Sample records for taraxacum officinale root

  1. Further sesquiterpenoids and phenolics from Taraxacum officinale.

    PubMed

    Kisiel, W; Barszcz, B

    2000-06-01

    Five germacrane- and guaiane-type sesquiterpene lactones, including two previously described taraxinic acid derivatives, were isolated from the roots of Taraxacum officinale, together with benzyl glucoside, dihydroconiferin, syringin and dihydrosyringin. The other three lactones were identified as 11beta, 13-dihydrolactucin, ixerin D and ainslioside. Moreover, the stereochemistry at C-11 in dihydrotaraxinic acid was assigned.

  2. Three Novel Triterpenoids from Taraxacum officinale Roots.

    PubMed

    Kikuchi, Takashi; Tanaka, Ayaka; Uriuda, Mayu; Yamada, Takeshi; Tanaka, Reiko

    2016-08-27

    Three novel lupane-, bauerane-, and euphane-type triterpenoids (1-3), in addition to seven known triterpenoids (4-10)-18β,19β-epoxy-21β-hydroxylupan-3β-yl acetate (4), 21-oxolup-18-en-3β-yl acetate (5), betulin (6), officinatrione (7), 11α-methoxyolean-12-en-3-one (8), eupha-7,24-dien-3-one (9), and 24-oxoeupha-7,24-dien-3β-yl acetate (10)-were isolated from the roots of Taraxacum officinale. Their structures were elucidated on the basis of spectroscopic analyses using 1D and 2D-NMR spectra and electron ionization mass spectrometry (EIMS). The effects of compounds 1-10 on the production of nitric oxide (NO) in lipopolysaccharide (LPS)-activated mouse peritoneal macrophages were evaluated. Compounds 4, 6, and 10 exhibited similar NO inhibitory activities to N(G)-monomethyl-l-arginine acetate (l-NMMA). These compounds did not exhibit cytotoxicity at an effective concentration. The results of present study suggest that compounds 4, 6, and 10 have potential as anti-inflammatory disease agents.

  3. Taraxacum officinale protects against lipopolysaccharide-induced acute lung injury in mice.

    PubMed

    Liu, Liben; Xiong, Huanzhang; Ping, Jiaqi; Ju, Yulin; Zhang, Xuemei

    2010-07-20

    Taraxacum officinale has been frequently used as a remedy for inflammatory diseases. In the present study, we investigated the in vivo protective effect of Taraxacum officinale on acute lung injury (ALI) induced by lipopolysaccharide (LPS) in mice. Taraxacum officinale at 2.5, 5 and 10 mg/kg was orally administered once per day for 5 days consecutively, followed by 500 microg/kg LPS was instilled intranasally. The lung wet/dry weight (W/D) ratio, protein concentration and the number of inflammatory cells in bronchoalveolar lavage fluid (BALF) were determined. Superoxidase dismutase (SOD) and myeloperoxidase (MPO) activities, and histological change in the lungs were examined. The levels of inflammatory cytokine tumor necrosis factor-alpha (TNF-alpha) and interleukin-6 (IL-6) in the BALF were measured using ELISA. We found that Taraxacum officinale decreased the lung W/D ratio, protein concentration and the number of neutrophils in the BALF at 24 h after LPS challenge. Taraxacum officinale decreased LPS-induced MPO activity and increased SOD activity in the lungs. In addition, histopathological examination indicated that Taraxacum officinale attenuated tissue injury of the lungs in LPS-induced ALI. Furthermore, Taraxacum officinale also inhibited the production of inflammatory cytokines TNF-alpha and IL-6 in the BALF at 6h after LPS challenge in a dose-dependent manner. These results suggest that Taraxacum officinale protects against LPS-induced ALI in mice. Copyright 2010 Elsevier Ireland Ltd. All rights reserved.

  4. Dandelion (Taraxacum officinale) decreases male rat fertility in vivo.

    PubMed

    Tahtamouni, Lubna H; Alqurna, Noor M; Al-Hudhud, Mariam Y; Al-Hajj, Hameed A

    2011-04-26

    Taraxacum officinale (L.) Weber ex F.H. Wigg. is commonly used in Jordan folk medicine for the treatment of panophthalmitis, chronic constipation, and diabetes. In addition, herbalists prescribe the aqueous extract of Taraxacum officinale to enhance male's fertility. The current work was undertaken to investigate the validity and/or invalidity of the aqueous extract of Taraxacum officinale on enhancing the reproductive activity in male rat. Thirty three adult male rats were divided into three groups. Experimental groups received the aqueous extract of Taraxacum officinale orally for 60 days in two different sublethal doses; 1/10 LD(50) as high dose and 1/20 LD(50) as low dose, whereas the control group received distilled water. The administration of the aqueous extract of Taraxacum officinale resulted in a significant decrease in testis weight in the two experimental groups in comparison to the control group but had no effect on body or organ weight. The extract of this plant caused a decrease of the following in the two experimental groups, compared to the control group: sperm count, motility and normal morphology, pregnancy rate and diameter and wall thickness of seminiferous tubules. Also, distortion of morphology of the seminiferous tubules and arrest in spermatogenesis was observed in the experimental groups. In addition, the percentage of sperm with damaged chromatin integrity was significantly higher in the two experimental groups. From the present study, we can conclude that the aqueous extract of Taraxacum officinale acts as an anti-fertility agent rather than a fertility booster as prescribed by Jordanian herbalists. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  5. Difference in in vitro response and esculin content in two populations of Taraxacum officinale Weber.

    PubMed

    Jamshieed, Sumiya; Das, Sandip; Sharma, M P; Srivastava, P S

    2010-12-01

    In vitro micropropagation has been achieved in medicinally important plant, Taraxacum officinale collected from two different regions, Kashmir (J & K) and Garhwal (Uttarakhand). Leaf segments inoculated on MS supplemented with different combinations of Indole-3-acetic acid (IAA) and Benzyladenine (BA) produced indirect regeneration. For root induction MS fortified with Indole-3-butyric acid (IBA) was used. Taraxacum officinale collected from Garhwal responded two weeks earlier and showed shoot regeneration whereas in Kashmir population only callus proliferation occurred. Esculin content was also higher in the samples from Garhwal. The content was affected by both, the hormone concentration as well as age of the cultures. RAPD of the in vitro raised regenerants confirmed genetic stability.

  6. Sesquiterpene Lactone Composition and Cellular Nrf2 Induction of Taraxacum officinale Leaves and Roots and Taraxinic Acid β-d-Glucopyranosyl Ester.

    PubMed

    Esatbeyoglu, Tuba; Obermair, Betina; Dorn, Tabea; Siems, Karsten; Rimbach, Gerald; Birringer, Marc

    2017-01-01

    Taraxacum officinale, the common dandelion, is a plant of the Asteraceae family, which is used as a food and medical herb. Various secondary plant metabolites such as sesquiterpene lactones, triterpenoids, flavonoids, phenolic acids, coumarins, and steroids have been described to be present in T. officinale. Dandelion may exhibit various health benefits, including antioxidant, anti-inflammatory, and anticarcinogenic properties. We analyzed the leaves and roots of the common dandelion (T. officinale) using high-performance liquid chromatography/mass spectrometry to determine its sesquiterpene lactone composition. The main compound of the leaf extract taraxinic acid β-d-glucopyranosyl ester (1), a sesquiterpene lactone, was isolated and the structure elucidation was conducted by nuclear magnetic resonance spectrometry. The leaf extract and its main compound 1 activated the transcription factor nuclear factor erythroid 2-related factor 2 (Nrf2) in human hepatocytes more significantly than the root extract. Furthermore, the leaf extract induced the Nrf2 target gene heme oxygenase 1. Overall, present data suggest that compound 1 may be one of the active principles of T. officinale.

  7. Response of dandelion (Taraxacum officinale Web) to heavy metals from mine sites: micromorphology of leaves and roots.

    NASA Astrophysics Data System (ADS)

    Bini, Claudio; Maleci, Laura; Buffa, Gabriella; Wahsha, Mohammad; Fontana, Silvia

    2013-04-01

    Response of dandelion (Taraxacum officinale Web) to heavy metals from mine sites: micromorphology of leaves and roots. Maleci L.1 , Bini C.2, Buffa G. 2, Fontana S2., Wahsha M.3 1 - Dept of Biology, University of Florence, Italy. 2 - Dept of Environmental Sciences, Informatics and Statistics. Ca'Foscari University, Venice - Italy. 3 - Marine Science Centre - University of Jordan, Aqaba section, Jordan. Heavy metal accumulation is known to produce significant physiological and biochemical responses in vascular plants. Yet, metabolic and physiological responses of plants to heavy metal concentration can be viewed as potentially adaptive changes of the plants during stress. From this point of view, plants growing on abandoned mine sites are of particular interest, since they are genetically tolerant to high metal concentrations, and can be utilized in soil restoration. Among wild plants, the common dandelion (Taraxacum officinale Web) has received attention as bioindicator plant, and has been also suggested in remediation projects. Wild specimens of Taraxacum officinale Web, with their soil clod, were gathered from three sites with different contamination levels by heavy metals (Cd, Cr, Cu, Fe, Pb, Zn) in the abandoned Imperina Valley mine (Northeast Italy). A control plant was also gathered from a not contaminated site nearby. Plants were cultivated in pots for one year at HBF, and appeared macroscopically not affected by toxic signals (reduced growth, leaf necrosis) possibly induced by soil HM concentration. Leaves and roots taken at the same growing season were observed by LM and TEM. Light microscopy observations carried out on the leaf lamina show a clear difference in the cellular organization of not-contaminated and contaminated samples. The unpolluted samples present a well organized palisade tissue and spongy photosynthetic parenchyma. Samples from contaminated sites, instead, present a palisade parenchyma less organized, and a reduction of leaf thickness

  8. Sesquiterpene glucosides from anti-leukotriene B4 release fraction of Taraxacum officinale.

    PubMed

    Kashiwada, Y; Takanaka, K; Tsukada, H; Miwa, Y; Taga, T; Tanaka, S; Ikeshiro, Y

    2001-01-01

    Chemical examination of the MeOH extract of the root of Taraxacum officinale, which exhibited inhibitory activity on the formation of leukotriene B4 from activated human neutrophils, has resulted in the isolation of 14-O-beta-D-glucosyl-11,13-dihydro-taraxinic acid (1) and 14-O-beta-D-glucosyl-taraxinic acid (2). The absolute stereostructure of 1 has been established by X-ray chrystallographic examination.

  9. Hypolipidemic and Antioxidant Effects of Dandelion (Taraxacum officinale) Root and Leaf on Cholesterol-Fed Rabbits

    PubMed Central

    Choi, Ung-Kyu; Lee, Ok-Hwan; Yim, Joo Hyuk; Cho, Chang-Won; Rhee, Young Kyung; Lim, Seong-Il; Kim, Young-Chan

    2010-01-01

    Dandelion (Taraxacum officinale), an oriental herbal medicine, has been shown to favorably affect choleretic, antirheumatic and diuretin properties. Recent reports have indicated that excessive oxidative stress contributes to the development of atherosclerosis-linked metabolic syndrome. The objective of this current study was to investigate the possible hypolipidemic and antioxidative effects of dandelion root and leaf in rabbits fed with a high-cholesterol diet. A group of twenty eight male rabbits was divided into four subgroups; a normal diet group, a high-cholesterol diet group, a high-cholesterol diet with 1% (w/w) dandelion leaf group, and a high-cholesterol diet with 1% (w/w) dandelion root group. After the treatment period, the plasma antioxidant enzymes and lipid profiles were determined. Our results show that treatment with dandelion root and leaf positively changed plasma antioxidant enzyme activities and lipid profiles in cholesterol-fed rabbits, and thus may have potential hypolipidemic and antioxidant effects. Dandelion root and leaf could protect against oxidative stress linked atherosclerosis and decrease the atherogenic index. PMID:20162002

  10. Further investigations on the resilience capacity of Taraxacum officinale Weber growing on mine soils

    NASA Astrophysics Data System (ADS)

    Maleci, Laura; Bini, Claudio; Spiandorello, Massimo; Wahsha, Mohammad

    2014-05-01

    Heavy metal accumulation produces significant physiological and biochemical responses in vascular plants. Plants growing on abandoned mine sites are of particular interest, since they are genetically tolerant to high metal concentrations. In this work we examined the effect of heavy metals (HM) on the morphology of T. officinale growing on mine soils, with the following objectives: - to determine the fate of HM within the soil-plant system; - to highlight possible damage at anatomical and cytological level; - to assess the resilience capacity of Taraxacum officinale after three years of pot cultivation. Wild specimens of Taraxacum officinale Web, with their soil clod, were gathered from four sites with different contamination levels by heavy metals (Cu, Fe, Pb, Zn) in the abandoned Imperina Valley mine (Northeast Italy). Plants were cultivated in pots at the botanical garden of the University of Florence (HBF), and appeared macroscopically not affected by toxic signals (e.g. reduced growth, leaf necrosis) possibly induced by soil HM concentration. Leaves and roots taken at the same growing season were observed by light microscopy (LM) and transmission electron microscopy (TEM). Light microscopy observations show a clear difference in the cell organization of not-contaminated and contaminated samples. The unpolluted samples present a well organized palisade tissue and spongy photosynthetic parenchyma. Samples from contaminated sites, instead, present a palisade parenchyma less organized, and a reduction of leaf thickness proportional to HM concentration. The poor structural organisations, and the reduced foliar thickness of the contaminated plants, are related to soil contamination. Differences in roots micromorphology concern the cortical parenchyma. Moreover, all the samples examined present mycorrhiza. Ultrastructure observations of the parenchyma cells show mitochondrial structure alteration, with lacking or reduced cristae of the internal membrane at increasing

  11. Characterisation of antimicrobial extracts from dandelion root (Taraxacum officinale) using LC-SPE-NMR.

    PubMed

    Kenny, O; Brunton, N P; Walsh, D; Hewage, C M; McLoughlin, P; Smyth, T J

    2015-04-01

    Plant extracts have traditionally been used as sources of natural antimicrobial compounds, although in many cases, the compounds responsible for their antimicrobial efficacy have not been identified. In this study, crude and dialysed extracts from dandelion root (Taraxacum officinale) were evaluated for their antimicrobial properties against Gram positive and Gram negative bacterial strains. The methanol hydrophobic crude extract (DRE3) demonstrated the strongest inhibition of microbial growth against Staphylococcus aureus, methicillin-resistant S. aureus and Bacillus cereus strains. Normal phase (NP) fractionation of DRE3 resulted in two fractions (NPF4 and NPF5) with enhanced antimicrobial activity. Further NP fractionation of NPF4 resulted in two fractions (NPF403 and NPF406) with increased antimicrobial activity. Further isolation and characterisation of compounds in NPF406 using liquid chromatography solid phase extraction nuclear magnetic resonance LC-SPE-NMR resulted in the identification of 9-hydroxyoctadecatrienoic acid and 9-hydroxyoctadecadienoic acid, while the phenolic compounds vanillin, coniferaldehyde and p-methoxyphenylglyoxylic acid were also identified respectively. The molecular mass of these compounds was confirmed by LC mass spectroscopy (MS)/MS. In summary, the antimicrobial efficacy of dandelion root extracts demonstrated in this study support the use of dandelion root as a source of natural antimicrobial compounds. Copyright © 2015 John Wiley & Sons, Ltd.

  12. Prezygotic barriers to gene flow between Taraxacum ceratophorum and the invasive Taraxacum officinale (Asteraceae).

    PubMed

    Brock, Marcus T

    2009-08-01

    Prezygotic reproductive barriers limit interspecific gene flow between congeners. Here, I examine the strength of floral isolation and interspecific pollen-pistil barriers between an invasive apomictic, Taraxacum officinale, and the indigenous sexual alpine dandelion, Taraxacum ceratophorum. Experimental arrays of either native inflorescences or a mixture of native and exotic inflorescences were used to examine insect preference and to track movement of a pollen analog. Using hand-pollinations, conspecific and heterospecific pollen germination success on native stigmas was compared. To additionally test for interspecific pollen competition, T. ceratophorum plants received one of three possible hand-pollinations: control conspecific pollination, concomitant conspecific and heterospecific pollination (mixed), or conspecific pollen followed by heterospecific pollen 15 min later (staggered). Floral isolation was negligible as no insect preference was detected. On a presence/absence basis, florets on native inflorescences received slightly less pollen analog from heterospecific donors than from conspecific donors; however, the amount of dye particles transferred from either Taraxacum species to stigmas on recipient T. ceratophorum inflorescences was equivalent. In contrast to weak floral isolation, strong pollen germination and pollen competition barriers should reduce the potential for hybridization. Heterospecific T. officinale pollen exhibited reduced germination success on T. ceratophorum stigmas in comparison to conspecific pollen. Furthermore, a significant pollen-competition effect on the percentage of hybrid offspring was detected only when T. officinale preceded T. ceratophorum pollen by 15 min. This result indicates that conspecific pollen out-competes heterospecific pollen but further suggests that biotic and abiotic factors reducing pollen accrual rates may partially remove barriers to natural hybridization.

  13. Cloning, Developmental, and Tissue-Specific Expression of Sucrose:Sucrose 1-Fructosyl Transferase from Taraxacum officinale. Fructan Localization in Roots1

    PubMed Central

    Van den Ende, Wim; Michiels, An; Van Wonterghem, Dominik; Vergauwen, Rudy; Van Laere, André

    2000-01-01

    Sucrose:sucrose 1-fructosyl transferase (1-SST) is the key enzyme initiating fructan synthesis in Asteraceae. Using reverse transcriptase-PCR, we isolated the cDNA for 1-SST from Taraxacum officinale. The cDNA-derived amino acid sequence showed very high homology to other Asteracean 1-SSTs (Cichorium intybus 86%, Cynara scolymus 82%, Helianthus tuberosus 80%), but homology to 1-SST from Allium cepa (46%) and Aspergillus foetidus (18%) was much lower. Fructan concentrations, 1-SST activities, 1-SST protein, and mRNA concentrations were compared in different organs during vegetative and generative development of T. officinale plants. Expression of 1-SST was abundant in young roots but very low in leaves. 1-SST was also expressed at the flowering stages in roots, stalks, and receptacles. A good correlation was found between northern and western blots showing transcriptional regulation of 1-SST. At the pre-flowering stage, 1-SST mRNA concentrations and 1-SST activities were higher in the root phloem than in the xylem, resulting in the higher fructan concentrations in the phloem. Fructan localization studies indicated that fructan is preferentially stored in phloem parenchyma cells in the vicinity of the secondary sieve tube elements. However, inulin-like crystals occasionally appeared in xylem vessels. PMID:10806226

  14. Antidepressant effects of the water extract from Taraxacum officinale leaves and roots in mice.

    PubMed

    Li, Yu-Cheng; Shen, Ji-Duo; Li, Yang-Yang; Huang, Qi

    2014-08-01

    The leaves and roots of the Taraxacum officinale F. (Asteraceae) is widely used as traditional medicinal herb in Eastern Asian countries. In the present study, the antidepressant-like effects of the water extract of T. officinale (WETO) leaves and roots were investigated in mice using forced swimming test (FST), tail suspension test (TST) and open field test (OFT). Effects of acute (1-day) and chronic treatments (14-days) with WETO (50, 100 and 200 mg/kg) on the behavioral changes in FST, TST and OFT, and the serum corticotrophin releasing factor (CRF), adrenocorticotropic hormone (ACTH) and corticosterone concentration were assessed in mice. Chronic treatment (14-days) with WETO at the doses of 50, 100 and 200 mg/kg significantly decreased the immobility time in both FST (92.6, 85.1 and 77.4 s) and TST (84.8, 72.1 and 56.9 s). Acute treatment (1-day) with WETO at a dose of 200 mg/kg also markedly decreased the immobility time in both FST (81.7 s) and TST (73.2 s). However, all treatments did not affect the locomotor activity in the OFT. Moreover, FST induced a significant increase in serum CRF (5.8 ng/ml), ACTH (104.7 pg/ml) and corticosterone levels (37.3 ng/ml). Chronic treatment (14-days) with WETO decreased the serum CRF (200 mg/kg: 3.9 ng/ml) and corticosterone (50 mg/kg: 29.9 ng/ml; 100 mg/kg: 22.5 ng/ml; 200 mg/kg: 19.8 ng/ml) levels. These results clearly demonstrated the antidepressant effects of WETO in animal models of behavioral despair and suggested the mechanism involved in the neuroendocrine system.

  15. Protective effect of Silybum marianum and Taraxacum officinale extracts against oxidative kidney injuries induced by carbon tetrachloride in rats.

    PubMed

    Karakuş, Ali; Değer, Yeter; Yıldırım, Serkan

    2017-11-01

    The protective effect of the extracts of the plants Silybum marianum and Taraxacum officinale by carbon tetrachloride (CCl 4 ) was researched. Sixty-six female Wistar albino rats were divided into six groups: Control, Silybum marianum, Taraxacum officinale, CCl 4 , Silybum marianum+ CCl 4 , Taraxacum officinale+CCl 4 . The Silybum marianum and Taraxacum officinale extracts were administered as 100 mg/kg/day by gavage. The CCl 4 was administered as 1.5 mL/kg (i.p.). At the end of the trial period, in the serums obtained from the animals, in the CCl 4 group it was found that the MDA level increased in the kidney tissue samples as well as in the ALP and GGT enzyme activities. It was also found that the GSH level and the GST enzyme activities decreased (p<.05). The microscopic evaluations showed that the CCl 4 caused a serious hydropic degeneration, coagulation necrosis, and mono-nuclear cell infiltration in the kidney cell. In the animals where CCl 4 and Silybum marianum and Taraxacum officinale extracts were applied together, it was found that the serum ALP and GGT enzyme activities decreased and that the MDA level decreased in the kidney tissue, and that the GSH level and GST enzyme activities increased. It was observed that the histopathological changes caused by the CCl 4 toxicity were corrected by applying the extracts. Eventually, it was determined that the Silybum marianum was more effective. Silybum marianum and Taraxacum officinale extracts which were used against histopathological changes in the kidney caused by toxication showed a corrective effect, which were supported by biochemical parameters.

  16. In vitro Hypolipidemic and Antioxidant Effects of Leaf and Root Extracts of Taraxacum Officinale

    PubMed Central

    García-Carrasco, Belén; Fernandez-Dacosta, Raquel; Dávalos, Alberto; Ordovás, José M.; Rodriguez-Casado, Arantxa

    2015-01-01

    Adipose tissue dysfunction constitutes a primary defect in obesity and might link this disease to severe chronic health problems. We aimed to evaluate the antioxidant activity of three extracts from Taraxacum officinale (dandelion) as well as their effects on mature 3T3-L1 adipocytes concerning intracellular lipid accumulation and cytotoxicity, this would give indications regarding therapeutic interest of dandelion as potential anti-obesity candidate. Antioxidant activities of extracts from dandelion roots and leaves were evaluated in vitro using 1,1-diphenyl-2-picrylhyorazyl (DPPH) and Ferric Reducing Antioxidant Power (FRAP) methods at the concentration range used in cellular assays (300–600 µg/mL). The influence of the extracts on mature 3T3-L1 adipocyte viability was determined by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Lipid content was determined by Oil-red-O staining. The extracts showed effective antioxidant activity correlating with total flavonoid and polyphenol contents. However, the functionality level was weakly associated with the antioxidant activity. Further, our data demonstrated that mature 3T3-L1 adipocytes reduced in size and number when incubated with the extracts, which suggests a significant increase in lipolysis activity. Particularly, leaf extract and crude powdered root of dandelion reduced triglyceride accumulation in mature 3T3-L1 adipocytes to a greater extent that the extract from the root. Our study shows anti-lipogenic effects of dandelion extracts on adipocytes as well as radical scavenging and reducing activity. Importantly, along with previous results indicating that cell populations cultivated in the presence of the dandelion extracts decrease in 3T3-L1 adipogenesis capacity, these results suggests that these extracts might represent a treatment option for obesity-related diseases by affecting different processes during the adipocyte life cycle. PMID:29083390

  17. 4-hydroxyphenylacetic acid derivatives of inositol from dandelion (Taraxacum officinale) root characterised using LC-SPE-NMR and LC-MS techniques.

    PubMed

    Kenny, O; Smyth, T J; Hewage, C M; Brunton, N P; McLoughlin, P

    2014-02-01

    The combination of hyphenated techniques, LC-SPE-NMR and LC-MS, to isolate and identify minor isomeric compounds from an ethyl acetate fraction of Taraxacum officinale root was employed in this study. Two distinct fractions of 4-hydroxyphenylacetic acid derivatives of inositol were isolated and characterised by spectroscopic methods. The (1)H NMR spectra and MS data revealed two groups of compounds, one of which were derivatives of the di-4-hydroxyphenylacetic acid derivative of the inositol compound tetrahydroxy-5-[2-(4-hydroxyphenyl)acetyl] oxycyclohexyl-2-(4-hydroxyphenyl) acetate, while the other group consisted of similar tri-substituted inositol derivatives. For both fractions the derivatives of inositols vary in the number of 4-hydroxyphenylacetic acid groups present and their position and geometry on the inositol ring. In total, three di-substituted and three tri-substituted 4-hydroxyphenylacetic acid inositol derivates were identified for the first time along with a further two previously reported di-substituted inositol derivatives. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. Adaptive Adjustment in Taraxacum Officinale Wigg. in the Conditions of Overburden Dump

    NASA Astrophysics Data System (ADS)

    Legoshchina, Olga; Egorova, Irina; Neverova, Olga

    2017-11-01

    Morphological and anatomical features of the leaves and roots of Taraxacum officinale Wigg., growing under the conditions of the rocky dump of the Kedrovsky coal mine of the Kemerovo region, were studied. It was revealed that the specific environmental conditions of the dump cause morphological and anatomical changes in the leaves and roots of the dandelion. At the level of morphology, a decrease in the average leaf area, a thickening of leaf blades, a tendency to decrease the number of leaves in the rosette, a significant decrease in the mass and length of the roots. At the level of the anatomical structure of the leaves, there is a significant increase in the thickness of the mesophyll, a tendency to decrease the thickness of the tissues of the upper and lower epidermis, a decrease in the number of cells in 1 mm2 and an increase in the size of stomata in the tissues of the lower and upper epidermis, a decrease in the number of stomata by 1 mm2 and a stomatal index on the upper epidermis. At the level of the anatomical structure of the roots, the radius of the root decreases, the radius of the cortex and phloem, the diameter of the xylem.

  19. Sesquiterpenoids from roots of Taraxacum laevigatum and Taraxacum disseminatum.

    PubMed

    Zielińiska, K; Kisiel, W

    2000-08-01

    Chromatographic separation of ethanolic root extracts of Taraxacum laevigatum and Taraxacum disseminatum afforded a total of eight germacrane- and eudesmane-type sesquiterpenoids. including new compounds, 1beta,3beta,6alpha-trihydroxy-4alpha( 15)-dihydrocostic acid methyl ester and its 1-O-beta-glucopyranoside. Their structures were established by spectroscopic analyses. In addition, the structure of 4alpha(15), 11beta(13)-tetrahydroridentin B-1-O-beta-glucopyranoside was elucidated by extensive NMR studies.

  20. METAL CONTENT OF DANDELION (TARAXACUM OFFICINALE) LEAVES IN RELATION TO SOIL CONTAMINATION AND AIRBORNE PARTICULATE MATTER. (R826602)

    EPA Science Inventory

    The global distribution of the common dandelion (Taraxacum officinale Weber, sensu lato; Asteraceae), along with its ability to tolerate a wide range of environmental conditions, make this `species' a particularly attractive candidate to evaluate for its ...

  1. Pancreatic lipase inhibitory activity of taraxacum officinale in vitro and in vivo

    PubMed Central

    Zhang, Jian; Kang, Min-Jung; Kim, Myung-Jin; Kim, Mi-Eun; Song, Ji-Hyun; Lee, Young-Min

    2008-01-01

    Obesity has become a worldwide health problem. Orlistat, an inhibitor of pancreatic lipase, is currently approved as an anti-obesity drug. However, gastrointestinal side effects caused by Orlistat may limit its use. In this study the inhibitory activities of dandelion (Taraxacum officinale) against pancreatic lipase in vitro and in vivo were measured to determine its possible use as a natural anti-obesity agent. The inhibitory activities of the 95% ethanol extract of T. officinale and Orlistat were measured using 4-methylumbelliferyl oleate (4-MU oleate) as a substrate at concentrations of 250, 125, 100, 25, 12.5 and 4 µg/ml. To determine pancreatic lipase inhibitory activity in vivo, mice (n=16) were orally administered with corn oil emulsion (5 ml/kg) alone or with the 95% ethanol extract of T. officinale (400 mg/kg) following an overnight fast. Plasma triglyceride levels were measured at 0, 90, 180, and 240 min after treatment and incremental areas under the response curves (AUC) were calculated. The 95% ethanol extract of T. officinale and Orlistat, inhibited, porcine pancreatic lipase activity by 86.3% and 95.7% at a concentration of 250 µg/ml, respectively. T. officinale extract showed dose-dependent inhibition with the IC50 of 78.2 µg/ml. A single oral dose of the extract significantly inhibited increases in plasma triglyceride levels at 90 and 180 min and reduced AUC of plasma triglyceride response curve (p<0.05). The results indicate that T. officinale exhibits inhibitory activities against pancreatic lipase in vitro and in vivo. Further studies to elucidate anti-obesity effects of chronic consumption of T. officinale and to identify the active components responsible for inhibitory activity against pancreatic lipase are necessary. PMID:20016719

  2. Anti-spermatogenic activities of Taraxacum officinale whole plant and leaves aqueous extracts

    PubMed Central

    Tahtamouni, Lubna Hamid; Al-Khateeb, Rema Ahmad; Abdellatif, Reem Nasser; Al-Mazaydeh, Zainab Ali; Yasin, Salem Refaat; Al-Gharabli, Samer; Elkarmi, Ali Zuhair

    2016-01-01

    Taraxacum officinale has been used in Jordan folk medicine to treat male infertility. A recent study has proved a contradictory effect of the whole plant aqueous extract. The aim of the current study was to determine if the leaves of T. officinale have similar anti-fertility activities, and whether this effect is mediated through the regulation of spermatogonial stem cells (SSCs). Fifty adult male rats were divided into five groups. Two groups were gavaged with 1/10 of LD50 of T. officinale whole plant (1.06 g kg-1 body weight) or leaves (2.30 g kg-1 body weight) aqueous extract; while two groups were gavaged with 1/20 of LD50 of T. officinale whole plant (2.13 g kg-1) or leaves (4.60 g kg-1) extract. The control group received distilled water. Oral administration of T. officinale (whole plant and leaves aqueous extract) caused a significant decrease in testis and seminal vesicle weight, a reduction in serum testosterone concentration, impaired sperm parameters, and a decrease in pregnancy parameters. Testicular histology of treated rats showed structural changes such as hypoplasia of germ cells, reduction in the thickness of germinal epithelium, arrest of spermatogenesis at spermatid stage (late maturation arrest) and reduction in the number of Leydig cells. Gene expression levels of two SSCs markers (GFRα1 and CSF1) responsible for self-renewal were relatively counter-balanced. In conclusion, T. officinale whole plant and leaves aqueous extracts changed the gene expression of two SSCs markers leading to the imbalance between spermatogonia self-renewal and differentiation causing late maturation arrest. PMID:27482352

  3. Effect of leaf extracts of Taraxacum officinale on CCl4 induced hepatotoxicity in rats, in vivo study.

    PubMed

    Gulfraz, Muhammad; Ahamd, Dawood; Ahmad, Muhammad Sheeraz; Qureshi, Rehmatullah; Mahmood, Raja Tahir; Jabeen, Nyla; Abbasi, Kashif Sarfraz

    2014-07-01

    Taraxacum officinale L is a medicinal plant, which has enormous medicinal values against various types of liver disorders and it has traditionally been used for the treatment of liver problems by people from the South East Asia. Previously we have screened the crude methanolic extract of T. officinale against cytotoxicity induced by CCl4. Present study was designed to compare the protective effect of ethanolic and n-hexane extract of leaves in carbon tetrachloride (CCl4) induced liver toxicity in rats. The extract (200 mg/kg and 400mg/kg body weight) along with silymarin (100 mg/kg) a standard drug was administered to experimental animals. It was observed that ethanolic plant extract has significantly reduced the negative effect of CCl4 as compared to n-hexane extract and effect of extract was increased with increasing dose level. Although both leaf extracts decreased the concentration of TBARS, H2O2 and nitrite contents which enhance due to CCl4 toxicity but effect was higher in ethanolic extract. The results clearly indicated that Taraxacum officinale ethanolic leaves extract has better protective effect against CCl4 induced liver tissues toxicity. This claim was also supported by histopathological results obtained during this study and this might be due to presence of various polar phytochemicals that might be more prevent in this extract.

  4. Above- and belowground herbivory jointly impact defense and seed dispersal traits in Taraxacum officinale.

    PubMed

    de la Peña, Eduardo; Bonte, Dries

    2014-08-01

    Plants are able to cope with herbivores by inducing defensive traits or growth responses that allow them to reduce or avoid the impact of herbivores. Since above- and belowground herbivores differ substantially in life-history traits, for example feeding types, and their spatial distribution, it is likely that they induce different responses in plants. Moreover, strong interactive effects on defense and plant growth are expected when above- and belowground herbivores are jointly present. The strengths and directions of these responses have been scarcely addressed in the literature. Using Taraxacum officinale, the root-feeding nematode Meloidogyne hapla and the locust Schistocerca gregaria as a model species, we examined to what degree above- and belowground herbivory affect (1) plant growth responses, (2) the induction of plant defensive traits, that is, leaf trichomes, and (3) changes in dispersal-related seed traits and seed germination. We compared the performance of plants originating from different populations to address whether plant responses are conserved across putative different genotypes. Overall, aboveground herbivory resulted in increased plant biomass. Root herbivory had no effect on plant growth. Plants exposed to the two herbivores showed fewer leaf trichomes than plants challenged only by one herbivore and consequently experienced greater aboveground herbivory. In addition, herbivory had effects that reached beyond the individual plant by modifying seed morphology, producing seeds with longer pappus, and germination success.

  5. Reduction of adipogenesis and lipid accumulation by Taraxacum officinale (Dandelion) extracts in 3T3L1 adipocytes: an in vitro study.

    PubMed

    González-Castejón, Marta; García-Carrasco, Belén; Fernández-Dacosta, Raquel; Dávalos, Alberto; Rodriguez-Casado, Arantxa

    2014-05-01

    In this in vitro study, we have investigated the ability of Taraxacum officinale (dandelion) to inhibit adipocyte differentiation and lipogenesis in 3T3-L1 preadipocytes. HPLC analysis of the three plant extracts used in this study-leaf and root extracts and a commercial root powder-identified caffeic and chlorogenic acids as the main phenolic constituents. Oil Red O staining and triglyceride levels analysis showed decreased lipid and triglyceride accumulation, respectively. Cytotoxicity was assessed with the MTT assay showing non-toxic effect among the concentrations tested. DNA microarray analysis showed that the extracts regulated the expression of a number of genes and long non-coding RNAs that play a major role in the control of adipogenesis. Taken together, our results indicate that the dandelion extracts used in this study may play a significant role during adipogenesis and lipid metabolism, and thus, supporting their therapeutic interest as potential candidates for the treatment of obesity. Copyright © 2013 John Wiley & Sons, Ltd.

  6. Taraxacum officinale and related species-An ethnopharmacological review and its potential as a commercial medicinal plant.

    PubMed

    Martinez, M; Poirrier, P; Chamy, R; Prüfer, D; Schulze-Gronover, C; Jorquera, L; Ruiz, G

    2015-07-01

    been studied (including Taraxacum officinale, Taraxacum coreanum, Taraxacum mongolicum and Taraxacum platycarpum). This is a indication of the little knowledge that we have about this genus so far. Biotechnology (involving genetics, agriculture, and biology) is the most powerful means by which to take advantage of all the medicinal potential of Taraxacum. Great strides have been made in identifying metabolic pathways for synthesizing terpenes, one of the most important compound families in clinical applications. In order to improve yield and performance of the plant in the field, greenhouse cultivation is another aspect taken into account, deriving an increase in recovery of bioactives from Taraxacum organs. Even while considering that only a few species have been studied, their different biochemical and cultivation profiles indicate huge potential for qualitative improvements in composition through genetic engineering, thus directly impacting pharmacological properties. Taraxacum is has been traditionally considered a natural remedy, well-inserted into popular knowledge, but with low commercial applicability. Only once the recovery of pure and highly reactive compounds can be pursued at (a qualitatively and quantitatively attractive) economical scale, human clinical trials would be of interest in order to prove their efficacy and safety, positioning Taraxacum as an important commercial source of natural drugs. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  7. Cellulase-assisted extraction and antibacterial activity of polysaccharides from the dandelion Taraxacum officinale.

    PubMed

    Wang, Hong-Bin

    2014-03-15

    In the present study, we investigated the cellulase-assisted extraction and antibacterial activity of water-soluble polysaccharides from the dandelion Taraxacum officinale. The extraction conditions, optimized for improving yield, were as follows: time, 46.11 min; temperature, 54.87 °C; pH, 4.51 and cellulase enzyme, 4000 U/g. Under these conditions, the yield of polysaccharides from dandelion (PD) reached 20.67% (w/w). The sugar content of PD was 95.6% (w/w), and it displayed high antibacterial activity at a concentration of 100mg/mL against Escherichia coli, Bacillus subtilis and Staphylococcus aureus. These results indicate that PD may be a viable option for use as a food preservative. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. Quality control of herbs: determination of amino acids in Althaea officinalis, Matricaria chamomilla and Taraxacum officinale.

    PubMed

    Qureshi, Muhammad Nasimullah; Stecher, Guenther; Bonn, Guenther Karl

    2014-05-01

    Analysis of raw materials and final products need reliable methods for the standardization of natural product drugs. Legal guideline also emphasizes on the qualitative and quantitative analyses of the plant constituents in an herbal product. In this study, thin layer chromatography (TLC) and amino acid analyzer was used for the determination of amino acids in plant extracts. Samples for this study were standards and aqueous extracts from Althaea officinalis, Matricaria chamomilla and Taraxacum officinale. Different amino acids in the extracts were detected through TLC. An automatic amino acid analyzer was used for the quantification of amino acids in the plant extracts under study.

  9. Taraxacum officinale protects against cholecystokinin-induced acute pancreatitis in rats

    PubMed Central

    Seo, Sang-Wan; Koo, Hyun-Na; An, Hyo-Jin; Kwon, Kang-Beom; Lim, Byung-Cheal; Seo, Eun-A; Ryu, Do-Gon; Moon, Goo; Kim, Hong-Yeoul; Kim, Hyung-Min; Hong, Seung-Heon

    2005-01-01

    AIM: Taraxacum officinale (TO) has been frequently used as a remedy for inflammatory diseases. The aim of this study was to investigate the effect of TO on cholecystokinin (CCK)-octapeptide-induced acute pancreatitis in rats. METHODS: TO at 10 mg/kg was orally administered, followed by 75 μg/kg CCK octapeptide injected subcutaneously three times after 1, 3 and 5 h. This whole procedure was repeated for 5 d. We determined the pancreatic weight/body weight ratio, the levels of pancreatic HSP60 and HSP72, and the secretion of pro-inflammatory cytokines. Repeated CCK octapeptide treatment resulted in typical laboratory and morphological changes of experimentally-induced pancreatitis. RESULTS: TO significantly decreased the pancreatic weight/body weight ratio in CCK octapeptide-induced acute pancreatitis. TO also increased the pancreatic levels of HSP60 and HSP72. Additionally, the secretion of IL-6 and TNF-α decreased in the animals treated with TO. CONCLUSION: TO may have a protective effect against CCK octapeptide-induced acute pancreatitis. PMID:15641154

  10. Antioxidant properties of Taraxacum officinale leaf extract are involved in the protective effect against hepatoxicity induced by acetaminophen in mice.

    PubMed

    Colle, Dirleise; Arantes, Leticia Priscilla; Gubert, Priscila; da Luz, Sônia Cristina Almeida; Athayde, Margareth Linde; Teixeira Rocha, João Batista; Soares, Félix Alexandre Antunes

    2012-06-01

    Acetaminophen (APAP) hepatotoxicity has been related to several cases of hepatitis, cirrhosis, and hepatic transplant. As APAP hepatotoxicity is related to reactive oxygen species (ROS) formation and excessive oxidative stress, natural antioxidant compounds have been tested as an alternative therapy to diminish the hepatic dysfunction induced by APAP. Taraxacum officinale Weber (Family Asteraceae), commonly known as dandelion, is used for medicinal purposes because of its choleretic, diuretic, antioxidant, anti-inflammatory, and hepatoprotective properties. This study evaluated the hepatoprotective activity of T. officinale leaf extract against APAP-induced hepatotoxicity. T. officinale was able to decrease thiobarbituric acid-reactive substance levels induced by 200 mg/kg APAP (p.o.), as well as prevent the decrease in sulfhydryl levels caused by APAP treatment. Furthermore, histopathological alterations, as well as the increased levels of serum aspartate and alanine aminotransferases caused by APAP, were prevented by T. officinale (0.1 and 0.5 mg/mL). In addition, T. officinale extract also demonstrated antioxidant activity in vitro, as well as scavenger activity against 2,2-diphenyl-1-picrylhydrazyl and nitric oxide radicals. Our results clearly demonstrate the hepatoprotective effect of T. officinale against the toxicity induced by APAP. The possible mechanisms involved include its scavenger activities against ROS and reactive nitrogen species, which are attributed to the content of phenolic compounds in the extract.

  11. Metal contamination in urban street sediment in Pisa (Italy) can affect the production of antioxidant metabolites in Taraxacum officinale Weber.

    PubMed

    Bretzel, Francesca; Benvenuti, Stefano; Pistelli, Laura

    2014-02-01

    Taraxacum officinale Weber (dandelion) is a very ubiquitous species, and it can grow in urban environments on metal-polluted sediments deposited in the gutters. This study represents a preliminary step to verify the presence of metals in sediments collected in urban streets in Pisa and to assess the alteration in dandelion metabolites in order to understand its adaptation to polluted environments. The soil and sediments were collected at three urban streets and analyzed for total and extractable Cr, Pb, Cu, Ni, and Zn. The total values of Pb and Zn in street sediments exceeded the limits for residential areas of soils. Zn was the most mobile of the metals analyzed. Floating cultivations trials were set up with dandelion seedlings and street sediments. The metals were analyzed in roots and leaves. Antioxidant power, anthocyanins, polyphenols, non-protein thiols (NP-TH) and chlorophylls were measured in dandelion leaves. The first two parameters (anthocyanins and antioxidant power) were higher in the polluted samples compared to the control; chlorophyll content was lower in the treated samples, whereas NP-TH showed no differences. NP-TH groups determined in roots were associated with the root content of Zn and Pb. These results indicate that dandelion can tolerate plant stress by altering its metabolite content.

  12. Taraxacum officinale and Urtica dioica extracts inhibit dengue virus serotype 2 replication in vitro.

    PubMed

    Flores-Ocelotl, María R; Rosas-Murrieta, Nora H; Moreno, Diego A; Vallejo-Ruiz, Verónica; Reyes-Leyva, Julio; Domínguez, Fabiola; Santos-López, Gerardo

    2018-03-16

    Urtica dioica, Taraxacum officinale, Calea integrifolia and Caesalpinia pulcherrima are widely used all over the world for treatment of different illnesses. In Mexico, these plants are traditionally used to alleviate or counteract rheumatism and inflammatory muscle diseases. In the present study we evaluated the activity of aqueous and methanolic extracts of these four plants, on the replication of dengue virus serotype 2 (DENV2). Extraction process was carried out in a Soxtherm® system at 60, 85 and 120 °C; a chemical fractionation in silica gel chromatography was performed and compounds present in the active fractions were identified by HPLC-DAD-ESI/MSn. The cytotoxic concentration and the inhibitory effect of extracts or fractions on the DENV2 replication were analyzed in the BHK-21 cell line (plaque forming assay). The half maximal inhibitory concentration (IC 50 ) and the selectivity index (SI) were calculated for the extracts and fractions. The methanolic extracts at 60 °C of T. officinale and U. dioica showed the higher inhibitory effects on DENV2 replication. After the chemical fractionation, the higher activity fraction was found for U. dioica and T. officinale, presenting IC 50 values of 165.7 ± 3.85 and 126.1 ± 2.80 μg/ml, respectively; SI values were 5.59 and 6.01 for each fraction. The compounds present in T. officinale, were luteolin and caffeoylquinic acids derivatives and quercertin diclycosides. The compounds in the active fraction of U. dioica, were, chlorogenic acid, quercertin derivatives and flavonol glycosides (quercetin and kaempferol). Two fractions from U. dioica and T. officinale methanolic extracts with anti-dengue activity were found. The compounds present in both fractions were identified, several recognized molecules have demonstrated activity against other viral species. Subsequent biological analysis of the molecules, alone or in combination, contained in the extracts will be carried out to develop therapeutics

  13. The diuretic effect in human subjects of an extract of Taraxacum officinale folium over a single day.

    PubMed

    Clare, Bevin A; Conroy, Richard S; Spelman, Kevin

    2009-08-01

    Taraxacum officinale (L.) Weber (Asteraceae) has been extensively employed as a diuretic in traditional folk medicine and in modern phytotherapy in Europe, Asia, and the Americas without prior clinical trial substantiation. In this pilot study, a high-quality fresh leaf hydroethanolic extract of the medicinal plant T. officinale (dandelion) was ingested by volunteers to investigate whether an increased urinary frequency and volume would result. Volume of urinary output and fluid intake were recorded by subjects. Baseline values for urinary frequency and excretion ratio (urination volume:fluid intake) were established 2 days prior to dandelion dosing (8 mL TID) and monitored throughout a 1-day dosing period and 24 hours postdosing. For the entire population (n = 17) there was a significant (p < 0.05) increase in the frequency of urination in the 5-hour period after the first dose. There was also a significant (p < 0.001) increase in the excretion ratio in the 5-hour period after the second dose of extract. The third dose failed to change any of the measured parameters. Based on these first human data, T. officinale ethanolic extract shows promise as a diuretic in humans. Further studies are needed to establish the value of this herb for induction of diuresis in human subjects.

  14. Hepatocurative potential of sesquiterpene lactones of Taraxacum officinale on carbon tetrachloride induced liver toxicity in mice.

    PubMed

    Mahesh, A; Jeyachandran, R; Cindrella, L; Thangadurai, D; Veerapur, V P; Muralidhara Rao, D

    2010-06-01

    The hepatocurative potential of ethanolic extract (ETO) and sesquiterpene lactones enriched fraction (SL) of Taraxacum officinale roots was evaluated against carbon tetrachloride (CCl 4 ) induced hepatotoxicity in mice. The diagnostic markers such as alanine aminotransferase (ALT), aspartate aminotransferase (AST), alkaline phosphatase (ALP) and total bilirubin contents were significantly elevated, whereas significant reduction in the level of reduced glutathione (GSH) and enhanced hepatic lipid peroxidation, liver weight and liver protein were observed in CCl 4 induced hepatotoxicity in mice. Post-treatment with ETO and SL significantly protected the hepatotoxicity as evident from the lower levels of hepatic enzyme markers, such as serum transaminase (ALT, AST), ALP and total bilirubin. Further, significant reduction in the liver weight and liver protein in drug-treated hepatotoxic mice and also reduced oxidative stress by increasing reduced glutathione content and decreasing lipid peroxidation level has been noticed. The histopathological evaluation of the liver also revealed that ETO and SL reduced the incidence of liver lesions induced by CCl 4 . The results indicate that sesquiterpene lactones have a protective effect against acute hepatotoxicity induced by the administration of CCl 4 in mice. Furthermore, observed activity of SL may be due to the synergistic action of two sesquiterpene lactones identified from enriched ethyl acetate fraction by HPLC method.

  15. The effects of Taraxacum officinale extracts (TOE) supplementation on physical fatigue in mice.

    PubMed

    Jinchun, Zhang; Jie, Chen

    2011-01-01

    The study is to investigate the effect of Taraxacum officinale extracts (TOE) supplementation on physical fatigue based on the forced swimming capacity in mice. Forty Kunming male mice were randomly divided into 4 groups, i.e., normal control (NC) and three doses of TOE treated group (High-dose, Middle-dose and Low-dose). Three TOE treated groups were treated by oral TOE with 10, 30 and 100mg/kg b.w respectively for a period of 42 days. The normal control group was given a corresponding volume of sterile distilled water. After 6 weeks, the forced swimming capacity and blood biochemical parameters in mice were measured, and the result showed that TOE had an anti- physical fatigue effect. It enhanced the maximum swimming capacity of mice, effectively delayed the lowering of glucose in the blood, and prevented the increase in lactate and triglyceride concentrations.

  16. Identification, quantification, spatiotemporal distribution and genetic variation of major latex secondary metabolites in the common dandelion (Taraxacum officinale agg.).

    PubMed

    Huber, Meret; Triebwasser-Freese, Daniella; Reichelt, Michael; Heiling, Sven; Paetz, Christian; Chandran, Jima N; Bartram, Stefan; Schneider, Bernd; Gershenzon, Jonathan; Erb, Matthias

    2015-07-01

    The secondary metabolites in the roots, leaves and flowers of the common dandelion (Taraxacum officinale agg.) have been studied in detail. However, little is known about the specific constituents of the plant's highly specialized laticifer cells. Using a combination of liquid and gas chromatography, mass spectrometry and nuclear magnetic resonance spectrometry, we identified and quantified the major secondary metabolites in the latex of different organs across different growth stages in three genotypes, and tested the activity of the metabolites against the generalist root herbivore Diabrotica balteata. We found that common dandelion latex is dominated by three classes of secondary metabolites: phenolic inositol esters (PIEs), triterpene acetates (TritAc) and the sesquiterpene lactone taraxinic acid β-D-glucopyranosyl ester (TA-G). Purification and absolute quantification revealed concentrations in the upper mgg(-1) range for all compound classes with up to 6% PIEs, 5% TritAc and 7% TA-G per gram latex fresh weight. Contrary to typical secondary metabolite patterns, concentrations of all three classes increased with plant age. The highest concentrations were measured in the main root. PIE profiles differed both quantitatively and qualitatively between plant genotypes, whereas TritAc and TA-G differed only quantitatively. Metabolite concentrations were positively correlated within and between the different compound classes, indicating tight biosynthetic co-regulation. Latex metabolite extracts strongly repelled D. balteata larvae, suggesting that the latex constituents are biologically active. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. The Diuretic Effect in Human Subjects of an Extract of Taraxacum officinale Folium over a Single Day

    PubMed Central

    Clare, Bevin A.; Conroy, Richard S.

    2009-01-01

    Abstract Background Taraxacum officinale (L.) Weber (Asteraceae) has been extensively employed as a diuretic in traditional folk medicine and in modern phytotherapy in Europe, Asia, and the Americas without prior clinical trial substantiation. Objectives In this pilot study, a high-quality fresh leaf hydroethanolic extract of the medicinal plant T. officinale (dandelion) was ingested by volunteers to investigate whether an increased urinary frequency and volume would result. Design Volume of urinary output and fluid intake were recorded by subjects. Baseline values for urinary frequency and excretion ratio (urination volume:fluid intake) were established 2 days prior to dandelion dosing (8 mL TID) and monitored throughout a 1-day dosing period and 24 hours postdosing. Results For the entire population (n = 17) there was a significant (p < 0.05) increase in the frequency of urination in the 5-hour period after the first dose. There was also a significant (p < 0.001) increase in the excretion ratio in the 5-hour period after the second dose of extract. The third dose failed to change any of the measured parameters. Conclusions Based on these first human data, T. officinale ethanolic extract shows promise as a diuretic in humans. Further studies are needed to establish the value of this herb for induction of diuresis in human subjects. PMID:19678785

  18. Chemical constituents from roots of Taraxacum formosanum.

    PubMed

    Leu, Yann-Lii; Wang, Yu-Li; Huang, Shih-Chin; Shi, Li-Shian

    2005-07-01

    Two new compounds, taraxafolide (1) and (+)-taraxafolin-B (2) together with eighteen known compounds, which include one sesquiterpene, thirteen benzenoids, two indole alkaloids, one pyridine derivative and steroid mixtures were isolated and characterized from the fresh roots of Taraxacum formosanum. Structures of new compounds were determined by spectral analysis. (+)-Taraxafolin-B had the bioactive caffeic acid moiety, but its activity was weaker than alpha-tocopherol in DPPH radicals scavenging activity assay.

  19. Therapeutic potential of Taraxacum officinale against HCV NS5B polymerase: In-vitro and In silico study.

    PubMed

    Rehman, Sidra; Ijaz, Bushra; Fatima, Nighat; Muhammad, Syed Aun; Riazuddin, Sheikh

    2016-10-01

    Discovery of alternative and complementary regimens for HCV infection treatment is a need of time from clinical as well as economical point of views. Low cost of bioactive natural compounds production, high biochemical diversity and inexistent/milder side effects contribute to new therapies. Aim of this study is to clarify anti-HCV role of Taraxacum officinale, a natural habitat plant rich of flavonoids. In this study, methanol extract of T. officinale leaves was initially analyzed for its cytotoxic activity in human hepatoma (Huh-7) and CHO cell lines. Hepatoma cells were transfected with pCR3.1/Flagtag/HCV NS5B gene cloned vector (genotype 1a) along with T. officinale extract. Considering NS5B polymerase as potential therapeutic drug target, twelve phytochemicals of T. officinale were selected as ligands for molecular interaction with NS5B protein using Molecular Operating Environment (MOE) software. Sofosbuvir (Sovaldi: brand name) currently approved as new anti-HCV drug, was used as standard in current study for comparative analysis in computational docking screening. HCV NS5B polymerase as name indicates plays key role in viral genome replication. On the basis of which NS5B gene is targeted for determining antiviral role of T. officinale extract and 65% inhibition of NS5B expression was documented at nontoxic dose concentration (200μg/ml) using Real-time PCR. In addition, 57% inhibition of HCV replication was recorded when incubating Huh-7 cells with high titer serum of HCV infected patients along with leaves extract. Phytochemicals for instance d-glucopyranoside (-31.212 Kcal/mol), Quercetin (-29.222 Kcal/mol), Luteolin (-26.941 Kcal/mol) and some others displayed least binding energies as compared to standard drug Sofosbuvir (-21.0746 Kcal/mol). Results of our study strongly revealed that T. officinale leaves extract potentially blocked the viral replication and NS5B gene expression without posing any toxic effect on normal fibroblast cells of body

  20. Environmental Factors Determining the Accumulation of Metals: Cu, Zn, Mn and Fe in Tissues of Taraxacum sp. sect. Taraxacum.

    PubMed

    Królak, Elżbieta; Marciniuk, Jolanta; Popijantus, Katarzyna; Wasilczuk, Paulina; Kasprzykowski, Zbigniew

    2018-05-19

    The genus Taraxacum is used in the assessment of soil contamination with heavy metals. There are relatively few studies using sections or species representing this genus. The presented research was conducted in Poland on two habitats, varied in terms of nutrients and metals content. The content of selected metals in leaves and roots of Taraxacum sect. Taraxacum was determined. It was found that in the conditions of increased content of metals in the soil, the analysed species representing sect. Taraxacum accumulate higher amounts of metals in their leaves and roots. Factors of translocation of selected metals from roots to leaves of Taraxacum species, representing the Taraxacum section, are affected by i.a. soil reaction and the content of Corg, Ntot. in the soil. No influence of soil properties on metal biological concentration factor was observed.

  1. Discovery of novel antimicrobial peptides with unusual cysteine motifs in dandelion Taraxacum officinale Wigg. flowers.

    PubMed

    Astafieva, A A; Rogozhin, E A; Odintsova, T I; Khadeeva, N V; Grishin, E V; Egorov, Ts A

    2012-08-01

    Three novel antimicrobial peptides designated ToAMP1, ToAMP2 and ToAMP3 were purified from Taraxacum officinale flowers. Their amino acid sequences were determined. The peptides are cationic and cysteine-rich and consist of 38, 44 and 42 amino acid residues for ToAMP1, ToAMP2 and ToAMP3, respectively. Importantly, according to cysteine motifs, the peptides are representatives of two novel previously unknown families of plant antimicrobial peptides. ToAMP1 and ToAMP2 share high sequence identity and belong to 6-Cys-containing antimicrobial peptides, while ToAMP3 is a member of a distinct 8-Cys family. The peptides were shown to display high antimicrobial activity both against fungal and bacterial pathogens, and therefore represent new promising molecules for biotechnological and medicinal applications. Crown Copyright © 2012. Published by Elsevier Inc. All rights reserved.

  2. Comparison of different methodologies for detailed screening of Taraxacum officinale honey volatiles.

    PubMed

    Jerković, Igor; Marijanović, Zvonimir; Kranjac, Marina; Radonić, Ani

    2015-02-01

    Headspace solid-phase microextraction (HS-SPME), ultrasonic solvent extraction (USE) and solid phase extraction (SPE), followed by GC-FID/MS were used for screening of dandelion (Taraxacum officinale Weber) honey headspace, volatiles and semi-volatiles. The obtained results constitute a breakthrough towards screening of dandelion honey since dominant compounds identified in the extracts were not previously reported for this honey type. Nitriles dominated in the headspace, particularly 3-methylpentanenitrile (up to 29.9%) and phenylacetonitrile (up to 20.9%). Lower methyl branched aliphatic acids and norisoprenoids were relevant minor constituents of the headspace. The extracts contained phenylacetic acid (up to 24.0%) and dehydrovomifoliol (up to 19.3%) as predominant compounds, while 3-methylpentanenitrile and phenylacetonitrile were detected in the extracts in minor abundance. Dehydrovomifoliol can be considered more characteristic for dandelion honey in distinction from phenylacetic acid. Low molecular aliphatic acids, benzene derivatives and an array of higher aliphatic compounds were also found in the extracts. The results of SPE/GC-FID/MS were very similar to USE/GC-FID/MS with the solvent dichloromethane. The use of all applied methodologies was relevant for the comprehensive chemical fingerprinting of dandelion honey volatiles.

  3. Optimization of methyl jasmonate and β-cyclodextrin for enhanced production of taraxerol and taraxasterol in (Taraxacum officinale Weber) cultures.

    PubMed

    Sharma, Kiran; Zafar, Rasheeduz

    2016-06-01

    Taraxacum officinale Weber (TO) commonly known as "dandelion", is a tropical Asian medicinal plant which contains taraxasterol (TX) and taraxerol (TA) in its roots, which are reported to be commercially important anticancer compounds. The main objective of the present study was to evaluate the increase in yield of TX and TA through elicitation by addition of abiotic elictors like methyl jasmonate (MJ) and β-cyclodextrin (CD), to the root callus suspension cultures of TO. The root callus suspension was maintained on Murashige and Skoog's (MS) medium MS + IAA + BA + 2, 4-D (0.5 ppm + 1 ppm + 0.5 ppm). The concentrations of the abiotic elicitors MJ and CD were optimized using central composite design (CCD) and quantification of TA and TX in elicited cultures was done by High Performance Liquid Chromatography (HPLC) analysis. It was observed that MJ at a concentration of 0.2 mM showed good increase in content of TX to 0.032% w/w and at concentrations 0.05 mM, 0.1 mM and 0.2 mM showed similar increase in TA content to 0.018% w/w, whereas CD at the concentration of 25 mM showed highest increase in TX content to 0.036% w/w and at the concentrations of 25 mM, 50 mM showed increase in TA content to 0.023% w/w as compared to the plant root (PR) which showed content of TX as 0.0299% w/w and TA as 0.0169% w/w. From the present investigation it was concluded that out of the two abiotic elicitors MJ and CD, CD was found to be more effective to increase TA and TX content in Dandelion cell cultures. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  4. Sesquiterpenoids and phenolics from roots of Taraxacum udum.

    PubMed

    Michalska, Klaudia; Marciniuk, Jolanta; Kisiel, Wanda

    2010-07-01

    From roots of Taraxacum udum, two new and four known sesquiterpene lactones were isolated, together with five known phenolic compounds. The new compounds were characterized as 11beta, 13-dihydrotaraxinic acid and taraxinic acid 6-O-acetyl-beta-glucopyranosyl ester by spectroscopic methods, especially 1D and 2D NMR, and by comparison with structurally related compounds. The plant material was shown to be a good source of taraxinic acid derivatives. Copyright 2009 Elsevier B.V. All rights reserved.

  5. Indicators of environmental contamination by heavy metals in leaves of Taraxacum officinale in two zones of the metropolitan area of Mexico City.

    PubMed

    Gómez-Arroyo, Sandra; Barba-García, Arisbel; Arenas-Huertero, Francisco; Cortés-Eslava, Josefina; de la Mora, Michel Grutter; García-Martínez, Rocío

    2018-02-01

    The present study was designed to detect the effect of heavy metals in two zones of the Metropolitan Area of Mexico City (MAMC), the Centro de Ciencias de la Atmósfera (CCA), and the Altzomoni station in the Iztaccíhuatl-Popocatépetl National Park. Taraxacum officinale was selected as the indicator organism of responses to atmospheric contamination by heavy metals. Determinations of heavy metals were performed, and total mRNA was extracted to quantify the expression of microRNA398 (miR398), superoxide dismutase 2 (CSD2), and the amounts of free radicals using the bromide of 3-(4,5-dimethylthiazole-2-ilo)-2,5-diphenyltetrazole (MTT) salts reduction assay. Results from the Altzomoni station showed high concentrations of five heavy metals, especially Aluminum, while three heavy metals were identified in the CCA-UNAM zone, most importantly, Vanadium, both in the dry season; miR398 expression presented subtle changes but was greater in the leaves from the stations with higher concentrations of heavy metals. Observations included a significant expression of CSD2, mainly in the dry season in both study zones, where levels were significant with respect to controls (p < 0.05). Reduced MTT was also higher in the dry season than in the rainy season (p < 0.05). In conclusion, the increase in heavy metals on the leaves of Taraxacum officinale induces increased expression of the CSD2 gene and reduced MTT; thus, they can be used as indicators for biomonitoring heavy metal concentrations.

  6. Latitudinal variation in sensitivity of flower bud formation to high temperature in Japanese Taraxacum officinale.

    PubMed

    Yoshie, Fumio

    2014-05-01

    Control of flowering time plays a key role in the successful range expansion of plants. Taraxacum officinale has expanded throughout Japan during the 110 years after it was introduced into a cool temperate region. The present study tested a hypothesis that there is a genetic difference in the bud formation time in relation to temperature along latitudinal gradient of T. officinale populations. In Experiment 1, plants from three populations at different latitudes (26, 36, and 43°N) were grown at three temperatures. Time to flower bud appearance did not significantly differ among the three populations when plants were grown at 14 °C, whereas it increased with increasing latitude when grown at 19 and 24 °C. Rosette diameter was not different among the populations, indicating that the variation in bud formation time reflected a difference in genetic control rather than size variation. The latitudinal variation in bud appearance time was confirmed by Experiment 2 in which plants from 17 population were used. In Experiment 3, the size of plants that exhibited late-flowering was studied to test a hypothesis that the variation in flowering time reflects dormancy of vegetative growth, but the late-flowering plants were found to continue growth, indicating that vegetative dormancy was not the cause of the variation. The results clearly indicate that the degree of suppression of flower bud formation at high temperature decreases with latitude from north to south, which is under genetic control.

  7. Hepatoprotective effect of Taraxacum officinale leaf extract on sodium dichromate-induced liver injury in rats.

    PubMed

    Hfaiedh, Mbarka; Brahmi, Dalel; Zourgui, Lazhar

    2016-03-01

    Taraxacum officinale (L.) Weber, commonly known as Dandelion, has been widely used as a folkloric medicine for the treatment of liver and kidney disorders and some women diseases such as breast and uterus cancers. The main objective of the present study was to assess the efficiency of T. officinale leaf extract (TOE) in treating sodium dichromate hazards; it is a major environmental pollutant known for its wide toxic manifestations witch induced liver injury. TOE at a dose of 500 mg/kg b.w was orally administered once per day for 30 days consecutively, followed by 10 mg/kg b.w sodium dichromate was injected (intraperitoneal) for 10 days. Our results using Wistar rats showed that sodium dichromate significantly increased serum biochemical parameters. In the liver, it was found to induce an oxidative stress, evidenced from increase in lipid peroxidation and changes in antioxidative activities. In addition, histopathological observation revealed that sodium dichromate causes acute liver damage, necrosis of hepatocytes, as well as DNA fragmentation. Interestingly, animals that were pretreated with TOE, prior to sodium dichromate administration, showed a significant hepatoprotection, revealed by a significant reduction of sodium dichromate-induced oxidative damage for all tested markers. These finding powerfully supports that TOE was effective in the protection against sodium dichromate-induced hepatotoxicity and genotoxicity and, therefore, suggest a potential therapeutic use of this plant as an alternative medicine for patients with acute liver diseases. © 2014 Wiley Periodicals, Inc.

  8. Dandelion (Taraxacum officinale) and Agrimony (Agrimonia eupatoria) as Indicators of Geogenic Contamination of Flysch Soils in Eastern Slovakia.

    PubMed

    Čurlík, Ján; Kolesár, Martin; Ďurža, Ondrej; Hiller, Edgar

    2016-04-01

    Contents of potentially toxic elements Fe, Mn, Cr, Ni, Co, V, Cu, and Mo were determined in common dandelion (Taraxacum officinale) and agrimony (Agrimonia eupatoria) to show their usefulness as bioindicators of geogenic soil pollution. Both plants were collected on geochemically anomalous soils developed on flysch sedimentary rocks (Paleogene) of Eastern Slovakia, which also are composed of weathered detritus of some ultramafic rocks. Generally, contents of the investigated association of potentially toxic elements are highly increased in these "serpentine"-like soils. Elevated concentrations were detected in both shoots and roots of the plants. The highest values, which exceed world average values for plants, were observed for Ni content. They ranged from 1.7 to 16.3 mg kg(-1) in dandelion and from 1.6 to 22.6 mg kg(-1) in agrimony. Essential elements, such as Mo, Cu, and Mn, were the most concentrated in plants, whereas Co, V, and Cr were the least concentrated. Although the bioindication value of the common dandelion for anthropogenic soil pollution is well known, it is not mentioned for agrimony in literature, and no data exist to indicate the geogenic pollution for both plants. Dandelion and agrimony are widely used as herbal drugs; therefore, our intention also was to point out another fact, namely, possible high uptake of potentially toxic elements by herbal plants growing on similar soils.

  9. Assessment of metals content in dandelion (Taraxacum officinale) leaves grown on mine tailings

    NASA Astrophysics Data System (ADS)

    Levei, Levente; Andrei, Mariana Lucia; Hoaghia, Maria Alexandra; Ozunu, Alexandru

    2017-12-01

    Dandelion (Taraxacum officinale) is one of the plant species that has the ability to spontaneously grow on mine tailings, due to its high tolerance for harsh environmental conditions (low nutrients level, high metal contents). The concentrations of Cd, Cu, Pb and Zn were determined in tailings and dandelion leaves grown on nonferrous mine tailings from Romania, while the metal accumulation was assessed by transfer factors (TFs) calculated as the ratio between the metal concentration in plant leaves and in tailings underneath. The results showed that the metal concentrations in tailings ranged between 0.4-8.0 mg/kg Cd, 20-1300 mg/kg Cu, 27-570 mg/kg Pb and 48-800 mg/kg Zn, while the metal concentrations in dandelion ranged between 0.2-4.8 mg/kg Cd, 6.2-17 mg/kg Cu, 0.5-75 mg/kg Pb and 27-260 mg/kg Zn. The TFs were below 0.8 for Cd and Zn and below 0.4 for Cu and Pb and decreased in the following order Cd≥Zn>Cu≥Pb, suggesting the Cd and Zn accumulation capability of dandelion.

  10. Antioxidant properties of Taraxacum officinale fruit extract are involved in the protective effect against cellular death induced by sodium nitroprusside in brain of rats.

    PubMed

    Colle, Dirleise; Arantes, Letícia Priscilla; Rauber, Ricardo; de Mattos, Sérgio Edgar Campos; Rocha, João Batista Teixeira da; Nogueira, Cristina Wayne; Soares, Félix Alexandre Antunes

    2012-07-01

    Taraxacum officinale Weber (Asteraceae), known as dandelion, is used for medicinal purposes due to its choleretic, diuretic, antitumor, antioxidant, antiinflammatory, and hepatoprotective properties. We sought to investigate the protective activity of T. officinale fruit extract against sodium nitroprusside (SNP)-induced decreased cellular viability and increased lipid peroxidation in the cortex, hippocampus, and striatum of rats in vitro. To explain the mechanism of the extract's antioxidant activity, its putative scavenger activities against NO, DPPH·, OH·, and H(2)O(2) were determined. Slices of cortex, hippocampus, and striatum were treated with 50 μM SNP and T. officinale fruit ethanolic extract (1-20 µg/mL) to determine cellular viability by MTT reduction assay. Lipid peroxidation was measure in cortical, hippocampal and striatal slices incubates with SNP (5 µM) and T. officinale fruit extract (1-20 µg/mL). We also determined the scavenger activities of T. officinale fruit extract against NO·, DPPH·, OH·, and H(2)O(2), as well as its iron chelating capacity. The extract (1, 5, 10, and 20 μg/mL) protected against SNP-induced decreases in cellular viability and increases in lipid peroxidation in the cortex, hippocampus, and striatum of rats. The extract had scavenger activity against DPPH· and NO· at low concentrations and was able to protect against H(2)O(2) and Fe(2+)-induced deoxyribose oxidation. T. officinale fruit extract has antioxidant activity and protects brain slices against SNP-induced cellular death. Possible mechanisms of action include its scavenger activities against reactive oxygen species (ROS) and reactive nitrogen species (RNS), which are attributed to the presence of phenolic compounds in the extract.

  11. Taraxacum officinale Weber extracts inhibit LPS-induced oxidative stress and nitric oxide production via the NF-κB modulation in RAW 264.7 cells.

    PubMed

    Park, Chung Mu; Park, Ji Young; Noh, Kyung Hee; Shin, Jin Hyuk; Song, Young Sun

    2011-01-27

    The common dandelion (Taraxacum officinale G.H. Weber ex Wiggers, Asteraceae) has been widely used in folklore medicine to treat dyspepsia, heartburn, and spleen and liver disorders. To compare the antioxidative and anti-inflammatory activities of Taraxacum officinale methanol extract (TOME) and water extract (TOWE) in lipopolysaccharide (LPS)-stimulated RAW 264.7 cells and assess their constitutional differences, including luteolin, chicoric acid, and total phenol content. Antioxidative enzyme activities, nitric oxide (NO) production, and inducible NO synthase (iNOS) and nuclear factor (NF)-κB expression were estimated by biochemical analysis, the Griess reaction, reverse transcription-polymerase chain reaction, western hybridization, and electrophoretic mobility shift assay. High-performance liquid chromatography and the Folin-Ciocalteau method were used to analyze functional phytochemicals and total phenol content. TOME and TOWE significantly reduced NO production with an IC(50) of 79.9 and 157.5 μg/mL, respectively, without cytotoxicity. Depleted glutathione (GSH) and antioxidative enzyme activities, including superoxide dismutase, catalase, GSH-peroxidase, and GSH-reductase, were restored by dandelion extracts. Both extracts inhibited LPS-stimulated iNOS gene expression and that of its transcription factor, NF-κB, in parallel with nitrite reduction. TOME showed more potent antioxidative and anti-inflammatory capacities than TOWE, which was attributable to its high total phenol, luteolin, and chicoric acid content. These results indicate that TOME and TOWE inhibit oxidative stress and inflammatory responses through elevated de novo synthesis of antioxidative enzymes and suppression of iNOS expression by NF-κB inactivation. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  12. Effects of Taraxacum officinale on fatigue and immunological parameters in mice.

    PubMed

    Lee, Bo-Ra; Lee, Jong-Hyun; An, Hyo-Jin

    2012-11-07

    In Korean herbal medicine dandelion (Taraxacum officinale, TO) has been used to improve energy levels and health. However, the effects of TO in experimental models remain unclear. We examined the anti-fatigue and immune-enhancing effects of TO in mice by performing a forced swimming test (FST) and in vitro by using peritoneal macrophages, respectively. After daily oral administration of TO, blood biochemical parameters related to fatigue were measured after the FST. FST immobility time was significantly decreased in the TO-treated group (100 mg/kg) on the tenth day. TO (10 and 100 mg/kg) treatment significantly increased glucose levels, acting as an energy source. The level of lactic dehydrogenase, which is an accurate indicator of muscle damage, tended to decline after TO administration (10 and 100 mg/kg). When TO (100 mg/kg) was orally administered to mice, blood urea nitrogen levels decreased significantly. We also examined the effect of TO on the production of cytokines and nitric oxide (NO) in mouse peritoneal macrophages. When TO was used in combination with recombinant interferon-gamma (rIFN-γ), a noticeable cooperative induction of tumor necrosis factor-alpha (TNF-α), interleukin (IL)-12p70, and IL-10 production was observed. Furthermore, in peritoneal macrophages, rIFN-γ plus TO treatment significantly increased the production of NO through inducible nitric oxide synthase (iNOS) induction. Taken together, these results suggest that TO improves fatigue-related indicators and immunological parameters in mice.

  13. A novel cysteine-rich antifungal peptide ToAMP4 from Taraxacum officinale Wigg. flowers.

    PubMed

    Astafieva, A A; Rogozhin, Eugene A; Andreev, Yaroslav A; Odintsova, T I; Kozlov, S A; Grishin, Eugene V; Egorov, Tsezi A

    2013-09-01

    A novel peptide named ToAMP4 was isolated from Taraxacum officinale Wigg. flowers by a combination of acetic acid extraction and different types of chromatography: affinity, size-exclusion, and RP-HPLC. The amino acid sequence of ToAMP4 was determined by automated Edman degradation. The peptide is basic, consists of 41 amino acids, and incorporates three disulphide bonds. Due to the unusual cysteine spacing pattern, ToAMP4 does not belong to any known plant AMP family, but classifies together with two other antimicrobial peptides ToAMP1 and ToAMP2 previously isolated from the dandelion flowers. To study the biological activity of ToAMP4, it was successfully produced in a prokaryotic expression system as a fusion protein with thioredoxin. The recombinant peptide was shown to be identical to the native ToAMP4 by chromatographic behavior, molecular mass, and N-terminal amino acid sequence. The peptide displays broad-spectrum antifungal activity against important phytopathogens. Two ToAMP4-mediated inhibition strategies depending on the fungus were demonstrated. The results obtained add to our knowledge on the structural and functional diversity of AMPs in plants. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  14. Novel proline-hydroxyproline glycopeptides from the dandelion (Taraxacum officinale Wigg.) flowers: de novo sequencing and biological activity.

    PubMed

    Astafieva, Alexandra A; Enyenihi, Atim A; Rogozhin, Eugene A; Kozlov, Sergey A; Grishin, Eugene V; Odintsova, Tatyana I; Zubarev, Roman A; Egorov, Tsezi A

    2015-09-01

    Two novel homologous peptides named ToHyp1 and ToHyp2 that show no similarity to any known proteins were isolated from Taraxacum officinale Wigg. flowers by multidimensional liquid chromatography. Amino acid and mass spectrometry analyses demonstrated that the peptides have unusual structure: they are cysteine-free, proline-hydroxyproline-rich and post-translationally glycosylated by pentoses, with 5 carbohydrates in ToHyp2 and 10 in ToHyp1. The ToHyp2 peptide with a monoisotopic molecular mass of 4350.3Da was completely sequenced by a combination of Edman degradation and de novo sequencing via top down multistage collision induced dissociation (CID) and higher energy dissociation (HCD) tandem mass spectrometry (MS(n)). ToHyp2 consists of 35 amino acids, contains eighteen proline residues, of which 8 prolines are hydroxylated. The peptide displays antifungal activity and inhibits growth of Gram-positive and Gram-negative bacteria. We further showed that carbohydrate moieties have no significant impact on the peptide structure, but are important for antifungal activity although not absolutely necessary. The deglycosylated ToHyp2 peptide was less active against the susceptible fungus Bipolaris sorokiniana than the native peptide. Unique structural features of the ToHyp2 peptide place it into a new family of plant defense peptides. The discovery of ToHyp peptides in T. officinale flowers expands the repertoire of molecules of plant origin with practical applications. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  15. Effective range of reproductive interference exerted by an alien dandelion, Taraxacum officinale, on a native congener.

    PubMed

    Takakura, Koh-Ichi; Matsumoto, Takashi; Nishida, Takayoshi; Nishida, Sachiko

    2011-03-01

    Reproductive interference (RI), defined as the fitness cost of interspecific sexual interactions, such as interspecific pollen transfer (IPT) in plants, is ecologically important. Theoretically, RI could result in competitive exclusion, as it operates in a frequency-dependent manner. Additionally, IPT may have a greater range than resource competition, although information about the range of IPT is lacking. In the present study, we measured the range of IPT exerted by Taraxacum officinale (an alien species) on a native dandelion, T. japonicum. We used two approaches. In one, we analyzed the RI effect on a native seed set at three spatial scales. In the second, we tracked IPT from alien to native flower heads using fluorescent pigments as markers. We estimated that pollination distances were in the order of several meters. These distances exceeded the mean distance from each native plant to the nearest alien. As hypothesized, the effect of RI reached farther than neighboring individuals. These data indicate the spatial range from which alien dandelions should be removed to allow the conservation of natives.

  16. Genotypic diversity effects on the performance of Taraxacum officinale populations increase with time and environmental favorability.

    PubMed

    Drummond, Emily B M; Vellend, Mark

    2012-01-01

    Within-population genetic diversity influences many ecological processes, but few studies have examined how environmental conditions may impact these short-term diversity effects. Over four growing seasons, we followed experimental populations of a clonal, ubiquitous weed, Taraxacum officinale, with different numbers of genotypes in relatively favorable fallow field and unfavorable mowed lawn environmental treatments. Population performance (measured as total leaf area, seed production or biomass) clearly and consistently increased with diversity, and this effect became stronger over the course of the experiment. Diversity effects were stronger, and with different underlying mechanisms, in the fallow field versus the mowed lawn. Large genotypes dominated in the fallow field driving overyielding (via positive selection effects), whereas in the mowed lawn, where performance was limited by regular disturbance, there was evidence for complementarity among genotypes (with one compact genotype in particular performing better in mixture than monoculture). Hence, we predict stronger genotypic diversity effects in environments where intense intraspecific competition enhances genotypic differences. Our four-year field experiment plus seedling establishment trials indicate that genotypic diversity effects have far-reaching and context-dependent consequences across generations.

  17. MS-Based Metabolite Profiling of Aboveground and Root Components of Zingiber mioga and Officinale.

    PubMed

    Han, Ji Soo; Lee, Sunmin; Kim, Hyang Yeon; Lee, Choong Hwan

    2015-09-03

    Zingiber species are members of the Zingiberaceae family, and are widely used for medicinal and food purposes. In this study aboveground and root parts of Zingiber mioga and Zingiber officinale were subjected to metabolite profiling by ultra-performance liquid chromatography-quadrupole-time-of-flight mass spectrometry (UPLC-Q-TOF-MS) and gas chromatography time-of-flight mass spectrometry (GC-TOF-MS) in order to characterize them by species and parts and also to measure bioactivities. Both primary and secondary metabolites showed clear discrimination in the PCA score plot and PLS-DA by species and parts. Tetrahydrocurcumin, diarylheptanoid, 8-gingerol, and 8-paradol were discriminating metabolites between Z. mioga and Z. officinale that were present in different quantities. Eleven flavonoids, six amino acids, six organic acids, four fatty acids, and gingerenone A were higher in the aboveground parts than the root parts. Antioxidant activities were measured and were highest in the root part of Z. officinale. The relatively high contents of tetrahydrocurcumin, diarylheptanoid, and galanganol C in the root part of Z. officinale showed highly positive correlation with bioactivities based on correlation assay. On the basis of these results, we can suggest different usages of structurally different parts of Zingiber species as food plants.

  18. Genotypic Diversity Effects on the Performance of Taraxacum officinale Populations Increase with Time and Environmental Favorability

    PubMed Central

    Drummond, Emily B. M.; Vellend, Mark

    2012-01-01

    Within-population genetic diversity influences many ecological processes, but few studies have examined how environmental conditions may impact these short-term diversity effects. Over four growing seasons, we followed experimental populations of a clonal, ubiquitous weed, Taraxacum officinale, with different numbers of genotypes in relatively favorable fallow field and unfavorable mowed lawn environmental treatments. Population performance (measured as total leaf area, seed production or biomass) clearly and consistently increased with diversity, and this effect became stronger over the course of the experiment. Diversity effects were stronger, and with different underlying mechanisms, in the fallow field versus the mowed lawn. Large genotypes dominated in the fallow field driving overyielding (via positive selection effects), whereas in the mowed lawn, where performance was limited by regular disturbance, there was evidence for complementarity among genotypes (with one compact genotype in particular performing better in mixture than monoculture). Hence, we predict stronger genotypic diversity effects in environments where intense intraspecific competition enhances genotypic differences. Our four-year field experiment plus seedling establishment trials indicate that genotypic diversity effects have far-reaching and context-dependent consequences across generations. PMID:22348004

  19. Comparison of remote consequences in Taraxacum officinale seed progeny collected in radioactively or chemically contaminated areas.

    PubMed

    Pozolotina, Vera N; Antonova, Elena V; Bezel, Victor S

    2012-10-01

    We carried out a comparative study of seed progeny taken from the dandelion (Taraxacum officinale s.l.) coenopopulations exposed for a long time to radioactive or chemical contamination originated from the East-Ural radioactive trace zone (EURT) or Nizhniy Tagil metallurgical combine impact zone (NTMC), respectively. Coenopopulations from EURT, NTMC and background areas significantly differ from each other with respect to the qualitative and quantitative composition of allozyme phenes. An analysis of clonal diversity showed the uniqueness of all coenopopulations in terms of their phenogenetics. P-generation seed viability was found to decrease in a similar manner as all types of the industrial stress increased. Studies of F (1)-generation variability in radio- and metal resistance by family analysis showed that seed progeny from EURT impact zone possessed high viability that, however, was accompanied by development of latent injuries resulting in low resistance to additional man-caused impacts. In F (1)-generation originated from NTMC zone, high seed viability was combined with increased resistance to provocative heavy metal and radiation exposure. No significant differences in responses to 'habitual' and 'new' factors, i.e. pre-adaptation effect, were found in samples from the contaminated areas.

  20. Cuticular wax coverage and composition differ among organs of Taraxacum officinale.

    PubMed

    Guo, Yanjun; Busta, Lucas; Jetter, Reinhard

    2017-06-01

    Primary plant surfaces are coated with hydrophobic cuticular waxes to minimize non-stomatal water loss. Wax compositions differ greatly between plant species and, in the few species studied systematically so far, also between organs, tissues, and developmental stages. However, the wax mixtures of more species in diverse plant families must be investigated to assess overall wax variability, and ultimately to correlate organ-specific composition with local water barrier properties. Here, we present comprehensive analyses of the waxes covering five organs of Taraxacum officinale (dandelion), to help close a gap in our understanding of wax chemistry in the Asteraceae family. First, novel wax constituents of the petal wax were identified as C 25 6,8- and 8,10-ketols as well as C 27 6,8- and 8,10-ketols. Nine other component classes (fatty acids, primary alcohols, esters, aldehydes, alkanes, triterpenols, triterpene acetates, sterols, and tocopherols) were detected in the wax mixtures covering leaves, peduncles, and petals, as well as fruit beaks and pappi. Wax coverages varied from 5 μg/cm 2 on peduncles to 37 μg/cm 2 on petals. Alcohols predominated in leaf wax, while both alcohols and alkanes were found in similar amounts on peduncles and petals, and mainly alkanes on the fruit beaks and pappi. Chain length distributions within the wax compound classes were similar between organs, centered around C 26 for fatty acids, alcohols, and aldehydes, and C 29 for alkanes. However, the quantities of homologs with longer chain lengths varied substantially between organs, reaching well beyond C 30 on all surfaces except leaves, suggesting differences in elongation enzymes determining the alkyl chain structures. The detailed wax profiles presented here will serve as basis for future investigations into wax biosynthesis in the Asteraceae and into wax functions on different dandelion organs. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  1. A below-ground herbivore shapes root defensive chemistry in natural plant populations

    PubMed Central

    Huber, Meret; Bont, Zoe; Fricke, Julia; Brillatz, Théo; Aziz, Zohra; Gershenzon, Jonathan; Erb, Matthias

    2016-01-01

    Plants display extensive intraspecific variation in secondary metabolites. However, the selective forces shaping this diversity remain often unknown, especially below ground. Using Taraxacum officinale and its major native insect root herbivore Melolontha melolontha, we tested whether below-ground herbivores drive intraspecific variation in root secondary metabolites. We found that high M. melolontha infestation levels over recent decades are associated with high concentrations of major root latex secondary metabolites across 21 central European T. officinale field populations. By cultivating offspring of these populations, we show that both heritable variation and phenotypic plasticity contribute to the observed differences. Furthermore, we demonstrate that the production of the sesquiterpene lactone taraxinic acid β-d-glucopyranosyl ester (TA-G) is costly in the absence, but beneficial in the presence of M. melolontha, resulting in divergent selection of TA-G. Our results highlight the role of soil-dwelling insects for the evolution of plant defences in nature. PMID:27009228

  2. A below-ground herbivore shapes root defensive chemistry in natural plant populations.

    PubMed

    Huber, Meret; Bont, Zoe; Fricke, Julia; Brillatz, Théo; Aziz, Zohra; Gershenzon, Jonathan; Erb, Matthias

    2016-03-30

    Plants display extensive intraspecific variation in secondary metabolites. However, the selective forces shaping this diversity remain often unknown, especially below ground. Using Taraxacum officinale and its major native insect root herbivore Melolontha melolontha, we tested whether below-ground herbivores drive intraspecific variation in root secondary metabolites. We found that high M. melolontha infestation levels over recent decades are associated with high concentrations of major root latex secondary metabolites across 21 central European T. officinale field populations. By cultivating offspring of these populations, we show that both heritable variation and phenotypic plasticity contribute to the observed differences. Furthermore, we demonstrate that the production of the sesquiterpene lactone taraxinic acid β-D-glucopyranosyl ester (TA-G) is costly in the absence, but beneficial in the presence of M. melolontha, resulting in divergent selection of TA-G. Our results highlight the role of soil-dwelling insects for the evolution of plant defences in nature. © 2016 The Author(s).

  3. The Effect of Taraxacum officinale Hydroalcoholic Extract on Blood Cells in Mice

    PubMed Central

    Modaresi, Mehrdad; Resalatpour, Narges

    2012-01-01

    Objectives. Dandelion (Taraxacum officinale) is a herbaceous perennial plant of the family Asteraceae and has medicinal and culinary uses. Dandelion has been used as a remedy for anemia, purifing the blood, and providing immune modulation. Therefore, the aim of this study was to investigate the effect of hydro alcoholic extract on blood cells in mice. Methods. Five groups each including ten adult female (Balb/C) mice weighing 30 ± 5 g were chosen. Normal saline was administered as placebo for group, and dandelion hydro alcoholic extract in doses of 50,100, and 200 mg/kg was injected intraperitoneally for 20 days to test groups and the last group was control group.WBC, RBC, HB, HCT, platelet, and other cells were measured with automated cell counter. Main Results. The number of RBC and the rate of HB in three doses of 100 and 200 mg/kg significantly increased (P < 0.05). As compared with control group, the number of WBC in three doses of 50, 100, and 200 mg/kg increased, but it was significantly in 200 mg/kg dandelion treated group as compared with control group(P < 0.05). The rate of platelet in three doses of 50, 100 and 200 mg/kg significantly decreased as compared with control group (P < 0.01). 3 doses of dandelion increased lymphocyte numbers significantly compared with controls. Conclusion. The study indicates efficacy of dandelion extract on RBC and HB in doses of 50, 100, and 200 mg/kg and in 200 mg/kg on WBC to achieve normal body balance. PMID:22844289

  4. Detecting small-scale genotype-environment interactions in apomictic dandelion (Taraxacum officinale) populations.

    PubMed

    McLeod, K A; Scascitelli, M; Vellend, M

    2012-08-01

    Studies of genotype × environment interactions (G × E) and local adaptation provide critical tests of natural selection's ability to counter opposing forces such as gene flow. Such studies may be greatly facilitated in asexual species, given the possibility for experimental replication at the level of true genotypes (rather than populations) and the possibility of using molecular markers to assess genotype-environment associations in the field (neither of which is possible for most sexual species). Here, we tested for G × E in asexual dandelions (Taraxacum officinale) by subjecting six genotypes to experimental drought, mown and benign (control) conditions and subsequently using microsatellites to assess genotype-environment associations in the field. We found strong G × E, with genotypes that performed poorly under benign conditions showing the highest performance under stressful conditions (drought or mown). Our six focal genotypes comprise > 80% of plants in local populations. The most common genotype in the field showed its highest relative performance under mown conditions (the most common habitat in our study area), and almost all plants of this genotype in the field were found growing in mowed lawns. Genotypes performing best under benign experimental conditions were found most frequently in unmown conditions in the field. These results are strongly indicative of local adaptation at a very small scale, with unmown microsites of only a few square metres typically embedded within larger mown lawns. By studying an asexual species, we were able to map genotypes with known ecological characteristics to environments with high spatial precision. © 2012 The Authors. Journal of Evolutionary Biology © 2012 European Society For Evolutionary Biology.

  5. Antioxidant and acetylcholinesterase inhibitory activities of ginger root (Zingiber officinale Roscoe) extract.

    PubMed

    Tung, Bui Thanh; Thu, Dang Kim; Thu, Nguyen Thi Kim; Hai, Nguyen Thanh

    2017-05-04

    Background Zingiber officinale Roscoe has been used in traditional medicine for the treatment of neurological disorder. This study aimed to investigate the phenolic contents, antioxidant, acetylcholinesterase enzyme (AChE) inhibitory activities of different fraction of Z. officinale root grown in Vietnam. Methods The roots of Z. officinale are extracted with ethanol 96 % and fractionated with n-hexane, ethyl acetate (EtOAc) and butanol (BuOH) solvents. These fractions evaluated the antioxidant activity by 1,1-Diphenyl -2-picrylhydrazyl (DPPH) assay and AChE inhibitory activity by Ellman's colorimetric method. Results Our data showed that the total phenolic content of EtOAc fraction was highest equivalents to 35.2±1.4 mg quercetin/g of fraction. Our data also demonstrated that EtOAc fraction had the strongest antioxidant activity with IC50 was 8.89±1.37 µg/mL and AChE inhibitory activity with an IC50 value of 22.85±2.37 μg/mL in a dose-dependent manner, followed by BuOH fraction and the n-hexane fraction is the weakest. Detailed kinetic analysis indicated that EtOAc fraction was mixed inhibition type with Ki (representing the affinity of the enzyme and inhibitor) was 30.61±1.43 µg/mL. Conclusions Our results suggest that the EtOAc fraction of Z. officinale may be a promising source of AChE inhibitors for Alzheimer's disease.

