquatic plant-derived changes in oil sands naphthenic acid signatures determined by low-, high- and ultrahigh-resolution mass spectrometry.

    PubMed

    Headley, John V; Peru, Kerry M; Armstrong, Sarah A; Han, Xiumei; Martin, Jonathan W; Mapolelo, Mmilili M; Smith, Donald F; Rogers, Ryan P; Marshall, Alan G

    2009-02-01

    Mass spectrometry is a common tool for studying the fate of complex organic compound mixtures in oil sands processed water (OSPW), but a comparison of low-, high- ( approximately 10 000), and ultrahigh-resolution ( approximately 400 000) instrumentation for this purpose has not previously been made. High-resolution quadrupole time-of-flight mass spectrometry (QTOF MS) and ultrahigh-resolution Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS), with negative-ion electrospray ionization, provided evidence for the selective dissipation of components in OSPW. Dissipation of oil sands naphthenic acids (NAs with general formula C(n)H(2n+z)O(2) where n is the number of carbon atoms, and Z is zero or a negative even number describing the number of rings) was masked (by components such as fatty acids, O(3), O(5), O(6), O(7), SO(2), SO(3), SO(4), SO(5), SO(6), and NO(4) species) at low resolution (1000) when using a triple quadrupole mass spectrometer. Changes observed in the relative composition of components in OSPW appear to be due primarily to the presence of plants, specifically cattails (Typha latifolia) and their associated microorganisms. The observed dissipation included a range of heteratomic species containing O(2), O(3), O(4), and O(5), present in Athabasca oil sands acid extracts. For the heteratomic O(2) species, namely naphthenic acids, an interesting structural relationship suggests that low and high carbon number NAs are dissipated by the plants preferentially, with a minimum around C(14)/C(15). Other heteratomic species containing O(6), O(7), SO(2), SO(3), SO(4), SO(5), SO(6), and NO(4) appear to be relatively recalcitrant to the cattails and were not dissipated to the same extent in planted systems. Copyright 2009 John Wiley & Sons, Ltd.

  19. Determining the effect of oil sands process-affected water on grazing behaviour of Daphnia magna, long-term consequences, and mechanism.

    PubMed

    Lari, Ebrahim; Wiseman, Steve; Mohaddes, Effat; Morandi, Garrett; Alharbi, Hattan; Pyle, Greg G

    2016-03-01

    Oil sands process-affected water (OSPW) is a byproduct of the extraction of bitumen in the surface-mining oil sands industry and is currently stored in on-site tailings ponds. OSPW from three oil sands companies were studied to capture some of the variability associated with OSPW characteristics. To investigate the effect and mechanism(s) of effect of OSPW on feeding behaviour, Daphnia magna were exposed to low OSPW concentrations for 24 h and monitored for their feeding rate, olfactory response and swimming activity. The Al and Si content, which are indicators of suspended particulate matter in D. magna exposed to OSPW were investigated using energy-dispersive X-ray (EDX) spectroscopy. In long-term experiments, effects of exposure to OSPW for 21 days on feeding behaviour, growth, and reproduction of D. magna were evaluated. Feeding rates were similar among the three exposure populations, yielding a 24 h IC50 of 5.3% OSPW. Results of behavioural assays suggest that OSPW impairs the chemosensory function and reduces the total activity of D. magna. In EDX spectroscopy, Al and Si were detected in the body of the exposed D. magna, suggesting that D. magna filter clay particles from the OSPW solution. Results of the long-term exposure showed that OSPW significantly inhibits feeding behaviour, suppresses growth, and reduces reproductive output of D. magna. There were no differences in the toxicity of the three samples of OSPW, which was in agreement with the fact that there were no differences in the species of dissolved organic compounds in the OSPW samples. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. PAH distributions in sediments in the oil sands monitoring area and western Lake Athabasca: Concentration, composition and diagnostic ratios.

    PubMed

    Evans, Marlene; Davies, Martin; Janzen, Kim; Muir, Derek; Hazewinkel, Rod; Kirk, Jane; de Boer, Dirk

    2016-06-01

    Oil sands activities north of Fort McMurray, Alberta, have intensified in recent years with a concomitant debate as to their environmental impacts. The Regional Aquatics Monitoring Program and its successor, the Joint Canada-Alberta Implementation Plan for Oil Sands Monitoring (JOSM), are the primary aquatic programs monitoring this industry. Here we examine sediment data (collected by Ekman grabs) to investigate trends and sources of polycyclic aromatic hydrocarbons (PAHs), supplementing these data with sediment core studies. Total PAH (ΣPAH) concentrations were highest at Shipyard Lake (6038 ± 2679 ng/g) in the development center and lower at Isadore's Lake (1660 ± 777 ng/g) to the north; both lakes are in the Athabasca River Valley and lie below the developments. ΣPAH concentrations were lower (622-930 ng/g) in upland lakes (Kearl, McClelland) located further away from the developments. ΣPAH concentrations increased at Shipyard Lake (2001-2014) and the Ells River mouth (1998-2014) but decreased in nearshore areas at Kearl Lake (2001-2014) and a Muskeg River (2000-2014) site. Over the longer term, ΣPAH concentrations increased in Kearl (1934-2012) and Sharkbite (1928-2010) Lakes. Further (200 km) downstream in the Athabasca River delta, ΣPAH concentrations (1029 ± 671 ng/g) increased (1999-2014) when %sands were included in the regression model; however, 50 km to the east, concentrations declined (1926-2009) in Lake Athabasca. Ten diagnostic ratios based on anthracene, phenanthrene, fluoranthene, pyrene, benz[a]anthracene, chrysene, indeno[123-cd]pyrene, dibenz[a,h]anthracene, dibenzothiophene and retene were examined to infer spatial and temporal trends in PAH sources (e.g., combustion versus petrogenic) and weathering. There was some evidence of increasing contributions of unprocessed oil sands and bitumen dust to Shipyard, Sharkbite, and Isadore's Lakes and increased combustion sources in the Athabasca River delta. Some CCME interim

  1. Biodegradation of naphthenic acids in oils sands process waters in an immobilized soil/sediment bioreactor.

    PubMed

    McKenzie, Natalie; Yue, Siqing; Liu, Xudong; Ramsay, Bruce A; Ramsay, Juliana A

    2014-08-01

    Aqueous extraction of bitumen in the Alberta oil sands industry produces large volumes of oil sands process water (OSPW) containing naphthenic acids (NAs), a complex mixture of carboxylic acids that are acutely toxic to aquatic organisms. Although aerobic biodegradation reduces NA concentrations and OSPW toxicity, treatment times are long, however, immobilized cell reactors have the potential to improve NA removal rates. In this study, two immobilized soil/sediment bioreactors (ISBRs) operating in series were evaluated for treatment of NAs in OSPW. A biofilm was established from microorganisms associated with sediment particles from an OSPW contaminated wetland on a non-woven textile. At 16 months of continuous operation with OSPW as the sole source of carbon and energy, 38±7% NA removal was consistently achieved at a residence time of 160 h at a removal rate of 2.32 mg NAs L(-1)d(-1). The change in NA profile measured by gas chromatography-mass spectrometry indicated that biodegradability decreased with increasing cyclicity. These results indicate that such treatment can significantly reduce NA removal rates compared to most studies, and the treatment of native process water in a bioreactor has been demonstrated. Amplification of bacterial 16S rRNA genes and sequencing using Ion Torrent sequencing characterized the reactors' biofilm populations and found as many as 235 and 198 distinct genera in the first and second bioreactor, respectively, with significant populations of ammonium- and nitrite-oxidizers. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Coupling lead isotopes and element concentrations in epiphytic lichens to track sources of air emissions in the Alberta Oil Sands Region

    EPA Science Inventory

    A study was conducted that coupled use of element concentrations and lead (Pb) isotope ratios in the lichen Hypogymnia physodes collected during 2002 and 2008, to assess the impacts of air emissions from the Alberta Oil Sands Region (AOSR, Canada) mining and processing operations...

  3. Receptor Modeling of Epiphytic Lichens to Elucidate the Sources and SpatialDistribution of Inorganic Air Pollution in the Athabasca Oil Sands Region

    EPA Science Inventory

    The contribution of inorganic air pollutant emissions to atmospheric deposition in the Athabasca Oil Sands Region (AOSR) of Alberta, Canada was investigated in the surrounding boreal forests, using a common epiphytic lichen bio-indicator species (Hypogymnia physodes) and applyi...

  4. Quantitative and qualitative analysis of naphthenic acids in natural waters surrounding the Canadian oil sands industry.

    PubMed

    Ross, Matthew S; Pereira, Alberto dos Santos; Fennell, Jon; Davies, Martin; Johnson, James; Sliva, Lucie; Martin, Jonathan W

    2012-12-04

    The Canadian oil sands industry stores toxic oil sands process-affected water (OSPW) in large tailings ponds adjacent to the Athabasca River or its tributaries, raising concerns over potential seepage. Naphthenic acids (NAs; C(n)H(2n-Z)O(2)) are toxic components of OSPW, but are also natural components of bitumen and regional groundwaters, and may enter surface waters through anthropogenic or natural sources. This study used a selective high-resolution mass spectrometry method to examine total NA concentrations and NA profiles in OSPW (n = 2), Athabasca River pore water (n = 6, representing groundwater contributions) and surface waters (n = 58) from the Lower Athabasca Region. NA concentrations in surface water (< 2-80.8 μg/L) were 100-fold lower than previously estimated. Principal components analysis (PCA) distinguished sample types based on NA profile, and correlations to water quality variables identified two sources of NAs: natural fatty acids, and bitumen-derived NAs. Analysis of NA data with water quality variables highlighted two tributaries to the Athabasca River-Beaver River and McLean Creek-as possibly receiving OSPW seepage. This study is the first comprehensive analysis of NA profiles in surface waters of the region, and demonstrates the need for highly selective analytical methods for source identification and in monitoring for potential effects of development on ambient water quality.

  5. The stable isotopes of site wide waters at an oil sands mine in northern Alberta, Canada

    NASA Astrophysics Data System (ADS)

    Baer, Thomas; Barbour, S. Lee; Gibson, John J.

    2016-10-01

    Oil sands mines have large disturbance footprints and contain a range of new landforms constructed from mine waste such as shale overburden and the byproducts of bitumen extraction such as sand and fluid fine tailings. Each of these landforms are a potential source of water and chemical release to adjacent surface and groundwater, and consequently, the development of methods to track water migration through these landforms is of importance. The stable isotopes of water (i.e. 2H and 18O) have been widely used in hydrology and hydrogeology to characterize surface water/groundwater interactions but have not been extensively applied in mining applications, or specifically to oil sands mining in northern Alberta. A prerequisite for applying these techniques is the establishment of a Local Meteoric Water Line (LMWL) to characterize precipitation at the mine sites as well as the development of a 'catalogue' of the stable water isotope signatures of various mine site waters. This study was undertaken at the Mildred Lake Mine Site, owned and operated by Syncrude Canada Ltd. The LMWL developed from 2 years (2009/2012) of sample collection is shown to be consistent with other LMWLs in western Canada. The results of the study highlight the unique stable water isotope signatures associated with hydraulically placed tailings (sand or fluid fine tailings) and overburden shale dumps relative to natural surface water and groundwater. The signature associated with the snow melt water on reclaimed landscapes was found to be similar to ground water recharge in the region. The isotopic composition of the shale overburden deposits are also distinct and consistent with observations made by other researchers in western Canada on undisturbed shales. The process water associated with the fine and coarse tailings streams has highly enriched 2H and 18O signatures. These signatures are developed through the non-equilibrium fractionation of imported fresh river water during evaporation from

  6. Heterocyclic Aromatics in Petroleum Coke, Snow, Lake Sediments, and Air Samples from the Athabasca Oil Sands Region.

    PubMed

    Manzano, Carlos A; Marvin, Chris; Muir, Derek; Harner, Tom; Martin, Jonathan; Zhang, Yifeng

    2017-05-16

    The aromatic fractions of snow, lake sediment, and air samples collected during 2011-2014 in the Athabasca oil sands region were analyzed using two-dimensional gas chromatography following a nontargeted approach. Commonly monitored aromatics (parent and alkylated-polycyclic aromatic hydrocarbons and dibenzothiophenes) were excluded from the analysis, focusing mainly on other heterocyclic aromatics. The unknowns detected were classified into isomeric groups and tentatively identified using mass spectral libraries. Relative concentrations of heterocyclic aromatics were estimated and were found to decrease with distance from a reference site near the center of the developments and with increasing depth of sediments. The same heterocyclic aromatics identified in snow, lake sediments, and air were observed in extracts of delayed petroleum coke, with similar distributions. This suggests that petroleum coke particles are a potential source of heterocyclic aromatics to the local environment, but other oil sands sources must also be considered. Although the signals of these heterocyclic aromatics diminished with distance, some were detected at large distances (>100 km) in snow and surface lake sediments, suggesting that the impact of industry can extend >50 km. The list of heterocyclic aromatics and the mass spectral library generated in this study can be used for future source apportionment studies.

  7. An Integrated Environmental Assessment Model for Oil Shale Development

    NASA Astrophysics Data System (ADS)

    Pasqualini, D.; Witkowski, M. S.; Keating, G. N.; Ziock, H.; Wolfsberg, A. V.

    2008-12-01

    Due to the rising prices of conventional fuel, unconventional fossil fuels such as oil shale, tar sands, and coal to liquid have gained attention as an energy resource. The largest reserve of oil shale in the world is located in the western interior of North America, and includes parts of Colorado, Utah, and Wyoming. Development of oil shale in this area could reduce or eliminate the U.S. dependence on foreign fuel sources. However, oil shale production carries a number of potential environmental impacts. Fuel production associated with oil shale will create increasing competition for limited resources such as water, while potentially negatively impacting air quality, water quality, habitat, and wildlife. Water use, wastewater management, greenhouse gas emissions, air pollution, and land use are the main environmental issues that oil shale production involves. A proper analysis of the interrelationships between these factors and those of the new energy needs required for production is necessary to avoid serious negative impacts to the environment and the economies. We have developed a system dynamics integrated assessment model to evaluate potential fuel production capacity from oil shale within the limits of environmental quality, land use, and economics. Recognizing that the impacts of oil shale development are the outcomes of a complex process that involve water, energy, climate, social pressures, economics, regulations, technical advances, etc., and especially their couplings and feedbacks, we developed our model using the system dynamics (SD) modeling approach. Our SD model integrates all of these components and allows us to analyze the interdependencies among them. Our initial focus has been to address industry, regulator, and stakeholder concerns regarding the quantification and management of carbon and water resources impacts. The model focuses on oil shale production in the Piceance Basin in Colorado, but is inherently designed to be extendable to larger

  8. 43 CFR 3140.4 - Conversion.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 43 Public Lands: Interior 2 2011-10-01 2011-10-01 false Conversion. 3140.4 Section 3140.4 Public... OF THE INTERIOR MINERALS MANAGEMENT (3000) LEASING IN SPECIAL TAR SAND AREAS Conversion of Existing Oil and Gas Leases and Valid Claims Based on Mineral Locations § 3140.4 Conversion. ...

  9. A multi-isotope approach for assessing industrial contributions to atmospheric nitrogen deposition in the Athabasca oil sands region in Alberta, Canada

    Treesearch

    Bernadette C. Proemse; Bernhard Mayer; Mark E. Fenn; Christopher S. Ross

    2013-01-01

    Industrial nitrogen (N) emissions in the Athabasca oil sands region (AOSR), Alberta, Canada, affect nitrate (NO3) and ammonium (NH4) deposition rates in close vicinity of industrial emitters. NO3-N and NH4-N open field and throughfall deposition rates were determined at various...

  10. Process for obtaining liquid fuel-oil and/or gaseous hydrocarbons from solid carbonaceous feed stocks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hollaway, J.W.

    1978-02-28

    A process for forming a fuel-oil from coal is disclosed. The coal is treated in a low temperature carbonization retort to give coke, coal-gas and tar-oil. The coke is converted to water-gas which is then synthesized in a Fischer-Tropsch synthesizer to form fuel-oil. The tar-oil is hydrogenated in a hydro-treater by hydrogen produced from the coal-gas. Hydrogen is produced from coal-gas either in a thermal cracking chamber or by reforming the methane content to hydrogen and passing the resultant hydrogen/carbon monoxide mixture through a water-gas shift reactor and a carbon dioxide scrubber.

  11. Transverse Aeolian Ridges (TARs) on Mars II: Distributions, orientations, and ages

    NASA Astrophysics Data System (ADS)

    Berman, Daniel C.; Balme, Matthew R.; Rafkin, Scot C. R.; Zimbelman, James R.

    2011-05-01

    Transverse Aeolian Ridges (TARs), 10 m scale, ripple-like aeolian bedforms with simple morphology, are widespread on Mars but it is unknown what role they play in Mars' wider sediment cycle. We present the results of a survey of all Mars Global Surveyor Narrow angle images in a pole-to-pole study area, 45° longitude wide. Following on from the classification scheme and preliminary surveys of Balme et al. (Balme, M.R., Berman, D.C., Bourke, M.C., Zimbelman, J.R. [2008a]. Geomorphology 101, 703-720) and Wilson and Zimbelman (Wilson, S.A., Zimbelman, J.R. [2004]. J. Geophys. Res. 109 (E10). doi: 10.1029/2004JE002247) we searched more than 10,000 images, and found that over 2000 reveal at least 5% areal cover by TARs. The mean TAR areal cover in the study area is about 7% (3% in the northern hemisphere and 11% in the southern hemisphere) but TARs are not homogenously distributed - they are concentrated in the mid-low latitudes and almost absent poleward of 35°N and 55°S. We found no clear correlation between TAR distribution and any of thermal inertia, kilometer-scale roughness, or elevation. We did find that TARs are less common at extremes of elevation. We found that TARs are most common near the equator (especially in the vicinity of Meridiani Planum, in which area they have a distinctive "barchan-like" morphology) and in large southern-hemisphere impact craters. TARs in the equatorial band are usually associated with outcrops of layered terrain or steep slopes, hence their relative absence in the northern hemisphere. TARs in the southern hemisphere are most commonly associated with low albedo, intercrater dune fields. We speculate that the mid-latitude mantling terrain (e.g., Mustard, J.F., Cooper, C.D., Rifkin, M.K. [2001]. Nature 412, 411-414; Kreslavsky, M.A., Head, J.W. [2002]. J. Geophys. Res. 29 (15). doi: 10.1029/2002GL015392) could also play a role in covering TARs or inhibiting saltation. We compared TAR distribution with general circulation model (GCM

  12. First results from the oil sands passive air monitoring network for polycyclic aromatic compounds.

    PubMed

    Schuster, Jasmin K; Harner, Tom; Su, Ky; Mihele, Cristian; Eng, Anita

    2015-03-03

    Results are reported from an ongoing passive air monitoring study for polycyclic aromatic compounds (PACs) in the Athabasca oil sands region in Alberta, Canada. Polyurethane foam (PUF) disk passive air samplers were deployed for consecutive 2-month periods from November 2010 to June 2012 at 17 sites. Samples were analyzed for polycyclic aromatic hydrocarbons (PAHs), alkylated PAHs, dibenzothiophene and its alkylated derivatives (DBTs). Relative to parent PAHs, alkylated PAHs and DBTs are enriched in bitumen and therefore considered to be petrogenic markers. Concentrations in air were in the range 0.03-210 ng/m(3), 0.15-230 ng/m(3) and 0.01-61 ng/m(3) for ∑PAHs, ∑alkylated PAHs and ΣDBTs, respectively. An exponential decline of the PAC concentrations in air with distance from mining areas and related petrogenic sources was observed. The most significant exponential declines were for the alkylated PAHs and DBTs and attributed to their association with mining-related emissions and near-source deposition, due to their lower volatility and greater association with depositing particles. Seasonal trends in concentrations in air for PACs were not observed for any of the compound classes. However, a forest fire episode during April to July 2011 resulted in greatly elevated PAH levels at all passive sampling locations. Alkylated PAHs and DBTs were not elevated during the forest fire period, supporting their association with petrogenic sources. Based on the results of this study, an "Athabasca PAC profile" is proposed as a potential source marker for the oil sands region. The profile is characterized by ∑PAHs/∑Alkylated PAHs = ∼0.2 and ∑PAHs/∑DBTs = ∼5.

  13. Characterization of physical mass transport through oil sands fluid fine tailings in an end pit lake: a multi-tracer study.

    PubMed

    Dompierre, Kathryn A; Barbour, S Lee

    2016-06-01

    Soft tailings pose substantial challenges for mine reclamation due to their high void ratios and low shear strengths, particularly for conventional terrestrial reclamation practices. Oil sands mine operators have proposed the development of end pit lakes to contain the soft tailings, called fluid fine tailings (FFT), generated when bitumen is removed from oil sands ore. End pit lakes would be constructed within mined-out pits with FFT placed below the lake water. However, the feasibility of isolating the underlying FFT has yet to be fully evaluated. Chemical constituents of interest may move from the FFT into the lake water via two key processes: (1) advective-diffusive mass transport with upward pore water flow caused by settling of the FFT; and (2) mixing created by wind events or unstable density profiles through the lake water and upper portion of the FFT. In 2013 and 2014, temperature and stable isotopes of water profiles were measured through the FFT and lake water in the first end pit lake developed by Syncrude Canada Ltd. Numerical modelling was undertaken to simulate these profiles to identify the key mechanisms controlling conservative mass transport in the FFT. Shallow mixing of the upper 1.1 m of FFT with lake water was required to explain the observed temperature and isotopic profiles. Following mixing, the re-establishment of both the temperature and isotope profiles required an upward advective flux of approximately 1.5 m/year, consistent with average FFT settling rates measured at the study site. These findings provide important insight on the ability to sequester soft tailings in an end pit lake, and offer a foundation for future research on the development of end pit lakes as an oil sands reclamation strategy. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Atmospheric tar balls from biomass burning in Mexico

    NASA Astrophysics Data System (ADS)

    Adachi, K.; Buseck, P. R.

    2009-12-01

    Tar balls are spherical, organic aerosol particles that result from biofuel or biomass burning. They absorb sunlight and cause warming of the atmosphere. Although distinctive when viewed with a transmission electron microscope (TEM) because of their spherical shape, much remains to be determined about details of their compositions, occurrences, and generation. Here we aim to characterize the occurrences of tar balls using individual-particle analyses with a TEM and to study their formation in young biomass-burning smoke. The samples were collected using the U.S. Forest Service Twin Otter aircraft during the MILAGRO (Megacity Initiative: Local and Global Research Observations) campaign conducted in March 2006. We analyzed 84 TEM grid samples from ~30 biomass-burning events near Mexico City and over Yucatan. Sixty samples were from young smoke (less than an hour old), and others were from haze that mainly occurred from biomass burning. Tar balls have neither an evident nucleus nor are they normally attached to other particles. They are almost perfectly spherical on TEM grids, indicating that they were solid when collected. It appears as if tar balls consist of lower volatility organic matter than many other organic aerosol particles. On average, 9% by number of biomass-burning aerosol particles were tar balls in samples collected between a few minutes to an hour after emission. On the other hand, samples collected within a few minutes after emission included few or no tar balls. The occurrences and abundances of atmospheric tar balls are important when evaluating the effects of smoke on local and regional climate.

  15. Characterization of organic composition in snow and surface waters in the Athabasca Oil Sands Region, using ultrahigh resolution Fourier transform mass spectrometry.

    PubMed

    Yi, Y; Birks, S J; Cho, S; Gibson, J J

    2015-06-15

    This study was conducted to characterize the composition of dissolved organic compounds present in snow and surface waters in the Athabasca Oil Sands Region (AOSR) with the goal of identifying whether atmospherically-derived organic compounds present in snow are a significant contributor to the compounds detected in surface waters (i.e., rivers and lakes). We used electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry (ESI-FTICR MS) to characterize the dissolved organic compound compositions of snow and surface water samples. The organic profiles obtained for the snow samples show compositional differences between samples from near-field sites (<5 km from oil sands activities) and those from more distant locations (i.e., far-field sites). There are also significant compositional differences between samples collected in near-field sites and surface water samples in the AOSR. The composition of dissolved organic compounds at the upstream Athabasca River site (i.e., Athabasca River at Athabasca) is found to be different from samples obtained from downstream sites in the vicinity of oil sands operations (i.e., Athabasca River at Fort McMurray and Athabasca River at Firebag confluence). The upstream Athabasca River sites tended to share some compositional similarities with far-field snow deposition, while the downstream Athabasca River sites are more similar to local lakes and tributaries. This contrast likely indicates the relative role of regional snowmelt contributions to the Athabasca River vs inputs from local catchments in the reach downstream of Fort McMurray. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. 40 CFR 60.111b - Definitions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... and any other person. Condensate means hydrocarbon liquid separated from natural gas that condenses... removed from the earth and the oils derived from tar sands, shale, and coal. Petroleum liquids means... liquified petroleum gases, as determined by ASTM D323-82 or 94 (incorporated by reference—see § 60.17...

