ERIC Educational Resources Information Center
Mishra, Mukti
2014-01-01
At present, India's education system turns out millions of young people who are ready to think, but not enough people with entrepreneurial or employment skills. As India faces increasing limits on its resources, both economic and natural, the competency and capability of human resources play a pivotal role in developing and sustaining the economy.…
2018-06-11
AIDS-Related Hodgkin Lymphoma; Ann Arbor Stage II Hodgkin Lymphoma; Ann Arbor Stage IIA Hodgkin Lymphoma; Ann Arbor Stage IIB Hodgkin Lymphoma; Ann Arbor Stage III Hodgkin Lymphoma; Ann Arbor Stage IIIA Hodgkin Lymphoma; Ann Arbor Stage IIIB Hodgkin Lymphoma; Ann Arbor Stage IV Hodgkin Lymphoma; Ann Arbor Stage IVA Hodgkin Lymphoma; Ann Arbor Stage IVB Hodgkin Lymphoma; Classic Hodgkin Lymphoma; HIV Infection
2018-01-24
Acute Lymphoblastic Leukemia; Adult T Acute Lymphoblastic Leukemia; Ann Arbor Stage II Adult T-Cell Leukemia/Lymphoma; Ann Arbor Stage II Childhood Lymphoblastic Lymphoma; Ann Arbor Stage II Contiguous Adult Lymphoblastic Lymphoma; Ann Arbor Stage II Non-Contiguous Adult Lymphoblastic Lymphoma; Ann Arbor Stage III Adult Lymphoblastic Lymphoma; Ann Arbor Stage III Adult T-Cell Leukemia/Lymphoma; Ann Arbor Stage III Childhood Lymphoblastic Lymphoma; Ann Arbor Stage IV Adult Lymphoblastic Lymphoma; Ann Arbor Stage IV Adult T-Cell Leukemia/Lymphoma; Ann Arbor Stage IV Childhood Lymphoblastic Lymphoma; Childhood T Acute Lymphoblastic Leukemia; Untreated Adult Acute Lymphoblastic Leukemia; Untreated Childhood Acute Lymphoblastic Leukemia
Stephan, Carsten; Xu, Chuanliang; Finne, Patrik; Cammann, Henning; Meyer, Hellmuth-Alexander; Lein, Michael; Jung, Klaus; Stenman, Ulf-Hakan
2007-09-01
Different artificial neural networks (ANNs) using total prostate-specific antigen (PSA) and percentage of free PSA (%fPSA) have been introduced to enhance the specificity of prostate cancer detection. The applicability of independently trained ANN and logistic regression (LR) models to different populations regarding the composition (screening versus referred) and different PSA assays has not yet been tested. Two ANN and LR models using PSA (range 4 to 10 ng/mL), %fPSA, prostate volume, digital rectal examination findings, and patient age were tested. A multilayer perceptron network (MLP) was trained on 656 screening participants (Prostatus PSA assay) and another ANN (Immulite-based ANN [iANN]) was constructed on 606 multicentric urologically referred men. These and other assay-adapted ANN models, including one new iANN-based ANN, were used. The areas under the curve for the iANN (0.736) and MLP (0.745) were equal but showed no differences to %fPSA (0.725) in the Finnish group. Only the new iANN-based ANN reached a significant larger area under the curve (0.77). At 95% sensitivity, the specificities of MLP (33%) and the new iANN-based ANN (34%) were significantly better than the iANN (23%) and %fPSA (19%). Reverse methodology using the MLP model on the referred patients revealed, in contrast, a significant improvement in the areas under the curve for iANN and MLP (each 0.83) compared with %fPSA (0.70). At 90% and 95% sensitivity, the specificities of all LR and ANN models were significantly greater than those for %fPSA. The ANNs based on different PSA assays and populations were mostly comparable, but the clearly different patient composition also allowed with assay adaptation no unbiased ANN application to the other cohort. Thus, the use of ANNs in other populations than originally built is possible, but has limitations.
2018-04-30
Ann Arbor Stage I Hodgkin Lymphoma; Ann Arbor Stage IA Hodgkin Lymphoma; Ann Arbor Stage IB Hodgkin Lymphoma; Ann Arbor Stage II Hodgkin Lymphoma; Ann Arbor Stage IIA Hodgkin Lymphoma; Ann Arbor Stage IIB Hodgkin Lymphoma
2018-04-17
Ann Arbor Stage III Grade 1 Follicular Lymphoma; Ann Arbor Stage III Grade 2 Follicular Lymphoma; Ann Arbor Stage III Grade 3 Follicular Lymphoma; Ann Arbor Stage IV Grade 1 Follicular Lymphoma; Ann Arbor Stage IV Grade 2 Follicular Lymphoma; Ann Arbor Stage IV Grade 3 Follicular Lymphoma; Grade 3a Follicular Lymphoma
Ann Franden Photo of Mary Ann Franden Mary Franden Researcher IV-Molecular Biology Mary.Ann.Franden @nrel.gov | 303-384-7767 Research Interests Mary Ann Franden is a senior scientist in the Applied Biology University Professional Experience Senior Scientist, NREL, NBC, Applied Biology Group Professional Research
2018-06-25
Ann Arbor Stage IIB Hodgkin Lymphoma; Ann Arbor Stage IIIB Hodgkin Lymphoma; Ann Arbor Stage IV Hodgkin Lymphoma; Ann Arbor Stage IVA Hodgkin Lymphoma; Ann Arbor Stage IVB Hodgkin Lymphoma; Childhood Hodgkin Lymphoma; Classic Hodgkin Lymphoma
NASA Astrophysics Data System (ADS)
Fijani, E.; Chitsazan, N.; Nadiri, A.; Tsai, F. T.; Asghari Moghaddam, A.
2012-12-01
Artificial Neural Networks (ANNs) have been widely used to estimate concentration of chemicals in groundwater systems. However, estimation uncertainty is rarely discussed in the literature. Uncertainty in ANN output stems from three sources: ANN inputs, ANN parameters (weights and biases), and ANN structures. Uncertainty in ANN inputs may come from input data selection and/or input data error. ANN parameters are naturally uncertain because they are maximum-likelihood estimated. ANN structure is also uncertain because there is no unique ANN model given a specific case. Therefore, multiple plausible AI models are generally resulted for a study. One might ask why good models have to be ignored in favor of the best model in traditional estimation. What is the ANN estimation variance? How do the variances from different ANN models accumulate to the total estimation variance? To answer these questions we propose a Hierarchical Bayesian Model Averaging (HBMA) framework. Instead of choosing one ANN model (the best ANN model) for estimation, HBMA averages outputs of all plausible ANN models. The model weights are based on the evidence of data. Therefore, the HBMA avoids overconfidence on the single best ANN model. In addition, HBMA is able to analyze uncertainty propagation through aggregation of ANN models in a hierarchy framework. This method is applied for estimation of fluoride concentration in the Poldasht plain and the Bazargan plain in Iran. Unusually high fluoride concentration in the Poldasht and Bazargan plains has caused negative effects on the public health. Management of this anomaly requires estimation of fluoride concentration distribution in the area. The results show that the HBMA provides a knowledge-decision-based framework that facilitates analyzing and quantifying ANN estimation uncertainties from different sources. In addition HBMA allows comparative evaluation of the realizations for each source of uncertainty by segregating the uncertainty sources in a hierarchical framework. Fluoride concentration estimation using the HBMA method shows better agreement to the observation data in the test step because they are not based on a single model with a non-dominate weights.
2018-06-27
Adult T Acute Lymphoblastic Leukemia; Ann Arbor Stage II Adult Lymphoblastic Lymphoma; Ann Arbor Stage II Childhood Lymphoblastic Lymphoma; Ann Arbor Stage III Adult Lymphoblastic Lymphoma; Ann Arbor Stage III Childhood Lymphoblastic Lymphoma; Ann Arbor Stage IV Adult Lymphoblastic Lymphoma; Ann Arbor Stage IV Childhood Lymphoblastic Lymphoma; Childhood T Acute Lymphoblastic Leukemia; Untreated Adult Acute Lymphoblastic Leukemia; Untreated Childhood Acute Lymphoblastic Leukemia
Effects of single and dual physical modifications on pinhão starch.
Pinto, Vânia Zanella; Vanier, Nathan Levien; Deon, Vinicius Gonçalves; Moomand, Khalid; El Halal, Shanise Lisie Mello; Zavareze, Elessandra da Rosa; Lim, Loong-Tak; Dias, Alvaro Renato Guerra
2015-11-15
Pinhão starch was modified by annealing (ANN), heat-moisture (HMT) or sonication (SNT) treatments. The starch was also modified by a combination of these treatments (ANN-HMT, ANN-SNT, HMT-ANN, HMT-SNT, SNT-ANN, SNT-HMT). Whole starch and debranched starch fractions were analyzed by gel-permeation chromatography. Moreover, crystallinity, morphology, swelling power, solubility, pasting and gelatinization characteristics were evaluated. Native and single ANN and SNT-treated starches exhibited a CA-type crystalline structure while other modified starches showed an A-type structure. The relative crystallinity increased in ANN-treated starches and decreased in single HMT- and SNT-treated starches. The ANN, HMT and SNT did not provide visible cracks, notches or grooves to pinhão starch granule. SNT applied as second treatment was able to increase the peak viscosity of single ANN- and HMT-treated starches. HMT used alone or in dual modifications promoted the strongest effect on gelatinization temperatures and enthalpy. Copyright © 2015 Elsevier Ltd. All rights reserved.
Chan, C H; Chan, E Y; Ng, D K; Chow, P Y; Kwok, K L
2006-11-01
Paediatric risk of mortality and paediatric index of mortality (PIM) are the commonly-used mortality prediction models (MPM) in children admitted to paediatric intensive care unit (PICU). The current study was undertaken to develop a better MPM using artificial neural network, a domain of artificial intelligence. The purpose of this retrospective case series was to compare an artificial neural network (ANN) model and PIM with the observed mortality in a cohort of patients admitted to a five-bed PICU in a Hong Kong non-teaching general hospital. The patients were under the age of 17 years and admitted to our PICU from April 2001 to December 2004. Data were collected from each patient admitted to our PICU. All data were randomly allocated to either the training or validation set. The data from the training set were used to construct a series of ANN models. The data from the validation set were used to validate the ANN and PIM models. The accuracy of ANN models and PIM was assessed by area under the receiver operator characteristics (ROC) curve and calibration. All data were randomly allocated to either the training (n=274) or validation set (n=273). Three ANN models were developed using the data from the training set, namely ANN8 (trained with variables required for PIM), ANN9 (trained with variables required for PIM and pre-ICU intubation) and ANN23 (trained with variables required for ANN9 and 14 principal ICU diagnoses). Three ANN models and PIM were used to predict mortality in the validation set. We found that PIM and ANN9 had a high ROC curve (PIM: 0.808, 95 percent confidence interval 0.552 to 1.000, ANN9: 0.957, 95 percent confidence interval 0.915 to 1.000), whereas ANN8 and ANN23 gave a suboptimal area under the ROC curve. ANN8 required only five variables for the calculation of risk, compared with eight for PIM. The current study demonstrated the process of predictive mortality risk model development using ANN. Further multicentre studies are required to produce a representative ANN-based mortality prediction model for use in different PICUs.
Enzalutamide in Treating Patients With Relapsed or Refractory Mantle Cell Lymphoma
2018-03-27
Ann Arbor Stage I Mantle Cell Lymphoma; Ann Arbor Stage II Mantle Cell Lymphoma; Ann Arbor Stage III Mantle Cell Lymphoma; Ann Arbor Stage IV Mantle Cell Lymphoma; Recurrent Mantle Cell Lymphoma; Refractory Mantle Cell Lymphoma
Applications of artificial neural networks in medical science.
Patel, Jigneshkumar L; Goyal, Ramesh K
2007-09-01
Computer technology has been advanced tremendously and the interest has been increased for the potential use of 'Artificial Intelligence (AI)' in medicine and biological research. One of the most interesting and extensively studied branches of AI is the 'Artificial Neural Networks (ANNs)'. Basically, ANNs are the mathematical algorithms, generated by computers. ANNs learn from standard data and capture the knowledge contained in the data. Trained ANNs approach the functionality of small biological neural cluster in a very fundamental manner. They are the digitized model of biological brain and can detect complex nonlinear relationships between dependent as well as independent variables in a data where human brain may fail to detect. Nowadays, ANNs are widely used for medical applications in various disciplines of medicine especially in cardiology. ANNs have been extensively applied in diagnosis, electronic signal analysis, medical image analysis and radiology. ANNs have been used by many authors for modeling in medicine and clinical research. Applications of ANNs are increasing in pharmacoepidemiology and medical data mining. In this paper, authors have summarized various applications of ANNs in medical science.
NASA Astrophysics Data System (ADS)
Hayatbini, N.; Faridzad, M.; Yang, T.; Akbari Asanjan, A.; Gao, X.; Sorooshian, S.
2016-12-01
The Artificial Neural Networks (ANNs) are useful in many fields, including water resources engineering and management. However, due to the non-linear and chaotic characteristics associated with natural processes and human decision making, the use of ANNs in real-world applications is still limited, and its performance needs to be further improved for a broader practical use. The commonly used Back-Propagation (BP) scheme and gradient-based optimization in training the ANNs have already found to be problematic in some cases. The BP scheme and gradient-based optimization methods are associated with the risk of premature convergence, stuck in local optimums, and the searching is highly dependent on initial conditions. Therefore, as an alternative to BP and gradient-based searching scheme, we propose an effective and efficient global searching method, termed the Shuffled Complex Evolutionary Global optimization algorithm with Principal Component Analysis (SP-UCI), to train the ANN connectivity weights. Large number of real-world datasets are tested with the SP-UCI-based ANN, as well as various popular Evolutionary Algorithms (EAs)-enhanced ANNs, i.e., Particle Swarm Optimization (PSO)-, Genetic Algorithm (GA)-, Simulated Annealing (SA)-, and Differential Evolution (DE)-enhanced ANNs. Results show that SP-UCI-enhanced ANN is generally superior over other EA-enhanced ANNs with regard to the convergence and computational performance. In addition, we carried out a case study for hydropower scheduling in the Trinity Lake in the western U.S. In this case study, multiple climate indices are used as predictors for the SP-UCI-enhanced ANN. The reservoir inflows and hydropower releases are predicted up to sub-seasonal to seasonal scale. Results show that SP-UCI-enhanced ANN is able to achieve better statistics than other EAs-based ANN, which implies the usefulness and powerfulness of proposed SP-UCI-enhanced ANN for reservoir operation, water resources engineering and management. The SP-UCI-enhanced ANN is universally applicable to many other regression and prediction problems, and it has a good potential to be an alternative to the classical BP scheme and gradient-based optimization methods.
NASA Astrophysics Data System (ADS)
Zupan, Jure
1995-04-01
All problems that in some way are linked to handling of multi-variate experiments versus multi-variate responses can be approached by the group of methods that has recently became known as the artificial neural network (ANN) techniques. In this lecture, the types of the problems that can be solved by ANN techniques rather than the ANN techniques themselves will be addressed first. This issue is rather important due to the fact that the ANN techniques can be used for a very broad range of problems and choosing the wrong method can often result in either a failure to produce an effective solution or in a very time consuming and ineffective handling. Among the types of problems that can be solved by different ANN techniques the classification, mapping, look-up table, and modelling will be emphasized and discussed. Because all mentioned methods can be solved by different standard techniques, special emphasis will be paid to stress the advantages and drawbacks when employing different ANN techniques. Due to the fact that the range of possible use of ANN is so broad, even a very specific problem can be solved by many different ANN architectures or even using different learning strategies within ANN. In the second part the main learning strategies and corresponding choices of ANN architectures will be discussed. In this part the parameters and some guidelines how to select the method and the design of the ANNs will be shown on the examples of reported ANN applications in chemistry. The ANN learning strategies discussed will be back-propagation of errors, the Kohonen, and the counter propagation learning. The potential user of ANN should first, consider the problem, second, he must inspect the availability of data and the data themselves to decide for which ANN method they are best suited. In this respect, the amount of data, the dimensionality of the measurement space, the form of data (alphanumeric entries, binary, real, or even mixed forms of data) are crucial. After considering all this factors, the determination of the appropriate neural network architecture can be made. Additionally, the selection the optimal ANN involves the determination of specific internal parameters like the learning rate, the momentum term, the neighbourhood function, the time dependent decrease of corrections, etc. Even after all these decisions have been made the learning procedure itself is not a straightforward task. Here, the division of the entire ensemble of data into three data sets: training, controlling and the test set are crucial. This problem is addressed as well.
[Application of an artificial neural network in the design of sustained-release dosage forms].
Wei, X H; Wu, J J; Liang, W Q
2001-09-01
To use the artificial neural network (ANN) in Matlab 5.1 tool-boxes to predict the formulations of sustained-release tablets. The solubilities of nine drugs and various ratios of HPMC: Dextrin for 63 tablet formulations were used as the ANN model input, and in vitro accumulation released at 6 sampling times were used as output. The ANN model was constructed by selecting the optimal number of iterations (25) and model structure in which there are one hidden layer and five hidden layer nodes. The optimized ANN model was used for prediction of formulation based on desired target in vitro dissolution-time profiles. ANN predicted profiles based on ANN predicted formulations were closely similar to the target profiles. The ANN could be used for predicting the dissolution profiles of sustained release dosage form and for the design of optimal formulation.
Prediction of Soil Deformation in Tunnelling Using Artificial Neural Networks.
Lai, Jinxing; Qiu, Junling; Feng, Zhihua; Chen, Jianxun; Fan, Haobo
2016-01-01
In the past few decades, as a new tool for analysis of the tough geotechnical problems, artificial neural networks (ANNs) have been successfully applied to address a number of engineering problems, including deformation due to tunnelling in various types of rock mass. Unlike the classical regression methods in which a certain form for the approximation function must be presumed, ANNs do not require the complex constitutive models. Additionally, it is traced that the ANN prediction system is one of the most effective ways to predict the rock mass deformation. Furthermore, it could be envisaged that ANNs would be more feasible for the dynamic prediction of displacements in tunnelling in the future, especially if ANN models are combined with other research methods. In this paper, we summarized the state-of-the-art and future research challenges of ANNs on the tunnel deformation prediction. And the application cases as well as the improvement of ANN models were also presented. The presented ANN models can serve as a benchmark for effective prediction of the tunnel deformation with characters of nonlinearity, high parallelism, fault tolerance, learning, and generalization capability.
Prediction of Soil Deformation in Tunnelling Using Artificial Neural Networks
Lai, Jinxing
2016-01-01
In the past few decades, as a new tool for analysis of the tough geotechnical problems, artificial neural networks (ANNs) have been successfully applied to address a number of engineering problems, including deformation due to tunnelling in various types of rock mass. Unlike the classical regression methods in which a certain form for the approximation function must be presumed, ANNs do not require the complex constitutive models. Additionally, it is traced that the ANN prediction system is one of the most effective ways to predict the rock mass deformation. Furthermore, it could be envisaged that ANNs would be more feasible for the dynamic prediction of displacements in tunnelling in the future, especially if ANN models are combined with other research methods. In this paper, we summarized the state-of-the-art and future research challenges of ANNs on the tunnel deformation prediction. And the application cases as well as the improvement of ANN models were also presented. The presented ANN models can serve as a benchmark for effective prediction of the tunnel deformation with characters of nonlinearity, high parallelism, fault tolerance, learning, and generalization capability. PMID:26819587
Tigges, P; Kathmann, N; Engel, R R
1997-07-01
Though artificial neural networks (ANN) are excellent tools for pattern recognition problems when signal to noise ratio is low, the identification of decision relevant features for ANN input data is still a crucial issue. The experience of the ANN designer and the existing knowledge and understanding of the problem seem to be the only links for a specific construction. In the present study a backpropagation ANN based on modified raw data inputs showed encouraging results. Investigating the specific influences of prototypical input patterns on a specially designed ANN led to a new sparse and efficient input data presentation. This data coding obtained by a semiautomatic procedure combining existing expert knowledge and the internal representation structures of the raw data based ANN yielded a list of feature vectors, each representing the relevant information for saccade identification. The feature based ANN produced a reduction of the error rate of nearly 40% compared with the raw data ANN. An overall correct classification of 92% of so far unknown data was realized. The proposed method of extracting internal ANN knowledge for the production of a better input data representation is not restricted to EOG recordings, and could be used in various fields of signal analysis.
Artificial neural networks: fundamentals, computing, design, and application.
Basheer, I A; Hajmeer, M
2000-12-01
Artificial neural networks (ANNs) are relatively new computational tools that have found extensive utilization in solving many complex real-world problems. The attractiveness of ANNs comes from their remarkable information processing characteristics pertinent mainly to nonlinearity, high parallelism, fault and noise tolerance, and learning and generalization capabilities. This paper aims to familiarize the reader with ANN-based computing (neurocomputing) and to serve as a useful companion practical guide and toolkit for the ANNs modeler along the course of ANN project development. The history of the evolution of neurocomputing and its relation to the field of neurobiology is briefly discussed. ANNs are compared to both expert systems and statistical regression and their advantages and limitations are outlined. A bird's eye review of the various types of ANNs and the related learning rules is presented, with special emphasis on backpropagation (BP) ANNs theory and design. A generalized methodology for developing successful ANNs projects from conceptualization, to design, to implementation, is described. The most common problems that BPANNs developers face during training are summarized in conjunction with possible causes and remedies. Finally, as a practical application, BPANNs were used to model the microbial growth curves of S. flexneri. The developed model was reasonably accurate in simulating both training and test time-dependent growth curves as affected by temperature and pH.
Kim, Seongjung; Kim, Jongman; Ahn, Soonjae; Kim, Youngho
2018-04-18
Deaf people use sign or finger languages for communication, but these methods of communication are very specialized. For this reason, the deaf can suffer from social inequalities and financial losses due to their communication restrictions. In this study, we developed a finger language recognition algorithm based on an ensemble artificial neural network (E-ANN) using an armband system with 8-channel electromyography (EMG) sensors. The developed algorithm was composed of signal acquisition, filtering, segmentation, feature extraction and an E-ANN based classifier that was evaluated with the Korean finger language (14 consonants, 17 vowels and 7 numbers) in 17 subjects. E-ANN was categorized according to the number of classifiers (1 to 10) and size of training data (50 to 1500). The accuracy of the E-ANN-based classifier was obtained by 5-fold cross validation and compared with an artificial neural network (ANN)-based classifier. As the number of classifiers (1 to 8) and size of training data (50 to 300) increased, the average accuracy of the E-ANN-based classifier increased and the standard deviation decreased. The optimal E-ANN was composed with eight classifiers and 300 size of training data, and the accuracy of the E-ANN was significantly higher than that of the general ANN.
Artificial intelligence against breast cancer (A.N.N.E.S-B.C.-Project).
Parmeggiani, Domenico; Avenia, Nicola; Sanguinetti, Alessandro; Ruggiero, Roberto; Docimo, Giovanni; Siciliano, Mattia; Ambrosino, Pasquale; Madonna, Imma; Peltrini, Roberto; Parmeggiani, Umberto
2012-01-01
Our preliminary study examined the development of an advanced innovative technology with the objectives of--developing methodologies and algorithms for a Artificial Neural Network (ANN) system, improving mammography and ultra-sonography images interpretation;--creating autonomous software as a diagnostic tool for the physicians, allowing the possibility for the advanced application of databases using Artificial Intelligence (Expert System). Since 2004 550 F patients over 40 yrs old were divided in two groups: 1) 310 pts underwent echo every 6 months and mammography every year by expert radiologists. 2) 240 pts had the same screening program and were also examined by our diagnosis software, developed with ANN-ES technology by the Engineering Aircraft Research Project team. The information was continually updated and returned to the Expert System, defining the principal rules of automatic diagnosis. In the second group we selected: Expert radiologist decision; ANN-ES decision; Expert radiologists with ANN-ES decision. The second group had significantly better diagnosis for cancer and better specificity for breast lesions risk as well as the highest percentage account when the radiologist's decision was helped by the ANN software. The ANN-ES group was able to select, by anamnestic, diagnostic and genetic means, 8 patients for prophylactic surgery, finding 4 cancers in a very early stage. Although it is only a preliminary study, this innovative diagnostic tool seems to provide better positive and negative predictive value in cancer diagnosis as well as in breast risk lesion identification.
Huang, Ri-Bo; Du, Qi-Shi; Wei, Yu-Tuo; Pang, Zong-Wen; Wei, Hang; Chou, Kuo-Chen
2009-02-07
Predicting the bioactivity of peptides and proteins is an important challenge in drug development and protein engineering. In this study we introduce a novel approach, the so-called "physics and chemistry-driven artificial neural network (Phys-Chem ANN)", to deal with such a problem. Unlike the existing ANN approaches, which were designed under the inspiration of biological neural system, the Phys-Chem ANN approach is based on the physical and chemical principles, as well as the structural features of proteins. In the Phys-Chem ANN model the "hidden layers" are no longer virtual "neurons", but real structural units of proteins and peptides. It is a hybridization approach, which combines the linear free energy concept of quantitative structure-activity relationship (QSAR) with the advanced mathematical technique of ANN. The Phys-Chem ANN approach has adopted an iterative and feedback procedure, incorporating both machine-learning and artificial intelligence capabilities. In addition to making more accurate predictions for the bioactivities of proteins and peptides than is possible with the traditional QSAR approach, the Phys-Chem ANN approach can also provide more insights about the relationship between bioactivities and the structures involved than the ANN approach does. As an example of the application of the Phys-Chem ANN approach, a predictive model for the conformational stability of human lysozyme is presented.
75 FR 418 - Certificate of Alternative Compliance for the Offshore Supply Vessel KELLY ANN CANDIES
Federal Register 2010, 2011, 2012, 2013, 2014
2010-01-05
... Compliance for the Offshore Supply Vessel KELLY ANN CANDIES AGENCY: Coast Guard, DHS. ACTION: Notice. SUMMARY... supply vessel KELLY ANN CANDIES as required by 33 U.S.C. 1605(c) and 33 CFR 81.18. DATES: The Certificate... Purpose The offshore supply vessel KELLY ANN CANDIES will be used for offshore supply operations. Full...
Maniac Talk - Dr. Anne Thompson
2014-04-30
Anne Thompson Maniac Lecture, 30 April 2014 NASA climate scientist Dr. Anne Thompson presented a Maniac Talk entitled "A Career in Many Ozone Layers." Anne shared some of her long scientific career both as a researcher at Goddard and Meteorology professor at Penn State. She also described some of the problems she has worked on and tried to convey an enthusiasm for Earth Observations
Maniac Talk - Dr. Anne Douglass
2013-03-27
Anne Douglass Maniac Lecture, 27 March, 2013 NASA climate scientist Dr. Anne Douglass presented a Maniac Talk entitled "Satellite Observations - the Touchstone of Atmospheric Modeling." Anne shared some of her scientific career that is filled with unexpected twists and turns and even a few blind alleys, but most important her passion in satellite measurements of ozone and other trace gases, which have been her touchstone.
A novel modular ANN architecture for efficient monitoring of gases/odours in real-time
NASA Astrophysics Data System (ADS)
Mishra, A.; Rajput, N. S.
2018-04-01
Data pre-processing is tremendously used for enhanced classification of gases. However, it suppresses the concentration variances of different gas samples. A classical solution of using single artificial neural network (ANN) architecture is also inefficient and renders degraded quantification. In this paper, a novel modular ANN design has been proposed to provide an efficient and scalable solution in real–time. Here, two separate ANN blocks viz. classifier block and quantifier block have been used to provide efficient and scalable gas monitoring in real—time. The classifier ANN consists of two stages. In the first stage, the Net 1-NDSRT has been trained to transform raw sensor responses into corresponding virtual multi-sensor responses using normalized difference sensor response transformation (NDSRT). These responses have been fed to the second stage (i.e., Net 2-classifier ). The Net 2-classifier has been trained to classify various gas samples to their respective class. Further, the quantifier block has parallel ANN modules, multiplexed to quantify each gas. Therefore, the classifier ANN decides class and quantifier ANN decides the exact quantity of the gas/odor present in the respective sample of that class.
A New Artificial Neural Network Approach in Solving Inverse Kinematics of Robotic Arm (Denso VP6242)
Dülger, L. Canan; Kapucu, Sadettin
2016-01-01
This paper presents a novel inverse kinematics solution for robotic arm based on artificial neural network (ANN) architecture. The motion of robotic arm is controlled by the kinematics of ANN. A new artificial neural network approach for inverse kinematics is proposed. The novelty of the proposed ANN is the inclusion of the feedback of current joint angles configuration of robotic arm as well as the desired position and orientation in the input pattern of neural network, while the traditional ANN has only the desired position and orientation of the end effector in the input pattern of neural network. In this paper, a six DOF Denso robotic arm with a gripper is controlled by ANN. The comprehensive experimental results proved the applicability and the efficiency of the proposed approach in robotic motion control. The inclusion of current configuration of joint angles in ANN significantly increased the accuracy of ANN estimation of the joint angles output. The new controller design has advantages over the existing techniques for minimizing the position error in unconventional tasks and increasing the accuracy of ANN in estimation of robot's joint angles. PMID:27610129
Knowledge and intelligent computing system in medicine.
Pandey, Babita; Mishra, R B
2009-03-01
Knowledge-based systems (KBS) and intelligent computing systems have been used in the medical planning, diagnosis and treatment. The KBS consists of rule-based reasoning (RBR), case-based reasoning (CBR) and model-based reasoning (MBR) whereas intelligent computing method (ICM) encompasses genetic algorithm (GA), artificial neural network (ANN), fuzzy logic (FL) and others. The combination of methods in KBS such as CBR-RBR, CBR-MBR and RBR-CBR-MBR and the combination of methods in ICM is ANN-GA, fuzzy-ANN, fuzzy-GA and fuzzy-ANN-GA. The combination of methods from KBS to ICM is RBR-ANN, CBR-ANN, RBR-CBR-ANN, fuzzy-RBR, fuzzy-CBR and fuzzy-CBR-ANN. In this paper, we have made a study of different singular and combined methods (185 in number) applicable to medical domain from mid 1970s to 2008. The study is presented in tabular form, showing the methods and its salient features, processes and application areas in medical domain (diagnosis, treatment and planning). It is observed that most of the methods are used in medical diagnosis very few are used for planning and moderate number in treatment. The study and its presentation in this context would be helpful for novice researchers in the area of medical expert system.
Almusawi, Ahmed R J; Dülger, L Canan; Kapucu, Sadettin
2016-01-01
This paper presents a novel inverse kinematics solution for robotic arm based on artificial neural network (ANN) architecture. The motion of robotic arm is controlled by the kinematics of ANN. A new artificial neural network approach for inverse kinematics is proposed. The novelty of the proposed ANN is the inclusion of the feedback of current joint angles configuration of robotic arm as well as the desired position and orientation in the input pattern of neural network, while the traditional ANN has only the desired position and orientation of the end effector in the input pattern of neural network. In this paper, a six DOF Denso robotic arm with a gripper is controlled by ANN. The comprehensive experimental results proved the applicability and the efficiency of the proposed approach in robotic motion control. The inclusion of current configuration of joint angles in ANN significantly increased the accuracy of ANN estimation of the joint angles output. The new controller design has advantages over the existing techniques for minimizing the position error in unconventional tasks and increasing the accuracy of ANN in estimation of robot's joint angles.
A new evolutionary system for evolving artificial neural networks.
Yao, X; Liu, Y
1997-01-01
This paper presents a new evolutionary system, i.e., EPNet, for evolving artificial neural networks (ANNs). The evolutionary algorithm used in EPNet is based on Fogel's evolutionary programming (EP). Unlike most previous studies on evolving ANN's, this paper puts its emphasis on evolving ANN's behaviors. Five mutation operators proposed in EPNet reflect such an emphasis on evolving behaviors. Close behavioral links between parents and their offspring are maintained by various mutations, such as partial training and node splitting. EPNet evolves ANN's architectures and connection weights (including biases) simultaneously in order to reduce the noise in fitness evaluation. The parsimony of evolved ANN's is encouraged by preferring node/connection deletion to addition. EPNet has been tested on a number of benchmark problems in machine learning and ANNs, such as the parity problem, the medical diagnosis problems, the Australian credit card assessment problem, and the Mackey-Glass time series prediction problem. The experimental results show that EPNet can produce very compact ANNs with good generalization ability in comparison with other algorithms.
Verification and Validation of KBS with Neural Network Components
NASA Technical Reports Server (NTRS)
Wen, Wu; Callahan, John
1996-01-01
Artificial Neural Network (ANN) play an important role in developing robust Knowledge Based Systems (KBS). The ANN based components used in these systems learn to give appropriate predictions through training with correct input-output data patterns. Unlike traditional KBS that depends on a rule database and a production engine, the ANN based system mimics the decisions of an expert without specifically formulating the if-than type of rules. In fact, the ANNs demonstrate their superiority when such if-then type of rules are hard to generate by human expert. Verification of traditional knowledge based system is based on the proof of consistency and completeness of the rule knowledge base and correctness of the production engine.These techniques, however, can not be directly applied to ANN based components.In this position paper, we propose a verification and validation procedure for KBS with ANN based components. The essence of the procedure is to obtain an accurate system specification through incremental modification of the specifications using an ANN rule extraction algorithm.
Overview of artificial neural networks.
Zou, Jinming; Han, Yi; So, Sung-Sau
2008-01-01
The artificial neural network (ANN), or simply neural network, is a machine learning method evolved from the idea of simulating the human brain. The data explosion in modem drug discovery research requires sophisticated analysis methods to uncover the hidden causal relationships between single or multiple responses and a large set of properties. The ANN is one of many versatile tools to meet the demand in drug discovery modeling. Compared to a traditional regression approach, the ANN is capable of modeling complex nonlinear relationships. The ANN also has excellent fault tolerance and is fast and highly scalable with parallel processing. This chapter introduces the background of ANN development and outlines the basic concepts crucially important for understanding more sophisticated ANN. Several commonly used learning methods and network setups are discussed briefly at the end of the chapter.
Differential expression of members of the annexin multigene family in Arabidopsis
NASA Technical Reports Server (NTRS)
Clark, G. B.; Sessions, A.; Eastburn, D. J.; Roux, S. J.
2001-01-01
Although in most plant species no more than two annexin genes have been reported to date, seven annexin homologs have been identified in Arabidopsis, Annexin Arabidopsis 1-7 (AnnAt1--AnnAt7). This establishes that annexins can be a diverse, multigene protein family in a single plant species. Here we compare and analyze these seven annexin gene sequences and present the in situ RNA localization patterns of two of these genes, AnnAt1 and AnnAt2, during different stages of Arabidopsis development. Sequence analysis of AnnAt1--AnnAt7 reveals that they contain the characteristic four structural repeats including the more highly conserved 17-amino acid endonexin fold region found in vertebrate annexins. Alignment comparisons show that there are differences within the repeat regions that may have functional importance. To assess the relative level of expression in various tissues, reverse transcription-PCR was carried out using gene-specific primers for each of the Arabidopsis annexin genes. In addition, northern blot analysis using gene-specific probes indicates differences in AnnAt1 and AnnAt2 expression levels in different tissues. AnnAt1 is expressed in all tissues examined and is most abundant in stems, whereas AnnAt2 is expressed mainly in root tissue and to a lesser extent in stems and flowers. In situ RNA localization demonstrates that these two annexin genes display developmentally regulated tissue-specific and cell-specific expression patterns. These patterns are both distinct and overlapping. The developmental expression patterns for both annexins provide further support for the hypothesis that annexins are involved in the Golgi-mediated secretion of polysaccharides.
NASA Astrophysics Data System (ADS)
Mekanik, F.; Imteaz, M. A.; Gato-Trinidad, S.; Elmahdi, A.
2013-10-01
In this study, the application of Artificial Neural Networks (ANN) and Multiple regression analysis (MR) to forecast long-term seasonal spring rainfall in Victoria, Australia was investigated using lagged El Nino Southern Oscillation (ENSO) and Indian Ocean Dipole (IOD) as potential predictors. The use of dual (combined lagged ENSO-IOD) input sets for calibrating and validating ANN and MR Models is proposed to investigate the simultaneous effect of past values of these two major climate modes on long-term spring rainfall prediction. The MR models that did not violate the limits of statistical significance and multicollinearity were selected for future spring rainfall forecast. The ANN was developed in the form of multilayer perceptron using Levenberg-Marquardt algorithm. Both MR and ANN modelling were assessed statistically using mean square error (MSE), mean absolute error (MAE), Pearson correlation (r) and Willmott index of agreement (d). The developed MR and ANN models were tested on out-of-sample test sets; the MR models showed very poor generalisation ability for east Victoria with correlation coefficients of -0.99 to -0.90 compared to ANN with correlation coefficients of 0.42-0.93; ANN models also showed better generalisation ability for central and west Victoria with correlation coefficients of 0.68-0.85 and 0.58-0.97 respectively. The ability of multiple regression models to forecast out-of-sample sets is compatible with ANN for Daylesford in central Victoria and Kaniva in west Victoria (r = 0.92 and 0.67 respectively). The errors of the testing sets for ANN models are generally lower compared to multiple regression models. The statistical analysis suggest the potential of ANN over MR models for rainfall forecasting using large scale climate modes.
Bertleff, Marco; Domsch, Sebastian; Weingärtner, Sebastian; Zapp, Jascha; O'Brien, Kieran; Barth, Markus; Schad, Lothar R
2017-12-01
Artificial neural networks (ANNs) were used for voxel-wise parameter estimation with the combined intravoxel incoherent motion (IVIM) and kurtosis model facilitating robust diffusion parameter mapping in the human brain. The proposed ANN approach was compared with conventional least-squares regression (LSR) and state-of-the-art multi-step fitting (LSR-MS) in Monte-Carlo simulations and in vivo in terms of estimation accuracy and precision, number of outliers and sensitivity in the distinction between grey (GM) and white (WM) matter. Both the proposed ANN approach and LSR-MS yielded visually increased parameter map quality. Estimations of all parameters (perfusion fraction f, diffusion coefficient D, pseudo-diffusion coefficient D*, kurtosis K) were in good agreement with the literature using ANN, whereas LSR-MS resulted in D* overestimation and LSR yielded increased values for f and D*, as well as decreased values for K. Using ANN, outliers were reduced for the parameters f (ANN, 1%; LSR-MS, 19%; LSR, 8%), D* (ANN, 21%; LSR-MS, 25%; LSR, 23%) and K (ANN, 0%; LSR-MS, 0%; LSR, 15%). Moreover, ANN enabled significant distinction between GM and WM based on all parameters, whereas LSR facilitated this distinction only based on D and LSR-MS on f, D and K. Overall, the proposed ANN approach was found to be superior to conventional LSR, posing a powerful alternative to the state-of-the-art method LSR-MS with several advantages in the estimation of IVIM-kurtosis parameters, which might facilitate increased applicability of enhanced diffusion models at clinical scan times. Copyright © 2017 John Wiley & Sons, Ltd.
iAnn: an event sharing platform for the life sciences.
Jimenez, Rafael C; Albar, Juan P; Bhak, Jong; Blatter, Marie-Claude; Blicher, Thomas; Brazas, Michelle D; Brooksbank, Cath; Budd, Aidan; De Las Rivas, Javier; Dreyer, Jacqueline; van Driel, Marc A; Dunn, Michael J; Fernandes, Pedro L; van Gelder, Celia W G; Hermjakob, Henning; Ioannidis, Vassilios; Judge, David P; Kahlem, Pascal; Korpelainen, Eija; Kraus, Hans-Joachim; Loveland, Jane; Mayer, Christine; McDowall, Jennifer; Moran, Federico; Mulder, Nicola; Nyronen, Tommi; Rother, Kristian; Salazar, Gustavo A; Schneider, Reinhard; Via, Allegra; Villaveces, Jose M; Yu, Ping; Schneider, Maria V; Attwood, Teresa K; Corpas, Manuel
2013-08-01
We present iAnn, an open source community-driven platform for dissemination of life science events, such as courses, conferences and workshops. iAnn allows automatic visualisation and integration of customised event reports. A central repository lies at the core of the platform: curators add submitted events, and these are subsequently accessed via web services. Thus, once an iAnn widget is incorporated into a website, it permanently shows timely relevant information as if it were native to the remote site. At the same time, announcements submitted to the repository are automatically disseminated to all portals that query the system. To facilitate the visualization of announcements, iAnn provides powerful filtering options and views, integrated in Google Maps and Google Calendar. All iAnn widgets are freely available. http://iann.pro/iannviewer manuel.corpas@tgac.ac.uk.
[Algorithms of artificial neural networks--practical application in medical science].
Stefaniak, Bogusław; Cholewiński, Witold; Tarkowska, Anna
2005-12-01
Artificial Neural Networks (ANN) may be a tool alternative and complementary to typical statistical analysis. However, in spite of many computer applications of various ANN algorithms ready for use, artificial intelligence is relatively rarely applied to data processing. This paper presents practical aspects of scientific application of ANN in medicine using widely available algorithms. Several main steps of analysis with ANN were discussed starting from material selection and dividing it into groups, to the quality assessment of obtained results at the end. The most frequent, typical reasons for errors as well as the comparison of ANN method to the modeling by regression analysis were also described.
Prediction of Film Cooling Effectiveness on a Gas Turbine Blade Leading Edge Using ANN and CFD
NASA Astrophysics Data System (ADS)
Dávalos, J. O.; García, J. C.; Urquiza, G.; Huicochea, A.; De Santiago, O.
2018-05-01
In this work, the area-averaged film cooling effectiveness (AAFCE) on a gas turbine blade leading edge was predicted by employing an artificial neural network (ANN) using as input variables: hole diameter, injection angle, blowing ratio, hole and columns pitch. The database used to train the network was built using computational fluid dynamics (CFD) based on a two level full factorial design of experiments. The CFD numerical model was validated with an experimental rig, where a first stage blade of a gas turbine was represented by a cylindrical specimen. The ANN architecture was composed of three layers with four neurons in hidden layer and Levenberg-Marquardt was selected as ANN optimization algorithm. The AAFCE was successfully predicted by the ANN with a regression coefficient R2<0.99 and a root mean square error RMSE=0.0038. The ANN weight coefficients were used to estimate the relative importance of the input parameters. Blowing ratio was the most influential parameter with relative importance of 40.36 % followed by hole diameter. Additionally, by using the ANN model, the relationship between input parameters was analyzed.
Have artificial neural networks met expectations in drug discovery as implemented in QSAR framework?
Dobchev, Dimitar; Karelson, Mati
2016-07-01
Artificial neural networks (ANNs) are highly adaptive nonlinear optimization algorithms that have been applied in many diverse scientific endeavors, ranging from economics, engineering, physics, and chemistry to medical science. Notably, in the past two decades, ANNs have been used widely in the process of drug discovery. In this review, the authors discuss advantages and disadvantages of ANNs in drug discovery as incorporated into the quantitative structure-activity relationships (QSAR) framework. Furthermore, the authors examine the recent studies, which span over a broad area with various diseases in drug discovery. In addition, the authors attempt to answer the question about the expectations of the ANNs in drug discovery and discuss the trends in this field. The old pitfalls of overtraining and interpretability are still present with ANNs. However, despite these pitfalls, the authors believe that ANNs have likely met many of the expectations of researchers and are still considered as excellent tools for nonlinear data modeling in QSAR. It is likely that ANNs will continue to be used in drug development in the future.
An Overview of ANN Application in the Power Industry
NASA Technical Reports Server (NTRS)
Niebur, D.
1995-01-01
The paper presents a survey on the development and experience with artificial neural net (ANN) applications for electric power systems, with emphasis on operational systems. The organization and constraints of electric utilities are reviewed, motivations for investigating ANN are identified, and a current assessment is given from the experience of 2400 projects using ANN for load forecasting, alarm processing, fault detection, component fault diagnosis, static and dynamic security analysis, system planning, and operation planning.
Applications of artificial neural networks (ANNs) in food science.
Huang, Yiqun; Kangas, Lars J; Rasco, Barbara A
2007-01-01
Artificial neural networks (ANNs) have been applied in almost every aspect of food science over the past two decades, although most applications are in the development stage. ANNs are useful tools for food safety and quality analyses, which include modeling of microbial growth and from this predicting food safety, interpreting spectroscopic data, and predicting physical, chemical, functional and sensory properties of various food products during processing and distribution. ANNs hold a great deal of promise for modeling complex tasks in process control and simulation and in applications of machine perception including machine vision and electronic nose for food safety and quality control. This review discusses the basic theory of the ANN technology and its applications in food science, providing food scientists and the research community an overview of the current research and future trend of the applications of ANN technology in the field.
Dai, Juan; Ji, Zhong; Du, Yubao
2017-08-01
Existing near-infrared non-invasive blood glucose detection modelings mostly detect multi-spectral signals with different wavelength, which is not conducive to the popularization of non-invasive glucose meter at home and does not consider the physiological glucose dynamics of individuals. In order to solve these problems, this study presented a non-invasive blood glucose detection model combining particle swarm optimization (PSO) and artificial neural network (ANN) by using the 1 550 nm near-infrared absorbance as the independent variable and the concentration of blood glucose as the dependent variable, named as PSO-2ANN. The PSO-2ANN model was based on two sub-modules of neural networks with certain structures and arguments, and was built up after optimizing the weight coefficients of the two networks by particle swarm optimization. The results of 10 volunteers were predicted by PSO-2ANN. It was indicated that the relative error of 9 volunteers was less than 20%; 98.28% of the predictions of blood glucose by PSO-2ANN were distributed in the regions A and B of Clarke error grid, which confirmed that PSO-2ANN could offer higher prediction accuracy and better robustness by comparison with ANN. Additionally, even the physiological glucose dynamics of individuals may be different due to the influence of environment, temper, mental state and so on, PSO-2ANN can correct this difference only by adjusting one argument. The PSO-2ANN model provided us a new prospect to overcome individual differences in blood glucose prediction.
Boosting Learning Algorithm for Stock Price Forecasting
NASA Astrophysics Data System (ADS)
Wang, Chengzhang; Bai, Xiaoming
2018-03-01
To tackle complexity and uncertainty of stock market behavior, more studies have introduced machine learning algorithms to forecast stock price. ANN (artificial neural network) is one of the most successful and promising applications. We propose a boosting-ANN model in this paper to predict the stock close price. On the basis of boosting theory, multiple weak predicting machines, i.e. ANNs, are assembled to build a stronger predictor, i.e. boosting-ANN model. New error criteria of the weak studying machine and rules of weights updating are adopted in this study. We select technical factors from financial markets as forecasting input variables. Final results demonstrate the boosting-ANN model works better than other ones for stock price forecasting.
Artificial neural networks applied to quantitative elemental analysis of organic material using PIXE
NASA Astrophysics Data System (ADS)
Correa, R.; Chesta, M. A.; Morales, J. R.; Dinator, M. I.; Requena, I.; Vila, I.
2006-08-01
An artificial neural network (ANN) has been trained with real-sample PIXE (particle X-ray induced emission) spectra of organic substances. Following the training stage ANN was applied to a subset of similar samples thus obtaining the elemental concentrations in muscle, liver and gills of Cyprinus carpio. Concentrations obtained with the ANN method are in full agreement with results from one standard analytical procedure, showing the high potentiality of ANN in PIXE quantitative analyses.
2012-01-01
Background Artificial neural networks (ANNs) are widely studied for evaluating diseases. This paper discusses the intelligence mode of an ANN in grading the diagnosis of liver fibrosis by duplex ultrasonogaphy. Methods 239 patients who were confirmed as having liver fibrosis or cirrhosis by ultrasound guided liver biopsy were investigated in this study. We quantified ultrasonographic parameters as significant parameters using a data optimization procedure applied to an ANN. 179 patients were typed at random as the training group; 60 additional patients were consequently enrolled as the validating group. Performance of the ANN was evaluated according to accuracy, sensitivity, specificity, Youden’s index and receiver operating characteristic (ROC) analysis. Results 5 ultrasonographic parameters; i.e., the liver parenchyma, thickness of spleen, hepatic vein (HV) waveform, hepatic artery pulsatile index (HAPI) and HV damping index (HVDI), were enrolled as the input neurons in the ANN model. The sensitivity, specificity and accuracy of the ANN model for quantitative diagnosis of liver fibrosis were 95.0%, 85.0% and 88.3%, respectively. The Youden’s index (YI) was 0.80. Conclusions The established ANN model had good sensitivity and specificity in quantitative diagnosis of hepatic fibrosis or liver cirrhosis. Our study suggests that the ANN model based on duplex ultrasound may help non-invasive grading diagnosis of liver fibrosis in clinical practice. PMID:22716936
Valavanis, Ioannis K; Mougiakakou, Stavroula G; Grimaldi, Keith A; Nikita, Konstantina S
2010-09-08
Obesity is a multifactorial trait, which comprises an independent risk factor for cardiovascular disease (CVD). The aim of the current work is to study the complex etiology beneath obesity and identify genetic variations and/or factors related to nutrition that contribute to its variability. To this end, a set of more than 2300 white subjects who participated in a nutrigenetics study was used. For each subject a total of 63 factors describing genetic variants related to CVD (24 in total), gender, and nutrition (38 in total), e.g. average daily intake in calories and cholesterol, were measured. Each subject was categorized according to body mass index (BMI) as normal (BMI ≤ 25) or overweight (BMI > 25). Two artificial neural network (ANN) based methods were designed and used towards the analysis of the available data. These corresponded to i) a multi-layer feed-forward ANN combined with a parameter decreasing method (PDM-ANN), and ii) a multi-layer feed-forward ANN trained by a hybrid method (GA-ANN) which combines genetic algorithms and the popular back-propagation training algorithm. PDM-ANN and GA-ANN were comparatively assessed in terms of their ability to identify the most important factors among the initial 63 variables describing genetic variations, nutrition and gender, able to classify a subject into one of the BMI related classes: normal and overweight. The methods were designed and evaluated using appropriate training and testing sets provided by 3-fold Cross Validation (3-CV) resampling. Classification accuracy, sensitivity, specificity and area under receiver operating characteristics curve were utilized to evaluate the resulted predictive ANN models. The most parsimonious set of factors was obtained by the GA-ANN method and included gender, six genetic variations and 18 nutrition-related variables. The corresponding predictive model was characterized by a mean accuracy equal of 61.46% in the 3-CV testing sets. The ANN based methods revealed factors that interactively contribute to obesity trait and provided predictive models with a promising generalization ability. In general, results showed that ANNs and their hybrids can provide useful tools for the study of complex traits in the context of nutrigenetics.
Association between growth stunting with dental development and skeletal maturation stage.
Flores-Mir, Carlos; Mauricio, Franco Raul; Orellana, Maria Fernanda; Major, Paul William
2005-11-01
The aim of this study was to determine the influence of growth stunting on the maturation stage of the medium phalanx of the third finger (MP3) and the dental development of the left mandibular canine in 280 high school children (140 stunted and 140 normal controls; equally distributed by sex) between 9.5 and 16.5 years of age, from a representative Peruvian school. Periapical radiographs of the MP3 from the left hand were used to determine the skeletal maturity stage, according to an adaptation of the Hägg and Taranger method. Panoramic radiographs were used to determine the dental maturity stage of the lower left canine, according to Demirjian method. Stunting was determined by relating height and age, according to the World Health Organization recommendations. There was no statistically significant difference in the skeletal maturation stage (P = .134) and the dental development stage (P = .497) according to nutritional status, even when considering different age groups (P > .183). A high correlation (r = 0.85) was found between both maturity indicators regardless of the nutritional status (growth stunted, r = 0.855 and normal controls, r = 0.863) or sex (boys, r = 0.809 and girls, r = 0.892). When skeletal level was considered, correlations values were similar between advanced (r = 0.903) and average (r = 0.895) maturers but lower (r = 0.751) for delayed maturers. Growth stunting was not associated with dental development and skeletal maturity stages in Peruvian school children.
NASA Astrophysics Data System (ADS)
Lee, S.; Sohn, B.
2008-12-01
Artificial Neural Network (ANN) on the East Asia domain (20°N-55°N, 90°E-145°E) during the springs of 2006 and 2007 was investigated for retrieving aerosol optical thickness (AOT) of dust aerosol at both daytime and nighttime. The input data for ANN include brightness temperature, BTD (11 μm - 12 μm), spectral emissivity, surface temperature (Land: Price [1984] Equation, Ocean: The IMAPP MODIS Algorithm), relative airmass of satellite, and topography (SRTM30). The D*-parameter is adopted as dust detection algorithm which was developed by Hansell et al [2007]. The target data of the ANN is corresponding AOT at 550nm obtained from MODIS aerosol product (MYD04). After optimization and training, ANN AOT is retrieved. Among the many dust episodes during the spring of 2006, only the 8 April 2006 case was selected for the detailed analysis. Because it is one of the strongest episodes and shows a well-developed root penetrating the Korean peninsula and reaching the Japanese area. It is shown that ANN AOT coincide well with MODIS AOT having correlation coefficient of 0.8502 when the training and applying periods are the same (spring of 2006). Even a different period with training ANN AOT has a good relationship with MODIS AOT with the correlation coefficient of 0.7766 (spring 2007). This yearly difference is resulted from vegetation change and fixed IGBP land cover map. Also notable is that ANN AOT is underestimated in most IGBP types having low slope and negative mean bias. This study showed that ANN model has a good potential to retrieve AOT. More examinations and trials are needed, however, to improve this ANN algorithm using IR bands. Also this model should be extended to specify the dust aerosol property from other aerosols and clouds to assure that it has a capability during both daytime and nighttime.
An Effective and Novel Neural Network Ensemble for Shift Pattern Detection in Control Charts.
Barghash, Mahmoud
2015-01-01
Pattern recognition in control charts is critical to make a balance between discovering faults as early as possible and reducing the number of false alarms. This work is devoted to designing a multistage neural network ensemble that achieves this balance which reduces rework and scrape without reducing productivity. The ensemble under focus is composed of a series of neural network stages and a series of decision points. Initially, this work compared using multidecision points and single-decision point on the performance of the ANN which showed that multidecision points are highly preferable to single-decision points. This work also tested the effect of population percentages on the ANN and used this to optimize the ANN's performance. Also this work used optimized and nonoptimized ANNs in an ensemble and proved that using nonoptimized ANN may reduce the performance of the ensemble. The ensemble that used only optimized ANNs has improved performance over individual ANNs and three-sigma level rule. In that respect using the designed ensemble can help in reducing the number of false stops and increasing productivity. It also can be used to discover even small shifts in the mean as early as possible.
Artificial neural network detects human uncertainty
NASA Astrophysics Data System (ADS)
Hramov, Alexander E.; Frolov, Nikita S.; Maksimenko, Vladimir A.; Makarov, Vladimir V.; Koronovskii, Alexey A.; Garcia-Prieto, Juan; Antón-Toro, Luis Fernando; Maestú, Fernando; Pisarchik, Alexander N.
2018-03-01
Artificial neural networks (ANNs) are known to be a powerful tool for data analysis. They are used in social science, robotics, and neurophysiology for solving tasks of classification, forecasting, pattern recognition, etc. In neuroscience, ANNs allow the recognition of specific forms of brain activity from multichannel EEG or MEG data. This makes the ANN an efficient computational core for brain-machine systems. However, despite significant achievements of artificial intelligence in recognition and classification of well-reproducible patterns of neural activity, the use of ANNs for recognition and classification of patterns in neural networks still requires additional attention, especially in ambiguous situations. According to this, in this research, we demonstrate the efficiency of application of the ANN for classification of human MEG trials corresponding to the perception of bistable visual stimuli with different degrees of ambiguity. We show that along with classification of brain states associated with multistable image interpretations, in the case of significant ambiguity, the ANN can detect an uncertain state when the observer doubts about the image interpretation. With the obtained results, we describe the possible application of ANNs for detection of bistable brain activity associated with difficulties in the decision-making process.
NASA Astrophysics Data System (ADS)
Ying, Yibin; Liu, Yande; Fu, Xiaping; Lu, Huishan
2005-11-01
The artificial neural networks (ANNs) have been used successfully in applications such as pattern recognition, image processing, automation and control. However, majority of today's applications of ANNs is back-propagate feed-forward ANN (BP-ANN). In this paper, back-propagation artificial neural networks (BP-ANN) were applied for modeling soluble solid content (SSC) of intact pear from their Fourier transform near infrared (FT-NIR) spectra. One hundred and sixty-four pear samples were used to build the calibration models and evaluate the models predictive ability. The results are compared to the classical calibration approaches, i.e. principal component regression (PCR), partial least squares (PLS) and non-linear PLS (NPLS). The effects of the optimal methods of training parameters on the prediction model were also investigated. BP-ANN combine with principle component regression (PCR) resulted always better than the classical PCR, PLS and Weight-PLS methods, from the point of view of the predictive ability. Based on the results, it can be concluded that FT-NIR spectroscopy and BP-ANN models can be properly employed for rapid and nondestructive determination of fruit internal quality.
Nakajima, Kenichi; Kudo, Takashi; Nakata, Tomoaki; Kiso, Keisuke; Kasai, Tokuo; Taniguchi, Yasuyo; Matsuo, Shinro; Momose, Mitsuru; Nakagawa, Masayasu; Sarai, Masayoshi; Hida, Satoshi; Tanaka, Hirokazu; Yokoyama, Kunihiko; Okuda, Koichi; Edenbrandt, Lars
2017-12-01
Artificial neural networks (ANN) might help to diagnose coronary artery disease. This study aimed to determine whether the diagnostic accuracy of an ANN-based diagnostic system and conventional quantitation are comparable. The ANN was trained to classify potentially abnormal areas as true or false based on the nuclear cardiology expert interpretation of 1001 gated stress/rest 99m Tc-MIBI images at 12 hospitals. The diagnostic accuracy of the ANN was compared with 364 expert interpretations that served as the gold standard of abnormality for the validation study. Conventional summed stress/rest/difference scores (SSS/SRS/SDS) were calculated and compared with receiver operating characteristics (ROC) analysis. The ANN generated a better area under the ROC curves (AUC) than SSS (0.92 vs. 0.82, p < 0.0001), indicating better identification of stress defects. The ANN also generated a better AUC than SDS (0.90 vs. 0.75, p < 0.0001) for stress-induced ischemia. The AUC for patients with old myocardial infarction based on rest defects was 0.97 (0.91 for SRS, p = 0.0061), and that for patients with and without a history of revascularization based on stress defects was 0.94 and 0.90 (p = 0.0055 and p < 0.0001 vs. SSS, respectively). The SSS/SRS/SDS steeply increased when ANN values (probability of abnormality) were >0.80. The ANN was diagnostically accurate in various clinical settings, including that of patients with previous myocardial infarction and coronary revascularization. The ANN could help to diagnose coronary artery disease.
Chiral topological phases from artificial neural networks
NASA Astrophysics Data System (ADS)
Kaubruegger, Raphael; Pastori, Lorenzo; Budich, Jan Carl
2018-05-01
Motivated by recent progress in applying techniques from the field of artificial neural networks (ANNs) to quantum many-body physics, we investigate to what extent the flexibility of ANNs can be used to efficiently study systems that host chiral topological phases such as fractional quantum Hall (FQH) phases. With benchmark examples, we demonstrate that training ANNs of restricted Boltzmann machine type in the framework of variational Monte Carlo can numerically solve FQH problems to good approximation. Furthermore, we show by explicit construction how n -body correlations can be kept at an exact level with ANN wave functions exhibiting polynomial scaling with power n in system size. Using this construction, we analytically represent the paradigmatic Laughlin wave function as an ANN state.
Reflective Learning in Practice.
ERIC Educational Resources Information Center
Brockbank, Anne, Ed.; McGill, Ian, Ed.; Beech, Nic, Ed.
This book contains 22 papers on reflective learning in practice. The following papers are included: "Our Purpose" (Ann Brockbank, Ian McGill, Nic Beech); "The Nature and Context of Learning" (Ann Brockbank, Ian McGill, Nic Beech); "Reflective Learning and Organizations" (Ann Brockbank, Ian McGill, Nic Beech);…
NASA Astrophysics Data System (ADS)
Zhu, Yun-Mei; Lu, X. X.; Zhou, Yue
2007-02-01
Artificial neural network (ANN) was used to model the monthly suspended sediment flux in the Longchuanjiang River, the Upper Yangtze Catchment, China. The suspended sediment flux was related to the average rainfall, temperature, rainfall intensity and water discharge. It is demonstrated that ANN is capable of modeling the monthly suspended sediment flux with fairly good accuracy when proper variables and their lag effect on the suspended sediment flux are used as inputs. Compared with multiple linear regression and power relation models, ANN can generate a better fit under the same data requirement. In addition, ANN can provide more reasonable predictions for extremely high or low values, because of the distributed information processing system and the nonlinear transformation involved. Compared with the ANNs that use the values of the dependent variable at previous time steps as inputs, the ANNs established in this research with only climate variables have an advantage because it can be used to assess hydrological responses to climate change.
Rasga, Célia; Quelhas, Ana Cristina; Byrne, Ruth M J
2017-06-01
We examine false belief and counterfactual reasoning in children with autism with a new change-of-intentions task. Children listened to stories, for example, Anne is picking up toys and John hears her say she wants to find her ball. John goes away and the reason for Anne's action changes-Anne's mother tells her to tidy her bedroom. We asked, 'What will John believe is the reason that Anne is picking up toys?' which requires a false-belief inference, and 'If Anne's mother hadn't asked Anne to tidy her room, what would have been the reason she was picking up toys?' which requires a counterfactual inference. We tested children aged 6, 8 and 10 years. Children with autism made fewer correct inferences than typically developing children at 8 years, but by 10 years there was no difference. Children with autism made fewer correct false-belief than counterfactual inferences, just like typically developing children.
Mendenhall, Jeffrey; Meiler, Jens
2016-02-01
Dropout is an Artificial Neural Network (ANN) training technique that has been shown to improve ANN performance across canonical machine learning (ML) datasets. Quantitative Structure Activity Relationship (QSAR) datasets used to relate chemical structure to biological activity in Ligand-Based Computer-Aided Drug Discovery pose unique challenges for ML techniques, such as heavily biased dataset composition, and relatively large number of descriptors relative to the number of actives. To test the hypothesis that dropout also improves QSAR ANNs, we conduct a benchmark on nine large QSAR datasets. Use of dropout improved both enrichment false positive rate and log-scaled area under the receiver-operating characteristic curve (logAUC) by 22-46 % over conventional ANN implementations. Optimal dropout rates are found to be a function of the signal-to-noise ratio of the descriptor set, and relatively independent of the dataset. Dropout ANNs with 2D and 3D autocorrelation descriptors outperform conventional ANNs as well as optimized fingerprint similarity search methods.
Mendenhall, Jeffrey; Meiler, Jens
2016-01-01
Dropout is an Artificial Neural Network (ANN) training technique that has been shown to improve ANN performance across canonical machine learning (ML) datasets. Quantitative Structure Activity Relationship (QSAR) datasets used to relate chemical structure to biological activity in Ligand-Based Computer-Aided Drug Discovery (LB-CADD) pose unique challenges for ML techniques, such as heavily biased dataset composition, and relatively large number of descriptors relative to the number of actives. To test the hypothesis that dropout also improves QSAR ANNs, we conduct a benchmark on nine large QSAR datasets. Use of dropout improved both Enrichment false positive rate (FPR) and log-scaled area under the receiver-operating characteristic curve (logAUC) by 22–46% over conventional ANN implementations. Optimal dropout rates are found to be a function of the signal-to-noise ratio of the descriptor set, and relatively independent of the dataset. Dropout ANNs with 2D and 3D autocorrelation descriptors outperform conventional ANNs as well as optimized fingerprint similarity search methods. PMID:26830599
NASA Astrophysics Data System (ADS)
Barroso-Maldonado, J. M.; Belman-Flores, J. M.; Ledesma, S.; Aceves, S. M.
2018-06-01
A key problem faced in the design of heat exchangers, especially for cryogenic applications, is the determination of convective heat transfer coefficients in two-phase flow such as condensation and boiling of non-azeotropic refrigerant mixtures. This paper proposes and evaluates three models for estimating the convective coefficient during boiling. These models are developed using computational intelligence techniques. The performance of the proposed models is evaluated using the mean relative error (mre), and compared to two existing models: the modified Granryd's correlation and the Silver-Bell-Ghaly method. The three proposed models are distinguished by their architecture. The first is based on directly measured parameters (DMP-ANN), the second is based on equivalent Reynolds and Prandtl numbers (eq-ANN), and the third on effective Reynolds and Prandtl numbers (eff-ANN). The results demonstrate that the proposed artificial neural network (ANN)-based approaches greatly outperform available methodologies. While Granryd's correlation predicts experimental data within a mean relative error mre = 44% and the S-B-G method produces mre = 42%, DMP-ANN has mre = 7.4% and eff-ANN has mre = 3.9%. Considering that eff-ANN has the lowest mean relative error (one tenth of previously available methodologies) and the broadest range of applicability, it is recommended for future calculations. Implementation is straightforward within a variety of platforms and the matrices with the ANN weights are given in the appendix for efficient programming.
NASA Astrophysics Data System (ADS)
Morales-Esteban, A.; Martínez-Álvarez, F.; Reyes, J.
2013-05-01
A method to predict earthquakes in two of the seismogenic areas of the Iberian Peninsula, based on Artificial Neural Networks (ANNs), is presented in this paper. ANNs have been widely used in many fields but only very few and very recent studies have been conducted on earthquake prediction. Two kinds of predictions are provided in this study: a) the probability of an earthquake, of magnitude equal or larger than a preset threshold magnitude, within the next 7 days, to happen; b) the probability of an earthquake of a limited magnitude interval to happen, during the next 7 days. First, the physical fundamentals related to earthquake occurrence are explained. Second, the mathematical model underlying ANNs is explained and the configuration chosen is justified. Then, the ANNs have been trained in both areas: The Alborán Sea and the Western Azores-Gibraltar fault. Later, the ANNs have been tested in both areas for a period of time immediately subsequent to the training period. Statistical tests are provided showing meaningful results. Finally, ANNs were compared to other well known classifiers showing quantitatively and qualitatively better results. The authors expect that the results obtained will encourage researchers to conduct further research on this topic. Development of a system capable of predicting earthquakes for the next seven days Application of ANN is particularly reliable to earthquake prediction. Use of geophysical information modeling the soil behavior as ANN's input data Successful analysis of one region with large seismic activity
NASA Astrophysics Data System (ADS)
Luk, K. C.; Ball, J. E.; Sharma, A.
2000-01-01
Artificial neural networks (ANNs), which emulate the parallel distributed processing of the human nervous system, have proven to be very successful in dealing with complicated problems, such as function approximation and pattern recognition. Due to their powerful capability and functionality, ANNs provide an alternative approach for many engineering problems that are difficult to solve by conventional approaches. Rainfall forecasting has been a difficult subject in hydrology due to the complexity of the physical processes involved and the variability of rainfall in space and time. In this study, ANNs were adopted to forecast short-term rainfall for an urban catchment. The ANNs were trained to recognise historical rainfall patterns as recorded from a number of gauges in the study catchment for reproduction of relevant patterns for new rainstorm events. The primary objective of this paper is to investigate the effect of temporal and spatial information on short-term rainfall forecasting. To achieve this aim, a comparison test on the forecast accuracy was made among the ANNs configured with different orders of lag and different numbers of spatial inputs. In developing the ANNs with alternative configurations, the ANNs were trained to an optimal level to achieve good generalisation of data. It was found in this study that the ANNs provided the most accurate predictions when an optimum number of spatial inputs was included into the network, and that the network with lower lag consistently produced better performance.