  6. Density-Independent Mortality and Increasing Plant Diversity Are Associated with Differentiation of Taraxacum officinale into r- and K-Strategists

    PubMed Central

    Lipowsky, Annett; Roscher, Christiane; Schumacher, Jens; Schmid, Bernhard

    2012-01-01

    Background Differential selection between clones of apomictic species may result in ecological differentiation without mutation and recombination, thus offering a simple system to study adaptation and life-history evolution in plants. Methodology/Principal Findings We caused density-independent mortality by weeding to colonizer populations of the largely apomictic Taraxacum officinale (Asteraceae) over a 5-year period in a grassland biodiversity experiment (Jena Experiment). We compared the offspring of colonizer populations with resident populations deliberately sown into similar communities. Plants raised from cuttings and seeds of colonizer and resident populations were grown under uniform conditions. Offspring from colonizer populations had higher reproductive output, which was in general agreement with predictions of r-selection theory. Offspring from resident populations had higher root and leaf biomass, fewer flower heads and higher individual seed mass as predicted under K-selection. Plants grown from cuttings and seeds differed to some degree in the strength, but not in the direction, of their response to the r- vs. K-selection regime. More diverse communities appeared to exert stronger K-selection on resident populations in plants grown from cuttings, while we did not find significant effects of increasing species richness on plants grown from seeds. Conclusions/Significance Differentiation into r- and K-strategists suggests that clones with characteristics of r-strategists were selected in regularly weeded plots through rapid colonization, while increasing plant diversity favoured the selection of clones with characteristics of K-strategists in resident populations. Our results show that different selection pressures may result in a rapid genetic differentiation within a largely apomictic species. Even under the assumption that colonizer and resident populations, respectively, happened to be r- vs. K-selected already at the start of the experiment, our

  7. Density-independent mortality and increasing plant diversity are associated with differentiation of Taraxacum officinale into r- and K-strategists.

    PubMed

    Lipowsky, Annett; Roscher, Christiane; Schumacher, Jens; Schmid, Bernhard

    2012-01-01

    Differential selection between clones of apomictic species may result in ecological differentiation without mutation and recombination, thus offering a simple system to study adaptation and life-history evolution in plants. We caused density-independent mortality by weeding to colonizer populations of the largely apomictic Taraxacum officinale (Asteraceae) over a 5-year period in a grassland biodiversity experiment (Jena Experiment). We compared the offspring of colonizer populations with resident populations deliberately sown into similar communities. Plants raised from cuttings and seeds of colonizer and resident populations were grown under uniform conditions. Offspring from colonizer populations had higher reproductive output, which was in general agreement with predictions of r-selection theory. Offspring from resident populations had higher root and leaf biomass, fewer flower heads and higher individual seed mass as predicted under K-selection. Plants grown from cuttings and seeds differed to some degree in the strength, but not in the direction, of their response to the r- vs. K-selection regime. More diverse communities appeared to exert stronger K-selection on resident populations in plants grown from cuttings, while we did not find significant effects of increasing species richness on plants grown from seeds. Differentiation into r- and K-strategists suggests that clones with characteristics of r-strategists were selected in regularly weeded plots through rapid colonization, while increasing plant diversity favoured the selection of clones with characteristics of K-strategists in resident populations. Our results show that different selection pressures may result in a rapid genetic differentiation within a largely apomictic species. Even under the assumption that colonizer and resident populations, respectively, happened to be r- vs. K-selected already at the start of the experiment, our results still indicate that the association of these strategies with

  8. GC-MS characterization of n-hexane soluble fraction from dandelion (Taraxacum officinale Weber ex F.H. Wigg.) aerial parts and its antioxidant and antimicrobial properties.

    PubMed

    Ivanov, Ivan; Petkova, Nadezhda; Tumbarski, Julian; Dincheva, Ivayla; Badjakov, Ilian; Denev, Panteley; Pavlov, Atanas

    2018-01-26

    A comparative investigation of n-hexane soluble compounds from aerial parts of dandelion (Taraxacum officinale Weber ex F.H. Wigg.) collected during different vegetative stages was carried out. The GC-MS analysis of the n-hexane (unpolar) fraction showed the presence of 30 biologically active compounds. Phytol [14.7% of total ion current (TIC)], lupeol (14.5% of TIC), taraxasteryl acetate (11.4% of TIC), β-sitosterol (10.3% of TIC), α-amyrin (9.0% of TIC), β-amyrin (8.3% of TIC), and cycloartenol acetate (5.8% of TIC) were identified as the major components in n-hexane fraction. The unpolar fraction exhibited promising antioxidant activity - 46.7 mmol Trolox equivalents/g extract (determined by 1,1-diphenyl-2-picrylhydrazyl method). This fraction demonstrated insignificant antimicrobial activity and can be used in cosmetic and pharmaceutical industries.

  9. In vitro inhibitory potential of Cynara scolymus, Silybum marianum, Taraxacum officinale, and Peumus boldus on key enzymes relevant to metabolic syndrome.

    PubMed

    Villiger, Angela; Sala, Filippo; Suter, Andy; Butterweck, Veronika

    2015-01-15

    Boldocynara®, a proprietary dietary supplement product consisting of the plants Cynara scolymus, Silybum marianum, Taraxacum officinale, and Peumus boldus, used to promote functions of the liver and the gallbladder. It was the aim of the present study to look from a different perspective at the product by investigating the in vitro potential of Boldocynara® as a combination product and its individual extracts on key enzymes relevant to metabolic syndrome. Peumus boldus extract exhibited pronounced inhibitory activities on α-glucosidase (80% inhibition at 100 µg/ml, IC50: 17.56 µg/ml). Silybum marianum had moderate pancreatic lipase (PL) inhibitory activities (30% at 100 µg/ml) whereas Cynara scolymus showed moderate ACE inhibitory activity (31% at 100 µg/ml). The combination had moderate to weak effects on the tested enzymes. In conclusion, our results indicate some moderate potential of the dietary supplement Boldocynara® and its single ingredients for the prevention of metabolic disorders. Copyright © 2014 Elsevier GmbH. All rights reserved.

  10. Novel TRAIL sensitizer Taraxacum officinale F.H. Wigg enhances TRAIL-induced apoptosis in Huh7 cells.

    PubMed

    Yoon, Ji-Yong; Cho, Hyun-Soo; Lee, Jeong-Ju; Lee, Hyo-Jung; Jun, Soo Young; Lee, Jae-Hye; Song, Hyuk-Hwan; Choi, SangHo; Saloura, Vassiliki; Park, Choon Gil; Kim, Cheol-Hee; Kim, Nam-Soon

    2016-04-01

    TRAIL (TNF-related apoptosis inducing ligand) is a promising anti-cancer drug target that selectively induces apoptosis in cancer cells. However, many cancer cells are resistant to TRAIL-induced apoptosis. Therefore, reversing TRAIL resistance is an important step for the development of effective TRAIL-based anti-cancer therapies. We previously reported that knockdown of the TOR signaling pathway regulator-like (TIPRL) protein caused TRAIL-induced apoptosis by activation of the MKK7-c-Jun N-terminal Kinase (JNK) pathway through disruption of the MKK7-TIPRL interaction. Here, we identified Taraxacum officinale F.H. Wigg (TO) as a novel TRAIL sensitizer from a set of 500 natural products using an ELISA system and validated its activity by GST pull-down analysis. Furthermore, combination treatment of Huh7 cells with TRAIL and TO resulted in TRAIL-induced apoptosis mediated through inhibition of the MKK7-TIPRL interaction and subsequent activation of MKK7-JNK phosphorylation. Interestingly, HPLC analysis identified chicoric acid as a major component of the TO extract, and combination treatment with chicoric acid and TRAIL induced TRAIL-induced cell apoptosis via JNK activation due to inhibition of the MKK7-TIPRL interaction. Our results suggest that TO plays an important role in TRAIL-induced apoptosis, and further functional studies are warranted to confirm the importance of TO as a novel TRAIL sensitizer for cancer therapy. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.

  11. Constituents from the roots of Taraxacum platycarpum and their effect on proliferation of human skin fibroblasts.

    PubMed

    Warashina, Tsutomu; Umehara, Kaoru; Miyase, Toshio

    2012-01-01

    A MeOH extract from the roots of Taraxacum platycarpum has shown significant effects on the proliferation of normal human skin fibroblasts. Chemical analysis of the extract resulted in the isolation of 26 compounds, including eight new triterpenes, one new sesquiterpene glycoside, and seventeen known compounds. The structure of each new compound was established using NMR spectroscopy. Some triterpenes had a significant effect on the proliferation of normal human skin fibroblasts.

  12. Menthol and geraniol biotransformation and glycosylation capacity of Levisticum officinale hairy roots.

    PubMed

    Nunes, Inês S; Faria, Jorge M S; Figueiredo, A Cristina; Pedro, Luis G; Trindade, Helena; Barroso, José G

    2009-03-01

    The biotransformation capacity of Levisticum officinale W.D.J. Koch hairy root cultures was studied by evaluating the effect of the addition of 25 mg/L menthol or geraniol on morphology, growth, and volatiles production. L. officinale hairy root cultures were maintained for 7 weeks in SH medium, in darkness at 24 degrees C and 80 r.p.m., and the substrates were added 15 days after inoculation. Growth was evaluated by measuring fresh and dry weight and by using the dissimilation method. Volatiles composition was analyzed by GC and GC-MS. Hairy roots morphology and growth were not influenced by substrate addition. No new volatiles were detected after menthol addition and, as was also the case with the control cultures, volatiles of these hairy roots were dominated by (Z)-falcarinol (1-45%), N-octanal (3-8%), palmitic acid (3-10%), and (Z)-ligustilide (2-9%). The addition of geraniol induced the production of six new volatiles: nerol/citronellol/neral (traces-15%), alpha-terpineol (0.2-3%), linalool (0.1-1.2%), and geranyl acetate (traces-2%). The relative amounts of the substrates and some of their biotransformation products decreased during the course of the experiment. Following the addition of beta-glycosidase to the remaining distillation water, analysis of the extracted volatiles showed that lovage hairy roots were able to convert both substrates and their biotransformation products into glycosidic forms. GC:gas chromatography GC-MS:gas chromatography-mass spectrometry SH:Schenk and Hildebrandt (1972) culture medium.

  13. In vitro and in vivo antimutagenic effects of DIG, a herbal preparation of Berberis vulgaris, Taraxacum officinale and Arctium lappa, against mitomycin C.

    PubMed

    Di Giorgio, C; Boyer, L; De Meo, M; Laurant, C; Elias, R; Ollivier, E

    2015-07-01

    DIG, a liquid herbal preparation made from a mixture of diluted mother tinctures of Berberis vulgaris, Taraxacum officinale and Arctium lappa, was assessed for its antimutagenic properties against mitomycin C. The micronucleus assay on Chinese hamster ovary (CHO)-K1 cells was used to evaluate the in vitro anticlastogenic activity of DIG compared to those of separately diluted mother tinctures. The micronucleus assay was performed on mouse erythrocytes and the comet assay was performed on mouse liver, kidney, lung, brain and testicles to assess the protective effects of DIG (0.2 and 2 % at libitum) against an intraperitoneal injection of mitomycin C (1 mg Kg(-1)) in mice. DIG exerted a powerful anticlastogenic activity, under both pretreatment and simultaneous treatment conditions as assessed by the micronucleus assay in CHO-K1 cells. Its protective activity was greater than that observed for each mother tincture. DIG reduced micronuclei levels in mouse erythrocytes and suppressed >80 % of DNA strand breaks in the liver, kidney, lung, brain and testicles of mice exposed to mitomycin C.

  14. Formation of unreduced megaspores (diplospory) in apomictic dandelions (Taraxacum officinale, s.l.) is controlled by a sex-specific dominant locus.

    PubMed Central

    van Dijk, Peter J; Bakx-Schotman, J M Tanja

    2004-01-01

    In apomictic dandelions, Taraxacum officinale, unreduced megaspores are formed via a modified meiotic division (diplospory). The genetic basis of diplospory was investigated in a triploid (3x = 24) mapping population of 61 individuals that segregated approximately 1:1 for diplospory and meiotic reduction. This population was created by crossing a sexual diploid (2x = 16) with a tetraploid diplosporous pollen donor (4x = 32) that was derived from a triploid apomict. Six different inheritance models for diplospory were tested. The segregation ratio and the tight association with specific alleles at the microsatellite loci MSTA53 and MSTA78 strongly suggest that diplospory is controlled by a dominant allele D on a locus, which we have named DIPLOSPOROUS (DIP). Diplosporous plants have a simplex genotype, Ddd or Dddd. MSTA53 and MSTA78 were weakly linked to the 18S-25S rDNA locus. The D-linked allele of MSTA78 was absent in a hypotriploid (2n = 3x - 1) that also lacked one of the satellite chromosomes. Together these results suggest that DIP is located on the satellite chromosome. DIP is female specific, as unreduced gametes are not formed during male meiosis. Furthermore, DIP does not affect parthenogenesis, implying that several independently segregating genes control apomixis in dandelions. PMID:15020437

  15. A Latex Metabolite Benefits Plant Fitness under Root Herbivore Attack.

    PubMed

    Huber, Meret; Epping, Janina; Schulze Gronover, Christian; Fricke, Julia; Aziz, Zohra; Brillatz, Théo; Swyers, Michael; Köllner, Tobias G; Vogel, Heiko; Hammerbacher, Almuth; Triebwasser-Freese, Daniella; Robert, Christelle A M; Verhoeven, Koen; Preite, Veronica; Gershenzon, Jonathan; Erb, Matthias

    2016-01-01

    Plants produce large amounts of secondary metabolites in their shoots and roots and store them in specialized secretory structures. Although secondary metabolites and their secretory structures are commonly assumed to have a defensive function, evidence that they benefit plant fitness under herbivore attack is scarce, especially below ground. Here, we tested whether latex secondary metabolites produced by the common dandelion (Taraxacum officinale agg.) decrease the performance of its major native insect root herbivore, the larvae of the common cockchafer (Melolontha melolontha), and benefit plant vegetative and reproductive fitness under M. melolontha attack. Across 17 T. officinale genotypes screened by gas and liquid chromatography, latex concentrations of the sesquiterpene lactone taraxinic acid β-D-glucopyranosyl ester (TA-G) were negatively associated with M. melolontha larval growth. Adding purified TA-G to artificial diet at ecologically relevant concentrations reduced larval feeding. Silencing the germacrene A synthase ToGAS1, an enzyme that was identified to catalyze the first committed step of TA-G biosynthesis, resulted in a 90% reduction of TA-G levels and a pronounced increase in M. melolontha feeding. Transgenic, TA-G-deficient lines were preferred by M. melolontha and suffered three times more root biomass reduction than control lines. In a common garden experiment involving over 2,000 T. officinale individuals belonging to 17 different genotypes, high TA-G concentrations were associated with the maintenance of high vegetative and reproductive fitness under M. melolontha attack. Taken together, our study demonstrates that a latex secondary metabolite benefits plants under herbivore attack, a result that provides a mechanistic framework for root herbivore driven natural selection and evolution of plant defenses below ground.

  16. A Latex Metabolite Benefits Plant Fitness under Root Herbivore Attack

    PubMed Central

    Huber, Meret; Epping, Janina; Schulze Gronover, Christian; Fricke, Julia; Aziz, Zohra; Brillatz, Théo; Swyers, Michael; Köllner, Tobias G.; Vogel, Heiko; Hammerbacher, Almuth; Triebwasser-Freese, Daniella; Robert, Christelle A. M.; Verhoeven, Koen; Preite, Veronica; Gershenzon, Jonathan; Erb, Matthias

    2016-01-01

    Plants produce large amounts of secondary metabolites in their shoots and roots and store them in specialized secretory structures. Although secondary metabolites and their secretory structures are commonly assumed to have a defensive function, evidence that they benefit plant fitness under herbivore attack is scarce, especially below ground. Here, we tested whether latex secondary metabolites produced by the common dandelion (Taraxacum officinale agg.) decrease the performance of its major native insect root herbivore, the larvae of the common cockchafer (Melolontha melolontha), and benefit plant vegetative and reproductive fitness under M. melolontha attack. Across 17 T. officinale genotypes screened by gas and liquid chromatography, latex concentrations of the sesquiterpene lactone taraxinic acid β-D-glucopyranosyl ester (TA-G) were negatively associated with M. melolontha larval growth. Adding purified TA-G to artificial diet at ecologically relevant concentrations reduced larval feeding. Silencing the germacrene A synthase ToGAS1, an enzyme that was identified to catalyze the first committed step of TA-G biosynthesis, resulted in a 90% reduction of TA-G levels and a pronounced increase in M. melolontha feeding. Transgenic, TA-G-deficient lines were preferred by M. melolontha and suffered three times more root biomass reduction than control lines. In a common garden experiment involving over 2,000 T. officinale individuals belonging to 17 different genotypes, high TA-G concentrations were associated with the maintenance of high vegetative and reproductive fitness under M. melolontha attack. Taken together, our study demonstrates that a latex secondary metabolite benefits plants under herbivore attack, a result that provides a mechanistic framework for root herbivore driven natural selection and evolution of plant defenses below ground. PMID:26731567

  17. Sesquiterpene lactones from Taraxacum obovatum.

    PubMed

    Michalska, Klaudia; Kisiel, Wanda

    2003-02-01

    Two new guaianolide glucosides, deacetylmatricarin 8-O-beta-glucopyranoside and 11beta-hydroxyleukodin 11-O-beta-glucopyranoside, were isolated from roots of Taraxacum obovatum, along with four known sesquiterpene lactones, deacetylmatricarin, sonchuside A, taraxinic acid beta-glucopyranosyl ester and its 11beta,13-dihydro derivative. Their structures were established by spectral methods.

  18. Environmental Assessment for Railroad Disposition

    DTIC Science & Technology

    2003-09-01

    common dandelion ( Taraxacum officinale), hairy crabgrass (Digitaria sanquinalis), and some ornamental varieties of plants. This habitat that covers... Taraxacum officinale), hairy crabgrass (Digitaria sanquinalis), and some ornamental varieties of plants. Portions of the Greenway include some areas that...weedy species such as Field bindweed (Convolvulus arvensis), Common dandelion ( Taraxacum officinale), Hairy crabgrass (Digitaria sanquinalis), and

  19. Anti-inflammatory evaluation of the methanolic extract of Taraxacum officinale in LPS-stimulated human umbilical vein endothelial cells.

    PubMed

    Jeon, Daun; Kim, Seok Joong; Kim, Hong Seok

    2017-11-29

    Atherosclerosis is a chronic vascular inflammatory disease. Since even low-level endotoxemia constitutes a powerful and independent risk factor for the development of atherosclerosis, it is important to find therapies directed against the vascular effects of endotoxin to prevent atherosclerosis. Taraxacum officinale (TO) is used for medicinal purposes because of its choleretic, diuretic, antioxidative, anti-inflammatory, and anti-carcinogenic properties, but its anti-inflammatory effect on endothelial cells has not been established. We evaluated the anti-inflammatory activity of TO filtered methanol extracts in LPS-stimulated human umbilical vein endothelial cells (HUVECs) by monocyte adhesion and western blot assays. HUVECs were pretreated with 100 μg/ml TO for 1 h and then incubated with 1 μg/ml LPS for 24 h. The mRNA and protein expression levels of the targets (pro-inflammatory cytokines and adhesion molecules) were analyzed by real-time PCR and western blot assays. We also preformed HPLC analysis to identify the components of the TO methanol extract. The TO filtered methanol extracts dramatically inhibited LPS-induced endothelial cell-monocyte interactions by reducing vascular cell adhesion molecule-1 and monocyte chemoattractant protein-1, and pro-inflammatory cytokine expression. TO suppressed the LPS-induced nuclear translocation of NF-κB, whereas it did not affect MAPK activation. Our findings demonstrated that methanol extracts of TO could attenuate LPS-induced endothelial cell activation by inhibiting the NF-κB pathway. These results indicate the potential clinical benefits and applications of TO for the prevention of vascular inflammation and atherosclerosis.

  20. Chemical composition and hepatoprotective activity of ethanolic root extract of Taraxacum Syriacum Boiss against acetaminophen intoxication in rats.

    PubMed

    Nazari, A; Fanaei, H; Dehpour, A R; Hassanzadeh, G; Jafari, M; Salehi, M; Mohammadi, M

    2015-01-01

    In the present study, the role of ethanol extract of root of Taraxacum Syriacum Boiss (TSBE) against hepatotoxicity caused by acetaminophen (APAP) was studied. The chemical composition of roots of Taraxacum Syriacum Boiss was analyzed by SPME-GC/MS method. Hepatocellular injuries induced by acetaminophen (APAP) were assessed by liver histology, serum aminotransferase activities, antioxidant enzymes activity and lipid peroxidation in liver tissue. TSBE was observed to exhibit hepatoprotective effect as demonstrated by significant decrease in serum glutamate oxaloacetate transaminase (SGOT), serum glutamate pyruvate transaminase (SGPT), and alkaline phosphatase (ALP) concentration, and by preventing liver histopathologic changes in rats with APAP hepatotoxicity. Administration of APAP, significantly increased, lactate dehydrogenase (LDH) and catalase (CAT) activity in liver tissue and pretreatment with TSBE returned these parameters to control group, moreover TSBE reduces APAP-induced hepatic Glutathione (GSH) depletion. Carvacrol (6.7 %) was the main polyphenolic compound of plant sample. Our results demonstrated hepatoprotective activity of TSBE in rat in vivo. We believe that the mechanism by which the extract was able to protect the liver from the oxidative stress generated by APAP is due to its antioxidant activity. These phenolic compounds of the extract act as antioxidants and free radical scavengers and reduce or inhibit the oxidative stress induced by APAP administration (Tab. 3, Fig. 3, Ref. 39).

  1. Hyperaccumulator straw improves the cadmium phytoextraction efficiency of emergent plant Nasturtium officinale.

    PubMed

    Li, Keqiang; Lin, Lijin; Wang, Jin; Xia, Hui; Liang, Dong; Wang, Xun; Liao, Ming'an; Wang, Li; Liu, Li; Chen, Cheng; Tang, Yi

    2017-08-01

    With the development of economy, the heavy metal contamination has become an increasingly serious problem, especially the cadmium (Cd) contamination. The emergent plant Nasturtium officinale R. Br. is a Cd-accumulator with low phytoremediation ability. To improve Cd phytoextraction efficiency of N. officinale, the straw from Cd-hyperaccumulator plants Youngia erythrocarpa, Galinsoga parviflora, Siegesbeckia orientalis, and Bidens pilosa was applied to Cd-contaminated soil and N. officinale was then planted; the study assessed the effect of hyperaccumulator straw on the growth and Cd accumulation of N. officinale. The results showed that application of hyperaccumulator species straws increased the biomass and photosynthetic pigment content and reduced the root/shoot ratio of N. officinale. All straw treatments significantly increased Cd content in roots, but significantly decreased Cd content in shoots of N. officinale. Applying hyperaccumulator straw significantly increased the total Cd accumulation in the roots, shoots, and whole plants of N. officinale. Therefore, application of straw from four hyperaccumulator species promoted the growth of N. officinale and improved the phytoextraction efficiency of N. officinale in Cd-contaminated paddy field soil; the straw of Y. erythrocarpa provided the most improvement.

  2. Temporal variability of the quality of Taraxacum officinale seed progeny from the East-Ural radioactive trace: is there an interaction between low level radiation and weather conditions?

    PubMed

    Pozolotina, Vera N; Antonova, Elena V

    2017-03-01

    The multiple stressors, in different combinations, may impact differently upon seed quality, and low-level doses of radiation may enhance synergistic or antagonistic effects. During 1991-2014 we investigated the quality of the dandelion (Taraxacum officinale s.l.) seed progeny growing under low-level radiation exposure at the East-Ural Radioactive Trace (EURT) area (result of the Kyshtym accident, Russia), and in plants from areas exposed to background radiation. The viability of the dandelion seed progeny was assessed according to chronic radiation exposure, accounting for the variability of weather conditions among years. Environmental factors (temperature, precipitation, and their ratio in different months) can modify the radiobiological effects. We found a wide range of possible responses to multiple stressors: inhibition, stimulation, and indifferent effects in different seasons. The intraspecific variability of the quality of dandelion seed progeny was greatly increased under conditions of low doses of chronic irradiation. Temperature was the most significant factor for seed progeny formation in the EURT zone, whereas the sums of precipitation and ratios of precipitation to temperature dominantly affected organisms from the background population.

  3. A Herbivore Tag-and-Trace System Reveals Contact- and Density-Dependent Repellence of a Root Toxin.

    PubMed

    Bont, Zoe; Arce, Carla; Huber, Meret; Huang, Wei; Mestrot, Adrien; Sturrock, Craig J; Erb, Matthias

    2017-03-01

    Foraging behavior of root feeding organisms strongly affects plant-environment-interactions and ecosystem processes. However, the impact of plant chemistry on root herbivore movement in the soil is poorly understood. Here, we apply a simple technique to trace the movement of soil-dwelling insects in their habitats without disturbing or restricting their interactions with host plants. We tagged the root feeding larvae of Melolontha melolontha with a copper ring and repeatedly located their position in relation to their preferred host plant, Taraxacum officinale, using a commercial metal detector. This method was validated and used to study the influence of the sesquiterpene lactone taraxinic acid β-D-glucopyranosyl ester (TA-G) on the foraging of M. melolontha. TA-G is stored in the latex of T. officinale and protects the roots from herbivory. Using behavioral arenas with TA-G deficient and control plants, we tested the impact of physical root access and plant distance on the effect of TA-G on M. melolontha. The larvae preferred TA-G deficient plants to control plants, but only when physical root contact was possible and the plants were separated by 5 cm. Melolontha melolontha showed no preference for TA-G deficient plants when the plants were grown 15 cm apart, which may indicate a trade-off between the cost of movement and the benefit of consuming less toxic food. We demonstrate that M. melolontha integrates host plant quality and distance into its foraging patterns and suggest that plant chemistry affects root herbivore behavior in a plant-density dependent manner.

  4. In vitro assessment of Argemone mexicana, Taraxacum officinale, Ruta chalepensis and Tagetes filifolia against Haemonchus contortus nematode eggs and infective (L3) larvae.

    PubMed

    Jasso Díaz, Gabriela; Hernández, Glafiro Torres; Zamilpa, Alejandro; Becerril Pérez, Carlos Miguel; Ramírez Bribiesca, J Efrén; Hernández Mendo, Omar; Sánchez Arroyo, Hussein; González Cortazar, Manasés; Mendoza de Gives, Pedro

    2017-08-01

    Argemone mexicana, Taraxacum officinale, Ruta chalepensis and Tagetes filifolia are plants with deworming potential. The purpose of this study was to evaluate methanolic extracts of aerial parts of these plants against Haemonchus contortus eggs and infective larvae (L3) and identify compounds responsible for the anthelmintic activity. In vitro probes were performed to identify the anthelmintic activity of plant extracts: egg hatching inhibition (EHI) and larvae mortality. Open column Chromatography was used to bio-guided fractionation of the extract, which shows the best anthelmintic effect. The lethal concentration to inhibit 50% of H. contortus egg hatching or larvae mortality (LC 50 ) was calculated using a Probit analysis. Bio-guided procedure led to the recognition of an active fraction (TF11) mainly composed by 1) quercetagitrin, 2) methyl chlorogenate and chlorogenic acid. Quercetagitrin (1) and methyl chlorogenate (2) did not show an important EHI activity (3-14%) (p < 0.05); however, chlorogenic acid (3) showed 100% of EHI (LC 50 248 μg/mL) (p < 0.05). Chlorogenic acid is responsible of the ovicidal activity and it seems that, this compound is reported for the first time with anthelmintic activity against a parasite of importance in sheep industry. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Complete chloroplast genomes from apomictic Taraxacum (Asteraceae): Identity and variation between three microspecies

    PubMed Central

    Majeský, Ľuboš; Schwarzacher, Trude; Gornall, Richard; Heslop-Harrison, Pat

    2017-01-01

    Chloroplast DNA sequences show substantial variation between higher plant species, and less variation within species, so are typically excellent markers to investigate evolutionary, population and genetic relationships and phylogenies. We sequenced the plastomes of Taraxacum obtusifrons Markl. (O978); T. stridulum Trávniček ined. (S3); and T. amplum Markl. (A978), three apomictic triploid (2n = 3x = 24) dandelions from the T. officinale agg. We aimed to characterize the variation in plastomes, define relationships and correlations with the apomictic microspecies status, and refine placement of the microspecies in the evolutionary or phylogenetic context of the Asteraceae. The chloroplast genomes of accessions O978 and S3 were identical and 151,322 bp long (where the nuclear genes are known to show variation), while A978 was 151,349 bp long. All three genomes contained 135 unique genes, with an additional copy of the trnF-GGA gene in the LSC region and 20 duplicated genes in the IR region, along with short repeats, the typical major Inverted Repeats (IR1 and IR2, 24,431bp long), and Large and Small Single Copy regions (LSC 83,889bp and SSC 18,571bp in O978). Between the two Taraxacum plastomes types, we identified 28 SNPs. The distribution of polymorphisms suggests some parts of the Taraxacum plastome are evolving at a slower rate. There was a hemi-nested inversion in the LSC region that is common to Asteraceae, and an SSC inversion from ndhF to rps15 found only in some Asteraceae lineages. A comparative repeat analysis showed variation between Taraxacum and the phylogenetically close genus Lactuca, with many more direct repeats of 40bp or more in Lactuca (1% larger plastome than Taraxacum). When individual genes and non-coding regions were for Asteraceae phylogeny reconstruction, not all showed the same evolutionary scenario suggesting care is needed for interpretation of relationships if a limited number of markers are used. Studying genotypic diversity in

  6. Complete chloroplast genomes from apomictic Taraxacum (Asteraceae): Identity and variation between three microspecies.

    PubMed

    M Salih, Rubar Hussein; Majeský, Ľuboš; Schwarzacher, Trude; Gornall, Richard; Heslop-Harrison, Pat

    2017-01-01

    Chloroplast DNA sequences show substantial variation between higher plant species, and less variation within species, so are typically excellent markers to investigate evolutionary, population and genetic relationships and phylogenies. We sequenced the plastomes of Taraxacum obtusifrons Markl. (O978); T. stridulum Trávniček ined. (S3); and T. amplum Markl. (A978), three apomictic triploid (2n = 3x = 24) dandelions from the T. officinale agg. We aimed to characterize the variation in plastomes, define relationships and correlations with the apomictic microspecies status, and refine placement of the microspecies in the evolutionary or phylogenetic context of the Asteraceae. The chloroplast genomes of accessions O978 and S3 were identical and 151,322 bp long (where the nuclear genes are known to show variation), while A978 was 151,349 bp long. All three genomes contained 135 unique genes, with an additional copy of the trnF-GGA gene in the LSC region and 20 duplicated genes in the IR region, along with short repeats, the typical major Inverted Repeats (IR1 and IR2, 24,431bp long), and Large and Small Single Copy regions (LSC 83,889bp and SSC 18,571bp in O978). Between the two Taraxacum plastomes types, we identified 28 SNPs. The distribution of polymorphisms suggests some parts of the Taraxacum plastome are evolving at a slower rate. There was a hemi-nested inversion in the LSC region that is common to Asteraceae, and an SSC inversion from ndhF to rps15 found only in some Asteraceae lineages. A comparative repeat analysis showed variation between Taraxacum and the phylogenetically close genus Lactuca, with many more direct repeats of 40bp or more in Lactuca (1% larger plastome than Taraxacum). When individual genes and non-coding regions were for Asteraceae phylogeny reconstruction, not all showed the same evolutionary scenario suggesting care is needed for interpretation of relationships if a limited number of markers are used. Studying genotypic diversity in

  7. Heritable gene expression differences between apomictic clone members in Taraxacum officinale: Insights into early stages of evolutionary divergence in asexual plants.

    PubMed

    Ferreira de Carvalho, Julie; Oplaat, Carla; Pappas, Nikolaos; Derks, Martijn; de Ridder, Dick; Verhoeven, Koen J F

    2016-03-08

    Asexual reproduction has the potential to enhance deleterious mutation accumulation and to constrain adaptive evolution. One source of mutations that can be especially relevant in recent asexuals is activity of transposable elements (TEs), which may have experienced selection for high transposition rates in sexual ancestor populations. Predictions of genomic divergence under asexual reproduction therefore likely include a large contribution of transposable elements but limited adaptive divergence. For plants empirical insight into genome divergence under asexual reproduction remains limited. Here, we characterize expression divergence between clone members of a single apomictic lineage of the common dandelion (Taraxacum officinale) to contribute to our knowledge of genome evolution under asexuality. Using RNA-Seq, we show that about one third of heritable divergence within the apomictic lineage is driven by TEs and TE-related gene activity. In addition, we identify non-random transcriptional differences in pathways related to acyl-lipid and abscisic acid metabolisms which might reflect functional divergence within the apomictic lineage. We analyze SNPs in the transcriptome to assess genetic divergence between the apomictic clone members and reveal that heritable expression differences between the accessions are not explained simply by genome-wide genetic divergence. The present study depicts a first effort towards a more complete understanding of apomictic plant genome evolution. We identify abundant TE activity and ecologically relevant functional genes and pathways affecting heritable within-lineage expression divergence. These findings offer valuable resources for future work looking at epigenetic silencing and Cis-regulation of gene expression with particular emphasis on the effects of TE activity on asexual species' genome.

  8. Silencing and heterologous expression of ppo-2 indicate a specific function of a single polyphenol oxidase isoform in resistance of dandelion (Taraxacum officinale) against Pseudomonas syringae pv. tomato.

    PubMed

    Richter, Carolin; Dirks, Mareike E; Gronover, Christian Schulze; Prüfer, Dirk; Moerschbacher, Bruno M

    2012-02-01

    Dandelion (Taraxacum officinale) possesses an unusually high degree of disease resistance. As this plant exhibits high polyphenol oxidase (PPO) activity and PPO have been implicated in resistance against pests and pathogens, we analyzed the potential involvement of five PPO isoenzymes in the resistance of dandelion against Botrytis cinerea and Pseudomonas syringae pv. tomato. Only one PPO (ppo-2) was induced during infection, and ppo-2 promoter and β-glucuronidase marker gene fusions revealed strong induction of the gene surrounding lesions induced by B. cinerea. Specific RNAi silencing reduced ppo-2 expression only, and concomitantly increased plant susceptibility to P. syringae pv. tomato. At 4 days postinoculation, P. syringae pv. tomato populations were strongly increased in the ppo-2 RNAi lines compared with wild-type plants. When the dandelion ppo-2 gene was expressed in Arabidopsis thaliana, a plant having no PPO gene, active protein was formed and protein extracts of the transgenic plants exhibited substrate-dependent antimicrobial activity against P. syringae pv. tomato. These results clearly indicate a strong contribution of a specific, single PPO isoform to disease resistance. Therefore, we propose that specific PPO isoenzymes be included in a new family of pathogenesis-related (PR) proteins.

  9. Arabidopsis AtPAP1 transcription factor induces anthocyanin production in transgenic Taraxacum brevicorniculatum.

    PubMed

    Qiu, Jian; Sun, Shuquan; Luo, Shiqiao; Zhang, Jichuan; Xiao, Xianzhou; Zhang, Liqun; Wang, Feng; Liu, Shizhong

    2014-04-01

    This study developed a new purple coloured Taraxacum brevicorniculatum plant through genetic transformation using the Arabidopsis AtPAP1 gene, which overproduced anthocyanins in its vegetative tissues. Rubber-producing Taraxacum plants synthesise high-quality natural rubber (NR) in their roots and so are a promising alternative global source of this raw material. A major factor in its commercialization is the need for multipurpose exploitation of the whole plant. To add value to the aerial tissues, red/purple plants of the rubber-producing Taraxacum brevicorniculatum species were developed through heterologous expression of the production of anthocyanin pigment 1 (AtPAP1) transcription factor from Arabidopsis thaliana. The vegetative tissue of the transgenic plants showed an average of a 48-fold increase in total anthocyanin content over control levels, but with the exception of pigmentation, the transgenic plants were phenotypically comparable to controls and displayed similar growth vigor. Southern blot analysis confirmed that the AtPAP1 gene had been integrated into the genome of the high anthocyanin Taraxacum plants. The AtPAP1 expression levels were estimated by quantitative real-time PCR and were highly correlated with the levels of total anthocyanins in five independent transgenic lines. High levels of three cyanidin glycosides found in the purple plants were characterized by high performance liquid chromatography-mass spectrum analysis. The presence of NR was verified by NMR and infrared spectroscopy, and confirmed that NR biosynthesis had not been affected in the transgenic Taraxacum lines. In addition, other major phenylpropanoid products such as chlorogenic acid and quercetin glycosides were also enhanced in the transgenic Taraxacum. The red/purple transgenic Taraxacum lines described in this study would increase the future application of the species as a rubber-producing crop due to its additional health benefits.

  10. The effect of five Taraxacum species on in vitro and in vivo antioxidant and antiproliferative activity.

    PubMed

    Mingarro, D Muñoz; Plaza, A; Galán, A; Vicente, J A; Martínez, M P; Acero, N

    2015-08-01

    Plants belonging to the genus Taraxacum are considered a nutritious food, being consumed raw or cooked. Additionally, these plants have long been used in folk medicine due to their choleretic, diuretic, antitumor, antioxidant, antiinflammatory, and hepatoprotective properties. This genus, with its complex taxonomy, includes several species that are difficult to distinguish. Its traditional use must be related not only to T. officinale F.H. Wigg., the most studied species, but also to others. The aim of this work is to compare five different common South European species of Taraxacum (T. obovatum (Willd.) DC., T. marginellum H. Lindb., T. hispanicum H. Lindb., T. lambinonii Soest and T. lacistrum Sahlin), in order to find differences between antioxidant and cytotoxic activities among them. Dissimilarities between species in LC/MS patterns, in in vitro and intracellular antioxidant activity and also in the cytotoxicity assay were found. T. marginellum was the most efficient extract reducing intracellular ROS levels although in in vitro assays, T. obovatum was the best free radical scavenger. A relevant cytotoxic effect was found in T. lacistrum extract over HeLa and HepG2 cell lines.

  11. Environment friendly route of iron oxide nanoparticles from Zingiber officinale (ginger) root extract

    NASA Astrophysics Data System (ADS)

    Xin Hui, Yau; Yi Peng, Teoh; Wei Wen, Liu; Zhong Xian, Ooi; Peck Loo, Kiew

    2016-11-01

    Iron oxide nanoparticles were prepared from the reaction between the Zingiber officinale (ginger) root extracts and ferric chloride solution at 50°C for 2 h in mild stirring condition. The synthesized powder forms of nanoparticles were further characterized by using UV-Vis spectroscopy and X-ray Diffraction spectrometry. UV-Vis analysis shows the absorption peak of iron oxide nanoparticles is appeared at 370 nm. The calculation of crystallite size from the XRD showed that the average particle size of iron oxide nanoparticles was 68.43 nm. Therefore, this eco-friendly technique is low cost and large scale nanoparticles synthesis to fulfill the demand of various applications.

  12. Isolation and Identification of Compounds from Bioactive Extracts of Taraxacum officinale Weber ex F. H. Wigg. (Dandelion) as a Potential Source of Antibacterial Agents

    PubMed Central

    Espinoza, Luis; Madrid, Alejandro; Pizarro, Leonardo

    2018-01-01

    Currently, the most effective treatment for recurrent urinary tract infections in women is antibiotics. However, the limitation for this treatment is the duration and dosage of antibiotics and the resistance that bacteria develop after a long period of administration. With the aim of identifying mainly novel natural agents with antibacterial activity, the present study was undertaken to investigate the biological and phytochemical properties of extracts from the leaves Taraxacum officinale. The structural identification of compounds present in hexane (Hex) and ethyl acetate (AcOEt) extracts was performed by mass spectrometry (GC-MS) spectroscopic techniques and nuclear magnetic resonance (NMR) with the major compounds corresponding to different sesquiterpene lactones (α-santonin, glabellin, arborescin, and estafiatin), monoterpene (9,10-dimethyltricycle [4.2.1.1 (2,5)]decane-9,10-diol), phytosterol (Stigmasta-5,22-dien-3β-ol acetate), terpenes (lupeol acetate, pregn-5-en-20-one-3β-acetyloxy-17-hydroxy, 2-hydroxy-4-methoxy benzaldehyde), and coumarin (benzofuranone 5,6,7,7-a-tetraaldehyde-4,4,7a-trimethyl). The results obtained show that the Hex extract was highly active against Staphylococcus aureus showing a MIC of 200 μg/mL and moderately active against Escherichia coli and Klebsiella pneumoniae with MIC values of 400 μg/mL and 800 μg/mL for the other Gram-negative strains tested with Proteus mirabilis as uropathogens in vitro. Therefore, the effective dandelion extracts could be used in the development of future products with industrial application. PMID:29507587

  13. Isolation and Identification of Compounds from Bioactive Extracts of Taraxacum officinale Weber ex F. H. Wigg. (Dandelion) as a Potential Source of Antibacterial Agents.

    PubMed

    Díaz, Katy; Espinoza, Luis; Madrid, Alejandro; Pizarro, Leonardo; Chamy, Rolando

    2018-01-01

    Currently, the most effective treatment for recurrent urinary tract infections in women is antibiotics. However, the limitation for this treatment is the duration and dosage of antibiotics and the resistance that bacteria develop after a long period of administration. With the aim of identifying mainly novel natural agents with antibacterial activity, the present study was undertaken to investigate the biological and phytochemical properties of extracts from the leaves Taraxacum officinale. The structural identification of compounds present in hexane (Hex) and ethyl acetate (AcOEt) extracts was performed by mass spectrometry (GC-MS) spectroscopic techniques and nuclear magnetic resonance (NMR) with the major compounds corresponding to different sesquiterpene lactones ( α -santonin, glabellin, arborescin, and estafiatin), monoterpene (9,10-dimethyltricycle [4.2.1.1 (2,5)]decane-9,10-diol), phytosterol (Stigmasta-5,22-dien-3 β -ol acetate), terpenes (lupeol acetate, pregn-5-en-20-one-3 β -acetyloxy-17-hydroxy, 2-hydroxy-4-methoxy benzaldehyde), and coumarin (benzofuranone 5,6,7,7-a-tetraaldehyde-4,4,7a-trimethyl). The results obtained show that the Hex extract was highly active against Staphylococcus aureus showing a MIC of 200  μ g/mL and moderately active against Escherichia coli and Klebsiella pneumoniae with MIC values of 400  μ g/mL and 800  μ g/mL for the other Gram-negative strains tested with Proteus mirabilis as uropathogens in vitro . Therefore, the effective dandelion extracts could be used in the development of future products with industrial application.

  14. Biological feedstock development as part of the domestication and commercialization of Taraxacum kok-saghyz, a potential domestic source of natural rubber and inulin: progress and outlook

    USDA-ARS?s Scientific Manuscript database

    Wild-collected F0 seed was found to contain a mixture Taraxacum species (i.e., highly variable seedling phenotypes), a likely drag on TKS germplasm enhancement. Also, roots of unselected, wild-collected Taraxacum genotypes were found to contain, on average, 1.4 and 56.4 percent rubber and inulin, re...

  15. Effects of aqueous extracts of Taraxacum Officinale on expression of tumor necrosis factor-alpha and intracellular adhesion molecule 1 in LPS-stimulated RMMVECs.

    PubMed

    Hu, Ge; Wang, Junjie; Hong, Dong; Zhang, Tao; Duan, Huiqin; Mu, Xiang; Yang, Zuojun

    2017-01-11

    Mastitis gives rise to big financial burden to farm industry (mainly dairy production) and public health. Its incidence is currently high and therefore, highly effective treatments for therapy, especially with natural products are required. Taraxacum officinale has been reported to use for anti-inflammation. However, its effect on endothelium during mastitis has not been reported. We firstly established inflammation experimental model of rat mammary microvascular endothelial cells (RMMVECs). We evaluated the effects of dandelion leaf aqueous extracts (DAE) on LPS-induced production of inflammatory mediators in RMMVECs by enzyme-linked immunosorbent assay and Western blot. We treated RMMVECs with 1 μg/ml LPS for 4 h and then incubated with 10, 100 and 200 μg/mL DAE for 4, 8, 12 and 24 h. The expression (mRNA and protein level) of targets (tumor necrosis factor-alpha (TNF- α) and Intracellular Adhesion Molecule 1 (ICAM1) was analyzed by employing real-time PCR and Western blots. The in vivo anti-inflammatory effect of DAE on mastitis within an Staphylococcus aureus-induced mouse model was also determined. The obtained results showed that dandelion extracts at the concentration of 100 and 200 μg/mL could significantly inhibit both TNF-α and ICAM-1 expression in all time points checked while 10 μg/mL of dandelion only suppress both expression at 8 and 12 h post-treatment. The in vivo tests showed that the DAE inhibited the expression of TNF-α and ICAM-1 in a time-dependent manner. All results suggest that the endothelium may use as as a possible target of dandelion for anti-inflammation.

  16. Polyphenoloxidase Silencing Affects Latex Coagulation in Taraxacum Species1[W

    PubMed Central

    Wahler, Daniela; Gronover, Christian Schulze; Richter, Carolin; Foucu, Florence; Twyman, Richard M.; Moerschbacher, Bruno M.; Fischer, Rainer; Muth, Jost; Prüfer, Dirk

    2009-01-01

    Latex is the milky sap that is found in many different plants. It is produced by specialized cells known as laticifers and can comprise a mixture of proteins, carbohydrates, oils, secondary metabolites, and rubber that may help to prevent herbivory and protect wound sites against infection. The wound-induced browning of latex suggests that it contains one or more phenol-oxidizing enzymes. Here, we present a comprehensive analysis of the major latex proteins from two dandelion species, Taraxacum officinale and Taraxacum kok-saghyz, and enzymatic studies showing that polyphenoloxidase (PPO) is responsible for latex browning. Electrophoretic analysis and amino-terminal sequencing of the most abundant proteins in the aqueous latex fraction revealed the presence of three PPO-related proteins generated by the proteolytic cleavage of a single precursor (pre-PPO). The laticifer-specific pre-PPO protein contains a transit peptide that can target reporter proteins into chloroplasts when constitutively expressed in dandelion protoplasts, perhaps indicating the presence of structures similar to plastids in laticifers, which lack genuine chloroplasts. Silencing the PPO gene by constitutive RNA interference in transgenic plants reduced PPO activity compared with wild-type controls, allowing T. kok-saghyz RNA interference lines to expel four to five times more latex than controls. Latex fluidity analysis in silenced plants showed a strong correlation between residual PPO activity and the coagulation rate, indicating that laticifer-specific PPO plays a major role in latex coagulation and wound sealing in dandelions. In contrast, very little PPO activity is found in the latex of the rubber tree Hevea brasiliensis, suggesting functional divergence of latex proteins during plant evolution. PMID:19605551

  17. Phytoextraction of rare earth elements in herbaceous plant species growing close to roads.

    PubMed

    Mikołajczak, Patrycja; Borowiak, Klaudia; Niedzielski, Przemysław

    2017-06-01

    The aim of study was to determine the phytoextraction of rare earth elements (REEs) to roots, stems and leaves of five herbaceous plant species (Achillea millefolium L., Artemisia vulgaris L., Papaver rhoeas L., Taraxacum officinale AND Tripleurospermum inodorum), growing in four areas located in close proximity to a road with varied traffic intensity. Additionally, the relationship between road traffic intensity, REE concentration in soil and the content of these elements in plant organs was estimated. A. vulgaris and P. rhoeas were able to effectively transport REEs in their leaves, independently of area collection. The highest content of REEs was observed in P. rhoeas leaves and T. inodorum roots. Generally, HREEs were accumulated in P. rhoeas roots and leaves and also in the stems of T. inodorum and T. officinale, whereas LREEs were accumulated in T. inodorum roots and T. officinale stems. It is worth underlining that there was a clear relationship between road traffic intensity and REE, HREE and LREE concentration in soil. No positive correlation was found between the concentration of these elements in soil and their content in plants, with the exception of T. officinale. An effective transport of REEs from the root system to leaves was observed, what points to the possible ability of some of the tested plant species to remove REEs from soils near roads.

  18. Statistical downscaling of general-circulation-model- simulated average monthly air temperature to the beginning of flowering of the dandelion (Taraxacum officinale) in Slovenia

    NASA Astrophysics Data System (ADS)

    Bergant, Klemen; Kajfež-Bogataj, Lučka; Črepinšek, Zalika

    2002-02-01

    Phenological observations are a valuable source of information for investigating the relationship between climate variation and plant development. Potential climate change in the future will shift the occurrence of phenological phases. Information about future climate conditions is needed in order to estimate this shift. General circulation models (GCM) provide the best information about future climate change. They are able to simulate reliably the most important mean features on a large scale, but they fail on a regional scale because of their low spatial resolution. A common approach to bridging the scale gap is statistical downscaling, which was used to relate the beginning of flowering of Taraxacum officinale in Slovenia with the monthly mean near-surface air temperature for January, February and March in Central Europe. Statistical models were developed and tested with NCAR/NCEP Reanalysis predictor data and EARS predictand data for the period 1960-1999. Prior to developing statistical models, empirical orthogonal function (EOF) analysis was employed on the predictor data. Multiple linear regression was used to relate the beginning of flowering with expansion coefficients of the first three EOF for the Janauary, Febrauary and March air temperatures, and a strong correlation was found between them. Developed statistical models were employed on the results of two GCM (HadCM3 and ECHAM4/OPYC3) to estimate the potential shifts in the beginning of flowering for the periods 1990-2019 and 2020-2049 in comparison with the period 1960-1989. The HadCM3 model predicts, on average, 4 days earlier occurrence and ECHAM4/OPYC3 5 days earlier occurrence of flowering in the period 1990-2019. The analogous results for the period 2020-2049 are a 10- and 11-day earlier occurrence.

  19. [Screening and identification of endophytic fungi with growth promoting effect on Dendrobium officinale].

    PubMed

    Hou, Xiao-qiang; Guo, Shun-xing

    2014-09-01

    The endophytic fungi with plant growth promoting effects were screened by co-culture of each endophytic fungus and seedlings of Dendrobium officinale. Anatomical features of the inoculated roots were studied by paraffin sectioning. Morphological characteristics and rDNA ITS1-5. 8S-ITS2 sequences were applied for the taxonomy of endophytic fungi. The results showed that 8 strains inoculated to D. officinale seedlings greatly enhanced plant height, stem diameter, new roots number and biomass. According to the anatomical features of the inoculated roots, each fungus could infect the velamina of seedlings. The hyphae or pelotons were existed in the exodermis passage cells and cortex cells. The effective fungi could not infect the endodermis and vascular bundle sheath, but which was exception for other fungi with harmful to seedlings. Combined with classic morphologic classification, 2 effective strains were identified which were subjected to Pestalotiopsis and Eurotium. Six species of fungi without conidiophore belonged to Pyrenochaeta, Coprinellus, Pholiota, Alternaria, Helotiales, which were identified by sequencing the PCR-amplified rDNA ITS1-5. 8S-ITS2 regions. The co-culture technology of effective endophytic fungi and plant can apply to cultivate the seedlings of D. officinale. It is feasible to shorten growth cycle of D. officinale and increase the resource of Chinese herbs.

  20. Proteomic analysis reveals the mechanisms of Mycena dendrobii promoting transplantation survival and growth of tissue culture seedlings of Dendrobium officinale.

    PubMed

    Xu, X B; Ma, X Y; Lei, H H; Song, H M; Ying, Q C; Xu, M J; Liu, S B; Wang, H Z

    2015-06-01

    Dendrobium officinale is an important traditional Chinese medicinal herb. Its seedlings generally show low survival and growth when transferred from in vitro tissue culture to a greenhouse or field environment. In this study, the effect of Mycena dendrobii on the survival and growth of D. officinale tissue culture seedlings and the mechanisms involved was explored. Mycena dendrobii were applied underneath the roots of D. officinale tissue culture seedlings. The seedling survival and growth were analysed. The root proteins induced by M. dendrobii were identified using two-dimensional (2-D) electrophoresis and matrix-assisted laser desorption/ionization time-of-flight MS (MALDI-TOF-MS). Mycena dendrobii treatment significantly enhanced survival and growth of D. officinale seedlings. Forty-one proteins induced by M. dendrobii were identified. Among them, 10 were involved in defence and stress response, two were involved in the formation of root or mycorrhizae, and three were related to the biosynthesis of bioactive constituents. These results suggest that enhancing stress tolerance and promoting new root formation induced by M. dendrobii may improve the survival and growth of D. officinale tissue culture seedlings. This study provides a foundation for future use of M. dendrobii in the large-scale cultivation of Dendrobiums. © 2015 The Society for Applied Microbiology.

  1. The Physiological Effects of Dandelion (Taraxacum Officinale) in Type 2 Diabetes.

    PubMed

    Wirngo, Fonyuy E; Lambert, Max N; Jeppesen, Per B

    2016-01-01

    The tremendous rise in the economic burden of type 2 diabetes (T2D) has prompted a search for alternative and less expensive medicines. Dandelion offers a compelling profile of bioactive components with potential anti-diabetic properties. The Taraxacum genus from the Asteraceae family is found in the temperate zone of the Northern hemisphere. It is available in several areas around the world. In many countries, it is used as food and in some countries as therapeutics for the control and treatment of T2D. The anti-diabetic properties of dandelion are attributed to bioactive chemical components; these include chicoric acid, taraxasterol (TS), chlorogenic acid, and sesquiterpene lactones. Studies have outlined the useful pharmacological profile of dandelion for the treatment of an array of diseases, although little attention has been paid to the effects of its bioactive components on T2D to date. This review recapitulates previous work on dandelion and its potential for the treatment and prevention of T2D, highlighting its anti-diabetic properties, the structures of its chemical components, and their potential mechanisms of action in T2D. Although initial research appears promising, data on the cellular impact of dandelion are limited, necessitating further work on clonal β-cell lines (INS-1E), α-cell lines, and human skeletal cell lines for better identification of the active components that could be of use in the control and treatment of T2D. In fact, extensive in-vitro, in-vivo, and clinical research is required to investigate further the pharmacological, physiological, and biochemical mechanisms underlying the effects of dandelion-derived compounds on T2D.

  2. The Physiological Effects of Dandelion (Taraxacum Officinale) in Type 2 Diabetes

    PubMed Central

    Wirngo, Fonyuy E.; Lambert, Max N.; Jeppesen, Per B.

    2016-01-01

    The tremendous rise in the economic burden of type 2 diabetes (T2D) has prompted a search for alternative and less expensive medicines. Dandelion offers a compelling profile of bioactive components with potential anti-diabetic properties. The Taraxacum genus from the Asteraceae family is found in the temperate zone of the Northern hemisphere. It is available in several areas around the world. In many countries, it is used as food and in some countries as therapeutics for the control and treatment of T2D. The anti-diabetic properties of dandelion are attributed to bioactive chemical components; these include chicoric acid, taraxasterol (TS), chlorogenic acid, and sesquiterpene lactones. Studies have outlined the useful pharmacological profile of dandelion for the treatment of an array of diseases, although little attention has been paid to the effects of its bioactive components on T2D to date. This review recapitulates previous work on dandelion and its potential for the treatment and prevention of T2D, highlighting its anti-diabetic properties, the structures of its chemical components, and their potential mechanisms of action in T2D. Although initial research appears promising, data on the cellular impact of dandelion are limited, necessitating further work on clonal β-cell lines (INS-1E), α-cell lines, and human skeletal cell lines for better identification of the active components that could be of use in the control and treatment of T2D. In fact, extensive in-vitro, in-vivo, and clinical research is required to investigate further the pharmacological, physiological, and biochemical mechanisms underlying the effects of dandelion-derived compounds on T2D. PMID:28012278

  3. IN VIVO ANTI-INFLAMMATORY EFFECTS OF TARAXASTEROL AGAINST ANIMAL MODELS

    PubMed Central

    Wang, Ying; Li, Guan-Hao; Liu, Xin-Yu; Xu, Lu; Wang, Sha-Sha; Zhang, Xue-Mei

    2017-01-01

    Background: Traditional Chinese medicine Taraxacum officinale has been widely used to treat various inflammatory diseases. Taraxasterol is one of the main active components isolated from Taraxacum officinale. Recently, we have demonstrated that taraxasterol has the in vitro anti-inflammatory effects. This study aims to determine the in vivo anti-inflammatory effects of taraxasterol against animal models. Materials and Methods: Anti-inflammatory effects were assessed in four animal models by using dimethylbenzene-induced mouse ear edema, carrageenan-induced rat paw edema, acetic acid-induced mouse vascular permeability and cotton pellet-induced rat granuloma tests. Results: Our results demonstrated that taraxasterol dose-dependently attenuated dimethylbenzene-induced mouse ear edema and carrageenan-induced rat paw edema, decreased acetic acid-induced mouse vascular permeability and inhibited cotton pellet-induced rat granuloma formation. Conclusion: Our finding indicates that taraxasterol has obvious in vivo anti-inflammatory effects against animal models. It will provide experimental evidences for the traditional use of Taraxacum officinale and taraxasterol in inflammatory diseases. PMID:28480383

  4. De Novo Transcriptome Assembly and Characterization of Lithospermum officinale to Discover Putative Genes Involved in Specialized Metabolites Biosynthesis.

    PubMed

    Rai, Amit; Nakaya, Taiki; Shimizu, Yohei; Rai, Megha; Nakamura, Michimi; Suzuki, Hideyuki; Saito, Kazuki; Yamazaki, Mami

    2018-05-29

    Lithospermum officinale is a valuable source of bioactive metabolites with medicinal and industrial values. However, little is known about genes involved in the biosynthesis of these metabolites, primarily due to the lack of genome or transcriptome resources. This study presents the first effort to establish and characterize de novo transcriptome assembly resource for L. officinale and expression analysis for three of its tissues, namely leaf, stem, and root. Using over 4Gbps of RNA-sequencing datasets, we obtained de novo transcriptome assembly of L. officinale , consisting of 77,047 unigenes with assembly N50 value as 1524 bps. Based on transcriptome annotation and functional classification, 52,766 unigenes were assigned with putative genes functions, gene ontology terms, and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. KEGG pathway and gene ontology enrichment analysis using highly expressed unigenes across three tissues and targeted metabolome analysis showed active secondary metabolic processes enriched specifically in the root of L. officinale . Using co-expression analysis, we also identified 20 and 48 unigenes representing different enzymes of lithospermic/chlorogenic acid and shikonin biosynthesis pathways, respectively. We further identified 15 candidate unigenes annotated as cytochrome P450 with the highest expression in the root of L. officinale as novel genes with a role in key biochemical reactions toward shikonin biosynthesis. Thus, through this study, we not only generated a high-quality genomic resource for L. officinale but also propose candidate genes to be involved in shikonin biosynthesis pathways for further functional characterization. Georg Thieme Verlag KG Stuttgart · New York.

  5. TOP 1 and 2, polysaccharides from Taraxacum officinale, inhibit NFκB-mediated inflammation and accelerate Nrf2-induced antioxidative potential through the modulation of PI3K-Akt signaling pathway in RAW 264.7 cells.

    PubMed

    Park, Chung Mu; Cho, Chung Won; Song, Young Sun

    2014-04-01

    Anti-inflammatory and anti-oxidative activities of polysaccharides from Taraxacum officinale (TOP 1 and 2) were analyzed in RAW 264.7 cells. First, lipopolysaccharide (LPS) was applied to identify anti-inflammatory activity of TOPs, which reduced expression of inducible nitric oxide synthase (iNOS) and tumor necrosis factor (TNF)-α. TOPs treatment inhibited phosphorylation of inflammatory transcription factor, nuclear factor (NF)κB, and its upstream signaling molecule, PI3K/Akt. Second, cytoprotective potential of TOPs against oxidative stress was investigated via heme oxygenase (HO)-1 induction. HO-1, one of phase II enzymes shows antioxidative activity, was potently induced by TOPs treatment, which was in accordance with the nuclear translocation of nuclear factor-erythroid 2 p45-related factor 2 (Nrf2). In addition, TOPs treatment phosphorylated PI3K/Akt with slight activation of c-Jun NH2-terminal kinase (JNK). TOPs-mediated HO-1 induction protected macrophage cells from oxidative stress-induced cell death, which was confirmed by SnPP and CoPP (HO-1 inhibitor and inducer, respectively). Consequently, TOPs potently inhibited NFκB-mediated inflammation and accelerated Nrf2-mediated antioxidative potential through the modulation of PI3K/Akt pathway, which would contribute to their promising strategy for novel anti-inflammatory and anti-oxidative agents. Copyright © 2014. Published by Elsevier Ltd.

  6. [Comparative studies on scavenging DPPH free radicals activity of flavone C-glycosides from different parts of Dendrobium officinale].

    PubMed

    Zhou, Guifen; Lv, Guiyuan

    2012-06-01

    To study the scavenging DPPH free radicals activity of flavone C-glycosides from different parts of Dendrobium officinale. The types and contents of flavonoids from different parts of D. officinale were analyzed by TLC and HPLC. The antioxidant effect was tested by scavenging DPPH free radicals activity. The stems, leaves and flowers contained the same type of flavone C-A glycosides and 8 common peaks were identified. The content of flavone C-A glycosides was significantly different. The content of flavone C-glycosides in leaves and flowers was higher than that in stems. The flavonoid in roots was less. Stems contained naringenin, which was not identified in root, leave and flower. Both stems and leaves had antioxidant capacity of eliminating DPPH free radicals, of which scavenging DPPH free radicals activity of leaves was better than stems. Considering the content of flavonoid and antioxidant activity leave and flower of D. officinale may substitute stems. The study provides a preliminary basis for the development and utilization of leave and flower of D. officinale.

  7. [HPLC fingerprint chromatogram analysis of some Taraxacum in Henan province].

    PubMed

    Li, Xi-Feng; Shi, Hui-Min; Xu, Min; Meng, Lu

    2008-10-01

    To analyze the HPLC fingerprint chromatogram of some Taraxacum in Henan. Samples of different species, producing areas, harvest seasons and medicinal parts were determined by RP-HPLC. The chromatogram was evaluated by software of evaluating similarity. The components of different species in Taraxacum were the same and could be substituted for each other. The contents of coffeic acid and chlorogenic acid in different producing areas were very different,which in fecund soil was better. The period of flowering and fruiting in Spring was the best gather period, and the components in different parts were different. The quality of medicinal materal within Taraxacum should be controlled better by this method.

  8. Micromonospora taraxaci sp. nov., a novel endophytic actinomycete isolated from dandelion root (Taraxacum mongolicum Hand.-Mazz.).

    PubMed

    Zhao, Junwei; Guo, Lifeng; He, Hairong; Liu, Chongxi; Zhang, Yuejing; Li, Chuang; Wang, Xiangjing; Xiang, Wensheng

    2014-10-01

    A novel actinomycete, designated strain NEAU-P5(T), was isolated from dandelion root (Taraxacum mongolicum Hand.-Mazz.). Strain NEAU-P5(T) showed closest 16S rRNA gene sequence similarity to Micromonospora chokoriensis 2-19/6(T) (99.5%), and phylogenetically clustered with Micromonospora violae NEAU-zh8(T) (99.3%), M. saelicesensis Lupac 09(T) (99.0%), M. lupini Lupac 14N(T) (98.8%), M. zeae NEAU-gq9(T) (98.4%), M. jinlongensis NEAU-GRX11(T) (98.3%) and M. zamorensis CR38(T) (97.9%). Phylogenetic analysis based on the gyrB gene sequence also indicated that the isolate clustered with the above type strains except M. violae NEAU-zh8(T). The cell-wall peptidoglycan consisted of meso-diaminopimelic acid and glycine. The major menaquinones were MK-9(H8), MK-9(H6) and MK-10(H2). The phospholipid profile contained diphosphatidylglycerol, phosphatidylethanolamine and phosphatidylinositol. The major fatty acids were C(16:0), iso-C(15:0) and C(17:0). Furthermore, some physiological and biochemical properties and low DNA-DNA relatedness values enabled the strain to be differentiated from members of closely related species. Therefore, it is proposed that strain NEAU-P5(T) represents a novel species of the genus Micromonospora, for which the name Micromonospora taraxaci sp. nov. is proposed. The type strain is NEAU-P5(T) (=CGMCC 4.7098(T) = DSM 45885(T)).

  9. Weeds ability to phytoremediate cadmium-contaminated soil.

    PubMed

    Hammami, Hossein; Parsa, Mehdi; Mohassel, Mohammad Hassan Rashed; Rahimi, Salman; Mijani, Sajad

    2016-01-01

    An alternative method to other technologies to clean up the soil, air and water pollution by heavy metals is phytoremediation. Therefore, a pot culture experiment was conducted at the College of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran, in 2014 to determine the potential absorption of cadmium by Portulaca oleracea (Common purslane), Solanum nigrum (Black nightshade), Abutilon theophrasti (Velvetleaf) and Taraxacum officinale (Dandelion). The type of experiment was completely randomized design with factorial arrangement and four replications. The soil in pot was treated with different rates of CdCl2.H2O (0 (control), 10, 20, 40, 60, and 80 mg Cd/kg soil) and the plants were sown. With increasing concentration levels, fresh weight and dry weight of shoots and roots of all plant species were reduced. The reduction severity was ranked according the following order, P. oleracea > A. theophrasti > S. nigrum > T. officinale. Bioconcentration factor (BCF), Translocation factor (TF) and Translocation efficiency (TE%) was ranked according the following order, T. officinale > S. nigrum > A. theophrasti > P. oleracea. The results of this study revealed that T. officinale and S. nigrum are effective species to phytoremediate Cd-contaminated soil.

  10. Sesquiterpenoids and phenolics from Taraxacum hondoense.

    PubMed

    Kisiel, Wanda; Michalska, Klaudia

    2005-09-01

    Eleven sesquiterpene lactones, including the new guaianolide 11beta-hydroxydeacetylmatricarin-8-O-beta-glucopyranoside, along with four known phenolic glucosides were isolated from Taraxacum hondoense. The compounds were characterized by spectral methods.

  11. Identification of a 3-hydroxy-3-methylglutaryl-CoA reductase gene highly expressed in the root tissue of Taraxacum kok-saghyz

    USDA-ARS?s Scientific Manuscript database

    Kazak dandelion (Taraxacum kok-saghyz, Tk) is a rubber-producing plant currently being investigated as a source of natural rubber for industrial applications. Like many other isoprenoids, rubber is a downstream product of the mevalonate pathway. The 3-hydroxy-3-methylglutaryl-CoA reductase (HMGR) en...

  12. Chemical constituents of the aerial part of Taraxacum mongolicum and their chemotaxonomic significance.

    PubMed

    Li, Wei; Lee, Changyeol; Kim, Young Ho; Ma, Jin Yeul; Shim, Sang Hee

    2017-10-01

    A phytochemical investigation of Taraxacum mongolicum led to the isolation of 24 compounds, including six flavonoids (1-6), four sesquiterpenes (7-10), two sphingolipids (11 and 12), six glycerols (13-18) and six triterpenoids and sterols (19-24). The structures of these compounds were identified by spectroscopic methods, and their data compared with those reported in the literature. This is the first report of compounds 11-19 from T. mongolicum and the genus Taraxacum, and compounds 11, 12, 15, 16, 18 and 19 from the Asteraceae family. The chemotaxonomic relationship between T. mongolicum and other Taraxacum species is also discussed.

  13. Isolation and Purification of Water Soluble Proteins from Ginger Root (Zingiber officinale) by Two Dimensional Liquid Chromatography

    PubMed Central

    Sandovall, A.O.; Andrews, K.; Wahab, A.; Choudhary, M.I.; Ahmed, A.

    2014-01-01

    The RI-INBRE Centralized Core Facility was established in 2003 and participates annually in Undergraduate Summer Research Program. It provides students hands on research experience in key technologies in biomedical sciences. We present here the isolation and purification of water soluble proteins from ginger, a rhizome of the plant, Zingiber officinale. It is an important ingredient of species used in traditional South Asian cuisines. In Indian, Pakistani and Chinese folk medicine, ginger is used for gastro-intestinal disorders, nausea, vomiting, inflammatory diseases, muscle and joint pain. Limited studies have been reported on the bioactive proteins from ginger extract. The water soluble proteins were extracted from ginger root and successfully purified to homogeneity by using two-dimensional liquid chromatography (FPLC/RP-HPLC) approach. The ginger root was washed with distilled water; skin removed and then emulsified using an electric blender. Sample was stirred for four days at 4°C with and without protease inhibitor. Purification of a 42kDa protein was achieved by employing gel filtration, ion-exchange and reversed phase HPLC. The homogeneity of the protein was confirmed by SDS-PAGE gel electrophoresis and MALDI-TOF mass spectrometry. Future work will be conducted on the protein characterization using mass spectrometry and Edman protein sequencing. Supported by grant 5P20GM103430 from the National Institute of General Medical Sciences, NIH, USA.

  14. Two New Isomers of Palmityl-4-hydroxycinnamate from Flowers of Taraxacum Species.

    PubMed

    Dudáš, Matej; Vilková, Mária; Béres, Tibor; Repcák, Miroslav; Mártonfi, Pavol

    2016-06-01

    Two isomers, (Z)- and (E)-palmityl 4-hydroxycinnamate [hexadecyl(2Z)-3-(4-hydroxyphenyl)prop-2-enoate and hexadecyl(2E)-3-(4-hydroxyphenyl)prop-2-enoate] were isolated for the first time from ligulate flowers of Taraxacum linearisquameum Soest (sect. Taraxacum). The highest amount of these compounds was detected in pollen grains; 0.26 mg/100 mg DW of the (E)-isomer and 0.096 mg/100 mg DW of the (Z)-isomer. The structures of these compounds were elucidated by a combination of HPLC-ESI-Qtof-MS and 1D and 2D NMR spectroscopy. Their presence was confirmed in other species of Taraxacum, but they were not found in the male - sterile triploid agamospermous taxon T. parnassicum.

  15. Evaluation of Houttuynia cordata and Taraxacum officinale on Growth Performance, Nutrient Digestibility, Blood Characteristics, and Fecal Microbial Shedding in Diet for Weaning Pigs.

    PubMed

    Yan, L; Zhang, Z F; Park, J C; Kim, I H

    2012-10-01

    A total of 144 pigs ((Landrace×Yorkshire)×Duroc] with an average initial BW of 8.45±0.57 kg were used in a 5-wk growth trial. Pigs were randomly allocated to 4 treatments with 9 replications per pen in a randomized complex block design. Dietary treatments included: i) CON (basal diet), ii) ANT (CON+tylosin 1 g/kg), iii) H1 (CON+H. cordata 1 g/kg) and iv) T1 (CON+T. officinale 1 g/kg). In this study, pigs fed the ANT and T1 treatment had a higher (p<0.05) average daily gain (ADG) and gain:feed (G:F) ratio than those fed CON and H1 treatment. Dietary ANT and T1 treatment led to a higher energy digestibility than the CON group. No difference (p>0.05) was observed on the growth performance and apparent total tract digestibility with H1 supplementation compared with the CON treatment. The inclusion of ANT treatment led to a higher (p<0.05) lymphocyte concentration compared with the CON treatment. Dietary supplementation of herbs did not affect (p>0.05) the blood characteristics (white blood cell (WBC), red blood cell (RBC), IgG, lymphocyte). No difference was observed on (p<0.05) fecal microbial shedding (E. coli and lactobacillus) between ANT and CON groups. Treatments H1 and T1 reduced the fecal E. coli concentration compared with the CON treatment, whereas the fecal lactobacillus concentration was not affected by the herb supplementation (p>0.05). In conclusion, the inclusion of T. officinale (1 g/kg) increased growth performance, feed efficiency, energy digestibility similarly to the antibiotic treatment. Dietary supplementation of T. officinale and H. cordata (1 g/kg) reduced the fecal E. coli concentration in weaning pigs.

  16. Evaluation of Houttuynia cordata and Taraxacum officinale on Growth Performance, Nutrient Digestibility, Blood Characteristics, and Fecal Microbial Shedding in Diet for Weaning Pigs

    PubMed Central

    Yan, L.; Zhang, Z. F.; Park, J. C.; Kim, I. H.

    2012-01-01

    A total of 144 pigs ((Landrace×Yorkshire)×Duroc] with an average initial BW of 8.45±0.57 kg were used in a 5-wk growth trial. Pigs were randomly allocated to 4 treatments with 9 replications per pen in a randomized complex block design. Dietary treatments included: i) CON (basal diet), ii) ANT (CON+tylosin 1 g/kg), iii) H1 (CON+H. cordata 1 g/kg) and iv) T1 (CON+T. officinale 1 g/kg). In this study, pigs fed the ANT and T1 treatment had a higher (p<0.05) average daily gain (ADG) and gain:feed (G:F) ratio than those fed CON and H1 treatment. Dietary ANT and T1 treatment led to a higher energy digestibility than the CON group. No difference (p>0.05) was observed on the growth performance and apparent total tract digestibility with H1 supplementation compared with the CON treatment. The inclusion of ANT treatment led to a higher (p<0.05) lymphocyte concentration compared with the CON treatment. Dietary supplementation of herbs did not affect (p>0.05) the blood characteristics (white blood cell (WBC), red blood cell (RBC), IgG, lymphocyte). No difference was observed on (p<0.05) fecal microbial shedding (E. coli and lactobacillus) between ANT and CON groups. Treatments H1 and T1 reduced the fecal E. coli concentration compared with the CON treatment, whereas the fecal lactobacillus concentration was not affected by the herb supplementation (p>0.05). In conclusion, the inclusion of T. officinale (1 g/kg) increased growth performance, feed efficiency, energy digestibility similarly to the antibiotic treatment. Dietary supplementation of T. officinale and H. cordata (1 g/kg) reduced the fecal E. coli concentration in weaning pigs. PMID:25049500

  17. [Anti-proliferation Effect of Taraxacum mongolicum Extract in HepG2 Cells and Its Mechanism].

    PubMed

    Guo, Jun-bin; Ye, Hai-hong; Chen, Jian-feng

    2015-10-01

    To study the anti-proliferation effect of Taraxacum mongolicum extract in HepG2 cells and its mechanism. The total proteins of HepG2 cells treated with Taraxacum mongolicum extract were. extracted and mitochondria-mediated apoptosis-related proteins (Survivin, Mcl-1, BCL-xL, BCL-2, Smac, BAX, Bad, Cytochrome c and Caspase-3/7/9) were detected by Western blot. Taraxacum mongolicum extract obviously inhibited the proliferation of HepG2 cells and the expression of anti-apoptotic proteins (Survivin, BCL-xL and BCL-2), increased the expression of pro-apoptotic proteins (Smac and Caspase-3/7/9), and promoted the release of Cytochrome c from mitochondria to cytoplasm in HepG2 cells. The effects were in a dose-independent mode. Taraxacum mongolicum extract can inhibit the proliferation of HepG2 cells and the anti-proliferation mechanism is related to mitochondria-mediated apoptosis.

  18. Optimization and Scale-up of Inulin Extraction from Taraxacum kok-saghyz roots.

    PubMed

    Hahn, Thomas; Klemm, Andrea; Ziesse, Patrick; Harms, Karsten; Wach, Wolfgang; Rupp, Steffen; Hirth, Thomas; Zibek, Susanne

    2016-05-01

    The optimization and scale-up of inulin extraction from Taraxacum kok-saghyz Rodin was successfully performed. Evaluating solubility investigations, the extraction temperature was fixed at 85 degrees C. The inulin stability regarding degradation or hydrolysis could be confirmed by extraction in the presence of model inulin. Confirming stability at the given conditions the isolation procedure was transferred from a 1 L- to a 1 m3-reactor. The Reynolds number was selected as the relevant dimensionless number that has to remain constant in both scales. The stirrer speed in the large scale was adjusted to 3.25 rpm regarding a 300 rpm stirrer speed in the 1 L-scale and relevant physical and process engineering parameters. Assumptions were confirmed by approximately homologous extraction kinetics in both scales. Since T. kok-saghyz is in the focus of research due to its rubber content side-product isolation from residual biomass it is of great economic interest. Inulin is one of these additional side-products that can be isolated in high quantity (- 35% of dry mass) and with a high average degree of polymerization (15.5) in large scale with a purity of 77%.

  19. Organic parasite control for poultry and rabbits in British Columbia, Canada

    PubMed Central

    2011-01-01

    Plants used for treating endo- and ectoparasites of rabbits and poultry in British Columbia included Arctium lappa (burdock), Artemisia sp. (wormwood), Chenopodium album (lambsquarters) and C. ambrosioides (epazote), Cirsium arvense (Canada thistle), Juniperus spp. (juniper), Mentha piperita (peppermint), Nicotiana sp. (tobacco), Papaver somniferum (opium poppy), Rubus spp. (blackberry and raspberry relatives), Symphytum officinale (comfrey), Taraxacum officinale (common dandelion), Thuja plicata (western redcedar) and Urtica dioica (stinging nettle). PMID:21756341

  20. [HPLC specific chromatogram of Dendrobium officinale].

    PubMed

    Yan, Mei-Qiu; Chen, Su-Hong; Lv, Gui-Yuan; Zhou, Gui-Fen; Liu, Xia

    2013-02-01

    To establish the method of specific chromatogram analysis of ether extract of Dendrobium officinale for identification of D. officinale. Chromatographic separation was carried out at 30 degrees C on an Ultimate C18 column (4.6 mm x 250 mm, 5 microm) eluted with methanol and water containing 0.2% phosphoric acid in a gradient elution at a flow rate of 1.0 mL x min(-1). The detection wavelength was set at 280 nm. The similarity evaluation system for chromatographic fingerprint of NPC (National Pharmacopoeia Committee) was adopted to specific chromatogram construction. The HPLC specific chromatogram of D. officinale was constructed with 6 common specific chromatographic peaks including naringenin as a reference peak. The method shows good precision and repeatability of relative retention time. It can be used to identify D. officinale.

  1. [Study on HPLC fingerprint of 11 Taraxacum species in northeast of China].

    PubMed

    Zhu, Dan; Zhao, Xin; Xu, Qiao; Ning, Wei

    2011-04-01

    To study the RP-HPLC fingerprints of 11 plants in the genus Taraxacum for their quality control. The fingerprints were determined using an Agilent 1100 series instrument system. Chromatographic analyses were performed on a Kromasil 100-5 C18 (4.6 mm x 250 mm, 5 microm) analytical column,eluted with methanol and water containing 0.5% acetic acid as the mobile phases in gradient elution at the flow rate of 1.0 mL x min(-1). The detection wavelength was 323 nm. The temperature of column was 35 degrees C. Eleven species of Taraxacum in northeast of China were detected respectively. Twenty-five common peaks existed in 11 RP-HPLC fingerprints. By comparing the retention time and the on-line UV spectra, peaks No. 10, No. 12, No. 16 and No. 25 were identified as chlorogenic acid, caffeic acid, p-coumaroy acid and luteolin respectively. The analytical method with good precision and reproducibility can be useful in the quality control of Taraxacum plants.

  2. [Dendrobium officinale stereoscopic cultivation method].

    PubMed

    Si, Jin-Ping; Dong, Hong-Xiu; Liao, Xin-Yan; Zhu, Yu-Qiu; Li, Hui

    2014-12-01

    The study is aimed to make the most of available space of Dendrobium officinale cultivation facility, reveal the yield and functional components variation of stereoscopic cultivated D. officinale, and improve quality, yield and efficiency. The agronomic traits and yield variation of stereoscopic cultivated D. officinale were studied by operating field experiment. The content of polysaccharide and extractum were determined by using phenol-sulfuric acid method and 2010 edition of "Chinese Pharmacopoeia" Appendix X A. The results showed that the land utilization of stereoscopic cultivated D. officinale increased 2.74 times, the stems, leaves and their total fresh or dry weight in unit area of stereoscopic cultivated D. officinale were all heavier than those of the ground cultivated ones. There was no significant difference in polysaccharide content between stereoscopic cultivation and ground cultivation. But the extractum content and total content of polysaccharide and extractum were significantly higher than those of the ground cultivated ones. In additional, the polysaccharide content and total content of polysaccharide and extractum from the top two levels of stereoscopic culture matrix were significantly higher than that of the ones from the other levels and ground cultivation. Steroscopic cultivation can effectively improves the utilization of space and yield, while the total content of polysaccharides and extractum were significantly higher than that of the ground cultivated ones. The significant difference in Dendrobium polysaccharides among the plants from different height of stereo- scopic culture matrix may be associated with light factor.

  3. Action of Chlorhexidine, Zingiber officinale, and Calcium Hydroxide on Candida albicans, Enterococcus faecalis, Escherichia coli, and Endotoxin in the Root Canals.

    PubMed

    Valera, Marcia C; Oliveira, Sarah Ac; Maekawa, Lilian E; Cardoso, Flávia Gr; Chung, Adriana; Silva, Stephanie Fp; Carvalho, Cláudio At

    2016-02-01

    The purpose of this in vitro study was to evaluate the antimicrobial activity of 2% chlorhexidine gel (CHX) as auxiliary chemical substance and intracanal medications on Candida albicans, Enterococcus faecalis, Escherichia coli, and their endotoxins in the root canals. The study was conducted on 48 single-rooted human teeth divided into four groups (n = 12), according to intracanal medications used: (1) Calcium hydroxide + apyrogenic saline solution (Ca(OH)2 + SS), (2) 20% ginger glycolic extract (GEN), (3) calcium hydroxide + 20% ginger glycolic extract (Ca(OH)2 + GEN), (4) apyrogenic SS (control). Collections were made from the root canal content before preparation (baseline-S1), immediately after instrumentation (S2), 7 days after instrumentation (S3), after 14 days the action of intracanal medication (S4), and 7 days after removal of the intracanal medication (S5). The antimicrobial activity and endotoxin content were analyzed for all collections. The results were statistically analyzed by the Kruskal-Wallis and Dunn tests at a significance level of 5%. After instrumentation with CHX, there was complete elimination of E. coli and C. albicans, except for E. faecalis, which was significantly reduced and then completely eliminated after intracanal medication. There was significant reduction of endotoxin after instrumentation. Comparison of collection after instrumentation and intracanal medication revealed reduction of endotoxins in all groups; this reduction was greater in group Ca(OH)2 followed by the group GEN. It was concluded that the instrumentation using CHX and intracanal medication used were able to eliminate the microorganisms from the root canal; the endotoxins were reduced, yet not completely eliminated. This study is important and relevant for searching alternatives during endodontic therapy, since it aims to study the effect of Zingiber officinale on microorganisms and endotoxins present in root canals.

  4. Extraction condition optimization and effects of drying methods on physicochemical properties and antioxidant activities of polysaccharides from comfrey (Symphytum officinale L.) root.

    PubMed

    Shang, Hongmei; Zhou, Haizhu; Duan, Mengying; Li, Ran; Wu, Hongxin; Lou, Yujie

    2018-06-01

    This study was designed to investigate the extraction conditions of polysaccharides from comfrey (Symphytum officinale L.) root (CRPs) using response surface methodology (RSM). The effects of three variables including liquid-solid ratio, extraction time and extraction temperature on the extraction yield of CRPs were taken into consideration. Moreover, the effects of drying methods including hot air drying (HD), vacuum drying (VD) and freeze drying (FD) on the physicochemical properties and antioxidant activities of CRPs were evaluated. The optimal conditions to extract the polysaccharides were as follows: liquid-solid ratio (15mL/g), extraction time (74min), and extraction temperature (95°C), allowed a maximum polysaccharides yield of 22.87%. Different drying methods had significant effects on the physicochemical properties of CRPs such as the chemical composition (contents of total polysaccharides and uronic acid), relative viscosity, solubility and molecular weight. CRPs drying with FD method showed stronger reducing power and radical scavenging capacities against DPPH and ABTS radicals compared with CRPs drying with HD and VD methods. Therefore, freeze drying served as a good method for keeping the antioxidant activities of polysaccharides from comfrey root. Copyright © 2018 Elsevier B.V. All rights reserved.

  5. In vitro antimicrobial and anti-endotoxin action of Zingiber Officinale as auxiliary chemical and medicament combined to calcium hydroxide and chlorhexidine.

    PubMed

    Valera, Marcia Carneiro; Cardoso, Flávia Goulart da Rosa; Maekawa, Lilian Eiko; Camargo, Carlos Henrique Ribeiro; de Oliveira, Luciane Dias; Carvalho, Cláudio Antônio Talge

    2015-01-01

    This study was conducted in vitro to compare the effectiveness of Zingiber Officinale as an auxiliary chemical substance followed by placement of different intra-canal medication in removing endotoxins and cultivable micro-organisms from infected root canals. Seventy-two root canals were contaminated with Enterococcus faecalis, Candida albicans and Escherichia coli for 28 days. After, the teeth were instrumented using Zingiber Officinale and divided into six groups according to the intra-canal medication: chlorhexidine gel; calcium hydroxide + chlorhexidine gel; glycolic ginger extract; calcium hydroxide + glycolic ginger extract; calcium hydroxide + saline solution and saline solution (control). Sample collections were performed after root canal contamination (Baseline; S1), after instrumentation (S2), 7 days after instrumentation (S3), after 14 days with intra-canal medication (S4) and 7 days after removal of intra-canal medication (S5). The results were analyzed by the Kruskal-Wallis and Dunn tests. It was observed that in S2 and S3 there was significant reduction of the micro-organisms and the quantity of endotoxins after instrumentation. In samples S4 and S5 there was complete elimination of micro-organisms and significant reduction of endotoxins. It was concluded that Zingiber Officinale as an auxiliary chemical substance was effective on the micro-organisms tested, yet was unable to eliminate the endotoxins. Similarly, the intra-canal medication were effective on micro-organisms, yet did not completely eliminate the endotoxins.

  6. Dandelion Root Extract Induces Intracellular Ca2+ Increases in HEK293 Cells.

    PubMed

    Gerbino, Andrea; Russo, Daniela; Colella, Matilde; Procino, Giuseppe; Svelto, Maria; Milella, Luigi; Carmosino, Monica

    2018-04-07

    Dandelion (Taraxacum officinale Weber ex F.H.Wigg.) has been used for centuries as an ethnomedical remedy. Nonetheless, the extensive use of different kinds of dandelion extracts and preparations is based on empirical findings. Some of the tissue-specific effects reported for diverse dandelion extracts may result from their action on intracellular signaling cascades. Therefore, the aim of this study was to evaluate the effects of an ethanolic dandelion root extract (DRE) on Ca 2+ signaling in human embryonic kidney (HEK) 293 cells. The cytotoxicity of increasing doses of crude DRE was determined by the Calcein viability assay. Fura-2 and the fluorescence resonance energy transfer (FRET)-based probe ERD1 were used to measure cytoplasmic and intraluminal endoplasmic reticulum (ER) Ca 2+ levels, respectively. Furthermore, a green fluorescent protein (GFP)-based probe was used to monitor phospholipase C (PLC) activation (pleckstrin homology [PH]-PLCδ-GFP). DRE (10-400 µg/mL) exposure, in the presence of external Ca 2+ , dose-dependently increased intracellular Ca 2+ levels. The DRE-induced Ca 2+ increase was significantly reduced in the absence of extracellular Ca 2+ . In addition, DRE caused a significant Ca 2+ release from the ER of intact cells and a concomitant translocation of PH-PLCδ-GFP. In conclusion, DRE directly activates both the release of Ca 2+ from internal stores and a significant Ca 2+ influx at the plasma membrane. The resulting high Ca 2+ levels within the cell seem to directly stimulate PLC activity.

  7. Taraxacin, a new guaianolide from Taraxacum wallichii.

    PubMed

    Ahmad, V U; Yasmeen, S; Ali, Z; Khan, M A; Choudhary, M I; Akhtar, F; Miana, G A; Zahid, M

    2000-07-01

    A new guaianolide, taraxacin (1), and a known sesquiterpene ketolactone (2) have been isolated from an ethyl acetate-soluble part of a methanolic extract of Taraxacum wallichii. The structure of 1 was established using NMR, MS, and X-ray crystallographic methods. The (13)C NMR data of 2 is also being reported for the first time.

  8. [Some worries about Dendrobium officinale industry].

    PubMed

    Li, Guang; Lu, Juan; Chen, Xi

    2013-02-01

    In recent years, with the continuous development of the industry of Dendrobium officinale, the technological alliance on CEEUSRO has been established. However, many problems also exposed with the rapid expansion of the industry, such as weak basic research, single species of the product, lack of in-depth studies and difficult to guarantee the quality. Industrial foam was gradually formed. To guard against the D. officinale becoming another "Puer Tea" , the authors believe that the key to sustainable development of the industry is enterprises and research institutes should strengthen basic research, speed up development of application of integrated innovations, government should strengthen guidance, regulate the operation of the market, then protect the quality of D. officinale in the market.

  9. Phenotype analysis of Russian dandelion root tissues from the national plant germplasm system collection

    USDA-ARS?s Scientific Manuscript database

    Russian dandelion (Taraxacum kok-saghyz) (TKS) produces high quality natural rubber (NR), cis-1,4 polyisoprene, by biosynthesis, and has been used historically as a source of NR during times of short supply or high prices for Hevea NR. The rubber is primarily located in root tissues along with appre...