  17. 40 CFR 60.111b - Definitions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... and any other person. Condensate means hydrocarbon liquid separated from natural gas that condenses... removed from the earth and the oils derived from tar sands, shale, and coal. Petroleum liquids means... liquified petroleum gases, as determined by ASTM D323-82 or 94 (incorporated by reference—see § 60.17...

  18. 40 CFR 60.111b - Definitions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... and any other person. Condensate means hydrocarbon liquid separated from natural gas that condenses... removed from the earth and the oils derived from tar sands, shale, and coal. Petroleum liquids means... liquified petroleum gases, as determined by ASTM D323-82 or 94 (incorporated by reference—see § 60.17...

  19. 40 CFR 60.111b - Definitions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... and any other person. Condensate means hydrocarbon liquid separated from natural gas that condenses... removed from the earth and the oils derived from tar sands, shale, and coal. Petroleum liquids means... liquified petroleum gases, as determined by ASTM D323-82 or 94 (incorporated by reference—see § 60.17...

  20. 43 CFR 3590.0-7 - Scope.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... hydrocarbon from tar sands or oil shale by in-situ methods utilizing boreholes or wells, part 3160 of this... regulations in this part govern operations for the discovery, testing, development, mining, reclamation, and processing of all minerals under lease, license or permit issued for Federal lands under the regulations in...

  1. 43 CFR 3590.0-7 - Scope.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... hydrocarbon from tar sands or oil shale by in-situ methods utilizing boreholes or wells, part 3160 of this... regulations in this part govern operations for the discovery, testing, development, mining, reclamation, and processing of all minerals under lease, license or permit issued for Federal lands under the regulations in...

  2. 43 CFR 3590.0-7 - Scope.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... hydrocarbon from tar sands or oil shale by in-situ methods utilizing boreholes or wells, part 3160 of this... regulations in this part govern operations for the discovery, testing, development, mining, reclamation, and processing of all minerals under lease, license or permit issued for Federal lands under the regulations in...

  3. 43 CFR 3590.0-7 - Scope.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... hydrocarbon from tar sands or oil shale by in-situ methods utilizing boreholes or wells, part 3160 of this... regulations in this part govern operations for the discovery, testing, development, mining, reclamation, and processing of all minerals under lease, license or permit issued for Federal lands under the regulations in...

  4. Atmospheric Tar Balls: Particles from Biomass and Biofuel Burning

    NASA Technical Reports Server (NTRS)

    Posfai, Mihaly; Gelencser, Andras; Simonics, Renata; Arato, Krisztina; Li, Jia; Hobbs, Peter V.; Buseck, Peter R.

    2004-01-01

    Tar balls are amorphous, carbonaceous spherules that occur in the tropospheric aerosol as a result of biomass and biofuel burning. They form a distinct group of particles with diameters typically between 30 and 500 nm and readily identifiable with electron microscopy. Their lack of a turbostratic microstructure distinguishes them from soot, and their morphology and composition (approximately 90 mol% carbon) renders them distinct from other carbonaceous particles. Tar balls are particularly abundant in slightly aged (minutes to hours old) biomass smoke, indicating that they likely form by gas-to-particle conversion within smoke plumes. The material of tar balls is initially hygroscopic; however, the particles become largely insoluble as a result of free radical polymerization of their organic molecules. Consequently, tar balls are primarily externally mixed with other particle types, and they do not appreciably increase in size during aging. When tar balls coagulate with water-bearing particles, their material may partly dissolve and no longer be recognizable as distinct particles. Tar balls may contain organic compounds that absorb sunlight. They are an important, previously unrecognized type of carbonaceous (organic) atmospheric particle.

  5. Tar, nicotine, and carbon monoxide yields of some Nigerian cigarettes.

    PubMed Central

    Awotedu, A A; Higenbottam, T W; Onadeko, B O

    1983-01-01

    Fourteen cigarette brands manufactured in Nigeria in 1981 were analysed to determine the tar, nicotine, and carbon monoxide yields. Five of the brands belonged to the high and middle to high tar category (greater than 22 mg/cigarette) and nine to the middle tar (17-22 mg/cigarette) category. None of the cigarettes was in the low to middle and low tar (less than 17 mg/cigarette) category. The nicotine and carbon monoxide yields were similar to those of European cigarettes. Tobacco companies need to manufacture low tar cigarettes in the Third World as is the practice in the economically developed parts of the world. PMID:6619721

  6. QUANTITATIVE METHODS FOR RESERVOIR CHARACTERIZATION AND IMPROVED RECOVERY: APPLICATION TO HEAVY OIL SANDS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    James W. Castle; Fred J. Molz; Ronald W. Falta

    2002-10-30

    Improved prediction of interwell reservoir heterogeneity has the potential to increase productivity and to reduce recovery cost for California's heavy oil sands, which contain approximately 2.3 billion barrels of remaining reserves in the Temblor Formation and in other formations of the San Joaquin Valley. This investigation involves application of advanced analytical property-distribution methods conditioned to continuous outcrop control for improved reservoir characterization and simulation, particularly in heavy oil sands. The investigation was performed in collaboration with Chevron Production Company U.S.A. as an industrial partner, and incorporates data from the Temblor Formation in Chevron's West Coalinga Field. Observations of lateral variabilitymore » and vertical sequences observed in Temblor Formation outcrops has led to a better understanding of reservoir geology in West Coalinga Field. Based on the characteristics of stratigraphic bounding surfaces in the outcrops, these surfaces were identified in the subsurface using cores and logs. The bounding surfaces were mapped and then used as reference horizons in the reservoir modeling. Facies groups and facies tracts were recognized from outcrops and cores of the Temblor Formation and were applied to defining the stratigraphic framework and facies architecture for building 3D geological models. The following facies tracts were recognized: incised valley, estuarine, tide- to wave-dominated shoreline, diatomite, and subtidal. A new minipermeameter probe, which has important advantages over previous methods of measuring outcrop permeability, was developed during this project. The device, which measures permeability at the distal end of a small drillhole, avoids surface weathering effects and provides a superior seal compared with previous methods for measuring outcrop permeability. The new probe was used successfully for obtaining a high-quality permeability data set from an outcrop in southern Utah. Results

  7. Kuwait Oil Fields as seen from STS-58

    NASA Image and Video Library

    1993-10-20

    STS058-73-054 (18 Oct-1 Nov 1993) --- A clear view of the northern Kuwaiti coast shows the southern part of Kuwait City, and the major oil fields to the south. Oil-laden sands, where wells were set ablaze during the Gulf War in 1991, are visible south of Kuwait City as a dark, elongated patch surrounded by light-colored sand. Oil-stained sand between well sites (dots) and criss-crossing roads is gradually being covered by clean sand carried by strong, seasonal northwest winds.

  8. Environmental building policy by the use of microalgae and decreasing of risks for Canadian oil sand sector development.

    PubMed

    Avagyan, Armen B

    2017-09-01

    Environmental building recommendations aimed towards new environmental policies and management-changing decisions which as example demonstrated in consideration of the problems of Canadian oil sands operators. For the implementation of the circular economic strategy, we use an in-depth analysis of reported environmental after-consequence on all stages of the production process. The study addressed the promotion of innovative solutions for greenhouse gas emission, waste mitigation, and risk of falling in oil prices for operators of oil sands with creating market opportunities. They include the addition of microalgae biomass in tailings ponds for improvement of the microbial balance for the water speedily cleaning, recycling, and reusing with mitigation of GHG emissions. The use of food scraps for the nutrition of microalgae will reduce greenhouse gas emission minimally, on 0.33 MtCO 2 eq for Alberta and 2.63 MtCO 2 eq/year for Canada. Microalgae-derived biofuel can reduce this emission for Alberta on 11.9-17.9 MtCO 2 eq and for Canada on 71-106 MtCO 2 eq/year, and the manufacturing of other products will adsorb up to 135.6 MtCO 2 and produce 99.2 MtO 2 . The development of the Live Conserve Industry and principal step from non-efficient protection of the environment to its cultivation in a large scale with mitigation of GHG emission and waste as well as generating of O 2 and value-added products by the use of microalgae opens an important shift towards a new design and building of a biological system.

  9. Long-Term Incubation Reveals Methanogenic Biodegradation of C5 and C6 iso-Alkanes in Oil Sands Tailings.

    PubMed

    Siddique, Tariq; Mohamad Shahimin, Mohd Faidz; Zamir, Saima; Semple, Kathleen; Li, Carmen; Foght, Julia M

    2015-12-15

    iso-Alkanes are major components of petroleum and have been considered recalcitrant to biodegradation under methanogenic conditions. However, indigenous microbes in oil sands tailings ponds exposed to solvents rich in 2-methylbutane, 2-methylpentane, 3-methylpentane, n-pentane, and n-hexane produce methane in situ. We incubated defined mixtures of iso- or n-alkanes with mature fine tailings from two tailings ponds of different ages historically exposed to different solvents: one, ~10 years old, receiving C5-C6 paraffins and the other, ~35 years old, receiving naphtha. A lengthy incubation (>6 years) revealed iso-alkane biodegradation after lag phases of 900-1800 and ~280 days, respectively, before the onset of methanogenesis, although lag phases were shorter with n-alkanes (~650-1675 and ~170 days, respectively). 2-Methylpentane and both n-alkanes were completely depleted during ~2400 days of incubation, whereas 2-methylbutane and 3-methylpentane were partially depleted only during active degradation of 2-methylpentane, suggesting co-metabolism. In both cases, pyrotag sequencing of 16S rRNA genes showed codominance of Peptococcaceae with acetoclastic (Methanosaeta) and hydrogenotrophic (Methanoregula and Methanolinea) methanogens. These observations are important for predicting long-term greenhouse-gas emissions from oil sands tailings ponds and extend the known range of hydrocarbons susceptible to methanogenic biodegradation in petroleum-impacted anaerobic environments.

  10. Improved lignin pyrolysis for phenolics production in a bubbling bed reactor--Effect of bed materials.

    PubMed

    Li, Dongbing; Briens, Cedric; Berruti, Franco

    2015-01-01

    Lignin pyrolysis was studied in a bubbling fluidized bed reactor equipped with a fractional condensation train, using nitrogen as the fluidization gas. The effect of different bed materials (silica sand, lignin char, activated lignin char, birch bark char, and foamed glass beads) on bio-oil yield and quality was investigated for a pyrolysis temperature of 550 °C. Results how that a bed of activated lignin char is preferable to the commonly used silica sand: pyrolysis of Kraft lignin with a bed of activated lignin char not only provides a pure char product, but also a higher dry bio-oil yield (with a relative increase of 43%), lower pyrolytic water production, and better bio-oil quality. The bio-oil obtained from Kraft lignin pyrolysis with a bed of activated lignin char has a lower average molecular weight, less tar, more phenolics, and less acidity than when sand is used as bed material. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Granular activated carbon for simultaneous adsorption and biodegradation of toxic oil sands process-affected water organic compounds.

    PubMed

    Islam, Md Shahinoor; Zhang, Yanyan; McPhedran, Kerry N; Liu, Yang; Gamal El-Din, Mohamed

    2015-04-01

    Naphthenic acids (NAs) released into oil sands process-affected water (OSPW) during bitumen processing in Northern Alberta are problematic for oil sands industries due to their toxicity in the environment and resistance to degradation during conventional wastewater treatment processes. Granular activated carbon (GAC) has shown to be an effective media in removing biopersistent organics from wastewater using a combination of adsorption and biodegradation removal mechanisms. A simultaneous GAC (0.4 g GAC/L) adsorption and biodegradation (combined treatment) study was used for the treatment of raw and ozonated OSPW. After 28 days of batch treatment, classical and oxidized NAs removals for raw OSPW were 93.3% and 73.7%, and for ozonated OSPW were 96.2% and 77.1%, respectively. Synergetic effects of the combined treatment process were observed in removals of COD, the acid extractable fraction, and oxidized NAs, which indicated enhanced biodegradation and bioregeneration in GAC biofilms. A bacteria copy number >10(8) copies/g GAC on GAC surfaces was found using quantitative real time polymerase chain reaction after treatment for both raw and ozonated OSPW. A Microtox(®) acute toxicity test (Vibrio fischeri) showed effective toxicity removal (>95.3%) for the combined treatments. Therefore, the simultaneous GAC adsorption and biodegradation treatment process is a promising technology for the elimination of toxic OSPW NAs. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. VAPOR PRESSURES AND HEATS OF VAPORIZATION OF PRIMARY COAL TARS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eric M. Suuberg; Vahur Oja

    1997-07-01

    This project had as its main focus the determination of vapor pressures of coal pyrolysis tars. It involved performing measurements of these vapor pressures and from them, developing vapor pressure correlations suitable for use in advanced pyrolysis models (those models which explicitly account for mass transport limitations). This report is divided into five main chapters. Each chapter is a relatively stand-alone section. Chapter A reviews the general nature of coal tars and gives a summary of existing vapor pressure correlations for coal tars and model compounds. Chapter B summarizes the main experimental approaches for coal tar preparation and characterization whichmore » have been used throughout the project. Chapter C is concerned with the selection of the model compounds for coal pyrolysis tars and reviews the data available to us on the vapor pressures of high boiling point aromatic compounds. This chapter also deals with the question of identifying factors that govern the vapor pressures of coal tar model materials and their mixtures. Chapter D covers the vapor pressures and heats of vaporization of primary cellulose tars. Chapter E discusses the results of the main focus of this study. In summary, this work provides improved understanding of the volatility of coal and cellulose pyrolysis tars. It has resulted in new experimentally verified vapor pressure correlations for use in pyrolysis models. Further research on this topic should aim at developing general vapor pressure correlations for all coal tars, based on their molecular weight together with certain specific chemical characteristics i.e. hydroxyl group content.« less

  13. Ecohydrology applications to ecosystem reconstruction after oil-sand mining

    NASA Astrophysics Data System (ADS)

    Mendoza, Carl; Devito, Kevin

    2014-05-01

    Oil-sand deposits in northeast Alberta, Canada comprise some of the world's largest oil reserves. Open-pit mining of these resources leads to waste-rock piles, tailings ponds and open pits that must be reclaimed to "equivalent landscape capability", with viable forests and wetlands, using only native vegetation. Understanding ecohydrological processes in natural systems is critical for designing the necessary landforms and landscapes. A challenge is the cold, sub-humid climate, with highly variable precipitation. Furthermore, there are competing demands, needs or uses for water, in both quantity and quality, for reclamation and sustainability of forestlands, wetlands and end-pit lakes. On average there is a potential water deficit in the region, yet wetlands cover half of the undisturbed environment. Water budget analyses demonstrate that, although somewhat unpredictable and uncontrollable, the magnitude and timing of water delivery largely control water storage and conservation within the landscape. The opportunity is to design and manipulate these reconstructed landscapes so that water is stored and conserved, and water quality is naturally managed. Heterogeneous geologic materials can be arranged and layered, and landforms sculpted, to minimize runoff, enhance infiltration, and promote surface and subsurface storage. Similarly, discharge of poor quality water can be minimized or focused. And, appropriate vegetation choices are necessary to conserve water on the landscape. To achieve these ends, careful attention must be paid to the entire water budget, the variability in its components, interconnections between hydrologic units, in both space and time, and coupled vegetation processes. To date our knowledge is guided primarily by natural analogues. To move forward, it is apparent that numerous priorities and constraints, which are potentially competing, must be addressed. These include geotechnical and operational requirements, material limitations or excesses

  14. Spilled oil and infaunal activity - Modification of burrowing behavior and redistribution of oil

    USGS Publications Warehouse

    Clifton, H.E.; Kvenvolden, K.A.; Rapp, J.B.

    1984-01-01

    A series of experiments in Willapa Bay, Washington, indicates the degree to which the presence of spilled oil modifies the burrowing behavior of infauna and the extent to which the animals redistribute oil into intertidal sediment. Small amounts of North Slope crude oil introduced at low tide directly into burrow openings (mostly made by the crustacean Callianassa) resulted in a limited and temporary reduction in the number of burrow openings. In contrast, a layer of oil-saturated sand 1 cm thick buried about 5 cm below the sediment surface sharply reduced the number of burrow openings. After a year, the few new burrows penetrated only the margins of the experimental plot, and bioturbation below the buried oil-saturated sand layer declined dramatically. The experiments suggest that small amounts of oil temporarily stranded by tides in themselves have no long-range effect on burrowing behavior. The fauna, however, are capable of introducing measurable amounts of oil into the subsurface, where it is retained long after the rest of the stranded oil had washed away. A buried layer of oil-saturated sand greatly reduces infaunal activity; the oil presents an effective barrier that can persist for years. The oil incorporated into the sediment from burrow openings showed evidence of degradation after 7 months. In contrast the layer of buried oil remained essentially undergraded after a period of two years, even though oil in lower concentrations above the layer was degraded after a period of one year. This variation in degree of degradation of the buried oil, as well as the heterogeneity of oil distribution wherever the oil has been incorporated from the surface, emphasises the importance of careful sampling in any attempt to locate or monitor the presence of spilled oil in the substrate.In a series of experiments in Willapa Bay, Washington, small amounts of North Slope crude oil introduced at low tide directly into burrow openings resulted in a limited and temporary

  15. Ultrasound assisted, thermally activated persulfate oxidation of coal tar DNAPLs.

    PubMed

    Peng, Libin; Wang, Li; Hu, Xingting; Wu, Peihui; Wang, Xueqing; Huang, Chumei; Wang, Xiangyang; Deng, Dayi

    2016-11-15

    The feasibility of ultrasound assisted, thermally activated persulfate for effective oxidation of twenty 2-6 ringed coal tar PAHs in a biphasic tar/water system and a triphasic tar/soil/water system were investigated and established. The results indicate that ultrasonic assistance, persulfate and elevated reaction temperature are all required to achieve effective oxidation of coal tar PAHs, while the heating needed can be provided by ultrasonic induced heating as well. Further kinetic analysis reveals that the oxidation of individual PAH in the biphasic tar/water system follows the first-order kinetics, and individual PAH oxidation rate is primary determined by the mass transfer coefficients, tar/water interfacial areas, the aqueous solubility of individual PAH and its concentration in coal tar. Based on the kinetic analysis and experimental results, the contributions of ultrasound, persulfate and elevated reaction temperature to PAHs oxidation were characterized, and the effects of ultrasonic intensity and oxidant dosage on PAHs oxidation efficiency were investigated. In addition, the results indicate that individual PAH degradability is closely related to its reactivity as well, and the high reactivity of 4-6 ringed PAHs substantially improves their degradability. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Carbon isotopic comparisons of oil products used in the developmental history of Alaska

    USGS Publications Warehouse

    Kvenvolden, K.A.; Carlson, P.R.; Warden, A.; Threlkeld, C.N.

    1998-01-01

    Studies of the fate of oil released into Prince William Sound, AK, as a result of the 1989 Exxon Valdez oil spill, have led to an unexpected discovery. In addition to oil-like residues attributed to the spill, the ubiquitous presence of flattened tar balls, the carbon isotopic compositions of which fall within a surprisingly narrow range [??13C(PDB) = -23.7 ?? 0.3??? (n = 65)], were observed on the shorelines of the northern and western parts of the sound. These compositions are similar to those of some oil products [-23.7 ?? 0.7??? (n = 35)] that were shipped from California and used in Alaska for fuel, lubrication, construction, and paving before ~ 1970. These products include fuel oil, asphalt, and lubricants [-23.8 ?? 0.5??? (n = 11)], caulking, sealants, and roofing tar [-23.7 ?? 0.7??? (n = 16)], and road pavements and airport runways [-23.5 ?? 0.9??? (n = 8)]. Fuel oil and asphalt [-23.5 ?? 0.1??? (n = 3)], stored at the old Valdez town site and spilled during the 1964 Alaskan earthquake, appear to be the source of most of the beached tar balls. Oil products with lighter carbon isotopic compositions, between -25 and -30??? (n = 18), appear to have been used more recently in Alaska, that is, after ~ 1970. The source of some of the products used for modern pavement and runways [-29.3 ?? 0.2??? (n = 6)] is likely Alaskan North Slope crude oil, an example of which was spilled in the 1989 oil spill [-29.2??? (n = 1)].

  17. Petrogenic organic carbon and PAHs in snow deposited on Athabasca oil sands region lakes

    NASA Astrophysics Data System (ADS)

    Ahad, J. M.; Pakdel, H.; Gammon, P. R.; Savard, M. M.

    2017-12-01

    Fugitive dust associated with surface mining activities is one of the principal vectors for transport of airborne contaminants in Canada's Athabasca oil sands (AOS) region. The two main sources for mining-related dust - unprocessed oil sand and petroleum coke (petcoke) - contain high levels of bitumen-derived organic contaminants such as polycyclic aromatic hydrocarbons (PAHs). Here, we report the radiocarbon (14C) contents of solvent-extractable organics in snow particulates deposited during the winter of 2016-17 on fourteen lakes across the AOS region to quantify the contribution of anthropogenic dust transported directly to these ecosystems. Concentrations of parent and alkylated PAHs were determined in both dissolved and particulate fractions of snow. Radiocarbon isotope ratios (Δ14C) ranged from -805 to -177‰, indicating a significant contribution of petrogenic or fossil (i.e., Δ14C = -1000‰) carbon in snowpack dust at some sites. More negative Δ14C values were generally found in samples containing higher levels of particulate matter and at lakes closer to the geographic center of AOS mining operations. Concentrations of PAHs > 2 rings were significantly higher in the particulate phase and in samples with the largest petrogenic carbon components. Relatively high levels of PAHs at some distal sites associated with less negative Δ14C values pointed to an important modern carbon contribution, potentially ash originating from the 1.5 million acre 2016 Fort McMurray wildfire. As demonstrated here, fugitive dust in snow covering AOS region lakes can contain significant petrogenic organic carbon and high levels of PAHs, particularly in areas close (i.e., < 25 km) to the center of AOS mining operations. The spring snowmelt thus provides a direct pathway for mining-related contaminants to lake sediments.

  18. Influence of inorganic anions on metals release from oil sands coke and on toxicity of nickel and vanadium to Ceriodaphnia dubia.

    PubMed

    Puttaswamy, Naveen; Liber, Karsten

    2012-02-01

    In a previous study it was shown that pH significantly influences the release of metals from oil sands coke, particularly Ni and V which were identified as the cause of coke leachate toxicity. Coke comes in contact with oil sands process water (OSPW) during its transport to and long term storage in reclamation landscapes. However, the influence of dominant inorganic anions present in OSPW (i.e. HCO(3)(-), Cl(-) and SO(4)(2-)) on metals release from coke and on speciation and toxicity of Ni and V, has not been characterized before. Coke was subjected to a 15-d batch leaching process at four levels of HCO(3)(-), Cl(-) and SO(4)(2-) to determine the influence on metals release and speciation. Further, the effects of each of the three anions on Ni and V toxicity, as well as the mixture toxicity of Ni and V, were assessed using the three-brood Ceriodaphnia dubia test. Inorganic anions had a significant influence on the type and amount of metals released from coke. Specifically, sulfate increased the mobilization of cationic metals (e.g. Ni, Fe, Mn and Zn), whereas bicarbonate enhanced the release of oxyanion forming metals (e.g. Al, As, Mo and V) from coke. Chloride had no particular effect on the type and amount of metals released. With respect to toxicity, elevated bicarbonate levels decreased the 7-d Ni IC50 from 6.3 to 2.3 μg L(-1), whereas sulfate showed an ameliorative effect against V toxicity to C. dubia. In combination, Ni and V acted additively at their highest sub-lethal concentrations. Aqueous chemistry and toxicity of Ni and V are discussed with the goal of informing reclamation efforts at the Athabasca oil sands. Copyright © 2011 Elsevier Ltd. All rights reserved.

  19. Using combinations of metal isotopes as tracers of tailings pond discharges to subsurface aquifers in the Athabasca Oil Sands area, Canada.

    NASA Astrophysics Data System (ADS)

    Gammon, P. R.; Savard, M. M.; Ahad, J. M.; Girard, I.