Computer vision-based method for classification of wheat grains using artificial neural network.
Sabanci, Kadir; Kayabasi, Ahmet; Toktas, Abdurrahim
2017-06-01
A simplified computer vision-based application using artificial neural network (ANN) depending on multilayer perceptron (MLP) for accurately classifying wheat grains into bread or durum is presented. The images of 100 bread and 100 durum wheat grains are taken via a high-resolution camera and subjected to pre-processing. The main visual features of four dimensions, three colors and five textures are acquired using image-processing techniques (IPTs). A total of 21 visual features are reproduced from the 12 main features to diversify the input population for training and testing the ANN model. The data sets of visual features are considered as input parameters of the ANN model. The ANN with four different input data subsets is modelled to classify the wheat grains into bread or durum. The ANN model is trained with 180 grains and its accuracy tested with 20 grains from a total of 200 wheat grains. Seven input parameters that are most effective on the classifying results are determined using the correlation-based CfsSubsetEval algorithm to simplify the ANN model. The results of the ANN model are compared in terms of accuracy rate. The best result is achieved with a mean absolute error (MAE) of 9.8 × 10 -6 by the simplified ANN model. This shows that the proposed classifier based on computer vision can be successfully exploited to automatically classify a variety of grains. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.
77 FR 75629 - Pramaggiore, Anne R.; Notice of Filing
Federal Register 2010, 2011, 2012, 2013, 2014
2012-12-21
... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. ID-6059-001] Pramaggiore, Anne R.; Notice of Filing Take notice that on December 14, 2012, Anne R. Pramaggiore submitted for filing, an application for authority to hold interlocking positions, pursuant to section 305(b) of the...
2012-01-01
Laboratories Walker Ray Walker Engineering Solutions, LLC Williams Patricia Denver Office of Emergency Management Wood- Zika Annmarie Lawrence Livermore...llnl.gov AnnMarie Wood- Zika woodzika1@llnl.gov Pacific Northwest National Laboratory Ann Lesperance ann.lesperance@pnnl.gov Jessica Sandusky
Code of Federal Regulations, 2011 CFR
2011-07-01
... demonstrate compliance with the South Dakota laws on air pollution, S. D. Comp. Laws Ann. Chap. 34A-1, water pollution control, S. D. Comp. Laws Ann. Chap. 34A-2, and solid waste disposal, S. D. Comp. Laws Ann. Chap...
ANN modeling of DNA sequences: new strategies using DNA shape code.
Parbhane, R V; Tambe, S S; Kulkarni, B D
2000-09-01
Two new encoding strategies, namely, wedge and twist codes, which are based on the DNA helical parameters, are introduced to represent DNA sequences in artificial neural network (ANN)-based modeling of biological systems. The performance of the new coding strategies has been evaluated by conducting three case studies involving mapping (modeling) and classification applications of ANNs. The proposed coding schemes have been compared rigorously and shown to outperform the existing coding strategies especially in situations wherein limited data are available for building the ANN models.
[Methods of artificial intelligence: a new trend in pharmacy].
Dohnal, V; Kuca, K; Jun, D
2005-07-01
Artificial neural networks (ANN) and genetic algorithms are one group of methods called artificial intelligence. The application of ANN on pharmaceutical data can lead to an understanding of the inner structure of data and a possibility to build a model (adaptation). In addition, for certain cases it is possible to extract rules from data. The adapted ANN is prepared for the prediction of properties of compounds which were not used in the adaptation phase. The applications of ANN have great potential in pharmaceutical industry and in the interpretation of analytical, pharmacokinetic or toxicological data.
NASA Technical Reports Server (NTRS)
Buch, A. M.; Narain, A.; Pandey, P. C.
1994-01-01
The simulation of runoff from a Himalayan Glacier basin using an Artificial Neural Network (ANN) is presented. The performance of the ANN model is found to be superior to the Energy Balance Model and the Multiple Regression model. The RMS Error is used as the figure of merit for judging the performance of the three models, and the RMS Error for the ANN model is the latest of the three models. The ANN is faster in learning and exhibits excellent system generalization characteristics.
Inversion of 2-D DC resistivity data using rapid optimization and minimal complexity neural network
NASA Astrophysics Data System (ADS)
Singh, U. K.; Tiwari, R. K.; Singh, S. B.
2010-02-01
The backpropagation (BP) artificial neural network (ANN) technique of optimization based on steepest descent algorithm is known to be inept for its poor performance and does not ensure global convergence. Nonlinear and complex DC resistivity data require efficient ANN model and more intensive optimization procedures for better results and interpretations. Improvements in the computational ANN modeling process are described with the goals of enhancing the optimization process and reducing ANN model complexity. Well-established optimization methods, such as Radial basis algorithm (RBA) and Levenberg-Marquardt algorithms (LMA) have frequently been used to deal with complexity and nonlinearity in such complex geophysical records. We examined here the efficiency of trained LMA and RB networks by using 2-D synthetic resistivity data and then finally applied to the actual field vertical electrical resistivity sounding (VES) data collected from the Puga Valley, Jammu and Kashmir, India. The resulting ANN reconstruction resistivity results are compared with the result of existing inversion approaches, which are in good agreement. The depths and resistivity structures obtained by the ANN methods also correlate well with the known drilling results and geologic boundaries. The application of the above ANN algorithms proves to be robust and could be used for fast estimation of resistive structures for other complex earth model also.
Implementation of neural network for color properties of polycarbonates
NASA Astrophysics Data System (ADS)
Saeed, U.; Ahmad, S.; Alsadi, J.; Ross, D.; Rizvi, G.
2014-05-01
In present paper, the applicability of artificial neural networks (ANN) is investigated for color properties of plastics. The neural networks toolbox of Matlab 6.5 is used to develop and test the ANN model on a personal computer. An optimal design is completed for 10, 12, 14,16,18 & 20 hidden neurons on single hidden layer with five different algorithms: batch gradient descent (GD), batch variable learning rate (GDX), resilient back-propagation (RP), scaled conjugate gradient (SCG), levenberg-marquardt (LM) in the feed forward back-propagation neural network model. The training data for ANN is obtained from experimental measurements. There were twenty two inputs including resins, additives & pigments while three tristimulus color values L*, a* and b* were used as output layer. Statistical analysis in terms of Root-Mean-Squared (RMS), absolute fraction of variance (R squared), as well as mean square error is used to investigate the performance of ANN. LM algorithm with fourteen neurons on hidden layer in Feed Forward Back-Propagation of ANN model has shown best result in the present study. The degree of accuracy of the ANN model in reduction of errors is proven acceptable in all statistical analysis and shown in results. However, it was concluded that ANN provides a feasible method in error reduction in specific color tristimulus values.
2010-01-01
Background Obesity is a multifactorial trait, which comprises an independent risk factor for cardiovascular disease (CVD). The aim of the current work is to study the complex etiology beneath obesity and identify genetic variations and/or factors related to nutrition that contribute to its variability. To this end, a set of more than 2300 white subjects who participated in a nutrigenetics study was used. For each subject a total of 63 factors describing genetic variants related to CVD (24 in total), gender, and nutrition (38 in total), e.g. average daily intake in calories and cholesterol, were measured. Each subject was categorized according to body mass index (BMI) as normal (BMI ≤ 25) or overweight (BMI > 25). Two artificial neural network (ANN) based methods were designed and used towards the analysis of the available data. These corresponded to i) a multi-layer feed-forward ANN combined with a parameter decreasing method (PDM-ANN), and ii) a multi-layer feed-forward ANN trained by a hybrid method (GA-ANN) which combines genetic algorithms and the popular back-propagation training algorithm. Results PDM-ANN and GA-ANN were comparatively assessed in terms of their ability to identify the most important factors among the initial 63 variables describing genetic variations, nutrition and gender, able to classify a subject into one of the BMI related classes: normal and overweight. The methods were designed and evaluated using appropriate training and testing sets provided by 3-fold Cross Validation (3-CV) resampling. Classification accuracy, sensitivity, specificity and area under receiver operating characteristics curve were utilized to evaluate the resulted predictive ANN models. The most parsimonious set of factors was obtained by the GA-ANN method and included gender, six genetic variations and 18 nutrition-related variables. The corresponding predictive model was characterized by a mean accuracy equal of 61.46% in the 3-CV testing sets. Conclusions The ANN based methods revealed factors that interactively contribute to obesity trait and provided predictive models with a promising generalization ability. In general, results showed that ANNs and their hybrids can provide useful tools for the study of complex traits in the context of nutrigenetics. PMID:20825661
NASA Astrophysics Data System (ADS)
Panagoulia, D.; Trichakis, I.
2012-04-01
Considering the growing interest in simulating hydrological phenomena with artificial neural networks (ANNs), it is useful to figure out the potential and limits of these models. In this study, the main objective is to examine how to improve the ability of an ANN model to simulate extreme values of flow utilizing a priori knowledge of threshold values. A three-layer feedforward ANN was trained by using the back propagation algorithm and the logistic function as activation function. By using the thresholds, the flow was partitioned in low (x < μ), medium (μ ≤ x ≤ μ + 2σ) and high (x > μ + 2σ) values. The employed ANN model was trained for high flow partition and all flow data too. The developed methodology was implemented over a mountainous river catchment (the Mesochora catchment in northwestern Greece). The ANN model received as inputs pseudo-precipitation (rain plus melt) and previous observed flow data. After the training was completed the bootstrapping methodology was applied to calculate the ANN confidence intervals (CIs) for a 95% nominal coverage. The calculated CIs included only the uncertainty, which comes from the calibration procedure. The results showed that an ANN model trained specifically for high flows, with a priori knowledge of the thresholds, can simulate these extreme values much better (RMSE is 31.4% less) than an ANN model trained with all data of the available time series and using a posteriori threshold values. On the other hand the width of CIs increases by 54.9% with a simultaneous increase by 64.4% of the actual coverage for the high flows (a priori partition). The narrower CIs of the high flows trained with all data may be attributed to the smoothing effect produced from the use of the full data sets. Overall, the results suggest that an ANN model trained with a priori knowledge of the threshold values has an increased ability in simulating extreme values compared with an ANN model trained with all the data and a posteriori knowledge of the thresholds.
Bayesian model selection applied to artificial neural networks used for water resources modeling
NASA Astrophysics Data System (ADS)
Kingston, Greer B.; Maier, Holger R.; Lambert, Martin F.
2008-04-01
Artificial neural networks (ANNs) have proven to be extremely valuable tools in the field of water resources engineering. However, one of the most difficult tasks in developing an ANN is determining the optimum level of complexity required to model a given problem, as there is no formal systematic model selection method. This paper presents a Bayesian model selection (BMS) method for ANNs that provides an objective approach for comparing models of varying complexity in order to select the most appropriate ANN structure. The approach uses Markov Chain Monte Carlo posterior simulations to estimate the evidence in favor of competing models and, in this study, three known methods for doing this are compared in terms of their suitability for being incorporated into the proposed BMS framework for ANNs. However, it is acknowledged that it can be particularly difficult to accurately estimate the evidence of ANN models. Therefore, the proposed BMS approach for ANNs incorporates a further check of the evidence results by inspecting the marginal posterior distributions of the hidden-to-output layer weights, which unambiguously indicate any redundancies in the hidden layer nodes. The fact that this check is available is one of the greatest advantages of the proposed approach over conventional model selection methods, which do not provide such a test and instead rely on the modeler's subjective choice of selection criterion. The advantages of a total Bayesian approach to ANN development, including training and model selection, are demonstrated on two synthetic and one real world water resources case study.
Kamesh, Reddi; Rani, Kalipatnapu Yamuna
2017-12-01
In this paper, a novel formulation for nonlinear model predictive control (MPC) has been proposed incorporating the extended Kalman filter (EKF) control concept using a purely data-driven artificial neural network (ANN) model based on measurements for supervisory control. The proposed scheme consists of two modules focusing on online parameter estimation based on past measurements and control estimation over control horizon based on minimizing the deviation of model output predictions from set points along the prediction horizon. An industrial case study for temperature control of a multiproduct semibatch polymerization reactor posed as a challenge problem has been considered as a test bed to apply the proposed ANN-EKFMPC strategy at supervisory level as a cascade control configuration along with proportional integral controller [ANN-EKFMPC with PI (ANN-EKFMPC-PI)]. The proposed approach is formulated incorporating all aspects of MPC including move suppression factor for control effort minimization and constraint-handling capability including terminal constraints. The nominal stability analysis and offset-free tracking capabilities of the proposed controller are proved. Its performance is evaluated by comparison with a standard MPC-based cascade control approach using the same adaptive ANN model. The ANN-EKFMPC-PI control configuration has shown better controller performance in terms of temperature tracking, smoother input profiles, as well as constraint-handling ability compared with the ANN-MPC with PI approach for two products in summer and winter. The proposed scheme is found to be versatile although it is based on a purely data-driven model with online parameter estimation.
Nakajima, Kenichi; Matsuo, Shinro; Wakabayashi, Hiroshi; Yokoyama, Kunihiko; Bunko, Hisashi; Okuda, Koichi; Kinuya, Seigo; Nyström, Karin; Edenbrandt, Lars
2015-01-01
The purpose of this study was to apply an artificial neural network (ANN) in patients with coronary artery disease (CAD) and to characterize its diagnostic ability compared with conventional visual and quantitative methods in myocardial perfusion imaging (MPI). A total of 106 patients with CAD were studied with MPI, including multiple vessel disease (49%), history of myocardial infarction (27%) and coronary intervention (30%). The ANN detected abnormal areas with a probability of stress defect and ischemia. The consensus diagnosis based on expert interpretation and coronary stenosis was used as the gold standard. The left ventricular ANN value was higher in the stress-defect group than in the no-defect group (0.92±0.11 vs. 0.25±0.32, P<0.0001) and higher in the ischemia group than in the no-ischemia group (0.70±0.40 vs. 0.004±0.032, P<0.0001). Receiver-operating characteristics curve analysis showed comparable diagnostic accuracy between ANN and the scoring methods (0.971 vs. 0.980 for stress defect, and 0.882 vs. 0.937 for ischemia, both P=NS). The relationship between the ANN and defect scores was non-linear, with the ANN rapidly increased in ranges of summed stress score of 2-7 and summed defect score of 2-4. Although the diagnostic ability of ANN was similar to that of conventional scoring methods, the ANN could provide a different viewpoint for judging abnormality, and thus is a promising method for evaluating abnormality in MPI.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-05-13
... Cultural Items: Museum of Anthropology, University of Michigan, Ann Arbor, MI AGENCY: National Park Service... Museum of Anthropology, University of Michigan, Ann Arbor, MI, that meet the definition of unassociated... funerary objects should contact Carla Sinopoli, Museum of Anthropology, University of Michigan, Ann Arbor...
Real-time support for high performance aircraft operation
NASA Technical Reports Server (NTRS)
Vidal, Jacques J.
1989-01-01
The feasibility of real-time processing schemes using artificial neural networks (ANNs) is investigated. A rationale for digital neural nets is presented and a general processor architecture for control applications is illustrated. Research results on ANN structures for real-time applications are given. Research results on ANN algorithms for real-time control are also shown.
33 CFR 80.120 - Cape Ann, MA to Marblehead Neck, MA.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Cape Ann, MA to Marblehead Neck, MA. 80.120 Section 80.120 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY INTERNATIONAL NAVIGATION RULES COLREGS DEMARCATION LINES Atlantic Coast § 80.120 Cape Ann, MA to...
33 CFR 80.120 - Cape Ann, MA to Marblehead Neck, MA.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Cape Ann, MA to Marblehead Neck, MA. 80.120 Section 80.120 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY INTERNATIONAL NAVIGATION RULES COLREGS DEMARCATION LINES Atlantic Coast § 80.120 Cape Ann, MA to...
33 CFR 80.120 - Cape Ann, MA to Marblehead Neck, MA.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 33 Navigation and Navigable Waters 1 2014-07-01 2014-07-01 false Cape Ann, MA to Marblehead Neck, MA. 80.120 Section 80.120 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY INTERNATIONAL NAVIGATION RULES COLREGS DEMARCATION LINES Atlantic Coast § 80.120 Cape Ann, MA to...
33 CFR 80.120 - Cape Ann, MA to Marblehead Neck, MA.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 33 Navigation and Navigable Waters 1 2012-07-01 2012-07-01 false Cape Ann, MA to Marblehead Neck, MA. 80.120 Section 80.120 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY INTERNATIONAL NAVIGATION RULES COLREGS DEMARCATION LINES Atlantic Coast § 80.120 Cape Ann, MA to...
33 CFR 80.120 - Cape Ann, MA to Marblehead Neck, MA.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 33 Navigation and Navigable Waters 1 2013-07-01 2013-07-01 false Cape Ann, MA to Marblehead Neck, MA. 80.120 Section 80.120 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY INTERNATIONAL NAVIGATION RULES COLREGS DEMARCATION LINES Atlantic Coast § 80.120 Cape Ann, MA to...
Visual NNet: An Educational ANN's Simulation Environment Reusing Matlab Neural Networks Toolbox
ERIC Educational Resources Information Center
Garcia-Roselló, Emilio; González-Dacosta, Jacinto; Lado, Maria J.; Méndez, Arturo J.; Garcia Pérez-Schofield, Baltasar; Ferrer, Fátima
2011-01-01
Artificial Neural Networks (ANN's) are nowadays a common subject in different curricula of graduate and postgraduate studies. Due to the complex algorithms involved and the dynamic nature of ANN's, simulation software has been commonly used to teach this subject. This software has usually been developed specifically for learning purposes, because…
Modelling for Prediction vs. Modelling for Understanding: Commentary on Musso et al. (2013)
ERIC Educational Resources Information Center
Edelsbrunner, Peter; Schneider, Michael
2013-01-01
Musso et al. (2013) predict students' academic achievement with high accuracy one year in advance from cognitive and demographic variables, using artificial neural networks (ANNs). They conclude that ANNs have high potential for theoretical and practical improvements in learning sciences. ANNs are powerful statistical modelling tools but they can…
An ANN That Applies Pragmatic Decision on Texts.
ERIC Educational Resources Information Center
Aretoulaki, Maria; Tsujii, Jun-ichi
A computer-based artificial neural network (ANN) that learns to classify sentences in a text as important or unimportant is described. The program is designed to select the sentences that are important enough to be included in composition of an abstract of the text. The ANN is embedded in a conventional symbolic environment consisting of…
2018-06-25
Anaplastic Large Cell Lymphoma, ALK-Positive; Ann Arbor Stage II Noncutaneous Childhood Anaplastic Large Cell Lymphoma; Ann Arbor Stage III Noncutaneous Childhood Anaplastic Large Cell Lymphoma; Ann Arbor Stage IV Noncutaneous Childhood Anaplastic Large Cell Lymphoma; CD30-Positive Neoplastic Cells Present
Application of artificial neural network to fMRI regression analysis.
Misaki, Masaya; Miyauchi, Satoru
2006-01-15
We used an artificial neural network (ANN) to detect correlations between event sequences and fMRI (functional magnetic resonance imaging) signals. The layered feed-forward neural network, given a series of events as inputs and the fMRI signal as a supervised signal, performed a non-linear regression analysis. This type of ANN is capable of approximating any continuous function, and thus this analysis method can detect any fMRI signals that correlated with corresponding events. Because of the flexible nature of ANNs, fitting to autocorrelation noise is a problem in fMRI analyses. We avoided this problem by using cross-validation and an early stopping procedure. The results showed that the ANN could detect various responses with different time courses. The simulation analysis also indicated an additional advantage of ANN over non-parametric methods in detecting parametrically modulated responses, i.e., it can detect various types of parametric modulations without a priori assumptions. The ANN regression analysis is therefore beneficial for exploratory fMRI analyses in detecting continuous changes in responses modulated by changes in input values.
Intelligent Color Vision System for Ripeness Classification of Oil Palm Fresh Fruit Bunch
Fadilah, Norasyikin; Mohamad-Saleh, Junita; Halim, Zaini Abdul; Ibrahim, Haidi; Ali, Syed Salim Syed
2012-01-01
Ripeness classification of oil palm fresh fruit bunches (FFBs) during harvesting is important to ensure that they are harvested during optimum stage for maximum oil production. This paper presents the application of color vision for automated ripeness classification of oil palm FFB. Images of oil palm FFBs of type DxP Yangambi were collected and analyzed using digital image processing techniques. Then the color features were extracted from those images and used as the inputs for Artificial Neural Network (ANN) learning. The performance of the ANN for ripeness classification of oil palm FFB was investigated using two methods: training ANN with full features and training ANN with reduced features based on the Principal Component Analysis (PCA) data reduction technique. Results showed that compared with using full features in ANN, using the ANN trained with reduced features can improve the classification accuracy by 1.66% and is more effective in developing an automated ripeness classifier for oil palm FFB. The developed ripeness classifier can act as a sensor in determining the correct oil palm FFB ripeness category. PMID:23202043
NASA Astrophysics Data System (ADS)
Vouterakos, P. A.; Moustris, K. P.; Bartzokas, A.; Ziomas, I. C.; Nastos, P. T.; Paliatsos, A. G.
2012-12-01
In this work, artificial neural networks (ANNs) were developed and applied in order to forecast the discomfort levels due to the combination of high temperature and air humidity, during the hot season of the year, in eight different regions within the Greater Athens area (GAA), Greece. For the selection of the best type and architecture of ANNs-forecasting models, the multiple criteria analysis (MCA) technique was applied. Three different types of ANNs were developed and tested with the MCA method. Concretely, the multilayer perceptron, the generalized feed forward networks (GFFN), and the time-lag recurrent networks were developed and tested. Results showed that the best ANNs type performance was achieved by using the GFFN model for the prediction of discomfort levels due to high temperature and air humidity within GAA. For the evaluation of the constructed ANNs, appropriate statistical indices were used. The analysis proved that the forecasting ability of the developed ANNs models is very satisfactory at a significant statistical level of p < 0.01.
NASA Astrophysics Data System (ADS)
Fahimi, Farzad; Yaseen, Zaher Mundher; El-shafie, Ahmed
2017-05-01
Since the middle of the twentieth century, artificial intelligence (AI) models have been used widely in engineering and science problems. Water resource variable modeling and prediction are the most challenging issues in water engineering. Artificial neural network (ANN) is a common approach used to tackle this problem by using viable and efficient models. Numerous ANN models have been successfully developed to achieve more accurate results. In the current review, different ANN models in water resource applications and hydrological variable predictions are reviewed and outlined. In addition, recent hybrid models and their structures, input preprocessing, and optimization techniques are discussed and the results are compared with similar previous studies. Moreover, to achieve a comprehensive view of the literature, many articles that applied ANN models together with other techniques are included. Consequently, coupling procedure, model evaluation, and performance comparison of hybrid models with conventional ANN models are assessed, as well as, taxonomy and hybrid ANN models structures. Finally, current challenges and recommendations for future researches are indicated and new hybrid approaches are proposed.
Intelligent color vision system for ripeness classification of oil palm fresh fruit bunch.
Fadilah, Norasyikin; Mohamad-Saleh, Junita; Abdul Halim, Zaini; Ibrahim, Haidi; Syed Ali, Syed Salim
2012-10-22
Ripeness classification of oil palm fresh fruit bunches (FFBs) during harvesting is important to ensure that they are harvested during optimum stage for maximum oil production. This paper presents the application of color vision for automated ripeness classification of oil palm FFB. Images of oil palm FFBs of type DxP Yangambi were collected and analyzed using digital image processing techniques. Then the color features were extracted from those images and used as the inputs for Artificial Neural Network (ANN) learning. The performance of the ANN for ripeness classification of oil palm FFB was investigated using two methods: training ANN with full features and training ANN with reduced features based on the Principal Component Analysis (PCA) data reduction technique. Results showed that compared with using full features in ANN, using the ANN trained with reduced features can improve the classification accuracy by 1.66% and is more effective in developing an automated ripeness classifier for oil palm FFB. The developed ripeness classifier can act as a sensor in determining the correct oil palm FFB ripeness category.
Shanmugaprakash, M; Sivakumar, V
2013-11-01
In the present work, the evaluation capacities of two optimization methodologies such as RSM and ANN were employed and compared for predication of Cr(VI) uptake rate using defatted pongamia oil cake (DPOC) in both batch and column mode. The influence of operating parameters was investigated through a central composite design (CCD) of RSM using Design Expert 8.0.7.1 software. The same data was fed as input in ANN to obtain a trained the multilayer feed-forward networks back-propagation algorithm using MATLAB. The performance of the developed ANN models were compared with RSM mathematical models for Cr(VI) uptake rate in terms of the coefficient of determination (R(2)), root mean square error (RMSE) and absolute average deviation (AAD). The estimated values confirm that ANN predominates RSM representing the superiority of a trained ANN models over RSM models in order to capture the non-linear behavior of the given system. Copyright © 2013 Elsevier Ltd. All rights reserved.
Trujillano, Javier; March, Jaume; Sorribas, Albert
2004-01-01
In clinical practice, there is an increasing interest in obtaining adequate models of prediction. Within the possible available alternatives, the artificial neural networks (ANN) are progressively more used. In this review we first introduce the ANN methodology, describing the most common type of ANN, the Multilayer Perceptron trained with backpropagation algorithm (MLP). Then we compare the MLP with the Logistic Regression (LR). Finally, we show a practical scheme to make an application based on ANN by means of an example with actual data. The main advantage of the RN is its capacity to incorporate nonlinear effects and interactions between the variables of the model without need to include them a priori. As greater disadvantages, they show a difficult interpretation of their parameters and large empiricism in their process of construction and training. ANN are useful for the computation of probabilities of a given outcome based on a set of predicting variables. Furthermore, in some cases, they obtain better results than LR. Both methodologies, ANN and LR, are complementary and they help us to obtain more valid models.
Neurocontrol and fuzzy logic: Connections and designs
NASA Technical Reports Server (NTRS)
Werbos, Paul J.
1991-01-01
Artificial neural networks (ANNs) and fuzzy logic are complementary technologies. ANNs extract information from systems to be learned or controlled, while fuzzy techniques mainly use verbal information from experts. Ideally, both sources of information should be combined. For example, one can learn rules in a hybrid fashion, and then calibrate them for better whole-system performance. ANNs offer universal approximation theorems, pedagogical advantages, very high-throughput hardware, and links to neurophysiology. Neurocontrol - the use of ANNs to directly control motors or actuators, etc. - uses five generalized designs, related to control theory, which can work on fuzzy logic systems as well as ANNs. These designs can copy what experts do instead of what they say, learn to track trajectories, generalize adaptive control, and maximize performance or minimize cost over time, even in noisy environments. Design tradeoffs and future directions are discussed throughout.
NASA Astrophysics Data System (ADS)
Pelicano, Christian Mark; Rapadas, Nick; Cagatan, Gerard; Magdaluyo, Eduardo
2017-12-01
Herein, the crystallite size and band gap energy of zinc oxide (ZnO) quantum dots were predicted using artificial neural network (ANN). Three input factors including reagent ratio, growth time, and growth temperature were examined with respect to crystallite size and band gap energy as response factors. The generated results from neural network model were then compared with the experimental results. Experimental crystallite size and band gap energy of ZnO quantum dots were measured from TEM images and absorbance spectra, respectively. The Levenberg-Marquardt (LM) algorithm was used as the learning algorithm for the ANN model. The performance of the ANN model was then assessed through mean square error (MSE) and regression values. Based on the results, the ANN modelling results are in good agreement with the experimental data.
Yoo, Tae Keun; Kim, Deok Won; Choi, Soo Beom; Oh, Ein; Park, Jee Soo
2016-01-01
Background Knee osteoarthritis (OA) is the most common joint disease of adults worldwide. Since the treatments for advanced radiographic knee OA are limited, clinicians face a significant challenge of identifying patients who are at high risk of OA in a timely and appropriate way. Therefore, we developed a simple self-assessment scoring system and an improved artificial neural network (ANN) model for knee OA. Methods The Fifth Korea National Health and Nutrition Examination Surveys (KNHANES V-1) data were used to develop a scoring system and ANN for radiographic knee OA. A logistic regression analysis was used to determine the predictors of the scoring system. The ANN was constructed using 1777 participants and validated internally on 888 participants in the KNHANES V-1. The predictors of the scoring system were selected as the inputs of the ANN. External validation was performed using 4731 participants in the Osteoarthritis Initiative (OAI). Area under the curve (AUC) of the receiver operating characteristic was calculated to compare the prediction models. Results The scoring system and ANN were built using the independent predictors including sex, age, body mass index, educational status, hypertension, moderate physical activity, and knee pain. In the internal validation, both scoring system and ANN predicted radiographic knee OA (AUC 0.73 versus 0.81, p<0.001) and symptomatic knee OA (AUC 0.88 versus 0.94, p<0.001) with good discriminative ability. In the external validation, both scoring system and ANN showed lower discriminative ability in predicting radiographic knee OA (AUC 0.62 versus 0.67, p<0.001) and symptomatic knee OA (AUC 0.70 versus 0.76, p<0.001). Conclusions The self-assessment scoring system may be useful for identifying the adults at high risk for knee OA. The performance of the scoring system is improved significantly by the ANN. We provided an ANN calculator to simply predict the knee OA risk. PMID:26859664
Oparaji, Uchenna; Sheu, Rong-Jiun; Bankhead, Mark; Austin, Jonathan; Patelli, Edoardo
2017-12-01
Artificial Neural Networks (ANNs) are commonly used in place of expensive models to reduce the computational burden required for uncertainty quantification, reliability and sensitivity analyses. ANN with selected architecture is trained with the back-propagation algorithm from few data representatives of the input/output relationship of the underlying model of interest. However, different performing ANNs might be obtained with the same training data as a result of the random initialization of the weight parameters in each of the network, leading to an uncertainty in selecting the best performing ANN. On the other hand, using cross-validation to select the best performing ANN based on the ANN with the highest R 2 value can lead to biassing in the prediction. This is as a result of the fact that the use of R 2 cannot determine if the prediction made by ANN is biased. Additionally, R 2 does not indicate if a model is adequate, as it is possible to have a low R 2 for a good model and a high R 2 for a bad model. Hence, in this paper, we propose an approach to improve the robustness of a prediction made by ANN. The approach is based on a systematic combination of identical trained ANNs, by coupling the Bayesian framework and model averaging. Additionally, the uncertainties of the robust prediction derived from the approach are quantified in terms of confidence intervals. To demonstrate the applicability of the proposed approach, two synthetic numerical examples are presented. Finally, the proposed approach is used to perform a reliability and sensitivity analyses on a process simulation model of a UK nuclear effluent treatment plant developed by National Nuclear Laboratory (NNL) and treated in this study as a black-box employing a set of training data as a test case. This model has been extensively validated against plant and experimental data and used to support the UK effluent discharge strategy. Copyright © 2017 Elsevier Ltd. All rights reserved.
Final Technical Report, Wind Generator Project (Ann Arbor)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Geisler, Nathan
A Final Technical Report (57 pages) describing educational exhibits and devices focused on wind energy, and related outreach activities and programs. Project partnership includes the City of Ann Arbor, MI and the Ann Arbor Hands-on Museum, along with additional sub-recipients, and U.S. Department of Energy/Office of Energy Efficiency and Renewable Energy (EERE). Report relays key milestones and sub-tasks as well as numerous graphics and images of five (5) transportable wind energy demonstration devices and five (5) wind energy exhibits designed and constructed between 2014 and 2016 for transport and use by the Ann Arbor Hands-on Museum.
Artificial Neural Networks: an overview and their use in the analysis of the AMPHORA-3 dataset.
Buscema, Paolo Massimo; Massini, Giulia; Maurelli, Guido
2014-10-01
The Artificial Adaptive Systems (AAS) are theories with which generative algebras are able to create artificial models simulating natural phenomenon. Artificial Neural Networks (ANNs) are the more diffused and best-known learning system models in the AAS. This article describes an overview of ANNs, noting its advantages and limitations for analyzing dynamic, complex, non-linear, multidimensional processes. An example of a specific ANN application to alcohol consumption in Spain, as part of the EU AMPHORA-3 project, during 1961-2006 is presented. Study's limitations are noted and future needed research using ANN methodologies are suggested.
Artificial neural network model for ozone concentration estimation and Monte Carlo analysis
NASA Astrophysics Data System (ADS)
Gao, Meng; Yin, Liting; Ning, Jicai
2018-07-01
Air pollution in urban atmosphere directly affects public-health; therefore, it is very essential to predict air pollutant concentrations. Air quality is a complex function of emissions, meteorology and topography, and artificial neural networks (ANNs) provide a sound framework for relating these variables. In this study, we investigated the feasibility of using ANN model with meteorological parameters as input variables to predict ozone concentration in the urban area of Jinan, a metropolis in Northern China. We firstly found that the architecture of network of neurons had little effect on the predicting capability of ANN model. A parsimonious ANN model with 6 routinely monitored meteorological parameters and one temporal covariate (the category of day, i.e. working day, legal holiday and regular weekend) as input variables was identified, where the 7 input variables were selected following the forward selection procedure. Compared with the benchmarking ANN model with 9 meteorological and photochemical parameters as input variables, the predicting capability of the parsimonious ANN model was acceptable. Its predicting capability was also verified in term of warming success ratio during the pollution episodes. Finally, uncertainty and sensitivity analysis were also performed based on Monte Carlo simulations (MCS). It was concluded that the ANN could properly predict the ambient ozone level. Maximum temperature, atmospheric pressure, sunshine duration and maximum wind speed were identified as the predominate input variables significantly influencing the prediction of ambient ozone concentrations.
Titah, Harmin Sulistiyaning; Halmi, Mohd Izuan Effendi Bin; Abdullah, Siti Rozaimah Sheikh; Hasan, Hassimi Abu; Idris, Mushrifah; Anuar, Nurina
2018-06-07
In this study, the removal of arsenic (As) by plant, Ludwigia octovalvis, in a pilot reed bed was optimized. A Box-Behnken design was employed including a comparative analysis of both Response Surface Methodology (RSM) and an Artificial Neural Network (ANN) for the prediction of maximum arsenic removal. The predicted optimum condition using the desirability function of both models was 39 mg kg -1 for the arsenic concentration in soil, an elapsed time of 42 days (the sampling day) and an aeration rate of 0.22 L/min, with the predicted values of arsenic removal by RSM and ANN being 72.6% and 71.4%, respectively. The validation of the predicted optimum point showed an actual arsenic removal of 70.6%. This was achieved with the deviation between the validation value and the predicted values being within 3.49% (RSM) and 1.87% (ANN). The performance evaluation of the RSM and ANN models showed that ANN performs better than RSM with a higher R 2 (0.97) close to 1.0 and very small Average Absolute Deviation (AAD) (0.02) and Root Mean Square Error (RMSE) (0.004) values close to zero. Both models were appropriate for the optimization of arsenic removal with ANN demonstrating significantly higher predictive and fitting ability than RSM.
A novel artificial neural network method for biomedical prediction based on matrix pseudo-inversion.
Cai, Binghuang; Jiang, Xia
2014-04-01
Biomedical prediction based on clinical and genome-wide data has become increasingly important in disease diagnosis and classification. To solve the prediction problem in an effective manner for the improvement of clinical care, we develop a novel Artificial Neural Network (ANN) method based on Matrix Pseudo-Inversion (MPI) for use in biomedical applications. The MPI-ANN is constructed as a three-layer (i.e., input, hidden, and output layers) feed-forward neural network, and the weights connecting the hidden and output layers are directly determined based on MPI without a lengthy learning iteration. The LASSO (Least Absolute Shrinkage and Selection Operator) method is also presented for comparative purposes. Single Nucleotide Polymorphism (SNP) simulated data and real breast cancer data are employed to validate the performance of the MPI-ANN method via 5-fold cross validation. Experimental results demonstrate the efficacy of the developed MPI-ANN for disease classification and prediction, in view of the significantly superior accuracy (i.e., the rate of correct predictions), as compared with LASSO. The results based on the real breast cancer data also show that the MPI-ANN has better performance than other machine learning methods (including support vector machine (SVM), logistic regression (LR), and an iterative ANN). In addition, experiments demonstrate that our MPI-ANN could be used for bio-marker selection as well. Copyright © 2013 Elsevier Inc. All rights reserved.
2018-06-11
AIDS-Related Lymphoma; Ann Arbor Stage II Diffuse Large B-Cell Lymphoma; Ann Arbor Stage III Diffuse Large B-Cell Lymphoma; Ann Arbor Stage IV Diffuse Large B-Cell Lymphoma; CD20 Negative; CD20 Positive; Human Immunodeficiency Virus Positive
Inside the Actors' Studio: Exploring Dietetics Education Practices through Dialogical Inquiry
ERIC Educational Resources Information Center
Fox, Ann L.; Gingras, Jacqui
2012-01-01
Two colleagues, Ann and Jacqui, came together, within the safety of an imagined actors' studio, to explore the challenges that Ann faced in planning a new graduate program in public health nutrition. They met before, during, and after program implementation to discuss Ann's experiences, and audio-taped and transcribed the discussions. When all…
46 CFR 7.10 - Eastport, ME to Cape Ann, MA.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 46 Shipping 1 2013-10-01 2013-10-01 false Eastport, ME to Cape Ann, MA. 7.10 Section 7.10 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY PROCEDURES APPLICABLE TO THE PUBLIC BOUNDARY LINES Atlantic Coast § 7.10 Eastport, ME to Cape Ann, MA. (a) A line drawn from the easternmost extremity of Kendall...
46 CFR 7.10 - Eastport, ME to Cape Ann, MA.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 1 2010-10-01 2010-10-01 false Eastport, ME to Cape Ann, MA. 7.10 Section 7.10 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY PROCEDURES APPLICABLE TO THE PUBLIC BOUNDARY LINES Atlantic Coast § 7.10 Eastport, ME to Cape Ann, MA. (a) A line drawn from the easternmost extremity of Kendall...
46 CFR 7.10 - Eastport, ME to Cape Ann, MA.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 46 Shipping 1 2012-10-01 2012-10-01 false Eastport, ME to Cape Ann, MA. 7.10 Section 7.10 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY PROCEDURES APPLICABLE TO THE PUBLIC BOUNDARY LINES Atlantic Coast § 7.10 Eastport, ME to Cape Ann, MA. (a) A line drawn from the easternmost extremity of Kendall...
46 CFR 7.10 - Eastport, ME to Cape Ann, MA.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 46 Shipping 1 2014-10-01 2014-10-01 false Eastport, ME to Cape Ann, MA. 7.10 Section 7.10 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY PROCEDURES APPLICABLE TO THE PUBLIC BOUNDARY LINES Atlantic Coast § 7.10 Eastport, ME to Cape Ann, MA. (a) A line drawn from the easternmost extremity of Kendall...
46 CFR 7.10 - Eastport, ME to Cape Ann, MA.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 1 2011-10-01 2011-10-01 false Eastport, ME to Cape Ann, MA. 7.10 Section 7.10 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY PROCEDURES APPLICABLE TO THE PUBLIC BOUNDARY LINES Atlantic Coast § 7.10 Eastport, ME to Cape Ann, MA. (a) A line drawn from the easternmost extremity of Kendall...
ERIC Educational Resources Information Center
Nikelshpur, Dmitry O.
2014-01-01
Similar to mammalian brains, Artificial Neural Networks (ANN) are universal approximators, capable of yielding near-optimal solutions to a wide assortment of problems. ANNs are used in many fields including medicine, internet security, engineering, retail, robotics, warfare, intelligence control, and finance. "ANNs have a tendency to get…
Ann Eliza Young: A Nineteenth Century Champion of Women's Rights.
ERIC Educational Resources Information Center
Cullen, Jack B.
Concentrating on the efforts of such nineteenth century women's rights advocates as Susan B. Anthony and Elizabeth Cady Stanton, communication researchers have largely overlooked the contributions made to the cause by Ann Eliza Young. The nineteenth wife of Mormon leader Brigham Young, Ann Eliza Young left her husband and took to the speaker's…
New consensus multivariate models based on PLS and ANN studies of sigma-1 receptor antagonists.
Oliveira, Aline A; Lipinski, Célio F; Pereira, Estevão B; Honorio, Kathia M; Oliveira, Patrícia R; Weber, Karen C; Romero, Roseli A F; de Sousa, Alexsandro G; da Silva, Albérico B F
2017-10-02
The treatment of neuropathic pain is very complex and there are few drugs approved for this purpose. Among the studied compounds in the literature, sigma-1 receptor antagonists have shown to be promising. In order to develop QSAR studies applied to the compounds of 1-arylpyrazole derivatives, multivariate analyses have been performed in this work using partial least square (PLS) and artificial neural network (ANN) methods. A PLS model has been obtained and validated with 45 compounds in the training set and 13 compounds in the test set (r 2 training = 0.761, q 2 = 0.656, r 2 test = 0.746, MSE test = 0.132 and MAE test = 0.258). Additionally, multi-layer perceptron ANNs (MLP-ANNs) were employed in order to propose non-linear models trained by gradient descent with momentum backpropagation function. Based on MSE test values, the best MLP-ANN models were combined in a MLP-ANN consensus model (MLP-ANN-CM; r 2 test = 0.824, MSE test = 0.088 and MAE test = 0.197). In the end, a general consensus model (GCM) has been obtained using PLS and MLP-ANN-CM models (r 2 test = 0.811, MSE test = 0.100 and MAE test = 0.218). Besides, the selected descriptors (GGI6, Mor23m, SRW06, H7m, MLOGP, and μ) revealed important features that should be considered when one is planning new compounds of the 1-arylpyrazole class. The multivariate models proposed in this work are definitely a powerful tool for the rational drug design of new compounds for neuropathic pain treatment. Graphical abstract Main scaffold of the 1-arylpyrazole derivatives and the selected descriptors.
Artificial Neural Networks as Decision Support Tools in Cytopathology: Past, Present, and Future.
Pouliakis, Abraham; Karakitsou, Efrossyni; Margari, Niki; Bountris, Panagiotis; Haritou, Maria; Panayiotides, John; Koutsouris, Dimitrios; Karakitsos, Petros
2016-01-01
This study aims to analyze the role of artificial neural networks (ANNs) in cytopathology. More specifically, it aims to highlight the importance of employing ANNs in existing and future applications and in identifying unexplored or poorly explored research topics. A systematic search was conducted in scientific databases for articles related to cytopathology and ANNs with respect to anatomical places of the human body where cytopathology is performed. For each anatomic system/organ, the major outcomes described in the scientific literature are presented and the most important aspects are highlighted. The vast majority of ANN applications are related to cervical cytopathology, specifically for the ANN-based, semiautomated commercial diagnostic system PAPNET. For cervical cytopathology, there is a plethora of studies relevant to the diagnostic accuracy; in addition, there are also efforts evaluating cost-effectiveness and applications on primary, secondary, or hybrid screening. For the rest of the anatomical sites, such as the gastrointestinal system, thyroid gland, urinary tract, and breast, there are significantly less efforts relevant to the application of ANNs. Additionally, there are still anatomical systems for which ANNs have never been applied on their cytological material. Cytopathology is an ideal discipline to apply ANNs. In general, diagnosis is performed by experts via the light microscope. However, this approach introduces subjectivity, because this is not a universal and objective measurement process. This has resulted in the existence of a gray zone between normal and pathological cases. From the analysis of related articles, it is obvious that there is a need to perform more thorough analyses, using extensive number of cases and particularly for the nonexplored organs. Efforts to apply such systems within the laboratory test environment are required for their future uptake.
Artificial Neural Networks as Decision Support Tools in Cytopathology: Past, Present, and Future
Pouliakis, Abraham; Karakitsou, Efrossyni; Margari, Niki; Bountris, Panagiotis; Haritou, Maria; Panayiotides, John; Koutsouris, Dimitrios; Karakitsos, Petros
2016-01-01
OBJECTIVE This study aims to analyze the role of artificial neural networks (ANNs) in cytopathology. More specifically, it aims to highlight the importance of employing ANNs in existing and future applications and in identifying unexplored or poorly explored research topics. STUDY DESIGN A systematic search was conducted in scientific databases for articles related to cytopathology and ANNs with respect to anatomical places of the human body where cytopathology is performed. For each anatomic system/organ, the major outcomes described in the scientific literature are presented and the most important aspects are highlighted. RESULTS The vast majority of ANN applications are related to cervical cytopathology, specifically for the ANN-based, semiautomated commercial diagnostic system PAPNET. For cervical cytopathology, there is a plethora of studies relevant to the diagnostic accuracy; in addition, there are also efforts evaluating cost-effectiveness and applications on primary, secondary, or hybrid screening. For the rest of the anatomical sites, such as the gastrointestinal system, thyroid gland, urinary tract, and breast, there are significantly less efforts relevant to the application of ANNs. Additionally, there are still anatomical systems for which ANNs have never been applied on their cytological material. CONCLUSIONS Cytopathology is an ideal discipline to apply ANNs. In general, diagnosis is performed by experts via the light microscope. However, this approach introduces subjectivity, because this is not a universal and objective measurement process. This has resulted in the existence of a gray zone between normal and pathological cases. From the analysis of related articles, it is obvious that there is a need to perform more thorough analyses, using extensive number of cases and particularly for the nonexplored organs. Efforts to apply such systems within the laboratory test environment are required for their future uptake. PMID:26917984
Vesselle, Hubert J.
2014-01-01
Purpose To evaluate the effect of adding lymph node size to three previously explored artificial neural network (ANN) input parameters (primary tumor maximum standardized uptake value or tumor uptake, tumor size, and nodal uptake at N1, N2, and N3 stations) in the structure of the ANN. The goal was to allow the resulting ANN structure to relate lymph node uptake for size to primary tumor uptake for size in the determination of the status of nodes as human readers do. Materials and Methods This prospective study was approved by the institutional review board, and informed consent was obtained from all participants. The authors developed a back-propagation ANN with one hidden layer and eight processing units. The data set used to train the network included node and tumor size and uptake from 133 patients with non–small cell lung cancer with surgically proved N status. Statistical analysis was performed with the paired t test. Results The ANN correctly predicted the N stage in 99.2% of cases, compared with 72.4% for the expert reader (P < .001). In categorization of N0 and N1 versus N2 and N3 disease, the ANN performed with 99.2% accuracy versus 92.2% for the expert reader (P < .001). Conclusion The ANN is 99.2% accurate in predicting surgical-pathologic nodal status with use of four fluorine 18 fluorodeoxyglucose (FDG) positron emission tomography (PET)/computed tomography (CT)–derived parameters. Malignant and benign inflammatory lymph nodes have overlapping appearances at FDG PET/CT but can be differentiated by ANNs when the crucial input of node size is used. © RSNA, 2013 Online supplemental material is available for this article. PMID:24056403
NASA Astrophysics Data System (ADS)
Kisi, Ozgur; Kilic, Yasin
2016-11-01
The generalization ability of artificial neural networks (ANNs) and M5 model tree (M5Tree) in modeling reference evapotranspiration ( ET 0 ) is investigated in this study. Daily climatic data, average temperature, solar radiation, wind speed, and relative humidity from six different stations operated by California Irrigation Management Information System (CIMIS) located in two different regions of the USA were used in the applications. King-City Oasis Rd., Arroyo Seco, and Salinas North stations are located in San Joaquin region, and San Luis Obispo, Santa Monica, and Santa Barbara stations are located in the Southern region. In the first part of the study, the ANN and M5Tree models were used for estimating ET 0 of six stations and results were compared with the empirical methods. The ANN and M5Tree models were found to be better than the empirical models. In the second part of the study, the ANN and M5Tree models obtained from one station were tested using the data from the other two stations for each region. ANN models performed better than the CIMIS Penman, Hargreaves, Ritchie, and Turc models in two stations while the M5Tree models generally showed better accuracy than the corresponding empirical models in all stations. In the third part of the study, the ANN and M5Tree models were calibrated using three stations located in San Joaquin region and tested using the data from the other three stations located in the Southern region. Four-input ANN and M5Tree models performed better than the CIMIS Penman in only one station while the two-input ANN models were found to be better than the Hargreaves, Ritchie, and Turc models in two stations.
NASA Astrophysics Data System (ADS)
Singh, Upendra K.; Tiwari, R. K.; Singh, S. B.
2013-03-01
This paper presents the effects of several parameters on the artificial neural networks (ANN) inversion of vertical electrical sounding (VES) data. Sensitivity of ANN parameters was examined on the performance of adaptive backpropagation (ABP) and Levenberg-Marquardt algorithms (LMA) to test the robustness to noisy synthetic as well as field geophysical data and resolving capability of these methods for predicting the subsurface resistivity layers. We trained, tested and validated ANN using the synthetic VES data as input to the networks and layer parameters of the models as network output. ANN learning parameters are varied and corresponding observations are recorded. The sensitivity analysis of synthetic data and real model demonstrate that ANN algorithms applied in VES data inversion should be considered well not only in terms of accuracy but also in terms of high computational efforts. Also the analysis suggests that ANN model with its various controlling parameters are largely data dependent and hence no unique architecture can be designed for VES data analysis. ANN based methods are also applied to the actual VES field data obtained from the tectonically vital geothermal areas of Jammu and Kashmir, India. Analysis suggests that both the ABP and LMA are suitable methods for 1-D VES modeling. But the LMA method provides greater degree of robustness than the ABP in case of 2-D VES modeling. Comparison of the inversion results with known lithology correlates well and also reveals the additional significant feature of reconsolidated breccia of about 7.0 m thickness beneath the overburden in some cases like at sounding point RDC-5. We may therefore conclude that ANN based methods are significantly faster and efficient for detection of complex layered resistivity structures with a relatively greater degree of precision and resolution.
The identification of helicopter noise using a neural network
NASA Technical Reports Server (NTRS)
Cabell, Randolph H.; Fuller, Chris R.; O'Brien, Walter F.
1990-01-01
Experiments were carried out to demonstrate the ability of an artificial neural network (ANN) system to distinguish between the noise of two helicopters. The ANN is taught to identify helicopters by using two types of features: one that is associated with the ratio of the main-rotor to tail-rotor blade passage frequency (BPF), and the ohter that describes the distribution of peaks in the main-rotor spectrum, which is independent of the tail-rotor. It is shown that the ability of the ANN to identify helicopters is comparable to that of a conventional recognition system using the ratio of the main-rotor BPF to the tail-rotor BPF (when both the main- and the tail-rotor noise are present), but the performoance of ANN exceeds the conventional-method performance when the tail-rotor noise is absent. In addition, the results of ANN can be obtained as a function of propagation distance.
Ahmed, Afaz Uddin; Tariqul Islam, Mohammad; Ismail, Mahamod; Kibria, Salehin; Arshad, Haslina
2014-01-01
An artificial neural network (ANN) and affinity propagation (AP) algorithm based user categorization technique is presented. The proposed algorithm is designed for closed access femtocell network. ANN is used for user classification process and AP algorithm is used to optimize the ANN training process. AP selects the best possible training samples for faster ANN training cycle. The users are distinguished by using the difference of received signal strength in a multielement femtocell device. A previously developed directive microstrip antenna is used to configure the femtocell device. Simulation results show that, for a particular house pattern, the categorization technique without AP algorithm takes 5 indoor users and 10 outdoor users to attain an error-free operation. While integrating AP algorithm with ANN, the system takes 60% less training samples reducing the training time up to 50%. This procedure makes the femtocell more effective for closed access operation. PMID:25133214
Ahmed, Afaz Uddin; Islam, Mohammad Tariqul; Ismail, Mahamod; Kibria, Salehin; Arshad, Haslina
2014-01-01
An artificial neural network (ANN) and affinity propagation (AP) algorithm based user categorization technique is presented. The proposed algorithm is designed for closed access femtocell network. ANN is used for user classification process and AP algorithm is used to optimize the ANN training process. AP selects the best possible training samples for faster ANN training cycle. The users are distinguished by using the difference of received signal strength in a multielement femtocell device. A previously developed directive microstrip antenna is used to configure the femtocell device. Simulation results show that, for a particular house pattern, the categorization technique without AP algorithm takes 5 indoor users and 10 outdoor users to attain an error-free operation. While integrating AP algorithm with ANN, the system takes 60% less training samples reducing the training time up to 50%. This procedure makes the femtocell more effective for closed access operation.
Short-term acoustic forecasting via artificial neural networks for neonatal intensive care units.
Young, Jason; Macke, Christopher J; Tsoukalas, Lefteri H
2012-11-01
Noise levels in hospitals, especially neonatal intensive care units (NICUs), have become of great concern for hospital designers. This paper details an artificial neural network (ANN) approach to forecasting the sound loads in NICUs. The ANN is used to learn the relationship between past, present, and future noise levels. By training the ANN with data specific to the location and device used to measure the sound, the ANN is able to produce reasonable predictions of noise levels in the NICU. Best case results show average absolute errors of 5.06 ± 4.04% when used to predict the noise levels one hour ahead, which correspond to 2.53 dBA ± 2.02 dBA. The ANN has the tendency to overpredict during periods of stability and underpredict during large transients. This forecasting algorithm could be of use in any application where prediction and prevention of harmful noise levels are of the utmost concern.
Computer vision system for egg volume prediction using backpropagation neural network
NASA Astrophysics Data System (ADS)
Siswantoro, J.; Hilman, M. Y.; Widiasri, M.
2017-11-01
Volume is one of considered aspects in egg sorting process. A rapid and accurate volume measurement method is needed to develop an egg sorting system. Computer vision system (CVS) provides a promising solution for volume measurement problem. Artificial neural network (ANN) has been used to predict the volume of egg in several CVSs. However, volume prediction from ANN could have less accuracy due to inappropriate input features or inappropriate ANN structure. This paper proposes a CVS for predicting the volume of egg using ANN. The CVS acquired an image of egg from top view and then processed the image to extract its 1D and 2 D size features. The features were used as input for ANN in predicting the volume of egg. The experiment results show that the proposed CSV can predict the volume of egg with a good accuracy and less computation time.
NASA Astrophysics Data System (ADS)
Tan, Shanjuan; Feng, Feifei; Wu, Yongjun; Wu, Yiming
To develop a computer-aided diagnostic scheme by using an artificial neural network (ANN) combined with tumor markers for diagnosis of hepatic carcinoma (HCC) as a clinical assistant method. 140 serum samples (50 malignant, 40 benign and 50 normal) were analyzed for α-fetoprotein (AFP), carbohydrate antigen 125 (CA125), carcinoembryonic antigen (CEA), sialic acid (SA) and calcium (Ca). The five tumor marker values were then used as ANN inputs data. The result of ANN was compared with that of discriminant analysis by receiver operating characteristic (ROC) curve (AUC) analysis. The diagnostic accuracy of ANN and discriminant analysis among all samples of the test group was 95.5% and 79.3%, respectively. Analysis of multiple tumor markers based on ANN may be a better choice than the traditional statistical methods for differentiating HCC from benign or normal.
Numerical solution of the nonlinear Schrodinger equation by feedforward neural networks
NASA Astrophysics Data System (ADS)
Shirvany, Yazdan; Hayati, Mohsen; Moradian, Rostam
2008-12-01
We present a method to solve boundary value problems using artificial neural networks (ANN). A trial solution of the differential equation is written as a feed-forward neural network containing adjustable parameters (the weights and biases). From the differential equation and its boundary conditions we prepare the energy function which is used in the back-propagation method with momentum term to update the network parameters. We improved energy function of ANN which is derived from Schrodinger equation and the boundary conditions. With this improvement of energy function we can use unsupervised training method in the ANN for solving the equation. Unsupervised training aims to minimize a non-negative energy function. We used the ANN method to solve Schrodinger equation for few quantum systems. Eigenfunctions and energy eigenvalues are calculated. Our numerical results are in agreement with their corresponding analytical solution and show the efficiency of ANN method for solving eigenvalue problems.
Prediction of pelvic organ prolapse using an artificial neural network.
Robinson, Christopher J; Swift, Steven; Johnson, Donna D; Almeida, Jonas S
2008-08-01
The objective of this investigation was to test the ability of a feedforward artificial neural network (ANN) to differentiate patients who have pelvic organ prolapse (POP) from those who retain good pelvic organ support. Following institutional review board approval, patients with POP (n = 87) and controls with good pelvic organ support (n = 368) were identified from the urogynecology research database. Historical and clinical information was extracted from the database. Data analysis included the training of a feedforward ANN, variable selection, and external validation of the model with an independent data set. Twenty variables were used. The median-performing ANN model used a median of 3 (quartile 1:3 to quartile 3:5) variables and achieved an area under the receiver operator curve of 0.90 (external, independent validation set). Ninety percent sensitivity and 83% specificity were obtained in the external validation by ANN classification. Feedforward ANN modeling is applicable to the identification and prediction of POP.
Predicting pressure drop in venturi scrubbers with artificial neural networks.
Nasseh, S; Mohebbi, A; Jeirani, Z; Sarrafi, A
2007-05-08
In this study a new approach based on artificial neural networks (ANNs) has been used to predict pressure drop in venturi scrubbers. The main parameters affecting the pressure drop are mainly the gas velocity in the throat of venturi scrubber (V(g)(th)), liquid to gas flow rate ratio (L/G), and axial distance of the venturi scrubber (z). Three sets of experimental data from five different venturi scrubbers have been applied to design three independent ANNs. Comparing the results of these ANNs and the calculated results from available models shows that the results of ANNs have a better agreement with experimental data.
Optimization of Nd: YAG Laser Marking of Alumina Ceramic Using RSM And ANN
NASA Astrophysics Data System (ADS)
Peter, Josephine; Doloi, B.; Bhattacharyya, B.
2011-01-01
The present research papers deals with the artificial neural network (ANN) and the response surface methodology (RSM) based mathematical modeling and also an optimization analysis on marking characteristics on alumina ceramic. The experiments have been planned and carried out based on Design of Experiment (DOE). It also analyses the influence of the major laser marking process parameters and the optimal combination of laser marking process parametric setting has been obtained. The output of the RSM optimal data is validated through experimentation and ANN predictive model. A good agreement is observed between the results based on ANN predictive model and actual experimental observations.
Risk factors for Apgar score using artificial neural networks.
Ibrahim, Doaa; Frize, Monique; Walker, Robin C
2006-01-01
Artificial Neural Networks (ANNs) have been used in identifying the risk factors for many medical outcomes. In this paper, the risk factors for low Apgar score are introduced. This is the first time, to our knowledge, that the ANNs are used for Apgar score prediction. The medical domain of interest used is the perinatal database provided by the Perinatal Partnership Program of Eastern and Southeastern Ontario (PPPESO). The ability of the feed forward back propagation ANNs to generate strong predictive model with the most influential variables is tested. Finally, minimal sets of variables (risk factors) that are important in predicting Apgar score outcome without degrading the ANN performance are identified.
Robust Bioinformatics Recognition with VLSI Biochip Microsystem
NASA Technical Reports Server (NTRS)
Lue, Jaw-Chyng L.; Fang, Wai-Chi
2006-01-01
A microsystem architecture for real-time, on-site, robust bioinformatic patterns recognition and analysis has been proposed. This system is compatible with on-chip DNA analysis means such as polymerase chain reaction (PCR)amplification. A corresponding novel artificial neural network (ANN) learning algorithm using new sigmoid-logarithmic transfer function based on error backpropagation (EBP) algorithm is invented. Our results show the trained new ANN can recognize low fluorescence patterns better than the conventional sigmoidal ANN does. A differential logarithmic imaging chip is designed for calculating logarithm of relative intensities of fluorescence signals. The single-rail logarithmic circuit and a prototype ANN chip are designed, fabricated and characterized.
Identification of drought in Dhalai river watershed using MCDM and ANN models
NASA Astrophysics Data System (ADS)
Aher, Sainath; Shinde, Sambhaji; Guha, Shantamoy; Majumder, Mrinmoy
2017-03-01
An innovative approach for drought identification is developed using Multi-Criteria Decision Making (MCDM) and Artificial Neural Network (ANN) models from surveyed drought parameter data around the Dhalai river watershed in Tripura hinterlands, India. Total eight drought parameters, i.e., precipitation, soil moisture, evapotranspiration, vegetation canopy, cropping pattern, temperature, cultivated land, and groundwater level were obtained from expert, literature and cultivator survey. Then, the Analytic Hierarchy Process (AHP) and Analytic Network Process (ANP) were used for weighting of parameters and Drought Index Identification (DII). Field data of weighted parameters in the meso scale Dhalai River watershed were collected and used to train the ANN model. The developed ANN model was used in the same watershed for identification of drought. Results indicate that the Limited-Memory Quasi-Newton algorithm was better than the commonly used training method. Results obtained from the ANN model shows the drought index developed from the study area ranges from 0.32 to 0.72. Overall analysis revealed that, with appropriate training, the ANN model can be used in the areas where the model is calibrated, or other areas where the range of input parameters is similar to the calibrated region for drought identification.
Martarelli, D; Casettari, L; Shalaby, K S; Soliman, M E; Cespi, M; Bonacucina, G; Fagioli, L; Perinelli, D R; Lam, J K W; Palmieri, G F
2016-01-01
Efficacy of melatonin in treating sleep disorders has been demonstrated in numerous studies. Being with short half-life, melatonin needs to be formulated in extended-release tablets to prevent the fast drop of its plasma concentration. However, an attempt to mimic melatonin natural plasma levels during night time is challenging. In this work, Artificial Neural Networks (ANNs) were used to optimize melatonin release from hydrophilic polymer matrices. Twenty-seven different tablet formulations with different amounts of hydroxypropyl methylcellulose, xanthan gum and Carbopol®974P NF were prepared and subjected to drug release studies. Using dissolution test data as inputs for ANN designed by Visual Basic programming language, the ideal number of neurons in the hidden layer was determined trial and error methodology to guarantee the best performance of constructed ANN. Results showed that the ANN with nine neurons in the hidden layer had the best results. ANN was examined to check its predictability and then used to determine the best formula that can mimic the release of melatonin from a marketed brand using similarity fit factor. This work shows the possibility of using ANN to optimize the composition of prolonged-release melatonin tablets having dissolution profile desired.
NASA Astrophysics Data System (ADS)
Wang, Y. S.; Shen, G. Q.; Xing, Y. F.
2014-03-01
Based on the artificial neural network (ANN) technique, an objective sound quality evaluation (SQE) model for synthesis annoyance of vehicle interior noises is presented in this paper. According to the standard named GB/T18697, firstly, the interior noises under different working conditions of a sample vehicle are measured and saved in a noise database. Some mathematical models for loudness, sharpness and roughness of the measured vehicle noises are established and performed by Matlab programming. Sound qualities of the vehicle interior noises are also estimated by jury tests following the anchored semantic differential (ASD) procedure. Using the objective and subjective evaluation results, furthermore, an ANN-based model for synthetical annoyance evaluation of vehicle noises, so-called ANN-SAE, is developed. Finally, the ANN-SAE model is proved by some verification tests with the leave-one-out algorithm. The results suggest that the proposed ANN-SAE model is accurate and effective and can be directly used to estimate sound quality of the vehicle interior noises, which is very helpful for vehicle acoustical designs and improvements. The ANN-SAE approach may be extended to deal with other sound-related fields for product quality evaluations in SQE engineering.
NASA Astrophysics Data System (ADS)
Sahoo, Sasmita; Jha, Madan K.
2013-12-01
The potential of multiple linear regression (MLR) and artificial neural network (ANN) techniques in predicting transient water levels over a groundwater basin were compared. MLR and ANN modeling was carried out at 17 sites in Japan, considering all significant inputs: rainfall, ambient temperature, river stage, 11 seasonal dummy variables, and influential lags of rainfall, ambient temperature, river stage and groundwater level. Seventeen site-specific ANN models were developed, using multi-layer feed-forward neural networks trained with Levenberg-Marquardt backpropagation algorithms. The performance of the models was evaluated using statistical and graphical indicators. Comparison of the goodness-of-fit statistics of the MLR models with those of the ANN models indicated that there is better agreement between the ANN-predicted groundwater levels and the observed groundwater levels at all the sites, compared to the MLR. This finding was supported by the graphical indicators and the residual analysis. Thus, it is concluded that the ANN technique is superior to the MLR technique in predicting spatio-temporal distribution of groundwater levels in a basin. However, considering the practical advantages of the MLR technique, it is recommended as an alternative and cost-effective groundwater modeling tool.
Improving Gastric Cancer Outcome Prediction Using Single Time-Point Artificial Neural Network Models
Nilsaz-Dezfouli, Hamid; Abu-Bakar, Mohd Rizam; Arasan, Jayanthi; Adam, Mohd Bakri; Pourhoseingholi, Mohamad Amin
2017-01-01
In cancer studies, the prediction of cancer outcome based on a set of prognostic variables has been a long-standing topic of interest. Current statistical methods for survival analysis offer the possibility of modelling cancer survivability but require unrealistic assumptions about the survival time distribution or proportionality of hazard. Therefore, attention must be paid in developing nonlinear models with less restrictive assumptions. Artificial neural network (ANN) models are primarily useful in prediction when nonlinear approaches are required to sift through the plethora of available information. The applications of ANN models for prognostic and diagnostic classification in medicine have attracted a lot of interest. The applications of ANN models in modelling the survival of patients with gastric cancer have been discussed in some studies without completely considering the censored data. This study proposes an ANN model for predicting gastric cancer survivability, considering the censored data. Five separate single time-point ANN models were developed to predict the outcome of patients after 1, 2, 3, 4, and 5 years. The performance of ANN model in predicting the probabilities of death is consistently high for all time points according to the accuracy and the area under the receiver operating characteristic curve. PMID:28469384
Guzmán-Bárcenas, José; Hernández, José Alfredo; Arias-Martínez, Joel; Baptista-González, Héctor; Ceballos-Reyes, Guillermo; Irles, Claudine
2016-07-21
Leptin and insulin levels are key factors regulating fetal and neonatal energy homeostasis, development and growth. Both biomarkers are used as predictors of weight gain and obesity during infancy. There are currently no prediction algorithms for cord blood (UCB) hormone levels using Artificial Neural Networks (ANN) that have been directly trained with anthropometric maternal and neonatal data, from neonates exposed to distinct metabolic environments during pregnancy (obese with or without gestational diabetes mellitus or lean women). The aims were: 1) to develop ANN models that simulate leptin and insulin concentrations in UCB based on maternal and neonatal data (ANN perinatal model) or from only maternal data during early gestation (ANN prenatal model); 2) To evaluate the biological relevance of each parameter (maternal and neonatal anthropometric variables). We collected maternal and neonatal anthropometric data (n = 49) in normoglycemic healthy lean, obese or obese with gestational diabetes mellitus women, as well as determined UCB leptin and insulin concentrations by ELISA. The ANN perinatal model consisted of an input layer of 12 variables (maternal and neonatal anthropometric and biochemical data from early gestation and at term) while the ANN prenatal model used only 6 variables (maternal anthropometric from early gestation) in the input layer. For both networks, the output layer contained 1 variable to UCB leptin or to UCB insulin concentration. The best architectures for the ANN perinatal models estimating leptin and insulin were 12-5-1 while for the ANN prenatal models, 6-5-1 and 6-4-1 were found for leptin and insulin, respectively. ANN models presented an excellent agreement between experimental and simulated values. Interestingly, the use of only prenatal maternal anthropometric data was sufficient to estimate UCB leptin and insulin values. Maternal BMI, weight and age as well as neonatal birth were the most influential parameters for leptin while maternal morbidity was the most significant factor for insulin prediction. Low error percentage and short computing time makes these ANN models interesting in a translational research setting, to be applied for the prediction of neonatal leptin and insulin values from maternal anthropometric data, and possibly the on-line estimation during pregnancy.