  10. Deposition of callose in young ovules of two Taraxacum species varying in the mode of reproduction.

    PubMed

    Musiał, Krystyna; Kościńska-Pająk, Maria; Antolec, Renata; Joachimiak, Andrzej J

    2015-01-01

    Although callose occurs during megasporogenesis in most flowering plants, the knowledge about its general function and the mechanisms by which the callose layer is formed in particular places is still not sufficient. The results of previous studies suggest a total lack of callose in the ovules of diplosporous plants in which meiosis is omitted or disturbed. This report is the first documentation of callose events in dandelions ovules. We demonstrated the pattern of callose deposition during the formation of megaspores through diplospory of Taraxacum type and during normal meiotic megasporogenesis in apomictic triploid Taraxacum atricapillum and amphimictic diploid Taraxacum linearisquameum. We found the presence of callose in the megasporocyte wall of both diplosporous and sexual dandelions. However, in a diplosporous dandelion, callose predominated at the micropylar pole of megaspore mother cell (MMC) which may be correlated with abnormal asynaptic meiosis and may indicate diplospory of the Taraxacum type. After meiotic division, callose is mainly deposited in the walls between megaspores in tetrads and in diplodyads. In subsequent stages, callose gradually disappears around the chalazal functional megaspore. However, some variations in the pattern of callose deposition within tetrad may reflect variable positioning of the functional megaspore (FM) observed in the ovules of T. linearisquameum.

  11. Dandelion Root Extract Induces Intracellular Ca2+ Increases in HEK293 Cells

    PubMed Central

    Russo, Daniela; Svelto, Maria; Carmosino, Monica

    2018-01-01

    Dandelion (Taraxacum officinale Weber ex F.H.Wigg.) has been used for centuries as an ethnomedical remedy. Nonetheless, the extensive use of different kinds of dandelion extracts and preparations is based on empirical findings. Some of the tissue-specific effects reported for diverse dandelion extracts may result from their action on intracellular signaling cascades. Therefore, the aim of this study was to evaluate the effects of an ethanolic dandelion root extract (DRE) on Ca2+ signaling in human embryonic kidney (HEK) 293 cells. The cytotoxicity of increasing doses of crude DRE was determined by the Calcein viability assay. Fura-2 and the fluorescence resonance energy transfer (FRET)-based probe ERD1 were used to measure cytoplasmic and intraluminal endoplasmic reticulum (ER) Ca2+ levels, respectively. Furthermore, a green fluorescent protein (GFP)-based probe was used to monitor phospholipase C (PLC) activation (pleckstrin homology [PH]–PLCδ–GFP). DRE (10–400 µg/mL) exposure, in the presence of external Ca2+, dose-dependently increased intracellular Ca2+ levels. The DRE-induced Ca2+ increase was significantly reduced in the absence of extracellular Ca2+. In addition, DRE caused a significant Ca2+ release from the ER of intact cells and a concomitant translocation of PH–PLCδ–GFP. In conclusion, DRE directly activates both the release of Ca2+ from internal stores and a significant Ca2+ influx at the plasma membrane. The resulting high Ca2+ levels within the cell seem to directly stimulate PLC activity. PMID:29642457

  12. The Pattern of Genetic Variability in Apomictic Clones of Taraxacum officinale Indicates the Alternation of Asexual and Sexual Histories of Apomicts

    PubMed Central

    Majeský, Ľuboš; Vašut, Radim J.; Kitner, Miloslav; Trávníček, Bohumil

    2012-01-01

    Dandelions (genus Taraxacum) comprise a group of sexual diploids and apomictic polyploids with a complicated reticular evolution. Apomixis (clonal reproduction through seeds) in this genus is considered to be obligate, and therefore represent a good model for studying the role of asexual reproduction in microevolutionary processes of apomictic genera. In our study, a total of 187 apomictic individuals composing a set of nine microspecies (sampled across wide geographic area in Europe) were genotyped for six microsatellite loci and for 162 amplified fragment length polymorphism (AFLP) markers. Our results indicated that significant genetic similarity existed within accessions with low numbers of genotypes. Genotypic variability was high among accessions but low within accessions. Clustering methods discriminated individuals into nine groups corresponding to their phenotypes. Furthermore, two groups of apomictic genotypes were observed, which suggests that they had different asexual histories. A matrix compatibility test suggests that most of the variability within accession groups was mutational in origin. However, the presence of recombination was also detected. The accumulation of mutations in asexual clones leads to the establishment of a network of clone mates. However, this study suggests that the clones primarily originated from the hybridisation between sexual and apomicts. PMID:22870257

  13. Bioinformatics analysis on molecular mechanism of rheum officinale in treatment of jaundice

    NASA Astrophysics Data System (ADS)

    Shan, Si; Tu, Jun; Nie, Peng; Yan, Xiaojun

    2017-01-01

    Objective: To study the molecular mechanism of Rheum officinale in the treatment of Jaundice by building molecular networks and comparing canonical pathways. Methods: Target proteins of Rheum officinale and related genes of Jaundice were searched from Pubchem and Gene databases online respectively. Molecular networks and canonical pathways comparison analyses were performed by Ingenuity Pathway Analysis (IPA). Results: The molecular networks of Rheum officinale and Jaundice were complex and multifunctional. The 40 target proteins of Rheum officinale and 33 Homo sapiens genes of Jaundice were found in databases. There were 19 common pathways both related networks. Rheum officinale could regulate endothelial differentiation, Interleukin-1B (IL-1B) and Tumor Necrosis Factor (TNF) in these pathways. Conclusions: Rheum officinale treat Jaundice by regulating many effective nodes of Apoptotic pathway and cellular immunity related pathways.

  14. Immunodetection of some pectic, arabinogalactan proteins and hemicellulose epitopes in the micropylar transmitting tissue of apomictic dandelions (Taraxacum, Asteraceae, Lactuceae).

    PubMed

    Gawecki, Robert; Sala, Katarzyna; Kurczyńska, Ewa U; Świątek, Piotr; Płachno, Bartosz J

    2017-03-01

    In apomictic Taraxacum species, the development of both the embryo and the endosperm does not require double fertilisation. However, a structural reduction of ovular transmitting tissue was not observed in apomictic dandelions. The aim of this study was to analyse the chemical composition of the cell walls to describe the presence of arabinogalactan proteins (AGPs), hemicellulose and some pectic epitopes in the micropylar transmitting tissue of apomictic Taraxacum. The results point to (1) the similar distribution of AGPs in different developmental stages, (2) the absence of highly methyl-esterified homogalacturonan (HG) in transmitting tissue of ovule containing a mature embryo sac and the appearance of this pectin domain in the young seed containing the embryo and endosperm, (3) the similar pattern of low methyl-esterified pectin occurrence in both an ovule and a young seed with an embryo and endosperm in apomictic Taraxacum and (4) the presence of hemicelluloses recognised by LM25 and LM21 antibodies in the reproductive structure of Taraxacum.

  15. [Achene morphology cluster analysis of Taraxacum F. H. Wigg. from northeast China and molecule systematics evidence determined by SRAP].

    PubMed

    Li, Hai-juan; Zhao, Xin; Jia, Qing-fei; Li, Tian-lai; Ning, Wei

    2012-08-01

    The achenes morphological and micro-morphological characteristics of six species of genus Taraxacum from northeastern China as well as SRAP cluster analysis were observed for their classification evidences. The achenes were observed by microscope and EPMA. Cluster analysis was given on the basis of the size, shape, cone proportion, color and surface sculpture of achenes. The Taraxacum inter-species achene shape characteristic difference is obvious, particularly spinulose distribution and size, achene color and achene size; with the Taraxacum plant achene shape the cluster method T. antungense Kitag. and the T. urbanum Kitag. should combine for the identical kind; the achene morphology cluster analysis and the SRAP tagged molecule systematics's cluster result retrieves in the table with "the Chinese flora". The class group to divide the result is consistent. Taraxacum plant achene shape characteristic stable conservative, may carry on the inter-species division and the sibship analysis according to the achene shape characteristic combination difference; the achene morphology cluster analysis as well as the SRAP tagged molecule systematics confirmation support dandelion classification result of "the Chinese flora".

  16. Zingiber officinale Roscoe ameliorates anticancer antibiotic doxorubicin-induced acute cardiotoxicity in rat.

    PubMed

    Ajith, Thekkuttuparambil Ananthanarayanan; Hema, Unnikrishnan; Aswathi, Sreedharan

    2016-07-01

    Oxidative stress (OS) has been suggested in the cardiotoxicity induced by anticancer antibiotic doxorubicin (DXN). The cardioprotective effects of aqueous ethanol extract of Zingiber officinale was evaluated against DXN-induced acute cardiac damage in rat. The results of the study demonstrated that Z. officinale significantly and dose dependently protected the cardiotoxicity induced by DXN. The activities of serum glutamate oxaloacetate transaminase and serum lactate dehydrogenase activity in the DXN alone treated group of animals were significantly (p<0.01) elevated when compared to normal animals. The activities were reduced in the Z. officinale (200 and 400 mg/kg, p.o) plus DXN treated groups. The cardiac malondialdehyde was elevated in the DXN alone treated group and declined significantly in the Z. officinale (400 mg/kg) plus DXN treated group. The results concluded that aqueous ethanol extract of Z. officinale ameliorated DXN-induced cardiotoxicity. The protection can be ascribed to the free radical scavenging activity of Z. officinale. This protective effect may suggest the adjuvant role of Z. officinale against OS induced by cancer chemotherapeutants, which warrant further research. © 2016 Old City Publishing, Inc.

  17. [Chemical constituents from Neo-Taraxacum siphonathum].

    PubMed

    Shi, Shuyun; Zhou, Honghao; Zhang, Yuping; Huang, Kelong; Liu, Suqin

    2009-04-01

    To study the chemical constituents from the antioxidant fraction of Neo-Taraxacum siphonathum. Various chromatographic techniques were used to isolate and purify the constituents. The structures were elucidated on the basis of chemical evidence and spectral analysis. Ten compounds were isolated and identified from Neo-T. siphonathum, caffeic acid (1), chlorogenic acid (2), quercetin (3), luteolin (4), quercetin-3-O-beta-D-glucopyranoside (5), quercetin-3-O-alpha-D-arabinofuranoside (6), quercetin-3-O-alpha-D-arabinopyranoside (7), luteolin-7-O-beta-D-glucopyranoside (8), beta-sitosterol (9) and daucosterol (10). Compounds 1-10 were isolated from this plant for the first time.

  18. Bioreduction potentials of dried root of Zingiber officinale for a simple green synthesis of silver nanoparticles: Antibacterial studies.

    PubMed

    Judith Vijaya, J; Jayaprakash, N; Kombaiah, K; Kaviyarasu, K; John Kennedy, L; Jothi Ramalingam, R; Al-Lohedan, Hamad A; V M, Mansoor-Ali; Maaza, M

    2017-12-01

    Green synthesis of silver nanoparticles (Ag NPs) using an extract of dried Zingiber officinale (ginger) root as a reducing and capping agent in the presence of microwave irradiation was herein reported for the first time. The formation of symmetrical spheres is confirmed from the UV-Visible spectrum of Ag NPs. Fourier transform infra-red spectroscopy confirms the formation of the Ag NPs. X-ray diffraction analysis was utilized to calculate the crystallite size of Ag NPs and the value was found to be 10nm. High-resolution transmission electron microscopy and high-resolution scanning electron microscopy were used to investigate the morphology and size of the synthesized samples. The sphere like morphology is confirmed from the images. The purity and crystallinity of Ag NPs is confirmed by energy-dispersive X-Ray analysis and selected area electron diffraction respectively. The electrochemical behavior of the synthesized Ag NPs was assessed by cyclic voltammetry (CV) and shows the redox peaks in the potential range of -1.1 to +1.1V. Agar diffusion method is used to examine the antibacterial activity of Ag NPs. For this purpose, two gram positive and two gram negative bacteria were studied. This single step approach was found to be simple, short time, cost-effective, reproducible, and eco-friendly. Copyright © 2017. Published by Elsevier B.V.

  19. Zingiber officinale and Type 2 Diabetes Mellitus: Evidence from Experimental Studies.

    PubMed

    Akash, Muhammad Sajid Hamid; Rehman, Kanwal; Tariq, Muhammad; Chen, Shuqing

    2015-01-01

    Zingiber officinale is being used as diet-based therapy because of its wide therapeutic potential in type 2 diabetes mellitus (T2DM) and against diabetic complications by directly interacting with different molecular and cellular pathways that provoke the pathogenesis of T2DM. This article explores the overall beneficial effects of Z. officinale on T2DM and its associated complications. Along with elucidating the beneficial facts of Z. officinale, this article may also aid in understanding the molecular basis of its effects in T2DM. The mechanistic rationale for antidiabetic effects of Z. officinale includes the inhibition of several transcriptional pathways, lipid peroxidation, carbohydrate-metabolizing enzymes, and HMG-CoA reductase and the activation of antioxidant enzyme capacity and low-density lipoprotein receptors. Consequently, by targeting these pathways, Z. officinale shows its antidiabetic therapeutic effects by increasing insulin sensitivity/synthesis, protecting β-cells of pancreatic islets, reducing fat accumulation, decreasing oxidative stress, and increasing glucose uptake by the tissues. In addition to these effects, Z. officinale also exhibits protective effects against several diabetes-linked complications, notably nephropathy and diabetic cataract, by acting as an antioxidant and antiglycating agent. In conclusion, this work suggests that consumption of Z. officinale can help to treat T2DM and diabetic complications; nevertheless, patient counseling also is required as a guiding force for the success of diet-based therapy in T2DM.

  20. Variation in the strength of reproductive interference from an alien congener to a native species in Taraxacum.

    PubMed

    Nishida, Sachiko; Hashimoto, Keisuke; Kanaoka, Masahiro M; Takakura, Ko-Ichi; Nishida, Takayoshi

    2017-01-01

    Reproductive interference (RI) may be a contributing factor to the displacement of native species by an alien congener, and RI strength has been shown theoretically to affect distributional relationships between species. Thus, variations in RI strength from alien to native species result in different consequences of invasions and efforts to conserve native species, but the variations have seldom been examined empirically. We therefore investigated RI strength variations from the alien species Taraxacum officinale and its hybrids to eight populations of native dandelions, four T. japonicum populations and two populations each of two subspecies of T. platycarpum. We examined the association between alien relative abundance and native seed set in field surveys, and we also performed hand-pollination experiments to investigate directly the sensitivity of native flowers to alien pollen. We found that the effect of alien relative abundance on native seed set of even the same native species could differ greatly in different regions, and that the sensitivity of native flowers to alien pollen was also dependent on region. Our results, together with those of previous studies, show that RI from the alien to the native species is strong in regions where the alien species outnumbers the native species and marginal where it does not; this result suggests that alien RI can critically affect distributional relationships between native and alien species. Our study highlights the importance of performing additional empirical investigations of RI strength variation and of giving due attention to alien RI in efforts to conserve regional native biodiversity.

  1. [Ecological basis of epiphytic Dendrobium officinale growth on cliff].

    PubMed

    Liu, Xiu-Juan; Zhu, Yan; Si, Jin-Ping; Wu, Ling-Shang; Cheng, Xue-Liang

    2016-08-01

    In order to make Dendrobium officinale return to the nature, the temperature and humidity in whole days of the built rock model with different slopes and aspects in the natural distribution of wild D. officinale in Tianmu Mountain were recorded by MH-WS01 automatic recorder. The results showed that the slope has a significant impact on the extreme temperature on the surface of the rocks. In summer, the extreme temperature on the surface of horizontal or soft rock can reach to 69.4 ℃, while the temperatures were lower than 50 ℃ on the vertical rock. In winter, the temperatures on the surface of vertical rock were higher and the low temperature duration was shorter than those on the horizontal or soft rock. Also, the humidity of the rocks was significantly influenced by the slope. The monthly average humidity on the surface of vertical rock was above 80%RH. Furthermore, the aspect had a significant impact on the temperature and humidity on the surface of the rocks, but had no significant effect on the daily mean temperature and extreme temperature on the surface of vertical rock. Therefore, the slope affects the survival of D. officinale by affecting the extreme temperature of rocks and affects the growth of D. officinale by affecting the humidity. The choice of slope is the key to the success of cliff epiphytic cultivation for D. officinale. Copyright© by the Chinese Pharmaceutical Association.

  2. Growth-promoting Sphingomonas paucimobilis ZJSH1 associated with Dendrobium officinale through phytohormone production and nitrogen fixation

    PubMed Central

    Yang, Suijuan; Zhang, Xinghai; Cao, Zhaoyun; Zhao, Kaipeng; Wang, Sai; Chen, Mingxue; Hu, Xiufang

    2014-01-01

    Growth-promoting Sphingomonas paucimobilis ZJSH1, associated with Dendrobium officinale, a traditional Chinese medicinal plant, was characterized. At 90 days post-inoculation, strain ZJSH1 significantly promoted the growth of D. officinale seedlings, with increases of stems by 8.6% and fresh weight by 7.5%. Interestingly, the polysaccharide content extracted from the inoculated seedlings was 0.6% higher than that of the control. Similar growth promotion was observed with the transplants inoculated with strain ZJSH1. The mechanism of growth promotion was attributed to a combination of phytohormones and nitrogen fixation. Strain ZJSH1 was found using the Kjeldahl method to have a nitrogen fixation activity of 1.15 mg l−1, which was confirmed by sequencing of the nifH gene. Using high-performance liquid chromatography-mass spectrometry, strain ZJSH1 was found to produce various phytohormones, including salicylic acid (SA), indole-3-acetic acid (IAA), Zeatin and abscisic acid (ABA). The growth curve showed that strain ZJSH1 grew well in the seedlings, especially in the roots. Accordingly, much higher contents of SA, ABA, IAA and c-ZR were detected in the inoculated seedlings, which may play roles as both phytohormones and ‘Systemic Acquired Resistance’ drivers. Nitrogen fixation and secretion of plant growth regulators (SA, IAA, Zeatin and ABA) endow S. paucimobilis ZJSH1 with growth-promoting properties, which provides a potential for application in the commercial growth of D. officinale. PMID:25142808

  3. Desacetylmatricarin, an anti-allergic component from Taraxacum platycarpum.

    PubMed

    Cheong, H; Choi, E J; Yoo, G S; Kim, K M; Ryu, S Y; Ho, C

    1998-08-01

    The bioassay-guided fractionation of Taraxacum platycarpum (Compositae) extract led to the isolation of a desacetylmatricarin (1) as an active principle responsible for the anti-allergic property. It showed a potent inhibitory activity upon the beta-hexosaminidase release from RBL-2H3 cells in a dose-dependent manner and the IC50 was 7.5 microM. Two structurally related guaianolide sesquiterpenes, achillin and leucodin, were also examined and their IC50 values were determined as 100 microM and 80 microM, respectively.

  4. Screening and identification of radical scavengers from Neo-Taraxacum siphonanthum by online rapid screening method and nuclear magnetic resonance experiments.

    PubMed

    Shi, Shu Yun; Zhang, Yu Ping; Zhou, Hong Hao; Huang, Ke Long; Jiang, Xin Yu

    2010-01-01

    An online rapid screening method, the high-performance liquid chromatography (HPLC)-diode array detector (DAD)-radical scavenging detection (RSD)-electrospray ionization (ESI)-mass spectroscopy (MS)/MS system, was developed for the screening and identification of radical scavengers from Neo-Taraxacum siphonanthum, a new species found in China in 1989. For further characterization, the target compounds were isolated by silica column chromatography, preparative high-performance liquid chromatography (HPLC), HSCCC, and Sephadex LH-20 column chromatography and elucidated on the basis of ultraviolet (UV), ESI-MS/MS, and nuclear magnetic resonance (NMR) spectroscopy, as well as the chemical analysis. Eighteen antioxidative polyphenols (5 caffeic acid derivatives and 13 flavonoid derivatives) were characterized from Neo-T. siphonanthum. The distribution of all compounds was discussed in a chemosystematic context, which suggested that the genera Neo-Taraxacum and Taraxacum might relate chemosystematically.

  5. [Pollen vigor and development of germplasm of Dendrobium officinale].

    PubMed

    Zhu, Bo; Yuan, He; Yu, Qiaoxian; Si, Jinping

    2011-03-01

    To provide the theoretical basis and applied technology for breeding superior species of Dendrobium officinale. The peroxidase solution was used to test the pollen vigor in different flowering time and storage conditions. Cross, self and opening pollination were conducted in the green house, the subsidiary pollination by insects was carried out outdoors. The pollen of D. officinale was still in vigor when the flower faded. The pollen vigor was only 29.4% in the buds, 70.6% in the bloom day, and decreased to 31.9% a week later, it remained still 21.2% 20 days later under the condition of dry and 4 degrees C. The fructification rate was about 82.6% and 7.3%, respectively, when the cross and self pollination performed by hand in the whole flowering time, the rate was 0 in the green house and outdoors. The pollen of D. officinale was still in vigor during the whole flowering time, the fructification rate was 0 in the green house and outdoors resulted from the specific structure of flower. The wild resources of D. officinale were protected and germplasm was developed effectively through the artificial cross pollination.

  6. Assessment of heavy metal pollution in Republic of Macedonia using a plant assay.

    PubMed

    Gjorgieva, Darinka; Kadifkova-Panovska, Tatjana; Bačeva, Katerina; Stafilov, Trajče

    2011-02-01

    Different plant organs (leaves, flowers, stems, or roots) from four plant species-Urtica dioica L. (Urticaceae), Robinia pseudoacacia L. (Fabaceae), Taraxacum officinale (Asteraceae), and Matricaria recutita (Asteraceae)-were evaluated as possible bioindicators of heavy-metal pollution in Republic of Macedonia. Concentrations of Pb, Cu, Cd, Mn, Ni, and Zn were determined in unwashed plant parts collected from areas with different degrees of metal pollution by ICP-AES. All these elements were found to be at high levels in samples collected from an industrial area. Maximum Pb concentration was 174.52 ± 1.04 mg kg⁻¹ in R. pseudoacacia flowers sampled from the Veles area, where lead and zinc metallurgical activities were present. In all control samples, the Cd concentrations were found to be under the limit of detection (LOD <0.1 mg kg⁻¹) except for R. pseudoacacia flowers and T. officinale roots. The maximum Cd concentration was 7.97 ± 0.15 mg kg⁻¹ in R. pseudoacacia flowers from the Veles area. Nickel concentrations were in the range from 1.90 ± 0.04 to 5.74 ± 0.03 mg kg⁻¹. For U. dioica leaves and R. pseudoacacia flowers sampled near a lead-smelting plant, concentrations of 465.0 ± 0.55 and 403.56 ± 0.34 mg kg⁻¹ Zn were detected, respectively. In all control samples, results for Zn were low, ranging from 10.2 ± 0.05 to 38.70 ± 0.18 mg kg⁻¹. In this study, it was found that the flower of R. pseudoacacia was a better bioindicator of heavy-metal pollution than other plant parts. Summarizing the results, it can be concluded that T. officinale, U. dioica, and R. pseudoacacia were better metal accumulators and M. recutita was a metal avoider.

  7. Preparation and characterization of Dendrobium officinale powders through superfine grinding.

    PubMed

    Meng, Qingran; Fan, Haoran; Chen, Feng; Xiao, Tiancun; Zhang, Lianfu

    2018-03-01

    Dendrobium officinale has been used in China for several thousand years as a health food and has become one of the most expensive tea materials worldwide as a result of extremely scarce resources in the wild and an increasing demand. Hence, it is very important to improve the depth and width of its application. In the present study, the physico-chemical, surface chemistry and thermal properties of micron range particles and coarse particles prepared by superfine grinding and shear pulverization were investigated. As the particle size decreased, the specific surface area of D. officinale powders increased significantly. Microscopy observations confirmed that superfine grinding effectively changed the original structure of D. officinale. The Fourier transform infrared spectroscopy spectra depicted the characteristic bands shifted in terms of absorbance and/or wave number as the powder particle size decreased. The crystallinity and intensity of the crystal peaks of D. officinale powders increased as the particle size decreased. Moisture sorption isotherms suggested that superfine powders were more unstable as a result of the increase in surface area, as well as the exposure of polar groups. The results of the present study suggest that superfine grinding may provide new methods of processing for D. officinale with respect to further enhancement of its application value. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  8. Generation of autotetraploid plant of ginger (Zingiber officinale Rosc.) and its quality evaluation

    PubMed Central

    Kun-Hua, Wei; Jian-Hua, Miao; He-Ping, Huang; Shan-Lin, Gao

    2011-01-01

    Background: Zingiber officinale Rosc. is not only an important medical plant in China, but also one of the most commonly used plant spices around the world. Early researches in Z. officinale Rosc. were focused on rapid propagation, germplasm preservation, and somatic embryogenesis, only a few reports focused on the generation of tetraploid ginger plants with colchicines treatment in vitro. Materials and Methods: The adventitious buds were submerged into different concentrations of colchicine water solution for different time to induce polyploid plants, and the induced buds were identified by root-tip chromosome determination and stomatal apparatus observation. Eighteen selected tetraploid lines were transferred to the field, and the leaf characteristics, rhizome yield, contents of volatile oil and gingerol were respectively evaluated to provide evidence of high-yield and good qualities of tetraploid ginger. Results: The induction rate reached as high as 33.3% of treated buds. More than 48 lines of autotetraploid plants were obtained. All tetraploid plants showed typical polyploidy characteristics. All of the 18 selected tetraploid lines possessed higher rhizome yield and overall productivity of volatile oil and gingerol than those of the control. Conclusion: Five elite lines have been selected for further selection and breeding new varieties for commercial production in agricultural production. PMID:21969790

  9. Survival of Salmonella during Drying of Fresh Ginger Root (Zingiber officinale) and Storage of Ground Ginger.

    PubMed

    Gradl, Dana R; Sun, Lingxiang; Larkin, Emily L; Chirtel, Stuart J; Keller, Susanne E

    2015-11-01

    The survival of Salmonella on fresh ginger root (Zingiber officinale) during drying was examined using both a laboratory oven at 51 and 60°C with two different fan settings and a small commercially available food dehydrator. The survival of Salmonella in ground ginger stored at 25 and 37°C at 33% (low) and 97% (high) relative humidity (RH) was also examined. To inoculate ginger, a four-serovar cocktail of Salmonella was collected by harvesting agar lawn cells. For drying experiments, ginger slices (1 ± 0.5 mm thickness) were surface inoculated at a starting level of approximately 9 log CFU/g. Higher temperature (60°C) coupled with a slow fan speed (nonstringent condition) to promote a slower reduction in the water activity (aw) of the ginger resulted in a 3- to 4-log reduction in Salmonella populations in the first 4 to 6 h with an additional 2- to 3-log reduction by 24 h. Higher temperature with a higher fan speed (stringent condition) resulted in significantly less destruction of Salmonella throughout the 24-h period (P < 0.001). Survival appeared related to the rate of reduction in the aw. The aw also influenced Salmonella survival during storage of ground ginger. During storage at 97% RH, the maximum aw values were 0.85 at 25°C and 0.87 at 37°C; Salmonella was no longer detected after 25 and 5 days of storage, respectively, under these conditions. At 33% RH, the aw stabilized to approximately 0.35 at 25°C and 0.31 at 37°C. Salmonella levels remained relatively constant throughout the 365-day and 170-day storage periods for the respective temperatures. These results indicate a relationship between temperature and aw and the survival of Salmonella during both drying and storage of ginger.

  10. A new inositol triester from Taraxacum mongolicum.

    PubMed

    Liu, Jifeng; Zhang, Nenling; Liu, Mengqi

    2014-01-01

    One new inositol triester, 4,5,6-tri-O-p-hydroxyphenylacetyl-chiro-inositol (1), was isolated from the ethanolic extract of Taraxacum mongolicum, along with two known compounds, 11β,13-dihydrotaraxinic acid (2) and taraxinic acid β-d-glucopyranosyl ester (3). The isolates were tested for their anti-hepatitis B virus (HBV) activities; 11β,13-dihydrotaraxinic acid (2) exhibited an IC50 value of 0.91 mM inhibiting the secretion of the HBV surface antigen and an IC50 value of 0.34 mM inhibiting the secretion of the HBV e antigen using HBV transfected Hep G2.2.15 cell line.

  11. Laticifer-specific cis-prenyltransferase silencing affects the rubber, triterpene, and inulin content of Taraxacum brevicorniculatum.

    PubMed

    Post, Janina; van Deenen, Nicole; Fricke, Julia; Kowalski, Natalie; Wurbs, David; Schaller, Hubert; Eisenreich, Wolfgang; Huber, Claudia; Twyman, Richard M; Prüfer, Dirk; Gronover, Christian Schulze

    2012-03-01

    Certain Taraxacum species, such as Taraxacum koksaghyz and Taraxacum brevicorniculatum, produce large amounts of high-quality natural rubber in their latex, the milky cytoplasm of specialized cells known as laticifers. This high-molecular mass biopolymer consists mainly of poly(cis-1,4-isoprene) and is deposited in rubber particles by particle-bound enzymes that carry out the stereospecific condensation of isopentenyl diphosphate units. The polymer configuration suggests that the chain-elongating enzyme (rubber transferase; EC 2.5.1.20) is a cis-prenyltransferase (CPT). Here, we present a comprehensive analysis of transgenic T. brevicorniculatum plants in which the expression of three recently isolated CPTs known to be associated with rubber particles (TbCPT1 to -3) was heavily depleted by laticifer-specific RNA interference (RNAi). Analysis of the CPT-RNAi plants by nuclear magnetic resonance, size-exclusion chromatography, and gas chromatography-mass spectrometry indicated a significant reduction in rubber biosynthesis and a corresponding 50% increase in the levels of triterpenes and the main storage carbohydrate, inulin. Transmission electron microscopy revealed that the laticifers in CPT-RNAi plants contained fewer and smaller rubber particles than wild-type laticifers. We also observed lower activity of hydroxymethylglutaryl-coenzyme A reductase, the key enzyme in the mevalonate pathway, reflecting homeostatic control of the isopentenyl diphosphate pool. To our knowledge, this is the first in planta demonstration of latex-specific CPT activity in rubber biosynthesis.

  12. [Analysis of inorganic elements in hydroponic Taraxacum mongolicum grown under different spectrum combinations by ICP-AES].

    PubMed

    Chen, Xiao-li; Morewane, M B; Xue, Xu-zhang; Guo, Wen-zhong; Wang, Li-chun

    2015-02-01

    Dandelion (Taraxacum mongolicum) was hydroponically cultured in a completely enclosed plant factory, in which fluorescence and LED emitting spectra of different bands were used as the sole light source for plant growth. Effects of spectral component on the growth of dandelion were studied and the contents of ten inorganic elements such as K, P, Ca, Mg, Na, Fe, Mn, Zn, Cu and B in dandelion were analyzed by ICP-AES technology. The results showed that: (1) Under the condition of similar photosynthetic active radiation (PAR), single R or combined spectrums of FLRB were beneficial for biomass accumulation, while single B was the contrary; (2) Macroelements content ratio in Taraxacum mongolicum grown under FLwas K:Ca:P:Mg : Na=79.74:32.39:24.32:10.55:1.00, microelements content ratio was Fe:Mn:B:Zn:Cu = 9.28:9.71:3.82:2.08:1.00; (3) Red light (peak at 660 nm) could promote the absorptions of Ca, Fe, Mn, Zn, while absorption of Cu was not closely related to spectral conditions; (4) Thehighest accumulation of Ca, Na, Mn and Zn were obtained in aerial parts of Taraxacum mongolicum plants grown under pure red spectrum R, while the accumulation of the rest six elements reached the highest level under the mixed spectrum FLRB.

  13. An In-Situ Root-Imaging System in the Context of Surface Detection of CO2

    NASA Astrophysics Data System (ADS)

    Apple, M. E.; Prince, J. B.; Bradley, A. R.; Zhou, X.; Lakkaraju, V. R.; Male, E. J.; Pickles, W.; Thordsen, J. J.; Dobeck, L.; Cunningham, A.; Spangler, L.

    2009-12-01

    Carbon sequestration is a valuable method of spatially confining CO2 belowground. The Zero Emissions Research Technology, (ZERT), site is an experimental facility in a former agricultural field on the Montana State University campus in Bozeman, Montana, where CO2 was experimentally released at a rate of 200kg/day in 2009 into a 100 meter underground injection well running parallel to the ground surface. This injection well, or pipe, has deliberate leaks at intervals, and CO2 travels from these leaks upward to the surface of the ground. The ZERT site is a model system designed with the purpose of testing methods of surface detection of CO2. One important aspect of surface detection is the determination of the effects of CO2 on the above and belowground portions of plants growing above sequestration fields. At ZERT, these plants consist of a pre-existing mixture of herbaceous species present at the agricultural field. Species growing at the ZERT site include several grasses, Dactylis glomerata (Orchard Grass), Poa pratensis (Kentucky Bluegrass), and Bromus japonicus (Japanese Brome); the nitrogen-fixing legumes Medicago sativa, (Alfalfa), and Lotus corniculatus, (Birdsfoot trefoil); and an abundance of Taraxacum officinale, (Dandelion). Although the aboveground parts of the plants at high CO2 are stressed, as indicated by changes in hyperspectral plant signatures, leaf fluorescence and leaf chlorophyll content, we are interested in determining whether the roots are also stressed. To do so, we are combining measurements of soil conductivity and soil moisture with root imaging. We are using an in-situ root-imaging system manufactured by CID, Inc. (Camas, WA), along with image analysis software (Image-J) to analyze morphometric parameters in the images and to determine what effects, if any, the presence of leaking and subsequently upwelling CO2 has on the phenology of root growth, growth and turnover of individual fine and coarse roots, branching patterns, and root

  14. In vitro interactions of Peucedanum officinale essential oil with antibiotics.

    PubMed

    Miladinović, Dragoljub L; Ilić, Budimir S; Kocić, Branislava D; Miladinović, Ljiljana C; Marković, Marija S

    2015-01-01

    The chemical composition and antibacterial activity of Peucedanum officinale L. (Apiaceae) essential oil were examined, as well as the association between it and antibiotics: tetracycline, streptomycin and chloramphenicol. The interactions of the essential oil with antibiotics were evaluated using the microdilution checkerboard assay. Monoterpene hydrocarbons, with α-phellandrene as the dominant constituent, were the most abundant compound class of the essential oil of P. officinale. The researched essential oil exhibited slight antibacterial activity against the tested bacterial strains in vitro. On the contrary, essential oil of P. officinale possesses a great synergistic potential with chloramphenicol and tetracycline. Their combinations reduced the minimum effective dose of the antibiotic and, consequently, minimised its adverse side effects. In addition, investigated interactions are especially successful against Gram-negative bacteria, the pharmacological treatment of which is very difficult nowadays.

  15. Protective Effect of Zingiber officinale Against Dalton's Lymphoma Ascites Tumour by Regulating Inflammatory Mediator and Cytokines.

    PubMed

    Rubila, Sundararaj; Ranganathan, Thottiam Vasudevan; Sakthivel, Kunnathur Murugesan

    2016-12-01

    The aim of the present investigation was to evaluate Zingiber officinale paste against Dalton's lymphoma ascites (DLA)-induced tumours in Swiss albino mice. Experimental animals received Z. officinale paste (low dose 100 mg/kg bw and high dose 500 mg/kg bw) orally for eight alternative days. Treatment with Z. officinale paste showed significant increase in haemoglobin level and decrease in aspartate amino transferase (AST), alanine aminotransferase (ALT), alkaline phosphatase (ALP) and gamma glutamyl transferase (γ-GT) level. Z. officinale paste reduced the inflammatory mediators and cytokine levels, such as inducible nitric oxide (iNOS), tumour necrosis factor level (TNF-α) and interleukin-1β (IL-1β). Treatment with Z. officinale paste also significantly increased the antioxidant enzyme level, such as superoxide dismutase (SOD), catalase (CAT), reduced glutathione (GSH) and glutathione transferase (GST), and decreased the lipid peroxidation. Treatment also increased the vitamin C and E levels in treated animals compared with the DLA-bearing host. Histopathological studies also confirmed the protective influence of Z. officinale paste against DLA. The present study suggested that Z. officinale paste could be used as natural spice and a potent antitumour agent.

  16. Evaluation of allelopathic, decomposition and cytogenetic activities of Jasminum officinale L. f. var. grandiflorum (L.) Kob. on bioassay plants.

    PubMed

    Teerarak, Montinee; Laosinwattana, Chamroon; Charoenying, Patchanee

    2010-07-01

    Methanolic extracts prepared from dried leaves of Jasminum officinale f. var. grandiflorum (L.) Kob. (Spanish jasmine) inhibited seed germination and stunted both root and shoot length of the weeds Echinochloa crus-galli (L.) Beauv. and Phaseolus lathyroides L. The main active compound was isolated and determined by spectral data as a secoiridoid glucoside named oleuropein. In addition, a decrease in allelopathic efficacy appeared as the decomposition periods increased. The mitotic index in treated onion root tips decreased with increasing concentrations of the extracts and longer periods of treatment. Likewise, the mitotic phase index was altered in onion incubated with crude extract. Furthermore, crude extract produced mitotic abnormalities resulting from its action on chromatin organization and mitotic spindle. Copyright (c)2010 Elsevier Ltd. All rights reserved.

  17. [Analysis of Volatile Oils from Different Processed Products of Zingiber officinale Rhizome by GC-MS].

    PubMed

    Zhao, Hong-bing; Wang, Zhi-hui; He, Fang; Meng, Han; Peng, Jian-hua; Shi, Ji-lian

    2015-04-01

    To analyze the volatile components in different processed products of Zingiber officinale rhizome, and to make clear the effect of different heating degree on them. The volatile components were extracted from four kinds of processed products by applying steam distillation, and then were analyzed by GC-MS. There were totally 43 components of volatile oil identified from four kinds of processed products of Zingiber officinale rhizome. Fresh product, dried product, and charcoal product of Zingiber officinale rhizome each had 27 components of volatile oil, while sand fried product contained 24 components. Fresh Zingiber officinale rhizome contained 22. 59% of zingiberene, 20. 87% of a-citral and 11. 01% of β-phellandrene, respectively. After processing in different heating degree, the volatile components changed greatly in both of their quantity and quality, For instance, dried Zingiber officinale rhizome contained 40. 48% of α-citral and 8-phellandrene content was slightly lower at 10. 38%. 32.73% of 3,7,11-trimethyl-l, 6, 10-dodecatriene,16. 38% of murolan-3, 9 (11)-diene-10-peroxy and 3. 36% of cubebene newly emerged in the sand fried Zingiber officinale rhizome, and eudesm-4 (14) and β-bisabolol, etc. However, β-phellandrene content was only 1. 95%. The zingiberene and β-sesquiphellandrene were the highest in charcoal product, besides, new components such as α-cedrene, decanal and γ-elemene appeared. Volatile components in different processed products of Zingiber officinale rhizome were different in both of their kinds and contents. This method is suitable for the analysis of volatile components in Zingiber officinale rhizome, and this study can provide the experimental evidence for quality evaluation and clinical application for ginger processed products.

  18. The Genome of Dendrobium officinale Illuminates the Biology of the Important Traditional Chinese Orchid Herb.

    PubMed

    Yan, Liang; Wang, Xiao; Liu, Hui; Tian, Yang; Lian, Jinmin; Yang, Ruijuan; Hao, Shumei; Wang, Xuanjun; Yang, Shengchao; Li, Qiye; Qi, Shuai; Kui, Ling; Okpekum, Moses; Ma, Xiao; Zhang, Jiajin; Ding, Zhaoli; Zhang, Guojie; Wang, Wen; Dong, Yang; Sheng, Jun

    2015-06-01

    Dendrobium officinale Kimura et Migo is a traditional Chinese orchid herb that has both ornamental value and a broad range of therapeutic effects. Here, we report the first de novo assembled 1.35 Gb genome sequences for D. officinale by combining the second-generation Illumina Hiseq 2000 and third-generation PacBio sequencing technologies. We found that orchids have a complete inflorescence gene set and have some specific inflorescence genes. We observed gene expansion in gene families related to fungus symbiosis and drought resistance. We analyzed biosynthesis pathways of medicinal components of D. officinale and found extensive duplication of SPS and SuSy genes, which are related to polysaccharide generation, and that the pathway of D. officinale alkaloid synthesis could be extended to generate 16-epivellosimine. The D. officinale genome assembly demonstrates a new approach to deciphering large complex genomes and, as an important orchid species and a traditional Chinese medicine, the D. officinale genome will facilitate future research on the evolution of orchid plants, as well as the study of medicinal components and potential genetic breeding of the dendrobe. Copyright © 2015 The Author. Published by Elsevier Inc. All rights reserved.

  19. Effect of Poloxamer on Zingiber Officinale Extracted Green Synthesis and Antibacterial Studies of Silver Nanoparticles.

    PubMed

    Chitra, K; Manikandan, A; Antony, S Arul

    2016-01-01

    The Zingiber officinale (Z. officinale) plant is one of the well-known medicinal plants. Poloxamer finds excellent clinical and therapeutic uses for curing of various ailments. The poloxamer 188 polymer and the plant extract of Z. officinale have been used to prepare the silver nanoparticles (AgNPs) by a green synthesis route. The Z. officinale plant extract has been used as a reducing agent, while the poloxamer 188 has been used as a stabilizing agent. The formation of face-centered cubic (fcc) structure AgNPs was confirmed by X-ray diffraction pattern. The effect of addition of poloxamer on the controlling the shape, size and morphologies of the AgNPs has been investigated by transmission electron microscopy (TEM) and dynamic light scattering techniques. The elemental composition of AgNPs was confirmed by energy dispersive X-ray (EDX) analysis. The anti-bacterial activity of AgNPs has been investigated using three human pathogens Escherichia coli, Klebsiella pneumonia and Staphylococcus aureus. The poloxamer 188 protected AgNPs inhibit the bacterial growth more effectively than the pure Z. officinale extract and the Z. officinale extract AgNPs.

  20. Protective effect of Dendrobium officinale polysaccharides on H2O2-induced injury in H9c2 cardiomyocytes.

    PubMed

    Zhao, Xiaoyan; Dou, Mengmeng; Zhang, Zhihao; Zhang, Duoduo; Huang, Chengzhi

    2017-10-01

    The preliminary studies have shown that Dendrobium officinale possessed therapeutic effects on hypertension and atherosclerosis. Studies also reported that Dendrobium officinale polysaccharides showed antioxidant capabilities. However, little is known about its effects on myocardial cells under oxidative stress. The present study was designed to study the protective effect of Dendrobium officinale polysaccharides against H 2 O 2 -induced oxidative stress in H9c2 cells. MTT assay was carried out to determine the cell viability of H9c2 cells when pretreated with Dendrobium officinale polysaccharides. Fluorescent microscopy measurements were performed for evaluating the apoptosis in H9c2 cells. Furthermore, effects of Dendrobium officinale polysaccharides on the activities of antioxidative indicators (malondialdehyde, superoxide dismutase), reactive oxygen species (ROS) production and mitochondrial membrane potential (MMP) levels were analyzed. Dendrobium officinale polysaccharides attenuated H 2 O 2 -induced cell death, as determined by the MTT assay. Dendrobium officinale polysaccharides decreased malondialdehyde levels, increased superoxide dismutase activities, and inhibited the generation of intracellular ROS. Moreover, pretreatment with Dendrobium officinale polysaccharides also inhibited apoptosis and increased the MMP levels in H9c2 cells. These results suggested the protective effects of Dendrobium officinale polysaccharides against H 2 O 2 -induced injury in H9c2 cells. The results also indicated the anti-oxidative capability of Dendrobium officinale polysaccharides. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  1. [Comparison of different harvest ways of Dendrobium officinale].

    PubMed

    Wang, Yang; Zhu, Yan; Si, Jin-Ping; Liu, Jing-Jing; Zhu, Yu-Qiu; Liu, Xiu-Juan

    2015-03-01

    To standardize the harvest ways of Dendrobium officinale and improve the quality and yield of D. officinale, a field experiment was carried out to study the effect of two kinds of harvest ways, which were keeping some of the axial shoot and harvesting all of the shoot by the end of the year. Then, the agronomic traits and yield were measured and the contents of polysaccharides and extractum were determined. The results showed that the harvest ways significantly affected the growth of D. officinale. Keeping some of the axial shoot could significantly improved the number of sprout, stem length, internode number and the internodal length, which also triggered increase the weight of fresh stems, leaves and the total of them and dry stems in per unit area, but it could not promote the stem diameter and the polysaccharide content in stems. Keeping some of the axial shoot moderately was conducive to the improvement of the production of medicinal materials in the process of harvesting by promoting the germination and growth of new buds, and to ensure the polysaccharide content by regulating the illumination and the density of cultivation.

  2. Dendrobium officinale Kimura et Migo: A Review on Its Ethnopharmacology, Phytochemistry, Pharmacology, and Industrialization

    PubMed Central

    Tang, Hanxiao; Zhao, Tianwen; Sheng, Yunjie; Zheng, Ting; Fu, Lingzhu

    2017-01-01

    Ethnopharmacological Relevance. Dendrobii Officinalis Caulis, the stems of Dendrobium officinale Kimura et Migo, as a tonic herb in Chinese materia medica and health food in folk, has been utilized for the treatment of yin-deficiency diseases for decades. Methods. Information for analysis of Dendrobium officinale Kimura et Migo was obtained from libraries and Internet scientific databases such as PubMed, Web of Science, Google Scholar, ScienceDirect, Wiley InterScience, Ingenta, Embase, CNKI, and PubChem. Results. Over the past decades, about 190 compounds have been isolated from Dendrobium officinale Kimura et Migo. Its wide modern pharmacological actions in hepatoprotective effect, anticancer effect, hypoglycemic effect, antifatigue effect, gastric ulcer protective effect, and so on were reported. This may mainly attribute to the major and bioactive components: polysaccharides. However, other small molecule components require further study. Conclusions. Due to the lack of systematic data of Dendrobium officinale, it is important to explore its ingredient-function relationships with modern pharmacology. Recently, studies on the chemical constituents of Dendrobium officinale concentrated in crude polysaccharides and its structure-activity relationships remain scant. Further research is required to determine the Dendrobium officinale toxicological action and pharmacological mechanisms of other pure ingredients and crude extracts. In addition, investigation is needed for better quality control and novel drug or product development. PMID:28386292

  3. [Study on suitable harvest time of Dendrobium officinale in Yunnan province].

    PubMed

    Zhang, Shan-bao; Zhou, Ke-jun; Zhang, Zhen; Lu, Rui-rui; Li, Xian; Li, Xiao-hua

    2015-09-01

    In order to determine the suitable harvest time of Dendrobium officinale from different regions in Yunnan province, the drying rate, mannose and glucose peak area ratio, extract, contents of polysaccharide and mannose of D. officinale samples collected from six producing areas in Ynnnan province were determined. The results indicate that drying rate and the contents of polysaccharide and mannose arrived the peak from January to April, extract reached a higher content from September to December, and mannose and glucose peak area ratio from October to February of the coming met the requirment of the Chinese Pharmacopoeia. Hence, the suitable harvesting time of D. officinale in Yunnan province is from December to February of the coming year,according to the experimental results and the request of the Chinese Pharmacopoeia.

  4. Separation and quantification of inulin in selected artichoke (Cynara scolymus L.) cultivars and dandelion (Taraxacum officinale WEB. ex WIGG.) roots by high-performance anion exchange chromatography with pulsed amperometric detection.

    PubMed

    Schütz, Katrin; Muks, Erna; Carle, Reinhold; Schieber, Andreas

    2006-12-01

    The profile of fructooligosaccharides and fructopolysaccharides in artichoke heads and dandelion roots was investigated. For this purpose, a suitable method for high-performance anion exchange chromatography with pulsed amperometic detection was developed. The separation of monomers, oligomers and polymers up to a chain length of 79 sugar residues was achieved in one single run. Glucose, fructose, sucrose and individual fructooligosaccharides (kestose, nystose, fructofuranosylnystose) were quantified in six different artichoke cultivars and in dandelion roots. The contents ranged from 12.9 g/kg DM to 71.7 g/kg DM for glucose, from 15.8 g/kg DM to 67.2 g/kg DM for fructose, and from 16.8 g/kg DM to 55.2 g/kg DM for sucrose in the artichoke heads. Kestose was the predominant fructooligosaccharide, followed by nystose and fructofuranosylnystose. In four cultivars fructofuranosylnystose was only detectable in traces and reached its maximum value of 3.6 g/kg DM in the cultivar Le Castel. Furthermore, an average degree of polymerization of 5.3 to 16.7 was calculated for the individual artichoke cultivars, which is noticeably lower than hitherto reported. In contrast, the contents of kestose, nystose and fructofuranosylnystose in dandelion root exceeded that of artichoke, reflecting the short chain characteristic of the inulin, which was confirmed by chromatographic analysis. Copyright (c) 2006 John Wiley & Sons, Ltd.

  5. Common plants as alternative analytical tools to monitor heavy metals in soil

    PubMed Central

    2012-01-01

    Background Herbaceous plants are common vegetal species generally exposed, for a limited period of time, to bioavailable environmental pollutants. Heavy metals contamination is the most common form of environmental pollution. Herbaceous plants have never been used as natural bioindicators of environmental pollution, in particular to monitor the amount of heavy metals in soil. In this study, we aimed at assessing the usefulness of using three herbaceous plants (Plantago major L., Taraxacum officinale L. and Urtica dioica L.) and one leguminous (Trifolium pratense L.) as alternative indicators to evaluate soil pollution by heavy metals. Results We employed Inductively Coupled Plasma Atomic Emission Spectroscopy (ICP-AES) to assess the concentration of selected heavy metals (Cu, Zn, Mn, Pb, Cr and Pd) in soil and plants and we employed statistical analyses to describe the linear correlation between the accumulation of some heavy metals and selected vegetal species. We found that the leaves of Taraxacum officinale L. and Trifolium pratense L. can accumulate Cu in a linearly dependent manner with Urtica dioica L. representing the vegetal species accumulating the highest fraction of Pb. Conclusions In this study we demonstrated that common plants can be used as an alternative analytical tool for monitoring selected heavy metals in soil. PMID:22594441

  6. [Study on water-soluble chemical constituents of Taraxacum mongolicum].

    PubMed

    Liu, Hua-qing; Wang, Tian-lin

    2014-06-01

    To study the water-soluble chemical constituents of Taraxacum mongolicum. The chemical constituents were isolated and purified by means of several chromatographic techniques and their structures were elucidated by spectroscopic methods. Nine compounds were isolated and identified as trans-p-coumaryl alcohol(1), trans-p-coumaryl aldehyde(2),p- hydroxybenzoate (3) , p-hydroxyphenyl-propionic acid (4) , 4-hydroxy-2, 6-dimethoxyphenol-1 -O-β-D-glucopyranoside (5) , protocate- chuic aldehyde(6) ,rutin(7) ,quercetin(8) ,kaempferal-3-O-α-L-rhamnopyranosyl-( 1-6) -β-D-glucopyranoside(9). Com pounds 1-6 are isolated from this plant for the first time.

  7. [Separation and identification of specific components and quality standard of stem of Dendrobium officinale].

    PubMed

    Ye, Zi; Lu, Ye; Xue, Ya-Fu; Xu, Hong; Wang, Zheng-Tao

    2016-07-01

    The violanthin, a specific component, was separated and identified from the stems of Dendrobium officinale by chromatographic technique and spectroscopic method for the first time. The microscopic characteristics of D. officinale powder were examined under a microscopy and described. Thin layer chromatography (TLC) method was used for qualitative analysis of the violanthin from D. officinale stems with a mixture of ethyl acetate, butanone, formic acid and water (4∶3∶1∶1) as the developing solvent on high performance silica gel precoated plate (SGF254) and using aluminium trichloride as a chromagenic agent. The results showed significant characteristics of violanthin from D. officinale stems on TLC, with certain specificity, and could be used to distinguish it from other easily confusing processed medicinal stems of D. devonianum, D. gratiosissimum and D. aphyllum. The content of naringenin, an active ingredient in D. officinale stems was determined by HPLC analysis on a Bischoff Chromatography HIPAK NC-04 ODS AB column (4.4 mm×250 mm, 5 mm) with acetonitrile-0.1% phosphoric acid solution as the mobile phase for gradient elution. The wavelength was set at 226 nm and column temperature was 25 ℃. The HPLC method showed good linearity within the range of 3.90-250.00 g•mL⁻¹ (r = 0.999 9) for naringenin. The average recovery of naringenin was 99.20% with 0.17% of RSD. The mass fraction of 20 batches of D. officinale stems was between 0.190 and 0.498 mg•g⁻¹. The established qualitative and quantitative method was simple and rapid with good repeatability and accuracy, providing experimental basis for improving the quality standard of D. officinale, with a very important significance to ensure its quality and clinical effect. Copyright© by the Chinese Pharmaceutical Association.

  8. Chemical Differentiation of Dendrobium officinale and Dendrobium devonianum by Using HPLC Fingerprints, HPLC-ESI-MS, and HPTLC Analyses

    PubMed Central

    Ye, Zi; Dai, Jia-Rong; Zhang, Cheng-Gang; Lu, Ye; Wu, Lei-Lei; Gong, Amy G. W.; Wang, Zheng-Tao

    2017-01-01

    The stems of Dendrobium officinale Kimura et Migo (Dendrobii Officinalis Caulis) have a high medicinal value as a traditional Chinese medicine (TCM). Because of the limited supply, D. officinale is a high priced TCM, and therefore adulterants are commonly found in the herbal market. The dried stems of a closely related Dendrobium species, Dendrobium devonianum Paxt., are commonly used as the substitute; however, there is no effective method to distinguish the two Dendrobium species. Here, a high performance liquid chromatography (HPLC) method was successfully developed and applied to differentiate D. officinale and D. devonianum by comparing the chromatograms according to the characteristic peaks. A HPLC coupled with electrospray ionization multistage mass spectrometry (HPLC-ESI-MS) method was further applied for structural elucidation of 15 flavonoids, 5 phenolic acids, and 1 lignan in D. officinale. Among these flavonoids, 4 flavonoid C-glycosides were firstly reported in D. officinale, and violanthin and isoviolanthin were identified to be specific for D. officinale compared with D. devonianum. Then, two representative components were used as chemical markers. A rapid and reliable high performance thin layer chromatography (HPTLC) method was applied in distinguishing D. officinale from D. devonianum. The results of this work have demonstrated that these developed analytical methods can be used to discriminate D. officinale and D. devonianum effectively and conveniently. PMID:28769988

  9. In Vitro propagation of Jasminum officinale L.: a woody ornamental vine yielding aromatic oil from flowers.

    PubMed

    Bhattacharya, Sabita; Bhattacharyya, Sanghamitra

    2010-01-01

    The growing demand for flower extracts in perfume trade can primarily be met by increasing flower production and multiplying planting material. The major commercial aromatic flower yielding plants including Jasminum officinale L., a member of the Family Oleaceae have drawn the attention of a large section of the concerned sectors leading to a thrust upon developing advanced propagation technologies for these floral crops, in addition to conventional nature-dependent agro-techniques. This chapter describes concisely and critically, a protocol developed for in vitro propagation of Jasminum officinale by shoot regeneration from existing as well as newly developed adventitious axillary buds via proper phytohormonal stimulation. To start with nodal segments as explants, March-April is the most ideal time of the year when planting material suitable for in vitro multiplication is abundantly available. Prior to inoculation of explants in the culture medium, special care is needed to reduce microbial contamination by spraying on selected spots of the donor plant with anti-microbial agents 24 h prior to collection; treatment with antiseptic solution after final cleaning and surface sterilization by treating explants with mercuric chloride. Inoculated explants are free from brown leaching from cut ends by two consecutive subcultures within 48 h in MS basal medium. Multiplication of shoots, average 4-5 at each node, takes place in MS medium containing 4.0 mg/L BAP, 0.1 mg/L NAA, and 40 g/L sucrose over a period of 8 weeks. For elongation of regenerated shoots, cultures are transferred to MS medium, supplemented with a single growth hormone, kinetin at 2.0 mg/L. Emergence and elongation of roots from shoot base is facilitated by placing on the notch of a filter paper bridge. The hardened in vitro propagated plants are able to grow normally in soil like other conventionally propagated Jasminum officinale.

  10. ESTs Analysis Reveals Putative Genes Involved in Symbiotic Seed Germination in Dendrobium officinale

    PubMed Central

    Zhao, Ming-Ming; Zhang, Gang; Zhang, Da-Wei; Hsiao, Yu-Yun; Guo, Shun-Xing

    2013-01-01

    Dendrobium officinale (Orchidaceae) is one of the world’s most endangered plants with great medicinal value. In nature, D . officinale seeds must establish symbiotic relationships with fungi to germinate. However, the molecular events involved in the interaction between fungus and plant during this process are poorly understood. To isolate the genes involved in symbiotic germination, a suppression subtractive hybridization (SSH) cDNA library of symbiotically germinated D . officinale seeds was constructed. From this library, 1437 expressed sequence tags (ESTs) were clustered to 1074 Unigenes (including 902 singletons and 172 contigs), which were searched against the NCBI non-redundant (NR) protein database (E-value cutoff, e-5). Based on sequence similarity with known proteins, 579 differentially expressed genes in D . officinale were identified and classified into different functional categories by Gene Ontology (GO), Clusters of orthologous Groups of proteins (COGs) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. The expression levels of 15 selected genes emblematic of symbiotic germination were confirmed via real-time quantitative PCR. These genes were classified into various categories, including defense and stress response, metabolism, transcriptional regulation, transport process and signal transduction pathways. All transcripts were upregulated in the symbiotically germinated seeds (SGS). The functions of these genes in symbiotic germination were predicted. Furthermore, two fungus-induced calcium-dependent protein kinases (CDPKs), which were upregulated 6.76- and 26.69-fold in SGS compared with un-germinated seeds (UGS), were cloned from D . officinale and characterized for the first time. This study provides the first global overview of genes putatively involved in D . officinale symbiotic seed germination and provides a foundation for further functional research regarding symbiotic relationships in orchids. PMID:23967335

  11. Synergids and filiform apparatus in the sexual and apomictic dandelions from section Palustria (Taraxacum, Asteraceae).

    PubMed

    Płachno, Bartosz J; Musiał, Krystyna; Swiątek, Piotr; Tuleja, Monika; Marciniuk, Jolanta; Grabowska-Joachimiak, Aleksandra

    2014-01-01

    An evolutionary trend to reduce "unnecessary costs" associated with the sexual reproduction of their amphimictic ancestors, which may result in greater reproductive success, has been observed among the obligatory apomicts. However, in the case of the female gametophyte, knowledge about this trend in apomicts is not sufficient because most of the ultrastructural studies of the female gametophyte have dealt with amphimictic angiosperms. In this paper, we tested the hypothesis that, in contrast to amphimictic plants, synergids in apomictic embryo sacs do not form a filiform apparatus. We compared the synergid structure in two dandelions from sect. Palustria: the amphimictic diploid Taraxacum tenuifolium and the apomictic tetraploid, male-sterile Taraxacum brandenburgicum. Synergids in both species possessed a filiform apparatus. In T. brandenburgicum, both synergids persisted for a long time without any degeneration, in spite of the presence of an embryo and endosperm. We propose that the persistent synergids in apomicts may play a role in the transport of nutrients to the embryo.

  12. Antibacterial Studies and Effect of Poloxamer on Gold Nanoparticles by Zingiber Officinale Extracted Green Synthesis.

    PubMed

    Chitra, K; Reena, K; Manikandan, A; Antony, S Arul

    2015-07-01

    Poloxamer finds excellent clinical and therapeutic uses for curing of various ailments. The Zin- giber officinale (Z. officinale) is one of the well-known medicinal plants. The poloxamer188 and the rhizome extract of Z. officinale have been used to synthesize the gold nanoparticles (AuNPs) by a green approach. The Z. officinale extract has been used as a reducing agent while the polox- amerl88 has been used as a stabilizing agent. The effect of addition of poloxamer on the controlling the shape and size of the AuNPs has been investigated by transmission electron microscopy (TEM) and dynamic light scattering techniques. The formation of AuNPs has also been confirmed by UV-Visible spectral, energy dispersive X-ray (EDX) and powder X-ray diffraction (XRD) analyses. The anti-bacterial activity of the green synthesized AuNPs has been investigated on the three human pathogens Staphylococcus aureus, Escherichia coli, and Klebsiella pneumonia. The poloxamer188 protected AuNPs inhibit the bacterial growth more effectively than the pure Z. officinale extract and the standard tetracycline (TA).

  13. The seasonal dynamics of yeast communities in the rhizosphere of soddy-podzolic soils

    NASA Astrophysics Data System (ADS)

    Golubtsova, Yu. V.; Glushakova, A. M.; Chernov, I. Yu.

    2007-08-01

    The annual dynamics of the number and taxonomic composition of yeast was studied in the rhizosphere of two plant species (Ajuga reptans L. and Taraxacum officinale Wigg.) in a forb-birch forest on soddy-podzolic soil. Eurybiont phyllobasidial cryptococci and red-pigmented phytobionts Rhodotorula glutinis were found to predominate in the phyllosphere of these plants, whereas the typical pedobionts Cryptococcus terricola and Cr. podzolicus occurred on the surface of roots and in the rhizosphere. The seasonal changes in the number and species composition of the yeast communities in the rhizosphere were more smooth as compared to those in the phyllosphere. In the period of active vegetation of the plants, the phytobiont yeasts develop over their whole surface, including the rhizoplane. Their number on the aboveground parts of the plants was significantly lower than that of the pedobiont forms. Thus, the above-and underground parts of the plants significantly differed in the composition of the dominant species of epiphytic yeasts.

  14. Acaricidal and repellent effects of Cnidium officinale-derived material against Dermanyssus gallinae (Acari: Dermanyssidae).

    PubMed

    Kim, Hyun Kyung; Lee, Seung Ju; Hwang, Bang-Yeon; Yoon, Jong Ung; Kim, Gil-Hah

    2018-04-01

    The acaricidal activity of a methanolic extract and fractions from the rhizome of Cnidium officinale against Dermanyssus gallinae adults was investigated. The C. officinale methanolic extract exhibited 100% acaricidal activity after 48 h of treatment at a dose of 4000 ppm. The acaricidal constituents of the plant were sequentially partitioned with several solvents and then purified using silica gel column chromatography and high-performance liquid chromatography. Gas chromatography-mass spectrometry and nuclear magnetic resonance spectroscopy revealed (Z)-ligustilide as a constituent of C. officinale. Acaricidal activity was examined in three experimental tests (spray, fumigation and contact), with the spraying method being the most effective. The methanolic extract of C. officinale showed both contact and fumigant activities, though only fumigant activity was observed with (Z)-ligustilide. The fumigant effects of the methanolic extract and (Z)-ligustilide caused 86.5 and 62.6% mortality, respectively, of D. gallinae adults at 48 h. Among (Z)-ligustilide, acaricides (bifenthrin, cypermethrin and spinosad) and butylidenephthalide, bifenthrin displayed the highest acaricidal activity, and the activity of butylidenephthalide was 2.3-fold higher than that of (Z)-ligustilide. These results suggest that C. officinale-derived material can be used for the development of a control agent for D. gallinae.

  15. Rapid and sensitive identification of the herbal tea ingredient Taraxacum formosanum using loop-mediated isothermal amplification.

    PubMed

    Lai, Guan-Hua; Chao, Jung; Lin, Ming-Kuem; Chang, Wen-Te; Peng, Wen-Huang; Sun, Fang-Chun; Lee, Meng-Shiunn; Lee, Meng-Shiou

    2015-01-09

    Taraxacum formosanum (TF) is a medicinal plant used as an important component of health drinks in Taiwan. In this study, a rapid, sensitive and specific loop-mediated isothermal amplification (LAMP) assay for authenticating TF was established. A set of four specific LAMP primers was designed based on the nucleotide sequence of the internal transcribed spacer 2 (ITS2) nuclear ribosomal DNA (nrDNA) of TF. LAMP amplicons were successfully amplified and detected when purified genomic DNA of TF was added in the LAMP reaction under isothermal condition (65 °C) within 45 min. These specific LAMP primers have high specificity and can accurately discriminate Taraxacum formosanum from other adulterant plants; 1 pg of genomic DNA was determined to be the detection limit of the LAMP assay. In conclusion, using this novel approach, TF and its misused plant samples obtained from herbal tea markets were easily identified and discriminated by LAMP assay for quality control.

  16. Rapid and Sensitive Identification of the Herbal Tea Ingredient Taraxacum formosanum Using Loop-Mediated Isothermal Amplification

    PubMed Central

    Lai, Guan-Hua; Chao, Jung; Lin, Ming-Kuem; Chang, Wen-Te; Peng, Wen-Huang; Sun, Fang-Chun; Lee, Meng-Shiunn; Lee, Meng-Shiou

    2015-01-01

    Taraxacum formosanum (TF) is a medicinal plant used as an important component of health drinks in Taiwan. In this study, a rapid, sensitive and specific loop-mediated isothermal amplification (LAMP) assay for authenticating TF was established. A set of four specific LAMP primers was designed based on the nucleotide sequence of the internal transcribed spacer 2 (ITS2) nuclear ribosomal DNA (nrDNA) of TF. LAMP amplicons were successfully amplified and detected when purified genomic DNA of TF was added in the LAMP reaction under isothermal condition (65 °C) within 45 min. These specific LAMP primers have high specificity and can accurately discriminate Taraxacum formosanum from other adulterant plants; 1 pg of genomic DNA was determined to be the detection limit of the LAMP assay. In conclusion, using this novel approach, TF and its misused plant samples obtained from herbal tea markets were easily identified and discriminated by LAMP assay for quality control. PMID:25584616

  17. [Genetic and physiological compatibility of different forms of stem eelworms. VI. The crossing of eelworms from cultivated plants and weeds].

    PubMed

    Ladygina, N M

    1978-01-01

    The crossing of stem eelworms of onion and red clover with these from Cirsium setosum and Taraxacum officinale resulted in the fertilization of females, egglaying and embriogenesis. However, the hybrid eggs died, as a rule. Only in one experiment a large population developed up to F5 but few hybrids survived to F10. The studied stem eelworms of weeds are genetically non-compatible with Ditylenchus dipsaci of onion and red clover and are distinct species.

  18. [Iridoid glycosides from buds of Jasminum officinale L. var. grandiflorum].

    PubMed

    Zhao, Gui-qin; Yin, Zhi-feng; Liu, Yu-cui; Li, Hong-bo

    2011-10-01

    The study on the buds of Jasminum officinale L. var. grandiflorum was carried out to look for anti-HBV constituents. The isolation and purification were performed by HPLC and chromatography on silica gel, polyamide and Sephadex LH-20 column. The structures were elucidated on the basis of physicochemical properties and spectral analysis. Six iridoid glycosides were identified as jasgranoside B (1), 6-O-methy-catalpol (2), deacetyl asperulosidic acid (3), aucubin (4), 8-dehydroxy shanzhiside (5), and loganin (6). Jasgranoside B (1) is a new compound. Compounds 2-6 were isolated from Jasminum officinale L. var. grandiflorum for the first time.

  19. A transcriptome-wide, organ-specific regulatory map of Dendrobium officinale, an important traditional Chinese orchid herb

    PubMed Central

    Meng, Yijun; Yu, Dongliang; Xue, Jie; Lu, Jiangjie; Feng, Shangguo; Shen, Chenjia; Wang, Huizhong

    2016-01-01

    Dendrobium officinale is an important traditional Chinese herb. Here, we did a transcriptome-wide, organ-specific study on this valuable plant by combining RNA, small RNA (sRNA) and degradome sequencing. RNA sequencing of four organs (flower, root, leaf and stem) of Dendrobium officinale enabled us to obtain 536,558 assembled transcripts, from which 2,645, 256, 42 and 54 were identified to be highly expressed in the four organs respectively. Based on sRNA sequencing, 2,038, 2, 21 and 24 sRNAs were identified to be specifically accumulated in the four organs respectively. A total of 1,047 mature microRNA (miRNA) candidates were detected. Based on secondary structure predictions and sequencing, tens of potential miRNA precursors were identified from the assembled transcripts. Interestingly, phase-distributed sRNAs with degradome-based processing evidences were discovered on the long-stem structures of two precursors. Target identification was performed for the 1,047 miRNA candidates, resulting in the discovery of 1,257 miRNA--target pairs. Finally, some biological meaningful subnetworks involving hormone signaling, development, secondary metabolism and Argonaute 1-related regulation were established. All of the sequencing data sets are available at NCBI Sequence Read Archive (http://www.ncbi.nlm.nih.gov/sra/). Summarily, our study provides a valuable resource for the in-depth molecular and functional studies on this important Chinese orchid herb. PMID:26732614

  20. [Cloning and expression analysis of a zinc-regulated transporters (ZRT), iron-regulated transporter (IRT)-like protein encoding gene in Dendrobium officinale].

    PubMed

    Zhang, Gang; Li, Yi-Min; Li, Biao; Zhang, Da-Wei; Guo, Shun-Xing

    2015-01-01

    The zinc-regulated transporters (ZRT), iron-regulated transporter (IRT)-like protein (ZIP) plays an important role in the growth and development of plant. In this study, a full length cDNA of ZIP encoding gene, designed as DoZIP1 (GenBank accession KJ946203), was identified from Dendrobium officinale using RT-PCR and RACE. Bioinformatics analysis showed that DoZIP1 consisted of a 1,056 bp open reading frame (ORF) encoded a 351-aa protein with a molecular weight of 37.57 kDa and an isoelectric point (pI) of 6.09. The deduced DoZIP1 protein contained the conserved ZIP domain, and its secondary structure was composed of 50.71% alpha helix, 11.11% extended strand, 36.18% random coil, and beta turn 1.99%. DoZIP1 protein exhibited a signal peptide and eight transmembrane domains, presumably locating in cell membrane. The amino acid sequence had high homology with ZIP proteins from Arabidopsis, alfalfa and rice. A phylogenetic tree analysis demonstrated that DoZIP1 was closely related to AtZIP10 and OsZIP3, and they were clustered into one clade. Real time quantitative PCR analysis demonstrated that the transcription level of DoZIP1 in D. officinale roots was the highest (4.19 fold higher than that of stems), followed by that of leaves (1.12 fold). Molecular characters of DoZIP1 will be useful for further functional determination of the gene involving in the growth and development of D. officinale.

  1. The use of ginger (Zingiber officinale) for the treatment of pain: a systematic review of clinical trials.

    PubMed

    Terry, Rohini; Posadzki, Paul; Watson, Leala K; Ernst, Edzard

    2011-12-01

      Zingiber officinale (Z. officinale), commonly known as ginger, has been widely used traditionally for a variety of medicinal purposes, one of which is for the treatment of pain. The aim of this systematic review was to evaluate the evidence from all human participant clinical trials that have assessed the efficacy of ginger for the treatment of any type of pain.   Following a protocol, multiple databases were sought using comprehensive search strategies for Z. officinale and pain together with a trial filter for randomized or controlled clinical trials. Trials testing the efficacy of Z. officinale, used as a sole oral treatment against a comparison condition in human adults suffering from any pain condition, were included.   Seven published articles, reporting a total of eight trials (481 participants), were included in the review. Six trials (two for osteoarthritis, one for dysmenorrhea, and three for experimentally induced acute muscle pain) found that the use of Z. officinale reduced subjective pain reports. The methodological quality of the included articles was variable. When assessed using the Jadad scale, which allows a score of between 0 and 5 to be given, included articles obtained Jadad ratings ranging from 2 to 5.   Due to a paucity of well-conducted trials, evidence of the efficacy of Z. officinale to treat pain remains insufficient. However, the available data provide tentative support for the anti-inflammatory role of Z. officinale constituents, which may reduce the subjective experience of pain in some conditions such as osteoarthritis. Further rigorous trials therefore seem to be warranted. Wiley Periodicals, Inc.

  2. Laticifer-Specific cis-Prenyltransferase Silencing Affects the Rubber, Triterpene, and Inulin Content of Taraxacum brevicorniculatum12[C][W

    PubMed Central

    Post, Janina; van Deenen, Nicole; Fricke, Julia; Kowalski, Natalie; Wurbs, David; Schaller, Hubert; Eisenreich, Wolfgang; Huber, Claudia; Twyman, Richard M.; Prüfer, Dirk; Gronover, Christian Schulze

    2012-01-01

    Certain Taraxacum species, such as Taraxacum koksaghyz and Taraxacum brevicorniculatum, produce large amounts of high-quality natural rubber in their latex, the milky cytoplasm of specialized cells known as laticifers. This high-molecular mass biopolymer consists mainly of poly(cis-1,4-isoprene) and is deposited in rubber particles by particle-bound enzymes that carry out the stereospecific condensation of isopentenyl diphosphate units. The polymer configuration suggests that the chain-elongating enzyme (rubber transferase; EC 2.5.1.20) is a cis-prenyltransferase (CPT). Here, we present a comprehensive analysis of transgenic T. brevicorniculatum plants in which the expression of three recently isolated CPTs known to be associated with rubber particles (TbCPT1 to -3) was heavily depleted by laticifer-specific RNA interference (RNAi). Analysis of the CPT-RNAi plants by nuclear magnetic resonance, size-exclusion chromatography, and gas chromatography-mass spectrometry indicated a significant reduction in rubber biosynthesis and a corresponding 50% increase in the levels of triterpenes and the main storage carbohydrate, inulin. Transmission electron microscopy revealed that the laticifers in CPT-RNAi plants contained fewer and smaller rubber particles than wild-type laticifers. We also observed lower activity of hydroxymethylglutaryl-coenzyme A reductase, the key enzyme in the mevalonate pathway, reflecting homeostatic control of the isopentenyl diphosphate pool. To our knowledge, this is the first in planta demonstration of latex-specific CPT activity in rubber biosynthesis. PMID:22238421

  3. Fluorescent in situ hybridization shows DIPLOSPOROUS located on one of the NOR chromosomes in apomictic dandelions (Taraxacum) in the absence of a large hemizygous chromosomal region.

    PubMed

    Vašut, Radim J; Vijverberg, Kitty; van Dijk, Peter J; de Jong, Hans

    2014-11-01

    Apomixis in dandelions (Taraxacum: Asteraceae) is encoded by two unlinked dominant loci and a third yet undefined genetic factor: diplosporous omission of meiosis (DIPLOSPOROUS, DIP), parthenogenetic embryo development (PARTHENOGENESIS, PAR), and autonomous endosperm formation, respectively. In this study, we determined the chromosomal position of the DIP locus in Taraxacum by using fluorescent in situ hybridization (FISH) with bacterial artificial chromosomes (BACs) that genetically map within 1.2-0.2 cM of DIP. The BACs showed dispersed fluorescent signals, except for S4-BAC 83 that displayed strong unique signals as well. Under stringent blocking of repeats by C0t-DNA fragments, only a few fluorescent foci restricted to defined chromosome regions remained, including one on the nucleolus organizer region (NOR) chromosomes that contains the 45S rDNAs. FISH with S4-BAC 83 alone and optimal blocking showed discrete foci in the middle of the long arm of one of the NOR chromosomes only in triploid and tetraploid diplosporous dandelions, while signals in sexual diploids were lacking. This agrees with the genetic model of a single dose, dominant DIP allele, absent in sexuals. The length of the DIP region is estimated to cover a region of 1-10 Mb. FISH in various accessions of Taraxacum and the apomictic sister species Chondrilla juncea, confirmed the chromosomal position of DIP within Taraxacum but not outside the genus. Our results endorse that, compared to other model apomictic species, expressing either diplospory or apospory, the genome of Taraxacum shows a more similar and less diverged chromosome structure at the DIP locus. The different levels of allele sequence divergence at apomeiosis loci may reflect different terms of asexual reproduction. The association of apomeiosis loci with repetitiveness, dispersed repeats, and retrotransposons commonly observed in apomictic species may imply a functional role of these shared features in apomictic reproduction, as is

  4. Zingiber officinale Roscoe prevents acetaminophen-induced acute hepatotoxicity by enhancing hepatic antioxidant status.

    PubMed

    Ajith, T A; Hema, U; Aswathy, M S

    2007-11-01

    A large number of xenobiotics are reported to be potentially hepatotoxic. Free radicals generated from the xenobiotic metabolism can induce lesions of the liver and react with the basic cellular constituents - proteins, lipids, RNA and DNA. Hepatoprotective activity of aqueous ethanol extract of Zingiber officinale was evaluated against single dose of acetaminophen-induced (3g/kg, p.o.) acute hepatotoxicity in rat. Aqueous extract of Z. officinale significantly protected the hepatotoxicity as evident from the activities of serum transaminase and alkaline phosphatase (ALP). Serum glutamate pyruvate transaminase (SGPT), serum glutamate oxaloacetate transaminase (SGOT) and ALP activities were significantly (p<0.01) elevated in the acetaminophen alone treated animals. Antioxidant status in liver such as activities of superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase and glutathione-S-transferase (GST), a phase II enzyme, and levels of reduced glutathione (GSH) were declined significantly (p<0.01) in the acetaminophen alone treated animals (control group). Hepatic lipid peroxidation was enhanced significantly (p<0.01) in the control group. Administration of single dose of aqueous extract of Z. officinale (200 and 400mg/kg, p.o.) prior to acetaminophen significantly declines the activities of serum transaminases and ALP. Further the hepatic antioxidant status was enhanced in the Z. officinale plus acetaminophen treated group than the control group. The results of the present study concluded that the hepatoprotective effect of aqueous ethanol extract of Z. officinale against acetaminophen-induced acute toxicity is mediated either by preventing the decline of hepatic antioxidant status or due to its direct radical scavenging capacity.

  5. ABA-stimulated SoDOG1 expression is after-ripening inhibited during early imbibition of germinating Sisymbrium officinale seeds.

    PubMed

    Carrillo-Barral, Néstor; Matilla, Angel J; García-Ramas, Cristina; Rodríguez-Gacio, María Del Carmen

    2015-12-01

    DELAY OF GERMINATION 1 (AtDOG1) was the first gene identified as dormancy-associated, but its physiological role in germination is far from being understood. Here, an orthologue of AtDOG1 in Sisymbrium officinale (SoDOG1; KM009050) is being reported. Phylogenetically, the SoDOG1 gene is included into the dicotyledonous group together with DOG1 from Arabidopsis thaliana (EF028470), Brassica rapa (AC189537), Lepidium papillosum (JX512183, JX512185) and Lepidium sativum (GQ411192). The SoDOG1 expression peaked at the onset of the silique maturation stage and there was presence of SoDOG1-mRNA in the freshly collected viable dry seed (i.e. AR0). The SoDOG1 transcripts were also found in other organs, such as open and closed flowers and to a lesser degree in roots and stems. We have previously reported in S. officinale seeds in which sensu stricto germination is positively affected by nitrate and both testa and micropylar endosperm ruptures are temporally separated. In dry viable seeds, the SoDOG1-mRNA level in three different after-ripening (AR) status was AR0 ≈ AR7 (optimal AR) < AR27 (optimal AR was almost lost). The presence of nitrate in the AR0 seed imbibition medium markedly decreased the SoDOG1 expression during sensu stricto germination. However, the nitrate stimulated the SoDOG1 expression during imbibition of AR7 compared to AR0. At the early AR0 seed imbibition (3-6 h), exogenous ABA provoked a very strong stimulation of the SoDOG1 expression. AR inhibits ABA-induced SoDOG1 expression during early germination and gibberellins (GA) can partially mimic this AR effect. A view on the integration of all found results in the sensu stricto germination of S. officinale was conducted. © 2015 Scandinavian Plant Physiology Society.

  6. Enzymatic fingerprints of polysaccharides of Dendrobium officinale and their application in identification of Dendrobium species.

    PubMed

    Zha, Xue-Qiang; Pan, Li-Hua; Luo, Jian-Ping; Wang, Jun-Hui; Wei, Peng; Bansal, Vibha

    2012-07-01

    Enzymatic fingerprinting of polysaccharides from Dendrobium officinale was studied and applied to authenticate Dendrobium species. Results showed that Dendrobium officinale species from Anhui province, Fujian province, Yunnan province, Guangdong province and Guangxi province of China, could be identified by polysaccharide analysis using carbohydrate gel electrophoresis (PACE). However, the fingerprints of Dendrobium officinale from Jiangxi province, Hu'nan province and Wenzhou, Yandangshan and Fuyang in Zhejiang province were very similar. As far as the fingerprints of different Dendrobium species were concerned, the differences between Dendrobium officinale, Dendrobium huoshanense, Dendrobium moniliforme, Dendrobium devonianum, Dendrobium aphyllum, Dendrobium wilsonii and Dendrobium crystallinum were obvious. Moreover, the genetic relationships between different samples were analyzed by using principal component analysis and unweighted pair group method with arithmetic mean cluster analysis. Results suggested that polysaccharide fingerprint analysis by PACE has the potential to become a valuable new method for the identification and control of quality of herbal medicines in future.

  7. Redox properties of ginger extracts: Perspectives of use of Zingiber officinale Rosc. as antidiabetic agent.

    PubMed

    Račková, Lucia; Cupáková, Máriá; Tažký, Anton; Mičová, Júlia; Kolek, Emil; Košt'álová, Daniela

    2013-03-01

    In traditional medicine, several medicinal plants or their extracts have been used to treat diabetes. Zingiber officinale Roscoe, known commonly as ginger, is consumed worldwide in cookeries as a spice and flavouring agent. It has been used as the spice and medicine for thousands of years. The present study was undertaken to investigate the potential protective effect of Zingiber officinale Rosc. in a model of oxidative damage to pancreatic β cells. The free radical scavenging activities and composition of the isolated n-hexane and ethanolic extracts were confronted with their protective, antioxidant and cytotoxic effects in INS-1E β cells. Unlike the n-hexane extract (exerting, paradoxically, stronger antiradical capacity), both low cytotoxicity and remarkable protective effects on β cell viability, followed by lowering oxidative stress markers were found for the ethanolic extract Zingiber officinale Rosc. The present study is the first pilot study to assess the protective potential of Zingiber officinale Rosc. in a model of cytotoxic conditions imposed by diabetes in β cells.

  8. Chromium resistance of dandelion (Taraxacum platypecidum Diels.) and bermudagrass (Cynodon dactylon [Linn.] Pers.) is enhanced by arbuscular mycorrhiza in Cr(VI)-contaminated soils.

    PubMed

    Wu, Song-Lin; Chen, Bao-Dong; Sun, Yu-Qing; Ren, Bai-Hui; Zhang, Xin; Wang, You-Shan

    2014-09-01

    In a greenhouse pot experiment, dandelion (Taraxacum platypecidum Diels.) and bermudagrass (Cynodon dactylon[Linn.] Pers.), inoculated with and without arbuscular mycorrhizal fungus (AMF) Rhizophagus irregularis, were grown in chromium (Cr)-amended soils (0 mg/kg, 5 mg/kg, 10 mg/kg, and 20 mg/kg Cr[VI]) to test whether arbuscular mycorrhizal (AM) symbiosis can improve Cr tolerance in different plant species. The experimental results indicated that the dry weights of both plant species were dramatically increased by AM symbiosis. Mycorrhizal colonization increased plant P concentrations and decreased Cr concentrations and Cr translocation from roots to shoots for dandelion; in contrast, mycorrhizal colonization decreased plant Cr concentrations without improvement of P nutrition in bermudagrass. Chromium speciation analysis revealed that AM symbiosis potentially altered Cr species and bioavailability in the rhizosphere. The study confirmed the protective effects of AMF on host plants under Cr contaminations. © 2014 SETAC.

  9. Structural characterization and immunomodulating activity of polysaccharide from Dendrobium officinale.

    PubMed

    He, Tao-Bin; Huang, Yan-Ping; Yang, Liu; Liu, Ti-Ti; Gong, Wan-Ying; Wang, Xuan-Jun; Sheng, Jun; Hu, Jiang-Miao

    2016-02-01

    A neutral heteropolysaccharide (DOP-1-1) consisted by mannose and glucose (5.9:1) with an average molecular weight at about 1.78×10(5) Da was purified from Dendrobium officinale. Based on Fourier transform infrared spectrum (FT-IR) and nuclear magnetic resonance (NMR) spectra, it suggested that partial structure of DOP-1-1 is an O-acetylated glucomannan with β-d configuration in pyranose sugar forms. The immunomodulatory activity of DOP-1-1 was evaluated by secretion level of cytokine (interleukin (IL)-1β and IL-10) and tumor necrosis factor (TNF)-α in vitro. Our results suggested that DOP-1-1 could stimulate cytokine production (TNF-α, IL-1β) in cells. These findings demonstrated that the purified polysaccharide from D. officinale presented significant immune-modulating activities. Furthermore, by Western-blot we can found that the signaling pathways of DOP-1-1 induced immune activities involving ERK1/2 and NF-кB. As to antioxidant activity, DOP-1-1 hadn't showed remarkable scavenging capacity of 1,1-diphenyl-2-picrylhydrazyl radical (DPPH) in contrast with other studies of polysaccharides from D. officinale. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Potential of Taraxacum mongolicum Hand-Mazz for accelerating phytoextraction of cadmium in combination with eco-friendly amendments.

    PubMed

    Wei, Shuhe; Wang, Shanshan; Zhou, Qixing; Zhan, Jie; Ma, Lihui; Wu, Zhijie; Sun, Tieheng; Prasad, M N V

    2010-09-15

    Phytoextraction and phytostabilization are well-established sub-processes of phytoremediation that are being followed for in situ remediation of soils contaminated with toxic metals. Taraxacum mongolicum Hand-Mazz, a newly reported Cd accumulator has shown considerable potential for phytoextracting Cd. This paper investigated the effects of urea and chicken manure on T. mongolicum phytoextracting Cd from soil using pot culture experiments. The results showed that urea application did not affect the Cd concentrations in root, leaf, inflorescence and shoot of T. mongolicum, but chicken manure significantly decreased them (p<0.05) by 23.5%, 31.5%, 24.8% and 30.4% owing to decreased extractable Cd. Urea and chicken manure significantly increased (p<0.05) the phytoextraction capacities (microg pot(-1)) of T. mongolicum to Cd by 3-5-fold due to the increase in shoot biomass (increased 4-7 folds). Further, addition of urea and chicken manure increased organic matter, nitrogen, phosphorus and potassium, the microorganism count, urease and phosphatase activities of soil indicating their eco-friendly function. Urea is ideal for optimizing phytoextraction of T. mongolicum to Cd, while chicken manure is appropriate for phytostabilization. Copyright 2010 Elsevier B.V. All rights reserved.

  11. ESTs analysis reveals putative genes involved in symbiotic seed germination in Dendrobium officinale.

    PubMed

    Zhao, Ming-Ming; Zhang, Gang; Zhang, Da-Wei; Hsiao, Yu-Yun; Guo, Shun-Xing

    2013-01-01

    Dendrobiumofficinale (Orchidaceae) is one of the world's most endangered plants with great medicinal value. In nature, D. officinale seeds must establish symbiotic relationships with fungi to germinate. However, the molecular events involved in the interaction between fungus and plant during this process are poorly understood. To isolate the genes involved in symbiotic germination, a suppression subtractive hybridization (SSH) cDNA library of symbiotically germinated D. officinale seeds was constructed. From this library, 1437 expressed sequence tags (ESTs) were clustered to 1074 Unigenes (including 902 singletons and 172 contigs), which were searched against the NCBI non-redundant (NR) protein database (E-value cutoff, e(-5)). Based on sequence similarity with known proteins, 579 differentially expressed genes in D. officinale were identified and classified into different functional categories by Gene Ontology (GO), Clusters of orthologous Groups of proteins (COGs) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. The expression levels of 15 selected genes emblematic of symbiotic germination were confirmed via real-time quantitative PCR. These genes were classified into various categories, including defense and stress response, metabolism, transcriptional regulation, transport process and signal transduction pathways. All transcripts were upregulated in the symbiotically germinated seeds (SGS). The functions of these genes in symbiotic germination were predicted. Furthermore, two fungus-induced calcium-dependent protein kinases (CDPKs), which were upregulated 6.76- and 26.69-fold in SGS compared with un-germinated seeds (UGS), were cloned from D. officinale and characterized for the first time. This study provides the first global overview of genes putatively involved in D. officinale symbiotic seed germination and provides a foundation for further functional research regarding symbiotic relationships in orchids.

  12. Anti-inflammatory activity of Polygonum bistorta, Guaiacum officinale and Hamamelis virginiana in rats.

    PubMed

    Duwiejua, M; Zeitlin, I J; Waterman, P G; Gray, A I

    1994-04-01

    The aqueous ethanolic extracts of Polygonum bistorta L. Polygonaceae, Guaiacum officinale L. Zygophyllaceae and Hamamelis virginiana L. Hamamelidaceae were screened for anti-inflammatory activity. Administered (100 and 200 mg kg-1, p.o.) before the induction of carrageenan rat paw oedema, extracts of P. bistorta significantly suppressed both the maximal oedema response and the total oedema response (monitored as area under the time course curve). H. virginiana was inactive and G. officinale was only active at 200 mg kg-1. At 200 mg kg-1 administered before the induction of adjuvant arthritis, P. bistorta significantly inhibited both the acute and chronic phases of the adjuvant-induced rat paw swelling, while G. officinale and H. virginiana were only active against the chronic phase. Further studies on P. bistorta (100-800 mg kg-1) revealed a dose-dependent inhibition of the carrageenan-induced rat paw oedema over the dose range 100-400 mg kg-1, the E50 value being approximately 158.5 mg kg-1. The extract (200 mg kg-1), administered after the onset of the inflammatory responses reversed the course of both the carrageenan- and adjuvant-induced rat paw swelling. The results confirm that the extracts of P. bistorta, G. officinale and H. virginiana contain anti-inflammatory substances.

  13. The Effect of Lithospermum officinale, Silver Sulfadiazine and Alpha Ointments in Healing of Burn Wound Injuries in Rat.

    PubMed

    Mohtasham Amiri, Zahra; Tanideh, Nader; Seddighi, Anahita; Mokhtari, Maral; Amini, Masood; Shakouri Partovi, Alborz; Manafi, Amir; Hashemi, Seyedeh Sara; Mehrabani, Davood

    2017-09-01

    Burn is the most devastating condition in emergency medicine leading to chronic disabilities. This study aimed to compare the effect of Lithospermum officinale , silver sulfadiazine and alpha ointments on healing of burn wounds in rat. Ninety-five rats were divided into 5 groups. Group 1 just underwent burn injury, and groups 2-5 received alpha ointment, silver sulfadiazine (SSD), gel base and L. officinale extract, respectively. A hot plate was used for induction of a standard 3 rd degree burn wound. Burn wounds were macroscopically and microscopically evaluated on days 7 th , 14 th and 21 st after burn induction. A decrease in the number of inflammatory cells was noted when L. officinale and SSD were applied while the most inflammatory response was seen after administration of alpha ointment. The number of macrophages alone decreased after burn injury, while the frequency was the most when L. officinale and alpha ointment were applied. Re-epithelialization, angiogenesis and formation of granulation tissue were the best in relation to L. officinale and alpha ointment while, the worst results belonged to burn injury group and SSD regarding granulation tissue formation. Considering histological assessment, the best results were observed for scoring of inflammation, re-epithelialization, angiogenesis, formation of granulation tissue and number of macrophage when L. officinale and alpha ointment were used after burn injury. It can be concluded that topical application of L. officinale as a non-toxic, inexpensive and easy to produce herbal can lead to a rapid epithelialization and wound healing and these findings can be added to the literature on burn wound healing.