    2016-12-01

    The Athabasca Oil Sands (AOS) industry in Alberta, Canada deposits voluminous waste streams in Earth's largest tailings ponds (TPs). Detecting and tracing contaminant discharge from TPs to subsurface aquifers has proven difficult because tailings have the same composition as the surrounding environment of unmined oil sand. To trace pond discharge to the subsurface therefore relies on the waste stream hosting additions or alterations induced by mining or industrial processes. Inorganic element or contaminant concentration data have proven ineffective at tracing because there is insufficient alteration of the chemical constituents or their ratios. Metal isotopes have not generally been applied to tracing emissions even though isotopic fractionation is likely induced via the high temperature and pH industrial process. We have generated Mg, Li, Pb and Zn isotopic data for a range of groundwater wells and TPs. Mg isotopes are excellent for distinguishing deep saline brines that are pumped into the waste stream during mine dewatering. Li isotopes appear to be heavily fractionated during processing, which produces a heavy isotopic signature that is an excellent tracer of production water. Pb isotopes discriminate Pb derived from oil-sand versus bedrock carbonate. Juxtapositions of TPs, carbonates and near-surface aquifers are common and of significant regulatory concern, making Pb isotopes particularly useful. Zn isotopic data indicates similarities to Pb isotopes, but are difficult to obtain due to low concentrations. Combining the isotopic data with concentration data and hydrologic models will assist in determining the fluxes of discharges from the TPs to near-surface aquifers. The range of environmental contexts of AOS TPs is limited and thus monitoring discharges to nearby aquifers from TPs could feasibly be accomplished using tailored suites of metal isotopes.

  20. Fractal-like Tar Ball Aggregates from Wildfire Smoke

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Girotto, Giulia; China, Swarup; Bhandari, Janarjan

    Tar balls are atmospheric particles abundant in slightly aged biomass burning smoke and have a significant, but highly uncertain, role on Earth's radiative balance. Tar balls are typically detected using electron microscopy; they are resistant to the electron beam, and generally, they are observed as individual spheres. Here, we report new observations of a significant fraction of tar ball aggregates (~27% by number) from samples collected in a plume of the Whitewater-Baldy Complex fire in New Mexico. The structure of these aggregates is fractal-like and follows a scale invariant power law similar to that of soot particles, despite the considerablymore » larger size and smaller number of monomers. We also present observations of tar ball aggregates from four other geographical locations, including from a remote high elevation site in the North Atlantic Ocean. Aggregation affects the particle optical properties and therefore, their climatic impact. We performed numerical simulations based on the observed morphology and estimated the effects of aggregation on the tar balls optical properties. We find that aggregation can enhance single scattering albedo by up to 41%.« less

  1. The "Clinton" sands in Canton, Dover, Massillon, and Navarre quadrangles, Ohio

    USGS Publications Warehouse

    Pepper, James Franklin; De Witt, Wallace; Everhart, Gail M.

    1953-01-01

    The Canton, Dover, Massillon, and Navarre quadrangles cover about 880 square miles in eastern Ohio. Canton is the largest city in the mapped area. In these four quadrangles, the well drillers generally recognize three "Clinton" sands - in descending order, the "stray Clinton", the "red Clinton", and the "white Clinton". The Clinton sands of Ohio are of early Silurian age and probably correlate with the middle and upper part of the Albion sandstone in the Niagara gorge section in western New York.The study of drillers' logs and examination of well samples show that of the three so-called Clinton sands, the red is most readily recognized. The "Packer shell", a probable equivalent of the Clinton formation of New York, and the Queenston shale - the drillers' "red Medina" - are also good units for short distance correlations.Each of the Clinton sands consists of a thin layer that contains long narrow lenses of thicker sand. Although the pattern of the trend of the lenses varies for each of the Clinton sands, the trend generally is westward across the mapped area. It is thought that these lenses represent deposition in channels, probably offshore from a large delta.Production of gas and oil from the so-called Clinton apparently is closely related to the sorting, porosity, and permeability of the sand. Stratigraphic traps contain the oil or gas, and structure appears to be relatively unimportant in localizing the accumulation of the petroleum.East of the mapped area, the Clinton sands have not produced oil or gas in commercial quantities. Several parts of the mapped area may hold additional amounts of gas.

  2. Beyond Naphthenic Acids: Environmental Screening of Water from Natural Sources and the Athabasca Oil Sands Industry Using Atmospheric Pressure Photoionization Fourier Transform Ion Cyclotron Resonance Mass Spectrometry.

    PubMed

    Barrow, Mark P; Peru, Kerry M; Fahlman, Brian; Hewitt, L Mark; Frank, Richard A; Headley, John V

    2015-09-01

    There is a growing need for environmental screening of natural waters in the Athabasca region of Alberta, Canada, particularly in the differentiation between anthropogenic and naturally-derived organic compounds associated with weathered bitumen deposits. Previous research has focused primarily upon characterization of naphthenic acids in water samples by negative-ion electrospray ionization methods. Atmospheric pressure photoionization is a much less widely used ionization method, but one that affords the possibility of observing low polarity compounds that cannot be readily observed by electrospray ionization. This study describes the first usage of atmospheric pressure photoionization Fourier transform ion cyclotron resonance mass spectrometry (in both positive-ion and negative-ion modes) to characterize and compare extracts of oil sands process water, river water, and groundwater samples from areas associated with oil sands mining activities. When comparing mass spectra previously obtained by electrospray ionization and data acquired by atmospheric pressure photoionization, there can be a doubling of the number of components detected. In addition to polar compounds that have previously been observed, low-polarity, sulfur-containing compounds and hydrocarbons that do not incorporate a heteroatom were detected. These latter components, which are not amenable to electrospray ionization, have potential for screening efforts within monitoring programs of the oil sands.

  3. Sydney Tar Ponds Remediation: Experience to China

    ERIC Educational Resources Information Center

    Liu, Fan; Bryson, Ken A.

    2009-01-01

    The infamous "Sydney Tar Ponds" are well known as one of the largest toxic waste sites of Canada, due to almost 100 years of steelmaking in Sydney, a once beautiful and peaceful city located on the east side of Cape Breton Island, Nova Scotia. This article begins with a contextual overview of the Tar Ponds issue including a brief…

  4. Weathered Oil and Tar Sampling Data for BP Spill/Deepwater Horizon

    EPA Pesticide Factsheets

    The Deepwater Horizon oil spill (also referred to as the BP oil spill) began on 20 April 2010 in the Gulf of Mexico on the BP-operated Macondo Prospect. Following the explosion and sinking of the Deepwater Horizon oil rig, a sea-floor oil gusher flowed for 87 days, until it was capped on 15 July 2010.In response to the BP oil spill, EPA sampled air, water, sediment, and waste generated by the cleanup operations.

  5. M-X Environmental Technical Report. Environmental Characteristics of Alternative Designated Deployment Areas, Mining and Geology.

    DTIC Science & Technology

    1980-12-22

    Nevada and Utah Great Basin area, can be quickly drawn because of the paucity of known sites. The sole commercially producing area of oil and gas in...good production (in addition to oil shale, tar, sand and Gilsonite) is to be found in the Uinta Basin . Major production in Utah comes from the four...Utah crude came from these four fields. About 3,000 ni 2 (7,800 km 2 ) in the Uinta Basin in northeastern Utah is underlain by oil shale 15 ft (4.5 m

  6. Characterisation of dense non-aqueous phase liquids of coal tar using comprehensive two-dimensional gas chromatography coupled with time of flight mass spectrometry.

    NASA Astrophysics Data System (ADS)

    Gauchotte-Lindsay, Caroline; McGregor, Laura; Richards, Phil; Kerr, Stephanie; Glenn, Aliyssa; Thomas, Russell; Kalin, Robert

    2013-04-01

    Comprehensive two-dimensional gas chromatography (GCxGC) is a recently developed analytical technique in which two capillary columns with different stationary phases are placed in series enabling planar resolution of the analytes. The resolution power of GCxGC is one order of magnitude higher than that of one dimension gas chromatography. Because of its high resolution capacity, the use of GCxGC for complex environmental samples such as crude oils, petroleum derivatives and polychlorinated biphenyls mixtures has rapidly grown in recent years. We developed a one-step method for the forensic analysis of coal tar dense non-aqueous phase liquids (DNAPLs) from former manufactured gas plant (FMGP) sites. Coal tar is the by-product of the gasification of coal for heating and lighting and it is composed of thousands of organic and inorganic compounds. Before the boom of natural gases and oils, most towns and cities had one or several manufactured gas plants that have, in many cases, left a devastating environmental print due to coal tar contamination. The fate of coal tar DNAPLs, which can persist in the environment for more than a hundred years, is therefore of crucial interest. The presented analytical method consists of a unique clean-up/ extraction stage by pressurized liquid extraction and a single analysis of its organic chemical composition using GCxGC coupled with time of flight mass spectrometry (TOFMS). The chemical fingerprinting is further improved by derivatisation by N,O-bis(trimethylsilyl)trifluoroacetamide (BSTFA) of the tar compounds containing -OH functions such as alcohols and carboxylic acids. We present here how, using the logical order of elution in GCxGC-TOFMS system, 1) the identification of never before observed -OH containing compounds is possible and 2) the isomeric selectivity of an oxidation reaction on a DNAPL sample can be revealed. Using samples collected at various FMGP sites, we demonstrate how this GCxGC method enables the simultaneous

  7. The fast oxidation of SO2 in oil sands regions of Alberta,Canada

    NASA Astrophysics Data System (ADS)

    Amiri, N.; Norman, A. L.

    2016-12-01

    Secondary aerosols in the atmosphere play a significant role in the Earth's radiation budget and in human health. It is important to understand how secondary aerosols are formed. Atmospheric SO2 oxidation leads to secondary sulfate aerosols. The SO2 oxidation rate needs to be well defined to better understand aerosols and their effects and oxidation varies depending on the oxidants present. This research presents the results of a field campaign from 13 Aug to 5 Sep 2013 at the Wood Buffalo Air Monitoring Station 13 (AMS13) site just south of Fort MacKay, in which two lines of evidence show fast oxidation of SO2 in the region. Size-segregated sulfate aerosols and SO2 gas were collected on microfiber glass filters and filters treated by K2CO3 and glycerin respectively. The sulfur isotopic composition of sulfate aerosols and SO2 were measured. Periods when a nearby instrument was in operation (20m away), displayed markedly distinct d34S values from periods when it was not operational. The nearby instrument used enriched 34SO2, and this affected the resulting d34S values for all sulfate size fractions but not SO2 from our high volume sampler. The most pronounced contamination was observed for sulfate aerosols D<490nm, which are expected to be derived mostly from secondary sulfate. Furthermore, the concentration of SO2 collected on the high volume filters was significantly lower than the concentration measured by a co-located optical analyzer (m=0.4). These observations show that the isotopically enriched SO2 can be used as an unintentional ambient tracer experiment in the Oil Sands region, and that this SO2 was oxidized before reaching the high volume sampler. The results from our study show that SO2 oxidation in the Oil Sands regions in the presence of pollutants such as hydrocarbons is rapid.

  8. Isotherm and kinetic studies on adsorption of oil sands process-affected water organic compounds using granular activated carbon.

    PubMed

    Islam, Md Shahinoor; McPhedran, Kerry N; Messele, Selamawit A; Liu, Yang; Gamal El-Din, Mohamed

    2018-07-01

    The production of oil from oil sands in northern Alberta has led to the generation of large volumes of oil sands process-affected water (OSPW) that was reported to be toxic to aquatic and other living organisms. The toxicity of OSPW has been attributed to the complex nature of OSPW matrix including the inorganic and organic compounds primarily naphthenic acids (NAs: C n H 2n+Z O x ). In the present study, granular activated carbon (GAC) adsorption was investigated for its potential use to treat raw and ozonated OSPW. The results indicated that NA species removal increased with carbon number (n) for a fixed Z number; however, the NA species removal decreased with Z number for a fixed carbon number. The maximum adsorption capacities obtained from Langmuir adsorption isotherm based on acid-extractable fraction (AEF) and NAs were 98.5 mg and 60.9 mg AEF/g GAC and 60 mg and 37 mg NA/g GAC for raw and ozonated OSPW, respectively. It was found that the Freundlich isotherm model best fits the AEF and NA equilibrium data (r 2  ≥ 0.88). The adsorption kinetics showed that the pseudo-second order and intraparticle diffusion models were both appropriate in modeling the adsorption kinetics of AEF and NAs to GAC (r 2  ≥ 0.97). Although pore diffusion was the rate limiting step, film diffusion was still significant for assessing the rate of diffusion of NAs. This study could be helpful to model, design and optimize the adsorption treatment technologies of OSPW and to assess the performance of other adsorbents. Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. Recreating a functioning forest soil in reclaimed oil sands in northern alberta: an approach for measuring success in ecological restoration.

    PubMed

    Rowland, S M; Prescott, C E; Grayston, S J; Quideau, S A; Bradfield, G E

    2009-01-01

    During oil-sands mining all vegetation, soil, overburden, and oil sand is removed, leaving pits several kilometers wide and up to 100 m deep. These pits are reclaimed through a variety of treatments using subsoil or a mixed peat-mineral soil cap. Using nonmetric multidimensional scaling and cluster analysis of measurements of ecosystem function, reclamation treatments of several age classes were compared with a range of natural forest ecotypes to discover which treatments had created ecosystems similar to natural forest ecotypes and at what age this occurred. Ecosystem function was estimated from bioavailable nutrients, plant community composition, litter decomposition rate, and development of a surface organic layer. On the reclamation treatments, availability of nitrate, calcium, magnesium, and sulfur were generally higher than in the natural forest ecotypes, while ammonium, P, K, and Mn were generally lower. Reclamation treatments tended to have more bare ground, grasses, and forbs but less moss, lichen, shrubs, trees, or woody debris than natural forests. Rates of litter decomposition were lower on all reclamation treatments. Development of an organic layer appeared to be facilitated by the presence of shrubs. With repeated applications of fertilizers, measured variables for the peat-mineral amendments fell within the range of natural variability at about 20 yr. An intermediate subsoil layer reduced the need for fertilizer and conditions resembling natural forests were reached about 15 yr after a single fertilizer application. Treatments over tailings sand receiving only one application of fertilizer appeared to be on a different trajectory to a novel ecosystem.

  10. Indigenous microbes survive in situ ozonation improving biodegradation of dissolved organic matter in aged oil sands process-affected waters.

    PubMed

    Brown, Lisa D; Pérez-Estrada, Leonidas; Wang, Nan; El-Din, Mohamed Gamal; Martin, Jonathan W; Fedorak, Phillip M; Ulrich, Ania C

    2013-11-01

    The oil sands industry faces significant challenges in developing effective remediation technologies for process-affected water stored in tailings ponds. Naphthenic acids, a complex mixture of cycloaliphatic carboxylic acids, have been of particular concern because they concentrate in tailings ponds and are a component of the acutely toxic fraction of process water. Ozone treatment has been demonstrated as an effective means of rapidly degrading naphthenic acids, reducing process water toxicity, and increasing its biodegradability following seeding with the endogenous process water bacteria. This study is the first to examine subsequent in situ biodegradation following ozone pretreatment. Two aged oil sands process-affected waters from experimental reclamation tailings ponds were ozonated to reduce the dissolved organic carbon, to which naphthenic acids contributed minimally (<1mgL(-1)). Treatment with an ozone dose of 50mgL(-1) improved the 84d biodegradability of remaining dissolved organic carbon during subsequent aerobic incubation (11-13mgL(-1) removed from aged process-affected waters versus 5mgL(-1) when not pretreated with ozone). The ozone-treated indigenous microbial communities were as capable of degrading organic matter as the same community not exposed to ozone. This supports ozonation coupled with biodegradation as an effective and feasible treatment option. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. Kuwait Oil Fields as seen from STS-58

    NASA Technical Reports Server (NTRS)

    1993-01-01

    A clear view of the northern Kuwait coast shows the southern part of Kuwait City, and the major oil fields to the south. Oil laden sands, where wells were set ablaze during the Gulf War in 1991, are visible south of Kuwait City as a dark, elongated patch surrounded by light-colored sand. Oil-stained sandbetween well sites (dots) and criss-crossing roads is gradually being covered by clean sand carried by strong, seasonal northwest winds.

  12. Photocatalytic degradation kinetics of naphthenic acids in oil sands process-affected water: Multifactorial determination of significant factors.

    PubMed

    Leshuk, Tim; de Oliveira Livera, Diogo; Peru, Kerry M; Headley, John V; Vijayaraghavan, Sucharita; Wong, Timothy; Gu, Frank

    2016-12-01

    Oil sands process-affected water (OSPW) is generated as a byproduct of bitumen extraction in Canada's oil sands. Due to the water's toxicity, associated with dissolved acid extractable organics (AEO), especially naphthenic acids (NAs), along with base-neutral organics, OSPW may require treatment to enable safe discharge to the environment. Heterogeneous photocatalysis is a promising advanced oxidation process (AOP) for OSPW remediation, however, predicting treatment efficacy can be challenging due to the unique water chemistry of OSPW from different tailings ponds. The objective of this work was to study various factors affecting the kinetics of photocatalytic AEO degradation in OSPW. The rate of photocatalytic treatment varied significantly in two different OSPW sources, which could not be accounted for by differences in AEO composition, as studied by high resolution mass spectrometry (HRMS). The effects of inorganic water constituents were investigated using factorial and response surface experiments, which revealed that hydroxyl (HO) radical scavenging by iron (Fe 3+ ) and bicarbonate (HCO 3 - ) inhibited the NA degradation rate. The effects of NA concentration and temperature on the treatment kinetics were also evaluated in terms of Langmuir-Hinshelwood and Arrhenius models; pH and temperature were identified as weak factors, while dissolved oxygen (DO) was critical to the photo-oxidation reaction. Accounting for all of these variables, a general empirical kinetic expression is proposed, enabling prediction of photocatalytic treatment performance in diverse sources of OSPW. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Statistically Enhanced Model of In Situ Oil Sands Extraction Operations: An Evaluation of Variability in Greenhouse Gas Emissions.

    PubMed

    Orellana, Andrea; Laurenzi, Ian J; MacLean, Heather L; Bergerson, Joule A

    2018-02-06

    Greenhouse gas (GHG) emissions associated with extraction of bitumen from oil sands can vary from project to project and over time. However, the nature and magnitude of this variability have yet to be incorporated into life cycle studies. We present a statistically enhanced life cycle based model (GHOST-SE) for assessing variability of GHG emissions associated with the extraction of bitumen using in situ techniques in Alberta, Canada. It employs publicly available, company-reported operating data, facilitating assessment of inter- and intraproject variability as well as the time evolution of GHG emissions from commercial in situ oil sands projects. We estimate the median GHG emissions associated with bitumen production via cyclic steam stimulation (CSS) to be 77 kg CO 2 eq/bbl bitumen (80% CI: 61-109 kg CO 2 eq/bbl), and via steam assisted gravity drainage (SAGD) to be 68 kg CO 2 eq/bbl bitumen (80% CI: 49-102 kg CO 2 eq/bbl). We also show that the median emissions intensity of Alberta's CSS and SAGD projects have been relatively stable from 2000 to 2013, despite greater than 6-fold growth in production. Variability between projects is the single largest source of variability (driven in part by reservoir characteristics) but intraproject variability (e.g., startups, interruptions), is also important and must be considered in order to inform research or policy priorities.

  14. 48 CFR Appendix to Part 1252 - Tar Matrix

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 48 Federal Acquisition Regulations System 5 2010-10-01 2010-10-01 false Tar Matrix Appendix to Part 1252 Federal Acquisition Regulations System DEPARTMENT OF TRANSPORTATION CLAUSES AND FORMS SOLICITATION PROVISIONS AND CONTRACT CLAUSES Pt. 1252, App. Appendix to Part 1252—Tar Matrix ER27DE05.000...

  15. Integrated Biomass Gasification with Catalytic Partial Oxidation for Selective Tar Conversion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Lingzhi; Wei, Wei; Manke, Jeff

    Biomass gasification is a flexible and efficient way of utilizing widely available domestic renewable resources. Syngas from biomass has the potential for biofuels production, which will enhance energy security and environmental benefits. Additionally, with the successful development of low Btu fuel engines (e.g. GE Jenbacher engines), syngas from biomass can be efficiently used for power/heat co-generation. However, biomass gasification has not been widely commercialized because of a number of technical/economic issues related to gasifier design and syngas cleanup. Biomass gasification, due to its scale limitation, cannot afford to use pure oxygen as the gasification agent that used in coal gasification.more » Because, it uses air instead of oxygen, the biomass gasification temperature is much lower than well-understood coal gasification. The low temperature leads to a lot of tar formation and the tar can gum up the downstream equipment. Thus, the biomass gasification tar removal is a critical technology challenge for all types of biomass gasifiers. This USDA/DOE funded program (award number: DE-FG36-O8GO18085) aims to develop an advanced catalytic tar conversion system that can economically and efficiently convert tar into useful light gases (such as syngas) for downstream fuel synthesis or power generation. This program has been executed by GE Global Research in Irvine, CA, in collaboration with Professor Lanny Schmidt's group at the University of Minnesota (UoMn). Biomass gasification produces a raw syngas stream containing H2, CO, CO2, H2O, CH4 and other hydrocarbons, tars, char, and ash. Tars are defined as organic compounds that are condensable at room temperature and are assumed to be largely aromatic. Downstream units in biomass gasification such as gas engine, turbine or fuel synthesis reactors require stringent control in syngas quality, especially tar content to avoid plugging (gum) of downstream equipment. Tar- and ash-free syngas streams are a

  16. Western Shallow Oil Zone, Elk Hills Field, Kern County, California: General Reservoir Study, Executive Summary: Bittium, Wilhelm, Gusher, and Calitroleum Sands

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carey, K.B.

    1987-12-22

    The general Reservoir Study of the Western Shallow Oil Zone was prepared by Evans, Carey and Crozier as Task Assignment 009 with the United States Department of Energy. The study addresses the Bittium Wilhelm, Gusher, and Calitroleum Sands and their several sub units and pools. A total of twenty-eight (28) separate reservoir units have been identified and analyzed. Areally, these reservoirs are located in 31 separate sections of land including and lying northwest of sections 5G, 8G, and 32S, all in the Elk Hills Oil Fileds, Naval Petroleum Reserve No. 1, Kern County California. Vertically, the reservoirs occur as shallowmore » as 2600 feet and as deep as 4400 feet. Underlying a composite productive area of about 8300 acres, the reservoirs originally contained an estimated 138,022,000 stock tank barrels of oil, and 85,000 MMCF of gas, 6300 MMCF of which occurred as free gas in the Bittium and W-1B Sands. Since original discovery in April 1919, a total of over 500 wells have been drilled into or through the zones, 120 of which were completed as Western Shallow Oil Zone producers. Currently, these wells are producing about 2452 barrels of oil per day, 1135 barrels of water per day and 5119 MCF of gas per day from the collective reservoirs. Basic pressure, production and assorted technical data were provided by the US Department of Energy staff at Elk Hills. These data were accepted as furnished with no attempt being made by Evans, Carey and Crozier for independent vertification. This study has successfully identified the size and location of all commercially productive pools in the Western Shallow Oil Zone. It has identified the petrophysical properties and the past productive performance of the reservoirs. Primary reserves have been determined and general means of enhancing future recovery have been suggested. 11 figs., 8 tabs.« less

  17. Observational Data Analysis and Numerical Model Assessment of the Seafloor Interaction and Mobility of Sand and Weathered Oil Agglomerates (Surface Residual Balls) in the Surf Zone

    NASA Astrophysics Data System (ADS)

    Dalyander, S.; Long, J.; Plant, N. G.; Penko, A.; Calantoni, J.; Thompson, D.; Mclaughlin, M. K.

    2014-12-01

    When weathered oil is transported ashore, such as during the Deepwater Horizon oil spill, it can mix with suspended sediment in the surf zone to create heavier-than-water sand and oil agglomerates in the form of mats several centimeters thick and tens of meters long. Broken off pieces of these mats and smaller agglomerates formed in situ (called Surface Residual Balls, SRBs) can cause beach re-oiling months to years after the initial spill. The physical dynamics of these SRBs in the nearshore, where they are larger (cm-scale) and less dense than natural sediment, are poorly understood. In the current study, SRB mobility and seafloor interaction is investigated through a combination of laboratory and field experiments with pseudo-SRBs developed to be physically stable proxies for genuine agglomerates. Formulations for mobility prediction based on comparing estimated shear stress to the critical Shields and modified Shields parameters developed for mixed sediment beds are assessed against observations. Processes such as burial, exhumation, and interaction with bedforms (e.g., migrating ripples) are also explored. The observations suggest that incipient motion estimates based on a modified Shields parameter have some skill in predicting SRB movement, but that other forcing mechanisms such as pressure gradients may be important under some conditions. Additionally, burial and exhumation due to the relatively high mobility of sand grains are confirmed as key processes controlling SRB dynamics in the surf zone. This work has broad implications for understanding surf zone sediment transport at the short timescale associated with mobilizing sand grains and SRBs as well as at the longer timescales associated with net transport patterns, sediment budgets, and bed elevation changes.