Costalago Meruelo, Alicia; Simpson, David M; Veres, Sandor M; Newland, Philip L
2016-03-01
Mathematical modelling is used routinely to understand the coding properties and dynamics of responses of neurons and neural networks. Here we analyse the effectiveness of Artificial Neural Networks (ANNs) as a modelling tool for motor neuron responses. We used ANNs to model the synaptic responses of an identified motor neuron, the fast extensor motor neuron, of the desert locust in response to displacement of a sensory organ, the femoral chordotonal organ, which monitors movements of the tibia relative to the femur of the leg. The aim of the study was threefold: first to determine the potential value of ANNs as tools to model and investigate neural networks, second to understand the generalisation properties of ANNs across individuals and to different input signals and third, to understand individual differences in responses of an identified neuron. A metaheuristic algorithm was developed to design the ANN architectures. The performance of the models generated by the ANNs was compared with those generated through previous mathematical models of the same neuron. The results suggest that ANNs are significantly better than LNL and Wiener models in predicting specific neural responses to Gaussian White Noise, but not significantly different when tested with sinusoidal inputs. They are also able to predict responses of the same neuron in different individuals irrespective of which animal was used to develop the model, although notable differences between some individuals were evident. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.
Automated Wildfire Detection Through Artificial Neural Networks
NASA Technical Reports Server (NTRS)
Miller, Jerry; Borne, Kirk; Thomas, Brian; Huang, Zhenping; Chi, Yuechen
2005-01-01
We have tested and deployed Artificial Neural Network (ANN) data mining techniques to analyze remotely sensed multi-channel imaging data from MODIS, GOES, and AVHRR. The goal is to train the ANN to learn the signatures of wildfires in remotely sensed data in order to automate the detection process. We train the ANN using the set of human-detected wildfires in the U.S., which are provided by the Hazard Mapping System (HMS) wildfire detection group at NOAA/NESDIS. The ANN is trained to mimic the behavior of fire detection algorithms and the subjective decision- making by N O M HMS Fire Analysts. We use a local extremum search in order to isolate fire pixels, and then we extract a 7x7 pixel array around that location in 3 spectral channels. The corresponding 147 pixel values are used to populate a 147-dimensional input vector that is fed into the ANN. The ANN accuracy is tested and overfitting is avoided by using a subset of the training data that is set aside as a test data set. We have achieved an automated fire detection accuracy of 80-92%, depending on a variety of ANN parameters and for different instrument channels among the 3 satellites. We believe that this system can be deployed worldwide or for any region to detect wildfires automatically in satellite imagery of those regions. These detections can ultimately be used to provide thermal inputs to climate models.
Savala, Rajiv; Dey, Pranab; Gupta, Nalini
2018-03-01
To distinguish follicular adenoma (FA) and follicular carcinoma (FC) of thyroid in fine needle aspiration cytology (FNAC) is a challenging problem. In this article, we attempted to build an artificial neural network (ANN) model from the cytological and morphometric features of the FNAC smears of thyroid to distinguish FA from FC. The cytological features and morphometric analysis were done on the FNAC smears of histology proven cases of FA (26) and FC (31). The cytological features were analysed semi-quantitatively by two independent observers (RS and PD). These data were used to make an ANN model to differentiate FA versus FC on FNAC material. The performance of this ANN model was assessed by analysing the confusion matrix and receiving operator curve. There were 39 cases in training set, 9 cases each in validation and test sets. In the test group, ANN model successfully distinguished all cases (9/9) of FA and FC. The area under receiver operating curve was 1. The present ANN model is efficient to diagnose follicular adenoma and carcinoma cases on cytology smears without any error. In future, this ANN model will be able to diagnose follicular adenoma and carcinoma cases on thyroid aspirate. This study has immense potential in future. This is an open ended ANN model and more parameters and more cases can be included to make the model much stronger. © 2017 Wiley Periodicals, Inc.
Chatterjee, Sankhadeep; Dey, Nilanjan; Shi, Fuqian; Ashour, Amira S; Fong, Simon James; Sen, Soumya
2018-04-01
Dengue fever detection and classification have a vital role due to the recent outbreaks of different kinds of dengue fever. Recently, the advancement in the microarray technology can be employed for such classification process. Several studies have established that the gene selection phase takes a significant role in the classifier performance. Subsequently, the current study focused on detecting two different variations, namely, dengue fever (DF) and dengue hemorrhagic fever (DHF). A modified bag-of-features method has been proposed to select the most promising genes in the classification process. Afterward, a modified cuckoo search optimization algorithm has been engaged to support the artificial neural (ANN-MCS) to classify the unknown subjects into three different classes namely, DF, DHF, and another class containing convalescent and normal cases. The proposed method has been compared with other three well-known classifiers, namely, multilayer perceptron feed-forward network (MLP-FFN), artificial neural network (ANN) trained with cuckoo search (ANN-CS), and ANN trained with PSO (ANN-PSO). Experiments have been carried out with different number of clusters for the initial bag-of-features-based feature selection phase. After obtaining the reduced dataset, the hybrid ANN-MCS model has been employed for the classification process. The results have been compared in terms of the confusion matrix-based performance measuring metrics. The experimental results indicated a highly statistically significant improvement with the proposed classifier over the traditional ANN-CS model.
Okumura, Eiichiro; Kawashita, Ikuo; Ishida, Takayuki
2017-08-01
It is difficult for radiologists to classify pneumoconiosis from category 0 to category 3 on chest radiographs. Therefore, we have developed a computer-aided diagnosis (CAD) system based on a three-stage artificial neural network (ANN) method for classification based on four texture features. The image database consists of 36 chest radiographs classified as category 0 to category 3. Regions of interest (ROIs) with a matrix size of 32 × 32 were selected from chest radiographs. We obtained a gray-level histogram, histogram of gray-level difference, gray-level run-length matrix (GLRLM) feature image, and gray-level co-occurrence matrix (GLCOM) feature image in each ROI. For ROI-based classification, the first ANN was trained with each texture feature. Next, the second ANN was trained with output patterns obtained from the first ANN. Finally, we obtained a case-based classification for distinguishing among four categories with the third ANN method. We determined the performance of the third ANN by receiver operating characteristic (ROC) analysis. The areas under the ROC curve (AUC) of the highest category (severe pneumoconiosis) case and the lowest category (early pneumoconiosis) case were 0.89 ± 0.09 and 0.84 ± 0.12, respectively. The three-stage ANN with four texture features showed the highest performance for classification among the four categories. Our CAD system would be useful for assisting radiologists in classification of pneumoconiosis from category 0 to category 3.
Sentürklü, Songul; Landblom, Douglas G; Maddock, Robert; Petry, Tim; Wachenheim, Cheryl J; Paisley, Steve I
2018-06-04
In a 2-yr study, spring-born yearling steers (n = 144), previously grown to gain <0.454 kg·steer-1·d-1, following weaning in the fall, were stratified by BW and randomly assigned to three retained ownership rearing systems (three replications) in early May. Systems were 1) feedlot (FLT), 2) steers that grazed perennial crested wheatgrass (CWG) and native range (NR) before FLT entry (PST), and 3) steers that grazed perennial CWG and NR, and then field pea-barley (PBLY) mix and unharvested corn (UC) before FLT entry (ANN). The PST and ANN steers grazed 181 d before FLT entry. During grazing, ADG of ANN steers (1.01 ± SE kg/d) and PST steers (0.77 ± SE kg/d) did not differ (P = 0.31). But even though grazing cost per steer was greater (P = 0.002) for ANN vs. PST, grazing cost per kg of gain did not differ (P = 0.82). The ANN forage treatment improved LM area (P = 0.03) and percent i.m. fat (P = 0.001). The length of the finishing period was greatest (P < 0.001) for FLT (142 d), intermediate for PST (91 d), and least for ANN (66 d). Steer starting (P = 0.015) and ending finishing BW (P = 0.022) of ANN and PST were greater than FLT steers. Total FLT BW gain was greater for FLT steers (P = 0.017), but there were no treatment differences for ADG, (P = 0.16), DMI (P = 0.21), G: F (P = 0.82), and feed cost per kg of gain (P = 0.61). However, feed cost per steer was greatest for FLT ($578.30), least for ANN ($276.12), and intermediate for PST ($381.18) (P = 0.043). There was a tendency for FLT steer HCW to be less than ANN and PST, which did not differ (P = 0.076). There was no difference between treatments for LM area (P = 0.094), backfat depth (P = 0.28), marbling score (P = 0.18), USDA yield grade (P = 0.44), and quality grade (P = 0.47). Grazing steer net return ranged from an ANN system high of $9.09/steer to a FLT control system net loss of -$298 and a PST system that was slightly less than the ANN system (-$30.10). Ten-year (2003 to 2012) hedging and net return sensitivity analysis revealed that the FLT treatment underperformed 7 of 10 yr and futures hedging protection against catastrophic losses were profitable 40, 30, and 20% of the time period for ANN, PST, and FLT, respectively. Retained ownership from birth through slaughter coupled with delayed FLT entry grazing perennial and annual forages has the greatest profitability potential.
NASA Astrophysics Data System (ADS)
Prasad, Ramendra; Deo, Ravinesh C.; Li, Yan; Maraseni, Tek
2017-11-01
Forecasting streamflow is vital for strategically planning, utilizing and redistributing water resources. In this paper, a wavelet-hybrid artificial neural network (ANN) model integrated with iterative input selection (IIS) algorithm (IIS-W-ANN) is evaluated for its statistical preciseness in forecasting monthly streamflow, and it is then benchmarked against M5 Tree model. To develop hybrid IIS-W-ANN model, a global predictor matrix is constructed for three local hydrological sites (Richmond, Gwydir, and Darling River) in Australia's agricultural (Murray-Darling) Basin. Model inputs comprised of statistically significant lagged combination of streamflow water level, are supplemented by meteorological data (i.e., precipitation, maximum and minimum temperature, mean solar radiation, vapor pressure and evaporation) as the potential model inputs. To establish robust forecasting models, iterative input selection (IIS) algorithm is applied to screen the best data from the predictor matrix and is integrated with the non-decimated maximum overlap discrete wavelet transform (MODWT) applied on the IIS-selected variables. This resolved the frequencies contained in predictor data while constructing a wavelet-hybrid (i.e., IIS-W-ANN and IIS-W-M5 Tree) model. Forecasting ability of IIS-W-ANN is evaluated via correlation coefficient (r), Willmott's Index (WI), Nash-Sutcliffe Efficiency (ENS), root-mean-square-error (RMSE), and mean absolute error (MAE), including the percentage RMSE and MAE. While ANN models are seen to outperform M5 Tree executed for all hydrological sites, the IIS variable selector was efficient in determining the appropriate predictors, as stipulated by the better performance of the IIS coupled (ANN and M5 Tree) models relative to the models without IIS. When IIS-coupled models are integrated with MODWT, the wavelet-hybrid IIS-W-ANN and IIS-W-M5 Tree are seen to attain significantly accurate performance relative to their standalone counterparts. Importantly, IIS-W-ANN model accuracy outweighs IIS-ANN, as evidenced by a larger r and WI (by 7.5% and 3.8%, respectively) and a lower RMSE (by 21.3%). In comparison to the IIS-W-M5 Tree model, IIS-W-ANN model yielded larger values of WI = 0.936-0.979 and ENS = 0.770-0.920. Correspondingly, the errors (RMSE and MAE) ranged from 0.162-0.487 m and 0.139-0.390 m, respectively, with relative errors, RRMSE = (15.65-21.00) % and MAPE = (14.79-20.78) %. Distinct geographic signature is evident where the most and least accurately forecasted streamflow data is attained for the Gwydir and Darling River, respectively. Conclusively, this study advocates the efficacy of iterative input selection, allowing the proper screening of model predictors, and subsequently, its integration with MODWT resulting in enhanced performance of the models applied in streamflow forecasting.
NASA Astrophysics Data System (ADS)
Kumar, J.; Jain, A.; Srivastava, R.
2005-12-01
The identification of pollution sources in aquifers is an important area of research not only for the hydrologists but also for the local and Federal agencies and defense organizations. Once the data in terms of pollutant concentration measurements at observation wells become known, it is important to identify the polluting industry in order to implement punitive or remedial measures. Traditionally, hydrologists have relied on the conceptual methods for the identification of groundwater pollution sources. The problem of identification of groundwater pollution sources using the conceptual methods requires a thorough understanding of the groundwater flow and contaminant transport processes and inverse modeling procedures that are highly complex and difficult to implement. Recently, the soft computing techniques, such as artificial neural networks (ANNs) and genetic algorithms, have provided an attractive and easy to implement alternative to solve complex problems efficiently. Some researchers have used ANNs for the identification of pollution sources in aquifers. A major problem with most previous studies using ANNs has been the large size of the neural networks that are needed to model the inverse problem. The breakthrough curves at an observation well may consist of hundreds of concentration measurements, and presenting all of them to the input layer of an ANN not only results in humongous networks but also requires large amount of training and testing data sets to develop the ANN models. This paper presents the results of a study aimed at using certain characteristics of the breakthrough curves and ANNs for determining the distance of the pollution source from a given observation well. Two different neural network models are developed that differ in the manner of characterizing the breakthrough curves. The first ANN model uses five parameters, similar to the synthetic unit hydrograph parameters, to characterize the breakthrough curves. The five parameters employed are peak concentration, time to peak concentration, the widths of the breakthrough curves at 50% and 75% of the peak concentration, and the time base of the breakthrough curve. The second ANN model employs only the first four parameters leaving out the time base. The measurement of breakthrough curve at an observation well involves very high costs in sample collection at suitable time intervals and analysis for various contaminants. The receding portions of the breakthrough curves are normally very long and excluding the time base from modeling would result in considerable cost savings. The feed-forward multi-layer perceptron (MLP) type neural networks trained using the back-propagation algorithm, are employed in this study. The ANN models for the two approaches were developed using simulated data generated for conservative pollutant transport through a homogeneous aquifer. A new approach for ANN training using back-propagation is employed that considers two different error statistics to prevent over-training and under-training of the ANNs. The preliminary results indicate that the ANNs are able to identify the location of the pollution source very efficiently from both the methods of the breakthrough curves characterization.
How Children with Autism Reason about Other's Intentions: False-Belief and Counterfactual Inferences
ERIC Educational Resources Information Center
Rasga, Célia; Quelhas, Ana Cristina; Byrne, Ruth M. J.
2017-01-01
We examine false belief and counterfactual reasoning in children with autism with a new change-of-intentions task. Children listened to stories, for example, Anne is picking up toys and John hears her say she wants to find her ball. John goes away and the reason for Anne's action changes--Anne's mother tells her to tidy her bedroom. We asked,…
2011-07-01
supervised learning process is compared to that of Artificial Neural Network ( ANNs ), fuzzy logic rule set, and Bayesian network approaches...of both fuzzy logic systems and Artificial Neural Networks ( ANNs ). Like fuzzy logic systems, the CINet technique allows the use of human- intuitive...fuzzy rule systems [3] CINets also maintain features common to both fuzzy systems and ANNs . The technique can be be shown to possess the property
Command and Control of Teams of Autonomous Units
2012-06-01
done by a hybrid genetic algorithm (GA) particle swarm optimization ( PSO ) algorithm called PIDGION-alternate. This training algorithm is an ANN ...human controller will recognize the behaviors as being safe and correct. As the HyperNEAT approach produces Artificial Neural Nets ( ANN ), we can...optimization technique that generates efficient ANN controls from simple environmental feedback. FALCONET has been tested showing that it can produce
Federal Register 2010, 2011, 2012, 2013, 2014
2011-04-27
... wishing to attend should contact Lee Anne Shaffer of the Department of State's Bureau of East Asian and... are welcome to do so by e-mail to Lee Anne Shaffer at [email protected] . A member of the public... participate by teleconferencing can contact Lee Anne Shaffer at 202-647-7059 to receive the conference call-in...
The application of artificial neural networks in astronomy
NASA Astrophysics Data System (ADS)
Li, Li-Li; Zhang, Yan-Xia; Zhao, Yong-Heng; Yang, Da-Wei
2006-12-01
Artificial Neural Networks (ANNs) are computer algorithms inspired from simple models of human central nervous system activity. They can be roughly divided into two main kinds: supervised and unsupervised. The supervised approach lays the stress on "teaching" a machine to do the work of a mention human expert, usually by showing examples for which the true answer is supplied by the expert. The unsupervised one is aimed at learning new things from the data, and most useful when the data cannot easily be plotted in a two or three dimensional space. ANNs have been used widely and successfully in various fields, for instance, pattern recognition, financial analysis, biology, engineering and so on, because they have many merits such as self-learning, self-adapting, good robustness and dynamically rapid response as well as strong capability of dealing with non-linear problems. In the last few years there has been an increasing interest toward the astronomical applications of ANNs. In this paper, the authors firstly introduce the fundamental principle of ANNs together with the architecture of the network and outline various kinds of learning algorithms and network toplogies. The specific aspects of the applications of ANNs in astronomical problems are also listed, which contain the strong capabilities of approximating to arbitrary accuracy, any nonlinear functional mapping, parallel and distributed storage, tolerance of faulty and generalization of results. They summarize the advantages and disadvantages of main ANN models available to the astronomical community. Furthermore, the application cases of ANNs in astronomy are mainly described in detail. Here, the focus is on some of the most interesting fields of its application, for example: object detection, star/galaxy classification, spectral classification, galaxy morphology classification, the estimation of photometric redshifts of galaxies and time series analysis. In addition, other kinds of applications have been only touched upon. Finally, the development and application prospects of ANNs is discussed. With the increase of quantity and the distributing complexity of astronomical data, its scientific exploitation requires a variety of automated tools, which are capable to perform huge amount of work, such as data preprocessing, feature selection, data reduction, data mining amd data analysis. ANNs, one of intelligent tools, will show more and more superiorities.
Fei, Y; Hu, J; Li, W-Q; Wang, W; Zong, G-Q
2017-03-01
Essentials Predicting the occurrence of portosplenomesenteric vein thrombosis (PSMVT) is difficult. We studied 72 patients with acute pancreatitis. Artificial neural networks modeling was more accurate than logistic regression in predicting PSMVT. Additional predictive factors may be incorporated into artificial neural networks. Objective To construct and validate artificial neural networks (ANNs) for predicting the occurrence of portosplenomesenteric venous thrombosis (PSMVT) and compare the predictive ability of the ANNs with that of logistic regression. Methods The ANNs and logistic regression modeling were constructed using simple clinical and laboratory data of 72 acute pancreatitis (AP) patients. The ANNs and logistic modeling were first trained on 48 randomly chosen patients and validated on the remaining 24 patients. The accuracy and the performance characteristics were compared between these two approaches by SPSS17.0 software. Results The training set and validation set did not differ on any of the 11 variables. After training, the back propagation network training error converged to 1 × 10 -20 , and it retained excellent pattern recognition ability. When the ANNs model was applied to the validation set, it revealed a sensitivity of 80%, specificity of 85.7%, a positive predictive value of 77.6% and negative predictive value of 90.7%. The accuracy was 83.3%. Differences could be found between ANNs modeling and logistic regression modeling in these parameters (10.0% [95% CI, -14.3 to 34.3%], 14.3% [95% CI, -8.6 to 37.2%], 15.7% [95% CI, -9.9 to 41.3%], 11.8% [95% CI, -8.2 to 31.8%], 22.6% [95% CI, -1.9 to 47.1%], respectively). When ANNs modeling was used to identify PSMVT, the area under receiver operating characteristic curve was 0.849 (95% CI, 0.807-0.901), which demonstrated better overall properties than logistic regression modeling (AUC = 0.716) (95% CI, 0.679-0.761). Conclusions ANNs modeling was a more accurate tool than logistic regression in predicting the occurrence of PSMVT following AP. More clinical factors or biomarkers may be incorporated into ANNs modeling to improve its predictive ability. © 2016 International Society on Thrombosis and Haemostasis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gong, Y; Yu, J; Yeung, V
Purpose: Artificial neural networks (ANN) can be used to discover complex relations within datasets to help with medical decision making. This study aimed to develop an ANN method to predict two-year overall survival of patients with peri-ampullary cancer (PAC) following resection. Methods: Data were collected from 334 patients with PAC following resection treated in our institutional pancreatic tumor registry between 2006 and 2012. The dataset contains 14 variables including age, gender, T-stage, tumor differentiation, positive-lymph-node ratio, positive resection margins, chemotherapy, radiation therapy, and tumor histology.After censoring for two-year survival analysis, 309 patients were left, of which 44 patients (∼15%) weremore » randomly selected to form testing set. The remaining 265 cases were randomly divided into training set (211 cases, ∼80% of 265) and validation set (54 cases, ∼20% of 265) for 20 times to build 20 ANN models. Each ANN has one hidden layer with 5 units. The 20 ANN models were ranked according to their concordance index (c-index) of prediction on validation sets. To further improve prediction, the top 10% of ANN models were selected, and their outputs averaged for prediction on testing set. Results: By random division, 44 cases in testing set and the remaining 265 cases have approximately equal two-year survival rates, 36.4% and 35.5% respectively. The 20 ANN models, which were trained and validated on the 265 cases, yielded mean c-indexes as 0.59 and 0.63 on validation sets and the testing set, respectively. C-index was 0.72 when the two best ANN models (top 10%) were used in prediction on testing set. The c-index of Cox regression analysis was 0.63. Conclusion: ANN improved survival prediction for patients with PAC. More patient data and further analysis of additional factors may be needed for a more robust model, which will help guide physicians in providing optimal post-operative care. This project was supported by PA CURE Grant.« less
A hybrid deep neural network and physically based distributed model for river stage prediction
NASA Astrophysics Data System (ADS)
hitokoto, Masayuki; sakuraba, Masaaki
2016-04-01
We developed the real-time river stage prediction model, using the hybrid deep neural network and physically based distributed model. As the basic model, 4 layer feed-forward artificial neural network (ANN) was used. As a network training method, the deep learning technique was applied. To optimize the network weight, the stochastic gradient descent method based on the back propagation method was used. As a pre-training method, the denoising autoencoder was used. Input of the ANN model is hourly change of water level and hourly rainfall, output data is water level of downstream station. In general, the desirable input of the ANN has strong correlation with the output. In conceptual hydrological model such as tank model and storage-function model, river discharge is governed by the catchment storage. Therefore, the change of the catchment storage, downstream discharge subtracted from rainfall, can be the potent input candidate of the ANN model instead of rainfall. From this point of view, the hybrid deep neural network and physically based distributed model was developed. The prediction procedure of the hybrid model is as follows; first, downstream discharge was calculated by the distributed model, and then estimates the hourly change of catchment storage form rainfall and calculated discharge as the input of the ANN model, and finally the ANN model was calculated. In the training phase, hourly change of catchment storage can be calculated by the observed rainfall and discharge data. The developed model was applied to the one catchment of the OOYODO River, one of the first-grade river in Japan. The modeled catchment is 695 square km. For the training data, 5 water level gauging station and 14 rain-gauge station in the catchment was used. The training floods, superior 24 events, were selected during the period of 2005-2014. Prediction was made up to 6 hours, and 6 models were developed for each prediction time. To set the proper learning parameters and network architecture of the ANN model, sensitivity analysis was done by the case study approach. The prediction result was evaluated by the superior 4 flood events by the leave-one-out cross validation. The prediction result of the basic 4 layer ANN was better than the conventional 3 layer ANN model. However, the result did not reproduce well the biggest flood event, supposedly because the lack of the sufficient high-water level flood event in the training data. The result of the hybrid model outperforms the basic ANN model and distributed model, especially improved the performance of the basic ANN model in the biggest flood event.
NASA Astrophysics Data System (ADS)
Areekul, Phatchakorn; Senjyu, Tomonobu; Urasaki, Naomitsu; Yona, Atsushi
Electricity price forecasting is becoming increasingly relevant to power producers and consumers in the new competitive electric power markets, when planning bidding strategies in order to maximize their benefits and utilities, respectively. This paper proposed a method to predict hourly electricity prices for next-day electricity markets by combination methodology of ARIMA and ANN models. The proposed method is examined on the Australian National Electricity Market (NEM), New South Wales regional in year 2006. Comparison of forecasting performance with the proposed ARIMA, ANN and combination (ARIMA-ANN) models are presented. Empirical results indicate that an ARIMA-ANN model can improve the price forecasting accuracy.
Optimization of Nd: YAG Laser Marking of Alumina Ceramic Using RSM And ANN
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peter, Josephine; Doloi, B.; Bhattacharyya, B.
The present research papers deals with the artificial neural network (ANN) and the response surface methodology (RSM) based mathematical modeling and also an optimization analysis on marking characteristics on alumina ceramic. The experiments have been planned and carried out based on Design of Experiment (DOE). It also analyses the influence of the major laser marking process parameters and the optimal combination of laser marking process parametric setting has been obtained. The output of the RSM optimal data is validated through experimentation and ANN predictive model. A good agreement is observed between the results based on ANN predictive model and actualmore » experimental observations.« less
Use of artificial neural networks on optical track width measurements.
Smith, Richard J; See, Chung W; Somekh, Mike G; Yacoot, Andrew
2007-08-01
We have demonstrated recently that, by using an ultrastable optical interferometer together with artificial neural networks (ANNs), track widths down to 60 nm can be measured with a 0.3 NA objective lens. We investigate the effective conditions for training ANNs. Experimental results will be used to show the characteristics of the training samples and the data format of the ANN inputs required to produce suitably trained ANNs. Results obtained with networks measuring double tracks, and classifying different structures, will be presented to illustrate the capability of the technique. We include a discussion on expansion of the application areas of the system, allowing it to be used as a general purpose instrument.
Use of artificial neural networks on optical track width measurements
NASA Astrophysics Data System (ADS)
Smith, Richard J.; See, Chung W.; Somekh, Mike G.; Yacoot, Andrew
2007-08-01
We have demonstrated recently that, by using an ultrastable optical interferometer together with artificial neural networks (ANNs), track widths down to 60 nm can be measured with a 0.3 NA objective lens. We investigate the effective conditions for training ANNs. Experimental results will be used to show the characteristics of the training samples and the data format of the ANN inputs required to produce suitably trained ANNs. Results obtained with networks measuring double tracks, and classifying different structures, will be presented to illustrate the capability of the technique. We include a discussion on expansion of the application areas of the system, allowing it to be used as a general purpose instrument.
A Novel Higher Order Artificial Neural Networks
NASA Astrophysics Data System (ADS)
Xu, Shuxiang
2010-05-01
In this paper a new Higher Order Neural Network (HONN) model is introduced and applied in several data mining tasks. Data Mining extracts hidden patterns and valuable information from large databases. A hyperbolic tangent function is used as the neuron activation function for the new HONN model. Experiments are conducted to demonstrate the advantages and disadvantages of the new HONN model, when compared with several conventional Artificial Neural Network (ANN) models: Feedforward ANN with the sigmoid activation function; Feedforward ANN with the hyperbolic tangent activation function; and Radial Basis Function (RBF) ANN with the Gaussian activation function. The experimental results seem to suggest that the new HONN holds higher generalization capability as well as abilities in handling missing data.
Bio-Inspired Microsystem for Robust Genetic Assay Recognition
Lue, Jaw-Chyng; Fang, Wai-Chi
2008-01-01
A compact integrated system-on-chip (SoC) architecture solution for robust, real-time, and on-site genetic analysis has been proposed. This microsystem solution is noise-tolerable and suitable for analyzing the weak fluorescence patterns from a PCR prepared dual-labeled DNA microchip assay. In the architecture, a preceding VLSI differential logarithm microchip is designed for effectively computing the logarithm of the normalized input fluorescence signals. A posterior VLSI artificial neural network (ANN) processor chip is used for analyzing the processed signals from the differential logarithm stage. A single-channel logarithmic circuit was fabricated and characterized. A prototype ANN chip with unsupervised winner-take-all (WTA) function was designed, fabricated, and tested. An ANN learning algorithm using a novel sigmoid-logarithmic transfer function based on the supervised backpropagation (BP) algorithm is proposed for robustly recognizing low-intensity patterns. Our results show that the trained new ANN can recognize low-fluorescence patterns better than an ANN using the conventional sigmoid function. PMID:18566679
NASA Astrophysics Data System (ADS)
Xing, Y. F.; Wang, Y. S.; Shi, L.; Guo, H.; Chen, H.
2016-01-01
According to the human perceptional characteristics, a method combined by the optimal wavelet-packet transform and artificial neural network, so-called OWPT-ANN model, for psychoacoustical recognition is presented. Comparisons of time-frequency analysis methods are performed, and an OWPT with 21 critical bands is designed for feature extraction of a sound, as is a three-layer back-propagation ANN for sound quality (SQ) recognition. Focusing on the loudness and sharpness, the OWPT-ANN model is applied on vehicle noises under different working conditions. Experimental verifications show that the OWPT can effectively transfer a sound into a time-varying energy pattern as that in the human auditory system. The errors of loudness and sharpness of vehicle noise from the OWPT-ANN are all less than 5%, which suggest a good accuracy of the OWPT-ANN model in SQ recognition. The proposed methodology might be regarded as a promising technique for signal processing in the human-hearing related fields in engineering.
NASA Astrophysics Data System (ADS)
Darwish, Hany W.; Hassan, Said A.; Salem, Maissa Y.; El-Zeany, Badr A.
2014-03-01
Different chemometric models were applied for the quantitative analysis of Amlodipine (AML), Valsartan (VAL) and Hydrochlorothiazide (HCT) in ternary mixture, namely, Partial Least Squares (PLS) as traditional chemometric model and Artificial Neural Networks (ANN) as advanced model. PLS and ANN were applied with and without variable selection procedure (Genetic Algorithm GA) and data compression procedure (Principal Component Analysis PCA). The chemometric methods applied are PLS-1, GA-PLS, ANN, GA-ANN and PCA-ANN. The methods were used for the quantitative analysis of the drugs in raw materials and pharmaceutical dosage form via handling the UV spectral data. A 3-factor 5-level experimental design was established resulting in 25 mixtures containing different ratios of the drugs. Fifteen mixtures were used as a calibration set and the other ten mixtures were used as validation set to validate the prediction ability of the suggested methods. The validity of the proposed methods was assessed using the standard addition technique.
Garcia-Martin, Elena; Herrero, Raquel; Bambo, Maria P; Ara, Jose R; Martin, Jesus; Polo, Vicente; Larrosa, Jose M; Garcia-Feijoo, Julian; Pablo, Luis E
2015-01-01
To analyze the ability of Spectralis optical coherence tomography (OCT) to detect multiple sclerosis (MS) and to distinguish MS eyes with antecedent optic neuritis (ON). To analyze the capability of artificial neural network (ANN) techniques to improve the diagnostic precision. MS patients and controls were enrolled (n = 217). OCT was used to determine the 768 retinal nerve fiber layer thicknesses. Sensitivity and specificity were evaluated to test the ability of OCT to discriminate between MS and healthy eyes, and between MS with and without antecedent ON using ANN. Using ANN technique multilayer perceptrons, OCT could detect MS with a sensitivity of 89.3%, a specificity of 87.6%, and a diagnostic precision of 88.5%. Compared with the OCT-provided parameters, the ANN had a better sensitivity-specificity balance. ANN technique improves the capability of Spectralis OCT to detect MS disease and to distinguish MS eyes with or without antecedent ON.
A New Data Mining Scheme Using Artificial Neural Networks
Kamruzzaman, S. M.; Jehad Sarkar, A. M.
2011-01-01
Classification is one of the data mining problems receiving enormous attention in the database community. Although artificial neural networks (ANNs) have been successfully applied in a wide range of machine learning applications, they are however often regarded as black boxes, i.e., their predictions cannot be explained. To enhance the explanation of ANNs, a novel algorithm to extract symbolic rules from ANNs has been proposed in this paper. ANN methods have not been effectively utilized for data mining tasks because how the classifications were made is not explicitly stated as symbolic rules that are suitable for verification or interpretation by human experts. With the proposed approach, concise symbolic rules with high accuracy, that are easily explainable, can be extracted from the trained ANNs. Extracted rules are comparable with other methods in terms of number of rules, average number of conditions for a rule, and the accuracy. The effectiveness of the proposed approach is clearly demonstrated by the experimental results on a set of benchmark data mining classification problems. PMID:22163866
NASA Astrophysics Data System (ADS)
Darvishvand, Leila; Kamkari, Babak; Kowsary, Farshad
2018-03-01
In this article, a new hybrid method based on the combination of the genetic algorithm (GA) and artificial neural network (ANN) is developed to optimize the design of three-dimensional (3-D) radiant furnaces. A 3-D irregular shape design body (DB) heated inside a 3-D radiant furnace is considered as a case study. The uniform thermal conditions on the DB surfaces are obtained by minimizing an objective function. An ANN is developed to predict the objective function value which is trained through the data produced by applying the Monte Carlo method. The trained ANN is used in conjunction with the GA to find the optimal design variables. The results show that the computational time using the GA-ANN approach is significantly less than that of the conventional method. It is concluded that the integration of the ANN with GA is an efficient technique for optimization of the radiant furnaces.
Total Electron Content forecast model over Australia
NASA Astrophysics Data System (ADS)
Bouya, Zahra; Terkildsen, Michael; Francis, Matthew
Ionospheric perturbations can cause serious propagation errors in modern radio systems such as Global Navigation Satellite Systems (GNSS). Forecasting ionospheric parameters is helpful to estimate potential degradation of the performance of these systems. Our purpose is to establish an Australian Regional Total Electron Content (TEC) forecast model at IPS. In this work we present an approach based on the combined use of the Principal Component Analysis (PCA) and Artificial Neural Network (ANN) to predict future TEC values. PCA is used to reduce the dimensionality of the original TEC data by mapping it into its eigen-space. In this process the top- 5 eigenvectors are chosen to reflect the directions of the maximum variability. An ANN approach was then used for the multicomponent prediction. We outline the design of the ANN model with its parameters. A number of activation functions along with different spectral ranges and different numbers of Principal Components (PCs) were tested to find the PCA-ANN models reaching the best results. Keywords: GNSS, Space Weather, Regional, Forecast, PCA, ANN.
Peng, Jiansheng; Meng, Fanmei; Ai, Yuncan
2013-06-01
The artificial neural network (ANN) and genetic algorithm (GA) were combined to optimize the fermentation process for enhancing production of marine bacteriocin 1701 in a 5-L-stirred-tank. Fermentation time, pH value, dissolved oxygen level, temperature and turbidity were used to construct a "5-10-1" ANN topology to identify the nonlinear relationship between fermentation parameters and the antibiotic effects (shown as in inhibition diameters) of bacteriocin 1701. The predicted values by the trained ANN model were coincided with the observed ones (the coefficient of R(2) was greater than 0.95). As the fermentation time was brought in as one of the ANN input nodes, fermentation parameters could be optimized by stages through GA, and an optimal fermentation process control trajectory was created. The production of marine bacteriocin 1701 was significantly improved by 26% under the guidance of fermentation control trajectory that was optimized by using of combined ANN-GA method. Copyright © 2013 Elsevier Ltd. All rights reserved.
Artificial neural network modelling of a large-scale wastewater treatment plant operation.
Güçlü, Dünyamin; Dursun, Sükrü
2010-11-01
Artificial Neural Networks (ANNs), a method of artificial intelligence method, provide effective predictive models for complex processes. Three independent ANN models trained with back-propagation algorithm were developed to predict effluent chemical oxygen demand (COD), suspended solids (SS) and aeration tank mixed liquor suspended solids (MLSS) concentrations of the Ankara central wastewater treatment plant. The appropriate architecture of ANN models was determined through several steps of training and testing of the models. ANN models yielded satisfactory predictions. Results of the root mean square error, mean absolute error and mean absolute percentage error were 3.23, 2.41 mg/L and 5.03% for COD; 1.59, 1.21 mg/L and 17.10% for SS; 52.51, 44.91 mg/L and 3.77% for MLSS, respectively, indicating that the developed model could be efficiently used. The results overall also confirm that ANN modelling approach may have a great implementation potential for simulation, precise performance prediction and process control of wastewater treatment plants.
Zhang, An-yang; Fan, Tian-yuan
2010-04-18
To investigate the preparation and optimization of calcium alginate floating microspheres loading aspirin. A model was used to predict the in vitro release of aspirin and optimize the formulation by artificial neural networks (ANNs) and response surface methodology (RSM). The amounts of the material in the formulation were used as inputs, while the release and floating rate of the microspheres were used as outputs. The performances of ANNs and RSM were compared. ANNs were more accurate in prediction. There was no significant difference between ANNs and RSM in optimization. Approximately 90% of the optimized microspheres could float on the artificial gastric juice over 4 hours. 42.12% of aspirin was released in 60 min, 60.97% in 120 min and 78.56% in 240 min. The release of the drug from the microspheres complied with Higuchi equation. The aspirin floating microspheres with satisfying in vitro release were prepared successfully by the methods of ANNs and RSM.
NASA Astrophysics Data System (ADS)
Aksoy, Hafzullah; Dahamsheh, Ahmad
2018-07-01
For forecasting monthly precipitation in an arid region, the feed forward back-propagation, radial basis function and generalized regression artificial neural networks (ANNs) are used in this study. The ANN models are improved after incorporation of a Markov chain-based algorithm (MC-ANNs) with which the percentage of dry months is forecasted perfectly, thus generation of any non-physical negative precipitation is eliminated. Due to the fact that recorded precipitation time series are usually shorter than the length needed for a proper calibration of ANN models, synthetic monthly precipitation data are generated by Thomas-Fiering model to further improve the performance of forecasting. For case studies from Jordan, it is seen that only a slightly better performance is achieved with the use of MC and synthetic data. A conditional statement is, therefore, established and imbedded into the ANN models after the incorporation of MC and support of synthetic data, to substantially improve the ability of the models for forecasting monthly precipitation in arid regions.
Mendyk, Aleksander; Güres, Sinan; Szlęk, Jakub; Wiśniowska, Barbara; Kleinebudde, Peter
2015-01-01
The purpose of this work was to develop a mathematical model of the drug dissolution (Q) from the solid lipid extrudates based on the empirical approach. Artificial neural networks (ANNs) and genetic programming (GP) tools were used. Sensitivity analysis of ANNs provided reduction of the original input vector. GP allowed creation of the mathematical equation in two major approaches: (1) direct modeling of Q versus extrudate diameter (d) and the time variable (t) and (2) indirect modeling through Weibull equation. ANNs provided also information about minimum achievable generalization error and the way to enhance the original dataset used for adjustment of the equations' parameters. Two inputs were found important for the drug dissolution: d and t. The extrudates length (L) was found not important. Both GP modeling approaches allowed creation of relatively simple equations with their predictive performance comparable to the ANNs (root mean squared error (RMSE) from 2.19 to 2.33). The direct mode of GP modeling of Q versus d and t resulted in the most robust model. The idea of how to combine ANNs and GP in order to escape ANNs' black-box drawback without losing their superior predictive performance was demonstrated. Open Source software was used to deliver the state-of-the-art models and modeling strategies. PMID:26101544
Toward automatic time-series forecasting using neural networks.
Yan, Weizhong
2012-07-01
Over the past few decades, application of artificial neural networks (ANN) to time-series forecasting (TSF) has been growing rapidly due to several unique features of ANN models. However, to date, a consistent ANN performance over different studies has not been achieved. Many factors contribute to the inconsistency in the performance of neural network models. One such factor is that ANN modeling involves determining a large number of design parameters, and the current design practice is essentially heuristic and ad hoc, this does not exploit the full potential of neural networks. Systematic ANN modeling processes and strategies for TSF are, therefore, greatly needed. Motivated by this need, this paper attempts to develop an automatic ANN modeling scheme. It is based on the generalized regression neural network (GRNN), a special type of neural network. By taking advantage of several GRNN properties (i.e., a single design parameter and fast learning) and by incorporating several design strategies (e.g., fusing multiple GRNNs), we have been able to make the proposed modeling scheme to be effective for modeling large-scale business time series. The initial model was entered into the NN3 time-series competition. It was awarded the best prediction on the reduced dataset among approximately 60 different models submitted by scholars worldwide.
NASA Astrophysics Data System (ADS)
Mohd Yunos, Zuriahati; Shamsuddin, Siti Mariyam; Ismail, Noriszura; Sallehuddin, Roselina
2013-04-01
Artificial neural network (ANN) with back propagation algorithm (BP) and ANFIS was chosen as an alternative technique in modeling motor insurance claims. In particular, an ANN and ANFIS technique is applied to model and forecast the Malaysian motor insurance data which is categorized into four claim types; third party property damage (TPPD), third party bodily injury (TPBI), own damage (OD) and theft. This study is to determine whether an ANN and ANFIS model is capable of accurately predicting motor insurance claim. There were changes made to the network structure as the number of input nodes, number of hidden nodes and pre-processing techniques are also examined and a cross-validation technique is used to improve the generalization ability of ANN and ANFIS models. Based on the empirical studies, the prediction performance of the ANN and ANFIS model is improved by using different number of input nodes and hidden nodes; and also various sizes of data. The experimental results reveal that the ANFIS model has outperformed the ANN model. Both models are capable of producing a reliable prediction for the Malaysian motor insurance claims and hence, the proposed method can be applied as an alternative to predict claim frequency and claim severity.
Kalegowda, Yogesh; Harmer, Sarah L
2013-01-08
Artificial neural network (ANN) and a hybrid principal component analysis-artificial neural network (PCA-ANN) classifiers have been successfully implemented for classification of static time-of-flight secondary ion mass spectrometry (ToF-SIMS) mass spectra collected from complex Cu-Fe sulphides (chalcopyrite, bornite, chalcocite and pyrite) at different flotation conditions. ANNs are very good pattern classifiers because of: their ability to learn and generalise patterns that are not linearly separable; their fault and noise tolerance capability; and high parallelism. In the first approach, fragments from the whole ToF-SIMS spectrum were used as input to the ANN, the model yielded high overall correct classification rates of 100% for feed samples, 88% for conditioned feed samples and 91% for Eh modified samples. In the second approach, the hybrid pattern classifier PCA-ANN was integrated. PCA is a very effective multivariate data analysis tool applied to enhance species features and reduce data dimensionality. Principal component (PC) scores which accounted for 95% of the raw spectral data variance, were used as input to the ANN, the model yielded high overall correct classification rates of 88% for conditioned feed samples and 95% for Eh modified samples. Copyright © 2012 Elsevier B.V. All rights reserved.
Fan, Mingyi; Hu, Jiwei; Cao, Rensheng; Xiong, Kangning; Wei, Xionghui
2017-12-21
Reduced graphene oxide-supported nanoscale zero-valent iron (nZVI/rGO) magnetic nanocomposites were prepared and then applied in the Cu(II) removal from aqueous solutions. Scanning electron microscopy, transmission electron microscopy, X-ray photoelectron spectroscopy and superconduction quantum interference device magnetometer were performed to characterize the nZVI/rGO nanocomposites. In order to reduce the number of experiments and the economic cost, response surface methodology (RSM) combined with artificial intelligence (AI) techniques, such as artificial neural network (ANN), genetic algorithm (GA) and particle swarm optimization (PSO), has been utilized as a major tool that can model and optimize the removal processes, because a tremendous advance has recently been made on AI that may result in extensive applications. Based on RSM, ANN-GA and ANN-PSO were employed to model the Cu(II) removal process and optimize the operating parameters, e.g., operating temperature, initial pH, initial concentration and contact time. The ANN-PSO model was proven to be an effective tool for modeling and optimizing the Cu(II) removal with a low absolute error and a high removal efficiency. Furthermore, the isotherm, kinetic, thermodynamic studies and the XPS analysis were performed to explore the mechanisms of Cu(II) removal process.
Zeng, Fangfang; Li, Zhongtao; Yu, Xiaoling; Zhou, Linuo
2013-01-01
Background This study aimed to develop the artificial neural network (ANN) and multivariable logistic regression (LR) analyses for prediction modeling of cardiovascular autonomic (CA) dysfunction in the general population, and compare the prediction models using the two approaches. Methods and Materials We analyzed a previous dataset based on a Chinese population sample consisting of 2,092 individuals aged 30–80 years. The prediction models were derived from an exploratory set using ANN and LR analysis, and were tested in the validation set. Performances of these prediction models were then compared. Results Univariate analysis indicated that 14 risk factors showed statistically significant association with the prevalence of CA dysfunction (P<0.05). The mean area under the receiver-operating curve was 0.758 (95% CI 0.724–0.793) for LR and 0.762 (95% CI 0.732–0.793) for ANN analysis, but noninferiority result was found (P<0.001). The similar results were found in comparisons of sensitivity, specificity, and predictive values in the prediction models between the LR and ANN analyses. Conclusion The prediction models for CA dysfunction were developed using ANN and LR. ANN and LR are two effective tools for developing prediction models based on our dataset. PMID:23940593
Digital image classification with the help of artificial neural network by simple histogram.
Dey, Pranab; Banerjee, Nirmalya; Kaur, Rajwant
2016-01-01
Visual image classification is a great challenge to the cytopathologist in routine day-to-day work. Artificial neural network (ANN) may be helpful in this matter. In this study, we have tried to classify digital images of malignant and benign cells in effusion cytology smear with the help of simple histogram data and ANN. A total of 404 digital images consisting of 168 benign cells and 236 malignant cells were selected for this study. The simple histogram data was extracted from these digital images and an ANN was constructed with the help of Neurointelligence software [Alyuda Neurointelligence 2.2 (577), Cupertino, California, USA]. The network architecture was 6-3-1. The images were classified as training set (281), validation set (63), and test set (60). The on-line backpropagation training algorithm was used for this study. A total of 10,000 iterations were done to train the ANN system with the speed of 609.81/s. After the adequate training of this ANN model, the system was able to identify all 34 malignant cell images and 24 out of 26 benign cells. The ANN model can be used for the identification of the individual malignant cells with the help of simple histogram data. This study will be helpful in the future to identify malignant cells in unknown situations.
Mendyk, Aleksander; Güres, Sinan; Jachowicz, Renata; Szlęk, Jakub; Polak, Sebastian; Wiśniowska, Barbara; Kleinebudde, Peter
2015-01-01
The purpose of this work was to develop a mathematical model of the drug dissolution (Q) from the solid lipid extrudates based on the empirical approach. Artificial neural networks (ANNs) and genetic programming (GP) tools were used. Sensitivity analysis of ANNs provided reduction of the original input vector. GP allowed creation of the mathematical equation in two major approaches: (1) direct modeling of Q versus extrudate diameter (d) and the time variable (t) and (2) indirect modeling through Weibull equation. ANNs provided also information about minimum achievable generalization error and the way to enhance the original dataset used for adjustment of the equations' parameters. Two inputs were found important for the drug dissolution: d and t. The extrudates length (L) was found not important. Both GP modeling approaches allowed creation of relatively simple equations with their predictive performance comparable to the ANNs (root mean squared error (RMSE) from 2.19 to 2.33). The direct mode of GP modeling of Q versus d and t resulted in the most robust model. The idea of how to combine ANNs and GP in order to escape ANNs' black-box drawback without losing their superior predictive performance was demonstrated. Open Source software was used to deliver the state-of-the-art models and modeling strategies.
Aydin, Alev Dilek; Caliskan Cavdar, Seyma
2015-01-01
The ANN method has been applied by means of multilayered feedforward neural networks (MLFNs) by using different macroeconomic variables such as the exchange rate of USD/TRY, gold prices, and the Borsa Istanbul (BIST) 100 index based on monthly data over the period of January 2000 and September 2014 for Turkey. Vector autoregressive (VAR) method has also been applied with the same variables for the same period of time. In this study, different from other studies conducted up to the present, ENCOG machine learning framework has been used along with JAVA programming language in order to constitute the ANN. The training of network has been done by resilient propagation method. The ex post and ex ante estimates obtained by the ANN method have been compared with the results obtained by the econometric forecasting method of VAR. Strikingly, our findings based on the ANN method reveal that there is a possibility of financial distress or a financial crisis in Turkey starting from October 2017. The results which were obtained with the method of VAR also support the results of ANN method. Additionally, our results indicate that the ANN approach has more superior prediction performance than the VAR method. PMID:26550010
NASA Astrophysics Data System (ADS)
Snauffer, Andrew M.; Hsieh, William W.; Cannon, Alex J.; Schnorbus, Markus A.
2018-03-01
Estimates of surface snow water equivalent (SWE) in mixed alpine environments with seasonal melts are particularly difficult in areas of high vegetation density, topographic relief, and snow accumulations. These three confounding factors dominate much of the province of British Columbia (BC), Canada. An artificial neural network (ANN) was created using as predictors six gridded SWE products previously evaluated for BC. Relevant spatiotemporal covariates were also included as predictors, and observations from manual snow surveys at stations located throughout BC were used as target data. Mean absolute errors (MAEs) and interannual correlations for April surveys were found using cross-validation. The ANN using the three best-performing SWE products (ANN3) had the lowest mean station MAE across the province. ANN3 outperformed each product as well as product means and multiple linear regression (MLR) models in all of BC's five physiographic regions except for the BC Plains. Subsequent comparisons with predictions generated by the Variable Infiltration Capacity (VIC) hydrologic model found ANN3 to better estimate SWE over the VIC domain and within most regions. The superior performance of ANN3 over the individual products, product means, MLR, and VIC was found to be statistically significant across the province.
Smyczynska, Joanna; Hilczer, Maciej; Smyczynska, Urszula; Stawerska, Renata; Tadeusiewicz, Ryszard; Lewinski, Andrzej
2015-01-01
The leading method for prediction of growth hormone (GH) therapy effectiveness are multiple linear regression (MLR) models. Best of our knowledge, we are the first to apply artificial neural networks (ANN) to solve this problem. For ANN there is no necessity to assume the functions linking independent and dependent variables. The aim of study is to compare ANN and MLR models of GH therapy effectiveness. Analysis comprised the data of 245 GH-deficient children (170 boys) treated with GH up to final height (FH). Independent variables included: patients' height, pre-treatment height velocity, chronological age, bone age, gender, pubertal status, parental heights, GH peak in 2 stimulation tests, IGF-I concentration. The output variable was FH. For testing dataset, MLR model predicted FH SDS with average error (RMSE) 0.64 SD, explaining 34.3% of its variability; ANN model derived on the same pre-processed data predicted FH SDS with RMSE 0.60 SD, explaining 42.0% of its variability; ANN model derived on raw data predicted FH with RMSE 3.9 cm (0.63 SD), explaining 78.7% of its variability. ANN seem to be valuable tool in prediction of GH treatment effectiveness, especially since they can be applied to raw clinical data.
Aydin, Alev Dilek; Caliskan Cavdar, Seyma
2015-01-01
The ANN method has been applied by means of multilayered feedforward neural networks (MLFNs) by using different macroeconomic variables such as the exchange rate of USD/TRY, gold prices, and the Borsa Istanbul (BIST) 100 index based on monthly data over the period of January 2000 and September 2014 for Turkey. Vector autoregressive (VAR) method has also been applied with the same variables for the same period of time. In this study, different from other studies conducted up to the present, ENCOG machine learning framework has been used along with JAVA programming language in order to constitute the ANN. The training of network has been done by resilient propagation method. The ex post and ex ante estimates obtained by the ANN method have been compared with the results obtained by the econometric forecasting method of VAR. Strikingly, our findings based on the ANN method reveal that there is a possibility of financial distress or a financial crisis in Turkey starting from October 2017. The results which were obtained with the method of VAR also support the results of ANN method. Additionally, our results indicate that the ANN approach has more superior prediction performance than the VAR method.
How can we deal with ANN in flood forecasting? As a simulation model or updating kernel!
NASA Astrophysics Data System (ADS)
Hassan Saddagh, Mohammad; Javad Abedini, Mohammad
2010-05-01
Flood forecasting and early warning, as a non-structural measure for flood control, is often considered to be the most effective and suitable alternative to mitigate the damage and human loss caused by flood. Forecast results which are output of hydrologic, hydraulic and/or black box models should secure accuracy of flood values and timing, especially for long lead time. The application of the artificial neural network (ANN) in flood forecasting has received extensive attentions in recent years due to its capability to capture the dynamics inherent in complex processes including flood. However, results obtained from executing plain ANN as simulation model demonstrate dramatic reduction in performance indices as lead time increases. This paper is intended to monitor the performance indices as it relates to flood forecasting and early warning using two different methodologies. While the first method employs a multilayer neural network trained using back-propagation scheme to forecast output hydrograph of a hypothetical river for various forecast lead time up to 6.0 hr, the second method uses 1D hydrodynamic MIKE11 model as forecasting model and multilayer neural network as updating kernel to monitor and assess the performance indices compared to ANN alone in light of increase in lead time. Results presented in both graphical and tabular format indicate superiority of MIKE11 coupled with ANN as updating kernel compared to ANN as simulation model alone. While plain ANN produces more accurate results for short lead time, the errors increase expeditiously for longer lead time. The second methodology provides more accurate and reliable results for longer forecast lead time.
NASA Astrophysics Data System (ADS)
Fink, Wolfgang
2009-05-01
Artificial neural networks (ANNs) are powerful methods for the classification of multi-dimensional data as well as for the control of dynamic systems. In general terms, ANNs consist of neurons that are, e.g., arranged in layers and interconnected by real-valued or binary neural couplings or weights. ANNs try mimicking the processing taking place in biological brains. The classification and generalization capabilities of ANNs are given by the interconnection architecture and the coupling strengths. To perform a certain classification or control task with a particular ANN architecture (i.e., number of neurons, number of layers, etc.), the inter-neuron couplings and their accordant coupling strengths must be determined (1) either by a priori design (i.e., manually) or (2) using training algorithms such as error back-propagation. The more complex the classification or control task, the less obvious it is how to determine an a priori design of an ANN, and, as a consequence, the architecture choice becomes somewhat arbitrary. Furthermore, rather than being able to determine for a given architecture directly the corresponding coupling strengths necessary to perform the classification or control task, these have to be obtained/learned through training of the ANN on test data. We report on the use of a Stochastic Optimization Framework (SOF; Fink, SPIE 2008) for the autonomous self-configuration of Artificial Neural Networks (i.e., the determination of number of hidden layers, number of neurons per hidden layer, interconnections between neurons, and respective coupling strengths) for performing classification or control tasks. This may provide an approach towards cognizant and self-adapting computing architectures and systems.
Kuo, Pao-Jen; Wu, Shao-Chun; Chien, Peng-Chen; Chang, Shu-Shya; Rau, Cheng-Shyuan; Tai, Hsueh-Ling; Peng, Shu-Hui; Lin, Yi-Chun; Chen, Yi-Chun; Hsieh, Hsiao-Yun; Hsieh, Ching-Hua
2018-03-02
The aim of this study was to develop an effective surgical site infection (SSI) prediction model in patients receiving free-flap reconstruction after surgery for head and neck cancer using artificial neural network (ANN), and to compare its predictive power with that of conventional logistic regression (LR). There were 1,836 patients with 1,854 free-flap reconstructions and 438 postoperative SSIs in the dataset for analysis. They were randomly assigned tin ratio of 7:3 into a training set and a test set. Based on comprehensive characteristics of patients and diseases in the absence or presence of operative data, prediction of SSI was performed at two time points (pre-operatively and post-operatively) with a feed-forward ANN and the LR models. In addition to the calculated accuracy, sensitivity, and specificity, the predictive performance of ANN and LR were assessed based on area under the curve (AUC) measures of receiver operator characteristic curves and Brier score. ANN had a significantly higher AUC (0.892) of post-operative prediction and AUC (0.808) of pre-operative prediction than LR (both P <0.0001). In addition, there was significant higher AUC of post-operative prediction than pre-operative prediction by ANN (p<0.0001). With the highest AUC and the lowest Brier score (0.090), the post-operative prediction by ANN had the highest overall predictive performance. The post-operative prediction by ANN had the highest overall performance in predicting SSI after free-flap reconstruction in patients receiving surgery for head and neck cancer.
NASA Astrophysics Data System (ADS)
Zulkifli; Wiryawan, G. P.
2018-03-01
Lightweight brick is the most important component of building construction, therefore it is necessary to have lightweight thermal, mechanical and aqustic thermal properties that meet the standard, in this paper which is discussed is the domain of light brick thermal conductivity properties. The advantage of lightweight brick has a low density (500-650 kg/m3), more economical, can reduce the load 30-40% compared to conventional brick (clay brick). In this research, Artificial Neural Network (ANN) is used to predict the thermal conductivity of lightweight brick type Autoclaved Aerated Concrete (AAC). Based on the training and evaluation that have been done on 10 model of ANN with number of hidden node 1 to 10, obtained that ANN with 3 hidden node have the best performance. It is known from the mean value of MSE (Mean Square Error) validation for three training times of 0.003269. This ANN was further used to predict the thermal conductivity of four light brick samples. The predicted results for each of the AAC1, AAC2, AAC3 and AAC4 light brick samples were 0.243 W/m.K, respectively; 0.29 W/m.K; 0.32 W/m.K; and 0.32 W/m.K. Furthermore, ANN is used to determine the effect of silicon composition (Si), Calcium (Ca), to light brick thermal conductivity. ANN simulation results show that the thermal conductivity increases with increasing Si composition. Si content is allowed maximum of 26.57%, while the Ca content in the range 20.32% - 30.35%.
Forecasting the prognosis of choroidal melanoma with an artificial neural network.
Kaiserman, Igor; Rosner, Mordechai; Pe'er, Jacob
2005-09-01
To develop an artificial neural network (ANN) that will forecast the 5-year mortality from choroidal melanoma. Retrospective, comparative, observational cohort study. One hundred fifty-three eyes of 153 consecutive patients with choroidal melanoma (age, 58.4+/-14.6 years) who were treated with ruthenium 106 brachytherapy between 1988 and 1998 at the Department of Ophthalmology, Hadassah University Hospital, Jerusalem, Israel. Patients were observed clinically and ultrasonographically (A- and B-mode standardized ultrasonography). Metastatic screening included liver function tests and liver imaging. Backpropagation ANNs composed of 3 or 4 layers of neurons with various types of transfer functions and training protocols were assessed for their ability to predict the 5-year mortality. The ANNs were trained on 77 randomly selected patients and tested on a different set of 76 patients. Artificial neural networks were compared based on their sensitivity, specificity, forecasting accuracy, area under the receiver operating curves, and likelihood ratios (LRs). The best ANN was compared with the results of logistic regression and the performance of an ocular oncologist. The ability of the ANNs to forecast the 5-year mortality from choroidal melanoma. Thirty-one patients died during the follow-up period of metastatic choroidal melanoma. The best ANN (one hidden layer of 16 neurons) had 84% forecasting accuracy and an LR of 31.5. The number of hidden neurons significantly influenced the ANNs' performance (P<0.001). The performance of the ANNs was not significantly influenced by the training protocol, the number of hidden layers, or the type of transfer function. In comparison, logistic regression reached 86% forecasting accuracy, with a very low LR (0.8), whereas the human expert forecasting ability was <70% (LR, 1.85). Artificial neural networks can be used for forecasting the prognosis of choroidal melanoma and may support decision-making in treating this malignancy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cho, Daniel D; Wernicke, A Gabriella; Nori, Dattatreyudu
Purpose/Objective(s): The aim of this study is to build the estimator of toxicity using artificial neural network (ANN) for head and neck cancer patients Materials/Methods: An ANN can combine variables into a predictive model during training and considered all possible correlations of variables. We constructed an ANN based on the data from 73 patients with advanced H and N cancer treated with external beam radiotherapy and/or chemotherapy at our institution. For the toxicity estimator we defined input data including age, sex, site, stage, pathology, status of chemo, technique of external beam radiation therapy (EBRT), length of treatment, dose of EBRT,more » status of post operation, length of follow-up, the status of local recurrences and distant metastasis. These data were digitized based on the significance and fed to the ANN as input nodes. We used 20 hidden nodes (for the 13 input nodes) to take care of the correlations of input nodes. For training ANN, we divided data into three subsets such as training set, validation set and test set. Finally, we built the estimator for the toxicity from ANN output. Results: We used 13 input variables including the status of local recurrences and distant metastasis and 20 hidden nodes for correlations. 59 patients for training set, 7 patients for validation set and 7 patients for test set and fed the inputs to Matlab neural network fitting tool. We trained the data within 15% of errors of outcome. In the end we have the toxicity estimation with 74% of accuracy. Conclusion: We proved in principle that ANN can be a very useful tool for predicting the RT outcomes for high risk H and N patients. Currently we are improving the results using cross validation.« less
Yeh, Wei-Chang
Network reliability is an important index to the provision of useful information for decision support in the modern world. There is always a need to calculate symbolic network reliability functions (SNRFs) due to dynamic and rapid changes in network parameters. In this brief, the proposed squeezed artificial neural network (SqANN) approach uses the Monte Carlo simulation to estimate the corresponding reliability of a given designed matrix from the Box-Behnken design, and then the Taguchi method is implemented to find the appropriate number of neurons and activation functions of the hidden layer and the output layer in ANN to evaluate SNRFs. According to the experimental results of the benchmark networks, the comparison appears to support the superiority of the proposed SqANN method over the traditional ANN-based approach with at least 16.6% improvement in the median absolute deviation in the cost of extra 2 s on average for all experiments.Network reliability is an important index to the provision of useful information for decision support in the modern world. There is always a need to calculate symbolic network reliability functions (SNRFs) due to dynamic and rapid changes in network parameters. In this brief, the proposed squeezed artificial neural network (SqANN) approach uses the Monte Carlo simulation to estimate the corresponding reliability of a given designed matrix from the Box-Behnken design, and then the Taguchi method is implemented to find the appropriate number of neurons and activation functions of the hidden layer and the output layer in ANN to evaluate SNRFs. According to the experimental results of the benchmark networks, the comparison appears to support the superiority of the proposed SqANN method over the traditional ANN-based approach with at least 16.6% improvement in the median absolute deviation in the cost of extra 2 s on average for all experiments.
MO-G-18C-05: Real-Time Prediction in Free-Breathing Perfusion MRI
DOE Office of Scientific and Technical Information (OSTI.GOV)
Song, H; Liu, W; Ruan, D
Purpose: The aim is to minimize frame-wise difference errors caused by respiratory motion and eliminate the need for breath-holds in magnetic resonance imaging (MRI) sequences with long acquisitions and repeat times (TRs). The technique is being applied to perfusion MRI using arterial spin labeling (ASL). Methods: Respiratory motion prediction (RMP) using navigator echoes was implemented in ASL. A least-square method was used to extract the respiratory motion information from the 1D navigator. A generalized artificial neutral network (ANN) with three layers was developed to simultaneously predict 10 time points forward in time and correct for respiratory motion during MRI acquisition.more » During the training phase, the parameters of the ANN were optimized to minimize the aggregated prediction error based on acquired navigator data. During realtime prediction, the trained ANN was applied to the most recent estimated displacement trajectory to determine in real-time the amount of spatial Results: The respiratory motion information extracted from the least-square method can accurately represent the navigator profiles, with a normalized chi-square value of 0.037±0.015 across the training phase. During the 60-second training phase, the ANN successfully learned the respiratory motion pattern from the navigator training data. During real-time prediction, the ANN received displacement estimates and predicted the motion in the continuum of a 1.0 s prediction window. The ANN prediction was able to provide corrections for different respiratory states (i.e., inhalation/exhalation) during real-time scanning with a mean absolute error of < 1.8 mm. Conclusion: A new technique enabling free-breathing acquisition during MRI is being developed. A generalized ANN development has demonstrated its efficacy in predicting a continuum of motion profile for volumetric imaging based on navigator inputs. Future work will enhance the robustness of ANN and verify its effectiveness with human subjects. Research supported by National Institutes of Health National Cancer Institute Grant R01 CA159471-01.« less
NASA Astrophysics Data System (ADS)
Shahri, Abbas; Mousavinaseri, Mahsasadat; Naderi, Shima; Espersson, Maria
2015-04-01
Application of Artificial Neural Networks (ANNs) in many areas of engineering, in particular to geotechnical engineering problems such as site characterization has demonstrated some degree of success. The present paper aims to evaluate the feasibility of several various types of ANN models to predict the clay sensitivity of soft clays form piezocone penetration test data (CPTu). To get the aim, a research database of CPTu data of 70 test points around the Göta River near the Lilli Edet in the southwest of Sweden which is a high prone land slide area were collected and considered as input for ANNs. For training algorithms the quick propagation, conjugate gradient descent, quasi-Newton, limited memory quasi-Newton and Levenberg-Marquardt were developed tested and trained using the CPTu data to provide a comparison between the results of field investigation and ANN models to estimate the clay sensitivity. The reason of using the clay sensitivity parameter in this study is due to its relation to landslides in Sweden.A special high sensitive clay namely quick clay is considered as the main responsible for experienced landslides in Sweden which has high sensitivity and prone to slide. The training and testing program was started with 3-2-1 ANN architecture structure. By testing and trying several various architecture structures and changing the hidden layer in order to have a higher output resolution the 3-4-4-3-1 architecture structure for ANN in this study was confirmed. The tested algorithm showed that increasing the hidden layers up to 4 layers in ANN can improve the results and the 3-4-4-3-1 architecture structure ANNs for prediction of clay sensitivity represent reliable and reasonable response. The obtained results showed that the conjugate gradient descent algorithm with R2=0.897 has the best performance among the tested algorithms. Keywords: clay sensitivity, landslide, Artificial Neural Network
A modified artificial neural network based prediction technique for tropospheric radio refractivity
Javeed, Shumaila; Javed, Wajahat; Atif, M.; Uddin, Mueen
2018-01-01
Radio refractivity plays a significant role in the development and design of radio systems for attaining the best level of performance. Refractivity in the troposphere is one of the features affecting electromagnetic waves, and hence the communication system interrupts. In this work, a modified artificial neural network (ANN) based model is applied to predict the refractivity. The suggested ANN model comprises three modules: the data preparation module, the feature selection module, and the forecast module. The first module applies pre-processing to make the data compatible for the feature selection module. The second module discards irrelevant and redundant data from the input set. The third module uses ANN for prediction. The ANN model applies a sigmoid activation function and a multi-variate auto regressive model to update the weights during the training process. In this work, the refractivity is predicted and estimated based on ten years (2002–2011) of meteorological data, such as the temperature, pressure, and humidity, obtained from the Pakistan Meteorological Department (PMD), Islamabad. The refractivity is estimated using the method suggested by the International Telecommunication Union (ITU). The refractivity is predicted for the year 2012 using the database of the previous ten years, with the help of ANN. The ANN model is implemented in MATLAB. Next, the estimated and predicted refractivity levels are validated against each other. The predicted and actual values (PMD data) of the atmospheric parameters agree with each other well, and demonstrate the accuracy of the proposed ANN method. It was further found that all parameters have a strong relationship with refractivity, in particular the temperature and humidity. The refractivity values are higher during the rainy season owing to a strong association with the relative humidity. Therefore, it is important to properly cater the signal communication system during hot and humid weather. Based on the results, the proposed ANN method can be used to develop a refractivity database, which is highly important in a radio communication system. PMID:29494609
NASA Astrophysics Data System (ADS)
Gallego, C.; Costa, A.; Cuerva, A.