  14. Comparative study on the hepatoprotection to heavy metals of Zingiber officinale

    PubMed Central

    Nwokocha, Chukwuemeka R.; Owu, Daniel U.; Nwokocha, Magdalene I.; Ufearo, Chibueze S.; Iwuala, Moses O. E.

    2012-01-01

    Context: Zingiber officinale (Zingiberaceae) is a herb used for culinary and therapeutic purposes due to its anti-inflammatory and antioxidant potentials. Objectives: We examined its protective ability against mercury (Hg), lead (Pb) and cadmium (Cd) accumulation in the liver. Materials & Methods: Ground Zingiber officinale (7%, w/w of feed) was administered to rats either at the same time with the exposure ofheavy metals (group 2), a week after exposure to heavy metals (group 3) or given a week before heavy metal exposure (group 4) for six weeks. Animals were exposed to either of Hg (10 ppm), Cd (200 ppm) and Pb (100 ppm) in drinking water. The heavy metal accumulations in the liver were determined using AAS. Results: Weight losses induced by these metals were not reversed by Zingiber officinale administration. There was a significant (P<0.01) increase in protection to Pb (97%) and Cd (63%) accumulation when compared to Hg (32%) at week 2. The protective ability was significantly (P<0.01) decreased at week 4 when compared to week 2 for Cd and Pb but not to Hg in groups 3 (50%) and 4 (52%). At week 6, hepatoprotection to Hg (44%) and Cd (85%) was significantly (P<0.01) different but not to Pb which was only significant (P<0.05) in week 2 of treatment for all groups. Discussion and Conclusion: Zingiber officinale affected the bioavailability, elimination and uptake of these metals in a time-dependent way with highest beneficial reducing effect to Cd followed by Hg and least protection to Pb in the liver. PMID:23225964

  15. Comparative study on the hepatoprotection to heavy metals of Zingiber officinale.

    PubMed

    Nwokocha, Chukwuemeka R; Owu, Daniel U; Nwokocha, Magdalene I; Ufearo, Chibueze S; Iwuala, Moses O E

    2012-10-01

    Zingiber officinale (Zingiberaceae) is a herb used for culinary and therapeutic purposes due to its anti-inflammatory and antioxidant potentials. We examined its protective ability against mercury (Hg), lead (Pb) and cadmium (Cd) accumulation in the liver. MATERIALS #ENTITYSTARTX00026; Ground Zingiber officinale (7%, w/w of feed) was administered to rats either at the same time with the exposure ofheavy metals (group 2), a week after exposure to heavy metals (group 3) or given a week before heavy metal exposure (group 4) for six weeks. Animals were exposed to either of Hg (10 ppm), Cd (200 ppm) and Pb (100 ppm) in drinking water. The heavy metal accumulations in the liver were determined using AAS. Weight losses induced by these metals were not reversed by Zingiber officinale administration. There was a significant (P<0.01) increase in protection to Pb (97%) and Cd (63%) accumulation when compared to Hg (32%) at week 2. The protective ability was significantly (P<0.01) decreased at week 4 when compared to week 2 for Cd and Pb but not to Hg in groups 3 (50%) and 4 (52%). At week 6, hepatoprotection to Hg (44%) and Cd (85%) was significantly (P<0.01) different but not to Pb which was only significant (P<0.05) in week 2 of treatment for all groups. Zingiber officinale affected the bioavailability, elimination and uptake of these metals in a time-dependent way with highest beneficial reducing effect to Cd followed by Hg and least protection to Pb in the liver.

  16. Sexy males and sexless females: the origin of triploid apomicts.

    PubMed

    Muralidhar, P; Haig, D

    2017-05-01

    Apomixis and polyploidy are closely associated in angiosperms, but the evolutionary reason for this association is unknown. Taraxacum officinale, the common dandelion, exists both as diploid sexuals and triploid apomicts. Here, in the context of T. officinale, we provide a model of the evolution of triploid apomicts from diploid sexuals. We posit an apomictic allele that arrests female meiosis in diploids, so that the plant produces diploid egg cells that can develop without fertilization, but haploid pollen. We propose occasional fertilization of diploid egg cells by haploid pollen, resulting in triploid apomicts that produce triploid egg cells but largely nonfunctional pollen. The irreversibility of this process renders diploid partial apomicts evolutionarily short-lived, and results in fixation of triploid apomicts except when they suffer extreme selective disadvantages. Our model can account for the high genetic diversity found in T. officinale triploid populations, because recombinant haploid pollen produced by diploids allows the apomictic allele to spread onto many genetic backgrounds. This leads to multiple clonal lineages in the newly apomictic population, and thereby alleviates some of the usual pitfalls of asexual reproduction.

  17. Redox properties of ginger extracts: Perspectives of use of Zingiber officinale Rosc. as antidiabetic agent

    PubMed Central

    Cupáková, Máriá; Ťažký, Anton; Mičová, Júlia; Kolek, Emil; Košt'álová, Daniela

    2013-01-01

    In traditional medicine, several medicinal plants or their extracts have been used to treat diabetes. Zingiber officinale Roscoe, known commonly as ginger, is consumed worldwide in cookeries as a spice and flavouring agent. It has been used as the spice and medicine for thousands of years. The present study was undertaken to investigate the potential protective effect of Zingiber officinale Rosc. in a model of oxidative damage to pancreatic β cells. The free radical scavenging activities and composition of the isolated n-hexane and ethanolic extracts were confronted with their protective, antioxidant and cytotoxic effects in INS-1E β cells. Unlike the n-hexane extract (exerting, paradoxically, stronger antiradical capacity), both low cytotoxicity and remarkable protective effects on β cell viability, followed by lowering oxidative stress markers were found for the ethanolic extract Zingiber officinale Rosc. The present study is the first pilot study to assess the protective potential of Zingiber officinale Rosc. in a model of cytotoxic conditions imposed by diabetes in β cells. PMID:24170976

  18. [Glycosides from flowers of Jasminum officinale L. var. grandiflorum].

    PubMed

    Zhao, Gui-qin; Xia, Jing-jing; Dong, Jun-xing

    2007-10-01

    To study the chemical constituents of the flower of Jasminum officinale L. var. grandiflorum. The compounds were isolated and purified by re-crystallization and chromatography on silica gel and Sephadex LH-20 column. Their structures were elucidated on the physicochemical properties and spectral analysis. Seven glycosides were identified as kaempferol-3-O-alpha-L-rhamnopyranosyl (1-->3)-[alpha-L-rhamnopyranosyl (1-->6)]-beta-D-galactopyranoside (I), kaempferol-3-O-rutinoside (II), 7-ketologanin (III), oleoside-11-methyl ester (IV), 7-glucosyl-l1-methyl oleoside (V), ligstroside (VI), oleuropein (VII). Compound I is a new compound. Compounds III and V were isolated from the family of Jasminum for the first time and compounds II, IV and VI were isolated from Jasminum officinale L. var. grandiflorum for the first time.

  19. The Effect of Lithospermum officinale, Silver Sulfadiazine and Alpha Ointments in Healing of Burn Wound Injuries in Rat

    PubMed Central

    Mohtasham Amiri, Zahra; Tanideh, Nader; Seddighi, Anahita; Mokhtari, Maral; Amini, Masood; Shakouri Partovi, Alborz; Manafi, Amir; Hashemi, Seyedeh Sara; Mehrabani, Davood

    2017-01-01

    BACKGROUND Burn is the most devastating condition in emergency medicine leading to chronic disabilities. This study aimed to compare the effect of Lithospermum officinale, silver sulfadiazine and alpha ointments on healing of burn wounds in rat. METHODS Ninety-five rats were divided into 5 groups. Group 1 just underwent burn injury, and groups 2-5 received alpha ointment, silver sulfadiazine (SSD), gel base and L. officinale extract, respectively. A hot plate was used for induction of a standard 3rd degree burn wound. Burn wounds were macroscopically and microscopically evaluated on days 7th, 14th and 21st after burn induction. RESULTS A decrease in the number of inflammatory cells was noted when L. officinale and SSD were applied while the most inflammatory response was seen after administration of alpha ointment. The number of macrophages alone decreased after burn injury, while the frequency was the most when L. officinale and alpha ointment were applied. Re-epithelialization, angiogenesis and formation of granulation tissue were the best in relation to L. officinale and alpha ointment while, the worst results belonged to burn injury group and SSD regarding granulation tissue formation. Considering histological assessment, the best results were observed for scoring of inflammation, re-epithelialization, angiogenesis, formation of granulation tissue and number of macrophage when L. officinale and alpha ointment were used after burn injury. CONCLUSION It can be concluded that topical application of L. officinale as a non-toxic, inexpensive and easy to produce herbal can lead to a rapid epithelialization and wound healing and these findings can be added to the literature on burn wound healing. PMID:29218280

  20. Metabolic Analysis of Medicinal Dendrobium officinale and Dendrobium huoshanense during Different Growth Years

    PubMed Central

    Jin, Qing; Jiao, Chunyan; Sun, Shiwei; Song, Cheng; Cai, Yongping; Lin, Yi; Fan, Honghong; Zhu, Yanfang

    2016-01-01

    Metabolomics technology has enabled an important method for the identification and quality control of Traditional Chinese Medical materials. In this study, we isolated metabolites from cultivated Dendrobium officinale and Dendrobium huoshanense stems of different growth years in the methanol/water phase and identified them using gas chromatography coupled with mass spectrometry (GC-MS). First, a metabolomics technology platform for Dendrobium was constructed. The metabolites in the Dendrobium methanol/water phase were mainly sugars and glycosides, amino acids, organic acids, alcohols. D. officinale and D. huoshanense and their growth years were distinguished by cluster analysis in combination with multivariate statistical analysis, including principal component analysis (PCA) and orthogonal partial least squares discriminant analysis (OPLS-DA). Eleven metabolites that contributed significantly to this differentiation were subjected to t-tests (P<0.05) to identify biomarkers that discriminate between D. officinale and D. huoshanense, including sucrose, glucose, galactose, succinate, fructose, hexadecanoate, oleanitrile, myo-inositol, and glycerol. Metabolic profiling of the chemical compositions of Dendrobium species revealed that the polysaccharide content of D. huoshanense was higher than that of D. officinale, indicating that the D. huoshanense was of higher quality. Based on the accumulation of Dendrobium metabolites, the optimal harvest time for Dendrobium was in the third year. This initial metabolic profiling platform for Dendrobium provides an important foundation for the further study of secondary metabolites (pharmaceutical active ingredients) and metabolic pathways. PMID:26752292

  1. Metabolic Analysis of Medicinal Dendrobium officinale and Dendrobium huoshanense during Different Growth Years.

    PubMed

    Jin, Qing; Jiao, Chunyan; Sun, Shiwei; Song, Cheng; Cai, Yongping; Lin, Yi; Fan, Honghong; Zhu, Yanfang

    2016-01-01

    Metabolomics technology has enabled an important method for the identification and quality control of Traditional Chinese Medical materials. In this study, we isolated metabolites from cultivated Dendrobium officinale and Dendrobium huoshanense stems of different growth years in the methanol/water phase and identified them using gas chromatography coupled with mass spectrometry (GC-MS). First, a metabolomics technology platform for Dendrobium was constructed. The metabolites in the Dendrobium methanol/water phase were mainly sugars and glycosides, amino acids, organic acids, alcohols. D. officinale and D. huoshanense and their growth years were distinguished by cluster analysis in combination with multivariate statistical analysis, including principal component analysis (PCA) and orthogonal partial least squares discriminant analysis (OPLS-DA). Eleven metabolites that contributed significantly to this differentiation were subjected to t-tests (P<0.05) to identify biomarkers that discriminate between D. officinale and D. huoshanense, including sucrose, glucose, galactose, succinate, fructose, hexadecanoate, oleanitrile, myo-inositol, and glycerol. Metabolic profiling of the chemical compositions of Dendrobium species revealed that the polysaccharide content of D. huoshanense was higher than that of D. officinale, indicating that the D. huoshanense was of higher quality. Based on the accumulation of Dendrobium metabolites, the optimal harvest time for Dendrobium was in the third year. This initial metabolic profiling platform for Dendrobium provides an important foundation for the further study of secondary metabolites (pharmaceutical active ingredients) and metabolic pathways.

  2. Biological activities of Zingiber officinale (Zingiberaceae) and Piper cubeba (Piperaceae) essential oils against pulse beetle, Callosobruchus chinensis (Coleoptera: Bruchidae).

    PubMed

    Chaubey, Mukesh Kumar

    2013-06-01

    Zingiber officinale (Zingiberaceae) and Piper cubeba (Piperaceae) was essential oils were investigated for repellent, insecticidal, antiovipositional, egg hatching, persistence of its insecticidal activities against pulse beetle, Callosobruchus chinensis (Coleoptera: Bruchidae). Essential oil vapours repelled bruchid adults significantly as oviposition was found reduced in choice oviposition assay. Z. officinale and P. cubeba essential oils caused both fumigant and contact toxicity in C. chinensis adults. In fumigation toxicity assay, median lethal concentrations (LC50) were 0.34 and 0.27 microL cm(-3) for Z. officinale and P. cubeba essential oils, respectively, while in contact toxicity assay, LC50 were 0.90 and 0.66 microL cm(-2) for Z. officinale and P. cubeba essential oils, respectively. These two essential oils reduced oviposition in C. chinensis adults when treated with sublethal concentrations by fumigation and contact method. Oviposition inhibition was more pronounced when adults come in contact than in vapours. Both essential oils significantly reduced egg hatching rate when fumigated. Persistence in insecticidal efficiency of both essential oils decreased with time. P. cubeba showed less persistence than Z. officinale essential oil because no mortality was observed in C. chinensis adults after 36 h of treatment with P. cubeba and after 48 h of treatment of Z. officinale essential oil. Fumigation with these essential oils has no effect on the germination of the cowpea seeds. Findings of the study suggest that Z. officinale and P. cubeba essential oils can be useful as promising agent in insect pest management programme.

  3. Chloroplast genome resources and molecular markers differentiate rubber dandelion species from weedy relatives.

    PubMed

    Zhang, Yingxiao; Iaffaldano, Brian J; Zhuang, Xiaofeng; Cardina, John; Cornish, Katrina

    2017-02-02

    Rubber dandelion (Taraxacum kok-saghyz, TK) is being developed as a domestic source of natural rubber to meet increasing global demand. However, the domestication of TK is complicated by its colocation with two weedy dandelion species, Taraxacum brevicorniculatum (TB) and the common dandelion (Taraxacum officinale, TO). TB is often present as a seed contaminant within TK accessions, while TO is a pandemic weed, which may have the potential to hybridize with TK. To discriminate these species at the molecular level, and facilitate gene flow studies between the potential rubber crop, TK, and its weedy relatives, we generated genomic and marker resources for these three dandelion species. Complete chloroplast genome sequences of TK (151,338 bp), TO (151,299 bp), and TB (151,282 bp) were obtained using the Illumina GAII and MiSeq platforms. Chloroplast sequences were analyzed and annotated for all the three species. Phylogenetic analysis within Asteraceae showed that TK has a closer genetic distance to TB than to TO and Taraxacum species were most closely related to lettuce (Lactuca sativa). By sequencing multiple genotypes for each species and testing variants using gel-based methods, four chloroplast Single Nucleotide Polymorphism (SNP) variants were found to be fixed between TK and TO in large populations, and between TB and TO. Additionally, Expressed Sequence Tag (EST) resources developed for TO and TK permitted the identification of five nuclear species-specific SNP markers. The availability of chloroplast genomes of these three dandelion species, as well as chloroplast and nuclear molecular markers, will provide a powerful genetic resource for germplasm differentiation and purification, and the study of potential gene flow among Taraxacum species.

  4. Genetic fine-mapping of DIPLOSPOROUS in Taraxacum (dandelion; Asteraceae) indicates a duplicated DIP-gene

    PubMed Central

    2010-01-01

    Background DIPLOSPOROUS (DIP) is the locus for diplospory in Taraxacum, associated to unreduced female gamete formation in apomicts. Apomicts reproduce clonally through seeds, including apomeiosis, parthenogenesis, and autonomous or pseudogamous endosperm formation. In Taraxacum, diplospory results in first division restitution (FDR) nuclei, and inherits as a dominant, monogenic trait, independent from the other apomixis elements. A preliminary genetic linkage map indicated that the DIP-locus lacks suppression of recombination, which is unique among all other map-based cloning efforts of apomeiosis to date. FDR as well as apomixis as a whole are of interest in plant breeding, allowing for polyploidization and fixation of hybrid vigor, respectively. No dominant FDR or apomixis genes have yet been isolated. Here, we zoom-in to the DIP-locus by largely extending our initial mapping population, and by analyzing (local) suppression of recombination and allele sequence divergence (ASD). Results We identified 24 recombinants between two most closely linked molecular markers to DIP in an F1-population of 2227 plants that segregates for diplospory and lacks parthenogenesis. Both markers segregated c. 1:1 in the entire population, indicating a 1:1 segregation rate of diplospory. Fine-mapping showed three amplified fragment length polymorphisms (AFLPs) closest to DIP at 0.2 cM at one flank and a single AFLP at 0.4 cM at the other flank. Our data lacked strong evidence for ASD at marker regions close to DIP. An unexpected bias towards diplosporous plants among the recombinants (20 out of 24) was found. One third of these diplosporous recombinants showed incomplete penetrance of 50-85% diplospory. Conclusions Our data give interesting new insights into the structure of the diplospory locus in Taraxacum. We postulate a locus with a minimum of two DIP-genes and possibly including one or two enhancers or cis-regulatory elements on the basis of the bias towards diplosporous

  5. Genetic fine-mapping of DIPLOSPOROUS in Taraxacum (dandelion; Asteraceae) indicates a duplicated DIP-gene.

    PubMed

    Vijverberg, Kitty; Milanovic-Ivanovic, Slavica; Bakx-Schotman, Tanja; van Dijk, Peter J

    2010-07-26

    DIPLOSPOROUS (DIP) is the locus for diplospory in Taraxacum, associated to unreduced female gamete formation in apomicts. Apomicts reproduce clonally through seeds, including apomeiosis, parthenogenesis, and autonomous or pseudogamous endosperm formation. In Taraxacum, diplospory results in first division restitution (FDR) nuclei, and inherits as a dominant, monogenic trait, independent from the other apomixis elements. A preliminary genetic linkage map indicated that the DIP-locus lacks suppression of recombination, which is unique among all other map-based cloning efforts of apomeiosis to date. FDR as well as apomixis as a whole are of interest in plant breeding, allowing for polyploidization and fixation of hybrid vigor, respectively. No dominant FDR or apomixis genes have yet been isolated. Here, we zoom-in to the DIP-locus by largely extending our initial mapping population, and by analyzing (local) suppression of recombination and allele sequence divergence (ASD). We identified 24 recombinants between two most closely linked molecular markers to DIP in an F1-population of 2227 plants that segregates for diplospory and lacks parthenogenesis. Both markers segregated c. 1:1 in the entire population, indicating a 1:1 segregation rate of diplospory. Fine-mapping showed three amplified fragment length polymorphisms (AFLPs) closest to DIP at 0.2 cM at one flank and a single AFLP at 0.4 cM at the other flank. Our data lacked strong evidence for ASD at marker regions close to DIP. An unexpected bias towards diplosporous plants among the recombinants (20 out of 24) was found. One third of these diplosporous recombinants showed incomplete penetrance of 50-85% diplospory. Our data give interesting new insights into the structure of the diplospory locus in Taraxacum. We postulate a locus with a minimum of two DIP-genes and possibly including one or two enhancers or cis-regulatory elements on the basis of the bias towards diplosporous recombinants and incomplete penetrance

  6. Different extracts of Zingiber officinale decrease Enterococcus faecalis infection in Galleria mellonella.

    PubMed

    Maekawa, Lilian Eiko; Rossoni, Rodnei Dennis; Barbosa, Júnia Oliveira; Jorge, Antonio Olavo Cardoso; Junqueira, Juliana Campos; Valera, Marcia Carneiro

    2015-01-01

    Dried, fresh and glycolic extracts of Zingiber officinale were obtained to evaluate the action against G. mellonella survival assay against Enterococcus faecalis infection. Eighty larvae were divided into: 1) E. faecalis suspension (control); 2) E. faecalis + fresh extract of Z. officinale (FEO); 3) E. faecalis + dried extract of Z. officinale (DEO); 4) E. faecalis + glycolic extract of Z. officinale (GEO); 5) Phosphate buffered saline (PBS). For control group, a 5 μL inoculum of standardized suspension (107 cells/mL) of E. faecalis (ATCC 29212) was injected into the last left proleg of each larva. For the treatment groups, after E. faecalis inoculation, the extracts were also injected, but into the last right proleg. The larvae were stored at 37 °C and the number of dead larvae was recorded daily for 168 h (7 days) to analyze the survival curve. The larvae were considered dead when they did not show any movement after touching. E. faecalis infection led to the death of 85% of the larvae after 168 h. Notwithstanding, in treatment groups with association of extracts, there was an increase in the survival rates of 50% (GEO), 61% (FEO) and 66% (DEO) of the larvae. In all treatment groups, the larvae exhibited a survival increase with statistically significant difference in relation to control group (p=0.0029). There were no statistically significant differences among treatment groups with different extracts (p=0.3859). It may be concluded that the tested extracts showed antimicrobial activity against E. faecalis infection by increasing the survival of Galleria mellonella larvae.

  7. Hybrid Sequencing of Full-Length cDNA Transcripts of Stems and Leaves in Dendrobium officinale

    PubMed Central

    He, Liu; Fu, Shuhua; Xu, Zhichao; Yan, Jun; Xu, Jiang; Zhou, Hong; Zhou, Jianguo; Chen, Xinlian; Li, Ying; Au, Kin Fai; Yao, Hui

    2017-01-01

    Dendrobium officinale is an extremely valuable orchid used in traditional Chinese medicine, so sought after that it has a higher market value than gold. Although the expression profiles of some genes involved in the polysaccharide synthesis have previously been investigated, little research has been carried out on their alternatively spliced isoforms in D. officinale. In addition, information regarding the translocation of sugars from leaves to stems in D. officinale also remains limited. We analyzed the polysaccharide content of D. officinale leaves and stems, and completed in-depth transcriptome sequencing of these two diverse tissue types using second-generation sequencing (SGS) and single-molecule real-time (SMRT) sequencing technology. The results of this study yielded a digital inventory of gene and mRNA isoform expressions. A comparative analysis of both transcriptomes uncovered a total of 1414 differentially expressed genes, including 844 that were up-regulated and 570 that were down-regulated in stems. Of these genes, one sugars will eventually be exported transporter (SWEET) and one sucrose transporter (SUT) are expressed to a greater extent in D. officinale stems than in leaves. Two glycosyltransferase (GT) and four cellulose synthase (Ces) genes undergo a distinct degree of alternative splicing. In the stems, the content of polysaccharides is twice as much as that in the leaves. The differentially expressed GT and transcription factor (TF) genes will be the focus of further study. The genes DoSWEET4 and DoSUT1 are significantly expressed in the stem, and are likely to be involved in sugar loading in the phloem. PMID:28981454

  8. [A new secoiridoid from the flowers of Jasminum officinale L. var. grandiflorum].

    PubMed

    Zhao, Gui-Qin; Yin, Zhi-Feng; Dong, Jun-Xing

    2008-05-01

    To study the chemical constituents of the flowers of Jasminum officinale L. var. grandiflorum, the compounds were isolated and purified by HPLC, recrystallization and chromatography on silica gel and Sephadex LH-20 column. Their structures were elucidated on the basis of physicochemical properties and spectral analysis. Six secoiridoids were identified as jasgranoside (I), jaspolyoside (II), 8-epi-kingiside (III), 10-hydroxy-oleuropein (IV), 10-hydroxy-ligstroside (V), oleoside-7, 11-dimethyl ester (VI). Compound I is a new compound. Compounds II, III, IV, V and VI were isolated from Jasminum officinale L. var. grandiflorum for the first time.

  9. Cytochemical Localization of Polysaccharides in Dendrobium officinale and the Involvement of DoCSLA6 in the Synthesis of Mannan Polysaccharides

    PubMed Central

    He, Chunmei; Wu, Kunlin; Zhang, Jianxia; Liu, Xuncheng; Zeng, Songjun; Yu, Zhenming; Zhang, Xinghua; Teixeira da Silva, Jaime A.; Deng, Rufang; Tan, Jianwen; Luo, Jianping; Duan, Jun

    2017-01-01

    Dendrobium officinale is a precious traditional Chinese medicinal plant because of its abundant polysaccharides found in stems. We determined the composition of water-soluble polysaccharides and starch content in D. officinale stems. The extracted water-soluble polysaccharide content was as high as 35% (w/w). Analysis of the composition of monosaccharides showed that the water-soluble polysaccharides were dominated by mannose, to a lesser extent glucose, and a small amount of galactose, in a molar ratio of 223:48:1. Although starch was also found, its content was less than 10%. This result indicated that the major polysaccharides in D. officinale stems were non-starch polysaccharides, which might be mannan polysaccharides. The polysaccharides formed granules and were stored in plastids similar to starch grains, were localized in D. officinale stems by semi-thin and ultrathin sections. CELLULOSE SYNTHASE-LIKE A (CSLA) family members encode mannan synthases that catalyze the formation of mannan polysaccharides. To determine whether the CSLA gene from D. officinale was responsible for the synthesis of mannan polysaccharides, 35S:DoCSLA6 transgenic lines were generated and characterized. Our results suggest that the CSLA family genes from D. officinale play an important role in the biosynthesis of mannan polysaccharides. PMID:28261235

  10. Protective effects of ethanolic extract of Zingiber officinale rhizome on the development of metabolic syndrome in high-fat diet-fed rats.

    PubMed

    Nammi, Srinivas; Sreemantula, Satyanarayana; Roufogalis, Basil D

    2009-05-01

    Metabolic syndrome, including obesity, dyslipidaemia, hyperglycaemia and insulin resistance that predisposes type 2 diabetes is a major disease problem around the world and a plethora of herbal medicines are claimed to be effective in controlling these disorders. The rhizome of Zingiber officinale (Zingiberaceae) is commonly used as a spice in various foods and beverages. Apart from its other traditional medical uses, Z. officinale has been used to control diabetes and dyslipidaemia. In the present study, the protective effects of an ethanolic extract of Z. officinale on the development of metabolic syndrome were investigated in a high-fat diet-fed rat model at doses of 100, 200 and 400 mg/kg body weight. The marked rise in body weights, glucose, insulin, total cholesterol, LDL cholesterol, triglycerides, free fatty acids and phospholipids in serum of the rats that followed 6 weeks of high-fat diet treatment were significantly reduced by Z. officinale treatment. However, no significant change in serum HDL cholesterol was observed either with high-fat diet or Z. officinale compared to both control groups. The present results provide scientific evidence to substantiate the traditional use of Z. officinale in preventing metabolic disorders.

  11. Altered levels of the Taraxacum kok-saghyz (Russian dandelion) small rubber particle protein, TkSRPP3, result in qualitative and quantitative changes in rubber metabolism.

    PubMed

    Collins-Silva, Jillian; Nural, Aise Taban; Skaggs, Amanda; Scott, Deborah; Hathwaik, Upul; Woolsey, Rebekah; Schegg, Kathleen; McMahan, Colleen; Whalen, Maureen; Cornish, Katrina; Shintani, David

    2012-07-01

    Several proteins have been identified and implicated in natural rubber biosynthesis, one of which, the small rubber particle protein (SRPP), was originally identified in Hevea brasiliensis as an abundant protein associated with cytosolic vesicles known as rubber particles. While previous in vitro studies suggest that SRPP plays a role in rubber biosynthesis, in vivo evidence is lacking to support this hypothesis. To address this issue, a transgene approach was taken in Taraxacum kok-saghyz (Russian dandelion or Tk) to determine if altered SRPP levels would influence rubber biosynthesis. Three dandelion SRPPs were found to be highly abundant on dandelion rubber particles. The most abundant particle associated SRPP, TkSRPP3, showed temporal and spatial patterns of expression consistent with patterns of natural rubber accumulation in dandelion. To confirm its role in rubber biosynthesis, TkSRPP3 expression was altered in Russian dandelion using over-expression and RNAi methods. While TkSRPP3 over-expressing lines had slightly higher levels of rubber in their roots, relative to the control, TkSRPP3 RNAi lines showed significant decreases in root rubber content and produced dramatically lower molecular weight rubber than the control line. Not only do results here provide in vivo evidence of TkSRPP proteins affecting the amount of rubber in dandelion root, but they also suggest a function in regulating the molecular weight of the cis-1, 4-polyisoprene polymer. Copyright © 2012 Elsevier Ltd. All rights reserved.

  12. Eudesmanolides from Taraxacum mongolicum and their inhibitory effects on the production of nitric oxide.

    PubMed

    Kim, Young-Hee; Choo, Soo-Jin; Ryoo, In-Ja; Ahn, Jong-Seok; Yoo, Ick-Dong

    2011-01-01

    A new eudesmanolide, 1β,3β-dihydroxy-eudesman-11(13)-en-6α,12-olide (1) was isolated and identified from Taraxacum mongolicum, together with two known compounds, 1β,3β-dihydroxyeudesman-6α,12-olide (2) and loliolide (3). The structure of 1 was established by analysis of its physical and spectroscopic data. 1 was found to have an inhibitory activity on nitric oxide production with an IC(50) of 38.9 μM in activated RAW 264.7 cells.

  13. Spatio-temporal variations of spring phenology of Plantago asiatica and Taraxacum mongolicum in the Tibetan Plateau from 2000 to 2011

    NASA Astrophysics Data System (ADS)

    Zheng, Z.; Zhu, W.

    2016-12-01

    Plant phenology is strongly controlled by climate and has become a sensitive bio-indicator to study the plant response to climate change. Since the high altitude, permafrost geography and harsh physical environment of the Tibetan Plateau (TP), the phenology shift in the TP was thought to be more sensitive than many other regions. However, the study of phenology in the TP was greatly limited by the lack of ground-observed phenological data. In this study, we collected the phonological records of first leaf date (FLD) and the first flowering date (FFD) of two herbaceous species (Plantago asiatica and Taraxacum mongolicum) both from 14 stations across the TP during 2000-2011 and analyzed the spatio-temporal variations of spring phenology. The results showed that the onset dates of FLD and FFD exhibited strong dependence on latitude, longitude and altitude because the onset dates of spring phenology occurred earlier at warmer locations. The sensitivities of spring phenology temperature varied among stations and earlier phenological events showed more negative temperature sensitivity except for the FFD of Taraxacum mongolicum. But the relationship between spring phenology and precipitation was not clear. Though the diverse trends of spring phenology of Plantago asiatica and Taraxacum mongolicum were found, the differences between the onset dates of FLD of the two species tended to increase (P < 0.05). However, the differences between the onset dates of FFD of the two species showed a reducing tendency (P < 0.01). These findings can help us to better understand the responses of plants to climate change in alpine ecosystem and provide information for phenology modelling.

  14. Elevated CO{sub 2} and leaf shape: Are dandelions getting toothier?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thomas, S.C.; Bazzaz, F.A.

    1996-01-01

    Heteroblastic leaf development in Taraxacum officinale is compared between plants grown under ambient (350 ppm) vs. elevated (700 ppm) CO{sub 2} levels. Leaves of elevated CO{sub 2} plants exhibited more deeply incised leaf margins and relatively more slender leaf laminae than leaves of ambient CO{sub 2} plants. These differences were found to be significant in allometric analyses that controlled for differences in leaf size, as well as analyses that controlled for leaf development order. The effects of elevated CO{sub 2} on leaf shape were most pronounced when plants were grown individually, but detectable differences were also found in plants grownmore » at high density. Although less dramatic than in Taraxacum, significant effects of elevated CO{sub 2} on leaf shape were also found in two other weedy rosette species, Plantago major and Rumex crispus. These observations support the long-standing hypothesis that leaf carbohydrate level plays an important role in regulating heteroblastic leaf development, though elevated CO{sub 2} may also affect leaf development through direct hormonal interactions or increased leaf water potential. In Taraxacum, pronounced modifications of leaf shape were found at CO{sub 2} levels predicted to occur within the next century. 33 refs., 5 figs.« less

  15. Ecology and management of houndstongue (Cynoglossum officinale L.)

    Treesearch

    Jim Jacobs; Sharlene Sing

    2007-01-01

    Houndstongue, Cynoglossum officinale (Boraginaceae), is a biennial or short-lived perennial originating from montane zones in western Asia and Eastern Europe. Houndstongue reproduces by seed only, and was probably introduced to North America as a grain seed contaminant. This species was first reported in Montana from Sweet Grass County near Big Timber, Montana in 1900...

  16. [Correlation analysis of major agronomic characters and the polysaccharide contents in Dendrobium officinale].

    PubMed

    Zhang, Lei; Zheng, Xi-Long; Qiu, Dao-Shou; Cai, Shi-Ke; Luo, Huan-Ming; Deng, Rui-Yun; Liu, Xiao-Jin

    2013-10-01

    In order to provide theoretical and technological basis for the germplasm innovation and variety breeding in Dendrobium officinale, a study of the correlation between polysaccharide content and agronomic characters was conducted. Based on the polysaccharide content determination and the agronomic characters investigation of 30 copies (110 individual plants) of Dendrobium officinale germplasm resources, the correlation between polysaccharide content and agronomic characters was analyzed via path and correlation analysis. Correlation analysis results showed that there was a significant negative correlation between average spacing and polysaccharide content, the correlation coefficient was -0.695. And the blade thickness was positively correlated with the polysaccharide content, but the correlation was not significant. The path analysis results showed that the stem length was the maximum influence factor to the polysaccharide, and it was positive effect, the direct path coefficient was 1.568. According to thess results, the polysaccharide content can be easily and intuitively estimated by the agronomic characters investigating data in the germpalsm resources screening and variety breeding. Therefore, it is a visual and practical technology guidance in quality variety breeding of Dendrobium officinale.

  17. Histological study of some Echium vulgare, Pulmonaria officinalis and Symphytum officinale populations.

    PubMed

    Papp, Nóra; Bencsik, Tímea; Németh, Kitti; Gyergyák, Kinga; Sulc, Alexandra; Farkas, Agnes

    2011-10-01

    Plants living in different ecological habitats can show significant variability in their histological and phytochemical characters. The main histological features of various populations of three medicinal plants from the Boraginaceae family were studied. Stems, petioles and leaves were investigated by light microscopy in vertical and transverse sections. The outline of the epidermal cells, as well as the shape and cell number of trichomes was studied in leaf surface casts. Differences were measured among the populations of Echium vulgare in the width and height of epidermis cells in the stem, petiole and leaf, as well as in the size of palisade cells in the leaves. Among the populations of Pulmonaria officinalis significant differences were found in the length of trichomes and in the slightly or strongly wavy outline of epidermal radial cell walls. Populations of Symphytum officinale showed variance in the height of epidermal cells in leaves and stems, length of palisade cells and number of intercellular spaces in leaves, and the size of the central cavity in the stem. Boraginaceae bristles were found to be longer in plants in windy/shady habitats as opposed to sunny habitats, both in the leaves and stems ofP. officinalis and S. officinale, which might be connected to varying levels of exposure to wind. Longer epidermal cells were detected in the leaves and stems of both E. vulgare and S. officinale plants living in shady habitats, compared with shorter cells in sunny habitats. Leaf mesophyll cells were shorter in shady habitats as opposed to longer cells in sunny habitats, both in E. vulgare and S. officinale. This combination of histological characters may contribute to the plant's adaptation to various amounts of sunshine. The reported data prove the polymorphism of the studied taxa, as well as their ability to adapt to various ecological circumstances.

  18. The effect of sodium hypochlorite and ginger extract on microorganisms and endotoxins in endodontic treatment of infected root canals.

    PubMed

    Valera, Marcia Carneiro; Maekawa, Lilian Eiko; Chung, Adriana; Cardoso, Flavia Goulart Rosa; Oliveira, Luciane Dias de; Oliveira, Carolina Lima de; Carvalho, Claudio Antonio Talge

    2014-01-01

    This in vitro study sought to evaluate the biomechanical preparation action on microorganisms and endotoxins by using sodium hypochlorite (NaOCl) and an intracanal medication containing Zingiber officinale, with or without calcium hydroxide. Single-rooted teeth were contaminated, and root canal instrumentation (using 2.5% NaOCl) was performed. Samples were divided into 4 groups, according to the intracanal medication employed. The root canal content was gathered 28 days after contamination (baseline), immediately after biomechanical preparation, 7 days after biomechanical preparation, 14 days after intracanal medication, and 7 days after intracanal medication was removed. The results (submitted to Kruskal-Wallis and Dunn tests) showed that the NaOCl eliminated 100% of root canal microorganisms and reduced 88.8% of endotoxins immediately after biomechanical preparation, and 83.2% at 7 days after biomechanical preparation.

  19. Absolute configurations of zingiberenols isolated from ginger (Zingiber officinale) rhizomes

    USDA-ARS?s Scientific Manuscript database

    The sesquiterpene alcohol zingiberenol, or 1,10-bisaboladien-3-ol, was isolated some time ago from ginger, Zingiber officinale, rhizomes, but its absolute configuration had not been determined. With three chiral centers present in the molecule, zingiberenol can exist in eight stereoisomeric forms. ...

  20. Ameliorating reactive oxygen species-induced in vitro lipid peroxidation in brain, liver, mitochondria and DNA damage by Zingiber officinale Roscoe.

    PubMed

    Ajith, T A

    2010-01-01

    Iron is an essential nutrient for a number of cellular activities. However, excess cellular iron can be toxic by producing reactive oxygen species (ROS) such as superoxide anion (O(2) (-)) and hydroxyl radical (HO(·)) that damage proteins, lipids and DNA. Mutagenic and genotoxic end products of lipid peroxidation can induce the decline of mitochondrial respiration and are associated with various human ailments including aging, neurodegenerative disorders, cancer etc. Zingiber officinale Roscoe (ginger) is a widely used spice around the world. The protective effect of aqueous ethanol extract of Z. officinale against ROS-induced in vitro lipid peroxidation and DNA damage was evaluated in this study. The lipid peroxidation was induced by hydroxyl radical generated from Fenton's reaction in rat liver and brain homogenates and mitochondrial fraction (isolated from rat liver). The DNA protection was evaluated using H(2)O(2)-induced changes in pBR-322 plasmid and Fenton reaction-induced DNA fragmentation in rat liver. The results indicated that Z. officinale significantly (P<0.001) protected the lipid peroxidation in all the tissue homogenate/mitochondria. The extract at 2 and 0.5 mg/ml could protect 92 % of the lipid peroxidation in brain homogenate and liver mitochondria respectively. The percent inhibition of lipid peroxidation at 1mg/ml of Z. officinale in the liver homogenate was 94 %. However, the extract could partially alleviate the DNA damage. The protective mechanism can be correlated to the radical scavenging property of Z. officinale. The results of the study suggest the possible nutraceutical role of Z. officinale against the oxidative stress induced human ailments.

  1. Attenuation of liver pro-inflammatory responses by Zingiber officinale via inhibition of NF-kappa B activation in high-fat diet-fed rats.

    PubMed

    Li, Xiao-Hong; McGrath, Kristine C-Y; Nammi, Srinivas; Heather, Alison K; Roufogalis, Basil D

    2012-03-01

    The aim of this study was to investigate whether treatment with a ginger (Zingiber officinale) extract of high-fat diet (HFD)-fed rats suppresses Nuclear factor-kappa B (NF-κB)-driven hepatic inflammation and to subsequently explore the molecular mechanisms in vitro. Adult male Sprague-Dawley rats were treated with an ethanolic extract of Zingiber officinale (400 mg/kg) along with a HFD for 6 weeks. Hepatic cytokine mRNA levels, cytokine protein levels and NF-κB activation were measured by real-time PCR, Western blot and an NF-κB nuclear translocation assay, respectively. In vitro, cell culture studies were carried out in human hepatocyte (HuH-7) cells by treatment with Zingiber officinale (100 μg/mL) for 24 hr prior to interleukin-1β (IL-1β, 8 ng/mL)-induced inflammation. We showed that Zingiber officinale treatment decreased cytokine gene TNFα and IL-6 expression in HFD-fed rats, which was associated with suppression of NF-κB activation. In vitro, Zingiber officinale treatment decreased NF-κB-target inflammatory gene expression of IL-6, IL-8 and serum amyloid A1 (SAA1), while it suppressed NF-κB activity, IκBα degradation and IκB kinase (IKK) activity. In conclusion, Zingiber officinale suppressed markers of hepatic inflammation in HFD-fed rats, as demonstrated by decreased hepatic cytokine gene expression and decreased NF-κB activation. The study demonstrates that the anti-inflammatory effect of Zingiber officinale occurs at least in part through the NF-κB signalling pathway. © 2011 The Authors. Basic & Clinical Pharmacology & Toxicology © 2011 Nordic Pharmacological Society.

  2. Beneficial therapeutic effects of Nigella sativa and/or Zingiber officinale in HCV patients in Egypt

    PubMed Central

    Abdel-Moneim, Adel; Morsy, Basant M.; Mahmoud, Ayman M.; Abo-Seif, Mohamed A.; Zanaty, Mohamed I.

    2013-01-01

    Hepatitis C is a major global health burden and Egypt has the highest prevalence of hepatitis C virus (HCV) worldwide. The current study was designed to evaluate the beneficial therapeutic effects of ethanolic extracts of Nigella sativa, Zingiber officinale and their mixture in Egyptian HCV patients. Sixty volunteer patients with proven HCV and fifteen age matched healthy subjects were included in this study. Exclusion criteria included patients on interferon alpha (IFN-α) therapy, infection with hepatitis B virus, drug-induced liver diseases, advanced cirrhosis, hepatocellular carcinoma (HCC) or other malignancies, blood picture abnormalities and major severe illness. Liver function enzymes, albumin, total bilirubin, prothrombin time and concentration, international normalized ratio, alpha fetoprotein and viral load were all assessed at baseline and at the end of the study. Ethanolic extracts of Nigella sativa and Zingiber officinale were prepared and formulated into gelatinous capsules, each containing 500 mg of Nigella sativa and/or Zingiber officinale. Clinical response and incidence of adverse drug reactions were assessed initially, periodically, and at the end of the study. Both extracts as well as their mixture significantly ameliorated the altered viral load, alpha fetoprotein, liver function parameters; with more potent effect for the combined therapy. In conclusion, administration of Nigella sativa and/or Zingiber officinale ethanolic extracts to HCV patients exhibited potential therapeutic benefits via decreasing viral load and alleviating the altered liver function, with more potent effect offered by the mixture. PMID:27298610

  3. Species-specific AFLP markers for identification of Zingiber officinale, Z. montanum and Z. zerumbet (Zingiberaceae).

    PubMed

    Ghosh, S; Majumder, P B; Sen Mandi, S

    2011-02-08

    The Zingiber genus, which includes the herbs known as gingers, commonly used in cooking, is well known for its medicinal properties, as described in the Indian pharmacopoeia. Different members of this genus, although somewhat similar in morphology, differ widely in their pharmacological and therapeutic properties. The most important species of this genus, with maximal therapeutic properties, is Zingiber officinale (garden ginger), which is often adulterated with other less-potent Zingiber sp. There is an existing demand in the herbal drug industry for an authentication system for the Zingiber sp in order to facilitate their commercial use as genuine phytoceuticals. To this end, we used amplified fragment length polymorphism (AFLP) to produce DNA fingerprints for three Zingiber species. Sixteen collections (six of Z. officinale, five of Z. montanum, and five of Z. zerumbet) were used in the study. Seven selective primer pairs were found to be useful for all the accessions. A total of 837 fragments were produced by these primer pairs. Species-specific markers were identified for all three Zingiber species (91 for Z. officinale, 82 for Z. montanum, and 55 for Z. zerumbet). The dendogram analysis generated from AFLP patterns showed that Z. montanum and Z. zerumbet are phylogenetically closer to each other than to Z. officinale. The AFLP fingerprints of the Zingiber species could be used to authenticate Zingiber sp-derived drugs and to resolve adulteration-related problems faced by the commercial users of these herbs.

  4. Beneficial therapeutic effects of Nigella sativa and/or Zingiber officinale in HCV patients in Egypt.

    PubMed

    Abdel-Moneim, Adel; Morsy, Basant M; Mahmoud, Ayman M; Abo-Seif, Mohamed A; Zanaty, Mohamed I

    2013-01-01

    Hepatitis C is a major global health burden and Egypt has the highest prevalence of hepatitis C virus (HCV) worldwide. The current study was designed to evaluate the beneficial therapeutic effects of ethanolic extracts of Nigella sativa, Zingiber officinale and their mixture in Egyptian HCV patients. Sixty volunteer patients with proven HCV and fifteen age matched healthy subjects were included in this study. Exclusion criteria included patients on interferon alpha (IFN-α) therapy, infection with hepatitis B virus, drug-induced liver diseases, advanced cirrhosis, hepatocellular carcinoma (HCC) or other malignancies, blood picture abnormalities and major severe illness. Liver function enzymes, albumin, total bilirubin, prothrombin time and concentration, international normalized ratio, alpha fetoprotein and viral load were all assessed at baseline and at the end of the study. Ethanolic extracts of Nigella sativa and Zingiber officinale were prepared and formulated into gelatinous capsules, each containing 500 mg of Nigella sativa and/or Zingiber officinale. Clinical response and incidence of adverse drug reactions were assessed initially, periodically, and at the end of the study. Both extracts as well as their mixture significantly ameliorated the altered viral load, alpha fetoprotein, liver function parameters; with more potent effect for the combined therapy. In conclusion, administration of Nigella sativa and/or Zingiber officinale ethanolic extracts to HCV patients exhibited potential therapeutic benefits via decreasing viral load and alleviating the altered liver function, with more potent effect offered by the mixture.

  5. Development of SCAR (sequence-characterized amplified region) markers as a complementary tool for identification of ginger (Zingiber officinale Roscoe) from crude drugs and multicomponent formulations.

    PubMed

    Chavan, Preeti; Warude, Dnyaneshwar; Joshi, Kalpana; Patwardhan, Bhushan

    2008-05-01

    Zingiber officinale Roscoe (common or culinary ginger) is an official drug in Ayurvedic, Indian herbal, Chinese, Japanese, African and British Pharmacopoeias. The objective of the present study was to develop DNA-based markers that can be applied for the identification and differentiation of the commercially important plant Z. officinale Roscoe from the closely related species Zingiber zerumbet (pinecone, bitter or 'shampoo' ginger) and Zingiber cassumunar [cassumunar or plai (Thai) ginger]. The rhizomes of the other two Zingiber species used in the present study are morphologically similar to that of Z. officinale Roscoe and can be used as its adulterants or contaminants. Various methods, including macroscopy, microscopy and chemoprofiling, have been reported for the quality control of crude ginger and its products. These methods are reported to have limitations in distinguishing Z. officinale from closely related species. Hence, newer complementary methods for correct identification of ginger are useful. In the present study, RAPD (random amplification of polymorphic DNA) analysis was used to identify putative species-specific amplicons for Z. officinale. These were further cloned and sequenced to develop SCAR (sequence-characterized amplified region) markers. The developed SCAR markers were tested in several non-Zingiber species commonly used in ginger-containing formulations. One of the markers, P3, was found to be specific for Z. officinale and was successfully applied for detection of Z. officinale from Trikatu, a multicomponent formulation.

  6. Investigating the potential of under-utilised plants from the Asteraceae family as a source of natural antimicrobial and antioxidant extracts.

    PubMed

    Kenny, O; Smyth, T J; Walsh, D; Kelleher, C T; Hewage, C M; Brunton, N P

    2014-10-15

    Antimicrobial properties of ethanol and water extracts from eight Asteraceae species were investigated against three Gram positive (Staphylococcus aureus, MRSA and Bacillus cereus) and two Gram negative (Escherichia coli and Salmonella typhimurium) bacterial strains. Ethanol extracts from Centaurea scabiosa, Arctium minus, Taraxacum officinale, Centaurea nigra and Cirsium palustre demonstrated antimicrobial activity against strains of S. aureus, MRSA and B. cereus (MIC=187.5-365μg/ml). Ethanol extracts also had higher antioxidant activities and phenolic content demonstrating a link between these compounds and the bioactivity of these extracts. Further investigation into the phenolic content of ethanol extracts using UPLC-MS/MS lead to the identification and quantification of numerous phenolic compounds in all species including; 18 from Cirsium arvense, 16 from Cirsium vulgare, 19 from C. palustre, 15 from C. nigra, 17 from C. scabiosa, 14 from Sonchus asper, 17 from A. minus and 11 from T. officinale. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Potential Alleviation of Chlorella vulgaris and Zingiber officinale on Lead-Induced Testicular Toxicity: an Ultrastructural Study.

    PubMed

    Mustafa, Hesham Noaman

    2015-01-01

    Natural, products were studied to combat reproductive alterations of lead. The current work aimed to disclose the efficacy of Chlorella vulgaris and Zingiber officinale to alleviate lead acetate induced toxicity. Sixty adult male Wistar rats were distributed into four groups. Group 1 was considered control, group 2 received 200 mg/l PbAc water, group 3 received 50 mg/kg/rat of C. vulgaris extract and 200 mg/l PbAc water, and group 4 received 100 mg/kg/rat of Z. officinale and 200 mg/l PbAc water for 90 days. Testis samples were subjected to ultrastructural examination. It was observed that PbAc caused degenerative alterations in the spermatogenic series in many tubules, with a loss of germ cells and vacuoles inside the cytoplasm and between the germ cells. Mitochondria exhibited ballooning, with lost cristae and widening of the interstitial tissue, while nuclear envelopes of primary spermatocytes were broken up, and axonemes of the mid-pieces of the sperms were distorted. With the treatment with C. vulgaris or Z. officinale, there were noticeable improvements in these modifications. It was concluded that both C. vulgaris and Z. officinale represent convincing medicinal components that may be used to ameliorate testicular toxicity in those exposed to lead in daily life with superior potentials revealed by C. vulgaris due to its chelating action.

  8. Antioxidant activities, total phenolics and flavonoids content in two varieties of Malaysia young ginger (Zingiber officinale Roscoe).

    PubMed

    Ghasemzadeh, Ali; Jaafar, Hawa Z E; Rahmat, Asmah

    2010-06-14

    Ginger (Zingiber officinale Roscoe) is a well known and widely used herb, especially in Asia, which contains several interesting bioactive constituents and possesses health promoting properties. In this study, the antioxidant activities of methanol extracts from the leaves, stems and rhizomes of two Zingiber officinale varieties (Halia Bentong and Halia Bara) were assessed in an effort to compare and validate the medicinal potential of the subterranean part of the young ginger. The antioxidant activity and phenolic contents of the leaves as determined by the 1,1-diphenyl-2-picryl-hydrazyl (DPPH) assay and the total amounts of phenolics and flavonoids were higher than those of the rhizomes and stems. On the other hand, the ferric reducing/antioxidant potential (FRAP) activity of the rhizomes was higher than that of the leaves. At low concentration the values of the leaves' inhibition activity in both varieties were significantly higher than or comparable to those of the young rhizomes. Halia Bara had higher antioxidant activities as well as total contents of phenolic and flavonoid in comparison with Halia Bentong. This study validated the medicinal potential of the leaves and young rhizome of Zingiber officinale (Halia Bara) and the positive relationship between total phenolics content and antioxidant activities in Zingiber officinale.

  9. Anti-fatty liver effects of oils from Zingiber officinale and Curcuma longa on ethanol-induced fatty liver in rats.

    PubMed

    Nwozo, Sarah Onyenibe; Osunmadewa, Damilola Adeola; Oyinloye, Babatunji Emmanuel

    2014-01-01

    The present study is aimed at evaluating the protective effects of oils from Zingiber officinale (ginger) and Curcuma longa (turmeric) on acute ethanol-induced fatty liver in male Wistar rats. Ferric reducing antioxidant power activity and oxygen radical absorbance capacity of the oils were evaluated ex vivo. Rats were pretreated for 28 d with standard drug (Livolin Forte) and oils from Z. officinale and C. longa before they were exposed to 45% ethanol (4.8 g/kg) to induce acute fatty liver. Histological changes were observed and the degree of protection was measured by using biochemical parameters such as alanine aminotransferase, aspartate aminotransferase and alkaline phosphatase activities. Serum triglyceride (TG) level, total cholesterol (TC) level and the effects of both oils on reduced gluthatione (GSH), glutathione-S-transferase (GST), superoxide dismutase (SOD) and hepatic malondialdehyde (MDA) levels were estimated. Oils from Z. officinale and C. longa at a dose of 200 mg/kg showed hepatoprotection by decreasing the activities of serum enzymes, serum TG, serum TC and hepatic MDA, while they significantly restored the level of GSH as well as GST and SOD activities. Histological examination of rats tissues was related to the obtained results. From the results it may be concluded that oils from Z. officinale and C. longa (200 mg/kg) exhibited hepatoprotective activity in acute ethanol-induced fatty liver and Z. officinale oil was identified to have better effects than C. longa oil.

  10. [Present status and sustainable development of Dendrobium officinale industry].

    PubMed

    Wu, Yunqin; Si, Jinping

    2010-08-01

    To understand the present status and characteristics of Dendrobium officinale industry and to provide a rationale for the sustainable industrial development. Based on references and an on-site investigation of main Dendrobium officinale-producing enterprises and market, to analyze main existing problems and to propose suggestions for sustainable development. More than 10 provinces and regions are involved in the production around the center of Zhejiang and Yunnan provinces. These two provinces are different from each other in development pattern. Yunnan adopts a mode of companies minus farmer households but Zhejiang mainly employs a mode that a leading company establishes a production base with production, processing and marketing combined together. Zhejiang mode is characterized by high tech, high investment, high risk and high return. Existence of non-genuine species, stagnancy in development and application of varieties and techniques for quality control and a narrow channel for marketing are the key problems limiting sustainable development of the industry. The key to sustainable development of the industry is to establish a technological alliance to speed up development of common techniques and application of integrated innovations, to strengthen self-discipline and monitoring of production, and to expand sales market.

  11. Structure Characterization and Immunomodulating Effects of Polysaccharides Isolated from Dendrobium officinale.

    PubMed

    Wei, Wei; Feng, Lei; Bao, Wan-Rong; Ma, Dik-Lung; Leung, Chung-Hang; Nie, Shao-Ping; Han, Quan-Bin

    2016-02-03

    A crude polysaccharide fraction (cDOP) has been determined to be the characteristic marker of Dendrobium officinale, an expensive tea material in Asia, but its chemistry and bioactivity have not been studied. In work reported here, cDOP was destarched (DOP, 90% yield) and separated into two subfraction polysaccharides, DOPa and DOPb, which were characterized by monosaccharide composition and methylation analyses and spectral analyses (FT-IR and (1)H and (13)C NMR). Both are composed of mannose and glucose at similar ratios and have a similar structure with a backbone of 1,4-linked β-D-mannopyranosyl and β-D-glucopyranosyl residues. Significant differences were observed only in their molecular weights. Bioassay using mouse macrophage cell line RAW264.7 indicated that DOP and its two subfractions enhance cell proliferation, TNF-α secretion, and phagocytosis in a dose-dependent manner. They also induced the proliferation of lymphocytes alone and with mitogens. DOPa and DOPb are thus proven to be major, active polysaccharide markers of D. officinale.

  12. Characterization of the alkaline/neutral invertase gene in Dendrobium officinale and its relationship with polysaccharide accumulation.

    PubMed

    Gao, F; Cao, X F; Si, J P; Chen, Z Y; Duan, C L

    2016-05-06

    Dendrobium officinale is one of the most well-known traditional Chinese medicines, and polysaccharide is its main active ingredient. Many studies have investigated the synthesis and accumulation mechanisms of polysaccharide, but until recently, little was known about the molecular mechanism of how polysaccharide is synthesized because no related genes have been cloned. In this study, we cloned an alkaline/neutral invertase gene from D. officinale (DoNI) by the rapid amplification of cDNA ends (RACE) method. DoNI was 2231 bp long and contained an open reading frame that predicted a 62.8-kDa polypeptide with 554-amino acid residues. An alkaline/neutral invertase conserved domain was predicted from this deduced amino acid sequence, and DoNI had a similar deduced amino acid sequence to Setaria italica and Oryza brachyantha. We also found that DoNI expression in different tissues was closely related to DoNI activity, and more importantly, polysaccharide level. Our results indicate that DoNI is associated with polysaccharide accumulation in D. officinale.

  13. Biological activities of Allium sativum and Zingiber officinale extracts on clinically important bacterial pathogens, their phytochemical and FT-IR spectroscopic analysis.

    PubMed

    Awan, Uzma Azeem; Ali, Shaukat; Shahnawaz, Amna Mir; Shafique, Irsa; Zafar, Atiya; Khan, Muhammad Abdul Rauf; Ghous, Tahseen; Saleem, Azhar; Andleeb, Saiqa

    2017-05-01

    The spread of bacterial infectious diseases is a major public threat. Herbs and spices have offered an excellent, important and useful source of antimicrobial agents against many pathological infections. In the current study, the antimicrobial potency of fresh, naturally and commercial dried Allium sativum and Zingiber officinale extracts had been investigated against seven local clinical bacterial isolates such as Escherichia coli, Pseudomonas aeruginosa, Klebsiella pneumonia, Staphylococcus aureus, Streptococcus pyogenes, Staphylococcus epidermidis, and Serratia marcesnces by the agar disc diffusion method. All tested pathogens except P. aeruginosa and E. coli were most susceptible to ethanolic and methanolic extracts of A. sativum. Similarly, chloroform and diethyl ether extracts of Z. officinale showed a greater zone of inhibition of tested pathogens except for P. aeruginosa and E. coli. We found that all extracts of A. sativum and Z. officinale have a strong antibacterial effect compared to recommended standard antibiotics through activity index. All results were evaluated statistically and a significant difference was recorded at P< 0.05. Antioxidant activity of extracts showed that 10 out of 13 extracts have high scavenging potential. Thin layer chromatography profiling of all extracts of A. sativum and Z. officinale proposed the presence of various phytochemicals such as tannins, phenols, alkaloids, steroids and saponins. Retention factor of diverse phytochemicals provides a valuable clue regarding their polarity and the selection of solvents for separation of phytochemicals. Significant inhibition of S. aureus was also observed through TLC-Bioautography. FT-IR Spectrometry was also performed to characterize both natural and commercial extracts of A. sativum and Z. officinale to evaluate bioactive compounds. These findings provide new insights to use A. sativum and Z. officinale as potential plant sources for controlling pathogenic bacteria and potentially

  14. Is there a missing link? Effects of root herbivory on plant-pollinator interactions and reproductive output in a monocarpic species.

    PubMed

    Ghyselen, C; Bonte, D; Brys, R

    2016-01-01

    Herbivores can have a major influence on plant fitness. The direct impact of herbivory on plant reproductive output has long been studied, and recently also indirect effects of herbivory on plant traits and pollinator attraction have received increasing attention. However, the link between these direct and indirect effects has seldom been studied. In this study, we investigated effects of root herbivory on plant and floral traits, pollination success and reproductive outcome in the monocarpic perennial Cynoglossum officinale. We exposed 119 C. officinale plants to a range of root herbivore damage by its specialist herbivore Mogulones cruciger. We assessed the effect of herbivory on several plant traits, pollinator foraging behaviour and reproductive output, and to elucidate the link between these last two we also quantified pollen deposition and pollen tube growth and applied a pollination experiment to test whether seed set was pollen-limited. Larval root herbivory induced significant changes in plant traits and had a negative impact on pollinator visitation. Infested plants were reduced in size, had fewer flowers and received fewer pollinator visits at plant and flower level than non-infested plants. Also, seed set was negatively affected by root herbivory, but this could not be attributed to pollen limitation since neither stigmatic pollen loads and pollen tube growth nor the results of the hand-pollination experiment differed between infested and non-infested plants. Our observations demonstrate that although herbivory may induce significant changes in flowering behaviour and resulting plant-pollinator interactions, it does not necessarily translate into higher rates of pollen limitation. The observed reductions in reproductive output following infection can mainly be attributed to higher resource limitation compared to non-infested plants. © 2015 German Botanical Society and The Royal Botanical Society of the Netherlands.

  15. Inhibitory effect of aqueous dandelion extract on HIV-1 replication and reverse transcriptase activity

    PubMed Central

    2011-01-01

    Background Acquired immunodeficiency syndrome (AIDS), which is caused by the human immunodeficiency virus (HIV), is an immunosuppressive disease that results in life-threatening opportunistic infections. The general problems in current therapy include the constant emergence of drug-resistant HIV strains, adverse side effects and the unavailability of treatments in developing countries. Natural products from herbs with the abilities to inhibit HIV-1 life cycle at different stages, have served as excellent sources of new anti-HIV-1 drugs. In this study, we aimed to investigate the anti-HIV-1 activity of aqueous dandelion extract. Methods The pseudotyped HIV-1 virus has been utilized to explore the anti-HIV-1 activity of dandelion, the level of HIV-1 replication was assessed by the percentage of GFP-positive cells. The inhibitory effect of the dandelion extract on reverse transcriptase activity was assessed by the reverse transcriptase assay kit. Results Compared to control values obtained from cells infected without treatment, the level of HIV-1 replication and reverse transcriptase activity were decreased in a dose-dependent manner. The data suggest that dandelion extract has a potent inhibitory activity against HIV-1 replication and reverse transcriptase activity. The identification of HIV-1 antiviral compounds from Taraxacum officinale should be pursued. Conclusions The dandelion extract showed strong activity against HIV-1 RT and inhibited both the HIV-1 vector and the hybrid-MoMuLV/MoMuSV retrovirus replication. These findings provide additional support for the potential therapeutic efficacy of Taraxacum officinale. Extracts from this plant may be regarded as another starting point for the development of an antiretroviral therapy with fewer side effects. PMID:22078030

  16. Molecular characterization and expression analysis of WRKY family genes in Dendrobium officinale.

    PubMed

    Wang, Tao; Song, Zheng; Wei, Li; Li, Lubin

    2018-03-01

    The WRKY family of transcription factors is one of the most important families of plant transcriptional regulators, and the members regulate multiple biological processes. However, there is limited information on WRKYs in Dendrobium officinale. In this study, 52 WRKY family genes of D. officinale were surveyed for the first time. Conserved domain, phylogenetic, exon-intron construction, and expression analyses were performed for the DoWRKY genes. Two major types of intron splicing (PR and VQR introns) were found, and the intron insertion position was observed to be relatively conserved in the conserved DoWRKY domains. The expression profiles of nine DoWRKYs were analyzed in cold- and methyl jasmonate (MeJA)-treated D. officinale seedlings; the DoWRKYs showed significant expression changes at different levels, which suggested their vital roles in stress tolerance. Moreover, the expression trends of most of the DoWRKYs after the simultaneous cold stress and MeJA treatment were the opposite of those of DoWRKYs after the individual cold stress and MeJA treatments, suggesting that the two stresses might have antagonistic effects and affect the adaptive capacity of the plants to stresses. Twelve DoWRKY genes were differentially expressed between symbiotic and asymbiotic germinated seeds; all were upregulated in the symbiotic germinated seeds except DoWRKY16. These differences in expression of DoWRKYs might be involved in promoting in vitro symbiotic germination of seeds with Tulasnella-like fungi. Our findings will be useful for further studies on the WRKY family genes in orchids.

  17. An assessment of the risk of element contamination of urban and industrial areas using Taraxacum sect. Ruderalia as a bioindicator.

    PubMed

    Fröhlichová, Alena; Száková, Jiřina; Najmanová, Jana; Tlustoš, Pavel

    2018-02-19

    Central Bohemia (Czech Republic) has highly developed industry and a dense rail network. Here, we aimed to determine the content of risk elements in dandelion plants (Taraxacum sect. Ruderalia) growing near train stations, industrial enterprises, and in the city parks of 16 cities in the Central Bohemian region. The highest element contents in the soils were found in industrial areas affected by the historical mining and smelting activities; contemporary industry showed no substantial effect on the soil element contents. The median values of element contents (As, Be, Cd, Co, Cr, Cu, Ni, Pb, and Zn) at the railway station sites were the highest among the monitored sites, where the differences between park and station sites were significant for Be, Co, and Zn. Although the intensity of the traffic at the individual stations differed, we found that long-term regular traffic enhanced the element contents in the soils and, subsequently, in the plants. For Cd, Co, Cr, Cu, Pb, V, and Zn, the highest median element contents were found in plant roots, regardless of the sampling site. For Cd and Zn, the contents in leaves were higher than in the inflorescences, and the opposite pattern was recorded for Co and Cu. As and Be were distributed equally among the plant parts. Among the sampling sites, the As, Be, Cd, Zn, and Pb contents in the plant roots tended to have higher median values at the station sites, confirming the results of our soil analyses. We detected a fairly good correlation between soil and plant content for cadmium, regardless of the sampling site, soil element content, or analyzed part of the plant. Thus, we propose that dandelion is a suitable bioindicator of cadmium pollution of soil.

  18. Thermomyces lanuginosus STm: a source of thermostable hydrolytic enzymes for novel application in extraction of high-quality natural rubber from Taraxacum kok-saghyz (rubber dandelion)

    USDA-ARS?s Scientific Manuscript database

    Hydrolytic enzymes from a newly isolated strain of the thermophilic fungus Thermomyces lanuginosus were used to extract rubber from Taraxacum kok-saghyz commonly known as rubber (or Russian or Kazak(h)) dandelion. The fungus was isolated from garden soil and identified as Thermomyces lanuginosus STm...

  19. Ginger (Zingiber officinale Roscoe) and the Gingerols Inhibit the Growth of Cag A+ Strains of Helicobacter pylori

    PubMed Central

    Mahady, Gail B.; Pendland, Susan L.; Yun, Gina S.; Lu, Zhi-Zhen; Stoia, Adina

    2013-01-01

    Background Ginger root (Zingiber officinale) has been used traditionally for the treatment of gastrointestinal ailments such as motion sickness, dyspepsia and hyperemesis gravidarum, and is also reported to have chemopreventative activity in animal models. The gingerols are a group of structurally related polyphenolic compounds isolated from ginger and known to be the active constituents. Since Helicobacter pylori (HP) is the primary etiological agent associated with dyspepsia, peptic ulcer disease and the development of gastric and colon cancer, the anti-HP effects of ginger and its constituents were tested in vitro. Materials and Methods A methanol extract of the dried powdered ginger rhizome, fractions of the extract and the isolated constituents, 6-,8-, 10-gingerol and 6-shogoal, were tested against 19 strains of HP, including 5 CagA+ strains. Results The methanol extract of ginger rhizome inhibited the growth of all 19 strains in vitro with a minimum inhibitory concentration range of 6.25–50 µg/ml. One fraction of the crude extract, containing the gingerols, was active and inhibited the growth of all HP strains with an MIC range of 0.78 to 12.5 µg/ml and with significant activity against the CagA+ strains. Conclusion These data demonstrate that ginger root extracts containing the gingerols inhibit the growth of H. pylori CagA+ strains in vitro and this activity may contribute to its chemopreventative effects. PMID:14666666

  20. Effect of a blend of comfrey root extract (Symphytum officinale L.) and tannic acid creams in the treatment of osteoarthritis of the knee: randomized, placebo-controlled, double-blind, multiclinical trials

    PubMed Central

    Smith, Doug B.; Jacobson, Bert H.

    2011-01-01

    Objective The purpose of this study was to determine the effect of 2 concentrations of topical, comfrey-based botanical creams containing a blend of tannic acid and eucalyptus to a eucalyptus reference cream on pain, stiffness, and physical functioning in those with primary osteoarthritis of the knee. Methods Forty-three male and female subjects (45-83 years old) with diagnosed primary osteoarthritis of the knee who met the inclusion criteria were entered into the study. The subjects were randomly assigned to 1 of 3 treatment groups: 10% or 20% comfrey root extract (Symphytum officinale L.) or a placebo cream. Outcomes of pain, stiffness, and functioning were done on the Western Ontario and MacMaster Universities Osteoarthritis Index. Participants applied the cream 3× a day for 6 weeks and were evaluated every 2 weeks during the treatment. Results Repeated-measures analyses of variance yielded significant differences in all of the Western Ontario and MacMaster Universities Osteoarthritis Index categories (pain P < .01, stiffness P < .01, daily function P < .01), confirming that the 10% and 20% comfrey-based creams were superior to the reference cream. The active groups each had 2 participants who had temporary and minor adverse reactions of skin rash and itching, which were rapidly resolved by modifying applications. Conclusion Both active topical comfrey formulations were effective in relieving pain and stiffness and in improving physical functioning and were superior to placebo in those with primary osteoarthritis of the knee without serious adverse effects. PMID:22014903

  1. Effect of Zingiber officinale and propolis on microorganisms and endotoxins in root canals

    PubMed Central

    MAEKAWA, Lilian Eiko; VALERA, Marcia Carneiro; de OLIVEIRA, Luciane Dias; CARVALHO, Cláudio Antonio Talge; CAMARGO, Carlos Henrique Ribeiro; JORGE, Antonio Olavo Cardoso

    2013-01-01

    The purpose of this study was to evaluate the effectiveness of glycolic propolis (PRO) and ginger (GIN) extracts, calcium hydroxide (CH), chlorhexidine (CLX) gel and their combinations as ICMs (ICMs) against Candida albicans, Enterococcus faecalis, Escherichia coli and endotoxins in root canals. Material and Methods: After 28 days of contamination with microorganisms, the canals were instrumented and then divided according to the ICM: CH+saline; CLX, CH+CLX, PRO, PRO+CH; GIN; GIN+CH; saline. The antimicrobial activity and quantification of endotoxins by the chromogenic test of Limulus amebocyte lysate were evaluated after contamination and instrumentation at 14 days of ICM application and 7 days after ICM removal. Results and Conclusion: After analysis of results and application of the Kruskal-Wallis and Dunn statistical tests at 5% significance level, it was concluded that all ICMs were able to eliminate the microorganisms in the root canals and reduce their amount of endotoxins; however, CH was more effective in neutralizing endotoxins and less effective against C. albicans and E. faecalis, requiring the use of medication combinations to obtain higher success. PMID:23559108

  2. Iteration expansion and regional evolution: phylogeography of Dendrobium officinale and four related taxa in southern China

    PubMed Central

    Hou, Beiwei; Luo, Jing; Zhang, Yusi; Niu, Zhitao; Xue, Qingyun; Ding, Xiaoyu

    2017-01-01

    The genus Dendrobium was used as a case study to elucidate the evolutionary history of Orchidaceae in the Sino-Japanese Floristic Region (SJFR) and Southeast Asia region. These evolutionary histories remain largely unknown, including the temporal and spatial distribution of the evolutionary events. The present study used nuclear and plastid DNA to determine the phylogeography of Dendrobium officinale and four closely related taxa. Plastid DNA haplotype and nuclear data were shown to be discordant, suggesting reticulate evolution drove the species’ diversification. Rapid radiation and genetic drift appeared to drive the evolution of D. tosaense and D. flexicaule, whereas introgression or hybridization might have been involved in the evolution of D. scoriarum and D. shixingense. The phylogeographical structure of D. officinale revealed that core natural distribution regions might have served as its glacial refuges. In recent years, human disturbances caused its artificial migration and population extinction. The five taxa may have originated from the Nanling Mountains and the Yungui Plateau and then migrated northward or eastward. After the initial iteration expansion, D. officinale populations appeared to experience the regional evolutionary patterns in different regions and follow the sequential or rapid decline in gene exchange. PMID:28262789

  3. Acute administration of ginger (Zingiber officinale rhizomes) extract on timed intravenous pentylenetetrazol infusion seizure model in mice.

    PubMed

    Hosseini, Abdolkarim; Mirazi, Naser

    2014-03-01

    Zingiber officinale (Zingiberaceae) or ginger, which is used in traditional medicine has antioxidant activity and neuroprotective effects. The effects of this plant on clonic seizure have not yet been studied. The present study evaluated the anticonvulsant effect of ginger in a model of clonic seizures induced with pentylenetetrazole (PTZ) in male mice. The anticonvulsant effect of Z. officinale was investigated using i.v. PTZ-induced seizure models in mice. Different doses of the hydroethanolic extract of Z. officinale (25, 50, and 100mg/kg) were administered intraperitonal (i.p.), 2 and 24h before induction of PTZ. Phenobarbital sodium (30mg/kg), a reference standard, was also tested for comparison. The effect of ginger on to the appearance of three separate seizure endpoints (myoclonic, generalized clonus and forelimb tonic extension phase) was recorded. The results showed that the ginger extract has anticonvulsant effects in all the experimental treatment groups of seizure tested as it significantly increased the seizure threshold. Hydroethanolic extract of Z. officinale significantly increased the onset time of myoclonic seizure at doses of 25-100mg/kg (p<0.001) and significantly prevented generalized clonic (p<0.001) and increased the threshold for the forelimb tonic extension (p<0.01) seizure 2 and 24h before induction of PTZ compared with control group. Based on the results the hydroethanolic extract of ginger has anticonvulsant effects, possibly through an interaction with inhibitory and excitatory system, antioxidant mechanisms, oxidative stress and calcium channel inhibition. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Alteration of pentylenetetrazole-induced seizure threshold by chronic administration of ginger (Zingiber officinale) extract in male mice.

    PubMed

    Hosseini, Abdolkarim; Mirazi, Naser

    2015-05-01

    Zingiber officinale Roscoe (Zingiberaceae), or ginger, used in traditional Chinese medicine, has antioxidant activity and neuroprotective effects. The effects of this plant on clonic seizure have not yet been studied. The present study evaluated the anticonvulsant effect of ginger in a model of clonic seizures induced with pentylenetetrazole (PTZ) in male mice. The anticonvulsant effect of Z. officinale was investigated using i.v. PTZ-induced seizure models in mice. Different doses of the hydroethanolic extract of Z. officinale (25, 50, and 100 mg/kg) were administered intraperitonal (i.p.), daily for 1 week before induction of PTZ. Phenobarbital sodium (30 mg/kg), a reference standard, was also tested for comparison. The effect of ginger on to the appearance of three separate seizure endpoints, e.g., myoclonic, generalized clonic, and tonic extension phase, was recorded. Hydroethanolic extract of Z. officinale significantly increased the onset time of myoclonic seizure at doses of 25-100 mg/kg (55.33 ± 1.91 versus 24.47 ± 1.33 mg/kg, p < 0.001) and significantly prevented generalized clonic (74.64 ± 3.52 versus 47.72 ± 2.31 mg/kg, p < 0.001) and increased the threshold for the forelimb tonic extension (102.6 ± 5.39 versus 71.82 ± 7.82 mg/kg, p < 0.01) seizure induced by PTZ compared with the control group. Based on the results, the hydroethanolic extract of ginger has anticonvulsant effects, possibly through an interaction with inhibitory and excitatory systems, antioxidant mechanisms, and oxidative stress inhibition.

  5. Building a Genetic Manipulation Tool Box for Orchid Biology: Identification of Constitutive Promoters and Application of CRISPR/Cas9 in the Orchid, Dendrobium officinale

    PubMed Central

    Kui, Ling; Chen, Haitao; Zhang, Weixiong; He, Simei; Xiong, Zijun; Zhang, Yesheng; Yan, Liang; Zhong, Chaofang; He, Fengmei; Chen, Junwen; Zeng, Peng; Zhang, Guanghui; Yang, Shengchao; Dong, Yang; Wang, Wen; Cai, Jing

    2017-01-01

    Orchidaceae is the second largest family of flowering plants, which is highly valued for its ornamental purposes and medicinal uses. Dendrobium officinale is a special orchid species that can grow without seed vernalization. Because the whole-genome sequence of D. officinale is publicly available, this species is poised to become a convenient research model for the evolutionary, developmental, and genetic studies of Orchidaceae. Despite these advantages, the methods of genetic manipulation are poorly developed in D. officinale. In this study, based on the previously developed Agrobacterium-mediated gene transformation system, we identified several highly efficient promoters for exogenous gene expression and successfully applied the CRISPR/Cas9 system for editing endogenous genes in the genome of D. officinale. These two basic techniques contribute to the genetic manipulation toolbox of Orchidaceae. The pCambia-1301-35SN vector containing the CaMV 35S promoter and the β-glucuronidase (GUS) and Superfolder green fluorescence protein (SG) as reporter genes were introduced into the plant tissues by the Agrobacterium-mediated transformation system. Fluorescence emission from the transformed plants confirmed the successful transcription and translation of SG genes into functional proteins. We compared the GUS activity under different promoters including four commonly used promoters (MtHP, CVMV, MMV and PCISV) with CaMV 35S promoter and found that MMV, CVMV, and PCISV were as effective as the 35S promoter. Furthermore, we applied the CRISPR/Cas9-mediated genome editing system successfully in D. officinale. By selecting five target genes (C3H, C4H, 4CL, CCR, and IRX) in the lignocellulose biosynthesis pathway, we showed that, for a given target, this system can generate edits (insertions, deletions, or substitutions) at a rate of 10 to 100%. These results showed that our two genetic manipulation tools can efficiently express exogenous genes and edit endogenous genes in D

  6. Building a Genetic Manipulation Tool Box for Orchid Biology: Identification of Constitutive Promoters and Application of CRISPR/Cas9 in the Orchid, Dendrobium officinale.

    PubMed

    Kui, Ling; Chen, Haitao; Zhang, Weixiong; He, Simei; Xiong, Zijun; Zhang, Yesheng; Yan, Liang; Zhong, Chaofang; He, Fengmei; Chen, Junwen; Zeng, Peng; Zhang, Guanghui; Yang, Shengchao; Dong, Yang; Wang, Wen; Cai, Jing

    2016-01-01

    Orchidaceae is the second largest family of flowering plants, which is highly valued for its ornamental purposes and medicinal uses. Dendrobium officinale is a special orchid species that can grow without seed vernalization. Because the whole-genome sequence of D. officinale is publicly available, this species is poised to become a convenient research model for the evolutionary, developmental, and genetic studies of Orchidaceae. Despite these advantages, the methods of genetic manipulation are poorly developed in D. officinale . In this study, based on the previously developed Agrobacterium -mediated gene transformation system, we identified several highly efficient promoters for exogenous gene expression and successfully applied the CRISPR/Cas9 system for editing endogenous genes in the genome of D. officinale . These two basic techniques contribute to the genetic manipulation toolbox of Orchidaceae. The pCambia-1301-35SN vector containing the CaMV 35S promoter and the β-glucuronidase ( GUS ) and Superfolder green fluorescence protein (SG) as reporter genes were introduced into the plant tissues by the Agrobacterium -mediated transformation system. Fluorescence emission from the transformed plants confirmed the successful transcription and translation of SG genes into functional proteins. We compared the GUS activity under different promoters including four commonly used promoters (MtHP, CVMV, MMV and PCISV) with CaMV 35S promoter and found that MMV, CVMV, and PCISV were as effective as the 35S promoter. Furthermore, we applied the CRISPR/Cas9-mediated genome editing system successfully in D. officinale . By selecting five target genes ( C3H, C4H, 4CL, CCR, and IRX ) in the lignocellulose biosynthesis pathway, we showed that, for a given target, this system can generate edits (insertions, deletions, or substitutions) at a rate of 10 to 100%. These results showed that our two genetic manipulation tools can efficiently express exogenous genes and edit endogenous

  7. A novel C-S lyase from the latex-producing plant Taraxacum brevicorniculatum displays alanine aminotransferase and l-cystine lyase activity.

    PubMed

    Munt, Oliver; Prüfer, Dirk; Schulze Gronover, Christian

    2013-01-01

    We isolated a novel pyridoxal-5-phosphate-dependent l-cystine lyase from the dandelion Taraxacum brevicorniculatum. Real time qPCR analysis showed that C-S lyase from Taraxacum brevicorniculatum (TbCSL) mRNA is expressed in all plant tissues, although at relatively low levels in the latex and pedicel. The 1251 bp TbCSL cDNA encodes a protein with a calculated molecular mass of 46,127 kDa. It is homologous to tyrosine and alanine aminotransferases (AlaATs) as well as to an Arabidopsis thaliana carbon-sulfur lyase (C-S lyase) (SUR1), which has a role in glucosinolate metabolism. TbCSL displayed in vitrol-cystine lyase and AlaAT activities of 4 and 19nkatmg(-1) protein, respectively. However, we detected no in vitro tyrosine aminotransferase (TyrAT) activity and RNAi knockdown of the enzyme had no effect on phenotype, showing that TbCSL substrates might be channeled into redundant pathways. TbCSL is in vivo localized in the cytosol and functions as a C-S lyase or an aminotransferase in planta, but the purified enzyme converts at least two substrates specifically, and can thus be utilized for further in vitro applications. Copyright © 2012 Elsevier GmbH. All rights reserved.

  8. Preventive Effect of the Korean Traditional Health Drink (Taemyeongcheong) on Acetaminophen-Induced Hepatic Damage in ICR Mice.

    PubMed

    Yi, Ruo-Kun; Song, Jia-Le; Lim, Yaung-Iee; Kim, Yong-Kyu; Park, Kun-Young

    2015-03-01

    This study was to investigate the preventive effect of taemyeongcheong (TMC, a Korean traditional health drink) on acetaminophen (APAP, 800 mg/kg BW)-induced hepatic damage in ICR mice. TMC is prepared from Saururus chinensis, Taraxacum officinale, Zingiber officinale, Cirsium setidens, Salicornia herbacea, and Glycyrrhizae. A high dose of TMC (500 mg/kg BW) was found to decrease APAP-induced increases in serum levels of alanine aminotransferase, aspartate aminotransferase, alkaline phosphatase, and lactate dehydrogenase. TMC pretreatment also increased the hepatic levels of hepatic catalase, superoxide dismutase, glutathione peroxidase, and glutathione, and reduced serum levels of the inflammatory cytokines tumor necrosis factor (TNF)-α and interleukin (IL)-6 in mice administered APAP (P<0.05). TMC (500 mg/kg BW) reduced hepatic mRNA levels of TNF-α, IL-1β, IL-6, COX-2, and iNOS by 87%, 84%, 89%, 85%, and 88%, respectively, in mice treated with APAP (P<0.05). Furthermore, histological observations suggested TMC pretreatment dose-dependently prevented APAP-induced hepatocyte damage. These results suggest that TMC could be used as a functional health drink to prevent hepatic damage.

  9. The complete chloroplast genome sequence of Dendrobium officinale.

    PubMed

    Yang, Pei; Zhou, Hong; Qian, Jun; Xu, Haibin; Shao, Qingsong; Li, Yonghua; Yao, Hui

    2016-01-01

    The complete chloroplast sequence of Dendrobium officinale, an endangered and economically important traditional Chinese medicine, was reported and characterized. The genome size is 152,018 bp, with 37.5% GC content. A pair of inverted repeats (IRs) of 26,284 bp are separated by a large single-copy region (LSC, 84,944 bp) and a small single-copy region (SSC, 14,506 bp). The complete cp DNA contains 83 protein-coding genes, 39 tRNA genes and 8 rRNA genes. Fourteen genes contained one or two introns.

  10. Combinatorial cytotoxic effects of Curcuma longa and Zingiber officinale on the PC-3M prostate cancer cell line

    PubMed Central

    Kurapati, Kesava Rao V.; Samikkannu, Thangavel; Kadiyala, Dakshayani B.; Zainulabedin, Saiyed M.; Gandhi, Nimisha; Sathaye, Sadhana S.; Indap, Manohar A.; Boukli, Nawal; Rodriguez, Jose W.; Nair, Madhavan P.N.

    2015-01-01

    Background Many plant-derived products exhibit potent chemopreventive activity against animal tumor models as well as rodent and human cancer cell lines. They have low side effects and toxicity and presumably modulate the factors that are critical for cell proliferation, differentiation, senescence and apoptosis. The present study investigates the effects of some medicinal plant extracts from generally recognized as safe plants that may be useful in the prevention and treatment of cancer. Methods Clonogenic assays using logarithmically-growing cells were performed to test the effect. The cytotoxic effects of Curcuma longa and Zingiber officinale were studied using sulforhodamine B assay, tetrazolium dye assay, colony morphology and microscopic analysis. Results Out of the 13 lyophilized plant-derived extracts evaluated for growth-inhibitory effects on the PC-3M prostate cancer cell line, two extracts derived from C. longa and Z. officinale showed significant inhibitory effects on colony-forming ability. The individual and augmentative effects of these two extracts were tested for their narrow range effective lower concentration on PC-3M in clonogenic assays. At relatively lower concentrations, C. longa showed significant inhibition of colony formation in clonogenic assays; whereas at same concentrations Z. officinale showed only moderate inhibitory effects. However, when both the agents were tested together at the same concentrations, the combined effects were much more significant than their individual ones. On normal prostate epithelial cells both C. longa and Z. officinale had similar effects but at a lower magnitude. These observations were confirmed by several cytotoxicity assays involving the morphological appearance of the colonies, microscopic observations, per cent inhibition in comparison to control by sulforhodamine B and tetrazolium dye assay. Conclusions From these observations, it was concluded that the combined effects of C. longa and Z. officinale

  11. Air pollution tolerance index and heavy metal bioaccumulation in selected plant species from urban biotopes.

    PubMed

    Nadgórska-Socha, Aleksandra; Kandziora-Ciupa, Marta; Trzęsicki, Michał; Barczyk, Gabriela

    2017-09-01

    This research was carried out on plants Taraxacum officinale, Plantago lanceolata, Betula pendula and Robinia pseudoacacia growing in urban biotopes with different levels of heavy metal contamination in the city of Dąbrowa Górnicza (southern Poland). Based on the pollution index, the highest heavy metal contamination was determined in the site 4 (connected with industry emitters) and 6 (high traffic). The metal accumulation index (MAI) values ranged within the biotopes in Dąbrowa Górnicza between 7.3 and 20.6 for R. pseudoacacia, 4.71-23.1 for P. lanceolata, 4.68-28.1 for T. officinale and 10.5-27.2 for B. pendula. Increasing tendency in proline content in biotopes connected with high traffic was found in the leaves of investigated plants (except R. pseudoacacia). Similar tendency was observed for ascorbic acid content in the foliage of the plants as well as in T. officinalle in stands connected industrial emission. Non-protein thiols content increased especially in the leaves of R. pseudoacacia in biotopes with high traffic emissions as well as in T. officinale in stands connected with industry. The mean values of APTI (Air Pollution Tolerance Index) within the city of Dąbrowa Górnicza for investigated plants were found in the following ascending order P. lanceolata < R. pseudoacacia < B. pendula < T. officinale. Among the investigated plants B. pendula and T. officinale may be postulated as appropriate plants in urban areas with considerable soil and air contamination, especially with heavy metals. The results indicate that species deemed tolerant according to APTI are suitable plants in barriers areas to combat atmospheric pollution. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Mining and characterization of EST-SSR markers for Zingiber officinale Roscoe with transferability to other species of Zingiberaceae.

    PubMed

    Awasthi, Praveen; Singh, Ashish; Sheikh, Gulfam; Mahajan, Vidushi; Gupta, Ajai Prakash; Gupta, Suphla; Bedi, Yashbir S; Gandhi, Sumit G

    2017-10-01

    Zingiber officinale is a model spice herb, well known for its medicinal value. It is primarily a vegetatively propagated commercial crop. However, considerable diversity in its morphology, fiber content and chemoprofiles has been reported. The present study explores the utility of EST-derived markers in studying genetic diversity in different accessions of Z. officinale and their cross transferability within the Zingiberaceae family. A total of 38,115 ESTs sequences were assembled to generate 7850 contigs and 10,762 singletons. SSRs were searched in the unigenes and 515 SSR-containing ESTs were identified with a frequency of 1 SSR per 25.21 kb of the genome. These ESTs were also annotated using BLAST2GO. Primers were designed for 349 EST-SSRs and 25 primer pairs were randomly picked for EST SSR study. Out of these, 16 primer pairs could be optimized for amplification in different accessions of Z. officinale as well as other species belonging to Zingiberaceae. GES454, GES466, GES480 and GES486 markers were found to exhibit 100% cross-transferability among different members of Zingiberaceae.

  13. Ecology of invasive Melilotus albus on Alaskan glacial river floodplains

    USGS Publications Warehouse

    Conn, Jeff S.; Werdin-Pfisterer, Nancy R.; Beattie, Katherine L.; Densmore, Roseann V.

    2011-01-01

    Melilotus albus (white sweetclover) has invaded Alaskan glacial river floodplains. We measured cover and density of plant species and environmental variables along transects perpendicular to the Nenana, Matanuska, and Stikine Rivers to study interactions between M. albus and other plant species and to characterize the environment where it establishes. Melilotus albus was a pioneer species on recently disturbed sites and did not persist into closed canopy forests. The relationships between M. albus cover and density and other species were site-specific.Melilotus albus was negatively correlated with native species Elaeagnus commutata at the Nenana River, but not at the Matanuska River. Melilotus albus was positively correlated with the exotic species Crepis tectorumand Taraxacum officinale at the Matanuska River and T. officinale on the upper Stikine River. However, the high density of M. albus at a lower Stikine River site was negatively correlated with T. officinale and several native species including Lathyrus japonicus var. maritimus and Salix alaxensis. Glacial river floodplains in Alaska are highly disturbed and are corridors for exotic plant species movement. Melilotus albus at moderate to low densities may facilitate establishment of exotic species, but at high densities can reduce the cover and density of both exotic and native species.

  14. Protective Effect of Zingiber Officinale against CCl4-Induced Liver Fibrosis Is Mediated through Downregulating the TGF-β1/Smad3 and NF-ĸB/IĸB Pathways.