  18. Episodic acidification of 5 rivers in Canada's oil sands during snowmelt: A 25-year record.

    PubMed

    Alexander, A C; Chambers, P A; Jeffries, D S

    2017-12-01

    Episodic acidification during snowmelt is a natural phenomenon that can be intensified by acidic deposition from heavy industry. In Canada's oil sands region, acid deposition is estimated to be as much as 5% of the Canadian total and large tracks of northeastern Alberta are considered acid-sensitive because of extensive peatland habitats with poorly weathered soils. To identify the frequency, duration and severity of acidification episodes during snowmelt (the predominant hydrological period for delivery of priority pollutants from atmospheric oil sands emissions to surface waters), a 25-year record (1989 to 2014) of automated water quality data (pH, temperature, conductivity) was assembled for 3 rivers along with a shorter record (2012-2014) for another 2 rivers. Acidic episodes (pH<7, ANC<0) were recorded during 39% of all 83 snowmelt events. The severity (duration x magnitude) of episodic acidification increased exponentially over the study period (r 2 =0.56, P<0.01) and was strongly correlated (P<0.01) with increasing maximum air temperature and weakly correlated with regional land development (P=0.06). Concentrations of aluminum and 11 priority pollutants (Sb, As, Be, Cd, Cr, Cu, Pb, Se, Ag, Tl and Zn) were greatest (P<0.01) during low (<6.5) pH episodes, particularly when coincident with high discharge, such that aluminum and copper concentrations were at times high enough to pose a risk to juvenile rainbow trout (Oncorhynchus mykiss). Although low pH (pH<6.5) was observed during only 8% of 32 acidification episodes, when present, low pH typically lasted 10days. Episodic surface water acidification during snowmelt, and its potential effects on aquatic biota, is therefore an important consideration in the design of long-term monitoring of these typically alkaline (pH=7.72±0.05) rivers. Crown Copyright © 2017. Published by Elsevier B.V. All rights reserved.

  19. Banded TARs in Iapygia

    NASA Image and Video Library

    2014-09-10

    The tropics of Mars are commonly littered with small bright ripples that were somehow shaped by the wind. NASA Mars Reconnaissance Orbiter might provide a valuable clue to the formation of transverse aeolian ridges TARs elsewhere on Mars.

  20. Pseudomonads biodegradation of aromatic compounds in oil sands process-affected water.

    PubMed

    Zhang, Yanyan; McPhedran, Kerry N; Gamal El-Din, Mohamed

    2015-07-15

    Aromatic naphthenic acids (NAs) have been shown to be more toxic than the classical NAs found in oil sands process-affected water (OSPW). To reduce this toxicity, Pseudomonas fluorescens and Pseudomonas putida were used to determine their ability to biodegrade aromatic compounds including treatments considering the impacts of external carbon and iron addition. Results showed that with added carbon P. fluorescens and P. putida have the capability of biodegrading these aromatics. In the presence of external carbon, gene expression of a functional PAH-ring hydroxylating dioxygenase (PAH-RHDα) was determined through reverse transcription real-time PCR, suggesting active degradation of OSPW aromatic compounds. Although no significant classical NAs removal was observed during this process, toxicity was reduced by 49.3% under optimal conditions. OSPW toxicity was eliminated with the combination of ozonation at a dose of 80 mg/L followed by biodegradation, indicating that it is a promising combined OSPW treatment approach for the safe discharge to the aquatic environment. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. 29 CFR 1910.1002 - Coal tar pitch volatiles; interpretation of term.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 29 Labor 6 2013-07-01 2013-07-01 false Coal tar pitch volatiles; interpretation of term. 1910.1002... Hazardous Substances § 1910.1002 Coal tar pitch volatiles; interpretation of term. As used in § 1910.1000 (Table Z-1), coal tar pitch volatiles include the fused polycyclic hydrocarbons which volatilize from the...

  2. 29 CFR 1910.1002 - Coal tar pitch volatiles; interpretation of term.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 29 Labor 6 2010-07-01 2010-07-01 false Coal tar pitch volatiles; interpretation of term. 1910.1002... Hazardous Substances § 1910.1002 Coal tar pitch volatiles; interpretation of term. As used in § 1910.1000 (Table Z-1), coal tar pitch volatiles include the fused polycyclic hydrocarbons which volatilize from the...

  3. 29 CFR 1910.1002 - Coal tar pitch volatiles; interpretation of term.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 29 Labor 6 2011-07-01 2011-07-01 false Coal tar pitch volatiles; interpretation of term. 1910.1002... Hazardous Substances § 1910.1002 Coal tar pitch volatiles; interpretation of term. As used in § 1910.1000 (Table Z-1), coal tar pitch volatiles include the fused polycyclic hydrocarbons which volatilize from the...

  4. 29 CFR 1910.1002 - Coal tar pitch volatiles; interpretation of term.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 29 Labor 6 2012-07-01 2012-07-01 false Coal tar pitch volatiles; interpretation of term. 1910.1002... Hazardous Substances § 1910.1002 Coal tar pitch volatiles; interpretation of term. As used in § 1910.1000 (Table Z-1), coal tar pitch volatiles include the fused polycyclic hydrocarbons which volatilize from the...

  5. 29 CFR 1910.1002 - Coal tar pitch volatiles; interpretation of term.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 29 Labor 6 2014-07-01 2013-07-01 true Coal tar pitch volatiles; interpretation of term. 1910.1002... Hazardous Substances § 1910.1002 Coal tar pitch volatiles; interpretation of term. As used in § 1910.1000 (Table Z-1), coal tar pitch volatiles include the fused polycyclic hydrocarbons which volatilize from the...

  6. Coal tar-containing asphalt - resource or hazardous waste?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Andersson-Skold, Y.; Andersson, K.; Lind, B.

    2007-09-30

    Coal tar was used in Sweden for the production of asphalt and for the drenching of stabilization gravel until 1973. The tar has high concentrations of polycyclic aromatic hydrocarbons (PAH), some of which may be strongly carcinogenic. Approximately 20 million tonnes of tar-containing asphalt is present in the public roads in Sweden. Used asphalt from rebuilding can be classified as hazardous waste according to the Swedish Waste Act. The cost of treating the material removed as hazardous waste can be very high due to the large amount that has to be treated, and the total environmental benefit is unclear. Themore » transport of used asphalt to landfill or combustion will affect other environmental targets. The present project, based on three case studies of road projects in Sweden, evaluates the consequences of four scenarios for handling the material: reuse, landfill, biological treatment, and incineration. The results show that reuse of the coal tar-containing materials in new road construction is the most favorable alternative in terms of cost, material use, land use, energy consumption, and air emissions.« less

  7. Inversion of Airborne Electromagnetic Data: Application to Oil Sands Exploration

    NASA Astrophysics Data System (ADS)

    Cristall, J.; Farquharson, C. G.; Oldenburg, D. W.

    2004-05-01

    . We provide an example that involves the interpretation of an airborne time-domain electromagnetic data-set from an oil sands exploration project in Alberta. The target is the layer that potentially contains oil sands. This layer is relatively resistive, with its resistivity increasing with increasing hydrocarbon content, and is sandwiched between two more conductive layers. This is quite different from the classical electromagnetic geophysics scenario of looking for a conductive mineral deposit in resistive shield rocks. However, inverting the data enabled the depth, thickness and resistivity of the target layer to be well determined. As a consequence, it is concluded that airborne electromagnetic surveys, when combined with inversion procedures, can be a very cost-effective way of mapping even fairly subtle conductivity variations over large areas.

  8. Investigating the Microbial Degradation Potential in Oil Sands Fluid Fine Tailings Using Gamma Irradiation: A Metagenomic Perspective.

    PubMed

    VanMensel, Danielle; Chaganti, Subba Rao; Boudens, Ryan; Reid, Thomas; Ciborowski, Jan; Weisener, Christopher

    2017-08-01

    Open-pit mining of the Athabasca oil sands has generated large volumes of waste termed fluid fine tailings (FFT), stored in tailings ponds. Accumulation of toxic organic substances in the tailings ponds is one of the biggest concerns. Gamma irradiation (GI) treatment could accelerate the biodegradation of toxic organic substances. Hence, this research investigates the response of the microbial consortia in GI-treated FFT materials with an emphasis on changes in diversity and organism-related stimuli. FFT materials from aged and fresh ponds were used in the study under aerobic and anaerobic conditions. Variations in the microbial diversity in GI-treated FFT materials were monitored for 52 weeks and significant stimuli (p < 0.05) were observed. Chemoorganotrophic organisms dominated in fresh and aged ponds and showed increased relative abundance resulting from GI treatment. GI-treated anaerobic FFT aged reported stimulus of organisms with biodegradation potential (e.g., Pseudomonas, Enterobacter) and methylotrophic capabilities (e.g., Syntrophus, Smithella). In comparison, GI-treated anaerobic FFT fresh stimulated Desulfuromonas as the principle genus at 52 weeks. Under aerobic conditions, GI-treated FFT aged showed stimulation of organisms capable of sulfur and iron cycling (e.g., Geobacter). However, GI-treated aerobic FFT fresh showed no stimulus at 52 weeks. This research provides an enhanced understanding of oil sands tailings biogeochemistry and the impacts of GI treatment on microorganisms as an effect for targeting toxic organics. The outcomes of this study highlight the potential for this approach to accelerate stabilization and reclamation end points. Graphical Abstract.

  9. Naphthenic acids speciation and removal during petroleum-coke adsorption and ozonation of oil sands process-affected water.

    PubMed

    Gamal El-Din, Mohamed; Fu, Hongjing; Wang, Nan; Chelme-Ayala, Pamela; Pérez-Estrada, Leonidas; Drzewicz, Przemysław; Martin, Jonathan W; Zubot, Warren; Smith, Daniel W

    2011-11-01

    The Athabasca Oil Sands industry produces large volumes of oil sands process-affected water (OSPW) as a result of bitumen extraction and upgrading processes. Constituents of OSPW include chloride, naphthenic acids (NAs), aromatic hydrocarbons, and trace heavy metals, among other inorganic and organic compounds. To address the environmental issues associated with the recycling and/or safe return of OSPW into the environment, water treatment technologies are required. This study examined, for the first time, the impacts of pretreatment steps, including filtration and petroleum-coke adsorption, on ozonation requirements and performance. The effect of the initial OSPW pH on treatment performance, and the evolution of ozonation and its impact on OSPW toxicity and biodegradability were also examined. The degradation of more than 76% of total acid-extractable organics was achieved using a semi-batch ozonation system at a utilized ozone dose of 150 mg/L. With a utilized ozone dose of 100 mg/L, the treated OSPW became more biodegradable and showed no toxicity towards Vibrio fischeri. Changes in the NA profiles in terms of carbon number and number of rings were observed after ozonation. The filtration of the OSPW did not improve the ozonation performance. Petroleum-coke adsorption was found to be effective in reducing total acid-extractable organics by a 91%, NA content by an 84%, and OSPW toxicity from 4.3 to 1.1 toxicity units. The results of this study indicate that the combination of petroleum-coke adsorption and ozonation is a promising treatment approach to treat OSPW. Copyright © 2011 Elsevier B.V. All rights reserved.

  10. Determination of thermodynamic and transport parameters of naphthenic acids and organic process chemicals in oil sand tailings pond water.

    PubMed

    Wang, Xiaomeng; Robinson, Lisa; Wen, Qing; Kasperski, Kim L

    2013-07-01

    Oil sand tailings pond water contains naphthenic acids and process chemicals (e.g., alkyl sulphates, quaternary ammonium compounds, and alkylphenol ethoxylates). These chemicals are toxic and can seep through the foundation of the tailings pond to the subsurface, potentially affecting the quality of groundwater. As a result, it is important to measure the thermodynamic and transport parameters of these chemicals in order to study the transport behavior of contaminants through the foundation as well as underground. In this study, batch adsorption studies and column experiments were performed. It was found that the transport parameters of these chemicals are related to their molecular structures and other properties. The computer program (CXTFIT) was used to further evaluate the transport process in the column experiments. The results from this study show that the transport of naphthenic acids in a glass column is an equilibrium process while the transport of process chemicals seems to be a non-equilibrium process. At the end of this paper we present a real-world case study in which the transport of the contaminants through the foundation of an external tailings pond is calculated using the lab-measured data. The results show that long-term groundwater monitoring of contaminant transport at the oil sand mining site may be necessary to avoid chemicals from reaching any nearby receptors.

  11. Oil sands thickened froth treatment tailings exhibit acid rock drainage potential during evaporative drying.

    PubMed

    Kuznetsov, Petr; Kuznetsova, Alsu; Foght, Julia M; Siddique, Tariq

    2015-02-01

    Bitumen extraction from oil sands ores after surface mining produces different tailings waste streams: 'froth treatment tailings' are enriched in pyrite relative to other streams. Tailings treatment can include addition of organic polymers to produce thickened tailings (TT). TT may be further de-watered by deposition into geotechnical cells for evaporative drying to increase shear strength prior to reclamation. To examine the acid rock drainage (ARD) potential of TT, we performed predictive analyses and laboratory experiments on material from field trials of two types of thickened froth treatment tailings (TT1 and TT2). Acid-base accounting (ABA) of initial samples showed that both TT1 and TT2 initially had net acid-producing potential, with ABA values of -141 and -230 t CaCO₃ equiv. 1000 t(-1) of TT, respectively. In long-term kinetic experiments, duplicate ~2-kg samples of TT were incubated in shallow trays and intermittently irrigated under air flow for 459 days to simulate evaporative field drying. Leachates collected from both TT samples initially had pH~6.8 that began decreasing after ~50 days (TT2) or ~250 days (TT1), stabilizing at pH~2. Correspondingly, the redox potential of leachates increased from 100-200 mV to 500-580 mV and electrical conductivity increased from 2-5 dS m(-1) to 26 dS m(-1), indicating dissolution of minerals during ARD. The rapid onset and prolonged ARD observed with TT2 is attributed to its greater pyrite (13.4%) and lower carbonate (1.4%) contents versus the slower onset of ARD in TT1 (initially 6.0% pyrite and 2.5% carbonates). 16S rRNA gene pyrosequencing analysis revealed rapid shift in microbial community when conditions became strongly acidic (pH~2) favoring the enrichment of Acidithiobacillus and Sulfobacillus bacteria in TT. This is the first report showing ARD potential of TT and the results have significant implications for effective management of pyrite-enriched oil sands tailings streams/deposits. Copyright © 2014

  12. Preferential methanogenic biodegradation of short-chain n-alkanes by microbial communities from two different oil sands tailings ponds.

    PubMed

    Mohamad Shahimin, Mohd Faidz; Foght, Julia M; Siddique, Tariq

    2016-05-15

    Oil sands tailings ponds harbor diverse anaerobic microbial communities capable of methanogenic biodegradation of solvent hydrocarbons entrained in the tailings. Mature fine tailings (MFT) from two operators (Albian and CNRL) that use different extraction solvents were incubated with mixtures of either two (n-pentane and n-hexane) or four (n-pentane, n-hexane, n-octane and n-decane) n-alkanes under methanogenic conditions for ~600 d. Microbes in Albian MFT began methane production by ~80 d, achieving complete depletion of n-pentane and n-hexane in the two-alkane mixture and their preferential biodegradation in the four-alkane mixture. Microbes in CNRL MFT preferentially metabolized n-octane and n-decane in the four-alkane mixture after a ~80 d lag but exhibited a lag of ~360 d before commencing biodegradation of n-pentane and n-hexane in the two-alkane mixture. 16S rRNA gene pyrosequencing revealed Peptococcaceae members as key bacterial n-alkane degraders in all treatments except CNRL MFT amended with the four-alkane mixture, in which Anaerolineaceae, Desulfobacteraceae (Desulfobacterium) and Syntrophaceae (Smithella) dominated during n-octane and n-decane biodegradation. Anaerolineaceae sequences increased only in cultures amended with the four-alkane mixture and only during n-octane and n-decane biodegradation. The dominant methanogens were acetoclastic Methanosaetaceae. These results highlight preferential n-alkane biodegradation by microbes in oil sands tailings from different producers, with implications for tailings management and reclamation. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Spatial and temporal patterns in trace element deposition to lakes in the Athabasca oil sands region (Alberta, Canada)

    NASA Astrophysics Data System (ADS)

    Cooke, Colin A.; Kirk, Jane L.; Muir, Derek C. G.; Wiklund, Johan A.; Wang, Xiaowa; Gleason, Amber; Evans, Marlene S.

    2017-12-01

    The mining and processing of the Athabasca oil sands (Alberta, Canada) has been occurring for decades; however, a lack of consistent regional monitoring has obscured the long-term environmental impact. Here, we present sediment core results to reconstruct spatial and temporal patterns in trace element deposition to lakes in the Athabasca oil sands region. Early mining operations (during the 1970s and 1980s) led to elevated V and Pb inputs to lakes located <50 km from mining operations. Subsequent improvements to mining and upgrading technologies since the 1980s have reduced V and Pb loading to near background levels at many sites. In contrast, Hg deposition increased by a factor of ~3 to all 20 lakes over the 20th century, reflecting global-scale patterns in atmospheric Hg emissions. Base cation deposition (from fugitive dust emissions) has not measurably impacted regional lake sediments. Instead, results from a principal components analysis suggest that the presence of carbonate bedrock underlying lakes located close to development appears to exert a first-order control over lake sediment base cation concentrations and overall lake sediment geochemical composition. Trace element concentrations generally did not exceed Canadian sediment quality guidelines, and no spatial or temporal trends were observed in the frequency of guideline exceedence. Our results demonstrate that early mining efforts had an even greater impact on trace element cycling than has been appreciated previously, placing recent monitoring efforts in a critical long-term context.

  14. Transformation-associated recombination (TAR) cloning for genomics studies and synthetic biology

    PubMed Central

    Kouprina, Natalay; Larionov, Vladimir

    2016-01-01

    Transformation-associated recombination (TAR) cloning represents a unique tool for isolation and manipulation of large DNA molecules. The technique exploits a high level of homologous recombination in the yeast Sacharomyces cerevisiae. So far, TAR cloning is the only method available to selectively recover chromosomal segments up to 300 kb in length from complex and simple genomes. In addition, TAR cloning allows the assembly and cloning of entire microbe genomes up to several Mb as well as engineering of large metabolic pathways. In this review, we summarize applications of TAR cloning for functional/structural genomics and synthetic biology. PMID:27116033

  15. Utah Heavy Oil Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    J. Bauman; S. Burian; M. Deo

    The Utah Heavy Oil Program (UHOP) was established in June 2006 to provide multidisciplinary research support to federal and state constituents for addressing the wide-ranging issues surrounding the creation of an industry for unconventional oil production in the United States. Additionally, UHOP was to serve as an on-going source of unbiased information to the nation surrounding technical, economic, legal and environmental aspects of developing heavy oil, oil sands, and oil shale resources. UHOP fulGilled its role by completing three tasks. First, in response to the Energy Policy Act of 2005 Section 369(p), UHOP published an update report to the 1987more » technical and economic assessment of domestic heavy oil resources that was prepared by the Interstate Oil and Gas Compact Commission. The UHOP report, entitled 'A Technical, Economic, and Legal Assessment of North American Heavy Oil, Oil Sands, and Oil Shale Resources' was published in electronic and hard copy form in October 2007. Second, UHOP developed of a comprehensive, publicly accessible online repository of unconventional oil resources in North America based on the DSpace software platform. An interactive map was also developed as a source of geospatial information and as a means to interact with the repository from a geospatial setting. All documents uploaded to the repository are fully searchable by author, title, and keywords. Third, UHOP sponsored Give research projects related to unconventional fuels development. Two projects looked at issues associated with oil shale production, including oil shale pyrolysis kinetics, resource heterogeneity, and reservoir simulation. One project evaluated in situ production from Utah oil sands. Another project focused on water availability and produced water treatments. The last project considered commercial oil shale leasing from a policy, environmental, and economic perspective.« less

  16. Evaporation And Ignition Of Dense Fuel Sprays

    NASA Technical Reports Server (NTRS)

    Bellan, Josette; Harstad, Kenneth G.

    1988-01-01

    Simple theoretical model makes useful predictions of trends. Pair of reports presents theoretical model of evaporation and ignition of sprayed liquid fuel. Developed as part of research in combustion of oil and liquid fuels derived from coal, tar sand, and shale in furnace. Work eventually contributes to increase efficiency of combustion and decrease pollution generated by burning of such fuels.

  17. Coal tar induces AHR-dependent skin barrier repair in atopic dermatitis

    PubMed Central

    van den Bogaard, Ellen H.; Bergboer, Judith G.M.; Vonk-Bergers, Mieke; van Vlijmen-Willems, Ivonne M.J.J.; Hato, Stanleyson V.; van der Valk, Pieter G.M.; Schröder, Jens Michael; Joosten, Irma; Zeeuwen, Patrick L.J.M.; Schalkwijk, Joost

    2013-01-01

    Topical application of coal tar is one of the oldest therapies for atopic dermatitis (AD), a T helper 2 (Th2) lymphocyte–mediated skin disease associated with loss-of-function mutations in the skin barrier gene, filaggrin (FLG). Despite its longstanding clinical use and efficacy, the molecular mechanism of coal tar therapy is unknown. Using organotypic skin models with primary keratinocytes from AD patients and controls, we found that coal tar activated the aryl hydrocarbon receptor (AHR), resulting in induction of epidermal differentiation. AHR knockdown by siRNA completely abrogated this effect. Coal tar restored filaggrin expression in FLG-haploinsufficient keratinocytes to wild-type levels, and counteracted Th2 cytokine–mediated downregulation of skin barrier proteins. In AD patients, coal tar completely restored expression of major skin barrier proteins, including filaggrin. Using organotypic skin models stimulated with Th2 cytokines IL-4 and IL-13, we found coal tar to diminish spongiosis, apoptosis, and CCL26 expression, all AD hallmarks. Coal tar interfered with Th2 cytokine signaling via dephosphorylation of STAT6, most likely due to AHR-regulated activation of the NRF2 antioxidative stress pathway. The therapeutic effect of AHR activation herein described opens a new avenue to reconsider AHR as a pharmacological target and could lead to the development of mechanism-based drugs for AD. PMID:23348739

  18. Coal tar induces AHR-dependent skin barrier repair in atopic dermatitis.

    PubMed

    van den Bogaard, Ellen H; Bergboer, Judith G M; Vonk-Bergers, Mieke; van Vlijmen-Willems, Ivonne M J J; Hato, Stanleyson V; van der Valk, Pieter G M; Schröder, Jens Michael; Joosten, Irma; Zeeuwen, Patrick L J M; Schalkwijk, Joost

    2013-02-01

    Topical application of coal tar is one of the oldest therapies for atopic dermatitis (AD), a T helper 2 (Th2) lymphocyte-mediated skin disease associated with loss-of-function mutations in the skin barrier gene, filaggrin (FLG). Despite its longstanding clinical use and efficacy, the molecular mechanism of coal tar therapy is unknown. Using organotypic skin models with primary keratinocytes from AD patients and controls, we found that coal tar activated the aryl hydrocarbon receptor (AHR), resulting in induction of epidermal differentiation. AHR knockdown by siRNA completely abrogated this effect. Coal tar restored filaggrin expression in FLG-haploinsufficient keratinocytes to wild-type levels, and counteracted Th2 cytokine-mediated downregulation of skin barrier proteins. In AD patients, coal tar completely restored expression of major skin barrier proteins, including filaggrin. Using organotypic skin models stimulated with Th2 cytokines IL-4 and IL-13, we found coal tar to diminish spongiosis, apoptosis, and CCL26 expression, all AD hallmarks. Coal tar interfered with Th2 cytokine signaling via dephosphorylation of STAT6, most likely due to AHR-regulated activation of the NRF2 antioxidative stress pathway. The therapeutic effect of AHR activation herein described opens a new avenue to reconsider AHR as a pharmacological target and could lead to the development of mechanism-based drugs for AD.