2010-09-01
Since nowadays wind energy can't be neither scheduled nor large-scale storaged, wind power forecasting has been useful to minimize the impact of wind fluctuations. In particular, short-term forecasting (characterised by prediction horizons from minutes to a few days) is currently required by energy producers (in a daily electricity market context) and the TSO's (in order to keep the stability/balance of an electrical system). Within the short-term background, time-series based models (i.e., statistical models) have shown a better performance than NWP models for horizons up to few hours. These models try to learn and replicate the dynamic shown by the time series of a certain variable. When considering the power output of wind farms, ramp events are usually observed, being characterized by a large positive gradient in the time series (ramp-up) or negative (ramp-down) during relatively short time periods (few hours). Ramp events may be motivated by many different causes, involving generally several spatial scales, since the large scale (fronts, low pressure systems) up to the local scale (wind turbine shut-down due to high wind speed, yaw misalignment due to fast changes of wind direction). Hence, the output power may show unexpected dynamics during ramp events depending on the underlying processes; consequently, traditional statistical models considering only one dynamic for the hole power time series may be inappropriate. This work proposes a Regime Switching (RS) model based on Artificial Neural Nets (ANN). The RS-ANN model gathers as many ANN's as different dynamics considered (called regimes); a certain ANN is selected so as to predict the output power, depending on the current regime. The current regime is on-line updated based on a gradient criteria, regarding the past two values of the output power. 3 Regimes are established, concerning ramp events: ramp-up, ramp-down and no-ramp regime. In order to assess the skillness of the proposed RS-ANN model, a single-ANN model (without regime classification) is adopted as a reference model. Both models are evaluated in terms of Improvement over Persistence on the Mean Square Error basis (IoP%) when predicting horizons form 1 time-step to 5. The case of a wind farm located in the complex terrain of Alaiz (north of Spain) has been considered. Three years of available power output data with a hourly resolution have been employed: two years for training and validation of the model and the last year for assessing the accuracy. Results showed that the RS-ANN overcame the single-ANN model for one step-ahead forecasts: the overall IoP% was up to 8.66% for the RS-ANN model (depending on the gradient criterion selected to consider the ramp regime triggered) and 6.16% for the single-ANN. However, both models showed similar accuracy for larger horizons. A locally-weighted evaluation during ramp events for one-step ahead was also performed. It was found that the IoP% during ramps-up increased from 17.60% (case of single-ANN) to 22.25% (case of RS-ANN); however, during the ramps-down events this improvement increased from 18.55% to 19.55%. Three main conclusions are derived from this case study: It highlights the importance of considering statistical models capable of differentiate several regimes showed by the output power time series in order to improve the forecasting during extreme events like ramps. On-line regime classification based on available power output data didn't seem to contribute to improve forecasts for horizons beyond one-step ahead. Tacking into account other explanatory variables (local wind measurements, NWP outputs) could lead to a better understanding of ramp events, improving the regime assessment also for further horizons. The RS-ANN model slightly overcame the single-ANN during ramp-down events. If further research reinforce this effect, special attention should be addressed to understand the underlying processes during ramp-down events.
Matrix Concentration Inequalities via the Method of Exchangeable Pairs
2012-01-27
viewed as an exchangeable pairs version of the Burkholder –Davis–Gundy (BDG) inequality from classical martingale theory [Bur73]. Matrix extensions of...non-commutative probability. Math. Ann., 319:1–16, 2001. [Bur73] D. L. Burkholder . Distribution function inequalities for martingales. Ann. Probab., 1...Statist. Assoc., 58(301):13–30, 1963. [JX03] M. Junge and Q. Xu. Noncommutative Burkholder /Rosenthal inequalities. Ann. Probab., 31(2):948–995, 2003
NASA Astrophysics Data System (ADS)
Lai, Chia-Lin; Lee, Jhih-Shian; Chen, Jyh-Cheng
2015-02-01
Energy-mapping, the conversion of linear attenuation coefficients (μ) calculated at the effective computed tomography (CT) energy to those corresponding to 511 keV, is an important step in CT-based attenuation correction (CTAC) for positron emission tomography (PET) quantification. The aim of this study was to implement energy-mapping step by using curve fitting ability of artificial neural network (ANN). Eleven digital phantoms simulated by Geant4 application for tomographic emission (GATE) and 12 physical phantoms composed of various volume concentrations of iodine contrast were used in this study to generate energy-mapping curves by acquiring average CT values and linear attenuation coefficients at 511 keV of these phantoms. The curves were built with ANN toolbox in MATLAB. To evaluate the effectiveness of the proposed method, another two digital phantoms (liver and spine-bone) and three physical phantoms (volume concentrations of 3%, 10% and 20%) were used to compare the energy-mapping curves built by ANN and bilinear transformation, and a semi-quantitative analysis was proceeded by injecting 0.5 mCi FDG into a SD rat for micro-PET scanning. The results showed that the percentage relative difference (PRD) values of digital liver and spine-bone phantom are 5.46% and 1.28% based on ANN, and 19.21% and 1.87% based on bilinear transformation. For 3%, 10% and 20% physical phantoms, the PRD values of ANN curve are 0.91%, 0.70% and 3.70%, and the PRD values of bilinear transformation are 3.80%, 1.44% and 4.30%, respectively. Both digital and physical phantoms indicated that the ANN curve can achieve better performance than bilinear transformation. The semi-quantitative analysis of rat PET images showed that the ANN curve can reduce the inaccuracy caused by attenuation effect from 13.75% to 4.43% in brain tissue, and 23.26% to 9.41% in heart tissue. On the other hand, the inaccuracy remained 6.47% and 11.51% in brain and heart tissue when the bilinear transformation was used. Overall, it can be concluded that the bilinear transformation method resulted in considerable bias and the newly proposed calibration curve built by ANN could achieve better results with acceptable accuracy.
Kalderstam, Jonas; Edén, Patrik; Bendahl, Pär-Ola; Strand, Carina; Fernö, Mårten; Ohlsson, Mattias
2013-06-01
The concordance index (c-index) is the standard way of evaluating the performance of prognostic models in the presence of censored data. Constructing prognostic models using artificial neural networks (ANNs) is commonly done by training on error functions which are modified versions of the c-index. Our objective was to demonstrate the capability of training directly on the c-index and to evaluate our approach compared to the Cox proportional hazards model. We constructed a prognostic model using an ensemble of ANNs which were trained using a genetic algorithm. The individual networks were trained on a non-linear artificial data set divided into a training and test set both of size 2000, where 50% of the data was censored. The ANNs were also trained on a data set consisting of 4042 patients treated for breast cancer spread over five different medical studies, 2/3 used for training and 1/3 used as a test set. A Cox model was also constructed on the same data in both cases. The two models' c-indices on the test sets were then compared. The ranking performance of the models is additionally presented visually using modified scatter plots. Cross validation on the cancer training set did not indicate any non-linear effects between the covariates. An ensemble of 30 ANNs with one hidden neuron was therefore used. The ANN model had almost the same c-index score as the Cox model (c-index=0.70 and 0.71, respectively) on the cancer test set. Both models identified similarly sized low risk groups with at most 10% false positives, 49 for the ANN model and 60 for the Cox model, but repeated bootstrap runs indicate that the difference was not significant. A significant difference could however be seen when applied on the non-linear synthetic data set. In that case the ANN ensemble managed to achieve a c-index score of 0.90 whereas the Cox model failed to distinguish itself from the random case (c-index=0.49). We have found empirical evidence that ensembles of ANN models can be optimized directly on the c-index. Comparison with a Cox model indicates that near identical performance is achieved on a real cancer data set while on a non-linear data set the ANN model is clearly superior. Copyright © 2013 Elsevier B.V. All rights reserved.
Wang, Jeff; Kato, Fumi; Yamashita, Hiroko; Baba, Motoi; Cui, Yi; Li, Ruijiang; Oyama-Manabe, Noriko; Shirato, Hiroki
2017-04-01
Breast cancer is the most common invasive cancer among women and its incidence is increasing. Risk assessment is valuable and recent methods are incorporating novel biomarkers such as mammographic density. Artificial neural networks (ANN) are adaptive algorithms capable of performing pattern-to-pattern learning and are well suited for medical applications. They are potentially useful for calibrating full-field digital mammography (FFDM) for quantitative analysis. This study uses ANN modeling to estimate volumetric breast density (VBD) from FFDM on Japanese women with and without breast cancer. ANN calibration of VBD was performed using phantom data for one FFDM system. Mammograms of 46 Japanese women diagnosed with invasive carcinoma and 53 with negative findings were analyzed using ANN models learned. ANN-estimated VBD was validated against phantom data, compared intra-patient, with qualitative composition scoring, with MRI VBD, and inter-patient with classical risk factors of breast cancer as well as cancer status. Phantom validations reached an R 2 of 0.993. Intra-patient validations ranged from R 2 of 0.789 with VBD to 0.908 with breast volume. ANN VBD agreed well with BI-RADS scoring and MRI VBD with R 2 ranging from 0.665 with VBD to 0.852 with breast volume. VBD was significantly higher in women with cancer. Associations with age, BMI, menopause, and cancer status previously reported were also confirmed. ANN modeling appears to produce reasonable measures of mammographic density validated with phantoms, with existing measures of breast density, and with classical biomarkers of breast cancer. FFDM VBD is significantly higher in Japanese women with cancer.
NASA Astrophysics Data System (ADS)
Abrokwah, K.; O'Reilly, A. M.
2017-12-01
Groundwater is an important resource that is extracted every day because of its invaluable use for domestic, industrial and agricultural purposes. The need for sustaining groundwater resources is clearly indicated by declining water levels and has led to modeling and forecasting accurate groundwater levels. In this study, spectral decomposition of climatic forcing time series was used to develop hybrid wavelet analysis (WA) and moving window average (MWA) artificial neural network (ANN) models. These techniques are explored by modeling historical groundwater levels in order to provide understanding of potential causes of the observed groundwater-level fluctuations. Selection of the appropriate decomposition level for WA and window size for MWA helps in understanding the important time scales of climatic forcing, such as rainfall, that influence water levels. Discrete wavelet transform (DWT) is used to decompose the input time-series data into various levels of approximate and details wavelet coefficients, whilst MWA acts as a low-pass signal-filtering technique for removing high-frequency signals from the input data. The variables used to develop and validate the models were daily average rainfall measurements from five National Atmospheric and Oceanic Administration (NOAA) weather stations and daily water-level measurements from two wells recorded from 1978 to 2008 in central Florida, USA. Using different decomposition levels and different window sizes, several WA-ANN and MWA-ANN models for simulating the water levels were created and their relative performances compared against each other. The WA-ANN models performed better than the corresponding MWA-ANN models; also higher decomposition levels of the input signal by the DWT gave the best results. The results obtained show the applicability and feasibility of hybrid WA-ANN and MWA-ANN models for simulating daily water levels using only climatic forcing time series as model inputs.
NASA Astrophysics Data System (ADS)
Touch, M.; Clark, D. P.; Barber, W.; Badea, C. T.
2016-04-01
Spectral CT using a photon-counting x-ray detector (PCXD) can potentially increase accuracy of measuring tissue composition. However, PCXD spectral measurements suffer from distortion due to charge sharing, pulse pileup, and Kescape energy loss. This study proposes two novel artificial neural network (ANN)-based algorithms: one to model and compensate for the distortion, and another one to directly correct for the distortion. The ANN-based distortion model was obtained by training to learn the distortion from a set of projections with a calibration scan. The ANN distortion was then applied in the forward statistical model to compensate for distortion in the projection decomposition. ANN was also used to learn to correct distortions directly in projections. The resulting corrected projections were used for reconstructing the image, denoising via joint bilateral filtration, and decomposition into three-material basis functions: Compton scattering, the photoelectric effect, and iodine. The ANN-based distortion model proved to be more robust to noise and worked better compared to using an imperfect parametric distortion model. In the presence of noise, the mean relative errors in iodine concentration estimation were 11.82% (ANN distortion model) and 16.72% (parametric model). With distortion correction, the mean relative error in iodine concentration estimation was improved by 50% over direct decomposition from distorted data. With our joint bilateral filtration, the resulting material image quality and iodine detectability as defined by the contrast-to-noise ratio were greatly enhanced allowing iodine concentrations as low as 2 mg/ml to be detected. Future work will be dedicated to experimental evaluation of our ANN-based methods using 3D-printed phantoms.
Safiuddin, Md.; Raman, Sudharshan N.; Abdus Salam, Md.; Jumaat, Mohd. Zamin
2016-01-01
Modeling is a very useful method for the performance prediction of concrete. Most of the models available in literature are related to the compressive strength because it is a major mechanical property used in concrete design. Many attempts were taken to develop suitable mathematical models for the prediction of compressive strength of different concretes, but not for self-consolidating high-strength concrete (SCHSC) containing palm oil fuel ash (POFA). The present study has used artificial neural networks (ANN) to predict the compressive strength of SCHSC incorporating POFA. The ANN model has been developed and validated in this research using the mix proportioning and experimental strength data of 20 different SCHSC mixes. Seventy percent (70%) of the data were used to carry out the training of the ANN model. The remaining 30% of the data were used for testing the model. The training of the ANN model was stopped when the root mean square error (RMSE) and the percentage of good patterns was 0.001 and ≈100%, respectively. The predicted compressive strength values obtained from the trained ANN model were much closer to the experimental values of compressive strength. The coefficient of determination (R2) for the relationship between the predicted and experimental compressive strengths was 0.9486, which shows the higher degree of accuracy of the network pattern. Furthermore, the predicted compressive strength was found very close to the experimental compressive strength during the testing process of the ANN model. The absolute and percentage relative errors in the testing process were significantly low with a mean value of 1.74 MPa and 3.13%, respectively, which indicated that the compressive strength of SCHSC including POFA can be efficiently predicted by the ANN. PMID:28773520
Safiuddin, Md; Raman, Sudharshan N; Abdus Salam, Md; Jumaat, Mohd Zamin
2016-05-20
Modeling is a very useful method for the performance prediction of concrete. Most of the models available in literature are related to the compressive strength because it is a major mechanical property used in concrete design. Many attempts were taken to develop suitable mathematical models for the prediction of compressive strength of different concretes, but not for self-consolidating high-strength concrete (SCHSC) containing palm oil fuel ash (POFA). The present study has used artificial neural networks (ANN) to predict the compressive strength of SCHSC incorporating POFA. The ANN model has been developed and validated in this research using the mix proportioning and experimental strength data of 20 different SCHSC mixes. Seventy percent (70%) of the data were used to carry out the training of the ANN model. The remaining 30% of the data were used for testing the model. The training of the ANN model was stopped when the root mean square error (RMSE) and the percentage of good patterns was 0.001 and ≈100%, respectively. The predicted compressive strength values obtained from the trained ANN model were much closer to the experimental values of compressive strength. The coefficient of determination ( R ²) for the relationship between the predicted and experimental compressive strengths was 0.9486, which shows the higher degree of accuracy of the network pattern. Furthermore, the predicted compressive strength was found very close to the experimental compressive strength during the testing process of the ANN model. The absolute and percentage relative errors in the testing process were significantly low with a mean value of 1.74 MPa and 3.13%, respectively, which indicated that the compressive strength of SCHSC including POFA can be efficiently predicted by the ANN.
Singh, Kunwar P; Singh, Arun K; Gupta, Shikha; Rai, Premanjali
2012-07-01
The present study aims to investigate the individual and combined effects of temperature, pH, zero-valent bimetallic nanoparticles (ZVBMNPs) dose, and chloramphenicol (CP) concentration on the reductive degradation of CP using ZVBMNPs in aqueous medium. Iron-silver ZVBMNPs were synthesized. Batch experimental data were generated using a four-factor statistical experimental design. CP reduction by ZVBMNPs was optimized using the response surface modeling (RSM) and artificial neural network-genetic algorithm (ANN-GA) approaches. The RSM and ANN methodologies were also compared for their predictive and generalization abilities using the same training and validation data set. Reductive by-products of CP were identified using liquid chromatography-mass spectrometry technique. The optimized process variables (RSM and ANN-GA approaches) yielded CP reduction capacity of 57.37 and 57.10 mg g(-1), respectively, as compared to the experimental value of 54.0 mg g(-1) with un-optimized variables. The ANN-GA and RSM methodologies yielded comparable results and helped to achieve a higher reduction (>6%) of CP by the ZVBMNPs as compared to the experimental value. The root mean squared error, relative standard error of prediction and correlation coefficient between the measured and model-predicted values of response variable were 1.34, 3.79, and 0.964 for RSM and 0.03, 0.07, and 0.999 for ANN models for the training and 1.39, 3.47, and 0.996 for RSM and 1.25, 3.11, and 0.990 for ANN models for the validation set. Predictive and generalization abilities of both the RSM and ANN models were comparable. The synthesized ZVBMNPs may be used for an efficient reductive removal of CP from the water.
Fatemi, Mohammad Hossein; Ghorbanzad'e, Mehdi
2009-11-01
Quantitative structure-property relationship models for the prediction of the nematic transition temperature (T (N)) were developed by using multilinear regression analysis and a feedforward artificial neural network (ANN). A collection of 42 thermotropic liquid crystals was chosen as the data set. The data set was divided into three sets: for training, and an internal and external test set. Training and internal test sets were used for ANN model development, and the external test set was used for evaluation of the predictive power of the model. In order to build the models, a set of six descriptors were selected by the best multilinear regression procedure of the CODESSA program. These descriptors were: atomic charge weighted partial negatively charged surface area, relative negative charged surface area, polarity parameter/square distance, minimum most negative atomic partial charge, molecular volume, and the A component of moment of inertia, which encode geometrical and electronic characteristics of molecules. These descriptors were used as inputs to ANN. The optimized ANN model had 6:6:1 topology. The standard errors in the calculation of T (N) for the training, internal, and external test sets using the ANN model were 1.012, 4.910, and 4.070, respectively. To further evaluate the ANN model, a crossvalidation test was performed, which produced the statistic Q (2) = 0.9796 and standard deviation of 2.67 based on predicted residual sum of square. Also, the diversity test was performed to ensure the model's stability and prove its predictive capability. The obtained results reveal the suitability of ANN for the prediction of T (N) for liquid crystals using molecular structural descriptors.
Kuo, Pao-Jen; Wu, Shao-Chun; Chien, Peng-Chen; Chang, Shu-Shya; Rau, Cheng-Shyuan; Tai, Hsueh-Ling; Peng, Shu-Hui; Lin, Yi-Chun; Chen, Yi-Chun; Hsieh, Hsiao-Yun; Hsieh, Ching-Hua
2018-01-01
Background The aim of this study was to develop an effective surgical site infection (SSI) prediction model in patients receiving free-flap reconstruction after surgery for head and neck cancer using artificial neural network (ANN), and to compare its predictive power with that of conventional logistic regression (LR). Materials and methods There were 1,836 patients with 1,854 free-flap reconstructions and 438 postoperative SSIs in the dataset for analysis. They were randomly assigned tin ratio of 7:3 into a training set and a test set. Based on comprehensive characteristics of patients and diseases in the absence or presence of operative data, prediction of SSI was performed at two time points (pre-operatively and post-operatively) with a feed-forward ANN and the LR models. In addition to the calculated accuracy, sensitivity, and specificity, the predictive performance of ANN and LR were assessed based on area under the curve (AUC) measures of receiver operator characteristic curves and Brier score. Results ANN had a significantly higher AUC (0.892) of post-operative prediction and AUC (0.808) of pre-operative prediction than LR (both P<0.0001). In addition, there was significant higher AUC of post-operative prediction than pre-operative prediction by ANN (p<0.0001). With the highest AUC and the lowest Brier score (0.090), the post-operative prediction by ANN had the highest overall predictive performance. Conclusion The post-operative prediction by ANN had the highest overall performance in predicting SSI after free-flap reconstruction in patients receiving surgery for head and neck cancer. PMID:29568393
Bizios, Dimitrios; Heijl, Anders; Hougaard, Jesper Leth; Bengtsson, Boel
2010-02-01
To compare the performance of two machine learning classifiers (MLCs), artificial neural networks (ANNs) and support vector machines (SVMs), with input based on retinal nerve fibre layer thickness (RNFLT) measurements by optical coherence tomography (OCT), on the diagnosis of glaucoma, and to assess the effects of different input parameters. We analysed Stratus OCT data from 90 healthy persons and 62 glaucoma patients. Performance of MLCs was compared using conventional OCT RNFLT parameters plus novel parameters such as minimum RNFLT values, 10th and 90th percentiles of measured RNFLT, and transformations of A-scan measurements. For each input parameter and MLC, the area under the receiver operating characteristic curve (AROC) was calculated. There were no statistically significant differences between ANNs and SVMs. The best AROCs for both ANN (0.982, 95%CI: 0.966-0.999) and SVM (0.989, 95% CI: 0.979-1.0) were based on input of transformed A-scan measurements. Our SVM trained on this input performed better than ANNs or SVMs trained on any of the single RNFLT parameters (p < or = 0.038). The performance of ANNs and SVMs trained on minimum thickness values and the 10th and 90th percentiles were at least as good as ANNs and SVMs with input based on the conventional RNFLT parameters. No differences between ANN and SVM were observed in this study. Both MLCs performed very well, with similar diagnostic performance. Input parameters have a larger impact on diagnostic performance than the type of machine classifier. Our results suggest that parameters based on transformed A-scan thickness measurements of the RNFL processed by machine classifiers can improve OCT-based glaucoma diagnosis.
Papantonopoulos, Georgios; Takahashi, Keiso; Bountis, Tasos; Loos, Bruno G
2014-01-01
There is neither a single clinical, microbiological, histopathological or genetic test, nor combinations of them, to discriminate aggressive periodontitis (AgP) from chronic periodontitis (CP) patients. We aimed to estimate probability density functions of clinical and immunologic datasets derived from periodontitis patients and construct artificial neural networks (ANNs) to correctly classify patients into AgP or CP class. The fit of probability distributions on the datasets was tested by the Akaike information criterion (AIC). ANNs were trained by cross entropy (CE) values estimated between probabilities of showing certain levels of immunologic parameters and a reference mode probability proposed by kernel density estimation (KDE). The weight decay regularization parameter of the ANNs was determined by 10-fold cross-validation. Possible evidence for 2 clusters of patients on cross-sectional and longitudinal bone loss measurements were revealed by KDE. Two to 7 clusters were shown on datasets of CD4/CD8 ratio, CD3, monocyte, eosinophil, neutrophil and lymphocyte counts, IL-1, IL-2, IL-4, INF-γ and TNF-α level from monocytes, antibody levels against A. actinomycetemcomitans (A.a.) and P.gingivalis (P.g.). ANNs gave 90%-98% accuracy in classifying patients into either AgP or CP. The best overall prediction was given by an ANN with CE of monocyte, eosinophil, neutrophil counts and CD4/CD8 ratio as inputs. ANNs can be powerful in classifying periodontitis patients into AgP or CP, when fed by CE values based on KDE. Therefore ANNs can be employed for accurate diagnosis of AgP or CP by using relatively simple and conveniently obtained parameters, like leukocyte counts in peripheral blood. This will allow clinicians to better adapt specific treatment protocols for their AgP and CP patients.
The American Military on the Frontier
1976-04-01
1783. Ncrvian: University of ÖFlahoma Press, HeT. (E OQ iC9 ^7^) Flison, John 1753?-17’. The discovery and settlement of Kentucke. Ann ...8217■" Fremont, John Charles, 1813-1890. Peport of the explorlmT expedition to the Pocky Ntountalns. Ann Arbor, Michigan: Uhlverslty Vlcrofllnis...O/erslze F 592 P63e) . Sources of the Mississippi and the V.’eytem Lculrlqm ’"terri- tory. Ann Arbor. ^Ich.: Ur.lversltv Microfilms
Autonomous evolution of topographic regularities in artificial neural networks.
Gauci, Jason; Stanley, Kenneth O
2010-07-01
Looking to nature as inspiration, for at least the past 25 years, researchers in the field of neuroevolution (NE) have developed evolutionary algorithms designed specifically to evolve artificial neural networks (ANNs). Yet the ANNs evolved through NE algorithms lack the distinctive characteristics of biological brains, perhaps explaining why NE is not yet a mainstream subject of neural computation. Motivated by this gap, this letter shows that when geometry is introduced to evolved ANNs through the hypercube-based neuroevolution of augmenting topologies algorithm, they begin to acquire characteristics that indeed are reminiscent of biological brains. That is, if the neurons in evolved ANNs are situated at locations in space (i.e., if they are given coordinates), then, as experiments in evolving checkers-playing ANNs in this letter show, topographic maps with symmetries and regularities can evolve spontaneously. The ability to evolve such maps is shown in this letter to provide an important advantage in generalization. In fact, the evolved maps are sufficiently informative that their analysis yields the novel insight that the geometry of the connectivity patterns of more general players is significantly smoother and more contiguous than less general ones. Thus, the results reveal a correlation between generality and smoothness in connectivity patterns. They also hint at the intriguing possibility that as NE matures as a field, its algorithms can evolve ANNs of increasing relevance to those who study neural computation in general.
Digital image classification with the help of artificial neural network by simple histogram
Dey, Pranab; Banerjee, Nirmalya; Kaur, Rajwant
2016-01-01
Background: Visual image classification is a great challenge to the cytopathologist in routine day-to-day work. Artificial neural network (ANN) may be helpful in this matter. Aims and Objectives: In this study, we have tried to classify digital images of malignant and benign cells in effusion cytology smear with the help of simple histogram data and ANN. Materials and Methods: A total of 404 digital images consisting of 168 benign cells and 236 malignant cells were selected for this study. The simple histogram data was extracted from these digital images and an ANN was constructed with the help of Neurointelligence software [Alyuda Neurointelligence 2.2 (577), Cupertino, California, USA]. The network architecture was 6-3-1. The images were classified as training set (281), validation set (63), and test set (60). The on-line backpropagation training algorithm was used for this study. Result: A total of 10,000 iterations were done to train the ANN system with the speed of 609.81/s. After the adequate training of this ANN model, the system was able to identify all 34 malignant cell images and 24 out of 26 benign cells. Conclusion: The ANN model can be used for the identification of the individual malignant cells with the help of simple histogram data. This study will be helpful in the future to identify malignant cells in unknown situations. PMID:27279679
Applications of artificial neural network in AIDS research and therapy.
Sardari, S; Sardari, D
2002-01-01
In recent years considerable effort has been devoted to applying pattern recognition techniques to the complex task of data analysis in drug research. Artificial neural networks (ANN) methodology is a modeling method with great ability to adapt to a new situation, or control an unknown system, using data acquired in previous experiments. In this paper, a brief history of ANN and the basic concepts behind the computing, the mathematical and algorithmic formulation of each of the techniques, and their developmental background is presented. Based on the abilities of ANNs in pattern recognition and estimation of system outputs from the known inputs, the neural network can be considered as a tool for molecular data analysis and interpretation. Analysis by neural networks improves the classification accuracy, data quantification and reduces the number of analogues necessary for correct classification of biologically active compounds. Conformational analysis and quantifying the components in mixtures using NMR spectra, aqueous solubility prediction and structure-activity correlation are among the reported applications of ANN as a new modeling method. Ranging from drug design and discovery to structure and dosage form design, the potential pharmaceutical applications of the ANN methodology are significant. In the areas of clinical monitoring, utilization of molecular simulation and design of bioactive structures, ANN would make the study of the status of the health and disease possible and brings their predicted chemotherapeutic response closer to reality.
Using artificial neural networks to model aluminium based sheet forming processes and tools details
NASA Astrophysics Data System (ADS)
Mekras, N.
2017-09-01
In this paper, a methodology and a software system will be presented concerning the use of Artificial Neural Networks (ANNs) for modeling aluminium based sheet forming processes. ANNs models’ creation is based on the training of the ANNs using experimental, trial and historical data records of processes’ inputs and outputs. ANNs models are useful in cases that processes’ mathematical models are not accurate enough, are not well defined or are missing e.g. in cases of complex product shapes, new material alloys, new process requirements, micro-scale products, etc. Usually, after the design and modeling of the forming tools (die, punch, etc.) and before mass production, a set of trials takes place at the shop floor for finalizing processes and tools details concerning e.g. tools’ minimum radii, die/punch clearance, press speed, process temperature, etc. and in relation with the material type, the sheet thickness and the quality achieved from the trials. Using data from the shop floor trials and forming theory data, ANNs models can be trained and created, and can be used to estimate processes and tools final details, hence supporting efficient set-up of processes and tools before mass production starts. The proposed ANNs methodology and the respective software system are implemented within the EU H2020 project LoCoMaTech for the aluminium-based sheet forming process HFQ (solution Heat treatment, cold die Forming and Quenching).
2014-01-01
This paper examined the efficiency of multivariate linear regression (MLR) and artificial neural network (ANN) models in prediction of two major water quality parameters in a wastewater treatment plant. Biochemical oxygen demand (BOD) and chemical oxygen demand (COD) as well as indirect indicators of organic matters are representative parameters for sewer water quality. Performance of the ANN models was evaluated using coefficient of correlation (r), root mean square error (RMSE) and bias values. The computed values of BOD and COD by model, ANN method and regression analysis were in close agreement with their respective measured values. Results showed that the ANN performance model was better than the MLR model. Comparative indices of the optimized ANN with input values of temperature (T), pH, total suspended solid (TSS) and total suspended (TS) for prediction of BOD was RMSE = 25.1 mg/L, r = 0.83 and for prediction of COD was RMSE = 49.4 mg/L, r = 0.81. It was found that the ANN model could be employed successfully in estimating the BOD and COD in the inlet of wastewater biochemical treatment plants. Moreover, sensitive examination results showed that pH parameter have more effect on BOD and COD predicting to another parameters. Also, both implemented models have predicted BOD better than COD. PMID:24456676
NASA Astrophysics Data System (ADS)
Afkhamipour, Morteza; Mofarahi, Masoud; Borhani, Tohid Nejad Ghaffar; Zanganeh, Masoud
2018-03-01
In this study, artificial neural network (ANN) and thermodynamic models were developed for prediction of the heat capacity ( C P ) of amine-based solvents. For ANN model, independent variables such as concentration, temperature, molecular weight and CO2 loading of amine were selected as the inputs of the model. The significance of the input variables of the ANN model on the C P values was investigated statistically by analyzing of correlation matrix. A thermodynamic model based on the Redlich-Kister equation was used to correlate the excess molar heat capacity ({C}_P^E) data as function of temperature. In addition, the effects of temperature and CO2 loading at different concentrations of conventional amines on the C P values were investigated. Both models were validated against experimental data and very good results were obtained between two mentioned models and experimental data of C P collected from various literatures. The AARD between ANN model results and experimental data of C P for 47 systems of amine-based solvents studied was 4.3%. For conventional amines, the AARD for ANN model and thermodynamic model in comparison with experimental data were 0.59% and 0.57%, respectively. The results showed that both ANN and Redlich-Kister models can be used as a practical tool for simulation and designing of CO2 removal processes by using amine solutions.
León Blanco, José M; González-R, Pedro L; Arroyo García, Carmen Martina; Cózar-Bernal, María José; Calle Suárez, Marcos; Canca Ortiz, David; Rabasco Álvarez, Antonio María; González Rodríguez, María Luisa
2018-01-01
This work was aimed at determining the feasibility of artificial neural networks (ANN) by implementing backpropagation algorithms with default settings to generate better predictive models than multiple linear regression (MLR) analysis. The study was hypothesized on timolol-loaded liposomes. As tutorial data for ANN, causal factors were used, which were fed into the computer program. The number of training cycles has been identified in order to optimize the performance of the ANN. The optimization was performed by minimizing the error between the predicted and real response values in the training step. The results showed that training was stopped at 10 000 training cycles with 80% of the pattern values, because at this point the ANN generalizes better. Minimum validation error was achieved at 12 hidden neurons in a single layer. MLR has great prediction ability, with errors between predicted and real values lower than 1% in some of the parameters evaluated. Thus, the performance of this model was compared to that of the MLR using a factorial design. Optimal formulations were identified by minimizing the distance among measured and theoretical parameters, by estimating the prediction errors. Results indicate that the ANN shows much better predictive ability than the MLR model. These findings demonstrate the increased efficiency of the combination of ANN and design of experiments, compared to the conventional MLR modeling techniques.
Marto, Aminaton; Jahed Armaghani, Danial; Tonnizam Mohamad, Edy; Makhtar, Ahmad Mahir
2014-01-01
Flyrock is one of the major disturbances induced by blasting which may cause severe damage to nearby structures. This phenomenon has to be precisely predicted and subsequently controlled through the changing in the blast design to minimize potential risk of blasting. The scope of this study is to predict flyrock induced by blasting through a novel approach based on the combination of imperialist competitive algorithm (ICA) and artificial neural network (ANN). For this purpose, the parameters of 113 blasting operations were accurately recorded and flyrock distances were measured for each operation. By applying the sensitivity analysis, maximum charge per delay and powder factor were determined as the most influential parameters on flyrock. In the light of this analysis, two new empirical predictors were developed to predict flyrock distance. For a comparison purpose, a predeveloped backpropagation (BP) ANN was developed and the results were compared with those of the proposed ICA-ANN model and empirical predictors. The results clearly showed the superiority of the proposed ICA-ANN model in comparison with the proposed BP-ANN model and empirical approaches. PMID:25147856
Application of ANN and fuzzy logic algorithms for streamflow modelling of Savitri catchment
NASA Astrophysics Data System (ADS)
Kothari, Mahesh; Gharde, K. D.
2015-07-01
The streamflow prediction is an essentially important aspect of any watershed modelling. The black box models (soft computing techniques) have proven to be an efficient alternative to physical (traditional) methods for simulating streamflow and sediment yield of the catchments. The present study focusses on development of models using ANN and fuzzy logic (FL) algorithm for predicting the streamflow for catchment of Savitri River Basin. The input vector to these models were daily rainfall, mean daily evaporation, mean daily temperature and lag streamflow used. In the present study, 20 years (1992-2011) rainfall and other hydrological data were considered, of which 13 years (1992-2004) was for training and rest 7 years (2005-2011) for validation of the models. The mode performance was evaluated by R, RMSE, EV, CE, and MAD statistical parameters. It was found that, ANN model performance improved with increasing input vectors. The results with fuzzy logic models predict the streamflow with single input as rainfall better in comparison to multiple input vectors. While comparing both ANN and FL algorithms for prediction of streamflow, ANN model performance is quite superior.
Classification of breast abnormalities using artificial neural network
NASA Astrophysics Data System (ADS)
Zaman, Nur Atiqah Kamarul; Rahman, Wan Eny Zarina Wan Abdul; Jumaat, Abdul Kadir; Yasiran, Siti Salmah
2015-05-01
Classification is the process of recognition, differentiation and categorizing objects into groups. Breast abnormalities are calcifications which are tumor markers that indicate the presence of cancer in the breast. The aims of this research are to classify the types of breast abnormalities using artificial neural network (ANN) classifier and to evaluate the accuracy performance using receiver operating characteristics (ROC) curve. The methods used in this research are ANN for breast abnormalities classifications and Canny edge detector as a feature extraction method. Previously the ANN classifier provides only the number of benign and malignant cases without providing information for specific cases. However in this research, the type of abnormality for each image can be obtained. The existing MIAS MiniMammographic database classified the mammogram images into three features only namely characteristic of background tissues, class of abnormality and radius of abnormality. However, in this research three other features are added-in. These three features are number of spots, area and shape of abnormalities. Lastly the performance of the ANN classifier is evaluated using ROC curve. It is found that ANN has an accuracy of 97.9% which is considered acceptable.
Barba, Lida; Rodríguez, Nibaldo; Montt, Cecilia
2014-01-01
Two smoothing strategies combined with autoregressive integrated moving average (ARIMA) and autoregressive neural networks (ANNs) models to improve the forecasting of time series are presented. The strategy of forecasting is implemented using two stages. In the first stage the time series is smoothed using either, 3-point moving average smoothing, or singular value Decomposition of the Hankel matrix (HSVD). In the second stage, an ARIMA model and two ANNs for one-step-ahead time series forecasting are used. The coefficients of the first ANN are estimated through the particle swarm optimization (PSO) learning algorithm, while the coefficients of the second ANN are estimated with the resilient backpropagation (RPROP) learning algorithm. The proposed models are evaluated using a weekly time series of traffic accidents of Valparaíso, Chilean region, from 2003 to 2012. The best result is given by the combination HSVD-ARIMA, with a MAPE of 0:26%, followed by MA-ARIMA with a MAPE of 1:12%; the worst result is given by the MA-ANN based on PSO with a MAPE of 15:51%.
Shet, Vinayaka B; Palan, Anusha M; Rao, Shama U; Varun, C; Aishwarya, Uday; Raja, Selvaraj; Goveas, Louella Concepta; Vaman Rao, C; Ujwal, P
2018-02-01
In the current investigation, statistical approaches were adopted to hydrolyse non-edible seed cake (NESC) of Pongamia and optimize the hydrolysis process by response surface methodology (RSM). Through the RSM approach, the optimized conditions were found to be 1.17%v/v of HCl concentration at 54.12 min for hydrolysis. Under optimized conditions, the release of reducing sugars was found to be 53.03 g/L. The RSM data were used to train the artificial neural network (ANN) and the predictive ability of both models was compared by calculating various statistical parameters. A three-layered ANN model consisting of 2:12:1 topology was developed; the response of the ANN model indicates that it is precise when compared with the RSM model. The fit of the models was expressed with the regression coefficient R 2 , which was found to be 0.975 and 0.888, respectively, for the ANN and RSM models. This further demonstrated that the performance of ANN was better than that of RSM.
Marto, Aminaton; Hajihassani, Mohsen; Armaghani, Danial Jahed; Mohamad, Edy Tonnizam; Makhtar, Ahmad Mahir
2014-01-01
Flyrock is one of the major disturbances induced by blasting which may cause severe damage to nearby structures. This phenomenon has to be precisely predicted and subsequently controlled through the changing in the blast design to minimize potential risk of blasting. The scope of this study is to predict flyrock induced by blasting through a novel approach based on the combination of imperialist competitive algorithm (ICA) and artificial neural network (ANN). For this purpose, the parameters of 113 blasting operations were accurately recorded and flyrock distances were measured for each operation. By applying the sensitivity analysis, maximum charge per delay and powder factor were determined as the most influential parameters on flyrock. In the light of this analysis, two new empirical predictors were developed to predict flyrock distance. For a comparison purpose, a predeveloped backpropagation (BP) ANN was developed and the results were compared with those of the proposed ICA-ANN model and empirical predictors. The results clearly showed the superiority of the proposed ICA-ANN model in comparison with the proposed BP-ANN model and empirical approaches.
Modeling and forecasting of KLCI weekly return using WT-ANN integrated model
NASA Astrophysics Data System (ADS)
Liew, Wei-Thong; Liong, Choong-Yeun; Hussain, Saiful Izzuan; Isa, Zaidi
2013-04-01
The forecasting of weekly return is one of the most challenging tasks in investment since the time series are volatile and non-stationary. In this study, an integrated model of wavelet transform and artificial neural network, WT-ANN is studied for modeling and forecasting of KLCI weekly return. First, the WT is applied to decompose the weekly return time series in order to eliminate noise. Then, a mathematical model of the time series is constructed using the ANN. The performance of the suggested model will be evaluated by root mean squared error (RMSE), mean absolute error (MAE), mean absolute percentage error (MAPE). The result shows that the WT-ANN model can be considered as a feasible and powerful model for time series modeling and prediction.
Science of the science, drug discovery and artificial neural networks.
Patel, Jigneshkumar
2013-03-01
Drug discovery process many times encounters complex problems, which may be difficult to solve by human intelligence. Artificial Neural Networks (ANNs) are one of the Artificial Intelligence (AI) technologies used for solving such complex problems. ANNs are widely used for primary virtual screening of compounds, quantitative structure activity relationship studies, receptor modeling, formulation development, pharmacokinetics and in all other processes involving complex mathematical modeling. Despite having such advanced technologies and enough understanding of biological systems, drug discovery is still a lengthy, expensive, difficult and inefficient process with low rate of new successful therapeutic discovery. In this paper, author has discussed the drug discovery science and ANN from very basic angle, which may be helpful to understand the application of ANN for drug discovery to improve efficiency.
Using artificial neural networks (ANN) for open-loop tomography
NASA Astrophysics Data System (ADS)
Osborn, James; De Cos Juez, Francisco Javier; Guzman, Dani; Butterley, Timothy; Myers, Richard; Guesalaga, Andres; Laine, Jesus
2011-09-01
The next generation of adaptive optics (AO) systems require tomographic techniques in order to correct for atmospheric turbulence along lines of sight separated from the guide stars. Multi-object adaptive optics (MOAO) is one such technique. Here, we present a method which uses an artificial neural network (ANN) to reconstruct the target phase given off-axis references sources. This method does not require any input of the turbulence profile and is therefore less susceptible to changing conditions than some existing methods. We compare our ANN method with a standard least squares type matrix multiplication method (MVM) in simulation and find that the tomographic error is similar to the MVM method. In changing conditions the tomographic error increases for MVM but remains constant with the ANN model and no large matrix inversions are required.
Air Force Cambridge Research Laboratories Report on Research, July 1972 - June 1974
1975-05-01
Achievements of ALADDIN II DANDEKAR, B. S. 1973 Ann. Am. Geophys. Union Mtg., Wash., D. C. Determination of theAtomic Oxygen Concentration from the (16-20...Terrestrial Phys./I7th 1973 Ann. Am. Geophys. Union Mtg., Wash., D. C. Plenary Mtg. of COSPAR, Sao Paulo, Brazil (16-20 April 1973) (17June - I July 1974...Interplanetary Burlington, Mass.), HUFFMAN, R. E., and PAULSEN, Magnetic Field as Inferred from Polar Cap Observations D. E. 1973 Ann. Am. Geophys. Union
Fear of success among business students.
Rothman, M
1996-06-01
The concept of "Fear of Success" was measured with 352 male and female business students using the prompt, After first term finals, Ann(John) finds her(him)self at the top of her(his) Medical/Nursing school class. Analysis indicated a greater frequency of fear-of-success imagery among men than women and in particular to the John in Medical school and Ann in Nursing school cues. In addition, the Ann cue and the Medical school cue generated more fear-of-success responses among men than women.
2016-06-25
The equipment used in this procedure includes: Ann Arbor distortion tester with 50-line grating reticule, IQeye 720 digital video camera with 12...and import them into MATLAB. In order to digitally capture images of the distortion in an optical sample, an IQeye 720 video camera with a 12... video camera and Ann Arbor distortion tester. Figure 8. Computer interface for capturing images seen by IQeye 720 camera. Once an image was
Remote quantification of phycocyanin in potable water sources through an adaptive model
NASA Astrophysics Data System (ADS)
Song, Kaishan; Li, Lin; Tedesco, Lenore P.; Li, Shuai; Hall, Bob E.; Du, Jia
2014-09-01
Cyanobacterial blooms in water supply sources in both central Indiana USA (CIN) and South Australia (SA) are a cause of great concerns for toxin production and water quality deterioration. Remote sensing provides an effective approach for quick assessment of cyanobacteria through quantification of phycocyanin (PC) concentration. In total, 363 samples spanning a large variation of optically active constituents (OACs) in CIN and SA waters were collected during 24 field surveys. Concurrently, remote sensing reflectance spectra (Rrs) were measured. A partial least squares-artificial neural network (PLS-ANN) model, artificial neural network (ANN) and three-band model (TBM) were developed or tuned by relating the Rrs with PC concentration. Our results indicate that the PLS-ANN model outperformed the ANN and TBM with both the original spectra and simulated ESA/Sentinel-3/Ocean and Land Color Instrument (OLCI) and EO-1/Hyperion spectra. The PLS-ANN model resulted in a high coefficient of determination (R2) for CIN dataset (R2 = 0.92, R: 0.3-220.7 μg/L) and SA (R2 = 0.98, R: 0.2-13.2 μg/L). In comparison, the TBM model yielded an R2 = 0.77 and 0.94 for the CIN and SA datasets, respectively; while the ANN obtained an intermediate modeling accuracy (CIN: R2 = 0.86; SA: R2 = 0.95). Applying the simulated OLCI and Hyperion aggregated datasets, the PLS-ANN model still achieved good performance (OLCI: R2 = 0.84; Hyperion: R2 = 0.90); the TBM also presented acceptable performance for PC estimations (OLCI: R2 = 0.65, Hyperion: R2 = 0.70). Based on the results, the PLS-ANN is an effective modeling approach for the quantification of PC in productive water supplies based on its effectiveness in solving the non-linearity of PC with other OACs. Furthermore, our investigation indicates that the ratio of inorganic suspended matter (ISM) to PC concentration has close relationship to modeling relative errors (CIN: R2 = 0.81; SA: R2 = 0.92), indicating that ISM concentration exert significant impact on PC estimation accuracy.
[Prediction of postoperative nausea and vomiting using an artificial neural network].
Traeger, M; Eberhart, A; Geldner, G; Morin, A M; Putzke, C; Wulf, H; Eberhart, L H J
2003-12-01
Postoperative nausea and vomiting (PONV) are still frequent side-effects after general anaesthesia. These unpleasant symptoms for the patients can be sufficiently reduced using a multimodal antiemetic approach. However, these efforts should be restricted to risk patients for PONV. Thus, predictive models are required to identify these patients before surgery. So far all risk scores to predict PONV are based on results of logistic regression analysis. Artificial neural networks (ANN) can also be used for prediction since they can take into account complex and non-linear relationships between predictive variables and the dependent item. This study presents the development of an ANN to predict PONV and compares its performance with two established simplified risk scores (Apfel's and Koivuranta's scores). The development of the ANN was based on data from 1,764 patients undergoing elective surgical procedures under balanced anaesthesia. The ANN was trained with 1,364 datasets and a further 400 were used for supervising the learning process. One of the 49 ANNs showing the best predictive performance was compared with the established risk scores with respect to practicability, discrimination (by means of the area under a receiver operating characteristics curve) and calibration properties (by means of a weighted linear regression between the predicted and the actual incidences of PONV). The ANN tested showed a statistically significant ( p<0.0001) and clinically relevant higher discriminating power (0.74; 95% confidence interval: 0.70-0.78) than the Apfel score (0.66; 95% CI: 0.61-0.71) or Koivuranta's score (0.69; 95% CI: 0.65-0.74). Furthermore, the agreement between the actual incidences of PONV and those predicted by the ANN was also better and near to an ideal fit, represented by the equation y=1.0x+0. The equations for the calibration curves were: KNN y=1.11x+0, Apfel y=0.71x+1, Koivuranta 0.86x-5. The improved predictive accuracy achieved by the ANN is clinically relevant. However, the disadvantages of this system prevail because a computer is required for risk calculation. Thus, we still recommend the use of one of the simplified risk scores for clinical practice.
Estimation of seismic quality factor: Artificial neural networks and current approaches
NASA Astrophysics Data System (ADS)
Yıldırım, Eray; Saatçılar, Ruhi; Ergintav, Semih
2017-01-01
The aims of this study are to estimate soil attenuation using alternatives to traditional methods, to compare results of using these methods, and to examine soil properties using the estimated results. The performances of all methods, amplitude decay, spectral ratio, Wiener filter, and artificial neural network (ANN) methods, are examined on field and synthetic data with noise and without noise. High-resolution seismic reflection field data from Yeniköy (Arnavutköy, İstanbul) was used as field data, and 424 estimations of Q values were made for each method (1,696 total). While statistical tests on synthetic and field data are quite close to the Q value estimation results of ANN, Wiener filter, and spectral ratio methods, the amplitude decay methods showed a higher estimation error. According to previous geological and geophysical studies in this area, the soil is water-saturated, quite weak, consisting of clay and sandy units, and, because of current and past landslides in the study area and its vicinity, researchers reported heterogeneity in the soil. Under the same physical conditions, Q value calculated on field data can be expected to be 7.9 and 13.6. ANN models with various structures, training algorithm, input, and number of neurons are investigated. A total of 480 ANN models were generated consisting of 60 models for noise-free synthetic data, 360 models for different noise content synthetic data and 60 models to apply to the data collected in the field. The models were tested to determine the most appropriate structure and training algorithm. In the final ANN, the input vectors consisted of the difference of the width, energy, and distance of seismic traces, and the output was Q value. Success rate of both ANN methods with noise-free and noisy synthetic data were higher than the other three methods. Also according to the statistical tests on estimated Q value from field data, the method showed results that are more suitable. The Q value can be estimated practically and quickly by processing the traces with the recommended ANN model. Consequently, the ANN method could be used for estimating Q value from seismic data.
Multiscale Bayesian neural networks for soil water content estimation
NASA Astrophysics Data System (ADS)
Jana, Raghavendra B.; Mohanty, Binayak P.; Springer, Everett P.
2008-08-01
Artificial neural networks (ANN) have been used for some time now to estimate soil hydraulic parameters from other available or more easily measurable soil properties. However, most such uses of ANNs as pedotransfer functions (PTFs) have been at matching spatial scales (1:1) of inputs and outputs. This approach assumes that the outputs are only required at the same scale as the input data. Unfortunately, this is rarely true. Different hydrologic, hydroclimatic, and contaminant transport models require soil hydraulic parameter data at different spatial scales, depending upon their grid sizes. While conventional (deterministic) ANNs have been traditionally used in these studies, the use of Bayesian training of ANNs is a more recent development. In this paper, we develop a Bayesian framework to derive soil water retention function including its uncertainty at the point or local scale using PTFs trained with coarser-scale Soil Survey Geographic (SSURGO)-based soil data. The approach includes an ANN trained with Bayesian techniques as a PTF tool with training and validation data collected across spatial extents (scales) in two different regions in the United States. The two study areas include the Las Cruces Trench site in the Rio Grande basin of New Mexico, and the Southern Great Plains 1997 (SGP97) hydrology experimental region in Oklahoma. Each region-specific Bayesian ANN is trained using soil texture and bulk density data from the SSURGO database (scale 1:24,000), and predictions of the soil water contents at different pressure heads with point scale data (1:1) inputs are made. The resulting outputs are corrected for bias using both linear and nonlinear correction techniques. The results show good agreement between the soil water content values measured at the point scale and those predicted by the Bayesian ANN-based PTFs for both the study sites. Overall, Bayesian ANNs coupled with nonlinear bias correction are found to be very suitable tools for deriving soil hydraulic parameters at the local/fine scale from soil physical properties at coarser-scale and across different spatial extents. This approach could potentially be used for soil hydraulic properties estimation and downscaling.
77 FR 55454 - Plumas County Resource Advisory Committee
Federal Register 2010, 2011, 2012, 2013, 2014
2012-09-10
... Supervisors Office, 159 Lawrence Street, Quincy, CA 95971. Please call ahead to Lee Anne Schramel Taylor at...: Lee Anne Schramel Taylor, RAC Coordinator, Plumas National Forest, (530) 283-7850, TTY 711, eataylor...
1. JoAnn SieburgBaker, Photographer, September 1977. OVERALL VIEW OF ROUNDHOUSE. ...
1. JoAnn Sieburg-Baker, Photographer, September 1977. OVERALL VIEW OF ROUNDHOUSE. - Southern Railway Company, Spencer Shops, Salisbury Avenue between Third and Eight Streets, Spencer, Rowan County, NC
10. JoAnn SieburgBaker, Photographer, September 1977. INTERIOR VIEW OF BACK ...
10. JoAnn Sieburg-Baker, Photographer, September 1977. INTERIOR VIEW OF BACK SHOP. - Southern Railway Company, Spencer Shops, Salisbury Avenue between Third and Eight Streets, Spencer, Rowan County, NC
Recognition of an obstacle in a flow using artificial neural networks.
Carrillo, Mauricio; Que, Ulices; González, José A; López, Carlos
2017-08-01
In this work a series of artificial neural networks (ANNs) has been developed with the capacity to estimate the size and location of an obstacle obstructing the flow in a pipe. The ANNs learn the size and location of the obstacle by reading the profiles of the dynamic pressure q or the x component of the velocity v_{x} of the fluid at a certain distance from the obstacle. Data to train the ANN were generated using numerical simulations with a two-dimensional lattice Boltzmann code. We analyzed various cases varying both the diameter and the position of the obstacle on the y axis, obtaining good estimations using the R^{2} coefficient for the cases under study. Although the ANN showed problems with the classification of very small obstacles, the general results show a very good capacity for prediction.
Feng, Yinghua; Barr, William; Harper, W F
2013-05-15
Biosensing is emerging as an important element of water quality monitoring. This research demonstrated that microbial fuel cell (MFC)-based biosensing can be integrated with artificial neural networks (ANNs) to identify specific chemicals present in water samples. The non-fermentable substrates, acetate and butyrate, induced peak areas (PA) and peak heights (PH) that were generally larger than those caused by the injection of fermentable substrates, glucose and corn starch. The ANN successfully identified peaks associated with these four chemicals under a variety of experimental conditions and for two MFCs that had different levels of sensitivity. ANNs that employ the hyperbolic tangent sigmoid transfer function performed better than those using non-continuous transfer functions. ANNs should be integrated into water quality monitoring efforts for smart biosensing. Published by Elsevier Ltd.
Dutt-Mazumder, Aviroop; Button, Chris; Robins, Anthony; Bartlett, Roger
2011-12-01
Recent studies have explored the organization of player movements in team sports using a range of statistical tools. However, the factors that best explain the performance of association football teams remain elusive. Arguably, this is due to the high-dimensional behavioural outputs that illustrate the complex, evolving configurations typical of team games. According to dynamical system analysts, movement patterns in team sports exhibit nonlinear self-organizing features. Nonlinear processing tools (i.e. Artificial Neural Networks; ANNs) are becoming increasingly popular to investigate the coordination of participants in sports competitions. ANNs are well suited to describing high-dimensional data sets with nonlinear attributes, however, limited information concerning the processes required to apply ANNs exists. This review investigates the relative value of various ANN learning approaches used in sports performance analysis of team sports focusing on potential applications for association football. Sixty-two research sources were summarized and reviewed from electronic literature search engines such as SPORTDiscus, Google Scholar, IEEE Xplore, Scirus, ScienceDirect and Elsevier. Typical ANN learning algorithms can be adapted to perform pattern recognition and pattern classification. Particularly, dimensionality reduction by a Kohonen feature map (KFM) can compress chaotic high-dimensional datasets into low-dimensional relevant information. Such information would be useful for developing effective training drills that should enhance self-organizing coordination among players. We conclude that ANN-based qualitative analysis is a promising approach to understand the dynamical attributes of association football players.
Predicting the Fine Particle Fraction of Dry Powder Inhalers Using Artificial Neural Networks.
Muddle, Joanna; Kirton, Stewart B; Parisini, Irene; Muddle, Andrew; Murnane, Darragh; Ali, Jogoth; Brown, Marc; Page, Clive; Forbes, Ben
2017-01-01
Dry powder inhalers are increasingly popular for delivering drugs to the lungs for the treatment of respiratory diseases, but are complex products with multivariate performance determinants. Heuristic product development guided by in vitro aerosol performance testing is a costly and time-consuming process. This study investigated the feasibility of using artificial neural networks (ANNs) to predict fine particle fraction (FPF) based on formulation device variables. Thirty-one ANN architectures were evaluated for their ability to predict experimentally determined FPF for a self-consistent dataset containing salmeterol xinafoate and salbutamol sulfate dry powder inhalers (237 experimental observations). Principal component analysis was used to identify inputs that significantly affected FPF. Orthogonal arrays (OAs) were used to design ANN architectures, optimized using the Taguchi method. The primary OA ANN r 2 values ranged between 0.46 and 0.90 and the secondary OA increased the r 2 values (0.53-0.93). The optimum ANN (9-4-1 architecture, average r 2 0.92 ± 0.02) included active pharmaceutical ingredient, formulation, and device inputs identified by principal component analysis, which reflected the recognized importance and interdependency of these factors for orally inhaled product performance. The Taguchi method was effective at identifying successful architecture with the potential for development as a useful generic inhaler ANN model, although this would require much larger datasets and more variable inputs. Copyright © 2016 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Fakhri, G. El; Maksud, P.; Kijewski, M. F.; Haberi, M. O.; Todd-Pokropek, A.; Aurengo, A.; Moore, S. C.
2000-08-01
Simultaneous imaging of Tc-99m and I-123 would have a high clinical potential in the assessment of brain perfusion (Tc-99m) and neurotransmission (I-123) but is hindered by cross-talk between the two radionuclides. Monte Carlo simulations of 15 different dual-isotope studies were performed using a digital brain phantom. Several physiologic Tc-99m and I-123 uptake patterns were modeled in the brain structures. Two methods were considered to correct for cross-talk from both scattered and unscattered photons: constrained spectral factor analysis (SFA) and artificial neural networks (ANN). The accuracy and precision of reconstructed pixel values within several brain structures were compared to those obtained with an energy windowing method (WSA). In I-123 images, mean bias was close to 10% in all structures for SFA and ANN and between 14% (in the caudate nucleus) and 25% (in the cerebellum) for WSA. Tc-99m activity was overestimated by 35% in the cortex and 53% in the caudate nucleus with WSA, but by less than 9% in all structures with SFA and ANN. SFA and ANN performed well even in the presence of high-energy I-123 photons. The accuracy was greatly improved by incorporating the contamination into the SFA model or in the learning phase for ANN. SFA and ANN are promising approaches to correct for cross-talk in simultaneous Tc-99m/I-123 SPECT.
León-Roque, Noemí; Abderrahim, Mohamed; Nuñez-Alejos, Luis; Arribas, Silvia M; Condezo-Hoyos, Luis
2016-12-01
Several procedures are currently used to assess fermentation index (FI) of cocoa beans (Theobroma cacao L.) for quality control. However, all of them present several drawbacks. The aim of the present work was to develop and validate a simple image based quantitative procedure, using color measurement and artificial neural network (ANNs). ANN models based on color measurements were tested to predict fermentation index (FI) of fermented cocoa beans. The RGB values were measured from surface and center region of fermented beans in images obtained by camera and desktop scanner. The FI was defined as the ratio of total free amino acids in fermented versus non-fermented samples. The ANN model that included RGB color measurement of fermented cocoa surface and R/G ratio in cocoa bean of alkaline extracts was able to predict FI with no statistical difference compared with the experimental values. Performance of the ANN model was evaluated by the coefficient of determination, Bland-Altman plot and Passing-Bablok regression analyses. Moreover, in fermented beans, total sugar content and titratable acidity showed a similar pattern to the total free amino acid predicted through the color based ANN model. The results of the present work demonstrate that the proposed ANN model can be adopted as a low-cost and in situ procedure to predict FI in fermented cocoa beans through apps developed for mobile device. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Murali, R. V.; Puri, A. B.; Fathi, Khalid
2010-10-01
This paper presents an extended version of study already undertaken on development of an artificial neural networks (ANNs) model for assigning workforce into virtual cells under virtual cellular manufacturing systems (VCMS) environments. Previously, the same authors have introduced this concept and applied it to virtual cells of two-cell configuration and the results demonstrated that ANNs could be a worth applying tool for carrying out workforce assignments. In this attempt, three-cell configurations problems are considered for worker assignment task. Virtual cells are formed under dual resource constraint (DRC) context in which the number of available workers is less than the total number of machines available. Since worker assignment tasks are quite non-linear and highly dynamic in nature under varying inputs & conditions and, in parallel, ANNs have the ability to model complex relationships between inputs and outputs and find similar patterns effectively, an attempt was earlier made to employ ANNs into the above task. In this paper, the multilayered perceptron with feed forward (MLP-FF) neural network model has been reused for worker assignment tasks of three-cell configurations under DRC context and its performance at different time periods has been analyzed. The previously proposed worker assignment model has been reconfigured and cell formation solutions available for three-cell configuration in the literature are used in combination to generate datasets for training ANNs framework. Finally, results of the study have been presented and discussed.
Predicting coronary artery disease using different artificial neural network models.
Colak, M Cengiz; Colak, Cemil; Kocatürk, Hasan; Sağiroğlu, Seref; Barutçu, Irfan
2008-08-01
Eight different learning algorithms used for creating artificial neural network (ANN) models and the different ANN models in the prediction of coronary artery disease (CAD) are introduced. This work was carried out as a retrospective case-control study. Overall, 124 consecutive patients who had been diagnosed with CAD by coronary angiography (at least 1 coronary stenosis > 50% in major epicardial arteries) were enrolled in the work. Angiographically, the 113 people (group 2) with normal coronary arteries were taken as control subjects. Multi-layered perceptrons ANN architecture were applied. The ANN models trained with different learning algorithms were performed in 237 records, divided into training (n=171) and testing (n=66) data sets. The performance of prediction was evaluated by sensitivity, specificity and accuracy values based on standard definitions. The results have demonstrated that ANN models trained with eight different learning algorithms are promising because of high (greater than 71%) sensitivity, specificity and accuracy values in the prediction of CAD. Accuracy, sensitivity and specificity values varied between 83.63%-100%, 86.46%-100% and 74.67%-100% for training, respectively. For testing, the values were more than 71% for sensitivity, 76% for specificity and 81% for accuracy. It may be proposed that the use of different learning algorithms other than backpropagation and larger sample sizes can improve the performance of prediction. The proposed ANN models trained with these learning algorithms could be used a promising approach for predicting CAD without the need for invasive diagnostic methods and could help in the prognostic clinical decision.
Artificial neural network in breast lesions from fine-needle aspiration cytology smear.
Subbaiah, R M; Dey, Pranab; Nijhawan, Raje
2014-03-01
Artificial neural networks (ANNs) are applied in engineering and certain medical fields. ANN has immense potential and is rarely been used in breast lesions. In this present study, we attempted to build up a complete robust back propagation ANN model based on cytomorphological data, morphometric data, nuclear densitometric data, and gray level co-occurrence matrix (GLCM) of ductal carcinoma and fibroadenomas of breast cases diagnosed on fine-needle aspiration cytology (FNAC). We selected 52 cases of fibroadenomas and 60 cases of infiltrating ductal carcinoma of breast diagnosed on FNAC by two cytologists. Essential cytological data was quantitated by two independent cytologists (SRM, PD). With the help of Image J software, nuclear morphomeric, densitometric, and GLCM features were measured in all the cases on hematoxylin and eosin-stained smears. With the available data, an ANN model was built up with the help of Neurointelligence software. The network was designed as 41-20-1 (41 input nodes, 20 hidden nodes, 1 output node). The network was trained by the online back propagation algorithm and 500 iterations were done. Learning was adjusted after every iteration. ANN model correctly identified all cases of fibroadenomas and infiltrating carcinomas in the test set. This is one of the first successful composite ANN models of breast carcinomas. This basic model can be used to diagnose the gray zone area of the breast lesions on FNAC. We assume that this model may have far-reaching implications in future. Copyright © 2013 Wiley Periodicals, Inc.
Chenar, Shima Shamkhali; Deng, Zhiqiang
2018-02-01
This paper presents an artificial intelligence-based model, called ANN-2Day model, for forecasting, managing and ultimately eliminating the growing risk of oyster norovirus outbreaks. The ANN-2Day model was developed using Artificial Neural Network (ANN) Toolbox in MATLAB Program and 15-years of epidemiological and environmental data for six independent environmental predictors including water temperature, solar radiation, gage height, salinity, wind, and rainfall. It was found that oyster norovirus outbreaks can be forecasted with two-day lead time using the ANN-2Day model and daily data of the six environmental predictors. Forecasting results of the ANN-2Day model indicated that the model was capable of reproducing 19years of historical oyster norovirus outbreaks along the Northern Gulf of Mexico coast with the positive predictive value of 76.82%, the negative predictive value of 100.00%, the sensitivity of 100.00%, the specificity of 99.84%, and the overall accuracy of 99.83%, respectively, demonstrating the efficacy of the ANN-2Day model in predicting the risk of norovirus outbreaks to human health. The 2-day lead time enables public health agencies and oyster harvesters to plan for management interventions and thus makes it possible to achieve a paradigm shift of their daily management and operation from primarily reacting to epidemic incidents of norovirus infection after they have occurred to eliminating (or at least reducing) the risk of costly incidents. Copyright © 2017 Elsevier Ltd. All rights reserved.
Combining Neural Networks with Existing Methods to Estimate 1 in 100-Year Flood Event Magnitudes
NASA Astrophysics Data System (ADS)
Newson, A.; See, L.
2005-12-01
Over the last fifteen years artificial neural networks (ANN) have been shown to be advantageous for the solution of many hydrological modelling problems. The use of ANNs for flood magnitude estimation in ungauged catchments, however, is a relatively new and under researched area. In this paper ANNs are used to make estimates of the magnitude of the 100-year flood event (Q100) for a number of ungauged catchments. The data used in this study were provided by the Centre for Ecology and Hydrology's Flood Estimation Handbook (FEH), which contains information on catchments across the UK. Sixteen catchment descriptors for 719 catchments were used to train an ANN, which was split into a training, validation and test data set. The goodness-of-fit statistics on the test data set indicated good model performance, with an r-squared value of 0.8 and a coefficient of efficiency of 79 percent. Data for twelve ungauged catchments were then put through the trained ANN to produce estimates of Q100. Two other accepted methodologies were also employed: the FEH statistical method and the FSR (Flood Studies Report) design storm technique, both of which are used to produce flood frequency estimates. The advantage of developing an ANN model is that it provides a third figure to aid a hydrologist in making an accurate estimate. For six of the twelve catchments, there was a relatively low spread between estimates. In these instances, an estimate of Q100 could be made with a fair degree of certainty. Of the remaining six catchments, three had areas greater than 1000km2, which means the FSR design storm estimate cannot be used. Armed with the ANN model and the FEH statistical method the hydrologist still has two possible estimates to consider. For these three catchments, the estimates were also fairly similar, providing additional confidence to the estimation. In summary, the findings of this study have shown that an accurate estimation of Q100 can be made using the catchment descriptors of an ungauged catchment as inputs to an ANN. It also demonstrated how the ANN Q100 estimates can be used in conjunction with a number of other estimates in order to provide a more accurate and confident estimate of Q100 at an ungauged catchment. This clearly exploits the strengths of existing methods in combination with the latest soft computing tools.