    PubMed

    Hasan, Iman H; El-Desouky, M A; Hozayen, Walaa G; Abd el Aziz, Ghada M

    2016-01-01

    No ideal hepatoprotective agents are available in modern medicine to effectively prevent liver disorders. In this study, we aimed at evaluating the potential of Zingiber officinale in the regression of liver fibrosis and its underlining mechanism of action. To induce liver fibrosis, male Wistar rats received CCl4 (2 ml/kg/2 times/week; i.p.), with and without 300 or 600 mg/kg Z. officinale extract daily through oral gavage. To assess the protective effect of Z. officinale, liver function parameters, histopathology, inflammatory markers and gene expression of transforming growth factor-beta 1 (TGF-β1)/Smad3 and nuclear factor-kappa B (NF-ĸB)/IĸB pathways were analyzed. Results demonstrate that Z. officinale extract markedly prevented liver injury as evident by the decreased liver marker enzymes. Concurrent administration of Z. officinale significantly protected against the CCl4-induced inflammation as showed by the decreased pro-inflammatory cytokine levels as well as the downregulation of the NF-ĸB)/IĸB and TGF-β1/Smad3 pathways in CCl4-administered rats. In conclusion, our study provides evidence that the protective effect of Z. officinale against rat liver fibrosis could be explained through its ability to modulate the TGF-β1/Smad3 and NF-ĸB)/IĸB signaling pathways. © 2015 S. Karger AG, Basel.

  15. Potential effect of the medicinal plants Calotropis procera, Ficus elastica and Zingiber officinale against Schistosoma mansoni in mice.

    PubMed

    Seif el-Din, Sayed H; El-Lakkany, Naglaa M; Mohamed, Mona A; Hamed, Manal M; Sterner, Olov; Botros, Sanaa S

    2014-02-01

    Calotropis procera (Ait.) R. Br. (Asclepiadaceae), Ficus elastica Roxb. (Moraceae) and Zingiber officinale Roscoe (Zingiberaceae) have been traditionally used to treat many diseases. The antischistosomal activity of these plant extracts was evaluated against Schistosoma mansoni. Male mice exposed to 80 ± 10 cercariae per mouse were divided into two batches. The first was divided into five groups: (I) infected untreated, while groups from (II-V) were treated orally (500 mg/kg for three consecutive days) by aqueous stem latex and flowers of C. procera, latex of F. elastica and ether extract of Z. officinale, respectively. The second batch was divided into four comparable groups (except Z. officinale-treated group) similarly treated as the first batch in addition to the antacid ranitidine (30 mg/kg) 1 h before extract administration. Safety, worm recovery, tissues egg load and oogram pattern were assessed. Calotropis procera latex and flower extracts are toxic (50-70% mortality) even in a small dose (250 mg/kg) before washing off their toxic rubber. Zingiber officinale extract insignificantly decrease (7.26%) S. mansoni worms. When toxic rubber was washed off and ranitidine was used, C. procera (stem latex and flowers) and F. elastica extracts revealed significant S. mansoni worm reductions by 45.31, 53.7 and 16.71%, respectively. Moreover, C. procera extracts produced significant reductions in tissue egg load (∼34-38.5%) and positively affected oogram pattern. The present study may be useful to supplement information with regard to C. procera and F. elastica antischistosomal activity and provide a basis for further experimental trials.

  16. Ethnoveterinary medicines used for ruminants in British Columbia, Canada.

    PubMed

    Lans, Cheryl; Turner, Nancy; Khan, Tonya; Brauer, Gerhard; Boepple, Willi

    2007-02-26

    The use of medicinal plants is an option for livestock farmers who are not allowed to use allopathic drugs under certified organic programs or cannot afford to use allopathic drugs for minor health problems of livestock. In 2003 we conducted semi-structured interviews with 60 participants obtained using a purposive sample. Medicinal plants are used to treat a range of conditions. A draft manual prepared from the data was then evaluated by participants at a participatory workshop. There are 128 plants used for ruminant health and diets, representing several plant families. The following plants are used for abscesses: Berberis aquifolium/Mahonia aquifolium Echinacea purpurea, Symphytum officinale, Bovista pila, Bovista plumbea, Achillea millefolium and Usnea longissima. Curcuma longa L., Salix scouleriana and Salix lucida are used for caprine arthritis and caprine arthritis encephalitis. Euphrasia officinalis and Matricaria chamomilla are used for eye problems. Wounds and injuries are treated with Bovista spp., Usnea longissima, Calendula officinalis, Arnica sp., Malva sp., Prunella vulgaris, Echinacea purpurea, Berberis aquifolium/Mahonia aquifolium, Achillea millefolium, Capsella bursa-pastoris, Hypericum perforatum, Lavandula officinalis, Symphytum officinale and Curcuma longa. Syzygium aromaticum and Pseudotsuga menziesii are used for coccidiosis. The following plants are used for diarrhea and scours: Plantago major, Calendula officinalis, Urtica dioica, Symphytum officinale, Pinus ponderosa, Potentilla pacifica, Althaea officinalis, Anethum graveolens, Salix alba and Ulmus fulva. Mastitis is treated with Achillea millefolium, Arctium lappa, Salix alba, Teucrium scorodonia and Galium aparine. Anethum graveolens and Rubus sp., are given for increased milk production. Taraxacum officinale, Zea mays, and Symphytum officinale are used for udder edema. Ketosis is treated with Gaultheria shallon, Vaccinium sp., and Symphytum officinale. Hedera helix and Alchemilla

  17. Zingiber officinale: Its antibacterial activity on Pseudomonas aeruginosa and mode of action evaluated by flow cytometry.

    PubMed

    Chakotiya, Ankita Singh; Tanwar, Ankit; Narula, Alka; Sharma, Rakesh Kumar

    2017-06-01

    Biofilm formation, low membrane permeability and efflux activity developed by Pseudomonas aeruginosa, play an important role in the mechanism of infection and antimicrobial resistance. In the present study we evaluate the antibacterial effect of Zingiber officinale against multi-drug resistant strain of P. aeruginosa. The study explores antibacterial efficacy and time-kill study concomitantly the effect of herbal extract on bacterial cell physiology with the use of flow cytometry and inhibition of biofilm formation. Z. officinale was found to inhibit the growth of P. aeruginosa, significantly. A major decline in the Colony Forming Units was observed with 3 log 10  at 12 h of treatment. Also it is found to affect the membrane integrity of the pathogen, as 70.06 ± 2.009% cells were found to stain with Propidium iodide. In case of efflux activity 86.9 ± 2.08% cells were found in Ethidium bromide positive region. Biofilm formation inhibition ability was found in the range of 68.13 ± 4.11% to 84.86 ± 2.02%. Z.officinale is effective for killing Multi-Drug Resistant P. aeruginosa clinical isolate by affecting the cellular physiology and inhibiting the biofilm formation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Granularity and Laxative Effect of Ultrafine Powder of Dendrobium officinale.

    PubMed

    Luo, DanDan; Qu, Chao; Zhang, ZhenBiao; Xie, JianHui; Xu, LieQiang; Yang, HongMei; Li, CaiLan; Lin, GuoSheng; Wang, HongFeng; Su, ZiRen

    2017-02-01

    Constipation is a common disorder that is a significant source of morbidity among people around the world ranging from 2% to 28%. Dendrobium officinale Kimura et Migo is a traditional herbal medicine and health food used for tonicity of the stomach and promotion of body fluid production in China. This study aimed to prepare the ultrafine powder of Dendrobium officinale (UDO) and investigate its laxative effect and potential mechanism in mice with diphenoxylate-induced constipation. Results indicated that the mean diameter (d 50 ) of UDO obtained by ball milling was 6.56 μm. UDO (62.5, 125, and 250 mg/kg, p.o.) could significantly enhance the gastrointestinal transit ratio and promote fecal output. Moreover, UDO treatment resulted in significant increases in the serum levels of acetylcholinesterase (AChE), gastrin (Gas), motilin (MTL), and substance P (SP), and obviously decreased serum contents of somatostatin (SS). Taken together, UDO, which can be easily obtained through milling to a satisfactory particle size, exhibited obvious laxative effect in diphenoxylate-induced constipated mice, and the mechanism might be associated with elevated levels of AChE, Gas, MTL, SP, and reduced production of SS. UDO has the potential for further development into an alternative effective diet therapy for constipation.

  19. Efficacy of Zingiber officinale ethanol extract on the viability, embryogenesis and infectivity of Toxocara canis eggs.

    PubMed

    El-Sayed, Nagwa Mostafa

    2017-12-01

    This study evaluated the effect of Zingiber officinal e ( Z. officinal e) ethanol extract on the viability, embryogenesis and infectivity Toxocara canis ( T. canis ) eggs. It was carried out both in vitro and in vivo. In the in vitro experiment, unembryonated T. canis eggs were incubated with 25, 50 and 100 mg/mL Z. officinal e extract at 25 °C for 6, 12, and 24 h to assess the effect of Z. officinal e on their viability and for two weeks to assess the effect of Z. officinal e on their embryogenesis. In vivo experiment was performed to assess the effect of Z. officinal e on infectivity of T. canis eggs. Treated embryonated eggs by Z. officinale extract at concentrations of 25, 50 and 100 mg/mL for 24 h were inoculated into mice and their livers were examined for the presence of T. canis larvae on the 7th day after infection and for histopathological evaluation at 14th day post-infection. Z. officinal e showed a significant ovicidal activity on T. canis eggs. The best effect was observed with 100 mg/mL concentration after 24 h with an efficacy of 98.2%. However, the treated eggs by 25, 50 mg/mL of Z. officinale extract after 24 h showed ovicidal activity by 59.22 and 82.5% respectively. Moreover, this extract effectively inhibited T. canis eggs embryogenesis by 99.64% and caused their degeneration at the concentration of 100 mg/mL after 2 weeks of treatment. However, the lower concentrations, 25 and 50 mg/mL inhibited embryogenesis by 51.19 and 78.57% respectively. The effect of Z. officinal e on the infectivity T. canis eggs was proven by the reduction of larvae recovery in the livers by 35.9, 62.8 and 89.5% in mice groups inoculated by Z. officinale treated eggs at concentrations of 25, 50 and 100 mg/mL respectively. Histopathologically, the liver tissues of mice infected with Z. officinale treated eggs at the concentration of 100 mg/mL appeared healthy with slight degenerative changes of hepatocytes, opposite to that recorded in the infected mice

  20. Antioxidant capacity changes and phenolic profile of Echinacea purpurea, nettle (Urtica dioica L.), and dandelion (Taraxacum officinale) after application of polyamine and phenolic biosynthesis regulators.

    PubMed

    Hudec, Jozef; Burdová, Mária; Kobida, L'ubomír; Komora, Ladislav; Macho, Vendelín; Kogan, Grigorij; Turianica, Ivan; Kochanová, Radka; Lozek, Otto; Habán, Miroslav; Chlebo, Peter

    2007-07-11

    The changes of the antioxidant (AOA) and antiradical activities (ARA) and the total contents of phenolics, anthocyanins, flavonols, and hydroxybenzoic acid in roots and different aerial sections of Echinacea purpurea, nettle, and dandelion, after treatment with ornithine decarboxylase inhibitor, a polyamine inhibitor (O-phosphoethanolamine, KF), and a phenol biosynthesis stimulator (carboxymethyl chitin glucan, CCHG) were analyzed spectrophotometrically; hydroxycinnamic acids content was analyzed by RP-HPLC with UV detection. Both regulators increased the AOA measured as inhibition of peroxidation (IP) in all herb sections, with the exception of Echinacea stems after treatment with KF. In root tissues IP was dramatically elevated mainly after CCHG application: 8.5-fold in Echinacea, 4.14-fold in nettle, and 2.08-fold in dandelion. ARA decrease of Echinacea leaves treated with regulators was in direct relation only with cichoric acid and caftaric acid contents. Both regulators uphold the formation of cinnamic acid conjugates, the most expressive being that of cichoric acid after treatment with CCHG in Echinacea roots from 2.71 to 20.92 mg g(-1). There was a strong relationship between increase of the total phenolics in all sections of Echinacea, as well as in the studied sections of dandelion, and the anthocyanin content.

  1. Characterization of Nanoencapsulated Centella asiatica and Zingiber officinale Extract Using Combination of Malto Dextrin and Gum Arabic as Matrix

    NASA Astrophysics Data System (ADS)

    Meliana, Y.; Harmami, S. B.; Restu, W. K.

    2017-02-01

    This research investigated nanoencapsulation of Centella asiatica and Zingiber officinale extract. The encapsulated extract was used as a complex matrix of multi-layered interfacial membranes between malto dextrin and gum Arabic. Characterization of nanoencapsulation using Transmission Electron Microscope (TEM), Fourier Transform Infrared Spectroscopy (FTIR) and BET surface area (SA) showed the morphology, functional group and cumulative adsorption in the surface area of pores. The TEM image of the nanoencapsulated powders of Centella asiatica and Zingiber officinale extract showed a nearly spherical shape with the particle size of 664 nm from its average radius.

  2. Host Plant Physiology and Mycorrhizal Functioning Shift across a Glacial through Future [CO2] Gradient1[OPEN

    PubMed Central

    Mullinix, George W.R.; Ward, Joy K.

    2016-01-01

    Rising atmospheric carbon dioxide concentration ([CO2]) may modulate the functioning of mycorrhizal associations by altering the relative degree of nutrient and carbohydrate limitations in plants. To test this, we grew Taraxacum ceratophorum and Taraxacum officinale (native and exotic dandelions) with and without mycorrhizal fungi across a broad [CO2] gradient (180–1,000 µL L−1). Differential plant growth rates and vegetative plasticity were hypothesized to drive species-specific responses to [CO2] and arbuscular mycorrhizal fungi. To evaluate [CO2] effects on mycorrhizal functioning, we calculated response ratios based on the relative biomass of mycorrhizal (MBio) and nonmycorrhizal (NMBio) plants (RBio = [MBio − NMBio]/NMBio). We then assessed linkages between RBio and host physiology, fungal growth, and biomass allocation using structural equation modeling. For T. officinale, RBio increased with rising [CO2], shifting from negative to positive values at 700 µL L−1. [CO2] and mycorrhizal effects on photosynthesis and leaf growth rates drove shifts in RBio in this species. For T. ceratophorum, RBio increased from 180 to 390 µL L−1 and further increases in [CO2] caused RBio to shift from positive to negative values. [CO2] and fungal effects on plant growth and carbon sink strength were correlated with shifts in RBio in this species. Overall, we show that rising [CO2] significantly altered the functioning of mycorrhizal associations. These symbioses became more beneficial with rising [CO2], but nonlinear effects may limit plant responses to mycorrhizal fungi under future [CO2]. The magnitude and mechanisms driving mycorrhizal-CO2 responses reflected species-specific differences in growth rate and vegetative plasticity, indicating that these traits may provide a framework for predicting mycorrhizal responses to global change. PMID:27573369

  3. Host Plant Physiology and Mycorrhizal Functioning Shift across a Glacial through Future [CO2] Gradient.

    PubMed

    Becklin, Katie M; Mullinix, George W R; Ward, Joy K

    2016-10-01

    Rising atmospheric carbon dioxide concentration ([CO 2 ]) may modulate the functioning of mycorrhizal associations by altering the relative degree of nutrient and carbohydrate limitations in plants. To test this, we grew Taraxacum ceratophorum and Taraxacum officinale (native and exotic dandelions) with and without mycorrhizal fungi across a broad [CO 2 ] gradient (180-1,000 µL L -1 ). Differential plant growth rates and vegetative plasticity were hypothesized to drive species-specific responses to [CO 2 ] and arbuscular mycorrhizal fungi. To evaluate [CO 2 ] effects on mycorrhizal functioning, we calculated response ratios based on the relative biomass of mycorrhizal (M Bio ) and nonmycorrhizal (NM Bio ) plants (R Bio = [M Bio - NM Bio ]/NM Bio ). We then assessed linkages between R Bio and host physiology, fungal growth, and biomass allocation using structural equation modeling. For T. officinale, R Bio increased with rising [CO 2 ], shifting from negative to positive values at 700 µL L -1 [CO 2 ] and mycorrhizal effects on photosynthesis and leaf growth rates drove shifts in R Bio in this species. For T. ceratophorum, R Bio increased from 180 to 390 µL L -1 and further increases in [CO 2 ] caused R Bio to shift from positive to negative values. [CO 2 ] and fungal effects on plant growth and carbon sink strength were correlated with shifts in R Bio in this species. Overall, we show that rising [CO 2 ] significantly altered the functioning of mycorrhizal associations. These symbioses became more beneficial with rising [CO 2 ], but nonlinear effects may limit plant responses to mycorrhizal fungi under future [CO 2 ]. The magnitude and mechanisms driving mycorrhizal-CO 2 responses reflected species-specific differences in growth rate and vegetative plasticity, indicating that these traits may provide a framework for predicting mycorrhizal responses to global change. © 2016 American Society of Plant Biologists. All Rights Reserved.

  4. Transcriptome Analysis of Dendrobium officinale and its Application to the Identification of Genes Associated with Polysaccharide Synthesis

    PubMed Central

    Zhang, Jianxia; He, Chunmei; Wu, Kunlin; Teixeira da Silva, Jaime A.; Zeng, Songjun; Zhang, Xinhua; Yu, Zhenming; Xia, Haoqiang; Duan, Jun

    2016-01-01

    Dendrobium officinale is one of the most important Chinese medicinal herbs. Polysaccharides are one of the main active ingredients of D. officinale. To identify the genes that maybe related to polysaccharides synthesis, two cDNA libraries were prepared from juvenile and adult D. officinale, and were named Dendrobium-1 and Dendrobium-2, respectively. Illumina sequencing for Dendrobium-1 generated 102 million high quality reads that were assembled into 93,881 unigenes with an average sequence length of 790 base pairs. The sequencing for Dendrobium-2 generated 86 million reads that were assembled into 114,098 unigenes with an average sequence length of 695 base pairs. Two transcriptome databases were integrated and assembled into a total of 145,791 unigenes. Among them, 17,281 unigenes were assigned to 126 KEGG pathways while 135 unigenes were involved in fructose and mannose metabolism. Gene Ontology analysis revealed that the majority of genes were associated with metabolic and cellular processes. Furthermore, 430 glycosyltransferase and 89 cellulose synthase genes were identified. Comparative analysis of both transcriptome databases revealed a total of 32,794 differential expression genes (DEGs), including 22,051 up-regulated and 10,743 down-regulated genes in Dendrobium-2 compared to Dendrobium-1. Furthermore, a total of 1142 and 7918 unigenes showed unique expression in Dendrobium-1 and Dendrobium-2, respectively. These DEGs were mainly correlated with metabolic pathways and the biosynthesis of secondary metabolites. In addition, 170 DEGs belonged to glycosyltransferase genes, 37 DEGs were related to cellulose synthase genes and 627 DEGs encoded transcription factors. This study substantially expands the transcriptome information for D. officinale and provides valuable clues for identifying candidate genes involved in polysaccharide biosynthesis and elucidating the mechanism of polysaccharide biosynthesis. PMID:26904032

  5. Use of sucrose-agar globule with root exudates for mass production of vesicular arbuscular mycorrhizal fungi.

    PubMed

    Selvaraj, Thangaswamy; Kim, Hoon

    2004-03-01

    A sucrose-agar globule (SAG) was newly introduced to increase production of the vesicular arbuscular mycorrhizal (VAM) fungal spores, Gigaspora gigantea and Glomus fasciculatum. An SAG inoculum and a sucrose-agar globule with root exudates (SAGE) inoculum were prepared, and their spore productions were compared with a soil inoculum. When the SAGE was used as the inoculum on sucrose-agar medium plates the number of spores was increased (35% more than the soil inoculum). After the soil inoculum and SAGE were inoculated on an experimental plant, Zingiber officinale, the percentage root colonization, number of VAM spores, and dry matter content were analyzed. It was observed that the SAGE showed a higher percentage of root colonization (about 10% more), and increases in the number of spores (about 26%) and dry matter (more than 13%) for the two VAM fungal spores than the soil inoculum. The results of this study suggested that the SAGE inoculum may be useful for the mass production of VAM fungi and also for the large scale production of VAM fungal fertilizer.

  6. Elevated carbon dioxide alters the relative fitness of Taraxacum officinale genotypes

    USDA-ARS?s Scientific Manuscript database

    I tested whether elevated carbon dioxide concentration differentially affected which genotypes of the apomictic species dandelion produced the largest number of viable seeds in two different field experiments, and identified morphological and physiological traits associated with fitness at elevated ...

  7. Composition and immunotoxicity activity of essential oils from leaves of Zingiber officinale Roscoe against Aedes aegypti L.

    PubMed

    Moon, Hyung-In; Cho, Sang-Buem; Kim, Soo-Ki

    2011-03-01

    The leaves of Zingiber officinale Roscoe were extracted and the major essential oil composition and immunotoxicity effects were studied. The analyses were conducted by gas chromatography and mass spectroscopy (GC-MS) revealed that the essential oils of Z. officinale leaves. The Z. officinale essential oil yield was 0.26%, and GC/MS analysis revealed that its major constituents were Camphene (5.26%), Phellandrene (6.58%), Zingiberene (36.48%), Geranial (4.32%), β-gurjunene (2.74%), and Citronellol β-sesguiphellandrene (12.31%). The essential oil had a significant toxic effect against early fourth-stage larvae of Aedes aegypti L with an LC(50) value of 46.38 ppm and an LC(90) value of 84.32 ppm. Also, Camphene (≥95.0%), Phellandrene (≥95.0%), Zingiberene (≥95.0%), Geranial (≥95.0%), β-gurjunene (≥97.0%), and Citronellol (≥95.0%) were tested against the F21 laboratory strain of A. aegypti. Zingiberene (≥95.0%) and Citronellol (≥95.0%) have medium activity with an LC(50) value of 99.55 ppm and 141.45 ppm. This indicates that other major compounds may play a more important role in the toxicity of essential oil.

  8. Taraxacum coreanum protects against glutamate-induced neurotoxicity through heme oxygenase-1 expression in mouse hippocampal HT22 cells.

    PubMed

    Yoon, Chi-Su; Ko, Wonmin; Lee, Dong-Sung; Kim, Dong-Cheol; Kim, Jongsu; Choi, Moonbum; Beom, Jin Seon; An, Ren-Bo; Oh, Hyuncheol; Kim, Youn-Chul

    2017-04-01

    Taraxacum coreanum Nakai is a dandelion that is native to Korea, and is widely used as an edible and medicinal herb. The present study revealed the neuroprotective effect of this plant against glutamate-induced oxidative stress in HT22 murine hippocampal neuronal cells. Ethanolic extracts from the aerial (TCAE) and the root parts (TCRE) of T. coreanum were prepared. Both extracts were demonstrated, by high performance liquid chromatography, to contain caffeic acid and ferulic acid as representative constituents. TCAE and TCRE significantly increased cell viability against glutamate-induced oxidative stress in mouse hippocampal HT22 cells. Western blot analysis revealed that treatment of HT22 cells with the extracts induced increased expression of the enzyme heme oxygenase-1 (HO-1), compared with untreated cells, in a concentration-dependent manner. Increased HO-1 enzymatic activity, compared with untreated cells, was also demonstrated following treatment with TCAE and TCRE. In addition, western blot analysis of the nuclear fractions of both TCAE and TCRE-treated HT22 cells revealed increased levels of nuclear factor erythroid 2 like 2 (Nrf2) compared with untreated cells, and decreased Nrf2 levels in the cytoplasmic fraction compared with untreated cells. The present study suggested that the neuroprotective effect of T. coreanum is associated with induction of HO-1 expression and Nrf2 translocation to the nucleus. Therefore, T. coreanum exhibits a promising function in prevention of neurodegeneration. Further studies will be required for the isolation and the full characterization of its active substances.

  9. Ovicidal effect of the methanolic extract of ginger (Zingiber officinale) on Fasciola hepatica eggs: an in vitro study.

    PubMed

    Moazeni, Mohammad; Khademolhoseini, Ali Asghar

    2016-09-01

    Fasciolosis is of considerable economic and public health importance worldwide. Little information is available on the ovicidal effects of anthelminthic drugs. The use of ovicidal anthelmintics can be effective in disease control. In this study, the effectiveness of the methanolic extract of ginger (Zingiber officinale) on the eggs of Fasciola hepatica is investigated. Fasciola hepatica eggs were obtained from the gall bladders of naturally infected sheep and kept at 4 °C until use. The eggs were exposed to varying concentrations of ginger extract (1, 5, 10, 25 and 50 mg/mL) for 24, 48 and 72 h. To investigate the effect of the ginger extracts on the miracidial formation, the treated eggs were incubated at 28 °C for 14 days. The results indicated that F. hepatica eggs are susceptible to the methanolic extract of Z. officinale. The ovicidal effect of ginger extract at a concentration of 1 mg/mL with 24, 48 and 72 h treatment time was 46.08, 51.53 and 69.09 % respectively (compared with 22.70 % for control group). The ovicidal effect of ginger extract at a concentration of 5 mg/mL after 24 h was 98.84 %. One hundred percent ovicidal efficacy was obtained through application of ginger extract at concentrations of 5 and 10 mg/mL with a 48 and 24 h treatment time respectively. The in vitro ovicidal effect of the methanolic extract of Z. officinale was satisfactory in this study, however, in vivo efficacy of this extract, remains for further investigation. To the best of our knowledge, this is the first report on the ovicidal effect of Z. officinale against F. hepatica eggs.

  10. Abscisic acid-dependent regulation of small rubber particle protein gene expression in Taraxacum brevicorniculatum is mediated by TbbZIP1.

    PubMed

    Fricke, Julia; Hillebrand, Andrea; Twyman, Richard M; Prüfer, Dirk; Schulze Gronover, Christian

    2013-04-01

    Natural rubber is a high-molecular-mass biopolymer found in the latex of >2,500 plant species, including Hevea brasiliensis, Parthenium argentatum and Taraxacum spp. The active sites of rubber biosynthesis are rubber particles, which comprise a hydrophobic rubber core surrounded by a phospholipid monolayer membrane containing species-dependent lipids and associated proteins. Small rubber particle proteins are the most abundant rubber particle-associated proteins in Taraxacum brevicorniculatum (TbSRPPs) and may promote rubber biosynthesis by stabilizing the rubber particle architecture. We investigated the transcriptional regulation of genes encoding SRPPs and identified a bZIP transcription factor (TbbZIP.1) similar to the Arabidopsis thaliana ABI5-ABF-AREB subfamily, which is thought to include downstream targets of ABA and/or abiotic stress-inducible protein kinases. The TbbZIP.1 gene was predominantly expressed in laticifers and regulates the expression of TbSRPP genes in an ABA-dependent manner. The individual TbSRPP genes showed distinct induction profiles, suggesting diverse roles in rubber biosynthesis and stress adaptation. The potential involvement of TbSRPPs in the adaptation of T. brevicorniculatum plants to environmental stress is discussed based on our current knowledge of the stress-response roles of SRPPs and their homologs, and the protective function of latex and rubber against pathogens. Our data suggest that TbSRPPs contribute to stress tolerance in T. brevicorniculatum and that their effects are mediated by TbbZIP.1.

  11. Effect temperature of supercritical CO2 fluid extraction on phytochemical analysis and antioxidant activity of Zingiber officinale Roscoe

    NASA Astrophysics Data System (ADS)

    Sondari, Dewi; Irawadi, Tun Tedja; Setyaningsih, Dwi; Tursiloadi, Silvester

    2017-11-01

    Supercritical fluid extraction of Zingiber officinale Roscoe has been carried out at a pressure of 16 MPa, with temperatures between 20-40 °C, during extraction time of 6 hours and the flow rate of CO2 fluid 5.5 ml/min. The result of supercritical method was compared with the extraction maceration using a mixture of water and ethanol (70% v/v) for 24 hours. The main content in ginger that has a main role as an antioxidant is a gingerol compound that can help neutralize the damaging effects caused by free radicals in the body, as anti-coagulant, and inhibit the occurrence of blood clots. This study aims to determine the effect of temperature on chemical components contained in rough extract of Zingiber officinale Roscoe and its antioxidant activity, total phenol and total flavonoid content. To determine the chemical components contained in the crude extract of Zingiber officinale Roscoe extracted by supercritical fluid and maceration extraction, GC-MS analysis was performed. Meanwhile, the antioxidant activity of the extract was evaluated based on a 2.2-diphenyl-1-picrylhydrazyl (DPPH) free radical damping method. The results of the analysis show that the result of ginger extract by using the supercritical CO2 extraction method has high antioxidant activity than by using maceration method. The highest total phenol content and total flavonoids were obtained on ginger extraction using supercritical CO2 fluid extraction, indicating that phenol and flavonoid compounds contribute to antioxidant activity. Chromatographic analysis showed that the chemical profile of ginger extract containing oxygenated monoterpenes, monoterpene hydrocarbons, sesquiterpene hydrocarbons, oxygenated monoterpene gingerol and esters. In supercritical fluid extraction, the compounds that can be identified at a temperature of 20-40 °C contain 27 compounds, and 11 compounds from the result of maceration extract. The main component of Zingiber officinale Roscoe extracted using supercritical fluid

  12. Preventive Effect of the Korean Traditional Health Drink (Taemyeongcheong) on Acetaminophen-Induced Hepatic Damage in ICR Mice

    PubMed Central

    Yi, Ruo-Kun; Song, Jia-Le; Lim, Yaung-Iee; Kim, Yong-Kyu; Park, Kun-Young

    2015-01-01

    This study was to investigate the preventive effect of taemyeongcheong (TMC, a Korean traditional health drink) on acetaminophen (APAP, 800 mg/kg BW)-induced hepatic damage in ICR mice. TMC is prepared from Saururus chinensis, Taraxacum officinale, Zingiber officinale, Cirsium setidens, Salicornia herbacea, and Glycyrrhizae. A high dose of TMC (500 mg/kg BW) was found to decrease APAP-induced increases in serum levels of alanine aminotransferase, aspartate aminotransferase, alkaline phosphatase, and lactate dehydrogenase. TMC pretreatment also increased the hepatic levels of hepatic catalase, superoxide dismutase, glutathione peroxidase, and glutathione, and reduced serum levels of the inflammatory cytokines tumor necrosis factor (TNF)-α and interleukin (IL)-6 in mice administered APAP (P<0.05). TMC (500 mg/kg BW) reduced hepatic mRNA levels of TNF-α, IL-1β, IL-6, COX-2, and iNOS by 87%, 84%, 89%, 85%, and 88%, respectively, in mice treated with APAP (P<0.05). Furthermore, histological observations suggested TMC pretreatment dose-dependently prevented APAP-induced hepatocyte damage. These results suggest that TMC could be used as a functional health drink to prevent hepatic damage. PMID:25866750

  13. Anatomy of ovary and ovule in dandelions (Taraxacum, Asteraceae).

    PubMed

    Musiał, K; Płachno, B J; Świątek, P; Marciniuk, J

    2013-06-01

    The genus Taraxacum Wigg. (Asteraceae) forms a polyploid complex within which there are strong links between the ploidy level and the mode of reproduction. Diploids are obligate sexual, whereas polyploids are usually apomictic. The paper reports on a comparative study of the ovary and especially the ovule anatomy in the diploid dandelion T. linearisquameum and the triploid T. gentile. Observations with light and electron microscopy revealed no essential differences in the anatomy of both the ovary and ovule in the examined species. Dandelion ovules are anatropous, unitegmic and tenuinucellate. In both sexual and apomictic species, a zonal differentiation of the integument is characteristic of the ovule. In the integumentary layers situated next to the endothelium, the cell walls are extremely thick and PAS positive. Data obtained from TEM indicate that these special walls have an open spongy structure and their cytoplasm shows evidence of gradual degeneration. Increased deposition of wall material in the integumentary cells surrounding the endothelium takes place especially around the chalazal pole of the embryo sac as well as around the central cell. In contrast, the integumentary cells surrounding the micropylar region have thin walls and exhibit a high metabolic activity. The role of the thick-walled integumentary layers in the dandelion ovule is discussed. We also consider whether this may be a feature of taxonomic importance.

  14. Anti-emetic principles of Magnolia obovata bark and Zingiber officinale rhizome.

    PubMed

    Kawai, T; Kinoshita, K; Koyama, K; Takahashi, K

    1994-02-01

    Magnolol and honokiol, biphenyl compounds, were isolated as anti-emetic principles from the methanolic extract of Magnolia obovata bark. [6]-, [8]-, and [10]-shogaols and [6]-, [8]-, and [10]-gingerols were isolated from the methanolic extract of Zingiber officinale rhizome as anti-emetic principles. Some phenyl-propanoids with allyl side-chains were found to show the same activity. They inhibited the emetic action induced by the oral administration of copper sulfate pentahydrate to leopard and ranid frogs.

  15. Regulation of low-density lipoprotein receptor and 3-hydroxy-3-methylglutaryl coenzyme A reductase expression by Zingiber officinale in the liver of high-fat diet-fed rats.

    PubMed

    Nammi, Srinivas; Kim, Moon S; Gavande, Navnath S; Li, George Q; Roufogalis, Basil D

    2010-05-01

    Zingiber officinale has been used to control lipid disorders and reported to possess remarkable cholesterol-lowering activity in experimental hyperlipidaemia. In the present study, the effect of a characterized and standardized extract of Zingiber officinale on the hepatic lipid levels as well as on the hepatic mRNA and protein expression of low-density lipoprotein (LDL) receptor and 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase was investigated in a high-fat diet-fed rat model. Rats were treated with an ethanol extract of Zingiber officinale (400 mg/kg) extract along with a high-fat diet for 6 weeks. The extract of Zingiber officinale significantly decreased hepatic triglyceride and tended to decrease hepatic cholesterol levels when administered over 6 weeks to the rats fed a high-fat diet. We found that in parallel, the extract up-regulated both LDL receptor mRNA and protein level and down-regulated HMG-CoA reductase protein expression in the liver of these rats. The metabolic control of body lipid homeostasis is in part due to enhanced cholesterol biosynthesis and reduced expression of LDL receptor sites following long-term consumption of high-fat diets. The present results show restoration of transcriptional and post-transcriptional changes in low-density lipoprotein and HMG CoA reductase by Zingiber officinale administration with a high-fat diet and provide a rational explanation for the effect of ginger in the treatment of hyperlipidaemia.

  16. Preparation and antibacterial activity of oligosaccharides derived from dandelion.

    PubMed

    Qian, Li; Zhou, Yan; Teng, Zhaolin; Du, Chun-Ling; Tian, Changrong

    2014-03-01

    In this study, we prepared oligosaccharides from dandelion (Taraxacum officinale) by hydrolysis with hydrogen peroxide (H2O2) and investigated their antibacterial activity. The optimum hydrolysis conditions, as determined using the response surface methodology, were as follows: reaction time, 5.12h; reaction temperature, 65.53 °C and H2O2 concentration, 3.16%. Under these conditions, the maximum yield of the oligosaccharides reached 25.43%. The sugar content in the sample was 96.8%, and the average degree of polymerisation was approximately 9. The oligosaccharides showed high antibacterial activity against Escherichia coli, Bacillus subtilis and Staphylococcus aureus, indicating that dandelion-derived oligosaccharides have the potential to be used as antibacterial agents. Copyright © 2013 Elsevier B.V. All rights reserved.

  17. Metabolic Profiling of Dendrobium officinale in Response to Precursors and Methyl Jasmonate

    PubMed Central

    Jiao, Chunyan; Song, Cheng; Zheng, Siyan; Zhu, Yingpeng; Jin, Qing; Cai, Yongping; Lin, Yi

    2018-01-01

    Alkaloids are the main active ingredients in the medicinal plant Dendrobium officinale. Based on the published genomic and transcriptomic data, a proposed terpenoid indole alkaloid (TIA) biosynthesis pathway may be present in D. officinale. In this study, protocorm-like bodies (PLBs) with a high-yielding production of alkaloids were obtained by the optimization of tryptophan, secologanin and methyl jasmonate (MeJA) treatment. The results showed that the total alkaloid content was 2.05 times greater than that of the control group when the PLBs were fed with 9 µM tryptophan, 6 µM secologanin and 100 µM MeJA after 36 days. HPLC analysis showed that strictosidine synthase (STR) activity also increased in the treated plants. A total of 78 metabolites were identified using gas chromatography-mass spectrometry (GC-MS) in combination with liquid chromatography-mass spectrometry (LC-MS) methods; 29 differential metabolites were identified according to the multivariate statistical analysis. Among them, carapanaubine, a kind of TIA, exhibited dramatically increased levels. In addition, a possible underlying process of the metabolic flux from related metabolism to the TIA biosynthetic pathway was enhanced. These results provide a comprehensive view of the metabolic changes related to alkaloid biosynthesis, especially TIA biosynthesis, in response to tryptophan, secologanin and MeJA treatment. PMID:29510516

  18. Chemical properties and antioxidant activity of a water-soluble polysaccharide from Dendrobium officinale.

    PubMed

    Luo, Qiu-Lian; Tang, Zhuan-Hui; Zhang, Xue-Feng; Zhong, Yong-Hong; Yao, Su-Zhi; Wang, Li-Sheng; Lin, Cui-Wu; Luo, Xuan

    2016-08-01

    In this report, a water-soluble polysaccharide was obtained from the dried stems of Dendrobium officinale Kimura et Migo by hot-water (70-75°C) extraction and 85% ethanol precipitation, and successively purification by DEAE-cellulose anion-exchange chromatography and gel-permeation chromatography. The D. officinale polysaccharide (DOP) has a molecular weight of 8500Da. Monosaccharide composition analysis reveals that DOP is composed of mannose, glucose, and arabinose with a trace of galacturonic acid in a molar ratio of 6.2:2.3:2.1:0.1. Periodate oxidation-smith degradation and 1D and 2D NMR spectroscopy analysis suggest the predominance of mannose and glucose, and it contains a 2-O-acetylglucomannan and (1→4)-linked-β-d-mannopyranosyl and (1→4)-linked-β-d-glucopyranosyl residues. Atomic force microscope shows that DOP mainly exists as rod-shaped chains, supporting high degrees of polymerization. The antioxidant activities of the polysaccharide in vitro assay indicate that DOP has good scavenging activity of 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical, higher scavenging activity of hydroxyl radical, and metal chelating activities. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Integument cell differentiation in dandelions (Taraxacum, Asteraceae, Lactuceae) with special attention paid to plasmodesmata.

    PubMed

    Płachno, Bartosz J; Kurczyńska, Ewa; Świątek, Piotr

    2016-09-01

    The aim of the paper is to determine what happens with plasmodesmata when mucilage is secreted into the periplasmic space in plant cells. Ultrastructural analysis of the periendothelial zone mucilage cells was performed on examples of the ovule tissues of several sexual and apomictic Taraxacum species. The cytoplasm of the periendothelial zone cells was dense, filled by numerous organelles and profiles of rough endoplasmic reticulum and active Golgi dictyosomes with vesicles that contained fibrillar material. At the beginning of the differentiation process of the periendothelial zone, the cells were connected by primary plasmodesmata. However, during the differentiation and the thickening of the cell walls (mucilage deposition), the plasmodesmata become elongated and associated with cytoplasmic bridges. The cytoplasmic bridges may connect the protoplast to the plasmodesmata through the mucilage layers in order to maintain cell-to-cell communication during the differentiation of the periendothelial zone cells.

  20. Ethnoveterinary medicines used for ruminants in British Columbia, Canada

    PubMed Central

    Lans, Cheryl; Turner, Nancy; Khan, Tonya; Brauer, Gerhard; Boepple, Willi

    2007-01-01

    Background The use of medicinal plants is an option for livestock farmers who are not allowed to use allopathic drugs under certified organic programs or cannot afford to use allopathic drugs for minor health problems of livestock. Methods In 2003 we conducted semi-structured interviews with 60 participants obtained using a purposive sample. Medicinal plants are used to treat a range of conditions. A draft manual prepared from the data was then evaluated by participants at a participatory workshop. Results There are 128 plants used for ruminant health and diets, representing several plant families. The following plants are used for abscesses: Berberis aquifolium/Mahonia aquifolium Echinacea purpurea, Symphytum officinale, Bovista pila, Bovista plumbea, Achillea millefolium and Usnea longissima. Curcuma longa L., Salix scouleriana and Salix lucida are used for caprine arthritis and caprine arthritis encephalitis.Euphrasia officinalis and Matricaria chamomilla are used for eye problems. Wounds and injuries are treated with Bovista spp., Usnea longissima, Calendula officinalis, Arnica sp., Malva sp., Prunella vulgaris, Echinacea purpurea, Berberis aquifolium/Mahonia aquifolium, Achillea millefolium, Capsella bursa-pastoris, Hypericum perforatum, Lavandula officinalis, Symphytum officinale and Curcuma longa. Syzygium aromaticum and Pseudotsuga menziesii are used for coccidiosis. The following plants are used for diarrhea and scours: Plantago major, Calendula officinalis, Urtica dioica, Symphytum officinale, Pinus ponderosa, Potentilla pacifica, Althaea officinalis, Anethum graveolens, Salix alba and Ulmus fulva. Mastitis is treated with Achillea millefolium, Arctium lappa, Salix alba, Teucrium scorodonia and Galium aparine. Anethum graveolens and Rubus sp., are given for increased milk production.Taraxacum officinale, Zea mays, and Symphytum officinale are used for udder edema. Ketosis is treated with Gaultheria shallon, Vaccinium sp., and Symphytum officinale. Hedera

  1. Distribution, synthesis, and absorption of kynurenic acid in plants.

    PubMed

    Turski, Michal P; Turska, Monika; Zgrajka, Wojciech; Bartnik, Magdalena; Kocki, Tomasz; Turski, Waldemar A

    2011-05-01

    Kynurenic acid (KYNA) is an endogenous antagonist of the ionotropic glutamate receptors and the α7 nicotinic acetylcholine receptor as well as an agonist of the G-protein-coupled receptor GPR35. In this study, KYNA distribution and synthesis in plants as well as its absorption was researched. KYNA level was determined by means of the high-performance liquid chromatography with fluorescence detection. KYNA was found in leaves, flowers, and roots of tested medicinal herbs: dandelion (Taraxacum officinale), common nettle (Urtica dioica), and greater celandine (Chelidoniummajus). The highest concentration of this compound was detected in leaves of dandelion--a mean value of 0.49 µg/g wet weight. It was shown that KYNA can be synthesized enzymatically in plants from its precursor, L-kynurenine, or absorbed by plants from the soil. Finally, the content of KYNA was investigated in 21 herbal tablets, herbal tea, herbs in sachets, and single herbs in bags. The highest content of KYNA in a maximum daily dose of herbal medicines appeared in St. John's wort--33.75 µg (tablets) or 32.60 µg (sachets). The pharmacological properties of KYNA and its presence in high concentrations in medicinal herbs may suggest that it possesses therapeutic potential, especially in the digestive system and should be considered a new valuable dietary supplement. © Georg Thieme Verlag KG Stuttgart · New York.

  2. Discrimination of the rare medicinal plant Dendrobium officinale based on naringenin, bibenzyl, and polysaccharides.

    PubMed

    Chen, Xiaomei; Wang, Fangfei; Wang, Yunqiang; Li, Xuelan; Wang, Airong; Wang, Chunlan; Guo, Shunxing

    2012-12-01

    The aim of this study was to establish a method for discriminating Dendrobium officinale from four of its close relatives Dendrobium chrysanthum, Dendrobium crystallinum, Dendrobium aphyllum and Dendrobium devonianum based on chemical composition analysis. We analyzed 62 samples of 24 Dendrobium species. High performance liquid chromatography analysis confirmed that the four low molecular weight compounds 4',5,7-trihydroxyflavanone (naringenin), 3,4-dihydroxy-4',5-dime-thoxybibenzyl (DDB-2), 3',4-dihydroxy-3,5'-dimethoxybibenzyl (gigantol), and 4,4'-dihydroxy-3,3',5-trimethoxybibenzy (moscatilin), were common in the genus. The phenol-sulfuric acid method was used to quantify polysaccharides, and the monosaccharide composition of the polysaccharides was determined by gas chromatography. Stepwise discriminant analysis was used to differentiate among the five closely related species based on the chemical composition analysis. This proved to be a simple and accurate approach for discriminating among these species. The results also showed that the polysaccharide content, the amounts of the four low molecular weight compounds, and the mannose to glucose ratio, were important factors for species discriminant. Therefore, we propose that a chemical analysis based on quantification of naringenin, bibenzyl, and polysaccharides is effective for identifying D. officinale.

  3. Dietary supplementation of Zingiber officinale and Zingiber zerumbet to heat-stressed broiler chickens and its effect on heat shock protein 70 expression, blood parameters and body temperature.

    PubMed

    Hasheimi, S R; Zulkifli, I; Somchit, M N; Zunita, Z; Loh, T C; Soleimani, A F; Tang, S C

    2013-08-01

    The present study was conducted to assess the effects of dietary supplementation of Zingiber officinale and Zingiber zerumbet and to heat-stressed broiler chickens on heat shock protein (HSP) 70 density, plasma corticosterone concentration (CORT), heterophil to lymphocyte ratio (HLR) and body temperature. Beginning from day 28, chicks were divided into five dietary groups: (i) basal diet (control), (ii) basal diet +1%Z. zerumbet powder (ZZ1%), (iii) basal diet +2%Z. zerumbet powder (ZZ2%), (iv) basal diet +1%Z. officinale powder (ZO1%) and (v) basal diet +2%Z. officinale powder (ZO2%). From day 35-42, heat stress was induced by exposing birds to 38±1°C and 80% RH for 2 h/day. Irrespective of diet, heat challenge elevated HSP70 expression, CORT and HLR on day 42. On day 42, following heat challenge, the ZZ1% birds showed lower body temperatures than those of control, ZO1% and ZO2%. Neither CORT nor HLR was significantly affected by diet. The ZO2% and ZZ2% diets enhanced HSP70 expression when compared to the control groups. We concluded that dietary supplementation of Z. officinale and Z. zerumbet powder may induce HSP70 reaction in broiler chickens exposed to heat stress. © 2012 Blackwell Verlag GmbH.

  4. Protective Effect of Free and Bound Polyphenol Extracts from Ginger (Zingiber officinale Roscoe) on the Hepatic Antioxidant and Some Carbohydrate Metabolizing Enzymes of Streptozotocin-Induced Diabetic Rats

    PubMed Central

    Kazeem, Mutiu Idowu; Akanji, Musbau Adewunmi; Yakubu, Musa Toyin; Ashafa, Anofi Omotayo Tom

    2013-01-01

    This study investigated the hepatoprotective effects of polyphenols from Zingiber officinale on streptozotocin-induced diabetic rats by assessing liver antioxidant enzymes, carbohydrate-metabolizing enzymes and liver function indices. Initial oral glucose tolerance test was conducted using 125 mg/kg, 250 mg/kg, and 500 mg/kg body weight of both free and bound polyphenols from Z. officinale. 28 day daily oral administration of 500 mg/kg body weight of free and bound polyphenols from Z. officinale to streptozotocin-induced (50 mg/kg) diabetic rats significantly reduced (P < 0.05) the fasting blood glucose compared to control groups. There was significant increase (P < 0.05) in the antioxidant enzymes activities in the animals treated with both polyphenols. Similarly, the polyphenols normalised the activities of some carbohydrate metabolic enzymes (hexokinase and phosphofructokinase) in the liver of the rats treated with it and significantly reduced (P < 0.05) the activities of liver function enzymes. The results from the present study have shown that both free and bound polyphenols from Z. officinale especially the free polyphenol could ameliorate liver disorders caused by diabetes mellitus in rats. This further validates the use of this species as medicinal herb and spice by the larger population of Nigerians. PMID:24367390

  5. Protective Effect of Free and Bound Polyphenol Extracts from Ginger (Zingiber officinale Roscoe) on the Hepatic Antioxidant and Some Carbohydrate Metabolizing Enzymes of Streptozotocin-Induced Diabetic Rats.

    PubMed

    Kazeem, Mutiu Idowu; Akanji, Musbau Adewunmi; Yakubu, Musa Toyin; Ashafa, Anofi Omotayo Tom

    2013-01-01

    This study investigated the hepatoprotective effects of polyphenols from Zingiber officinale on streptozotocin-induced diabetic rats by assessing liver antioxidant enzymes, carbohydrate-metabolizing enzymes and liver function indices. Initial oral glucose tolerance test was conducted using 125 mg/kg, 250 mg/kg, and 500 mg/kg body weight of both free and bound polyphenols from Z. officinale. 28 day daily oral administration of 500 mg/kg body weight of free and bound polyphenols from Z. officinale to streptozotocin-induced (50 mg/kg) diabetic rats significantly reduced (P < 0.05) the fasting blood glucose compared to control groups. There was significant increase (P < 0.05) in the antioxidant enzymes activities in the animals treated with both polyphenols. Similarly, the polyphenols normalised the activities of some carbohydrate metabolic enzymes (hexokinase and phosphofructokinase) in the liver of the rats treated with it and significantly reduced (P < 0.05) the activities of liver function enzymes. The results from the present study have shown that both free and bound polyphenols from Z. officinale especially the free polyphenol could ameliorate liver disorders caused by diabetes mellitus in rats. This further validates the use of this species as medicinal herb and spice by the larger population of Nigerians.

  6. Effects of the Hydroalcoholic Extract of Zingiber officinale on Arginase I Activity and Expression in the Retina of Streptozotocin-Induced Diabetic Rats.

    PubMed

    Lamuchi-Deli, Nasrin; Aberomand, Mohammad; Babaahmadi-Rezaei, Hossein; Mohammadzadeh, Ghorban

    2017-04-01

    Emerging evidence suggests that an increased arginase activity is involved in vascular dysfunction in experimental animals. Zingiber officinale Roscoe, commonly known as ginger, has been widely used in the traditional medicine for treatment of diabetes. This study aimed at investigating the effects of the hydroalcoholic extract of Z. officinale on arginase I activity and expression in the retina of streptozotocin (STZ)-induced diabetic rats. In this experimental study, 16 male Wistar rats weighing 200 - 250 g were assessed. Diabetes was induced via a single intraperitoneal injection of STZ (60 mg/kg body weight). The rats were randomly allocated into four experimental groups. Untreated healthy and diabetic controls received 1.5 mL/kg distilled water. Treated diabetic rats received 200, and 400 mg/kg of the Z. officinale extract dissolved in distilled water (1.5 mL/kg). Body weight, blood glucose and insulin concentration were measured by standard methods. The arginase I activity and expression were determined by spectrophotometric and western blot analysis, respectively. Our results showed that blood glucose concentration was significantly decreased in diabetic rats treated with the extract compared to untreated diabetic controls (P < 0.01). Treatment with 400 mg/kg of the extract reduced arginase I activity and expression (P < 0.05). A significant elevation in body weight was observed in diabetic rats treated with the extract. Serum insulin was significantly increased in diabetic rats treated with 400 mg/kg of the extract compared to diabetic controls (P < 0.05). Our results suggest that the Z. officinale hydroalcoholic extract may potentially be a promising therapeutic option for treating diabetes-induced vascular disorders, possibly through reducing arginase I activity and expression in the retina.

  7. Polyphenolic extracts of edible flowers incorporated onto atelocollagen matrices and their effect on cell viability.

    PubMed

    López-García, Jorge; Kuceková, Zdenka; Humpolíček, Petr; Mlček, Jiři; Sáha, Petr

    2013-10-30

    The phenolic extract of chives flowers (Allium schoenoprasum, Liliaceae), introduced Sage (Salvia pratensis, Lamiaceae), European elderberry (Sambucus nigra, Caprifoliaceae) and common dandelion (Taraxacum officinale, Asteraceae) were characterised by High Performance Liquid Chromatography and incorporated in different concentrations onto atelocollagen thin films. In order to assess the biological impact of these phenolic compounds on cell viability, human immortalised non-tumorigenic keratinocyte cell line was seeded on the thin films and cell proliferation was determined by using an MTT assay. In addition, their antimicrobial activity was estimated by using an agar diffusion test. Data indicated the concomitance between cell viability and concentration of polyphenols. These findings suggest that these phenolic-endowed atelocollagen films might be suitable for tissue engineering applications, on account of the combined activity of polyphenols and collagen.

  8. Sodium-hydrogen exchanger inhibitory potential of Malus domestica, Musa × paradisiaca, Daucus carota, and Symphytum officinale.

    PubMed

    Verma, Vivek; Singh, Nirmal; Jaggi, Amteshwar Singh

    2014-02-01

    The involvement of sodium-hydrogen exchangers (NHE) has been described in the pathophysiology of diseases including ischemic heart and brain diseases, cardiomyopathy, congestive heart failure, epilepsy, dementia, and neuropathic pain. Synthetic NHE inhibitors have not achieved much clinical success; therefore, plant-derived phytoconstituents may be explored as NHE inhibitors. In the present study, the NHE inhibitory potential of hydroalcoholic and alkaloidal fractions of Malus domestica, Musa × paradisiaca, Daucus carota, and Symphytum officinale was evaluated. The different concentrations of hydroalcoholic and alkaloidal extracts of the selected plants were evaluated for their NHE inhibitory activity in the platelets using the optical swelling assay. Among the hydroalcoholic extracts, the highest NHE inhibitory activity was shown by M. domestica (IC50=2.350 ± 0.132 μg/mL) followed by Musa × paradisiaca (IC50=7.967 ± 0.451 μg/mL), D. carota (IC50=37.667 ± 2.517 μg/mL), and S. officinale (IC50=249.330 ± 1.155 μg/mL). Among the alkaloidal fractions, the highest NHE inhibitory activity was shown by the alkaloidal fraction of Musa × paradisiacal (IC50=0.010 ± 0.001 μg/mL) followed by D. carota (IC50=0.024 ± 0.002 μg/mL), M. domestica (IC50=0.031 ± 0.005 μg/mL), and S. officinale (IC50=4.233 ± 0.379 μg/mL). The IC50 of alkaloidal fractions was comparable to the IC50 of synthetic NHE inhibitor, EIPA [5-(N-ethyl-N-isopropyl)amiloride] (IC50=0.033 ± 0.004 μg/mL). It may be concluded that the alkaloidal fractions of these plants possess potent NHE inhibitory activity and may be exploited for their therapeutic potential in NHE activation-related pathological complications.

  9. Influence of sumac (Rhus Coriaria L.) and ginger (Zingiber officinale) on egg yolk fatty acid, cholesterol and blood parameters in laying hens.

    PubMed

    Gurbuz, Y; Salih, Y G

    2017-12-01

    The aim of the study was to evaluate the potential effect of different levels of sumac (Rhus coriaria L.) seed powder and ginger (Zingiber officinale) root powder on egg yolk fatty acid composition, blood/yolk cholesterol in laying hen. A total of 63 (ATAK-S: Domestic Turkish Laying Hens) laying hens (average weight: 1470 g each hen, 25-weeks of age) were assigned to seven treatment diets including sumac seed (S) and ginger root powder (G) at 0 g/kg (control), 10 g/kg (S1), 20 g/kg (S2), and 30 g/kg (S3); 10 g/kg (G1), 20 g/kg (G2), or 30 g/kg in rations respectively, for 8 weeks. After a two-week adaptation period to cages, the hens were allocated to 7 groups with 9 replicates of 1 hen in per cage each. The replications were allotted equally into the upper and lower cages to minimize the effects of cage level. In this study, egg yolk cholesterol had a decrease (p <0.05) in supplemented diet( sumac seed and ginger root powder). Fatty acid content in yolk; saturated fatty acid, monounsaturated fatty acids, polyunsaturated fatty acids and rate of n6/n3 were not significant (p <0.05). However, dietary supplementation with sumac and ginger powder reduced and yolk/blood cholesterol concentrations in laying hens. Supplementation of sumac and ginger affected on HDL, there was found a significant effect (p < 0.05) in treatment groups. Moreover, LDL positively decreased in all treatment groups compared with the control group. The findings of this study suggested that feeding sumac and ginger tend to be decreasing cholesterol levels in both yolk and blood on laying hens. It can be concluded that ginger root and sumac seed powder can be used as an effective feed additive to improve fatty acid composition and yolk and blood cholesterol in ATAK-S laying hens. Journal of Animal Physiology and Animal Nutrition © 2017 Blackwell Verlag GmbH.

  10. Effects of the Hydroalcoholic Extract of Zingiber officinale on Arginase I Activity and Expression in the Retina of Streptozotocin-Induced Diabetic Rats

    PubMed Central

    Lamuchi-Deli, Nasrin; Aberomand, Mohammad; Babaahmadi-Rezaei, Hossein; Mohammadzadeh, Ghorban

    2017-01-01

    Background Emerging evidence suggests that an increased arginase activity is involved in vascular dysfunction in experimental animals. Zingiber officinale Roscoe, commonly known as ginger, has been widely used in the traditional medicine for treatment of diabetes. Objectives This study aimed at investigating the effects of the hydroalcoholic extract of Z. officinale on arginase I activity and expression in the retina of streptozotocin (STZ)-induced diabetic rats. Methods In this experimental study, 16 male Wistar rats weighing 200 – 250 g were assessed. Diabetes was induced via a single intraperitoneal injection of STZ (60 mg/kg body weight). The rats were randomly allocated into four experimental groups. Untreated healthy and diabetic controls received 1.5 mL/kg distilled water. Treated diabetic rats received 200, and 400 mg/kg of the Z. officinale extract dissolved in distilled water (1.5 mL/kg). Body weight, blood glucose and insulin concentration were measured by standard methods. The arginase I activity and expression were determined by spectrophotometric and western blot analysis, respectively. Results Our results showed that blood glucose concentration was significantly decreased in diabetic rats treated with the extract compared to untreated diabetic controls (P < 0.01). Treatment with 400 mg/kg of the extract reduced arginase I activity and expression (P < 0.05). A significant elevation in body weight was observed in diabetic rats treated with the extract. Serum insulin was significantly increased in diabetic rats treated with 400 mg/kg of the extract compared to diabetic controls (P < 0.05). Conclusions Our results suggest that the Z. officinale hydroalcoholic extract may potentially be a promising therapeutic option for treating diabetes-induced vascular disorders, possibly through reducing arginase I activity and expression in the retina. PMID:28835766

  11. Effect of temperature, time, and milling process on yield, flavonoid, and total phenolic content of Zingiber officinale water extract

    NASA Astrophysics Data System (ADS)

    Andriyani, R.; Kosasih, W.; Ningrum, D. R.; Pudjiraharti, S.

    2017-03-01

    Several parameters such as temperature, time of extraction, and size of simplicia play significant role in medicinal herb extraction. This study aimed to investigate the effect of those parameters on yield extract, flavonoid, and total phenolic content in water extract of Zingiber officinale. The temperatures used were 50, 70 and 90°C and the extraction times were 30, 60 and 90 min. Z. officinale in the form of powder and chips were used to study the effect of milling treatment. The correlation among those variables was analysed using ANOVA two-way factors without replication. The result showed that time and temperature did not influence the yield of extract of Powder simplicia. However, time of extraction influenced the extract of simplicia treated without milling process. On the other hand, flavonoid and total phenolic content were not influenced by temperature, time, and milling treatment.

  12. Chitosan and oligochitosan enhance ginger (Zingiber officinale Roscoe) resistance to rhizome rot caused by Fusarium oxysporum in storage

    USDA-ARS?s Scientific Manuscript database

    The ability of chitosan and oligochitosan to enhance the resistance of ginger (Zingiber officinale) to rhizome rot, caused by Fusarium oxysporum, in storage was investigated. Both chitosan and oligochitosan at 1 and 5 g/L significantly inhibited rhizome rot, relative to the untreated control, with...

  13. Cytotoxicity Evaluation of Essential Oil and its Component from Zingiber officinale Roscoe

    PubMed Central

    Lee, Yongkyu

    2016-01-01

    Zingiber officinale Roscoe has been widely used as a folk medicine to treat various diseases, including cancer. This study aims to re-examine the therapeutic potential of co-administration of natural products and cancer chemotherapeutics. Candidate material for this project, α-zingiberene, was extracted from Zingiber officinale Roscoe, and α-zingiberene makes up 35.02 ± 0.30% of its total essential oil. α-Zingiberene showed low IC50 values, 60.6 ± 3.6, 46.2 ± 0.6, 172.0 ± 6.6, 80.3 ± 6.6 (μg/mL) in HeLa, SiHa, MCF-7 and HL-60 cells each. These values are a little bit higher than IC50 values of general essential oil in those cells. The treatment of α-zingiberene produced nucleosomal DNA fragmentation in SiHa cells, and the percentage of sub-diploid cells increased in a concentration-dependent manner in SiHa cells, hallmark features of apoptosis. Mitochondrial cytochrome c activation and an in vitro caspase-3 activity assay demonstrated that the activation of caspases accompanies the apoptotic effect of α-zingiberene, which mediates cell death. These results suggest that the apoptotic effect of α-zingiberene on SiHa cells may converge caspase-3 activation through the release of mitochondrial cytochrome c into cytoplasm. It is considered that anti-proliferative effect of α-zingiberene is a result of apoptotic effects, and α-zingiberene is worth furthermore study to develop it as cancer chemotherapeutics. PMID:27437089

  14. Cytotoxicity Evaluation of Essential Oil and its Component from Zingiber officinale Roscoe.

    PubMed

    Lee, Yongkyu

    2016-07-01

    Zingiber officinale Roscoe has been widely used as a folk medicine to treat various diseases, including cancer. This study aims to re-examine the therapeutic potential of co-administration of natural products and cancer chemotherapeutics. Candidate material for this project, α-zingiberene, was extracted from Zingiber officinale Roscoe, and α-zingiberene makes up 35.02 ± 0.30% of its total essential oil. α-Zingiberene showed low IC50 values, 60.6 ± 3.6, 46.2 ± 0.6, 172.0 ± 6.6, 80.3 ± 6.6 (μg/mL) in HeLa, SiHa, MCF-7 and HL-60 cells each. These values are a little bit higher than IC50 values of general essential oil in those cells. The treatment of α-zingiberene produced nucleosomal DNA fragmentation in SiHa cells, and the percentage of sub-diploid cells increased in a concentration-dependent manner in SiHa cells, hallmark features of apoptosis. Mitochondrial cytochrome c activation and an in vitro caspase-3 activity assay demonstrated that the activation of caspases accompanies the apoptotic effect of α-zingiberene, which mediates cell death. These results suggest that the apoptotic effect of α-zingiberene on SiHa cells may converge caspase-3 activation through the release of mitochondrial cytochrome c into cytoplasm. It is considered that anti-proliferative effect of α-zingiberene is a result of apoptotic effects, and α-zingiberene is worth furthermore study to develop it as cancer chemotherapeutics.

  15. Comparative Study of the Biological Activity of Allantoin and Aqueous Extract of the Comfrey Root.

    PubMed

    Savić, Vesna Lj; Nikolić, Vesna D; Arsić, Ivana A; Stanojević, Ljiljana P; Najman, Stevo J; Stojanović, Sanja; Mladenović-Ranisavljević, Ivana I

    2015-08-01

    This study investigates the biological activity of pure allantoin (PA) and aqueous extract of the comfrey (Symphytum officinale L.) root (AECR) standardized to the allantoin content. Cell viability and proliferation of epithelial (MDCK) and fibroblastic (L929) cell line were studied by using MTT test. Anti-irritant potential was determined by measuring electrical capacitance, erythema index (EI) and transepidermal water loss of artificially irritated skin of young healthy volunteers, 3 and 7 days after application of creams and gels with PA or AECR. Pure allantoin showed mild inhibitory effect on proliferation of both cell lines at concentrations 40 and 100 µg/ml, but more pronounced on MDCK cells. Aqueous extract of the comfrey root effect on cell proliferation in concentrations higher than 40 µg/ml was significantly stimulatory for L929 but inhibitory for MDCK cells. Pharmaceutical preparations that contained AECR showed better anti-irritant potential compared with PA. Creams showed better effect on hydration and EI compared with the gels that contained the same components. Our results indicate that the biological activity of the comfrey root extract cannot be attributed only to allantoin but is also likely the result of the interaction of different compounds present in AECR. Topical preparations that contain comfrey extract may have a great application in the treatment of skin irritation. Copyright © 2015 John Wiley & Sons, Ltd.

  16. Chemical composition, traditional and professional use in medicine, application in environmental protection, position in food and cosmetics industries, and biotechnological studies of Nasturtium officinale (watercress) - a review.

    PubMed

    Klimek-Szczykutowicz, Marta; Szopa, Agnieszka; Ekiert, Halina

    2018-05-28

    The herb of Nasturtium officinale is a raw material that has long been used in the traditional medicine of Iran, Azerbaijan, Morocco and Mauritius. Nowadays, this raw material is the object of numerous professional pharmacological studies that have demonstrated its antioxidant, anticancer, antibacterial, anti-inflammatory and cardioprotective properties. These therapeutic effects are caused by glucosinolates present in the plant, isothiocyanates, polyphenols (flavonoids, phenolic acids, proanthocyanidins), terpenes (including carotenoids), vitamins (B1, B2, B3, B6, E, C) and bioelements. The article presents the current state of phytochemical research on the generative and vegetative organs of aboveground parts. A special spotlight is put on the main N. officinale secondary metabolites - glucosinolates. Attention is drawn to the important position of N. officinale in the production of healthy foods and in the production of cosmetics. A large part of the article is devoted to the importance of this species in phytoremediation processes used in the protection of soil environments and water reservoirs. The biotechnological research on this species has also been reviewed. Those studies are of particular importance not only due to the attractiveness of this species in phytotherapy and cosmetology, but also due to the deteriorating natural state of this species and the threat of extinction. The aim of this review is to promote N. officinale as a very valuable species, not yet fully discovered by global medicine. Copyright © 2017. Published by Elsevier B.V.

  17. Dendrobium officinale Orchid Extract Prevents Ovariectomy-Induced Osteoporosis in Vivo and Inhibits RANKL-Induced Osteoclast Differentiation in Vitro

    PubMed Central

    Wang, Qi; Zi, Cheng-Ting; Wang, Jing; Wang, Yu-Na; Huang, Ye-Wei; Fu, Xue-Qi; Wang, Xuan-Jun; Sheng, Jun

    2018-01-01

    Background: Dendrobium officinale, a traditional Chinese medical herb with high value that is widely used in Asia, possesses many positive effects on human health, including anti-chronic inflammation, anti-obesity, and immune modulation properties; however, whether D. officinale has inhibitory effects on postmenopausal osteoporosis remains unknown. Objective: We investigated the effects of D. officinale extract (DOE) on ovariectomy-induced bone loss in vivo and on osteoclastogenesis in vitro. Methods: In vivo, female rats were divided into a sham-operated (sham) group and five ovariectomized (OVX) subgroups: OVX with vehicle (OVX), OVX with Xian-Ling-Gu-Bao capsule (240 mg/kg body weight/day), and OVX with low-, medium-, and high-dose DOE (150, 300, and 600 mg/kg body weight/day, respectively). Animals in each group were administered their corresponding treatments for 13 weeks. Body weight, serum biochemical parameters, uterine and femoral physical parameters, bone mineral density (BMD), bone biomechanical properties, and bone microarchitecture were obtained. In vitro, the effects of DOE on osteoclastogenesis were examined using RAW264.7 cells. The effects of DOE on osteoclastogenesis and the expression of osteoclast-specific marker genes and proteins were determined. Results: DOE effectively ameliorated serum biochemical parameters, especially alleviated estradiol (E2) deficiency and maintained calcium and phosphorus homeostasis. DOE improved uterine and femoral physical parameters. In addition, DOE improved femoral BMD and biomechanical properties. DOE significantly ameliorated bone microarchitecture. Moreover, DOE inhibited osteoclastogenesis independent of its cytoxicity and suppressed the expression of osteoclast-specific marker genes and proteins. Conclusion: DOE can effectively prevent ovariectomy-induced bone loss in vivo and inhibit osteoclastogenesis in vitro. PMID:29379436

  18. Dendrobium officinale Orchid Extract Prevents Ovariectomy-Induced Osteoporosis in Vivo and Inhibits RANKL-Induced Osteoclast Differentiation in Vitro.

    PubMed

    Wang, Qi; Zi, Cheng-Ting; Wang, Jing; Wang, Yu-Na; Huang, Ye-Wei; Fu, Xue-Qi; Wang, Xuan-Jun; Sheng, Jun

    2017-01-01

    Background: Dendrobium officinale , a traditional Chinese medical herb with high value that is widely used in Asia, possesses many positive effects on human health, including anti-chronic inflammation, anti-obesity, and immune modulation properties; however, whether D. officinale has inhibitory effects on postmenopausal osteoporosis remains unknown. Objective: We investigated the effects of D. officinale extract (DOE) on ovariectomy-induced bone loss in vivo and on osteoclastogenesis in vitro . Methods: In vivo , female rats were divided into a sham-operated (sham) group and five ovariectomized (OVX) subgroups: OVX with vehicle (OVX), OVX with Xian-Ling-Gu-Bao capsule (240 mg/kg body weight/day), and OVX with low-, medium-, and high-dose DOE (150, 300, and 600 mg/kg body weight/day, respectively). Animals in each group were administered their corresponding treatments for 13 weeks. Body weight, serum biochemical parameters, uterine and femoral physical parameters, bone mineral density (BMD), bone biomechanical properties, and bone microarchitecture were obtained. In vitro , the effects of DOE on osteoclastogenesis were examined using RAW264.7 cells. The effects of DOE on osteoclastogenesis and the expression of osteoclast-specific marker genes and proteins were determined. Results: DOE effectively ameliorated serum biochemical parameters, especially alleviated estradiol (E2) deficiency and maintained calcium and phosphorus homeostasis. DOE improved uterine and femoral physical parameters. In addition, DOE improved femoral BMD and biomechanical properties. DOE significantly ameliorated bone microarchitecture. Moreover, DOE inhibited osteoclastogenesis independent of its cytoxicity and suppressed the expression of osteoclast-specific marker genes and proteins. Conclusion: DOE can effectively prevent ovariectomy-induced bone loss in vivo and inhibit osteoclastogenesis in vitro .

  19. Food Value of Two Varieties of Ginger (Zingiber officinale) Commonly Consumed in Nigeria

    PubMed Central

    Ajayi, Olubunmi B.; Akomolafe, Seun F.; Akinyemi, Funmilayo T.

    2013-01-01

    Ginger (Zingiber officinale) is a well-known and widely used herb, which contains several interesting bioactive constituents and possesses health-promoting properties. The proximate, mineral, antinutrient, amino acid, and phytochemical components of two varieties of ginger (Zingiber officinale) were investigated. Amino acid composition was determined using standard analytical techniques. The results obtained in percentages in the two varieties of ginger (white and yellow types) were crude fibre (21.90, 8.30), fat (17.11, 9.89), carbohydrate (39.70, 58.21), crude protein (12.05, 11.65), ash (4.95, 7.45) and moisture (3.95, 4.63) contents respectively. Elemental analysis revealed that potassium (0.98 ppm and 1.38 ppm) is the most abundant, while copper (0.01 ppm) is the least. Phytochemical screening indicated that they are both rich in saponins, anthraquinones, phlobatannin and glycosides. Also, the antinutrient constituents of white ginger were lower than yellow ginger, although the levels of the antinutrient constituents in the two varieties are saved for consumption. The essential amino acids in the two varieties were almost the same, with Leu being the most abundant in both. The two ginger varieties were adequate only in Leu, Phe + Try, and valine based on FAO/WHO provisional pattern. Overall, the findings indicate that the two varieties of ginger are good sources of nutrients, mineral elements, amino acid, and phytochemicals which could be exploited as great potentials for drugs and/or nutritional supplements. PMID:24967255

  20. Zingiber officinale: A Potential Plant against Rheumatoid Arthritis

    PubMed Central

    Al-Nahain, Abdullah; Jahan, Rownak

    2014-01-01

    Rheumatoid arthritis (RA) is an autoimmune disease particularly affecting elderly people which leads to massive bone destruction with consequent inflammation, pain, and debility. Allopathic medicine can provide only symptomatic relief. However, Zingiber officinale is a plant belonging to the Zingiberaceae family, which has traditionally been used for treatment of RA in alternative medicines of many countries. Many of the phytochemical constituents of the rhizomes of this plant have therapeutic benefits including amelioration of RA. This review attempts to list those phytochemical constituents with their reported mechanisms of action. It is concluded that these phytochemicals can form the basis of discovery of new drugs, which not only can provide symptomatic relief but also may provide total relief from RA by stopping RA-induced bone destruction. As the development of RA is a complex process, further research should be continued towards elucidating the molecular details leading to RA and drugs that can stop or reverse these processes by phytoconstituents of ginger. PMID:24982806

  1. Antioxidant and inhibitory effect of red ginger (Zingiber officinale var. Rubra) and white ginger (Zingiber officinale Roscoe) on Fe(2+) induced lipid peroxidation in rat brain in vitro.

    PubMed

    Oboh, Ganiyu; Akinyemi, Ayodele J; Ademiluyi, Adedayo O

    2012-01-01

    Neurodegerative diseases have been linked to oxidative stress arising from peroxidation of membrane biomolecules and high levels of Fe have been reported to play an important role in neurodegenerative diseases and other brain disorder. Malondialdehyde (MDA) is the end-product of lipid peroxidation and the production of this aldehyde is used as a biomarker to measure the level of oxidative stress in an organism. The present study compares the protective properties of two varieties of ginger [red ginger (Zingiber officinale var. Rubra) and white ginger (Zingiber officinale Roscoe)] on Fe(2+) induced lipid peroxidation in rat brain in vitro. Incubation of the brain tissue homogenate in the presence of Fe caused a significant increase in the malondialdehyde (MDA) contents of the brain. However, the aqueous extract from both varieties of ginger caused a significant decrease in the MDA contents of the brain in a dose-dependent manner. However, the aqueous extract of red ginger had a significantly higher inhibitory effect on both Fe(2+)-induced lipid peroxidation in the rat brain homogenates than that of white ginger. This higher inhibitory effect of red ginger could be attributed to its significantly higher phytochemical content, Fe(2+) chelating ability, OH scavenging ability and reducing power. However, part of the mechanisms through which the extractable phytochemicals in ginger (red and white) protect the brain may be through their antioxidant activity, Fe(2+) chelating and OH scavenging ability. Therefore, oxidative stress in the brain could be potentially managed/prevented by dietary intake of ginger varieties (red ginger and white ginger rhizomes). Copyright © 2010 Elsevier GmbH. All rights reserved.

  2. A Genome-Wide Identification of the WRKY Family Genes and a Survey of Potential WRKY Target Genes in Dendrobium officinale.

    PubMed

    He, Chunmei; Teixeira da Silva, Jaime A; Tan, Jianwen; Zhang, Jianxia; Pan, Xiaoping; Li, Mingzhi; Luo, Jianping; Duan, Jun

    2017-08-23

    The WRKY family, one of the largest families of transcription factors, plays important roles in the regulation of various biological processes, including growth, development and stress responses in plants. In the present study, 63 DoWRKY genes were identified from the Dendrobium officinale genome. These were classified into groups I, II, III and a non-group, each with 14, 28, 10 and 11 members, respectively. ABA-responsive, sulfur-responsive and low temperature-responsive elements were identified in the 1-k upstream regulatory region of DoWRKY genes. Subsequently, the expression of the 63 DoWRKY genes under cold stress was assessed, and the expression profiles of a large number of these genes were regulated by low temperature in roots and stems. To further understand the regulatory mechanism of DoWRKY genes in biological processes, potential WRKY target genes were investigated. Among them, most stress-related genes contained multiple W-box elements in their promoters. In addition, the genes involved in polysaccharide synthesis and hydrolysis contained W-box elements in their 1-k upstream regulatory regions, suggesting that DoWRKY genes may play a role in polysaccharide metabolism. These results provide a basis for investigating the function of WRKY genes and help to understand the downstream regulation network in plants within the Orchidaceae.

  3. Anti-Fatigue Effects of the Unique Polysaccharide Marker of Dendrobium officinale on BALB/c Mice.

    PubMed

    Wei, Wei; Li, Zhi-Peng; Zhu, Tong; Fung, Hau-Yee; Wong, Tin-Long; Wen, Xin; Ma, Dik-Lung; Leung, Chung-Hang; Han, Quan-Bin

    2017-01-18

    Dendrobium officinale extract shows potent anti-fatigue effects; however, the active substance responsible for these effects remains undetermined. A glucomannan with a huge molecular size of 730 kDa, called DOP, was identified as the unique authentication marker of this expensive herb. DOP exhibited immunomodulating effects on macrophages and lymphocytes in our previous study. Clinical reports also showed that people with fatigue syndrome have a disturbed immune system. Because DOP is the unique and dominant component of D. officinale , we hypothesize that DOP may also have anti-fatigue activity. The present study aims to evaluate the anti-fatigue activity of DOP on BALB/c mice, with Rhodiola rosea extract as a positive control. DOP and Rhodiola rosea extract were orally administered at doses of 50 mg/kg and 100 mg/kg, respectively, for four weeks, and the anti-fatigue activity of DOP on BALB/c mice was evaluated using the weight-loaded swimming test. The contents of lactic dehydrogenase (LDH), creatine phosphokinase (CK), triglyceride (TG), blood urea nitrogen (BUN), superoxide dismutase (SOD), malondialdehyde (MDA), lactic acid (LD), and glutathione peroxidase (GSH-Px) in serum, glycogen of liver and gastrocnemius muscle were also determined. Their effects on variability of T cells and B cells were determined by using tetrazolium compound (MTS) method. The weight-loaded swimming exercise caused fatigue syndrome, mainly including the decreases of serum SOD/GSH-Px and gastrocnemius glycogen, as well as the increases of LDH, BUN, MDA, CK, TG, and LD in serum. All of these indicators of fatigue were inhibited to a certain extent by both DOP and Rhodiola rosea extract; however, the effects of DOP were much stronger than those of Rhodiola rosea extract. Compared to the positive control, mice dosed with DOP showed increases in endurance, body weight, and food intake. Furthermore, DOP-feeding mice significantly increased the cell variability of T lymphocytes and B

  4. Taraxacum official (dandelion) leaf extract alleviates high-fat diet-induced nonalcoholic fatty liver.

    PubMed

    Davaatseren, Munkhtugs; Hur, Haeng Jeon; Yang, Hye Jeong; Hwang, Jin-Taek; Park, Jae Ho; Kim, Hyun-Jin; Kim, Min Jung; Kwon, Dae Young; Sung, Mi Jeong

    2013-08-01

    The purpose of this study is to determine the protective effect of Taraxacum official (dandelion) leaf extract (DLE) on high-fat-diet (HFD)-induced hepatic steatosis, and elucidate the molecular mechanisms behind its effects. To determine the hepatoprotective effect of DLE, we fed C57BL/6 mice with normal chow diet (NCD), high-fat diet (HFD), HFD supplemented with 2g/kg DLE DLE (DL), and HFD supplemented with 5 g/kg DLE (DH). We found that the HFD supplemented by DLE dramatically reduced hepatic lipid accumulation compared to HFD alone. Body and liver weights of the DL and DH groups were significantly lesser than those of the HFD group, and DLE supplementation dramatically suppressed triglyceride (TG), total cholesterol (TC), insulin, fasting glucose level in serum, and Homeostatic Model Assessment Insulin Resistance (HOMA-IR) induced by HFD. In addition, DLE treatment significantly increased activation of adenosine monophosphate (AMP)-activated protein kinase (AMPK) in liver and muscle protein. DLE significantly suppressed lipid accumulation in the liver, reduced insulin resistance, and lipid in HFD-fed C57BL/6 mice via the AMPK pathway. These results indicate that the DLE may represent a promising approach for the prevention and treatment of obesity-related nonalcoholic fatty liver disease. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. Identification and Characterization of a Chloroplast-Targeted Obg GTPase in Dendrobium officinale.

    PubMed

    Chen, Ji; Deng, Feng; Deng, Mengsheng; Han, Jincheng; Chen, Jianbin; Wang, Li; Yan, Shen; Tong, Kai; Liu, Fan; Tian, Mengliang

    2016-12-01

    Bacterial homologous chloroplast-targeted Obg GTPases (ObgCs) belong to the plant-typical Obg group, which is involved in diverse physiological processes during chloroplast development. However, the evolutionarily conserved function of ObgC in plants remains elusive and requires further investigation. In this study, we identified DoObgC from an epiphytic plant Dendrobium officinale and demonstrated the characteristics of DoObgC. Sequence analysis indicated that DoObgC is highly conserved with other plant ObgCs, which contain the chloroplast transit peptide (cTP), Obg fold, G domain, and OCT regions. The C terminus of DoObgC lacking the chloroplast-targeting cTP region, DoObgC Δ1-160 , showed strong similarity to ObgE and other bacterial Obgs. Overexpression of DoObgC Δ1-160 in Escherichia coli caused slow cell growth and an increased number of elongated cells. This phenotype was consistent with the phenotype of cells overexpressing ObgE. Furthermore, the expression of recombinant DoObgC Δ1-160 enhanced the cell persistence of E. coli to streptomycin. Results of transient expression assays revealed that DoObgC was localized to chloroplasts. Moreover, we demonstrated that DoObgC could rescue the embryotic lethal phenotype of the Arabidopsis obgc-t mutant, suggesting that DoObgC is a functional homolog to Arabidopsis AtObgC in D. officinale. Gene expression profiles showed that DoObgC was expressed in leaf-specific and light-dependent patterns and that DoObgC responded to wounding treatments. Our previous and present studies reveal that ObgC has an evolutionarily conserved role in ribosome biogenesis to adapt chloroplast development to the environment.

  6. Two new monoterpenoid glycosides from the fresh rhizome of Tongling White Ginger (Zingiber officinale).

    PubMed

    Guo, Tao; Tan, Su-Bei; Wang, Ya; Chang, Jun

    2018-01-01

    Two new monoterpenoid glycosides, trans-1,8-cineole-3,6-dihydroxy-3-O-β-D-glucopyranoside (1), and 5,9-dihydroxy borneol 2-O-β-D-glucopyranoside (2), together with four known monoterpenoid glycosides (3-6), were isolated from the water-soluble constituents of the fresh rhizome of Tongling White Ginger (Zingiber officinale). Their structures were decisively elucidated by spectroscopic analysis. In vitro tests for antimicrobial activity showed that compounds 1 and 3 possess significant activity against two Gram-positive organisms, Staphylococcus aureus and Staphylococcus epidermidis.

  7. Environmental impact of ferrochrome slag in road construction.

    PubMed

    Lind, B B; Fällman, A M; Larsson, L B

    2001-01-01

    Vargon Alloys in Western Sweden is one of the largest producers of ferrochrome slag in Europe. Ferrochrome slag is a by-product from the production of ferrochrome, an essential component in stainless steel. Extensive tests have been carried out on the physical properties of the ferrochrome slag from Vargon Alloys and it was found to be highly suitable as road construction material. The composition and leaching tests of the ferrochrome slag show that the chromium content is high, 1-3%, although leaching under normal conditions is very low. With the exception of potassium (K), which had a potential leaching capacity (availability test) of around 16%, the leaching of chromium, nickel, zinc and other elements was just a few per cent. However, all these tests were conducted in the laboratory. What happens out in the field, under the influence of acid rain and biological activity, and how does this compare with the laboratory results? To answer this question an investigation was carried out to study the environmental impact of ferrochrome slag in roads that were built in 1994. The investigation includes soil sampling (total content and leachable amounts of metals) and groundwater analysis (filtered and non-filtered samples). In addition, a new method involving the bio-uptake of chromium and other metals by the roots of the dandelion (Taraxacum officinale) was tested. The results show that there was a low migration of particles from the slag to the underlying soil and that the leaching into the groundwater was also low for all the elements analysed. However, there seemed to be a significant uptake of Cr by plants growing with their roots in the slag. An investigation of plant uptake was an important complement to laboratory leaching tests on alternative materials.

  8. Gastroprotective actions of Taraxacum coreanum Nakai water extracts in ethanol-induced rat models of acute and chronic gastritis.

    PubMed

    Yang, Hye Jeong; Kim, Min Jung; Kwon, Dae Young; Kang, Eun Seon; Kang, Suna; Park, Sunmin

    2017-08-17

    Taraxacum coreanum Nakai has been traditionally used for treating inflammatory diseases including gastrointestinal diseases. We studied whether water extracts of Taraxacum coreanum Nakai (TCN) had a protective effect on acute and chronic gastritis induced by ethanol/HCl in an animal model of gastritis and its mechanism was also explored. In the acute study, rats were orally administered 0.15g/mL dextrin (normal-control), 0.15g/mL dextrin (control), 0.05g/mL TCN (TCN-L), 0.15g/mL TCN (TCN-H), or 0.01g/mL omeprazole (orally; positive-control), followed by oral administration of 1mL of 60% ethanol plus 150mM HCl (inducer). In the chronic study, rats were administered 10% diluted inducer in drinking water, and 0.6% dextrin, 0.2% or 0.6% TCN, and 0.05% omeprazole were administered in chow for 4 weeks. Acid content, gastric structure, oxidative stress, and markers of inflammation in the stomach tissue were measured at the end of experiment. Acute and chronic ethanol/HCl administration caused the inner layer of the stomach to redden, hemorrhage, and edema in the control group; TCN-H reduced these symptoms more effectively than did the omeprazole positive-control. Acid production and total acidity in the stomach increased in the control group, which was markedly suppressed by omeprazole. TCN also reduced the acid production and acidity, but not to the same degree as omeprazole. H-E and PAS staining revealed that in the inner layer of the stomach, cellular structure was disrupted, with an increased nuclear size and thickness, disarrangement, and decreased mucin in the control group. TCN prevented the cellular disruption in the inner layer, and TCN-H was more effective than the positive-control. This was associated with oxidative stress and inflammation. TCN dose-dependently reduced the infiltration of mast cells and TNF-α expression in the inner layer of the stomach, and decreased lipid peroxides by increasing superoxide dismutase and glutathione peroxidase expression. TCN

  9. In Vitro Effect of Zingiber officinale Extract on Growth of Streptococcus mutans and Streptococcus sanguinis.

    PubMed

    Azizi, Arash; Aghayan, Shabnam; Zaker, Saeed; Shakeri, Mahdieh; Entezari, Navid; Lawaf, Shirin

    2015-01-01

    Background and Objectives. Tooth decay is an infectious disease of microbial origin. Considering the increasing prevalence of antibiotic resistance due to their overuse and also their side effects, medicinal plants are now considered for use against bacterial infections. This study aimed to assess the effects of different concentrations of Zingiber officinale extract on proliferation of Streptococcus mutans and Streptococcus sanguinis in vitro. Materials and Methods. In this experimental study, serial dilutions of the extract were prepared in two sets of 10 test tubes for each bacterium (total of 20). Standard amounts of bacterial suspension were added; 100ƛ of each tube was cultured on prepared solid agar plates and incubated at 37°C for 24 hours. Serial dilutions of the extract were prepared in another 20 tubes and 100ƛ of each tube was added to blood agar culture medium while being prepared. The mixture was transferred to the plates. The bacteria were inoculated on plates and incubated as described. Results. The minimum inhibitory concentration (MIC) was 0.02 mg/mL for S. mutans and 0.3 mg/mL for S. sanguinis. The minimum bactericidal concentration (MBC) was 0.04 mg for S. mutans and 0.6 mg for S. sanguinis. Conclusion. Zingiber officinale extract has significant antibacterial activity against S. mutans and S. sanguinis cariogenic microorganisms.

  10. In Vitro Effect of Zingiber officinale Extract on Growth of Streptococcus mutans and Streptococcus sanguinis

    PubMed Central

    Azizi, Arash; Aghayan, Shabnam; Zaker, Saeed; Shakeri, Mahdieh; Entezari, Navid; Lawaf, Shirin

    2015-01-01

    Background and Objectives. Tooth decay is an infectious disease of microbial origin. Considering the increasing prevalence of antibiotic resistance due to their overuse and also their side effects, medicinal plants are now considered for use against bacterial infections. This study aimed to assess the effects of different concentrations of Zingiber officinale extract on proliferation of Streptococcus mutans and Streptococcus sanguinis in vitro. Materials and Methods. In this experimental study, serial dilutions of the extract were prepared in two sets of 10 test tubes for each bacterium (total of 20). Standard amounts of bacterial suspension were added; 100ƛ of each tube was cultured on prepared solid agar plates and incubated at 37°C for 24 hours. Serial dilutions of the extract were prepared in another 20 tubes and 100ƛ of each tube was added to blood agar culture medium while being prepared. The mixture was transferred to the plates. The bacteria were inoculated on plates and incubated as described. Results. The minimum inhibitory concentration (MIC) was 0.02 mg/mL for S. mutans and 0.3 mg/mL for S. sanguinis. The minimum bactericidal concentration (MBC) was 0.04 mg for S. mutans and 0.6 mg for S. sanguinis. Conclusion. Zingiber officinale extract has significant antibacterial activity against S. mutans and S. sanguinis cariogenic microorganisms. PMID:26347778

  11. Transcriptome analysis reveals the genetic basis underlying the biosynthesis of volatile oil, gingerols, and diarylheptanoids in ginger (Zingiber officinale Rosc.).

    PubMed

    Jiang, Yusong; Liao, Qinhong; Zou, Yong; Liu, Yiqing; Lan, Jianbin

    2017-10-23

    Ginger (Zingiber officinale Rosc.) is a popular flavoring that widely used in Asian, and the volatile oil in ginger rhizomes adds a special fragrance and taste to foods. The bioactive compounds in ginger, such as gingerols, diarylheptanoids, and flavonoids, are of significant value to human health because of their anticancer, anti-oxidant, and anti-inflammatory properties. However, as a non-model plant, knowledge about the genome sequences of ginger is extremely limited, and this limits molecular studies on this plant. In this study, de novo transcriptome sequencing was performed to investigate the expression of genes associated with the biosynthesis of major bioactive compounds in matured ginger rhizome (MG), young ginger rhizome (YG), and fibrous roots of ginger (FR). A total of 361,876 unigenes were generated by de novo assembly. The expression of genes involved in the pathways responsible for the biosynthesis of major bioactive compounds differed between tissues (MG, YG, and FR). Two pathways that give rise to volatile oil, gingerols, and diarylheptanoids, the "terpenoid backbone biosynthesis" and "stilbenoid, diarylheptanoid and gingerol biosynthesis" pathways, were significantly enriched (adjusted P value < 0.05) for differentially expressed genes (DEGs) (FDR < 0.005) both between the FR and YG libraries, and the FR and MG libraries. Most of the unigenes mapped in these two pathways, including curcumin synthase, phenylpropanoylacetyl-CoA synthase, trans-cinnamate 4-monooxygenase, and 4-hydroxy-3-methylbut-2-en-1-yl diphosphate synthase, were expressed to a significantly higher level (log 2 (fold-change) ≥ 1) in FR than in YG or MG. This study provides the first insight into the biosynthesis of bioactive compounds in ginger at a molecular level and provides valuable genome resources for future molecular studies on ginger. Moreover, our results establish that bioactive compounds in ginger may predominantly synthesized in the root and then transported to

  12. Distinct cell-specific expression of homospermidine synthase involved in pyrrolizidine alkaloid biosynthesis in three species of the boraginales.