  19. Sampling of tar from sewage sludge gasification using solid phase adsorption.

    PubMed

    Ortiz González, Isabel; Pérez Pastor, Rosa Ma; Sánchez Hervás, José Ma

    2012-06-01

    Sewage sludge is a residue from wastewater treatment plants which is considered to be harmful to the environment and all living organisms. Gasification technology is a potential source of renewable energy that converts the sewage sludge into gases that can be used to generate energy or as raw material in chemical synthesis processes. But tar produced during gasification is one of the problems for the implementation of the gasification technology. Tar can condense on pipes and filters and may cause blockage and corrosion in the engines and turbines. Consequently, to minimize tar content in syngas, the ability to quantify tar levels in process streams is essential. The aim of this work was to develop an accurate tar sampling and analysis methodology using solid phase adsorption (SPA) in order to apply it to tar sampling from sewage sludge gasification gases. Four types of commercial SPA cartridges have been tested to determine the most suitable one for the sampling of individual tar compounds in such streams. Afterwards, the capacity, breakthrough volume and sample stability of the Supelclean™ ENVI-Carb/NH(2), which is identified as the most suitable, have been determined. Basically, no significant influences from water, H(2)S or NH(3) were detected. The cartridge was used in sampling real samples, and comparable results were obtained with the present and traditional methods.

  20. Probing interaction of a fluorescent ligand with HIV TAR RNA

    NASA Astrophysics Data System (ADS)

    Qi, Liang; Zhang, Jing; He, Tian; Huo, Yuan; Zhang, Zhi-Qi

    2017-02-01

    Trans-activator of Transcription (Tat) antagonists could block the interaction between Tat protein and its target, trans-activation responsive region (TAR) RNA, to inhibit Tat function and prevent human immunodeficiency virus type 1 (HIV-1) replication. For the first time, a small fluorescence ligand, ICR 191, was found to interact with TAR RNA at the Tat binding site and compete with Tat. It was also observed that the fluorescence of ICR 191 could be quenched when binding to TAR RNA and recovered when discharged via competition with Tat peptide or a well-known Tat inhibitor, neomycin B. The binding parameters of ICR 191 to TAR RNA were determined through theoretical calculations. Mass spectrometry, circular dichroism and molecular docking were used to further confirm the interaction of ICR 191 with TAR RNA. Inspired by these discoveries, a primary fluorescence model for the discovery of Tat antagonists was built using ICR 191 as a fluorescence indicator and the feasibility of this model was evaluated. This ligand-RNA interaction could provide a new strategy for research aimed at discovering Tat antagonists.

  1. Thermocatalytic treatment of biomass tar model compounds via radio frequency.

    PubMed

    Anis, Samsudin; Zainal, Z A; Bakar, M Z A

    2013-05-01

    A new effective RF tar thermocatalytic treatment process with low energy intensive has been proposed to remove tar from biomass gasification. Toluene and naphthalene as biomass tar model compounds were removed via both thermal and catalytic treatment over a wide temperature range from 850 °C to 1200 °C and 450 °C to 900 °C, respectively at residence time of 0-0.7 s. Thermal characteristics of the new technique are also described in this paper. This study clearly clarified that toluene was much easier to be removed than naphthalene. Soot was found as the final product of thermal treatment of the tar model and completely removed during catalytic treatment. Radical reactions generated by RF non-thermal effect improve the tar removal. The study showed that Y-zeolite has better catalytic activity compared to dolomite on toluene and naphthalene removal due to its acidic nature and large surface area, even at lower reaction temperature of about 550 °C. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. Asbestos in play sand

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Langer, A.M.; Nolan, R.P.

    1987-04-02

    A letter in the New England Journal of Medicine (Oct. 2 issue) stated that a carbonate sand marketed in New Jersey was contaminated with 2 to 4 percent tremolite asbestos. The authors were called on by one of the federal agencies to repeat the analysis of this sand, specifically for its asbestos content. The sand was pulverized and immersed in oils with known refractive indexes, and the predominant amphibole was characterized by polarized light microscopy. The optical characteristics were noted, and the indexes of refraction were measured and found to be consistent with tremolite. On the basis of optical characterization,more » the authors concluded that all the tremolite visualized with light microscopy consisted of large, single cleavage fragments and was not asbestiform. They used the technique of x-ray diffraction, as did the author of the original report, which showed the presence of an amphibole mineral (probably tremolite) in the carbonate sand. The technique was not used, and cannot be used, to distinguish between the tremolite habits (asbestiform or nonasbestiform). An acid-insoluble residue, recovered from the carbonate sand, was examined by analytic electron microscopy. The tremolite grains were observed to consist of single untwinned, crystalline fragments. Few defects were noted. Selected area electron diffraction nets were indicative of fragments lying near or at the common amphibole cleavage plane. These characteristics are consistent with cleavage fragments and not asbestos. Aspect ratios reflected short particles (less than 5.1). On the basis of their examination of the carbonate play sand, they conclude that it did not contain tremolite asbestos.« less

  3. A Relevance Vector Machine-Based Approach with Application to Oil Sand Pump Prognostics

    PubMed Central

    Hu, Jinfei; Tse, Peter W.

    2013-01-01

    Oil sand pumps are widely used in the mining industry for the delivery of mixtures of abrasive solids and liquids. Because they operate under highly adverse conditions, these pumps usually experience significant wear. Consequently, equipment owners are quite often forced to invest substantially in system maintenance to avoid unscheduled downtime. In this study, an approach combining relevance vector machines (RVMs) with a sum of two exponential functions was developed to predict the remaining useful life (RUL) of field pump impellers. To handle field vibration data, a novel feature extracting process was proposed to arrive at a feature varying with the development of damage in the pump impellers. A case study involving two field datasets demonstrated the effectiveness of the developed method. Compared with standalone exponential fitting, the proposed RVM-based model was much better able to predict the remaining useful life of pump impellers. PMID:24051527

  4. A relevance vector machine-based approach with application to oil sand pump prognostics.

    PubMed

    Hu, Jinfei; Tse, Peter W

    2013-09-18

    Oil sand pumps are widely used in the mining industry for the delivery of mixtures of abrasive solids and liquids. Because they operate under highly adverse conditions, these pumps usually experience significant wear. Consequently, equipment owners are quite often forced to invest substantially in system maintenance to avoid unscheduled downtime. In this study, an approach combining relevance vector machines (RVMs) with a sum of two exponential functions was developed to predict the remaining useful life (RUL) of field pump impellers. To handle field vibration data, a novel feature extracting process was proposed to arrive at a feature varying with the development of damage in the pump impellers. A case study involving two field datasets demonstrated the effectiveness of the developed method. Compared with standalone exponential fitting, the proposed RVM-based model was much better able to predict the remaining useful life of pump impellers.

  5. Ozonation of oil sands process-affected water accelerates microbial bioremediation.

    PubMed

    Martin, Jonathan W; Barri, Thaer; Han, Xiumei; Fedorak, Phillip M; El-Din, Mohamed Gamal; Perez, Leonidas; Scott, Angela C; Jiang, Jason Tiange

    2010-11-01

    Ozonation can degrade toxic naphthenic acids (NAs) in oil sands process-affected water (OSPW), but even after extensive treatment a residual NA fraction remains. Here we hypothesized that mild ozonation would selectively oxidize the most biopersistent NA fraction, thereby accelerating subsequent NA biodegradation and toxicity removal by indigenous microbes. OSPW was ozonated to achieve approximately 50% and 75% NA degradation, and the major ozonation byproducts included oxidized NAs (i.e., hydroxy- or keto-NAs). However, oxidized NAs are already present in untreated OSPW and were shown to be formed during the microbial biodegradation of NAs. Ozonation alone did not affect OSPW toxicity, based on Microtox; however, there was a significant acceleration of toxicity removal in ozonated OSPW following inoculation with native microbes. Furthermore, all residual NAs biodegraded significantly faster in ozonated OSPW. The opposite trend was found for ozonated commercial NAs, which are known to contain no significant biopersistent fraction. Thus, we suggest that ozonation preferentially degraded the most biopersistent OSPW NA fraction, and that ozonation is complementary to the biodegradation capacity of microbial populations in OSPW. The toxicity of ozonated OSPW to higher organisms needs to be assessed, but there is promise that this technique could be applied to accelerate the bioremediation of large volumes of OSPW in Northern Alberta, Canada.

  6. Tar Production from Biomass Pyrolysis in a Fluidized Bed Reactor: A Novel Turbulent Multiphase Flow Formulation

    NASA Technical Reports Server (NTRS)

    Bellan, J.; Lathouwers, D.

    2000-01-01

    A novel multiphase flow model is presented for describing the pyrolysis of biomass in a 'bubbling' fluidized bed reactor. The mixture of biomass and sand in a gaseous flow is conceptualized as a particulate phase composed of two classes interacting with the carrier gaseous flow. The solid biomass is composed of three initial species: cellulose, hemicellulose and lignin. From each of these initial species, two new solid species originate during pyrolysis: an 'active' species and a char, thus totaling seven solid-biomass species. The gas phase is composed of the original carrier gas (steam), tar and gas; the last two species originate from the volumetric pyrolysis reaction. The conservation equations are derived from the Boltzmann equations through ensemble averaging. Stresses in the gaseous phase are the sum of the Newtonian and Reynolds (turbulent) contributions. The particulate phase stresses are the sum of collisional and Reynolds contributions. Heat transfer between phases, and heat transfer between classes in the particulate phase is modeled, the last resulting from collisions between sand and biomass. Closure of the equations must be performed by modeling the Reynolds stresses for both phases. The results of a simplified version (first step) of the model are presented.

  7. Vertical gradients in carbon flow and methane production in a sulfate-rich oil sands tailings pond.

    PubMed

    Stasik, Sebastian; Wendt-Potthoff, Katrin

    2016-12-01

    Oil sands tailings ponds are primary storage basins for tailings produced during oil sands processing in Alberta (Canada). Due to microbial metabolism, methane production contributes to greenhouse gas emissions, but positively affects tailings densification, which is relevant for operational water re-use. Depending on the age and depth of tailings, the activity of sulfate-reducing bacteria (SRB) may control methanogenesis due to the competition for substrates. To assess the depth-related impact of sulfate reduction on CH 4 emissions, original tailings of two vicinal pond profiles were incubated in anoxic microcosms with/without molybdate as selective inhibitor of microbial sulfate reduction. Integrating methane production rates, considerable volumes of CH 4 emissions (∼5.37 million L d -1 ) may be effectively prevented by the activity of SRB in sulfidic tailings between 3.5 and 7.5 m. To infer metabolic potentials controlling methanogenic pathways, a set of relevant organic acids (acetate, formate, propionate, butyrate, lactate) was added to part of the microcosms. Generally, organic acid transformation shifted with depth, with highest rates (305-446 μmol L -1  d -1 ) measured in fresh tailings at 5.5-7.5 m. In all depths, a transient accumulation of acetate revealed its importance as key intermediate during organic matter decomposition. SRB dominated the transformation of acetate, butyrate and propionate, but were not essential for lactate and formate turnover. Acetate as methanogenic substrate was important only at 13.5 m. At 1-7.5 m, methanogenesis significantly increased in presence of organic acids, most likely due to the syntrophic oxidation of acetate to CO 2 by SRB and subsequent conversion to CH 4 . Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. How bioavailable is highly weathered Deepwater Horizon oil?

    NASA Astrophysics Data System (ADS)

    Bostic, J.; Ziolkowski, L. A.; Reddy, C. M.; Aeppli, C.; Swarthout, B.

    2016-02-01

    Oiled sand patties continue to be deposited on northern Gulf of Mexico beaches five years after the Deepwater Horizon (DwH) oil spill. It is known that during the first 18 months post-spill, sand patties from DwH were chemically transformed, both biotically and abiotically, from wellhead release to beach deposition. However, the chemically transformed oil, which appears to become more polar over time, is not well understood in regards to its biodegradation potential. Biodegradation exerts a large control on the fate of spilled oil, representing a major conduit for its removal from the environment. To assess the bioavailability of this weathered oil, sand patties were collected from intertidal and supratidal zones of beaches in Florida, Alabama, and Mississippi in July 2015. Microbial biomarkers of the viable community, phospholipid fatty acids (PLFA), were detected on all samples collected. The PLFA distributions (mostly saturated and branched structures) and abundances (2 - 9 x 1013 cells/g sand patty) were similar across sampling locations. The positive correlation between PLFA abundance and surface area to volume ratios of sand patties indicates that microbes are preferentially inhabiting outside surfaces of the patties. We will present data on the radiocarbon (14C) content of PLFA to assess carbon (C) sources assimilated by microbes. 14C of PLFA is a powerful tool for assessing C sources assimilated in this setting. Oil has no 14C (Δ14C= -1000‰) while modern organic matter has relatively abundant 14C (Δ14C= 0‰). Fingerprinting analysis of biomarker ratios using comprehensive two-dimensional gas chromatography will be presented to ascertain if oil originated from DwH. The extent of the chemical transformation of the oil into more polar compounds will also be measured using thin layer chromatography. Results of this investigation aim to determine the bioavailability and ultimate fate of oiled sand patties that continue to wash ashore on Gulf of Mexico

  9. Cocarcinogenicity of phenols from Estonian shale tars (oils).

    PubMed Central

    Bogovski, P A; Mirme, H I

    1979-01-01

    Many phenols have carcinogenic activity. The Estonian shale oils contain up to 40 vol % phenols. The promoting activity after initiation of phenols of Estonian shale oils was tested in mice with a single subthreshold dose (0.36 mg) of benzo(a)pyrene. C57Bl and CC57Br mice were used in skin painting experiments. Weak carcinogenic activity was found in the total crude water-soluble phenols recovered from the wastewater of a shale processing plant. In two-stage experiments a clear promoting action of the total crude phenols was established, whereas the fractions A and B (training reagents), obtained by selective crystallization of the total phenols exerted a considerably weaker promoting action. Epo-glue, a commercial epoxy product produced from unfractionated crude phenols, had no promoting activity, which may be due to the processing of the phenols involving polymerization. The mechanism of action of phenols is not clear. According to some data from the literature, phenol and 5-methylresorcinol reduce the resorption speed of BP in mouse skin, causing prolongation of the action fo the carcinogen. PMID:446449

  10. Cocarcinogenicity of phenols from Estonian shale tars (oils).

    PubMed

    Bogovski, P A; Mirme, H I

    1979-06-01

    Many phenols have carcinogenic activity. The Estonian shale oils contain up to 40 vol % phenols. The promoting activity after initiation of phenols of Estonian shale oils was tested in mice with a single subthreshold dose (0.36 mg) of benzo(a)pyrene. C57Bl and CC57Br mice were used in skin painting experiments. Weak carcinogenic activity was found in the total crude water-soluble phenols recovered from the wastewater of a shale processing plant. In two-stage experiments a clear promoting action of the total crude phenols was established, whereas the fractions A and B (training reagents), obtained by selective crystallization of the total phenols exerted a considerably weaker promoting action. Epo-glue, a commercial epoxy product produced from unfractionated crude phenols, had no promoting activity, which may be due to the processing of the phenols involving polymerization. The mechanism of action of phenols is not clear. According to some data from the literature, phenol and 5-methylresorcinol reduce the resorption speed of BP in mouse skin, causing prolongation of the action fo the carcinogen.

  11. Thermodynamic analysis of tar reforming through auto-thermal reforming process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nurhadi, N., E-mail: nurhadi@tekmira.esdm.go.id; Diniyati, Dahlia; Efendi, M. Ade Andriansyah

    2015-12-29

    Fixed bed gasification is a simple and suitable technology for small scale power generation. One of the disadvantages of this technology is producing tar. So far, tar is not utilized yet and being waste that should be treated into a more useful product. This paper presents a thermodynamic analysis of tar conversion into gas producer through non-catalytic auto-thermal reforming technology. Tar was converted into components, C, H, O, N and S, and then reacted with oxidant such as mixture of air or pure oxygen. Thus, this reaction occurred auto-thermally and reached chemical equilibrium. The sensitivity analysis resulted that the mostmore » promising process performance occurred at flow rate of air was reached 43% of stoichiometry while temperature of process is 1100°C, the addition of pure oxygen is 40% and preheating of oxidant flow is 250°C. The yield of the most promising process performance between 11.15-11.17 kmol/h and cold gas efficiency was between 73.8-73.9%.The results of this study indicated that thermodynamically the conversion of tar into producer gas through non-catalytic auto-thermal reformingis more promising.« less

  12. Groundwater contamination by organic bases derived from coal-tar wastes

    USGS Publications Warehouse

    Pereira, W.E.; Rostad, C.E.; Garbarino, J.R.; Hult, M.F.

    1983-01-01

    A fluid sample from a shallow aquifer contaminated by coal-tar wastes was analyzed for organic bases. The sample consisted of a mixture of aqueous and oily-tar phases. The phases were separated by centrifugation and filtration. Organic bases were isolated from each phase by pH adjustment and solvent extraction. Organic bases in the oily-tar phase were further purified by neutral-alumina, micro-column adsorption chromatography. Separation and identification of the organic bases in each phase were achieved by using capillary gas chromatography-mass spectrometry-computer (GC-MS-COM) and probe distillation-high resolution mass spectrometry (PD-HRMS) techniques. Organic bases present in the aqueous phase included primary aromatic amines (such as aniline, alkylated anilines, and naphthylamines) as well as azaarenes (such as alkylated pyridines, quinolines, acridine, and benzoquinolines). The oily-tar phase contained acridine, benzacridines, dibenzacridines, and numerous other azaarenes, the elemental compositions of which were determined by PD-HRMS. Azaarenes in the oily-tar phase, varying in size from 6 to 12 rings, are reported for the first time. The origin and environmental significance of these compounds are discussed. ?? 1983.

  13. Deciphering structure-activity relationships in a series of Tat/TAR inhibitors.

    PubMed

    Pascale, Lise; González, Alejandro López; Di Giorgio, Audrey; Gaysinski, Marc; Teixido Closa, Jordi; Tejedor, Roger Estrada; Azoulay, Stéphane; Patino, Nadia

    2016-11-01

    A series of pentameric "Polyamide Amino Acids" (PAAs) compounds derived from the same trimeric precursor have been synthesized and investigated as HIV TAR RNA ligands, in the absence and in the presence of a Tat fragment. All PAAs bind TAR with similar sub-micromolar affinities but their ability to compete efficiently with the Tat fragment strongly differs, IC50 ranging from 35 nM to >2 μM. While NMR and CD studies reveal that all PAA interact with TAR at the same site and induce globally the same RNA conformational change upon binding, a comparative thermodynamic study of PAA/TAR equilibria highlights distinct TAR binding modes for Tat competitor and non-competitor PAAs. This led us to suggest two distinct interaction modes that have been further validated by molecular modeling studies. While the binding of Tat competitor PAAs induces a contraction at the TAR bulge region, the binding of non-competitor ones widens it. This could account for the distinct PAA ability to compete with Tat fragment. Our work illustrates how comparative thermodynamic studies of a series of RNA ligands of same chemical family are of value for understanding their binding modes and for rationalizing structure-activity relationships.

  14. Evaluating officially reported polycyclic aromatic hydrocarbon emissions in the Athabasca oil sands region with a multimedia fate model

    PubMed Central

    Parajulee, Abha; Wania, Frank

    2014-01-01

    Emissions of organic substances with potential toxicity to humans and the environment are a major concern surrounding the rapid industrial development in the Athabasca oil sands region (AOSR). Although concentrations of polycyclic aromatic hydrocarbons (PAHs) in some environmental samples have been reported, a comprehensive picture of organic contaminant sources, pathways, and sinks within the AOSR has yet to be elucidated. We sought to use a dynamic multimedia environmental fate model to reconcile the emissions and residue levels reported for three representative PAHs in the AOSR. Data describing emissions to air compiled from two official sources result in simulated concentrations in air, soil, water, and foliage that tend to fall close to or below the minimum measured concentrations of phenanthrene, pyrene, and benzo(a)pyrene in the environment. Accounting for evaporative emissions (e.g., from tailings pond disposal) provides a more realistic representation of PAH distribution in the AOSR. Such indirect emissions to air were found to be a greater contributor of PAHs to the AOSR atmosphere relative to reported direct emissions to air. The indirect pathway transporting uncontrolled releases of PAHs to aquatic systems via the atmosphere may be as significant a contributor of PAHs to aquatic systems as other supply pathways. Emission density estimates for the three PAHs that account for tailings pond disposal are much closer to estimated global averages than estimates based on the available emissions datasets, which fall close to the global minima. Our results highlight the need for improved accounting of PAH emissions from oil sands operations, especially in light of continued expansion of these operations. PMID:24596429

  15. Evaluating officially reported polycyclic aromatic hydrocarbon emissions in the Athabasca oil sands region with a multimedia fate model.

    PubMed

    Parajulee, Abha; Wania, Frank

    2014-03-04

    Emissions of organic substances with potential toxicity to humans and the environment are a major concern surrounding the rapid industrial development in the Athabasca oil sands region (AOSR). Although concentrations of polycyclic aromatic hydrocarbons (PAHs) in some environmental samples have been reported, a comprehensive picture of organic contaminant sources, pathways, and sinks within the AOSR has yet to be elucidated. We sought to use a dynamic multimedia environmental fate model to reconcile the emissions and residue levels reported for three representative PAHs in the AOSR. Data describing emissions to air compiled from two official sources result in simulated concentrations in air, soil, water, and foliage that tend to fall close to or below the minimum measured concentrations of phenanthrene, pyrene, and benzo(a)pyrene in the environment. Accounting for evaporative emissions (e.g., from tailings pond disposal) provides a more realistic representation of PAH distribution in the AOSR. Such indirect emissions to air were found to be a greater contributor of PAHs to the AOSR atmosphere relative to reported direct emissions to air. The indirect pathway transporting uncontrolled releases of PAHs to aquatic systems via the atmosphere may be as significant a contributor of PAHs to aquatic systems as other supply pathways. Emission density estimates for the three PAHs that account for tailings pond disposal are much closer to estimated global averages than estimates based on the available emissions datasets, which fall close to the global minima. Our results highlight the need for improved accounting of PAH emissions from oil sands operations, especially in light of continued expansion of these operations.

  16. Social movement heterogeneity in public policy framing: A multi-stakeholder analysis of the Keystone XL pipeline

    NASA Astrophysics Data System (ADS)

    Wesley, David T. A.

    In 2011, stakeholders with differing objectives formed an alliance to oppose the Keystone XL heavy oil pipeline. The alliance, which came to be known as "Tar Sands Action," implemented various strategies, some of which were more successful than others. Tar Sands Action was a largely heterogeneous alliance that included indigenous tribes, environmentalists, ranchers, landowners, and trade unions, making it one of the more diverse social movement organizations in history. Each of these stakeholder categories had distinct demographic structures, representing an array of racial, ethnic, educational, occupational, and political backgrounds. Participants also had differing policy objectives that included combating climate change and protecting jobs, agricultural interests, water resources, wildlife, and human health. The current dissertation examines the Tar Sands Action movement to understand how heterogeneous social movement organizations mobilize supporters, maintain alliances, and create effective frames to achieve policy objectives. A multi-stakeholder analysis of the development, evolution and communication of frames concerning the Keystone XL controversy provides insight into the role of alliances, direct action, and the news media in challenging hegemonic frames. Previous research has ignored the potential value that SMO heterogeneity provides by treating social movements as culturally homogenous. However, diversity has been shown to affect performance in business organizations. The current study demonstrates that under some circumstances, diversity can also improve policy outcomes. Moreover, policy frames are shown to be more effective in sustaining news media and public interest through a process the author calls dynamic frame sequencing (DFS). DFS refers to a process implementing different stakeholder frames at strategically opportune moments. Finally, Tar Sands Action was one of the first SMOs to rely heavily on social media to build alliances, disseminate

  17. Air Quality Over the Canadian Oil Sands: A First Assessment Using Satellite Observations

    NASA Technical Reports Server (NTRS)

    McLinden, C. A.; Fioletov, V.; Boersma, K. F.; Krotkov, N.; Sioris, C. E.; Veefkind, J. P.; Yang, K.

    2012-01-01

    Results from the first assessment of air quality over the Canadian oil sands -- one ofthe largest industrial undertakings in human history -- using satellite remote sensing observations of two pollutants, nitrogen dioxide (N0O) and sulfur dioxide (SO2), are presented. High-resolution maps were created that revealed distinct enhancements in both species over an area (roughly 30 km x 50 km) of intensive surface mining at scales of a few kilometers. The magnitude of these enhancements, quantified in terms of total mass, are comparable to the largest seen in Canada from individual sources. The rate of increase in NO2 between 2005 and 2010 was assessed at 10.4 +/- 3.5%/year and resulted from increases both in local values as well as the spatial extent of the enhancement. This is broadly consistent with both surface-measurement trends and increases in annual bitumen production. An increase in SO2 was also found, but given larger uncertainties, it is not statistically significant.