Neural Networks for Hydrological Modeling Tool for Operational Purposes
NASA Astrophysics Data System (ADS)
Bhatt, Divya; Jain, Ashu
2010-05-01
Hydrological models are useful in many water resources applications such as flood control, irrigation and drainage, hydro power generation, water supply, erosion and sediment control, etc. Estimates of runoff are needed in many water resources planning, design development, operation and maintenance activities. Runoff is generally computed using rainfall-runoff models. Computer based hydrologic models have become popular for obtaining hydrological forecasts and for managing water systems. Rainfall-runoff library (RRL) is computer software developed by Cooperative Research Centre for Catchment Hydrology (CRCCH), Australia consisting of five different conceptual rainfall-runoff models, and has been in operation in many water resources applications in Australia. Recently, soft artificial intelligence tools such as Artificial Neural Networks (ANNs) have become popular for research purposes but have not been adopted in operational hydrological forecasts. There is a strong need to develop ANN models based on real catchment data and compare them with the conceptual models actually in use in real catchments. In this paper, the results from an investigation on the use of RRL and ANNs are presented. Out of the five conceptual models in the RRL toolkit, SimHyd model has been used. Genetic Algorithm has been used as an optimizer in the RRL to calibrate the SimHyd model. Trial and error procedures were employed to arrive at the best values of various parameters involved in the GA optimizer to develop the SimHyd model. The results obtained from the best configuration of the SimHyd model are presented here. Feed-forward neural network model structure trained by back-propagation training algorithm has been adopted here to develop the ANN models. The daily rainfall and runoff data derived from Bird Creek Basin, Oklahoma, USA have been employed to develop all the models included here. A wide range of error statistics have been used to evaluate the performance of all the models developed in this study. The ANN models developed consistently outperformed the conceptual model developed in this study. The results obtained in this study indicate that the ANNs can be extremely useful tools for modeling the complex rainfall-runoff process in real catchments. The ANNs should be adopted in real catchments for hydrological modeling and forecasting. It is hoped that more research will be carried out to compare the performance of ANN model with the conceptual models actually in use at catchment scales. It is hoped that such efforts may go a long way in making the ANNs more acceptable by the policy makers, water resources decision makers, and traditional hydrologists.
Process Control Strategies for Dual-Phase Steel Manufacturing Using ANN and ANFIS
NASA Astrophysics Data System (ADS)
Vafaeenezhad, H.; Ghanei, S.; Seyedein, S. H.; Beygi, H.; Mazinani, M.
2014-11-01
In this research, a comprehensive soft computational approach is presented for the analysis of the influencing parameters on manufacturing of dual-phase steels. A set of experimental data have been gathered to obtain the initial database used for the training and testing of both artificial neural networks (ANN) and adaptive neuro-fuzzy inference system (ANFIS). The parameters used in the strategy were intercritical annealing temperature, carbon content, and holding time which gives off martensite percentage as an output. A fraction of the data set was chosen to train both ANN and ANFIS, and the rest was put into practice to authenticate the act of the trained networks while seeing unseen data. To compare the obtained results, coefficient of determination and root mean squared error indexes were chosen. Using artificial intelligence methods, it is not necessary to consider and establish a preliminary mathematical model and formulate its affecting parameters on its definition. In conclusion, the martensite percentages corresponding to the manufacturing parameters can be determined prior to a production using these controlling algorithms. Although the results acquired from both ANN and ANFIS are very encouraging, the proposed ANFIS has enhanced performance over the ANN and takes better effect on cost-reduction profit.
Swain, Eric D.; Gomez-Fragoso, Julieta; Torres-Gonzalez, Sigfredo
2017-01-01
Lago Loíza reservoir in east-central Puerto Rico is one of the primary sources of public water supply for the San Juan metropolitan area. To evaluate and predict the Lago Loíza water budget, an artificial neural network (ANN) technique is trained to predict river inflows. A method is developed to combine ANN-predicted daily flows with ANN-predicted 30-day cumulative flows to improve flow estimates. The ANN application trains well for representing 2007–2012 and the drier 1994–1997 periods. Rainfall data downscaled from global circulation model (GCM) simulations are used to predict 2050–2055 conditions. Evapotranspiration is estimated with the Hargreaves equation using minimum and maximum air temperatures from the downscaled GCM data. These simulated 2050–2055 river flows are input to a water budget formulation for the Lago Loíza reservoir for comparison with 2007–2012. The ANN scenarios require far less computational effort than a numerical model application, yet produce results with sufficient accuracy to evaluate and compare hydrologic scenarios. This hydrologic tool will be useful for future evaluations of the Lago Loíza reservoir and water supply to the San Juan metropolitan area.
Crack propagation analysis using acoustic emission sensors for structural health monitoring systems.
Kral, Zachary; Horn, Walter; Steck, James
2013-01-01
Aerospace systems are expected to remain in service well beyond their designed life. Consequently, maintenance is an important issue. A novel method of implementing artificial neural networks and acoustic emission sensors to form a structural health monitoring (SHM) system for aerospace inspection routines was the focus of this research. Simple structural elements, consisting of flat aluminum plates of AL 2024-T3, were subjected to increasing static tensile loading. As the loading increased, designed cracks extended in length, releasing strain waves in the process. Strain wave signals, measured by acoustic emission sensors, were further analyzed in post-processing by artificial neural networks (ANN). Several experiments were performed to determine the severity and location of the crack extensions in the structure. ANNs were trained on a portion of the data acquired by the sensors and the ANNs were then validated with the remaining data. The combination of a system of acoustic emission sensors, and an ANN could determine crack extension accurately. The difference between predicted and actual crack extensions was determined to be between 0.004 in. and 0.015 in. with 95% confidence. These ANNs, coupled with acoustic emission sensors, showed promise for the creation of an SHM system for aerospace systems.
Raingauge-Based Rainfall Nowcasting with Artificial Neural Network
NASA Astrophysics Data System (ADS)
Liong, Shie-Yui; He, Shan
2010-05-01
Rainfall forecasting and nowcasting are of great importance, for instance, in real-time flood early warning systems. Long term rainfall forecasting demands global climate, land, and sea data, thus, large computing power and storage capacity are required. Rainfall nowcasting's computing requirement, on the other hand, is much less. Rainfall nowcasting may use data captured by radar and/or weather stations. This paper presents the application of Artificial Neural Network (ANN) on rainfall nowcasting using data observed at weather and/or rainfall stations. The study focuses on the North-East monsoon period (December, January and February) in Singapore. Rainfall and weather data from ten stations, between 2000 and 2006, were selected and divided into three groups for training, over-fitting test and validation of the ANN. Several neural network architectures were tried in the study. Two architectures, Backpropagation ANN and Group Method of Data Handling ANN, yielded better rainfall nowcasting, up to two hours, than the other architectures. The obtained rainfall nowcasts were then used by a catchment model to forecast catchment runoff. The results of runoff forecast are encouraging and promising.With ANN's high computational speed, the proposed approach may be deliverable for creating the real-time flood early warning system.
Analytical Nanoscience and Nanotechnology: Where we are and where we are heading.
Laura Soriano, María; Zougagh, Mohammed; Valcárcel, Miguel; Ríos, Ángel
2018-01-15
The main aim of this paper is to offer an objective and critical overview of the situation and trends in Analytical Nanoscience and Nanotechnology (AN&N), which is an important break point in the evolution of Analytical Chemistry in the XXI century as they were computers and instruments in the second half of XX century. The first part of this overview is devoted to provide a general approach to AN&N by describing the state of the art of this recent topic, being the importance of it also emphasized. Secondly, particular but very relevant trends in this topic are outlined: the analysis of the nanoworld, the so "third way" in AN&N, the growing importance of bioanalysis, the evaluation of both nanosensors and nanosorbents, the impact of AN&N in bioimaging and in nanotoxicological studies, as well as the crucial importance of reliability of the nanotechnological processes and results for solving real analytical problems in the frame of Social Responsibility (SR) of science and technology. Several reflections are included at the end of this overview written as a bird's eye view, which is not an easy task for experts in AN&N. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Anderson, R. B.; Morris, Richard V.; Clegg, S. M.; Humphries, S. D.; Wiens, R. C.; Bell, J. F., III; Mertzman, S. A.
2010-01-01
The ChemCam instrument [1] on the Mars Science Laboratory (MSL) rover will be used to obtain the chemical composition of surface targets within 7 m of the rover using Laser Induced Breakdown Spectroscopy (LIBS). ChemCam analyzes atomic emission spectra (240-800 nm) from a plasma created by a pulsed Nd:KGW 1067 nm laser. The LIBS spectra can be used in a semiquantitative way to rapidly classify targets (e.g., basalt, andesite, carbonate, sulfate, etc.) and in a quantitative way to estimate their major and minor element chemical compositions. Quantitative chemical analysis from LIBS spectra is complicated by a number of factors, including chemical matrix effects [2]. Recent work has shown promising results using multivariate techniques such as partial least squares (PLS) regression and artificial neural networks (ANN) to predict elemental abundances in samples [e.g. 2-6]. To develop, refine, and evaluate analysis schemes for LIBS spectra of geologic materials, we collected spectra of a diverse set of well-characterized natural geologic samples and are comparing the predictive abilities of PLS, cascade correlation ANN (CC-ANN) and multilayer perceptron ANN (MLP-ANN) analysis procedures.
Shafizadeh-Moghadam, Hossein; Tayyebi, Amin; Helbich, Marco
2017-06-01
Transition index maps (TIMs) are key products in urban growth simulation models. However, their operationalization is still conflicting. Our aim was to compare the prediction accuracy of three TIM-based spatially explicit land cover change (LCC) models in the mega city of Mumbai, India. These LCC models include two data-driven approaches, namely artificial neural networks (ANNs) and weight of evidence (WOE), and one knowledge-based approach which integrates an analytical hierarchical process with fuzzy membership functions (FAHP). Using the relative operating characteristics (ROC), the performance of these three LCC models were evaluated. The results showed 85%, 75%, and 73% accuracy for the ANN, FAHP, and WOE. The ANN was clearly superior compared to the other LCC models when simulating urban growth for the year 2010; hence, ANN was used to predict urban growth for 2020 and 2030. Projected urban growth maps were assessed using statistical measures, including figure of merit, average spatial distance deviation, producer accuracy, and overall accuracy. Based on our findings, we recomend ANNs as an and accurate method for simulating future patterns of urban growth.
Men, Zhongxian; Yee, Eugene; Lien, Fue-Sang; Yang, Zhiling; Liu, Yongqian
2014-01-01
Short-term wind speed and wind power forecasts (for a 72 h period) are obtained using a nonlinear autoregressive exogenous artificial neural network (ANN) methodology which incorporates either numerical weather prediction or high-resolution computational fluid dynamics wind field information as an exogenous input. An ensemble approach is used to combine the predictions from many candidate ANNs in order to provide improved forecasts for wind speed and power, along with the associated uncertainties in these forecasts. More specifically, the ensemble ANN is used to quantify the uncertainties arising from the network weight initialization and from the unknown structure of the ANN. All members forming the ensemble of neural networks were trained using an efficient particle swarm optimization algorithm. The results of the proposed methodology are validated using wind speed and wind power data obtained from an operational wind farm located in Northern China. The assessment demonstrates that this methodology for wind speed and power forecasting generally provides an improvement in predictive skills when compared to the practice of using an "optimal" weight vector from a single ANN while providing additional information in the form of prediction uncertainty bounds.
Lien, Fue-Sang; Yang, Zhiling; Liu, Yongqian
2014-01-01
Short-term wind speed and wind power forecasts (for a 72 h period) are obtained using a nonlinear autoregressive exogenous artificial neural network (ANN) methodology which incorporates either numerical weather prediction or high-resolution computational fluid dynamics wind field information as an exogenous input. An ensemble approach is used to combine the predictions from many candidate ANNs in order to provide improved forecasts for wind speed and power, along with the associated uncertainties in these forecasts. More specifically, the ensemble ANN is used to quantify the uncertainties arising from the network weight initialization and from the unknown structure of the ANN. All members forming the ensemble of neural networks were trained using an efficient particle swarm optimization algorithm. The results of the proposed methodology are validated using wind speed and wind power data obtained from an operational wind farm located in Northern China. The assessment demonstrates that this methodology for wind speed and power forecasting generally provides an improvement in predictive skills when compared to the practice of using an “optimal” weight vector from a single ANN while providing additional information in the form of prediction uncertainty bounds. PMID:27382627
Advanced Analog Signal Processing for Fuzing Final Report CRADA No. TC-1306-96
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fu, C. Y.; Spencer, D.
The purpose of this CRADA between LLNL and Kaman Aerospace/Raymond Engineering Operations (Raymond) was to demonstrate the feasibility of using Analog/Digital Neural Network (ANN) Technology for advanced signal processing, fuzing, and other applications. This cooperation sought to Ieverage the expertise and capabilities of both parties--Raymond to develop the signature recognition hardware system, using Raymond’s extensive experience in the area of system development plus Raymond’s knowledge of military applications, and LLNL to apply ANN and related technologies to an area of significant interest to the United States government. This CRADA effort was anticipated to be a three-year project consisting of threemore » phases: Phase I, Proof-of-Principle Demonstration; Phase II, Proof-of-Design, involving the development of a form-factored integrated sensor and ANN technology processo~ and Phase III, Final Design and Release of the integrated sensor and ANN fabrication process: Under Phase I, to be conducted during calendar year 1996, Raymond was to deliver to LLNL an architecture (design) for an ANN chip. LLNL was to translate the design into a stepper mask and to produce and test a prototype chip from the Raymond design.« less
Chiu, Herng-Chia; Ho, Te-Wei; Lee, King-Teh; Chen, Hong-Yaw; Ho, Wen-Hsien
2013-01-01
The aim of this present study is firstly to compare significant predictors of mortality for hepatocellular carcinoma (HCC) patients undergoing resection between artificial neural network (ANN) and logistic regression (LR) models and secondly to evaluate the predictive accuracy of ANN and LR in different survival year estimation models. We constructed a prognostic model for 434 patients with 21 potential input variables by Cox regression model. Model performance was measured by numbers of significant predictors and predictive accuracy. The results indicated that ANN had double to triple numbers of significant predictors at 1-, 3-, and 5-year survival models as compared with LR models. Scores of accuracy, sensitivity, specificity, and area under the receiver operating characteristic curve (AUROC) of 1-, 3-, and 5-year survival estimation models using ANN were superior to those of LR in all the training sets and most of the validation sets. The study demonstrated that ANN not only had a great number of predictors of mortality variables but also provided accurate prediction, as compared with conventional methods. It is suggested that physicians consider using data mining methods as supplemental tools for clinical decision-making and prognostic evaluation. PMID:23737707
Designing Artificial Neural Networks Using Particle Swarm Optimization Algorithms
Vázquez, Roberto A.
2015-01-01
Artificial Neural Network (ANN) design is a complex task because its performance depends on the architecture, the selected transfer function, and the learning algorithm used to train the set of synaptic weights. In this paper we present a methodology that automatically designs an ANN using particle swarm optimization algorithms such as Basic Particle Swarm Optimization (PSO), Second Generation of Particle Swarm Optimization (SGPSO), and a New Model of PSO called NMPSO. The aim of these algorithms is to evolve, at the same time, the three principal components of an ANN: the set of synaptic weights, the connections or architecture, and the transfer functions for each neuron. Eight different fitness functions were proposed to evaluate the fitness of each solution and find the best design. These functions are based on the mean square error (MSE) and the classification error (CER) and implement a strategy to avoid overtraining and to reduce the number of connections in the ANN. In addition, the ANN designed with the proposed methodology is compared with those designed manually using the well-known Back-Propagation and Levenberg-Marquardt Learning Algorithms. Finally, the accuracy of the method is tested with different nonlinear pattern classification problems. PMID:26221132
Jurrus, Elizabeth; Paiva, Antonio R C; Watanabe, Shigeki; Anderson, James R; Jones, Bryan W; Whitaker, Ross T; Jorgensen, Erik M; Marc, Robert E; Tasdizen, Tolga
2010-12-01
Study of nervous systems via the connectome, the map of connectivities of all neurons in that system, is a challenging problem in neuroscience. Towards this goal, neurobiologists are acquiring large electron microscopy datasets. However, the shear volume of these datasets renders manual analysis infeasible. Hence, automated image analysis methods are required for reconstructing the connectome from these very large image collections. Segmentation of neurons in these images, an essential step of the reconstruction pipeline, is challenging because of noise, anisotropic shapes and brightness, and the presence of confounding structures. The method described in this paper uses a series of artificial neural networks (ANNs) in a framework combined with a feature vector that is composed of image intensities sampled over a stencil neighborhood. Several ANNs are applied in series allowing each ANN to use the classification context provided by the previous network to improve detection accuracy. We develop the method of serial ANNs and show that the learned context does improve detection over traditional ANNs. We also demonstrate advantages over previous membrane detection methods. The results are a significant step towards an automated system for the reconstruction of the connectome. Copyright 2010 Elsevier B.V. All rights reserved.
Rodríguez, Nibaldo
2014-01-01
Two smoothing strategies combined with autoregressive integrated moving average (ARIMA) and autoregressive neural networks (ANNs) models to improve the forecasting of time series are presented. The strategy of forecasting is implemented using two stages. In the first stage the time series is smoothed using either, 3-point moving average smoothing, or singular value Decomposition of the Hankel matrix (HSVD). In the second stage, an ARIMA model and two ANNs for one-step-ahead time series forecasting are used. The coefficients of the first ANN are estimated through the particle swarm optimization (PSO) learning algorithm, while the coefficients of the second ANN are estimated with the resilient backpropagation (RPROP) learning algorithm. The proposed models are evaluated using a weekly time series of traffic accidents of Valparaíso, Chilean region, from 2003 to 2012. The best result is given by the combination HSVD-ARIMA, with a MAPE of 0 : 26%, followed by MA-ARIMA with a MAPE of 1 : 12%; the worst result is given by the MA-ANN based on PSO with a MAPE of 15 : 51%. PMID:25243200
Fei, Yang; Hu, Jian; Gao, Kun; Tu, Jianfeng; Li, Wei-Qin; Wang, Wei
2017-06-01
To construct a radical basis function (RBF) artificial neural networks (ANNs) model to predict the incidence of acute pancreatitis (AP)-induced portal vein thrombosis. The analysis included 353 patients with AP who had admitted between January 2011 and December 2015. RBF ANNs model and logistic regression model were constructed based on eleven factors relevant to AP respectively. Statistical indexes were used to evaluate the value of the prediction in two models. The predict sensitivity, specificity, positive predictive value, negative predictive value and accuracy by RBF ANNs model for PVT were 73.3%, 91.4%, 68.8%, 93.0% and 87.7%, respectively. There were significant differences between the RBF ANNs and logistic regression models in these parameters (P<0.05). In addition, a comparison of the area under receiver operating characteristic curves of the two models showed a statistically significant difference (P<0.05). The RBF ANNs model is more likely to predict the occurrence of PVT induced by AP than logistic regression model. D-dimer, AMY, Hct and PT were important prediction factors of approval for AP-induced PVT. Copyright © 2017 Elsevier Inc. All rights reserved.
Prediction of blast-induced air overpressure: a hybrid AI-based predictive model.
Jahed Armaghani, Danial; Hajihassani, Mohsen; Marto, Aminaton; Shirani Faradonbeh, Roohollah; Mohamad, Edy Tonnizam
2015-11-01
Blast operations in the vicinity of residential areas usually produce significant environmental problems which may cause severe damage to the nearby areas. Blast-induced air overpressure (AOp) is one of the most important environmental impacts of blast operations which needs to be predicted to minimize the potential risk of damage. This paper presents an artificial neural network (ANN) optimized by the imperialist competitive algorithm (ICA) for the prediction of AOp induced by quarry blasting. For this purpose, 95 blasting operations were precisely monitored in a granite quarry site in Malaysia and AOp values were recorded in each operation. Furthermore, the most influential parameters on AOp, including the maximum charge per delay and the distance between the blast-face and monitoring point, were measured and used to train the ICA-ANN model. Based on the generalized predictor equation and considering the measured data from the granite quarry site, a new empirical equation was developed to predict AOp. For comparison purposes, conventional ANN models were developed and compared with the ICA-ANN results. The results demonstrated that the proposed ICA-ANN model is able to predict blast-induced AOp more accurately than other presented techniques.
3. JoAnn SieburgBaker, Photographer, September 1977. VIEW OF BACK SHOP ...
3. JoAnn Sieburg-Baker, Photographer, September 1977. VIEW OF BACK SHOP FROM SOUTHEAST. - Southern Railway Company, Spencer Shops, Salisbury Avenue between Third and Eight Streets, Spencer, Rowan County, NC
5. JoAnn SieburgBaker, Photographer, September 1977. VIEW OF ICE HOUSE ...
5. JoAnn Sieburg-Baker, Photographer, September 1977. VIEW OF ICE HOUSE AND SURROUNDING BUILDINGS. - Southern Railway Company, Spencer Shops, Salisbury Avenue between Third and Eight Streets, Spencer, Rowan County, NC
7. JoAnn SieburgBaker, Photographer, September 1977. VIEW OF OFFICES IN ...
7. JoAnn Sieburg-Baker, Photographer, September 1977. VIEW OF OFFICES IN BACK SHOP. - Southern Railway Company, Spencer Shops, Salisbury Avenue between Third and Eight Streets, Spencer, Rowan County, NC
STS-127 Crew Visit to Anne Beers Elementary
2009-09-23
Thomas Tate, a third grade student at Anne Beers Elementary school, asks a question following a presentation by the crew of STS-127, Thursday, Sept. 24, 2009, in Washington. Photo Credit: (NASA/Paul E. Alers)
NASA Technical Reports Server (NTRS)
Lewandowski, Leon; Struckman, Keith
1994-01-01
Microwave Vision (MV), a concept originally developed in 1985, could play a significant role in the solution to robotic vision problems. Originally our Microwave Vision concept was based on a pattern matching approach employing computer based stored replica correlation processing. Artificial Neural Network (ANN) processor technology offers an attractive alternative to the correlation processing approach, namely the ability to learn and to adapt to changing environments. This paper describes the Microwave Vision concept, some initial ANN-MV experiments, and the design of an ANN-MV system that has led to a second patent disclosure in the robotic vision field.
1989-01-01
Susan Donahue. Maps and graphs were completed by Ms. Morgan and Ms. Donahue, and David Higginbotham. LeAnne Baird , Kathy Morgan, Allyn Mateu, Marian ...Consultants, Inc. ELECTE JAN 08 1990 By:* S LeAnne Baird , Principal Investigator 1989 Approved forPubic rM16=61 HISTORICAL AND ARCHITECTURAL FIELD...SURVEY OF A PORTION OF FORT SCOTT LAKE PROJECT, BOURBON COUNTY, KANSAS LeAnne Baird , Principal Investigator S. Alan Skinner, Project Director with
Facteurs prédictifs de succès des étudiants en première année de médecine à l'université de Parakou
Adoukonou, Thierry; Tognon-Tchegnonsi, Francis; Mensah, Emile; Allodé, Alexandre; Adovoekpe, Jean-Marie; Gandaho, Prosper; Akpona, Simon
2016-01-01
Introduction Plusieurs facteurs dont les notes obtenues au BAC peuvent influencer les performances académiques des étudiants en première année de médecine. L'objectif de cette étude était d’évaluer la relation entre les résultats des étudiants au BAC et le succès en première année de médecine. Méthodes Nous avons réalisé une étude analytique ayant inclus l'ensemble des étudiants régulièrement inscrits en première année à la Faculté de Médecine de l'université de Parakou durant l'année académique 2010-2011. Les données concernant les notes par discipline et mention obtenue au BAC ont été collectées. Une analyse multivariée utilisant la régression logistique et la régression linéaire multiple a permis d’établir les meilleurs prédicteurs du succès et de la moyenne de l’étudiant en fin d'année. Le logiciel SPSS version 17.0 a été utilisé pour l'analyse des données et un p<0,05 a été considéré comme statistiquement significatif. Résultats Parmi les 414 étudiants régulièrement inscrits les données de 407 ont pu être exploitées. Ils étaient âgés de 15 à 31 ans; 262 (64,4%) étaient de sexe masculin. 98 étaient admis avec un taux de succès de 23,7%. Le sexe masculin, la note obtenue en mathématiques, en sciences physiques, la moyenne au BAC et la mention étaient associés au succès en fin d'année mais en analyse multivariée seule une note en sciences physiques > 15/20 était associée au succès (OR: 2,8 [1,32- 6,00]). Pour la moyenne générale obtenue en fin d'année seule une mention bien obtenue au BAC était associée (coefficient de l'erreur standard: 0,130 Bêta =0,370 et p=0,00001). Conclusion Les meilleurs prédicateurs du succès en première année étaient une bonne moyenne en sciences physiques au BAC et une mention bien. La prise en compte de ces éléments dans le recrutement des étudiants en première année pourrait améliorer les résultats académiques. PMID:27313819
Data Fusion of Gridded Snow Products Enhanced with Terrain Covariates and a Simple Snow Model
NASA Astrophysics Data System (ADS)
Snauffer, A. M.; Hsieh, W. W.; Cannon, A. J.
2017-12-01
Hydrologic planning requires accurate estimates of regional snow water equivalent (SWE), particularly areas with hydrologic regimes dominated by spring melt. While numerous gridded data products provide such estimates, accurate representations are particularly challenging under conditions of mountainous terrain, heavy forest cover and large snow accumulations, contexts which in many ways define the province of British Columbia (BC), Canada. One promising avenue of improving SWE estimates is a data fusion approach which combines field observations with gridded SWE products and relevant covariates. A base artificial neural network (ANN) was constructed using three of the best performing gridded SWE products over BC (ERA-Interim/Land, MERRA and GLDAS-2) and simple location and time covariates. This base ANN was then enhanced to include terrain covariates (slope, aspect and Terrain Roughness Index, TRI) as well as a simple 1-layer energy balance snow model driven by gridded bias-corrected ANUSPLIN temperature and precipitation values. The ANN enhanced with all aforementioned covariates performed better than the base ANN, but most of the skill improvement was attributable to the snow model with very little contribution from the terrain covariates. The enhanced ANN improved station mean absolute error (MAE) by an average of 53% relative to the composing gridded products over the province. Interannual peak SWE correlation coefficient was found to be 0.78, an improvement of 0.05 to 0.18 over the composing products. This nonlinear approach outperformed a comparable multiple linear regression (MLR) model by 22% in MAE and 0.04 in interannual correlation. The enhanced ANN has also been shown to estimate better than the Variable Infiltration Capacity (VIC) hydrologic model calibrated and run for four BC watersheds, improving MAE by 22% and correlation by 0.05. The performance improvements of the enhanced ANN are statistically significant at the 5% level across the province and in four out of five physiographic regions.
NASA Astrophysics Data System (ADS)
Bui, H. T.; Ho, L. T.; Ushijima, K.; Nur, A.
2006-12-01
Determination of porosity and permeability plays a key role either in characterization of a reservoir or in development of an oil field. Their distribution helps to predict the major faults or fractured zones that are related to high porosity area in order to reduce drilling hazards. Porosity and permeability of the rock can be determined directly from the core sample or obtained from well log data such as: sonic, density, neutron or resistivity. These input parameters depend not only on porosity (?) but also on the rock matrix, fluids contained in the rocks, clay mineral component, or geometry of pore structures. Therefore, it is not easy to estimate exactly porosity and permeability since having corrected those values by conventional well log interpretation method. In this study, the Artificial Neural Networks (ANNs) have been used to derive porosity and permeability directly from well log data for Vung Dong oil prospect, southern offshore Vietnam. Firstly, we designed a training patterns for ANNs from neutron porosity, bulk density, P-sonic, deep resistivity, shallow resistivity and MSFL log curves. Then, ANNs were trained by core samples data for porosity and permeability. Several ANNs paradigms have been tried on a basis of trial and error. The batch back- propagation algorithm was found more proficient in training porosity network meanwhile the quick propagation algorithm is more effective in the permeability network. Secondly, trained ANNs was tested and applied for real data set of some wells to calculate and reveal the distribution maps of porosity or permeability. Distributions of porosity and permeability have been correlated with seismic data interpretation to map the faults and fractured zones in the study. The ANNs showed good results of porosity and permeability distribution with high reliability, fast, accurate and low cost features. Therefore, the ANNs should be widely applied in oil and gas industry.
Jeon, Jin Pyeong; Kim, Chulho; Oh, Byoung-Doo; Kim, Sun Jeong; Kim, Yu-Seop
2018-01-01
To assess and compare predictive factors for persistent hemodynamic depression (PHD) after carotid artery angioplasty and stenting (CAS) using artificial neural network (ANN) and multiple logistic regression (MLR) or support vector machines (SVM) models. A retrospective data set of patients (n=76) who underwent CAS from 2007 to 2014 was used as input (training cohort) to a back-propagation ANN using TensorFlow platform. PHD was defined when systolic blood pressure was less than 90mmHg or heart rate was less 50 beats/min that lasted for more than one hour. The resulting ANN was prospectively tested in 33 patients (test cohort) and compared with MLR or SVM models according to accuracy and receiver operating characteristics (ROC) curve analysis. No significant difference in baseline characteristics between the training cohort and the test cohort was observed. PHD was observed in 21 (27.6%) patients in the training cohort and 10 (30.3%) patients in the test cohort. In the training cohort, the accuracy of ANN for the prediction of PHD was 98.7% and the area under the ROC curve (AUROC) was 0.961. In the test cohort, the number of correctly classified instances was 32 (97.0%) using the ANN model. In contrast, the accuracy rate of MLR or SVM model was both 75.8%. ANN (AUROC: 0.950; 95% CI [confidence interval]: 0.813-0.996) showed superior predictive performance compared to MLR model (AUROC: 0.796; 95% CI: 0.620-0.915, p<0.001) or SVM model (AUROC: 0.885; 95% CI: 0.725-0.969, p<0.001). The ANN model seems to have more powerful prediction capabilities than MLR or SVM model for persistent hemodynamic depression after CAS. External validation with a large cohort is needed to confirm our results. Copyright © 2017. Published by Elsevier B.V.
Skoch, Jesse; Tahir, Rizwan; Abruzzo, Todd; Taylor, John M; Zuccarello, Mario; Vadivelu, Sudhakar
2017-12-01
Artificial neural networks (ANN) are increasingly applied to complex medical problem solving algorithms because their outcome prediction performance is superior to existing multiple regression models. ANN can successfully identify symptomatic cerebral vasospasm (SCV) in adults presenting after aneurysmal subarachnoid hemorrhage (aSAH). Although SCV is unusual in children with aSAH, the clinical consequences are severe. Consequently, reliable tools to predict patients at greatest risk for SCV may have significant value. We applied ANN modeling to a consecutive cohort of pediatric aSAH cases to assess its ability to predict SCV. A retrospective chart review was conducted to identify patients < 21 years of age who presented with spontaneously ruptured, non-traumatic, non-mycotic, non-flow-related intracranial arterial aneurysms to our institution between January 2002 and January 2015. Demographics, clinical, radiographic, and outcome data were analyzed using an adapted ANN model using learned value nodes from the adult aneurysmal SAH dataset previously reported. The strength of the ANN prediction was measured between - 1 and 1 with - 1 representing no likelihood of SCV and 1 representing high likelihood of SCV. Sixteen patients met study inclusion criteria. The median age for aSAH patients was 15 years. Ten underwent surgical clipping and 6 underwent endovascular coiling for definitive treatment. One patient experienced SCV and 15 did not. The ANN applied here was able to accurately predict all 16 outcomes. The mean strength of prediction for those who did not exhibit SCV was - 0.86. The strength for the one patient who did exhibit SCV was 0.93. Adult-derived aneurysmal SAH value nodes can be applied to a simple AAN model to accurately predict SCV in children presenting with aSAH. Further work is needed to determine if ANN models can prospectively predict SCV in the pediatric aSAH population in toto; adapted to include mycotic, traumatic, and flow-related origins as well.
NASA Astrophysics Data System (ADS)
He, Zhibin; Wen, Xiaohu; Liu, Hu; Du, Jun
2014-02-01
Data driven models are very useful for river flow forecasting when the underlying physical relationships are not fully understand, but it is not clear whether these data driven models still have a good performance in the small river basin of semiarid mountain regions where have complicated topography. In this study, the potential of three different data driven methods, artificial neural network (ANN), adaptive neuro fuzzy inference system (ANFIS) and support vector machine (SVM) were used for forecasting river flow in the semiarid mountain region, northwestern China. The models analyzed different combinations of antecedent river flow values and the appropriate input vector has been selected based on the analysis of residuals. The performance of the ANN, ANFIS and SVM models in training and validation sets are compared with the observed data. The model which consists of three antecedent values of flow has been selected as the best fit model for river flow forecasting. To get more accurate evaluation of the results of ANN, ANFIS and SVM models, the four quantitative standard statistical performance evaluation measures, the coefficient of correlation (R), root mean squared error (RMSE), Nash-Sutcliffe efficiency coefficient (NS) and mean absolute relative error (MARE), were employed to evaluate the performances of various models developed. The results indicate that the performance obtained by ANN, ANFIS and SVM in terms of different evaluation criteria during the training and validation period does not vary substantially; the performance of the ANN, ANFIS and SVM models in river flow forecasting was satisfactory. A detailed comparison of the overall performance indicated that the SVM model performed better than ANN and ANFIS in river flow forecasting for the validation data sets. The results also suggest that ANN, ANFIS and SVM method can be successfully applied to establish river flow with complicated topography forecasting models in the semiarid mountain regions.
4. JoAnn SieburgBaker, Photographer, September 1977. OVERALL VIEW OF BACK ...
4. JoAnn Sieburg-Baker, Photographer, September 1977. OVERALL VIEW OF BACK SHOP FROM ROOF OF ROUNDHOUSE. - Southern Railway Company, Spencer Shops, Salisbury Avenue between Third and Eight Streets, Spencer, Rowan County, NC
Federal Register 2010, 2011, 2012, 2013, 2014
2012-11-06
... Particle Standard for the Detroit-Ann Arbor Nonattainment Area AGENCY: Environmental Protection Agency (EPA...) regarding the 1997 annual fine particle (PM 2.5 ) nonattainment area of Detroit-Ann Arbor, Michigan...
Evaluation of the advanced operating system of the Ann Arbor Transit Authority
DOT National Transportation Integrated Search
1999-10-01
These reports constitute an evaluation of the intelligent transportation system deployment efforts of the Ann Arbor Transportation Authority. These efforts, collectively termed "Advanced Operating System" (AOS), represent a vision of an integrated ad...
Taheri, Mahboobeh; Mohebbi, Ali
2008-08-30
In this study, a new approach for the auto-design of neural networks, based on a genetic algorithm (GA), has been used to predict collection efficiency in venturi scrubbers. The experimental input data, including particle diameter, throat gas velocity, liquid to gas flow rate ratio, throat hydraulic diameter, pressure drop across the venturi scrubber and collection efficiency as an output, have been used to create a GA-artificial neural network (ANN) model. The testing results from the model are in good agreement with the experimental data. Comparison of the results of the GA optimized ANN model with the results from the trial-and-error calibrated ANN model indicates that the GA-ANN model is more efficient. Finally, the effects of operating parameters such as liquid to gas flow rate ratio, throat gas velocity, and particle diameter on collection efficiency were determined.
Machine learning modelling for predicting soil liquefaction susceptibility
NASA Astrophysics Data System (ADS)
Samui, P.; Sitharam, T. G.
2011-01-01
This study describes two machine learning techniques applied to predict liquefaction susceptibility of soil based on the standard penetration test (SPT) data from the 1999 Chi-Chi, Taiwan earthquake. The first machine learning technique which uses Artificial Neural Network (ANN) based on multi-layer perceptions (MLP) that are trained with Levenberg-Marquardt backpropagation algorithm. The second machine learning technique uses the Support Vector machine (SVM) that is firmly based on the theory of statistical learning theory, uses classification technique. ANN and SVM have been developed to predict liquefaction susceptibility using corrected SPT [(N1)60] and cyclic stress ratio (CSR). Further, an attempt has been made to simplify the models, requiring only the two parameters [(N1)60 and peck ground acceleration (amax/g)], for the prediction of liquefaction susceptibility. The developed ANN and SVM models have also been applied to different case histories available globally. The paper also highlights the capability of the SVM over the ANN models.
WEPP and ANN models for simulating soil loss and runoff in a semi-arid Mediterranean region.
Albaradeyia, Issa; Hani, Azzedine; Shahrour, Isam
2011-09-01
This paper presents the use of both the Water Erosion Prediction Project (WEPP) and the artificial neural network (ANN) for the prediction of runoff and soil loss in the central highland mountainous of the Palestinian territories. Analyses show that the soil erosion is highly dependent on both the rainfall depth and the rainfall event duration rather than on the rainfall intensity as mostly mentioned in the literature. The results obtained from the WEPP model for the soil loss and runoff disagree with the field data. The WEPP underestimates both the runoff and soil loss. Analyses conducted with the ANN agree well with the observation. In addition, the global network models developed using the data of all the land use type show a relatively unbiased estimation for both runoff and soil loss. The study showed that the ANN model could be used as a management tool for predicting runoff and soil loss.
Classification of cardiac patient states using artificial neural networks
Kannathal, N; Acharya, U Rajendra; Lim, Choo Min; Sadasivan, PK; Krishnan, SM
2003-01-01
Electrocardiogram (ECG) is a nonstationary signal; therefore, the disease indicators may occur at random in the time scale. This may require the patient be kept under observation for long intervals in the intensive care unit of hospitals for accurate diagnosis. The present study examined the classification of the states of patients with certain diseases in the intensive care unit using their ECG and an Artificial Neural Networks (ANN) classification system. The states were classified into normal, abnormal and life threatening. Seven significant features extracted from the ECG were fed as input parameters to the ANN for classification. Three neural network techniques, namely, back propagation, self-organizing maps and radial basis functions, were used for classification of the patient states. The ANN classifier in this case was observed to be correct in approximately 99% of the test cases. This result was further improved by taking 13 features of the ECG as input for the ANN classifier. PMID:19649222
Copula Entropy coupled with Wavelet Neural Network Model for Hydrological Prediction
NASA Astrophysics Data System (ADS)
Wang, Yin; Yue, JiGuang; Liu, ShuGuang; Wang, Li
2018-02-01
Artificial Neural network(ANN) has been widely used in hydrological forecasting. in this paper an attempt has been made to find an alternative method for hydrological prediction by combining Copula Entropy(CE) with Wavelet Neural Network(WNN), CE theory permits to calculate mutual information(MI) to select Input variables which avoids the limitations of the traditional linear correlation(LCC) analysis. Wavelet analysis can provide the exact locality of any changes in the dynamical patterns of the sequence Coupled with ANN Strong non-linear fitting ability. WNN model was able to provide a good fit with the hydrological data. finally, the hybrid model(CE+WNN) have been applied to daily water level of Taihu Lake Basin, and compared with CE ANN, LCC WNN and LCC ANN. Results showed that the hybrid model produced better results in estimating the hydrograph properties than the latter models.
Deeb, Omar; Shaik, Basheerulla; Agrawal, Vijay K
2014-10-01
Quantitative Structure-Activity Relationship (QSAR) models for binding affinity constants (log Ki) of 78 flavonoid ligands towards the benzodiazepine site of GABA (A) receptor complex were calculated using the machine learning methods: artificial neural network (ANN) and support vector machine (SVM) techniques. The models obtained were compared with those obtained using multiple linear regression (MLR) analysis. The descriptor selection and model building were performed with 10-fold cross-validation using the training data set. The SVM and MLR coefficient of determination values are 0.944 and 0.879, respectively, for the training set and are higher than those of ANN models. Though the SVM model shows improvement of training set fitting, the ANN model was superior to SVM and MLR in predicting the test set. Randomization test is employed to check the suitability of the models.
A novel neural network for the synthesis of antennas and microwave devices.
Delgado, Heriberto Jose; Thursby, Michael H; Ham, Fredric M
2005-11-01
A novel artificial neural network (SYNTHESIS-ANN) is presented, which has been designed for computationally intensive problems and applied to the optimization of antennas and microwave devices. The antenna example presented is optimized with respect to voltage standing-wave ratio, bandwidth, and frequency of operation. A simple microstrip transmission line problem is used to further describe the ANN effectiveness, in which microstrip line width is optimized with respect to line impedance. The ANNs exploit a unique number representation of input and output data in conjunction with a more standard neural network architecture. An ANN consisting of a heteroassociative memory provided a very efficient method of computing necessary geometrical values for the antenna when used in conjunction with a new randomization process. The number representation used provides significant insight into this new method of fault-tolerant computing. Further work is needed to evaluate the potential of this new paradigm.
López-Caraballo, C. H.; Lazzús, J. A.; Salfate, I.; Rojas, P.; Rivera, M.; Palma-Chilla, L.
2015-01-01
An artificial neural network (ANN) based on particle swarm optimization (PSO) was developed for the time series prediction. The hybrid ANN+PSO algorithm was applied on Mackey-Glass chaotic time series in the short-term x(t + 6). The performance prediction was evaluated and compared with other studies available in the literature. Also, we presented properties of the dynamical system via the study of chaotic behaviour obtained from the predicted time series. Next, the hybrid ANN+PSO algorithm was complemented with a Gaussian stochastic procedure (called stochastic hybrid ANN+PSO) in order to obtain a new estimator of the predictions, which also allowed us to compute the uncertainties of predictions for noisy Mackey-Glass chaotic time series. Thus, we studied the impact of noise for several cases with a white noise level (σ N) from 0.01 to 0.1. PMID:26351449
Damage level prediction of non-reshaped berm breakwater using ANN, SVM and ANFIS models
NASA Astrophysics Data System (ADS)
Mandal, Sukomal; Rao, Subba; N., Harish; Lokesha
2012-06-01
The damage analysis of coastal structure is very important as it involves many design parameters to be considered for the better and safe design of structure. In the present study experimental data for non-reshaped berm breakwater are collected from Marine Structures Laboratory, Department of Applied Mechanics and Hydraulics, NITK, Surathkal, India. Soft computing techniques like Artificial Neural Network (ANN), Support Vector Machine (SVM) and Adaptive Neuro Fuzzy Inference system (ANFIS) models are constructed using experimental data sets to predict the damage level of non-reshaped berm breakwater. The experimental data are used to train ANN, SVM and ANFIS models and results are determined in terms of statistical measures like mean square error, root mean square error, correla-tion coefficient and scatter index. The result shows that soft computing techniques i.e., ANN, SVM and ANFIS can be efficient tools in predicting damage levels of non reshaped berm breakwater.
López-Caraballo, C H; Lazzús, J A; Salfate, I; Rojas, P; Rivera, M; Palma-Chilla, L
2015-01-01
An artificial neural network (ANN) based on particle swarm optimization (PSO) was developed for the time series prediction. The hybrid ANN+PSO algorithm was applied on Mackey-Glass chaotic time series in the short-term x(t + 6). The performance prediction was evaluated and compared with other studies available in the literature. Also, we presented properties of the dynamical system via the study of chaotic behaviour obtained from the predicted time series. Next, the hybrid ANN+PSO algorithm was complemented with a Gaussian stochastic procedure (called stochastic hybrid ANN+PSO) in order to obtain a new estimator of the predictions, which also allowed us to compute the uncertainties of predictions for noisy Mackey-Glass chaotic time series. Thus, we studied the impact of noise for several cases with a white noise level (σ(N)) from 0.01 to 0.1.
Schubert, M; Fey, A; Ihssen, J; Civardi, C; Schwarze, F W M R; Mourad, S
2015-01-10
An artificial neural network (ANN) and genetic algorithm (GA) were applied to improve the laccase-mediated oxidation of iodide (I(-)) to elemental iodine (I2). Biosynthesis of iodine (I2) was studied with a 5-level-4-factor central composite design (CCD). The generated ANN network was mathematically evaluated by several statistical indices and revealed better results than a classical quadratic response surface (RS) model. Determination of the relative significance of model input parameters, ranking the process parameters in order of importance (pH>laccase>mediator>iodide), was performed by sensitivity analysis. ANN-GA methodology was used to optimize the input space of the neural network model to find optimal settings for the laccase-mediated synthesis of iodine. ANN-GA optimized parameters resulted in a 9.9% increase in the conversion rate. Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Hsu, Kuo-Lin; Gupta, Hoshin V.; Gao, Xiaogang; Sorooshian, Soroosh; Imam, Bisher
2002-12-01
Artificial neural networks (ANNs) can be useful in the prediction of hydrologic variables, such as streamflow, particularly when the underlying processes have complex nonlinear interrelationships. However, conventional ANN structures suffer from network training issues that significantly limit their widespread application. This paper presents a multivariate ANN procedure entitled self-organizing linear output map (SOLO), whose structure has been designed for rapid, precise, and inexpensive estimation of network structure/parameters and system outputs. More important, SOLO provides features that facilitate insight into the underlying processes, thereby extending its usefulness beyond forecast applications as a tool for scientific investigations. These characteristics are demonstrated using a classic rainfall-runoff forecasting problem. Various aspects of model performance are evaluated in comparison with other commonly used modeling approaches, including multilayer feedforward ANNs, linear time series modeling, and conceptual rainfall-runoff modeling.
Determination of butter adulteration with margarine using Raman spectroscopy.
Uysal, Reyhan Selin; Boyaci, Ismail Hakki; Genis, Hüseyin Efe; Tamer, Ugur
2013-12-15
In this study, adulteration of butter with margarine was analysed using Raman spectroscopy combined with chemometric methods (principal component analysis (PCA), principal component regression (PCR), partial least squares (PLS)) and artificial neural networks (ANNs). Different butter and margarine samples were mixed at various concentrations ranging from 0% to 100% w/w. PCA analysis was applied for the classification of butters, margarines and mixtures. PCR, PLS and ANN were used for the detection of adulteration ratios of butter. Models were created using a calibration data set and developed models were evaluated using a validation data set. The coefficient of determination (R(2)) values between actual and predicted values obtained for PCR, PLS and ANN for the validation data set were 0.968, 0.987 and 0.978, respectively. In conclusion, a combination of Raman spectroscopy with chemometrics and ANN methods can be applied for testing butter adulteration. Copyright © 2013 Elsevier Ltd. All rights reserved.
Obituary: Anne Barbara Underhill, 1920-2003
NASA Astrophysics Data System (ADS)
Roman, Nancy Grace
2003-12-01
Anne was born in Vancouver, British Columbia on 12 June 1920. Her parents were Frederic Clare Underhill, a civil engineer and Irene Anna (née Creery) Underhill. She had a twin brother and three younger brothers. As a young girl she was active in Girl Guides and graduated from high school winning the Lieutenant Governor's medal as one of the top students in the Province. She also excelled in high school sports. Her mother died when Anne was 18 and, while undertaking her university studies, Anne assisted in raising her younger brothers. Her twin brother was killed in Italy during World War II (1944), a loss that Anne felt deeply. Possibly because of fighting to get ahead in astronomy, a field overwhelming male when she started, she frequently appeared combative. At the University of British Columbia, Anne obtained a BA (honors) in Chemistry (1942), followed by a MA in 1944. After working for the NRC in Montreal for a year, she studied at the University of Toronto prior to entering the University of Chicago in 1946 to obtain her PhD. Her thesis was the first model computed for a multi-layered stellar atmosphere (1948). During this time she worked with Otto Struve, developing a lifetime interest in hot stars and the analysis of their high dispersion spectra. She received two fellowships from the University Women of Canada. She received a U.S. National Research Fellowship to work at the Copenhagen Observatory, and upon its completion, she returned to British Columbia to work at the Dominion Astrophysical Observatory as a research scientist from 1949--1962. During this period she spent a year at Harvard University as a visiting professor and at Princeton where she used their advanced computer to write the first code for modeling stellar atmospheres. Anne was invited to the University of Utrecht (Netherlands) as a full professor in 1962. She was an excellent teacher, well liked by the students in her classes, and by the many individuals that she guided throughout her career. She tried conscientiously to learn Dutch with only moderate success. She started her lectures in Dutch but switched to English when she was excited. For a semester, she talked of black body radiation; the Dutch came out as ``black corpse radiation." The students enjoyed this so much that they never corrected her. While in Utrecht, she served briefly on the editorial board of the Astrophysical Journal. After Utrecht, Anne returned to North America to work with NASA's Goddard Space Flight Center in Greenbelt Maryland. The senior scientists at Goddard were looking for a competent astronomer who could help raise the scientific standards of the laboratory. Anne was successful in this aim, particularly in guiding and encouraging the younger staff. As project scientist for the International Ultraviolet Explorer, she contributed greatly to the success of that project. In 1969, Anne received an honorary degree from York University. The period as Goddard Lab Chief was trying for Anne and she was happy to accept a Senior Scientist position. She spent two years in Paris collaborating with Richard Thomas editing a series of books on astronomy. Of these, she wrote "O-Stars and Wolf Rayet Stars" in collaboration with Peter Conti, and "B Stars With and Without Emission Lines" in collaboration with Vera Doazan. Both books were well received. On return from Paris she continued scientific research until she retired in 1985. Upon retirement, Anne returned to Vancouver and became an honorary professor at the University of British Columbia. She had an office, library facilities and the stimulation of colleagues. She enjoyed helping and mentoring the women students and she was happy to get back to observing at the Dominion Astrophysical Observatory in Victoria. In 1985 she received the D.S. Beals award, given to a Canadian astronomer for outstanding achievement in research. She was also elected a Fellow of the Royal Society of Canada in 1985. She received a D.Sc. from the University of British Columbia in 1992. Anne was one of the world experts on hot stars who influenced many students as well as the entire field. Between 1945 and 1996 she published more than 200 papers in refereed journals or symposium proceedings in addition to books. Her legacy will be long lasting. The following quote from Giusa-Cayrel de Strobel, an acquaintance of 50 years, summarizes the impression she left. ``In writing this brief note, many meetings we attended together are coming in my memory. They evolved almost always in the same way: first, our joy of the encounter, then the appearing of a scientific disagreement between us, and afterwards, before parting, the reconciliation. Anne never held an argument against her opponent; some of the people she admired and liked most were those with whom she argued vehemently." Anne cared passionately about astronomy and defended her views vigorously both individually and at meetings. She had difficulty making friends but those who got beyond the surface found that she was a kind, generous, and caring person as well as good company. Anne was deeply committed to her religious faith and sang in choirs as long as she could. She loved hiking, traveling the world, and music. In 2002, her health began deteriorating and was further weakened by several small strokes. Anne died on 3 July 2003 at the age of 83. She is remembered fondly by her family, friends, and former colleagues.
Battery Performance Modelling ad Simulation: a Neural Network Based Approach
NASA Astrophysics Data System (ADS)
Ottavianelli, Giuseppe; Donati, Alessandro
2002-01-01
This project has developed on the background of ongoing researches within the Control Technology Unit (TOS-OSC) of the Special Projects Division at the European Space Operations Centre (ESOC) of the European Space Agency. The purpose of this research is to develop and validate an Artificial Neural Network tool (ANN) able to model, simulate and predict the Cluster II battery system's performance degradation. (Cluster II mission is made of four spacecraft flying in tetrahedral formation and aimed to observe and study the interaction between sun and earth by passing in and out of our planet's magnetic field). This prototype tool, named BAPER and developed with a commercial neural network toolbox, could be used to support short and medium term mission planning in order to improve and maximise the batteries lifetime, determining which are the future best charge/discharge cycles for the batteries given their present states, in view of a Cluster II mission extension. This study focuses on the five Silver-Cadmium batteries onboard of Tango, the fourth Cluster II satellite, but time restrains have allowed so far to perform an assessment only on the first battery. In their most basic form, ANNs are hyper-dimensional curve fits for non-linear data. With their remarkable ability to derive meaning from complicated or imprecise history data, ANN can be used to extract patterns and detect trends that are too complex to be noticed by either humans or other computer techniques. ANNs learn by example, and this is why they can be described as an inductive, or data-based models for the simulation of input/target mappings. A trained ANN can be thought of as an "expert" in the category of information it has been given to analyse, and this expert can then be used, as in this project, to provide projections given new situations of interest and answer "what if" questions. The most appropriate algorithm, in terms of training speed and memory storage requirements, is clearly the Levenberg-Marquardt one. The ANN used is a three-layer one (2-4-1) with four inputs and one output. Having established all the ANN parameters and calculated all the input/target training data the ANN has been trained and validated. Afterwards, various simulations have been performed with BAPER to validate the performance of the software and test new alternative battery cycling strategies. Taking into account the small number of available training data for the ANN, and that the simulations have been carried out over a fairly extensive time frame (i.e. one year) the results obtained from the prototype tool must be considered more than satisfactory. It is found that the deliverable discharge capacity can be maintained circa 20% higher than the one obtained with the nominal cycling strategy if the batteries are left discharged for a longer period of time and the storage temperature is decreased. This ANN model has its limitations when asked to predict the discharge capacity deterioration that would be obtained with extraordinary cycling conditions (e.g. extremely low storage temperatures and continuous cycling). Hence, these results must be considered only approximate, as it is impossible to exactly state whether the ANN turn out to give extremely accurate realistic values or not, failing to extrapolate a correct pattern. One way to overcome the problem would be to do some parallel experiments in the laboratory, using the same battery and similar environment conditions (temperature, charge and discharge cycles) to the ones to be encounter in the spacecraft.
Cao, Rensheng; Ruan, Wenqian; Wu, Xianliang; Wei, Xionghui
2018-01-01
Highly promising artificial intelligence tools, including neural network (ANN), genetic algorithm (GA) and particle swarm optimization (PSO), were applied in the present study to develop an approach for the evaluation of Se(IV) removal from aqueous solutions by reduced graphene oxide-supported nanoscale zero-valent iron (nZVI/rGO) composites. Both GA and PSO were used to optimize the parameters of ANN. The effect of operational parameters (i.e., initial pH, temperature, contact time and initial Se(IV) concentration) on the removal efficiency was examined using response surface methodology (RSM), which was also utilized to obtain a dataset for the ANN training. The ANN-GA model results (with a prediction error of 2.88%) showed a better agreement with the experimental data than the ANN-PSO model results (with a prediction error of 4.63%) and the RSM model results (with a prediction error of 5.56%), thus the ANN-GA model was an ideal choice for modeling and optimizing the Se(IV) removal by the nZVI/rGO composites due to its low prediction error. The analysis of the experimental data illustrates that the removal process of Se(IV) obeyed the Langmuir isotherm and the pseudo-second-order kinetic model. Furthermore, the Se 3d and 3p peaks found in XPS spectra for the nZVI/rGO composites after removing treatment illustrates that the removal of Se(IV) was mainly through the adsorption and reduction mechanisms. PMID:29543753
Vomweg, T W; Buscema, M; Kauczor, H U; Teifke, A; Intraligi, M; Terzi, S; Heussel, C P; Achenbach, T; Rieker, O; Mayer, D; Thelen, M
2003-09-01
The aim of this study was to evaluate the capability of improved artificial neural networks (ANN) and additional novel training methods in distinguishing between benign and malignant breast lesions in contrast-enhanced magnetic resonance-mammography (MRM). A total of 604 histologically proven cases of contrast-enhanced lesions of the female breast at MRI were analyzed. Morphological, dynamic and clinical parameters were collected and stored in a database. The data set was divided into several groups using random or experimental methods [Training & Testing (T&T) algorithm] to train and test different ANNs. An additional novel computer program for input variable selection was applied. Sensitivity and specificity were calculated and compared with a statistical method and an expert radiologist. After optimization of the distribution of cases among the training and testing sets by the T & T algorithm and the reduction of input variables by the Input Selection procedure a highly sophisticated ANN achieved a sensitivity of 93.6% and a specificity of 91.9% in predicting malignancy of lesions within an independent prediction sample set. The best statistical method reached a sensitivity of 90.5% and a specificity of 68.9%. An expert radiologist performed better than the statistical method but worse than the ANN (sensitivity 92.1%, specificity 85.6%). Features extracted out of dynamic contrast-enhanced MRM and additional clinical data can be successfully analyzed by advanced ANNs. The quality of the resulting network strongly depends on the training methods, which are improved by the use of novel training tools. The best results of an improved ANN outperform expert radiologists.
Sirois, S; Tsoukas, C M; Chou, Kuo-Chen; Wei, Dongqing; Boucher, C; Hatzakis, G E
2005-03-01
Quantitative Structure Activity Relationship (QSAR) techniques are used routinely by computational chemists in drug discovery and development to analyze datasets of compounds. Quantitative numerical methods like Partial Least Squares (PLS) and Artificial Neural Networks (ANN) have been used on QSAR to establish correlations between molecular properties and bioactivity. However, ANN may be advantageous over PLS because it considers the interrelations of the modeled variables. This study focused on the HIV-1 Protease (HIV-1 Pr) inhibitors belonging to the peptidomimetic class of compounds. The main objective was to select molecular descriptors with the best predictive value for antiviral potency (Ki). PLS and ANN were used to predict Ki activity of HIV-1 Pr inhibitors and the results were compared. To address the issue of dimensionality reduction, Genetic Algorithms (GA) were used for variable selection and their performance was compared against that of ANN. Finally, the structure of the optimum ANN achieving the highest Pearson's-R coefficient was determined. On the basis of Pearson's-R, PLS and ANN were compared to determine which exhibits maximum performance. Training and validation of models was performed on 15 random split sets of the master dataset consisted of 231 compounds. For each compound 192 molecular descriptors were considered. The molecular structure and constant of inhibition (Ki) were selected from the NIAID database. Study findings suggested that non-covalent interactions such as hydrophobicity, shape and hydrogen bonding describe well the antiviral activity of the HIV-1 Pr compounds. The significance of lipophilicity and relationship to HIV-1 associated hyperlipidemia and lipodystrophy syndrome warrant further investigation.
The use of intelligent database systems in acute pancreatitis--a systematic review.
van den Heever, Marc; Mittal, Anubhav; Haydock, Matthew; Windsor, John
2014-01-01
Acute pancreatitis (AP) is a complex disease with multiple aetiological factors, wide ranging severity, and multiple challenges to effective triage and management. Databases, data mining and machine learning algorithms (MLAs), including artificial neural networks (ANNs), may assist by storing and interpreting data from multiple sources, potentially improving clinical decision-making. 1) Identify database technologies used to store AP data, 2) collate and categorise variables stored in AP databases, 3) identify the MLA technologies, including ANNs, used to analyse AP data, and 4) identify clinical and non-clinical benefits and obstacles in establishing a national or international AP database. Comprehensive systematic search of online reference databases. The predetermined inclusion criteria were all papers discussing 1) databases, 2) data mining or 3) MLAs, pertaining to AP, independently assessed by two reviewers with conflicts resolved by a third author. Forty-three papers were included. Three data mining technologies and five ANN methodologies were reported in the literature. There were 187 collected variables identified. ANNs increase accuracy of severity prediction, one study showed ANNs had a sensitivity of 0.89 and specificity of 0.96 six hours after admission--compare APACHE II (cutoff score ≥8) with 0.80 and 0.85 respectively. Problems with databases were incomplete data, lack of clinical data, diagnostic reliability and missing clinical data. This is the first systematic review examining the use of databases, MLAs and ANNs in the management of AP. The clinical benefits these technologies have over current systems and other advantages to adopting them are identified. Copyright © 2013 IAP and EPC. Published by Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Fazli Shahri, Hamid Reza; Mahdavinejad, Ramezanali
2018-02-01
Thermal-based processes with Gaussian heat source often produce excessive temperature which can impose thermally-affected layers in specimens. Therefore, the temperature distribution and Heat Affected Zone (HAZ) of materials are two critical factors which are influenced by different process parameters. Measurement of the HAZ thickness and temperature distribution within the processes are not only difficult but also expensive. This research aims at finding a valuable knowledge on these factors by prediction of the process through a novel combinatory model. In this study, an integrated Artificial Neural Network (ANN) and genetic algorithm (GA) was used to predict the HAZ and temperature distribution of the specimens. To end this, a series of full factorial design of experiments were conducted by applying a Gaussian heat flux on Ti-6Al-4 V at first, then the temperature of the specimen was measured by Infrared thermography. The HAZ width of each sample was investigated through measuring the microhardness. Secondly, the experimental data was used to create a GA-ANN model. The efficiency of GA in design and optimization of the architecture of ANN was investigated. The GA was used to determine the optimal number of neurons in hidden layer, learning rate and momentum coefficient of both output and hidden layers of ANN. Finally, the reliability of models was assessed according to the experimental results and statistical indicators. The results demonstrated that the combinatory model predicted the HAZ and temperature more effective than a trial-and-error ANN model.
NASA Astrophysics Data System (ADS)
García-Rodríguez, M. J.; Malpica, J. A.
2010-06-01
This paper presents an approach for assessing earthquake-triggered landslide susceptibility using artificial neural networks (ANNs). The computational method used for the training process is a back-propagation learning algorithm. It is applied to El Salvador, one of the most seismically active regions in Central America, where the last severe destructive earthquakes occurred on 13 January 2001 (Mw 7.7) and 13 February 2001 (Mw 6.6). The first one triggered more than 600 landslides (including the most tragic, Las Colinas landslide) and killed at least 844 people. The ANN is designed and programmed to develop landslide susceptibility analysis techniques at a regional scale. This approach uses an inventory of landslides and different parameters of slope instability: slope gradient, elevation, aspect, mean annual precipitation, lithology, land use, and terrain roughness. The information obtained from ANN is then used by a Geographic Information System (GIS) to map the landslide susceptibility. In a previous work, a Logistic Regression (LR) was analysed with the same parameters considered in the ANN as independent variables and the occurrence or non-occurrence of landslides as dependent variables. As a result, the logistic approach determined the importance of terrain roughness and soil type as key factors within the model. The results of the landslide susceptibility analysis with ANN are checked using landslide location data. These results show a high concordance between the landslide inventory and the high susceptibility estimated zone. Finally, a comparative analysis of the ANN and LR models are made. The advantages and disadvantages of both approaches are discussed using Receiver Operating Characteristic (ROC) curves.
Cao, Rensheng; Fan, Mingyi; Hu, Jiwei; Ruan, Wenqian; Wu, Xianliang; Wei, Xionghui
2018-03-15
Highly promising artificial intelligence tools, including neural network (ANN), genetic algorithm (GA) and particle swarm optimization (PSO), were applied in the present study to develop an approach for the evaluation of Se(IV) removal from aqueous solutions by reduced graphene oxide-supported nanoscale zero-valent iron (nZVI/rGO) composites. Both GA and PSO were used to optimize the parameters of ANN. The effect of operational parameters (i.e., initial pH, temperature, contact time and initial Se(IV) concentration) on the removal efficiency was examined using response surface methodology (RSM), which was also utilized to obtain a dataset for the ANN training. The ANN-GA model results (with a prediction error of 2.88%) showed a better agreement with the experimental data than the ANN-PSO model results (with a prediction error of 4.63%) and the RSM model results (with a prediction error of 5.56%), thus the ANN-GA model was an ideal choice for modeling and optimizing the Se(IV) removal by the nZVI/rGO composites due to its low prediction error. The analysis of the experimental data illustrates that the removal process of Se(IV) obeyed the Langmuir isotherm and the pseudo-second-order kinetic model. Furthermore, the Se 3d and 3p peaks found in XPS spectra for the nZVI/rGO composites after removing treatment illustrates that the removal of Se(IV) was mainly through the adsorption and reduction mechanisms.
Connectionist Modelling and Education.
ERIC Educational Resources Information Center
Evers, Colin W.
2000-01-01
Provides a detailed, technical introduction to the state of cognitive science research, in particular the rise of the "new cognitive science," especially artificial neural net (ANN) models. Explains one influential ANN model and describes diverse applications and their implications for education. (EV)
Federal Register 2010, 2011, 2012, 2013, 2014
2010-11-03
[email protected] , or http://gsnm-consult.limehouse.com/portal/ or by mail to Anne Thomas, Giant... by facsimile to 559-781-4744. FOR FURTHER INFORMATION CONTACT: Anne Thomas at the address listed...
Liu, Xun; Li, Ning-shan; Lv, Lin-sheng; Huang, Jian-hua; Tang, Hua; Chen, Jin-xia; Ma, Hui-juan; Wu, Xiao-ming; Lou, Tan-qi
2013-12-01
Accurate estimation of glomerular filtration rate (GFR) is important in clinical practice. Current models derived from regression are limited by the imprecision of GFR estimates. We hypothesized that an artificial neural network (ANN) might improve the precision of GFR estimates. A study of diagnostic test accuracy. 1,230 patients with chronic kidney disease were enrolled, including the development cohort (n=581), internal validation cohort (n=278), and external validation cohort (n=371). Estimated GFR (eGFR) using a new ANN model and a new regression model using age, sex, and standardized serum creatinine level derived in the development and internal validation cohort, and the CKD-EPI (Chronic Kidney Disease Epidemiology Collaboration) 2009 creatinine equation. Measured GFR (mGFR). GFR was measured using a diethylenetriaminepentaacetic acid renal dynamic imaging method. Serum creatinine was measured with an enzymatic method traceable to isotope-dilution mass spectrometry. In the external validation cohort, mean mGFR was 49±27 (SD) mL/min/1.73 m2 and biases (median difference between mGFR and eGFR) for the CKD-EPI, new regression, and new ANN models were 0.4, 1.5, and -0.5 mL/min/1.73 m2, respectively (P<0.001 and P=0.02 compared to CKD-EPI and P<0.001 comparing the new regression and ANN models). Precisions (IQRs for the difference) were 22.6, 14.9, and 15.6 mL/min/1.73 m2, respectively (P<0.001 for both compared to CKD-EPI and P<0.001 comparing the new ANN and new regression models). Accuracies (proportions of eGFRs not deviating >30% from mGFR) were 50.9%, 77.4%, and 78.7%, respectively (P<0.001 for both compared to CKD-EPI and P=0.5 comparing the new ANN and new regression models). Different methods for measuring GFR were a source of systematic bias in comparisons of new models to CKD-EPI, and both the derivation and validation cohorts consisted of a group of patients who were referred to the same institution. An ANN model using 3 variables did not perform better than a new regression model. Whether ANN can improve GFR estimation using more variables requires further investigation. Copyright © 2013 National Kidney Foundation, Inc. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Kasiviswanathan, K.; Sudheer, K.
2013-05-01
Artificial neural network (ANN) based hydrologic models have gained lot of attention among water resources engineers and scientists, owing to their potential for accurate prediction of flood flows as compared to conceptual or physics based hydrologic models. The ANN approximates the non-linear functional relationship between the complex hydrologic variables in arriving at the river flow forecast values. Despite a large number of applications, there is still some criticism that ANN's point prediction lacks in reliability since the uncertainty of predictions are not quantified, and it limits its use in practical applications. A major concern in application of traditional uncertainty analysis techniques on neural network framework is its parallel computing architecture with large degrees of freedom, which makes the uncertainty assessment a challenging task. Very limited studies have considered assessment of predictive uncertainty of ANN based hydrologic models. In this study, a novel method is proposed that help construct the prediction interval of ANN flood forecasting model during calibration itself. The method is designed to have two stages of optimization during calibration: at stage 1, the ANN model is trained with genetic algorithm (GA) to obtain optimal set of weights and biases vector, and during stage 2, the optimal variability of ANN parameters (obtained in stage 1) is identified so as to create an ensemble of predictions. During the 2nd stage, the optimization is performed with multiple objectives, (i) minimum residual variance for the ensemble mean, (ii) maximum measured data points to fall within the estimated prediction interval and (iii) minimum width of prediction interval. The method is illustrated using a real world case study of an Indian basin. The method was able to produce an ensemble that has an average prediction interval width of 23.03 m3/s, with 97.17% of the total validation data points (measured) lying within the interval. The derived prediction interval for a selected hydrograph in the validation data set is presented in Fig 1. It is noted that most of the observed flows lie within the constructed prediction interval, and therefore provides information about the uncertainty of the prediction. One specific advantage of the method is that when ensemble mean value is considered as a forecast, the peak flows are predicted with improved accuracy by this method compared to traditional single point forecasted ANNs. Fig. 1 Prediction Interval for selected hydrograph
An artificial neural network to predict resting energy expenditure in obesity.