    PubMed

    Niemüller, Daniel; Reimann, Andreas; Ober, Dietrich

    2012-07-01

    Homospermidine synthase (HSS) is the first specific enzyme in pyrrolizidine alkaloid (PA) biosynthesis, a pathway involved in the plant's chemical defense. HSS has been shown to be recruited repeatedly by duplication of a gene involved in primary metabolism. Within the lineage of the Boraginales, only one gene duplication event gave rise to HSS. Here, we demonstrate that the tissue-specific expression of HSS in three boraginaceous species, Heliotropium indicum, Symphytum officinale, and Cynoglossum officinale, is unique with respect to plant organ, tissue, and cell type. Within H. indicum, HSS is expressed exclusively in nonspecialized cells of the lower epidermis of young leaves and shoots. In S. officinale, HSS expression has been detected in the cells of the root endodermis and in leaves directly underneath developing inflorescences. In young roots of C. officinale, HSS is detected only in cells of the endodermis, but in a later developmental stage, additionally in the pericycle. The individual expression patterns are compared with those within the Senecioneae lineage (Asteraceae), where HSS expression is reproducibly found in specific cells of the endodermis and the adjacent cortex parenchyma of the roots. The individual expression patterns within the Boraginales species are discussed as being a requirement for the successful recruitment of HSS after gene duplication. The diversity of HSS expression within this lineage adds a further facet to the already diverse patterns of expression that have been observed for HSS in other PA-producing plant lineages, making this PA-specific enzyme one of the most diverse expressed proteins described in the literature.

  13. Distinct Cell-Specific Expression of Homospermidine Synthase Involved in Pyrrolizidine Alkaloid Biosynthesis in Three Species of the Boraginales1[C][W][OA

    PubMed Central

    Niemüller, Daniel; Reimann, Andreas; Ober, Dietrich

    2012-01-01

    Homospermidine synthase (HSS) is the first specific enzyme in pyrrolizidine alkaloid (PA) biosynthesis, a pathway involved in the plant’s chemical defense. HSS has been shown to be recruited repeatedly by duplication of a gene involved in primary metabolism. Within the lineage of the Boraginales, only one gene duplication event gave rise to HSS. Here, we demonstrate that the tissue-specific expression of HSS in three boraginaceous species, Heliotropium indicum, Symphytum officinale, and Cynoglossum officinale, is unique with respect to plant organ, tissue, and cell type. Within H. indicum, HSS is expressed exclusively in nonspecialized cells of the lower epidermis of young leaves and shoots. In S. officinale, HSS expression has been detected in the cells of the root endodermis and in leaves directly underneath developing inflorescences. In young roots of C. officinale, HSS is detected only in cells of the endodermis, but in a later developmental stage, additionally in the pericycle. The individual expression patterns are compared with those within the Senecioneae lineage (Asteraceae), where HSS expression is reproducibly found in specific cells of the endodermis and the adjacent cortex parenchyma of the roots. The individual expression patterns within the Boraginales species are discussed as being a requirement for the successful recruitment of HSS after gene duplication. The diversity of HSS expression within this lineage adds a further facet to the already diverse patterns of expression that have been observed for HSS in other PA-producing plant lineages, making this PA-specific enzyme one of the most diverse expressed proteins described in the literature. PMID:22566491

  14. Synergistic potential of Zingiber officinale and Curcuma longa to ameliorate diabetic-dyslipidemia.

    PubMed

    Hussain, Naveed; Hashmi, Abu-Saeed; Wasim, Muhammad; Akhtar, Tauqeer; Saeed, Shagufta; Ahmad, Toheed

    2018-03-01

    To find the cure of world's one of the leading morbid and mortal disorders; diabetes mellitus and its most prevalent complication, 'diabetic-dyslipidemia', is one of the leading health challenges of 21st century. The use of phytomedicine is a glimmer of hope in this scenario. Studies of current decade have shown that methanolic extracts of Zingiber officinale and Curcuma longa have highly effective therapeutic potentials against the aforesaid disorders, however, which of the extracts has more potential is still unclear. Furthermore, synergistic effect of the extracts has never been studied. Forty-eight Albino adult rats of either sex were randomly divided into eight groups. A-D groups were containing healthy rats while E-H groups were of induced diabetic-dyslipidemic rats. For forty-two days, rats of each group were given either distilled water or Zingiber officinale methanolic extract (ZOME) or Curcuma longa methanolic extract (CLME) or ZOME+CLME therapies at dose rate of 300mg/100 mL dist. H 2 O/kg body wt/day. FPG and lipid profiles were estimated before and after the trial, and were statistically analyzed by one-way ANOVA along with Post-hoc Tukey's multiple comparison tests. Although, ZOME and CLME significantly (P<0.05) lowered fasting plasma glucose (FPG) levels and controlled lipid profiles in diabetic-dyslipidemic rats; yet, synergistic therapy of both extracts (ZOME+CLME) most significantly (P<0.05) controlled all parameters of diabetic-dyslipidemia (78.00±1.06mg/dL FPG, 62.00±0.58mg/dL TG, 66.50±0.76mg/dL cholesterol, 32.00±0.36mg/dL HDL, 22.43±0.64 mg/dL LDL, and 12.40±0.12mg/dL VLDL). Our findings may be useful to formulate new medicines having multiple potentials to control diabetes mellitus, dyslipidemia, and diabetic-dyslipidemia.

  15. In vivo evaluation of ethanolic extract of Zingiber officinale rhizomes for its protective effect against liver cirrhosis.

    PubMed

    Abdulaziz Bardi, Daleya; Halabi, Mohammed Farouq; Abdullah, Nor Azizan; Rouhollahi, Elham; Hajrezaie, Maryam; Abdulla, Mahmood Ameen

    2013-01-01

    Zingiber officinale is a traditional medicine against various disorders including liver diseases.The aim of this study was to assess the hepatoprotective activity of the ethanolic extract of rhizomes of Z. officinale (ERZO) against thioacetamide-induced hepatotoxicity in rats. Five groups of male Sprague Dawley have been used. In group 1 rats received intraperitoneal (i.p.) injection of normal saline while groups 2-5 received thioacetamide (TAA, 200 mg/kg; i.p.) for induction of liver cirrhosis, thrice weekly for eight weeks. Group 3 received 50 mg/kg of silymarin. The rats in groups 4 and 5 received 250 and 500 mg/kg of ERZO (dissolved in 10% Tween), respectively. Hepatic damage was assessed grossly and microscopically for all of the groups. Results confirmed the induction of liver cirrhosis in group 2 whilst administration of silymarin or ERZO significantly reduced the impact of thioacetamide toxicity. These groups decreased fibrosis of the liver tissues. Immunohistochemistry assessment against proliferating cell nuclear antigen did not show remarkable proliferation in the ERZO-treated rats when compared with group 2. Moreover, factions of the ERZO extract were tested on Hep-G2 cells and showed antiproliferative activity (IC50 38-60 μ g/mL). This study showed hepatoprotective effect of ERZO.

  16. In Vivo Evaluation of Ethanolic Extract of Zingiber officinale Rhizomes for Its Protective Effect against Liver Cirrhosis

    PubMed Central

    Abdulaziz Bardi, Daleya; Halabi, Mohammed Farouq; Abdullah, Nor Azizan; Rouhollahi, Elham

    2013-01-01

    Zingiber officinale is a traditional medicine against various disorders including liver diseases.The aim of this study was to assess the hepatoprotective activity of the ethanolic extract of rhizomes of Z. officinale (ERZO) against thioacetamide-induced hepatotoxicity in rats. Five groups of male Sprague Dawley have been used. In group 1 rats received intraperitoneal (i.p.) injection of normal saline while groups 2–5 received thioacetamide (TAA, 200 mg/kg; i.p.) for induction of liver cirrhosis, thrice weekly for eight weeks. Group 3 received 50 mg/kg of silymarin. The rats in groups 4 and 5 received 250 and 500 mg/kg of ERZO (dissolved in 10% Tween), respectively. Hepatic damage was assessed grossly and microscopically for all of the groups. Results confirmed the induction of liver cirrhosis in group 2 whilst administration of silymarin or ERZO significantly reduced the impact of thioacetamide toxicity. These groups decreased fibrosis of the liver tissues. Immunohistochemistry assessment against proliferating cell nuclear antigen did not show remarkable proliferation in the ERZO-treated rats when compared with group 2. Moreover, factions of the ERZO extract were tested on Hep-G2 cells and showed antiproliferative activity (IC50 38–60 μg/mL). This study showed hepatoprotective effect of ERZO. PMID:24396831

  17. ANTIBIOFILM EFFECTS of Citrus limonum and Zingiber officinale Oils on BIOFILM FORMATION of Klebsiella ornithinolytica, Klebsiella oxytoca and Klebsiella terrigena SPECIES.

    PubMed

    Avcioglu, Nermin Hande; Sahal, Gulcan; Bilkay, Isil Seyis

    2016-01-01

    Microbial cells growing in biofilms, play a huge role in the spread of antimicrobial resistance. In this study, biofilm formation of Klebsiella strains belonging to 3 different Klebsiella species ( K. ornithinolytica , K. oxytoca and K. terrigena ), cooccurences' effect on biofilm formation amount and anti-biofilm effects of Citrus limon and Zingiber officinale essential oils on biofilm formations of highest biofilm forming K. ornithinolytica , K. oxytoca and K. terrigena strains were determined. Anti-biofilm effects of Citrus limon and Zingiber officinale essential oils on biofilm formations of highest biofilm forming K. ornithinolytica , K. oxytoca and K. terrigena strains were investigated. 57% of K. ornithinolytica strains and 50% of K. oxytoca strains were found as Strong Biofilm Forming (SBF), there wasn't any SBF strain in K. terrigena species. In addition to this, clinical materials of urine and sperm were found as the most frequent clinical materials for strong biofilm forming K. ornithinolytica and K. oxytoca isolations respectively (63%; 100%) Secondly, all K. ornithinolytica strains isolated from surgical intensive care unit and all K. oxytoca strains isolated from service units of urology were found as SBF. Apart from these, although the amount of biofilm, formed by co-occurence of K. ornithinolytica - K. oxytoca and K. oxytoca - K. terrigena were more than the amount ofbiofilm formed by themselves separately, biofilm formation amount of co-occurrence of K. ornitholytica - K. terrigena strains was lower than biofilm formation amount of K. ornithinolytica but higher than biofilm formation amount of K. terrigena . The antibiofilm effects of Citrus limonum and Zingiber officinale essential oils could be used against biofilm Klebsiella aquired infections.

  18. ANTIBIOFILM EFFECTS of Citrus limonum and Zingiber officinale Oils on BIOFILM FORMATION of Klebsiella ornithinolytica, Klebsiella oxytoca and Klebsiella terrigena SPECIES

    PubMed Central

    Avcioglu, Nermin Hande; Sahal, Gulcan; Bilkay, Isil Seyis

    2016-01-01

    Background: Microbial cells growing in biofilms, play a huge role in the spread of antimicrobial resistance. In this study, biofilm formation of Klebsiella strains belonging to 3 different Klebsiella species (K. ornithinolytica, K. oxytoca and K. terrigena), cooccurences’ effect on biofilm formation amount and anti-biofilm effects of Citrus limon and Zingiber officinale essential oils on biofilm formations of highest biofilm forming K. ornithinolytica, K. oxytoca and K. terrigena strains were determined. Materials and Methods: Anti-biofilm effects of Citrus limon and Zingiber officinale essential oils on biofilm formations of highest biofilm forming K. ornithinolytica, K. oxytoca and K. terrigena strains were investigated. Results: 57% of K. ornithinolytica strains and 50% of K. oxytoca strains were found as Strong Biofilm Forming (SBF), there wasn’t any SBF strain in K. terrigena species. In addition to this, clinical materials of urine and sperm were found as the most frequent clinical materials for strong biofilm forming K. ornithinolytica and K. oxytoca isolations respectively (63%; 100%) Secondly, all K. ornithinolytica strains isolated from surgical intensive care unit and all K. oxytoca strains isolated from service units of urology were found as SBF. Apart from these, although the amount of biofilm, formed by co-occurence of K. ornithinolytica - K. oxytoca and K. oxytoca - K. terrigena were more than the amount ofbiofilm formed by themselves separately, biofilm formation amount of co-occurrence of K. ornitholytica - K. terrigena strains was lower than biofilm formation amount of K. ornithinolytica but higher than biofilm formation amount of K. terrigena. Conclusion: The antibiofilm effects of Citrus limonum and Zingiber officinale essential oils could be used against biofilm Klebsiella aquired infections. PMID:28480361

  19. SNP in Chalcone Synthase gene is associated with variation of 6-gingerol content in contrasting landraces of Zingiber officinale.Roscoe.

    PubMed

    Ghosh, Subhabrata; Mandi, Swati Sen

    2015-07-25

    Zingiber officinale, medicinally the most important species within Zingiber genus, contains 6-gingerol as the active principle. This compound obtained from rhizomes of Z.officinale, has immense medicinal importance and is used in various herbal drug formulations. Our record of variation in content of this active principle, viz. 6-gingerol, in land races of this drug plant collected from different locations correlated with our Gene expression studies exhibiting high Chalcone Synthase gene (Chalcone Synthase is the rate limiting enzyme of 6-gingerol biosynthesis pathway) expression in high 6-gingerol containing landraces than in the low 6-gingerol containing landraces. Sequencing of Chalcone Synthase cDNA and subsequent multiple sequence alignment revealed seven SNPs between these contrasting genotypes. Converting this nucleotide sequence to amino acid sequence, alteration of two amino acids becomes evident; one amino acid change (asparagine to serine at position 336) is associated with base change (A→G) and another change (serine to leucine at position 142) is associated with the base change (C→T). Since asparagine at position 336 is one of the critical amino acids of the catalytic triad of Chalcone Synthase enzyme, responsible for substrate binding, our study suggests that landraces with a specific amino acid change viz. Asparagine (found in high 6-gingerol containing landraces) to serine causes low 6-gingerol content. This is probably due to a weak enzyme substrate association caused by the absence of asparagine in the catalytic triad. Detailed study of this finding could also help to understand molecular mechanism associated with variation in 6-gingerol content in Z.officinale genotypes and thereby strategies for developing elite genotypes containing high 6-gingerol content. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Ultraviolet light assisted extraction of flavonoids and allantoin from aqueous and alcoholic extracts of Symphytum officinale

    PubMed Central

    Al-Nimer, Marwan S. M.; Wahbee, Zainab

    2017-01-01

    Aim: Symphytum officinale (comfrey) is a medicinal plant commonly used in decoction and to treat ailments. It protects the skin against ultraviolet (UV)-irradiation. UV irradiation may induce variable effects on the constituents of herbal extracts and thereby may limit or improve the advantages of using these extracts as medicinal supplements. This study aimed to assess the effect of UV radiations including UV-A, UV-B, and UV-C on the constituents of S. officinale aqueous and alcoholic extracts. Materials and Methods: Comfrey extracts (1% w/v) were prepared using distilled water, ethanol, and methanol. They were exposed to wavelengths of UV-A, UV-B, and UV-C for 10 min. The principal peak on the UV-spectroscopy scanning, the flavonoids, reducing power, and the allantoin levels were determined before and after irradiation. Results: UV irradiation reduces the magnitude of the principle peak at 355 nm wavelength of the aqueous infusion and methanol extracts. It improves the levels of flavonoids and reducing power of the aqueous extracts and increases the levels of allanotoin in aqueous and methanol extracts. Conclusions: UV-radiation enhances the yields of active ingredient of comfrey extracted with methanol, whereas improves the flavonoids, reducing power, and allantoin levels of comfrey extracted by the aqueous infusion method. UV-radiation reduces the levels of flavonoids, reducing power and allantoin when the comfrey extracted by alcohols. PMID:28894626

  1. Cytotoxic and Antifungal Constituents Isolated from the Metabolites of Endophytic Fungus DO14 from Dendrobium officinale.

    PubMed

    Wu, Ling-Shang; Jia, Min; Chen, Ling; Zhu, Bo; Dong, Hong-Xiu; Si, Jin-Ping; Peng, Wei; Han, Ting

    2015-12-22

    Two novel cytotoxic and antifungal constituents, (4S,6S)-6-[(1S,2R)-1, 2-dihydroxybutyl]-4-hydroxy-4-methoxytetrahydro-2H-pyran-2-one (1), (6S,2E)-6-hydroxy-3-methoxy-5-oxodec-2-enoic acid (2), together with three known compounds, LL-P880γ (3), LL-P880α (4), and Ergosta-5,7,22-trien-3b-ol (5) were isolated from the metabolites of endophytic fungi from Dendrobium officinale. The chemical structures were determined based on spectroscopic methods. All the isolated compounds 1-5 were evaluated by cytotoxicity and antifungal effects. Our present results indicated that compounds 1-4 showed notable anti-fungal activities (minimal inhibitory concentration (MIC) ≤ 50 μg/mL) for all the tested pathogens including Candida albicans, Cryptococcus neoformans, Trichophyton rubrum, Aspergillus fumigatus. In addition, compounds 1-4 possessed notable cytotoxcities against human cancer cell lines of HL-60 cells with the IC50 values of below 100 μM. Besides, compounds 1, 2, 4 and 5 showed strong cytotoxities on the LOVO cell line with the IC50 values were lower than 100 μM. In conclusion, our study suggested that endophytic fungi of D. officinale are great potential resources to discover novel agents for preventing or treating pathogens and tumors.

  2. [Studies on chemical constituents from herbs of Taraxacum mongolicum].

    PubMed

    Shi, Shu-Yun; Zhou, Chang-Xin; Xu, Yan; Tao, Qiao-Feng; Bai, Hua; Lu, Fu-Sheng; Lin, Wen-Yan; Chen, Hai-Yong; Zheng, Wei; Wang, Li-Wei; Wu, Yi-Hang; Zeng, Su; Huang, Ke-Xin; Zhao, Yu; Li, Xiao-Kun; Qu, Jia

    2008-05-01

    To investigate the chemical constituents of the herbs of Taraxacum mongolicum. The chemical constituents were isolated by various column chromatographic methods and their structures elucidated mainly by NMR and MS evidences. Forty-four components were obtained and identified were as artemetin (1), quercetin (2), quercetin-3', 4', 7-trime-thyl ether (3), luteolin (4), luteolin-7-O-beta-D-glucopyranoside (5), luteolin-7-O-beta-D-galactopyranoside (6), genkwanin (7), isoetin (8), hesperetin (9), genkwanin-4'-O-beta-D-lutinoside (10), hesperidin (11), quercetin-7-O-[beta-D-glucopyranosyl (1-->6) -beta-D-glucopyranoside (12), quercetin-3, 7-O-beta-D-diglucopyranoside (13), isoetin-7-O-beta-D-glucopyranosyl- 2'-O-alpha-L-arabinopyranoside (14), isoetin-7-O-beta-D-glucopyranosyl-2'-O-alpha-D-glucopyranoside (15), isoetin-7- O-beta-D-glucopyranosyl-2'-O-beta-D-xyloypyranoside (16), caffeic acid (17), furulic acid (18), 3-O-caffeoylquinic acid (19), 3, 5-di-O-caffeoylquinic acid (20), 3, 4-di-O-caffeoylquinic acid (21), 4, 5-di-O-caffeoylquinic acid (22), 1-hydroxymethyl-5-hydroxy-phenyl-2-O-beta-D-glucopyranoside (23), p-hydroxybenzoic acid (24), p-coumaric acid (25), 3, 5-dihydroxylbenzoic acid (26), gallic acid (27), gallicin (28), syringic acid (29), 3, 4-dihydroxybenzoic acid (30), caffeic acid ethyl ester (31), esculetin (32), rufescidride (33), mongolicumin A [6, 9, 10-trihydroxy-benzoxanthene-1, 2-dicarboxylic acid] (34), mongolicumin B [1 l-hydroxy-2-oxo-guaia-1 (10), 3, 5-trien-8, 12-lactone] (35), isodonsesquitin A (36), taraxacin (37), sesquiterpene ketolactone (38), taraxasteryl acetate (39), phi-taraxasteryl acetate (40) and lupenol acetate (41), palmitic acid (42), beta-sitosterol (43), and stigmasterol (44). Four compounds (14, 15, 34 and 35) were new compounds, compounds 1, 3, 6-13, 20-22, 30 and 31 were isolated from this genus for the first time, while compounds 18, 23-29, 32 and 37-42 were obtained from this species for the first time.

  3. Helichrysum italicum growing on metalliferous areas as a potential tool in phytostabilization of metal-contaminated soils.

    NASA Astrophysics Data System (ADS)

    Bini, Claudio; Maleci, Laura; Giuliani, Claudia

    2015-04-01

    Plants that colonize metalliferous soils have developed physiological mechanisms that allow to tolerate high metal concentrations. Generally, metal uptake by these plants is not suppressed, but a detoxification process occurs, as a response to different strategies: some plants (accumulators) concentrate metals in the aerial parts, while others (excluders) present low metal concentrations in the aerial parts, since metals are arrested in their roots. In several regions of Italy (e.g. Veneto, Sardinia, Tuscany), numerous abandoned mine sites are present; On these metal-contaminated soils grow both metalliferous (e.g. Silene paradoxa) and non-metalliferous plants (e.g. Taraxacum officinale). Among them, Helichrysum italicum deserved attention since it is known as essential oil producer and is also used as a medicinal plant for its anti-inflammatory properties; for this reason, it must undergo the Drug Master File certifying the absence of chemical impurities and heavy metals. Samples of the whole plant (roots, leaves and flowers) of H. italicum have been collected at various sites, both mined and not mined, in order to ascertain its ability to uptake and translocate metals from roots to the aerial parts. Fresh and embedded material was examined by Light microscopy and Electron Microscopy (Scanning and Transmission) to ascertain possible damages in plant morphology. Dried samples were crushed, digested with HNO3 and analysed by ICP-OE technique for heavy metal (Cu, Fe, Mn, Zn) concentrations. Preliminary observations on the morphology of the different samples do not show significant differences in the leaf structure. The inorganic chemical composition of H. italicum was characterized by high metal content. Preliminary results of our analyses show that H. italicum accumulate metals (Mn, Zn) in roots, but do not translocate metals to the aerial parts; therefore, it may be considered an excluder plant. On the basis of our results, the aerial parts (leaves, flowers) of

  4. Densitometric HPTLC analysis of 8-gingerol in Zingiber officinale extract and ginger-containing dietary supplements, teas and commercial creams.

    PubMed

    Alam, Prawez

    2013-08-01

    To develop and validate a simple, accurate HPTLC method for the analysis of 8-gingerol and to determine the quantity of 8-gingerol in Zingiber officinale extract and ginger-containing dietary supplements, teas and commercial creams. The analysis was performed on 10×20 cm aluminium-backed plates coated with 0.2 mm layers of silica gel 60 F254 (E-Merck, Germany) with n-hexane: ethyl acetate 60: 40 (v/v) as mobile phase. Camag TLC Scanner III was used for the UV densitometric scanning at 569. This system was found to give a compact spot of 8-gingerol at retention factor (Rf) value of (0.39±0.04) and linearity was found in the ranges 50-500 ng/spot (r (2)=0.9987). Limit of detection (12.76 ng/spot), limit of quantification (26.32 ng/spot), accuracy (less than 2 %) and recovery (ranging from 98.22-99.20) were found satisfactory. The HPTLC method developed for quantification of 8-gingerol was found to be simple, accurate, reproducible, sensitive and is applicable to the analysis of 8-gingerol in Zingiber officinale extract and ginger-containing dietary supplements, teas and commercial creams.

  5. First genetic linkage map of Taraxacum koksaghyz Rodin based on AFLP, SSR, COS and EST-SSR markers.

    PubMed

    Arias, Marina; Hernandez, Monica; Remondegui, Naroa; Huvenaars, Koen; van Dijk, Peter; Ritter, Enrique

    2016-08-04

    Taraxacum koksaghyz Rodin (TKS) has been studied in many occasions as a possible alternative source for natural rubber production of good quality and for inulin production. Some tire companies are already testing TKS tire prototypes. There are also many investigations on the production of bio-fuels from inulin and inulin applications for health improvement and in the food industry. A limited amount of genomic resources exist for TKS and particularly no genetic linkage map is available in this species. We have constructed the first TKS genetic linkage map based on AFLP, COS, SSR and EST-SSR markers. The integrated linkage map with eight linkage groups (LG), representing the eight chromosomes of Russian dandelion, has 185 individual AFLP markers from parent 1, 188 individual AFLP markers from parent 2, 75 common AFLP markers and 6 COS, 1 SSR and 63 EST-SSR loci. Blasting the EST-SSR sequences against known sequences from lettuce allowed a partial alignment of our TKS map with a lettuce map. Blast searches against plant gene databases revealed some homologies with useful genes for downstream applications in the future.

  6. Crude Flavonoid Extract of Medicinal Herb Zingibar officinale Inhibits Proliferation and Induces Apoptosis in Hepatocellular Carcinoma Cells.

    PubMed

    Elkady, Ayman I; Abu-Zinadah, Osama A; Hussein, Rania Abd El Hamid

    2017-07-05

    There is an urgent need to improve the clinical management of hepatocellular carcinoma (HCC), one of the most common causes of global cancer-related deaths. Zingibar officinale is a medicinal herb used throughout history for both culinary and medicinal purposes. It has antioxidant, anticarcinogenic, and free radical scavenging properties. Previously, we proved that the crude flavonoid extract of Z. officinale (CFEZO) inhibited growth and induced apoptosis in several cancer cell lines. However, the effect of the CFEZO on an HCC cell line has not yet been evaluated. In this study, we explored the anticancer activity of CFEZO against an HCC cell line, HepG2. CFEZO significantly inhibited proliferation and induced apoptosis in HepG2 cells. Typical apoptotic morphological and biochemical changes, including cell shrinkage and detachment, nuclear condensation and fragmentation, DNA degradation, and comet tail formation, were observed after treatments with CFEZO. The apoptogenic activity of CFEZO involved induction of ROS, depletion of GSH, disruption of the mitochondrial membrane potential, activation of caspase 3/9, and an increase in the Bax/Bcl-2 ratio. CFEZO treatments induced upregulation of p53 and p21 expression and downregulation of cyclin D1 and cyclin-dependent kinase-4 expression, which were accompanied by G2/M phase arrest. These findings suggest that CFEZO provides a useful foundation for studying and developing novel chemotherapeutic agents for the treatment of HCC.

  7. [Chloroplast ultrastructure and photosynthetic characteristics of five kinds of dandelion (Taraxacum) leaves in northeast China].

    PubMed

    Ning, Wei; Wu, Jie; Zhao, Ting; Zhao, Xin; Li, Tianlai

    2012-05-01

    The paper adopted the JEM-100CX II transmission electron microscope to observe chloroplast ultrastructure of five kinds of dandelion (Taraxacum) leaves in northeast, and the LI-6400 portable photosynthesis system was used to compare the chlorophyll fluorescence and the photosynthesis characteristics of five kinds of dandelions in Northeast China. Chloroplast ultrastructure showed: in the five kinds of dandelion, larger chloroplast, grana with more layers, regular thylakoid, without starch grains and so on, these chloroplasts characteristics decided to bigger photosynthetic rate. The five kinds of dandelion P(n) exhibited a "double peak" diurnal curve: stomatal limitation is the main adjustment factors for the midday depression phenomenon. The P(n),G(s),C(i) content of T. mongolicum are the highest, and T. asiaticum are the lowest among them. The relation between P(n) and G(s),C(i) is direct ratio, P(n) and T(r) is in an inverse proportion among the five kinds of dandelion. In addition, P(n) is positively correlated with Chla, Chlb, and the relationship with Chlb is bigger. The paper demonstrates the Mongolian dandelion photosynthetic efficiency is the highest, it is an higher photosynthetic efficiency dandelion,it provide theoretical basis for assessment and use of the resource of dandelion.

  8. The comparative toxicity of a reduced, crude comfrey (Symphytum officinale) alkaloid extract and the pure, comfrey-derived pyrrolizidine alkaloids, lycopsamine and intermedine in chicks (Gallus gallus domesticus)

    USDA-ARS?s Scientific Manuscript database

    Comfrey (Symphytum officinale), a commonly used herb, contains dehydropyrrolizidine alkaloids (DHPAs) that, as a group of bioactive metabolites, are potentially hepatotoxic, pneumotoxic, genotoxic and carcinogenic. Consequently, regulatory agencies and international health organizations have recomm...

  9. A polysaccharide of Dendrobium officinale ameliorates H2O2-induced apoptosis in H9c2 cardiomyocytes via PI3K/AKT and MAPK pathways.

    PubMed

    Zhang, Jing-Yi; Guo, Ying; Si, Jin-Ping; Sun, Xiao-Bo; Sun, Gui-Bo; Liu, Jing-Jing

    2017-11-01

    Dendrobium officinale is one valuable traditional Chinese medicine, which has skyscraping medicinal value. Polysaccharide is the main active ingredient in D. officinale; its antioxidant activity is a hot research topic nowadays. Oxidative stress plays an important role in the pathological progress of a variety of cardiovascular disease, as one of key factors of cardiomyocyte apoptosis. This research adopts a model of H 2 O 2 induction-H9c2 cardiomyocytes apoptosis, aiming to study the effect of Dendrobium officinale Polysaccharide (DOP-GY) for cardiomyocyte apoptosis caused by oxidative stress and its possible mechanism. Our results showed that pretreatment of DOP-GY (low dose: 6.25μg/mL, medium dose: 12.5μg/mL, high dose: 25μg/mL) followed by a 2h incubation with 200μM H 2 O 2 elevated the survival rate, cutted the LDH leakage, reduced lipid peroxidation damage, improved the activity of the endogenous antioxidant enzymes. In addition, the pretreatment of DOP-GY significantly inhibited the production of ROS, declined of the mitochondrial membrane potential, down-regulated pro-apoptosis protein and up-regulated anti-apoptosis protein. The protective effect was correlated with the PI3K/Akt and MAPK signal pathway. Collectively, these observations suggest that DOY-GY has the potential to exert cardioprotective effects against H 2 O 2 -induced H9c2 cardiomyocyte apoptosis. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Effect of Different Light Intensities on Total Phenolics and Flavonoids Synthesis and Anti-oxidant Activities in Young Ginger Varieties (Zingiber officinale Roscoe)

    PubMed Central

    Ghasemzadeh, Ali; Jaafar, Hawa Z. E.; Rahmat, Asmah; Wahab, Puteri Edaroyati Megat; Halim, Mohd Ridzwan Abd

    2010-01-01

    Nowadays, phytochemicals and antioxidants in plants are raising interest in consumers for their roles in the maintenance of human health. Phenolics and flavonoids are known for their health-promoting properties due to protective effects against cardiovascular disease, cancers and other disease. Ginger (Zingiber officinale) is one of the traditional folk medicinal plants and it is widely used in cooking in Malaysia. In this study, four levels of glasshouse light intensities (310, 460, 630 and 790 μmol m−2s−1) were used in order to consider the effect of light intensity on the production, accumulation and partitioning of total phenolics (TP), total flavonoids (TF) and antioxidant activities in two varieties of Malaysian young ginger (Zingiber officinale). TF biosynthesis was highest in the Halia Bara variety under 310 μmol m−2s−1 and TP was high in this variety under a light intensity of 790 μmol m−2s−1. The highest amount of these components accumulated in the leaves and after that in the rhizomes. Also, antioxidant activities determined by the 1,1-Diphenyl-2-picryl-hydrazyl (DPPH) assay in both of varieties, increased significantly (p ≤ 0.01) with increasing TF concentration, and high antioxidant activity was observed in the leaves of Halia Bara grown under 310 μmol m−2s−1. The ferric reducing (FRAP) activity of the rhizomes was higher than that of the leaves in 310 μmol m−2s−1 of sun light. This study indicates the ability of different light intensities to enhance the medicinal components and antioxidant activities of the leaves and young rhizomes of Zingiber officinale varieties. Additionally, this study also validated their medicinal potential based on TF and TP contents. PMID:21152306

  11. Effect of different light intensities on total phenolics and flavonoids synthesis and anti-oxidant activities in young ginger varieties (Zingiber officinale Roscoe).

    PubMed

    Ghasemzadeh, Ali; Jaafar, Hawa Z E; Rahmat, Asmah; Wahab, Puteri Edaroyati Megat; Halim, Mohd Ridzwan Abd

    2010-10-12

    Nowadays, phytochemicals and antioxidants in plants are raising interest in consumers for their roles in the maintenance of human health. Phenolics and flavonoids are known for their health-promoting properties due to protective effects against cardiovascular disease, cancers and other disease. Ginger (Zingiber officinale) is one of the traditional folk medicinal plants and it is widely used in cooking in Malaysia. In this study, four levels of glasshouse light intensities (310, 460, 630 and 790 μmol m(-2)s(-1)) were used in order to consider the effect of light intensity on the production, accumulation and partitioning of total phenolics (TP), total flavonoids (TF) and antioxidant activities in two varieties of Malaysian young ginger (Zingiber officinale). TF biosynthesis was highest in the Halia Bara variety under 310 μmol m(-2)s(-1) and TP was high in this variety under a light intensity of 790 μmol m(-2)s(-1). The highest amount of these components accumulated in the leaves and after that in the rhizomes. Also, antioxidant activities determined by the 1,1-Diphenyl-2-picryl-hydrazyl (DPPH) assay in both of varieties, increased significantly (p ≤ 0.01) with increasing TF concentration, and high antioxidant activity was observed in the leaves of Halia Bara grown under 310 μmol m(-2)s(-1). The ferric reducing (FRAP) activity of the rhizomes was higher than that of the leaves in 310 μmol m(-2)s(-1) of sun light. This study indicates the ability of different light intensities to enhance the medicinal components and antioxidant activities of the leaves and young rhizomes of Zingiber officinale varieties. Additionally, this study also validated their medicinal potential based on TF and TP contents.

  12. Tissue distribution, core biosynthesis and diversification of pyrrolizidine alkaloids of the lycopsamine type in three Boraginaceae species.

    PubMed

    Frölich, Cordula; Ober, Dietrich; Hartmann, Thomas

    2007-04-01

    Three species of the Boraginaceae were studied: greenhouse-grown plants of Heliotropium indicum and Agrobacterium rhizogenes transformed roots cultures (hairy roots) of Cynoglossum officinale and Symphytum officinale. The species-specific pyrrolizidine alkaloid (PA) profiles of the three systems were established by GC-MS. All PAs are genuinely present as N-oxides. In H. indicum the tissue-specific PA distribution revealed the presence of PAs in all tissues with the highest levels in the inflorescences which in a flowering plant may account for more than 70% of total plant alkaloid. The sites of PA biosynthesis vary among species. In H. indicum PAs are synthesized in the shoot but not roots whereas they are only made in shoots for C. officinale and in roots of S. officinale. Classical tracer studies with radioactively labelled precursor amines (e.g., putrescine, spermidine and homospermidine) and various necine bases (trachelanthamidine, supinidine, retronecine, heliotridine) and potential ester alkaloid intermediates (e.g., trachelanthamine, supinine) were performed to evaluate the biosynthetic sequences. It was relevant to perform these comparative studies since the key enzyme of the core pathway, homospermidine synthase, evolved independently in the Boraginaceae and, for instance, in the Asteraceae [Reimann, A., Nurhayati, N., Backenkohler, A., Ober, D., 2004. Repeated evolution of the pyrrolizidine alkaloid-mediated defense system in separate angiosperm lineages. Plant Cell 16, 2772-2784.]. These studies showed that the core pathway for the formation of trachelanthamidine from putrescine and spermidine via homospermidine is common to the pathway in Senecio ssp. (Asteraceae). In both pathways homospermidine is further processed by a beta-hydroxyethylhydrazine sensitive diamine oxidase. Further steps of PA biosynthesis starting with trachelanthamidine as common precursor occur in two successive stages. Firstly, the necine bases are structurally modified and either

  13. Functional insights into the late embryogenesis abundant (LEA) protein family from Dendrobium officinale (Orchidaceae) using an Escherichia coli system

    PubMed Central

    Ling, Hong; Zeng, Xu; Guo, Shunxing

    2016-01-01

    Late embryogenesis abundant (LEA) proteins, a diverse family, accumulate during seed desiccation in the later stages of embryogenesis. LEA proteins are associated with tolerance to abiotic stresses, such as drought, salinity and high or cold temperature. Here, we report the first comprehensive survey of the LEA gene family in Dendrobium officinale, an important and widely grown medicinal orchid in China. Based on phylogenetic relationships with the complete set of Arabidopsis and Oryza LEA proteins, 17 genes encoding D. officinale LEAs (DofLEAs) were identified and their deduced proteins were classified into seven groups. The motif composition of these deduced proteins was correlated with the gene structure found in each LEA group. Our results reveal the DofLEA genes are widely distributed and expressed in tissues. Additionally, 11 genes from different groups were introduced into Escherichia coli to assess the functions of DofLEAs. Expression of 6 and 7 DofLEAs in E. coli improved growth performance compared with the control under salt and heat stress, respectively. Based on qPCR data, all of these genes were up-regulated in various tissues following exposure to salt and heat stresses. Our results suggest that DofLEAs play an important role in responses to abiotic stress. PMID:28004781

  14. Densitometric HPTLC analysis of 8-gingerol in Zingiber officinale extract and ginger-containing dietary supplements, teas and commercial creams

    PubMed Central

    Alam, Prawez

    2013-01-01

    Objective To develop and validate a simple, accurate HPTLC method for the analysis of 8-gingerol and to determine the quantity of 8-gingerol in Zingiber officinale extract and ginger-containing dietary supplements, teas and commercial creams. Methods The analysis was performed on 10×20 cm aluminium-backed plates coated with 0.2 mm layers of silica gel 60 F254 (E-Merck, Germany) with n-hexane: ethyl acetate 60: 40 (v/v) as mobile phase. Camag TLC Scanner III was used for the UV densitometric scanning at 569. Results This system was found to give a compact spot of 8-gingerol at retention factor (Rf) value of (0.39±0.04) and linearity was found in the ranges 50-500 ng/spot (r2=0.9987). Limit of detection (12.76 ng/spot), limit of quantification (26.32 ng/spot), accuracy (less than 2 %) and recovery (ranging from 98.22-99.20) were found satisfactory. Conclusions The HPTLC method developed for quantification of 8-gingerol was found to be simple, accurate, reproducible, sensitive and is applicable to the analysis of 8-gingerol in Zingiber officinale extract and ginger-containing dietary supplements, teas and commercial creams. PMID:23905021

  15. Zingiber officinale Improves Cognitive Function of the Middle-Aged Healthy Women

    PubMed Central

    Saenghong, Naritsara; Wattanathorn, Jintanaporn; Muchimapura, Supaporn; Tongun, Terdthai; Piyavhatkul, Nawanant; Banchonglikitkul, Chuleratana; Kajsongkram, Tanwarat

    2012-01-01

    The development of cognitive enhancers from plants possessing antioxidants has gained much attention due to the role of oxidative stress-induced cognitive impairment. Thus, this study aimed to determine the effect of ginger extract, or Zingiber officinale, on the cognitive function of middle-aged, healthy women. Sixty participants were randomly assigned to receive a placebo or standardized plant extract at doses of 400 and 800 mg once daily for 2 months. They were evaluated for working memory and cognitive function using computerized battery tests and the auditory oddball paradigm of event-related potentials at three different time periods: before receiving the intervention, one month, and two months. We found that the ginger-treated groups had significantly decreased P300 latencies, increased N100 and P300 amplitudes, and exhibited enhanced working memory. Therefore, ginger is a potential cognitive enhancer for middle-aged women. PMID:22235230

  16. De Novo transcriptome assembly of Zingiber officinale cv. Suruchi of Odisha.

    PubMed

    Gaur, Mahendra; Das, Aradhana; Sahoo, Rajesh Kumar; Kar, Basudeba; Nayak, Sanghamitra; Subudhi, Enketeswara

    2016-09-01

    Zingiber officinale Rosc., known as ginger, is an Asian crop, popularly used in every household kitchen and commercially used in bakery, beverage, food and pharmaceutical industries. The present study deals with de novo transcriptome assembly of an elite ginger cultivar Suruchi by next generation sequencing methodology. From the analysis 10.9 GB raw data was obtained which can be available in NCBI accession number SAMN03761185. We identified 41,969 transcripts using Trinity RNA-Seq from ginger rhizome of Suruchi variety from Odisha. The transcript length varied from 300 bp to 8404 bp with a total length of 3,96,40,526 bp and N50 of 1251 bp. To the best of our knowledge, this is the first transcriptome data of an elite ginger cultivar Suruchi released for Odisha state of India which will help molecular biologists to develop genetic markers for identification of cultivars.

  17. First genetic linkage map of Taraxacum koksaghyz Rodin based on AFLP, SSR, COS and EST-SSR markers

    PubMed Central

    Arias, Marina; Hernandez, Monica; Remondegui, Naroa; Huvenaars, Koen; van Dijk, Peter; Ritter, Enrique

    2016-01-01

    Taraxacum koksaghyz Rodin (TKS) has been studied in many occasions as a possible alternative source for natural rubber production of good quality and for inulin production. Some tire companies are already testing TKS tire prototypes. There are also many investigations on the production of bio-fuels from inulin and inulin applications for health improvement and in the food industry. A limited amount of genomic resources exist for TKS and particularly no genetic linkage map is available in this species. We have constructed the first TKS genetic linkage map based on AFLP, COS, SSR and EST-SSR markers. The integrated linkage map with eight linkage groups (LG), representing the eight chromosomes of Russian dandelion, has 185 individual AFLP markers from parent 1, 188 individual AFLP markers from parent 2, 75 common AFLP markers and 6 COS, 1 SSR and 63 EST-SSR loci. Blasting the EST-SSR sequences against known sequences from lettuce allowed a partial alignment of our TKS map with a lettuce map. Blast searches against plant gene databases revealed some homologies with useful genes for downstream applications in the future. PMID:27488242

  18. Zingiber officinale and 6-gingerol alleviate liver and kidney dysfunctions and oxidative stress induced by mercuric chloride in male rats: A protective approach.

    PubMed

    Joshi, Deepmala; Srivastav, Sunil Kumar; Belemkar, Sateesh; Dixit, Vaibhav A

    2017-07-01

    Mercury toxicity is an emerging problem in the world as its concentration is rising continuously due to increased industrial, medicinal and domestic uses. Exposure to mercury represents a serious challenge to humans and other living biomes. The aim of the present study was to assess the protective effect of natural products as Zingiber officinale extract and its active compound (6-gingerol) against mercuric chloride-induced hepatorenal toxicity and oxidative stress in male rats. Male Sprague-Dawley rats (150±10g, n=6 per group) were administered HgCl 2 (12μmol/kg, ip; once only) the treatment of Zingiber officinale Rosc. extract (ZO: 125mg/kg, po) and 6-gingerol (GG: 50mg/kg, po) for three days after 24h of HgCl 2 administration. Acute HgCl 2 administration altered various biochemical parameters, including transaminases, alkaline phosphatase, lactate dehydrogenase, bilirubin, gamma-glutamyl transferase, triglycerides and cholesterol, urea, creatinine, uric acid and blood urea nitrogen contents with a concomitant decline in protein and albumin concentration in serum. In addition, a significant rise in lipid peroxidation level with concomitant decrease in reduced glutathione content and the antioxidant enzymes activities of superoxide dismutase, catalase, glutathione reductase, glutathione peroxidase and glutathione-S-transferase after acute HgCl 2 exposure. Results of the present investigation clearly showed that both treatments as Zingiber officinale extract and 6-gingerol provide protection against acute mercuric chloride-intoxication by preventing oxidative degradation of a biological membrane from metal mediated free radical attacks. Biochemical data were well supported by histopathological findings. In conclusion, natural products may be an ideal choice against oxidative damage induced by mercury poisoning. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  19. Chemical Composition and antiproliferative activity of essential oil from the leaves of a medicinal herb, Levisticum officinale, against UMSCC1 head and neck squamous carcinoma cells.

    PubMed

    Sertel, Serkan; Eichhorn, Tolga; Plinkert, Peter K; Efferth, Thomas

    2011-01-01

    Oral squamous cell carcinoma (OSCC) is a challenging disease with a high mortality rate. Natural products represent a valuable source for the development of novel anticancer drugs. We investigated the cytotoxic potential of essential oil from the leaves of a medicinal plant, Levisticum officinale (lovage) on head and neck squamous carcinoma cells (HNSCC). Cytotoxicity of lovage essential oil was investigated on the HNSCC cell line, UMSCC1. Additionally, we performed pharmacogenomics analyses. Lovage essential oil extract had an IC₅₀ value of 292.6 μg/ml. Genes involved in apoptosis, cancer, cellular growth and cell cycle regulation were the most prominently affected in microarray analyses. The three pathways to be most significantly regulated were extracellular signal-regulated kinase 5 (ERK5) signaling, integrin-linked kinase (ILK) signaling, virus entry via endocytic pathways and p53 signaling. Levisticum officinale essential oil inhibits human HNSCC cell growth.

  20. [Triterpenoid saponins from flower bud of Jasminum officinale var. grandiflorum].

    PubMed

    Zhao, Gui-Qin; Dong, Jun-Xing

    2008-01-01

    To study the chemical constituent bud of the flowers of Jasminum officinale var. grandiflorum. The compounds were isolated and purified by recrystallization and chromatography on silica gel and Sephadex LH - 20 column. Their structures were elucidated on the basis of physicochemical properties and spectral analysis. Six triterpenoid saponins were identified as 3-O-alpha-L-rhamnopyranosyl (1 --> 2)-beta-D-xylopyranosyl- hederagenin-28-O-beta-D-galactopyranosyl (1 --> 6)-beta-D-galactopyranosyl ester (1), hederagenin-3-O-beta-D-glucopyranosyl (1 --> 3)-alpha-L-arabinopyranoside (2), 2alpha, 3beta, 23-trihydroxyolean-12-en-28-oic-O-beta-D-glucopyranosyl ester (3), hederagenin-3-O-beta-D-xylopyranosyl (1 --> 3)-alpha-L-rhamnopyranosyl (1 --> 2)-alpha-L-arabinopyranoside (4), 2alpha, 3beta, 23-trihydroxyolean-12-en-28-oic-O-alpha-L-rhamnopyranosyl (1 --> 4)-beta-D-glucopyranosyl (1 --> 6)-beta-D-glucopyranosyl ester (5), hederagenin-3-O-alpha-L-rhamnopyranosyl (1 --> 2)-alpha-L-arabinopyranoside (6). Compound 1 is a new compound. Compounds 2, 3, 4, 5, 6 were isolated from the genus Jasminum for the first time.

  1. Amelioration of pancreatic and renal derangements in streptozotocin-induced diabetic rats by polyphenol extracts of Ginger (Zingiber officinale) rhizome.

    PubMed

    Kazeem, Mutiu Idowu; Akanji, Musbau Adewunmi; Yakubu, Musa Toyin

    2015-12-01

    Free and bound polyphenol extracts of Zingiber officinale rhizome were investigated for their antidiabetic potential in the pancreatic and renal tissues of diabetic rats at a dose of 500mg/kg body weight. Forty Wistar rats were completely randomized into five groups: A-E consisting of eight animals each. Group A (control) comprises normal healthy animals and were orally administered 1.0mL distilled water on a daily basis for 42 days while group B-E were made up of 50mg/kg streptozotocin (STZ)-induced diabetic rats. Group C and D received 1.0mL 500mg/kg body weight free and bound polyphenol extracts respectively while group E received 1.0mL 0.6mg/kg of glibenclamide. Administration of the extracts to the diabetic rats significantly reduced (p<0.05) serum glucose and urea concentrations, increased (p<0.05) serum insulin and Homeostatic Model Assessment for β-cell dysfunction (HOMA-β) while the level of creatinine and Homeostatic Model Assessment for Insulin Resistance (HOMA-IR) were not affected. Histological examination of the pancreas and kidney revealed restoration of the structural derangements caused by streptozotocin in the polyphenol extracts treated diabetic rats compared to the control groups. Therefore, polyphenols from Zingiber officinale could ameliorate diabetes-induced pancreatic and renal derangements in rats. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  2. The root economics spectrum: divergence of absorptive root strategies with root diameter

    NASA Astrophysics Data System (ADS)

    Kong, D.; Wang, J.; Kardol, P.; Wu, H.; Zeng, H.; Deng, X.; Deng, Y.

    2015-08-01

    Plant roots usually vary along a dominant ecological axis, the root economics spectrum (RES), depicting a tradeoff between resource acquisition and conservation. For absorptive roots, which are mainly responsible for resource acquisition, we hypothesized that root strategies as predicted from the RES shift with increasing root diameter. To test this hypothesis, we used seven contrasting plant species for which we separated absorptive roots into two categories: thin roots (< 247 μm diameter) and thick roots. For each category, we analyzed a~range of root traits closely related to resource acquisition and conservation, including root tissue density, carbon (C) and nitrogen (N) fractions as well as root anatomical traits. The results showed that trait relationships for thin absorptive roots followed the expectations from the RES while no clear trait relationships were found in support of the RES for thick absorptive roots. Our results suggest divergence of absorptive root strategies in relation to root diameter, which runs against a single economics spectrum for absorptive roots.

  3. Relationships between root diameter, root length and root branching along lateral roots in adult, field-grown maize

    PubMed Central

    Wu, Qian; Pagès, Loïc; Wu, Jie

    2016-01-01

    Background and Aims Root diameter, especially apical diameter, plays an important role in root development and function. The variation in diameter between roots, and along roots, affects root structure and thus the root system’s overall foraging performance. However, the effect of diameter variation on root elongation, branching and topological connections has not been examined systematically in a population of high-order roots, nor along the roots, especially for mature plants grown in the field. Methods A method combining both excavation and analysis was applied to extract and quantify root architectural traits of adult, field-grown maize plants. The relationships between root diameter and other root architectural characteristics are analysed for two maize cultivars. Key Results The basal diameter of the lateral roots (orders 1–3) was highly variable. Basal diameter was partly determined by the diameter of the bearing segment. Basal diameter defined a potential root length, but the lengths of most roots fell far short of this. This was explained partly by differences in the pattern of diameter change along roots. Diameter tended to decrease along most roots, with the steepness of the gradient of decrease depending on basal diameter. The longest roots were those that maintained (or sometimes increased) their diameters during elongation. The branching density (cm–1) of laterals was also determined by the diameter of the bearing segment. However, the location of this bearing segment along the mother root was also involved – intermediate positions were associated with higher densities of laterals. Conclusions The method used here allows us to obtain very detailed records of the geometry and topology of a complex root system. Basal diameter and the pattern of diameter change along a root were associated with its final length. These relationships are especially useful in simulations of root elongation and branching in source–sink models. PMID:26744490

  4. Is the Success of Plant Invasions the Result of Rapid Adaptive Evolution in Seed Traits? Evidence from a Latitudinal Rainfall Gradient

    PubMed Central

    Molina-Montenegro, Marco A.; Acuña-Rodríguez, Ian S.; Flores, Tomás S. M.; Hereme, Rasme; Lafon, Alejandra; Atala, Cristian; Torres-Díaz, Cristian

    2018-01-01

    It has been widely suggested that invasion success along broad environmental gradients may be partially due to phenotypic plasticity, but rapid evolution could also be a relevant factor for invasions. Seed and fruit traits can be relevant for plant invasiveness since they are related to dispersal, germination, and fitness. Some seed traits vary along environmental gradients and can be heritable, with the potential to evolve by means of natural selection. Utilizing cross-latitude and reciprocal-transplant experiments, we evaluated the adaptive value of seed thickness as assessed by survival and biomass accumulation in Taraxacum officinale plants. In addition, thickness of a seed and Endosperm to Seed Coat Proportion (ESCP) in a second generation (F2) was measured to evaluate the heritability of this seed trait. On the other hand, we characterized the genetic variability of the sampled individuals with amplified fragment length polymorphism (AFLP) markers, analyzing its spatial distribution and population structure. Overall, thickness of seed coat (plus wall achene) decreases with latitude, indicating that individuals of T. officinale from northern populations have a thicker seed coat than those from southern populations. Germination increased with greater addition of water and seeds from southern localities germinated significantly more than those from the north. Additionally, reciprocal transplants showed significant differences in survival percentage and biomass accumulation among individuals from different localities and moreover, the high correlation between maternal plants and their offspring can be suggesting a high grade of heritability of this trait. Although genetic differentiation was found when was considered all populations, there was no significant differentiation when only was compared the northernmost populations which inhabit in the driest climate conditions. Our results suggest that climatic conditions could affect both, the ESCP and the genetic

  5. Automated Root Tracking with "Root System Analyzer"

    NASA Astrophysics Data System (ADS)

    Schnepf, Andrea; Jin, Meina; Ockert, Charlotte; Bol, Roland; Leitner, Daniel

    2015-04-01

    Crucial factors for plant development are water and nutrient availability in soils. Thus, root architecture is a main aspect of plant productivity and needs to be accurately considered when describing root processes. Images of root architecture contain a huge amount of information, and image analysis helps to recover parameters describing certain root architectural and morphological traits. The majority of imaging systems for root systems are designed for two-dimensional images, such as RootReader2, GiA Roots, SmartRoot, EZ-Rhizo, and Growscreen, but most of them are semi-automated and involve mouse-clicks in each root by the user. "Root System Analyzer" is a new, fully automated approach for recovering root architectural parameters from two-dimensional images of root systems. Individual roots can still be corrected manually in a user interface if required. The algorithm starts with a sequence of segmented two-dimensional images showing the dynamic development of a root system. For each image, morphological operators are used for skeletonization. Based on this, a graph representation of the root system is created. A dynamic root architecture model helps to determine which edges of the graph belong to an individual root. The algorithm elongates each root at the root tip and simulates growth confined within the already existing graph representation. The increment of root elongation is calculated assuming constant growth. For each root, the algorithm finds all possible paths and elongates the root in the direction of the optimal path. In this way, each edge of the graph is assigned to one or more coherent roots. Image sequences of root systems are handled in such a way that the previous image is used as a starting point for the current image. The algorithm is implemented in a set of Matlab m-files. Output of Root System Analyzer is a data structure that includes for each root an identification number, the branching order, the time of emergence, the parent

  6. iTRAQ and RNA-Seq Analyses Provide New Insights into Regulation Mechanism of Symbiotic Germination of Dendrobium officinale Seeds (Orchidaceae).

    PubMed

    Chen, Juan; Liu, Si Si; Kohler, Annegret; Yan, Bo; Luo, Hong Mei; Chen, Xiao Mei; Guo, Shun Xing

    2017-06-02

    Mycorrhizal fungi colonize orchid seeds and induce germination. This so-called symbiotic germination is a critical developmental process in the lifecycle of all orchid species. However, the molecular changes that occur during orchid seed symbiotic germination remain largely unknown. To better understand the molecular mechanism of orchid seed germination, we performed a comparative transcriptomic and proteomic analysis of the Chinese traditional medicinal orchid Dendrobium officinale to explore the change in protein expression at the different developmental stages during asymbiotic and symbiotic germination and identify the key proteins that regulate the symbiotic germination of orchid seeds. Among 2256 identified plant proteins, 308 were differentially expressed across three developmental stages during asymbiotic and symbiotic germination, and 229 were differentially expressed during symbiotic germination compared to asymbiotic development. Of these, 32 proteins were coup-regulated at both the proteomic and transcriptomic levels during symbiotic germination compared to asymbiotic germination. Our results suggest that symbiotic germination of D. officinale seeds shares a common signaling pathway with asymbiotic germination during the early germination stage. However, compared to asymbiotic germination, fungal colonization of orchid seeds appears to induce higher and earlier expression of some key proteins involved in lipid and carbohydrate metabolism and thus improves the efficiency of utilization of stored substances present in the embryo. This study provides new insight into the molecular basis of orchid seed germination.

  7. Structural Elements and Cough Suppressing Activity of Polysaccharides from Zingiber officinale Rhizome.

    PubMed

    Bera, K; Nosalova, G; Sivova, V; Ray, B

    2016-01-01

    Zingiber officinale is used for the management of fever, bronchial asthma and cough for thousands of years. While the link to a particular indication has been established in human, the active principle of the formulation remains unknown. Herein, we have investigated a water extracted polysaccharides (WEP) containing fraction from its rhizome. Utilizing a traditional aqueous extraction protocol and using chemical, chromatographic and spectroscopic methods a fraction containing a branched glucan and polygalaturonan in a ratio of 59:1 was characterized. This glucan, which has a molecular mass of 36 kDa, is made up of terminal-, (1,4)- and (1,4,6)-linked α-Glcp residues. Oral administration of WEP in doses of 25 and 50 mg/kg body weight significantly inhibited the number of citric acid-induced cough efforts in guinea pigs. It does not alter the specific airway smooth muscle reactivity significantly. Thus, traditional aqueous extraction method provides molecular entities, which induces antitussive activity without addiction. Copyright © 2015 John Wiley & Sons, Ltd.

  8. 10-Shogaol, an Antioxidant from Zingiber officinale for Skin Cell Proliferation and Migration Enhancer

    PubMed Central

    Chen, Chung-Yi; Cheng, Kuo-Chen; Chang, Andy Y; Lin, Ying-Ting; Hseu, You-Cheng; Wang, Hui-Min

    2012-01-01

    In this work, one of Zingiber officinale components, 10-shogaol, was tested with 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging, metal chelating ability, and reducing power to show antioxidant activity. 10-Shogaol promoted human normal epidermal keratinocytes and dermal fibroblasts cell growths. 10-Shogaol enhanced growth factor production in transforming growth factor-β (TGF-β), platelet derived growth factor-αβ (PDGF-αβ) and vascular endothelial growth factors (VEGF) of both cells. In the in vitro wound healing assay for 12 or 24 h, with 10-shogaol, the fibroblasts and keratinocytes migrated more rapidly than the vehicle control group. Thus, this study substantiates the target compound, 10-shogaol, as an antioxidant for human skin cell growth and a migration enhancer with potential to be a novel wound repair agent. PMID:22408422

  9. Aqueous Extract Composition of Spent Ginger (Zingiber officinale var. Amarum) from Essential Oil Distillation

    NASA Astrophysics Data System (ADS)

    Manuhara, G. J.; Mentari, G. P.; Khasanah, L. U.; Utami, R.

    2018-03-01

    Ginger (Zingiber officinale var Amarum) is widely used as raw material for essential oil production in Indonesia and contain high functional compounds. After producing essential oil, distillation leave less valuable spent ginger. This research was conducted to determine the bioactive compounds remained in aqueous extract of the spent ginger. The extracts were produced at various combination of temperature (55, 75, 95°C) and duration (15, 30, 45 minutes). The extract composition was observed using Gas Chromatography - Mass Spectrometry analysis. The temperature and time of maceration extraction affected the content of compounds in spent ginger aqueous extracts. The extracts contained four largest components of α-curcumene, α-zingiberene, β-sesquiphellandrene and β-bisabolene. The aqueous extracts from spent ginger contained the compounds which may contribute to distinctive flavor of ginger and also bioactive function.

  10. Zingiber officinale acts as a nutraceutical agent against liver fibrosis

    PubMed Central

    2011-01-01

    Background/objective Zingiber officinale Roscoe (ginger) (Zingiberaceae) has been cultivated for thousands of years both as a spice and for medicinal purposes. Ginger rhizomes successive extracts (petroleum ether, chloroform and ethanol) were examined against liver fibrosis induced by carbon tetrachloride in rats. Results The evaluation was done through measuring antioxidant parameters; glutathione (GSH), total superoxide dismutase (SOD) and malondialdehyde (MDA). Liver marker enzymes; succinate and lactate dehydrogenases (SDH and LDH), glucose-6-phosphatase (G-6-Pase), acid phosphatase (AP), 5'- nucleotidase (5'NT) and liver function enzymes; aspartate and alanine aminotransferases (AST and ALT) as well as cholestatic markers; alkaline phosphatase (ALP), gamma glutamyl transferase (GGT), total bilirubin were estimated. Liver histopathological analysis and collagen content were also evaluated. Treatments with the selected extracts significantly increased GSH, SOD, SDH, LDH, G-6-Pase, AP and 5'NT. However, MDA, AST, ALT ALP, GGT and total bilirubin were significantly decreased. Conclusions Extracts of ginger, particularly the ethanol one resulted in an attractive candidate for the treatment of liver fibrosis induced by CCl4. Further studies are required in order to identify the molecules responsible of the pharmacological activity. PMID:21689445

  11. Immunochemical approach to the problem of differential determination of natural forms of abscisic acid.

    PubMed

    Blintsov, A N; Gussakovskaya, M A

    2004-10-01

    An original modification of the standard ELISA procedure for differential determination of different forms of abscisic acid (ABA) is proposed. It is shown that endogenous forms of ABA may be quantitatively determined in plant tissues subjected to minimal treatment, without purification of the hormones and their chemical modification. The modification has been approved when analyzing changes in the content of different ABA forms in plant tissues differing in physiological activity. Quantitative differential determination of changes in the content of different ABA forms has been performed in ovaries of Triticum aestivum L. and Taraxacum officinale Web. in the period of activity of the ovule (from the moment of its activation to the beginning of division). It is shown that, despite the different types of reproduction in the species studied (amphimixis and apomixis), the time course of changes in the content of different forms of ABA in ovaries is similar, which is suggestive of a correlation between the activity of endogenous hormonal system and chronology of main events (e.g., the beginning of endospermogenesis) of the reproductive cycle.

  12. Weed Hosts of Meloidogyne arenaria and M. incognita Common in Tobacco Fields in South Carolina

    PubMed Central

    Tedford, E. C.; Fortnum, B. A.

    1988-01-01

    Thirty-two weed species common in South Carolina and one cultivar of tobacco were evaluated as hosts of Meloidogyne arenaria race 2 and M. incognita race 3 in the greenhouse. Egg mass production and galling differed (P < 0.05) among weed species. Chenopodium album, Euphorbia maculata, and Vicia villosa were good hosts of M. arenaria. Amaranthus palmeri, Rumex crispus, Amaranthus hybridus, Ambrosia artemisiifolia, lpomoea hederacea var. integriuscula, Setaria lutescens, Sida spinosa, Portulaca oleracea, and Rumex acetosella were moderate hosts. Taraxacum officinale, Ipomoea hederacea, Cyperus esculentus, Cynodon dactyIon, Echinochloa crus-galli, Eleusine indica, Sorghum halepense, Setaria viridis, Digitaria sanguinalis, and Datura stramonium were poor hosts for M. arenaria. Amaranthus palmeri, Amaranthus hybridus, Chenopodium album, Euphorbia maculata, Setaria lutescens, Vicia villosa, Sida spinosa, Rumex crispus, and Portulaca oleracea were moderate hosts and Ipomoea hederacea var. integriuscula, Xanthium strumarium, Cyperus esculentus, Cynodon dactylon, Paspalum notatum, Eleusine indica, Setaria viridis, and Rumex acetosella were poor hosts for M. incognita. None of the above were good hosts for M. incognita. Tobacco 'PD4' supported large numbers of both nematode species. PMID:19290313

  13. Weed Hosts of Meloidogyne arenaria and M. incognita Common in Tobacco Fields in South Carolina.

    PubMed

    Tedford, E C; Fortnum, B A

    1988-10-01

    Thirty-two weed species common in South Carolina and one cultivar of tobacco were evaluated as hosts of Meloidogyne arenaria race 2 and M. incognita race 3 in the greenhouse. Egg mass production and galling differed (P < 0.05) among weed species. Chenopodium album, Euphorbia maculata, and Vicia villosa were good hosts of M. arenaria. Amaranthus palmeri, Rumex crispus, Amaranthus hybridus, Ambrosia artemisiifolia, lpomoea hederacea var. integriuscula, Setaria lutescens, Sida spinosa, Portulaca oleracea, and Rumex acetosella were moderate hosts. Taraxacum officinale, Ipomoea hederacea, Cyperus esculentus, Cynodon dactyIon, Echinochloa crus-galli, Eleusine indica, Sorghum halepense, Setaria viridis, Digitaria sanguinalis, and Datura stramonium were poor hosts for M. arenaria. Amaranthus palmeri, Amaranthus hybridus, Chenopodium album, Euphorbia maculata, Setaria lutescens, Vicia villosa, Sida spinosa, Rumex crispus, and Portulaca oleracea were moderate hosts and Ipomoea hederacea var. integriuscula, Xanthium strumarium, Cyperus esculentus, Cynodon dactylon, Paspalum notatum, Eleusine indica, Setaria viridis, and Rumex acetosella were poor hosts for M. incognita. None of the above were good hosts for M. incognita. Tobacco 'PD4' supported large numbers of both nematode species.

  14. Effect of traditional leafy vegetables on the growth of lactobacilli and bifidobacteria.

    PubMed

    Kassim, Muhammad Arshad; Baijnath, Himansu; Odhav, Bharti

    2014-12-01

    Traditional leafy vegetables, apart from being a staple in the diet of most of sub-Saharan Africa, are an essential part of traditional medicine and are used daily by traditional healers in the region to treat a wide variety of ailments. In this study, a batch culture technique was used to investigate whether 25 infusions from 22 traditional leafy vegetables stimulated the growth of Lactobacillus bulgaricus, Lactobacillus lactis, Lactobacillus reuteri and Bifidobacterium longum in pure culture. High performance liquid chromatography was used to determine the inulin content of the infusions. Sonchus oleraceus stimulated all four strains and Taraxacum officinale stimulated three strains. In total, 18 plants stimulated at least one of the four probiotic strains. The inulin content of the infusions varied between 2.5% and 3.6%, with Asparagus sprengeri containing the highest percentage. These results indicate that traditional leafy vegetables do stimulate the growth of the selected lactobacilli and bifidobacteria in pure culture and contain inulin. These infusions can now be tested for prebiotic potential using mixed culture systems or human hosts.

  15. Change of plant phenophases explained by survival modeling

    NASA Astrophysics Data System (ADS)

    Templ, Barbara; Fleck, Stefan; Templ, Matthias

    2017-05-01

    It is known from many studies that plant species show a delay in the timing of flowering events with an increase in latitude and altitude, and an advance with an increase in temperature. Furthermore, in many locations and for many species, flowering dates have advanced over the long-term. New insights using survival modeling are given based on data collected (1970-2010) along a 3000-km long transect from northern to eastern central Europe. We could clearly observe that in the case of dandelion ( Taraxacum officinale) the risk of flowering time, in other words the probability that flowering occurs, is higher for an earlier day of year in later decades. Our approach assume that temperature has greater influence than precipitation on the timing of flowering. Evaluation of the predictive power of tested models suggests that Cox models may be used in plant phenological research. The applied Cox model provides improved predictions of flowering dates compared to traditional regression methods and gives further insights into drivers of phenological events.

  16. Effect of cooking methods on antioxidant activity and nitrate content of selected wild Mediterranean plants.

    PubMed

    Boari, Francesca; Cefola, Maria; Di Gioia, Francesco; Pace, Bernardo; Serio, Francesco; Cantore, Vito

    2013-11-01

    Wild edible plants (WEP), traditionally consumed in the Mediterranean diet, are considered a rich source of natural antioxidants but can also accumulate significant amount of nitrates. Most WEP are cooked before consumption, therefore, a study was conducted to evaluate the effects of boiling, steaming and microwave cooking processes on the total antioxidant activity (TAA) and nitrate content of eight common WEP. Boiling caused the highest losses of TAA, resulting in a reduction of the TAA on dry weight (DW) basis ranging from 5.5% in Beta vulgaris up to 100% in Urtica dioica. Steaming and microwaving produced the highest increase of TAA on DW basis in Helminthotheca echioides (249.7%) and Taraxacum officinale (60.7%). Boiling caused the highest reduction of nitrate content in all species excluding Asparagus acutifolius that maintained almost unvaried its already low nitrate content. These results suggest that cooking has not always negative effect on product quality, since in certain cases, it may even enhance the nutritional value of WEP by increasing their TAA and reducing the nitrate content.

  17. Early vs. asymptotic growth responses of herbaceous plants to elevated CO[sub 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thomas, S.C.; Jasienski, M.; Bazzaz, F.A.

    1999-07-01

    Although many studies have examined the effects of elevated carbon dioxide on plant growth,'' the dynamics of growth involve at least two parameters, namely, an early rate of exponential size increase and an asymptotic size reached late in plant ontogeny. The common practice of quantifying CO[sub 2] responses as a single response ratio thus obscures two qualitatively distinct kinds of effects. The present experiment examines effects of elevated CO[sub 2] on both early and asymptotic growth parameters in eight C[sub 3] herbaceous plant species (Abutilon theophrasti, Cassia obtusifolia, Plantago major, Rumex crispus, Taraxacum officinale, Dactylis glomerata, Lolium multiflorum, and Panicummore » dichotomoflorum). Plants were grown for 118--172 d in a factorial design of CO[sub 2] (350 and 700 [micro]L/L) and plant density (individually grown vs. high-density monocultures) under edaphic conditions approximating those of coastal areas in Massachusetts. For Abutilon theophrasti, intraspecific patterns of plant response were also assessed using eight genotypes randomly sampled from a natural population and propagated as inbred lines.« less

  18. Root architecture simulation improves the inference from seedling root phenotyping towards mature root systems.

    PubMed

    Zhao, Jiangsan; Bodner, Gernot; Rewald, Boris; Leitner, Daniel; Nagel, Kerstin A; Nakhforoosh, Alireza

    2017-02-01

    Root phenotyping provides trait information for plant breeding. A shortcoming of high-throughput root phenotyping is the limitation to seedling plants and failure to make inferences on mature root systems. We suggest root system architecture (RSA) models to predict mature root traits and overcome the inference problem. Sixteen pea genotypes were phenotyped in (i) seedling (Petri dishes) and (ii) mature (sand-filled columns) root phenotyping platforms. The RSA model RootBox was parameterized with seedling traits to simulate the fully developed root systems. Measured and modelled root length, first-order lateral number, and root distribution were compared to determine key traits for model-based prediction. No direct relationship in root traits (tap, lateral length, interbranch distance) was evident between phenotyping systems. RootBox significantly improved the inference over phenotyping platforms. Seedling plant tap and lateral root elongation rates and interbranch distance were sufficient model parameters to predict genotype ranking in total root length with an RSpearman of 0.83. Parameterization including uneven lateral spacing via a scaling function substantially improved the prediction of architectures underlying the differently sized root systems. We conclude that RSA models can solve the inference problem of seedling root phenotyping. RSA models should be included in the phenotyping pipeline to provide reliable information on mature root systems to breeding research. © The Author 2017. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  19. Root architecture simulation improves the inference from seedling root phenotyping towards mature root systems

    PubMed Central

    Zhao, Jiangsan; Rewald, Boris; Leitner, Daniel; Nagel, Kerstin A.; Nakhforoosh, Alireza

    2017-01-01

    Abstract Root phenotyping provides trait information for plant breeding. A shortcoming of high-throughput root phenotyping is the limitation to seedling plants and failure to make inferences on mature root systems. We suggest root system architecture (RSA) models to predict mature root traits and overcome the inference problem. Sixteen pea genotypes were phenotyped in (i) seedling (Petri dishes) and (ii) mature (sand-filled columns) root phenotyping platforms. The RSA model RootBox was parameterized with seedling traits to simulate the fully developed root systems. Measured and modelled root length, first-order lateral number, and root distribution were compared to determine key traits for model-based prediction. No direct relationship in root traits (tap, lateral length, interbranch distance) was evident between phenotyping systems. RootBox significantly improved the inference over phenotyping platforms. Seedling plant tap and lateral root elongation rates and interbranch distance were sufficient model parameters to predict genotype ranking in total root length with an RSpearman of 0.83. Parameterization including uneven lateral spacing via a scaling function substantially improved the prediction of architectures underlying the differently sized root systems. We conclude that RSA models can solve the inference problem of seedling root phenotyping. RSA models should be included in the phenotyping pipeline to provide reliable information on mature root systems to breeding research. PMID:28168270

  20. Succinyl-proteome profiling of Dendrobium officinale, an important traditional Chinese orchid herb, revealed involvement of succinylation in the glycolysis pathway.

    PubMed

    Feng, Shangguo; Jiao, Kaili; Guo, Hong; Jiang, Mengyi; Hao, Juan; Wang, Huizhong; Shen, Chenjia

    2017-08-10

    Lysine succinylation is a ubiquitous and important protein post-translational modification in various eukaryotic and prokaryotic cells. However, its functions in Dendrobium officinale, an important traditional Chinese orchid herb with high polysaccharide contents, are largely unknown. In our study, LC-MS/MS was used to identify the peptides that were enriched by immune-purification with a high-efficiency succinyl-lysine antibody. In total, 314 lysine succinylation sites in 207 proteins were identified. A gene ontology analysis showed that these proteins are associated with a wide range of cellular functions, from metabolic processes to stimuli responses. Moreover, two types of conserved succinylation motifs, '***K suc ******K**' and '****EK suc ***', were identified. Our data showed that lysine succinylation occurred on five key enzymes in the glycolysis pathway. The numbers of average succinylation sites on these five enzymes in plants were lower than those in bacteria and mammals. Interestingly, two active site amino acids residues, K103 and K225, could be succinylated in fructose-bisphosphate aldolase, indicating a potential function of lysine succinylation in the regulation of glycolytic enzyme activities. Furthermore, the protein-protein interaction network for the succinylated proteins showed that several functional terms, such as glycolysis, TCA cycle, oxidative phosphorylation and ribosome, are consisted. Our results provide the first comprehensive view of the succinylome of D. officinale and may accelerate future biological investigations of succinylation in the synthesis of polysaccharides, which are major active ingredients.

  1. Beneficial effects of ginger Zingiber officinale Roscoe on obesity and metabolic syndrome: a review.

    PubMed

    Wang, Jing; Ke, Weixin; Bao, Rui; Hu, Xiaosong; Chen, Fang

    2017-06-01

    In recent years, metabolic syndromes (MetSs), including diabetes mellitus, dyslipidemia, and cardiovascular diseases, have become a common health problem in both developed and developing countries. Accumulating data have suggested that traditional herbs might be able to provide a wide range of remedies in prevention and treatment of MetSs. Ginger (Zingiber officinale Roscoe, Zingiberaceae) has been documented to ameliorate hyperlipidemia, hyperglycemia, oxidative stress, and inflammation. These beneficial effects are mediated by transcription factors, such as peroxisome proliferator-activated receptors, adenosine monophosphate-activated protein kinase, and nuclear factor κB. This review focuses on recent findings regarding the beneficial effects of ginger on obesity and related complications in MetS and discusses its potential mechanisms of action. This review provides guidance for further applications of ginger for personalized nutrition and medicine. © 2017 New York Academy of Sciences.

  2. Structure analysis of a heteropolysaccharide from Taraxacum mongolicum Hand.-Mazz. and anticomplementary activity of its sulfated derivatives.

    PubMed

    Chen, MiaoMiao; Wu, Jianjun; Shi, Songshan; Chen, Yonglin; Wang, Huijun; Fan, Hongwei; Wang, Shunchun

    2016-11-05

    A homogenous water-soluble polysaccharide, DPSW-A, with a deduced chemical structure was extracted from the herb Taraxacum mongolicum Hand.-Mazz. Moreover, 80.813-kDa DPSW-A is composed of three types of monosaccharide, namely rhamnose, arabinose, and galactose, at a molar ratio of 1.0:10.7:11.9. The main chain of DPSW-A contains Terminal-Galp, 1,3-Galp, 1,6-Galp, 1,3,6-Galp, and 1,2,4-Rhap; the branched chain contains Terminal-Araf, 1,5-Araf, and 1,3,5-Araf. The sulfated derivatives prepared from DPSW-A showed inhibitory effects on complement activation through the classical pathway (CH50: Sul-DPSW-A, 3.94±0.43μg/mL; heparin, 104.40±3.82μg/mL) and alternative pathway (AP50: Sul-DPSW-A, 42.76±0.46μg/mL; heparin, 43.42±0.22μg/mL). Mechanism studies indicated that Sul-DPSW-A inhibited complement activation by blocking C1q, C1r, C1s, and C9, but not C2, C3, C4, and C5. In addition, Sul-DPSW-A displayed limited anticoagulant effects. These results suggest that Sul-DPSW-A prepared from DPSW-A is valuable for treating diseases caused by excessive complement system activation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Ethanolic extract of dandelion (Taraxacum mongolicum) induces estrogenic activity in MCF-7 cells and immature rats.

    PubMed

    Oh, Seung Min; Kim, Ha Ryong; Park, Yong Joo; Lee, Yong Hwa; Chung, Kyu Hyuck

    2015-11-01

    Plants of the genus Taraxacum, commonly known as dandelions, are used to treat breast cancer in traditional folk medicine. However, their use has mainly been based on empirical findings without sufficient scientific evidence. Therefore, we hypothesized that dandelions would behave as a Selective estrogen receptor modulator (SERM) and be effective as hormone replacement therapy (HRT) in the postmenopausal women. In the present study, in vitro assay systems, including cell proliferation assay, reporter gene assay, and RT-PCR to evaluate the mRNA expression of estrogen-related genes (pS2 and progesterone receptor, PR), were performed in human breast cancer cells. Dandelion ethanol extract (DEE) significantly increased cell proliferation and estrogen response element (ERE)-driven luciferase activity. DEE significantly induced the expression of estrogen related genes such as pS2 and PR, which was inhibited by tamoxifen at 1 μmol·L(-1). These results indicated that DEE could induce estrogenic activities mediated by a classical estrogen receptor pathway. In addition, immature rat uterotrophic assay was carried out to identify estrogenic activity of DEE in vivo. The lowest concentration of DEE slightly increased the uterine wet weight, but there was no significant effect with the highest concentration of DEE. The results demonstrate the potential estrogenic activities of DEE, providing scientific evidence supporting their use in traditional medicine. Copyright © 2015 China Pharmaceutical University. Published by Elsevier B.V. All rights reserved.

  4. Dendrobium officinale Kimura et Migo attenuates diabetic cardiomyopathy through inhibiting oxidative stress, inflammation and fibrosis in streptozotocin-induced mice.

    PubMed

    Zhang, Zhihao; Zhang, Duoduo; Dou, Mengmeng; Li, Zhubo; Zhang, Jie; Zhao, Xiaoyan

    2016-12-01

    Dendrobium officinale Kimura et Migo (Dendrobium catenatum Lindley), a prized traditional Chinese Medicine, has been used in China and Southeast Asian countries for centuries. The present study was aimed to investigate the effects and the possible mechanisms of the Dendrobium officinale extracts (DOE) on diabetic cardiomyopathy in mice. The diabetic model was induced by intraperitoneal injection of streptozotocin at the dose of 50mg/kg body weight for 5 consecutive days. After 8 weeks treatment of DOE, mice were sacrificed, blood sample and heart tissues were collected. Our results showed that Streptozotocin-induced diabetic model was effectively achieved and serum CK and LDH levels were significantly increased in mice with diabetic cardiomyopathy. Pretreatment with DOE decreased the heart-to-body weight ratio (HW/BW) and showed an evident hypoglycemic effect. DOE pretreatment significantly decreased CK, LDH, TC and TG levels, limited the production of MDA and increased the activities of T-SOD. The histological analysis of Oil red O staining and Sirius red staining showed an obvious amelioration of cardiac injury, inhibition of cardiac lipid accumulation and deposition of collagen when pretreatment with DOE. In addition, Western blot detection and analysis showed that DOE down-regulated the expression of TGF-β, collegan-1, fibronectin, NF-κB, TNF-α and IL-1β. In conclusion, our study suggested that DOE possesses the cardioprotective potential against diabetic cardiomyopathy, which may be due to the inhibition of oxidative stress, cardiac lipid accumulation, pro-inflammatory cytokines and cardiac fibrosis. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  5. Anti-giardial therapeutic potential of dichloromethane extracts of Zingiber officinale and Curcuma longa in vitro and in vivo.

    PubMed

    Dyab, Ahmad K; Yones, Doaa A; Ibraheim, Zedan Z; Hassan, Tasneem M

    2016-07-01

    Giardiosis is one of the common parasitic diarrhoea in humans, especially in children, worldwide. Many drugs are used for its treatment, but there is evidence of drug resistance, insufficient efficacy and unpleasant side effects. Natural products are good candidates for discovering more effective anti-giardial compounds. This study evaluated the activity of extracts of Zingiber officinale (ginger) and Curcuma longa (curcumin) against Giardia lamblia in vitro and in vivo. Giardia cyst suspension was prepared from children faecal specimens. For the in vitro experiment, 1, 10 and 50 mg⁄mL dichloromethane extracts of ginger and curcumin separately were incubated with Giardia cysts for 5, 10, 30 and 60 min. The viability was distinguished by 0.1 % eosin and a haemocytometer. For the in vivo experiments, Balb/c mice were infected with Giardia cyst suspension containing 10,000 cysts/mL. Infected mice were administered 10 and 20 mg kg(-1) day(-1) ginger and curcumin extracts separately for 7 days post-infection. The effectiveness of the extracts was evaluated by faecal cyst and intestinal trophozoite counts and histopathological examination of the small intestine. In vitro ginger extract had a higher significant effect on cyst viability than curcumin, in a dose- and time-dependent manner. In vivo ginger (more effective) and curcumin extracts significantly treated infected mice, and this was evidenced by the faecal cyst and intestinal trophozoite counts reduction, in addition to evident improvement of intestinal mucosal damages induced by Giardia infection. Z. officinale and C. longa extracts may represent effective and natural therapeutic alternatives with low side effects and without drug resistance in the treatment of giardiosis.

  6. Characterization of rubber particles and rubber chain elongation in Taraxacum koksaghyz

    PubMed Central

    2010-01-01

    Background Natural rubber is a biopolymer with exceptional qualities that cannot be completely replaced using synthetic alternatives. Although several key enzymes in the rubber biosynthetic pathway have been isolated, mainly from plants such as Hevea brasiliensis, Ficus spec. and the desert shrub Parthenium argentatum, there have been no in planta functional studies, e.g. by RNA interference, due to the absence of efficient and reproducible protocols for genetic engineering. In contrast, the Russian dandelion Taraxacum koksaghyz, which has long been considered as a potential alternative source of low-cost natural rubber, has a rapid life cycle and can be genetically transformed using a simple and reliable procedure. However, there is very little molecular data available for either the rubber polymer itself or its biosynthesis in T. koksaghyz. Results We established a method for the purification of rubber particles - the active sites of rubber biosynthesis - from T. koksaghyz latex. Photon correlation spectroscopy and transmission electron microscopy revealed an average particle size of 320 nm, and 13C nuclear magnetic resonance (NMR) spectroscopy confirmed that isolated rubber particles contain poly(cis-1,4-isoprene) with a purity >95%. Size exclusion chromatography indicated that the weight average molecular mass (w) of T. koksaghyz natural rubber is 4,000-5,000 kDa. Rubber particles showed rubber transferase activity of 0.2 pmol min-1 mg-1. Ex vivo rubber biosynthesis experiments resulted in a skewed unimodal distribution of [1-14C]isopentenyl pyrophosphate (IPP) incorporation at a w of 2,500 kDa. Characterization of recently isolated cis-prenyltransferases (CPTs) from T. koksaghyz revealed that these enzymes are associated with rubber particles and are able to produce long-chain polyprenols in yeast. Conclusions T. koksaghyz rubber particles are similar to those described for H. brasiliensis. They contain very pure, high molecular mass poly(cis-1,4-isoprene) and

  7. Nine New Gingerols from the Rhizoma of Zingiber officinale and Their Cytotoxic Activities.

    PubMed

    Li, Zezhi; Wang, Yanzhi; Gao, MeiLing; Cui, Wanhua; Zeng, Mengnan; Cheng, Yongxian; Li, Juan

    2018-02-02

    Nine new gingerols, including three 6-oxo-shogaol derivatives [( Z )-6-oxo-[6]-shogaol ( 1 ), ( Z )-6-oxo-[8]-shogaol ( 2 ), ( Z )-6-oxo-[10]-shogaol ( 3 )], one 6-oxoparadol derivative [6-oxo-[6]-paradol ( 4 )], one isoshogaol derivative [( E )-[4]-isoshogaol ( 5 )], and four paradoldiene derivatives [(4 E ,6 Z )-[4]-paradoldiene ( 8 ), (4 E ,6 E )-[6]-paradoldiene ( 9 ), (4 E ,6 E )-[8]-paradoldiene ( 10 ), (4 E ,6 Z )-[8]-paradoldiene ( 11 )], together with eight known analogues, were isolated from the rhizoma of Zingiber officinale . Their structures were elucidated on the basis of spectroscopic data. It was noted that the isolation of 6-oxo-shogaol derivatives represents the first report of gingerols containing one 1,4-enedione motif. Their structures were elucidated on the basis of spectroscopic and HRESIMS data. All the new compounds were evaluated for their cytotoxic activities against human cancer cells (MCF-7, HepG-2, KYSE-150).

  8. Dendrobium officinale Prevents Early Complications in Streptozotocin-Induced Diabetic Rats

    PubMed Central

    Hou, Shao-zhen; Liang, Chu-yan; Liu, Hua-zhen; Zhu, Dong-mei; Wu, Ya-yun; Liang, Jian; Zhao, Ya; Guo, Jian-ru; Huang, Song; Lai, Xiao-Ping

    2016-01-01

    Background. Dendrobium officinale (DO) Kimura et Migo is a precious Chinese herb that is considered beneficial for health due to its antioxidant and antidiabetes properties, and so on. In this research, we try to determine the preventive effect of DO on the early complications of STZ-induced diabetic rats. Methods. Type 1 diabetic rats were produced with a single intraperitoneal injection of STZ (50 mg/kg). DO (1 g/kg/day) was then orally administered for 5 weeks. Blood glucose, TC, TG, BUN, CREA, and GSH-PX levels were determined, and electroretinographic activity and hypoalgesia were investigated. Pathological sections of the eyes, hearts, aortas, kidneys, and livers were analyzed. Results. Treatment with DO significantly attenuated the serum levels of TC, TG, BUN, and CREA, markedly increased the amplitudes of ERG a- and b-waves and Ops, and reduced the hypoalgesia and histopathological changes of vital organs induced by hyperglycemia. The protective effect of DO in diabetic rats may be associated with its antioxidant activity, as evidenced by the marked increase in the serum level of glutathione peroxidase. However, DO had no significant effect on blood glucose levels and bodyweight of diabetic rats. Conclusions. DO supplementation is an effective treatment to prevent STZ-induced diabetic complications. PMID:27034693

  9. Root architecture impacts on root decomposition rates in switchgrass

    NASA Astrophysics Data System (ADS)

    de Graaff, M.; Schadt, C.; Garten, C. T.; Jastrow, J. D.; Phillips, J.; Wullschleger, S. D.

    2010-12-01

    Roots strongly contribute to soil organic carbon accrual, but the rate of soil carbon input via root litter decomposition is still uncertain. Root systems are built up of roots with a variety of different diameter size classes, ranging from very fine to very coarse roots. Since fine roots have low C:N ratios and coarse roots have high C:N ratios, root systems are heterogeneous in quality, spanning a range of different C:N ratios. Litter decomposition rates are generally well predicted by litter C:N ratios, thus decomposition of roots may be controlled by the relative abundance of fine versus coarse roots. With this study we asked how root architecture (i.e. the relative abundance of fine versus coarse roots) affects the decomposition of roots systems in the biofuels crop switchgrass (Panicum virgatum L.). To understand how root architecture affects root decomposition rates, we collected roots from eight switchgrass cultivars (Alamo, Kanlow, Carthage, Cave-in-Rock, Forestburg, Southlow, Sunburst, Blackwell), grown at FermiLab (IL), by taking 4.8-cm diameter soil cores from on top of the crown and directly next to the crown of individual plants. Roots were carefully excised from the cores by washing and analyzed for root diameter size class distribution using WinRhizo. Subsequently, root systems of each of the plants (4 replicates per cultivar) were separated in 'fine' (0-0.5 mm), 'medium' (0.5-1 mm) and 'coarse' roots (1-2.5 mm), dried, cut into 0.5 cm (medium and coarse roots) and 2 mm pieces (fine roots), and incubated for 90 days. For each of the cultivars we established five root-treatments: 20g of soil was amended with 0.2g of (1) fine roots, (2) medium roots, (3) coarse roots, (4) a 1:1:1 mixture of fine, medium and coarse roots, and (5) a mixture combining fine, medium and coarse roots in realistic proportions. We measured CO2 respiration at days 1, 3, 7, 15, 30, 60 and 90 during the experiment. The 13C signature of the soil was -26‰, and the 13C signature

  10. Genetic diversity analysis of Zingiber Officinale Roscoe by RAPD collected from subcontinent of India.

    PubMed

    Ashraf, Kamran; Ahmad, Altaf; Chaudhary, Anis; Mujeeb, Mohd; Ahmad, Sayeed; Amir, Mohd; Mallick, N

    2014-04-01

    The present investigation was undertaken for the assessment of 12 accessions of Zingiber officinale Rosc. collected from subcontinent of India by RAPD markers. DNA was isolated using CTAB method. Thirteen out of twenty primers screened were informative and produced 275 amplification products, among which 261 products (94.90%) were found to be polymorphic. The percentage polymorphism of all 12 accessions ranged from 88.23% to 100%. Most of the RAPD markers studied showed different levels of genetic polymorphism. The data of 275 RAPD bands were used to generate Jaccard's similarity coefficients and to construct a dendrogram by means of UPGMA. Results showed that ginger undergoes genetic variation due to a wide range of ecological conditions. This investigation was an understanding of genetic variation within the accessions. It will also provide an important input into determining resourceful management strategies and help to breeders for ginger improvement program.

  11. Genetic diversity analysis of Zingiber Officinale Roscoe by RAPD collected from subcontinent of India

    PubMed Central

    Ashraf, Kamran; Ahmad, Altaf; Chaudhary, Anis; Mujeeb, Mohd.; Ahmad, Sayeed; Amir, Mohd.; Mallick, N.