  18. Toxicity of naphthenic acid fraction components extracted from fresh and aged oil sands process-affected waters, and commercial naphthenic acid mixtures, to fathead minnow (Pimephales promelas) embryos.

    PubMed

    Marentette, Julie R; Frank, Richard A; Bartlett, Adrienne J; Gillis, Patricia L; Hewitt, L Mark; Peru, Kerry M; Headley, John V; Brunswick, Pamela; Shang, Dayue; Parrott, Joanne L

    2015-07-01

    Naphthenic acids (NAs) are constituents of oil sands process-affected water (OSPW). These compounds can be both toxic and persistent and thus are a primary concern for the ultimate remediation of tailings ponds in northern Alberta's oil sands regions. Recent research has focused on the toxicity of NAs to the highly vulnerable early life-stages of fish. Here we examined fathead minnow embryonic survival, growth and deformities after exposure to extracted NA fraction components (NAFCs), from fresh and aged oil sands process-affected water (OSPW), as well as commercially available NA mixtures. Commercial NA mixtures were dominated by acyclic O2 species, while NAFCs from OSPW were dominated by bi- and tricyclic O2 species. Fathead minnow embryos less than 24h old were reared in tissue culture plates terminating at hatch. Both NAFC and commercial NA mixtures reduced hatch success, although NAFCs from OSPW were less toxic (EC50=5-12mg/L, nominal concentrations) than commercial NAs (2mg/L, nominal concentrations). The toxicities of NAFCs from aged and fresh OSPW were similar. Embryonic heart rates at 2 days post-fertilization (dpf) declined with increasing NAFC exposure, paralleling patterns of hatch success and rates of cardiovascular abnormalities (e.g., pericardial edemas) at hatch. Finfold deformities increased in exposures to commercial NA mixtures, not NAFCs. Thus, commercial NA mixtures are not appropriate surrogates for NAFC toxicity. Further work clarifying the mechanisms of action of NAFCs in OSPW, as well as comparisons with additional aged sources of OSPW, is merited. Crown Copyright © 2015. Published by Elsevier B.V. All rights reserved.

  19. Direct use of methane in coal liquefaction

    DOEpatents

    Sundaram, Muthu S.; Steinberg, Meyer

    1987-01-01

    This invention relates to a process for converting solid carbonaceous material, such as coal, to liquid and gaseous hydrocarbons utilizing methane, generally at a residence time of about 20-120 minutes at a temperature of 250.degree.-750.degree. C., preferably 350.degree.-450.degree. C., pressurized up to 6000 psi, and preferably in the 1000-2500 psi range, preferably directly utilizing methane 50-100% by volume in a mix of methane and hydrogen. A hydrogen donor solvent or liquid vehicle such as tetralin, tetrahydroquinoline, piperidine, and pyrolidine may be used in a slurry mix where the solvent feed is 0-100% by weight of the coal or carbonaceous feed. Carbonaceous feed material can either be natural, such as coal, wood, oil shale, petroleum, tar sands, etc., or man-made residual oils, tars, and heavy hydrocarbon residues from other processing systems.

  20. Sand consolidation method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Young, B.M.

    1965-10-05

    This is a new and improved sand consolidation method wherein an in-situ curing of a resinous fluid is undertaken. This method does not require that the resinous fluids be catalyzed at the surface of the well or well bore as is the case in previous methods. This method consists of, first, pumping an acid-curable consolidating fluid into the unconsolidated sand or earth formation and, secondly, pumping an oil overflush solution containing a halogenated organic or other organic acid or delayed acid-producing chemical. A small quantity of diesel oilspacer may be used between the plastic catalyst solution. The overflush functions tomore » remove permeability, and its acid or acid producing component promotes subsequent hardening of the remaining film of consolidating fluid. Trichloroacetic acid and benzotrichloride are satisfactory to add to the overflush solution for curing the resins. (17 claims)« less

  1. Contributions of natural and anthropogenic sources to ambient ammonia in the Athabasca Oil Sands and north-western Canada

    NASA Astrophysics Data System (ADS)

    Whaley, Cynthia H.; Makar, Paul A.; Shephard, Mark W.; Zhang, Leiming; Zhang, Junhua; Zheng, Qiong; Akingunola, Ayodeji; Wentworth, Gregory R.; Murphy, Jennifer G.; Kharol, Shailesh K.; Cady-Pereira, Karen E.

    2018-02-01

    Atmospheric ammonia (NH3) is a short-lived pollutant that plays an important role in aerosol chemistry and nitrogen deposition. Dominant NH3 emissions are from agriculture and forest fires, both of which are increasing globally. Even remote regions with relatively low ambient NH3 concentrations, such as northern Alberta and Saskatchewan in northern Canada, may be of interest because of industrial oil sands emissions and a sensitive ecological system. A previous attempt to model NH3 in the region showed a substantial negative bias compared to satellite and aircraft observations. Known missing sources of NH3 in the model were re-emission of NH3 from plants and soils (bidirectional flux) and forest fire emissions, but the relative impact of these sources on NH3 concentrations was unknown. Here we have used a research version of the high-resolution air quality forecasting model, GEM-MACH, to quantify the relative impacts of semi-natural (bidirectional flux of NH3 and forest fire emissions) and direct anthropogenic (oil sand operations, combustion of fossil fuels, and agriculture) sources on ammonia volume mixing ratios, both at the surface and aloft, with a focus on the Athabasca Oil Sands region during a measurement-intensive campaign in the summer of 2013. The addition of fires and bidirectional flux to GEM-MACH has improved the model bias, slope, and correlation coefficients relative to ground, aircraft, and satellite NH3 measurements significantly.By running the GEM-MACH-Bidi model in three configurations and calculating their differences, we find that averaged over Alberta and Saskatchewan during this time period an average of 23.1 % of surface NH3 came from direct anthropogenic sources, 56.6 % (or 1.24 ppbv) from bidirectional flux (re-emission from plants and soils), and 20.3 % (or 0.42 ppbv) from forest fires. In the NH3 total column, an average of 19.5 % came from direct anthropogenic sources, 50.0 % from bidirectional flux, and 30.5 % from forest fires. The

  2. Effect of water addition in a microwave assisted thermal cracking of biomass tar gasification

    NASA Astrophysics Data System (ADS)

    Warsita, A.; Surya, I.

    2018-02-01

    Producer gas from biomass gasification is plagued by the presence of tar which causes pipe blockages. Thermal and catalytic treatments in a microwave reactor have been shown to be effective methods for removing tar from producer gas. A question arises as to the possibility of enhancing the removal mechanism by adding water into the reactor. Thermal treatment with a various amount of water was added at temperatures in the range of 800-1200°C. The tar removal efficiency obtained 96.32% at the optimum temperature of 1200°C at the water to tar ratio (W/T) of 0.3. This study shows that the removal of tar by microwave irradiation with water addition is a significant and effective method in tar cracking.

  3. Relevance of the Sea Sand Disruption Method (SSDM) for the biometrical differentiation of the essential-oil composition from conifers.

    PubMed

    Dawidowicz, Andrzej L; Czapczyńska, Natalia B; Wianowska, Dorota

    2013-02-01

    Sea Sand Disruption Method (SSDM) is a simple and cheap sample-preparation procedure allowing the reduction of organic solvent consumption, exclusion of sample component degradation, improvement of extraction efficiency and selectivity, and elimination of additional sample clean-up and pre-concentration step before chromatographic analysis. This article deals with the possibility of SSDM application for the differentiation of essential-oils components occurring in the Scots pine (Pinus sylvestris L.) and cypress (Cupressus sempervirens L.) needles from Madrid (Spain), Laganas (Zakhyntos, Greece), Cala Morell (Menorca, Spain), Lublin (Poland), Helsinki (Finland), and Oradea (Romania). The SSDM results are related to the analogous - obtained applying two other sample preparation methods - steam distillation and Pressurized Liquid Extraction (PLE). The results presented established that the total amount and the composition of essential-oil components revealed by SSDM are equivalent or higher than those obtained by one of the most effective extraction technique, PLE. Moreover, SSDM seems to provide the most representative profile of all essential-oil components as no heat is applied. Thus, this environmentally friendly method is suggested to be used as the main extraction procedure for the differentiation of essential-oil components in conifers for scientific and industrial purposes. Copyright © 2013 Verlag Helvetica Chimica Acta AG, Zürich.

  4. The TAR effect: when the ones who dislike become the ones who are disliked.

    PubMed

    Gawronski, Bertram; Walther, Eva

    2008-09-01

    Four studies tested whether a source's evaluations of other individuals can recursively transfer to the source, such that people who like others acquire a positive valence, whereas people who dislike others acquire a negative valence (Transfer of Attitudes Recursively; TAR). Experiment 1 provides first evidence for TAR effects, showing recursive transfers of evaluations regardless of whether participants did or did not have prior knowledge about the (dis)liking source. Experiment 2 shows that previously but not subsequently acquired knowledge about targets that were (dis)liked by a source overrode TAR effects in a manner consistent with cognitive balance. Finally, Experiments 3 and 4 demonstrate that TAR effects are mediated by higher order propositional inferences (in contrast to lower order associative processes), in that TAR effects on implicit attitude measures were fully mediated by TAR effects on explicit attitude measures. Commonalities and differences between the TAR effect and previously established phenomena are discussed.

  5. Coal-tar based pavement sealant toxicity to freshwater macroinvertebrates.

    PubMed

    Bryer, Pamela J; Scoggins, Mateo; McClintock, Nancy L

    2010-05-01

    Non-point-source pollution is a major source of ecological impairment in urban stream systems. Recent work suggests that coal-tar pavement sealants, used extensively to protect parking areas, may be contributing a large portion of the polycyclic aromatic hydrocarbon (PAH) loading seen in urban stream sediments. The hypothesis that dried coal-tar pavement sealant flake could alter the macroinvertebrate communities native to streams in Austin, TX was tested using a controlled outdoor laboratory type approach. The treatment groups were: control, low, medium, and high with total PAH concentrations (TPAH = sum of 16 EPA priority pollutant PAHs) of 0.1, 7.5, 18.4, & 300 mg/kg respectively. The low, medium, and high treatments were created via the addition of dried coal-tar pavement sealant to a sterile soil. At the start of the 24-day exposure, sediment from a minimally impacted local reference site containing a community of live sediment-dwelling benthic macroinvertebrates was added to each replicate. An exposure-dependent response was found for several stream health measures and for several individual taxa. There were community differences in abundance (P = 0.0004) and richness (P < 0.0001) between treatments in addition to specific taxa responses, displaying a clear negative relationship with the amount of coal-tar sealant flake. These results support the hypothesis that coal-tar pavement sealants contain bioavailable PAHs that may harm aquatic environments. Copyright 2009 Elsevier Ltd. All rights reserved.

  6. Ground-water contamination by organic bases derived from coal-tar wastes

    USGS Publications Warehouse

    Pereira, Wilfred E.; Rostad, Colleen E.; Garbarino, John R.; Hult, Marc F.

    1983-01-01

    A fluid sample from a shallow aquifer contaminated by coal-tar wastes was analyzed for organic bases. The sample consisted of a mixture of aqueous and oily-tar phases. The phases were separated by centrifugation and filtration. Organic bases were isolated from each phase by pH adjustment and solvent extraction. Organic bases in the oily-tar phase were further purified by neutral-alumina, micro-column adsorption chromatography. Separation and identification of the organic bases in each phase were achieved by using capillary gas chromatography-mass spectrometry-computer (GC-MS-COM) and probe distillation-high resolution mass spectrometry (PD-HRMS) techniques. Organic bases present in the aqueous phase included primary aromatic amines (such as aniline, alkylated anilines, and naphthylamines) as well as azaarenes (such as alkylated pyridines, quinolines, acridine, and benzoquinolines). The oily-tar phase contained acridine, benzacridines, dibenzacridines, and numerous other azaarenes, the elemental compositions of which were determined by PD-HRMS. Azaarenes in the oily-tar phase, varying in size from 6 to 12 rings, are reported for the first time. The origin and environmental significance of these compounds are discussed.

  7. Chemical Methods for Ugnu Viscous Oils

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kishore Mohanty

    2012-03-31

    The North Slope of Alaska has large (about 20 billion barrels) deposits of viscous oil in Ugnu, West Sak and Shraeder Bluff reservoirs. These shallow reservoirs overlie existing productive reservoirs such as Kuparuk and Milne Point. The viscosity of the Ugnu reservoir on top of Milne Point varies from 200 cp to 10,000 cp and the depth is about 3300 ft. The same reservoir extends to the west on the top of the Kuparuk River Unit and onto the Beaufort Sea. The depth of the reservoir decreases and the viscosity increases towards the west. Currently, the operators are testing coldmore » heavy oil production with sand (CHOPS) in Ugnu, but oil recovery is expected to be low (< 10%). Improved oil recovery techniques must be developed for these reservoirs. The proximity to the permafrost is an issue for thermal methods; thus nonthermal methods must be considered. The objective of this project is to develop chemical methods for the Ugnu reservoir on the top of Milne Point. An alkaline-surfactant-polymer (ASP) formulation was developed for a viscous oil (330 cp) where as an alkaline-surfactant formulation was developed for a heavy oil (10,000 cp). These formulations were tested in one-dimensional and quarter five-spot Ugnu sand packs. Micromodel studies were conducted to determine the mechanisms of high viscosity ratio displacements. Laboratory displacements were modeled and transport parameters (such as relative permeability) were determined that can be used in reservoir simulations. Ugnu oil is suitable for chemical flooding because it is biodegraded and contains some organic acids. The acids react with injected alkali to produce soap. This soap helps in lowering interfacial tension between water and oil which in turn helps in the formation of macro and micro emulsions. A lower amount of synthetic surfactant is needed because of the presence of organic acids in the oil. Tertiary ASP flooding is very effective for the 330 cp viscous oil in 1D sand pack. This chemical

  8. Redefining fluids relative permeability for reservoir sands. (Osland oil and gas field, offshore Niger Delta, Nigeria)

    NASA Astrophysics Data System (ADS)

    Richardson, M. A.-A.; Taioli, F.

    2018-06-01

    Redefining oil and water relative permeability for the evaluation of reservoir sands, a case study of Osland oil and gas field, Offshore Niger Delta, Nigeria has been carried out. The aim of this study is to modify water relative permeability (Kwr) and oil relative permeability (Kor) equations in sandstone units. The objectives are to provide alternative expressions for Kwr and Kor in sandstone units, use the equations as inputs in a simplified water cut (Cw) equation to predict the volume of water that will be associated with the recoverable volume of oil (VRo) in penetrated reservoirs. The relationship between porosity (Φ) and water saturation (Sw) , with the relationship between porosity and hydrocarbon saturation ( Sh), were used to evaluate KWr and Kor in order to predict Cw in the selected reservoirs. Reservoir X in Well D1 shows about 2.0 ×106bbl for VRo and 18.78% for Cw but in D2 it shows about 7.4 ×106bbl and 1.73% for VRo and Cw respectively. Similarly, in Reservoir Y, D1 has about 6.8 ×106bbl of VRo and 0.034% of Cw , but in D2 it has about 9.3 ×106 bbl of VRo and 0.015% of Cw . The results suggest that high Φ with corresponding high Sw resulted in high associated Cw in Reservoir X. The evaluation also confirmed that the decrease in the ratio of oil relative permeability to water relative permeability (Kor /Kwr) corresponds to the increase in Cw . The total recoverable volumes of hydrocarbons from the two wells are estimated at 7.7 ×109cu .ft for gas and at 2.54 ×107bbl for oil. With the present conditions of the two reservoirs, the values of Cw in Reservoir X are low and are extremely low and negligible in Reservoir Y. Reservoir X in Well D1 has a smaller volume of VRo but the Cw is higher than others. Nonetheless, the Cw in Reservoir X is still within acceptable range.

  9. Role of TAR RNA splicing in translational regulation of simian immunodeficiency virus from rhesus macaques.

    PubMed Central

    Viglianti, G A; Rubinstein, E P; Graves, K L

    1992-01-01

    The untranslated leader sequences of rhesus macaque simian immunodeficiency virus mRNAs form a stable secondary structure, TAR. This structure can be modified by RNA splicing. In this study, the role of TAR splicing in virus replication was investigated. The proportion of viral RNAs containing a spliced TAR structure is high early after infection and decreases at later times. Moreover, proviruses containing mutations which prevent TAR splicing are significantly delayed in replication. These mutant viruses require approximately 20 days to achieve half-maximal virus production, in contrast to wild-type viruses, which require approximately 8 days. We attribute this delay to the inefficient translation of unspliced-TAR-containing mRNAs. The molecular basis for this translational effect was examined in in vitro assays. We found that spliced-TAR-containing mRNAs were translated up to 8.5 times more efficiently than were similar mRNAs containing an unspliced TAR leader. Furthermore, these spliced-TAR-containing mRNAs were more efficiently associated with ribosomes. We postulate that the level of TAR splicing provides a balance for the optimal expression of both viral proteins and genomic RNA and therefore ultimately controls the production of infectious virions. Images PMID:1629957

  10. Potential of capillary electrophoresis mass spectrometry for the characterization and monitoring of amine-derivatized naphthenic acids from oil sands process-affected water.

    PubMed

    MacLennan, Matthew S; Tie, Cai; Kovalchik, Kevin; Peru, Kerry M; Zhang, Xinxiang; Headley, John V; Chen, David D Y

    2016-11-01

    Capillary electrophoresis coupled to mass spectrometry (CE-MS) was used for the analysis of naphthenic acid fraction compounds (NAFCs) of oil sands process-affected water (OSPW). A standard mixture of amine-derivatized naphthenic acids is injected directly onto the CE column and analyzed by CE-MS in less than 15min. Time of flight MS analysis (TOFMS), optimized for high molecular weight ions, showed NAFCs between 250 and 800m/z. With a quadrupole mass analyzer, only low-molecular weight NAFCs (between 100 and 450m/z) are visible under our experimental conditions. Derivatization of NAFCs consisted of two-step amidation reactions mediated by 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide (EDC), or mediated by a mixture of EDC and N-hydroxysuccinimide, in dimethyl sulfoxide, dichloromethane or ethyl acetate. The optimum background electrolyte composition was determined to be 30% (V/V) methanol in water and 2% (V/V) formic acid. NAFCs extracted from OSPW in the Athabasca oil sands region were used to demonstrate the feasibility of CE-MS for the analysis of NAFCs in environmental samples, showing that the labeled naphthenic acids are in the mass range of 350 to 1500m/z. Copyright © 2016. Published by Elsevier B.V.

  11. Impact of ozonation on naphthenic acids speciation and toxicity of oil sands process-affected water to Vibrio fischeri and mammalian immune system.

    PubMed

    Wang, Nan; Chelme-Ayala, Pamela; Perez-Estrada, Leonidas; Garcia-Garcia, Erick; Pun, Jonathan; Martin, Jonathan W; Belosevic, Miodrag; Gamal El-Din, Mohamed

    2013-06-18

    Oil sands process-affected water (OSPW) is the water contained in tailings impoundment structures in oil sands operations. There are concerns about the environmental impacts of the release of OSPW because of its toxicity. In this study, ozonation followed by biodegradation was used to remediate OSPW. The impacts of the ozone process evolution on the naphthenic acids (NAs) speciation and acute toxicity were evaluated. Ion-mobility spectrometry (IMS) was used to preliminarily separate isomeric and homologous species. The results showed limited effects of the ozone reactor size on the treatment performance in terms of contaminant removal. In terms of NAs speciation, high reactivity of NAs with higher number of carbons and rings was only observed in a region of high reactivity (i.e., utilized ozone dose lower than 50 mg/L). It was also found that nearly 0.5 mg/L total NAs was oxidized per mg/L of utilized ozone dose, at utilized ozone doses lower than 50 mg/L. IMS showed that ozonation was able to degrade NAs, oxidized NAs, and sulfur/nitrogenated NAs. Complete removal of toxicity toward Vibrio fischeri was achieved after ozonation followed by 28-day biodegradation period. In vitro and in vivo assays indicated that ozonation reduced the OSPW toxicity to mice.

  12. Selected constituents in the smoke of domestic low tar cigarettes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Griest, W. H.; Quincy, R. B.; Guerin, M. R.

    Thirty-two brands of domestic commercial low tar and nicotine cigarettes were analyzed for their production of tar, nicotine, nitrogen oxides (as nitric oxide), hydrogen cyanide, acrolein, carbon monoxide and carbon dioxide under standard analytical smoking conditions. Results are compared with published data for certain brands.

  13. Removal of organic compounds and trace metals from oil sands process-affected water using zero valent iron enhanced by petroleum coke.

    PubMed

    Pourrezaei, Parastoo; Alpatova, Alla; Khosravi, Kambiz; Drzewicz, Przemysław; Chen, Yuan; Chelme-Ayala, Pamela; Gamal El-Din, Mohamed

    2014-06-15

    The oil production generates large volumes of oil sands process-affected water (OSPW), referring to the water that has been in contact with oil sands or released from tailings deposits. There are concerns about the environmental impacts of the release of OSPW because of its toxicity. Zero valent iron alone (ZVI) and in combination with petroleum coke (CZVI) were investigated as environmentally friendly treatment processes for the removal of naphthenic acids (NAs), acid-extractable fraction (AEF), fluorophore organic compounds, and trace metals from OSPW. While the application of 25 g/L ZVI to OSPW resulted in 58.4% removal of NAs in the presence of oxygen, the addition of 25 g petroleum coke (PC) as an electron conductor enhanced the NAs removal up to 90.9%. The increase in ZVI concentration enhanced the removals of NAs, AEF, and fluorophore compounds from OSPW. It was suggested that the electrons generated from the oxidation of ZVI were transferred to oxygen, resulting in the production of hydroxyl radicals and oxidation of NAs. When OSPW was de-oxygenated, the NAs removal decreased to 17.5% and 65.4% during treatment with ZVI and CZVI, respectively. The removal of metals in ZVI samples was similar to that obtained during CZVI treatment. Although an increase in ZVI concentration did not enhance the removal of metals, their concentrations effectively decreased at all ZVI loadings. The Microtox(®) bioassay with Vibrio fischeri showed a decrease in the toxicity of ZVI- and CZVI-treated OSPW. The results obtained in this study showed that the application of ZVI in combination with PC is a promising technology for OSPW treatment. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. The contribution of low tar cigarettes to environmental tobacco smoke

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chortyk, O.T.; Schlotzhauer, W.S.

    A series of low tar cigarettes (LTC) were smoked and the quantities of condensable mainstream (inhaled) and sidestream (between puffs) smoke compounds were determined and compared to those produced by a high tar, nonfilter cigarette. It was found that the LTC produced large quantities of sidestream smoke condensates, about equal to the high tar cigarette, and contained very high levels of toxic or cocarcinogenic phenols. On an equal weight basis, the LTC emitted more of these hazardous compounds into sidestream and environmental tobacco smoke. Higher smoke yields of a flavor additive and a sugar degradation product indicated addition of suchmore » compounds during the manufacture of LTC. It was concluded that, compared to a high tar cigarette, smoking LTC may be better for the smoker, but not for the nearby nonsmoker. Information should be developed to allow smokers to choose LTC that produce lower levels of hazardous compounds in their environmentally emitted sidestream smoke.« less

  15. SOVENT BASED ENHANCED OIL RECOVERY FOR IN-SITU UPGRADING OF HEAVY OIL SANDS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Munroe, Norman

    With the depletion of conventional crude oil reserves in the world, heavy oil and bitumen resources have great potential to meet the future demand for petroleum products. However, oil recovery from heavy oil and bitumen reservoirs is much more difficult than that from conventional oil reservoirs. This is mainly because heavy oil or bitumen is partially or completely immobile under reservoir conditions due to its extremely high viscosity, which creates special production challenges. In order to overcome these challenges significant efforts were devoted by Applied Research Center (ARC) at Florida International University and The Center for Energy Economics (CEE) atmore » the University of Texas. A simplified model was developed to assess the density of the upgraded crude depending on the ratio of solvent mass to crude oil mass, temperature, pressure and the properties of the crude oil. The simplified model incorporated the interaction dynamics into a homogeneous, porous heavy oil reservoir to simulate the dispersion and concentration of injected CO2. The model also incorporated the characteristic of a highly varying CO2 density near the critical point. Since the major challenge in heavy oil recovery is its high viscosity, most researchers have focused their investigations on this parameter in the laboratory as well as in the field resulting in disparaging results. This was attributed to oil being a complex poly-disperse blend of light and heavy paraffins, aromatics, resins and asphaltenes, which have diverse behaviors at reservoir temperature and pressures. The situation is exacerbated by a dearth of experimental data on gas diffusion coefficients in heavy oils due to the tedious nature of diffusivity measurements. Ultimately, the viscosity and thus oil recovery is regulated by pressure and its effect on the diffusion coefficient and oil swelling factors. The generation of a new phase within the crude and the differences in mobility between the new crude matrix and

  16. Fluid Flow and Solute Transport in the Bullwinkle Field J2 Sand, Offshore Gulf of Mexico

    NASA Astrophysics Data System (ADS)

    Nunn, J. A.; Hanor, J. S.