Disse, Emmanuel; Ledoux, Séverine; Bétry, Cécile; Caussy, Cyrielle; Maitrepierre, Christine; Coupaye, Muriel; Laville, Martine; Simon, Chantal
2017-09-01
The resting energy expenditure (REE) determination is important in nutrition for adequate dietary prescription. The gold standard i.e. indirect calorimetry is not available in clinical settings. Thus, several predictive equations have been developed, but they lack of accuracy in subjects with extreme weight including obese populations. Artificial neural networks (ANN) are useful predictive tools in the area of artificial intelligence, used in numerous clinical fields. The aim of this study was to determine the relevance of ANN in predicting REE in obesity. A Multi-Layer Perceptron (MLP) feed-forward neural network with a back propagation algorithm was created and cross-validated in a cohort of 565 obese subjects (BMI within 30-50 kg m -2 ) with weight, height, sex and age as clinical inputs and REE measured by indirect calorimetry as output. The predictive performances of ANN were compared to those of 23 predictive REE equations in the training set and in two independent sets of 100 and 237 obese subjects for external validation. Among the 23 established prediction equations for REE evaluated, the Harris & Benedict equations recalculated by Roza were the most accurate for the obese population, followed by the USA DRI, Müller and the original Harris & Benedict equations. The final 5-fold cross-validated three-layer 4-3-1 feed-forward back propagation ANN model developed in that study improved precision and accuracy of REE prediction over linear equations (precision = 68.1%, MAPE = 8.6% and RMSPE = 210 kcal/d), independently from BMI subgroups within 30-50 kg m -2 . External validation confirmed the better predictive performances of ANN model (precision = 73% and 65%, MAPE = 7.7% and 8.6%, RMSPE = 187 kcal/d and 200 kcal/d in the 2 independent datasets) for the prediction of REE in obese subjects. We developed and validated an ANN model for the prediction of REE in obese subjects that is more precise and accurate than established REE predictive equations independent from BMI subgroups. For convenient use in clinical settings, we provide a simple ANN-REE calculator available at: https://www.crnh-rhone-alpes.fr/fr/ANN-REE-Calculator. Copyright © 2017 Elsevier Ltd and European Society for Clinical Nutrition and Metabolism. All rights reserved.
78 FR 65380 - Notice of Inventory Completion: University of Michigan, Ann Arbor, MI
Federal Register 2010, 2011, 2012, 2013, 2014
2013-10-31
... the University of Michigan, Ann Arbor, MI. The human remains were removed from Alpena, Isabella, Grand... removed from the Devil River Mound site (20AL1) in Alpena County, MI. A resident of Ossineke, MI...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-07-05
... 2006 24-Hour Fine Particle Standards for the Detroit-Ann Arbor Nonattainment Area AGENCY: Environmental... the Clean Air Act (CAA) regarding the fine particle (PM 2.5 ) nonattainment area of Detroit-Ann Arbor...
Selected Electrical and Thermal Properties of Undoped Nickel Oxide
1978-08-01
ooooa aata, t at a, aWa Wo aOa) + + .......+ ..+ ......+ +...+.+.+4+.+4 4+4 ... 4 ..... o T, n.-A r~~.rato COw cC%(0 I~a n oenmfLr. NatO WN. 0nr 00 f. n C...Band Phenomena," Parks, R. D., ed. (Plenum, New York, 1977), p. 551-554. 23. Emin, D. and Holstein , T., Ann. Phys. (NY) 53, 439-520 (1969). Friedman,i...L. and Holstein , T., Ann. Phys. (NY) 21, 494-549 (1963). Emin, D., Ann. Phys. (NY) 64, 336-395 (1971). , 24. Kim, K. S. and Winograd, N., Surf. Sci
Gross domestic product estimation based on electricity utilization by artificial neural network
NASA Astrophysics Data System (ADS)
Stevanović, Mirjana; Vujičić, Slađana; Gajić, Aleksandar M.
2018-01-01
The main goal of the paper was to estimate gross domestic product (GDP) based on electricity estimation by artificial neural network (ANN). The electricity utilization was analyzed based on different sources like renewable, coal and nuclear sources. The ANN network was trained with two training algorithms namely extreme learning method and back-propagation algorithm in order to produce the best prediction results of the GDP. According to the results it can be concluded that the ANN model with extreme learning method could produce the acceptable prediction of the GDP based on the electricity utilization.
NASA Astrophysics Data System (ADS)
Paralı, Levent; Sarı, Ali; Kılıç, Ulaş; Şahin, Özge; Pěchoušek, Jiří
2017-09-01
We report an improvement of the artificial neural network (ANN) modelling of a piezoelectric actuator vibration based on the experimental data. The controlled vibrations of an actuator were obtained by utilizing the swept-sine signal excitation. The peak value in the displacement signal response was measured by a laser displacement sensor. The piezoelectric actuator was modelled in both linear and nonlinear operating range. A consistency from 90.3 up to 98.9% of ANN modelled output values and experimental ones was reached. The obtained results clearly demonstrate exact linear relationship between the ANN model and experimental values.
Ihme, Matthias; Marsden, Alison L; Pitsch, Heinz
2008-02-01
A pattern search optimization method is applied to the generation of optimal artificial neural networks (ANNs). Optimization is performed using a mixed variable extension to the generalized pattern search method. This method offers the advantage that categorical variables, such as neural transfer functions and nodal connectivities, can be used as parameters in optimization. When used together with a surrogate, the resulting algorithm is highly efficient for expensive objective functions. Results demonstrate the effectiveness of this method in optimizing an ANN for the number of neurons, the type of transfer function, and the connectivity among neurons. The optimization method is applied to a chemistry approximation of practical relevance. In this application, temperature and a chemical source term are approximated as functions of two independent parameters using optimal ANNs. Comparison of the performance of optimal ANNs with conventional tabulation methods demonstrates equivalent accuracy by considerable savings in memory storage. The architecture of the optimal ANN for the approximation of the chemical source term consists of a fully connected feedforward network having four nonlinear hidden layers and 117 synaptic weights. An equivalent representation of the chemical source term using tabulation techniques would require a 500 x 500 grid point discretization of the parameter space.
Erdakov, Ivan Nikolaevich; Taha, Mohamed~Adel; Soliman, Mahmoud Sayed; El Rayes, Magdy Mostafa
2018-01-01
Magnesium alloys are widely used in aerospace vehicles and modern cars, due to their rapid machinability at high cutting speeds. A novel Edgeworth–Pareto optimization of an artificial neural network (ANN) is presented in this paper for surface roughness (Ra) prediction of one component in computer numerical control (CNC) turning over minimal machining time (Tm) and at prime machining costs (C). An ANN is built in the Matlab programming environment, based on a 4-12-3 multi-layer perceptron (MLP), to predict Ra, Tm, and C, in relation to cutting speed, vc, depth of cut, ap, and feed per revolution, fr. For the first time, a profile of an AZ61 alloy workpiece after finish turning is constructed using an ANN for the range of experimental values vc, ap, and fr. The global minimum length of a three-dimensional estimation vector was defined with the following coordinates: Ra = 0.087 μm, Tm = 0.358 min/cm3, C = $8.2973. Likewise, the corresponding finish-turning parameters were also estimated: cutting speed vc = 250 m/min, cutting depth ap = 1.0 mm, and feed per revolution fr = 0.08 mm/rev. The ANN model achieved a reliable prediction accuracy of ±1.35% for surface roughness. PMID:29772670
Crack Propagation Analysis Using Acoustic Emission Sensors for Structural Health Monitoring Systems
Kral, Zachary; Horn, Walter; Steck, James
2013-01-01
Aerospace systems are expected to remain in service well beyond their designed life. Consequently, maintenance is an important issue. A novel method of implementing artificial neural networks and acoustic emission sensors to form a structural health monitoring (SHM) system for aerospace inspection routines was the focus of this research. Simple structural elements, consisting of flat aluminum plates of AL 2024-T3, were subjected to increasing static tensile loading. As the loading increased, designed cracks extended in length, releasing strain waves in the process. Strain wave signals, measured by acoustic emission sensors, were further analyzed in post-processing by artificial neural networks (ANN).more » Several experiments were performed to determine the severity and location of the crack extensions in the structure. ANNs were trained on a portion of the data acquired by the sensors and the ANNs were then validated with the remaining data. The combination of a system of acoustic emission sensors, and an ANN could determine crack extension accurately. The difference between predicted and actual crack extensions was determined to be between 0.004 in. and 0.015 in. with 95% confidence. These ANNs, coupled with acoustic emission sensors, showed promise for the creation of an SHM system for aerospace systems.« less
Performing particle image velocimetry using artificial neural networks: a proof-of-concept
NASA Astrophysics Data System (ADS)
Rabault, Jean; Kolaas, Jostein; Jensen, Atle
2017-12-01
Traditional programs based on feature engineering are underperforming on a steadily increasing number of tasks compared with artificial neural networks (ANNs), in particular for image analysis. Image analysis is widely used in fluid mechanics when performing particle image velocimetry (PIV) and particle tracking velocimetry (PTV), and therefore it is natural to test the ability of ANNs to perform such tasks. We report for the first time the use of convolutional neural networks (CNNs) and fully connected neural networks (FCNNs) for performing end-to-end PIV. Realistic synthetic images are used for training the networks and several synthetic test cases are used to assess the quality of each network’s predictions and compare them with state-of-the-art PIV software. In addition, we present tests on real-world data that prove ANNs can be used not only with synthetic images but also with more noisy, imperfect images obtained in a real experimental setup. While the ANNs we present have slightly higher root mean square error than state-of-the-art cross-correlation methods, they perform better near edges and allow for higher spatial resolution than such methods. In addition, it is likely that one could with further work develop ANNs which perform better that the proof-of-concept we offer.
Edison, Jessica Katz; Clardy, Christopher
2017-07-01
Attention-deficit/hyperactivity disorder (ADHD) was added to the Diagnostic and Statistical Manual of Mental Disorders, third edition, revised in 1987. Similar disorders had appeared earlier, and many consider the first description of ADHD to be a lecture in 1902 about children with an "abnormal defect in moral control" but normal intelligence. This definition of ADHD is more alarming than the current one. Anne Shirley, the protagonist of the novel Anne of Green Gables (written by Lucy Maude Montgomery and published in 1908), shares the hyperactive and inattentive qualities that fit the current definition of ADHD. She also lacks the menacing characteristics of the 1902 description. This indicates that ADHD, by its modern definition, was probably present in the early 1900s. Furthermore, the character of Anne Shirley shares many biographical similarities with her author, suggesting that Montgomery herself may have had ADHD. Thus, looking at literature from the past not only provides insight into the timeline of ADHD, but also into the thought process of an individual with ADHD. By viewing literary classics through a medical lens, we may gain insight into other diseases as well. [Pediatr Ann. 2017; 46(7):e270-e272.]. Copyright 2017, SLACK Incorporated.
A neural network - based algorithm for predicting stone -free status after ESWL therapy
Seckiner, Ilker; Seckiner, Serap; Sen, Haluk; Bayrak, Omer; Dogan, Kazım; Erturhan, Sakip
2017-01-01
ABSTRACT Objective: The prototype artificial neural network (ANN) model was developed using data from patients with renal stone, in order to predict stone-free status and to help in planning treatment with Extracorporeal Shock Wave Lithotripsy (ESWL) for kidney stones. Materials and Methods: Data were collected from the 203 patients including gender, single or multiple nature of the stone, location of the stone, infundibulopelvic angle primary or secondary nature of the stone, status of hydronephrosis, stone size after ESWL, age, size, skin to stone distance, stone density and creatinine, for eleven variables. Regression analysis and the ANN method were applied to predict treatment success using the same series of data. Results: Subsequently, patients were divided into three groups by neural network software, in order to implement the ANN: training group (n=139), validation group (n=32), and the test group (n=32). ANN analysis demonstrated that the prediction accuracy of the stone-free rate was 99.25% in the training group, 85.48% in the validation group, and 88.70% in the test group. Conclusions: Successful results were obtained to predict the stone-free rate, with the help of the ANN model designed by using a series of data collected from real patients in whom ESWL was implemented to help in planning treatment for kidney stones. PMID:28727384
A neural network for noise correlation classification
NASA Astrophysics Data System (ADS)
Paitz, Patrick; Gokhberg, Alexey; Fichtner, Andreas
2018-02-01
We present an artificial neural network (ANN) for the classification of ambient seismic noise correlations into two categories, suitable and unsuitable for noise tomography. By using only a small manually classified data subset for network training, the ANN allows us to classify large data volumes with low human effort and to encode the valuable subjective experience of data analysts that cannot be captured by a deterministic algorithm. Based on a new feature extraction procedure that exploits the wavelet-like nature of seismic time-series, we efficiently reduce the dimensionality of noise correlation data, still keeping relevant features needed for automated classification. Using global- and regional-scale data sets, we show that classification errors of 20 per cent or less can be achieved when the network training is performed with as little as 3.5 per cent and 16 per cent of the data sets, respectively. Furthermore, the ANN trained on the regional data can be applied to the global data, and vice versa, without a significant increase of the classification error. An experiment where four students manually classified the data, revealed that the classification error they would assign to each other is substantially larger than the classification error of the ANN (>35 per cent). This indicates that reproducibility would be hampered more by human subjectivity than by imperfections of the ANN.
Crack Propagation Analysis Using Acoustic Emission Sensors for Structural Health Monitoring Systems
Horn, Walter; Steck, James
2013-01-01
Aerospace systems are expected to remain in service well beyond their designed life. Consequently, maintenance is an important issue. A novel method of implementing artificial neural networks and acoustic emission sensors to form a structural health monitoring (SHM) system for aerospace inspection routines was the focus of this research. Simple structural elements, consisting of flat aluminum plates of AL 2024-T3, were subjected to increasing static tensile loading. As the loading increased, designed cracks extended in length, releasing strain waves in the process. Strain wave signals, measured by acoustic emission sensors, were further analyzed in post-processing by artificial neural networks (ANN). Several experiments were performed to determine the severity and location of the crack extensions in the structure. ANNs were trained on a portion of the data acquired by the sensors and the ANNs were then validated with the remaining data. The combination of a system of acoustic emission sensors, and an ANN could determine crack extension accurately. The difference between predicted and actual crack extensions was determined to be between 0.004 in. and 0.015 in. with 95% confidence. These ANNs, coupled with acoustic emission sensors, showed promise for the creation of an SHM system for aerospace systems. PMID:24023536
Phosphorus component in AnnAGNPS
Yuan, Y.; Bingner, R.L.; Theurer, F.D.; Rebich, R.A.; Moore, P.A.
2005-01-01
The USDA Annualized Agricultural Non-Point Source Pollution model (AnnAGNPS) has been developed to aid in evaluation of watershed response to agricultural management practices. Previous studies have demonstrated the capability of the model to simulate runoff and sediment, but not phosphorus (P). The main purpose of this article is to evaluate the performance of AnnAGNPS on P simulation using comparisons with measurements from the Deep Hollow watershed of the Mississippi Delta Management Systems Evaluation Area (MDMSEA) project. A sensitivity analysis was performed to identify input parameters whose impact is the greatest on P yields. Sensitivity analysis results indicate that the most sensitive variables of those selected are initial soil P contents, P application rate, and plant P uptake. AnnAGNPS simulations of dissolved P yield do not agree well with observed dissolved P yield (Nash-Sutcliffe coefficient of efficiency of 0.34, R2 of 0.51, and slope of 0.24); however, AnnAGNPS simulations of total P yield agree well with observed total P yield (Nash-Sutcliffe coefficient of efficiency of 0.85, R2 of 0.88, and slope of 0.83). The difference in dissolved P yield may be attributed to limitations in model simulation of P processes. Uncertainties in input parameter selections also affect the model's performance.
Medarević, Djordje P; Kleinebudde, Peter; Djuriš, Jelena; Djurić, Zorica; Ibrić, Svetlana
2016-01-01
This study for the first time demonstrates combined application of mixture experimental design and artificial neural networks (ANNs) in the solid dispersions (SDs) development. Ternary carbamazepine-Soluplus®-poloxamer 188 SDs were prepared by solvent casting method to improve carbamazepine dissolution rate. The influence of the composition of prepared SDs on carbamazepine dissolution rate was evaluated using d-optimal mixture experimental design and multilayer perceptron ANNs. Physicochemical characterization proved the presence of the most stable carbamazepine polymorph III within the SD matrix. Ternary carbamazepine-Soluplus®-poloxamer 188 SDs significantly improved carbamazepine dissolution rate compared to pure drug. Models developed by ANNs and mixture experimental design well described the relationship between proportions of SD components and percentage of carbamazepine released after 10 (Q10) and 20 (Q20) min, wherein ANN model exhibit better predictability on test data set. Proportions of carbamazepine and poloxamer 188 exhibited the highest influence on carbamazepine release rate. The highest carbamazepine release rate was observed for SDs with the lowest proportions of carbamazepine and the highest proportions of poloxamer 188. ANNs and mixture experimental design can be used as powerful data modeling tools in the systematic development of SDs. Taking into account advantages and disadvantages of both techniques, their combined application should be encouraged.
Use of artificial neural network for spatial rainfall analysis
NASA Astrophysics Data System (ADS)
Paraskevas, Tsangaratos; Dimitrios, Rozos; Andreas, Benardos
2014-04-01
In the present study, the precipitation data measured at 23 rain gauge stations over the Achaia County, Greece, were used to estimate the spatial distribution of the mean annual precipitation values over a specific catchment area. The objective of this work was achieved by programming an Artificial Neural Network (ANN) that uses the feed-forward back-propagation algorithm as an alternative interpolating technique. A Geographic Information System (GIS) was utilized to process the data derived by the ANN and to create a continuous surface that represented the spatial mean annual precipitation distribution. The ANN introduced an optimization procedure that was implemented during training, adjusting the hidden number of neurons and the convergence of the ANN in order to select the best network architecture. The performance of the ANN was evaluated using three standard statistical evaluation criteria applied to the study area and showed good performance. The outcomes were also compared with the results obtained from a previous study in the area of research which used a linear regression analysis for the estimation of the mean annual precipitation values giving more accurate results. The information and knowledge gained from the present study could improve the accuracy of analysis concerning hydrology and hydrogeological models, ground water studies, flood related applications and climate analysis studies.
Development of MODIS data-based algorithm for retrieving sea surface temperature in coastal waters.
Wang, Jiao; Deng, Zhiqiang
2017-06-01
A new algorithm was developed for retrieving sea surface temperature (SST) in coastal waters using satellite remote sensing data from Moderate Resolution Imaging Spectroradiometer (MODIS) aboard Aqua platform. The new SST algorithm was trained using the Artificial Neural Network (ANN) method and tested using 8 years of remote sensing data from MODIS Aqua sensor and in situ sensing data from the US coastal waters in Louisiana, Texas, Florida, California, and New Jersey. The ANN algorithm could be utilized to map SST in both deep offshore and particularly shallow nearshore waters at the high spatial resolution of 1 km, greatly expanding the coverage of remote sensing-based SST data from offshore waters to nearshore waters. Applications of the ANN algorithm require only the remotely sensed reflectance values from the two MODIS Aqua thermal bands 31 and 32 as input data. Application results indicated that the ANN algorithm was able to explaining 82-90% variations in observed SST in US coastal waters. While the algorithm is generally applicable to the retrieval of SST, it works best for nearshore waters where important coastal resources are located and existing algorithms are either not applicable or do not work well, making the new ANN-based SST algorithm unique and particularly useful to coastal resource management.
Sub-0.1 μm optical track width measurement
NASA Astrophysics Data System (ADS)
Smith, Richard J.; See, Chung W.; Somekh, Mike G.; Yacoot, Andrew
2005-08-01
In this paper, we will describe a technique that combines a common path scanning optical interferometer with artificial neural networks (ANN), to perform track width measurements that are significantly beyond the capability of conventional optical systems. Artificial neural networks have been used for many different applications. In the present case, ANNs are trained using profiles of known samples obtained from the scanning interferometer. They are then applied to tracks that have not previously been exposed to the networks. This paper will discuss the impacts of various ANN configurations, and the processing of the input signal on the training of the network. The profiles of the samples, which are used as the inputs to the ANNs, are obtained with a common path scanning optical interferometer. It provides extremely repeatable measurements, with very high signal to noise ratio, both are essential for the working of the ANNs. The characteristics of the system will be described. A number of samples with line widths ranging from 60nm-3μm have been measured to test the system. The system can measure line widths down to 60nm with a standard deviation of 3nm using optical wavelength of 633nm and a system numerical aperture of 0.3. These results will be presented in detail along with a discussion of the potential of this technique.
Neural-network-based state of health diagnostics for an automated radioxenon sampler/analyzer
NASA Astrophysics Data System (ADS)
Keller, Paul E.; Kangas, Lars J.; Hayes, James C.; Schrom, Brian T.; Suarez, Reynold; Hubbard, Charles W.; Heimbigner, Tom R.; McIntyre, Justin I.
2009-05-01
Artificial neural networks (ANNs) are used to determine the state-of-health (SOH) of the Automated Radioxenon Analyzer/Sampler (ARSA). ARSA is a gas collection and analysis system used for non-proliferation monitoring in detecting radioxenon released during nuclear tests. SOH diagnostics are important for automated, unmanned sensing systems so that remote detection and identification of problems can be made without onsite staff. Both recurrent and feed-forward ANNs are presented. The recurrent ANN is trained to predict sensor values based on current valve states, which control air flow, so that with only valve states the normal SOH sensor values can be predicted. Deviation between modeled value and actual is an indication of a potential problem. The feed-forward ANN acts as a nonlinear version of principal components analysis (PCA) and is trained to replicate the normal SOH sensor values. Because of ARSA's complexity, this nonlinear PCA is better able to capture the relationships among the sensors than standard linear PCA and is applicable to both sensor validation and recognizing off-normal operating conditions. Both models provide valuable information to detect impending malfunctions before they occur to avoid unscheduled shutdown. Finally, the ability of ANN methods to predict the system state is presented.
NASA Astrophysics Data System (ADS)
Maheshwera Reddy Paturi, Uma; Devarasetti, Harish; Abimbola Fadare, David; Reddy Narala, Suresh Kumar
2018-04-01
In the present paper, the artificial neural network (ANN) and response surface methodology (RSM) are used in modeling of surface roughness in WS2 (tungsten disulphide) solid lubricant assisted minimal quantity lubrication (MQL) machining. The real time MQL turning of Inconel 718 experimental data considered in this paper was available in the literature [1]. In ANN modeling, performance parameters such as mean square error (MSE), mean absolute percentage error (MAPE) and average error in prediction (AEP) for the experimental data were determined based on Levenberg–Marquardt (LM) feed forward back propagation training algorithm with tansig as transfer function. The MATLAB tool box has been utilized in training and testing of neural network model. Neural network model with three input neurons, one hidden layer with five neurons and one output neuron (3-5-1 architecture) is found to be most confidence and optimal. The coefficient of determination (R2) for both the ANN and RSM model were seen to be 0.998 and 0.982 respectively. The surface roughness predictions from ANN and RSM model were related with experimentally measured values and found to be in good agreement with each other. However, the prediction efficacy of ANN model is relatively high when compared with RSM model predictions.
DOT National Transportation Integrated Search
1999-01-01
During 1997, visitors to the Ann Arbor (Michigan) Transportation Authority's worldwide web site were invited to complete an electronic questionnaire about their experience with the site. Eighty surveys were collected, representing a non-scientific se...
2. JoAnn SieburgBaker, Photographer, September 1977. SECTION SHOWING BACK OF ...
2. JoAnn Sieburg-Baker, Photographer, September 1977. SECTION SHOWING BACK OF ROUNDHOUSE AND END OF BACK SHOP WHERE CRANE WAS LOCATED. - Southern Railway Company, Spencer Shops, Salisbury Avenue between Third and Eight Streets, Spencer, Rowan County, NC
DOT National Transportation Integrated Search
1999-01-01
This study examines data regularly maintained by the AATA (Ann Arbor Transportation Authority) for evidence of AOS (Advanced Operating System) impact. These data include on-time performance, bus trips broken because of maintenance or other incidents,...
Late-Night Shared-Ride Taxi Transit in Ann Arbor, MI
DOT National Transportation Integrated Search
1984-10-01
The Ann Arbor Transportation Authority introduced Night Ride, a late-night shared-ride taxi transit service, in mid-March 1982. The service was provided through a contract with a local taxicab company and funded through a demonstration grant from the...
Cost-Aware Design of a Discrimination Strategy for Unexploded Ordnance Cleanup
2011-02-25
Acronyms ANN: Artificial Neural Network AUC: Area Under the Curve BRAC: Base Realignment And Closure DLRT: Distance Likelihood Ratio Test EER...Discriminative Aggregate Nonparametric [25] Artificial Neural Network ANN Discriminative Aggregate Parametric [33] 11 Results and Discussion Task #1
Federal Register 2010, 2011, 2012, 2013, 2014
2012-12-07
..., Judith Ann Guttau, and the Heidi Guttau-Fox and Joshua Guttau Irrevocable Living Trust, Treynor, Iowa, Heidi Ann Guttau-Fox, Minden, Iowa, and Joshua Michael Guttau, Treynor, Iowa, as Trustees, as group...
STS-127 Crew Visit to Anne Beers Elementary
2009-09-23
Students, including Marcus Pratt, left, and Ajani Young, second from left, pay close attention as the crew from STS-127 makes their presentation during a visit to Anne Beers Elementary school, Thursday, Sept. 24, 2009, in Washington. Photo Credit: (NASA/Paul E. Alers)
Comparison of Conventional and ANN Models for River Flow Forecasting
NASA Astrophysics Data System (ADS)
Jain, A.; Ganti, R.
2011-12-01
Hydrological models are useful in many water resources applications such as flood control, irrigation and drainage, hydro power generation, water supply, erosion and sediment control, etc. Estimates of runoff are needed in many water resources planning, design development, operation and maintenance activities. River flow is generally estimated using time series or rainfall-runoff models. Recently, soft artificial intelligence tools such as Artificial Neural Networks (ANNs) have become popular for research purposes but have not been extensively adopted in operational hydrological forecasts. There is a strong need to develop ANN models based on real catchment data and compare them with the conventional models. In this paper, a comparative study has been carried out for river flow forecasting using the conventional and ANN models. Among the conventional models, multiple linear, and non linear regression, and time series models of auto regressive (AR) type have been developed. Feed forward neural network model structure trained using the back propagation algorithm, a gradient search method, was adopted. The daily river flow data derived from Godavari Basin @ Polavaram, Andhra Pradesh, India have been employed to develop all the models included here. Two inputs, flows at two past time steps, (Q(t-1) and Q(t-2)) were selected using partial auto correlation analysis for forecasting flow at time t, Q(t). A wide range of error statistics have been used to evaluate the performance of all the models developed in this study. It has been found that the regression and AR models performed comparably, and the ANN model performed the best amongst all the models investigated in this study. It is concluded that ANN model should be adopted in real catchments for hydrological modeling and forecasting.
Liu, Yu; Xia, Jun; Shi, Chun-Xiang; Hong, Yang
2009-01-01
The crowning objective of this research was to identify a better cloud classification method to upgrade the current window-based clustering algorithm used operationally for China’s first operational geostationary meteorological satellite FengYun-2C (FY-2C) data. First, the capabilities of six widely-used Artificial Neural Network (ANN) methods are analyzed, together with the comparison of two other methods: Principal Component Analysis (PCA) and a Support Vector Machine (SVM), using 2864 cloud samples manually collected by meteorologists in June, July, and August in 2007 from three FY-2C channel (IR1, 10.3–11.3 μm; IR2, 11.5–12.5 μm and WV 6.3–7.6 μm) imagery. The result shows that: (1) ANN approaches, in general, outperformed the PCA and the SVM given sufficient training samples and (2) among the six ANN networks, higher cloud classification accuracy was obtained with the Self-Organizing Map (SOM) and Probabilistic Neural Network (PNN). Second, to compare the ANN methods to the present FY-2C operational algorithm, this study implemented SOM, one of the best ANN network identified from this study, as an automated cloud classification system for the FY-2C multi-channel data. It shows that SOM method has improved the results greatly not only in pixel-level accuracy but also in cloud patch-level classification by more accurately identifying cloud types such as cumulonimbus, cirrus and clouds in high latitude. Findings of this study suggest that the ANN-based classifiers, in particular the SOM, can be potentially used as an improved Automated Cloud Classification Algorithm to upgrade the current window-based clustering method for the FY-2C operational products. PMID:22346714
Liu, Yu; Xia, Jun; Shi, Chun-Xiang; Hong, Yang
2009-01-01
The crowning objective of this research was to identify a better cloud classification method to upgrade the current window-based clustering algorithm used operationally for China's first operational geostationary meteorological satellite FengYun-2C (FY-2C) data. First, the capabilities of six widely-used Artificial Neural Network (ANN) methods are analyzed, together with the comparison of two other methods: Principal Component Analysis (PCA) and a Support Vector Machine (SVM), using 2864 cloud samples manually collected by meteorologists in June, July, and August in 2007 from three FY-2C channel (IR1, 10.3-11.3 μm; IR2, 11.5-12.5 μm and WV 6.3-7.6 μm) imagery. The result shows that: (1) ANN approaches, in general, outperformed the PCA and the SVM given sufficient training samples and (2) among the six ANN networks, higher cloud classification accuracy was obtained with the Self-Organizing Map (SOM) and Probabilistic Neural Network (PNN). Second, to compare the ANN methods to the present FY-2C operational algorithm, this study implemented SOM, one of the best ANN network identified from this study, as an automated cloud classification system for the FY-2C multi-channel data. It shows that SOM method has improved the results greatly not only in pixel-level accuracy but also in cloud patch-level classification by more accurately identifying cloud types such as cumulonimbus, cirrus and clouds in high latitude. Findings of this study suggest that the ANN-based classifiers, in particular the SOM, can be potentially used as an improved Automated Cloud Classification Algorithm to upgrade the current window-based clustering method for the FY-2C operational products.
Song, Hao; Ruan, Dan; Liu, Wenyang; Stenger, V Andrew; Pohmann, Rolf; Fernández-Seara, Maria A; Nair, Tejas; Jung, Sungkyu; Luo, Jingqin; Motai, Yuichi; Ma, Jingfei; Hazle, John D; Gach, H Michael
2017-03-01
Respiratory motion prediction using an artificial neural network (ANN) was integrated with pseudocontinuous arterial spin labeling (pCASL) MRI to allow free-breathing perfusion measurements in the kidney. In this study, we evaluated the performance of the ANN to accurately predict the location of the kidneys during image acquisition. A pencil-beam navigator was integrated with a pCASL sequence to measure lung/diaphragm motion during ANN training and the pCASL transit delay. The ANN algorithm ran concurrently in the background to predict organ location during the 0.7-s 15-slice acquisition based on the navigator data. The predictions were supplied to the pulse sequence to prospectively adjust the axial slice acquisition to match the predicted organ location. Additional navigators were acquired immediately after the multislice acquisition to assess the performance and accuracy of the ANN. The technique was tested in eight healthy volunteers. The root-mean-square error (RMSE) and mean absolute error (MAE) for the eight volunteers were 1.91 ± 0.17 mm and 1.43 ± 0.17 mm, respectively, for the ANN. The RMSE increased with transit delay. The MAE typically increased from the first to last prediction in the image acquisition. The overshoot was 23.58% ± 3.05% using the target prediction accuracy of ± 1 mm. Respiratory motion prediction with prospective motion correction was successfully demonstrated for free-breathing perfusion MRI of the kidney. The method serves as an alternative to multiple breathholds and requires minimal effort from the patient. © 2017 American Association of Physicists in Medicine.
Kritas, S; Dejaeger, E; Tack, J; Omari, T; Rommel, N
2016-03-01
Pharyngeal pressure-flow analysis (PFA) of high resolution impedance-manometry (HRIM) with calculation of the swallow risk index (SRI) can quantify swallow dysfunction predisposing to aspiration. We explored the potential use of artificial neural networks (ANN) to model the relationship between PFA swallow metrics and aspiration and to predict swallow dysfunction. Two hundred consecutive dysphagia patients referred for videofluoroscopy and HRIM were assessed. Presence of aspiration was scored and PFA software derived 13 metrics and the SRI. An ANN was created and optimized over training cycles to achieve optimal classification accuracy for matching inputs (PFA metrics) to output (presence of aspiration on videofluoroscopy). Application of the ANN returned a value between 0.00 and 1.00 reflecting the degree of swallow dysfunction. Twenty one patients were excluded due to insufficient number of swallows (<4). Of 179, 58 aspirated and 27 had aspiration pneumonia history. The SRI was higher in aspirators (aspiration 24 [9, 41] vs no aspiration 7 [2, 18], p < 0.001) and patients with pneumonia (pneumonia 27 [5, 42] vs no pneumonia 8 [3, 24], p < 0.05). The ANN Predicted Risk was higher in aspirators (aspiration 0.57 [0.38, 0.82] vs no aspiration 0.13 [0.4, 0.25], p < 0.001) and in patients with pneumonia (pneumonia 0.46 [0.18, 0.60] vs no pneumonia 0.18 [0.6, 0.49], p < 0.01). Prognostic value of the ANN was superior to the SRI. In a heterogeneous cohort of dysphagia patients, PFA with ANN modeling offers enhanced detection of clinically significant swallowing dysfunction, probably more accurately reflecting the complex interplay of swallow characteristics that causes aspiration. © 2016 John Wiley & Sons Ltd.
Que, Z; Seidou, O; Droste, R L; Wilkes, G; Sunohara, M; Topp, E; Lapen, D R
2015-03-01
Controlled tile drainage (CTD) can reduce pollutant loading. The Annualized Agricultural Nonpoint Source model (AnnAGNPS version 5.2) was used to examine changes in growing season discharge, sediment, nitrogen, and phosphorus loads due to CTD for a ∼3900-km agriculturally dominated river basin in Ontario, Canada. Two tile drain depth scenarios were examined in detail to mimic tile drainage control for flat cropland: 600 mm depth (CTD) and 200 mm (CTD) depth below surface. Summed for five growing seasons (CTD), direct runoff, total N, and dissolved N were reduced by 6.6, 3.5, and 13.7%, respectively. However, five seasons of summed total P, dissolved P, and total suspended solid loads increased as a result of CTD by 0.96, 1.6, and 0.23%. The AnnAGNPS results were compared with mass fluxes observed from paired experimental watersheds (250, 470 ha) in the river basin. The "test" experimental watershed was dominated by CTD and the "reference" watershed by free drainage. Notwithstanding environmental/land use differences between the watersheds and basin, comparisons of seasonal observed and predicted discharge reductions were comparable in 100% of respective cases. Nutrient load comparisons were more consistent for dissolved, relative to particulate water quality endpoints. For one season under corn crop production, AnnAGNPS predicted a 55% decrease (CTD) in dissolved N from the basin. AnnAGNPS v. 5.2 treats P transport from a surface pool perspective, which is appropriate for many systems. However, for assessment of tile drainage management practices for relatively flat tile-dominated systems, AnnAGNPS may benefit from consideration of P and particulate transport in the subsurface. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.
DOT National Transportation Integrated Search
1999-01-01
In 1997, the Ann Arbor (Michigan) Transportation Authority began deploying advanced public transportation systems (APTS) technologies in its fixed route and paratransit operations. The project's concept is the integration of a range of such technolog...
76 FR 62329 - Proposed Flood Elevation Determinations
Federal Register 2010, 2011, 2012, 2013, 2014
2011-10-07
...] Communities affected elevation * * Elevation in meters (MSL) Effective Modified Anne Arundel County, Maryland... + 8 + 10 Unincorporated Areas of Crain Highway. Anne Arundel County. Approximately 400 feet None + 105... American Vertical Datum. [caret] Mean Sea Level, rounded to the nearest 0.1 meter. * * BFEs to be changed...
Computational Toxicology Advances: Emerging capabilities for data exploration and SAR model development
Ann M. Richard and ClarLynda R. Williams, National Health & Environmental Effects Research Laboratory, US EPA, Research Triangle Park, NC, USA; email: richard.ann@epa.gov
Modeling the compliance of polyurethane nanofiber tubes for artificial common bile duct
NASA Astrophysics Data System (ADS)
Moazeni, Najmeh; Vadood, Morteza; Semnani, Dariush; Hasani, Hossein
2018-02-01
The common bile duct is one of the body’s most sensitive organs and a polyurethane nanofiber tube can be used as a prosthetic of the common bile duct. The compliance is one of the most important properties of prosthetic which should be adequately compliant as long as possible to keep the behavioral integrity of prosthetic. In the present paper, the prosthetic compliance was measured and modeled using regression method and artificial neural network (ANN) based on the electrospinning process parameters such as polymer concentration, voltage, tip-to-collector distance and flow rate. Whereas, the ANN model contains different parameters affecting on the prediction accuracy directly, the genetic algorithm (GA) was used to optimize the ANN parameters. Finally, it was observed that the optimized ANN model by GA can predict the compliance with high accuracy (mean absolute percentage error = 8.57%). Moreover, the contribution of variables on the compliance was investigated through relative importance analysis and the optimum values of parameters for ideal compliance were determined.
Amiryousefi, Mohammad Reza; Mohebbi, Mohebbat; Khodaiyan, Faramarz
2014-01-01
The objectives of this study were to use image analysis and artificial neural network (ANN) to predict mass transfer kinetics as well as color changes and shrinkage of deep-fat fried ostrich meat cubes. Two generalized feedforward networks were separately developed by using the operation conditions as inputs. Results based on the highest numerical quantities of the correlation coefficients between the experimental versus predicted values, showed proper fitting. Sensitivity analysis results of selected ANNs showed that among the input variables, frying temperature was the most sensitive to moisture content (MC) and fat content (FC) compared to other variables. Sensitivity analysis results of selected ANNs showed that MC and FC were the most sensitive to frying temperature compared to other input variables. Similarly, for the second ANN architecture, microwave power density was the most impressive variable having the maximum influence on both shrinkage percentage and color changes. Copyright © 2013 Elsevier Ltd. All rights reserved.
Nonlinear channel equalization for QAM signal constellation using artificial neural networks.
Patra, J C; Pal, R N; Baliarsingh, R; Panda, G
1999-01-01
Application of artificial neural networks (ANN's) to adaptive channel equalization in a digital communication system with 4-QAM signal constellation is reported in this paper. A novel computationally efficient single layer functional link ANN (FLANN) is proposed for this purpose. This network has a simple structure in which the nonlinearity is introduced by functional expansion of the input pattern by trigonometric polynomials. Because of input pattern enhancement, the FLANN is capable of forming arbitrarily nonlinear decision boundaries and can perform complex pattern classification tasks. Considering channel equalization as a nonlinear classification problem, the FLANN has been utilized for nonlinear channel equalization. The performance of the FLANN is compared with two other ANN structures [a multilayer perceptron (MLP) and a polynomial perceptron network (PPN)] along with a conventional linear LMS-based equalizer for different linear and nonlinear channel models. The effect of eigenvalue ratio (EVR) of input correlation matrix on the equalizer performance has been studied. The comparison of computational complexity involved for the three ANN structures is also provided.
Intelligent Flow Friction Estimation.
Brkić, Dejan; Ćojbašić, Žarko
2016-01-01
Nowadays, the Colebrook equation is used as a mostly accepted relation for the calculation of fluid flow friction factor. However, the Colebrook equation is implicit with respect to the friction factor (λ). In the present study, a noniterative approach using Artificial Neural Network (ANN) was developed to calculate the friction factor. To configure the ANN model, the input parameters of the Reynolds Number (Re) and the relative roughness of pipe (ε/D) were transformed to logarithmic scales. The 90,000 sets of data were fed to the ANN model involving three layers: input, hidden, and output layers with, 2, 50, and 1 neurons, respectively. This configuration was capable of predicting the values of friction factor in the Colebrook equation for any given values of the Reynolds number (Re) and the relative roughness (ε/D) ranging between 5000 and 10(8) and between 10(-7) and 0.1, respectively. The proposed ANN demonstrates the relative error up to 0.07% which had the high accuracy compared with the vast majority of the precise explicit approximations of the Colebrook equation.
Prevolnik, M; Andronikov, D; Žlender, B; Font-i-Furnols, M; Novič, M; Škorjanc, D; Čandek-Potokar, M
2014-01-01
An attempt to classify dry-cured hams according to the maturation time on the basis of near infrared (NIR) spectra was studied. The study comprised 128 samples of biceps femoris (BF) muscle from dry-cured hams matured for 10 (n=32), 12 (n=32), 14 (n=32) or 16 months (n=32). Samples were minced and scanned in the wavelength range from 400 to 2500 nm using spectrometer NIR System model 6500 (Silver Spring, MD, USA). Spectral data were used for i) splitting of samples into the training and test set using 2D Kohonen artificial neural networks (ANN) and for ii) construction of classification models using counter-propagation ANN (CP-ANN). Different models were tested, and the one selected was based on the lowest percentage of misclassified test samples (external validation). Overall correctness of the classification was 79.7%, which demonstrates practical relevance of using NIR spectroscopy and ANN for dry-cured ham processing control. Copyright © 2013 Elsevier Ltd. All rights reserved.
Creation and testing of an artificial neural network based carbonate detector for Mars rovers
NASA Technical Reports Server (NTRS)
Bornstein, Benjamin; Castano, Rebecca; Gilmore, Martha S.; Merrill, Matthew; Greenwood, James P.
2005-01-01
We have developed an artificial neural network (ANN) based carbonate detector capable of running on current and future rover hardware. The detector can identify calcite in visible/NIR (350-2500 nm) spectra of both laboratory specimens covered by ferric dust and rocks in Mars analogue field environments. The ANN was trained using the Backpropagation algorithm with sigmoid activation neurons. For the training dataset, we chose nine carbonate and eight non-carbonate representative mineral spectra from the USGS spectral library. Using these spectra as seeds, we generated 10,000 variants with up to 2% Gaussian noise in each reflectance measurement. We cross-validated several ANN architectures, training on 9,900 spectra and testing on the remaining 100. The best performing ANN correctly detected, with perfect accuracy, the presence (or absence) of carbonate in spectral data taken on field samples from the Mojave desert and clean, pure marbles from CT. Sensitivity experiments with JSC Mars-1 simulant dust suggest the carbonate detector would perform well in aeolian Martian environments.
Zhang, Yu; Xu, Jing-Liang; Yuan, Zhen-Hong; Qi, Wei; Liu, Yun-Yun; He, Min-Chao
2012-01-01
Two artificial intelligence techniques, namely artificial neural network (ANN) and genetic algorithm (GA) were combined to be used as a tool for optimizing the covalent immobilization of cellulase on a smart polymer, Eudragit L-100. 1-Ethyl-3-(3-dimethyllaminopropyl) carbodiimide (EDC) concentration, N-hydroxysuccinimide (NHS) concentration and coupling time were taken as independent variables, and immobilization efficiency was taken as the response. The data of the central composite design were used to train ANN by back-propagation algorithm, and the result showed that the trained ANN fitted the data accurately (correlation coefficient R2 = 0.99). Then a maximum immobilization efficiency of 88.76% was searched by genetic algorithm at a EDC concentration of 0.44%, NHS concentration of 0.37% and a coupling time of 2.22 h, where the experimental value was 87.97 ± 6.45%. The application of ANN based optimization by GA is quite successful. PMID:22942683
Mapping brain circuits of reward and motivation: in the footsteps of Ann Kelley.
Richard, Jocelyn M; Castro, Daniel C; Difeliceantonio, Alexandra G; Robinson, Mike J F; Berridge, Kent C
2013-11-01
Ann Kelley was a scientific pioneer in reward neuroscience. Her many notable discoveries included demonstrations of accumbens/striatal circuitry roles in eating behavior and in food reward, explorations of limbic interactions with hypothalamic regulatory circuits, and additional interactions of motivation circuits with learning functions. Ann Kelley's accomplishments inspired other researchers to follow in her footsteps, including our own laboratory group. Here we describe results from several lines of our research that sprang in part from earlier findings by Kelley and colleagues. We describe hedonic hotspots for generating intense pleasure 'liking', separate identities of 'wanting' versus 'liking' systems, a novel role for dorsal neostriatum in generating motivation to eat, a limbic keyboard mechanism in nucleus accumbens for generating intense desire versus intense dread, and dynamic limbic transformations of learned memories into motivation. We describe how origins for each of these themes can be traced to fundamental contributions by Ann Kelley. Copyright © 2013 Elsevier Ltd. All rights reserved.
Application of artificial intelligence to search ground-state geometry of clusters
NASA Astrophysics Data System (ADS)
Lemes, Maurício Ruv; Marim, L. R.; dal Pino, A.
2002-08-01
We introduce a global optimization procedure, the neural-assisted genetic algorithm (NAGA). It combines the power of an artificial neural network (ANN) with the versatility of the genetic algorithm. This method is suitable to solve optimization problems that depend on some kind of heuristics to limit the search space. If a reasonable amount of data is available, the ANN can ``understand'' the problem and provide the genetic algorithm with a selected population of elements that will speed up the search for the optimum solution. We tested the method in a search for the ground-state geometry of silicon clusters. We trained the ANN with information about the geometry and energetics of small silicon clusters. Next, the ANN learned how to restrict the configurational space for larger silicon clusters. For Si10 and Si20, we noticed that the NAGA is at least three times faster than the ``pure'' genetic algorithm. As the size of the cluster increases, it is expected that the gain in terms of time will increase as well.
NASA Astrophysics Data System (ADS)
Salleh, S. A.; Rahman, A. S. A. Abd; Othman, A. N.; Mohd, W. M. N. Wan
2018-02-01
As different approach produces different results, it is crucial to determine the methods that are accurate in order to perform analysis towards the event. This research aim is to compare the Rank Reciprocal (MCDM) and Artificial Neural Network (ANN) analysis techniques in determining susceptible zones of landslide hazard. The study is based on data obtained from various sources such as local authority; Dewan Bandaraya Kuala Lumpur (DBKL), Jabatan Kerja Raya (JKR) and other agencies. The data were analysed and processed using Arc GIS. The results were compared by quantifying the risk ranking and area differential. It was also compared with the zonation map classified by DBKL. The results suggested that ANN method gives better accuracy compared to MCDM with 18.18% higher accuracy assessment of the MCDM approach. This indicated that ANN provides more reliable results and it is probably due to its ability to learn from the environment thus portraying realistic and accurate result.
Material Data Representation of Hysteresis Loops for Hastelloy X Using Artificial Neural Networks
NASA Technical Reports Server (NTRS)
Alam, Javed; Berke, Laszlo; Murthy, Pappu L. N.
1993-01-01
The artificial neural network (ANN) model proposed by Rumelhart, Hinton, and Williams is applied to develop a functional approximation of material data in the form of hysteresis loops from a nickel-base superalloy, Hastelloy X. Several different ANN configurations are used to model hysteresis loops at different cycles for this alloy. The ANN models were successful in reproducing the hysteresis loops used for its training. However, because of sharp bends at the two ends of hysteresis loops, a drift occurs at the corners of the loops where loading changes to unloading and vice versa (the sharp bends occurred when the stress-strain curves were reproduced by adding stress increments to the preceding values of the stresses). Therefore, it is possible only to reproduce half of the loading path. The generalization capability of the network was tested by using additional data for two other hysteresis loops at different cycles. The results were in good agreement. Also, the use of ANN led to a data compression ratio of approximately 22:1.
Gharghan, Sadik Kamel; Nordin, Rosdiadee; Ismail, Mahamod
2016-08-06
In this paper, we propose two soft computing localization techniques for wireless sensor networks (WSNs). The two techniques, Neural Fuzzy Inference System (ANFIS) and Artificial Neural Network (ANN), focus on a range-based localization method which relies on the measurement of the received signal strength indicator (RSSI) from the three ZigBee anchor nodes distributed throughout the track cycling field. The soft computing techniques aim to estimate the distance between bicycles moving on the cycle track for outdoor and indoor velodromes. In the first approach the ANFIS was considered, whereas in the second approach the ANN was hybridized individually with three optimization algorithms, namely Particle Swarm Optimization (PSO), Gravitational Search Algorithm (GSA), and Backtracking Search Algorithm (BSA). The results revealed that the hybrid GSA-ANN outperforms the other methods adopted in this paper in terms of accuracy localization and distance estimation accuracy. The hybrid GSA-ANN achieves a mean absolute distance estimation error of 0.02 m and 0.2 m for outdoor and indoor velodromes, respectively.
A Wireless Sensor Network with Soft Computing Localization Techniques for Track Cycling Applications
Gharghan, Sadik Kamel; Nordin, Rosdiadee; Ismail, Mahamod
2016-01-01
In this paper, we propose two soft computing localization techniques for wireless sensor networks (WSNs). The two techniques, Neural Fuzzy Inference System (ANFIS) and Artificial Neural Network (ANN), focus on a range-based localization method which relies on the measurement of the received signal strength indicator (RSSI) from the three ZigBee anchor nodes distributed throughout the track cycling field. The soft computing techniques aim to estimate the distance between bicycles moving on the cycle track for outdoor and indoor velodromes. In the first approach the ANFIS was considered, whereas in the second approach the ANN was hybridized individually with three optimization algorithms, namely Particle Swarm Optimization (PSO), Gravitational Search Algorithm (GSA), and Backtracking Search Algorithm (BSA). The results revealed that the hybrid GSA-ANN outperforms the other methods adopted in this paper in terms of accuracy localization and distance estimation accuracy. The hybrid GSA-ANN achieves a mean absolute distance estimation error of 0.02 m and 0.2 m for outdoor and indoor velodromes, respectively. PMID:27509495
Jang, Hong-Seok; Xing, Shuli; Lee, Malrey; Lee, Young-Keun; So, Seung-Young
2016-05-01
In this study, an artificial neural networks study was carried out to predict the quantity of radon of Granulated Blast Furnace Slag (GBFS) cement mortar. A data set of a laboratory work, in which a total of 3 mortars were produced, was utilized in the Artificial Neural Networks (ANNs) study. The mortar mixture parameters were three different GBFS ratios (0%, 20%, 40%). Measurement radon of moist cured specimens was measured at 3, 10, 30, 100, 365 days by sensing technology for continuous monitoring of indoor air quality (IAQ). ANN model is constructed, trained and tested using these data. The data used in the ANN model are arranged in a format of two input parameters that cover the cement, GBFS and age of samples and, an output parameter which is concentrations of radon emission of mortar. The results showed that ANN can be an alternative approach for the predicting the radon concentration of GBFS mortar using mortar ingredients as input parameters.
Arab, Mohammad M.; Yadollahi, Abbas; Ahmadi, Hamed; Eftekhari, Maliheh; Maleki, Masoud
2017-01-01
The efficiency of a hybrid systems method which combined artificial neural networks (ANNs) as a modeling tool and genetic algorithms (GAs) as an optimizing method for input variables used in ANN modeling was assessed. Hence, as a new technique, it was applied for the prediction and optimization of the plant hormones concentrations and combinations for in vitro proliferation of Garnem (G × N15) rootstock as a case study. Optimizing hormones combination was surveyed by modeling the effects of various concentrations of cytokinin–auxin, i.e., BAP, KIN, TDZ, IBA, and NAA combinations (inputs) on four growth parameters (outputs), i.e., micro-shoots number per explant, length of micro-shoots, developed callus weight (CW) and the quality index (QI) of plantlets. Calculation of statistical values such as R2 (coefficient of determination) related to the accuracy of ANN-GA models showed a considerably higher prediction accuracy for ANN models, i.e., micro-shoots number: R2 = 0.81, length of micro-shoots: R2 = 0.87, CW: R2 = 0.88, QI: R2 = 0.87. According to the results, among the input variables, BAP (19.3), KIN (9.64), and IBA (2.63) showed the highest values of variable sensitivity ratio for proliferation rate. The GA showed that media containing 1.02 mg/l BAP in combination with 0.098 mg/l IBA could lead to the optimal proliferation rate (10.53) for G × N15 rootstock. Another objective of the present study was to compare the performance of predicted and optimized cytokinin–auxin combination with the best optimized obtained concentrations of our other experiments. Considering three growth parameters (length of micro-shoots, micro-shoots number, and proliferation rate), the last treatment was found to be superior to the rest of treatments for G × N15 rootstock in vitro multiplication. Very little difference between the ANN predicted and experimental data confirmed high capability of ANN-GA method in predicting new optimized protocols for plant in vitro propagation. PMID:29163583
Pi, Erxu; Mantri, Nitin; Ngai, Sai Ming; Lu, Hongfei; Du, Liqun
2013-01-01
Temperature is one of the most significant environmental factors that affects germination of grass seeds. Reliable prediction of the optimal temperature for seed germination is crucial for determining the suitable regions and favorable sowing timing for turf grass cultivation. In this study, a back-propagation-artificial-neural-network-aided dual quintic equation (BP-ANN-QE) model was developed to improve the prediction of the optimal temperature for seed germination. This BP-ANN-QE model was used to determine optimal sowing times and suitable regions for three Cynodon dactylon cultivars (C. dactylon, ‘Savannah’ and ‘Princess VII’). Prediction of the optimal temperature for these seeds was based on comprehensive germination tests using 36 day/night (high/low) temperature regimes (both ranging from 5/5 to 40/40°C with 5°C increments). Seed germination data from these temperature regimes were used to construct temperature-germination correlation models for estimating germination percentage with confidence intervals. Our tests revealed that the optimal high/low temperature regimes required for all the three bermudagrass cultivars are 30/5, 30/10, 35/5, 35/10, 35/15, 35/20, 40/15 and 40/20°C; constant temperatures ranging from 5 to 40°C inhibited the germination of all three cultivars. While comparing different simulating methods, including DQEM, Bisquare ANN-QE, and BP-ANN-QE in establishing temperature based germination percentage rules, we found that the R2 values of germination prediction function could be significantly improved from about 0.6940–0.8177 (DQEM approach) to 0.9439–0.9813 (BP-ANN-QE). These results indicated that our BP-ANN-QE model has better performance than the rests of the compared models. Furthermore, data of the national temperature grids generated from monthly-average temperature for 25 years were fit into these functions and we were able to map the germination percentage of these C. dactylon cultivars in the national scale of China, and suggested the optimum sowing regions and times for them. PMID:24349278
Implementations of back propagation algorithm in ecosystems applications
NASA Astrophysics Data System (ADS)
Ali, Khalda F.; Sulaiman, Riza; Elamir, Amir Mohamed
2015-05-01
Artificial Neural Networks (ANNs) have been applied to an increasing number of real world problems of considerable complexity. Their most important advantage is in solving problems which are too complex for conventional technologies, that do not have an algorithmic solutions or their algorithmic Solutions is too complex to be found. In general, because of their abstraction from the biological brain, ANNs are developed from concept that evolved in the late twentieth century neuro-physiological experiments on the cells of the human brain to overcome the perceived inadequacies with conventional ecological data analysis methods. ANNs have gained increasing attention in ecosystems applications, because of ANN's capacity to detect patterns in data through non-linear relationships, this characteristic confers them a superior predictive ability. In this research, ANNs is applied in an ecological system analysis. The neural networks use the well known Back Propagation (BP) Algorithm with the Delta Rule for adaptation of the system. The Back Propagation (BP) training Algorithm is an effective analytical method for adaptation of the ecosystems applications, the main reason because of their capacity to detect patterns in data through non-linear relationships. This characteristic confers them a superior predicting ability. The BP algorithm uses supervised learning, which means that we provide the algorithm with examples of the inputs and outputs we want the network to compute, and then the error is calculated. The idea of the back propagation algorithm is to reduce this error, until the ANNs learns the training data. The training begins with random weights, and the goal is to adjust them so that the error will be minimal. This research evaluated the use of artificial neural networks (ANNs) techniques in an ecological system analysis and modeling. The experimental results from this research demonstrate that an artificial neural network system can be trained to act as an expert ecosystem analyzer for many applications in ecological fields. The pilot ecosystem analyzer shows promising ability for generalization and requires further tuning and refinement of the basis neural network system for optimal performance.
NASA Astrophysics Data System (ADS)
Brown, M. G. L.; He, T.; Liang, S.
2016-12-01
Satellite-derived estimates of incident photosynthetically active radiation (PAR) can be used to monitor global change, are required by most terrestrial ecosystem models, and can be used to estimate primary production according to the theory of light use efficiency. Compared with parametric approaches, non-parametric techniques that include an artificial neural network (ANN), support vector machine regression (SVM), an artificial bee colony (ABC), and a look-up table (LUT) do not require many ancillary data as inputs for the estimation of PAR from satellite data. In this study, a selection of machine learning methods to estimate PAR from MODIS top of atmosphere (TOA) radiances are compared to a LUT approach to determine which techniques might best handle the nonlinear relationship between TOA radiance and incident PAR. Evaluation of these methods (ANN, SVM, and LUT) is performed with ground measurements at seven SURFRAD sites. Due to the design of the ANN, it can handle the nonlinear relationship between TOA radiance and PAR better than linearly interpolating between the values in the LUT; however, training the ANN has to be carried out on an angular-bin basis, which results in a LUT of ANNs. The SVM model may be better for incorporating multiple viewing angles than the ANN; however, both techniques require a large amount of training data, which may introduce a regional bias based on where the most training and validation data are available. Based on the literature, the ABC is a promising alternative to an ANN, SVM regression and a LUT, but further development for this application is required before concrete conclusions can be drawn. For now, the LUT method outperforms the machine-learning techniques, but future work should be directed at developing and testing the ABC method. A simple, robust method to estimate direct and diffuse incident PAR, with minimal inputs and a priori knowledge, would be very useful for monitoring global change of primary production, particularly of pastures and rangeland, which have implications for livestock and food security. Future work will delve deeper into the utility of satellite-derived PAR estimation for monitoring primary production in pasture and rangelands.
Simulation of river stage using artificial neural network and MIKE 11 hydrodynamic model
NASA Astrophysics Data System (ADS)
Panda, Rabindra K.; Pramanik, Niranjan; Bala, Biplab
2010-06-01
Simulation of water levels at different sections of a river using physically based flood routing models is quite cumbersome, because it requires many types of data such as hydrologic time series, river geometry, hydraulics of existing control structures and channel roughness coefficients. Normally in developing countries like India it is not easy to collect these data because of poor monitoring and record keeping. Therefore, an artificial neural network (ANN) technique is used as an effective alternative in hydrologic simulation studies. The present study aims at comparing the performance of the ANN technique with a widely used physically based hydrodynamic model in the MIKE 11 environment. The MIKE 11 hydrodynamic model was calibrated and validated for the monsoon periods (June-September) of the years 2006 and 2001, respectively. Feed forward neural network architecture with Levenberg-Marquardt (LM) back propagation training algorithm was used to train the neural network model using hourly water level data of the period June-September 2006. The trained ANN model was tested using data for the same period of the year 2001. Simulated water levels by the MIKE 11HD were compared with the corresponding water levels predicted by the ANN model. The results obtained from the ANN model were found to be much better than that of the MIKE 11HD results as indicated by the values of the goodness of fit indices used in the study. The Nash-Sutcliffe index ( E) and root mean square error (RMSE) obtained in case of the ANN model were found to be 0.8419 and 0.8939 m, respectively, during model testing, whereas in case of MIKE 11HD, the values of E and RMSE were found to be 0.7836 and 1.00 m, respectively, during model validation. The difference between the observed and simulated peak water levels obtained from the ANN model was found to be much lower than that of MIKE 11HD. The study reveals that the use of Levenberg-Marquardt algorithm with eight hidden neurons in the hidden layer is sufficient to produce satisfactory results.
Subpixel Snow Cover Mapping from MODIS Data by Nonparametric Regression Splines
NASA Astrophysics Data System (ADS)
Akyurek, Z.; Kuter, S.; Weber, G. W.
2016-12-01
Spatial extent of snow cover is often considered as one of the key parameters in climatological, hydrological and ecological modeling due to its energy storage, high reflectance in the visible and NIR regions of the electromagnetic spectrum, significant heat capacity and insulating properties. A significant challenge in snow mapping by remote sensing (RS) is the trade-off between the temporal and spatial resolution of satellite imageries. In order to tackle this issue, machine learning-based subpixel snow mapping methods, like Artificial Neural Networks (ANNs), from low or moderate resolution images have been proposed. Multivariate Adaptive Regression Splines (MARS) is a nonparametric regression tool that can build flexible models for high dimensional and complex nonlinear data. Although MARS is not often employed in RS, it has various successful implementations such as estimation of vertical total electron content in ionosphere, atmospheric correction and classification of satellite images. This study is the first attempt in RS to evaluate the applicability of MARS for subpixel snow cover mapping from MODIS data. Total 16 MODIS-Landsat ETM+ image pairs taken over European Alps between March 2000 and April 2003 were used in the study. MODIS top-of-atmospheric reflectance, NDSI, NDVI and land cover classes were used as predictor variables. Cloud-covered, cloud shadow, water and bad-quality pixels were excluded from further analysis by a spatial mask. MARS models were trained and validated by using reference fractional snow cover (FSC) maps generated from higher spatial resolution Landsat ETM+ binary snow cover maps. A multilayer feed-forward ANN with one hidden layer trained with backpropagation was also developed. The mutual comparison of obtained MARS and ANN models was accomplished on independent test areas. The MARS model performed better than the ANN model with an average RMSE of 0.1288 over the independent test areas; whereas the average RMSE of the ANN model was 0.1500. MARS estimates for low FSC values (i.e., FSC<0.3) were better than that of ANN. Both ANN and MARS tended to overestimate medium FSC values (i.e., 0.30.7).
Briceño, Javier; Cruz-Ramírez, Manuel; Prieto, Martín; Navasa, Miguel; Ortiz de Urbina, Jorge; Orti, Rafael; Gómez-Bravo, Miguel-Ángel; Otero, Alejandra; Varo, Evaristo; Tomé, Santiago; Clemente, Gerardo; Bañares, Rafael; Bárcena, Rafael; Cuervas-Mons, Valentín; Solórzano, Guillermo; Vinaixa, Carmen; Rubín, Angel; Colmenero, Jordi; Valdivieso, Andrés; Ciria, Rubén; Hervás-Martínez, César; de la Mata, Manuel
2014-11-01
There is an increasing discrepancy between the number of potential liver graft recipients and the number of organs available. Organ allocation should follow the concept of benefit of survival, avoiding human-innate subjectivity. The aim of this study is to use artificial-neural-networks (ANNs) for donor-recipient (D-R) matching in liver transplantation (LT) and to compare its accuracy with validated scores (MELD, D-MELD, DRI, P-SOFT, SOFT, and BAR) of graft survival. 64 donor and recipient variables from a set of 1003 LTs from a multicenter study including 11 Spanish centres were included. For each D-R pair, common statistics (simple and multiple regression models) and ANN formulae for two non-complementary probability-models of 3-month graft-survival and -loss were calculated: a positive-survival (NN-CCR) and a negative-loss (NN-MS) model. The NN models were obtained by using the Neural Net Evolutionary Programming (NNEP) algorithm. Additionally, receiver-operating-curves (ROC) were performed to validate ANNs against other scores. Optimal results for NN-CCR and NN-MS models were obtained, with the best performance in predicting the probability of graft-survival (90.79%) and -loss (71.42%) for each D-R pair, significantly improving results from multiple regressions. ROC curves for 3-months graft-survival and -loss predictions were significantly more accurate for ANN than for other scores in both NN-CCR (AUROC-ANN=0.80 vs. -MELD=0.50; -D-MELD=0.54; -P-SOFT=0.54; -SOFT=0.55; -BAR=0.67 and -DRI=0.42) and NN-MS (AUROC-ANN=0.82 vs. -MELD=0.41; -D-MELD=0.47; -P-SOFT=0.43; -SOFT=0.57, -BAR=0.61 and -DRI=0.48). ANNs may be considered a powerful decision-making technology for this dataset, optimizing the principles of justice, efficiency and equity. This may be a useful tool for predicting the 3-month outcome and a potential research area for future D-R matching models. Copyright © 2014 European Association for the Study of the Liver. Published by Elsevier B.V. All rights reserved.
Overexpression of Arabidopsis AnnAt8 Alleviates Abiotic Stress in Transgenic Arabidopsis and Tobacco
Yadav, Deepanker; Ahmed, Israr; Shukla, Pawan; Boyidi, Prasanna; Kirti, Pulugurtha Bharadwaja
2016-01-01
Abiotic stress results in massive loss of crop productivity throughout the world. Because of our limited knowledge of the plant defense mechanisms, it is very difficult to exploit the plant genetic resources for manipulation of traits that could benefit multiple stress tolerance in plants. To achieve this, we need a deeper understanding of the plant gene regulatory mechanisms involved in stress responses. Understanding the roles of different members of plant gene families involved in different stress responses, would be a step in this direction. Arabidopsis, which served as a model system for the plant research, is also the most suitable system for the functional characterization of plant gene families. Annexin family in Arabidopsis also is one gene family which has not been fully explored. Eight annexin genes have been reported in the genome of Arabidopsis thaliana. Expression studies of different Arabidopsis annexins revealed their differential regulation under various abiotic stress conditions. AnnAt8 (At5g12380), a member of this family has been shown to exhibit ~433 and ~175 fold increase in transcript levels under NaCl and dehydration stress respectively. To characterize Annexin8 (AnnAt8) further, we have generated transgenic Arabidopsis and tobacco plants constitutively expressing AnnAt8, which were evaluated under different abiotic stress conditions. AnnAt8 overexpressing transgenic plants exhibited higher seed germination rates, better plant growth, and higher chlorophyll retention when compared to wild type plants under abiotic stress treatments. Under stress conditions transgenic plants showed comparatively higher levels of proline and lower levels of malondialdehyde compared to the wild-type plants. Real-Time PCR analyses revealed that the expression of several stress-regulated genes was altered in AnnAt8 over-expressing transgenic tobacco plants, and the enhanced tolerance exhibited by the transgenic plants can be correlated with altered expressions of these stress-regulated genes. Our findings suggest a role for AnnAt8 in enhancing abiotic stress tolerance at different stages of plant growth and development. PMID:27135239
Artificial neural networks in Space Station optimal attitude control
NASA Astrophysics Data System (ADS)
Kumar, Renjith R.; Seywald, Hans; Deshpande, Samir M.; Rahman, Zia
1992-08-01
Innovative techniques of using 'Artificial Neural Networks' (ANN) for improving the performance of the pitch axis attitude control system of Space Station Freedom using Control Moment Gyros (CMGs) are investigated. The first technique uses a feedforward ANN with multilayer perceptrons to obtain an on-line controller which improves the performance of the control system via a model following approach. The second techique uses a single layer feedforward ANN with a modified back propagation scheme to estimate the internal plant variations and the external disturbances separately. These estimates are then used to solve two differential Riccati equations to obtain time varying gains which improve the control system performance in successive orbits.
Xue, Y.; Liu, S.; Hu, Y.; Yang, J.; Chen, Q.
2007-01-01
To improve the accuracy in prediction, Genetic Algorithm based Adaptive Neural Network Ensemble (GA-ANNE) is presented. Intersections are allowed between different training sets based on the fuzzy clustering analysis, which ensures the diversity as well as the accuracy of individual Neural Networks (NNs). Moreover, to improve the accuracy of the adaptive weights of individual NNs, GA is used to optimize the cluster centers. Empirical results in predicting carbon flux of Duke Forest reveal that GA-ANNE can predict the carbon flux more accurately than Radial Basis Function Neural Network (RBFNN), Bagging NN ensemble, and ANNE. ?? 2007 IEEE.