    2013-01-01

    The present investigation was undertaken for the assessment of 12 accessions of Zingiber officinale Rosc. collected from subcontinent of India by RAPD markers. DNA was isolated using CTAB method. Thirteen out of twenty primers screened were informative and produced 275 amplification products, among which 261 products (94.90%) were found to be polymorphic. The percentage polymorphism of all 12 accessions ranged from 88.23% to 100%. Most of the RAPD markers studied showed different levels of genetic polymorphism. The data of 275 RAPD bands were used to generate Jaccard’s similarity coefficients and to construct a dendrogram by means of UPGMA. Results showed that ginger undergoes genetic variation due to a wide range of ecological conditions. This investigation was an understanding of genetic variation within the accessions. It will also provide an important input into determining resourceful management strategies and help to breeders for ginger improvement program. PMID:24600309

  12. Root rots

    Treesearch

    Kathryn Robbins; Philip M. Wargo

    1989-01-01

    Root rots of central hardwoods are diseases caused by fungi that infect and decay woody roots and sometimes also invade the butt portion of the tree. By killing and decaying roots, root rotting fungi reduce growth, decrease tree vigor, and cause windthrow and death. The most common root diseases of central hardwoods are Armillaria root rot, lnonotus root rot, and...

  13. Root hairs improve root penetration, root-soil contact, and phosphorus acquisition in soils of different strength.

    PubMed

    Haling, Rebecca E; Brown, Lawrie K; Bengough, A Glyn; Young, Iain M; Hallett, Paul D; White, Philip J; George, Timothy S

    2013-09-01

    Root hairs are a key trait for improving the acquisition of phosphorus (P) by plants. However, it is not known whether root hairs provide significant advantage for plant growth under combined soil stresses, particularly under conditions that are known to restrict root hair initiation or elongation (e.g. compacted or high-strength soils). To investigate this, the root growth and P uptake of root hair genotypes of barley, Hordeum vulgare L. (i.e. genotypes with and without root hairs), were assessed under combinations of P deficiency and high soil strength. Genotypes with root hairs were found to have an advantage for root penetration into high-strength layers relative to root hairless genotypes. In P-deficient soils, despite a 20% reduction in root hair length under high-strength conditions, genotypes with root hairs were also found to have an advantage for P uptake. However, in fertilized soils, root hairs conferred an advantage for P uptake in low-strength soil but not in high-strength soil. Improved root-soil contact, coupled with an increased supply of P to the root, may decrease the value of root hairs for P acquisition in high-strength, high-P soils. Nevertheless, this work demonstrates that root hairs are a valuable trait for plant growth and nutrient acquisition under combined soil stresses. Selecting plants with superior root hair traits is important for improving P uptake efficiency and hence the sustainability of agricultural systems.

  14. Data in support of three phase partitioning of zingibain, a milk-clotting enzyme from Zingiber officinale Roscoe rhizomes

    PubMed Central

    Gagaoua, Mohammed; Hafid, Kahina; Hoggas, Naouel

    2016-01-01

    This paper describes data related to a research article titled “Three Phase Partitioning of zingibain, a milk-clotting enzyme from Zingiber officinale Roscoe rhizomes” (Gagaoua et al., 2015) [1]. Zingibain (EC 3.4.22.67), is a coagulant cysteine protease and a meat tenderizer agent that have been reported to produce satisfactory final products in dairy and meat technology, respectively. Zingibains were exclusively purified using chromatographic techniques with very low yield purification. This paper includes data of the effect of temperature, usual salts and organic solvents on the efficiency of the three phase partitioning (TPP) system. Also it includes data of the kinetic activity characterization of the purified zingibain using TPP purification approach. PMID:26909379

  15. Microencapsulation of oleoresin from red ginger (Zingiber officinale var. Rubrum) in chitosan and alginate for fresh milk preservatives

    NASA Astrophysics Data System (ADS)

    Krisanti, Elsa; Astuty, Rizka Margi; Mulia, Kamarza

    2017-02-01

    The usage of red ginger rhizome (Zingiber officinale var. Rubrum) oleoresin extract as the preservative for fresh milk has not been studied yet. The aim of this research was to compare the inhibition effect of oleoresin extract-loaded chitosan-alginate microparticles, and various ginger-based preservatives added into fresh milk, on the growth of bacteria. The total count plate growth of bacteria after addition of the oleoresin-loaded chitosan-alginate microparticles was the lowest. In addition, the organoleptic test showed that this formulation had no significant effect on the color, taste, and flavor of fresh milk. The experimental results indicated that the oleoresin-loaded chitosan-alginate microparticles may effectively be used as a preservative for fresh milk.

  16. Root growth, secondary root formation and root gravitropism in carotenoid-deficient seedlings of Zea mays L

    NASA Technical Reports Server (NTRS)

    Ng, Y. K.; Moore, R.

    1985-01-01

    The effect of ABA on root growth, secondary-root formation and root gravitropism in seedlings of Zea mays was investigated by using Fluridone-treated seedlings and a viviparous mutant, both of which lack carotenoids and ABA. Primary roots of seedlings grown in the presence of Fluridone grew significantly slower than those of control (i.e. untreated) roots. Elongation of Fluridone-treated roots was inhibited significantly by the exogenous application of 1 mM ABA. Exogenous application of 1 micromole and 1 nmole ABA had either no effect or only a slight stimulatory effect on root elongation, depending on the method of application. The absence of ABA in Fluridone-treated plants was not an important factor in secondary-root formation in seedlings less than 9-10 d old. However, ABA may suppress secondary-root formation in older seedlings, since 11-d-old control seedlings had significantly fewer secondary roots than Fluridone-treated seedlings. Roots of Fluridone-treated and control seedlings were graviresponsive. Similar data were obtained for vp-9 mutants of Z. mays, which are phenotypically identical to Fluridone-treated seedlings. These results indicate that ABA is necessary for neither secondary-root formation nor for positive gravitropism by primary roots.

  17. Comparative Effects of Two Gingerol-Containing Zingiber officinale Extracts on Experimental Rheumatoid Arthritis1

    PubMed Central

    Funk, Janet L.; Frye, Jennifer B.; Oyarzo, Janice N.; Timmermann, Barbara N.

    2009-01-01

    Ginger (Zingiber officinale) supplements are being promoted for arthritis treatment in western societies based on ginger’s traditional use as an anti-inflammatory in Chinese and Ayurvedic medicine. However, scientific evidence of ginger’s antiarthritic effects is sparse, and its bioactive joint-protective components have not been identified. Therefore, the ability of a well-characterized crude ginger extract to inhibit joint swelling in an animal model of rheumatoid arthritis, streptococcal cell wall (SCW)-induced arthritis, was compared to that of a fraction containing only gingerols and their derivatives. Both extracts were efficacious in preventing joint inflammation. However, the crude dichloromethane extract, which also contained essential oils and more polar compounds, was more efficacious (when normalized to gingerol content) in preventing both joint inflammation and destruction. In conclusion, these data document a very significant joint-protective effect of these ginger samples, and suggest that non-gingerol components are bioactive and can enhance the antiarthritic effects of the more widely studied gingerols. PMID:19216559

  18. Ayurvedic preparation of Zingiber officinale Roscoe: effects on cardiac and on smooth muscle parameters.

    PubMed

    Leoni, Alberto; Budriesi, Roberta; Poli, Ferruccio; Lianza, Mariacaterina; Graziadio, Alessandra; Venturini, Alice; Broccoli, Massimiliano; Micucci, Matteo

    2017-08-28

    The rhizome of the Zingiber officinale Roscoe, a biennial herb growing in South Asia, is commonly known as ginger. Ginger is used in clinical disorders, such as constipation, dyspepsia, diarrhoea, nausea and vomiting and its use is also recommended by the traditional medicine for cardiopathy, high blood pressure, palpitations and as a vasodilator to improve the circulation. The decoction of ginger rhizome is widely used in Ayurvedic medicine. In this papery by high-performance liquid chromatography, we have seen that its main phytomarkers were 6-gingerol, 8-gingerol and 6-shogaol and we report the effects of the decoction of ginger rhizome on cardiovascular parameters and on vascular and intestinal smooth muscle. In our experimental models, the decoction of ginger shows weak negative inotropic and chronotropic intrinsic activities but a significant intrinsic activity on smooth muscle with a potency on ileum is greater than on aorta: EC 50  = 0.66 mg/mL versus EC 50  = 1.45 mg/mL.

  19. Root decisions.

    PubMed

    Hodge, Angela

    2009-06-01

    Root systems have recognizable developmental plans when grown in solution or agar; however, these plans often must be modified to cope with the prevailing conditions in the soil environment such as the avoidance of obstacles and the exploitation of nutrient-rich patches or water zones. The modular structure of roots enables them to respond to their environment, and roots are very adaptive at modifying growth throughout the root system to concentrate their efforts in the areas that are the most profitable. Roots also form associations with microorganisms as a strategy to enhance resource capture. However, while the responses of roots in nutrient patches are well-recognized, overall 'rules of response' and variation in strategy among plant species that can be applied in a number of different environments are still lacking. Finally, there is increasing evidence that root-root interactions are much more sophisticated than previously thought, and the evidence for roots to identify self from non-self roots will be briefly discussed.

  20. Relationship between concentration of rare earth elements in soil and their distribution in plants growing near a frequented road.

    PubMed

    Mleczek, Patrycja; Borowiak, Klaudia; Budka, Anna; Niedzielski, Przemysław

    2018-06-05

    Rare earth elements (REEs) are a group of elements whose concentration in numerous environmental matrices continues to increase; therefore, the use of biological methods for their removal from soil would seem to be a safe and reasonable approach. The aim of this study was to estimate the phytoextraction efficiency and distribution of light and heavy (LREEs and HREEs) rare earth elements by three herbaceous plant species: Artemisia vulgaris L., Taraxacum officinale F.H. Wigg. and Trifolium repens L., growing at a distance of 1, 10, and 25 m from the edge of a frequented road in Poland. The concentration of REEs in soil and plants was highly correlated (r > 0.9300), which indicates the high potential of the studied plant species to phytoextraction of these elements. The largest proportion of REEs was from the group of LREEs, whereas HREEs comprised only an inconsiderable portion of the REEs group. The dominant elements in the group of LREEs were Nd and Ce, while Er was dominant in the HREEs group. Differences in the amounts of these elements influenced the total concentration of LREEs, HREEs, and finally REEs and their quantities which decreased with distance from the road. According to the Friedman rank sum test, significant differences in REEs concentration, mainly between A. vulgaris L., and T. repens L. were observed for plants growing at all three distances from the road. The same relation between A. vulgaris L. and T. officinale was observed. The efficiency of LREEs and REEs phytoextraction in the whole biomass of plants growing at all distances from the road was A. vulgaris L. > T. officinale L. > T. repens L. For HREEs, the same relationship was recorded only for plants growing at the distance 1 m from the road. Bioconcentration factor (BCF) values for LREEs and HREEs were respectively higher and lower than 1 for all studied plant species regardless of the distance from the road. The studied herbaceous plant species were able to effectively phytoextract

  1. Root hairs increase root exudation and rhizosphere extension

    NASA Astrophysics Data System (ADS)

    Holz, Maire; Zarebandanadkouki, Mohsen; Kuzyakov, Yakov; Carmintati, Andrea

    2017-04-01

    Plant roots employ various mechanisms to increase their access to limited soil resources. An example of such strategies is the production of root hairs. Root hairs extend the root surface and therefore increase the access to nutrients. Additionally, carbon release from root hairs might facilitate nutrient uptake by spreading of carbon in the rhizosphere and enhancing microbial activity. The aim of this study was to test: i) how root hairs change the allocation of carbon in the soil-plant system; ii) whether root hairs exude carbon into the soil and iii) how differences in C release between plants with and without root hairs affect rhizosphere extension. We grew barley plants with and without root hairs (wild type: WT, bald root barley: brb) in rhizoboxes filled with a sandy soil. Root elongation was monitored over time. After 4 weeks of growth, plants were labelled with 14CO2. A filter paper was placed on the soil surface before labelling and was removed after 36 h. 14C imaging of the soil surface and of the filter paper was used to quantify the allocation of 14C into the roots and the exudation of 14C, respectively. Plants were sampled destructively one day after labeling to quantify 14C in the plant-soil system. 14CO2 release from soil over time (17 d) was quantified by trapping CO2 in NaOH with an additional subset of plants. WT and brb plants had a similar aboveground biomass and allocated similar amounts of 14C into shoots (170 KBq for WT; 152 KBq for brb) and roots one day after labelling. Biomass of root, rhizosphere soil as well as root elongation were lower for brb compared to the wild type. WT plants transported more C from the shoots to the roots (22.8% for WT; 13.8% for brb) and from the root into the rhizosphere (8.8% for WT 3.5% for brb). Yet lower amounts of 14CO2 were released from soil over time for WT. Radial and longitudinal rhizosphere extension was increased for WT compared to brb (4.7 vs. 2.6 mm; 5.6 vs. 3.1 cm). The total exudation which was

  2. In vitro assessment of the acaricidal activity of Piper longum, Piper nigrum, and Zingiber officinale extracts against Hyalomma anatolicum ticks.

    PubMed

    Singh, Nirbhay K; Saini, S P S; Singh, Harkirat; Jyoti; Sharma, S K; Rath, S S

    2017-03-01

    Ticks and tick-borne diseases are a major constraint for the sustainable cattle industry in the tropical and subtropical regions including the Indian subcontinent. The development of resistance to most of the commonly used acaricides leads to an attempt to screen plant extracts and their combinations for their possible acaricidal activity to develop an eco-friendly tick control alternative. An alcoholic and various aqueous extracts of Piper longum, Piper nigrum and Zingiber officinale and their combinations were evaluated for acaricidal activity against the three-host ixodid tick, Hyalomma anatolicum by larval immersion test using 14-21 days old unfed larvae. The efficacy was assessed by measuring larval mortality (%) and the lethal concentrations for 50% (LC 50 ) and 95% (LC 95 ) with their 95% confidence limits (CL) values were estimated by applying regression equation analysis to the probit transformed data of mortality. A concentration-dependent mortality response was recorded in all extracts prepared from seeds of P. longum and P. nigrum and their combinations. The highest acaricidal property was exhibited by the alcoholic extract of P. longum seeds with the minimum LC 50 and LC 95 (95% CL) values of 0.071% (0.07-0.072) and 0.135% (0.13-0.14), respectively, followed by alcoholic combinations. Interestingly, no acaricidal activity was recorded in extracts prepared from the rhizome of Z. officinale. The results indicated that the ethanolic extracts of P. longum and P. nigrum and their combinations can be used effectively for tick control in an integrated format.

  3. Chemistry, antioxidant and antimicrobial investigations on essential oil and oleoresins of Zingiber officinale.

    PubMed

    Singh, Gurdip; Kapoor, I P S; Singh, Pratibha; de Heluani, Carola S; de Lampasona, Marina P; Catalan, Cesar A N

    2008-10-01

    The essential oil and oleoresins (ethanol, methanol, CCl(4) and isooctane) of Zingiber officinale were extracted respectively by hydrodistillation and Soxhlet methods and subjected to GC-MS analysis. Geranial (25.9%) was the major component in essential oil; eugenol (49.8%) in ethanol oleoresin, while in the other three oleoresins, zingerone was the major component (33.6%, 33.3% and 30.5% for, methanol, CCl(4) and isooctane oleoresins, respectively). The antioxidant activity of essential oil and oleoresins were evaluated against mustard oil by peroxide, anisidine, thiobarbituric acid (TBA), ferric thiocyanate (FTC) and 2,2'-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging methods. They were found to be better antioxidants than butylated hydroxyanisole (BHA). The antimicrobial properties were also studied using various food-borne pathogenic fungal and bacterial species. The essential oil and CCl(4) oleoresin showed 100% zone inhibition against Fusarium moniliforme. For other tested fungi and bacteriae, the essential oil and all oleoresins showed good to moderate inhibitory effects. Though, both essential oil and oleoresins were found to be effective, essential oil was found to be better than the oleoresins.

  4. In vitro propagation of ginger (Zingiber officinale Rosc.) through direct organogenesis: a review.

    PubMed

    Seran, Thayamini H

    2013-12-15

    Ginger (Zingiber officinale Rosc.) is a perennial herb. It belongs to the family Zingiberaceae and commercially cultivated in most tropical regions of the world. The underground rhizomes are the planting materials in a conventional propagation of ginger however it has a low multiplication rate. It is known that there are possible methods are available for rapid vegetative propagation of ginger through direct organogenesis or somatic embryogenesis under in vitro conditions but it is necessary to find the best protocol for in vitro multiplication of ginger. Limited studies on the tissue culture technology of ginger are available in Sri Lanka. However, significant efforts have been made in the procedure for in vitro micropropagation in the other ginger growing countries. The available literature with respect to in vitro plant regeneration has been perused and this review mainly focused on the in vitro propagation via direct organogenesis from rhizome buds or shoot tips of ginger often used as explants. This review article may be an appropriate and effective guidance for establishing in vitro cultures and subsequent production of in vitro plantlets in clonal propagation of ginger.

  5. Inhibitory effect of bofutsushosan (fang feng tong sheng san) on glucose transporter 5 function in vitro.

    PubMed

    Gao, Shengli; Satsu, Hideo; Makino, Toshiaki

    2018-03-01

    Bofutsushosan (BTS; fang feng tong sheng san in Chinese) is a formula in traditional Japanese Kampo medicine and Chinese medicine comprising eighteen crude drugs, and is used to treat obesity and metabolic syndrome. Fructose is contained in refreshing beverages as high-fructose corn syrup, and is associated with obesity. Fructose is absorbed via glucose transporter 5 (GLUT5) in the intestine. Therefore, the inhibition of GLUT5 is considered to be a target of obesity drugs. We evaluated the inhibitory effects of BTS extract and its constituents on fructose uptake using Chinese hamster ovary K1 cells, i.e., cells stably expressing GLUT5. Boiled water extract of BTS significantly suppressed GLUT5 function in a concentration-dependent manner without cytotoxicities. Among 18 components of BTS, the boiled water extracts of the rhizome of Zingiber officinale, the root and rhizome of Saposhnikovia divaricata, and the root of Platycodon grandiflorum exhibited significant inhibitory effects on fructose uptake with IC 50 values of 314, 119 and 475 µg/ml, respectively. Among the constituents of the rhizome of Z. officinale extract, 6-gingerol significantly inhibited GLUT5 with an IC 50 value of 39 µM, while 6-shogaol exhibited a significant but weak inhibition on GLUT5 at 100 µM. One of the mechanisms of action of BTS may be the inhibition of fructose absorption in the intestine, and one of the active components of BTS is the rhizome of Z. officinale and 6-gingerol.

  6. Cyclooxygenase-2 inhibitors in ginger (Zingiber officinale)

    PubMed Central

    van Breemen, Richard B.; Tao, Yi; Li, Wenkui

    2010-01-01

    Ginger roots have been used to treat inflammation and have been reported to inhibit cyclooxygenase (COX). Ultrafiltration liquid chromatography mass spectrometry was used to screen a chloroform partition of a methanol extract of ginger roots for COX-2 ligands, and 10-gingerol, 12-gingerol, 8-shogaol, 10-shogaol, 6-gingerdione, 8-gingerdione, 10-gingerdione, 6-dehydro-10-gingerol, 6-paradol, and 8-paradol bound to the enzyme active site. Purified 10-gingerol, 8-shogaol and 10-shogaol inhibited COX-2 with IC50 values of 32 μM, 17.5 μM and 7.5 μM, respectively. No inhibition of COX-1 was detected. Therefore, 10-gingerol, 8-shogaol and 10-shogaol inhibit COX-2 but not COX-1, which can explain, in part, anti-inflammatory properties of ginger. PMID:20837112

  7. Use of Peroxyacetic Acid as Green Chemical on Yield and Sensorial Quality in Watercress (Nasturtium officinale R. Br.) Under Soilless Culture

    PubMed Central

    Carrasco, Gilda; Moggia, Claudia; Osses, Ingrid Jennifer; Álvaro, Juan Eugenio; Urrestarazu, Miguel

    2011-01-01

    The goal of this research was to evaluate the effect of different doses of peroxyacetic acid on the productivity of watercress (Nasturtium officinale R. Br.) cultivated hydroponically using a constant nutritive solution. Green chemistry in protected horticulture seeks compatibility with the environment through the creation of biodegradable byproducts. In hydroponics, appropriate doses of peroxyacetic mixtures deliver these byproducts while also oxygenating the roots. Watercress producers who recirculate the nutritive solution can use these mixtures in order to increase oxygenation in the hydroponic system. The experiment took place between August and December 2009, beginning with the planting of the watercress seeds and concluding with the completion of the sensory panels. A completely random design was used, including three treatments and four repetitions, with applications of 0, 20 and 40 mg L−1 of the peroxyacetic mixture. Measured variables were growth (plant height, leaf length and stem diameter), yield (weight per plant and dry matter) and organoleptic quality (color and sensory panel). The application of 40 mg L−1 of the peroxyacetic mixture had a greater effect on the growth and development of the plants, which reached an average height of 29.3 cm, stem diameter of 3.3 mm and leaf length of 7.6 cm, whereas the control group reached an average height of only 20.2 cm, stem diameter of 1.9 mm and leaf length of 5.7 cm. The application of the peroxyacetic mixtures resulted in an improvement in growth parameters as well as in yield. Individual weights achieved using the 40 mg L−1 dose were 1.3 g plant−1 in the control group and 3.4 g plant−1 in the experimental group (62% yield increase). Sensory analysis revealed no differences in organoleptic quality. PMID:22272143

  8. Anti-emetic mechanisms of Zingiber officinale against cisplatin induced emesis in the pigeon; behavioral and neurochemical correlates.

    PubMed

    Ullah, Ihsan; Subhan, Fazal; Ayaz, Muhammad; Shah, Rehmat; Ali, Gowhar; Haq, Ikram Ul; Ullah, Sami

    2015-02-26

    Zingiber officinale (ZO, family Zingiberaceae) has been reported for its antiemetic activity against cancer chemotherapy induced emesis in animal models and in clinics. Current study was designed to investigate ZO for potential usefulness against cisplatin induced vomiting in pigeon and its effects on central and peripheral neurotransmitters involved in the act of vomiting. Zingiber officinale acetone fraction (ZO-ActFr) was investigated for attenuation of emesis induced by cisplatin in healthy pigeons. Neurotransmitters DA, 5HT and their metabolites DOPAC, HVA and 5HIAA were analyzed using High Performance Liquid Chromatography system coupled with electrochemical detector in area postrema, brain stem and intestine. Antiemetic effect of ZO-ActFr was correlated with central and intestinal neurotransmitters levels in pigeon. Cisplatin (7 mg/kg i.v.) induced emesis without lethality upto the observation period. ZO-ActFr (25, 50 & 100 mg/kg) attenuated cisplatin induced emesis ~ 44.18%, 58.13% (P < 0.05) and 27.9%, respectively; the reference drug, metoclopramide (MCP; 30 mg/kg), produced ~ 48.83% reduction (P < 0.05). ZO-ActFr reduced (P < 0.05 - 0.001) 5-hydroxytryptamine (5HT) concentration in the area postrema, brain stem and intestine at 3(rd) hour of cisplatin administration, while at the 18(th) hour ZO treatments attenuated the dopamine upsurge (P < 0.001) caused by cisplatin in the area postrema and 5HT concentration (P < 0.01 - 0.001) in the brain stem and intestine. ZO treatments alone did not altered the basal neurotransmitters and their metabolites in the brain areas and intestine. The behavioral study verify the antiemetic profile of ZO against cisplatin induced emesis in the pigeon, where central and peripheral neural evidences advocate the involvement of serotonergic mechanism at initial time point (3(rd) hr), while the later time point (18(th) hr) is associated with serotonergic and dopaminergic component in the mediation

  9. Levels of essential and non-essential metals in ginger (Zingiber officinale) cultivated in Ethiopia.

    PubMed

    Wagesho, Yohannes; Chandravanshi, Bhagwan Singh

    2015-01-01

    Ginger (Zingiber officinale Roscoe) is a common condiment for various foods and beverages and widely used worldwide as a spice. Its extracts are used extensively in the food, beverage, and confectionary industries in the production of products such as marmalade, pickles, chutney, ginger beer, ginger wine, liquors, biscuits, and other bakery products. In Ethiopia, it is among the important spices used in every kitchen to flavor stew, tea, bread and local alcoholic drinks. It is also chiefly used medicinally for indigestion, stomachache, malaria, fevers, common cold, and motion sickness. The literature survey revealed that there is no study conducted on the determination of metals in ginger cultivated in Ethiopia. Hence it is worthwhile to determine the levels of essential and non-essential metals in ginger cultivated in Ethiopia. The levels of essential (Ca, Mg, Fe, Zn, Cu, Co, Cr, Mn, and Ni) and non-essential (Cd and Pb) metals in ginger (Zingiber officinale Roscoe) cultivated in four different regions of Ethiopia and the soil where it was grown were determined by flame atomic absorption spectrometry. 0.5 g of oven dried ginger and soil samples were digested using 3 mL of HNO3 and 1 mL of HClO4 at 210°C for 3 h and a mixture of 6 mL aqua-regia and 1.5 mL H2O2 at 270°C for 3 h, respectively. The mean metal concentration (μg/g dry weight basis) ranged in the ginger and soil samples, respectively, were: Ca (2000-2540, 1770-3580), Mg (2700-4090, 1460-2440), Fe (41.8-89.0, 21700-46900), Zn (38.5-55.2, 255-412), Cu (1.1-4.8, 3.80-33.9), Co (2.0-7.6, 48.5-159), Cr (6.0-10.8, 110-163), Mn (184-401, 1760-6470), Ni (5.6-8.4, 14.1-79.3) and Cd (0.38-0.97, 0.24-1.1). The toxic metal Pb was not detected in both the ginger and soil samples. There was good correlation between some metals in ginger and soil samples while poor correlation between other metals (Fe, Ni, Cu). This study revealed that Ethiopian gingers are good source of essential metals and free from toxic

  10. Taraxinic acid, a hydrolysate of sesquiterpene lactone glycoside from the Taraxacum coreanum NAKAI, induces the differentiation of human acute promyelocytic leukemia HL-60 cells.

    PubMed

    Choi, Jung-Hye; Shin, Kyung-Min; Kim, Na-Young; Hong, Jung-Pyo; Lee, Yong Sup; Kim, Hyoung Ja; Park, Hee-Juhn; Lee, Kyung-Tae

    2002-11-01

    The present work was performed to elucidate the active moiety of a sesquiterpene lactone, taraxinic acid-1'-O-beta-D-glucopyranoside (1). from Taraxacum coreanum NAKAI on the cytotoxicity of various cancer cells. Based on enzymatic hydrolysis and MTT assay, the active moiety should be attributed to the aglycone taraxinic acid (1a). rather than the glycoside (1). Taraxinic acid exhibited potent antiproliferative activity against human leukemia-derived HL-60. In addition, this compound was found to be a potent inducer of HL-60 cell differentiation as assessed by a nitroblue tetrazolium reduction test, esterase activity assay, phagocytic activity assay, morphology change, and expression of CD 14 and CD 66 b surface antigens. These results suggest that taraxinic acid induces the differentiation of human leukemia cells to monocyte/macrophage lineage. Moreover, the expression level of c-myc was down-regulated during taraxinic acid-dependent HL-60 cell differentiation, whereas p21(CIP1) and p27(KIP1) were up-regulated. Taken together, our results suggest that taraxinic acid may have potential as a therapeutic agent in human leukemia.

  11. Root development during soil genesis: effects of root-root interactions, mycorrhizae, and substrate

    NASA Astrophysics Data System (ADS)

    Salinas, A.; Zaharescu, D. G.

    2015-12-01

    A major driver of soil formation is the colonization and transformation of rock by plants and associated microbiota. In turn, substrate chemical composition can also influence the capacity for plant colonization and development. In order to better define these relationships, a mesocosm study was set up to analyze the effect mycorrhizal fungi, plant density and rock have on root development, and to determine the effect of root morphology on weathering and soil formation. We hypothesized that plant-plant and plant-fungi interactions have a stronger influence on root architecture and rock weathering than the substrate composition alone. Buffalo grass (Bouteloua dactyloides) was grown in a controlled environment in columns filled with either granular granite, schist, rhyolite or basalt. Each substrate was given two different treatments, including grass-microbes and grass-microbes-mycorrhizae and incubated for 120, 240, and 480 days. Columns were then extracted and analyzed for root morphology, fine fraction, and pore water major element content. Preliminary results showed that plants produced more biomass in rhyolite, followed by schist, basalt, and granite, indicating that substrate composition is an important driver of root development. In support of our hypothesis, mycorrhizae was a strong driver of root development by stimulating length growth, biomass production, and branching. However, average root length and branching also appeared to decrease in response to high plant density, though this trend was only present among roots with mycorrhizal fungi. Interestingly, fine fraction production was negatively correlated with average root thickness and volume. There is also slight evidence indicating that fine fraction production is more related to substrate composition than root morphology, though this data needs to be further analyzed. Our hope is that the results of this study can one day be applied to agricultural research in order to promote the production of crops

  12. Structural Diversity in the Dandelion (Taraxacum officinale) Polyphenol Oxidase Family Results in Different Responses to Model Substrates

    PubMed Central

    Dirks-Hofmeister, Mareike E.; Singh, Ratna; Leufken, Christine M.; Inlow, Jennifer K.; Moerschbacher, Bruno M.

    2014-01-01

    Polyphenol oxidases (PPOs) are ubiquitous type-3 copper enzymes that catalyze the oxygen-dependent conversion of o-diphenols to the corresponding quinones. In most plants, PPOs are present as multiple isoenzymes that probably serve distinct functions, although the precise relationship between sequence, structure and function has not been addressed in detail. We therefore compared the characteristics and activities of recombinant dandelion PPOs to gain insight into the structure–function relationships within the plant PPO family. Phylogenetic analysis resolved the 11 isoenzymes of dandelion into two evolutionary groups. More detailed in silico and in vitro analyses of four representative PPOs covering both phylogenetic groups were performed. Molecular modeling and docking predicted differences in enzyme-substrate interactions, providing a structure-based explanation for grouping. One amino acid side chain positioned at the entrance to the active site (position HB2+1) potentially acts as a “selector” for substrate binding. In vitro activity measurements with the recombinant, purified enzymes also revealed group-specific differences in kinetic parameters when the selected PPOs were presented with five model substrates. The combination of our enzyme kinetic measurements and the in silico docking studies therefore indicate that the physiological functions of individual PPOs might be defined by their specific interactions with different natural substrates. PMID:24918587

  13. Structural diversity in the dandelion (Taraxacum officinale) polyphenol oxidase family results in different responses to model substrates.

    PubMed

    Dirks-Hofmeister, Mareike E; Singh, Ratna; Leufken, Christine M; Inlow, Jennifer K; Moerschbacher, Bruno M

    2014-01-01

    Polyphenol oxidases (PPOs) are ubiquitous type-3 copper enzymes that catalyze the oxygen-dependent conversion of o-diphenols to the corresponding quinones. In most plants, PPOs are present as multiple isoenzymes that probably serve distinct functions, although the precise relationship between sequence, structure and function has not been addressed in detail. We therefore compared the characteristics and activities of recombinant dandelion PPOs to gain insight into the structure-function relationships within the plant PPO family. Phylogenetic analysis resolved the 11 isoenzymes of dandelion into two evolutionary groups. More detailed in silico and in vitro analyses of four representative PPOs covering both phylogenetic groups were performed. Molecular modeling and docking predicted differences in enzyme-substrate interactions, providing a structure-based explanation for grouping. One amino acid side chain positioned at the entrance to the active site (position HB2+1) potentially acts as a "selector" for substrate binding. In vitro activity measurements with the recombinant, purified enzymes also revealed group-specific differences in kinetic parameters when the selected PPOs were presented with five model substrates. The combination of our enzyme kinetic measurements and the in silico docking studies therefore indicate that the physiological functions of individual PPOs might be defined by their specific interactions with different natural substrates.

  14. New phenanthrene and 9, 10-dihydrophenanthrene derivatives from the stems of Dendrobium officinale with their cytotoxic activities.

    PubMed

    Zhao, Gui-Yun; Deng, Bo-Wen; Zhang, Chong-Yu; Cui, Yi-Da; Bi, Jia-Yi; Zhang, Guo-Gang

    2018-01-01

    Two new phenanthrene and 9, 10-dihydrophenanthrene derivatives (1-2) with six known congeners (3-8) were isolated from the extraction of stems of Dendrobium officinale. Compounds 1 and 2 were based on carbon skeleton in which phenanthrene and 9, 10-dihydrophenanthrene moiety were linked with a phenylpropane unit through a dioxane bridge, respectively. Their structures were determined by comprehensive NMR spectroscopic data, the absolute configuration of new compounds were determined by comparing their experimental and calculated ECD for the first time. All the compounds were investigated contains two cancer cell lines (HI-60, THP-1). All the isolates showed cytotoxicity, especially compound 4 showed markedly cytotoxic activities against HI-60 and THP-1 cell lines with IC 50 values of 11.96 and 8.92 μM.

  15. Rooting gene trees without outgroups: EP rooting.

    PubMed

    Sinsheimer, Janet S; Little, Roderick J A; Lake, James A

    2012-01-01

    Gene sequences are routinely used to determine the topologies of unrooted phylogenetic trees, but many of the most important questions in evolution require knowing both the topologies and the roots of trees. However, general algorithms for calculating rooted trees from gene and genomic sequences in the absence of gene paralogs are few. Using the principles of evolutionary parsimony (EP) (Lake JA. 1987a. A rate-independent technique for analysis of nucleic acid sequences: evolutionary parsimony. Mol Biol Evol. 4:167-181) and its extensions (Cavender, J. 1989. Mechanized derivation of linear invariants. Mol Biol Evol. 6:301-316; Nguyen T, Speed TP. 1992. A derivation of all linear invariants for a nonbalanced transversion model. J Mol Evol. 35:60-76), we explicitly enumerate all linear invariants that solely contain rooting information and derive algorithms for rooting gene trees directly from gene and genomic sequences. These new EP linear rooting invariants allow one to determine rooted trees, even in the complete absence of outgroups and gene paralogs. EP rooting invariants are explicitly derived for three taxon trees, and rules for their extension to four or more taxa are provided. The method is demonstrated using 18S ribosomal DNA to illustrate how the new animal phylogeny (Aguinaldo AMA et al. 1997. Evidence for a clade of nematodes, arthropods, and other moulting animals. Nature 387:489-493; Lake JA. 1990. Origin of the metazoa. Proc Natl Acad Sci USA 87:763-766) may be rooted directly from sequences, even when they are short and paralogs are unavailable. These results are consistent with the current root (Philippe H et al. 2011. Acoelomorph flatworms are deuterostomes related to Xenoturbella. Nature 470:255-260).

  16. RootJS: Node.js Bindings for ROOT 6

    NASA Astrophysics Data System (ADS)

    Beffart, Theo; Früh, Maximilian; Haas, Christoph; Rajgopal, Sachin; Schwabe, Jonas; Wolff, Christoph; Szuba, Marek

    2017-10-01

    We present rootJS, an interface making it possible to seamlessly integrate ROOT 6 into applications written for Node.js, the JavaScript runtime platform increasingly commonly used to create high-performance Web applications. ROOT features can be called both directly from Node.js code and by JIT-compiling C++ macros. All rootJS methods are invoked asynchronously and support callback functions, allowing non-blocking operation of Node.js applications using them. Last but not least, our bindings have been designed to platform-independent and should therefore work on all systems supporting both ROOT 6 and Node.js. Thanks to rootJS it is now possible to create ROOT-aware Web applications taking full advantage of the high performance and extensive capabilities of Node.js. Examples include platforms for the quality assurance of acquired, reconstructed or simulated data, book-keeping and e-log systems, and even Web browser-based data visualisation and analysis.

  17. Flowering phenological changes in relation to climate change in Hungary

    NASA Astrophysics Data System (ADS)

    Szabó, Barbara; Vincze, Enikő; Czúcz, Bálint

    2016-09-01

    The importance of long-term plant phenological time series is growing in monitoring of climate change impacts worldwide. To detect trends and assess possible influences of climate in Hungary, we studied flowering phenological records for six species ( Convallaria majalis, Taraxacum officinale, Syringa vulgaris, Sambucus nigra, Robinia pseudoacacia, Tilia cordata) based on phenological observations from the Hungarian Meteorological Service recorded between 1952 and 2000. Altogether, four from the six examined plant species showed significant advancement in flowering onset with an average rate of 1.9-4.4 days per decade. We found that it was the mean temperature of the 2-3 months immediately preceding the mean flowering date, which most prominently influenced its timing. In addition, several species were affected by the late winter (January-March) values of the North Atlantic Oscillation (NAO) index. We also detected sporadic long-term effects for all species, where climatic variables from earlier months exerted influence with varying sign and little recognizable pattern: the temperature/NAO of the previous autumn (August-December) seems to influence Convallaria, and the temperature/precipitation of the previous spring (February-April) has some effect on Tilia flowering.

  18. Flowering phenological changes in relation to climate change in Hungary.

    PubMed

    Szabó, Barbara; Vincze, Enikő; Czúcz, Bálint

    2016-09-01

    The importance of long-term plant phenological time series is growing in monitoring of climate change impacts worldwide. To detect trends and assess possible influences of climate in Hungary, we studied flowering phenological records for six species (Convallaria majalis, Taraxacum officinale, Syringa vulgaris, Sambucus nigra, Robinia pseudoacacia, Tilia cordata) based on phenological observations from the Hungarian Meteorological Service recorded between 1952 and 2000. Altogether, four from the six examined plant species showed significant advancement in flowering onset with an average rate of 1.9-4.4 days per decade. We found that it was the mean temperature of the 2-3 months immediately preceding the mean flowering date, which most prominently influenced its timing. In addition, several species were affected by the late winter (January-March) values of the North Atlantic Oscillation (NAO) index. We also detected sporadic long-term effects for all species, where climatic variables from earlier months exerted influence with varying sign and little recognizable pattern: the temperature/NAO of the previous autumn (August-December) seems to influence Convallaria, and the temperature/precipitation of the previous spring (February-April) has some effect on Tilia flowering.

  19. Bioelectric potentials in the soil-plant system

    NASA Astrophysics Data System (ADS)

    Pozdnyakov, A. I.

    2013-07-01

    A detailed study of the electric potentials in the soil-plant system was performed. It was found that the electric potential depends on the plant species and the soil properties. A theoretical interpretation of the obtained data was given. All the plants, independently from their species and their state, always had a negative electric potential relative to the soil. The electric potential of the herbaceous plants largely depended on the leaf area. In some plants, such as burdock ( Arctium lappa) and hogweed ( Heracleum sosnowskyi), the absolute values of the negative electric potential exceeded 100 mV. The electric potential was clearly differentiated by the plant organs: in the flowers, it was lower than in the leaves; in the leaves, it was usually lower than in the leaf rosettes and stems. The electric potentials displayed seasonal dynamics. As a rule, the higher the soil water content, the lower the electric potential of the plants. However, an inverse relationship was observed for dandelions ( Taraxacum officinale). It can be supposed that the electric potential between the soil and the plant characterizes the vital energy of the plant.

  20. Compensatory Root Water Uptake of Overlapping Root Systems

    NASA Astrophysics Data System (ADS)

    Agee, E.; Ivanov, V. Y.; He, L.; Bisht, G.; Shahbaz, P.; Fatichi, S.; Gough, C. M.; Couvreur, V.; Matheny, A. M.; Bohrer, G.

    2015-12-01

    Land-surface models use simplified representations of root water uptake based on biomass distributions and empirical functions that constrain water uptake during unfavorable soil moisture conditions. These models fail to capture the observed hydraulic plasticity that allows plants to regulate root hydraulic conductivity and zones of active uptake based on local gradients. Recent developments in root water uptake modeling have sought to increase its mechanistic representation by bridging the gap between physically based microscopic models and computationally feasible macroscopic approaches. It remains to be demonstrated whether bulk parameterization of microscale characteristics (e.g., root system morphology and root conductivity) can improve process representation at the ecosystem scale. We employ the Couvreur method of microscopic uptake to yield macroscopic representation in a coupled soil-root model. Using a modified version of the PFLOTRAN model, which represents the 3-D physics of variably saturated soil, we model a one-hectare temperate forest stand under natural and synthetic climatic forcing. Our results show that as shallow soil layers dry, uptake at the tree and stand level shift to deeper soil layers, allowing the transpiration stream demanded by the atmosphere. We assess the potential capacity of the model to capture compensatory root water uptake. Further, the hydraulic plasticity of the root system is demonstrated by the quick response of uptake to rainfall pulses. These initial results indicate a promising direction for land surface models in which significant three-dimensional information from large root systems can be feasibly integrated into the forest scale simulations of root water uptake.

  1. Root proliferation in decaying roots and old root channels: A nutrient conservation mechanism in oligotrophic mangrove forests?

    USGS Publications Warehouse

    McKee, K.L.

    2001-01-01

    1. In oligotrophic habitats, proliferation of roots in nutrient-rich microsites may contribute to overall nutrient conservation by plants. Peat-based soils on mangrove islands in Belize are characterized by the presence of decaying roots and numerous old root channels (0.1-3.5 cm diameter) that become filled with living and highly branched roots of Rhizophora mangle and Avicennia germinans. The objectives of this study were to quantify the proliferation of roots in these microsites and to determine what causes this response. 2. Channels formed by the refractory remains of mangrove roots accounted for only 1-2% of total soil volume, but the proportion of roots found within channels varied from 9 to 24% of total live mass. Successive generations of roots growing inside increasingly smaller root channels were also found. 3. When artificial channels constructed of PVC pipe were buried in the peat for 2 years, those filled with nutrient-rich organic matter had six times more roots than empty or sand-filled channels, indicating a response to greater nutrient availability rather than to greater space or less impedance to root growth. 4. Root proliferation inside decaying roots may improve recovery of nutrients released from decomposing tissues before they can be leached or immobilized in this intertidal environment. Greatest root proliferation in channels occurred in interior forest zones characterized by greater soil waterlogging, which suggests that this may be a strategy for nutrient capture that minimizes oxygen losses from the whole root system. 5. Improved efficiency of nutrient acquisition at the individual plant level has implications for nutrient economy at the ecosystem level and may explain, in part, how mangroves persist and grow in nutrient-poor environments.

  2. Secretory structure and histochemistry test of some Zingiberaceae plants

    NASA Astrophysics Data System (ADS)

    Indriyani, Serafinah

    2017-11-01

    A secretory structure is a structure that produces a plant's metabolite substances. Secretory structures are grouped into an internal and external. Zingiberaceae plants are known as traditional medicine plants and as spice plants due to secretory structures in their tissues. The objective of the research were to describe the secretory structure of Zingiberaceae plants and to discover the qualitatively primary metabolite substances in plant's tissues via histochemistry test. The research was conducted by observation descriptive design, quantitative data including the density of secretory cells per mm². The quantitative data were analyzed by ANOVA and continued by Duncan at α = 5 %. The results showed that the secretory structures in leaves, rhizome, and the root of 14 species of Zingiberaceae plants are found in the mesophyll of leaves and cortex, and also pith in rhizome and roots. The type of secretory structure is internal. Within the root of Zingiber cassumunar Roxb.(bengle), Curcuma domestica Val. (kunyit), Curcuma zedoaria (Berg.) Roscoe (kunyit putih), Zingiber zerumbet (L.) J.E. Smith (lempuyang), Alpiniapurpurata K. Schum (lengkuas merah), and Curcuma aeruginosa Val. (temu ireng) were found amylum grains, while in Kaemferia galanga L. (kencur), Boesen bergiapandurata L. (temu kunci), and Curcuma xanthorrhiza Roxb. (temulawak) there were no amylum grains in the root as well as in the leaves. The roots of bengle had the greatest density of amylum grain, it had 248.1 ± 9.8 secretory cells of amylum grains per mm². Lipids (oil droplets) were found in the root of bengle, Zingiber officinale Roxb. Var. emprit (jahe emprit), Zingiber officinale Roxb. Var. Gajah (jahe gajah), Zingiber officinale Roxb. Var. Rubrum (jahe merah), Keampferia angustifolia L. (kunci pepet), kunyit, kunyit putih, lempuyang, lengkua smerah, Curcuma aeruginosa Val. (temu ireng), and Curcuma mangga Val. and van Zijp (temu mangga); the root of lempuyang had the greatest density of oil

  3. Rooting Gene Trees without Outgroups: EP Rooting

    PubMed Central

    Sinsheimer, Janet S.; Little, Roderick J. A.; Lake, James A.

    2012-01-01

    Gene sequences are routinely used to determine the topologies of unrooted phylogenetic trees, but many of the most important questions in evolution require knowing both the topologies and the roots of trees. However, general algorithms for calculating rooted trees from gene and genomic sequences in the absence of gene paralogs are few. Using the principles of evolutionary parsimony (EP) (Lake JA. 1987a. A rate-independent technique for analysis of nucleic acid sequences: evolutionary parsimony. Mol Biol Evol. 4:167–181) and its extensions (Cavender, J. 1989. Mechanized derivation of linear invariants. Mol Biol Evol. 6:301–316; Nguyen T, Speed TP. 1992. A derivation of all linear invariants for a nonbalanced transversion model. J Mol Evol. 35:60–76), we explicitly enumerate all linear invariants that solely contain rooting information and derive algorithms for rooting gene trees directly from gene and genomic sequences. These new EP linear rooting invariants allow one to determine rooted trees, even in the complete absence of outgroups and gene paralogs. EP rooting invariants are explicitly derived for three taxon trees, and rules for their extension to four or more taxa are provided. The method is demonstrated using 18S ribosomal DNA to illustrate how the new animal phylogeny (Aguinaldo AMA et al. 1997. Evidence for a clade of nematodes, arthropods, and other moulting animals. Nature 387:489–493; Lake JA. 1990. Origin of the metazoa. Proc Natl Acad Sci USA 87:763–766) may be rooted directly from sequences, even when they are short and paralogs are unavailable. These results are consistent with the current root (Philippe H et al. 2011. Acoelomorph flatworms are deuterostomes related to Xenoturbella. Nature 470:255–260). PMID:22593551

  4. Root Hairs

    PubMed Central

    Grierson, Claire; Nielsen, Erik; Ketelaarc, Tijs; Schiefelbein, John

    2014-01-01

    Roots hairs are cylindrical extensions of root epidermal cells that are important for acquisition of nutrients, microbe interactions, and plant anchorage. The molecular mechanisms involved in the specification, differentiation, and physiology of root hairs in Arabidopsis are reviewed here. Root hair specification in Arabidopsis is determined by position-dependent signaling and molecular feedback loops causing differential accumulation of a WD-bHLH-Myb transcriptional complex. The initiation of root hairs is dependent on the RHD6 bHLH gene family and auxin to define the site of outgrowth. Root hair elongation relies on polarized cell expansion at the growing tip, which involves multiple integrated processes including cell secretion, endomembrane trafficking, cytoskeletal organization, and cell wall modifications. The study of root hair biology in Arabidopsis has provided a model cell type for insights into many aspects of plant development and cell biology. PMID:24982600

  5. Molecular cloning of mevalonate pathway genes from Taraxacum brevicorniculatum and functional characterisation of the key enzyme 3-hydroxy-3-methylglutaryl-coenzyme A reductase.

    PubMed

    van Deenen, Nicole; Bachmann, Anne-Lena; Schmidt, Thomas; Schaller, Hubert; Sand, Jennifer; Prüfer, Dirk; Schulze Gronover, Christian

    2012-04-01

    Taraxacum brevicorniculatum is known to produce high quality rubber. The biosynthesis of rubber is dependent on isopentenyl pyrophosphate (IPP) precursors derived from the mevalonate (MVA) pathway. The cDNA sequences of seven MVA pathway genes from latex of T. brevicorniculatum were isolated, including three cDNA sequences encoding for 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductases (TbHMGR1-3). Expression analyses indicate an important role of TbHMGR1 as well as for the HMG-CoA synthase (TbHMGS), the diphosphomevalonate decarboxylase and the mevalonate kinase in the provision of precursors for rubber biosynthesis. The amino acid sequences of the TbHMGRs show the typical motifs described for plant HMGRs such as two transmembrane domains and a catalytic domain containing two HMG-CoA and two NADP(H) binding sites. The functionality of the HMGRs was demonstrated by complementation assay using an IPP auxotroph mutant of Escherichia coli. Furthermore, the transient expression of the catalytic domains of TbHMGR1 and TbHMGR2 in Nicotiana benthamiana resulted in a strong accumulation of sterol precursors, one of the major groups of pathway end-products.

  6. Study on Dendrobium officinale O-Acetyl-glucomannan (Dendronan). 7. Improving Effects on Colonic Health of Mice.

    PubMed

    Zhang, Guan-ya; Nie, Shao-ping; Huang, Xiao-jun; Hu, Jie-lun; Cui, Steve W; Xie, Ming-yong; Phillips, Glyn O

    2016-03-30

    This research was aimed to study the effect of Dendrobium officinale polysaccharide (Dendronan) on colonic health. Mice were fed Dendronan at doses of 40, 80, and 160 mg/kg body weight for 0, 10, 20, and 30 days, respectively. Results showed that Dendronan, which has a special structure formed by mannose and glucose, rich in O-acetyl groups, exhibited improving effects on colonic and fecal parameters of Balb/c mice. After Dendronan feeding, the content of short-chain fatty acids (SCFAs), colon length and index, and fecal moisture were increased, whereas colonic pH was decreased and defecation time was shortened. All of these changes were significantly different between polysaccharide-treated groups and the control group (p < 0.05). These findings suggested that an adequate intake of Dendronan is beneficial to the process of fermentation and regulation of colonic microenvironment, thus playing a role in the maintenance of colonic health.

  7. Isolation and initial structural characterization of a 27 kDa protein from Zingiber officinale

    NASA Astrophysics Data System (ADS)

    Rasheed, Saima; Malik, Shoaib Ahmad; Falke, Sven; Arslan, Ali; Fazel, Ramin; Schlüter, Hartmut; Betzel, Christian; Choudhary, M. Iqbal

    2018-03-01

    Zingiber officinale Roscoe (Ginger) is a widely used traditional medicinal plant (for different ailments such as arthritis, constipation, and hypertension). This article describes the isolation and characterization of a so far unknown protein from ginger rhizomes applying ion exchange, affinity, size-exclusion chromatography, small angle X-ray scattering (SAXS), and mass spectrometry techniques. One-dimensional Coomassie-stained SDS-PAGE was performed under non-reducing conditions, showing one band corresponding to approx. 27 kDa. Dynamic light scattering (DLS) analysis of the protein solution revealed monodispersity and a monomeric state of the purified protein. Circular dichroism (CD) spectroscopy strongly indicated a β-sheet-rich protein, and disordered regions. MALDI-TOF-MS, and LC-MS/MS analysis resulted in the identification of 27.29 kDa protein, having 32.13% and 25.34% sequence coverage with Zingipain-1 and 2, respectively. The monomeric state and molecular weight were verified by small angle X-ray scattering (SAXS) studies. An elongated ab-initio model was calculated based on the scattering intensity distribution.

  8. Botanical medicines for the urinary tract.

    PubMed

    Yarnell, Eric

    2002-11-01

    Four important categories of urologic herbs, their history, and modern scientific investigations regarding them are reviewed. Botanical diuretics are discussed with a focus on Solidago spp (goldenrod) herb, Levisticum officinale (lovage) root, Petroselinum crispus (parsley) fruit, and Urtica dioica (stinging nettle) herb. Urinary antiseptic and anti-adhesion herbs, particularly Arctostaphylos uva-ursi (uva-uri) leaf, Juniperus spp (juniper) leaf, and Vaccinium macrocarpon (cranberry) fruit are reviewed. The antinephrotoxic botanicals Rheum palmatum (Chinese rhubarb) root and Lespedeza capitata (round-head lespedeza) herb are surveyed, followed by herbs for symptoms of benign prostatic hyperplasia, most notably Serenoa repens (saw palmetto) fruit, Urtica dioica root, and Prunus africana (pygeum) bark.

  9. Descendant root volume varies as a function of root type: estimation of root biomass lost during uprooting in Pinus pinaster.

    PubMed

    Danjon, Frédéric; Caplan, Joshua S; Fortin, Mathieu; Meredieu, Céline

    2013-01-01

    Root systems of woody plants generally display a strong relationship between the cross-sectional area or cross-sectional diameter (CSD) of a root and the dry weight of biomass (DWd) or root volume (Vd) that has grown (i.e., is descendent) from a point. Specification of this relationship allows one to quantify root architectural patterns and estimate the amount of material lost when root systems are extracted from the soil. However, specifications of this relationship generally do not account for the fact that root systems are comprised of multiple types of roots. We assessed whether the relationship between CSD and Vd varies as a function of root type. Additionally, we sought to identify a more accurate and time-efficient method for estimating missing root volume than is currently available. We used a database that described the 3D root architecture of Pinus pinaster root systems (5, 12, or 19 years) from a stand in southwest France. We determined the relationship between CSD and Vd for 10,000 root segments from intact root branches. Models were specified that did and did not account for root type. The relationships were then applied to the diameters of 11,000 broken root ends to estimate the volume of missing roots. CSD was nearly linearly related to the square root of Vd, but the slope of the curve varied greatly as a function of root type. Sinkers and deep roots tapered rapidly, as they were limited by available soil depth. Distal shallow roots tapered gradually, as they were less limited spatially. We estimated that younger trees lost an average of 17% of root volume when excavated, while older trees lost 4%. Missing volumes were smallest in the central parts of root systems and largest in distal shallow roots. The slopes of the curves for each root type are synthetic parameters that account for differentiation due to genetics, soil properties, or mechanical stimuli. Accounting for this differentiation is critical to estimating root loss accurately.

  10. Descendant root volume varies as a function of root type: estimation of root biomass lost during uprooting in Pinus pinaster

    PubMed Central

    Danjon, Frédéric; Caplan, Joshua S.; Fortin, Mathieu; Meredieu, Céline

    2013-01-01

    Root systems of woody plants generally display a strong relationship between the cross-sectional area or cross-sectional diameter (CSD) of a root and the dry weight of biomass (DWd) or root volume (Vd) that has grown (i.e., is descendent) from a point. Specification of this relationship allows one to quantify root architectural patterns and estimate the amount of material lost when root systems are extracted from the soil. However, specifications of this relationship generally do not account for the fact that root systems are comprised of multiple types of roots. We assessed whether the relationship between CSD and Vd varies as a function of root type. Additionally, we sought to identify a more accurate and time-efficient method for estimating missing root volume than is currently available. We used a database that described the 3D root architecture of Pinus pinaster root systems (5, 12, or 19 years) from a stand in southwest France. We determined the relationship between CSD and Vd for 10,000 root segments from intact root branches. Models were specified that did and did not account for root type. The relationships were then applied to the diameters of 11,000 broken root ends to estimate the volume of missing roots. CSD was nearly linearly related to the square root of Vd, but the slope of the curve varied greatly as a function of root type. Sinkers and deep roots tapered rapidly, as they were limited by available soil depth. Distal shallow roots tapered gradually, as they were less limited spatially. We estimated that younger trees lost an average of 17% of root volume when excavated, while older trees lost 4%. Missing volumes were smallest in the central parts of root systems and largest in distal shallow roots. The slopes of the curves for each root type are synthetic parameters that account for differentiation due to genetics, soil properties, or mechanical stimuli. Accounting for this differentiation is critical to estimating root loss accurately. PMID

  11. A split-root technique for measuring root water potential.

    PubMed

    Adeoye, K B; Rawlins, S L

    1981-07-01

    Water encounters various resistances in moving along a path of decreasing potential energy from the soil through the plant to the atmosphere. The reported relative magnitudes of these pathway resistances vary widely and often these results are conflicting. One reason for such inconsistency is the difficulty in measuring the potential drop across various segments of the soil-plant-atmosphere continuum. The measurement of water potentials at the soil-root interface and in the root xylem of a transpiring plant remains a challenging problem.In the divided root experiment reported here, the measured water potential of an enclosed, nonabsorbing branch of the root system of young corn (Bonanza) plants to infer the water potential of the remaining roots growing in soil was used. The selected root branch of the seedling was grown in a specially constructed Teflon test tube into which a screen-enclosed thermocouple psychrometer was inserted and sealed to monitor the root's water potential. The root and its surrounding atmosphere were assumed to be in vapor equilibrium.

  12. A Split-Root Technique for Measuring Root Water Potential

    PubMed Central

    Adeoye, Kingsley B.; Rawlins, Stephen L.

    1981-01-01

    Water encounters various resistances in moving along a path of decreasing potential energy from the soil through the plant to the atmosphere. The reported relative magnitudes of these pathway resistances vary widely and often these results are conflicting. One reason for such inconsistency is the difficulty in measuring the potential drop across various segments of the soil-plant-atmosphere continuum. The measurement of water potentials at the soil-root interface and in the root xylem of a transpiring plant remains a challenging problem. In the divided root experiment reported here, the measured water potential of an enclosed, nonabsorbing branch of the root system of young corn (Bonanza) plants to infer the water potential of the remaining roots growing in soil was used. The selected root branch of the seedling was grown in a specially constructed Teflon test tube into which a screen-enclosed thermocouple psychrometer was inserted and sealed to monitor the root's water potential. The root and its surrounding atmosphere were assumed to be in vapor equilibrium. Images PMID:16661886

  13. In vivo antigenotoxic activity of watercress juice (Nasturtium officinale) against induced DNA damage.

    PubMed

    Casanova, Natalia A; Ariagno, Julia I; López Nigro, Marcela M; Mendeluk, Gabriela R; de los A Gette, María; Petenatti, Elisa; Palaoro, Luis A; Carballo, Marta A

    2013-09-01

    The present study was carried out to investigate the genotoxicity as well as possible protective activity against damage induced by cyclophosphamide (CP) of the aqueous juice of watercress (Nasturtium officinale, W.T. Aiton) in vivo. Male and female Swiss mice 7-8 weeks old (N = 48) were treated by gavage with 1 g kg(-1) body weight and 0.5 g kg(-1) body weight of watercress juice during 15 consecutive days. Genotoxicity and its possible protective effect were tested by the comet assay in peripheral blood cells and the micronucleus test in bone marrow. In addition, biopsies of the bladder, epididymis and testicles of mice were performed to extend the experimental design. Watercress juice per se did not induce genetic damage according to the comet assay and micronucleus study, exhibiting a protective activity against CP (P < 0.05 and P < 0.001, respectively). The comparative analysis of bladder histological changes obtained in the watercress plus CP group against those treated with CP alone suggests a probable protective effect. Further studies are needed in order to establish the protective role of watercress juice against DNA damage. Copyright © 2012 John Wiley & Sons, Ltd.

  14. A comparative UPLC-Q/TOF-MS-based metabolomics approach for distinguishing Zingiber officinale Roscoe of two geographical origins.

    PubMed

    Mais, Enos; Alolga, Raphael N; Wang, Shi-Lei; Linus, Loveth O; Yin, Xiaojin; Qi, Lian-Wen

    2018-02-01

    Ginger, the rhizome of Zingiber officinale Roscoe, is a popular spice used in the food, beverage and confectionary industries. In this study, we report an untargeted UPLC-Q/TOF-MS-based metabolomics approach for comprehensively discriminating between ginger from two geographical locations, Ghana in West Africa and China. Forty batches of fresh ginger from both countries were discriminated using principal component analysis and orthogonal partial least squares discrimination analysis. Sixteen differential metabolites were identified between the gingers from the two geographical locations, six of which were identified as the marker compounds responsible for the discrimination. Our study highlights the essence and predictive power of metabolomics in detecting minute differences in same varieties of plants/plant samples based on the levels and composition of their metabolites. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Streptosporangium jiaoheense sp. nov. and Streptosporangium taraxaci sp. nov., actinobacteria isolated from soil and dandelion root (Taraxacum mongolicum Hand.-Mazz.).

    PubMed

    Zhao, Junwei; Guo, Lifeng; Li, Zhilei; Piao, Chenyu; Li, Yao; Li, Jiansong; Liu, Chongxi; Wang, Xiangjing; Xiang, Wensheng

    2016-06-01

    Two novel actinobacteria, designated strains NEAU-Jh1-4T and NEAU-Wp2-0T, were isolated from muddy soil collected from a riverbank in Jiaohe and a dandelion root collected from Harbin, respectively. A polyphasic study was carried out to establish the taxonomic positions of these two strains. The phylogenetic analysis based on the 16S rRNA gene sequences of strains NEAU-Jh1-4T and NEAU-Wp2-0T indicated that strain NEAU-Jh1-4T clustered with Streptosporangium nanhuense NEAU-NH11T (99.32 % 16S rRNA gene sequence similarity), Streptosporangium purpuratum CY-15110T (98.30 %) and Streptosporangium yunnanense CY-11007T (97.95 %) and strain NEAU-Wp2-0T clustered with 'Streptosporangium sonchi  ' NEAU-QS7 (99.39 %), 'Streptosporangium kronopolitis' NEAU-ML10 (99.26 %), 'Streptosporangium shengliense' NEAU-GH7 (98.85 %) and Streptosporangium longisporum DSM 43180T (98.69 %). Moreover, morphological and chemotaxonomic properties of the two isolates also confirmed their affiliation to the genus Streptosporangium. However, the low level of DNA-DNA hybridization and some phenotypic characteristics allowed the isolates to be differentiated from the most closely related species. Therefore, it is proposed that strains NEAU-Jh1-4T and NEAU-Wp2-0T represent two novel species of the genus Streptosporangium, for which the name Streptosporangium jiaoheense sp. nov. and Streptosporangium taraxaci sp. nov. are proposed. The type strains are NEAU-Jh1-4T (=CGMCC 4.7213T=JCM 30348T) and NEAU-Wp2-0T (=CGMCC 4.7217T=JCM 30349T), respectively.

  16. Characterizing pathways by which gravitropic effectors could move from the root cap to the root of primary roots of Zea mays

    NASA Technical Reports Server (NTRS)

    Moore, R.; McClelen, C. E.

    1989-01-01

    Plasmodesmata linking the root cap and root in primary roots Zea mays are restricted to approx. 400 protodermal cells bordering approx. 110000 microns2 of the calyptrogen of the root cap. This area is less than 10% of the cross-sectional area of the root-tip at the cap junction. Therefore, gravitropic effectors moving from the root cap to the root can move symplastically only through a relatively small area in the centre of the root. Decapped roots are non-responsive to gravity. However, decapped roots whose caps are replaced immediately after decapping are strongly graviresponsive. Thus, gravicurvature occurs only when the root cap contacts the root, and symplastic continuity between the cap and root is not required for gravicurvature. Completely removing mucilage from the root tip renders the root non-responsive to gravity. Taken together, these data suggest that gravitropic effectors move apoplastically through mucilage from the cap to the root.

  17. Root anatomy, morphology, and longevity among root orders in Vaccinium corymbosum (Ericaceae).

    PubMed

    Valenzuela-Estrada, Luis R; Vera-Caraballo, Vivianette; Ruth, Leah E; Eissenstat, David M

    2008-12-01

    Understanding root processes at the whole-plant or ecosystem scales requires an accounting of the range of functions within a root system. Studying root traits based on their branching order can be a powerful approach to understanding this complex system. The current study examined the highly branched root system of the ericoid plant, Vaccinium corymbosum L. (highbush blueberry) by classifying its root orders with a modified version of the morphometric approach similar to that used in hydrology for stream classification. Root anatomy provided valuable insight into variation in root function across orders. The more permanent portion of the root system occurred in 4th- and higher-order roots. Roots in these orders had radial growth; the lowest specific root length, N:C ratios, and mycorrhizal colonization; the highest tissue density and vessel number; and the coarsest root diameter. The ephemeral portion of the root system was mainly in the first three root orders. First- and 2nd-order roots were nearly anatomically identical, with similar mycorrhizal colonization and diameter, and also, despite being extremely fine, median lifespans were not very short (115-120 d; estimated with minirhizotrons). Our research underscores the value of examining root traits by root order and its implications to understanding belowground processes.

  18. Identification of a Taraxacum brevicorniculatum rubber elongation factor protein that is localized on rubber particles and promotes rubber biosynthesis.

    PubMed

    Laibach, Natalie; Hillebrand, Andrea; Twyman, Richard M; Prüfer, Dirk; Schulze Gronover, Christian

    2015-05-01

    Two protein families required for rubber biosynthesis in Taraxacum brevicorniculatum have recently been characterized, namely the cis-prenyltransferases (TbCPTs) and the small rubber particle proteins (TbSRPPs). The latter were shown to be the most abundant proteins on rubber particles, where rubber biosynthesis takes place. Here we identified a protein designated T. brevicorniculatum rubber elongation factor (TbREF) by using mass spectrometry to analyze rubber particle proteins. TbREF is homologous to the TbSRPPs but has a molecular mass that is atypical for the family. The promoter was shown to be active in laticifers, and the protein itself was localized on the rubber particle surface. In TbREF-silenced plants generated by RNA interference, the rubber content was significantly reduced, correlating with lower TbCPT protein levels and less TbCPT activity in the latex. However, the molecular mass of the rubber was not affected by TbREF silencing. The colloidal stability of rubber particles isolated from TbREF-silenced plants was also unchanged. This was not surprising because TbREF depletion did not affect the abundance of TbSRPPs, which are required for rubber particle stability. Our findings suggest that TbREF is an important component of the rubber biosynthesis machinery in T. brevicorniculatum, and may play a role in rubber particle biogenesis and influence rubber production. © 2015 The Authors The Plant Journal © 2015 John Wiley & Sons Ltd.

  19. Down-Regulation of Small Rubber Particle Protein Expression Affects Integrity of Rubber Particles and Rubber Content in Taraxacum brevicorniculatum

    PubMed Central

    Hillebrand, Andrea; Post, Janina J.; Wurbs, David; Wahler, Daniela; Lenders, Malte; Krzyzanek, Vladislav; Prüfer, Dirk; Gronover, Christian Schulze

    2012-01-01

    The biosynthesis of rubber is thought to take place on the surface of rubber particles in laticifers, highly specialized cells that are present in more than 40 plant families. The small rubber particle protein (SRPP) has been supposed to be involved in rubber biosynthesis, and recently five SRPPs (TbSRPP1–5) were identified in the rubber-producing dandelion species Taraxacum brevicorniculatum. Here, we demonstrate by immunogold labeling that TbSRPPs are localized to rubber particles, and that rubber particles mainly consist of TbSRPP3, 4 and 5 as shown by high-resolution two-dimensional gel electrophoresis and mass spectrometric analysis. We also carried out an RNA-interference approach in transgenic plants to address the function of TbSRPPs in rubber biosynthesis as well as rubber particle morphology and stability. TbSRPP-RNAi transgenic T. brevicorniculatum plants showed a 40–50% reduction in the dry rubber content, but neither the rubber weight average molecular mass nor the polydispersity of the rubber were affected. Although no phenotypical differences to wild-type particles could be observed in vivo, rubber particles from the TbSRPP-RNAi transgenic lines were less stable and tend to rapidly aggregate in expelling latex after wounding of laticifers. Our results prove that TbSRPPs are very crucial for rubber production in T. brevicorniculatum, probably by contributing to a most favourable and stable rubber particle architecture for efficient rubber biosynthesis and eventually storage. PMID:22911861

  20. A new species of Chaeridiona Baly (Coleoptera: Chrysomelidae: Cassidinae: Oncocephalini) infesting ginger Zingiber officinale Roscoe) and turmeric (Curcuma longa L.) in India and redescription of Chaeridiona pseudometallica Basu.

    PubMed

    Shameem, K M; Prathapan, K D

    2014-06-17

    Chaeridiona mayuri n. sp. infesting ginger (Zingiber officinale Roscoe) and turmeric (Curcuma longa L.) in southern India is described and illustrated. Cheilocostus speciosus ( J. Koenig) C. D. Specht, Globba sessiliflora Sims and Zingiber zerumbet (L.) Smith are reported as additional host plants. Chaeridiona pseudometallica Basu is redescribed and illustrated. A key to the species of Indian Chaeridiona is provided.

  1. Determination of carotenoids in Taraxacum formosanum by HPLC-DAD-APCI-MS and preparation by column chromatography.

    PubMed

    Kao, T H; Loh, C H; Inbaraj, B Stephen; Chen, B H

    2012-07-01

    The objectives of this study were to determine the variety and content of carotenoids in Taraxacum formosanum, a traditional Chinese herb possessing vital biological activities, by developing an HPLC-DAD-APCI-MS method and a preparative column chromatographic method for carotenoid isolation. A total of 25 carotenoids were resolved within 66 min by employing a YMC C30 column and a gradient mobile phase of methanol-acetonitrile-water (79:14:7, v/v/v) and methylene chloride (100%) with flow rate at 1.0 mL/min and detection at 450 nm. All-trans-canthaxanthin was shown to be an appropriate internal standard for quantitation, with all-trans-β-carotene and its cis isomers present in largest amount (413.6 μg/g), followed by all-trans-violoxanthin and its cis isomers (209.5 μg/g), all-trans-lutein and its cis isomers (212.4 μg/g), all-trans-neoxanthin and its cis isomers (134.6 μg/g), antheraxanthin (16.5 μg/g), all-trans-β-cryptoxanthin and its cis isomers (5.8 μg/g), all-trans-zeaxanthin (3.6 μg/g) and neochrome (0.1 μg/g). For preparative chromatography, with a glass column containing 52 g of magnesium oxide-diatomaceous earth (1:3, w/w) as adsorbent, the carotenoid fraction was eluted with 300 mL of ethyl acetate with flow rate at 10 mL/min. Some more epoxides and cis isomers of carotenoids were generated during preparative column chromatography. Nevertheless, the carotenoids isolated from T. formosanum may be used as raw material for possible production of health food in the future. Copyright © 2012 Elsevier B.V. All rights reserved.

  2. Fine root morphological traits determine variation in root respiration of Quercus serrata.

    PubMed

    Makita, Naoki; Hirano, Yasuhiro; Dannoura, Masako; Kominami, Yuji; Mizoguchi, Takeo; Ishii, Hiroaki; Kanazawa, Yoichi

    2009-04-01

    Fine root respiration is a significant component of carbon cycling in forest ecosystems. Although fine roots differ functionally from coarse roots, these root types have been distinguished based on arbitrary diameter cut-offs (e.g., 2 or 5 mm). Fine root morphology is directly related to physiological function, but few attempts have been made to understand the relationships between morphology and respiration of fine roots. To examine relationships between respiration rates and morphological traits of fine roots (0.15-1.4 mm in diameter) of mature Quercus serrata Murr., we measured respiration of small fine root segments in the field with a portable closed static chamber system. We found a significant power relationship between mean root diameter and respiration rate. Respiration rates of roots<0.4 mm in mean diameter were high and variable, ranging from 3.8 to 11.3 nmol CO2 g(-1) s(-1), compared with those of larger diameter roots (0.4-1.4 mm), which ranged from 1.8 to 3.0 nmol CO2 g(-1) s(-1). Fine root respiration rate was positively correlated with specific root length (SRL) as well as with root nitrogen (N) concentration. For roots<0.4 mm in diameter, SRL had a wider range (11.3-80.4 m g(-1)) and was more strongly correlated with respiration rate than diameter. Our results indicate that a more detailed classification of fine roots<2.0 mm is needed to represent the heterogeneity of root respiration and to evaluate root biomass and root morphological traits.

  3. Root gravitropism and root hair development constitute coupled developmental responses regulated by auxin homeostasis in the Arabidopsis root apex.

    PubMed

    Rigas, Stamatis; Ditengou, Franck Anicet; Ljung, Karin; Daras, Gerasimos; Tietz, Olaf; Palme, Klaus; Hatzopoulos, Polydefkis

    2013-03-01

    Active polar transport establishes directional auxin flow and the generation of local auxin gradients implicated in plant responses and development. Auxin modulates gravitropism at the root tip and root hair morphogenesis at the differentiation zone. Genetic and biochemical analyses provide evidence for defective basipetal auxin transport in trh1 roots. The trh1, pin2, axr2 and aux1 mutants, and transgenic plants overexpressing PIN1, all showing impaired gravity response and root hair development, revealed ectopic PIN1 localization. The auxin antagonist hypaphorine blocked root hair elongation and caused moderate agravitropic root growth, also leading to PIN1 mislocalization. These results suggest that auxin imbalance leads to proximal and distal developmental defects in Arabidopsis root apex, associated with agravitropic root growth and root hair phenotype, respectively, providing evidence that these two auxin-regulated processes are coupled. Cell-specific subcellular localization of TRH1-YFP in stele and epidermis supports TRH1 engagement in auxin transport, and hence impaired function in trh1 causes dual defects of auxin imbalance. The interplay between intrinsic cues determining root epidermal cell fate through the TTG/GL2 pathway and environmental cues including abiotic stresses modulates root hair morphogenesis. As a consequence of auxin imbalance in Arabidopsis root apex, ectopic PIN1 mislocalization could be a risk aversion mechanism to trigger root developmental responses ensuring root growth plasticity. © 2012 The Authors. New Phytologist © 2012 New Phytologist Trust.

  4. Seedling root targets

    Treesearch

    Diane L. Haase

    2011-01-01

    Roots are critical to seedling performance after outplanting. Although root quality is not as quick and simple to measure as shoot quality, target root characteristics should be included in any seedling quality assessment program. This paper provides a brief review of root characteristics most commonly targeted for operational seedling production. These are: root mass...

  5. Effect of Root Moisture Content and Diameter on Root Tensile Properties.

    PubMed

    Yang, Yuanjun; Chen, Lihua; Li, Ning; Zhang, Qiufen

    2016-01-01

    The stabilization of slopes by vegetation has been a topical issue for many years. Root mechanical characteristics significantly influence soil reinforcement; therefore it is necessary to research into the indicators of root tensile properties. In this study, we explored the influence of root moisture content on tensile resistance and strength with different root diameters and for different tree species. Betula platyphylla, Quercus mongolica, Pinus tabulaeformis, and Larix gmelinii, the most popular tree species used for slope stabilization in the rocky mountainous areas of northern China, were used in this study. A tensile test was conducted after root samples were grouped by diameter and moisture content. The results showedthat:1) root moisture content had a significant influence on tensile properties; 2) slightly loss of root moisture content could enhance tensile strength, but too much loss of water resulted in weaker capacity for root elongation, and consequently reduced tensile strength; 3) root diameter had a strong positive correlation with tensile resistance; and4) the roots of Betula platyphylla had the best tensile properties when both diameter and moisture content being controlled. These findings improve our understanding of root tensile properties with root size and moisture, and could be useful for slope stabilization using vegetation.

  6. Effect of Root Moisture Content and Diameter on Root Tensile Properties

    PubMed Central

    Yang, Yuanjun; Chen, Lihua; Li, Ning; Zhang, Qiufen

    2016-01-01

    The stabilization of slopes by vegetation has been a topical issue for many years. Root mechanical characteristics significantly influence soil reinforcement; therefore it is necessary to research into the indicators of root tensile properties. In this study, we explored the influence of root moisture content on tensile resistance and strength with different root diameters and for different tree species. Betula platyphylla, Quercus mongolica, Pinus tabulaeformis, and Larix gmelinii, the most popular tree species used for slope stabilization in the rocky mountainous areas of northern China, were used in this study. A tensile test was conducted after root samples were grouped by diameter and moisture content. The results showedthat:1) root moisture content had a significant influence on tensile properties; 2) slightly loss of root moisture content could enhance tensile strength, but too much loss of water resulted in weaker capacity for root elongation, and consequently reduced tensile strength; 3) root diameter had a strong positive correlation with tensile resistance; and4) the roots of Betula platyphylla had the best tensile properties when both diameter and moisture content being controlled. These findings improve our understanding of root tensile properties with root size and moisture, and could be useful for slope stabilization using vegetation. PMID:27003872

  7. Antiviral efficacy against hepatitis B virus replication of oleuropein isolated from Jasminum officinale L. var. grandiflorum.

    PubMed

    Zhao, Guiqin; Yin, Zhifeng; Dong, Junxing

    2009-09-07

    Jasminum officinale L. var. grandiflorum (JOG) is a folk medicine used for the treatment of hepatitis in south of China. Phytochemical studies showed that secoiridoid glycosides are the typical constituents of this plant. The present study was undertaken to evaluate the effect of oleuropein (Ole) derived from the flowers of JOG on hepatitis B virus (HBV) replication in HepG2 2.2.15 cell line in vitro and duck hepatitis B virus (DHBV) replication in ducklings in vivo. The extracellular hepatitis B e antigen (HBeAg) and hepatitis B surface antigen (HBsAg) concentrations in cell culture medium were determined by ELISA. DHBV in duck serum was analyzed by dot blot. Ole blocks effectively HBsAg secretion in HepG2 2.2.15 cells in a dose-dependent manner (IC(50)=23.2 microg/ml). Ole (80 mg/kg, intraperitoneally, twice daily) also reduced viremia in DHBV-infected ducks. Ole therefore warrants further investigation as a potential therapeutic agent for HBV infection.

  8. Inhibition of angiotensin-1-converting enzyme activity by two varieties of ginger (Zingiber officinale) in rats fed a high cholesterol diet.

    PubMed

    Akinyemi, Ayodele Jacob; Ademiluyi, Adedayo Oluwaseun; Oboh, Ganiyu

    2014-03-01

    Angiotensin-1-converting enzyme (ACE) inhibitors are widely used in the treatment of cardiovascular diseases. This study sought to investigate the inhibitory effect of two varieties of ginger (Zingiber officinale) commonly consumed in Nigeria on ACE activity in rats fed a high cholesterol diet. The inhibition of ACE activity of two varieties of ginger (Z. officinale) was investigated in a high cholesterol (2%) diet fed to rats for 3 days. Feeding high cholesterol diets to rats caused a significant (P<.05) increase in the ACE activity. However, there was a significant (P<.05) inhibition of ACE activity as a result of supplementation with the ginger varieties. Rats that were fed 4% white ginger had the greatest inhibitory effect as compared with a control diet. Furthermore, there was a significant (P<.05) increase in the plasma lipid profile with a concomitant increase in malondialdehyde (MDA) content in rat liver and heart tissues. However, supplementing the diet with red and white ginger (either 2% or 4%) caused a significant (P<.05) decrease in the plasma total cholesterol, triglyceride, very low density lipoprotein-cholesterol, and low-density lipoprotein-cholesterol levels, and in MDA content in the tissues. Conversely, supplementation caused a significant (P<.05) increase in plasma high-density lipoprotein-cholesterol level when compared with the control diet. Nevertheless, rats fed 4% red ginger had the greatest reduction as compared with control diet. In conclusion, both ginger varieties exhibited anti-hypercholesterolemic properties in a high cholesterol diet fed to rats. This activity of the gingers may be attributed to its ACE inhibitory activity. However, white ginger inhibited ACE better in a high cholesterol diet fed to rats than red ginger. Therefore, both gingers could serve as good functional foods/nutraceuticals in the management/treatment of hypertension and other cardiovascular diseases.

  9. Synthesis of analogues of gingerol and shogaol, the active pungent principles from the rhizomes of Zingiber officinale and evaluation of their anti-platelet aggregation effects.

    PubMed

    Shih, Hung-Cheng; Chern, Ching-Yuh; Kuo, Ping-Chung; Wu, You-Cheng; Chan, Yu-Yi; Liao, Yu-Ren; Teng, Che-Ming; Wu, Tian-Shung

    2014-03-04

    The present study was aimed at discovering novel biologically active compounds based on the skeletons of gingerol and shogaol, the pungent principles from the rhizomes of Zingiber officinale. Therefore, eight groups of analogues were synthesized and examined for their inhibitory activities of platelet aggregation induced by arachidonic acid, collagen, platelet activating factor, and thrombin. Among the tested compounds, [6]-paradol (5b) exhibited the most significant anti-platelet aggregation activity. It was the most potent candidate, which could be used in further investigation to explore new drug leads.

  10. Synthesis of Analogues of Gingerol and Shogaol, the Active Pungent Principles from the Rhizomes of Zingiber officinale and Evaluation of Their Anti-Platelet Aggregation Effects

    PubMed Central

    Shih, Hung-Cheng; Chern, Ching-Yuh; Kuo, Ping-Chung; Wu, You-Cheng; Chan, Yu-Yi; Liao, Yu-Ren; Teng, Che-Ming; Wu, Tian-Shung

    2014-01-01

    The present study was aimed at discovering novel biologically active compounds based on the skeletons of gingerol and shogaol, the pungent principles from the rhizomes of Zingiber officinale. Therefore, eight groups of analogues were synthesized and examined for their inhibitory activities of platelet aggregation induced by arachidonic acid, collagen, platelet activating factor, and thrombin. Among the tested compounds, [6]-paradol (5b) exhibited the most significant anti-platelet aggregation activity. It was the most potent candidate, which could be used in further investigation to explore new drug leads. PMID:24599082

  11. Differential control of growth, apoptotic activity and gene expression in human colon cancer cells by extracts derived from medicinal herbs, Rhazya stricta and Zingiber officinale and their combination.

    PubMed

    Elkady, Ayman I; Hussein, Rania Abd El Hamid; Abu-Zinadah, Osama A

    2014-11-07

    To investigate the effects of extracts from Rhazya stricta (R. stricta) and Zingiber officinale (Z. officinale) on human colorectal cancer cells. Human colorectal cancer cells (HCT116) were subjected to increasing doses of crude alkaloid extracts from R. stricta (CAERS) and crude flavonoid extracts from Z. officinale (CFEZO). Cells were then harvested after 24, 48 or 72 h and cell viability was examined by trypan blue exclusion dye test; clonogenicity and soft agar colony-forming assays were also carried out. Nuclear stain (Hoechst 33342), acridine orange/ethidium bromide double staining, agarose gel electrophoresis and comet assays were performed to assess pro-apoptotic potentiality of the extracts. Quantitative reverse transcription-polymerase chain reaction (qRT-PCR), using gene-specific primers and Western blot analyses were performed to assess the impact of CAERS and CFEZO on the expression levels of key regulatory proteins in HCT116 cells. Treatment with a combination of CAERS and CFEZO synergistically suppressed the proliferation, colony formation and anchorage-independent growth of HCT116 cells. Calculated IC50, after 24, 48 and 72 h, were 70, 90 and 130 μg/mL for CAERS, 65, 85 and 120 μg/mL for CFEZO and 20, 25 and 45 μg/mL for both agents, respectively. CAERS- and CFEZO-treated cells exhibited morphologic and biochemical features of apoptotic cell death. The induction of apoptosis was associated with the release of mitochondrial cytochrome c, an increase in the Bax/Bcl-2 ratio, activation of caspases 3 and 9 and cleavage of poly ADP-ribose polymerase. CAERS and CFEZO treatments downregulated expression levels of anti-apoptotic proteins including Bcl-2, Bcl-X, Mcl-1, survivin and XIAP, and upregulated expression levels of proapoptotic proteins such as Bad and Noxa. CAERS and CFEZO treatments elevated expression levels of the oncosuppressor proteins, p53, p21 and p27, and reduced levels of the oncoproteins, cyclin D1, cyclin/cyclin-dependent kinase-4 and

  12. Differential control of growth, apoptotic activity and gene expression in human colon cancer cells by extracts derived from medicinal herbs, Rhazya stricta and Zingiber officinale and their combination

    PubMed Central

    Elkady, Ayman I; Hussein, Rania Abd El Hamid; Abu-Zinadah, Osama A

    2014-01-01

    AIM: To investigate the effects of extracts from Rhazya stricta (R. stricta) and Zingiber officinale (Z. officinale) on human colorectal cancer cells. METHODS: Human colorectal cancer cells (HCT116) were subjected to increasing doses of crude alkaloid extracts from R. stricta (CAERS) and crude flavonoid extracts from Z. officinale (CFEZO). Cells were then harvested after 24, 48 or 72 h and cell viability was examined by trypan blue exclusion dye test; clonogenicity and soft agar colony-forming assays were also carried out. Nuclear stain (Hoechst 33342), acridine orange/ethidium bromide double staining, agarose gel electrophoresis and comet assays were performed to assess pro-apoptotic potentiality of the extracts. Quantitative reverse transcription-polymerase chain reaction (qRT-PCR), using gene-specific primers and Western blot analyses were performed to assess the impact of CAERS and CFEZO on the expression levels of key regulatory proteins in HCT116 cells. RESULTS: Treatment with a combination of CAERS and CFEZO synergistically suppressed the proliferation, colony formation and anchorage-independent growth of HCT116 cells. Calculated IC50, after 24, 48 and 72 h, were 70, 90 and 130 μg/mL for CAERS, 65, 85 and 120 μg/mL for CFEZO and 20, 25 and 45 μg/mL for both agents, respectively. CAERS- and CFEZO-treated cells exhibited morphologic and biochemical features of apoptotic cell death. The induction of apoptosis was associated with the release of mitochondrial cytochrome c, an increase in the Bax/Bcl-2 ratio, activation of caspases 3 and 9 and cleavage of poly ADP-ribose polymerase. CAERS and CFEZO treatments downregulated expression levels of anti-apoptotic proteins including Bcl-2, Bcl-X, Mcl-1, survivin and XIAP, and upregulated expression levels of proapoptotic proteins such as Bad and Noxa. CAERS and CFEZO treatments elevated expression levels of the oncosuppressor proteins, p53, p21 and p27, and reduced levels of the oncoproteins, cyclin D1, cyclin

  13. Bioavailable concentrations of germanium and rare earth elements in soil as affected by low molecular weight organic acids and root exudates

    NASA Astrophysics Data System (ADS)

    Wiche, Oliver; Székely, Balázs; Kummer, Nicolai-Alexeji; Heinemann, Ute; Tesch, Silke; Heilmeier, Hermann

    2014-05-01

    Availability of elements in soil to plant is generally dependent on the solubility and mobility of elements in soil solution which is controlled by soil, elemental properties and plant-soil interactions. Low molecular organic acids or other root exudates may increase mobility and availability of certain elements for plants as an effect of lowering pH in the rhizosphere and complexation. However, these processes take place in a larger volume in soil, therefore to understand their nature, it is also important to know in which layers of the soil what factors modify these processes. In this work the influence of citric acid and root exudates of white lupin (Lupinus albus L.) on bioavailable concentrations of germanium, lanthan, neodymium, gadolinium and erbium in soil solution and uptake in root and shoot of rape (Brassica napus L.), comfrey (Symphytum officinale L.), common millet (Panicum milliaceum L.) and oat (Avena sativa L.) was investigated. Two different pot experiments were conducted: (1) the mentioned plant species were treated with nutrient solutions containing various amount of citric acid; (2) white lupin was cultivated in mixed culture (0 % lupin, 33 % lupin) with oat (Avena sativa L.) and soil solution was obtained by plastic suction cups placed at various depths. As a result, addition of citric acid significantly increased germanium concentrations in plant tissue of comfrey and rape and increased translocation of germanium, lanthan, neodymium, gadolinium and erbium from root to shoot. The cultivation of white lupin in mixed culture with oat led to significantly higher concentrations of germanium and increasing concentrations of lanthan, neodymium, gadolinium and erbium in soil solution and aboveground plant tissue. In these pots concentrations of citric acid in soil solution were significantly higher than in the control. The results show, that low molecular organic acids exuded by plant roots are of great importance for the mobilization of germanium

  14. Root Tip Shape Governs Root Elongation Rate under Increased Soil Strength1[OPEN

    PubMed Central

    Kirchgessner, Norbert; Walter, Achim

    2017-01-01

    Increased soil strength due to soil compaction or soil drying is a major limitation to root growth and crop productivity. Roots need to exert higher penetration force, resulting in increased penetration stress when elongating in soils of greater strength. This study aimed to quantify how the genotypic diversity of root tip geometry and root diameter influences root elongation under different levels of soil strength and to determine the extent to which roots adjust to increased soil strength. Fourteen wheat (Triticum aestivum) varieties were grown in soil columns packed to three bulk densities representing low, moderate, and high soil strength. Under moderate and high soil strength, smaller root tip radius-to-length ratio was correlated with higher genotypic root elongation rate, whereas root diameter was not related to genotypic root elongation. Based on cavity expansion theory, it was found that smaller root tip radius-to-length ratio reduced penetration stress, thus enabling higher root elongation rates in soils with greater strength. Furthermore, it was observed that roots could only partially adjust to increased soil strength. Root thickening was bounded by a maximum diameter, and root tips did not become more acute in response to increased soil strength. The obtained results demonstrated that root tip geometry is a pivotal trait governing root penetration stress and root elongation rate in soils of greater strength. Hence, root tip shape needs to be taken into account when selecting for crop varieties that may tolerate high soil strength. PMID:28600344

  15. Longevity and Stress Resistant Property of 6-Gingerol from Zingiber officinale Roscoe in Caenorhabditis elegans.

    PubMed

    Lee, Eun Byeol; Kim, Jun Hyeong; An, Chang Wan; Kim, Yeong Jee; Noh, Yun Jeong; Kim, Su Jin; Kim, Ju-Eun; Shrestha, Abinash Chandra; Ham, Ha-Neul; Leem, Jae-Yoon; Jo, Hyung-Kwon; Kim, Dae-Sung; Moon, Kwang Hyun; Lee, Jeong Ho; Jeong, Kyung Ok; Kim, Dae Keun

    2018-03-14

    In order to discover lifespan-extending compounds made from natural resources, activity-guided fractionation of Zingiber officinale Roscoe (Zingiberaceae) ethanol extract was performed using the Caenorhabditis elegans ( C. elegans ) model system. The compound 6-gingerol was isolated from the most active ethyl acetate soluble fraction, and showed potent longevity-promoting activity. It also elevated the survival rate of worms against stressful environment including thermal, osmotic, and oxidative conditions. Additionally, 6-gingerol elevated the antioxidant enzyme activities of C. elegans , and showed a dose-depend reduction of intracellular reactive oxygen species (ROS) accumulation in worms. Further studies demonstrated that the increased stress tolerance of 6-gingerol-mediated worms could result from the promotion of stress resistance proteins such as heat shock protein (HSP-16.2) and superoxide dismutase (SOD-3). The lipofuscin levels in 6-gingerol treated intestinal worms were decreased in comparison to the control group. No significant 6-gingerol-related changes, including growth, food intake, reproduction, and movement were noted. These results suggest that 6-gingerol exerted longevity-promoting activities independently of these factors and could extend the human lifespan.