    2006-12-01

    The Bullwinkle field is located in a Pliocene-Pleistocene salt withdrawal minibasin approximately 90 km southwest of New Orleans, Louisiana. Most of the production has been from the prolific "J" sand sequence, a late Pliocene age channel and sheet sand turbidite complex. Salinities of the oil-leg waters (i.e., the pre-production immobile waters located above the original oil-water contact) vary from over 300 g/L near salt to approximately 150 g/L at the original oil-water contact in the J2 sand. Aquifer waters below the original oil-water contact generally have salinities between 150 g/L and 100 g/L. We developed numerical models to simulate fluid flow and associated solute transport in a gently dipping, relatively thin but high permeability sand body such as the J2 sand in Bullwinkle field. Dissolution of salt exposed in the updip portion of a confined aquifer can generate kilometer-scale fluid circulation with velocities of 10-40 cm/yr. Aquifer dips can be less than 5 degrees. Salt dissolution can generate a dense brine throughout a minibasin scale aquifer within 10,000 to 100,000 years. The fluid circulation pattern and amount of salt dissolved depends on permeability, dip, dispersivity, salt available for dissolution, and aquifer thickness. Dissolution of salt is massive, 1 billion kg or more. Salt dissolution within aquifers may be an important process in removing the last few meters of salt to form salt welds. Stratigraphic variations in aquifer salinity may be related to differences in spatial/temporal contact with salt bodies rather than a complex pattern of fluid migration. Once salt dissolution stops, continued density driven flow in minibasin scale aquifers will largely eliminate spatial variations in salinity. Introduction of hydrocarbons must be rapid in order to preserve the observed spatial gradients in oil-leg water salinity. Model simulations indicate that vertical as well as horizontal spatial variations in preproduction oil-leg water salinities

  17. Mineral resources of the San Rafael Swell Wilderness Study Areas, including Muddy Creek, Crack Canyon, San Rafael Reef, Mexican Mountain, and Sids Mountain Wilderness Study Areas, Emery County, Utah

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bartsch-Winkler, S.; Dickerson, R.P.; Barton, H.W.

    1990-09-01

    This paper reports on the San Rafael Swell Wilderness Study areas, which includes the Muddy Creek, Crack Canyon, San Rafael Reef, Mexican Mountain, and Sids Mountain Wilderness Study Areas, in Emery County, south-central Utah. Within and near the Crack Canyon Wilderness Study Area are identified subeconomic uranium and vanadium resources. Within the Carmel Formation are inferred subeconomic resources of gypsum in the Muddy Creek, San Rafael Reef, and Sids Mountain Wilderness Study Areas. Other commodities evaluated include geothermal energy, gypsum, limestone, oil and gas, sand and gravel, sandstone, semiprecious gemstones, sulfur petrified wood, and tar sand.

  18. 21 CFR 740.18 - Coal tar hair dyes posing a risk of cancer.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 7 2012-04-01 2012-04-01 false Coal tar hair dyes posing a risk of cancer. 740.18... (CONTINUED) COSMETICS COSMETIC PRODUCT WARNING STATEMENTS Warning Statements § 740.18 Coal tar hair dyes... coal tar hair dye containing any ingredient listed in paragraph (b) of this section shall bear, in...

  19. TAR SANDS LEACHATE STUDY

    EPA Science Inventory

    An inhouse research project was conducted by the EPA's Industrial Environmental Research Laboratory (IERL) at the T&E Facility in Cincinnati, Ohio, to provide information concerning the potential for release of contaminants to groundwater from in-situ and above-ground processed t...

  20. Oxidation of Oil Sands Process-Affected Water by Potassium Ferrate(VI).

    PubMed

    Wang, Chengjin; Klamerth, Nikolaus; Huang, Rongfu; Elnakar, Haitham; Gamal El-Din, Mohamed

    2016-04-19

    This paper investigates the oxidation of oil sands process-affected water (OSPW) by potassium ferrate(VI). Due to the selectivity of ferrate(VI) oxidation, two-ring and three-ring fluorescing aromatics were preferentially removed at doses <100 mg/L Fe(VI), and one-ring aromatics were removed only at doses ≥100 mg/L Fe(VI). Ferrate(VI) oxidation achieved 64.0% and 78.4% removal of naphthenic acids (NAs) at the dose of 200 mg/L and 400 mg/L Fe(VI) respectively, and NAs with high carbon number and ring number were removed preferentially. (1)H nuclear magnetic resonance ((1)H NMR) spectra indicated that the oxidation of fluorescing aromatics resulted in the opening of some aromatic rings. Electron paramagnetic resonance (EPR) analysis detected signals of organic radical intermediates, indicating that one-electron transfer is one of the probable mechanisms in the oxidation of NAs. The inhibition effect of OSPW on Vibrio fischeri and the toxicity effect on goldfish primary kidney macrophages (PKMs) were both reduced after ferrate(VI) oxidation. The fluorescing aromatics in OSPW were proposed to be an important contributor to this acute toxicity. Degradation of model compounds with ferrate(VI) was also investigated and the results confirmed our findings in OSPW study.

  1. Application of fluid-rock reaction studies to in situ recovery from oil sand deposits, Alberta, Canada - I. Aqueous phase results for an experimental-statistical study of water-bitumen-shale reactions

    NASA Astrophysics Data System (ADS)

    Boon, J. A.; Hitchon, Brian

    1983-02-01

    In situ recovery operations in oil sand deposits effectively represent man-imposed low to intermediate temperature metamorphism of the sediments in the deposit. In order to evaluate some of the reactions which occur, a factorial experiment was earned out in which a shale from the Lower Cretaceous McMurray Formation in the Athabasca oil sand deposit of Alberta, in the presence or absence of bitumen, was subjected to hydrothermal treatment with aqueous fluids of varying pH and salinity, at two different temperatures, for periods up to 92 hours. The aqueous fluid was analyzed and the analytical data subjected to statistical factor analysis and analysis of variance, which enabled identification of the main processes, namely, cation exchange, the production of two types of colloidal material, and the dissolution of quartz There is also saturation of the aqueous phase by. as yet unidentified, "total organic carbon" and complete conversion and removal of all nitrogen in the shale to the aqueous phase. These reactions have implications with regards to the economics of the in situ recovery process, specifically with respect to the reuse and/or disposal of the produced water and the plugging of the pore space and hence of reduction of permeability between the injection and production wells. As a result of these experiments it is suggested that monitoring of the composition of the produced water from in situ recovery operations in oil sand deposits would be advisable.

  2. Ionic Mechanisms of Carbon Formation in Flames.

    DTIC Science & Technology

    1981-05-01

    EFFECT OF MOLECULAR STRUCTURE ON INCIPIENT SOOT FORMATION, H.F. Calcote and D.M. Manos APPENDIX E: CORRELATION OF SOOT FORMATION IN TURBOJET ENGINES...future use by the Air Force of synfuels derived from coal, tar sands, and shale oil . These fuels are expected to have higher molecular weights, more...emissions and flame radiation from turbojet engines and larger scale combustors simulating practical engine conditions. b. Interpret and correlate the

  3. Understanding the stability of pyrolysis tars from biomass in a view point of free radicals.

    PubMed

    He, Wenjing; Liu, Qingya; Shi, Lei; Liu, Zhenyu; Ci, Donghui; Lievens, Caroline; Guo, Xiaofen; Liu, Muxin

    2014-03-01

    Fast pyrolysis of biomass has attracted increasing attention worldwide to produce bio-tars that can be upgraded into liquid fuels and chemicals. However, the bio-tars are usually poor in quality and stability and are difficult to be upgraded. To better understand the nature of the bio-tars, this work reveals radical concentration of tars derived from pyrolysis of two kinds of biomass. The tars were obtained by condensing the pyrolysis volatiles in 3s. It shows that the tars contain large amounts of radicals, at a level of 10(16)spins/g, and are able to generate more radicals at temperatures of 573K or higher, reaching a level of 10(19)spins/g at 673K in less than 30min. The radical generation in the tar samples is attributed to the formation of THF insoluble matters (coke), which also contain radicals. The radical concentrations of the aqueous liquids obtained in pyrolysis are also studied. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. INTERRELATIONSHIPS BETWEEN IN-SITU GAS HYDRATES AND HEAVY OIL OCCURRENCES ON THE NORTH SLOPE OF ALASKA.

    USGS Publications Warehouse

    Collett, T.S.

    1985-01-01

    In 1973, during the drilling of the West Sak #1 well on the North Slope of Alaska, oil was first recovered from a shallow Cretaceous sand interval which was later informally named the West Sak sands by ARCO Alaska. Stratigraphically above the West Sak sands there are two additional oil bearing sands, and are informally referred to by ARCO as the Ugnu and the 2150 horizons. Gas hydrates are interpreted to exist in the West Sak #6 well in conjunction with heavy oil and the physical properties of this oil may have been influenced by the gas hydrate. Prior to this work, only experimental evidence suggested that hydrates and oil could exist in the same reservoir.

  5. Catalytic Tar Reduction for Assistance in Thermal Conversion of Space Waste for Energy Production

    NASA Technical Reports Server (NTRS)

    Caraccio, Anne Joan; Devor, Robert William; Hintze, Paul E.; Muscatello, Anthony C.; Nur, Mononita

    2014-01-01

    The Trash to Gas (TtG) project investigates technologies for converting waste generated during spaceflight into various resources. One of these technologies was gasification, which employed a downdraft reactor designed and manufactured at NASA's Kennedy Space Center (KSC) for the conversion of simulated space trash to carbon dioxide. The carbon dioxide would then be converted to methane for propulsion and water for life support systems. A minor byproduct of gasification includes large hydrocarbons, also known as tars. Tars are unwanted byproducts that add contamination to the product stream, clog the reactor and cause complications in analysis instrumentation. The objective of this research was to perform reduction studies of a mock tar using select catalysts and choose the most effective for primary treatment within the KSC downdraft gasification reactor. Because the KSC reactor is operated at temperatures below typical gasification reactors, this study evaluates catalyst performance below recommended catalytic operating temperatures. The tar reduction experimentation was observed by passing a model tar vapor stream over the catalysts at similar conditions to that of the KSC reactor. Reduction in tar was determined using gas chromatography. Tar reduction efficiency and catalyst performances were evaluated at different temperatures.

  6. Coal-tar-based pavement sealants—a potent source of PAHs

    USGS Publications Warehouse

    Mahler, Barbara J.; Van Metre, Peter C.

    2017-01-01

    P avement sealants are applied to the asphalt pavement of many parking lots, driveways, and even playgrounds in North America (Figure 1), where, when first applied, they render the pavement glossy black and looking like new. Sealant products used commercially in the central, eastern, and northern United States typically are coal-tarbased, whereas those used in the western United States typically are asphalt-based. Although the products look similar, they are chemically different. Coal-tarbased pavement sealants typically are 25-35 percent (by weight) coal tar or coal-tar pitch, materials that are known human carcinogens and that contain high concentrations of polycyclic aromatic hydrocarbons (PAHs) and related chemicals (unless otherwise noted, all Figure 1. Pavement sealant is commonly used to seal parking lots, playgrounds, and driveways throughout the United States. Sealants used in the central, northern, eastern, and southern United States typically contain coal tar or coal-tar pitch, both of which are known human carcinogens. Photos by the U.S. Geological Survey. data in this article are from Mahler et al. 2012 and references therein).

  7. Consideration of Sludge Formation in HFC-134a / Polyol Ester oil Refrigeration System

    NASA Astrophysics Data System (ADS)

    Yamamoto, Tsutomu; Yamamoto, Tethuya; Simizu, Yasuhiko; Nakayama, Yoshinori; Takizawa, Kikuo

    A refrigeration test employing HFC-134a and polyol ester oil was carried out in order to make clear the causes of the sludge formation in the capillary tube. Compressors used were two types: a hermetic reciprocating compressor and a rotary compressor. Installed dryer contained desiccant of the compound zeolite type. The results showed that the amount of capillary sludge increased as the compressor temperature rose. The capillary sludge was determined to consist of desiccant and metal dust for the reciprocating compressor, and of tar-like substance for the rotary compressor. Thermal stability test which was used to check the degree of deterioration of the ester oil, suggested that the presence of desiccant and high compressor temperature might produce tar-like substance by the break down and polymerization of the ester oil. In addition, it was confirmed that factors affecting the sludge formation were the dirtiness of the refrigeration circuit for the reciprocating compressor, and the presence of desiccant, for the rotary compressor.

  8. Estimation of vanadium water quality benchmarks for the protection of aquatic life with relevance to the Athabasca Oil Sands region using species sensitivity distributions.

    PubMed

    Schiffer, Stephanie; Liber, Karsten

    2017-11-01

    Elevated vanadium (V) concentrations in oil sands coke, which is produced and stored on site of some major Athabasca Oil Sands companies, could pose a risk to aquatic ecosystems in northern Alberta, Canada, depending on its future storage and utilization. In the present study, V toxicity was determined in reconstituted Athabasca River water to various freshwater organisms, including 2 midge species (Chironomus dilutus and Chironomus riparius; 4-d and 30-d to 40-d exposures) and 2 freshwater fish species (Oncorhynchus mykiss and Pimephales promelas; 4-d and 28-d exposures) to facilitate estimation of water quality benchmarks. The acute toxicity of V was 52.0 and 63.2 mg/L for C. dilutus and C. riparius, respectively, and 4.0 and 14.8 mg V/L for P. promelas and O. mykiss, respectively. Vanadium exposure significantly impaired adult emergence of C. dilutus and C. riparius at concentrations ≥16.7 (31.6% reduction) and 8.3 (18.0% reduction) mg/L, respectively. Chronic toxicity in fish presented as lethality, with chronic 28-d LC50s of 0.5 and 4.3 mg/L for P. promelas and O. mykiss, respectively. These data were combined with data from the peer-reviewed literature, and separate acute and chronic species sensitivity distributions (SSDs) were constructed. The acute and chronic hazardous concentrations endangering only 5% of species (HC5) were estimated as 0.64 and 0.05 mg V/L, respectively. These new data for V toxicity to aquatic organisms ensure that there are now adequate data available for regulatory agencies to develop appropriate water quality guidelines for use in the Athabasca Oil Sands region and elsewhere. Until then, the HC5 values presented in the present study could serve as interim benchmarks for the protection of aquatic life from exposure to hazardous levels of V in local aquatic environments. Environ Toxicol Chem 2017;36:3034-3044. © 2017 SETAC. © 2017 SETAC.

  9. Frac sand in the United States: a geological and industry overview

    USGS Publications Warehouse

    Benson, Mary Ellen; Wilson, Anna B.; Bleiwas, Donald I.

    2015-01-01

    More than 40 United States industry operators are involved in the mining, processing, transportation, and distribution of frac sand to a robust market that is fast-growing in the United States and throughout the world. In addition to the abrupt rise in frac sand mining and distribution, a new industry has emerged from the production of alternative proppants, such as coated sand and synthetic beads. Alternative proppants, developed through new technologies, are competing with supplies of natural frac sand. In the long term, the vitality of both industries will be tied to the future of hydraulic fracturing of tight oil and gas reservoirs, which will be driven by the anticipated increases in global energy consumption.

  10. Has Alberta Oil Sands Development Altered Delivery of Polycyclic Aromatic Compounds to the Peace-Athabasca Delta?

    PubMed Central

    Hall, Roland I.; Wolfe, Brent B.; Wiklund, Johan A.; Edwards, Thomas W. D.; Farwell, Andrea J.; Dixon, D. George

    2012-01-01

    Background The extent to which Alberta oil sands mining and upgrading operations have enhanced delivery of bitumen-derived contaminants via the Athabasca River and atmosphere to the Peace-Athabasca Delta (200 km to the north) is a pivotal question that has generated national and international concern. Accounts of rare health disorders in residents of Fort Chipewyan and deformed fish in downstream ecosystems provided impetus for several recent expert-panel assessments regarding the societal and environmental consequences of this multi-billion-dollar industry. Deciphering relative contributions of natural versus industrial processes on downstream supply of polycyclic aromatic compounds (PACs) has been identified as a critical knowledge gap. But, this remains a formidable scientific challenge because loading from natural processes remains unknown. And, industrial activity occurs in the same locations as the natural bitumen deposits, which potentially confounds contemporary upstream-downstream comparisons of contaminant levels. Methods/Principal Findings Based on analyses of lake sediment cores, we provide evidence that the Athabasca Delta has been a natural repository of PACs carried by the Athabasca River for at least the past two centuries. We detect no measureable increase in the concentration and proportion of river-transported bitumen-associated indicator PACs in sediments deposited in a flood-prone lake since onset of oil sands development. Results also reveal no evidence that industrial activity has contributed measurably to sedimentary concentration of PACs supplied by atmospheric transport. Conclusions/Significance Findings suggest that natural erosion of exposed bitumen in banks of the Athabasca River and its tributaries is a major process delivering PACs to the Athabasca Delta, and the spring freshet is a key period for contaminant mobilization and transport. This baseline environmental information is essential for informed management of natural resources

  11. Metal catalysts for steam reforming of tar derived from the gasification of lignocellulosic biomass.

    PubMed

    Li, Dalin; Tamura, Masazumi; Nakagawa, Yoshinao; Tomishige, Keiichi

    2015-02-01

    Biomass gasification is one of the most important technologies for the conversion of biomass to electricity, fuels, and chemicals. The main obstacle preventing the commercial application of this technology is the presence of tar in the product gas. Catalytic reforming of tar appears a promising approach to remove tar and supported metal catalysts are among the most effective catalysts. Nevertheless, improvement of catalytic performances including activity, stability, resistance to coke deposition and aggregation of metal particles, as well as catalyst regenerability is greatly needed. This review focuses on the design and catalysis of supported metal catalysts for the removal of tar in the gasification of biomass. The recent development of metal catalysts including Rh, Ni, Co, and their alloys for steam reforming of biomass tar and tar model compounds is introduced. The role of metal species, support materials, promoters, and their interfaces is described. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Direct use of methane in coal liquefaction

    DOEpatents

    Sundaram, M.S.; Steinberg, M.

    1985-06-19

    This invention relates to a process for converting solid carbonaceous material, such as coal, to liquid and gaseous hydrocarbons utilizing methane, generally at a residence time of about 20 to 120 minutes at a temperature of 250 to 750/sup 0/C, preferably 350 to 450/sup 0/C, pressurized up to 6000 psi, and preferably in the 1000 to 2500 psi range, preferably directly utilizing methane 50 to 100% by volume in a mix of methane and hydrogen. A hydrogen donor solvent or liquid vehicle such as tetralin, tetrahydroquinoline, piperidine, and pyrolidine may be used in a slurry mix where the solvent feed is 0 to 100% by weight of the coal or carbonaceous feed. Carbonaceous feed material can either be natural, such as coal, wood, oil shale, petroleum, tar sands, etc., or man-made residual oils, tars, and heavy hydrocarbon residues from other processing systems. 1 fig.

  13. Combined Hydrocarbon Leasing Act of 1981. Hearing before the Committee on Energy and Natural Resources, United States Senate, Ninety-Seventh Congress, First Session on S. 1575, September 17, 1981

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    The need to facilitate mineral leasing procedures and oil production from tar sand resources is the basis for S. 1575, which redefines oil so that oil and gas leases will be complementary rather than mutually exclusive. Witnesses at a September 17, 1981 hearing on the bill were supportive. The text of S. 1575 is followed by the testimony of the seven witnesses and additional material submitted for the record by the Wildnerness Society, which cautions that the environmental and socio-economic impacts of this infant technology are not known. The group suggests a prototype policy similar to the one for oilmore » shale leasing. (DCK)« less

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liscom, W.L.

    This book presents a complete graphic and statistical portrait of the dramatic shifts in global energy flows during the 1970s and the resultant transfer of economic and political power from the industrial nations to the oil-producing states. The information was extracted from government-source documents and compiled in a computer data base. Computer graphics were combined with the data base to produce over 400 full-color graphs. The energy commodities covered are oil, natural gas, coal, nuclear, and conventional electric-power generation. Also included are data on hydroelectric and geothermal power, oil shale, tar sands, and other alternative energy sources. 72 references.

  15. Porous Carbon Nanofibers from Electrospun Biomass Tar/Polyacrylonitrile/Silver Hybrids as Antimicrobial Materials.

    PubMed

    Song, Kunlin; Wu, Qinglin; Zhang, Zhen; Ren, Suxia; Lei, Tingzhou; Negulescu, Ioan I; Zhang, Quanguo

    2015-07-15

    A novel route to fabricate low-cost porous carbon nanofibers (CNFs) using biomass tar, polyacrylonitrile (PAN), and silver nanoparticles has been demonstrated through electrospinning and subsequent stabilization and carbonization processes. The continuous electrospun nanofibers had average diameters ranging from 392 to 903 nm. The addition of biomass tar resulted in increased fiber diameters, reduced thermal stabilities, and slowed cyclization reactions of PAN in the as-spun nanofibers. After stabilization and carbonization, the resultant CNFs showed more uniformly sized and reduced average diameters (226-507 nm) compared to as-spun nanofibers. The CNFs exhibited high specific surface area (>400 m(2)/g) and microporosity, attributed to the combined effects of phase separations of the tar and PAN and thermal decompositions of tar components. These pore characteristics increased the exposures and contacts of silver nanoparticles to the bacteria including Gram-positive Staphylococcus aureus and Gram-negative Escherichia coli, leading to excellent antimicrobial performances of as-spun nanofibers and CNFs. A new strategy is thus provided for utilizing biomass tar as a low-cost precursor to prepare functional CNFs and reduce environmental pollutions associated with direct disposal of tar as an industrial waste.

  16. Estimating tar and nicotine exposure: human smoking versus machine generated smoke yields.

    PubMed

    St Charles, F K; Kabbani, A A; Borgerding, M F

    2010-02-01

    Determine human smoked (HS) cigarette yields of tar and nicotine for smokers using their own brand in their everyday environment. A robust, filter analysis method was used to estimate the tar and nicotine yields for 784 subjects. Seventeen brands were chosen to represent a wide range of styles: 85 and 100 mm lengths; menthol and non-menthol; 17, 23, and 25 mm circumference; with tar yields [Federal Trade Commission (FTC) method] ranging from 1 to 18 mg. Tar bands chosen corresponded to yields of 1-3 mg, 4-6 mg, 7-12 mg, and 13+ mg. A significant difference (p<0.0001) in HS yields of tar and nicotine between tar bands was found. Machine-smoked yields were reasonable predictors of the HS yields for groups of subjects, but the relationship was neither exact nor linear. Neither the FTC, the Massachusetts (MA) nor the Canadian Intensive (CI) machine-smoking methods accurately reflect the HS yields across all brands. The FTC method was closest for the 7-12 mg and 13+ mg products and the MA method was closest for the 1-3mg products. The HS yields for the 4-6 mg products were approximately midway between the FTC and the MA yields. HS nicotine yields corresponded well with published urinary and plasma nicotine biomarker studies. 2009 Elsevier Inc. All rights reserved.

  17. Application of Biosurfactants Produced by Pseudomonas putida using Crude Palm Oil (CPO) as Substrate for Crude Oil Recovery using Batch Method

    NASA Astrophysics Data System (ADS)

    Suryanti, V.; Handayani, D. S.; Masykur, A.; Septyaningsih, I.

    2018-03-01

    The application of biosurfactants which have been produced by Pseudomonas putida in nutrient broth medium supplemented with NaCl and crude palm oil (CPO) for oil recovery has been evaluated. The crude and purified biosurfactants have been examined for oil recovery from a laboratory oil-contaminated sand in agitated flask (batch method). Two synthetic surfactants and water as control was also performed for oil recovery as comparisons. Using batch method, the results showed that removing ability of crude oil from the oil-contaminated sand by purified and crude biosurfactants were 79.40±3.10 and 46.84±2.23 %, respectively. On other hand, the recoveries obtained with the SDS, Triton X-100 and water were 94.33±0.47, 74.84±7.39 and 34.42±1.21%respectively.