Stochastic Investigation of Natural Frequency for Functionally Graded Plates
NASA Astrophysics Data System (ADS)
Karsh, P. K.; Mukhopadhyay, T.; Dey, S.
2018-03-01
This paper presents the stochastic natural frequency analysis of functionally graded plates by applying artificial neural network (ANN) approach. Latin hypercube sampling is utilised to train the ANN model. The proposed algorithm for stochastic natural frequency analysis of FGM plates is validated and verified with original finite element method and Monte Carlo simulation (MCS). The combined stochastic variation of input parameters such as, elastic modulus, shear modulus, Poisson ratio, and mass density are considered. Power law is applied to distribute the material properties across the thickness. The present ANN model reduces the sample size and computationally found efficient as compared to conventional Monte Carlo simulation.
Buciński, Adam; Marszałł, Michał Piotr; Krysiński, Jerzy; Lemieszek, Andrzej; Załuski, Jerzy
2010-07-01
Hodgkin's lymphoma is one of the most curable malignancies and most patients achieve a lasting complete remission. In this study, artificial neural network (ANN) analysis was shown to provide significant factors with regard to 5-year recurrence after lymphoma treatment. Data from 114 patients treated for Hodgkin's disease were available for evaluation and comparison. A total of 31 variables were subjected to ANN analysis. The ANN approach as an advanced multivariate data processing method was shown to provide objective prognostic data. Some of these prognostic factors are consistent or even identical to the factors evaluated earlier by other statistical methods.
Artificial Neural Networks and Instructional Technology.
ERIC Educational Resources Information Center
Carlson, Patricia A.
1991-01-01
Artificial neural networks (ANN), part of artificial intelligence, are discussed. Such networks are fed sample cases (training sets), learn how to recognize patterns in the sample data, and use this experience in handling new cases. Two cognitive roles for ANNs (intelligent filters and spreading, associative memories) are examined. Prototypes…
Feasibility Study of ASTER SWIR data prediction
NASA Astrophysics Data System (ADS)
Yamamoto, H.; Gonzalez, L.
2017-12-01
Observation by ASTER SWIR spectral bands are unavailable since 2008 due to anomalously high SWIR detector temperatures, but ASTER VNIR and TIR spectral bands are still valid. SWIR wavelength region is however very useful to determining the land cover or discriminating rock types, etc. In this work, we present the results of a feasibility study for the prediction of ASTER SWIR bands with artificial neural networks (ANN) using ASTER valid bands. The latter are selected over three types of ground data sets, representing desert, rocky and vegetated areas. The ASTER VNIR bands are atmospherically corrected, using the US standard 62 model, without aerosol correction. To optimize the training of the ANN, it is crucial to categorize the input data. In this goal, we have built a histogram using a simple linear combination of the 3 VNIR bands, that we call contrast histogram, to split the input ASTER data in 4 areas. For each of these 4 areas, we have built six ANN, one for each SWIR band to retrieve with 3 inputs and two layers with 5 hidden nodes each and one outputs layer. The training of the ANN is done using ASTER pixels selected over several millions of pixels in representative desert, green and rocky areas. The analysis of the ANN results demonstrates that 99 % of the pixels are reconstructed with less than 20% error in desert areas. In rocky areas, the errors do not exceed 30%. However, the errors can exceed 50% in vegetated areas. This led us to improve the ANN by introducing new spectral bands (1.24, 1.64, 2.13 μm) from TERRA MODIS that is time synchronized with ASTER. The measurements are pan-sharpened to match ASTER spatial resolution. Instead of using a contrast histogram, a NDVI histogram helps us to classify the input data. With the newly constructed ANNs, the quality of the retrieved SWIR values is perceptible in particular over vegetation ( 45% of the points with less than 20% errors), and even more over the desert and rocky areas ( 75% of the points with less than 10% errors). We demonstrate that it is possible to build ANNs that are capable of regenerating, with a reasonable error, the SWIR bands in deserts and mountainous, while SWIR reconstruction in vegetation areas is more difficult. Improvements can be envisaged by introducing missing elements such as snow or ice along with a better discrimination of the vegetation.
Chesnokov, Yuriy V
2008-06-01
Paroxysmal atrial fibrillation (PAF) is a serious arrhythmia associated with morbidity and mortality. We explore the possibility of distant prediction of PAF by analyzing changes in heart rate variability (HRV) dynamics of non-PAF rhythms immediately before PAF event. We use that model for distant prognosis of PAF onset with artificial intelligence methods. We analyzed 30-min non-PAF HRV records from 51 subjects immediately before PAF onset and at least 45min distant from any PAF event. We used spectral and complexity analysis with sample (SmEn) and approximate (ApEn) entropies and their multiscale versions on extracted HRV data. We used that features to train the artificial neural networks (ANNs) and support vector machine (SVM) classifiers to differentiate the subjects. The trained classifiers were further tested for distant PAF event prognosis on 16 subjects from independent database on non-PAF rhythm lasting from 60 to 320 min before PAF onset classifying the 30-min segments as distant or leading to PAF. We found statistically significant increase in 30-min non-PAF HRV recordings from 51 subjects in the VLF, LF, HF bands and total power (p<0.0001) before PAF event compared to PAF distant ones. The SmEn and ApEn analysis provided significant decrease in complexity (p<0.0001 and p<0.001) before PAF onset. For training ANN and SVM classifiers the data from 51 subjects were randomly split to training, validation and testing. ANN provided better results in terms of sensitivity (Se), specificity (Sp) and positive predictivity (Pp) compared to SVM which became biased towards positive case. The validation results of the ANN classifier we achieved: Se 76%, Sp 93%, Pp 94%. Testing ANN and SVM classifiers on 16 subjects with non-PAF HRV data preceding PAF events we obtained distant prediction of PAF onset with SVM classifier in 10 subjects (58+/-18 min in advance). ANN classifier provided distant prediction of PAF event in 13 subjects (62+/-21 min in advance). From the results of distant PAF prediction we conclude that ANN and SVM classifiers learned the changes in the HRV dynamics immediately before PAF event and successfully identified them during distant PAF prognosis on independent database. This confirms the reported in the literature results that corresponding changes in the HRV data occur about 60 min before PAF onset and proves the possibility of distant PAF prediction with ANN and SVM methods.
Mousavi, Seyed Mahdi; Niaei, Aligholi; Salari, Dariush; Panahi, Parvaneh Nakhostin; Samandari, Masoud
2013-01-01
A response surface methodology (RSM) involving a central composite design was applied to the modelling and optimization of a preparation of Mn/active carbon nanocatalysts in NH3-SCR of NO at 250 degrees C and the results were compared with the artificial neural network (ANN) predicted values. The catalyst preparation parameters, including metal loading (wt%), calcination temperature and pre-oxidization degree (v/v% HNO3) were selected as influence factors on catalyst efficiency. In the RSM model, the predicted values of NO conversion were found to be in good agreement with the experimental values. Pareto graphic analysis showed that all the chosen parameters and some of the interactions were effective on response. The optimization results showed that maximum NO conversion was achieved at the optimum conditions: 10.2 v/v% HNO3, 6.1 wt% Mn loading and calcination at 480 degrees C. The ANN model was developed by a feed-forward back propagation network with the topology 3, 8 and 1 and a Levenberg-Marquardt training algorithm. The mean square error for the ANN and RSM models were 0.339 and 1.176, respectively, and the R2 values were 0.991 and 0.972, respectively, indicating the superiority of ANN in capturing the nonlinear behaviour of the system and being accurate in estimating the values of the NO conversion.
Novel Screening Tool for Stroke Using Artificial Neural Network.
Abedi, Vida; Goyal, Nitin; Tsivgoulis, Georgios; Hosseinichimeh, Niyousha; Hontecillas, Raquel; Bassaganya-Riera, Josep; Elijovich, Lucas; Metter, Jeffrey E; Alexandrov, Anne W; Liebeskind, David S; Alexandrov, Andrei V; Zand, Ramin
2017-06-01
The timely diagnosis of stroke at the initial examination is extremely important given the disease morbidity and narrow time window for intervention. The goal of this study was to develop a supervised learning method to recognize acute cerebral ischemia (ACI) and differentiate that from stroke mimics in an emergency setting. Consecutive patients presenting to the emergency department with stroke-like symptoms, within 4.5 hours of symptoms onset, in 2 tertiary care stroke centers were randomized for inclusion in the model. We developed an artificial neural network (ANN) model. The learning algorithm was based on backpropagation. To validate the model, we used a 10-fold cross-validation method. A total of 260 patients (equal number of stroke mimics and ACIs) were enrolled for the development and validation of our ANN model. Our analysis indicated that the average sensitivity and specificity of ANN for the diagnosis of ACI based on the 10-fold cross-validation analysis was 80.0% (95% confidence interval, 71.8-86.3) and 86.2% (95% confidence interval, 78.7-91.4), respectively. The median precision of ANN for the diagnosis of ACI was 92% (95% confidence interval, 88.7-95.3). Our results show that ANN can be an effective tool for the recognition of ACI and differentiation of ACI from stroke mimics at the initial examination. © 2017 American Heart Association, Inc.
Diffusion-based neuromodulation can eliminate catastrophic forgetting in simple neural networks
Clune, Jeff
2017-01-01
A long-term goal of AI is to produce agents that can learn a diversity of skills throughout their lifetimes and continuously improve those skills via experience. A longstanding obstacle towards that goal is catastrophic forgetting, which is when learning new information erases previously learned information. Catastrophic forgetting occurs in artificial neural networks (ANNs), which have fueled most recent advances in AI. A recent paper proposed that catastrophic forgetting in ANNs can be reduced by promoting modularity, which can limit forgetting by isolating task information to specific clusters of nodes and connections (functional modules). While the prior work did show that modular ANNs suffered less from catastrophic forgetting, it was not able to produce ANNs that possessed task-specific functional modules, thereby leaving the main theory regarding modularity and forgetting untested. We introduce diffusion-based neuromodulation, which simulates the release of diffusing, neuromodulatory chemicals within an ANN that can modulate (i.e. up or down regulate) learning in a spatial region. On the simple diagnostic problem from the prior work, diffusion-based neuromodulation 1) induces task-specific learning in groups of nodes and connections (task-specific localized learning), which 2) produces functional modules for each subtask, and 3) yields higher performance by eliminating catastrophic forgetting. Overall, our results suggest that diffusion-based neuromodulation promotes task-specific localized learning and functional modularity, which can help solve the challenging, but important problem of catastrophic forgetting. PMID:29145413
NASA Astrophysics Data System (ADS)
Arabzadeh, Vida; Niaki, S. T. A.; Arabzadeh, Vahid
2017-10-01
One of the most important processes in the early stages of construction projects is to estimate the cost involved. This process involves a wide range of uncertainties, which make it a challenging task. Because of unknown issues, using the experience of the experts or looking for similar cases are the conventional methods to deal with cost estimation. The current study presents data-driven methods for cost estimation based on the application of artificial neural network (ANN) and regression models. The learning algorithms of the ANN are the Levenberg-Marquardt and the Bayesian regulated. Moreover, regression models are hybridized with a genetic algorithm to obtain better estimates of the coefficients. The methods are applied in a real case, where the input parameters of the models are assigned based on the key issues involved in a spherical tank construction. The results reveal that while a high correlation between the estimated cost and the real cost exists; both ANNs could perform better than the hybridized regression models. In addition, the ANN with the Levenberg-Marquardt learning algorithm (LMNN) obtains a better estimation than the ANN with the Bayesian-regulated learning algorithm (BRNN). The correlation between real data and estimated values is over 90%, while the mean square error is achieved around 0.4. The proposed LMNN model can be effective to reduce uncertainty and complexity in the early stages of the construction project.
Assessment of spatial distribution of soil heavy metals using ANN-GA, MSLR and satellite imagery.
Naderi, Arman; Delavar, Mohammad Amir; Kaboudin, Babak; Askari, Mohammad Sadegh
2017-05-01
This study aims to assess and compare heavy metal distribution models developed using stepwise multiple linear regression (MSLR) and neural network-genetic algorithm model (ANN-GA) based on satellite imagery. The source identification of heavy metals was also explored using local Moran index. Soil samples (n = 300) were collected based on a grid and pH, organic matter, clay, iron oxide contents cadmium (Cd), lead (Pb) and zinc (Zn) concentrations were determined for each sample. Visible/near-infrared reflectance (VNIR) within the electromagnetic ranges of satellite imagery was applied to estimate heavy metal concentrations in the soil using MSLR and ANN-GA models. The models were evaluated and ANN-GA model demonstrated higher accuracy, and the autocorrelation results showed higher significant clusters of heavy metals around the industrial zone. The higher concentration of Cd, Pb and Zn was noted under industrial lands and irrigation farming in comparison to barren and dryland farming. Accumulation of industrial wastes in roads and streams was identified as main sources of pollution, and the concentration of soil heavy metals was reduced by increasing the distance from these sources. In comparison to MLSR, ANN-GA provided a more accurate indirect assessment of heavy metal concentrations in highly polluted soils. The clustering analysis provided reliable information about the spatial distribution of soil heavy metals and their sources.
Nirouei, Mahyar; Ghasemi, Ghasem; Abdolmaleki, Parviz; Tavakoli, Abdolreza; Shariati, Shahab
2012-06-01
The antiviral drugs that inhibit human immunodeficiency virus (HIV) entry to the target cells are already in different phases of clinical trials. They prevent viral entry and have a highly specific mechanism of action with a low toxicity profile. Few QSAR studies have been performed on this group of inhibitors. This study was performed to develop a quantitative structure-activity relationship (QSAR) model of the biological activity of indole glyoxamide derivatives as inhibitors of the interaction between HIV glycoprotein gp120 and host cell CD4 receptors. Forty different indole glyoxamide derivatives were selected as a sample set and geometrically optimized using Gaussian 98W. Different combinations of multiple linear regression (MLR), genetic algorithms (GA) and artificial neural networks (ANN) were then utilized to construct the QSAR models. These models were also utilized to select the most efficient subsets of descriptors in a cross-validation procedure for non-linear log (1/EC50) prediction. The results that were obtained using GA-ANN were compared with MLR-MLR and MLR-ANN models. A high predictive ability was observed for the MLR, MLR-ANN and GA-ANN models, with root mean sum square errors (RMSE) of 0.99, 0.91 and 0.67, respectively (N = 40). In summary, machine learning methods were highly effective in designing QSAR models when compared to statistical method.
Shrestha, Neha; Shahbazi, Mohammad-Ali; Araújo, Francisca; Zhang, Hongbo; Mäkilä, Ermei M; Kauppila, Jussi; Sarmento, Bruno; Salonen, Jarno J; Hirvonen, Jouni T; Santos, Hélder A
2014-08-01
Porous silicon (PSi) based particulate systems are emerging as an important drug delivery system due to its advantageous properties such as biocompatibility, biodegradability and ability to tailor the particles' physicochemical properties. Here, annealed thermally hydrocarbonized PSi (AnnTHCPSi) and undecylenic acid modified AnnTHCPSi (AnnUnTHCPSi) microparticles were developed as a PSi-based platform for oral delivery of insulin. Chitosan (CS) was used to modify the AnnUnTHCPSi microparticles to enhance the intestinal permeation of insulin. Surface modification with CS led to significant increase in the interaction of PSi microparticles with Caco-2/HT-29 cell co-culture monolayers. Compared to pure insulin, the CS-conjugated microparticles significantly improved the permeation of insulin across the Caco-2/HT-29 cell monolayers, with ca. 20-fold increase in the amount of insulin permeated and ca. 7-fold increase in the apparent permeability (P(app)) value. Moreover, among all the investigated particles, the CS-conjugated microparticles also showed the highest amount of insulin associated with the mucus layer and the intestinal Caco-2 cells and mucus secreting HT-29 cells. Our results demonstrate that CS-conjugated AnnUnTHCPSi microparticles can efficiently enhance the insulin absorption across intestinal cells, and thus, they are promising microsystems for the oral delivery of proteins and peptides across the intestinal cell membrane. Copyright © 2014 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Atieh, M.; Mehltretter, S. L.; Gharabaghi, B.; Rudra, R.
2015-12-01
One of the most uncertain modeling tasks in hydrology is the prediction of ungauged stream sediment load and concentration statistics. This study presents integrated artificial neural networks (ANN) models for prediction of sediment rating curve parameters (rating curve coefficient α and rating curve exponent β) for ungauged basins. The ANN models integrate a comprehensive list of input parameters to improve the accuracy achieved; the input parameters used include: soil, land use, topographic, climatic, and hydrometric data sets. The ANN models were trained on the randomly selected 2/3 of the dataset of 94 gauged streams in Ontario, Canada and validated on the remaining 1/3. The developed models have high correlation coefficients of 0.92 and 0.86 for α and β, respectively. The ANN model for the rating coefficient α is directly proportional to rainfall erosivity factor, soil erodibility factor, and apportionment entropy disorder index, whereas it is inversely proportional to vegetation cover and mean annual snowfall. The ANN model for the rating exponent β is directly proportional to mean annual precipitation, the apportionment entropy disorder index, main channel slope, standard deviation of daily discharge, and inversely proportional to the fraction of basin area covered by wetlands and swamps. Sediment rating curves are essential tools for the calculation of sediment load, concentration-duration curve (CDC), and concentration-duration-frequency (CDF) analysis for more accurate assessment of water quality for ungauged basins.
Abbas, Adel Taha; Pimenov, Danil Yurievich; Erdakov, Ivan Nikolaevich; Taha, Mohamed Adel; Soliman, Mahmoud Sayed; El Rayes, Magdy Mostafa
2018-05-16
Magnesium alloys are widely used in aerospace vehicles and modern cars, due to their rapid machinability at high cutting speeds. A novel Edgeworth⁻Pareto optimization of an artificial neural network (ANN) is presented in this paper for surface roughness ( Ra ) prediction of one component in computer numerical control (CNC) turning over minimal machining time ( T m ) and at prime machining costs ( C ). An ANN is built in the Matlab programming environment, based on a 4-12-3 multi-layer perceptron (MLP), to predict Ra , T m , and C , in relation to cutting speed, v c , depth of cut, a p , and feed per revolution, f r . For the first time, a profile of an AZ61 alloy workpiece after finish turning is constructed using an ANN for the range of experimental values v c , a p , and f r . The global minimum length of a three-dimensional estimation vector was defined with the following coordinates: Ra = 0.087 μm, T m = 0.358 min/cm³, C = $8.2973. Likewise, the corresponding finish-turning parameters were also estimated: cutting speed v c = 250 m/min, cutting depth a p = 1.0 mm, and feed per revolution f r = 0.08 mm/rev. The ANN model achieved a reliable prediction accuracy of ±1.35% for surface roughness.
An Innovative Model to Predict Pediatric Emergency Department Return Visits.
Bergese, Ilaria; Frigerio, Simona; Clari, Marco; Castagno, Emanuele; De Clemente, Antonietta; Ponticelli, Elena; Scavino, Enrica; Berchialla, Paola
2016-10-06
Return visit (RV) to the emergency department (ED) is considered a benchmarking clinical indicator for health care quality. The purpose of this study was to develop a predictive model for early readmission risk in pediatric EDs comparing the performances of 2 learning machine algorithms. A retrospective study based on all children younger than 15 years spontaneously returning within 120 hours after discharge was conducted in an Italian university children's hospital between October 2012 and April 2013. Two predictive models, artificial neural network (ANN) and classification tree (CT), were used. Accuracy, specificity, and sensitivity were assessed. A total of 28,341 patient records were evaluated. Among them, 626 patients returned to the ED within 120 hours after their initial visit. Comparing ANN and CT, our analysis has shown that CT is the best model to predict RVs. The CT model showed an overall accuracy of 81%, slightly lower than the one achieved by the ANN (91.3%), but CT outperformed ANN with regard to sensitivity (79.8% vs 6.9%, respectively). The specificity was similar for the 2 models (CT, 97% vs ANN, 98.3%). In addition, the time of arrival and discharge along with the priority code assigned in triage, age, and diagnosis play a pivotal role to identify patients at high risk of RVs. These models provide a promising predictive tool for supporting the ED staff in preventing unnecessary RVs.
NASA Astrophysics Data System (ADS)
Lohani, A. K.; Kumar, Rakesh; Singh, R. D.
2012-06-01
SummaryTime series modeling is necessary for the planning and management of reservoirs. More recently, the soft computing techniques have been used in hydrological modeling and forecasting. In this study, the potential of artificial neural networks and neuro-fuzzy system in monthly reservoir inflow forecasting are examined by developing and comparing monthly reservoir inflow prediction models, based on autoregressive (AR), artificial neural networks (ANNs) and adaptive neural-based fuzzy inference system (ANFIS). To take care the effect of monthly periodicity in the flow data, cyclic terms are also included in the ANN and ANFIS models. Working with time series flow data of the Sutlej River at Bhakra Dam, India, several ANN and adaptive neuro-fuzzy models are trained with different input vectors. To evaluate the performance of the selected ANN and adaptive neural fuzzy inference system (ANFIS) models, comparison is made with the autoregressive (AR) models. The ANFIS model trained with the input data vector including previous inflows and cyclic terms of monthly periodicity has shown a significant improvement in the forecast accuracy in comparison with the ANFIS models trained with the input vectors considering only previous inflows. In all cases ANFIS gives more accurate forecast than the AR and ANN models. The proposed ANFIS model coupled with the cyclic terms is shown to provide better representation of the monthly inflow forecasting for planning and operation of reservoir.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-06-21
... of Anthropology, University of Michigan, Ann Arbor, MI AGENCY: National Park Service, Interior. ACTION: Notice. SUMMARY: The Museum of Anthropology, University of Michigan, has completed an inventory... the Museum of Anthropology, University of Michigan. Repatriation of the human remains to the tribe...
Introducing Artificial Neural Networks through a Spreadsheet Model
ERIC Educational Resources Information Center
Rienzo, Thomas F.; Athappilly, Kuriakose K.
2012-01-01
Business students taking data mining classes are often introduced to artificial neural networks (ANN) through point and click navigation exercises in application software. Even if correct outcomes are obtained, students frequently do not obtain a thorough understanding of ANN processes. This spreadsheet model was created to illuminate the roles of…
DOT National Transportation Integrated Search
1999-01-01
In 1997, the Ann Arbor (Michigan) Transportation Authority began deploying advanced public transportation systems (APTS) technologies in its fixed route and paratransit operations. The project's concept is the integration of a range of such technolog...
DOT National Transportation Integrated Search
2017-06-01
The objective of this study was to develop an objective, quantitative method for evaluating damage to bridge girders by using artificial neural networks (ANNs). This evaluation method, which is a supplement to visual inspection, requires only the res...
Bethany Ann Teachman: Award for Distinguished Scientific Early Career Contributions to Psychology
ERIC Educational Resources Information Center
American Psychologist, 2012
2012-01-01
Presents a short biography of one of the winners of the American Psychological Association's Award for Distinguished Scientific Early Career Contributions to Psychology. The 2012 winner is Bethany Ann Teachman for transformative, translational research integrating social cognition, life-span, and perceptual approaches to investigating clinical…
ERIC Educational Resources Information Center
Everson, Howard T.; And Others
This paper explores the feasibility of neural computing methods such as artificial neural networks (ANNs) and abductory induction mechanisms (AIM) for use in educational measurement. ANNs and AIMS methods are contrasted with more traditional statistical techniques, such as multiple regression and discriminant function analyses, for making…
Artificial Neural Networks in Policy Research: A Current Assessment.
ERIC Educational Resources Information Center
Woelfel, Joseph
1993-01-01
Suggests that artificial neural networks (ANNs) exhibit properties that promise usefulness for policy researchers. Notes that ANNs have found extensive use in areas once reserved for multivariate statistical programs such as regression and multiple classification analysis and are developing an extensive community of advocates for processing text…
An Interview with Dr. Anne LaBastille.
ERIC Educational Resources Information Center
Griffin, Elizabeth
1982-01-01
Anne LaBastille, a role model for women interested in exploring the wilderness, gives hints on lessening the effects of acid rain, tells outdoor educators to encourage women to explore the wilderness and to take children outdoors to experience nature, and predicts a future economic slump for outdoor education. (LC)
Friendly Letters on the Correspondence of Helen Keller, Anne Sullivan, and Alexander Graham Bell.
ERIC Educational Resources Information Center
Blatt, Burton
1985-01-01
Excerpts from the letters between Alexander Graham Bell and Anne Sullivan and Helen Keller are given to illustrate the educational and personal growth of Helen Keller as well as the educational philosophy of Bell regarding the education of the deaf blind. (DB)
75 FR 9926 - National Register of Historic Places; Weekly Listing of Historic Properties
Federal Register 2010, 2011, 2012, 2013, 2014
2010-03-04
..., 12/08/09 MARYLAND Anne Arundel County Queenstown Rosenwald School, 430 Queenstown Rd., Severn, 09001060, LISTED, 12/08/09 (Rosenwald Schools of Anne Arundel County, Maryland MPS) Baltimore (Independent... Queens County Church-in-the-Gardens, The, 50 Ascan Ave., Forest Hills, 09001086, LISTED, 12/11/09...
Symbolism--The Main Artistic Style of Katherine Anne Porter's Short Stories
ERIC Educational Resources Information Center
Wang, Ru
2010-01-01
The paper takes Katherine Anne Porter's two short stories: "Flowering Judas", "The Grave" as objects of study. It will try to analyze Porter's writing style through her imaginary conception, vivid psychological description and multiple symbolisms so that we can understand her studies and her attitudes to female psychological…
Inventing Music Education Games
ERIC Educational Resources Information Center
Ghere, David; Amram, Fred M. B.
2007-01-01
The first British patent describing an educational game designed for musical "amusement and instruction" was granted in 1801 to Ann Young of Edinburgh, Scotland. The authors' discovery of Young's game box has prompted an examination of the nature and purpose of the six games she designed. Ann Young's patent is discussed in the context of…
Simulation of specific conductance and chloride concentration in Abercorn Creek, Georgia, 2000-2009
Conrads, Paul; Roehl, Edwin A.; Davie, Steven R.
2011-01-01
The City of Savannah operates an industrial and domestic water-supply intake on Abercorn Creek approximately 2 miles from the confluence with the Savannah River upstream from the Interstate 95 bridge. Chloride concentrations are a major concern for the city because industrial customers require water with low chloride concentrations, and elevated chloride concentrations require additional water treatment in order to meet those needs. The proposed deepening of Savannah Harbor could increase chloride concentrations (the major ion in seawater) in the upper reaches of the lower Savannah River estuary, including Abercorn Creek. To address this concern, mechanistic and empirical modeling approaches were used to simulate chloride concentrations at the city's intake to evaluate potential effects from deepening the Savannah Harbor. The first approach modified the mechanistic Environmental Fluid Dynamics Code (EFDC) model developed by Tetra Tech and used for evaluating proposed harbor deepening effects for the Environmental Impact Statement. Chloride concentrations were modeled directly with the EFDC model as a conservative tracer. This effort was done by Tetra Tech under a separate funding agreement with the U.S. Army Corps of Engineers and documented in a separate report. The second approach, described in this report, was to simulate chloride concentrations by developing empirical models from the available data using artificial neural network (ANN) and linear regression models. The empirical models used daily streamflow, specific conductance (field measurement for salinity), water temperature, and water color time series for inputs. Because there are only a few data points that describe the relation between high specific conductance values at the Savannah River at Interstate 95 and the water plant intake, there was a concern that these few data points would determine the extrapolation of the empirical model and potentially underestimate the effect of deepening the harbor on chloride concentrations at the intake. To accommodate these concerns, two ANN chloride models were developed for the intake. The first model (ANN M1e) used all the data. The second model (ANN M2e) only used data when specific conductance at Interstate 95 was less than 175 microsiemens per centimeter at 25 degrees Celsius. Deleting the conductivity data greater than 175 microsiemens per centimeter removed the "plateau" effect observed in the data. The chloride simulations with the ANN M1 model have a low sensitivity to specific conductance (salinity) at Interstate 95, whereas the chloride simulations with the ANN M2 model have a high sensitivity to salinity at Interstate 95. The two modeling approaches (Tetra Tech's EFDC model and the one described in this report) were integrated into a decision support system (DSS) that combines the historical database, output from EFDC, ANN models, ANN model simulation controls, streaming graphics, and model output. The DSS was developed as a Microsoft ExcelTM/Visual Basic for Applications program, which allowed the DSS to be prototyped, easily modified, and distributed in a familiar spreadsheet format. The EFDC and ANN models were used to simulate various harbor deepening scenarios. To accommodate the geometry changes in the harbor, the ANN models used the EFDC model-simulated salinity changes for a historical condition as input. The DSS uses a graphical user interface and allows the user to interrogate the ANN models and EFDC output. Two scenarios were simulated using the Savannah Chloride Model DSS to demonstrate different input options. One scenario decreased winter streamflows to a constant streamflow for 45 days. Streamflows during the period January 1 to February 15 were set to a constant 3,600 cubic feet per second for the simulation period of October 1, 2006, to October 1, 2009. The decreased winter streamflow resulted in predictions of increased specific conductance by as much as 50 microsiemens per centimeter and chlorid
Artificial neural networks in Space Station optimal attitude control
NASA Astrophysics Data System (ADS)
Kumar, Renjith R.; Seywald, Hans; Deshpande, Samir M.; Rahman, Zia
1995-01-01
Innovative techniques of using "artificial neural networks" (ANN) for improving the performance of the pitch axis attitude control system of Space Station Freedom using control moment gyros (CMGs) are investigated. The first technique uses a feed-forward ANN with multi-layer perceptrons to obtain an on-line controller which improves the performance of the control system via a model following approach. The second technique uses a single layer feed-forward ANN with a modified back propagation scheme to estimate the internal plant variations and the external disturbances separately. These estimates are then used to solve two differential Riccati equations to obtain time varying gains which improve the control system performance in successive orbits.
Parameter estimates in binary black hole collisions using neural networks
NASA Astrophysics Data System (ADS)
Carrillo, M.; Gracia-Linares, M.; González, J. A.; Guzmán, F. S.
2016-10-01
We present an algorithm based on artificial neural networks (ANNs), that estimates the mass ratio in a binary black hole collision out of given gravitational wave (GW) strains. In this analysis, the ANN is trained with a sample of GW signals generated with numerical simulations. The effectiveness of the algorithm is evaluated with GWs generated also with simulations for given mass ratios unknown to the ANN. We measure the accuracy of the algorithm in the interpolation and extrapolation regimes. We present the results for noise free signals and signals contaminated with Gaussian noise, in order to foresee the dependence of the method accuracy in terms of the signal to noise ratio.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-12-23
...: University of Michigan Museum of Anthropology, Ann Arbor, MI AGENCY: National Park Service, Interior. ACTION... Michigan officials and its Museum of Anthropology professional staff in consultation with representatives... accessioned into the Museum of Anthropology. Between 2007 and 2009 the remains were inventoried at the...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-06-12
... DEPARTMENT OF THE INTERIOR National Park Service [NPS-WASO-NAGPRA-10375; 2200-1100-665] Notice of Inventory Completion: Museum of Anthropology, University of Michigan, Ann Arbor, MI; Correction AGENCY: National Park Service, Interior. ACTION: Notice; correction. Notice is here given in accordance with the...
The Sally-Anne Test: An Interactional Analysis of a Dyadic Assessment
ERIC Educational Resources Information Center
Korkiakangas, Terhi; Dindar, Katja; Laitila, Aarno; Kärnä, Eija
2016-01-01
Background: The Sally-Anne test has been extensively used to examine children's theory of mind understanding. Many task-related factors have been suggested to impact children's performance on this test. Yet little is known about the interactional aspects of such dyadic assessment situations that might contribute to the ways in which children…
Saint Anne: A Multicultural Education Dilemma.
ERIC Educational Resources Information Center
Bruce, Bill; And Others
This 5-hour simulation is designed to give secondary- and college-level students and community persons the opportunity to deal with multicultural issues in a typical organizational and community setting. St. Anne is a fictitious town of 75,000 residents with two major ethnic neighborhoods--one German and the other Swedish. The local paper industry…
The Advantage of Story-Telling: Children's Interpretation of Reported Speech in Narratives
ERIC Educational Resources Information Center
Köder, Franziska; Maier, Emar
2018-01-01
Children struggle with the interpretation of pronouns in direct speech ("Ann said, 'I get a cookie'"), but not in indirect speech ("Ann said that she gets a cookie") (Köder & Maier, 2016). Yet children's books consistently favor direct over indirect speech (Baker & Freebody, 1989). To reconcile these seemingly…
33 CFR 80.115 - Portland Head, ME to Cape Ann, MA.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 33 Navigation and Navigable Waters 1 2014-07-01 2014-07-01 false Portland Head, ME to Cape Ann, MA. 80.115 Section 80.115 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY..., MA. (a) Except inside lines specifically described in this section, the 72 COLREGS shall apply on the...
33 CFR 80.115 - Portland Head, ME to Cape Ann, MA.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Portland Head, ME to Cape Ann, MA. 80.115 Section 80.115 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY..., MA. (a) Except inside lines specifically described in this section, the 72 COLREGS shall apply on the...
33 CFR 80.115 - Portland Head, ME to Cape Ann, MA.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Portland Head, ME to Cape Ann, MA. 80.115 Section 80.115 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY..., MA. (a) Except inside lines specifically described in this section, the 72 COLREGS shall apply on the...
33 CFR 80.115 - Portland Head, ME to Cape Ann, MA.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 33 Navigation and Navigable Waters 1 2012-07-01 2012-07-01 false Portland Head, ME to Cape Ann, MA. 80.115 Section 80.115 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY..., MA. (a) Except inside lines specifically described in this section, the 72 COLREGS shall apply on the...
33 CFR 80.115 - Portland Head, ME to Cape Ann, MA.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 33 Navigation and Navigable Waters 1 2013-07-01 2013-07-01 false Portland Head, ME to Cape Ann, MA. 80.115 Section 80.115 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY..., MA. (a) Except inside lines specifically described in this section, the 72 COLREGS shall apply on the...
[Artificial neural networks for decision making in urologic oncology].
Remzi, M; Djavan, B
2007-06-01
This chapter presents a detailed introduction regarding Artificial Neural Networks (ANNs) and their contribution to modern Urologic Oncology. It includes a description of ANNs methodology and points out the differences between Artifical Intelligence and traditional statistic models in terms of usefulness for patients and clinicians, and its advantages over current statistical analysis.
Computer Based Language Training: A Conversation with Duane M. Rumbaugh and Mary Ann Romski.
ERIC Educational Resources Information Center
Thomas, M. Angele
1981-01-01
An interview with Duane Rumbaugh and Mary Ann Romski, researchers on the use of alternative communication systems for severely and profoundly retarded persons, focuses on applications from their primate research and the use of a computerized keyboard system to investigate language acquisition in severely retarded persons. (CL)
USDA-ARS?s Scientific Manuscript database
AnnAGNPS (Annualized Agricultural Non-Point Source Pollution Model) is a system of computer models developed to predict non-point source pollutant loadings within agricultural watersheds. It contains a daily time step distributed parameter continuous simulation surface runoff model designed to assis...
Dover Schools' Unintelligent Design
ERIC Educational Resources Information Center
Barlow, Dudley
2006-01-01
The author of this article was surprised to read in the December 21, 2005, Ann Arbor News that "The Ann Arbor-based Thomas More Law Center, which represented the Dover [Pennsylvania] School District in its federal case for the teaching of intelligent design, has threatened to sue Gull Lake [Michigan] Community Schools over its policy that…
DOT National Transportation Integrated Search
1999-01-01
In 1997, the Ann Arbor (Michigan) Transportation Authority began deploying advanced public transportation systems (APTS) technologies in its fixed route and paratransit operations. The project's concept is the integration of a range of such technolog...
DOT National Transportation Integrated Search
1999-01-01
In 1997, the Ann Arbor (Michigan) Transportation Authority (AATA) began deploying advanced public transportation systems (APTS) technologies in its fixed route and paratransit operations. The project's concept is the integration of a range of such te...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-11-08
... 1625-AA00 Safety Zone, Submarine Cable Replacement Operations, Kent Island Narrows; Queen Anne's County... Guard proposes to establish a temporary safety zone encompassing certain waters of Kent Island Narrows... potential safety hazards associated with the bridge project. Entry into this zone would be prohibited unless...
ERIC Educational Resources Information Center
Cui, Ying; Gierl, Mark; Guo, Qi
2016-01-01
The purpose of the current investigation was to describe how the artificial neural networks (ANNs) can be used to interpret student performance on cognitive diagnostic assessments (CDAs) and evaluate the performances of ANNs using simulation results. CDAs are designed to measure student performance on problem-solving tasks and provide useful…
On Strategy: Integration of DIME in the Twenty-First Century
2012-02-12
over time. Israel 12 destroyed Egypt’s capacity to wage war which along with other factors led to the peace treaty signed at Camp David . But hearts...description of its effectiveness and how the Sister Cities concept works see, Rolf Cremer , Anne De Bruin and Ann Dupuis, “International Sister-Cities
The Effect of Outcome Desirability on Comparisons of Numerical and Linguistic Probabilities
1986-01-01
Shakespeare was thinking of Ann Hathaway when he wrote his twelfth sonnet . Beyth-Marom (1982) suggested other reasons for the use of non-numerical...chance" with reference to the event that Shakespeare was thinking of Ann Hathaway when he wrote his twelfth sonnet . Beyth-Marom (1982) suggested other
ERIC Educational Resources Information Center
Rowland, Veronica
2006-01-01
This article describes how second- and third-grade students joined their teacher, Mary Ann McTiernan, a marathon runner from Cape Town, South Africa, in a one-mile run every Thursday morning while she was training. Mary Ann's students had been asking, "Where do you run?" "How far do you go?" "How fast can you run?"…
Federal Register 2010, 2011, 2012, 2013, 2014
2012-11-06
... 2005 Base Year Emissions Inventory AGENCY: Environmental Protection Agency (EPA). ACTION: Final rule. SUMMARY: EPA is approving the fine particulate matter (PM 2.5 ) 2005 base year emissions inventory, a... 2005 base year emissions inventory for the Detroit-Ann Arbor area. EPA did not receive any comments...
NASA Astrophysics Data System (ADS)
Lin, Bin; An, Jubai; Brown, Carl E.; Chen, Weiwei
2003-05-01
In this paper an artificial neural network (ANN) approach, which is based on flexible nonlinear models for a very broad class of transfer functions, is applied for multi-spectral data analysis and modeling of airborne laser fluorosensor in order to differentiate between classes of oil on water surface. We use three types of algorithm: Perceptron Network, Back-Propagation (B-P) Network and Self-Organizing feature Maps (SOM) Network. Using the data in form of 64-channel spectra as inputs, the ANN presents the analysis and estimation results of the oil type on the basis of the type of background materials as outputs. The ANN is trained and tested using sample data set to the network. The results of the above 3 types of network are compared in this paper. It is proved that the training has developed a network that not only fits the training data, but also fits real-world data that the network will process operationally. The ANN model would play a significant role in the ocean oil-spill identification in the future.
ANN-PSO Integrated Optimization Methodology for Intelligent Control of MMC Machining
NASA Astrophysics Data System (ADS)
Chandrasekaran, Muthumari; Tamang, Santosh
2017-08-01
Metal Matrix Composites (MMC) show improved properties in comparison with non-reinforced alloys and have found increased application in automotive and aerospace industries. The selection of optimum machining parameters to produce components of desired surface roughness is of great concern considering the quality and economy of manufacturing process. In this study, a surface roughness prediction model for turning Al-SiCp MMC is developed using Artificial Neural Network (ANN). Three turning parameters viz., spindle speed ( N), feed rate ( f) and depth of cut ( d) were considered as input neurons and surface roughness was an output neuron. ANN architecture having 3 -5 -1 is found to be optimum and the model predicts with an average percentage error of 7.72 %. Particle Swarm Optimization (PSO) technique is used for optimizing parameters to minimize machining time. The innovative aspect of this work is the development of an integrated ANN-PSO optimization method for intelligent control of MMC machining process applicable to manufacturing industries. The robustness of the method shows its superiority for obtaining optimum cutting parameters satisfying desired surface roughness. The method has better convergent capability with minimum number of iterations.
A Hybrid FEM-ANN Approach for Slope Instability Prediction
NASA Astrophysics Data System (ADS)
Verma, A. K.; Singh, T. N.; Chauhan, Nikhil Kumar; Sarkar, K.
2016-09-01
Assessment of slope stability is one of the most critical aspects for the life of a slope. In any slope vulnerability appraisal, Factor Of Safety (FOS) is the widely accepted index to understand, how close or far a slope from the failure. In this work, an attempt has been made to simulate a road cut slope in a landslide prone area in Rudrapryag, Uttarakhand, India which lies near Himalayan geodynamic mountain belt. A combination of Finite Element Method (FEM) and Artificial Neural Network (ANN) has been adopted to predict FOS of the slope. In ANN, a three layer, feed- forward back-propagation neural network with one input layer and one hidden layer with three neurons and one output layer has been considered and trained using datasets generated from numerical analysis of the slope and validated with new set of field slope data. Mean absolute percentage error estimated as 1.04 with coefficient of correlation between the FOS of FEM and ANN as 0.973, which indicates that the system is very vigorous and fast to predict FOS for any slope.
Hemmat, Abbas; Kafashan, Jalal; Huang, Hongying
2017-01-01
To study the optimum process conditions for pretreatments and anaerobic codigestion of oil refinery wastewater (ORWW) with chicken manure, L9 (34) Taguchi's orthogonal array was applied. The biogas production (BGP), biomethane content (BMP), and chemical oxygen demand solubilization (CODS) in stabilization rate were evaluated as the process outputs. The optimum conditions were obtained by using Design Expert software (Version 7.0.0). The results indicated that the optimum conditions could be achieved with 44% ORWW, 36°C temperature, 30 min sonication, and 6% TS in the digester. The optimum BGP, BMP, and CODS removal rates by using the optimum conditions were 294.76 mL/gVS, 151.95 mL/gVS, and 70.22%, respectively, as concluded by the experimental results. In addition, the artificial neural network (ANN) technique was implemented to develop an ANN model for predicting BGP yield and BMP content. The Levenberg-Marquardt algorithm was utilized to train ANN, and the architecture of 9-19-2 for the ANN model was obtained. PMID:29441352
NASA Astrophysics Data System (ADS)
Feister, U.; Junk, J.; Woldt, M.; Bais, A.; Helbig, A.; Janouch, M.; Josefsson, W.; Kazantzidis, A.; Lindfors, A.; den Outer, P. N.; Slaper, H.
2008-06-01
Artificial Neural Networks (ANN) are efficient tools to derive solar UV radiation from measured meteorological parameters such as global radiation, aerosol optical depths and atmospheric column ozone. The ANN model has been tested with different combinations of data from the two sites Potsdam and Lindenberg, and used to reconstruct solar UV radiation at eight European sites by more than 100 years into the past. Special emphasis will be given to the discussion of small-scale characteristics of input data to the ANN model. Annual totals of UV radiation derived from reconstructed daily UV values reflect interannual variations and long-term patterns that are compatible with variabilities and changes of measured input data, in particular global dimming by about 1980/1990, subsequent global brightening, volcanic eruption effects such as that of Mt. Pinatubo, and the long-term ozone decline since the 1970s. Patterns of annual erythemal UV radiation are very similar at sites located at latitudes close to each other, but different patterns occur between UV radiation at sites in different latitude regions.
A study on ship automatic berthing with assistance of auxiliary devices
NASA Astrophysics Data System (ADS)
Tran, Van Luong; Im, Namkyun
2012-09-01
The recent researches on the automatic berthing control problems have used various kinds of tools as a control method such as expert system, fuzzy logic controllers and artificial neural network (ANN). Among them, ANN has proved to be one of the most effective and attractive options. In a marine context, the berthing maneuver is a complicated procedure in which both human experience and intensive control operations are involved. Nowadays, in most cases of berthing operation, auxiliary devices are used to make the schedule safer and faster but none of above researches has taken into account. In this study, ANN is applied to design the controllers for automatic ship berthing using assistant devices such as bow thruster and tug. Using back-propagation algorithm, we trained ANN with set of teaching data to get a minimal error between output values and desired values of four control outputs including rudder, propeller revolution, bow thruster and tug. Then, computer simulations of automatic berthing were carried out to verify the effecttiveness of the system. The results of the simulations showed good performance for the proposed berthing control system.
NASA Astrophysics Data System (ADS)
Sharudin, R. W.; AbdulBari Ali, S.; Zulkarnain, M.; Shukri, M. A.
2018-05-01
This study reports on the integration of Artificial Neural Network (ANNs) with experimental data in predicting the solubility of carbon dioxide (CO2) blowing agent in SEBS by generating highest possible value for Regression coefficient (R2). Basically, foaming of thermoplastic elastomer with CO2 is highly affected by the CO2 solubility. The ability of ANN in predicting interpolated data of CO2 solubility was investigated by comparing training results via different method of network training. Regards to the final prediction result for CO2 solubility by ANN, the prediction trend (output generate) was corroborated with the experimental results. The obtained result of different method of training showed the trend of output generated by Gradient Descent with Momentum & Adaptive LR (traingdx) required longer training time and required more accurate input to produce better output with final Regression Value of 0.88. However, it goes vice versa with Levenberg-Marquardt (trainlm) technique as it produced better output in quick detention time with final Regression Value of 0.91.
Classification of hyperspectral imagery with neural networks: comparison to conventional tools
NASA Astrophysics Data System (ADS)
Merényi, Erzsébet; Farrand, William H.; Taranik, James V.; Minor, Timothy B.
2014-12-01
Efficient exploitation of hyperspectral imagery is of great importance in remote sensing. Artificial intelligence approaches have been receiving favorable reviews for classification of hyperspectral data because the complexity of such data challenges the limitations of many conventional methods. Artificial neural networks (ANNs) were shown to outperform traditional classifiers in many situations. However, studies that use the full spectral dimensionality of hyperspectral images to classify a large number of surface covers are scarce if non-existent. We advocate the need for methods that can handle the full dimensionality and a large number of classes to retain the discovery potential and the ability to discriminate classes with subtle spectral differences. We demonstrate that such a method exists in the family of ANNs. We compare the maximum likelihood, Mahalonobis distance, minimum distance, spectral angle mapper, and a hybrid ANN classifier for real hyperspectral AVIRIS data, using the full spectral resolution to map 23 cover types and using a small training set. Rigorous evaluation of the classification accuracies shows that the ANN outperforms the other methods and achieves ≈90% accuracy on test data.
1996-01-01
These guidelines are an official statement of the American Speech-Language-Hearing Association. They provide guidance on the training, credentialing, use, and supervision of one category of support personnel in speech-language pathology: speech-language pathology assistants. Guidelines are not official standards of the Association. They were developed by the Task Force on Support Personnel: Dennis J. Arnst, Kenneth D. Barker, Ann Olsen Bird, Sheila Bridges, Linda S. DeYoung, Katherine Formichella, Nena M. Germany, Gilbert C. Hanke, Ann M. Horton, DeAnne M. Owre, Sidney L. Ramsey, Cathy A. Runnels, Brenda Terrell, Gerry W. Werven, Denise West, Patricia A. Mercaitis (consultant), Lisa C. O'Connor (consultant), Frederick T. Spahr (coordinator), Diane Paul-Brown (associate coordinator), Ann L. Carey (Executive Board liaison). The 1994 guidelines supersede the 1981 guidelines entitled, "Guidelines for the Employment and Utilization of Supportive Personnel" (Asha, March 1981, 165-169). Refer to the 1995 position statement on the "Training, Credentialing, Use, and Supervision of Support Personnel in Speech-Language Pathology" (Asha, 37 [Suppl. 14], 21).
D Coordinate Transformation Using Artificial Neural Networks
NASA Astrophysics Data System (ADS)
Konakoglu, B.; Cakır, L.; Gökalp, E.
2016-10-01
Two coordinate systems used in Turkey, namely the ED50 (European Datum 1950) and ITRF96 (International Terrestrial Reference Frame 1996) coordinate systems. In most cases, it is necessary to conduct transformation from one coordinate system to another. The artificial neural network (ANN) is a new method for coordinate transformation. One of the biggest advantages of the ANN is that it can determine the relationship between two coordinate systems without a mathematical model. The aim of this study was to investigate the performances of three different ANN models (Feed Forward Back Propagation (FFBP), Cascade Forward Back Propagation (CFBP) and Radial Basis Function Neural Network (RBFNN)) with regard to 2D coordinate transformation. To do this, three data sets were used for the same study area, the city of Trabzon. The coordinates of data sets were measured in the ED50 and ITRF96 coordinate systems by using RTK-GPS technique. Performance of each transformation method was investigated by using the coordinate differences between the known and estimated coordinates. The results showed that the ANN algorithms can be used for 2D coordinate transformation in cases where optimum model parameters are selected.
Raut, Sangeeta; Raut, Smita; Sharma, Manisha; Srivastav, Chaitanya; Adhikari, Basudam; Sen, Sudip Kumar
2015-09-01
In the present study, artificial neural network (ANN) modelling coupled with particle swarm optimization (PSO) algorithm was used to optimize the process variables for enhanced low density polyethylene (LDPE) degradation by Curvularia lunata SG1. In the non-linear ANN model, temperature, pH, contact time and agitation were used as input variables and polyethylene bio-degradation as the output variable. Further, on application of PSO to the ANN model, the optimum values of the process parameters were as follows: pH = 7.6, temperature = 37.97 °C, agitation rate = 190.48 rpm and incubation time = 261.95 days. A comparison between the model results and experimental data gave a high correlation coefficient ([Formula: see text]). Significant enhancement of LDPE bio-degradation using C. lunata SG1by about 48 % was achieved under optimum conditions. Thus, the novelty of the work lies in the application of combination of ANN-PSO as optimization strategy to enhance the bio-degradation of LDPE.
Fault detection and diagnosis in asymmetric multilevel inverter using artificial neural network
NASA Astrophysics Data System (ADS)
Raj, Nithin; Jagadanand, G.; George, Saly
2018-04-01
The increased component requirement to realise multilevel inverter (MLI) fallout in a higher fault prospect due to power semiconductors. In this scenario, efficient fault detection and diagnosis (FDD) strategies to detect and locate the power semiconductor faults have to be incorporated in addition to the conventional protection systems. Even though a number of FDD methods have been introduced in the symmetrical cascaded H-bridge (CHB) MLIs, very few methods address the FDD in asymmetric CHB-MLIs. In this paper, the gate-open circuit FDD strategy in asymmetric CHB-MLI is presented. Here, a single artificial neural network (ANN) is used to detect and diagnose the fault in both binary and trinary configurations of the asymmetric CHB-MLIs. In this method, features of the output voltage of the MLIs are used as to train the ANN for FDD method. The results prove the validity of the proposed method in detecting and locating the fault in both asymmetric MLI configurations. Finally, the ANN response to the input parameter variation is also analysed to access the performance of the proposed ANN-based FDD strategy.
Learning cardiopulmonary resuscitation skills: does the type of mannequin make a difference?
Noordergraaf, G J; Van Gelder, J M; Van Kesteren, R G; Diets, R F; Savelkoul, T J
1997-12-01
Resuscitation (CPR) courses stress acquisition of psychomotor skills. The number of mannequins may limit the 'hands-on' time available for each trainee to practise CPR and impede acquisition of skill. This may occur because expensive, sophisticated mannequins are favoured over individual, simple mannequins. In a blind, prospective, controlled study we compared one-rescuer CPR skills of 165 trainees in two cohorts using their own individual light-weight torso mannequins (Actar 911 and Laerdal Little Anne) and a control cohort with four to five trainees sharing a sophisticated mannequin (Laerdal Recording Resusci Anne). No major significant differences (p = 0.18) were found when using the 'Berden scoring system'. Both the Actar 911 and the Little Anne were compatible with the Recording Resusci Anne. Trainees preferred the individual mannequins. We conclude that the results indicate that the use of individual mannequins in conjunction with a sophisticated mannequin neither results in trainees learning incorrect skills nor in significant improvement. Further analysis of the actual training in lay person CPR training courses and evaluation of course didactics to optimize training time appear indicated.
Pappu, J Sharon Mano; Gummadi, Sathyanarayana N
2016-11-01
This study examines the use of unstructured kinetic model and artificial neural networks as predictive tools for xylitol production by Debaryomyces nepalensis NCYC 3413 in bioreactor. An unstructured kinetic model was proposed in order to assess the influence of pH (4, 5 and 6), temperature (25°C, 30°C and 35°C) and volumetric oxygen transfer coefficient kLa (0.14h(-1), 0.28h(-1) and 0.56h(-1)) on growth and xylitol production. A feed-forward back-propagation artificial neural network (ANN) has been developed to investigate the effect of process condition on xylitol production. ANN configuration of 6-10-3 layers was selected and trained with 339 experimental data points from bioreactor studies. Results showed that simulation and prediction accuracy of ANN was apparently higher when compared to unstructured mechanistic model under varying operational conditions. ANN was found to be an efficient data-driven tool to predict the optimal harvest time in xylitol production. Copyright © 2016 Elsevier Ltd. All rights reserved.
2013-01-01
Background The present study aimed to develop an artificial neural network (ANN) based prediction model for cardiovascular autonomic (CA) dysfunction in the general population. Methods We analyzed a previous dataset based on a population sample consisted of 2,092 individuals aged 30–80 years. The prediction models were derived from an exploratory set using ANN analysis. Performances of these prediction models were evaluated in the validation set. Results Univariate analysis indicated that 14 risk factors showed statistically significant association with CA dysfunction (P < 0.05). The mean area under the receiver-operating curve was 0.762 (95% CI 0.732–0.793) for prediction model developed using ANN analysis. The mean sensitivity, specificity, positive and negative predictive values were similar in the prediction models was 0.751, 0.665, 0.330 and 0.924, respectively. All HL statistics were less than 15.0. Conclusion ANN is an effective tool for developing prediction models with high value for predicting CA dysfunction among the general population. PMID:23902963
Supervised Learning Based on Temporal Coding in Spiking Neural Networks.
Mostafa, Hesham
2017-08-01
Gradient descent training techniques are remarkably successful in training analog-valued artificial neural networks (ANNs). Such training techniques, however, do not transfer easily to spiking networks due to the spike generation hard nonlinearity and the discrete nature of spike communication. We show that in a feedforward spiking network that uses a temporal coding scheme where information is encoded in spike times instead of spike rates, the network input-output relation is differentiable almost everywhere. Moreover, this relation is piecewise linear after a transformation of variables. Methods for training ANNs thus carry directly to the training of such spiking networks as we show when training on the permutation invariant MNIST task. In contrast to rate-based spiking networks that are often used to approximate the behavior of ANNs, the networks we present spike much more sparsely and their behavior cannot be directly approximated by conventional ANNs. Our results highlight a new approach for controlling the behavior of spiking networks with realistic temporal dynamics, opening up the potential for using these networks to process spike patterns with complex temporal information.
NASA Astrophysics Data System (ADS)
Ghosh, Arpita; Das, Papita; Sinha, Keka
2015-06-01
In the present work, spent tea leaves were modified with Ca(OH)2 and used as a new, non-conventional and low-cost biosorbent for the removal of Cu(II) from aqueous solution. Response surface methodology (RSM) and artificial neural network (ANN) were used to develop predictive models for simulation and optimization of the biosorption process. The influence of process parameters (pH, biosorbent dose and reaction time) on the biosorption efficiency was investigated through a two-level three-factor (23) full factorial central composite design with the help of Design Expert. The same design was also used to obtain a training set for ANN. Finally, both modeling methodologies were statistically compared by the root mean square error and absolute average deviation based on the validation data set. Results suggest that RSM has better prediction performance as compared to ANN. The biosorption followed Langmuir adsorption isotherm and it followed pseudo-second-order kinetic. The optimum removal efficiency of the adsorbent was found as 96.12 %.
Intelligent Flow Friction Estimation
Brkić, Dejan; Ćojbašić, Žarko
2016-01-01
Nowadays, the Colebrook equation is used as a mostly accepted relation for the calculation of fluid flow friction factor. However, the Colebrook equation is implicit with respect to the friction factor (λ). In the present study, a noniterative approach using Artificial Neural Network (ANN) was developed to calculate the friction factor. To configure the ANN model, the input parameters of the Reynolds Number (Re) and the relative roughness of pipe (ε/D) were transformed to logarithmic scales. The 90,000 sets of data were fed to the ANN model involving three layers: input, hidden, and output layers with, 2, 50, and 1 neurons, respectively. This configuration was capable of predicting the values of friction factor in the Colebrook equation for any given values of the Reynolds number (Re) and the relative roughness (ε/D) ranging between 5000 and 108 and between 10−7 and 0.1, respectively. The proposed ANN demonstrates the relative error up to 0.07% which had the high accuracy compared with the vast majority of the precise explicit approximations of the Colebrook equation. PMID:27127498
Antwi, Philip; Li, Jianzheng; Boadi, Portia Opoku; Meng, Jia; Shi, En; Deng, Kaiwen; Bondinuba, Francis Kwesi
2017-03-01
Three-layered feedforward backpropagation (BP) artificial neural networks (ANN) and multiple nonlinear regression (MnLR) models were developed to estimate biogas and methane yield in an upflow anaerobic sludge blanket (UASB) reactor treating potato starch processing wastewater (PSPW). Anaerobic process parameters were optimized to identify their importance on methanation. pH, total chemical oxygen demand, ammonium, alkalinity, total Kjeldahl nitrogen, total phosphorus, volatile fatty acids and hydraulic retention time selected based on principal component analysis were used as input variables, whiles biogas and methane yield were employed as target variables. Quasi-Newton method and conjugate gradient backpropagation algorithms were best among eleven training algorithms. Coefficient of determination (R 2 ) of the BP-ANN reached 98.72% and 97.93% whiles MnLR model attained 93.9% and 91.08% for biogas and methane yield, respectively. Compared with the MnLR model, BP-ANN model demonstrated significant performance, suggesting possible control of the anaerobic digestion process with the BP-ANN model. Copyright © 2016 Elsevier Ltd. All rights reserved.
Monthly monsoon rainfall forecasting using artificial neural networks
NASA Astrophysics Data System (ADS)
Ganti, Ravikumar
2014-10-01
Indian agriculture sector heavily depends on monsoon rainfall for successful harvesting. In the past, prediction of rainfall was mainly performed using regression models, which provide reasonable accuracy in the modelling and forecasting of complex physical systems. Recently, Artificial Neural Networks (ANNs) have been proposed as efficient tools for modelling and forecasting. A feed-forward multi-layer perceptron type of ANN architecture trained using the popular back-propagation algorithm was employed in this study. Other techniques investigated for modeling monthly monsoon rainfall include linear and non-linear regression models for comparison purposes. The data employed in this study include monthly rainfall and monthly average of the daily maximum temperature in the North Central region in India. Specifically, four regression models and two ANN model's were developed. The performance of various models was evaluated using a wide variety of standard statistical parameters and scatter plots. The results obtained in this study for forecasting monsoon rainfalls using ANNs have been encouraging. India's economy and agricultural activities can be effectively managed with the help of the availability of the accurate monsoon rainfall forecasts.
River flow simulation using a multilayer perceptron-firefly algorithm model
NASA Astrophysics Data System (ADS)
Darbandi, Sabereh; Pourhosseini, Fatemeh Akhoni
2018-06-01
River flow estimation using records of past time series is importance in water resources engineering and management and is required in hydrologic studies. In the past two decades, the approaches based on the artificial neural networks (ANN) were developed. River flow modeling is a non-linear process and highly affected by the inputs to the modeling. In this study, the best input combination of the models was identified using the Gamma test then MLP-ANN and hybrid multilayer perceptron (MLP-FFA) is used to forecast monthly river flow for a set of time intervals using observed data. The measurements from three gauge at Ajichay watershed, East Azerbaijani, were used to train and test the models approach for the period from January 2004 to July 2016. Calibration and validation were performed within the same period for MLP-ANN and MLP-FFA models after the preparation of the required data. Statistics, the root mean square error and determination coefficient, are used to verify outputs from MLP-ANN to MLP-FFA models. The results show that MLP-FFA model is satisfactory for monthly river flow simulation in study area.
Janet, Jon Paul; Chan, Lydia; Kulik, Heather J
2018-03-01
Machine learning (ML) has emerged as a powerful complement to simulation for materials discovery by reducing time for evaluation of energies and properties at accuracy competitive with first-principles methods. We use genetic algorithm (GA) optimization to discover unconventional spin-crossover complexes in combination with efficient scoring from an artificial neural network (ANN) that predicts spin-state splitting of inorganic complexes. We explore a compound space of over 5600 candidate materials derived from eight metal/oxidation state combinations and a 32-ligand pool. We introduce a strategy for error-aware ML-driven discovery by limiting how far the GA travels away from the nearest ANN training points while maximizing property (i.e., spin-splitting) fitness, leading to discovery of 80% of the leads from full chemical space enumeration. Over a 51-complex subset, average unsigned errors (4.5 kcal/mol) are close to the ANN's baseline 3 kcal/mol error. By obtaining leads from the trained ANN within seconds rather than days from a DFT-driven GA, this strategy demonstrates the power of ML for accelerating inorganic material discovery.
Optimizing Blasting’s Air Overpressure Prediction Model using Swarm Intelligence
NASA Astrophysics Data System (ADS)
Nur Asmawisham Alel, Mohd; Ruben Anak Upom, Mark; Asnida Abdullah, Rini; Hazreek Zainal Abidin, Mohd
2018-04-01
Air overpressure (AOp) resulting from blasting can cause damage and nuisance to nearby civilians. Thus, it is important to be able to predict AOp accurately. In this study, 8 different Artificial Neural Network (ANN) were developed for the purpose of prediction of AOp. The ANN models were trained using different variants of Particle Swarm Optimization (PSO) algorithm. AOp predictions were also made using an empirical equation, as suggested by United States Bureau of Mines (USBM), to serve as a benchmark. In order to develop the models, 76 blasting operations in Hulu Langat were investigated. All the ANN models were found to outperform the USBM equation in three performance metrics; root mean square error (RMSE), mean absolute percentage error (MAPE) and coefficient of determination (R2). Using a performance ranking method, MSO-Rand-Mut was determined to be the best prediction model for AOp with a performance metric of RMSE=2.18, MAPE=1.73% and R2=0.97. The result shows that ANN models trained using PSO are capable of predicting AOp with great accuracy.
Artificial neural network modeling of dissolved oxygen in the Heihe River, Northwestern China.
Wen, Xiaohu; Fang, Jing; Diao, Meina; Zhang, Chuanqi
2013-05-01
Identification and quantification of dissolved oxygen (DO) profiles of river is one of the primary concerns for water resources managers. In this research, an artificial neural network (ANN) was developed to simulate the DO concentrations in the Heihe River, Northwestern China. A three-layer back-propagation ANN was used with the Bayesian regularization training algorithm. The input variables of the neural network were pH, electrical conductivity, chloride (Cl(-)), calcium (Ca(2+)), total alkalinity, total hardness, nitrate nitrogen (NO3-N), and ammonical nitrogen (NH4-N). The ANN structure with 14 hidden neurons obtained the best selection. By making comparison between the results of the ANN model and the measured data on the basis of correlation coefficient (r) and root mean square error (RMSE), a good model-fitting DO values indicated the effectiveness of neural network model. It is found that the coefficient of correlation (r) values for the training, validation, and test sets were 0.9654, 0.9841, and 0.9680, respectively, and the respective values of RMSE for the training, validation, and test sets were 0.4272, 0.3667, and 0.4570, respectively. Sensitivity analysis was used to determine the influence of input variables on the dependent variable. The most effective inputs were determined as pH, NO3-N, NH4-N, and Ca(2+). Cl(-) was found to be least effective variables on the proposed model. The identified ANN model can be used to simulate the water quality parameters.
Agatonovic-Kustrin, S; Loescher, Christine M; Singh, Ragini
2013-01-01
Echinacea preparations are among the most popular herbal remedies worldwide. Although it is generally assigned immune enhancement activities, the effectiveness of Echinacea is highly dependent on the Echinacea species, part of the plant used, the age of the plant, its location and the method of extraction. The aim of this study was to investigate the capacity of an artificial neural network (ANN) to analyse thin-layer chromatography (TLC) chromatograms as fingerprint patterns for quantitative estimation of three phenylpropanoid markers (chicoric acid, chlorogenic acid and echinacoside) in commercial Echinacea products. By applying samples with different weight ratios of marker compounds to the system, a database of chromatograms was constructed. One hundred and one signal intensities in each of the TLC chromatograms were correlated to the amounts of applied echinacoside, chlorogenic acid and chicoric acid using an ANN. The developed ANN correlation was used to quantify the amounts of three marker compounds in Echinacea commercial formulations. The minimum quantifiable level of 63, 154 and 98 ng and the limit of detection of 19, 46 and 29 ng were established for echinacoside, chlorogenic acid and chicoric acid respectively. A novel method for quality control of herbal products, based on TLC separation, high-resolution digital plate imaging and ANN data analysis has been developed. The method proposed can be adopted for routine evaluation of the phytochemical variability in Echinacea formulations available in the market. Copyright © 2012 John Wiley & Sons, Ltd.
Superiority of artificial neural networks for a genetic classification procedure.
Sant'Anna, I C; Tomaz, R S; Silva, G N; Nascimento, M; Bhering, L L; Cruz, C D
2015-08-19
The correct classification of individuals is extremely important for the preservation of genetic variability and for maximization of yield in breeding programs using phenotypic traits and genetic markers. The Fisher and Anderson discriminant functions are commonly used multivariate statistical techniques for these situations, which allow for the allocation of an initially unknown individual to predefined groups. However, for higher levels of similarity, such as those found in backcrossed populations, these methods have proven to be inefficient. Recently, much research has been devoted to developing a new paradigm of computing known as artificial neural networks (ANNs), which can be used to solve many statistical problems, including classification problems. The aim of this study was to evaluate the feasibility of ANNs as an evaluation technique of genetic diversity by comparing their performance with that of traditional methods. The discriminant functions were equally ineffective in discriminating the populations, with error rates of 23-82%, thereby preventing the correct discrimination of individuals between populations. The ANN was effective in classifying populations with low and high differentiation, such as those derived from a genetic design established from backcrosses, even in cases of low differentiation of the data sets. The ANN appears to be a promising technique to solve classification problems, since the number of individuals classified incorrectly by the ANN was always lower than that of the discriminant functions. We envisage the potential relevant application of this improved procedure in the genomic classification of markers to distinguish between breeds and accessions.