  16. Ameliorating activity of ginger (Zingiber officinale) extract against lead induced renal toxicity in male rats.

    PubMed

    Reddy, Y Amarnath; Chalamaiah, M; Ramesh, B; Balaji, G; Indira, P

    2014-05-01

    Lead poisoning has been known to be associated with structural and functional abnormalities of multiple organ systems of human body. The aim of this investigation was to study the renal protective effects of ginger (Zingiber officinale) extract in lead induced toxicity rats. In this study renal glutathione (GSH) level, glutathione peroxidase (GPX), glutathione-s-transferase (GST), and catalase enzymes were measured in lead nitrate (300 mg/kg BW), and lead nitrate plus ginger extract (150 mg/kg BW) treated rat groups for 1 week and 3 weeks respectively. The glutathione level and GSH dependent antioxidant enzymes such as glutathione peroxidase, glutathione-s-transferase, and catalase significantly (P < 0.05) increased in ginger extract treated rat groups. In addition, histological studies showed lesser renal changes in lead plus ginger extract treated rat groups than that of lead alone treated rat groups. These results indicate that ginger extract alleviated lead toxic effects by enhancing the levels of glutathione, glutathione peroxidase, glutathione-s-transferase and catalase.

  17. Correlation of root dentin thickness and length of roots in mesial roots of mandibular molars.

    PubMed

    Dwivedi, Shweta; Dwivedi, Chandra Dhar; Mittal, Neelam

    2014-09-01

    The purpose of this study was to analyze the relation of tooth length and distal wall thickness of mesial roots in mandibular molars at different locations (ie, 2 mm below the furcation and at the junction between the middle and apical third). Forty-five mandibular first molars were taken, and the length of each tooth was measured. Then, specimens were divided into three groups according to their length: group I-long (24.2 mm ± 1.8), group II-medium (21 mm ± 1.5) and group III-short (16.8 mm ± 1.8). mesial root of each marked at two levels - at 2 mm below the furcation as well as at junction of apical and middle third of roots. The minimum thickness of the distal root dentine associated with the buccal and lingual canals of the mesial roots was measured, The distance between the buccal and lingual canals and the depth of concavity in the distal surface of the mesial roots were also measured. Statistical analysis was performed by using analysis of variance and the Student-Newman-Keuls test. The minimum thickness of the distal wall of the mesiobuccal canal was significantly different (P < .001) between groups 1 (long) and 3 (short). Distal wall thickness of the mesiobuccal root and distal concavity of the mesial root of mandibular first molars were found to be thinner in longer teeth compared with shorter teeth. Copyright © 2014 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  18. Taraxacum mongolicum extract induced endoplasmic reticulum stress associated-apoptosis in triple-negative breast cancer cells.

    PubMed

    Li, Xiao-Hong; He, Xi-Ran; Zhou, Yan-Yan; Zhao, Hai-Yu; Zheng, Wen-Xian; Jiang, Shan-Tong; Zhou, Qun; Li, Ping-Ping; Han, Shu-Yan

    2017-07-12

    Triple-negative breast cancer (TNBC) is an aggressive and deadly breast cancer subtype with limited treatment options. It is necessary to seek complementary strategies for TNBC management. Taraxacum mongolicum, commonly named as dandelion, is a herb medicine with anti-cancer activity and has been utilized to treat mammary abscess, hyperplasia of mammary glands from ancient time in China, but the scientific evidence and action mechanisms still need to be studied. This study was intended to investigate the therapeutic effect and molecular mechanisms of dandelion extract in TNBC cell line. Dandelion extract was prepared and purified, and then its chemical composition was determined. Cell viability was evaluated by MTT assay. Analysis of cell apoptosis and cell cycle was assessed by flow cytometry. The expression levels of mRNA and proteins were determined by real-time PCR and Western blotting, respectively. Caspase inhibitor Z-VAD-FMK and CHOP siRNA were used to confirm the cell apoptosis induced by dandelion extract. Dandelion extract significantly decreased MDA-MB-231cell viability, triggered G2/M phase arrest and cell apoptosis. Concurrently, it caused a markedly increase of cleaved caspase-3 and PARP proteins. Caspase inhibitor Z-VAD-FMK abolished the apoptosis triggered by dandelion extract. The three ER stress-related signals were strongly induced after dandelion treatment, including increased mRNA expressions of ATF4, ATF6, XBP1s, GRP78 and CHOP genes, elevated protein levels of phosphorylated PERK, eIF-2α, IRE1, as well as the downstream molecules of CHOP and GRP78. MDA-MB-231 cells transfected with CHOP siRNA significantly reduced apoptosis induced by dandelion extract. The underlying mechanisms at least partially ascribe to the strong activation of PERK/p-eIF2α/ATF4/CHOP axis. ER stress related cell apoptosis accounted for the anti-cancer effect of dandelion extract, and these findings support dandelion extract might be a potential therapeutic approach to

  19. Root diversity in alpine plants: root length, tensile strength and plant age

    NASA Astrophysics Data System (ADS)

    Pohl, M.; Stroude, R.; Körner, C.; Buttler, A.; Rixen, C.

    2009-04-01

    A high diversity of plant species and functional groups is hypothesised to increase the diversity of root types and their subsequent effects for soil stability. However, even basic data on root characteristics of alpine plants are very scarce. Therefore, we determined important root characteristics of 13 plant species from different functional groups, i.e. grasses, herbs and shrubs. We excavated the whole root systems of 62 plants from a machine-graded ski slope at 2625 m a.s.l. and analysed the rooting depth, the horizontal root extension, root length and diameter. Single roots of plant species were tested for tensile strength. The age of herbs and shrubs was determined by growth-ring analysis. Root characteristics varied considerably between both plant species and functional groups. The rooting depth of different species ranged from 7.2 ± 0.97 cm to 20.5 ± 2.33 cm, but was significantly larger in the herb Geum reptans (70.8 ± 10.75 cm). The woody species Salix breviserrata reached the highest horizontal root extensions (96.8 ± 25.5 cm). Most plants had their longest roots in fine diameter classes (0.5

  20. Meniscus root repair.

    PubMed

    Vyas, Dharmesh; Harner, Christopher D

    2012-06-01

    Root tears are a subset of meniscal injuries that result in significant knee joint pathology. Occurring on either the medial or lateral side, root tears are defined as radial tears or avulsions of the posterior horn attachment to bone. After a root tear, there is a significant increase in tibio-femoral contact pressure concomitant with altered knee joint kinematics. Previous cadaver studies from our institution have shown that root repair of the medial meniscus is successful in restoring joint biomechanics to within normal limits. Indications for operative management of meniscal root tears include (1) a symptomatic medial meniscus root tear with minimal arthritis and having failed non-operative treatment, and (2) a lateral root tear in associated with an ACL tear. In this review, we describe diagnosis, imaging, patient selection, and arthroscopic surgical technique of medial and lateral meniscus root injuries. In addition we highlight the pearls of repair technique, associated complications, post-operative rehabilitation regimen, and expected outcomes.

  1. Root anatomical phenes predict root penetration ability and biomechanical properties in maize (Zea Mays)

    PubMed Central

    Chimungu, Joseph G.; Loades, Kenneth W.; Lynch, Jonathan P.

    2015-01-01

    The ability of roots to penetrate hard soil is important for crop productivity but specific root phenes contributing to this ability are poorly understood. Root penetrability and biomechanical properties are likely to vary in the root system dependent on anatomical structure. No information is available to date on the influence of root anatomical phenes on root penetrability and biomechanics. Root penetration ability was evaluated using a wax layer system. Root tensile and bending strength were evaluated in plant roots grown in the greenhouse and in the field. Root anatomical phenes were found to be better predictors of root penetrability than root diameter per se and associated with smaller distal cortical region cell size. Smaller outer cortical region cells play an important role in stabilizing the root against ovalization and reducing the risk of local buckling and collapse during penetration, thereby increasing root penetration of hard layers. The use of stele diameter was found to be a better predictor of root tensile strength than root diameter. Cortical thickness, cortical cell count, cortical cell wall area and distal cortical cell size were stronger predictors of root bend strength than root diameter. Our results indicate that root anatomical phenes are important predictors for root penetrability of high-strength layers and root biomechanical properties. PMID:25903914

  2. Light as stress factor to plant roots – case of root halotropism

    PubMed Central

    Yokawa, Ken; Fasano, Rossella; Kagenishi, Tomoko; Baluška, František

    2014-01-01

    Despite growing underground, largely in darkness, roots emerge to be very sensitive to light. Recently, several important papers have been published which reveal that plant roots not only express all known light receptors but also that their growth, physiology and adaptive stress responses are light-sensitive. In Arabidopsis, illumination of roots speeds-up root growth via reactive oxygen species-mediated and F-actin dependent process. On the other hand, keeping Arabidopsis roots in darkness alters F-actin distribution, polar localization of PIN proteins as well as polar transport of auxin. Several signaling components activated by phytohormones are overlapping with light-related signaling cascade. We demonstrated that the sensitivity of roots to salinity is altered in the light-grown Arabidopsis roots. Particularly, light-exposed roots are less effective in their salt-avoidance behavior known as root halotropism. Here we discuss these new aspects of light-mediated root behavior from cellular, physiological and evolutionary perspectives. PMID:25566292

  3. Supercritical fluid extraction of ginger (Zingiber Officinale Var. Amarum) : Global yield and composition study

    NASA Astrophysics Data System (ADS)

    Fitriady, Muhammad Arifuddin; Sulaswatty, Anny; Agustian, Egi; Salahuddin, Aditama, Deska Prayoga Fauzi

    2017-11-01

    An experiment to observe the effect of temperature and time process in ginger rhizome-Supercritical Fluid Extraction (SFE) using CO2 as the solvent has been conducted. The ginger rhizome (Zingiber Officinale Var. Amarum) was washed, drained, sliced, sun-dried, and then stored in a sealed bag prior to usage. The temperature and time process variables are each 35, 40, 45°C and 2, 4, 6 hours respectively with the pressure variable are 3500, 4000, and 4500 psi. It is found that the highest yield (2.9%) was achieved using temperature of 40°C and pressure of 4500 psiwith the process time of 4 hours. However, using the curve-fitting method, it is suggested to use 42°C as the temperature and 5 hours, 7 minutes, and 30 seconds (5.125 Hours) as the time process to obtain the highest yield. The temperature changes will affect both solvent and vapor pressure of diluted compounds of the ginger which will influence the global yield and the composition of the extract. The three major components of the extract are curcumene, zingiberene, and β - sesquipellandrene,

  4. Protective effect of Zingiber officinale extract on rat testis after cyclophosphamide treatment.

    PubMed

    Mohammadi, F; Nikzad, H; Taghizadeh, M; Taherian, A; Azami-Tameh, A; Hosseini, S M; Moravveji, A

    2014-08-01

    Decreasing the side effects of chemotherapy in testis has been the subjects of many studies. In this study, the protective effects of Zingiber officinale extract on rat testis were investigated after chemotherapy with cyclophosphamide. Histological and biochemical parameters were compared in cyclophosphamide-treated rats with or without ginger extract intake. Wistar male rats were randomly divided into four groups each 10. The control group received a single injection of 1 ml isotonic saline intraperitoneally. The Cyclophosphamide (CP) group received a single dose of cyclophosphamide (100 mg kg(-1) BW) intraperitoneally. CP + 300 and CP + 600 groups received orally 300 or 600 mg of ginger extract, respectively, for a period of 6 weeks after cyclophosphamide injection. The morphologic and histological structure of the testis was compared in different groups of the rats. Also, factors like malondialdehyde, reactive oxygen species, total antioxidant capacity and testosterone level were assessed in blood serum as well. Our results showed that although ginger extract could not change testis weight, malondialdehyde (MDA) and ROS, but antioxidant and testosterone levels in serum were increased significantly. Also, an obvious improved histological change was seen in CP + 300 and CP + 600 groups in comparison with CP group. These protective effects of ginger on rat testis after cyclophosphamide treatment could be attributed to the higher serum level of antioxidants. © 2013 Blackwell Verlag GmbH.

  5. Psoralen production in hairy roots and adventitious roots cultures of Psoralea coryfolia.

    PubMed

    Baskaran, P; Jayabalan, N

    2009-07-01

    Psoralea corylifolia is an endangered plant producing various compounds of medical importance. Adventitious roots and hairy roots were induced in cultures prepared from hypocotyl explants. Psoralen content was evaluated in both root types grown either in suspension cultures or on agar solidified medium. Psoralen content was approximately 3 mg g(-1) DW in suspension grown hairy roots being higher than in solid grown hairy roots and in solid and suspension-grown adventitious roots.

  6. Preventive and Protective Properties of Zingiber officinale (Ginger) in Diabetes Mellitus, Diabetic Complications, and Associated Lipid and Other Metabolic Disorders: A Brief Review

    PubMed Central

    Li, Yiming; Tran, Van H.; Duke, Colin C.; Roufogalis, Basil D.

    2012-01-01

    Zingiber officinale (ginger) has been used as herbal medicine to treat various ailments worldwide since antiquity. Recent evidence revealed the potential of ginger for treatment of diabetes mellitus. Data from in vitro, in vivo, and clinical trials has demonstrated the antihyperglycaemic effect of ginger. The mechanisms underlying these actions are associated with insulin release and action, and improved carbohydrate and lipid metabolism. The most active ingredients in ginger are the pungent principles, gingerols, and shogaol. Ginger has shown prominent protective effects on diabetic liver, kidney, eye, and neural system complications. The pharmacokinetics, bioavailability, and the safety issues of ginger are also discussed in this update. PMID:23243452

  7. Comparing root architectural models

    NASA Astrophysics Data System (ADS)

    Schnepf, Andrea; Javaux, Mathieu; Vanderborght, Jan

    2017-04-01

    Plant roots play an important role in several soil processes (Gregory 2006). Root architecture development determines the sites in soil where roots provide input of carbon and energy and take up water and solutes. However, root architecture is difficult to determine experimentally when grown in opaque soil. Thus, root architectural models have been widely used and been further developed into functional-structural models that are able to simulate the fate of water and solutes in the soil-root system (Dunbabin et al. 2013). Still, a systematic comparison of the different root architectural models is missing. In this work, we focus on discrete root architecture models where roots are described by connected line segments. These models differ (a) in their model concepts, such as the description of distance between branches based on a prescribed distance (inter-nodal distance) or based on a prescribed time interval. Furthermore, these models differ (b) in the implementation of the same concept, such as the time step size, the spatial discretization along the root axes or the way stochasticity of parameters such as root growth direction, growth rate, branch spacing, branching angles are treated. Based on the example of two such different root models, the root growth module of R-SWMS and RootBox, we show the impact of these differences on simulated root architecture and aggregated information computed from this detailed simulation results, taking into account the stochastic nature of those models. References Dunbabin, V.M., Postma, J.A., Schnepf, A., Pagès, L., Javaux, M., Wu, L., Leitner, D., Chen, Y.L., Rengel, Z., Diggle, A.J. Modelling root-soil interactions using three-dimensional models of root growth, architecture and function (2013) Plant and Soil, 372 (1-2), pp. 93 - 124. Gregory (2006) Roots, rhizosphere and soil: the route to a better understanding of soil science? European Journal of Soil Science 57: 2-12.

  8. Comparison of the Transcriptomes of Ginger (Zingiber officinale Rosc.) and Mango Ginger (Curcuma amada Roxb.) in Response to the Bacterial Wilt Infection

    PubMed Central

    Prasath, Duraisamy; Karthika, Raveendran; Habeeba, Naduva Thadath; Suraby, Erinjery Jose; Rosana, Ottakandathil Babu; Shaji, Avaroth; Eapen, Santhosh Joseph; Deshpande, Uday; Anandaraj, Muthuswamy

    2014-01-01

    Bacterial wilt in ginger (Zingiber officinale Rosc.) caused by Ralstonia solanacearum is one of the most important production constraints in tropical, sub-tropical and warm temperature regions of the world. Lack of resistant genotype adds constraints to the crop management. However, mango ginger (Curcuma amada Roxb.), which is resistant to R. solanacearum, is a potential donor, if the exact mechanism of resistance is understood. To identify genes involved in resistance to R. solanacearum, we have sequenced the transcriptome from wilt-sensitive ginger and wilt-resistant mango ginger using Illumina sequencing technology. A total of 26387032 and 22268804 paired-end reads were obtained after quality filtering for C. amada and Z. officinale, respectively. A total of 36359 and 32312 assembled transcript sequences were obtained from both the species. The functions of the unigenes cover a diverse set of molecular functions and biological processes, among which we identified a large number of genes associated with resistance to stresses and response to biotic stimuli. Large scale expression profiling showed that many of the disease resistance related genes were expressed more in C. amada. Comparative analysis also identified genes belonging to different pathways of plant defense against biotic stresses that are differentially expressed in either ginger or mango ginger. The identification of many defense related genes differentially expressed provides many insights to the resistance mechanism to R. solanacearum and for studying potential pathways involved in responses to pathogen. Also, several candidate genes that may underline the difference in resistance to R. solanacearum between ginger and mango ginger were identified. Finally, we have developed a web resource, ginger transcriptome database, which provides public access to the data. Our study is among the first to demonstrate the use of Illumina short read sequencing for de novo transcriptome assembly and comparison in

  9. Comparison of the transcriptomes of ginger (Zingiber officinale Rosc.) and mango ginger (Curcuma amada Roxb.) in response to the bacterial wilt infection.

    PubMed

    Prasath, Duraisamy; Karthika, Raveendran; Habeeba, Naduva Thadath; Suraby, Erinjery Jose; Rosana, Ottakandathil Babu; Shaji, Avaroth; Eapen, Santhosh Joseph; Deshpande, Uday; Anandaraj, Muthuswamy

    2014-01-01

    Bacterial wilt in ginger (Zingiber officinale Rosc.) caused by Ralstonia solanacearum is one of the most important production constraints in tropical, sub-tropical and warm temperature regions of the world. Lack of resistant genotype adds constraints to the crop management. However, mango ginger (Curcuma amada Roxb.), which is resistant to R. solanacearum, is a potential donor, if the exact mechanism of resistance is understood. To identify genes involved in resistance to R. solanacearum, we have sequenced the transcriptome from wilt-sensitive ginger and wilt-resistant mango ginger using Illumina sequencing technology. A total of 26387032 and 22268804 paired-end reads were obtained after quality filtering for C. amada and Z. officinale, respectively. A total of 36359 and 32312 assembled transcript sequences were obtained from both the species. The functions of the unigenes cover a diverse set of molecular functions and biological processes, among which we identified a large number of genes associated with resistance to stresses and response to biotic stimuli. Large scale expression profiling showed that many of the disease resistance related genes were expressed more in C. amada. Comparative analysis also identified genes belonging to different pathways of plant defense against biotic stresses that are differentially expressed in either ginger or mango ginger. The identification of many defense related genes differentially expressed provides many insights to the resistance mechanism to R. solanacearum and for studying potential pathways involved in responses to pathogen. Also, several candidate genes that may underline the difference in resistance to R. solanacearum between ginger and mango ginger were identified. Finally, we have developed a web resource, ginger transcriptome database, which provides public access to the data. Our study is among the first to demonstrate the use of Illumina short read sequencing for de novo transcriptome assembly and comparison in

  10. Root hairs aid soil penetration by anchoring the root surface to pore walls

    PubMed Central

    Bengough, A. Glyn; Loades, Kenneth; McKenzie, Blair M.

    2016-01-01

    The physical role of root hairs in anchoring the root tip during soil penetration was examined. Experiments using a hairless maize mutant (Zea mays: rth3–3) and its wild-type counterpart measured the anchorage force between the primary root of maize and the soil to determine whether root hairs enabled seedling roots in artificial biopores to penetrate sandy loam soil (dry bulk density 1.0–1.5g cm−3). Time-lapse imaging was used to analyse root and seedling displacements in soil adjacent to a transparent Perspex interface. Peak anchorage forces were up to five times greater (2.5N cf. 0.5N) for wild-type roots than for hairless mutants in 1.2g cm−3 soil. Root hair anchorage enabled better soil penetration for 1.0 or 1.2g cm−3 soil, but there was no significant advantage of root hairs in the densest soil (1.5g cm−3). The anchorage force was insufficient to allow root penetration of the denser soil, probably because of less root hair penetration into pore walls and, consequently, poorer adhesion between the root hairs and the pore walls. Hairless seedlings took 33h to anchor themselves compared with 16h for wild-type roots in 1.2g cm−3 soil. Caryopses were often pushed several millimetres out of the soil before the roots became anchored and hairless roots often never became anchored securely.The physical role of root hairs in anchoring the root tip may be important in loose seed beds above more compact soil layers and may also assist root tips to emerge from biopores and penetrate the bulk soil. PMID:26798027

  11. Root canal irrigants

    PubMed Central

    Kandaswamy, Deivanayagam; Venkateshbabu, Nagendrababu

    2010-01-01

    Successful root canal therapy relies on the combination of proper instrumentation, irrigation, and obturation of the root canal. Of these three essential steps of root canal therapy, irrigation of the root canal is the most important determinant in the healing of the periapical tissues. The primary endodontic treatment goal must thus be to optimize root canal disinfection and to prevent reinfection. In this review of the literature, various irrigants and the interactions between irrigants are discussed. We performed a Medline search for English-language papers published untill July 2010. The keywords used were ‘root canal irrigants’ and ‘endodontic irrigants.’ The reference lists of each article were manually checked for additional articles of relevance. PMID:21217955

  12. Foraging strategies in trees of different root morphology: the role of root lifespan.

    PubMed

    Adams, Thomas S; McCormack, M Luke; Eissenstat, David M

    2013-09-01

    Resource exploitation of patches is influenced not simply by the rate of root production in the patches but also by the lifespan of the roots inhabiting the patches. We examined the effect of sustained localized nitrogen (N) fertilization on root lifespan in four tree species that varied widely in root morphology and presumed foraging strategy. The study was conducted in a 12-year-old common garden in central Pennsylvania using a combination of data from minirhizotron and root in-growth cores. The two fine-root tree species, Acer negundo L. and Populus tremuloides Michx., exhibited significant increases in root lifespan with local N fertilization; no significant responses were observed in the two coarse-root tree species, Sassafras albidum Nutt. and Liriodendron tulipifera L. Across species, coarse-root tree species had longer median root lifespan than fine-root tree species. Localized N fertilization did not significantly increase the N concentration or the respiration of the roots growing in the N-rich patch. Our results suggest that some plant species appear to regulate the lifespan of different portions of their root system to improve resource acquisition while other species do not. Our results are discussed in the context of different strategies of foraging of nutrient patches in species of different root morphology.

  13. X-ray computed tomography uncovers root-root interactions: quantifying spatial relationships between interacting root systems in three dimensions.

    PubMed

    Paya, Alexander M; Silverberg, Jesse L; Padgett, Jennifer; Bauerle, Taryn L

    2015-01-01

    Research in the field of plant biology has recently demonstrated that inter- and intra-specific interactions belowground can dramatically alter root growth. Our aim was to answer questions related to the effect of inter- vs. intra-specific interactions on the growth and utilization of undisturbed space by fine roots within three dimensions (3D) using micro X-ray computed tomography. To achieve this, Populus tremuloides (quaking aspen) and Picea mariana (black spruce) seedlings were planted into containers as either solitary individuals, or inter-/intra-specific pairs, allowed to grow for 2 months, and 3D metrics developed in order to quantify their use of belowground space. In both aspen and spruce, inter-specific root interactions produced a shift in the vertical distribution of the root system volume, and deepened the average position of root tips when compared to intra-specifically growing seedlings. Inter-specific interactions also increased the minimum distance between root tips belonging to the same root system. There was no effect of belowground interactions on the radial distribution of roots, or the directionality of lateral root growth for either species. In conclusion, we found that significant differences were observed more often when comparing controls (solitary individuals) and paired seedlings (inter- or intra-specific), than when comparing inter- and intra-specifically growing seedlings. This would indicate that competition between neighboring seedlings was more responsible for shifting fine root growth in both species than was neighbor identity. However, significant inter- vs. intra-specific differences were observed, which further emphasizes the importance of biological interactions in competition studies.

  14. Molecular cloning and functional analysis of the phosphomannomutase (PMM) gene from Dendrobium officinale and evidence for the involvement of an abiotic stress response during germination.

    PubMed

    He, Chunmei; Zeng, Songjun; Teixeira da Silva, Jaime A; Yu, Zhenming; Tan, Jianwen; Duan, Jun

    2017-07-01

    Phosphomannomutase (PMM, EC 5.4.2.8) catalyzes the interconversion of mannose-6-phosphate to mannose-1-phosphate, the precursor for the synthesis of GDP-mannose. In this study, the complementary DNA (cDNA) of the Phosphomannomutase (PMM) gene was initially cloned from Dendrobium officinale by RACE method. Transient transform result showed that the DoPMM protein was localized in the cytoplasm. The DoPMM gene was highly expressed in the stems of D. officinale both in vegetative and reproductive developmental stages. The putative promoter was cloned by TAIL-PCR and used for searched cis-elements. Stress-related cis-elements like ABRE, TCA-element, and MBS were found in the promoter regions. The DoPMM gene was up-regulated after treatment with abscisic acid, salicylic acid, cold, polyethylene glycol, and NaCl. The total ascorbic acid (AsA) and polysaccharide content in all of the 35S::DoPMM Arabidopsis thaliana transgenic lines #1, #2, and #5 showed a 40, 39, and 31% increase in AsA and a 77, 22, and 39% increase in polysaccharides, respectively more than wild-type (WT) levels. All three 35S::DoPMM transgenic lines exhibited a higher germination percentage than WT plants when seeded on half-strength MS medium supplemented with 150 mM NaCl or 300 mM mannitol. These results provide genetic evidence for the involvement of PMM genes in the biosynthesis of AsA and polysaccharides and the mediation of PMM genes in abiotic stress tolerance during seed germination in A. thaliana.

  15. Evaluating the efficacy of mixture of Boswellia carterii, Zingiber officinale, and Achillea millefolium on severity of symptoms, anxiety, and depression in irritable bowel syndrome patients.

    PubMed

    Kazemian, Afarin; Toghiani, Ali; Shafiei, Katayoun; Afshar, Hamid; Rafiei, Rahmatollah; Memari, Mahnaz; Adibi, Peyman

    2017-01-01

    Irritable bowel syndrome (IBS) is the most prevalent functional gastrointestinal disorders (FGIDs) that affects in different aspects of life and patients experienced depression and anxiety more than others. There are several herbal medicines with positive effects in these patients. The aim of this study is to evaluate the effects of mixture of Boswellia carterii , Zingiber officinale , and Achillea Millefolium on severity of symptoms, anxiety, and depression in IBS patients. This clinical trial study was done in sixty IBS patients (with mild-to-moderate symptoms) divided into two case and control groups. Patients were assessed at the beginning, 1 month, and 3 months after by IBS-severity scoring system (IBS-SSS) and Hospital Anxiety and Depression Scale. IBS-SSS is used for quality of life evaluation too. Sixty IBS patients (with mild to moderate symptoms) with a mean age of 38.75 ± 11.74 participated that 55.4% of cases and 72.8% of controls were men. The most prevalent type of IBS was the mixed type of IBS. The mean score of abdominal pain severity and frequency, bloating score, and depression and anxiety score were decreased in patients administered herbal medication, but changes in these variables in controls were not statistically significant. The changes in quality of life score between cases and controls were significant in men ( P = 0.01) although it was not significant in women. A mixture of B. Carterii , Z. officinale , and A. millefolium is effective in eliminating IBS symptoms and its related depression and anxiety and using herbal medicine in IBS treatment is suggested.

  16. Root hairs aid soil penetration by anchoring the root surface to pore walls.

    PubMed

    Bengough, A Glyn; Loades, Kenneth; McKenzie, Blair M

    2016-02-01

    The physical role of root hairs in anchoring the root tip during soil penetration was examined. Experiments using a hairless maize mutant (Zea mays: rth3-3) and its wild-type counterpart measured the anchorage force between the primary root of maize and the soil to determine whether root hairs enabled seedling roots in artificial biopores to penetrate sandy loam soil (dry bulk density 1.0-1.5g cm(-3)). Time-lapse imaging was used to analyse root and seedling displacements in soil adjacent to a transparent Perspex interface. Peak anchorage forces were up to five times greater (2.5N cf. 0.5N) for wild-type roots than for hairless mutants in 1.2g cm(-3) soil. Root hair anchorage enabled better soil penetration for 1.0 or 1.2g cm(-3) soil, but there was no significant advantage of root hairs in the densest soil (1.5g cm(-3)). The anchorage force was insufficient to allow root penetration of the denser soil, probably because of less root hair penetration into pore walls and, consequently, poorer adhesion between the root hairs and the pore walls. Hairless seedlings took 33h to anchor themselves compared with 16h for wild-type roots in 1.2g cm(-3) soil. Caryopses were often pushed several millimetres out of the soil before the roots became anchored and hairless roots often never became anchored securely.The physical role of root hairs in anchoring the root tip may be important in loose seed beds above more compact soil layers and may also assist root tips to emerge from biopores and penetrate the bulk soil. © The Author 2016. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  17. Measurements of water uptake of maize roots: the key function of lateral roots

    NASA Astrophysics Data System (ADS)

    Ahmed, M. A.; Zarebanadkouki, M.; Kroener, E.; Kaestner, A.; Carminati, A.

    2014-12-01

    Maize (Zea mays L.) is one of the most important crop worldwide. Despite its importance, there is limited information on the function of different root segments and root types of maize in extracting water from soils. Therefore, the aim of this study was to investigate locations of root water uptake in maize. We used neutron radiography to: 1) image the spatial distribution of maize roots in soil and 2) trace the transport of injected deuterated water (D2O) in soil and roots. Maizes were grown in aluminum containers (40×38×1 cm) filled with a sandy soil. When the plants were 16 days old, we injected D2O into selected soil regions containing primary, seminal and lateral roots. The experiments were performed during the day (transpiring plants) and night (not transpiring plants). The transport of D2O into roots was simulated using a new convection-diffusion numerical model of D2O transport into roots. By fitting the observed D2O transport we quantified the diffusional permeability and the water uptake of the different root segments. The maize root architecture consisted of a primary root, 4-5 seminal roots and many lateral roots connected to the primary and seminal roots. Laterals emerged from the proximal 15 cm of the primary and seminal roots. Water uptake occurred primarily in lateral roots. Lateral roots had the highest diffusional permeability (9.4×10-7), which was around six times higher that the diffusional permeability of the old seminal segments (1.4×10-7), and two times higher than the diffusional permeability of the young seminal segments (4.7×10-7). The radial flow of D2O into the lateral (6.7×10-5 ) was much higher than in the young seminal roots (1.1×10-12). The radial flow of D2O into the old seminal was negligible. We concluded that the function of the primary and seminal roots was to collect water from the lateral roots and transport it to the shoot. A maize root system with lateral roots branching from deep primary and seminal roots would be

  18. Arbuscular mycorrhizas are present on Spitsbergen.

    PubMed

    Newsham, K K; Eidesen, P B; Davey, M L; Axelsen, J; Courtecuisse, E; Flintrop, C; Johansson, A G; Kiepert, M; Larsen, S E; Lorberau, K E; Maurset, M; McQuilkin, J; Misiak, M; Pop, A; Thompson, S; Read, D J

    2017-10-01

    A previous study of 76 plant species on Spitsbergen in the High Arctic concluded that structures resembling arbuscular mycorrhizas were absent from roots. Here, we report a survey examining the roots of 13 grass and forb species collected from 12 sites on the island for arbuscular mycorrhizal (AM) colonisation. Of the 102 individuals collected, we recorded AM endophytes in the roots of 41 plants of 11 species (Alopecurus ovatus, Deschampsia alpina, Festuca rubra ssp. richardsonii, putative viviparous hybrids of Poa arctica and Poa pratensis, Poa arctica ssp. arctica, Trisetum spicatum, Coptidium spitsbergense, Ranunculus nivalis, Ranunculus pygmaeus, Ranunculus sulphureus and Taraxacum arcticum) sampled from 10 sites. Both coarse AM endophyte, with hyphae of 5-10 μm width, vesicles and occasional arbuscules, and fine endophyte, consisting of hyphae of 1-3 μm width and sparse arbuscules, were recorded in roots. Coarse AM hyphae, vesicles, arbuscules and fine endophyte hyphae occupied 1.0-30.7, 0.8-18.3, 0.7-11.9 and 0.7-12.8% of the root lengths of colonised plants, respectively. Principal component analysis indicated no associations between the abundances of AM structures in roots and edaphic factors. We conclude that the AM symbiosis is present in grass and forb roots on Spitsbergen.

  19. Depth and Diameter of the Parent Roots of Aspen Root Suckers

    Treesearch

    Robert E. Farmer

    1962-01-01

    Studies of the Populus tremuloides root system by Day (1944), Sandberg (1951) and Barnes (1959) have all shown lateral roots extending as much as 30 feet from tree base. These roots may branch extensively and sometimes exhibit an "undulating" growth habit. According to the above authors, suckers occur on the segments of these lateral roots...

  20. Sorghum root-system classification in contrasting P environments reveals three main rooting types and root-architecture-related marker-trait associations.

    PubMed

    Parra-Londono, Sebastian; Kavka, Mareike; Samans, Birgit; Snowdon, Rod; Wieckhorst, Silke; Uptmoor, Ralf

    2018-02-12

    Roots facilitate acquisition of macro- and micronutrients, which are crucial for plant productivity and anchorage in the soil. Phosphorus (P) is rapidly immobilized in the soil and hardly available for plants. Adaptation to P scarcity relies on changes in root morphology towards rooting systems well suited for topsoil foraging. Root-system architecture (RSA) defines the spatial organization of the network comprising primary, lateral and stem-derived roots and is important for adaptation to stress conditions. RSA phenotyping is a challenging task and essential for understanding root development. In this study, 19 traits describing RSA were analysed in a diversity panel comprising 194 sorghum genotypes, fingerprinted with a 90-k single-nucleotide polymorphism (SNP) array and grown under low and high P availability. Multivariate analysis was conducted and revealed three different RSA types: (1) a small root system; (2) a compact and bushy rooting type; and (3) an exploratory root system, which might benefit plant growth and development if water, nitrogen (N) or P availability is limited. While several genotypes displayed similar rooting types in different environments, others responded to P scarcity positively by developing more exploratory root systems, or negatively with root growth suppression. Genome-wide association studies revealed significant quantitative trait loci (P < 2.9 × 10-6) on chromosomes SBI-02, SBI-03, SBI-05 and SBI-09. Co-localization of significant and suggestive (P < 5.7 × 10-5) associations for several traits indicated hotspots controlling root-system development on chromosomes SBI-02 and SBI-03. Sorghum genotypes with a compact, bushy and shallow root system provide potential adaptation to P scarcity in the field by allowing thorough topsoil foraging, while genotypes with an exploratory root system may be advantageous if N or water is the limiting factor, although such genotypes showed highest P uptake levels under the artificial conditions

  1. RootGraph: a graphic optimization tool for automated image analysis of plant roots

    PubMed Central

    Cai, Jinhai; Zeng, Zhanghui; Connor, Jason N.; Huang, Chun Yuan; Melino, Vanessa; Kumar, Pankaj; Miklavcic, Stanley J.

    2015-01-01

    This paper outlines a numerical scheme for accurate, detailed, and high-throughput image analysis of plant roots. In contrast to existing root image analysis tools that focus on root system-average traits, a novel, fully automated and robust approach for the detailed characterization of root traits, based on a graph optimization process is presented. The scheme, firstly, distinguishes primary roots from lateral roots and, secondly, quantifies a broad spectrum of root traits for each identified primary and lateral root. Thirdly, it associates lateral roots and their properties with the specific primary root from which the laterals emerge. The performance of this approach was evaluated through comparisons with other automated and semi-automated software solutions as well as against results based on manual measurements. The comparisons and subsequent application of the algorithm to an array of experimental data demonstrate that this method outperforms existing methods in terms of accuracy, robustness, and the ability to process root images under high-throughput conditions. PMID:26224880

  2. GLO-Roots: An imaging platform enabling multidimensional characterization of soil-grown root systems

    DOE PAGES

    Rellan-Alvarez, Ruben; Lobet, Guillaume; Lindner, Heike; ...

    2015-08-19

    Root systems develop different root types that individually sense cues from their local environment and integrate this information with systemic signals. This complex multi-dimensional amalgam of inputs enables continuous adjustment of root growth rates, direction, and metabolic activity that define a dynamic physical network. Current methods for analyzing root biology balance physiological relevance with imaging capability. To bridge this divide, we developed an integrated-imaging system called Growth and Luminescence Observatory for Roots (GLO-Roots) that uses luminescence-based reporters to enable studies of root architecture and gene expression patterns in soil-grown, light-shielded roots. We have developed image analysis algorithms that allow themore » spatial integration of soil properties, gene expression, and root system architecture traits. We propose GLO-Roots as a system that has great utility in presenting environmental stimuli to roots in ways that evoke natural adaptive responses and in providing tools for studying the multi-dimensional nature of such processes.« less

  3. Specialized 'dauciform' roots of Cyperaceae are structurally distinct, but functionally analogous with 'cluster' roots.

    PubMed

    Shane, Michael W; Cawthray, Gregory R; Cramer, Michael D; Kuo, John; Lambers, Hans

    2006-10-01

    When grown in nutrient solutions of extremely low [P] (roots, which are short and carrot shaped, and produce dense numbers of long root hairs. It has been suggested that dauciform roots of monocotyledonous sedges function to acquire P from nutrient-poor, P-fixing soils in a manner similar to that of cluster (proteoid) roots developed by some dicotyledonous species, but without evidence to substantiate this claim. To elucidate the ecophysiological role of dauciform roots, we assessed carboxylate exudation, internal carboxylate and P concentrations and O(2) uptake rates during dauciform root development. We showed that O(2) consumption was fastest [9 nmol O(2) g(-1) fresh mass (FM) s(-1)] and root [P] greatest (0.4 mg P g(-1) FM) when dauciform roots were young and rapidly developing. Citrate was the most abundant carboxylate in root tissues at all developmental stages, and was most concentrated (22.2 micromol citrate g(-1) FM) in young dauciform roots, decreasing by more than half in mature dauciform roots. Peak citrate-exudation rates (1.7 nmol citrate g(-1) FM s(-1)) occurred from mature dauciform roots, and were approximately an order of magnitude faster than those from roots of species without root clusters, and similar to those of mature proteoid (cluster) roots of Proteaceae. Both developing and mature dauciform roots had the capacity to acidify (but not alkalinize) the rhizosphere. Anatomical studies showed that epidermal cells in dauciform roots were greatly elongated in the transverse plane; epidermal cells of parent roots were unmodified. Although structurally distinct, the physiology of dauciform roots in sedges appears to be analogous to that of proteoid roots of Proteaceae and Fabaceae, and hence, dauciform roots would facilitate access to sorbed P and micronutrients from soils of low fertility.

  4. GLO-Roots: an imaging platform enabling multidimensional characterization of soil-grown root systems

    PubMed Central

    Rellán-Álvarez, Rubén; Lobet, Guillaume; Lindner, Heike; Pradier, Pierre-Luc; Sebastian, Jose; Yee, Muh-Ching; Geng, Yu; Trontin, Charlotte; LaRue, Therese; Schrager-Lavelle, Amanda; Haney, Cara H; Nieu, Rita; Maloof, Julin; Vogel, John P; Dinneny, José R

    2015-01-01

    Root systems develop different root types that individually sense cues from their local environment and integrate this information with systemic signals. This complex multi-dimensional amalgam of inputs enables continuous adjustment of root growth rates, direction, and metabolic activity that define a dynamic physical network. Current methods for analyzing root biology balance physiological relevance with imaging capability. To bridge this divide, we developed an integrated-imaging system called Growth and Luminescence Observatory for Roots (GLO-Roots) that uses luminescence-based reporters to enable studies of root architecture and gene expression patterns in soil-grown, light-shielded roots. We have developed image analysis algorithms that allow the spatial integration of soil properties, gene expression, and root system architecture traits. We propose GLO-Roots as a system that has great utility in presenting environmental stimuli to roots in ways that evoke natural adaptive responses and in providing tools for studying the multi-dimensional nature of such processes. DOI: http://dx.doi.org/10.7554/eLife.07597.001 PMID:26287479

  5. ROOT.NET: Using ROOT from .NET languages like C# and F#

    NASA Astrophysics Data System (ADS)

    Watts, G.

    2012-12-01

    ROOT.NET provides an interface between Microsoft's Common Language Runtime (CLR) and .NET technology and the ubiquitous particle physics analysis tool, ROOT. ROOT.NET automatically generates a series of efficient wrappers around the ROOT API. Unlike pyROOT, these wrappers are statically typed and so are highly efficient as compared to the Python wrappers. The connection to .NET means that one gains access to the full series of languages developed for the CLR including functional languages like F# (based on OCaml). Many features that make ROOT objects work well in the .NET world are added (properties, IEnumerable interface, LINQ compatibility, etc.). Dynamic languages based on the CLR can be used as well, of course (Python, for example). Additionally it is now possible to access ROOT objects that are unknown to the translation tool. This poster will describe the techniques used to effect this translation, along with performance comparisons, and examples. All described source code is posted on the open source site CodePlex.

  6. Antibacterial effect of Allium sativum cloves and Zingiber officinale rhizomes against multiple-drug resistant clinical pathogens.

    PubMed

    Karuppiah, Ponmurugan; Rajaram, Shyamkumar

    2012-08-01

    To evaluate the antibacterial properties of Allium sativum (garlic) cloves and Zingiber officinale (ginger) rhizomes against multi-drug resistant clinical pathogens causing nosocomial infection. The cloves of garlic and rhizomes of ginger were extracted with 95% (v/v) ethanol. The ethanolic extracts were subjected to antibacterial sensitivity test against clinical pathogens. Anti-bacterial potentials of the extracts of two crude garlic cloves and ginger rhizomes were tested against five gram negative and two gram positive multi-drug resistant bacteria isolates. All the bacterial isolates were susceptible to crude extracts of both plants extracts. Except Enterobacter sp. and Klebsiella sp., all other isolates were susceptible when subjected to ethanolic extracts of garlic and ginger. The highest inhibition zone was observed with garlic (19.45 mm) against Pseudomonas aeruginosa (P. aeruginosa). The minimal inhibitory concentration was as low as 67.00 µg/mL against P. aeruginosa. Natural spices of garlic and ginger possess effective anti-bacterial activity against multi-drug clinical pathogens and can be used for prevention of drug resistant microbial diseases and further evaluation is necessary.

  7. Enhanced extraction of oleoresin from ginger (Zingiber officinale) rhizome powder using enzyme-assisted three phase partitioning.

    PubMed

    Varakumar, Sadineni; Umesh, Kannamangalam Vijayan; Singhal, Rekha S

    2017-02-01

    Ginger (Zingiber officinale R.) is a popular spice used worldwide. The oleoresin consists of gingerols, shogaols and other non-volatiles as chief bioactive constituents. Three phase partitioning (TPP), a bioseparation technique, based on partitioning of polar constituents, proteins, and hydrophobic constituents in three phases comprising of water, ammonium sulphate and t-butanol, was explored for extraction of oleoresin and gingerols from dry powder. Parameters optimized for maximum recovery of gingerols and [6]-shogaol were ammonium sulphate concentration, ratio of t-butanol to slurry, solid loading and pH. Ultrasound and enzymatic pretreatments increased the yield of oleoresin and its phytoconstituents. Ultrasound pretreatment showed separation of starch in the bottom aqueous phase but is an additional step in extraction. Enzymatic pretreatment using accellerase increased the yield of [6]-, [8]-, [10]-gingerols and [6]-shogaol by 64.10, 87.8, 62.78 and 32.0% within 4h and is recommended. The efficacy of the enzymatic pretreatment was confirmed by SEM and FTIR. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Land Contamination and Soil-Plant Interactions in the Imperina Valley Mine (Belluno, Venetian Region, Italy)

    NASA Astrophysics Data System (ADS)

    Bini, Claudio; Wahsha, Mohammad; Fontana, Silvia; Zilioli, Diana

    2010-05-01

    In Italy, ore exploitation, particularly that of mixed sulphides, has been abandoned since the final thirty years of the last century, and a quantity of mine dumps has been discharged in wide areas of the land, provoking evident environmental damages to landscape, soil and vegetation, with potential risk for human health. The present study concerns the distribution and mobility of heavy metals (Ni, Cr, Cu, Pb, Zn, Fe and Mn) in the soils of a mine site and their transfer to wild flora. Soils and wild plants were sampled from mixed sulphides mine dumps in Imperina valley (Belluno, Italy), and the concentrations of heavy metals were determined. Chemical analyses carried out on 10 soil profiles (mostly entisols) of the mineralised area revealed metal concentrations generally above the international target levels (Cu up to 3160 mg kg-1 , Pb up to 23600 mg kg-1, Zn up to 1588 mg kg-1, Fe up to 52,30 %). The concentrations of Ni, Cr and Mn, instead, are below the reference limits. Moreover, a highly significant correlation was observed between the concentrations of metals in soils (Fe, Pb, Zn and Cu). Metal concentration in selected wild plants of the mineralized area is moderately high, in particolar Cu, Pb, Zn in the roots of Plantago major, Pb and Zn in the leaves of Taraxacum officinale, Zn and Pb in Salix spp. The translocation coefficient (BAC) from soil to plant (hypogean portion), and within the plant (epigean portion) vary from 0,37 in Plantago major to 2,97 in Silene dioica, two known accumulator plants. Salix spp present high translocation coefficients from soil to plant, and from roots to leaves. In particular, essential metals present a translocation coefficient ≥1 (with the order Mn>Zn>Cu>Fe), while toxic metals have coefficients <1 (Pb

  9. Characterization of Pearl Millet Root Architecture and Anatomy Reveals Three Types of Lateral Roots

    PubMed Central

    Passot, Sixtine; Gnacko, Fatoumata; Moukouanga, Daniel; Lucas, Mikaël; Guyomarc’h, Soazig; Ortega, Beatriz Moreno; Atkinson, Jonathan A.; Belko, Marème N.; Bennett, Malcolm J.; Gantet, Pascal; Wells, Darren M.; Guédon, Yann; Vigouroux, Yves; Verdeil, Jean-Luc; Muller, Bertrand; Laplaze, Laurent

    2016-01-01

    Pearl millet plays an important role for food security in arid regions of Africa and India. Nevertheless, it is considered an orphan crop as it lags far behind other cereals in terms of genetic improvement efforts. Breeding pearl millet varieties with improved root traits promises to deliver benefits in water and nutrient acquisition. Here, we characterize early pearl millet root system development using several different root phenotyping approaches that include rhizotrons and microCT. We report that early stage pearl millet root system development is characterized by a fast growing primary root that quickly colonizes deeper soil horizons. We also describe root anatomical studies that revealed three distinct types of lateral roots that form on both primary roots and crown roots. Finally, we detected significant variation for two root architectural traits, primary root lenght and lateral root density, in pearl millet inbred lines. This study provides the basis for subsequent genetic experiments to identify loci associated with interesting early root development traits in this important cereal. PMID:27379124

  10. Allelopathy relationship between plants and their use in organic farming

    NASA Astrophysics Data System (ADS)

    Marian, M.; Voşgan, Z.; Mare Roşca, O.; Mihalescu, L.

    2017-05-01

    Allelopathy is a process still little studied in the plant world, if we refer to the diversity of biochemical compounds, through which plants can interact with each other, with fungi or bacteria. Biochemical "dialogue" between organisms may have stimulatory or inhibitory effects, contributing to numerical setting of the populations, the assertion of some species over others, the establishment and strengthen of plant communities. Practically, the allelopathy can be exploited in organic farming in understanding and identifying compatibility between species, to finding natural substances with herbicide potential. In experiments conducted, diluted extracts of Taraxacum officinale and Cirsium vulgare strongly inhibited the germination and growth of corn and beans, while Hedera helix produced the same effect, but at higher concentrations of the extract. Humulus lupulus extract has a stimulating effect on the two species and it is possible to use as natural fertilizer. Extracts of Chenopodium album works as stimulator for Beta vulgaris, and potent inhibitor for Triticum aestivum. Agropyron repens is an aggressive competitor for Lycopersicon esculentum and Capsicum annuum, producing a strong inhibition. Juglans regia extracts and especially those of Satureja hortensis, can be used as natural herbicides for up delay germination and growth suppression for the species: Echinochloa crus-galli and Setaria glauca.

  11. Impacts of fire on non-native plant recruitment in black spruce forests of interior Alaska.

    PubMed

    Walker, Xanthe J; Frey, Matthew D; Conway, Alexandra J; Jean, Mélanie; Johnstone, Jill F

    2017-01-01

    Climate change is expected to increase the extent and severity of wildfires throughout the boreal forest. Historically, black spruce (Picea mariana (Mill.) B.S.P.) forests in interior Alaska have been relatively free of non-native species, but the compounding effects of climate change and an altered fire regime could facilitate the expansion of non-native plants. We tested the effects of wildfire on non-native plant colonization by conducting a seeding experiment of non-native plants on different substrate types in a burned black spruce forest, and surveying for non-native plants in recently burned and mature black spruce forests. We found few non-native plants in burned or mature forests, despite their high roadside presence, although invasion of some burned sites by dandelion (Taraxacum officinale) indicated the potential for non-native plants to move into burned forest. Experimental germination rates were significantly higher on mineral soil compared to organic soil, indicating that severe fires that combust much of the organic layer could increase the potential for non-native plant colonization. We conclude that fire disturbances that remove the organic layer could facilitate the invasion of non-native plants providing there is a viable seed source and dispersal vector.

  12. Characterization of Croatian Rape (Brassica sp.) Honey by Pollen Spectrum, Physicochemical Characteristics, and Multielement analysis by ICP-OES.

    PubMed

    Rajs, Blanka Bilić; Flanjak, Ivana; Mutić, Jelena; Vukojević, Vesna; Đurđić, Slađana; Primorac, Ljiljana

    2017-07-01

    Rape (Brassica sp.) unifloral honey from Croatia was characterized by certain physicochemical parameters, micro- and macroelement content, and pollen spectrum, as determined in 21 honey samples. The Brassica sp. pollen type was predominant in the analyzed samples and ranged between 60 and 98%, with Trifolium spp., Robinia pseudoacacia, Rosaceae, Helianthus annuus, Salix spp., and Taraxacum officinale as the main accompanying pollen types. The electrical conductivity mean value was 0.22 ± 0.05 mS/cm and the glucose/fructose ratio mean value was 1.1 ± 0.07, whereas sucrose was absent in the samples. The most abundant macroelement was potassium (K) (268.49 mg/kg), followed by phosphorus (P) (60.23 mg/kg), calcium (Ca) (54.02 mg/kg), sodium (Na) (22.52 mg/kg), sulfur (S) (15.79 mg/kg), and magnesium (Mg) (12.58 mg/kg). Toxic elements were mainly bellow the LODs; only arsenic (As) concentration was detectable in higher amount (0.233 mg/kg), which may be related to the high arsenic concentration in the soil and groundwater of eastern Croatia. The differences between the two harvesting seasons observed in a large number of elements could be related to climatic and soil conditions and different nectar yields originating from the associated plant species.

  13. Application of ITS2 metabarcoding to determine the provenance of pollen collected by honey bees in an agroecosystem1

    PubMed Central

    Richardson, Rodney T.; Lin, Chia-Hua; Sponsler, Douglas B.; Quijia, Juan O.; Goodell, Karen; Johnson, Reed M.

    2015-01-01

    • Premise of the study: Melissopalynology, the identification of bee-collected pollen, provides insight into the flowers exploited by foraging bees. Information provided by melissopalynology could guide floral enrichment efforts aimed at supporting pollinators, but it has rarely been used because traditional methods of pollen identification are laborious and require expert knowledge. We approach melissopalynology in a novel way, employing a molecular method to study the pollen foraging of honey bees (Apis mellifera) in a landscape dominated by field crops, and compare these results to those obtained by microscopic melissopalynology. • Methods: Pollen was collected from honey bee colonies in Madison County, Ohio, USA, during a two-week period in midspring and identified using microscopic methods and ITS2 metabarcoding. • Results: Metabarcoding identified 19 plant families and exhibited sensitivity for identifying the taxa present in large and diverse pollen samples relative to microscopy, which identified eight families. The bulk of pollen collected by honey bees was from trees (Sapindaceae, Oleaceae, and Rosaceae), although dandelion (Taraxacum officinale) and mustard (Brassicaceae) pollen were also abundant. • Discussion: For quantitative analysis of pollen, using both metabarcoding and microscopic identification is superior to either individual method. For qualitative analysis, ITS2 metabarcoding is superior, providing heightened sensitivity and genus-level resolution. PMID:25606352

  14. Application of ITS2 metabarcoding to determine the provenance of pollen collected by honey bees in an agroecosystem.

    PubMed

    Richardson, Rodney T; Lin, Chia-Hua; Sponsler, Douglas B; Quijia, Juan O; Goodell, Karen; Johnson, Reed M

    2015-01-01

    Melissopalynology, the identification of bee-collected pollen, provides insight into the flowers exploited by foraging bees. Information provided by melissopalynology could guide floral enrichment efforts aimed at supporting pollinators, but it has rarely been used because traditional methods of pollen identification are laborious and require expert knowledge. We approach melissopalynology in a novel way, employing a molecular method to study the pollen foraging of honey bees (Apis mellifera) in a landscape dominated by field crops, and compare these results to those obtained by microscopic melissopalynology. • Pollen was collected from honey bee colonies in Madison County, Ohio, USA, during a two-week period in midspring and identified using microscopic methods and ITS2 metabarcoding. • Metabarcoding identified 19 plant families and exhibited sensitivity for identifying the taxa present in large and diverse pollen samples relative to microscopy, which identified eight families. The bulk of pollen collected by honey bees was from trees (Sapindaceae, Oleaceae, and Rosaceae), although dandelion (Taraxacum officinale) and mustard (Brassicaceae) pollen were also abundant. • For quantitative analysis of pollen, using both metabarcoding and microscopic identification is superior to either individual method. For qualitative analysis, ITS2 metabarcoding is superior, providing heightened sensitivity and genus-level resolution.

  15. A new Approach for Quantifying Root-Reinforcement of Streambanks: the RipRoot Model

    NASA Astrophysics Data System (ADS)

    Pollen, N. L.; Simon, A.

    2003-12-01

    Riparian vegetation plays an important role in controlling geotechnical and fluvial processes acting along and within streambanks through the binding effects of roots. Quantification of this mechanical effect is therefore essential to accurately model streambank stability. Until now, most attempts to include the effects of root reinforcement by riparian vegetation have used root-cohesion values estimated using the Wu et al. (1979) equation, requiring the tensile strengths and diameters of the roots crossing the potential shear-plane. However, the Wu et al. equation is a static model that assumes that all roots break, and that they all break simultaneously. Field observations and laboratory experiments have shown that in reality the roots do not all break simultaneously, and that the breaking of roots during mass failure is in fact a dynamic process. Static models such as the Wu et al. equation are therefore likely to produce overestimations of cohesion due to roots. As a response to this concern, a dynamic root reinforcement model (RipRoot) was developed, based on the concepts of fiber bundle models (FBM's) used in materials science. Within the model the root-soil system is loaded incrementally resulting in progressive root breaking and redistribution of stresses from the broken roots to the remaining intact roots in the soil matrix. The redistribution and loading process continues until either all of the roots have broken, or equilibrium is reached where the root network supports the driving force imposed on the bank. The increase in bank cohesion using the static Wu et al. equation are 18% to 38% higher than RipRoot for riparian tree species, including Black Willow, Sandbar Willow, Cottonwood, River Birch and Eastern Sycamore, and 49% higher for Switch Grass. These variations in cohesion values can have a significant impact on streambank Factor of Safety (Fs) values calculated using the Simon et al. (2000) bank-stability model. For example, a 3m high silt

  16. Resistance to compression of weakened roots subjected to different root reconstruction protocols

    PubMed Central

    ZOGHEIB, Lucas Villaça; SAAVEDRA, Guilherme de Siqueira Ferreira Anzaloni; CARDOSO, Paula Elaine; VALERA, Márcia Carneiro; de ARAÚJO, Maria Amélia Máximo

    2011-01-01

    Objective This study evaluated, in vitro, the fracture resistance of human non-vital teeth restored with different reconstruction protocols. Material and methods Forty human anterior roots of similar shape and dimensions were assigned to four groups (n=10), according to the root reconstruction protocol: Group I (control): non-weakened roots with glass fiber post; Group II: roots with composite resin by incremental technique and glass fiber post; Group III: roots with accessory glass fiber posts and glass fiber post; and Group IV: roots with anatomic glass fiber post technique. Following post cementation and core reconstruction, the roots were embedded in chemically activated acrylic resin and submitted to fracture resistance testing, with a compressive load at an angle of 45º in relation to the long axis of the root at a speed of 0.5 mm/min until fracture. All data were statistically analyzed with bilateral Dunnett's test (α=0.05). Results Group I presented higher mean values of fracture resistance when compared with the three experimental groups, which, in turn, presented similar resistance to fracture among each other. None of the techniques of root reconstruction with intraradicular posts improved root strength, and the incremental technique was suggested as being the most recommendable, since the type of fracture that occurred allowed the remaining dental structure to be repaired. Conclusion The results of this in vitro study suggest that the healthy remaining radicular dentin is more important to increase fracture resistance than the root reconstruction protocol. PMID:22231002

  17. Root and Root Canal Morphology of Human Third Molar Teeth.

    PubMed

    Mohammadi, Zahed; Jafarzadeh, Hamid; Shalavi, Sousan; Bandi, Shilpa; Patil, Shankargouda

    2015-04-01

    Successful root canal treatment depends on having comprehensive information regarding the root(s)/canal(s) anatomy. Dentists may have some complication in treatment of third molars because the difficulty in their access, their aberrant occlusal anatomy and different patterns of eruption. The aim of this review was to review and address the number of roots and root canals in third molars, prevalence of confluent canals in third molars, C-shaped canals, dilaceration and fusion in third molars, autotransplantation of third molars and endodontic treatment strategies for third molars.

  18. Effect of different root canal sealers on fracture strength of simulated immature roots.

    PubMed

    Ulusoy, Özgür İlke Atasoy; Nayır, Yelda; Darendeliler-Yaman, Sis

    2011-10-01

    The objective of this study was to compare the effects of different root canal sealers on fracture resistance of simulated immature teeth. One hundred eight roots were divided into 9 groups. The roots were instrumented except the negative controls. Four millimeters of mineral trioxide aggregate (MTA) barriers were placed apically. The roots were backfilled as follows: group 1, AH Plus+gutta-percha; group 2, EndoREZ+gutta-percha; group 3, EndoREZ+Resilon; group 4, Hybrid Root SEAL+gutta-percha; group 5, Hybrid Root SEAL+Resilon; group 6, iRootSP+gutta-percha; group 7, iRootSP+Resilon; group 8, No obturation other than MTA barrier; group 9, No instrumentation, no obturation. A compressive loading was applied at a speed of 1 mm/min. Data were compared with ANOVA and Duncan tests. Group 5 showed the highest resistance to fracture. The fracture values of group 3 were lower than those of the other experimental groups. Hybrid Root SEAL and iRootSP reinforce the simulated immature roots against fracture when used with either gutta-percha or Resilon. Copyright © 2011 Mosby, Inc. All rights reserved.

  19. Lateral root initiation in Marsilea quadrifolia. I. Origin and histogensis of lateral roots

    NASA Technical Reports Server (NTRS)

    Lin, B. L.; Raghavan, V.

    1991-01-01

    In Marsilea quadrifolia, lateral roots arise from modified single cells of the endodermis located opposite the protoxylem poles within the meristematic region of the parent root. The initial cell divides in four specific planes to establish a five-celled lateral root primordium, with a tetrahedral apical cell in the centre and the oldest merophytes and the root cap along the sides. The cells of the merophyte divide in a precise pattern to give rise to the cells of the cortex, endodermis, pericycle, and vascular tissues of the emerging lateral root. Although the construction of the parent root is more complicated than that of lateral roots, patterns of cell division and tissue formation are similar in both types of roots, with the various tissues being arranged in similar positions in relation to the central axis. Vascular connection between the lateral root primordium and the parent root is derived from the pericycle cells lying between the former and the protoxylem members of the latter. It is proposed that the central axis of the root is not only a geometric centre, but also a physiological centre which determines the fate of the different cell types.

  20. Assessment of effects of phenolic fractions from leaves and petals of dandelion in selected components of hemostasis.

    PubMed

    Lis, Bernadetta; Jędrejek, Dariusz; Stochmal, Anna; Olas, Beata

    2018-05-01

    Aerial parts and roots of Taraxacum officinale (dandelion) have been found to be rich sources of polyphenols, including cinnamic acid derivatives, flavonoids and triterpenoids, which exert different biological activities, such as anti-inflammatory, anticancer and antimicrobial. Additionally, the whole plant is recognized as safe and well tolerated by humans, with no reported adverse effects. Nowadays, dandelion is a commonly available dietary supplement and a component of pharmaceutical preparations used for the treatment of bladder, liver, and spleen. Nevertheless, the effect of dandelion on blood platelets and plasma - components of hemostasis involved in the functioning of a cardiovascular system and linked with various cardiovascular diseases, has not been studied yet. Thus, the main objective of our in vitro experiments was to examine the anti-platelet and antioxidant properties of four standardized dandelion phenolic fractions, i.e. leaves 50% and 85% methanol fractions, and petals 50% and 85% methanol fractions, in blood platelets. Additionally, aforementioned plant preparations were investigated for hemostatic activity in plasma, using three selected hemostatic parameters: the activated partial thromboplastin time (APTT), prothrombin time (PT) and thrombin time (TT). None of the studied dandelion fractions, caused the damage of human blood platelets, at the whole tested range. The inhibition of lipid peroxidation in platelets treated with H 2 O 2 /Fe (the donor of OH) was observed for two fractions: leaves and petals 50% fractions, both at the dose 50 μg/mL. Analysis of the effect on the coagulation activity of human plasma demonstrated that three fractions: petals 50% fraction, and leaves and petals 85% fractions, significantly prolonged the thrombin time, at the whole tested range. On the contrary, none of the fractions changed the APTT and the PT. The obtained results demonstrate that dandelion preparations, based on aerial parts, especially rich in

  1. Implementing Dynamic Root Optimization in Noah-MP for Simulating Phreatophytic Root Water Uptake

    NASA Astrophysics Data System (ADS)

    Wang, Ping; Niu, Guo-Yue; Fang, Yuan-Hao; Wu, Run-Jian; Yu, Jing-Jie; Yuan, Guo-Fu; Pozdniakov, Sergey P.; Scott, Russell L.

    2018-03-01

    Widely distributed in arid and semiarid regions, phreatophytic roots extend into the saturated zone and extract water directly from groundwater. In this paper, we implemented a vegetation optimality model of root dynamics (VOM-ROOT) in the Noah land surface model with multiparameterization options (Noah-MP LSM) to model the extraction of groundwater through phreatophytic roots at a riparian site with a hyperarid climate (with precipitation of 35 mm/yr) in northwestern China. VOM-ROOT numerically describes the natural optimization of the root profile in response to changes in subsurface water conditions. The coupled Noah-MP/VOM-ROOT model substantially improves the simulation of surface energy and water fluxes, particularly during the growing season, compared to the prescribed static root profile in the default Noah-MP. In the coupled model, more roots are required to grow into the saturated zone to meet transpiration demand when the groundwater level declines over the growing season. The modeling results indicate that at the study site, the modeled annual transpiration is 472 mm, accounting for 92.3% of the total evapotranspiration. Direct root water uptake from the capillary fringe and groundwater, which is supplied by lateral groundwater flow, accounts for approximately 84% of the total transpiration. This study demonstrates the importance of implementing a dynamic root scheme in a land surface model for adequately simulating phreatophytic root water uptake and the associated latent heat flux.

  2. Pressurized liquid extraction of ginger (Zingiber officinale Roscoe) with bioethanol: an efficient and sustainable approach.

    PubMed

    Hu, Jiajin; Guo, Zheng; Glasius, Marianne; Kristensen, Kasper; Xiao, Langtao; Xu, Xuebing

    2011-08-26

    To develop an efficient green extraction approach for recovery of bioactive compounds from natural plants, we examined the potential of pressurized liquid extraction (PLE) of ginger (Zingiber officinale Roscoe) with bioethanol/water as solvents. The advantages of PLE over other extraction approaches, in addition to reduced time/solvent cost, the extract of PLE showed a distinct constituent profile from that of Soxhlet extraction, with significantly improved recovery of diarylheptanoids, etc. Among the pure solvents tested for PLE, bioethanol yield the highest efficiency for recovering most constituents of gingerol-related compounds; while for a broad concentration spectrum of ethanol aqueous solutions, 70% ethanol gave the best performance in terms of yield of total extract, complete constituent profile and recovery of most gingerol-related components. PLE with 70% bioethanol operated at 1500 psi and 100 °C for 20 min (static extraction time: 5 min) is recommended as optimized extraction conditions, achieving 106.8%, 109.3% and 108.0% yield of [6]-, [8]- and [10]-gingerol relative to the yield of corresponding constituent obtained by 8h Soxhlet extraction (absolute ethanol as extraction solvent). Copyright © 2011 Elsevier B.V. All rights reserved.

  3. Identification and Expression Profiling of the Auxin Response Factors in Dendrobium officinale under Abiotic Stresses

    PubMed Central

    Chen, Zhehao; Yuan, Ye; Fu, Di; Shen, Chenjia; Yang, Yanjun

    2017-01-01

    Auxin response factor (ARF) proteins play roles in plant responses to diverse environmental stresses by binding specifically to the auxin response element in the promoters of target genes. Using our latest public Dendrobium transcriptomes, a comprehensive characterization and analysis of 14 DnARF genes were performed. Three selected DnARFs, including DnARF1, DnARF4, and DnARF6, were confirmed to be nuclear proteins according to their transient expression in epidermal cells of Nicotiana benthamiana leaves. Furthermore, the transcription activation abilities of DnARF1, DnARF4, and DnARF6 were tested in a yeast system. Our data showed that DnARF6 is a transcriptional activator in Dendrobium officinale. To uncover the basic information of DnARF gene responses to abiotic stresses, we analyzed their expression patterns under various hormones and abiotic treatments. Based on our data, several hormones and significant stress responsive DnARF genes have been identified. Since auxin and ARF genes have been identified in many plant species, our data is imperative to reveal the function of ARF mediated auxin signaling in the adaptation to the challenging Dendrobium environment. PMID:28471373

  4. Identification and Expression Profiling of the Auxin Response Factors in Dendrobium officinale under Abiotic Stresses.

    PubMed

    Chen, Zhehao; Yuan, Ye; Fu, Di; Shen, Chenjia; Yang, Yanjun

    2017-05-04

    Auxin response factor (ARF) proteins play roles in plant responses to diverse environmental stresses by binding specifically to the auxin response element in the promoters of target genes. Using our latest public Dendrobium transcriptomes, a comprehensive characterization and analysis of 14 DnARF genes were performed. Three selected DnARFs , including DnARF1 , DnARF4 , and DnARF6 , were confirmed to be nuclear proteins according to their transient expression in epidermal cells of Nicotiana benthamiana leaves. Furthermore, the transcription activation abilities of DnARF1 , DnARF4 , and DnARF6 were tested in a yeast system. Our data showed that DnARF6 is a transcriptional activator in Dendrobium officinale . To uncover the basic information of DnARF gene responses to abiotic stresses, we analyzed their expression patterns under various hormones and abiotic treatments. Based on our data, several hormones and significant stress responsive DnARF genes have been identified. Since auxin and ARF genes have been identified in many plant species, our data is imperative to reveal the function of ARF mediated auxin signaling in the adaptation to the challenging Dendrobium environment.

  5. Effect of ginger (Zingiber officinale) on heavy menstrual bleeding: a placebo-controlled, randomized clinical trial.

    PubMed

    Kashefi, Farzaneh; Khajehei, Marjan; Alavinia, Mohammad; Golmakani, Ebrahim; Asili, Javad

    2015-01-01

    A wide range of herbal plants have been reported to treat various gynecological problems of women. This study was set out to investigate the effect of ginger (Zingiber officinale) on heavy menstrual bleeding (HMB) in high school girls. Ninety-two young women who experienced HMB and met the inclusion criteria were recruited in this study. Participants were evaluated for six consecutive menstrual cycles. During 3 assessment cycles, their HMB was confirmed by Pictorial Blood Assessment Chart. They were then randomly allocated to two study groups to receive either ginger or placebo capsules. The participants filled in the same chart during three intervention cycles. The level of menstrual blood loss dramatically declined during the three intervention cycles in ginger-receiving group. The decrease of blood loss in ginger-receiving group was significantly more remarkable than that of participants receiving placebo (p<0.001). Minimum number of participants reported adverse effects. HMB is highly prevalent among young women. Considering the significance of appropriate and timely treatment and also the importance of prevention of unwanted consequences, ginger may be considered as an effective therapeutic option for HMB. Copyright © 2014 John Wiley & Sons, Ltd.

  6. Hydraulic conductivity of soil-grown lupine and maize unbranched roots and maize root-shoot junctions.

    PubMed

    Meunier, Félicien; Zarebanadkouki, Mohsen; Ahmed, Mutez A; Carminati, Andrea; Couvreur, Valentin; Javaux, Mathieu

    2018-01-26

    Improving or maintaining crop productivity under conditions of long term change of soil water availability and atmosphere demand for water is one the big challenges of this century. It requires a deep understanding of crop water acquisition properties, i.e. root system architecture and root hydraulic properties among other characteristics of the soil-plant-atmosphere continuum. A root pressure probe technique was used to measure the root hydraulic conductances of seven-week old maize and lupine plants grown in sandy soil. Unbranched root segments were excised in lateral, seminal, crown and brace roots of maize, and in lateral roots of lupine. Their total hydraulic conductance was quantified under steady-state hydrostatic gradient for progressively shorter segments. Furthermore, the axial conductance of proximal root regions removed at each step of root shortening was measured as well. Analytical solutions of the water flow equations in unbranched roots developed recently and relating root total conductance profiles to axial and radial conductivities were used to retrieve the root radial hydraulic conductivity profile along each root type, and quantify its uncertainty. Interestingly, the optimized root radial conductivities and measured axial conductances displayed significant differences across root types and species. However, the measured root total conductances did not differ significantly. As compared to measurements reported in the literature, our axial and radial conductivities concentrate in the lower range of herbaceous species hydraulic properties. In a final experiment, the hydraulic conductances of root junctions to maize stem were observed to highly depend on root type. Surprisingly maize brace root junctions were an order of magnitude more conductive than the other crown and seminal roots, suggesting potential regulation mechanism for root water uptake location and a potential role of the maize brace roots for water uptake more important than reported

  7. Role of Root Hairs and Lateral Roots in Silicon Uptake by Rice

    PubMed Central

    Ma, Jian Feng; Goto, Shoko; Tamai, Kazunori; Ichii, Masahiko

    2001-01-01

    The rice plant (Oryza sativa L. cv Oochikara) is known to be a Si accumulator, but the mechanism responsible for the high uptake of Si by the roots is not well understood. We investigated the role of root hairs and lateral roots in the Si uptake using two mutants of rice, one defective in the formation of root hairs (RH2) and another in that of lateral roots (RM109). Uptake experiments with nutrient solution during both a short term (up to 12 h) and relatively long term (26 d) showed that there was no significant difference in Si uptake between RH2 and the wild type (WT), whereas the Si uptake of RM109 was much less than that of WT. The number of silica bodies formed on the third leaf in RH2 was similar to that in WT, but the number of silica bodies in RM109 was only 40% of that in WT, when grown in soil amended with Si under flooded conditions. There was also no difference in the shoot Si concentration between WT and RH2 when grown in soil under upland conditions. Using a multi-compartment transport box, the Si uptake at the root tip (0–1 cm, without lateral roots and root hairs) was found to be similar in WT, RH2, and RM109. However, the Si uptake in the mature zone (1–4 cm from root tip) was significantly lower in RM109 than in WT, whereas no difference was found in Si uptake between WT and RH2. All these results clearly indicate that lateral roots contribute to the Si uptake in rice plant, whereas root hairs do not. Analysis of F2 populations between RM109 and WT showed that Si uptake was correlated with the presence of lateral roots and that the gene controlling formation of lateral roots and Si uptake is a dominant gene. PMID:11743120

  8. Characterization of plant polysaccharides from Dendrobium officinale by multiple chromatographic and mass spectrometric techniques.

    PubMed

    Ma, Huiying; Zhang, Keke; Jiang, Qing; Dai, Diya; Li, Hongli; Bi, Wentao; Chen, David Da Yong

    2018-04-27

    Plant polysaccharides have numerous medicinal functions. Due to the differences in their origins, regions of production, and cultivation conditions, the quality and the functions of polysaccharides can vary significantly. They are macromolecules with large molecular weight (MW) and complex structure, and pose great challenge for the analytical technology used. Taking Dendrobium officinale (DO) from various origins and locations as model samples. In this investigation, mechanochemical extraction method was used to successfully extract polysaccharides from DO using water as solvent, the process is simple, fast (40 s) and with high yield. The MWs of the intact saccharides from calibration curve and light scattering measurement were determined and compared after separation with size exclusion chromatography (SEC). The large polysaccharide was acid hydrolyzed to oligosaccharides and the products were efficiently separated and identified using liquid chromatography coupled to a high resolution tandem mass spectrometry (LC-MS 2 ). Obvious differences were observed among LC-MS 2 chromatograms of digested products, and the chemical structures for the products were proposed based on accurate mass values. More importantly, isomeric digested carbohydrate compounds were explored and characterized. All the chromatographic and mass spectrometric results in this study provided a multi-dimensional characterization, fingerprint analysis, and molecular structure level assessment of plant polysaccharides. Copyright © 2018 Elsevier B.V. All rights reserved.

  9. Effects of Angelica dahurica and Rheum officinale Extracts on Excisional Wound Healing in Rats

    PubMed Central

    Yang, Wan-Ting; Ke, Chun-Yen; Harn, Horng-Jyh

    2017-01-01

    The main objective of wound treatments is to restore the functional skin properties and prevent infection. Traditional Chinese medicine provides alternative anti-inflammatory, antimicrobial, and wound healing therapies. Both Angelica dahurica extract (AE) and Rheum officinale extract (RE) possess antimicrobial activity. In this study, AE and RE were applied in wound treatment to investigate their healing effects. Thirty Sprague-Dawley rats with dorsal full-thickness skin excision were divided into normal saline (NS), AE, RE, AE plus RE (ARE), and Biomycin (BM) groups. The treatment and area measurement of wounds were applied daily for 21 days. Wound biopsies and blood samples were obtained for histology examinations and cytokine analysis. Results showed that wound contraction in ARE group was significantly higher than that in NS and BM groups (P < 0.05). Histological analysis showed that more inflammatory cell infiltration, collagen fibers, and myofibroblasts were observed in ARE treated group than those in NS group on days 3–5. In ARE group, plasma IL-6 levels were elevated during days 3–5 (P > 0.05), and plasma TGF-β1 levels were significantly lower than those in the NS group on days 3-4 (P < 0.05). In conclusion, ARE accelerates wound healing during inflammation and proliferation phases. PMID:28900458

  10. In vitro effectiveness of Curcuma longa and Zingiber officinale extracts on Echinococcus protoscoleces.

    PubMed

    Almalki, Esam; Al-Shaebi, Esam M; Al-Quarishy, Saleh; El-Matbouli, Mansour; Abdel-Baki, Abdel-Azeem S

    2017-01-01

    Hydatid disease is an important economic and human public health problem with a wide geographical distribution. Surgical excision remains the primary treatment and the only hope for complete cure of hydatosis. The most important complications arising from surgical excision, however, is recurrence, which is due to dissemination of protoscolices during the surgery. Pre-surgical inactivation of the contents of the hydatid cyst by injection of scolicidal agent into the cyst has been used as adjunct to surgery in order to overcome the risk of recurrence. In the present study, ethanolic extracts of turmeric ( Curcuma longa ) and ginger ( Zingiber officinale ) were tested as scolicidal agent for Echinococcus protoscoleces. Protoscoleces were collected aseptically from sheep livers containing hydatid cysts. Three concentrations (10, 30 and 50 mg/ml) of each extract were investigated and viability of the protoscoleces was tested by 0.1% eosin staining. Ginger extract showed the strongest scolicidal effect (100%) after 20 min at a concentration of 30 mg/ml and 10 min at 50 mg/ml . The maximum scolicidal effect of turmeric was 93.2% after 30 min at a concentration of 50 mg/ml. It is concluded that turmeric and ginger extracts have high scolicidal activity and could be used as effective scolicidal agents against Echinococcus protoscoleces.

  11. Chitosan and oligochitosan enhance ginger (Zingiber officinale Roscoe) resistance to rhizome rot caused by Fusarium oxysporum in storage.

    PubMed

    Liu, Yiqing; Wisniewski, Michael; Kennedy, John F; Jiang, Yusong; Tang, Jianmin; Liu, Jia

    2016-10-20

    The ability of chitosan and oligochitosan to enhance ginger (Zingiber officinale) resistance to rhizome rot caused by Fusarium oxysporum in storage was investigated. Both chitosan and oligochitosan at 1 and 5g/L significantly inhibited rhizome rot, with the best control at 5g/L. Chitosan and oligochitosan applied at 5g/L also reduced weight loss, measured as a decrease in fresh weight, but did not affect soluble solids content or titratable acidity of rhizomes. The two compounds applied at 5g/L induced β-1,3-glucanase and phenylalanine ammonia-lyase enzyme activity and the transcript levels of their coding genes, as well as the total phenolic compounds in rhizome tissues. Therefore, the ability of chitosan and oligochitosan to reduce rot in stored rhizomes may be associated with their ability to induce defense responses in ginger. These results have practical implications for the application of chitosan and oligochitosan to harvested ginger rhizomes to reduce postharvest losses. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Ginger (Zingiber officinale) induces apoptosis in Trichomonas vaginalis in vitro.

    PubMed

    Arbabi, Mohsen; Delavari, Mahdi; Fakhrieh Kashan, Zohre; Taghizadeh, Mohsen; Hooshyar, Hossein

    2016-11-01

    Trichomoniasis is the most common sexually transmitted protozoan diseases in the worldwide. Metronidazole is the choice drug for trichomoniasis treatment, however, metronidazole resistant Trichomonas vaginalis ( T.vaginalis ) has been reported. Natural products are the source of most new drugs, and Zingiber officinale (Ginger ) is widely used ingredient in the traditional medicine. The aim of the present study was to determine the effect of different concentrations of the ginger ethanol extract on the growth of T.vaginalis trophozoites in vitro. In this experimental study, 970 women who were attend in Kashan health centers were examined for T. vaginalis . Of them, 23 samples were infected with T.vaginalis . Three T. vaginalis isolates were cultured in a TYI-S-33 medium. The effect of ginger ethanol extracts and its toxicity in different concentrations (25, 50, 100, 200, 400, 800 µg/ml) on mouse macrophages were measured in triplicate exam by MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] assay. The effect of ginger on apoptosis induction was determined by Flow cytometry. The IC 50 of ginger and metronidazole were 93.8 and 0.0326 µg/ml, respectively. 12, 24 and 48 hr after adding different concentrations of extract on mouse macrophages, fatality rates in maximum dose (800 µg/ml) were 0.19, 0.26 and 0.31 respectively. Flow cytometry results showed the apoptosis rate following treatment with different concentrations of the extract after 48 hr were 17, 28.5, 42.1, 58.8, 76.3 and 100% respectively, while in the control group was 2.9%. Ginger ethanol extract induces programmed death in T. vaginalis . It is recommended that due to the known teratogenic effect of metronidazole, ginger can be considered as an alternative drug for metronidazole.

  13. Measuring and Modeling Root Distribution and Root Reinforcement in Forested Slopes for Slope Stability Calculations

    NASA Astrophysics Data System (ADS)

    Cohen, D.; Giadrossich, F.; Schwarz, M.; Vergani, C.

    2016-12-01

    Roots provide mechanical anchorage and reinforcement of soils on slopes. Roots also modify soil hydrological properties (soil moisture content, pore-water pressure, preferential flow paths) via subsurface flow path associated with root architecture, root density, and root-size distribution. Interactions of root-soil mechanical and hydrological processes are an important control of shallow landslide initiation during rainfall events and slope stability. Knowledge of root-distribution and root strength are key components to estimate slope stability in vegetated slopes and for the management of protection forest in steep mountainous area. We present data that show the importance of measuring root strength directly in the field and present methods for these measurements. These data indicate that the tensile force mobilized in roots depends on root elongation (a function of soil displacement), root size, and on whether roots break in tension of slip out of the soil. Measurements indicate that large lateral roots that cross tension cracks at the scarp are important for slope stability calculations owing to their large tensional resistance. These roots are often overlooked and when included, their strength is overestimated because extrapolated from measurements on small roots. We present planned field experiments that will measure directly the force held by roots of different sizes during the triggering of a shallow landslide by rainfall. These field data are then used in a model of root reinforcement based on fiber-bundle concepts that span different spacial scales, from a single root to the stand scale, and different time scales, from timber harvest to root decay. This model computes the strength of root bundles in tension and in compression and their effect on soil strength. Up-scaled to the stand the model yields the distribution of root reinforcement as a function of tree density, distance from tree, tree species and age with the objective of providing quantitative

  14. Evaluating the efficacy of mixture of Boswellia carterii, Zingiber officinale, and Achillea millefolium on severity of symptoms, anxiety, and depression in irritable bowel syndrome patients

    PubMed Central

    Kazemian, Afarin; Toghiani, Ali; Shafiei, Katayoun; Afshar, Hamid; Rafiei, Rahmatollah; Memari, Mahnaz; Adibi, Peyman

    2017-01-01

    Background: Irritable bowel syndrome (IBS) is the most prevalent functional gastrointestinal disorders (FGIDs) that affects in different aspects of life and patients experienced depression and anxiety more than others. There are several herbal medicines with positive effects in these patients. The aim of this study is to evaluate the effects of mixture of Boswellia carterii, Zingiber officinale, and Achillea Millefolium on severity of symptoms, anxiety, and depression in IBS patients. Materials and Methods: This clinical trial study was done in sixty IBS patients (with mild-to-moderate symptoms) divided into two case and control groups. Patients were assessed at the beginning, 1 month, and 3 months after by IBS-severity scoring system (IBS-SSS) and Hospital Anxiety and Depression Scale. IBS-SSS is used for quality of life evaluation too. Results: Sixty IBS patients (with mild to moderate symptoms) with a mean age of 38.75 ± 11.74 participated that 55.4% of cases and 72.8% of controls were men. The most prevalent type of IBS was the mixed type of IBS. The mean score of abdominal pain severity and frequency, bloating score, and depression and anxiety score were decreased in patients administered herbal medication, but changes in these variables in controls were not statistically significant. The changes in quality of life score between cases and controls were significant in men (P = 0.01) although it was not significant in women. Conclusion: A mixture of B. Carterii, Z. officinale, and A. millefolium is effective in eliminating IBS symptoms and its related depression and anxiety and using herbal medicine in IBS treatment is suggested. PMID:29259631

  15. GiA Roots: software for the high throughput analysis of plant root system architecture.

    PubMed

    Galkovskyi, Taras; Mileyko, Yuriy; Bucksch, Alexander; Moore, Brad; Symonova, Olga; Price, Charles A; Topp, Christopher N; Iyer-Pascuzzi, Anjali S; Zurek, Paul R; Fang, Suqin; Harer, John; Benfey, Philip N; Weitz, Joshua S

    2012-07-26

    Characterizing root system architecture (RSA) is essential to understanding the development and function of vascular plants. Identifying RSA-associated genes also represents an underexplored opportunity for crop improvement. Software tools are needed to accelerate the pace at which quantitative traits of RSA are estimated from images of root networks. We have developed GiA Roots (General Image Analysis of Roots), a semi-automated software tool designed specifically for the high-throughput analysis of root system images. GiA Roots includes user-assisted algorithms to distinguish root from background and a fully automated pipeline that extracts dozens of root system phenotypes. Quantitative information on each phenotype, along with intermediate steps for full reproducibility, is returned to the end-user for downstream analysis. GiA Roots has a GUI front end and a command-line interface for interweaving the software into large-scale workflows. GiA Roots can also be extended to estimate novel phenotypes specified by the end-user. We demonstrate the use of GiA Roots on a set of 2393 images of rice roots representing 12 genotypes from the species Oryza sativa. We validate trait measurements against prior analyses of this image set that demonstrated that RSA traits are likely heritable and associated with genotypic differences. Moreover, we demonstrate that GiA Roots is extensible and an end-user can add functionality so that GiA Roots can estimate novel RSA traits. In summary, we show that the software can function as an efficient tool as part of a workflow to move from large numbers of root images to downstream analysis.

  16. Rooting depth and root depth distribution of Trifolium repens × T. uniflorum interspecific hybrids.

    PubMed

    Nichols, S N; Hofmann, R W; Williams, W M; van Koten, C

    2016-05-20

    Traits related to root depth distribution were examined in Trifolium repens × T. uniflorum backcross 1 (BC 1 ) hybrids to determine whether root characteristics of white clover could be improved by interspecific hybridization. Two white clover cultivars, two T. uniflorum accessions and two BC 1 populations were grown in 1 -m deep tubes of sand culture. Maximum rooting depth and root mass distribution were measured at four harvests over time, and root distribution data were fitted with a regression model to provide measures of root system shape. Morphological traits were measured at two depths at harvest 3. Root system shape of the hybrids was more similar to T. uniflorum than to white clover. The hybrids and T. uniflorum had a higher rate of decrease in root mass with depth than white clover, which would result in higher proportions of root mass in the upper profile. Percentage total root mass at 100-200 mm depth was higher for T. uniflorum than white clover, and for Crusader BC 1 than 'Crusader'. Roots of the hybrids and T. uniflorum also penetrated deeper than those of white clover. T. uniflorum had thicker roots at 50-100 mm deep than the other entries, and more of its fine root mass at 400-500 mm. The hybrids and white clover had more of their fine root mass higher in the profile. Consequently, T. uniflorum had a higher root length density at 400-500 mm than most entries, and a smaller decrease in root length density with depth. These results demonstrate that rooting characteristics of white clover can be altered by hybridization with T. uniflorum, potentially improving water and nutrient acquisition and drought resistance. Root traits of T. uniflorum are likely to be adaptations to soil moisture and fertility in its natural environment. © The Author 2016. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  17. Rooting depth and root depth distribution of Trifolium repens × T. uniflorum interspecific hybrids

    PubMed Central

    Nichols, S. N.; Hofmann, R. W.; Williams, W. M.; van Koten, C.

    2016-01-01

    Background and aims Traits related to root depth distribution were examined in Trifolium repens × T. uniflorum backcross 1 (BC1) hybrids to determine whether root characteristics of white clover could be improved by interspecific hybridization. Methods Two white clover cultivars, two T. uniflorum accessions and two BC1 populations were grown in 1 -m deep tubes of sand culture. Maximum rooting depth and root mass distribution were measured at four harvests over time, and root distribution data were fitted with a regression model to provide measures of root system shape. Morphological traits were measured at two depths at harvest 3. Key Results Root system shape of the hybrids was more similar to T. uniflorum than to white clover. The hybrids and T. uniflorum had a higher rate of decrease in root mass with depth than white clover, which would result in higher proportions of root mass in the upper profile. Percentage total root mass at 100–200 mm depth was higher for T. uniflorum than white clover, and for Crusader BC1 than ‘Crusader’. Roots of the hybrids and T. uniflorum also penetrated deeper than those of white clover. T. uniflorum had thicker roots at 50–100 mm deep than the other entries, and more of its fine root mass at 400–500 mm. The hybrids and white clover had more of their fine root mass higher in the profile. Consequently, T. uniflorum had a higher root length density at 400–500 mm than most entries, and a smaller decrease in root length density with depth. Conclusions These results demonstrate that rooting characteristics of white clover can be altered by hybridization with T. uniflorum, potentially improving water and nutrient acquisition and drought resistance. Root traits of T. uniflorum are likely to be adaptations to soil moisture and fertility in its natural environment. PMID:27208735

  18. Cadmium translocation by contractile roots differs from that in regular, non-contractile roots

    PubMed Central

    Lux, Alexander; Lackovič, Andrej; Van Staden, Johannes; Lišková, Desana; Kohanová, Jana; Martinka, Michal

    2015-01-01

    Background and Aims Contractile roots are known and studied mainly in connection with the process of shrinkage of their basal parts, which acts to pull the shoot of the plant deeper into the ground. Previous studies have shown that the specific structure of these roots results in more intensive water uptake at the base, which is in contrast to regular root types. The purpose of this study was to find out whether the basal parts of contractile roots are also more active in translocation of cadmium to the shoot. Methods Plants of the South African ornamental species Tritonia gladiolaris were cultivated in vitro for 2 months, at which point they possessed well-developed contractile roots. They were then transferred to Petri dishes with horizontally separated compartments of agar containing 50 µmol Cd(NO3)2 in the region of the root base or the root apex. Seedlings of 4-d-old maize (Zea mays) plants, which do not possess contractile roots, were also transferred to similar Petri dishes. The concentrations of Cd in the leaves of the plants were compared after 10 d of cultivation. Anatomical analyses of Tritonia roots were performed using appropriately stained freehand cross-sections. Key Results The process of contraction required specific anatomical adaptation of the root base in Tritonia, with less lignified and less suberized tissues in comparison with the subapical part of the root. These unusual developmental characteristics were accompanied by more intensive translocation of Cd ions from the basal part of contractile roots to the leaves than from the apical–subapical root parts. The opposite effects were seen in the non-contractile roots of maize, with higher uptake and transport by the apical parts of the root and lower uptake and transport by the basal part. Conclusions The specific characteristics of contractile roots may have a significant impact on the uptake of ions, including toxic metals from the soil surface layers. This may be important for plant

  19. Corky root rot

    USDA-ARS?s Scientific Manuscript database

    Corky root rot (corchosis) was first reported in Argentina in 1985, but the disease was presumably present long before that. The disease occurs in most alfalfa-growing areas of Argentina but is more common in older stands. In space-planted alfalfa trials scored for root problems, corky root rot was ...

  20. Armillaria root rot

    USDA-ARS?s Scientific Manuscript database

    First described on grapevines in California in the 1880s, Armillaria root rot occurs in all major grape-growing regions of the state. The causal fungus, Armillaria mellea, infects woody grapevine roots and the base of the trunk (the root collar), resulting in a slow decline and eventual death of the...