  18. Application of the target lipid model and passive samplers to characterize the toxicity of bioavailable organics in oil sands process-affected water.

    PubMed

    Redman, Aaron D; Parkerton, Thomas F; Butler, Josh David; Letinski, Daniel J; Frank, Richard A; Hewitt, L Mark; Bartlett, Adrienne J; Gillis, Patricia Leigh; Marentette, Julie R; Parrott, Joanne L; Hughes, Sarah A; Guest, Rodney; Bekele, Asfaw; Zhang, Kun; Morandi, Garrett; Wiseman, Steve B; Giesy, John P

    2018-06-14

    Oil sand operations in Alberta, Canada will eventually include returning treated process-affected waters to the environment. Organic constituents in oil sand process-affected water (OSPW) represent complex mixtures of nonionic and ionic (e.g. naphthenic acids) compounds, and compositions can vary spatially and temporally, which has impeded development of water quality benchmarks. To address this challenge, it was hypothesized that solid phase microextraction fibers coated with polydimethylsiloxane (PDMS) could be used as a biomimetic extraction (BE) to measure bioavailable organics in OSPW. Organic constituents of OSPW were assumed to contribute additively to toxicity, and partitioning to PDMS was assumed to be predictive of accumulation in target lipids, which were the presumed site of action. This method was tested using toxicity data for individual model compounds, defined mixtures, and organic mixtures extracted from OSPW. Toxicity was correlated with BE data, which supports the use of this method in hazard assessments of acute lethality to aquatic organisms. A species sensitivity distribution (SSD), based on target lipid model and BE values, was similar to SSDs based on residues in tissues for both nonionic and ionic organics. BE was shown to be an analytical tool that accounts for bioaccumulation of organic compound mixtures from which toxicity can be predicted, with the potential to aid in the development of water quality guidelines.

  19. 29 CFR 1926.1102 - Coal tar pitch volatiles; interpretation of term.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 29 Labor 8 2014-07-01 2014-07-01 false Coal tar pitch volatiles; interpretation of term. 1926.1102 Section 1926.1102 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH... Hazardous Substances § 1926.1102 Coal tar pitch volatiles; interpretation of term. Note: The requirements...

  20. 29 CFR 1926.1102 - Coal tar pitch volatiles; interpretation of term.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 29 Labor 8 2011-07-01 2011-07-01 false Coal tar pitch volatiles; interpretation of term. 1926.1102 Section 1926.1102 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH... Hazardous Substances § 1926.1102 Coal tar pitch volatiles; interpretation of term. Note: The requirements...

  1. 29 CFR 1926.1102 - Coal tar pitch volatiles; interpretation of term.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 29 Labor 8 2012-07-01 2012-07-01 false Coal tar pitch volatiles; interpretation of term. 1926.1102 Section 1926.1102 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH... Hazardous Substances § 1926.1102 Coal tar pitch volatiles; interpretation of term. Note: The requirements...

  2. 29 CFR 1926.1102 - Coal tar pitch volatiles; interpretation of term.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 29 Labor 8 2010-07-01 2010-07-01 false Coal tar pitch volatiles; interpretation of term. 1926.1102 Section 1926.1102 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH... Hazardous Substances § 1926.1102 Coal tar pitch volatiles; interpretation of term. Note: The requirements...

  3. Assessing the potential environmental impact of Athabasca oil sands development in lakes across Northwest Saskatchewan

    NASA Astrophysics Data System (ADS)

    Ahad, J. M.; Cumming, B. F.; Das, B.; Sanei, H.

    2011-12-01

    The continued development of Canada's Athabasca oil sands poses a significant environmental challenge. Low buffered boreal lakes located downwind of the prevailing eastward wind direction may be threatened by acidification and elevated inputs of airborne contaminants such as polycyclic aromatic hydrocarbons (PAHs). An accurate assessment of the impact that increased levels of bitumen production may have on lakes in the region requires an understanding of the historic variability within these systems prior to at least the past several decades. Here we report concentrations of PAHs, δ13C and δ15N of organic matter (OM), Rock-Eval pyrolysis analyses, and distributions of n-alkanes in dated sediment cores from ten lakes located across NW Saskatchewan. Concentrations of PAHs were relatively low (< 100 ng/g for Σ 16 EPA Priority PAHs at each lake) and in general showed no substantial increases over the past 30 years. Retene, which is often associated with the combustion of coniferous wood, was generally the most abundant PAH amongst those reported, demonstrating the importance of forest fires as a principal PAH source. Plots of Hydrogen Index (HI) versus Oxygen Index (OI) fell within a relatively narrow range typical for sediments containing a high content of algal-derived OM. Relatively lower C/N ratios and higher abundances of C17 n-alkane in more recent sediments pointed to an increasingly larger component of algal-derived OM. In all ten lakes δ13C showed gradual upcore depletions that fell within the expected range for fossil fuel combustion (i.e., Suess effect), although this alone may not explain the up to ~3% depletion observed in several of the lakes. In conjunction with the other upcore trends these data may suggest a possible increase in primary productivity over the past several decades in many of the lakes studied. δ15N signatures were more variable, showing upcore increases in some lakes and upcore depletions in others. The increasingly lighter values

  4. Tropospheric Emission Spectrometer (TES) Satellite Validations of Ammonia, Methanol, Formic Acid, and Carbon Monoxide over the Canadian Oil Sands

    EPA Pesticide Factsheets

    The URLs link to the data archive of the Troposphere Emission Spectrometer (TES) retrievals. These include the transects included in the Canadian Tar Sands study. A brief description of TES is listed below. TES is a spectrometer that measures the infrared-light energy (radiance) emitted by Earth's surface and by gases and particles in Earth's atmosphere. Every substance warmer than absolute zero emits infrared radiation at certain signature wavelengths. Spectrometers measure this radiation as a means of identifying the substances.TES has very high spectral resolution, which gives it the ability to pinpoint the wavelengths at which the substances are emitting. This enables precise identification of the substances, and also provides information about their location in the atmosphere. Emission wavelengths can vary with temperature and pressure, so seeing the emissions with great precision enables scientists to infer the temperature and pressure of the chemicals from which they came. This, in turn, implies that the chemicals being observed are at a certain altitude where those temperatures and pressures apply. The ability to determine the altitude of the observed chemicals enables TES to distinguish radiation from the upper and lower atmosphere, and focus on the lower layer - the troposphere.Since it observes light in the infrared range of the electromagnetic spectrum, similar to night-vision goggles, TES can observe both day and night. Its spectral range overlaps t

  5. Task 3.9 -- Catalytic tar cracking. Semi-annual report, January 1--June 30, 1995

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Young, B.C.; Timpe, R.C.

    1995-12-31

    Tar produced in the gasification of coal is deleterious to the operation of downstream equipment including fuel cells, gas turbines, hot-gas stream cleanup filters, and pressure swing adsorption systems. Catalytic cracking of tars to smaller hydrocarbons can be an effective means to remove these tars from gas streams and, in the process, generate useful products, e.g., methane gas, which is crucial to the operation of molten carbonate fuel cells. The objectives of this project are to investigate whether gasification tars can be cracked by synthetic nickel-substituted micamontmorillonite, zeolite, or dolomite material; and whether the tars can be cracked selectively bymore » these catalysts to produce a desired liquid and/or gas stream. Results to date are presented in the cited papers.« less

  6. Microwave-induced cracking of pyrolytic tars coupled to microwave pyrolysis for syngas production.

    PubMed

    Beneroso, D; Bermúdez, J M; Montes-Morán, M A; Arenillas, A; Menéndez, J A

    2016-10-01

    Herein a new process is proposed to produce a syngas-rich gas fraction (>80vol% H2+CO) from biowaste based on microwave heating within two differentiated steps in order to avoid tars production. The first step consists of the microwave pyrolysis of biowaste induced by a char-based susceptor at 400-800°C; tars, char and syngas-rich gas fractions being produced. The tars are then fed into the second step where a portion of the char from the first step is used as a bed material in a 0.3:1wt% ratio. This bed is heated up by microwaves up to 800°C, allowing thermal cracking of tars and additional syngas (>90vol% H2+CO) being then produced. This new concept arises as an alternative technology to the gasification of biowastes for producing syngas with no need for catalysts or gasifying reagents to minimise tars production. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Emissions databases for polycyclic aromatic compounds in the Canadian Athabasca oil sands region - development using current knowledge and evaluation with passive sampling and air dispersion modelling data

    NASA Astrophysics Data System (ADS)

    Qiu, Xin; Cheng, Irene; Yang, Fuquan; Horb, Erin; Zhang, Leiming; Harner, Tom

    2018-03-01

    Two speciated and spatially resolved emissions databases for polycyclic aromatic compounds (PACs) in the Athabasca oil sands region (AOSR) were developed. The first database was derived from volatile organic compound (VOC) emissions data provided by the Cumulative Environmental Management Association (CEMA) and the second database was derived from additional data collected within the Joint Canada-Alberta Oil Sands Monitoring (JOSM) program. CALPUFF modelling results for atmospheric polycyclic aromatic hydrocarbons (PAHs), alkylated PAHs, and dibenzothiophenes (DBTs), obtained using each of the emissions databases, are presented and compared with measurements from a passive air monitoring network. The JOSM-derived emissions resulted in better model-measurement agreement in the total PAH concentrations and for most PAH species concentrations compared to results using CEMA-derived emissions. At local sites near oil sands mines, the percent error of the model compared to observations decreased from 30 % using the CEMA-derived emissions to 17 % using the JOSM-derived emissions. The improvement at local sites was likely attributed to the inclusion of updated tailings pond emissions estimated from JOSM activities. In either the CEMA-derived or JOSM-derived emissions scenario, the model underestimated PAH concentrations by a factor of 3 at remote locations. Potential reasons for the disagreement include forest fire emissions, re-emissions of previously deposited PAHs, and long-range transport not considered in the model. Alkylated PAH and DBT concentrations were also significantly underestimated. The CALPUFF model is expected to predict higher concentrations because of the limited chemistry and deposition modelling. Thus the model underestimation of PACs is likely due to gaps in the emissions database for these compounds and uncertainties in the methodology for estimating the emissions. Future work is required that focuses on improving the PAC emissions estimation and

  8. Relation Between PAHs and Coal-Tar-Based Pavement Sealant in Urban Environments (Invited)

    NASA Astrophysics Data System (ADS)

    Mahler, B. J.; van Metre, P. C.

    2010-12-01

    Since 2003, coal-tar-based sealant products have come under increased scrutiny as a source of PAHs in urban environments. Sealant (or sealcoat) is the black, shiny substance often applied to asphalt pavement, in particular parking lots and driveways, for esthetic and maintenance purposes. Coal-tar-based sealant, one of the two primary pavement sealant types on the market, typically is 20-35 percent coal-tar pitch, a known carcinogen that is more than 50 percent polycyclic aromatic hydrocarbons (PAHs). The PAH content of the coal-tar-based sealant product is about 1,000 times that of a similar, asphalt-based product, on average. This difference is reflected in regional differences in sealant use and PAH concentrations in pavement dust. In the central and eastern U.S., where the coal-tar-based formulation is prevalent, ΣPAH in mobile particles from sealed pavement have been shown to be about 1,000 times higher than in the western U.S., where the asphalt-based formulation is prevalent (the median ΣPAH concentrations are 2,200 mg/kg in the central and eastern U.S. and 2.1 mg/kg in the western U.S.). Source apportionment modeling indicates that, in the central and eastern U.S., particles from sealed pavement are contributing the majority of the PAHs in recently deposited (post-1990) lake sediment, with implications for ecological health, and that coal-tar-based sealant is the primary cause of upward trends in PAHs in U.S. urban lakes. From the standpoint of human health, research indicates that mobile particles from parking lots with coal-tar-based sealant are tracked indoors, resulting in elevated PAH concentrations in house dust. Coal-tar-based sealcoat being applied to an asphalt parking lot at the University of Texas Pickle Research Center.

  9. 29 CFR 1915.1002 - Coal tar pitch volatiles; interpretation of term.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 29 Labor 7 2014-07-01 2014-07-01 false Coal tar pitch volatiles; interpretation of term. 1915.1002 Section 1915.1002 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH... Toxic and Hazardous Substances § 1915.1002 Coal tar pitch volatiles; interpretation of term. Note: The...

  10. 29 CFR 1915.1002 - Coal tar pitch volatiles; interpretation of term.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 29 Labor 7 2011-07-01 2011-07-01 false Coal tar pitch volatiles; interpretation of term. 1915.1002 Section 1915.1002 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH... Toxic and Hazardous Substances § 1915.1002 Coal tar pitch volatiles; interpretation of term. Note: The...

  11. 29 CFR 1915.1002 - Coal tar pitch volatiles; interpretation of term.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 29 Labor 7 2013-07-01 2013-07-01 false Coal tar pitch volatiles; interpretation of term. 1915.1002 Section 1915.1002 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH... Toxic and Hazardous Substances § 1915.1002 Coal tar pitch volatiles; interpretation of term. Note: The...

  12. 29 CFR 1915.1002 - Coal tar pitch volatiles; interpretation of term.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 29 Labor 7 2012-07-01 2012-07-01 false Coal tar pitch volatiles; interpretation of term. 1915.1002 Section 1915.1002 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH... Toxic and Hazardous Substances § 1915.1002 Coal tar pitch volatiles; interpretation of term. Note: The...

  13. 29 CFR 1915.1002 - Coal tar pitch volatiles; interpretation of term.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 29 Labor 7 2010-07-01 2010-07-01 false Coal tar pitch volatiles; interpretation of term. 1915.1002 Section 1915.1002 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH... Toxic and Hazardous Substances § 1915.1002 Coal tar pitch volatiles; interpretation of term. Note: The...

  14. Which Came First?

    NASA Image and Video Library

    2015-09-16

    The workings of the Martian winds are visible in this image of sand dunes trapped inside an unnamed crater in southern Terra Cimmeria captured by NASA Mars Reconnaissance Orbiter spacecraft. Many of the craters in the Southern highlands of Mars contain sand dunes, and HiRISE is still in the process of mapping these dunes and determining how active they are today. So far, the dunes in these craters appear to be a mixed bunch, with some dunes actively advancing while others seem to be frozen in place. This image will be compared to a previous picture, to see how these dunes have changed since 2008. The sand dunes are the large, branched ridges and dark patches that are conspicuous against the bright background, particularly in the northwest corner of our picture. There are also signs of two other wind-related processes: smaller, brighter ridges line the floor of the crater in regularly spaced rows. These are also windblown deposits, mysterious "transverse aeolian ridges" or TARs that are more common in the Martian tropics. Faint, irregular dark lines cross the dunes and the TARs, marking the tracks of dust devils that vacuum the surface during southern summer. So, which came first? We can untangle the history of these processes by looking at the picture more closely. Over most of the image, it is obvious that the dark sand dunes bury the bright TARs, meaning that the sand dunes are younger than the TARs. But this relationship is not so clear for the southernmost dune we see in this picture. Here, the TARs look like they extend into the dune and merge with ripples on the dune's surface, suggesting that the TARs might be younger than the dunes. The question can be resolved by carefully examining an enhanced color cutout. The TARs are brighter and redder than the sand dunes and this color persists on the crests of the TARs as the sand encroaches, burying the valleys first and then the slopes and finally the TAR crests. This tells us that the unusual appearance of the

  15. Life cycle greenhouse gas emissions, consumptive water use and levelized costs of unconventional oil in North America

    NASA Astrophysics Data System (ADS)

    Mangmeechai, Aweewan

    Conventional petroleum production in many countries that supply U.S. crude oil as well as domestic production has declined in recent years. Along with instability in the world oil market, this has stimulated the discussion of developing unconventional oil production, e.g., oil sands and oil shale. Expanding the U.S. energy mix to include oil sands and oil shale may be an important component in diversifying and securing the U.S. energy supply. At the same time, life cycle GHG emissions of these energy sources and consumptive water use are a concern. In this study, consumptive water use includes not only fresh water use but entire consumptive use including brackish water and seawater. The goal of this study is to determine the life cycle greenhouse gas (GHG) emissions and consumptive water use of synthetic crude oil (SCO) derived from Canadian oil sands and U.S. oil shale to be compared with U.S. domestic crude oil, U.S. imported crude oil, and coal-to-liquid (CTL). Levelized costs of SCO derived from Canadian oil sands and U.S. oil shale were also estimated. The results of this study suggest that CTL with no carbon capture and sequestration (CCS) and current electricity grid mix is the worst while crude oil imported from United Kingdom is the best in GHG emissions. The life cycle GHG emissions of oil shale surface mining, oil shale in-situ process, oil sands surface mining, and oil sands in-situ process are 43% to 62%, 13% to 32%, 5% to 22%, and 11% to 13% higher than those of U.S. domestic crude oil. Oil shale in-situ process has the largest consumptive water use among alternative fuels, evaluated due to consumptive water use in electricity generation. Life cycle consumptive water use of oil sands in-situ process is the lowest. Specifically, fresh water consumption in the production processes is the most concern given its scarcity. However, disaggregated data on fresh water consumption in the total water consumption of each fuel production process is not available

  16. Source potential of the Zairian onshore pre-salt subbasins of the West African Aptian salt basin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Swirydczuk, K.; Tshiband, D.; Nyimi, M.

    1996-08-01

    Three pre-salt subbasins are located onshore in Zaire in the Congo-Cabinda Basin. Production exists to the west, and extensive outcrops of Mavuma tar sands are located immediately to the east of these subbasins. Five pre-salt wells confirmed that thick Barremian lacustrine claystones of the Bucomazi Formation form the main source horizon in all the subbasins. Upper Bucomazi claystones average 4% and reach 12% TOC. Lower Bucomazi claystones average 2% (high of 6%). A mixed Type I/Type II algal oil-prone kerogen predominates. Up to 1% TOC is present in claystones in the underlying Lucula section. Dry pyrolysis shows significant differences inmore » kerogen kinetics from subbasin to subbasin. R{sub o} and T{sub max} were used to model heat flow through time. Ages were from biostratigraphic analyses and radiometric dating of thin volcanics within the Lucula and Bucomazi formations. Apatite fission track analyses provided control on uplift history. Pseudowells were used in maturation modelling to predict source rock maturity in the subbasins. The upper Bucomazi is immature except in the deeper parts of two of the subbasins. The Lower - Bucomazi and Upper Lucula are mature in all subbasins and in the deepest subbasins are overmature. Oil generation occurred shortly after deposition of the Loeme Salt. Analyses of Lindu oil support this early migration. Estimates of oil that may have been generated in the eastern-most subbasin suggest that extensive Mavuma tar sands, which have been typed to lacustrine source, could have been sourced from this subbasin.« less

  17. Multicomponent seismic reservoir characterization of a steam-assisted gravity drainage (SAGD) heavy oil project, Athabasca oil sands, Alberta

    NASA Astrophysics Data System (ADS)

    Schiltz, Kelsey Kristine

    Steam-assisted gravity drainage (SAGD) is an in situ heavy oil recovery method involving the injection of steam in horizontal wells. Time-lapse seismic analysis over a SAGD project in the Athabasca oil sands deposit of Alberta reveals that the SAGD steam chamber has not developed uniformly. Core data confirm the presence of low permeability shale bodies within the reservoir. These shales can act as barriers and baffles to steam and limit production by prohibiting steam from accessing the full extent of the reservoir. Seismic data can be used to identify these shale breaks prior to siting new SAGD well pairs in order to optimize field development. To identify shale breaks in the study area, three types of seismic inversion and a probabilistic neural network prediction were performed. The predictive value of each result was evaluated by comparing the position of interpreted shales with the boundaries of the steam chamber determined through time-lapse analysis. The P-impedance result from post-stack inversion did not contain enough detail to be able to predict the vertical boundaries of the steam chamber but did show some predictive value in a spatial sense. P-impedance from pre-stack inversion exhibited some meaningful correlations with the steam chamber but was misleading in many crucial areas, particularly the lower reservoir. Density estimated through the application of a probabilistic neural network (PNN) trained using both PP and PS attributes identified shales most accurately. The interpreted shales from this result exhibit a strong relationship with the boundaries of the steam chamber, leading to the conclusion that the PNN method can be used to make predictions about steam chamber growth. In this study, reservoir characterization incorporating multicomponent seismic data demonstrated a high predictive value and could be useful in evaluating future well placement.

  18. Fate and behavior of oil sands naphthenic acids in a pilot-scale treatment wetland as characterized by negative-ion electrospray ionization Orbitrap mass spectrometry.

    PubMed

    Ajaero, Chukwuemeka; Peru, Kerry M; Simair, Monique; Friesen, Vanessa; O'Sullivan, Gwen; Hughes, Sarah A; McMartin, Dena W; Headley, John V

    2018-08-01

    Large volumes of oil sands process-affected water (OSPW) are generated during the extraction of bitumen from oil sands in the Athabasca region of northeastern Alberta, Canada. As part of the development of treatment technologies, molecular characterization of naphthenic acids (NAs) and naphthenic acid fraction compounds (NAFC) in wetlands is a topic of research to better understand their fate and behavior in aquatic environments. Reported here is the application of high-resolution negative-ion electrospray Orbitrap-mass spectrometry for molecular characterization of NAs and NAFCs in a non-aerated constructed treatment wetland. The effectiveness of the wetlands to remove OSPW-NAs and NAFCs was evaluated by monitoring the changes in distributions of NAFC compounds in the untreated sample and non-aerated treatment system. After correction for measured evapotranspiration, the removal rate of the classical NAs followed approximately first-order kinetics, with higher rates observed for structures with relatively higher number of carbon atoms. These findings indicate that constructed wetland treatment is a viable method for removal of classical NAs in OSPW. Work is underway to evaluate the effects of wetland design on water quality improvement, preferential removal of different NAFC species, and reduction in toxicity. Copyright © 2018. Published by Elsevier B.V.

  19. A CFD model for biomass fast pyrolysis in fluidized-bed reactors

    NASA Astrophysics Data System (ADS)

    Xue, Qingluan; Heindel, T. J.; Fox, R. O.

    2010-11-01

    A numerical study is conducted to evaluate the performance and optimal operating conditions of fluidized-bed reactors for fast pyrolysis of biomass to bio-oil. A comprehensive CFD model, coupling a pyrolysis kinetic model with a detailed hydrodynamics model, is developed. A lumped kinetic model is applied to describe the pyrolysis of biomass particles. Variable particle porosity is used to account for the evolution of particle physical properties. The kinetic scheme includes primary decomposition and secondary cracking of tar. Biomass is composed of reference components: cellulose, hemicellulose, and lignin. Products are categorized into groups: gaseous, tar vapor, and solid char. The particle kinetic processes and their interaction with the reactive gas phase are modeled with a multi-fluid model derived from the kinetic theory of granular flow. The gas, sand and biomass constitute three continuum phases coupled by the interphase source terms. The model is applied to investigate the effect of operating conditions on the tar yield in a fluidized-bed reactor. The influence of various parameters on tar yield, including operating temperature and others are investigated. Predicted optimal conditions for tar yield and scale-up of the reactor are discussed.

  20. Effect of unground oil palm ash as mixing ingredient towards properties of concrete

    NASA Astrophysics Data System (ADS)

    Sulaiman, M. A.; Muthusamy, K.; Mat Aris, S.; Rasid, M. H. Mohd; Paramasivam, R.; Othman, R.

    2018-04-01

    Malaysia being one of the world largest palm oil producers generates palm oil fuel ash (POFA), a by-product in increasing quantity. This material which usually disposed as solid waste causes pollution to the environment. Success in converting this waste material into benefitting product would reduce amount of waste disposed and contributes towards cleaner environment. This research explores the potential of unground oil palm ash being used as partial sand replacement in normal concrete production. Experimental work has been conducted to determine the workability, compressive strength and flexural strength of concrete when unground oil palm ash is added as partial sand replacement. A total of five mixes containing various percentage of oil palm ash, which are 0%, 5%, 10%, 15% and 20% have been prepared. All specimens were water cured until the testing date. The slump test, compressive strength test and flexural strength test was conducted. The findings show that mix produced using 10% of palm oil fuel ash exhibit higher compressive strength and flexural strength as compared to control specimen. Utilization of unground oil palm ash as partial sand replacement would be able to reduce dependency of construction industry on natural sand supply and also as one of the solution to reuse palm oil industry waste.