NASA Astrophysics Data System (ADS)
Ghanbari, Keyvan; Khakian Ghomi, Mehdi; Mohammadi, Mohammad; Marbouti, Marjan; Tan, Le Minh
2016-08-01
The ionized atmosphere lying from 50 to 600 km above surface, known as ionosphere, contains high amount of electrons and ions. Very Low Frequency (VLF) radio waves with frequencies between 3 and 30 kHz are reflected from the lower ionosphere specifically D-region. A lot of applications in long range communications and navigation systems have been inspired by this characteristic of ionosphere. There are several factors which affect the ionization rate in this region, such as: time of day (presence of sun in the sky), solar zenith angle (seasons) and solar activities. Due to nonlinear response of ionospheric reflection coefficient to these factors, finding an accurate relation between these parameters and reflection coefficient is an arduous task. In order to model these kinds of nonlinear functionalities, some numerical methods are employed. One of these methods is artificial neural network (ANN). In this paper, the VLF radio wave data of 4 sudden ionospheric disturbance (SID) stations are given to a multi-layer perceptron ANN in order to simulate the variations of reflection coefficient of D region ionosphere. After training, validation and testing the ANN, outputs of ANN and observed values are plotted together for 2 random cases of each station. By evaluating the results using 2 parameters of pearson correlation coefficient and root mean square error, a satisfying agreement was found between ANN outputs and real observed data.
Artificial neural network (ANN)-based prediction of depth filter loading capacity for filter sizing.
Agarwal, Harshit; Rathore, Anurag S; Hadpe, Sandeep Ramesh; Alva, Solomon J
2016-11-01
This article presents an application of artificial neural network (ANN) modelling towards prediction of depth filter loading capacity for clarification of a monoclonal antibody (mAb) product during commercial manufacturing. The effect of operating parameters on filter loading capacity was evaluated based on the analysis of change in the differential pressure (DP) as a function of time. The proposed ANN model uses inlet stream properties (feed turbidity, feed cell count, feed cell viability), flux, and time to predict the corresponding DP. The ANN contained a single output layer with ten neurons in hidden layer and employed a sigmoidal activation function. This network was trained with 174 training points, 37 validation points, and 37 test points. Further, a pressure cut-off of 1.1 bar was used for sizing the filter area required under each operating condition. The modelling results showed that there was excellent agreement between the predicted and experimental data with a regression coefficient (R 2 ) of 0.98. The developed ANN model was used for performing variable depth filter sizing for different clarification lots. Monte-Carlo simulation was performed to estimate the cost savings by using different filter areas for different clarification lots rather than using the same filter area. A 10% saving in cost of goods was obtained for this operation. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:1436-1443, 2016. © 2016 American Institute of Chemical Engineers.
Illias, Hazlee Azil; Chai, Xin Rui; Abu Bakar, Ab Halim; Mokhlis, Hazlie
2015-01-01
It is important to predict the incipient fault in transformer oil accurately so that the maintenance of transformer oil can be performed correctly, reducing the cost of maintenance and minimise the error. Dissolved gas analysis (DGA) has been widely used to predict the incipient fault in power transformers. However, sometimes the existing DGA methods yield inaccurate prediction of the incipient fault in transformer oil because each method is only suitable for certain conditions. Many previous works have reported on the use of intelligence methods to predict the transformer faults. However, it is believed that the accuracy of the previously proposed methods can still be improved. Since artificial neural network (ANN) and particle swarm optimisation (PSO) techniques have never been used in the previously reported work, this work proposes a combination of ANN and various PSO techniques to predict the transformer incipient fault. The advantages of PSO are simplicity and easy implementation. The effectiveness of various PSO techniques in combination with ANN is validated by comparison with the results from the actual fault diagnosis, an existing diagnosis method and ANN alone. Comparison of the results from the proposed methods with the previously reported work was also performed to show the improvement of the proposed methods. It was found that the proposed ANN-Evolutionary PSO method yields the highest percentage of correct identification for transformer fault type than the existing diagnosis method and previously reported works.
2015-01-01
It is important to predict the incipient fault in transformer oil accurately so that the maintenance of transformer oil can be performed correctly, reducing the cost of maintenance and minimise the error. Dissolved gas analysis (DGA) has been widely used to predict the incipient fault in power transformers. However, sometimes the existing DGA methods yield inaccurate prediction of the incipient fault in transformer oil because each method is only suitable for certain conditions. Many previous works have reported on the use of intelligence methods to predict the transformer faults. However, it is believed that the accuracy of the previously proposed methods can still be improved. Since artificial neural network (ANN) and particle swarm optimisation (PSO) techniques have never been used in the previously reported work, this work proposes a combination of ANN and various PSO techniques to predict the transformer incipient fault. The advantages of PSO are simplicity and easy implementation. The effectiveness of various PSO techniques in combination with ANN is validated by comparison with the results from the actual fault diagnosis, an existing diagnosis method and ANN alone. Comparison of the results from the proposed methods with the previously reported work was also performed to show the improvement of the proposed methods. It was found that the proposed ANN-Evolutionary PSO method yields the highest percentage of correct identification for transformer fault type than the existing diagnosis method and previously reported works. PMID:26103634
Modelling the growth of Leuconostoc mesenteroides by Artificial Neural Networks.
García-Gimeno, R M; Hervás-Martínez, C; Rodríguez-Pérez, R; Zurera-Cosano, G
2005-12-15
The combined effect of temperature (10.5 to 24.5 degrees C), pH level (5.5 to 7.5), sodium chloride level (0.25% to 6.25%) and sodium nitrite level (0 to 200 ppm) on the predicted specific growth rate (Gr), lag-time (Lag) and maximum population density (yEnd) of Leuconostoc mesenteroides under aerobic and anaerobic conditions, was studied using an Artificial Neural Network-based model (ANN) in comparison with Response Surface Methodology (RS). For both aerobic and anaerobic conditions, two types of ANN model were elaborated, unidimensional for each of the growth parameters, and multidimensional in which the three parameters Gr, Lag, and yEnd are combined. Although in general no significant statistical differences were observed between both types of model, we opted for the unidimensional model, because it obtained the lowest mean value for the standard error of prediction for generalisation. The ANN models developed provided reliable estimates for the three kinetic parameters studied; the SEP values in aerobic conditions ranged from between 2.82% for Gr, 6.05% for Lag and 10% for yEnd, a higher degree accuracy than those of the RS model (Gr: 9.54%; Lag: 8.89%; yEnd: 10.27%). Similar results were observed for anaerobic conditions. During external validation, a higher degree of accuracy (Af) and bias (Bf) were observed for the ANN model compared with the RS model. ANN predictive growth models are a valuable tool, enabling swift determination of L. mesenteroides growth parameters.
Zhao, Guo; Wang, Hui; Liu, Gang
2017-07-03
Abstract : In this study, a novel method based on a Bi/glassy carbon electrode (Bi/GCE) for quantitatively and directly detecting Cd 2+ in the presence of Cu 2+ without further electrode modifications by combining square-wave anodic stripping voltammetry (SWASV) and a back-propagation artificial neural network (BP-ANN) has been proposed. The influence of the Cu 2+ concentration on the stripping response to Cd 2+ was studied. In addition, the effect of the ferrocyanide concentration on the SWASV detection of Cd 2+ in the presence of Cu 2+ was investigated. A BP-ANN with two inputs and one output was used to establish the nonlinear relationship between the concentration of Cd 2+ and the stripping peak currents of Cu 2+ and Cd 2+ . The factors affecting the SWASV detection of Cd 2+ and the key parameters of the BP-ANN were optimized. Moreover, the direct calibration model (i.e., adding 0.1 mM ferrocyanide before detection), the BP-ANN model and other prediction models were compared to verify the prediction performance of these models in terms of their mean absolute errors (MAEs), root mean square errors (RMSEs) and correlation coefficients. The BP-ANN model exhibited higher prediction accuracy than the direct calibration model and the other prediction models. Finally, the proposed method was used to detect Cd 2+ in soil samples with satisfactory results.
Zhao, Guo; Wang, Hui; Liu, Gang; Wang, Zhiqiang
2016-09-21
An easy, but effective, method has been proposed to detect and quantify the Pb(II) in the presence of Cd(II) based on a Bi/glassy carbon electrode (Bi/GCE) with the combination of a back propagation artificial neural network (BP-ANN) and square wave anodic stripping voltammetry (SWASV) without further electrode modification. The effects of Cd(II) in different concentrations on stripping responses of Pb(II) was studied. The results indicate that the presence of Cd(II) will reduce the prediction precision of a direct calibration model. Therefore, a two-input and one-output BP-ANN was built for the optimization of a stripping voltammetric sensor, which considering the combined effects of Cd(II) and Pb(II) on the SWASV detection of Pb(II) and establishing the nonlinear relationship between the stripping peak currents of Pb(II) and Cd(II) and the concentration of Pb(II). The key parameters of the BP-ANN and the factors affecting the SWASV detection of Pb(II) were optimized. The prediction performance of direct calibration model and BP-ANN model were tested with regard to the mean absolute error (MAE), root mean square error (RMSE), average relative error (ARE), and correlation coefficient. The results proved that the BP-ANN model exhibited higher prediction accuracy than the direct calibration model. Finally, a real samples analysis was performed to determine trace Pb(II) in some soil specimens with satisfactory results.
Chambers, D M; Reese, C M; Thornburg, L G; Sanchez, E; Rafson, J P; Blount, B C; Ruhl, J R E; De Jesús, V R
2018-01-02
Studies of exposure to petroleum (crude oil/fuel) often involve monitoring benzene, toluene, ethylbenzene, xylenes (BTEX), and styrene (BTEXS) because of their toxicity and gas-phase prevalence, where exposure is typically by inhalation. However, BTEXS levels in the general U.S. population are primarily from exposure to tobacco smoke, where smokers have blood levels on average up to eight times higher than nonsmokers. This work describes a method using partition theory and artificial neural network (ANN) pattern recognition to classify exposure source based on relative BTEXS and 2,5-dimethylfuran blood levels. A method using surrogate signatures to train the ANN was validated by comparing blood levels among cigarette smokers from the National Health and Nutrition Examination Survey (NHANES) with BTEXS and 2,5-dimethylfuran signatures derived from the smoke of machine-smoked cigarettes. Classification agreement for an ANN model trained with relative VOC levels was up to 99.8% for nonsmokers and 100.0% for smokers. As such, because there is limited blood level data on individuals exposed to crude oil/fuel, only surrogate signatures derived from crude oil and fuel were used for training the ANN. For the 2007-2008 NHANES data, the ANN model assigned 7 out of 1998 specimens (0.35%) and for the 2013-2014 NHANES data 12 out of 2906 specimens (0.41%) to the crude oil/fuel signature category.
Heave motion prediction of a large barge in random seas by using artificial neural network
NASA Astrophysics Data System (ADS)
Lee, Hsiu Eik; Liew, Mohd Shahir; Zawawi, Noor Amila Wan Abdullah; Toloue, Iraj
2017-11-01
This paper describes the development of a multi-layer feed forward artificial neural network (ANN) to predict rigid heave body motions of a large catenary moored barge subjected to multi-directional irregular waves. The barge is idealized as a rigid plate of finite draft with planar dimensions 160m (length) and 100m (width) which is held on station using a six point chain catenary mooring in 50m water depth. Hydroelastic effects are neglected from the physical model as the chief intent of this study is focused on large plate rigid body hydrodynamics modelling using ANN. Even with this assumption, the computational requirements for time domain coupled hydrodynamic simulations of a moored floating body is considerably costly, particularly if a large number of simulations are required such as in the case of response based design (RBD) methods. As an alternative to time consuming numerical hydrodynamics, a regression-type ANN model has been developed for efficient prediction of the barge's heave responses to random waves from various directions. It was determined that a network comprising of 3 input features, 2 hidden layers with 5 neurons each and 1 output was sufficient to produce acceptable predictions within 0.02 mean squared error. By benchmarking results from the ANN with those generated by a fully coupled dynamic model in OrcaFlex, it is demonstrated that the ANN is capable of predicting the barge's heave responses with acceptable accuracy.
NASA Astrophysics Data System (ADS)
Pereira Filho, Augusto José; dos Santos, Cláudia Cristina
2006-02-01
Artificial neural networks (ANN) are widely used in a myriad of fields of research and development, including the predictability of time series. This work is concerned with one of such applications to simulate and to forecast stage level and streamflow at the Tamanduateí river watershed, one of the main tributaries of the Alto Tietê river watershed in São Paulo State, Brazil. This heavily urbanized watershed is within the Metropolitan Area of São Paulo (MASP) where recurrent flash floods affect a population of more than 17 million inhabitants. Flash floods events between 1991 and 1995 were selected and divided up into three groups for training, verification and forecasting purposes. Weather radar rainfall estimation and telemetric stage level and streamflow data were input to a three-layer feed forward ANN trained with the Linear Least Square Simplex training algorithm (LLSSIM) by Hsu et al. [Hsu, K.L., Gupta, H.V., Sorooshian, S., 1996. A superior training strategy for three-layer feed forward artificial neural networks. Tucson, University of Arizona. (Technique report, HWR no. 96-030, Department of Hydrology and Water Resources)]. The performance of the ANN is improved by 40% when either streamflow or stage level were input together with the rainfall. The ANN simulated flood waves tend to be dominated by phase errors. The ANN showed slightly better results then a multi-parameter auto-regression model and indicates its usefulness in flash flood forecasting.
Catto, James W F; Linkens, Derek A; Abbod, Maysam F; Chen, Minyou; Burton, Julian L; Feeley, Kenneth M; Hamdy, Freddie C
2003-09-15
New techniques for the prediction of tumor behavior are needed, because statistical analysis has a poor accuracy and is not applicable to the individual. Artificial intelligence (AI) may provide these suitable methods. Whereas artificial neural networks (ANN), the best-studied form of AI, have been used successfully, its hidden networks remain an obstacle to its acceptance. Neuro-fuzzy modeling (NFM), another AI method, has a transparent functional layer and is without many of the drawbacks of ANN. We have compared the predictive accuracies of NFM, ANN, and traditional statistical methods, for the behavior of bladder cancer. Experimental molecular biomarkers, including p53 and the mismatch repair proteins, and conventional clinicopathological data were studied in a cohort of 109 patients with bladder cancer. For all three of the methods, models were produced to predict the presence and timing of a tumor relapse. Both methods of AI predicted relapse with an accuracy ranging from 88% to 95%. This was superior to statistical methods (71-77%; P < 0.0006). NFM appeared better than ANN at predicting the timing of relapse (P = 0.073). The use of AI can accurately predict cancer behavior. NFM has a similar or superior predictive accuracy to ANN. However, unlike the impenetrable "black-box" of a neural network, the rules of NFM are transparent, enabling validation from clinical knowledge and the manipulation of input variables to allow exploratory predictions. This technique could be used widely in a variety of areas of medicine.
NASA Astrophysics Data System (ADS)
Akhoondzadeh, M.
2014-02-01
A powerful earthquake of Mw = 7.7 struck the Saravan region (28.107° N, 62.053° E) in Iran on 16 April 2013. Up to now nomination of an automated anomaly detection method in a non linear time series of earthquake precursor has been an attractive and challenging task. Artificial Neural Network (ANN) and Particle Swarm Optimization (PSO) have revealed strong potentials in accurate time series prediction. This paper presents the first study of an integration of ANN and PSO method in the research of earthquake precursors to detect the unusual variations of the thermal and total electron content (TEC) seismo-ionospheric anomalies induced by the strong earthquake of Saravan. In this study, to overcome the stagnation in local minimum during the ANN training, PSO as an optimization method is used instead of traditional algorithms for training the ANN method. The proposed hybrid method detected a considerable number of anomalies 4 and 8 days preceding the earthquake. Since, in this case study, ionospheric TEC anomalies induced by seismic activity is confused with background fluctuations due to solar activity, a multi-resolution time series processing technique based on wavelet transform has been applied on TEC signal variations. In view of the fact that the accordance in the final results deduced from some robust methods is a convincing indication for the efficiency of the method, therefore the detected thermal and TEC anomalies using the ANN + PSO method were compared to the results with regard to the observed anomalies by implementing the mean, median, Wavelet, Kalman filter, Auto-Regressive Integrated Moving Average (ARIMA), Support Vector Machine (SVM) and Genetic Algorithm (GA) methods. The results indicate that the ANN + PSO method is quite promising and deserves serious attention as a new tool for thermal and TEC seismo anomalies detection.
Niwas, Ram; Osama, Khwaja; Khan, Saif; Haque, Shafiul; Tripathi, C. K. M.; Mishra, B. N.
2015-01-01
Cholesterol oxidase (COD) is a bi-functional FAD-containing oxidoreductase which catalyzes the oxidation of cholesterol into 4-cholesten-3-one. The wider biological functions and clinical applications of COD have urged the screening, isolation and characterization of newer microbes from diverse habitats as a source of COD and optimization and over-production of COD for various uses. The practicability of statistical/ artificial intelligence techniques, such as response surface methodology (RSM), artificial neural network (ANN) and genetic algorithm (GA) have been tested to optimize the medium composition for the production of COD from novel strain Streptomyces sp. NCIM 5500. All experiments were performed according to the five factor central composite design (CCD) and the generated data was analysed using RSM and ANN. GA was employed to optimize the models generated by RSM and ANN. Based upon the predicted COD concentration, the model developed with ANN was found to be superior to the model developed with RSM. The RSM-GA approach predicted maximum of 6.283 U/mL COD production, whereas the ANN-GA approach predicted a maximum of 9.93 U/mL COD concentration. The optimum concentrations of the medium variables predicted through ANN-GA approach were: 1.431 g/50 mL soybean, 1.389 g/50 mL maltose, 0.029 g/50 mL MgSO4, 0.45 g/50 mL NaCl and 2.235 ml/50 mL glycerol. The experimental COD concentration was concurrent with the GA predicted yield and led to 9.75 U/mL COD production, which was nearly two times higher than the yield (4.2 U/mL) obtained with the un-optimized medium. This is the very first time we are reporting the statistical versus artificial intelligence based modeling and optimization of COD production by Streptomyces sp. NCIM 5500. PMID:26368924
Pathak, Lakshmi; Singh, Vineeta; Niwas, Ram; Osama, Khwaja; Khan, Saif; Haque, Shafiul; Tripathi, C K M; Mishra, B N
2015-01-01
Cholesterol oxidase (COD) is a bi-functional FAD-containing oxidoreductase which catalyzes the oxidation of cholesterol into 4-cholesten-3-one. The wider biological functions and clinical applications of COD have urged the screening, isolation and characterization of newer microbes from diverse habitats as a source of COD and optimization and over-production of COD for various uses. The practicability of statistical/ artificial intelligence techniques, such as response surface methodology (RSM), artificial neural network (ANN) and genetic algorithm (GA) have been tested to optimize the medium composition for the production of COD from novel strain Streptomyces sp. NCIM 5500. All experiments were performed according to the five factor central composite design (CCD) and the generated data was analysed using RSM and ANN. GA was employed to optimize the models generated by RSM and ANN. Based upon the predicted COD concentration, the model developed with ANN was found to be superior to the model developed with RSM. The RSM-GA approach predicted maximum of 6.283 U/mL COD production, whereas the ANN-GA approach predicted a maximum of 9.93 U/mL COD concentration. The optimum concentrations of the medium variables predicted through ANN-GA approach were: 1.431 g/50 mL soybean, 1.389 g/50 mL maltose, 0.029 g/50 mL MgSO4, 0.45 g/50 mL NaCl and 2.235 ml/50 mL glycerol. The experimental COD concentration was concurrent with the GA predicted yield and led to 9.75 U/mL COD production, which was nearly two times higher than the yield (4.2 U/mL) obtained with the un-optimized medium. This is the very first time we are reporting the statistical versus artificial intelligence based modeling and optimization of COD production by Streptomyces sp. NCIM 5500.
Artificial neural networks to predict activity type and energy expenditure in youth.
Trost, Stewart G; Wong, Weng-Keen; Pfeiffer, Karen A; Zheng, Yonglei
2012-09-01
Previous studies have demonstrated that pattern recognition approaches to accelerometer data reduction are feasible and moderately accurate in classifying activity type in children. Whether pattern recognition techniques can be used to provide valid estimates of physical activity (PA) energy expenditure in youth remains unexplored in the research literature. The objective of this study is to develop and test artificial neural networks (ANNs) to predict PA type and energy expenditure (PAEE) from processed accelerometer data collected in children and adolescents. One hundred participants between the ages of 5 and 15 yr completed 12 activity trials that were categorized into five PA types: sedentary, walking, running, light-intensity household activities or games, and moderate-to-vigorous-intensity games or sports. During each trial, participants wore an ActiGraph GT1M on the right hip, and VO2 was measured using the Oxycon Mobile (Viasys Healthcare, Yorba Linda, CA) portable metabolic system. ANNs to predict PA type and PAEE (METs) were developed using the following features: 10th, 25th, 50th, 75th, and 90th percentiles and the lag one autocorrelation. To determine the highest time resolution achievable, we extracted features from 10-, 15-, 20-, 30-, and 60-s windows. Accuracy was assessed by calculating the percentage of windows correctly classified and root mean square error (RMSE). As window size increased from 10 to 60 s, accuracy for the PA-type ANN increased from 81.3% to 88.4%. RMSE for the MET prediction ANN decreased from 1.1 METs to 0.9 METs. At any given window size, RMSE values for the MET prediction ANN were 30-40% lower than the conventional regression-based approaches. ANNs can be used to predict both PA type and PAEE in children and adolescents using count data from a single waist mounted accelerometer.
A neural network gravitational arc finder based on the Mediatrix filamentation method
NASA Astrophysics Data System (ADS)
Bom, C. R.; Makler, M.; Albuquerque, M. P.; Brandt, C. H.
2017-01-01
Context. Automated arc detection methods are needed to scan the ongoing and next-generation wide-field imaging surveys, which are expected to contain thousands of strong lensing systems. Arc finders are also required for a quantitative comparison between predictions and observations of arc abundance. Several algorithms have been proposed to this end, but machine learning methods have remained as a relatively unexplored step in the arc finding process. Aims: In this work we introduce a new arc finder based on pattern recognition, which uses a set of morphological measurements that are derived from the Mediatrix filamentation method as entries to an artificial neural network (ANN). We show a full example of the application of the arc finder, first training and validating the ANN on simulated arcs and then applying the code on four Hubble Space Telescope (HST) images of strong lensing systems. Methods: The simulated arcs use simple prescriptions for the lens and the source, while mimicking HST observational conditions. We also consider a sample of objects from HST images with no arcs in the training of the ANN classification. We use the training and validation process to determine a suitable set of ANN configurations, including the combination of inputs from the Mediatrix method, so as to maximize the completeness while keeping the false positives low. Results: In the simulations the method was able to achieve a completeness of about 90% with respect to the arcs that are input into the ANN after a preselection. However, this completeness drops to 70% on the HST images. The false detections are on the order of 3% of the objects detected in these images. Conclusions: The combination of Mediatrix measurements with an ANN is a promising tool for the pattern-recognition phase of arc finding. More realistic simulations and a larger set of real systems are needed for a better training and assessment of the efficiency of the method.
Ahmadi, Hamed; Rodehutscord, Markus
2017-01-01
In the nutrition literature, there are several reports on the use of artificial neural network (ANN) and multiple linear regression (MLR) approaches for predicting feed composition and nutritive value, while the use of support vector machines (SVM) method as a new alternative approach to MLR and ANN models is still not fully investigated. The MLR, ANN, and SVM models were developed to predict metabolizable energy (ME) content of compound feeds for pigs based on the German energy evaluation system from analyzed contents of crude protein (CP), ether extract (EE), crude fiber (CF), and starch. A total of 290 datasets from standardized digestibility studies with compound feeds was provided from several institutions and published papers, and ME was calculated thereon. Accuracy and precision of developed models were evaluated, given their produced prediction values. The results revealed that the developed ANN [ R 2 = 0.95; root mean square error (RMSE) = 0.19 MJ/kg of dry matter] and SVM ( R 2 = 0.95; RMSE = 0.21 MJ/kg of dry matter) models produced better prediction values in estimating ME in compound feed than those produced by conventional MLR ( R 2 = 0.89; RMSE = 0.27 MJ/kg of dry matter). The developed ANN and SVM models produced better prediction values in estimating ME in compound feed than those produced by conventional MLR; however, there were not obvious differences between performance of ANN and SVM models. Thus, SVM model may also be considered as a promising tool for modeling the relationship between chemical composition and ME of compound feeds for pigs. To provide the readers and nutritionist with the easy and rapid tool, an Excel ® calculator, namely, SVM_ME_pig, was created to predict the metabolizable energy values in compound feeds for pigs using developed support vector machine model.
2013-01-01
Background This study aims to improve accuracy of Bioelectrical Impedance Analysis (BIA) prediction equations for estimating fat free mass (FFM) of the elderly by using non-linear Back Propagation Artificial Neural Network (BP-ANN) model and to compare the predictive accuracy with the linear regression model by using energy dual X-ray absorptiometry (DXA) as reference method. Methods A total of 88 Taiwanese elderly adults were recruited in this study as subjects. Linear regression equations and BP-ANN prediction equation were developed using impedances and other anthropometrics for predicting the reference FFM measured by DXA (FFMDXA) in 36 male and 26 female Taiwanese elderly adults. The FFM estimated by BIA prediction equations using traditional linear regression model (FFMLR) and BP-ANN model (FFMANN) were compared to the FFMDXA. The measuring results of an additional 26 elderly adults were used to validate than accuracy of the predictive models. Results The results showed the significant predictors were impedance, gender, age, height and weight in developed FFMLR linear model (LR) for predicting FFM (coefficient of determination, r2 = 0.940; standard error of estimate (SEE) = 2.729 kg; root mean square error (RMSE) = 2.571kg, P < 0.001). The above predictors were set as the variables of the input layer by using five neurons in the BP-ANN model (r2 = 0.987 with a SD = 1.192 kg and relatively lower RMSE = 1.183 kg), which had greater (improved) accuracy for estimating FFM when compared with linear model. The results showed a better agreement existed between FFMANN and FFMDXA than that between FFMLR and FFMDXA. Conclusion When compared the performance of developed prediction equations for estimating reference FFMDXA, the linear model has lower r2 with a larger SD in predictive results than that of BP-ANN model, which indicated ANN model is more suitable for estimating FFM. PMID:23388042
Predicting outcome of Morris water maze test in vascular dementia mouse model with deep learning
Mogi, Masaki; Iwanami, Jun; Min, Li-Juan; Bai, Hui-Yu; Shan, Bao-Shuai; Kukida, Masayoshi; Kan-no, Harumi; Ikeda, Shuntaro; Higaki, Jitsuo; Horiuchi, Masatsugu
2018-01-01
The Morris water maze test (MWM) is one of the most popular and established behavioral tests to evaluate rodents’ spatial learning ability. The conventional training period is around 5 days, but there is no clear evidence or guidelines about the appropriate duration. In many cases, the final outcome of the MWM seems predicable from previous data and their trend. So, we assumed that if we can predict the final result with high accuracy, the experimental period could be shortened and the burden on testers reduced. An artificial neural network (ANN) is a useful modeling method for datasets that enables us to obtain an accurate mathematical model. Therefore, we constructed an ANN system to estimate the final outcome in MWM from the previously obtained 4 days of data in both normal mice and vascular dementia model mice. Ten-week-old male C57B1/6 mice (wild type, WT) were subjected to bilateral common carotid artery stenosis (WT-BCAS) or sham-operation (WT-sham). At 6 weeks after surgery, we evaluated their cognitive function with MWM. Mean escape latency was significantly longer in WT-BCAS than in WT-sham. All data were collected and used as training data and test data for the ANN system. We defined a multiple layer perceptron (MLP) as a prediction model using an open source framework for deep learning, Chainer. After a certain number of updates, we compared the predicted values and actual measured values with test data. A significant correlation coefficient was derived form the updated ANN model in both WT-sham and WT-BCAS. Next, we analyzed the predictive capability of human testers with the same datasets. There was no significant difference in the prediction accuracy between human testers and ANN models in both WT-sham and WT-BCAS. In conclusion, deep learning method with ANN could predict the final outcome in MWM from 4 days of data with high predictive accuracy in a vascular dementia model. PMID:29415035
Predicting outcome of Morris water maze test in vascular dementia mouse model with deep learning.
Higaki, Akinori; Mogi, Masaki; Iwanami, Jun; Min, Li-Juan; Bai, Hui-Yu; Shan, Bao-Shuai; Kukida, Masayoshi; Kan-No, Harumi; Ikeda, Shuntaro; Higaki, Jitsuo; Horiuchi, Masatsugu
2018-01-01
The Morris water maze test (MWM) is one of the most popular and established behavioral tests to evaluate rodents' spatial learning ability. The conventional training period is around 5 days, but there is no clear evidence or guidelines about the appropriate duration. In many cases, the final outcome of the MWM seems predicable from previous data and their trend. So, we assumed that if we can predict the final result with high accuracy, the experimental period could be shortened and the burden on testers reduced. An artificial neural network (ANN) is a useful modeling method for datasets that enables us to obtain an accurate mathematical model. Therefore, we constructed an ANN system to estimate the final outcome in MWM from the previously obtained 4 days of data in both normal mice and vascular dementia model mice. Ten-week-old male C57B1/6 mice (wild type, WT) were subjected to bilateral common carotid artery stenosis (WT-BCAS) or sham-operation (WT-sham). At 6 weeks after surgery, we evaluated their cognitive function with MWM. Mean escape latency was significantly longer in WT-BCAS than in WT-sham. All data were collected and used as training data and test data for the ANN system. We defined a multiple layer perceptron (MLP) as a prediction model using an open source framework for deep learning, Chainer. After a certain number of updates, we compared the predicted values and actual measured values with test data. A significant correlation coefficient was derived form the updated ANN model in both WT-sham and WT-BCAS. Next, we analyzed the predictive capability of human testers with the same datasets. There was no significant difference in the prediction accuracy between human testers and ANN models in both WT-sham and WT-BCAS. In conclusion, deep learning method with ANN could predict the final outcome in MWM from 4 days of data with high predictive accuracy in a vascular dementia model.
Bektaş, Frat; Eken, Cenker; Soyuncu, Secgin; Kilicaslan, Isa; Cete, Yildiray
2008-12-01
The aim of this study is to determine the efficiency of artificial intelligence in detecting craniocervical junction injuries by using an artificial neural network (ANN) that may be applicable in future studies of different traumatic injuries. Major head trauma patients with Glasgow Coma Scale
Estimating wheat and maize daily evapotranspiration using artificial neural network
NASA Astrophysics Data System (ADS)
Abrishami, Nazanin; Sepaskhah, Ali Reza; Shahrokhnia, Mohammad Hossein
2018-02-01
In this research, artificial neural network (ANN) is used for estimating wheat and maize daily standard evapotranspiration. Ten ANN models with different structures were designed for each crop. Daily climatic data [maximum temperature (T max), minimum temperature (T min), average temperature (T ave), maximum relative humidity (RHmax), minimum relative humidity (RHmin), average relative humidity (RHave), wind speed (U 2), sunshine hours (n), net radiation (Rn)], leaf area index (LAI), and plant height (h) were used as inputs. For five structures of ten, the evapotranspiration (ETC) values calculated by ETC = ET0 × K C equation (ET0 from Penman-Monteith equation and K C from FAO-56, ANNC) were used as outputs, and for the other five structures, the ETC values measured by weighing lysimeter (ANNM) were used as outputs. In all structures, a feed forward multiple-layer network with one or two hidden layers and sigmoid transfer function and BR or LM training algorithm was used. Favorite network was selected based on various statistical criteria. The results showed the suitable capability and acceptable accuracy of ANNs, particularly those having two hidden layers in their structure in estimating the daily evapotranspiration. Best model for estimation of maize daily evapotranspiration is «M»ANN1 C (8-4-2-1), with T max, T min, RHmax, RHmin, U 2, n, LAI, and h as input data and LM training rule and its statistical parameters (NRMSE, d, and R2) are 0.178, 0.980, and 0.982, respectively. Best model for estimation of wheat daily evapotranspiration is «W»ANN5 C (5-2-3-1), with T max, T min, Rn, LAI, and h as input data and LM training rule, its statistical parameters (NRMSE, d, and R 2) are 0.108, 0.987, and 0.981 respectively. In addition, if the calculated ETC used as the output of the network for both wheat and maize, higher accurate estimation was obtained. Therefore, ANN is suitable method for estimating evapotranspiration of wheat and maize.
NASA Astrophysics Data System (ADS)
Tomatis, S.; Rancati, T.; Fiorino, C.; Vavassori, V.; Fellin, G.; Cagna, E.; Mauro, F. A.; Girelli, G.; Monti, A.; Baccolini, M.; Naldi, G.; Bianchi, C.; Menegotti, L.; Pasquino, M.; Stasi, M.; Valdagni, R.
2012-03-01
The aim of this study was to develop a model exploiting artificial neural networks (ANNs) to correlate dosimetric and clinical variables with late rectal bleeding in prostate cancer patients undergoing radical radiotherapy and to compare the ANN results with those of a standard logistic regression (LR) analysis. 718 men included in the AIROPROS 0102 trial were analyzed. This multicenter protocol was characterized by the prospective evaluation of rectal toxicity, with a minimum follow-up of 36 months. Radiotherapy doses were between 70 and 80 Gy. Information was recorded for comorbidity, previous abdominal surgery, use of drugs and hormonal therapy. For each patient, a rectal dose-volume histogram (DVH) of the whole treatment was recorded and the equivalent uniform dose (EUD) evaluated as an effective descriptor of the whole DVH. Late rectal bleeding of grade ≥ 2 was considered to define positive events in this study (52 of 718 patients). The overall population was split into training and verification sets, both of which were involved in model instruction, and a test set, used to evaluate the predictive power of the model with independent data. Fourfold cross-validation was also used to provide realistic results for the full dataset. The LR was performed on the same data. Five variables were selected to predict late rectal bleeding: EUD, abdominal surgery, presence of hemorrhoids, use of anticoagulants and androgen deprivation. Following a receiver operating characteristic analysis of the independent test set, the areas under the curves (AUCs) were 0.704 and 0.655 for ANN and LR, respectively. When evaluated with cross-validation, the AUC was 0.714 for ANN and 0.636 for LR, which differed at a significance level of p = 0.03. When a practical discrimination threshold was selected, ANN could classify data with sensitivity and specificity both equal to 68.0%, whereas these values were 61.5% for LR. These data provide reasonable evidence that results obtained with ANNs are superior to those achieved with LR when predicting late radiotherapy-related rectal bleeding. The future introduction of patient-related personal characteristics, such as gene expression profiles, might improve the predictive power of statistical classifiers. More refined morphological aspects of the dose distribution, such as dose surface mapping, might also enhance the overall performance of ANN-based predictive models.
Korany, Mohamed A; Gazy, Azza A; Khamis, Essam F; Ragab, Marwa A A; Kamal, Miranda F
2017-01-01
Two new, simple, and specific green analytical methods are proposed: zero-crossing first-derivative and chemometric-based spectrophotometric artificial neural network (ANN). The proposed methods were used for the simultaneous estimation of two closely related antioxidant nutraceuticals, coenzyme Q10 (Q10) and vitamin E, in their mixtures and pharmaceutical preparations. The first method is based on the handling of spectrophotometric data with the first-derivative technique, in which both nutraceuticals were determined in ethanol, each at the zero crossing of the other. The amplitudes of the first-derivative spectra for Q10 and vitamin E were recorded at 285 and 235 nm respectively, and correlated with their concentrations. The linearity ranges of Q10 and vitamin E were 10-60 and 5.6-70 μg⋅mL-1, respectively. The second method, ANN, is a multivariate calibration method and it was developed and applied for the simultaneous determination of both analytes. A training set of 90 different synthetic mixtures containing Q10 and vitamin E in the ranges of 0-100 and 0-556 μg⋅mL-1, respectively, was prepared in ethanol. The absorption spectra of the training set were recorded in the spectral region of 230-300 nm. By relating the concentration sets (x-block) with their corresponding absorption data (y-block), gradient-descent back-propagation ANN calibration could be computed. To validate the proposed network, a set of 45 synthetic mixtures of the two drugs was used. Both proposed methods were successfully applied for the assay of Q10 and vitamin E in their laboratory-prepared mixtures and in their pharmaceutical tablets with excellent recovery. These methods offer advantages over other methods because of low-cost equipment, time-saving measures, and environmentally friendly materials. In addition, no chemical separation prior to analysis was needed. The ANN method was superior to the derivative technique because ANN can determine both drugs under nonlinear experimental conditions. Consequently, ANN would be the method of choice in the routine analysis of Q10 and vitamin E tablets. No interference from common pharmaceutical additives was observed. Student's t-test and the F-test were used to compare the two methods. No significant difference was recorded.
Montoye, Alexander H K; Begum, Munni; Henning, Zachary; Pfeiffer, Karin A
2017-02-01
This study had three purposes, all related to evaluating energy expenditure (EE) prediction accuracy from body-worn accelerometers: (1) compare linear regression to linear mixed models, (2) compare linear models to artificial neural network models, and (3) compare accuracy of accelerometers placed on the hip, thigh, and wrists. Forty individuals performed 13 activities in a 90 min semi-structured, laboratory-based protocol. Participants wore accelerometers on the right hip, right thigh, and both wrists and a portable metabolic analyzer (EE criterion). Four EE prediction models were developed for each accelerometer: linear regression, linear mixed, and two ANN models. EE prediction accuracy was assessed using correlations, root mean square error (RMSE), and bias and was compared across models and accelerometers using repeated-measures analysis of variance. For all accelerometer placements, there were no significant differences for correlations or RMSE between linear regression and linear mixed models (correlations: r = 0.71-0.88, RMSE: 1.11-1.61 METs; p > 0.05). For the thigh-worn accelerometer, there were no differences in correlations or RMSE between linear and ANN models (ANN-correlations: r = 0.89, RMSE: 1.07-1.08 METs. Linear models-correlations: r = 0.88, RMSE: 1.10-1.11 METs; p > 0.05). Conversely, one ANN had higher correlations and lower RMSE than both linear models for the hip (ANN-correlation: r = 0.88, RMSE: 1.12 METs. Linear models-correlations: r = 0.86, RMSE: 1.18-1.19 METs; p < 0.05), and both ANNs had higher correlations and lower RMSE than both linear models for the wrist-worn accelerometers (ANN-correlations: r = 0.82-0.84, RMSE: 1.26-1.32 METs. Linear models-correlations: r = 0.71-0.73, RMSE: 1.55-1.61 METs; p < 0.01). For studies using wrist-worn accelerometers, machine learning models offer a significant improvement in EE prediction accuracy over linear models. Conversely, linear models showed similar EE prediction accuracy to machine learning models for hip- and thigh-worn accelerometers and may be viable alternative modeling techniques for EE prediction for hip- or thigh-worn accelerometers.
NASA Astrophysics Data System (ADS)
Tapoglou, Evdokia; Karatzas, George P.; Trichakis, Ioannis C.; Varouchakis, Emmanouil A.
2014-05-01
The purpose of this study is to examine the use of Artificial Neural Networks (ANN) combined with kriging interpolation method, in order to simulate the hydraulic head both spatially and temporally. Initially, ANNs are used for the temporal simulation of the hydraulic head change. The results of the most appropriate ANNs, determined through a fuzzy logic system, are used as an input for the kriging algorithm where the spatial simulation is conducted. The proposed algorithm is tested in an area located across Isar River in Bayern, Germany and covers an area of approximately 7800 km2. The available data extend to a time period from 1/11/2008 to 31/10/2012 (1460 days) and include the hydraulic head at 64 wells, temperature and rainfall at 7 weather stations and surface water elevation at 5 monitoring stations. One feedforward ANN was trained for each of the 64 wells, where hydraulic head data are available, using a backpropagation algorithm. The most appropriate input parameters for each wells' ANN are determined considering their proximity to the measuring station, as well as their statistical characteristics. For the rainfall, the data for two consecutive time lags for best correlated weather station, as well as a third and fourth input from the second best correlated weather station, are used as an input. The surface water monitoring stations with the three best correlations for each well are also used in every case. Finally, the temperature for the best correlated weather station is used. Two different architectures are considered and the one with the best results is used henceforward. The output of the ANNs corresponds to the hydraulic head change per time step. These predictions are used in the kriging interpolation algorithm. However, not all 64 simulated values should be used. The appropriate neighborhood for each prediction point is constructed based not only on the distance between known and prediction points, but also on the training and testing error of the ANN. Therefore, the neighborhood of each prediction point is the best available. Then, the appropriate variogram is determined, by fitting the experimental variogram to a theoretical variogram model. Three models are examined, the linear, the exponential and the power-law. Finally, the hydraulic head change is predicted for every grid cell and for every time step used. All the algorithms used were developed in Visual Basic .NET, while the visualization of the results was performed in MATLAB using the .NET COM Interoperability. The results are evaluated using leave one out cross-validation and various performance indicators. The best results were achieved by using ANNs with two hidden layers, consisting of 20 and 15 nodes respectively and by using power-law variogram with the fuzzy logic system.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-11-29
...: University of Michigan Museum of Anthropology, Ann Arbor, MI AGENCY: National Park Service, Interior. ACTION... Museum of Anthropology NAGPRA collections staff in consultation with representatives of the Bay Mills... Anthropology purchased the human remains from Reverend L. P. Rowland in November of 1924 as part of a larger...
Conventional Prompt Global Strike: Valuable Military Option or Threat to Global Stability?
2005-09-01
The Strategic Rocket Forces, 1991-2002,” in Russian Military Reform : 1992- 2002, ed. Anne C. Aldis and Roger McDermott (Portland, OR: Frank Cass...Redefining the Threat and the War on Terrorism,” in Russian Military Reform 1992-2002, ed. Anne C. Aldis and Roger N. Mc Dermott (Portland, OR: Frank...
2005-06-01
37. 120 Ibid., 259. 121 Ibid., 258. 122 Ibid., 54. 123 Ibid., 55. 124 Anne C. Aldis and Roger N. McDermott, Russian Military Reform 1992-2002...61 BIBLIOGRAPHY Aldis, Anne C. and Roger N. McDermott. Russian Military Reform 1992-2002. London: Frank Cass, 2003. Altmann, Jürgen, Henny
STS-127 Crew Visit to Anne Beers Elementary
2009-09-23
Students and teachers look on as STS-127 Commander Mark Polansky, seated left on stage talks about the mission to the International Space Station as other crew members Chris Cassidy, Doug Hurley, David Wolf, Tom Marshburn looks on during a visit to Anne Beers Elementary school, Thursday, Sept. 24, 2009, in Washington. Photo Credit: (NASA/Paul E. Alers)
STS-127 Crew Visit to Anne Beers Elementary
2009-09-23
Canadian Space Agency astronaut Julie Payette, right, a mission specialist on STS-127, talks with two unidentified students during a visit to Anne Beers Elementary school, Thursday, Sept. 24, 2009, in Washington. Payette, along with the rest of the crew from STS-127, visited with students at the school Thursday. Photo Credit: (NASA/Paul E. Alers)
STS-127 Crew Visit to Anne Beers Elementary
2009-09-23
Ajani Young, a fourth grade student at Anne Beers Elementary school, at podium, introduces the crew of STS-127 during their visit, Thursday, Sept. 24, 2009, in Washington. Seated from left are crew members, Chris Cassidy, Doug Hurley, Commander Mark Polansky, David Wolf, Tom Marshburn and Canadian Space Agency astronaut Julie Payette. Photo Credit: (NASA/Paul E. Alers)
Bodies in Space/Bodies in Motion/Bodies in Character: Adolescents Bear Witness to Anne Frank
ERIC Educational Resources Information Center
Chisholm, James S.; Whitmore, Kathryn F.
2016-01-01
Situated at the intersection of research on Holocaust education and embodied literacies this study examines how an arts-based instructional approach engaged middle school learners in developing empathetic perspectives on the Anne Frank narrative. We addressed the research question: What can adolescents who are using their bodies to gain empathy…
ERIC Educational Resources Information Center
Walsh, Kath; Rebaczonok-Padulo, Michael
1993-01-01
Ngee Ann Polytechnic, a leading postsecondary technical institution in Singapore, offers English for academic and occupational purposes to prepare students for writing their final year projects. This article discusses the approaches used in Mechanical Engineering and Biotechnology projects. A sample exercise is appended. (Contains two references.)…
Prostate Cancer Research Training Program
2009-02-01
Bukola Fatunmbi Katherine Foster Theon Francis Michelle Gray Julia Greenfield Gladys Murage Britanny Stokes Stacy-Ann Wright Lubaroff...Julia Greenfield 2008 Henry Lincoln junior Gladys Murage 2008 Domann Lincoln senior Brittany Stokes 2008 Griffith Lincoln senior Stacy-Ann Wright...report; page 10 Bukola Fatunmbi Katherine Foster Theon Francis Michelle Gray Julia Greenfield Gladys Murage Iowa/Lincoln Summer Research Training
On the Computational Complexity of Stochastic Scheduling Problems,
1981-09-01
Survey": 1979, Ann. Discrete Math . 5, pp. 287-326. i I (.4) Karp, R.M., "Reducibility Among Combinatorial Problems": 1972, R.E. Miller and J.W...Weighted Completion Time Subject to Precedence Constraints": 1978, Ann. Discrete Math . 2, pp. 75-90. (8) Lawler, E.L. and J.W. Moore, "A Functional
2018-04-13
Ann Arbor Stage III Small Lymphocytic Lymphoma; Ann Arbor Stage IV Small Lymphocytic Lymphoma; Recurrent Chronic Lymphocytic Leukemia; Recurrent Small Lymphocytic Lymphoma; Refractory Chronic Lymphocytic Leukemia; Refractory Small Lymphocytic Lymphoma; Stage III Chronic Lymphocytic Leukemia; Stage IV Chronic Lymphocytic Leukemia
Federal Register 2010, 2011, 2012, 2013, 2014
2013-07-02
... Chautauqua Blvd., Los Angeles, 13000513 Community Clubhouse, 1200 N. Vista St., West Hollywood, 13000510... Study House No. 23A, (Case Study House Program MPS) 2342 Rue de Anne, La Jolla, 13000520 Case Study House No. 23C, (Case Study House Program MPS) 2339 Rue de Anne, La Jolla, 13000521 Ventura County Case...
The Nation behind the Diary: Anne Frank and the Holocaust of the Dutch Jews
ERIC Educational Resources Information Center
Foray, Jennifer L.
2011-01-01
Since its first appearance in 1947, "The Diary of Anne Frank" has been translated into sixty-five different languages, including Welsh, Esperanto, and Faroese. Millions and perhaps even billions of readers, scattered throughout the globe and now spanning multiple generations, are familiar with the life and work of this young Jewish…
Childhood and Modernity: Dark Themes in Carol Ann Duffy's Poetry for Children
ERIC Educational Resources Information Center
Whitley, David
2007-01-01
Carol Ann Duffy's three volumes of children's poetry are important and interesting because they emerge from the work of a writer whose adult poetry has persistently associated childhood with dark and difficult areas of experience. This article explores what happens to such challenging material when a poet of major significance changes the focus of…
Application of Support Vector Machine to Forex Monitoring
NASA Astrophysics Data System (ADS)
Kamruzzaman, Joarder; Sarker, Ruhul A.
Previous studies have demonstrated superior performance of artificial neural network (ANN) based forex forecasting models over traditional regression models. This paper applies support vector machines to build a forecasting model from the historical data using six simple technical indicators and presents a comparison with an ANN based model trained by scaled conjugate gradient (SCG) learning algorithm. The models are evaluated and compared on the basis of five commonly used performance metrics that measure closeness of prediction as well as correctness in directional change. Forecasting results of six different currencies against Australian dollar reveal superior performance of SVM model using simple linear kernel over ANN-SCG model in terms of all the evaluation metrics. The effect of SVM parameter selection on prediction performance is also investigated and analyzed.
Neural network versus classical time series forecasting models
NASA Astrophysics Data System (ADS)
Nor, Maria Elena; Safuan, Hamizah Mohd; Shab, Noorzehan Fazahiyah Md; Asrul, Mohd; Abdullah, Affendi; Mohamad, Nurul Asmaa Izzati; Lee, Muhammad Hisyam
2017-05-01
Artificial neural network (ANN) has advantage in time series forecasting as it has potential to solve complex forecasting problems. This is because ANN is data driven approach which able to be trained to map past values of a time series. In this study the forecast performance between neural network and classical time series forecasting method namely seasonal autoregressive integrated moving average models was being compared by utilizing gold price data. Moreover, the effect of different data preprocessing on the forecast performance of neural network being examined. The forecast accuracy was evaluated using mean absolute deviation, root mean square error and mean absolute percentage error. It was found that ANN produced the most accurate forecast when Box-Cox transformation was used as data preprocessing.
Rice, Karen C.; Bricker, Owen P.
1991-01-01
The report describes the results of a study to assess the sensitivity of streams to acidic deposition in Charles and Anne Arundel Counties, Maryland using a geology-based method. Water samples were collected from streams in July and August 1988 when streams were at base-flow conditions. Eighteen water samples collected from streams in Charles County, and 17 water samples from streams in Anne Arundel County were analyzed in the field for pH, specific conductance, and acid-neutralizing capacity (ANC); 8 water samples from streams in Charles County were analyzed in the laboratory for chloride and sulfate concentrations. The assessment revealed that streams in these counties are sensitive to acidification by acidic deposition.
Automatic analysis and classification of surface electromyography.
Abou-Chadi, F E; Nashar, A; Saad, M
2001-01-01
In this paper, parametric modeling of surface electromyography (EMG) algorithms that facilitates automatic SEMG feature extraction and artificial neural networks (ANN) are combined for providing an integrated system for the automatic analysis and diagnosis of myopathic disorders. Three paradigms of ANN were investigated: the multilayer backpropagation algorithm, the self-organizing feature map algorithm and a probabilistic neural network model. The performance of the three classifiers was compared with that of the old Fisher linear discriminant (FLD) classifiers. The results have shown that the three ANN models give higher performance. The percentage of correct classification reaches 90%. Poorer diagnostic performance was obtained from the FLD classifier. The system presented here indicates that surface EMG, when properly processed, can be used to provide the physician with a diagnostic assist device.
Prediction of breakdown strength of cellulosic insulating materials using artificial neural networks
NASA Astrophysics Data System (ADS)
Singh, Sakshi; Mohsin, M. M.; Masood, Aejaz
In this research work, a few sets of experiments have been performed in high voltage laboratory on various cellulosic insulating materials like diamond-dotted paper, paper phenolic sheets, cotton phenolic sheets, leatheroid, and presspaper, to measure different electrical parameters like breakdown strength, relative permittivity, loss tangent, etc. Considering the dependency of breakdown strength on other physical parameters, different Artificial Neural Network (ANN) models are proposed for the prediction of breakdown strength. The ANN model results are compared with those obtained experimentally and also with the values already predicted from an empirical relation suggested by Swanson and Dall. The reported results indicated that the breakdown strength predicted from the ANN model is in good agreement with the experimental values.
Trunk Acceleration for Neuroprosthetic Control of Standing – a Pilot Study
Audu, Musa L.; Kirsch, Robert F.; Triolo, Ronald J.
2013-01-01
This pilot study investigated the potential of using trunk acceleration feedback control of center of pressure (COP) against postural disturbances with a standing neuroprosthesis following paralysis. Artificial neural networks (ANNs) were trained to use three-dimensional trunk acceleration as input to predict changes in COP for able-bodied subjects undergoing perturbations during bipedal stance. Correlation coefficients between ANN predictions and actual COP ranged from 0.67 to 0.77. An ANN trained across all subject-normalized data was used to drive feedback control of ankle muscle excitation levels for a computer model representing a standing neuroprosthesis user. Feedback control reduced average upper-body loading during perturbation onset and recovery by 42% and peak loading by 29% compared to optimal, constant excitation. PMID:21975251
NASA Technical Reports Server (NTRS)
Cook, A. B.; Fuller, C. R.; O'Brien, W. F.; Cabell, R. H.
1992-01-01
A method of indirectly monitoring component loads through common flight variables is proposed which requires an accurate model of the underlying nonlinear relationships. An artificial neural network (ANN) model learns relationships through exposure to a database of flight variable records and corresponding load histories from an instrumented military helicopter undergoing standard maneuvers. The ANN model, utilizing eight standard flight variables as inputs, is trained to predict normalized time-varying mean and oscillatory loads on two critical components over a range of seven maneuvers. Both interpolative and extrapolative capabilities are demonstrated with agreement between predicted and measured loads on the order of 90 percent to 95 percent. This work justifies pursuing the ANN method of predicting loads from flight variables.
Trunk acceleration for neuroprosthetic control of standing: a pilot study.
Nataraj, Raviraj; Audu, Musa L; Kirsch, Robert F; Triolo, Ronald J
2012-02-01
This pilot study investigated the potential of using trunk acceleration feedback control of center of pressure (COP) against postural disturbances with a standing neuroprosthesis following paralysis. Artificial neural networks (ANNs) were trained to use three-dimensional trunk acceleration as input to predict changes in COP for able-bodied subjects undergoing perturbations during bipedal stance. Correlation coefficients between ANN predictions and actual COP ranged from 0.67 to 0.77. An ANN trained across all subject-normalized data was used to drive feedback control of ankle muscle excitation levels for a computer model representing a standing neuroprosthesis user. Feedback control reduced average upper-body loading during perturbation onset and recovery by 42% and peak loading by 29% compared with optimal, constant excitation.
Establishment and Discontinuance Criteria for Airport Traffic Control Towers.
1983-08-01
AR ASW 1 0.74 0.70 -539. HOT MINOT ND AOL 1 0.74 0.72 -509. LRD LAREDO TX ASW 1 0.76 0.72 -492. TXK TEXARKANA AR ASW 1 0.91 0.74 -462. FCN FRESNO CA...SFZ SMITHFIELD RI ANE 0 0.44 0.28 -2270. $IV AURORA CO ANN 0 0.40 0.25 -2387. ORO DURANGO CO ANN 0 0.49 0.43 -1791. 48V ERIE CO ANN 0 0.51 0.36 - 2017 ... 2017 . F70 FORT WORTH TX ASH 0 0.62 0.46 -1713. GLS GALVESTON TX ASW 0 0.83 0.69 -988. F67 GRAND PRAIRIE TX ASH 0 0.75 0.55 -1434. "Do HONDO TX ASW 0 1.77
Biologically inspired intelligent decision making
Manning, Timmy; Sleator, Roy D; Walsh, Paul
2014-01-01
Artificial neural networks (ANNs) are a class of powerful machine learning models for classification and function approximation which have analogs in nature. An ANN learns to map stimuli to responses through repeated evaluation of exemplars of the mapping. This learning approach results in networks which are recognized for their noise tolerance and ability to generalize meaningful responses for novel stimuli. It is these properties of ANNs which make them appealing for applications to bioinformatics problems where interpretation of data may not always be obvious, and where the domain knowledge required for deductive techniques is incomplete or can cause a combinatorial explosion of rules. In this paper, we provide an introduction to artificial neural network theory and review some interesting recent applications to bioinformatics problems. PMID:24335433
Detection of flow limitation in obstructive sleep apnea with an artificial neural network.
Norman, Robert G; Rapoport, David M; Ayappa, Indu
2007-09-01
During sleep, the development of a plateau on the inspiratory airflow/time contour provides a non-invasive indicator of airway collapsibility. Humans recognize this abnormal contour easily, and this study replicates this with an artificial neural network (ANN) using a normalized shape. Five 10 min segments were selected from each of 18 sleep records (respiratory airflow measured with a nasal cannula) with varying degrees of sleep disordered breathing. Each breath was visually scored for shape, and breaths split randomly into a training and test set. Equally spaced, peak amplitude normalized flow values (representing breath shape) formed the only input to a back propagation ANN. Following training, breath-by-breath agreement of the ANN with the manual classification was tabulated for the training and test sets separately. Agreement of the ANN was 89% in the training set and 70.6% in the test set. When the categories of 'probably normal' and 'normal', and 'probably flow limited' and 'flow limited' were combined, the agreement increased to 92.7% and 89.4% respectively, similar to the intra- and inter-rater agreements obtained by a visual classification of these breaths. On a naive dataset, the agreement of the ANN to visual classification was 57.7% overall and 82.4% when the categories were collapsed. A neural network based only on the shape of inspiratory airflow succeeded in classifying breaths as to the presence/absence of flow limitation. This approach could be used to provide a standardized, reproducible and automated means of detecting elevated upper airway resistance.
Bartlett, Jonathan D; O'Connor, Fergus; Pitchford, Nathan; Torres-Ronda, Lorena; Robertson, Samuel J
2017-02-01
The aim of this study was to quantify and predict relationships between rating of perceived exertion (RPE) and GPS training-load (TL) variables in professional Australian football (AF) players using group and individualized modeling approaches. TL data (GPS and RPE) for 41 professional AF players were obtained over a period of 27 wk. A total of 2711 training observations were analyzed with a total of 66 ± 13 sessions/player (range 39-89). Separate generalized estimating equations (GEEs) and artificial-neural-network analyses (ANNs) were conducted to determine the ability to predict RPE from TL variables (ie, session distance, high-speed running [HSR], HSR %, m/min) on a group and individual basis. Prediction error for the individualized ANN (root-mean-square error [RMSE] 1.24 ± 0.41) was lower than the group ANN (RMSE 1.42 ± 0.44), individualized GEE (RMSE 1.58 ± 0.41), and group GEE (RMSE 1.85 ± 0.49). Both the GEE and ANN models determined session distance as the most important predictor of RPE. Furthermore, importance plots generated from the ANN revealed session distance as most predictive of RPE in 36 of the 41 players, whereas HSR was predictive of RPE in just 3 players and m/min was predictive of RPE in just 2 players. This study demonstrates that machine learning approaches may outperform more traditional methodologies with respect to predicting athlete responses to TL. These approaches enable further individualization of load monitoring, leading to more accurate training prescription and evaluation.
Determining similarity of scientific entities in annotation datasets
Palma, Guillermo; Vidal, Maria-Esther; Haag, Eric; Raschid, Louiqa; Thor, Andreas
2015-01-01
Linked Open Data initiatives have made available a diversity of scientific collections where scientists have annotated entities in the datasets with controlled vocabulary terms from ontologies. Annotations encode scientific knowledge, which is captured in annotation datasets. Determining relatedness between annotated entities becomes a building block for pattern mining, e.g. identifying drug–drug relationships may depend on the similarity of the targets that interact with each drug. A diversity of similarity measures has been proposed in the literature to compute relatedness between a pair of entities. Each measure exploits some knowledge including the name, function, relationships with other entities, taxonomic neighborhood and semantic knowledge. We propose a novel general-purpose annotation similarity measure called ‘AnnSim’ that measures the relatedness between two entities based on the similarity of their annotations. We model AnnSim as a 1–1 maximum weight bipartite match and exploit properties of existing solvers to provide an efficient solution. We empirically study the performance of AnnSim on real-world datasets of drugs and disease associations from clinical trials and relationships between drugs and (genomic) targets. Using baselines that include a variety of measures, we identify where AnnSim can provide a deeper understanding of the semantics underlying the relatedness of a pair of entities or where it could lead to predicting new links or identifying potential novel patterns. Although AnnSim does not exploit knowledge or properties of a particular domain, its performance compares well with a variety of state-of-the-art domain-specific measures. Database URL: http://www.yeastgenome.org/ PMID:25725057
Determining similarity of scientific entities in annotation datasets.
Palma, Guillermo; Vidal, Maria-Esther; Haag, Eric; Raschid, Louiqa; Thor, Andreas
2015-01-01
Linked Open Data initiatives have made available a diversity of scientific collections where scientists have annotated entities in the datasets with controlled vocabulary terms from ontologies. Annotations encode scientific knowledge, which is captured in annotation datasets. Determining relatedness between annotated entities becomes a building block for pattern mining, e.g. identifying drug-drug relationships may depend on the similarity of the targets that interact with each drug. A diversity of similarity measures has been proposed in the literature to compute relatedness between a pair of entities. Each measure exploits some knowledge including the name, function, relationships with other entities, taxonomic neighborhood and semantic knowledge. We propose a novel general-purpose annotation similarity measure called 'AnnSim' that measures the relatedness between two entities based on the similarity of their annotations. We model AnnSim as a 1-1 maximum weight bipartite match and exploit properties of existing solvers to provide an efficient solution. We empirically study the performance of AnnSim on real-world datasets of drugs and disease associations from clinical trials and relationships between drugs and (genomic) targets. Using baselines that include a variety of measures, we identify where AnnSim can provide a deeper understanding of the semantics underlying the relatedness of a pair of entities or where it could lead to predicting new links or identifying potential novel patterns. Although AnnSim does not exploit knowledge or properties of a particular domain, its performance compares well with a variety of state-of-the-art domain-specific measures. Database URL: http://www.yeastgenome.org/ © The Author(s) 2015. Published by Oxford University Press.
Romani, Santina; Cevoli, Chiara; Fabbri, Angelo; Alessandrini, Laura; Dalla Rosa, Marco
2012-09-01
An electronic nose (EN) based on an array of 10 metal oxide semiconductor sensors was used, jointly with an artificial neural network (ANN), to predict coffee roasting degree. The flavor release evolution and the main physicochemical modifications (weight loss, density, moisture content, and surface color: L*, a*), during the roasting process of coffee, were monitored at different cooking times (0, 6, 8, 10, 14, 19 min). Principal component analysis (PCA) was used to reduce the dimensionality of sensors data set (600 values per sensor). The selected PCs were used as ANN input variables. Two types of ANN methods (multilayer perceptron [MLP] and general regression neural network [GRNN]) were used in order to estimate the EN signals. For both neural networks the input values were represented by scores of sensors data set PCs, while the output values were the quality parameter at different roasting times. Both the ANNs were able to well predict coffee roasting degree, giving good prediction results for both roasting time and coffee quality parameters. In particular, GRNN showed the highest prediction reliability. Actually the evaluation of coffee roasting degree is mainly a manned operation, substantially based on the empirical final color observation. For this reason it requires well-trained operators with a long professional skill. The coupling of e-nose and artificial neural networks (ANNs) may represent an effective possibility to roasting process automation and to set up a more reproducible procedure for final coffee bean quality characterization. © 2012 Institute of Food Technologists®
Stöcklmayer, C; Dorffner, G; Schmidt, C; Schima, H
1995-07-01
Rotary blood pumps are used in clinical applications to assist circulation via pumping blood from the left atrium to the aorta. Negative inflow pressures at high flow rates can cause suction of the cannula in the left atrium with deleterious effects on the atrial wall, the blood, and the lung. Therefore, stable and reliable detection of suction and the prediction of the left atrium pressure (LAP) would be of major interest for the control of these pumps. This work reports about an in vitro study of such a detector based on artificial neural networks (ANN). In the first project phase, an ANN was used to estimate the LAP based on pump speed, pump flow, and aortic pressure, obtained from a mock circulation. The inputs for the ANN were 11 characteristic values computed from these three parameters. In the second phase, another ANN was trained to classify various system states, such as suction, danger of suction (a state close to actual suction), and no suction. The first ANN was able to estimate the LAP with an accuracy of +/- 1.8 mm Hg. The discrimination of suction versus the other two states could be performed with a sensitivity and specificity of about 95% while the more interesting task of distinguishing danger of suction from no suction reached a sensitivity and specificity of about 65% (leaving 25% of each class unclassified and 10% of each class incorrectly classified).(ABSTRACT TRUNCATED AT 250 WORDS)
Data splitting for artificial neural networks using SOM-based stratified sampling.
May, R J; Maier, H R; Dandy, G C
2010-03-01
Data splitting is an important consideration during artificial neural network (ANN) development where hold-out cross-validation is commonly employed to ensure generalization. Even for a moderate sample size, the sampling methodology used for data splitting can have a significant effect on the quality of the subsets used for training, testing and validating an ANN. Poor data splitting can result in inaccurate and highly variable model performance; however, the choice of sampling methodology is rarely given due consideration by ANN modellers. Increased confidence in the sampling is of paramount importance, since the hold-out sampling is generally performed only once during ANN development. This paper considers the variability in the quality of subsets that are obtained using different data splitting approaches. A novel approach to stratified sampling, based on Neyman sampling of the self-organizing map (SOM), is developed, with several guidelines identified for setting the SOM size and sample allocation in order to minimize the bias and variance in the datasets. Using an example ANN function approximation task, the SOM-based approach is evaluated in comparison to random sampling, DUPLEX, systematic stratified sampling, and trial-and-error sampling to minimize the statistical differences between data sets. Of these approaches, DUPLEX is found to provide benchmark performance with good model performance, with no variability. The results show that the SOM-based approach also reliably generates high-quality samples and can therefore be used with greater confidence than other approaches, especially in the case of non-uniform datasets, with the benefit of scalability to perform data splitting on large datasets. Copyright 2009 Elsevier Ltd. All rights reserved.
Comparison of ANN and RKS approaches to model SCC strength
NASA Astrophysics Data System (ADS)
Prakash, Aravind J.; Sathyan, Dhanya; Anand, K. B.; Aravind, N. R.
2018-02-01
Self compacting concrete (SCC) is a high performance concrete that has high flowability and can be used in heavily reinforced concrete members with minimal compaction segregation and bleeding. The mix proportioning of SCC is highly complex and large number of trials are required to get the mix with the desired properties resulting in the wastage of materials and time. The research on SCC has been highly empirical and no theoretical relationships have been developed between the mixture proportioning and engineering properties of SCC. In this work effectiveness of artificial neural network (ANN) and random kitchen sink algorithm(RKS) with regularized least square algorithm(RLS) in predicting the split tensile strength of the SCC is analysed. Random kitchen sink algorithm is used for mapping data to higher dimension and classification of this data is done using Regularized least square algorithm. The training and testing data for the algorithm was obtained experimentally using standard test procedures and materials available. Total of 40 trials were done which were used as the training and testing data. Trials were performed by varying the amount of fine aggregate, coarse aggregate, dosage and type of super plasticizer and water. Prediction accuracy of the ANN and RKS model is checked by comparing the RMSE value of both ANN and RKS. Analysis shows that eventhough the RKS model is good for large data set, its prediction accuracy is as good as conventional prediction method like ANN so the split tensile strength model developed by RKS can be used in industries for the proportioning of SCC with tailor made property.
Motamarri, Srinivas; Boccelli, Dominic L
2012-09-15
Users of recreational waters may be exposed to elevated pathogen levels through various point/non-point sources. Typical daily notifications rely on microbial analysis of indicator organisms (e.g., Escherichia coli) that require 18, or more, hours to provide an adequate response. Modeling approaches, such as multivariate linear regression (MLR) and artificial neural networks (ANN), have been utilized to provide quick predictions of microbial concentrations for classification purposes, but generally suffer from high false negative rates. This study introduces the use of learning vector quantization (LVQ)--a direct classification approach--for comparison with MLR and ANN approaches and integrates input selection for model development with respect to primary and secondary water quality standards within the Charles River Basin (Massachusetts, USA) using meteorologic, hydrologic, and microbial explanatory variables. Integrating input selection into model development showed that discharge variables were the most important explanatory variables while antecedent rainfall and time since previous events were also important. With respect to classification, all three models adequately represented the non-violated samples (>90%). The MLR approach had the highest false negative rates associated with classifying violated samples (41-62% vs 13-43% (ANN) and <16% (LVQ)) when using five or more explanatory variables. The ANN performance was more similar to LVQ when a larger number of explanatory variables were utilized, but the ANN performance degraded toward MLR performance as explanatory variables were removed. Overall, the use of LVQ as a direct classifier provided the best overall classification ability with respect to violated/non-violated samples for both standards. Copyright © 2012 Elsevier Ltd. All rights reserved.